
Graduate Theses and Dissertations Graduate College

2010

Contextual self-organizing maps for visual design
space exploration
Brett Nekolny
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Nekolny, Brett, "Contextual self-organizing maps for visual design space exploration" (2010). Graduate Theses and Dissertations. 11788.
http://lib.dr.iastate.edu/etd/11788

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11788&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11788&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11788&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F11788&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11788&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Fetd%2F11788&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/11788?utm_source=lib.dr.iastate.edu%2Fetd%2F11788&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Contextual self-organizing maps for visual design space exploration

by

Brett Matthew Nekolny

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-majors: Human Computer Interaction; Mechanical Engineering

Program of Study Committee:
Eliot Winer, Major Professor

Amy Kaleita
Song Zhang

Iowa State University
Ames, Iowa

2010

Copyright © Brett Matthew Nekolny, 2010. All rights reserved

ii

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 PURPOSE 1

1.2 DESIGN SPACE 1

1.3 OPTIMIZATION 4

1.4 DESIGN AND OPTIMIZATION AND VISUALIZATION 6

1.5 MOTIVATION 7

1.6 THESIS ORGANIZATION 8

2 BACKGROUND 9

2.1 OPTIMIZATION VISUALIZATION AND DESIGN SPACE EXPLORATION 9

2.2 SELF-ORGANIZING MAPS 19

2.2.1 Beyond the Self-Organizing Map 23

U-Matrix 23

Contextual Maps 24

Generative Topographic Maps 26

Equalized Orthogonal Mapping 30

2.2.2 Self-Organizing Maps Applied to Optimization and Visualization 31

Visualization of the Dimensionally Reduced Map 31

Extracted Individual Variable Visualization 36

2.3 COLOR VISUALIZATION 37

2.4 RESEARCH ISSUES 41

3 METHODOLOGY 42

3.1 THE SELF-ORGANIZING MAP 42

3.2 CONTEXTUAL SOMS APPLIED TO DESIGN SPACE EXPLORATION 48

3.2.1 Map Generation 48

iii

3.2.2 Training Process 50

3.2.3 Contextual Labeling Process 55

3.2.4 Coloring Process 55

3.3 PROGRESS OF SOM CONTEXTUAL MAPS 59

3.3.1 Generation of Trained Map 59

3.3.2 Research into Displaying Valuable Map Information 59

3.3.3 SOM Visualizer Application 64

Software 64

Interface 65

Data 68

4 RESULTS AND DISCUSSION 69

4.1 OPTIMIZATION TEST SUITE 69

Dixon and Price 69

Rosenbrock’s Valley 71

Ackley’s Path Function 72

4.2 CONTEXTUAL SOM RESULTS 74

Dixon and Price 75

Rosenbrock’s Valley 81

Ackley’s Path 88

4.3 DISCUSSION OF RESULTS 95

5 CONCLUSIONS AND FUTURE WORK 98

5.1 SUMMARY AND CONCLUSIONS 98

5.2 FUTURE WORK 100

5.3 ACKNOWLEDGEMENTS 102

6 REFERENCES 104

iv

LIST OF FIGURES

FIGURE 1 - THREE DIMENSIONAL VISUALIZATION OF A DESIGN SPACE (ADAPTED FROM [1]). 1

FIGURE 2 - VISUALIZATION OF THE PARETO FRONT (ADAPTED FROM [2]). .. 3

FIGURE 3 - CVIS ENVIRONMENT (ADAPTED FROM [8]). ... 10

FIGURE 4 - GMORPHVR (GRAPH MORPHING) DISPLAYING THREE DESIGN VARIABLES, TWO CONSTRAINTS AND A

DECREASING OBJECTIVE (ADAPTED FROM [10]). .. 12

FIGURE 5 - HYPER-RADIAL VISUALIZATION OF A MULTI-OBJECTIVE OPTIMIZATION PROBLEM USING UNCERTAINTY

AND WEIGHTING (ADAPTED FROM [11]). .. 14

FIGURE 6 - XGOBI DIMENSIONAL REDUCTION THROUGH PARALLEL COORDINATES (ADAPTED FROM [12]). 15

FIGURE 7 - GLYPH PLOT OF DESIGN SPACE (ADAPTED FROM [13]). .. 17

FIGURE 8 - ASTV UNCERTAINTY VISUALIZATION OF RAIL GUN DATA (ADAPTED FROM). .. 18

FIGURE 9 - SELF-ORGANIZING MAP DISPLAYING THE ORGANIZATION OF VARIOUS INPUT TYPES (ADAPTED FROM

[14]). .. 20

FIGURE 10 - STRUCTURE OF A SOM NODE LATTICE, SHOWING THE NEIGHBORHOOD CONNECTIONS. 21

FIGURE 11 - VARIOUS REPRESENTATIONS OF AN SOM NODE LATTICE. .. 22

FIGURE 12 - U-MATRIX OF A TRAINED SELF-ORGANIZING MAP HIGHLIGHTING A CLUSTER OF NODES WITH SIMILAR

PROPERTIES (ADAPTED FROM [16]). ... 23

FIGURE 13 - A CONTEXTUAL MAP DISPLAYING THE RESULTS OF TRAINING AN SOM ON ANIMAL CHARACTERISTICS

(ADAPTED FROM [15]). .. 25

FIGURE 14 - FILLED IN CONTEXTUAL MAP SHOWING THE SEPARATION OF HUNTERS, PEACEFUL SPECIES, AND BIRDS

(ADAPTED FROM [15]). .. 25

FIGURE 15 - A GTM NODE CONFIGURATION ON THE LEFT, AND THE CORRESPONDING MAPPING TO THE INPUT

SPACE ON THE RIGHT FITTING TO THE GAUSSIAN SPHERES (ADAPTED FROM [17]). 27

FIGURE 16 - THE RESULTING TRAINED GTM DISPLAYING COLOR BASED UPON THE OBJECTIVE VALUE, DRAG

COEFFICIENT (ADAPTED FROM [18]). .. 29

FIGURE 17 - A FOUR DIMENSIONAL GTM DISPLAYING A 14 DIMENSIONAL DESIGN SPACE (ADAPTED FROM[18]). .. 30

v

FIGURE 18 - DISPLAY OF 2D RASTRIGIN FUNCTION COMPARED TO THE SOMO TRAINED ON A 50 DIMENSIONAL

RASTIRIGIN FUNCTION (ADAPTED FROM [20]). .. 33

FIGURE 19 - CONTEXTUAL SOM OF THE WING DESIGN SHAPES (ADAPTED FROM [22]). .. 34

FIGURE 20 – INDEPENDENT VARIABLE MAPS EXTRACTED FROM THE TRAINED SOM SHOWING AN ANTI-

CORRELATION BETWEEN TWO VARIABLES (ADAPTED FROM [23]). ... 36

FIGURE 21 - COLOR INTERPOLATION FROM RED TO YELLOW TO GREEN. .. 38

FIGURE 22 - SATURATION INTERPOLATION FROM HIGH TO LOW SATURATION IN THE COLOR RED. 39

FIGURE 23 - SATURATION INTERPOLATION FROM HIGH TO LOW SATURATION IN THE COLOR GREEN. 39

FIGURE 24 - VALUE INTERPOLATION FROM HIGH TO LOW VALUE IN THE COLOR RED. ... 40

FIGURE 25 - VALUE INTERPOLATION FROM HIGH TO LOW VALUE IN THE COLOR GREEN. .. 40

FIGURE 26 - A NODE AND ITS NEIGHBORS. ... 43

FIGURE 27 - DIAGRAM OF THE SELF-ORGANIZING MAP (ADAPTED FROM [15]). .. 46

FIGURE 28 - RANDOMLY INITIALIZED TWO DIMENSIONAL SOM (ADAPTED FROM [26]). .. 49

FIGURE 29 - AN EMPTY SOM PRIOR TO TRAINING. .. 50

FIGURE 30 - SOM NEAR THE END OF THE ORDERING PHASE OF TRAINING (ADAPTED FROM [26]). 51

FIGURE 31 - AN SOM AT THE END OF CONVERGENCE TRAINING (ADAPTED FROM [26]). .. 53

FIGURE 32 - DIMENSIONALITY REDUCTION VISUAL (ADAPTED FROM [27]). ... 54

FIGURE 33 – AN SOM DISPLAYING THE COLORING PROCESS USING THE HUE SATURATION VALUE COLORING

SCHEME. ... 57

FIGURE 34 - A TRAINED SOM THAT CONTAINS NODES WITHOUT CONTEXTUAL INFORMATION AS WELL AS NODES

WITH ONLY ONE CONTEXTUAL LABEL. .. 63

FIGURE 35 – SOM VISUALIZER APPLICATION RUNNING ON REDHAT LINUX. .. 65

FIGURE 36 - A TRAINED SOM WITH A NODE SELECTED FOR INVESTIGATION. ... 67

FIGURE 37 - THE DIXON AND PRICE FUNCTION IN TWO DIMENSIONS. ... 70

FIGURE 38 - ROSENBROCK'S VALLEY (BANANA) FUNCTION. .. 72

FIGURE 39 - ACKLEY'S PATH FUNCTION. ... 73

FIGURE 40 - ACKLEY'S PATH FUNCTION FOCUSED ON THE GLOBAL OPTIMUM. ... 74

vi

FIGURE 41 - DIXON AND PRICE TWO DESIGN VARIABLE SOM TRAINED USING 100 (TOP), 1,000 (LEFT) AND 10,000

(RIGHT) SAMPLE POINTS. ... 76

FIGURE 42 - DIXON AND PRICE FIVE DESIGN VARIABLE SOM TRAINED USING 100 (TOP), 1,000 (LEFT) AND 10,000

(RIGHT) SAMPLE POINTS. ... 78

FIGURE 43 - DIXON AND PRICE TEN DESIGN VARIABLE SOM TRAINED USING 1,000 (LEFT) AND 10,000 (RIGHT)

SAMPLE POINTS. ... 80

FIGURE 44 - ROSENBROCK'S VALLEY TWO DESIGN VARIABLE SOM TRAINED USING 100 (TOP), 1,000 (LEFT) AND

10,000 (RIGHT) SAMPLE POINTS. .. 82

FIGURE 45 - ROSENBROCK'S VALLEY FIVE DESIGN VARIABLE SOM TRAINED USING 100 (TOP), 1,000 (LEFT) AND

10,000 (RIGHT) SAMPLE POINTS. .. 84

FIGURE 46 - ROSENBROCK'S VALLEY TEN DESIGN VARIABLE SOM TRAINED USING 100 (TOP), 1,000 (LEFT) AND

10,000 (RIGHT) SAMPLE POINTS. .. 86

FIGURE 47 - ACKLEY'S PATH TWO DESIGN VARIABLE SOM TRAINED USING 100 (TOP), 1,000 (LEFT) AND 10,000

(RIGHT) SAMPLE POINTS. ... 89

FIGURE 48 - ACKLEY'S PATH FIVE DESIGN VARIABLE SOM TRAINED USING 100 (TOP), 1,000 (LEFT) AND 10,000

(RIGHT) SAMPLE POINTS. ... 91

FIGURE 49 - ACKLEY'S PATH TEN DESIGN VARIABLE SOM TRAINED USING 100 (TOP), 1,000 (LEFT) AND 10,000

(RIGHT) SAMPLE POINTS. ... 93

vii

LIST OF TABLES

TABLE 1 - INPUT DATA FORMAT ... 68

TABLE 2 - CONTEXTUAL SOM TEST CASES .. 75

viii

ABSTRACT

Visualization of an optimization problem (i.e the “design space”) becomes complex

when the number of independent variables of the problem increases beyond two.

Unfortunately, realistic optimization problems and their design spaces are often greater

than two dimensions and therefore difficult to visualize. In order to create and display in

greater than three dimensions it is necessary to use color, size, or symbols to show

added dimensions. With the complexity in a visualization that uses these extra

dimensional features, an observer is often overloaded with data and it can be difficult to

grasp a firm understanding of the relationships therein. Furthermore, this solution of

adding dimensions greater than three can only increment to a few dimensions beyond

three and cannot achieve higher dimensions. There are currently two general areas for

visualizing a higher dimensional design space: dimensional reduction, and individual

variable comparison. With either of these methods, it is possible to display the resulting

design space, or portion thereof, in a viewable dimensionality such as two or three

dimensions. Self-organizing contextual maps provide a solution to this visualization

problem by utilizing the dimensionality reduction capability of self-organizing maps and

the display capability of the contextual map.

Self-organizing maps (SOMs) are able to map a design space of varying dimensionality

to a two dimensional neuron lattice. The SOM can then be provided contextual

information to display the similarities between areas of the design space either in terms

of alphanumerical labels or visuals. This method will organize the numerical objective

values associated with a design space to apply labels to the contextual SOMs. These

ix

contextual self-organizing maps allow the user to observe the entire design space in a

two dimensional representation.

The ability to view an entire design space in this manner provides many advantages

such as an understanding of the characteristics of the design space and optimization

problem. This thesis will explain the work completed to apply contextual self-organizing

maps to the visualization of optimization design spaces by:

1. Providing a visualization of the design space in two dimensions.

2. Extract characteristics of the design space using the resulting contextual map.

The resulting visual representations are achieved by generating a typical self-organizing

map, and applying the objective function values as labels to each winning node. With a

set of labels on each node, it was possible to calculate the mean, standard deviation,

and minimum value for each node and display the results visually in the representation.

The hue saturation value coloring scheme was used to display these three statistical

measures using a single color for each node. The visual display of this coloring system

makes the optimal node the closest to a brighter colored and more vibrant green

colored node than the rest of the nodes in the map.

