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ABSTRACT 

Visualization of an optimization problem (i.e the “design space”) becomes complex 

when the number of independent variables of the problem increases beyond two. 

Unfortunately, realistic optimization problems and their design spaces are often greater 

than two dimensions and therefore difficult to visualize. In order to create and display in 

greater than three dimensions it is necessary to use color, size, or symbols to show 

added dimensions. With the complexity in a visualization that uses these extra 

dimensional features, an observer is often overloaded with data and it can be difficult to 

grasp a firm understanding of the relationships therein. Furthermore, this solution of 

adding dimensions greater than three can only increment to a few dimensions beyond 

three and cannot achieve higher dimensions. There are currently two general areas for 

visualizing a higher dimensional design space: dimensional reduction, and individual 

variable comparison. With either of these methods, it is possible to display the resulting 

design space, or portion thereof, in a viewable dimensionality such as two or three 

dimensions. Self-organizing contextual maps provide a solution to this visualization 

problem by utilizing the dimensionality reduction capability of self-organizing maps and 

the display capability of the contextual map. 

 

Self-organizing maps (SOMs) are able to map a design space of varying dimensionality 

to a two dimensional neuron lattice. The SOM can then be provided contextual 

information to display the similarities between areas of the design space either in terms 

of alphanumerical labels or visuals. This method will organize the numerical objective 

values associated with a design space to apply labels to the contextual SOMs. These 
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contextual self-organizing maps allow the user to observe the entire design space in a 

two dimensional representation. 

 

The ability to view an entire design space in this manner provides many advantages 

such as an understanding of the characteristics of the design space and optimization 

problem. This thesis will explain the work completed to apply contextual self-organizing 

maps to the visualization of optimization design spaces by: 

1. Providing a visualization of the design space in two dimensions. 

2. Extract characteristics of the design space using the resulting contextual map. 

 

The resulting visual representations are achieved by generating a typical self-organizing 

map, and applying the objective function values as labels to each winning node. With a 

set of labels on each node, it was possible to calculate the mean, standard deviation, 

and minimum value for each node and display the results visually in the representation. 

The hue saturation value coloring scheme was used to display these three statistical 

measures using a single color for each node. The visual display of this coloring system 

makes the optimal node the closest to a brighter colored and more vibrant green 

colored node than the rest of the nodes in the map. 

 

The results from this work show that contextual self-organizing maps can display 

valuable information about the design space that can then be extracted and applied to 

the solution of the optimization problem. The primary characteristics identified in the 
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results are the modality of the design space and the optimal region within the design 

space. The results of this research will improve optimization by decreasing the time 

needed to solve optimization problems by gaining an understanding of the design space 

prior to a solution run. 
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1 INTRODUCTION 

1.1 Purpose 

The goal of this research is to organize data and create a visual representation of a 

design space in which designers can easily understand the characteristics influencing 

the data. This will also benefit optimization researchers by providing a starting point for 

a formal solution algorithm.  

 

1.2 Design Space 

A design space is a theoretical space in which the possible configurations of a design 

reside. In other words, if the design of an object requires three inputs it would be 

possible to plot those three input values in a three dimensional space. The resulting 

space would appear similar to Figure 1. 

 

Figure 1 - Three dimensional cisualization of a design space (Adapted from [1]). 
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The sample design space in Figure 1 has the design variables plotted along the x, y, 

and z axes. The feasibility of each design is denoted by the color of the dot, which is 

either red representing infeasible and green representing feasible. This visualization 

becomes quite abstract and therefore proves difficult to extract information about 

individual design variables. The viewing perspective makes discerning the position of a 

point in space difficult. The use of color as a ‘fourth dimension’ to determine feasibility 

begins to overload the visual display. Overall, a visualization of a design space with only 

three design variables is not a simple visualization. 

 

With these considerations, it is important to realize that many design and optimization 

problems (discussed in the next section) contain a much more complex data set and 

design space than provided in Figure 1. With these large and complex data sets, it is 

impossible to plot a high dimensional design space in the same manner as Figure 1; 

fortunately there are other methods to visually represent this space. 

 

A design space can be visually represented through multiple methods that will be 

explained in further detail later, but two examples are: dimensionality reduction and 

individual variable comparison. One example of a dimensional reduction method is 

through visualizing the pareto frontier, or the area in which all of the objectives are as 

close to their optimum as possible. The pareto frontier can be displayed in a 

multidimensional plot, such as the performance space in Figure 2. 
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Figure 2 - Visualization of the pareto front (Adapted from [2]). 

 

Figure 2 provides a display of the pareto frontier in red, where this area minimizes both 

objectives. The individual objectives are Objective 1 on the x axis and Objective 2 on 

the y axis. Typical design space representations place the independent variables on the 

coordinate axes, whereas here the objectives (e.g., weight, cost) are plotted against 

each other. Since a typical problem has far less objectives than independent design 

variables, this is one way to “reduce” the dimensions a designer has to view. 

 

These techniques, dimensionality reduction and individual variable comparison, for 

viewing the design space provide a meaningful display in a viewable dimensionality for 

problems that range from one to many dimensions. Comprehension of the design space 

is invaluable to the designer. Tradeoffs can affect the resulting design more than can be 

represented in the theoretical space. For example, in the design of an aircraft the 
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designer can save on cost by using steel but will severely decrease the fuel economy of 

the airplane because of the added weight. If this tradeoff is not captured in the 

mathematical problem, it will not be apparent in the resulting visual representation. 

 

1.3 Optimization 

The goal of optimization is to achieve the most desirable result from a given input, data 

set, or objective. The most desirable result can be in the form of a maximum or 

minimum, on a local or global scale. The optimization process can incorporate multiple 

objectives containing many variables that interact to create complex relationships. 

These relationships form mathematical problems that are either uni-modal and provide 

a single solution, or multi-modal and provide multiple solutions. Unfortunately, no single 

optimization routine is the perfect solution to every problem. Therefore, an alternative 

path to solution would involve extracting the characteristics of these complex systems or 

functions before choosing an optimization algorithm and solving for the optimal value. 

 

Accompanying the varying complexity of optimization problems is a vast array of 

optimization algorithms. Two categories of common solution algorithms are numeric and 

heuristic. Numerical optimization techniques solve optimization problems by performing 

calculations that result in minimum objective values until convergence [3]. Alternatively, 

heuristic methods allow for an increase of the objective value in order to adequately 

explore the design space to discover the global minimum [4]. The caveat of this 

seemingly simple comparison between these two methods is that numerical methods 
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specialize in uni-modal problems and cannot effectively solve multi-modal problems 

while heuristic methods are designed to operate on multi-modal behavior. A multi-modal 

problem can contain local minima and global minima. Even though heuristic methods 

are developed for the purpose of attempting multi-modal optimization problems, they 

can run into complications depending on the distance between local and global minima. 

These methods can get caught in local minimum values and never find the global 

minima. Therefore, it would be advantageous to have prior knowledge of the data 

represented by the design space to anticipate where the global minimum will be located. 

 

To help illustrate this process, a formal optimization problem statement is described:  

Min F(x)  

S.T. gj(x) ≤ 0 j = 1, …, m 

 hk(x) = 0  k = 1, …, l 

 xi
l ≤ xi ≤ xi

u  I = 1, …, n 

 

Specifically, “Min” poses the problem as a minimization problem of the objective 

function F(x). The constraints in the problem statement are gj(x), a function that is 

typically less than or equal to zero (i.e. an allowable upper limit), and hk(x), a function 

that must be equal to zero. The design variable xi is bounded between the lower bound 

xi
l and the higher bound xi

h. Below is an example of a basic 2D optimization problem: 

 

Min F(x1, x2) = x1
2 + x2

2 – 2x1 – 2x2 +2 
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S.T. g1: -2x1 – x2 + 4 ≤ 0 

 g2: -x1 – 2x2 + 4 ≤ 0 

  -10 ≤ x1 ≤ 10  

 

This problem could be to minimize the cost of product design (i.e. minimize F(x)) subject 

to two inequality constraints. These constraints could be a maximum stress and 

displacement that the product has to withstand during use. Thus, a solution to the 

problem is the combination of x1 and x2 that finds the lowest value for F while being 

below the bounds set by g1 and g2. 

 

The complexity of the optimization problem can also determine which algorithm will 

efficiently converge on a solution. For example, a function’s linearity and degree of 

curvature determines which method will be most effective in solving the problem.  

Characteristic knowledge of these optimization problems would provide a more 

straightforward solution path. Beginning with an understanding of the problem features 

can only benefit the solution process. Finally, it is important to remember that with 

optimization there is “No Free Lunch” [5], meaning that there will never be one best 

solution method and all options must be considered for the most desirable outcome. 

 

1.4 Design and Optimization and Visualization 

As discussed above, there are many techniques for solving optimization problems, and 

there are also numerous approaches to visualizing a design space. As the use of 
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optimization in real-world design becomes more prevalent, more variables are 

introduced and an effective visualization tool becomes increasingly necessary. It is 

important to realize the benefits of viewing the design tradeoffs in a design or 

optimization function. Additionally, as the designers become more aware of the 

tradeoffs from one design to another, they can more effectively make the next 

generation designs. 

 

There is a large effort pushing for visualization multi-dimensional data sets and 

problems. The research that is directly linked to optimization typically focuses on 

dimensionality reduction. The concept of dimensionality reduction is to display a 

complex multivariate system in a dimensionally viewable plot (three dimensions or 

fewer) while capturing the intricacies of each individual design variable. This can be 

achieved using a variety of statistical and heuristic methods such as principal 

component analysis [6] or Self-Organizing Maps (SOMs) [7]. Another method proposed 

for viewing the design space focuses on specific performance characteristics, or the 

objective of the design. The values of these characteristics or objectives can be 

observed at the beginning, end, or throughout the design or optimization process. 

 

1.5 Motivation 

The motivation for this project was to develop a visualization tool that allows 

examination of multi-dimensional design spaces in a simple and intuitive manner. This 

is crucial to the advancement of engineering design, and will allow designers to make 
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quicker and more informed design decisions. The current solutions available provide 

abstract visualizations that limit the complexity of a problem in order to effectively view 

the design space. 

 

With a method such as this, decisions such as proper solution method, good initial 

point, and other characteristics about the problem could be known. This information 

would lead to significant savings in time, project resources, and overall cost as well as 

lead to more effective designs. 

 

1.6 Thesis Organization 

Chapter 2 contains the background research from the related areas of optimization, 

visualization, and self-organizing maps as well as present foundational research to this 

thesis. Chapter 3 describes the methodology, and explains the details of the technique, 

the process of achieving the final procedure, and the resulting application. Chapter 4 

discusses the testing suite of optimization problems and results of this work. Lastly, 

Chapter 5 concludes by summarizing this work and discussing its implications as well 

as noting target areas for future work. 
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2 BACKGROUND 

2.1 Optimization Visualization and Design Space Exploration 

As described in Chapter 1, the visualization of large amounts of data and especially 

optimization design spaces is a difficult challenge. Many researchers have attempted 

this task and provided valuable methods and insight into the display of this information. 

This section will summarize this related research, provide an analysis of where this 

research area stands, and present a list of research goals for this thesis.  

 

Cloud Visualization (CVis) [8] is an optimization visualization tool that allows a designer 

to view large amounts of data for the purpose of effective decision making throughout 

the design and optimization process. This design information is displayed three 

dimensionally in both the performance space and design space as shown in Figure 3. 