The results from this work show that contextual self-organizing maps can display

valuable information about the design space that can then be extracted and applied to

the solution of the optimization problem. The primary characteristics identified in the

x

results are the modality of the design space and the optimal region within the design

space. The results of this research will improve optimization by decreasing the time

needed to solve optimization problems by gaining an understanding of the design space

prior to a solution run.

1

1 INTRODUCTION

1.1 Purpose

The goal of this research is to organize data and create a visual representation of a

design space in which designers can easily understand the characteristics influencing

the data. This will also benefit optimization researchers by providing a starting point for

a formal solution algorithm.

1.2 Design Space

A design space is a theoretical space in which the possible configurations of a design

reside. In other words, if the design of an object requires three inputs it would be

possible to plot those three input values in a three dimensional space. The resulting

space would appear similar to Figure 1.

Figure 1 - Three dimensional cisualization of a design space (Adapted from [1]).

2

The sample design space in Figure 1 has the design variables plotted along the x, y,

and z axes. The feasibility of each design is denoted by the color of the dot, which is

either red representing infeasible and green representing feasible. This visualization

becomes quite abstract and therefore proves difficult to extract information about

individual design variables. The viewing perspective makes discerning the position of a

point in space difficult. The use of color as a ‘fourth dimension’ to determine feasibility

begins to overload the visual display. Overall, a visualization of a design space with only

three design variables is not a simple visualization.

With these considerations, it is important to realize that many design and optimization

problems (discussed in the next section) contain a much more complex data set and

design space than provided in Figure 1. With these large and complex data sets, it is

impossible to plot a high dimensional design space in the same manner as Figure 1;

fortunately there are other methods to visually represent this space.

A design space can be visually represented through multiple methods that will be

explained in further detail later, but two examples are: dimensionality reduction and

individual variable comparison. One example of a dimensional reduction method is

through visualizing the pareto frontier, or the area in which all of the objectives are as

close to their optimum as possible. The pareto frontier can be displayed in a

multidimensional plot, such as the performance space in Figure 2.

3

Figure 2 - Visualization of the pareto front (Adapted from [2]).

Figure 2 provides a display of the pareto frontier in red, where this area minimizes both

objectives. The individual objectives are Objective 1 on the x axis and Objective 2 on

the y axis. Typical design space representations place the independent variables on the

coordinate axes, whereas here the objectives (e.g., weight, cost) are plotted against

each other. Since a typical problem has far less objectives than independent design

variables, this is one way to “reduce” the dimensions a designer has to view.

These techniques, dimensionality reduction and individual variable comparison, for

viewing the design space provide a meaningful display in a viewable dimensionality for

problems that range from one to many dimensions. Comprehension of the design space

is invaluable to the designer. Tradeoffs can affect the resulting design more than can be

represented in the theoretical space. For example, in the design of an aircraft the

4

designer can save on cost by using steel but will severely decrease the fuel economy of

the airplane because of the added weight. If this tradeoff is not captured in the

mathematical problem, it will not be apparent in the resulting visual representation.

1.3 Optimization

The goal of optimization is to achieve the most desirable result from a given input, data

set, or objective. The most desirable result can be in the form of a maximum or

minimum, on a local or global scale. The optimization process can incorporate multiple

objectives containing many variables that interact to create complex relationships.

These relationships form mathematical problems that are either uni-modal and provide

a single solution, or multi-modal and provide multiple solutions. Unfortunately, no single

optimization routine is the perfect solution to every problem. Therefore, an alternative

path to solution would involve extracting the characteristics of these complex systems or

functions before choosing an optimization algorithm and solving for the optimal value.

Accompanying the varying complexity of optimization problems is a vast array of

optimization algorithms. Two categories of common solution algorithms are numeric and

heuristic. Numerical optimization techniques solve optimization problems by performing

calculations that result in minimum objective values until convergence [3]. Alternatively,

heuristic methods allow for an increase of the objective value in order to adequately

explore the design space to discover the global minimum [4]. The caveat of this

seemingly simple comparison between these two methods is that numerical methods

5

specialize in uni-modal problems and cannot effectively solve multi-modal problems

while heuristic methods are designed to operate on multi-modal behavior. A multi-modal

problem can contain local minima and global minima. Even though heuristic methods

are developed for the purpose of attempting multi-modal optimization problems, they

can run into complications depending on the distance between local and global minima.

These methods can get caught in local minimum values and never find the global

minima. Therefore, it would be advantageous to have prior knowledge of the data

represented by the design space to anticipate where the global minimum will be located.

To help illustrate this process, a formal optimization problem statement is described:

Min F(x)

S.T. gj(x) ≤ 0 j = 1, …, m

 hk(x) = 0 k = 1, …, l

 xi
l ≤ xi ≤ xi

u I = 1, …, n

Specifically, “Min” poses the problem as a minimization problem of the objective

function F(x). The constraints in the problem statement are gj(x), a function that is

typically less than or equal to zero (i.e. an allowable upper limit), and hk(x), a function

that must be equal to zero. The design variable xi is bounded between the lower bound

xi
l and the higher bound xi

h. Below is an example of a basic 2D optimization problem:

Min F(x1, x2) = x1
2 + x2

2 – 2x1 – 2x2 +2

6

S.T. g1: -2x1 – x2 + 4 ≤ 0

 g2: -x1 – 2x2 + 4 ≤ 0

 -10 ≤ x1 ≤ 10

This problem could be to minimize the cost of product design (i.e. minimize F(x)) subject

to two inequality constraints. These constraints could be a maximum stress and

displacement that the product has to withstand during use. Thus, a solution to the

problem is the combination of x1 and x2 that finds the lowest value for F while being

below the bounds set by g1 and g2.

The complexity of the optimization problem can also determine which algorithm will

efficiently converge on a solution. For example, a function’s linearity and degree of

curvature determines which method will be most effective in solving the problem.

Characteristic knowledge of these optimization problems would provide a more

straightforward solution path. Beginning with an understanding of the problem features

can only benefit the solution process. Finally, it is important to remember that with

optimization there is “No Free Lunch” [5], meaning that there will never be one best

solution method and all options must be considered for the most desirable outcome.

1.4 Design and Optimization and Visualization

As discussed above, there are many techniques for solving optimization problems, and

there are also numerous approaches to visualizing a design space. As the use of

7

optimization in real-world design becomes more prevalent, more variables are

introduced and an effective visualization tool becomes increasingly necessary. It is

important to realize the benefits of viewing the design tradeoffs in a design or

optimization function. Additionally, as the designers become more aware of the

tradeoffs from one design to another, they can more effectively make the next

generation designs.

There is a large effort pushing for visualization multi-dimensional data sets and

problems. The research that is directly linked to optimization typically focuses on

dimensionality reduction. The concept of dimensionality reduction is to display a

complex multivariate system in a dimensionally viewable plot (three dimensions or

fewer) while capturing the intricacies of each individual design variable. This can be

achieved using a variety of statistical and heuristic methods such as principal

component analysis [6] or Self-Organizing Maps (SOMs) [7]. Another method proposed

for viewing the design space focuses on specific performance characteristics, or the

objective of the design. The values of these characteristics or objectives can be

observed at the beginning, end, or throughout the design or optimization process.

1.5 Motivation

The motivation for this project was to develop a visualization tool that allows

examination of multi-dimensional design spaces in a simple and intuitive manner. This

is crucial to the advancement of engineering design, and will allow designers to make

8

quicker and more informed design decisions. The current solutions available provide

abstract visualizations that limit the complexity of a problem in order to effectively view

the design space.

With a method such as this, decisions such as proper solution method, good initial

point, and other characteristics about the problem could be known. This information

would lead to significant savings in time, project resources, and overall cost as well as

lead to more effective designs.

1.6 Thesis Organization

Chapter 2 contains the background research from the related areas of optimization,

visualization, and self-organizing maps as well as present foundational research to this

thesis. Chapter 3 describes the methodology, and explains the details of the technique,

the process of achieving the final procedure, and the resulting application. Chapter 4

discusses the testing suite of optimization problems and results of this work. Lastly,

Chapter 5 concludes by summarizing this work and discussing its implications as well

as noting target areas for future work.

9

2 BACKGROUND

2.1 Optimization Visualization and Design Space Exploration

As described in Chapter 1, the visualization of large amounts of data and especially

optimization design spaces is a difficult challenge. Many researchers have attempted

this task and provided valuable methods and insight into the display of this information.

This section will summarize this related research, provide an analysis of where this

research area stands, and present a list of research goals for this thesis.

Cloud Visualization (CVis) [8] is an optimization visualization tool that allows a designer

to view large amounts of data for the purpose of effective decision making throughout

the design and optimization process. This design information is displayed three

dimensionally in both the performance space and design space as shown in Figure 3.

The performance space contains the most influential design variables that optimize the

system based upon the desired performance criteria. This means that depending on the

objective of the optimization routine, the performance space will display the design’s

proximity to the optimal solution. The performance space can also display the solution in

terms of multiple objectives. The design space is shown three dimensionally and

therefore can only display three design variables.

10

Figure 3 - CVis Environment (Adapted from [8]).

Both the performance space and design space in the CVis software can be displayed in

one, two and three dimensions as shown in Figure 3. The flexibility in dimensional

visualization allows the designer to view single or multiple objective functions, as well as

view the relationships between single and multiple design variables together in one

space.

This environment provides an intuitive display to view not only the individual design

variables, but a visual display of the objective values for each design. This work

advances the capability of optimization visualization by providing an outlet for the large

data sets generated in the process of design and optimization. Unfortunately, while this

method does display the parameters and characteristics of the optimization process,

viewing data in three dimensional space can be rather difficult. Additionally, when a

11

designer has a high dimensional problem, they are only able to view three design

variables at a time in each design space plot. This limitation would require the use of

many plots to show design variables, which adds confusion.

Winer and Bloebaum first introduced the concept of visual design steering [9], a method

to aid the design and optimization process by allowing the designer to interact with the

optimization algorithm throughout the process. This design paradigm, visual design

steering, was further examined with the goals of visualization and solution improvement

[10]. The first step in design steering is to ‘rank and reduce’ the problem constraints and

design variables. This is achieved by calculating the influence and effect of each

constraint on the objective function. The least impactful constraints are then be ignored

when the three dimensional plot is displayed. Next, a similar procedure is performed to

determine each design variable’s impact on the objective function and its set of

constraints.

The visual aspect of Winer and Bloebaum’s work, graph morphing, utilized three

dimensional graphs to visualize design tradeoffs. In order to generate the graphical

displays, structured data sets are generated so that specific cases of each design

variable can be plotted in association with its constraints. Each visual representation

then plots a maximum of three design variables, with the objective value shown using a

color gradient and the problem constraints in green. Other design variables appear on

graphical slider bars within their specified ranges. In Figure 4 each axis represents one

12

design variable, the shade of the surfaces equates to a varying objective function value,

and the green surfaces constrain the problem.

Figure 4 - GmorphVR (Graph Morphing) displaying three design variables, two

constraints and a decreasing objective (Adapted from [10]).

Using GmorphVR, the designer is able to view the interplay between design variables,

constraints, and the objective value. The slider bars can be moved to alter the display in

real-time. This method clearly shows the trends of the design variables, and the

tradeoffs with respect to the objective and constraints. The method for dimensionality

reduction, eliminating the least important variables, also works to simplify the

visualization and ease comprehension of the design space. This research validated the

benefits of displaying the design information to the designer, because it increased

design awareness and decreased solution times. Unfortunately, this method as with

others is constrained by the ability to view only three design variables simultaneously. If

13

the designer wants to view more correlations, it is necessary to construct multiple

GmorphVR plots, and view them side-by-side.

The hyper-radial visualization method [11], developed by Chiu et al., is used to view the

interaction of multiple objectives on an optimization problem. This method transforms a

multi-objective problem into a two dimensional visualization in which the axes are both

groupings of ‘manufactured’ objective functions. These manufactured objective

functions are created by incorporating objectives together into one value so that the

visualization can be displayed in two dimensions. The utopia point (both objectives are

minimized) is represented at the origin, and the design space is projected using a radial

method. The radial projection constructs a space in which each radius has an equal

overall objective value, so every point on a specific radius has an identical objective

value. Therefore, the goal is to achieve the innermost radius.

The Hyper-Radial Visualization method (HRV) allows the designer to add preference to

individual objectives, which changes the weighting and display of the optimum. The

individual weights are set using a likert scale, highly desirable to highly undesirable.

After weights and preferences are set, the designer is provided a visualization by which

they can view the tradeoffs of the two objective groupings. The designer can also set an

uncertainty of the objective function value that allows similar objective values to be

classified together as occasionally the accuracy of specific objectives is not of the

utmost importance. An example plot can be seen in Figure 5.

14

Figure 5 - Hyper-Radial Visualization of a multi-objective optimization problem using

uncertainty and weighting (Adapted from [11]).

In Figure 5, the designer is able to visualize the performance space given the

preferences set to each objective. This method provides an invaluable means to identify

the preferences that a designer has for each objective in a multi-objective problem and

aids in narrowing the possible design choices. The visualization method is not difficult to

comprehend, because the resulting plot is two dimensional. This is a great method for

viewing tradeoffs in objectives, but provides little means for interfacing with the

individual design variables, as the focus of the display is on the objective values.

Swayne et al. developed the XGobi system for interactive dynamic data visualization

[12]. The XGobi system specializes in visualization techniques for large amounts of

15

data. The graphical tools available in the XGobi package range from: one dimensional

to three dimensional plots, high-dimensional projection onto a two dimensional display,

axis scaling, brushing, identification, line editing, and moving points. The one, two, and

three dimensional plots are similar to the previously discussed plotting methods, but the

projection method groups variables together on a given axis and plots them

simultaneously, parallel coordinates shown in Figure 6

Figure 6 - XGobi dimensional reduction through parallel coordinates (Adapted from

[12]).

In Figure 6, parallel coordinates are used to display a set of high dimensional data in a

two dimensional space. Other tools available to sort through the vast amount of data

that XGobi can display include brushing which allows the user to specify certain areas

16

of the design space to display, identification which labels points, line editing which

creates connections between points, and moving points which can allow the user to

create a design space or design.

The ideas utilized in XGobi are essential to the visibility of a high dimensional data set,

and they are used in unison to display this large quantity of information. Unfortunately,

there is still a lot of information being displayed to the designer simultaneously, and

individual relationships can still be difficult to discern.

Building upon XGobi, Stump et al. evaluated the application of multidimensional

visualization to the design by shopping paradigm [13]. The design by shopping

paradigm allows for the selection and refinement of designs throughout an optimization

process. This method prompts the designer to choose acceptable ranges for design

variables. These variables are physically displayed by extracting their values from the

design space and plotting them individually in dimensionally viewable plots (one to three

dimensions). When the user selects new ranges for the design variables, the

optimization routine will resume solving along its new path until the user makes further

modificaitons. This iterative loop will continue so long as the solution has not converged

(optimal value or iteration count) or the designer has placed sufficient constraints.

Similar to XGobi, Stump et al. utilizes the brushing, coloring, and identification

techniques to enhance data visualization. This method attempts to display further

17

information of the design space by showing the interaction of multiple objective

functions in the pareto frontier, the area where all objectives are being minimized. The

plots in this method typically use glyphs which are a method of displaying points and

trends in three dimensional space, see Figure 7.

Figure 7 - Glyph plot of design space (Adapted from [13]).

Similar to previous methods, Figure 7 sufficiently displays the design space, but

interpreting the interplay between variables is difficult. The difficulties present are again

due to the perspective three dimensional displays. Fortunately, this research does

decrease optimization times and provide a better understanding of the design space.

18

More recently, Stump et al. [14] have developed the ARL Trade Space Visualizer

(ATSV) to display trade spaces, or tradeoffs within the design space. Many of the

graphical options within this software are inherited from previous work, including but not

limited to scatter plots, glyph plots, and parallel coordinates. The newest feature

presented in this article was uncertainty visualization. A screenshot from the ATSV tool

is displayed in Figure 8.

Figure 8 - ASTV uncertainty visualization of rail gun data (Adapted from [14]).

The graphs in Figure 8 account for uncertainty in two design variable values and their

influence on the objective. This uncertainty is displayed on the left by a bounding box for

each point represented in the design space. The bounding box encompasses the

uncertainty value within the point on the map. The image on the right displays only the

19

mean value for each point represented in the design space rather than the group of

points. While the visual display can only plot three dimensions simultaneously, the

designer is allowed to adjust values of the other design variable and see their impact on

the objective function value.

2.2 Self-Organizing Maps

Tuevo Kohonen developed a type of artificial neural network, the self-organizing map

(SOM) [7], which he modeled after the learning process in the cerebral cortex. The

theory is that the brain, or in this case the SOM, trains itself with a topological structure

so that certain regions are more efficient at processing specific inputs or input types.

The result is a trained network with prior experience that given a specific signal or

location within the design space, the designs (set of design variable values resulting in

an objective value) that fall within that region of the design space will be located in

proximity to each other in the network. This network or map is typically a two

dimensional map providing the ability to visualize high dimensional data in a low

dimensional space. Figure 9 shows an example of a trained SOM to provide a

connection between the SOM and the cerebral cortex.

20

Figure 9 - Self-Organizing Map displaying the organization of various input types

(Adapted from [15]).

The map displayed in Figure 9 was trained on a range of input types such as pictures,

sounds, information, etc. The map takes these inputs and organizes them so that

certain regions of the map specialize in specific data types. This can be clearly seen by

examining the bottom right of the map, where pictures, art, and digital are grouped

together; these three media fall into an overarching category of visuals so the map

grouped them together. Unfortunately the map does not always train the data in the

ideal manner, and therefore small groupings of the data categories can get separated

which results in two identical labels in different sections of the map.

The map and training process maintain this topological pattern through the

neighborhood function, or the effect of one neuron’s learning on its surroundings. An

illustration of this concept can be seen in Figure 10.

21

Figure 10 - Structure of a SOM node lattice, showing the neighborhood connections.

Figure 10 is an image of a lattice of nodes, with the black circles representing nodes

and the horizontal and vertical grey lines representing the connections between nodes.

The nodes with the white circles in them are an example of a node and its immediate

neighborhood (center node and surrounding nodes) which respond to a specific input

and influence the rest of the map through its neighborhood. As illustrated, the center

node is the node best fit to accept the input, and it teaches its immediate neighborhood

(denoted by 0 in the figure) about that signal or input, which teach its neighborhood

(denoted by 1 in the figure), and so on. The influence of the learning decreases as the

distance from the original neuron decreases, providing a higher concentration of similar

nodes closer to one another (the center in this case).

It is important to mention that SOMs are always displayed as a lattice structure, but the

representational shape of the node can vary.

22

Figure 11 - Various representations of an SOM node lattice.

Figure 11 contains three of the most common display techniques for an SOM, with the

nodes represented as circles, rectangles, and hexagons. The reasoning behind each

shape is purely aesthetic. This thesis utilizes the hexagon representation of nodes

because they provide a smoother color gradient across the map.

This method can be extrapolated to a variety of different data types, problems, and

solution methods such as optimization, data mining, and artificial intelligence. A further

explanation of SOMs can be found in Chapter 4. The next section will describe

additional methods that can be applied to or with the SOM to enhance its visualization

and structure abilities.

23

2.2.1 Beyond the Self-Organizing Map

U-Matrix

The U-Matrix [16] is a standard method of displaying the results of a trained SOM. The

U-Matrix is larger than the node lattice of the SOM itself because it requires a display of

the distance between each node. In other words, these distances are shown as

connection strengths between nodes. This means that in order to display the U-Matrix,

the Euclidean distance must be calculated between all adjacent nodes on the map.

Once these values are obtained, the U-Matrix can be displayed with colors representing

the distance between adjacent nodes, see Figure 12.

Figure 12 - U-Matrix of a trained self-organizing map highlighting a cluster of nodes with

similar properties (Adapted from [17]).

The U-Matrix displayed in Figure 12 contains black dots on alternating hexagons to

represent nodes in the lattice. The intermediate hexagons (between the black dots) are

Node

Distance

Cluster

24

the color representation of the Euclidean distance between each node in the lattice. The

U-Matrix provides a means of visualizing the entire trained map. It is possible to extract

defined clusters of data in the design space that are represented by clusters in this U-

Matrix visualization. For example there is a four node cluster in the top right of the map,

see Figure 12. The dark colors represent a gap between clusters of data in the design

space.

Contextual Maps

A trained SOM provides an effective model and clustered understanding of the input

space, but the basic self organizing map provides no means of visualizing the map’s

value. One standard method of visualizing information on the SOM is through a method

called contextual maps [16]. These contextual self-organizing maps show the SOM

lattice in two dimensional space, and apply 'labels' to the various nodes in the map.

These labels can be used to describe the clusters of the input space or used to

comprehend the similarity of various inputs to the map. Haykin provides an easy

visualization of a cluster map through an example training set where the inputs used to

train the SOM are animal attributes such as: size, number of legs, types of feet, and

movement ability (swim, fly, run, etc.). Each input vector of these characteristics also

carried with it a contextual label, or animal name. Figure 13 and Figure 14 display the

contextual map resulting from this training.

25

Figure 13 - A contextual map displaying the results of training an SOM on animal

characteristics (Adapted from [16]).

Figure 14 - Filled in contextual map showing the separation of hunters, peaceful

species, and birds (Adapted from [16]).

The contextual map, Figure 13 and Figure 14, show the 'winning neurons' for each input

vector by assigning a label to that neuron. The contextual map is generated as a post-

processing of the trained self-organizing map. Once a map's training is complete, the

data is fed back into the map one last time for contextual labeling. Just as the Euclidean

distance was calculated to find the winning node in the training of the SOM, the

26

Euclidean distance is calculated again for contextual labeling. The winning node for

each input vector is assigned the 'label' of that input vector (in this case animal name).

After all of the input vectors have been run through the map one final time, it is possible

to see a resulting map similar to this form.

Further examination into the structure of Figure 13 can result in identification of three

distinct quadrants to the map: birds, peaceful species, and hunters. These regions are

shown by the map but must be identified by the researcher. These separate regions are

properties of the input data structure, meaning that animals with claws are more likely

positioned in the hunter area, and hooves are most likely in the peaceful species. This

visualization method provides a means to view similar data types; for example, if one

wanted to examine an animal similar to a hen, looking at hen on the map would point

toward ducks and geese as similar species.

Generative Topographic Maps

The Generative Topographic Map (GTM) [18] was developed by Bishop and Svensen.

This method is based upon the SOM as well as other neural networks. The benefits of

the GTM over other methods are the adaptive training components and the topographic

preservation.

27

The adaptive training components mean that it solves for its own training parameters

through statistical analysis of the training, two parameters are learning rate and

neighborhood size. The self generated parameters make certain that the map reaches a

full trained state, but never becomes over trained. This can be an important

characteristic, because over fitting of data is a potential in other learning algorithms.

The GTM also preserves the topology of the input space by first running statistical

analysis on the input data set, and then mapping itself to the resulting probabilistic

distribution. This is achieved by solving for the best coverage of the input space using

Gaussian spheres. When the Gaussian distribution is decided, the GTM is overlaid on

the Gaussian locations and the map is created, see Figure 15.

Figure 15 - A GTM node configuration on the left, and the corresponding mapping to

the input space on the right fitting to the Gaussian spheres (Adapted from [18]).

28

Figure 15 displays the predetermined map for the GTM, and the calculated Gaussian

spheres distributed across the data space. Then it shows the overlay of the network

onto the input space. This method provides an elegant solution to customizing neural

network training parameters and visualizations in a viewable space, but these

advantages come at the cost of computations. While the GTM can be computationally

expensive, the benefits can outweigh this aspect given the correct problem or data set.

Holden and Keane provide the GTM as a solution to the aerodynamic design

complexities [19]. In this work, the authors were able to display the results of an

aerodynamic design with the goal of a minimum drag coefficient. The data set for this

work was developed using computational fluid dynamic simulations, and then provided

to the GTM. The GTM then fit to the design space, and provided an approximation

algorithm so that any position in the input space would return a value, even without a

training sample at that location.

This interpolation technique that GTM can use provides a continuous mapping between

input and output space, and an ability to display this relationship. The basis for the

interpolation uses the distance between the input and the nearest Gaussian spheres,

and interpolates between the spheres. A typical GTM display is similar to that of a two

dimensional display of an SOM, see Figure 16.

29

Figure 16 - The resulting trained GTM displaying color based upon the objective value,

drag coefficient (Adapted from [19]).

Figure 16 displays the behavior of the design space in a two dimensional grid, allowing

the user to choose the optimal design and value. This study gave examples of 8

dimensional and 14 dimensional design spaces, but made mention that the 8

dimensional space was much more effective than the 14 dimensional space. As a

result, the authors ran the 14 dimensional space to fit on a four dimensional topographic

grid, Figure 17, rather than the standard two dimensional grid shown in Figure 16.

30

Figure 17 - A four dimensional GTM displaying a 14 dimensional design space

(Adapted from[19]).

As seen in Figure 17, attempting to visualize the four dimensional space becomes

increasingly complicated. This work proves very beneficial to the advancement of

design space visualization, but more research needs to be focused on the applicability

of GTMs to high dimensional problems.

Equalized Orthogonal Mapping

Meng and Pao created a new method, Equalized Orthogonol Mapping (EOM) [20]

based upon the Kohonen SOM. The EOM functions using a covariance matrix, with a

closer tie to principal component analysis (PCA) where as the SOM builds upon the

31

strict input values. The benefits of working with the covariance matrix are the preserved

topology throughout the map. In some cases, an SOM could be under-trained and

distant nodes could map to similar input values. Topology preservation in the case of

EOM prevents such an occurrence from happening, as each node in the lattice is

expected to be in a position relative in the design space to its adjacent nodes. Because

of this strict topology preservation from two dimensional lattice space to n-dimensional

design space, the EOM possesses the ability to perform interpolation between neurons

similar to that of GTM.

2.2.2 Self-Organizing Maps Applied to Optimization and Visualization

There has been a substantial amount of work that utilizes self-organizing maps for the

purposes of optimization. The research in this area can be encompassed in two

different categories: visualization of the entire design space and visualization of the

extracted design variables. These categories can be simplified with an understanding

that viewing the trained SOM provides a visualization of the entire design space, and

single variables can be viewed and compared by extracting the component maps from

the trained SOM.

Visualization of the Dimensionally Reduced Map

SOMO, Self-Organizing Maps for Optimization [21], were developed by Su, Shao, and

Lee to solve optimization problems. This method utilizes the SOM training to 'learn' the

optimal value for a given objective function. The modified training algorithm for SOMO

32

uses the traditional winner-takes-all training; however, SOMO replaces the Euclidean

distance calculation (to find the winner) with the optimization objective function. The

winning node search would proceed by calculating each node's 'distance' by evaluating

the objective function (F(x)) using each node's weight vector (wk) as inputs (F(wk))

where the resulting F is the node's 'distance'. After the winning node is calculated, the

neighborhood is updated using the weight update equation (Equation 4) and an input

vector, x = {x1 = 1, x2 = 1, xk = 1}.