The performance space contains the most influential design variables that optimize the 

system based upon the desired performance criteria. This means that depending on the 

objective of the optimization routine, the performance space will display the design’s 

proximity to the optimal solution. The performance space can also display the solution in 

terms of multiple objectives. The design space is shown three dimensionally and 

therefore can only display three design variables. 
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Figure 3 - CVis Environment (Adapted from [8]). 

 

Both the performance space and design space in the CVis software can be displayed in 

one, two and three dimensions as shown in Figure 3. The flexibility in dimensional 

visualization allows the designer to view single or multiple objective functions, as well as 

view the relationships between single and multiple design variables together in one 

space. 

 

This environment provides an intuitive display to view not only the individual design 

variables, but a visual display of the objective values for each design. This work 

advances the capability of optimization visualization by providing an outlet for the large 

data sets generated in the process of design and optimization. Unfortunately, while this 

method does display the parameters and characteristics of the optimization process, 

viewing data in three dimensional space can be rather difficult. Additionally, when a 



11 

designer has a high dimensional problem, they are only able to view three design 

variables at a time in each design space plot. This limitation would require the use of 

many plots to show design variables, which adds confusion. 

 

Winer and Bloebaum first introduced the concept of visual design steering [9], a method 

to aid the design and optimization process by allowing the designer to interact with the 

optimization algorithm throughout the process. This design paradigm, visual design 

steering, was further examined with the goals of visualization and solution improvement 

[10]. The first step in design steering is to ‘rank and reduce’ the problem constraints and 

design variables. This is achieved by calculating the influence and effect of each 

constraint on the objective function. The least impactful constraints are then be ignored 

when the three dimensional plot is displayed. Next, a similar procedure is performed to 

determine each design variable’s impact on the objective function and its set of 

constraints. 

 

The visual aspect of Winer and Bloebaum’s work, graph morphing, utilized three 

dimensional graphs to visualize design tradeoffs. In order to generate the graphical 

displays, structured data sets are generated so that specific cases of each design 

variable can be plotted in association with its constraints. Each visual representation 

then plots a maximum of three design variables, with the objective value shown using a 

color gradient and the problem constraints in green. Other design variables appear on 

graphical slider bars within their specified ranges. In Figure 4 each axis represents one 
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design variable, the shade of the surfaces equates to a varying objective function value, 

and the green surfaces constrain the problem. 

 

 

Figure 4 - GmorphVR (Graph Morphing) displaying three design variables, two 

constraints and a decreasing objective (Adapted from [10]). 

 

Using GmorphVR, the designer is able to view the interplay between design variables, 

constraints, and the objective value. The slider bars can be moved to alter the display in 

real-time. This method clearly shows the trends of the design variables, and the 

tradeoffs with respect to the objective and constraints. The method for dimensionality 

reduction, eliminating the least important variables, also works to simplify the 

visualization and ease comprehension of the design space. This research validated the 

benefits of displaying the design information to the designer, because it increased 

design awareness and decreased solution times. Unfortunately, this method as with 

others is constrained by the ability to view only three design variables simultaneously. If 
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the designer wants to view more correlations, it is necessary to construct multiple 

GmorphVR plots, and view them side-by-side. 

 

The hyper-radial visualization method [11], developed by Chiu et al., is used to view the 

interaction of multiple objectives on an optimization problem. This method transforms a 

multi-objective problem into a two dimensional visualization in which the axes are both 

groupings of ‘manufactured’ objective functions. These manufactured objective 

functions are created by incorporating objectives together into one value so that the 

visualization can be displayed in two dimensions. The utopia point (both objectives are 

minimized) is represented at the origin, and the design space is projected using a radial 

method. The radial projection constructs a space in which each radius has an equal 

overall objective value, so every point on a specific radius has an identical objective 

value. Therefore, the goal is to achieve the innermost radius. 

 

The Hyper-Radial Visualization method (HRV) allows the designer to add preference to 

individual objectives, which changes the weighting and display of the optimum. The 

individual weights are set using a likert scale, highly desirable to highly undesirable. 

After weights and preferences are set, the designer is provided a visualization by which 

they can view the tradeoffs of the two objective groupings. The designer can also set an 

uncertainty of the objective function value that allows similar objective values to be 

classified together as occasionally the accuracy of specific objectives is not of the 

utmost importance. An example plot can be seen in Figure 5. 
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Figure 5 - Hyper-Radial Visualization of a multi-objective optimization problem using 

uncertainty and weighting (Adapted from [11]). 

 

In Figure 5, the designer is able to visualize the performance space given the 

preferences set to each objective. This method provides an invaluable means to identify 

the preferences that a designer has for each objective in a multi-objective problem and 

aids in narrowing the possible design choices. The visualization method is not difficult to 

comprehend, because the resulting plot is two dimensional. This is a great method for 

viewing tradeoffs in objectives, but provides little means for interfacing with the 

individual design variables, as the focus of the display is on the objective values. 

 

Swayne et al. developed the XGobi system for interactive dynamic data visualization 

[12]. The XGobi system specializes in visualization techniques for large amounts of 
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data. The graphical tools available in the XGobi package range from: one dimensional 

to three dimensional plots, high-dimensional projection onto a two dimensional display, 

axis scaling, brushing, identification, line editing, and moving points. The one, two, and 

three dimensional plots are similar to the previously discussed plotting methods, but the 

projection method groups variables together on a given axis and plots them 

simultaneously, parallel coordinates shown in Figure 6 

 

 

Figure 6 - XGobi dimensional reduction through parallel coordinates (Adapted from 

[12]). 

 

In Figure 6, parallel coordinates are used to display a set of high dimensional data in a 

two dimensional space. Other tools available to sort through the vast amount of data 

that XGobi can display include brushing which allows the user to specify certain areas 



16 

of the design space to display, identification which labels points, line editing which 

creates connections between points, and moving points which can allow the user to 

create a design space or design. 

 

The ideas utilized in XGobi are essential to the visibility of a high dimensional data set, 

and they are used in unison to display this large quantity of information. Unfortunately, 

there is still a lot of information being displayed to the designer simultaneously, and 

individual relationships can still be difficult to discern. 

 

Building upon XGobi, Stump et al. evaluated the application of multidimensional 

visualization to the design by shopping paradigm [13]. The design by shopping 

paradigm allows for the selection and refinement of designs throughout an optimization 

process. This method prompts the designer to choose acceptable ranges for design 

variables. These variables are physically displayed by extracting their values from the 

design space and plotting them individually in dimensionally viewable plots (one to three 

dimensions). When the user selects new ranges for the design variables, the 

optimization routine will resume solving along its new path until the user makes further 

modificaitons. This iterative loop will continue so long as the solution has not converged 

(optimal value or iteration count) or the designer has placed sufficient constraints. 

 

Similar to XGobi, Stump et al. utilizes the brushing, coloring, and identification 

techniques to enhance data visualization. This method attempts to display further 
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information of the design space by showing the interaction of multiple objective 

functions in the pareto frontier, the area where all objectives are being minimized. The 

plots in this method typically use glyphs which are a method of displaying points and 

trends in three dimensional space, see Figure 7. 

 

 

Figure 7 - Glyph plot of design space (Adapted from [13]). 

 

Similar to previous methods, Figure 7 sufficiently displays the design space, but 

interpreting the interplay between variables is difficult. The difficulties present are again 

due to the perspective three dimensional displays. Fortunately, this research does 

decrease optimization times and provide a better understanding of the design space. 
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More recently, Stump et al. [14] have developed the ARL Trade Space Visualizer 

(ATSV) to display trade spaces, or tradeoffs within the design space. Many of the 

graphical options within this software are inherited from previous work, including but not 

limited to scatter plots, glyph plots, and parallel coordinates. The newest feature 

presented in this article was uncertainty visualization. A screenshot from the ATSV tool 

is displayed in Figure 8. 

 

 

Figure 8 - ASTV uncertainty visualization of rail gun data (Adapted from [14]). 

 

The graphs in Figure 8 account for uncertainty in two design variable values and their 

influence on the objective. This uncertainty is displayed on the left by a bounding box for 

each point represented in the design space. The bounding box encompasses the 

uncertainty value within the point on the map. The image on the right displays only the 
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mean value for each point represented in the design space rather than the group of 

points. While the visual display can only plot three dimensions simultaneously, the 

designer is allowed to adjust values of the other design variable and see their impact on 

the objective function value. 

 

2.2 Self-Organizing Maps 

Tuevo Kohonen developed a type of artificial neural network, the self-organizing map 

(SOM) [7], which he modeled after the learning process in the cerebral cortex. The 

theory is that the brain, or in this case the SOM, trains itself with a topological structure 

so that certain regions are more efficient at processing specific inputs or input types. 

The result is a trained network with prior experience that given a specific signal or 

location within the design space, the designs (set of design variable values resulting in 

an objective value) that fall within that region of the design space will be located in 

proximity to each other in the network. This network or map is typically a two 

dimensional map providing the ability to visualize high dimensional data in a low 

dimensional space. Figure 9 shows an example of a trained SOM to provide a 

connection between the SOM and the cerebral cortex. 
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Figure 9 - Self-Organizing Map displaying the organization of various input types 

(Adapted from [15]). 

 

The map displayed in Figure 9 was trained on a range of input types such as pictures, 

sounds, information, etc. The map takes these inputs and organizes them so that 

certain regions of the map specialize in specific data types. This can be clearly seen by 

examining the bottom right of the map, where pictures, art, and digital are grouped 

together; these three media fall into an overarching category of visuals so the map 

grouped them together. Unfortunately the map does not always train the data in the 

ideal manner, and therefore small groupings of the data categories can get separated 

which results in two identical labels in different sections of the map. 

 

The map and training process maintain this topological pattern through the 

neighborhood function, or the effect of one neuron’s learning on its surroundings. An 

illustration of this concept can be seen in Figure 10.  
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Figure 10 - Structure of a SOM node lattice, showing the neighborhood connections. 

 

Figure 10 is an image of a lattice of nodes, with the black circles representing nodes 

and the horizontal and vertical grey lines representing the connections between nodes. 

The nodes with the white circles in them are an example of a node and its immediate 

neighborhood (center node and surrounding nodes) which respond to a specific input 

and influence the rest of the map through its neighborhood. As illustrated, the center 

node is the node best fit to accept the input, and it teaches its immediate neighborhood 

(denoted by 0 in the figure) about that signal or input, which teach its neighborhood 

(denoted by 1 in the figure), and so on. The influence of the learning decreases as the 

distance from the original neuron decreases, providing a higher concentration of similar 

nodes closer to one another (the center in this case). 

 

It is important to mention that SOMs are always displayed as a lattice structure, but the 

representational shape of the node can vary. 
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Figure 11 - Various representations of an SOM node lattice. 

  

Figure 11 contains three of the most common display techniques for an SOM, with the 

nodes represented as circles, rectangles, and hexagons. The reasoning behind each 

shape is purely aesthetic. This thesis utilizes the hexagon representation of nodes 

because they provide a smoother color gradient across the map. 