After training the SOM on a specific objective function, SOMO provides a method to

visualize the objective function in a three dimensional space. Just as standard SOMs

perform dimensional reduction, SOMO allows the visualization of a high dimensional

function in a three dimensional space. This display is accomplished by computing an

objective function value (F) for each node in the lattice. The result is then plotting the 2D

lattice on the x-y axis with the z axis showing the F value across the map nodes. As all

SOMs do, SOMO groups similar regions of the design space, and reduces the

complexity of the visualization while still representing the structure of the objective

function, see Figure 18.

33

Figure 18 - Display of 2D Rastrigin function compared to the SOMO trained on a 50

dimensional Rastirigin function (Adapted from [21]).

While this method was presented as an efficient solution to optimization problems there

are drawbacks: in order to use this method the user is required to provide a continuous

objective function. Additionally, the presented results were only scaled to 30

dimensions, and may not be feasible at a higher dimensionality.

A similar method was developed by Milano, Koumoutsakos, and Schmidhuber to

display the results of a trained self-organizing map [22]. This method trained the SOM in

a standard manner, using values within the design space of the desired objective

function. After the training was completed, the resulting map had weight vectors that

represented the design variables of the objective function. In order to display an

objective value for the node, these weight vectors were used in the objective function,

and the resulting function value was assigned to that specific node in the lattice. With

the lattice structure and objective function evaluation values for each node, it is possible

to plot the dimensionally reduced objective function in three dimensional space. The

34

resulting display would appear very similar to Figure 18. Again, the display of the map in

three dimensions clearly shows the objective function, but does require that the data set

also be accompanied by an objective function for this method to be possible.

Obayashi and Sasaki utilized self-organizing maps to visualize and explore the design

space of supersonic wings and wing-fuselages [23]. The data for this visualization was

generated using computational fluid dynamic simulations of each design so there was

no objective function. The researchers utilized the contextual self organizing maps, but

used images for the contextual labels. These images were various design profiles, or

wing designs, see Figure 19.

Figure 19 - Contextual SOM of the wing design shapes (Adapted from [23]).

35

As seen in Figure 19, the SOM separates out the design space and places similar

designs in similar regions. The top left and bottom right corners of the map show two

extremes for wing designs, short and long respectively. This visualization clearly lays

out the various designs and also provides a gray scale color for each node depending

on its objective function value. The coloring scheme used was a lighter color for

minimum objective function value, and a darker color for a higher objective function

value. The objective function value in the case of the wing design is a combination of

the drag, bending moment, and pitching moments. In this case, the middle area of the

map provides an optimal design because it is the lightest colored area.

Obayashi and Sasaki were able to investigate further by displaying only the individual

objective values (drag, bending moment, and pitching moment) so that the user could

gain an understanding of which objectives were best shown in each design. These

maps look similar to Figure 19 with the exception that the color patterns are different as

only individual objectives are being viewed. Furthermore, they were able to extract

individual design variables from the map, such as leading-edge sweep angles, root-side

chord lengths, and wing cambers. These resulting maps displaying the individual

variable patterns are beneficial in exploring the explicit relationships between a design

variable and other design variables or the objective function value. This method of

viewing individual maps extracted from the entire trained SOM leads in to the next

section which discusses research utilizing the design variable extraction and

visualization ability of the SOM.

36

Extracted Individual Variable Visualization

Matthews used the abilities of self-organizing maps to extract the relationships between

variables and show them in individual maps [24]. The author generated test points for

sample problems to train the map and display the results, he was able to apply this

method to a conceptual design project as well as a gas turbine and an aircraft wing.

Data was generated for these cases by running physical simulations of equipment,

thereby providing a data set without an explicit objective function. Matthews trained his

SOM in accordance of traditional SOMs, and used the information in the resulting map

to extract relationships between the design variables [25]. Using this trained map it is

possible to isolate an individual design variable at each node, and display a map

showing the variability in that single design variable. The map can be colored by

interpolating between two colors (such as red and blue in Figure 20) to assist in

displaying this variability. This method can be further explored by extracting multiple

variables from the trained SOM and viewing the relationships between these variables

to visualize implicit relationships within the data set, Figure 20.

Figure 20 – Independent variable maps extracted from the trained SOM showing an

anti-correlation, or negative correlation, between two variables (Adapted from [24]).

37

The ability to explore the correlations between design variables is extremely useful as it

can provide an understanding of which design variables contribute to more or less of the

variability in an outcome. Matthews showed that these maps were able to detect

relationships between variables that were otherwise unnoticed after using the linear

principle component analysis.

Due to the number of complex relationships available within one data set, the author

used a heuristic called the Tanimoto metric [25] to detect these complexities in the

extraction maps. The Tanimoto metric was able to successfully identify potential areas

of interest, but was unable to comprehend these relationships on its own. This allowed

for the user to examine a reasonable number of maps to visualize these relationships.

This work provided significant potential advancement of self-organizing maps in the

areas of design and optimization because the method for examining individual maps

could give further information into the structure of the SOM. Unfortunately, due to the

potentially highly dimensional data sets, there can be a large number of extraction maps

to analyze.

2.3 Color Visualization

For the purposes of visualization, color provides an intuitive alternative to a numerical

display. Many of the projects mentioned in the background section have used a color

interpolation to display the variation of a variable’s value. Traditionally, most

38

applications that use color to display the relative value of a variable interpolate between

two colors, such as red and green. This interpolation functions that a high value will be

on one end of the spectrum, i.e. red, and a low value will reside on the other end, green.

When a value is in the middle of the spectrum, it is colored yellow. An example of this

interpolation between colors can be seen in Figure 21.

Figure 21 - Color interpolation from red to yellow to green.

This system for color interpolation works well to explain one set of values, but when the

data sets require the display of additional information this color interpolation method is

not sufficient. This research presents contextual self-organizing maps which need to

convey additional information beyond the mean of a node such as the standard

deviation and minimum value contained in the context of a node. In order to accomplish

this task a different color scheme, Hue Saturation and Value (HSV) [26] is utilized.

The principles of the HSV coloring scheme begin with a color interpolation on the hue,

or the base color being displayed. This functions exactly the same as Figure 21, in this

case between the colors red and green with yellow in the middle. This color interpolation

is determined by the numerical value assigned to the hue. The hue can range in colors

across the color spectrum, but is limited to solely red to green in this case for simplicity

of the display.

39

After the hue, or base color, is set the next parameter is the saturation of a color. The

saturation of a color determines the amount of pigment allowed in a color. A color with

less pigment will appear closer to white, and a color with more pigment will appear

closer to the base color or hue. Figure 22 and Figure 23 display the result of

interpolating between full saturation, 1, and zero saturation, 0, in the hue colors red and

green.

Figure 22 - Saturation interpolation from high to low saturation in the color red.

Figure 23 - Saturation interpolation from high to low saturation in the color green.

As displayed in Figure 22 and Figure 23, higher saturation values display more pigment

within a color. When a color has more pigment it resembles a color closer to that of its

base color.

The last component of the HSV coloring scheme is the value. The value of a color is

determined by the amount of brightness allowed in a color. When a color has a low

value, it will appear darker because the lack of brightness. Alternatively, when a color

40

has a high value it will appear closer to its hue color. Figure 24 and Figure 25 display

the effects of varying the value of the colors red and green.

Figure 24 - Value interpolation from high to low value in the color red.

Figure 25 - Value interpolation from high to low value in the color green.

The change in a color’s value changes the brightness of a color, so as colors become

closer to a zero value they all begin to blend into a black color.

This coloring scheme can surpass the abilities of basic color interpolation because it

has the potential to explain more than one value. The HSV color method, with its added

components of saturation and value can take into account other variables and provide

results by displaying varying ‘qualities’ of a hue or color. For example, a hue of red can

become a closer to grey if it has a low value and a low saturation; this is because it has

a lack of pigment and a lack of brightness. So while the color is still red, is it possible to

gain excess information about the values used to make that color. The application of

this coloring method to this work is described in further detail in Section 3.1.4.

41

2.4 Research Issues

From the previous work in this subject area, there are many solutions to tack the various

problems related to visualizing the optimization design space. The issues left

unresolved in this field are the capability to effectively view the entire design space, the

ability to draw conclusions about the characteristics of the design space, and a method

that can be incorporated into a variety of optimization stages as well as a variety of data

sets.

This research will focus on two research issues:

1) Developing a method that can effectively display an entire design space in one

intelligible representation

2) Conveying information about the optimization problem including its modality,

linearity, curvature, and an initial search region.

In order to complete these goals, this paper will describe the process of implementing

methods from previous research while developing new schemes for displaying

information to the designer.

42

3 Methodology

3.1 The Self-Organizing Map

Self-organizing maps [7] are a class of neural networks developed by Teuvo Kohonen

for the purposes of data classification. These maps use an unsupervised competitive

learning process called ‘winner-takes-all’ to 'learn' the input space or input data. The

structure of the SOM is typically a two dimensional lattice of nodes, but can vary from as

low as one dimension up to any number of dimensions. The two dimensional lattice can

be utilized for dimensionality reduction by which higher dimensional data is mapped to

this lower dimensional space or node lattice. The benefit of using a two dimensional

node lattice is that it is easily viewable, being two dimensional. When viewed, these

maps can display individual neurons in many forms: squares, circles, hexagons, and

more. The reason for the variety in node representation is simply visual appeal and

preference of the designer.

Depending on the dimensionality of the node lattice each neuron will have a variable

number of connected neurons, but in the case of a two dimensional lattice there are four

immediately connected neighbors.

43

Figure 26 - A node and its neighbors.

The process of learning entails the SOM being mapped to an input space made up of

input vectors. An input vector holds the structure of xn, see Equation (1). The input

space in the case of design would be the design space, and an input vector would be

one location within the design space. Once an input space and SOM map size are

provided, each node can be assigned a weight vector, which is its location within the

design space. The weight vector will be of the form wj, see Equation (2), where k from

the input vector and the weight vector are equivalent.

x = <x1, x2, ..., xk> (1)

wj = <wj1, wj2, ..., wjk> (2)

Equation (1) shows a sample input vector, x, where k is the dimensionality of the input

data or the number of design variables. Equation (2) is an example of a node's weight

vector, where k is again the number of weights (dimensionality of the input data). In

order to create a map (the node lattice), the dimensionality of the input space must be

44

known, and the size and dimensionality of the SOM must be chosen. As previously

discussed, SOMs are typically two dimensional but can be any size.

With an input data set and an SOM containing empty weight vectors, the next step is to

randomly initialize the weights of these node weight vectors. After the weights are

initialized, the map is ready to be trained. Training has two phases: ordering and

convergence. Both phases of training proceed by selecting an input vector at random

and feeding it into the map. When the map is being trained on an input vector, the

Euclidean distance between the input vector and every node in the map is calculated,

see Equation (3). Each training phase consists of many iterations, and one training

iteration is defined by the use of the entire input data set. Training begins by using

Equation (3)

Distance = sqrt((x1 - wj1)2 + (x2 - wj2)2 + + (xk - wjk)2) (3)

The node with the least distance is declared the 'winner'. After finding the winner the

next step is a neighborhood update, at which time the weight values of each node in the

lattice will be updated. The node update equation is expressed in Equation (4).

wj(n+1) = wj(n) + η(n) ∙ hj,i(x)(n) ∙ (x – wj(n)) (4)

45

η in Equation (4) is the time varying learning rate that determines the allowable

influence of the input vector, or how much an input vector can modify the node weight

vector. The learning rate decreases throughout the training so that the map becomes

more refined, and is subject to less drastic change. The hj,i(x)(n) in Equation (7) is the

neighborhood influence for the training iteration. The neighborhood influence, like the

learning rate, decreases through the course of training to help refine the map. At the

beginning of training, the neighborhood encompasses the entire map, so each input

vector will affect the whole map. Near the end of training the neighborhood will be

limited to only one node, and possibly its immediate neighbors. Equations (5) and (6)

explain how η and hj,i(x)(n) vary with time.

η (n) = η 0 * exp(-n/λ) (5)

σ(n) = σ0 * exp(-n/λ) (6)

 hj,i(x)(n) = exp(- Distance2 / (2 * σ2(n))) (7)

A general guideline for choosing the time constants is given in Neural Networks: A

Comprehensive Foundation [16]. During the ordering phase the learning rate, η (n) is

set at or below 0.1, and during the convergence phase η (n) is set at or below 0.01. The

initial neighborhood width, σ0 is set to the entire map for the ordering phase, and then

adjusted to be approximately two nodes for the convergence phase of training.

46

The map is created with a predetermined size, and each node has weight vectors

whose length matches the dimensionality of the input space. Ordered training begins

and iterates for a set number of iterations, where each iteration runs the entire input

data set through them map. Convergence training follows ordering, but runs

approximately 20 times the number of iterations and focuses less on drastic changes to

the map, but subtle modifications to individual nodes. In other words, after sufficient

training the nodes in the SOM will each occupy a region of the input space so that the

entire input space can be represented by the trained SOM. This result is a map that is

topologically trained, meaning adjacent SOM nodes will reside in adjacent locations

within the trained map. Additionally, given a new input vector the SOM will respond with

the appropriate, least distance node in the map. This input and output space (neuron

space) is shown in Figure 27.

Figure 27 - Diagram of the Self-Organizing Map (Adapted from [16]).