 

This method can be extrapolated to a variety of different data types, problems, and 

solution methods such as optimization, data mining, and artificial intelligence. A further 

explanation of SOMs can be found in Chapter 4. The next section will describe 

additional methods that can be applied to or with the SOM to enhance its visualization 

and structure abilities. 
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2.2.1 Beyond the Self-Organizing Map 

U-Matrix 

The U-Matrix [16] is a standard method of displaying the results of a trained SOM. The 

U-Matrix is larger than the node lattice of the SOM itself because it requires a display of 

the distance between each node. In other words, these distances are shown as 

connection strengths between nodes. This means that in order to display the U-Matrix, 

the Euclidean distance must be calculated between all adjacent nodes on the map. 

Once these values are obtained, the U-Matrix can be displayed with colors representing 

the distance between adjacent nodes, see Figure 12. 

 

 

 

Figure 12 - U-Matrix of a trained self-organizing map highlighting a cluster of nodes with 

similar properties (Adapted from [17]). 

 

The U-Matrix displayed in Figure 12 contains black dots on alternating hexagons to 

represent nodes in the lattice. The intermediate hexagons (between the black dots) are 

Node 

Distance 

Cluster 
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the color representation of the Euclidean distance between each node in the lattice. The 

U-Matrix provides a means of visualizing the entire trained map. It is possible to extract 

defined clusters of data in the design space that are represented by clusters in this U-

Matrix visualization. For example there is a four node cluster in the top right of the map, 

see Figure 12. The dark colors represent a gap between clusters of data in the design 

space. 

 

Contextual Maps 

A trained SOM provides an effective model and clustered understanding of the input 

space, but the basic self organizing map provides no means of visualizing the map’s 

value. One standard method of visualizing information on the SOM is through a method 

called contextual maps [16]. These contextual self-organizing maps show the SOM 

lattice in two dimensional space, and apply 'labels' to the various nodes in the map. 

These labels can be used to describe the clusters of the input space or used to 

comprehend the similarity of various inputs to the map. Haykin provides an easy 

visualization of a cluster map through an example training set where the inputs used to 

train the SOM are animal attributes such as: size, number of legs, types of feet, and 

movement ability (swim, fly, run, etc.). Each input vector of these characteristics also 

carried with it a contextual label, or animal name. Figure 13 and Figure 14 display the 

contextual map resulting from this training. 
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Figure 13 - A contextual map displaying the results of training an SOM on animal 

characteristics (Adapted from [16]). 

 

Figure 14 - Filled in contextual map showing the separation of hunters, peaceful 

species, and birds (Adapted from [16]). 

 

The contextual map, Figure 13 and Figure 14, show the 'winning neurons' for each input 

vector by assigning a label to that neuron. The contextual map is generated as a post-

processing of the trained self-organizing map. Once a map's training is complete, the 

data is fed back into the map one last time for contextual labeling. Just as the Euclidean 

distance was calculated to find the winning node in the training of the SOM, the 
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Euclidean distance is calculated again for contextual labeling. The winning node for 

each input vector is assigned the 'label' of that input vector (in this case animal name). 

After all of the input vectors have been run through the map one final time, it is possible 

to see a resulting map similar to this form.  

 

Further examination into the structure of Figure 13 can result in identification of three 

distinct quadrants to the map: birds, peaceful species, and hunters. These regions are 

shown by the map but must be identified by the researcher. These separate regions are 

properties of the input data structure, meaning that animals with claws are more likely 

positioned in the hunter area, and hooves are most likely in the peaceful species. This 

visualization method provides a means to view similar data types; for example, if one 

wanted to examine an animal similar to a hen, looking at hen on the map would point 

toward ducks and geese as similar species. 

 

Generative Topographic Maps 

The Generative Topographic Map (GTM) [18] was developed by Bishop and Svensen. 

This method is based upon the SOM as well as other neural networks. The benefits of 

the GTM over other methods are the adaptive training components and the topographic 

preservation. 
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The adaptive training components mean that it solves for its own training parameters 

through statistical analysis of the training, two parameters are learning rate and 

neighborhood size. The self generated parameters make certain that the map reaches a 

full trained state, but never becomes over trained. This can be an important 

characteristic, because over fitting of data is a potential in other learning algorithms. 

 

The GTM also preserves the topology of the input space by first running statistical 

analysis on the input data set, and then mapping itself to the resulting probabilistic 

distribution. This is achieved by solving for the best coverage of the input space using 

Gaussian spheres. When the Gaussian distribution is decided, the GTM is overlaid on 

the Gaussian locations and the map is created, see Figure 15. 

 

Figure 15 - A GTM node configuration on the left, and the corresponding mapping to 

the input space on the right fitting to the Gaussian spheres (Adapted from [18]). 
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Figure 15 displays the predetermined map for the GTM, and the calculated Gaussian 

spheres distributed across the data space. Then it shows the overlay of the network 

onto the input space. This method provides an elegant solution to customizing neural 

network training parameters and visualizations in a viewable space, but these 

advantages come at the cost of computations. While the GTM can be computationally 

expensive, the benefits can outweigh this aspect given the correct problem or data set. 

 

Holden and Keane provide the GTM as a solution to the aerodynamic design 

complexities [19]. In this work, the authors were able to display the results of an 

aerodynamic design with the goal of a minimum drag coefficient. The data set for this 

work was developed using computational fluid dynamic simulations, and then provided 

to the GTM. The GTM then fit to the design space, and provided an approximation 

algorithm so that any position in the input space would return a value, even without a 

training sample at that location. 

 

This interpolation technique that GTM can use provides a continuous mapping between 

input and output space, and an ability to display this relationship.  The basis for the 

interpolation uses the distance between the input and the nearest Gaussian spheres, 

and interpolates between the spheres. A typical GTM display is similar to that of a two 

dimensional display of an SOM, see Figure 16. 
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Figure 16 - The resulting trained GTM displaying color based upon the objective value, 

drag coefficient (Adapted from [19]). 

 

Figure 16 displays the behavior of the design space in a two dimensional grid, allowing 

the user to choose the optimal design and value. This study gave examples of 8 

dimensional and 14 dimensional design spaces, but made mention that the 8 

dimensional space was much more effective than the 14 dimensional space. As a 

result, the authors ran the 14 dimensional space to fit on a four dimensional topographic 

grid, Figure 17, rather than the standard two dimensional grid shown in Figure 16.  
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Figure 17 - A four dimensional GTM displaying a 14 dimensional design space 

(Adapted from[19]). 

 

As seen in Figure 17, attempting to visualize the four dimensional space becomes 

increasingly complicated. This work proves very beneficial to the advancement of 

design space visualization, but more research needs to be focused on the applicability 

of GTMs to high dimensional problems. 

Equalized Orthogonal Mapping 

Meng and Pao created a new method, Equalized Orthogonol Mapping (EOM) [20] 

based upon the Kohonen SOM. The EOM functions using a covariance matrix, with a 

closer tie to principal component analysis (PCA) where as the SOM builds upon the 
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strict input values. The benefits of working with the covariance matrix are the preserved 

topology throughout the map. In some cases, an SOM could be under-trained and 

distant nodes could map to similar input values. Topology preservation in the case of 

EOM prevents such an occurrence from happening, as each node in the lattice is 

expected to be in a position relative in the design space to its adjacent nodes. Because 

of this strict topology preservation from two dimensional lattice space to n-dimensional 

design space, the EOM possesses the ability to perform interpolation between neurons 

similar to that of GTM. 

 

2.2.2 Self-Organizing Maps Applied to Optimization and Visualization 

There has been a substantial amount of work that utilizes self-organizing maps for the 

purposes of optimization. The research in this area can be encompassed in two 

different categories: visualization of the entire design space and visualization of the 

extracted design variables. These categories can be simplified with an understanding 

that viewing the trained SOM provides a visualization of the entire design space, and 

single variables can be viewed and compared by extracting the component maps from 

the trained SOM. 

 

Visualization of the Dimensionally Reduced Map 

SOMO, Self-Organizing Maps for Optimization [21], were developed by Su, Shao, and 

Lee to solve optimization problems. This method utilizes the SOM training to 'learn' the 

optimal value for a given objective function. The modified training algorithm for SOMO 
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uses the traditional winner-takes-all training; however, SOMO replaces the Euclidean 

distance calculation (to find the winner) with the optimization objective function. The 

winning node search would proceed by calculating each node's 'distance' by evaluating 

the objective function (F(x)) using each node's weight vector (wk) as inputs (F(wk)) 

where the resulting F is the node's 'distance'. After the winning node is calculated, the 

neighborhood is updated using the weight update equation (Equation 4) and an input 

vector, x = {x1 = 1, x2 = 1, ..... xk = 1}. 

 

After training the SOM on a specific objective function, SOMO provides a method to 

visualize the objective function in a three dimensional space. Just as standard SOMs 

perform dimensional reduction, SOMO allows the visualization of a high dimensional 

function in a three dimensional space. This display is accomplished by computing an 

objective function value (F) for each node in the lattice. The result is then plotting the 2D 

lattice on the x-y axis with the z axis showing the F value across the map nodes. As all 

SOMs do, SOMO groups similar regions of the design space, and reduces the 

complexity of the visualization while still representing the structure of the objective 

function, see Figure 18. 
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Figure 18 - Display of 2D Rastrigin function compared to the SOMO trained on a 50 

dimensional Rastirigin function (Adapted from [21]). 

 

While this method was presented as an efficient solution to optimization problems there 

are drawbacks: in order to use this method the user is required to provide a continuous 

objective function. Additionally, the presented results were only scaled to 30 

dimensions, and may not be feasible at a higher dimensionality. 

 

A similar method was developed by Milano, Koumoutsakos, and Schmidhuber to 

display the results of a trained self-organizing map [22]. This method trained the SOM in 

a standard manner, using values within the design space of the desired objective 

function. After the training was completed, the resulting map had weight vectors that 

represented the design variables of the objective function. In order to display an 

objective value for the node, these weight vectors were used in the objective function, 

and the resulting function value was assigned to that specific node in the lattice. With 

the lattice structure and objective function evaluation values for each node, it is possible 

to plot the dimensionally reduced objective function in three dimensional space. The 
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resulting display would appear very similar to Figure 18. Again, the display of the map in 

three dimensions clearly shows the objective function, but does require that the data set 

also be accompanied by an objective function for this method to be possible. 

 

Obayashi and Sasaki utilized self-organizing maps to visualize and explore the design 

space of supersonic wings and wing-fuselages [23]. The data for this visualization was 

generated using computational fluid dynamic simulations of each design so there was 

no objective function. The researchers utilized the contextual self organizing maps, but 

used images for the contextual labels. These images were various design profiles, or 

wing designs, see Figure 19. 

 
Figure 19 - Contextual SOM of the wing design shapes (Adapted from [23]). 
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As seen in Figure 19, the SOM separates out the design space and places similar 

designs in similar regions. The top left and bottom right corners of the map show two 

extremes for wing designs, short and long respectively. This visualization clearly lays 

out the various designs and also provides a gray scale color for each node depending 

on its objective function value. The coloring scheme used was a lighter color for 

minimum objective function value, and a darker color for a higher objective function 

value. The objective function value in the case of the wing design is a combination of 

the drag, bending moment, and pitching moments. In this case, the middle area of the 

map provides an optimal design because it is the lightest colored area. 

 

Obayashi and Sasaki were able to investigate further by displaying only the individual 

objective values (drag, bending moment, and pitching moment) so that the user could 

gain an understanding of which objectives were best shown in each design. These 

maps look similar to Figure 19 with the exception that the color patterns are different as 

only individual objectives are being viewed. Furthermore, they were able to extract 

individual design variables from the map, such as leading-edge sweep angles, root-side 

chord lengths, and wing cambers. These resulting maps displaying the individual 

variable patterns are beneficial in exploring the explicit relationships between a design 

variable and other design variables or the objective function value. This method of 

viewing individual maps extracted from the entire trained SOM leads in to the next 

section which discusses research utilizing the design variable extraction and 

visualization ability of the SOM. 
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Extracted Individual Variable Visualization 

Matthews used the abilities of self-organizing maps to extract the relationships between 

variables and show them in individual maps [24]. The author generated test points for 

sample problems to train the map and display the results, he was able to apply this 

method to a conceptual design project as well as a gas turbine and an aircraft wing. 

Data was generated for these cases by running physical simulations of equipment, 

thereby providing a data set without an explicit objective function. Matthews trained his 

SOM in accordance of traditional SOMs, and used the information in the resulting map 

to extract relationships between the design variables [25]. Using this trained map it is 

possible to isolate an individual design variable at each node, and display a map 

showing the variability in that single design variable. The map can be colored by 

interpolating between two colors (such as red and blue in Figure 20) to assist in 

displaying this variability. This method can be further explored by extracting multiple 

variables from the trained SOM and viewing the relationships between these variables 

to visualize implicit relationships within the data set, Figure 20. 

 
Figure 20 – Independent variable maps extracted from the trained SOM showing an 

anti-correlation, or negative correlation, between two variables (Adapted from [24]). 
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The ability to explore the correlations between design variables is extremely useful as it 

can provide an understanding of which design variables contribute to more or less of the 

variability in an outcome. Matthews showed that these maps were able to detect 

relationships between variables that were otherwise unnoticed after using the linear 

principle component analysis. 

 

Due to the number of complex relationships available within one data set, the author 

used a heuristic called the Tanimoto metric [25] to detect these complexities in the 

extraction maps. The Tanimoto metric was able to successfully identify potential areas 

of interest, but was unable to comprehend these relationships on its own. This allowed 

for the user to examine a reasonable number of maps to visualize these relationships. 

This work provided significant potential advancement of self-organizing maps in the 

areas of design and optimization because the method for examining individual maps 

could give further information into the structure of the SOM. Unfortunately, due to the 

potentially highly dimensional data sets, there can be a large number of extraction maps 

to analyze. 

 

2.3 Color Visualization 

For the purposes of visualization, color provides an intuitive alternative to a numerical 

display. Many of the projects mentioned in the background section have used a color 

interpolation to display the variation of a variable’s value. Traditionally, most 
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applications that use color to display the relative value of a variable interpolate between 

two colors, such as red and green. This interpolation functions that a high value will be 

on one end of the spectrum, i.e. red, and a low value will reside on the other end, green. 

When a value is in the middle of the spectrum, it is colored yellow. An example of this 

interpolation between colors can be seen in Figure 21. 

 

 

Figure 21 - Color interpolation from red to yellow to green. 

 

This system for color interpolation works well to explain one set of values, but when the 

data sets require the display of additional information this color interpolation method is 

not sufficient. This research presents contextual self-organizing maps which need to 

convey additional information beyond the mean of a node such as the standard 

deviation and minimum value contained in the context of a node. In order to accomplish 

this task a different color scheme, Hue Saturation and Value (HSV) [26] is utilized. 

 

The principles of the HSV coloring scheme begin with a color interpolation on the hue, 

or the base color being displayed. This functions exactly the same as Figure 21, in this 

case between the colors red and green with yellow in the middle. This color interpolation 

is determined by the numerical value assigned to the hue. The hue can range in colors 

across the color spectrum, but is limited to solely red to green in this case for simplicity 

of the display. 
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After the hue, or base color, is set the next parameter is the saturation of a color. The 

saturation of a color determines the amount of pigment allowed in a color. A color with 

less pigment will appear closer to white, and a color with more pigment will appear 

closer to the base color or hue. Figure 22 and Figure 23 display the result of 

interpolating between full saturation, 1, and zero saturation, 0, in the hue colors red and 

green. 

 

 

Figure 22 - Saturation interpolation from high to low saturation in the color red. 

 

Figure 23 - Saturation interpolation from high to low saturation in the color green. 

 

As displayed in Figure 22 and Figure 23, higher saturation values display more pigment 

within a color. When a color has more pigment it resembles a color closer to that of its 

base color. 

 

The last component of the HSV coloring scheme is the value. The value of a color is 

determined by the amount of brightness allowed in a color. When a color has a low 

value, it will appear darker because the lack of brightness. Alternatively, when a color 
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has a high value it will appear closer to its hue color. Figure 24 and Figure 25 display 

the effects of varying the value of the colors red and green. 

 

 

Figure 24 - Value interpolation from high to low value in the color red. 

 

Figure 25 - Value interpolation from high to low value in the color green. 

 

The change in a color’s value changes the brightness of a color, so as colors become 

closer to a zero value they all begin to blend into a black color. 

 

This coloring scheme can surpass the abilities of basic color interpolation because it 

has the potential to explain more than one value. The HSV color method, with its added 

components of saturation and value can take into account other variables and provide 

results by displaying varying ‘qualities’ of a hue or color. For example, a hue of red can 

become a closer to grey if it has a low value and a low saturation; this is because it has 

a lack of pigment and a lack of brightness. So while the color is still red, is it possible to 

gain excess information about the values used to make that color. The application of 

this coloring method to this work is described in further detail in Section 3.1.4. 
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2.4 Research Issues 

From the previous work in this subject area, there are many solutions to tack the various 

problems related to visualizing the optimization design space. The issues left 

unresolved in this field are the capability to effectively view the entire design space, the 

ability to draw conclusions about the characteristics of the design space, and a method 

that can be incorporated into a variety of optimization stages as well as a variety of data 

sets. 

 

This research will focus on two research issues: 

1) Developing a method that can effectively display an entire design space in one 

intelligible representation 

2) Conveying information about the optimization problem including its modality, 

linearity, curvature, and an initial search region. 

 

In order to complete these goals, this paper will describe the process of implementing 

methods from previous research while developing new schemes for displaying 

information to the designer. 
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3 Methodology 

3.1 The Self-Organizing Map 

Self-organizing maps [7] are a class of neural networks developed by Teuvo Kohonen 

for the purposes of data classification. These maps use an unsupervised competitive 

learning process called ‘winner-takes-all’ to 'learn' the input space or input data. The 

structure of the SOM is typically a two dimensional lattice of nodes, but can vary from as 

low as one dimension up to any number of dimensions. The two dimensional lattice can 

be utilized for dimensionality reduction by which higher dimensional data is mapped to 

this lower dimensional space or node lattice. The benefit of using a two dimensional 

node lattice is that it is easily viewable, being two dimensional. When viewed, these 

maps can display individual neurons in many forms: squares, circles, hexagons, and 

more. The reason for the variety in node representation is simply visual appeal and 

preference of the designer. 

 

Depending on the dimensionality of the node lattice each neuron will have a variable 

number of connected neurons, but in the case of a two dimensional lattice there are four 

immediately connected neighbors. 
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Figure 26 - A node and its neighbors. 

 

The process of learning entails the SOM being mapped to an input space made up of 

input vectors. An input vector holds the structure of xn, see Equation (1). The input 

space in the case of design would be the design space, and an input vector would be 

one location within the design space. Once an input space and SOM map size are 

provided, each node can be assigned a weight vector, which is its location within the 

design space. The weight vector will be of the form wj, see Equation (2), where k from 

the input vector and the weight vector are equivalent. 

 

x = <x1, x2, ..., xk>      (1) 

wj = <wj1, wj2, ..., wjk>     (2) 

 

Equation (1) shows a sample input vector, x, where k is the dimensionality of the input 

data or the number of design variables. Equation (2) is an example of a node's weight 

vector, where k is again the number of weights (dimensionality of the input data). In 

order to create a map (the node lattice), the dimensionality of the input space must be 
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known, and the size and dimensionality of the SOM must be chosen. As previously 

discussed, SOMs are typically two dimensional but can be any size. 

 

With an input data set and an SOM containing empty weight vectors, the next step is to 

randomly initialize the weights of these node weight vectors. After the weights are 

initialized, the map is ready to be trained. Training has two phases: ordering and 

convergence. Both phases of training proceed by selecting an input vector at random 

and feeding it into the map. When the map is being trained on an input vector, the 

Euclidean distance between the input vector and every node in the map is calculated, 

see Equation (3). Each training phase consists of many iterations, and one training 

iteration is defined by the use of the entire input data set. Training begins by using 

Equation (3) 

 

Distance = sqrt( (x1 - wj1)2 + (x2 - wj2)2 + ...... + (xk - wjk)2 )  (3) 

 

The node with the least distance is declared the 'winner'. After finding the winner the 

next step is a neighborhood update, at which time the weight values of each node in the 

lattice will be updated. The node update equation is expressed in Equation (4). 

 

wj(n+1) = wj(n) + η(n) ∙ hj,i(x)(n) ∙ ( x – wj(n) )    (4) 
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η in Equation (4) is the time varying learning rate that determines the allowable 

influence of the input vector, or how much an input vector can modify the node weight 

vector. The learning rate decreases throughout the training so that the map becomes 

more refined, and is subject to less drastic change. The hj,i(x)(n) in Equation (7) is the 

neighborhood influence for the training iteration. The neighborhood influence, like the 

learning rate, decreases through the course of training to help refine the map. At the 

beginning of training, the neighborhood encompasses the entire map, so each input 

vector will affect the whole map. Near the end of training the neighborhood will be 

limited to only one node, and possibly its immediate neighbors. Equations (5) and (6) 

explain how η and hj,i(x)(n) vary with time. 

 

η (n) = η 0 * exp(-n/λ)      (5) 

σ(n) = σ0 * exp(-n/λ)      (6) 

   hj,i(x)(n) = exp( - Distance2 / (2 * σ2(n)))    (7) 

 

A general guideline for choosing the time constants is given in Neural Networks: A 

Comprehensive Foundation [16]. During the ordering phase the learning rate, η (n) is 

set at or below 0.1, and during the convergence phase η (n) is set at or below 0.01. The 

initial neighborhood width, σ0 is set to the entire map for the ordering phase, and then 

adjusted to be approximately two nodes for the convergence phase of training. 
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The map is created with a predetermined size, and each node has weight vectors 

whose length matches the dimensionality of the input space. Ordered training begins 

and iterates for a set number of iterations, where each iteration runs the entire input 

data set through them map. Convergence training follows ordering, but runs 

approximately 20 times the number of iterations and focuses less on drastic changes to 

the map, but subtle modifications to individual nodes. In other words, after sufficient 

training the nodes in the SOM will each occupy a region of the input space so that the 

entire input space can be represented by the trained SOM. This result is a map that is 

topologically trained, meaning adjacent SOM nodes will reside in adjacent locations 

within the trained map. Additionally, given a new input vector the SOM will respond with 

the appropriate, least distance node in the map. This input and output space (neuron 

space) is shown in Figure 27. 