47

Figure 27 displays the affects of training from one input vector. It is possible to see a

'winning node' for the given input vector denoted with a black colored node. The

neighborhood surrounding the winning node is colored various shades of gray

depending on the neighborhood node's proximity to the winning node. The nodes that

are colored white in Figure 27 will be unaffected by the information gained at the

winning node, because they are out of the neighborhood of influence and the resulting

change to their weight vectors will be zero.

The result of a trained map is that given an input vector, x, one node in the SOM will

activate. The activation of a node can be used for a variety of goals such as response

action and data comprehension. The response action means that if an input is provided

to a trained map, it will use its knowledge to produce the same result as previous inputs

with similar characteristics had for responses. The SOM also represents a

dimensionally reduced (two dimensional) representation of the input space, which has

many applications especially in the area of visualization. The SOM provides additional

benefits such as a continuous input space, a spatially discrete output space of neurons,

and the ability to capture non-linear data sets, which many other statistical methods,

such as PCA, are unable to tackle.

48

3.2 Contextual SOMs Applied to Design Space Exploration

3.2.1 Map Generation

Generating a self-organizing map requires initializing an empty map with a random

network of nodes. The user defined network size sets the number of nodes in each row

and column of the lattice. The results presented in Section 4.2 are built with a network

size of 15 rows and 15 columns because that size was discovered to be an appropriate

fit for the variable data set sizes. After an empty network is created and a data set

dimensionality is provided, each node in the network can generate its weight vector

using Equation 4. As mentioned, the weight vector of each node is of the same

dimensionality as the input vectors. The result of this is a randomly generated map,

which needs to be trained as shown in Figure 28.

49

Figure 28 - Randomly initialized two dimensional SOM (Adapted from [27]).

Figure 28 displays a randomly initialized map with a two dimensional weight vector,

shown in a two dimensional space. The red dots correspond to each of the nodes in the

lattice, and the lines between the red dots correspond to the connections between the

nodes. These connections initially appear scattered because there is no structure to the

untrained map, but will later resemble a lattice structure after training is underway. The

connections between nodes are important because they influence which nodes will be

affected most after a winning node is found. A sample map can be seen in Figure 29.

50

Figure 29 - An empty SOM prior to training.

3.2.2 Training Process

After a map is generated and a dataset is provided, the next step is to train the map.

Training begins with the ordering phase. The ordering phase takes the randomly

organized map and begins the organization so that its structure resembles that of the

input space. All of the training parameters in this section: initial learning rate, initial

neighborhood width, network size, and number of training iterations are referenced from

“Neural Networks: A Comprehensive Foundation” [16]. Often the number of iterations

required to change a randomly generated map to an ordered map is approximately

1000 iterations, where one iteration is the map being trained on each member of the

input dataset. The initial neighborhood size is set to a neighborhood of the entire map

during the ordering phase of training; this means meaning that at the beginning of

training each node in the network is affected by every input vector. This neighborhood

width decreases over time according to Equation 6. The initial learning rate is typically

51

set to a value around 0.1 [16], and also decreases over time according to Equation 5.

These values are set to ‘higher’ values in the ordering phase so that the map can

quickly gain a topology that resembles the input space. An example of a map that is

completing the ordering phase of training can be seen in Figure 30.

Figure 30 - SOM near the end of the ordering phase of training (Adapted from [27]).

As seen in Figure 30 the ordering phase trains the general shape of the input space,

which in this case is the entire space shown in the figure. Because the input space is

the entire display, the map will eventually occupy most of the space in the figure and

display a lattice of nodes. The blue dot in Figure 30 corresponds to an input vector, and

the red area corresponds to the neighborhood influence around the winning node

52

(center of the red area and closest node to the blue dot). This neighborhood area is

decreasing over time, but began with the entire neighborhood being influenced.

Following the ordering training is convergence training. Convergence training proceeds

from the initial organization attained in the ordering phase and tweaks the map to best

fit the input space. Because this phase is focused on modifying sections of the map

rather than organizing the map as a whole, its training parameters are set to vastly

different values and ranges. The initial neighborhood is two neurons wide and it

decreases over time according to Equation 6. Additionally, the initial learning rate is set

to approximately 0.01 [16] and decreases over time according to Equation 5. Finally, the

convergence phase trains for approximately 20 times the number of iterations in the

ordering phase [16] because the modifications and manipulations resulting from each

training iteration are minimal to the map. An example of a map at the completion of the

convergence phase can be seen in Figure 31.

53

Figure 31 - An SOM at the end of convergence training (Adapted from [27]).

Figure 31 is the resulting trained map at the completion of ordering and convergence

training. The blue dot is again the input vector and the red dot being the winning node

with a neighborhood of its immediate neighbors. This portion of training began with a

map that had a general fit of the input or design space and finished with a map that fits

the design space completely. At this point in the training, the convergence phase is

making the final tweaks to the map.

At this point, the SOM is trained in the n-dimensional design space, but provides no

means for visualizing this space. The next step is to transition from the high dimensional

design space to the two dimensional display, SOM projection in Figure 32.

54

Figure 32 - Dimensionality reduction visual (Adapted from [28]).

The trained map occupies the design space denoted by the left side of Figure 32, but is

represented in the two dimensional space on the right. This dimensional reduction is

possible because the non-linear mapping property of self-organizing maps. Each node

in the two dimensional lattice represents a region of the n-dimensional design space.

Therefore, the two dimensional display of the SOM is a collage of many regions of the

design space, providing a visualization of the entire design space. With this mapping, it

is possible to display a high dimensional design space in a two dimensional (visible)

space.

55

3.2.3 Contextual Labeling Process

After the map has been trained, the last phase is labeling the map with contextual

labels. These contextual labels provide the information and feedback to the user or

designer that describes the design space or input space. The labels are applied by

executing one final ‘pseudo’ training loop, where each input vector is inputted to the

self-organizing map one final time. The resulting winning node for each input vector is

then tagged with a contextual label from the input vector for later processing.

After the contextual labels are applied to the nodes, it is possible to calculate the

average, standard deviation, and minimum value for the groupings of contextual labels.

Generally, each node will have a set of contextual labels if the data set is large enough

to accommodate the 35 to one ratio of inputs to nodes respectively. With all of the

contextual labels, and the general node information of mean, standard deviation, and

minimum the next step is the visualization of these properties, which leads to the

coloring applied to the map. The mean value is vital to discovering the representative

value of the node, the standard deviation explains the variability within the node and a

low standard deviation is ideal, and the minimum value helps reiterate the proximity to

the optimum value in the design space.

3.2.4 Coloring Process

Utilizing the Hue Saturation and Value coloring scheme is essential in order to convey

all of the details that are contained within a node’s contextual information. This research

56

uses the HSV coloring scheme in the following way: the hue is determined by the mean

of the node’s contextual information, the saturation is determined by the minimum value

of the node’s contextual information, and the value is determined by the standard

deviation of the node’s contextual information. The goal of using this color method is to

have the best, or optimal, nodes stand out from the rest of the nodes on the map. This

can be accomplished by coloring nodes with have low means, low minimum values, and

low standard deviations brightly on the map. In order to make this happen a low mean

value is set to green, a low minimum value is set to full saturation (full color), and a low

standard deviation is set to full brightness (full color). Therefore, when a node has a

high minimum value it will appear white colored, and when a node has a high standard

deviation it will have a dark color.

To explain this in further detail, the first parameter is the hue. The hue of the node is set

by the mean value of the contextual information contained within the node. In this case,

the contextual information can be averaged, and then a color can be assigned to the

node based upon how its mean contextual value compares to the rest of the map. This

mean value is the most important of the three characteristics, which is why it controls

the component that results in largest color change.

The minimum value is also important to a node, because it can allow the designer or

user to understand how the node’s contextual labels compare to other nodes with a

similar mean. Using the minimum context value of a node to determine the saturation

57

color component of a node quickly differentiates two nodes with similar average values

but different minimum values.

The last color component, value, is set using the standard deviation of the contextual

labels in a node. The standard deviation of the node is important because it can explain

how well the node is trained, or how consistent values are in a portion of the map. A

node with a high standard deviation can be quickly identified by visually noticing the

darker color of the node. A high standard of deviation does not always designate a

useless area, but it can signify an optimal area and therefore is important that it can

easily be identified. These properties can all be identified in the SOM displayed in

Figure 33.

Figure 33 – An SOM displaying the coloring process using the hue saturation value

coloring scheme.

58

In Figure 33, there is a significant color variation in the map, but generally there are two

sections: the majority of the map is a white/pink mixture and the center of the map is a

dark green color. The large coverage of the white/pink area is representative of a higher

mean value because the hue is more red then green. Additionally, because the nodes

have lower saturation value, or less pigment in each color, this area has higher

minimum values. The center of the map contains green colored nodes, which contain

lower mean values. The very center node is a ‘brighter’ green than its surrounding

nodes, meaning it most likely has a better standard deviation than its surroundings. The

nodes surrounding the center have greater standard deviations, represented by darker

colors.

The HSV color display method effectively displays the characteristics of each node:

mean, standard deviation, and minimum value in a colorful fashion that allows the user

to quickly discern the difference between various nodes in the map. From this, an

intuitive map is created, minimum values are nodes with bright green color, maximum

values are nodes that are colored white, and high slope areas have dark colors. For

example, if a user wants to find an optimal, minimum, area on the map he or she would

look for the brightest green node.

59

3.3 Progress of SOM Contextual Maps

3.3.1 Generation of Trained Map

The first task was to understand the method of choice, self-organizing maps. After

gaining a thorough understanding, training an SOM is well documented so that one may

plug data into the SOM and receive a resulting trained map. The question therein lies,

what can be done with this trained map? Many past researchers have utilized the U-

Matrix, or individual variable maps to display this trained map. This leads to the next

section, where the process of selecting a method to display the information gained

through training of the map begins.

3.3.2 Research into Displaying Valuable Map Information

The U-Matrix provides distinct advantages if clustering is the goal of utilizing a self-

organizing map, because it is able to clearly display node groupings and distance

between clusters of nodes. Unfortunately, this research was focused more on the

specific and relative values across the input space. With this goal in mind, the U-Matrix

did not prove to be a solution to the visualization problem.

The next path this research took delved into the display of individual variables from the

data set. Since this problem is an optimization problem, the design variables are crucial

to the success of the optimization or design; however, the overarching goal will always

be the objective function value or performance characteristic value. In order to extract a

single variable objective function value from each node for display purposes, it would

60

require that the SOM be trained using the objective function values of the training data

as a design variable. The problem with this idea is that having the objective function

value incorporated into the training of the map can skew the organization result. This

result provides a trained map that clusters around objective function values, which

seems to be appropriate, but also provides a ‘false’ grouping due to the map’s

awareness of the objective function value. When the map is trained without the

objective function value, any clusters that it makes are developed because of the

similarity of the design variables rather than the objective function value. For this

reason, single variable extraction visualization was not the chosen method to display

the resulting map and its accompanying objective function value.

Su et al. [21] describes another method of displaying the characteristics of the trained

map based upon the objective function value. This is achieved by calculating the

resulting objective function value from the node weight vectors of the trained map.

Unfortunately training and then visualizing in this manner required that there be an

objective function present. One goal of this research was to create a method that could

be utilized on data sets that did not have an explicit objective function. One example of

data that would not contain an explicit objective function is data obtained through

computer simulated analysis, such as finite element analysis.

The final method examined was contextual maps as a post processing event to the self-

organizing map training. The contextual map allowed for a data set to be trained from

solely its design variables, but subsequently display the characteristics of its objective

61

function value. This method uses the objective function values as contextual ‘labels’ to

the map. These labels are then analyzed to gain an understanding of each node in the

map, from the perspective of the objective function values that it contains. With an

understanding of each individual node, the map can be displayed so it is possible to see

the relationship that each node has with its adjacent nodes. The contextual map is an

efficient method for gaining an objective function value for the nodes in the lattice

without the consequences of the previously described methods.

The last step in the process of displaying the node’s contextual information was to

devise a method for coloring the node. Because each node has an array of objective

function values, it would not be a sufficient solution to simply display the mean of the

objective function values. Additionally, displaying the minimum objective value at each

node is also not a fair comparison between nodes. These methods are insufficient

because of the potential for high variability of objective function value within each node.

Therefore, it is important to consider the variance or standard deviation of the objective

function values within each node in combination with a display of the objective function

value.

At this point, the hue saturation value color scheme became part of the development.

This color scheme allowed for a three dimensional color manipulation that provided

more than a color interpolation. The benefit of using HSV, described in Section 2.3, is

that a color can be displayed through color interpolation but then it is also possible to

alter that color to convey further information. The goal of using the HSV coloring method

62

was to allow the user to quickly spot the important nodes and structures within the data

set such as minima, optima, high curvature areas, and low curvature areas. These

sections of the map are identifiable through the variation from the standard color

interpolation used in other research methods.

It is important to note that not every map will be trained on a sufficiently large data set to

acquire a group of contextual information for every node. For this reason, the SOM has

the capability of displaying a standard color interpolation between red and green when

nodes have only one contextual label. This process follows the guidelines provided in

the standard HSV coloring scheme, but considers that the standard deviation is zero so

the brightness of each node will be fully brightened. Additionally, the minimum value for

each node without contextual information will be the same as the mean value, so the

minimum value component, or the saturation component, is ignored and set to the

maximum saturation.

When a node has no contextual information it is not displayed on the map in order to

minimize confusion with other nodes that do contain contextual information. While all

nodes may not be displayed on the map, they are each trained to accept certain inputs,

so the location of the nodes is still important to the comprehension of the map. An

example of a map displaying both circumstances of nodes with single contextual values

and nodes without contextual values can be seen in Figure 34.