 

 
Figure 27 - Diagram of the Self-Organizing Map (Adapted from [16]). 
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Figure 27 displays the affects of training from one input vector. It is possible to see a 

'winning node' for the given input vector denoted with a black colored node. The 

neighborhood surrounding the winning node is colored various shades of gray 

depending on the neighborhood node's proximity to the winning node. The nodes that 

are colored white in Figure 27 will be unaffected by the information gained at the 

winning node, because they are out of the neighborhood of influence and the resulting 

change to their weight vectors will be zero. 

 

The result of a trained map is that given an input vector, x, one node in the SOM will 

activate. The activation of a node can be used for a variety of goals such as response 

action and data comprehension. The response action means that if an input is provided 

to a trained map, it will use its knowledge to produce the same result as previous inputs 

with similar characteristics had for responses. The SOM also represents a 

dimensionally reduced (two dimensional) representation of the input space, which has 

many applications especially in the area of visualization. The SOM provides additional 

benefits such as a continuous input space, a spatially discrete output space of neurons, 

and the ability to capture non-linear data sets, which many other statistical methods, 

such as PCA, are unable to tackle. 
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3.2 Contextual SOMs Applied to Design Space Exploration 

3.2.1 Map Generation 

Generating a self-organizing map requires initializing an empty map with a random 

network of nodes. The user defined network size sets the number of nodes in each row 

and column of the lattice. The results presented in Section 4.2 are built with a network 

size of 15 rows and 15 columns because that size was discovered to be an appropriate 

fit for the variable data set sizes. After an empty network is created and a data set 

dimensionality is provided, each node in the network can generate its weight vector 

using Equation 4. As mentioned, the weight vector of each node is of the same 

dimensionality as the input vectors. The result of this is a randomly generated map, 

which needs to be trained as shown in Figure 28. 
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Figure 28 - Randomly initialized two dimensional SOM (Adapted from [27]). 

 

Figure 28 displays a randomly initialized map with a two dimensional weight vector, 

shown in a two dimensional space. The red dots correspond to each of the nodes in the 

lattice, and the lines between the red dots correspond to the connections between the 

nodes. These connections initially appear scattered because there is no structure to the 

untrained map, but will later resemble a lattice structure after training is underway. The 

connections between nodes are important because they influence which nodes will be 

affected most after a winning node is found. A sample map can be seen in Figure 29. 
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Figure 29 - An empty SOM prior to training. 

 

3.2.2 Training Process 

After a map is generated and a dataset is provided, the next step is to train the map. 

Training begins with the ordering phase. The ordering phase takes the randomly 

organized map and begins the organization so that its structure resembles that of the 

input space. All of the training parameters in this section: initial learning rate, initial 

neighborhood width, network size, and number of training iterations are referenced from 

“Neural Networks: A Comprehensive Foundation” [16]. Often the number of iterations 

required to change a randomly generated map to an ordered map is approximately 

1000 iterations, where one iteration is the map being trained on each member of the 

input dataset. The initial neighborhood size is set to a neighborhood of the entire map 

during the ordering phase of training; this means meaning that at the beginning of 

training each node in the network is affected by every input vector. This neighborhood 

width decreases over time according to Equation 6. The initial learning rate is typically 
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set to a value around 0.1 [16], and also decreases over time according to Equation 5. 

These values are set to ‘higher’ values in the ordering phase so that the map can 

quickly gain a topology that resembles the input space. An example of a map that is 

completing the ordering phase of training can be seen in Figure 30. 

 

 

Figure 30 - SOM near the end of the ordering phase of training (Adapted from [27]). 

 

As seen in Figure 30 the ordering phase trains the general shape of the input space, 

which in this case is the entire space shown in the figure. Because the input space is 

the entire display, the map will eventually occupy most of the space in the figure and 

display a lattice of nodes. The blue dot in Figure 30 corresponds to an input vector, and 

the red area corresponds to the neighborhood influence around the winning node 
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(center of the red area and closest node to the blue dot). This neighborhood area is 

decreasing over time, but began with the entire neighborhood being influenced. 

 

Following the ordering training is convergence training. Convergence training proceeds 

from the initial organization attained in the ordering phase and tweaks the map to best 

fit the input space. Because this phase is focused on modifying sections of the map 

rather than organizing the map as a whole, its training parameters are set to vastly 

different values and ranges. The initial neighborhood is two neurons wide and it 

decreases over time according to Equation 6. Additionally, the initial learning rate is set 

to approximately 0.01 [16] and decreases over time according to Equation 5. Finally, the 

convergence phase trains for approximately 20 times the number of iterations in the 

ordering phase [16] because the modifications and manipulations resulting from each 

training iteration are minimal to the map. An example of a map at the completion of the 

convergence phase can be seen in Figure 31. 
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Figure 31 -  An SOM at the end of convergence training (Adapted from [27]). 

 

Figure 31 is the resulting trained map at the completion of ordering and convergence 

training. The blue dot is again the input vector and the red dot being the winning node 

with a neighborhood of its immediate neighbors. This portion of training began with a 

map that had a general fit of the input or design space and finished with a map that fits 

the design space completely. At this point in the training, the convergence phase is 

making the final tweaks to the map. 

 

At this point, the SOM is trained in the n-dimensional design space, but provides no 

means for visualizing this space. The next step is to transition from the high dimensional 

design space to the two dimensional display, SOM projection in Figure 32. 
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Figure 32 - Dimensionality reduction visual (Adapted from [28]). 

 

The trained map occupies the design space denoted by the left side of Figure 32, but is 

represented in the two dimensional space on the right. This dimensional reduction is 

possible because the non-linear mapping property of self-organizing maps. Each node 

in the two dimensional lattice represents a region of the n-dimensional design space. 

Therefore, the two dimensional display of the SOM is a collage of many regions of the 

design space, providing a visualization of the entire design space. With this mapping, it 

is possible to display a high dimensional design space in a two dimensional (visible) 

space. 
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3.2.3 Contextual Labeling Process 

After the map has been trained, the last phase is labeling the map with contextual 

labels. These contextual labels provide the information and feedback to the user or 

designer that describes the design space or input space. The labels are applied by 

executing one final ‘pseudo’ training loop, where each input vector is inputted to the 

self-organizing map one final time. The resulting winning node for each input vector is 

then tagged with a contextual label from the input vector for later processing. 

 

After the contextual labels are applied to the nodes, it is possible to calculate the 

average, standard deviation, and minimum value for the groupings of contextual labels. 

Generally, each node will have a set of contextual labels if the data set is large enough 

to accommodate the 35 to one ratio of inputs to nodes respectively. With all of the 

contextual labels, and the general node information of mean, standard deviation, and 

minimum the next step is the visualization of these properties, which leads to the 

coloring applied to the map. The mean value is vital to discovering the representative 

value of the node, the standard deviation explains the variability within the node and a 

low standard deviation is ideal, and the minimum value helps reiterate the proximity to 

the optimum value in the design space. 

 

3.2.4 Coloring Process 

Utilizing the Hue Saturation and Value coloring scheme is essential in order to convey 

all of the details that are contained within a node’s contextual information. This research 
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uses the HSV coloring scheme in the following way: the hue is determined by the mean 

of the node’s contextual information, the saturation is determined by the minimum value 

of the node’s contextual information, and the value is determined by the standard 

deviation of the node’s contextual information. The goal of using this color method is to 

have the best, or optimal, nodes stand out from the rest of the nodes on the map. This 

can be accomplished by coloring nodes with have low means, low minimum values, and 

low standard deviations brightly on the map. In order to make this happen a low mean 

value is set to green, a low minimum value is set to full saturation (full color), and a low 

standard deviation is set to full brightness (full color). Therefore, when a node has a 

high minimum value it will appear white colored, and when a node has a high standard 

deviation it will have a dark color. 

 

To explain this in further detail, the first parameter is the hue. The hue of the node is set 

by the mean value of the contextual information contained within the node. In this case, 

the contextual information can be averaged, and then a color can be assigned to the 

node based upon how its mean contextual value compares to the rest of the map. This 

mean value is the most important of the three characteristics, which is why it controls 

the component that results in largest color change. 

 

The minimum value is also important to a node, because it can allow the designer or 

user to understand how the node’s contextual labels compare to other nodes with a 

similar mean. Using the minimum context value of a node to determine the saturation 
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color component of a node quickly differentiates two nodes with similar average values 

but different minimum values. 

 

The last color component, value, is set using the standard deviation of the contextual 

labels in a node. The standard deviation of the node is important because it can explain 

how well the node is trained, or how consistent values are in a portion of the map. A 

node with a high standard deviation can be quickly identified by visually noticing the 

darker color of the node. A high standard of deviation does not always designate a 

useless area, but it can signify an optimal area and therefore is important that it can 

easily be identified. These properties can all be identified in the SOM displayed in 

Figure 33. 

 

 

Figure 33 – An SOM displaying the coloring process using the hue saturation value 

coloring scheme. 
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In Figure 33, there is a significant color variation in the map, but generally there are two 

sections: the majority of the map is a white/pink mixture and the center of the map is a 

dark green color. The large coverage of the white/pink area is representative of a higher 

mean value because the hue is more red then green. Additionally, because the nodes 

have lower saturation value, or less pigment in each color, this area has higher 

minimum values. The center of the map contains green colored nodes, which contain 

lower mean values. The very center node is a ‘brighter’ green than its surrounding 

nodes, meaning it most likely has a better standard deviation than its surroundings. The 

nodes surrounding the center have greater standard deviations, represented by darker 

colors. 

 

The HSV color display method effectively displays the characteristics of each node: 

mean, standard deviation, and minimum value in a colorful fashion that allows the user 

to quickly discern the difference between various nodes in the map. From this, an 

intuitive map is created, minimum values are nodes with bright green color, maximum 

values are nodes that are colored white, and high slope areas have dark colors. For 

example, if a user wants to find an optimal, minimum, area on the map he or she would 

look for the brightest green node. 
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3.3 Progress of SOM Contextual Maps 

3.3.1 Generation of Trained Map 

The first task was to understand the method of choice, self-organizing maps. After 

gaining a thorough understanding, training an SOM is well documented so that one may 

plug data into the SOM and receive a resulting trained map. The question therein lies, 

what can be done with this trained map? Many past researchers have utilized the U-

Matrix, or individual variable maps to display this trained map. This leads to the next 

section, where the process of selecting a method to display the information gained 

through training of the map begins. 

 

3.3.2 Research into Displaying Valuable Map Information 

The U-Matrix provides distinct advantages if clustering is the goal of utilizing a self-

organizing map, because it is able to clearly display node groupings and distance 

between clusters of nodes. Unfortunately, this research was focused more on the 

specific and relative values across the input space. With this goal in mind, the U-Matrix 

did not prove to be a solution to the visualization problem. 

 

The next path this research took delved into the display of individual variables from the 

data set. Since this problem is an optimization problem, the design variables are crucial 

to the success of the optimization or design; however, the overarching goal will always 

be the objective function value or performance characteristic value. In order to extract a 

single variable objective function value from each node for display purposes, it would 
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require that the SOM be trained using the objective function values of the training data 

as a design variable. The problem with this idea is that having the objective function 

value incorporated into the training of the map can skew the organization result. This 

result provides a trained map that clusters around objective function values, which 

seems to be appropriate, but also provides a ‘false’ grouping due to the map’s 

awareness of the objective function value. When the map is trained without the 

objective function value, any clusters that it makes are developed because of the 

similarity of the design variables rather than the objective function value. For this 

reason, single variable extraction visualization was not the chosen method to display 

the resulting map and its accompanying objective function value. 

 

Su et al. [21] describes another method of displaying the characteristics of the trained 

map based upon the objective function value. This is achieved by calculating the 

resulting objective function value from the node weight vectors of the trained map. 

Unfortunately training and then visualizing in this manner required that there be an 

objective function present. One goal of this research was to create a method that could 

be utilized on data sets that did not have an explicit objective function. One example of 

data that would not contain an explicit objective function is data obtained through 

computer simulated analysis, such as finite element analysis. 

 

The final method examined was contextual maps as a post processing event to the self-

organizing map training. The contextual map allowed for a data set to be trained from 

solely its design variables, but subsequently display the characteristics of its objective 
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function value. This method uses the objective function values as contextual ‘labels’ to 

the map. These labels are then analyzed to gain an understanding of each node in the 

map, from the perspective of the objective function values that it contains. With an 

understanding of each individual node, the map can be displayed so it is possible to see 

the relationship that each node has with its adjacent nodes. The contextual map is an 

efficient method for gaining an objective function value for the nodes in the lattice 

without the consequences of the previously described methods. 

 

The last step in the process of displaying the node’s contextual information was to 

devise a method for coloring the node. Because each node has an array of objective 

function values, it would not be a sufficient solution to simply display the mean of the 

objective function values. Additionally, displaying the minimum objective value at each 

node is also not a fair comparison between nodes. These methods are insufficient 

because of the potential for high variability of objective function value within each node. 

Therefore, it is important to consider the variance or standard deviation of the objective 

function values within each node in combination with a display of the objective function 

value. 

 

At this point, the hue saturation value color scheme became part of the development. 

This color scheme allowed for a three dimensional color manipulation that provided 

more than a color interpolation. The benefit of using HSV, described in Section 2.3, is 

that a color can be displayed through color interpolation but then it is also possible to 

alter that color to convey further information. The goal of using the HSV coloring method 
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was to allow the user to quickly spot the important nodes and structures within the data 

set such as minima, optima, high curvature areas, and low curvature areas. These 

sections of the map are identifiable through the variation from the standard color 

interpolation used in other research methods. 

 

It is important to note that not every map will be trained on a sufficiently large data set to 

acquire a group of contextual information for every node. For this reason, the SOM has 

the capability of displaying a standard color interpolation between red and green when 

nodes have only one contextual label. This process follows the guidelines provided in 

the standard HSV coloring scheme, but considers that the standard deviation is zero so 

the brightness of each node will be fully brightened. Additionally, the minimum value for 

each node without contextual information will be the same as the mean value, so the 

minimum value component, or the saturation component, is ignored and set to the 

maximum saturation. 

 

When a node has no contextual information it is not displayed on the map in order to 

minimize confusion with other nodes that do contain contextual information. While all 

nodes may not be displayed on the map, they are each trained to accept certain inputs, 

so the location of the nodes is still important to the comprehension of the map. An 

example of a map displaying both circumstances of nodes with single contextual values 

and nodes without contextual values can be seen in Figure 34. 
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Figure 34 - A trained SOM that contains nodes without contextual information as well 

as nodes with only one contextual label. 

 

Most of the nodes in Figure 34 are bright colors because they only contain one 

contextual label. This is a result of having fewer data points than map nodes. With this 

coloring scheme it is still possible to interpret the map, furthermore it is possible to view 

and train a map with a limited data set. 

 

In order to accommodate all of the customization to the standard self-organizing map, it 

was necessary to create a desktop application. The desktop application would allow a 

user to train, display, and save the results of this research in ways that the Matlab 

toolbox is un-capable. The SOM Visualizer application, which was created to 

accomplish this research, is described below. 
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3.3.3 SOM Visualizer Application 

While there are widely available tools to generate self-organizing maps such as the 

Matlab Neural Network Toolbox [29] and Peltarion Synapse Neural Network Software 

[30], this research requires a tool that could provide complete customization of the 

algorithm and display method. To accommodate these requirements, a C++ application 

was created to fit the research needs and allow for a customizable experience. 

 

Software 

This application was developed to manage data, create a map, and train the created 

map. In addition to training the map on a given dataset, the OpenGL graphics library 

[31] was used to visualize training results. OpenGL allows the program to display a 

variety of outputs from the map. Finally a graphical user interface (GUI) grants 

additional advantages so that other users can use the software without a list of 

instructions. This GUI was created using Qt by Nokia [32], an open source library 

available under the LGPL license. All of these libraries are open source and cross 

platform so the resulting application, Figure 35, (SOM Visualizer) runs on Windows, 

Mac, and Linux. 
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Figure 35 – SOM Visualizer application running on RedHat Linux. 

 

Interface 

The SOM Visualizer application, Figure 35, provides the user three options to customize 

the SOM and its training. These are the number of training runs that the map will 

undergo and the size of the network, specifically the number of rows and columns in the 

map. Beyond these three options there are many other training variables to specify, but 

these are less frequently adjusted and thus not put in the interface for reasons of 

simplicity. 
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In addition to the training settings, the user is able to load data, train the map, save out 

the trained map, and load a previously trained map.  These options are chosen by 

clicking on designated toolbar buttons along the top of the window. The user can 

identify the appropriate button by reading the tool tips (messages) that display when the 

user hovers over a button. The workflow of these options is also displayed by only 

allowing subsequent options to be clicked once their predecessor has been executed. 

One example of this is: without loading a data set the map will not allow the user to click 

train. This method of sequencing commands prevents the user from attempting actions 

which are not yet available. 

 

Lastly, the application allows for extensive examination of the resulting map through 

many output methods. The first step to map comprehension is the visual display of the 

map once training is completed. This map is shown in the OpenGL widget in the center 

of the window, and updates when there is new information to display. The user can 

manipulate the OpenGL display by selecting to filter the network display based upon the 

number of times a node ‘won’ or was activated during the contextual training. 

Additionally, the user has the ability to select nodes within the map for further 

examination. When a node is clicked by the user, it becomes highlighted and the details 

of this node are displayed in the “Selected Node Information” panel, an example can be 

seen in Figure 36. 
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Figure 36 - A trained SOM with a node selected for investigation. 

 

When a node is selected, the node’s mean, standard deviation, and minimum context 

value are displayed so that the user or designer can better understand the topology of 

the map. Finally, this application has the ability to save two different outputs to text files: 

node contextual information and the map topological information. The contextual 

information that gets saved to a text file displays the context values for each node as 

well as the node’s mean, standard deviation, and minimum. The topological information 

that gets saved is the entire trained map including the map size, weight vectors, and 

contextual labels. This map can then be loaded later for further examination. 

 



68 

Data 

This application can load in a data set of any size; this includes both samples (rows) 

and variables (columns). The data is loaded into the SOM in a specific format so that 

the application correctly trains the map. For an example of a five dimensional data set 

see Table 1. 

 

Table 1 - Input data format 

 

 

The contextual labels, F, column in Table 1 are the location of the objective values, 

which will be omitted from the training of the map and applied as contextual labels. The 

adjacent columns (X1, X2,.., X5) are the independent design variables used to generate 

the objective value, F. These design variables are the basis of the training of the SOM, 

and the dimensionality of the design variables determines the dimensionality of the self 

organizing map’s node weight vectors. 

  

Contextual Label (F) Variable 1 Variable 2 Variable 3 Variable 4 Variable 5
F1 X1 X2 X3 X4 X5
F2 X1 X2 X3 X4 X5
F3 X1 X2 X3 X4 X5
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4 Results and Discussion 

4.1 Optimization Test Suite 

For the evaluation of this method, three published optimization problems were chosen: 

Dixon and Price [33], Rosenbrock’s Valley [34], and Ackley’s Path Function[34]. These 

functions were chosen for their topological characteristics. These functions were also 

chosen because they have the ability to scale to as many independent variables as 

desired, providing viewable three dimensional plots as well as higher dimensional 

capability for the SOM to be trained upon. All of these optimization problems can be 

written in the standard optimization problem statement that was introduced in Section 

1.3. 

 

Dixon and Price 

This function provides a topology that contains a very shallow optimal area, making 

convergence difficult for a formal solution method. Additionally, the edges of the design 

space have steep gradients causing most points in the design space to reside relatively 

close to the optimal value. The equation and bounds for this function are given in 

Equation 7. 

 

 

F(X) = X0 −1.0( )2 + (i) × 2 × Xi
2 − Xi−1( )2

i= 2

n

∑
−10.0 ≤ Xi ≤10.0,   i = 0 : n     (8)
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The optimal value for this function resides at .0.0 and 0.0)(min == ixxF  Matlab was used 

to generate a three dimensional plot of this function by generating a two design variable 

version of the function and using Matlab’s surface plotting to plot the two design 

variables and the objective value in three dimensional space. The result is displayed in 

Figure 37. 

 

 

Figure 37 - The Dixon and Price Function in two dimensions. 

 

Figure 37 displays the characteristics of this function, and provides a unique topology 

for the self-organizing map to visualize. This function is also greatly different than the 

subsequent functions, Rosenbrock’s Valley and Ackley’s Path function because it has a 

much simpler design space. 
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Rosenbrock’s Valley 

This function is similar to the Dixon and Price function because it is uni-modal, but its 

complexity increases because the optimum lies within a long, narrow, parabolic valley. 

This adds additional complexity to the Dixon and Price function, while retaining the 

unimodal aspect. Equation 8 provides the equation and bounds of Rosenbrock’s Valley 

Function. 
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The optimal value for Equation 8 is nixxF i :1,1     ,0.0)(min === . Again, Matlab was 

used to generate a three dimensional plot of this function by creating a two design 

variable function and plotting the objective function value as the third dimension. This 

plot can be seen in Figure 38. 
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Figure 38 -  Rosenbrock's Valley (Banana) Function. 

 

As described, this function has a long narrow parabolic shaped optimal area surrounded 

by large slopes to the edges of the design space. Although the function is unimodal, 

there are areas that are relatively flat and often trap solution algorithms before they can 

reach the true optimum value.

 
 

Ackley’s Path Function 

This function varies quite a bit from the previous functions, primarily because it is a 

multi-modal function. This function has a generally flat looking topography with small 

peaks and valleys until immediately around the global optimal area. The multi-modal 

nature of the function provides additional complexity due to the multiple solutions 
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present. Equation 9 was used to generate this function, which includes its objective 

function and bounds. 
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The optimal value for Equation 9 is 0.0   ,0.0)(min == ixxF . A plot of the function is 

shown in Figure 39, which was generated similarly to the previous functions. 

 

Figure 39 -  Ackley's Path Function. 
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Figure 40 - Ackley's Path Function focused on the global optimum. 

 

Figure 39 displays the characteristics described such as its multi-modal nature, 

generally flat nature across the map until the region surrounding the optimum is 

reached. This topology provides a unique function for the self-organizing map to 

visualize and then extract relationships. 

 

4.2 Contextual SOM Results 

With such a diverse and distinct test suite, it is expected that the features outlined in 

Section 4.1 are prominent in the contextual map results. In order to adequately test the 

functionality of this method, results were generated for a variety of test cases within 

each test problem. Each test problem was run under the conditions listed in Table 2. 
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Table 2 - Contextual SOM test cases 

 

 

When examining each figure the training of the SOM algorithm, which initializes the map 

randomly, must be considered. The result of this random initialization is a map that can 

vary every time it is trained, even on the same data set. The maps displayed in the 

following section are a representation of what may result from training the SOM. By 

manipulating the training parameters such as map size or training iterations the 

designer has the potential to reach slightly different results.  