63

Figure 34 - A trained SOM that contains nodes without contextual information as well

as nodes with only one contextual label.

Most of the nodes in Figure 34 are bright colors because they only contain one

contextual label. This is a result of having fewer data points than map nodes. With this

coloring scheme it is still possible to interpret the map, furthermore it is possible to view

and train a map with a limited data set.

In order to accommodate all of the customization to the standard self-organizing map, it

was necessary to create a desktop application. The desktop application would allow a

user to train, display, and save the results of this research in ways that the Matlab

toolbox is un-capable. The SOM Visualizer application, which was created to

accomplish this research, is described below.

64

3.3.3 SOM Visualizer Application

While there are widely available tools to generate self-organizing maps such as the

Matlab Neural Network Toolbox [29] and Peltarion Synapse Neural Network Software

[30], this research requires a tool that could provide complete customization of the

algorithm and display method. To accommodate these requirements, a C++ application

was created to fit the research needs and allow for a customizable experience.

Software

This application was developed to manage data, create a map, and train the created

map. In addition to training the map on a given dataset, the OpenGL graphics library

[31] was used to visualize training results. OpenGL allows the program to display a

variety of outputs from the map. Finally a graphical user interface (GUI) grants

additional advantages so that other users can use the software without a list of

instructions. This GUI was created using Qt by Nokia [32], an open source library

available under the LGPL license. All of these libraries are open source and cross

platform so the resulting application, Figure 35, (SOM Visualizer) runs on Windows,

Mac, and Linux.

65

Figure 35 – SOM Visualizer application running on RedHat Linux.

Interface

The SOM Visualizer application, Figure 35, provides the user three options to customize

the SOM and its training. These are the number of training runs that the map will

undergo and the size of the network, specifically the number of rows and columns in the

map. Beyond these three options there are many other training variables to specify, but

these are less frequently adjusted and thus not put in the interface for reasons of

simplicity.

66

In addition to the training settings, the user is able to load data, train the map, save out

the trained map, and load a previously trained map. These options are chosen by

clicking on designated toolbar buttons along the top of the window. The user can

identify the appropriate button by reading the tool tips (messages) that display when the

user hovers over a button. The workflow of these options is also displayed by only

allowing subsequent options to be clicked once their predecessor has been executed.

One example of this is: without loading a data set the map will not allow the user to click

train. This method of sequencing commands prevents the user from attempting actions

which are not yet available.

Lastly, the application allows for extensive examination of the resulting map through

many output methods. The first step to map comprehension is the visual display of the

map once training is completed. This map is shown in the OpenGL widget in the center

of the window, and updates when there is new information to display. The user can

manipulate the OpenGL display by selecting to filter the network display based upon the

number of times a node ‘won’ or was activated during the contextual training.

Additionally, the user has the ability to select nodes within the map for further

examination. When a node is clicked by the user, it becomes highlighted and the details

of this node are displayed in the “Selected Node Information” panel, an example can be

seen in Figure 36.

67

Figure 36 - A trained SOM with a node selected for investigation.

When a node is selected, the node’s mean, standard deviation, and minimum context

value are displayed so that the user or designer can better understand the topology of

the map. Finally, this application has the ability to save two different outputs to text files:

node contextual information and the map topological information. The contextual

information that gets saved to a text file displays the context values for each node as

well as the node’s mean, standard deviation, and minimum. The topological information

that gets saved is the entire trained map including the map size, weight vectors, and

contextual labels. This map can then be loaded later for further examination.

68

Data

This application can load in a data set of any size; this includes both samples (rows)

and variables (columns). The data is loaded into the SOM in a specific format so that

the application correctly trains the map. For an example of a five dimensional data set

see Table 1.

Table 1 - Input data format

The contextual labels, F, column in Table 1 are the location of the objective values,

which will be omitted from the training of the map and applied as contextual labels. The

adjacent columns (X1, X2,.., X5) are the independent design variables used to generate

the objective value, F. These design variables are the basis of the training of the SOM,

and the dimensionality of the design variables determines the dimensionality of the self

organizing map’s node weight vectors.

Contextual Label (F) Variable 1 Variable 2 Variable 3 Variable 4 Variable 5
F1 X1 X2 X3 X4 X5
F2 X1 X2 X3 X4 X5
F3 X1 X2 X3 X4 X5

69

4 Results and Discussion

4.1 Optimization Test Suite

For the evaluation of this method, three published optimization problems were chosen:

Dixon and Price [33], Rosenbrock’s Valley [34], and Ackley’s Path Function[34]. These

functions were chosen for their topological characteristics. These functions were also

chosen because they have the ability to scale to as many independent variables as

desired, providing viewable three dimensional plots as well as higher dimensional

capability for the SOM to be trained upon. All of these optimization problems can be

written in the standard optimization problem statement that was introduced in Section

1.3.

Dixon and Price

This function provides a topology that contains a very shallow optimal area, making

convergence difficult for a formal solution method. Additionally, the edges of the design

space have steep gradients causing most points in the design space to reside relatively

close to the optimal value. The equation and bounds for this function are given in

Equation 7.

F(X) = X0 −1.0()2 + (i) × 2 × Xi
2 − Xi−1()2

i= 2

n

∑
−10.0 ≤ Xi ≤10.0, i = 0 : n (8)

70

The optimal value for this function resides at .0.0 and 0.0)(min == ixxF Matlab was used

to generate a three dimensional plot of this function by generating a two design variable

version of the function and using Matlab’s surface plotting to plot the two design

variables and the objective value in three dimensional space. The result is displayed in

Figure 37.

Figure 37 - The Dixon and Price Function in two dimensions.

Figure 37 displays the characteristics of this function, and provides a unique topology

for the self-organizing map to visualize. This function is also greatly different than the

subsequent functions, Rosenbrock’s Valley and Ackley’s Path function because it has a

much simpler design space.

71

Rosenbrock’s Valley

This function is similar to the Dixon and Price function because it is uni-modal, but its

complexity increases because the optimum lies within a long, narrow, parabolic valley.

This adds additional complexity to the Dixon and Price function, while retaining the

unimodal aspect. Equation 8 provides the equation and bounds of Rosenbrock’s Valley

Function.

()

nix

xxxxF

i

n

i
iii

:0 ,048.2048.2

1)(100)(
1

22
1

=≤≤−

−+−•= ∑
=

+

 (9)

The optimal value for Equation 8 is nixxF i :1,1 ,0.0)(min === . Again, Matlab was

used to generate a three dimensional plot of this function by creating a two design

variable function and plotting the objective function value as the third dimension. This

plot can be seen in Figure 38.

72

Figure 38 - Rosenbrock's Valley (Banana) Function.

As described, this function has a long narrow parabolic shaped optimal area surrounded

by large slopes to the edges of the design space. Although the function is unimodal,

there are areas that are relatively flat and often trap solution algorithms before they can

reach the true optimum value.

Ackley’s Path Function

This function varies quite a bit from the previous functions, primarily because it is a

multi-modal function. This function has a generally flat looking topography with small

peaks and valleys until immediately around the global optimal area. The multi-modal

nature of the function provides additional complexity due to the multiple solutions

73

present. Equation 9 was used to generate this function, which includes its objective

function and bounds.

() ()

() ()()[]

nix
xy

ykay

ayyk

n
xf

i

ii

n

i
ii

n

:1 ,1010
)1(25.01

sin1

sin
)(1

1
1

22

2
1

2

=≤≤−
−+=

















+−

+−+
=

∑
−

=
+π

π
π

 (10)

The optimal value for Equation 9 is 0.0 ,0.0)(min == ixxF . A plot of the function is

shown in Figure 39, which was generated similarly to the previous functions.

Figure 39 - Ackley's Path Function.

74

Figure 40 - Ackley's Path Function focused on the global optimum.

Figure 39 displays the characteristics described such as its multi-modal nature,

generally flat nature across the map until the region surrounding the optimum is

reached. This topology provides a unique function for the self-organizing map to

visualize and then extract relationships.

4.2 Contextual SOM Results

With such a diverse and distinct test suite, it is expected that the features outlined in

Section 4.1 are prominent in the contextual map results. In order to adequately test the

functionality of this method, results were generated for a variety of test cases within

each test problem. Each test problem was run under the conditions listed in Table 2.

75

Table 2 - Contextual SOM test cases

When examining each figure the training of the SOM algorithm, which initializes the map

randomly, must be considered. The result of this random initialization is a map that can

vary every time it is trained, even on the same data set. The maps displayed in the

following section are a representation of what may result from training the SOM. By

manipulating the training parameters such as map size or training iterations the

designer has the potential to reach slightly different results.

Dixon and Price

Beginning with the Dixon and Price objective function, the first step is to verify the

problem characteristics of the two design variable (three dimensional) plot, Figure 37,

with the contextual map results. The resulting contextual SOMs for the two design

variable case shown with 100, 1,000, and 10,000 sample points can be seen in Figure

41.

100 Sample Points 1,000 Sample Points 10,000 Sample Points
2 Design Variables 15x15, 1000 iterations 15x15, 1000 iterations 15x15, 1000 iterations
5 Design Variables 15x15, 1000 iterations 15x15, 1000 iterations 15x15, 1000 iterations
10 Design Variables 15x15, 1000 iterations 15x15, 1000 iterations 15x15, 1000 iterations

15x15 describes the map size, 15 rows and 15 columns
1000 iterations specifies the number of ordering phase iterations

76

Figure 41 - Dixon and Price two design variable SOM trained using 100 (top), 1,000

(left) and 10,000 (right) sample points.

The results displayed in the case of 100 sample points used to train the SOM show

features consistent with the three dimensional Matlab plot for Dixon and Price, Figure

37. Specifically, this function displays a large optimal area and steep curvature at the

boundaries of the design space. This map primarily utilizes only the color interpolation

rather than the full HSV method because there are more nodes than data points, so

77

some nodes have one label and other nodes have no labels. The 1,000 and 10,000-

point maps displayed in Figure 41 contain the characteristics of the three dimensional

Matlab plot, Figure 37. Both the 1,000 and 10,000-point maps contain a shallow optimal

area (constant green area) and steep curvature on the edges of the map (dark colored

areas). The trained map provides an adequate comprehension of the design space by

conveying its uni-modal nature, shallow optimal area, and high curvature on the edges

of the design space. The entire middle green area would most likely be a good initial

search region for a formal solution algorithm to start from as the points therein are low

objective function values.

The next case in the training regime is the five design variable case of the Dixon and

Price function. Therefore, the trained map should display similar characteristics to that

of the two dimensional case. The results of training the 100, 1,000 and 10,000 cases

are displayed in Figure 42.

78

Figure 42 - Dixon and Price five design variable SOM trained using 100 (top), 1,000

(left) and 10,000 (right) sample points.

The mapping of the 100-sample point data set provides more conclusive results than

the 1000 and 10000-point data sets. This figure displays a low central area, consistent

with the three dimensional plot of Dixon and Price. This is apparent by the many green

nodes contained within the center of the map, and more variable nodes to the edges of

79

the map. A more conclusive map may have resulted from the smaller data set because

the training parameters such as map size, the learning rate, and number of training

iterations allowed for this data set to be more accurately trained. Since the training

parameters for all the maps are kept constant, some maps may not be training

sufficiently. The results from Figure 42 are less conclusive than the two design variable

case. The 1000-sample point map (left) appears to have a slightly brighter central strip

(circled) through the map which would equate to a lower standard deviation. This

feature is not extremely evident, but could signify the shallow area in the center of the

map with the edges of the map displaying a higher standard deviation and therefore a

greater curvature. The 10000-sample point case (right) does not display any significant

trend at all. However, this map does contain areas highlighting the optimal area.

Unfortunately, there are several groupings that lead one to believe that the problem is

multi-modal when in fact it is uni-modal. Even without an evident trend, the larger

optimal area in the 10000-sample point plot could be a beneficial initial starting location

for an optimization algorithm.

The last test case for the Dixon and Price function is the ten design variable data set.

Again, the ten design variable case has sets of 100, 1,000, and 10,000 samples.

80

Figure 43 - Dixon and Price ten design variable SOM trained using 1,000 (left) and

10,000 (right) sample points.

The 100 point map in Figure 43, similarly to Figure 42, displays no significant correlation

between the trained map and the characteristics of the Dixon and Price function. This is

not surprising with the result of the other ten design variable trained maps, Figure 43.

The trained maps in Figure 43 contain similar features to the trained maps of the five

81

design variable maps, Figure 42. Unfortunately neither Figure 42 nor Figure 43 explain

the characteristics of their respective design spaces. Again, the cause of these

inconclusive maps may be related to their non-ideal training parameters. The resulting

maps appear to have high standard deviations across the map and therefore the SOM

nodes may not be grouping the data appropriately. Possible improvements for this

function could come from a display of the individual design variable values within a

node, modifications to the training parameters, and other items in the Future Work

Section (5.2).

Overall, the contextual self-organizing maps trained on the two design variable Dixon

and Price function provided a complete understanding of the problem characteristics.

Additionally, the 100-point sample of the five design variable Dixon and Price function

gave a similar understanding. Unfortunately the large five dimensional data sets (1,000

and 10,000) and the entire ten dimensional data sets resulted in inconclusive maps.

Rosenbrock’s Valley

Recalling the characteristics of Rosenbrock’s Valley function, Figure 38, the problem is

uni-modal and contains a large shallow parabolic (banana) shaped optimal region. The

surrounding area around the optimal has relatively low objective function values in

comparison to the corners of the design space where the objective function value grows

large very quickly. This section presents trained maps of the Rosenbrock’s Valley

function in accordance with the training structure of Table 2.