 

Dixon and Price 

Beginning with the Dixon and Price objective function, the first step is to verify the 

problem characteristics of the two design variable (three dimensional) plot, Figure 37, 

with the contextual map results. The resulting contextual SOMs for the two design 

variable case shown with 100, 1,000, and 10,000 sample points can be seen in Figure 

41. 

 

100 Sample Points 1,000 Sample Points 10,000 Sample Points
2 Design Variables 15x15, 1000 iterations 15x15, 1000 iterations 15x15, 1000 iterations
5 Design Variables 15x15, 1000 iterations 15x15, 1000 iterations 15x15, 1000 iterations
10 Design Variables 15x15, 1000 iterations 15x15, 1000 iterations 15x15, 1000 iterations

15x15 describes the map size, 15 rows and 15 columns
1000  iterations specifies the number of ordering phase iterations
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Figure 41 - Dixon and Price two design variable SOM trained using 100 (top), 1,000 

(left) and 10,000 (right) sample points. 

 

The results displayed in the case of 100 sample points used to train the SOM show 

features consistent with the three dimensional Matlab plot for Dixon and Price, Figure 

37. Specifically, this function displays a large optimal area and steep curvature at the 

boundaries of the design space. This map primarily utilizes only the color interpolation 

rather than the full HSV method because there are more nodes than data points, so 
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some nodes have one label and other nodes have no labels. The 1,000 and 10,000-

point maps displayed in Figure 41 contain the characteristics of the three dimensional 

Matlab plot, Figure 37. Both the 1,000 and 10,000-point maps contain a shallow optimal 

area (constant green area) and steep curvature on the edges of the map (dark colored 

areas). The trained map provides an adequate comprehension of the design space by 

conveying its uni-modal nature, shallow optimal area, and high curvature on the edges 

of the design space. The entire middle green area would most likely be a good initial 

search region for a formal solution algorithm to start from as the points therein are low 

objective function values. 

 

The next case in the training regime is the five design variable case of the Dixon and 

Price function. Therefore, the trained map should display similar characteristics to that 

of the two dimensional case. The results of training the 100, 1,000 and 10,000 cases 

are displayed in Figure 42.  
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Figure 42 - Dixon and Price five design variable SOM trained using 100 (top), 1,000 

(left) and 10,000 (right) sample points. 

 

The mapping of the 100-sample point data set provides more conclusive results than 

the 1000 and 10000-point data sets. This figure displays a low central area, consistent 

with the three dimensional plot of Dixon and Price. This is apparent by the many green 

nodes contained within the center of the map, and more variable nodes to the edges of 
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the map. A more conclusive map may have resulted from the smaller data set because 

the training parameters such as map size, the learning rate, and number of training 

iterations allowed for this data set to be more accurately trained. Since the training 

parameters for all the maps are kept constant, some maps may not be training 

sufficiently. The results from Figure 42 are less conclusive than the two design variable 

case. The 1000-sample point map (left) appears to have a slightly brighter central strip 

(circled) through the map which would equate to a lower standard deviation. This 

feature is not extremely evident, but could signify the shallow area in the center of the 

map with the edges of the map displaying a higher standard deviation and therefore a 

greater curvature. The 10000-sample point case (right) does not display any significant 

trend at all. However, this map does contain areas highlighting the optimal area. 

Unfortunately, there are several groupings that lead one to believe that the problem is 

multi-modal when in fact it is uni-modal. Even without an evident trend, the larger 

optimal area in the 10000-sample point plot could be a beneficial initial starting location 

for an optimization algorithm. 

 

The last test case for the Dixon and Price function is the ten design variable data set. 

Again, the ten design variable case has sets of 100, 1,000, and 10,000 samples.  
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Figure 43 - Dixon and Price ten design variable SOM trained using 1,000 (left) and 

10,000 (right) sample points. 

 

The 100 point map in Figure 43, similarly to Figure 42, displays no significant correlation 

between the trained map and the characteristics of the Dixon and Price function. This is 

not surprising with the result of the other ten design variable trained maps, Figure 43. 

The trained maps in Figure 43 contain similar features to the trained maps of the five 
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design variable maps, Figure 42. Unfortunately neither Figure 42 nor Figure 43 explain 

the characteristics of their respective design spaces. Again, the cause of these 

inconclusive maps may be related to their non-ideal training parameters. The resulting 

maps appear to have high standard deviations across the map and therefore the SOM 

nodes may not be grouping the data appropriately. Possible improvements for this 

function could come from a display of the individual design variable values within a 

node, modifications to the training parameters, and other items in the Future Work 

Section (5.2).  

 

Overall, the contextual self-organizing maps trained on the two design variable Dixon 

and Price function provided a complete understanding of the problem characteristics. 

Additionally, the 100-point sample of the five design variable Dixon and Price function 

gave a similar understanding. Unfortunately the large five dimensional data sets (1,000 

and 10,000) and the entire ten dimensional data sets resulted in inconclusive maps. 

 

Rosenbrock’s Valley 

Recalling the characteristics of Rosenbrock’s Valley function, Figure 38, the problem is 

uni-modal and contains a large shallow parabolic (banana) shaped optimal region. The 

surrounding area around the optimal has relatively low objective function values in 

comparison to the corners of the design space where the objective function value grows 

large very quickly. This section presents trained maps of the Rosenbrock’s Valley 

function in accordance with the training structure of Table 2. 
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Figure 44 - Rosenbrock's Valley two design variable SOM trained using 100 (top), 

1,000 (left) and 10,000 (right) sample points. 

 

All of the maps in Figure 44 display an accurate representation of the design space and 

the characteristics described for Rosenbrock’s Valley, Figure 38. Figure 44 maps the 

1,000 and 10,000 sample point data sets of the two design variable Rosenbrock’s 
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Valley function very well. These maps display the characteristics of the problem 

described in Figure 38 such as the parabolic optimal area, unimodal nature, and steep 

curvature at the corners of the design space. In addition, there are two things to 

consider upon inspecting these maps: the orientation and color variation. Recall that the 

map is randomly initialized so the orientation of the nodes in the map is irrelevant. 

Secondly, the majority of the map is colored green because the variation in mean node 

value from the optimal area to its surrounding nodes is much less than the difference 

between the optimal area and the corners of the design space. 

 

As the dimensionality of the design space increases, the goal is to retain the ability to 

map the features of the design space. The next set of maps are trained on a five design 

variable data set with 100, 1000, and 10000-sample points, in Figure 45 respectively. 
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Figure 45 - Rosenbrock's Valley five design variable SOM trained using 100 (top), 

1,000 (left) and 10,000 (right) sample points. 

 

The top map in Figure 45 appears to contain the characteristics of a uni-modal problem 

with large curvature at the corners of the design space; however, the number of unused 

nodes in the map limits the information that can be gathered. Unfortunately, the unique 

shape of the optimal area cannot be extracted from the 100 point map in Figure 45 as it 



85 

can from the other two maps because of the gaps in the map. Fortunately, it would be 

possible to identify an initial search area using this map, because of the exploration 

features of the application interface. Through inspection of the trained maps, Figure 45, 

it is noticeable that the characteristics of the design space are retained in this display. 

These maps retain the shallow optimal area with the edges of the map containing high 

curvature areas displayed through the darker colored nodes. Since the majority of the 

optimal area (green area) is connected, it could be surmised that the problem contains 

uni-modal characteristics too. Finally, these maps clearly display bright green nodes 

denoting close-to-optimal contextual values which could be useful for an initial search 

region of an optimization algorithm. This could be utilized by selecting the brightest 

green nodes, and saving the design variable values of the selected nodes for use as a 

starting location in an optimization routine. 

 

The final map generated from the Rosenbrock’s Valley 10D function with 100 sample 

points. Ideally, the characteristics that have displayed through the two and five 

dimensional maps would also be displayed in Figure 46. 
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Figure 46 - Rosenbrock's Valley ten design variable SOM trained using 100 (top), 1,000 

(left) and 10,000 (right) sample points. 

 

The holes within the 100 point map of Figure 46 make it difficult to interpret, but the 

large number of green nodes suggests a flat region of the design space around the 

optimum. The problem of node coverage can be solved by either decreasing the map 

size, or finding a method to interpolate between the nodes on the map and display 

colors on the now empty nodes. This will be discussed further in the Future Work 
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Section (5.2). The results from the 1000 and 10,000 point maps in Figure 46 show two 

maps that have unique optimal areas, but without the ability to picture a ten design 

variable space it is hard to verify their correlation back to Figure 38, the Matlab plot. It is 

important to consider that self-organizing maps are a dimensionality reduction method 

and there is no correct pattern to the output neurons. Two characteristics of the design 

space that are apparent in the left and right map of Figure 46 are the large optimal area 

and steep curvature within the design space. These two properties were present in the 

Matlab plot, Figure 38, and should remain properties of the design space as the 

dimensionality is increased. With a large number of bright green nodes, it is likely that 

the map did fit the input space effectively because the standard deviation of individual 

nodes in the map is not high. 

 

The maps in Figure 44, Figure 45, and Figure 46 that were trained on the Rosenbrock’s 

Valley function are promising in their ability to map the design spaces of two, five, and 

ten dimensional problems. The resulting maps can be utilized to discover problem 

characteristics such as the curvature of the problem, modality of the problem, and an 

initial search area for optimization algorithms. The 100 point maps at five and ten 

dimensions in these figures were not as effective in displaying the design space, but 

with some work to interpolate between node colors, these maps could become 

extremely informative. Interpolating between the colors would build upon the values of 

surrounding nodes; it would be possible to assign a color value to an empty node by 

calculating a value that falls between the color values of the surrounding nodes. 
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Ackley’s Path 

The Ackley’s Path function is different than both Dixon and Price and Rosenbrock’s 

Valley because it is a highly multi-modal problem. The general shape of this function, 

Figure 39 is that of a cone with peaks and valleys covering the entirety of the cone. This 

section contains the resulting maps that were generated by following the training test 

cases in Table 2. With an understanding of the training capabilities of the contextual 

SOM on various data sets, it can be expected that the SOM adequately maps the two 

design variable data sets. 
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Figure 47 - Ackley's Path two design variable SOM trained using 100 (top), 1,000 (left) 

and 10,000 (right) sample points. 

 

As expected, the 100 point map in Figure 47 displays a topology consistent with the 

expectations for Ackley’s Path. There is a definite optimal area, which is very different 

from the rest of the map. There also appears to be local minima across the map, 

represented by the pockets of high standard deviations. Unfortunately due to the limited 

number of nodes in this map, it is difficult to decipher the modality of the function. Figure 
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47 fit the design space well and provided beneficial visual representation of the design 

space. As with the previous maps trained on two design variable data sets, the SOM is 

capable of very closely mapping a two design variable data set. The characteristics that 

can be extracted from these maps are that is a multi-modal problem and that it has an 

area of the design space close to the global optimum. The multi-modal nature is 

identified by the change in colors in the white/grey area of the maps, because these 

changes in color signify that a node will represent a set of value that is slightly higher or 

lower than the node next to it. 

 

After completing the training and examination of the two design variable data set for 

Ackley’s Path, the next data set is a five design variable data set. This set will be 

represented by a 100, 1000, and 10000-sample point data set in Figure 48. 
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Figure 48 - Ackley's Path five design variable SOM trained using 100 (top), 1,000 (left) 

and 10,000 (right) sample points. 

 

This map 100-point map displays the characteristics of a multi-modal design space 

because it contains such a scattered variety of orange and red nodes. The dispersion of 

orange nodes correspond to high objective function values and the red nodes are even 

higher objective function values. When these colors are next to each other repeatedly, 

this suggests peaks and valleys within a small range of objective function values, or 
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more simply a multi-modal behavior. This map unfortunately suffers from a lack of 

nodes to effectively display the optimal area. However, there are three distinctly green 

nodes on the map, which would provide a beneficial starting location for a quicker path 

to optimization convergence. Figure 48 also potentially shows the global optimum 

region. Normally, this would be a green area on a map, but due to the nature of the 

problem, the global optimum area is also one where there are large gradients. Thus, the 

node(s) would appear black, as they contain both low objective function values and high 

standard deviations. This black node can be seen in both the 1000 and 10000-point 

maps shown in Figure 48. The maps with 1000 and 10,000 data points also suggest a 

multi-modal characteristic of the function through the high variability in white and pink 

and brown values over the majority of the map. 

 

The last group of data sets to be examined is the ten design variable sets of data with 

data sets containing 100, 1,000, and 10,000 sample points. The first maps that will be 

presented is the 100-point data set and then the 1000 and 10000-sample point maps. 

The first map, 100-samples, will most likely not be full enough to utilize for proper 

analysis, but will display the multi-modal nature of the problem. 
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Figure 49 - Ackley's Path ten design variable SOM trained using 100 (top), 1,000 (left) 

and 10,000 (right) sample points. 

 

The top map in Figure 49 contains a map that shows the multi modal nature of the 

Ackley’s Path function, but more than likely does not have a sufficient representation of 

the design space. There are several green nodes across the map, which means that the 

100-sample point data set did not include a point that was located near or in the 
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optimum region because the green nodes across the map are all in local minima. The 

multi-modal nature of this function is an important feature, but with a more 

encompassing data set it may be possible have been possible to discover an optimal 

area. While the resulting maps in Figure 49 may appear to be chaotic and unorganized, 

they provide significant information regarding Ackley’s Path ten dimensional design 

spaces. The first observation in both maps is that the function is highly multi-modal, this 

is again because of the large area of the map which contains many peaks and valleys in 

the form of browns and greens. The second important piece of information from the 

1000-sample point map on the left is again the initial search region; this map contains 

one bright green/yellow node which resides near the optimum. Unfortunately, the 

10000-sample point map on the right does not clearly display any optimal area, but this 

may be due to an insufficient training length. 

 

The maps trained from the Ackley’s Path function, Figure 47 - Figure 49 all sufficiently 

display the multi-modal nature of the function. The maps that were unable to identify an 

optimal region of the map most likely suffered from the lack of an input vector near the 

optimum of the function. Assuring that the design space is sufficiently explored with the 

data set is difficult as the dimensionality increases because a function with a small 

optimal region, such as Ackley’s Path, can decrease the chances of picking a point near 

the optimal region. 
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4.3 Discussion of Results 

The trained contextual self-organizing maps that were presented in Section 4.1 provided 

valuable insight into the capability of contextual SOMs in design space visualization. As 

expected, when the dimensionality of the design space decreased, the 

comprehensibility of the trained map increased; alternatively, when the dimensionality of 

the design space increased, the comprehensibility of the trained map decreased. This 

paradigm is currently present in other research methods, and exemplifies the need for a 

capable solution to design space visualization.  

 

Dimensionality reduction methods specialize in providing an abstract visualization of a 

high dimensional space; therefore, the two dimensional representation of a high 

dimensional problem cannot be compared to the two dimensional representation of a 

low dimensional problem. For example, a strict comparison between the maps in Figure 

49 and the maps in Figure 47 will not make feasible sense because the two dimensional 

data set does not require dimensional reduction where as the ten dimensional data set 

requires dimensionality reduction to display the resulting design space. This property of 

self-organizing maps makes verification of the results difficult. 

 

Another important consideration is that for every design variable that is added to the 

problem, the size of the design space increases. Due to the increasing design space, 

the probability of adequately covering the design space with a set number of sample 

points (100, 1,000, and 10,000) decreases. This is especially evident in the Ackley’s 
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Path function, because the optimal value falls within -5 and 5 for every design variable, 

but the range of each design variable extends from -32 to 32. So, as the dimensionality 

increases, the likelihood of all the design variables falling within the -5 to 5 range 

decreases because of the added area to the design space. In order to compensate for 

this, it would be necessary to generate a design space of more points such as 100,000 

or one million points. Generating this large of a data set will impact the training time of 

the map, but this could be enhanced by implementing a multi-core training algorithm 

which is described in further detail in the Future Work, Section 5.2. 

 

While not all the results provided an easy to interpret map, the SOMs in Figure 42 and 

Figure 43, most of the maps did provide some information about their respective design 

spaces. For example, all of the maps trained on Rosenbrock’s Valley, Figure 44, Figure 

45, Figure 46, and provided the general shape of the optimal area as well as an 

indication to the location of the optimal region. Additionally, the maps trained on 

Ackley’s Path function, Figure 47, Figure 48, and Figure 49 displayed the multi-modal 

characteristics of the design space. All of the maps in Figure 47-Figure 49, with the 

exception of the 10000-sample point map in Figure 49, provided a location of the 

optimal region. 

 

This knowledge of design spaces is important for the progression of optimization 

because it will guide to a more efficient choices when trying to solve the problem. This 

solution can be reached by utilizing knowledge such as the modality of the problem, 

because some optimization methods specialize in highly multi-modal methods. An initial 
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search area can also prove to be invaluable to convergence to a true optimum because 

it will help avoid getting caught in many local minima if exploration of the entire design 

space were necessary. 

 

Lastly, as mentioned after the results from the Dixon and Price function, the training 

parameters that were used for these test cases could always be improved to fit the test 

case better. These parameters: map size, training iterations initial learning rate, and 

initial neighborhood size all affect the outcome of a trained map, and can each be 

adjusted to provide a more ideal map. With a further understanding of these 

parameters, it may be possible to generate more meaningful maps for all data set 

ranges including high dimensional data sets with a low number of samples. 
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5 Conclusions and Future Work 

5.1 Summary and Conclusions 

While the use of self-organizing maps in optimization and design space visualization is 

not a new concept, the application of contextual maps to display the results of a self-

organizing map trained on an optimization is a novel approach. This approach has 

many benefits over other methods, such as the ability to function with or without an 

objective function, and the capability of training on a data set of any size. This method 

can also display the resulting information in a two dimensional plot, but with more 

details of the node network’s contextual information such as mean, standard deviation, 

and minimum value. With this information, users will be able to discover design space 

characteristics and apply that knowledge to benefit the resulting solution. 

 

This method provides an intuitive display that utilizes colors to convey the results of the 

trained self-organizing map. The colors are manipulated so that the optimal values in 

the map stand out by being the brightest colored nodes. The nodes that are more 

variable or have worse contextual labels do not attract the user’s attention like the bright 

colored nodes, but are there to provide additional characteristics of the problem. The 

characteristics that can be extracted from a SOM representing a design space are the 

curvature of the design space, the modality of the design space, and the optimal region 

of the design space. 
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The results in this thesis displayed the ability for the contextual self-organizing maps to 

effectively display a high dimensional design space in the two dimensional plot, see 

Figure 46. The benefit of adding the contextual information to this plot is shown to 

convey more information about the nodes along with their node value. The knowledge 

of a node’s standard deviation can allow the designer to discover areas in the design 

space with high curvature. The minimum values of nodes across the map can be used 

to discover the modality of the problem, for example when there are minimum values 

scattered around a map the problem is multi-modal. The last piece of information, the 

node mean objective value, is pertinent to discovering the optimal region of the map. 

These three characteristics are combined together in the contextual map so that the 

designer can easily extract characteristics of the design space. 

 

While the results showed successful attempts at design space visualization for the 

Ackley’s Path function and the Rosenbrock’s Valley function, the Dixon and Price 

function did introduce problems with the method. The problems that arose from this 

method are most likely attributed to non-ideal training parameters. The training 

parameters in question are the size of the map, number of training iterations, initial 

learning rate, and initial neighborhood width. With a better understanding of these 

parameters, the Dixon and Price function might result in a more comprehendible map. 

 

The use of this method for design space visualization and comprehension will lead to 

improved solutions of optimization problems. Convergence will occur more quickly by 

utilizing the knowledge gained of problem characteristics such as the modality, 
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curvature, and the initial search region. The results of better optimization will lead to 

significant savings in time, project resources, and overall cost. 

 

5.2 Future Work 

The results of this thesis gave examples of contextual self-organizing maps providing 

crucial information about the design space, but all of the results were unfortunately not 

as comprehendible and useful. Therefore, there is a wealth of avenues to explore in 

order to advance this method. The future work tasks fall into four areas: the training 

process, results improvement, results verification, and method exploration. 

 

Given the results for the Dixon and Price function, Section 4.2, the first step to 

improving the results of this work would focus on the training algorithm. The training 

parameters for this method were set based upon recommended values from a neural 

network textbook, but some of the maps, Figure 43, appeared undertrained. 

Modifications to the training parameters could result in improved training and mapping, 

which would provide better visual results. Secondly, the training duration could greatly 

decrease in time if the algorithm were modified to be multi-threaded. Another area for 

training improvement is to calculate the principle components of the data (PCA), and 

use these principle components to initialize the weight vectors rather than generate the 

initial map with random values. The batch SOM [35] can decrease training time and 

therefore allow for larger data sets or more training iterations. 
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The second area for improvement of this method is in the results of the contextual self-

organizing map. While the results convey a meaningful display to the user, there are 

modifications that could be included to improve the resulting displays. For example, it 

would be possible to interpolate color values between the empty nodes if a network is 

not completely labeled. This is accomplished by examining the color of an empty node’s 

neighbors and assigning it an intermediate value that falls between the surrounding 

colors. If this were implemented, the small data set maps with 100 sample points would 

become more useful. Additionally, given a two dimensional node lattice it would be 

possible to plot that lattice in three dimensions, similar to the Matlab plots, Figure 37, 

Figure 38, and Figure 39. The process for plotting this would be similar to that of the 

SOMO paper, by which the lattice is simply shown in three dimensions with the third 

dimension being the node value. Lastly, this method could expand its capabilities into 

multi-objective visualization. This task could be achieved through a variety of means, for 

example the color display could change, or the number of output maps could increase. 

 

Another area for further work is in the realm of result verification. While it is difficult to 

visualize a high dimensional design space, the resulting maps could be further analyzed 

for problem characteristics. In order to accomplish this, the application would need to 

allow for multiple node selection and output of the design variable values contained in 

those nodes. Also, this optimal region of the map could be inputted to an optimization 

algorithm and verify that the location was beneficial. 
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Finally, the last area for improvement on this concept is to explore other methods that 

are built upon self-organizing maps. For example, the generative topographic map or 

the equalized orthogonal mapping method could insure proper training and therefore 

provide a more meaningful output map. 
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