82

Figure 44 - Rosenbrock's Valley two design variable SOM trained using 100 (top),

1,000 (left) and 10,000 (right) sample points.

All of the maps in Figure 44 display an accurate representation of the design space and

the characteristics described for Rosenbrock’s Valley, Figure 38. Figure 44 maps the

1,000 and 10,000 sample point data sets of the two design variable Rosenbrock’s

83

Valley function very well. These maps display the characteristics of the problem

described in Figure 38 such as the parabolic optimal area, unimodal nature, and steep

curvature at the corners of the design space. In addition, there are two things to

consider upon inspecting these maps: the orientation and color variation. Recall that the

map is randomly initialized so the orientation of the nodes in the map is irrelevant.

Secondly, the majority of the map is colored green because the variation in mean node

value from the optimal area to its surrounding nodes is much less than the difference

between the optimal area and the corners of the design space.

As the dimensionality of the design space increases, the goal is to retain the ability to

map the features of the design space. The next set of maps are trained on a five design

variable data set with 100, 1000, and 10000-sample points, in Figure 45 respectively.

84

Figure 45 - Rosenbrock's Valley five design variable SOM trained using 100 (top),

1,000 (left) and 10,000 (right) sample points.

The top map in Figure 45 appears to contain the characteristics of a uni-modal problem

with large curvature at the corners of the design space; however, the number of unused

nodes in the map limits the information that can be gathered. Unfortunately, the unique

shape of the optimal area cannot be extracted from the 100 point map in Figure 45 as it

85

can from the other two maps because of the gaps in the map. Fortunately, it would be

possible to identify an initial search area using this map, because of the exploration

features of the application interface. Through inspection of the trained maps, Figure 45,

it is noticeable that the characteristics of the design space are retained in this display.

These maps retain the shallow optimal area with the edges of the map containing high

curvature areas displayed through the darker colored nodes. Since the majority of the

optimal area (green area) is connected, it could be surmised that the problem contains

uni-modal characteristics too. Finally, these maps clearly display bright green nodes

denoting close-to-optimal contextual values which could be useful for an initial search

region of an optimization algorithm. This could be utilized by selecting the brightest

green nodes, and saving the design variable values of the selected nodes for use as a

starting location in an optimization routine.

The final map generated from the Rosenbrock’s Valley 10D function with 100 sample

points. Ideally, the characteristics that have displayed through the two and five

dimensional maps would also be displayed in Figure 46.

86

Figure 46 - Rosenbrock's Valley ten design variable SOM trained using 100 (top), 1,000

(left) and 10,000 (right) sample points.

The holes within the 100 point map of Figure 46 make it difficult to interpret, but the

large number of green nodes suggests a flat region of the design space around the

optimum. The problem of node coverage can be solved by either decreasing the map

size, or finding a method to interpolate between the nodes on the map and display

colors on the now empty nodes. This will be discussed further in the Future Work

87

Section (5.2). The results from the 1000 and 10,000 point maps in Figure 46 show two

maps that have unique optimal areas, but without the ability to picture a ten design

variable space it is hard to verify their correlation back to Figure 38, the Matlab plot. It is

important to consider that self-organizing maps are a dimensionality reduction method

and there is no correct pattern to the output neurons. Two characteristics of the design

space that are apparent in the left and right map of Figure 46 are the large optimal area

and steep curvature within the design space. These two properties were present in the

Matlab plot, Figure 38, and should remain properties of the design space as the

dimensionality is increased. With a large number of bright green nodes, it is likely that

the map did fit the input space effectively because the standard deviation of individual

nodes in the map is not high.

The maps in Figure 44, Figure 45, and Figure 46 that were trained on the Rosenbrock’s

Valley function are promising in their ability to map the design spaces of two, five, and

ten dimensional problems. The resulting maps can be utilized to discover problem

characteristics such as the curvature of the problem, modality of the problem, and an

initial search area for optimization algorithms. The 100 point maps at five and ten

dimensions in these figures were not as effective in displaying the design space, but

with some work to interpolate between node colors, these maps could become

extremely informative. Interpolating between the colors would build upon the values of

surrounding nodes; it would be possible to assign a color value to an empty node by

calculating a value that falls between the color values of the surrounding nodes.

88

Ackley’s Path

The Ackley’s Path function is different than both Dixon and Price and Rosenbrock’s

Valley because it is a highly multi-modal problem. The general shape of this function,

Figure 39 is that of a cone with peaks and valleys covering the entirety of the cone. This

section contains the resulting maps that were generated by following the training test

cases in Table 2. With an understanding of the training capabilities of the contextual

SOM on various data sets, it can be expected that the SOM adequately maps the two

design variable data sets.

89

Figure 47 - Ackley's Path two design variable SOM trained using 100 (top), 1,000 (left)

and 10,000 (right) sample points.

As expected, the 100 point map in Figure 47 displays a topology consistent with the

expectations for Ackley’s Path. There is a definite optimal area, which is very different

from the rest of the map. There also appears to be local minima across the map,

represented by the pockets of high standard deviations. Unfortunately due to the limited

number of nodes in this map, it is difficult to decipher the modality of the function. Figure

90

47 fit the design space well and provided beneficial visual representation of the design

space. As with the previous maps trained on two design variable data sets, the SOM is

capable of very closely mapping a two design variable data set. The characteristics that

can be extracted from these maps are that is a multi-modal problem and that it has an

area of the design space close to the global optimum. The multi-modal nature is

identified by the change in colors in the white/grey area of the maps, because these

changes in color signify that a node will represent a set of value that is slightly higher or

lower than the node next to it.

After completing the training and examination of the two design variable data set for

Ackley’s Path, the next data set is a five design variable data set. This set will be

represented by a 100, 1000, and 10000-sample point data set in Figure 48.

91

Figure 48 - Ackley's Path five design variable SOM trained using 100 (top), 1,000 (left)

and 10,000 (right) sample points.

This map 100-point map displays the characteristics of a multi-modal design space

because it contains such a scattered variety of orange and red nodes. The dispersion of

orange nodes correspond to high objective function values and the red nodes are even

higher objective function values. When these colors are next to each other repeatedly,

this suggests peaks and valleys within a small range of objective function values, or

92

more simply a multi-modal behavior. This map unfortunately suffers from a lack of

nodes to effectively display the optimal area. However, there are three distinctly green

nodes on the map, which would provide a beneficial starting location for a quicker path

to optimization convergence. Figure 48 also potentially shows the global optimum

region. Normally, this would be a green area on a map, but due to the nature of the

problem, the global optimum area is also one where there are large gradients. Thus, the

node(s) would appear black, as they contain both low objective function values and high

standard deviations. This black node can be seen in both the 1000 and 10000-point

maps shown in Figure 48. The maps with 1000 and 10,000 data points also suggest a

multi-modal characteristic of the function through the high variability in white and pink

and brown values over the majority of the map.

The last group of data sets to be examined is the ten design variable sets of data with

data sets containing 100, 1,000, and 10,000 sample points. The first maps that will be

presented is the 100-point data set and then the 1000 and 10000-sample point maps.

The first map, 100-samples, will most likely not be full enough to utilize for proper

analysis, but will display the multi-modal nature of the problem.

93

Figure 49 - Ackley's Path ten design variable SOM trained using 100 (top), 1,000 (left)

and 10,000 (right) sample points.

The top map in Figure 49 contains a map that shows the multi modal nature of the

Ackley’s Path function, but more than likely does not have a sufficient representation of

the design space. There are several green nodes across the map, which means that the

100-sample point data set did not include a point that was located near or in the

94

optimum region because the green nodes across the map are all in local minima. The

multi-modal nature of this function is an important feature, but with a more

encompassing data set it may be possible have been possible to discover an optimal

area. While the resulting maps in Figure 49 may appear to be chaotic and unorganized,

they provide significant information regarding Ackley’s Path ten dimensional design

spaces. The first observation in both maps is that the function is highly multi-modal, this

is again because of the large area of the map which contains many peaks and valleys in

the form of browns and greens. The second important piece of information from the

1000-sample point map on the left is again the initial search region; this map contains

one bright green/yellow node which resides near the optimum. Unfortunately, the

10000-sample point map on the right does not clearly display any optimal area, but this

may be due to an insufficient training length.

The maps trained from the Ackley’s Path function, Figure 47 - Figure 49 all sufficiently

display the multi-modal nature of the function. The maps that were unable to identify an

optimal region of the map most likely suffered from the lack of an input vector near the

optimum of the function. Assuring that the design space is sufficiently explored with the

data set is difficult as the dimensionality increases because a function with a small

optimal region, such as Ackley’s Path, can decrease the chances of picking a point near

the optimal region.

95

4.3 Discussion of Results

The trained contextual self-organizing maps that were presented in Section 4.1 provided

valuable insight into the capability of contextual SOMs in design space visualization. As

expected, when the dimensionality of the design space decreased, the

comprehensibility of the trained map increased; alternatively, when the dimensionality of

the design space increased, the comprehensibility of the trained map decreased. This

paradigm is currently present in other research methods, and exemplifies the need for a

capable solution to design space visualization.

Dimensionality reduction methods specialize in providing an abstract visualization of a

high dimensional space; therefore, the two dimensional representation of a high

dimensional problem cannot be compared to the two dimensional representation of a

low dimensional problem. For example, a strict comparison between the maps in Figure

49 and the maps in Figure 47 will not make feasible sense because the two dimensional

data set does not require dimensional reduction where as the ten dimensional data set

requires dimensionality reduction to display the resulting design space. This property of

self-organizing maps makes verification of the results difficult.

Another important consideration is that for every design variable that is added to the

problem, the size of the design space increases. Due to the increasing design space,

the probability of adequately covering the design space with a set number of sample

points (100, 1,000, and 10,000) decreases. This is especially evident in the Ackley’s

96

Path function, because the optimal value falls within -5 and 5 for every design variable,

but the range of each design variable extends from -32 to 32. So, as the dimensionality

increases, the likelihood of all the design variables falling within the -5 to 5 range

decreases because of the added area to the design space. In order to compensate for

this, it would be necessary to generate a design space of more points such as 100,000

or one million points. Generating this large of a data set will impact the training time of

the map, but this could be enhanced by implementing a multi-core training algorithm

which is described in further detail in the Future Work, Section 5.2.

While not all the results provided an easy to interpret map, the SOMs in Figure 42 and

Figure 43, most of the maps did provide some information about their respective design

spaces. For example, all of the maps trained on Rosenbrock’s Valley, Figure 44, Figure

45, Figure 46, and provided the general shape of the optimal area as well as an

indication to the location of the optimal region. Additionally, the maps trained on

Ackley’s Path function, Figure 47, Figure 48, and Figure 49 displayed the multi-modal

characteristics of the design space. All of the maps in Figure 47-Figure 49, with the

exception of the 10000-sample point map in Figure 49, provided a location of the

optimal region.

This knowledge of design spaces is important for the progression of optimization

because it will guide to a more efficient choices when trying to solve the problem. This

solution can be reached by utilizing knowledge such as the modality of the problem,

because some optimization methods specialize in highly multi-modal methods. An initial

97

search area can also prove to be invaluable to convergence to a true optimum because

it will help avoid getting caught in many local minima if exploration of the entire design

space were necessary.

Lastly, as mentioned after the results from the Dixon and Price function, the training

parameters that were used for these test cases could always be improved to fit the test

case better. These parameters: map size, training iterations initial learning rate, and

initial neighborhood size all affect the outcome of a trained map, and can each be

adjusted to provide a more ideal map. With a further understanding of these

parameters, it may be possible to generate more meaningful maps for all data set

ranges including high dimensional data sets with a low number of samples.

98

5 Conclusions and Future Work

5.1 Summary and Conclusions

While the use of self-organizing maps in optimization and design space visualization is

not a new concept, the application of contextual maps to display the results of a self-

organizing map trained on an optimization is a novel approach. This approach has

many benefits over other methods, such as the ability to function with or without an

objective function, and the capability of training on a data set of any size. This method

can also display the resulting information in a two dimensional plot, but with more

details of the node network’s contextual information such as mean, standard deviation,

and minimum value. With this information, users will be able to discover design space

characteristics and apply that knowledge to benefit the resulting solution.

This method provides an intuitive display that utilizes colors to convey the results of the

trained self-organizing map. The colors are manipulated so that the optimal values in

the map stand out by being the brightest colored nodes. The nodes that are more

variable or have worse contextual labels do not attract the user’s attention like the bright

colored nodes, but are there to provide additional characteristics of the problem. The

characteristics that can be extracted from a SOM representing a design space are the

curvature of the design space, the modality of the design space, and the optimal region

of the design space.

99

The results in this thesis displayed the ability for the contextual self-organizing maps to

effectively display a high dimensional design space in the two dimensional plot, see

Figure 46. The benefit of adding the contextual information to this plot is shown to

convey more information about the nodes along with their node value. The knowledge

of a node’s standard deviation can allow the designer to discover areas in the design

space with high curvature. The minimum values of nodes across the map can be used

to discover the modality of the problem, for example when there are minimum values

scattered around a map the problem is multi-modal. The last piece of information, the

node mean objective value, is pertinent to discovering the optimal region of the map.

These three characteristics are combined together in the contextual map so that the

designer can easily extract characteristics of the design space.

While the results showed successful attempts at design space visualization for the

Ackley’s Path function and the Rosenbrock’s Valley function, the Dixon and Price

function did introduce problems with the method. The problems that arose from this

method are most likely attributed to non-ideal training parameters. The training

parameters in question are the size of the map, number of training iterations, initial

learning rate, and initial neighborhood width. With a better understanding of these

parameters, the Dixon and Price function might result in a more comprehendible map.

The use of this method for design space visualization and comprehension will lead to

improved solutions of optimization problems. Convergence will occur more quickly by

utilizing the knowledge gained of problem characteristics such as the modality,

100

curvature, and the initial search region. The results of better optimization will lead to

significant savings in time, project resources, and overall cost.

5.2 Future Work

The results of this thesis gave examples of contextual self-organizing maps providing

crucial information about the design space, but all of the results were unfortunately not

as comprehendible and useful. Therefore, there is a wealth of avenues to explore in

order to advance this method. The future work tasks fall into four areas: the training

process, results improvement, results verification, and method exploration.

Given the results for the Dixon and Price function, Section 4.2, the first step to

improving the results of this work would focus on the training algorithm. The training

parameters for this method were set based upon recommended values from a neural

network textbook, but some of the maps, Figure 43, appeared undertrained.

Modifications to the training parameters could result in improved training and mapping,

which would provide better visual results. Secondly, the training duration could greatly

decrease in time if the algorithm were modified to be multi-threaded. Another area for

training improvement is to calculate the principle components of the data (PCA), and

use these principle components to initialize the weight vectors rather than generate the

initial map with random values. The batch SOM [35] can decrease training time and

therefore allow for larger data sets or more training iterations.

101

The second area for improvement of this method is in the results of the contextual self-

organizing map. While the results convey a meaningful display to the user, there are

modifications that could be included to improve the resulting displays. For example, it

would be possible to interpolate color values between the empty nodes if a network is

not completely labeled. This is accomplished by examining the color of an empty node’s

neighbors and assigning it an intermediate value that falls between the surrounding

colors. If this were implemented, the small data set maps with 100 sample points would

become more useful. Additionally, given a two dimensional node lattice it would be

possible to plot that lattice in three dimensions, similar to the Matlab plots, Figure 37,

Figure 38, and Figure 39. The process for plotting this would be similar to that of the

SOMO paper, by which the lattice is simply shown in three dimensions with the third

dimension being the node value. Lastly, this method could expand its capabilities into

multi-objective visualization. This task could be achieved through a variety of means, for

example the color display could change, or the number of output maps could increase.

Another area for further work is in the realm of result verification. While it is difficult to

visualize a high dimensional design space, the resulting maps could be further analyzed

for problem characteristics. In order to accomplish this, the application would need to

allow for multiple node selection and output of the design variable values contained in

those nodes. Also, this optimal region of the map could be inputted to an optimization

algorithm and verify that the location was beneficial.

102

Finally, the last area for improvement on this concept is to explore other methods that

are built upon self-organizing maps. For example, the generative topographic map or

the equalized orthogonal mapping method could insure proper training and therefore

provide a more meaningful output map.

5.3 Acknowledgements

This thesis would not have been possible without the help and support of many

individuals to whom I owe my successes. I would like to take this opportunity to express

my gratitude and thanks to all of my supporters.

First and foremost, I would like to thank my family for their love and support throughout

my college career. I would not be here today without your words of encouragement and

your continued support. I would also like to recognize my fiancé, Kathleen Mettel, for

the influence that she has had on my life. I would not be the individual that I am today

without her behind me.

Next I would like to thank my advisor, Dr. Eliot Winer, who not only provided me with

this tremendous opportunity, but helped guide me through the past three years of

learning and growing. I want to also thank Dr. Amy Kaleita for her guidance on the

research that led me to this point, her consistent enthusiasm for my work, and her

support through the many challenges that arose during research.

103

Furthermore, I owe the success of this thesis to my research group of Kristin Crawford,

Stephanie Kaphingst, Linda Geiger, Joe Goering, and Trevor Richardson. Without your

continued effort on our research project, I would not have gained the knowledge to

create this thesis.

To my colleagues: Eric Foo, Bethany Juhnke, Vijay Kalivarapu, Andrew Koehring,

Kenny Kopecky, Marisol Martinez, Brandon Newendorp, Christian Noon, Joanna

Peddicord, Catherine Peloquin, Brice Pollock, Levi Swartzentruber, Mike

VanWartenhuzen, and Ruquin Zhang thank you for your continued help when I ran into

the many bugs in my code. I would also like to mention Joseph Holub for being my right

hand man, as we accomplished many things from classes and projects to a marathon.

Last but not least, I want to thank the faculty and staff of the Virtual Reality Applications

Center (VRAC) at Iowa State University for your dedication to the students and the lab.

You have provided me a wonderful experience and a great place to learn.

104

6 References

[1] M. Molinari. (2006, April) Engineering Design Centre. [Online]. http://www-

edc.eng.cam.ac.uk/research/processmanagement/pm3/designspace/

[2] Ozen Engineering, Inc. Ozen Engineering. [Online].

http://www.ozeninc.com/images/Pareto4.gif

[3] J. Nocedal and S.J. Wright, Numerical Optimization. New York, USA: Springer,

2000, ISBN: 978-0387987934.

[4] R.L. Rardin and R. Uzsoy, "Experimental Evaluation of Heuristic Optimization

Algorithms: A Tutorial," Journal of Heuristics, vol. 7, no. 3, pp. 261-304, May 2001.

[5] D.H. Wolpert and W.G. Macready, "No Free Lunch Theorems for Optimization,"

IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67-82, April

1997.

[6] M.E. Tipping and C.M. Bishop, "Probabilistic Principal Component Analysis,"

Journal of the Royal Statistical Society. Series B (Statistical Methodology), vol. 61,

no. 3, pp. 611-622, 1999.

[7] T. Kohonen, "The self-organizing map," Neurocomputing, vol. 21, no. 1-3, pp. 1-6,

November 1998.

[8] J. Eddy and K. Lewis, "Multidimensional Design Visualization in Multiobjective

Optimization," in 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and

http://www-edc.eng.cam.ac.uk/research/processmanagement/pm3/designspace/�
http://www-edc.eng.cam.ac.uk/research/processmanagement/pm3/designspace/�
http://www.ozeninc.com/images/Pareto4.gif�

105

Optimization, Atlanta, GA, 2002, p. 5621.

[9] E.H. Winer and C.L. Bloebaum, "Development of visual design steering as an aid

in large-scale multidisciplinary design optimization," Structural and

Multidisciplinary Optimization, vol. 23, no. 6, pp. 412-424, July 2002.

[10] E.H. Winer and C.L. Bloebaum, "Visual Design Steering for Optimization Solution

Improvement," Structural and Multidisciplinary Optimization, vol. 22, no. 3, pp.

219-229, 2001.

[11] P-W. Chiu, A.M. Naim, K.E. Lewis, and C.L. Bloebaum, "The hyper-radial

visualization method for multi-attribute decision-making under uncertainty,"

International Journal of Product Development, vol. 9, no. 1-3, pp. 4-31, 2009.

[12] D.F. Swayne, D. Cook, and A. Buja, "XGobi: Interactive dynamic data

visualization in the X window system," Journal of Computational and Graphical

Statistics, vol. 7, no. 1, p. 113, 1998.

[13] G. Stump, T.W. Simpson, M. Yukish, and L. Bennett, "Multidimensional

Visualization and Its Application to a Design by Shopping Paradigm," in 9th

AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization

Conference, Albany, NY, 2002.

[14] G.M. Stump, M.A. Yukish, J.D. Martin, and T.W. Simpson, "The ARL Trade Space

Visualizer: An Engineering Decision-Making Tool," in 10th AIAA/ISSMO

Multidiciplinary Analysis and Optimization Conference, Albany, NY, 2004.

106

[15] M. Fleischmann and W. Strauss. (2008, December) Digital Sparks - Semantic

Map. [Online]. http://netzspannung.org/digital-sparks/

[16] S. Haykin, Neural Networks A Comprehensive Foundation, 2nd ed.: Prentice Hall

Publishing, 1999, ISBN: 978-0132733502.

[17] J. Hollmen. (1996, March) U-Matrix. [Online].

http://www.cis.hut.fi/jhollmen/dippa/node24.html#SECTION005241000

00000000000

[18] C.M. Bishop, M. Svensen, and C.K.I. Williams, "GTM: The generative topographic

mapping," Neural Computation MIT Press, vol. 10, no. 1, p. 215, 1998.

[19] C.M.E. Holden and A.J. Keane, "Visualization Methodologies in Aircraft Design,"

in Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference, Albany, NY, 2004, pp. 1-13.

[20] Z. Meng and Y-H Pao, "Visualization and Self-Organization fo Multidimensional

Data through Equalized Orthogonal Mapping," IEEE Transactions on Neural

Networks, vol. 11, no. 4, pp. 1031-1038, July 2000.

[21] M.C. Su, Y.X. Zhao, and J. Lee, "Som-based Optimization," in IEEE International

Conference on Neural Networks, 2004, pp. 781-786.

[22] M. Milano, P. Koumoutsakos, and J. Schmidhuber, "Self-organizing nets for

optimization," IEEE Transactions on Neural Networks, vol. 15, no. 3, pp. 756-758,

2004.

http://netzspannung.org/digital-sparks/�
http://www.cis.hut.fi/jhollmen/dippa/node24.html#SECTION00524100000000000000�
http://www.cis.hut.fi/jhollmen/dippa/node24.html#SECTION00524100000000000000�

107

[23] S. Obayashi and D. Sasaki, "Visualization and Data Mining of Pareto Solutions

Using Self-Organizing Maps," Evolutionary Multi-Criterion Optimization, vol. 2632,

p. 71, 2003.

[24] P.C. Matthews, "The Application of Self Organizing Maps in Conceptual Design,"

Engineering Department, Cambridge University, PhD Thesis 2001.

[25] T.T. Tanimoto, "An elementary mathematical theory of classification and

prediction," IBM Corporation, New York, NY, Technical Report 1958.

[26] A.C. Clark and E.N. Wiebe. (2000) NC State University. [Online].

http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html

[27] T. Streeter. (2006, Fall) SelfOrganizingMap. [Online].

http://www.tylerstreeter.net/#SelfOrganizingMap

[28] G. Schneider and P. Schneider, ""Promiscuous" Ligands and Targets Provide

Opportunities for Drug Design," in Systems Chemistry, Bozen, Italy, 2008.

[29] Mathworks. (1998) Neural Network Toolbox. MATLAB.

[30] Peltarion. (2008) Synapse. Software.

[31] Khronos Group. (2009, August) OpenGL. API.

[32] Nokia. (2010, January) Qt. API.

[33] A. Hedar. Global Optimization Methods and Codes. [Online]. [http://www-

optima.amp.i.kyoto-

http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html�
http://www.tylerstreeter.net/#SelfOrganizingMap�

108

u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm

[34]

(2006) GEATbx: Genetic and Evolutionary Algorithm Toolbox. [Online].

http://www.geatbx.com/docu/fcnindex-01.html

[35] F. Mulier and V. Cherkassky, "Self-Organization as an Iterative Kernel Smoothing

PRocess," Neural Computation, vol. 7, pp. 1165-1177, 1995.

[36] S. Kasi. (1997, September) Neural Networks Research Centre. [Online].

http://www.cis.hut.fi/research/som-research/worldmap.html

[37] A. Hedar. Global Optimization Methods and Codes. [Online]. http://www-

optima.amp.i.kyoto-

u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2056.ht

m

[38] E.L. Koua and M.J. Kraak, "Geovisualization to support the exploration of large

health and demographic survey data," International Journal of Health

Geographics, vol. 3, no. 21, 2004.

[39] R. Der, G. Balzuweit, and M. Herrmann, "Building Nonlinear Data Models with

Self-Organizing Maps," Lecture Notes on Computer Science, vol. 1112, p. 821,

1996.

http://www.geatbx.com/docu/fcnindex-01.html�
http://www.cis.hut.fi/research/som-research/worldmap.html�
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2056.htm�
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2056.htm�
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2056.htm�
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2056.htm�

	2010
	Contextual self-organizing maps for visual design space exploration
	Brett Nekolny
	Recommended Citation

	1 INTRODUCTION
	1.1 Purpose
	1.2 Design Space
	1.3 Optimization
	1.4 Design and Optimization and Visualization
	1.5 Motivation
	1.6 Thesis Organization

	2 BACKGROUND
	2.1 Optimization Visualization and Design Space Exploration
	2.2 Self-Organizing Maps
	2.2.1 Beyond the Self-Organizing Map
	U-Matrix
	Contextual Maps
	Generative Topographic Maps
	Equalized Orthogonal Mapping

	2.2.2 Self-Organizing Maps Applied to Optimization and Visualization
	Visualization of the Dimensionally Reduced Map
	Extracted Individual Variable Visualization

	2.3 Color Visualization
	2.4 Research Issues

	3 Methodology
	3.1 The Self-Organizing Map
	3.2 Contextual SOMs Applied to Design Space Exploration
	3.2.1 Map Generation
	3.2.2 Training Process
	3.2.3 Contextual Labeling Process
	3.2.4 Coloring Process

	3.3 Progress of SOM Contextual Maps
	3.3.1 Generation of Trained Map
	3.3.2 Research into Displaying Valuable Map Information
	3.3.3 SOM Visualizer Application
	Software
	Interface
	Data

	4 Results and Discussion
	4.1 Optimization Test Suite
	Dixon and Price
	Rosenbrock’s Valley
	Ackley’s Path Function

	4.2 Contextual SOM Results
	Dixon and Price
	Rosenbrock’s Valley
	Ackley’s Path

	4.3 Discussion of Results

	5 Conclusions and Future Work
	5.1 Summary and Conclusions
	5.2 Future Work
	5.3 Acknowledgements

	6 References

