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ABSTRACT

Wind turbines reliability is affected by stochastic factors in the turbulent inflow and wind

turbine structures. On one hand, the variability in wind dynamics and the inherent stochastic

structures result in random loads on wind turbine rotor and tower. On the other hand, the

inherent structural uncertainties caused by imperfect control of manufacturing process intro-

duce unpredictable failures and decreases wind generators availability. Therefore, to improve

reliability, it is important to incorporate the variability in wind dynamics, and the inherent

stochastic structures in analyzing and designing the next generation wind-turbines.

In order to perform stochastic analysis on wind turbine, there are several improvements

need to be made. Current stochastic wind turbine analyses are mostly based on incomplete

turbulence input models. These models either failed to account for temporal variation of the

stochastic wind field or unable to preserve spatial coherence which is a very important property

that describes turbulence structure. On the subject of modeling wind turbine, most commonly

used wind turbine design code is based on stead, lumped component blade models which lack

the ability to describe the complex 3D fluid-structure interaction (FSI); which is essential to

provide precise blade stress distribution and deformation details. Finally, when it comes to

analyzing simulation results, most of existing work are done by analyzing the time response of

wind turbine, without looking at the stochastic nature of performance of wind turbines, and

its relationship between stochastic sources in turbulent inflow and turbine structure.

In this work, we first develop a data driven temporal and spatial decomposition (TSD),

which is capable of modeling any given large wind data set, to construct a low-dimensional yet

realistic stochastic wind flow model. Results of several numerical examples on the TSD model

show good consistency between given measured data and simulated synthetic turbulence. After

that, a stochastic simulation based on TSD simulated full-field turbulence and a simplified wind

turbine model is performed. The result of this analysis shows the adequacy of using TSD as
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turbulence simulation tool as well as the random nature of wind turbines’ performance. Finally,

a stochastic analysis on a full scale 3D rich-structural wind turbine model with stochastic

composite material properties is performed. With a given steady wind load, the model gives

the deformation and the stress distribution of the blades. Critical regions that are most likely

to have stress larger than design strength of the material were identified. Failure analysis is

then performed based Tsai-Wu failure criterion.
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CHAPTER 1. OVERVIEW

Wind energy is a clean and sustainable energy resource that is a promising alternative to

fossil fuel based energy. Great progresses have been made in wind power technology in the past

three decades. Wind turbine capacity has developed from less than 100 kW in the 1980s to a

current capacity of 5 MW. Wind turbine rotor diameter has also increased from 15 meters to

120 meters. Through improvements in the design of various subsystems of the wind turbine, the

energy production cost has been significantly reduced. With these developments, large-scale

application of wind power has become a reality [25]. As a pioneer in wind power technology,

Denmark produced 22% of its electricity by means of wind power in 2010. In Asia, China added

16.5 GW of wind capacity in 2010 to reach 42.2 GW at the end of 2010 , which makes the

country the largest wind power market in the world [24]. U.S. Department of Energy (DOE)

has developed a scenario for supplying 20% of the nation’s electricity by means of wind by

2030 [66].

However, there are significant challenges that have to be resolved in order to achieve these

goals. In fact, during the twelve months from July 2011 to June 2012, only 3.2% of all electricity

in the US was from wind [67]. One of the reasons for this sluggish use of wind is the current high

cost of wind energy, which can be markedly reduced by improving the efficiency and reliability

of wind turbines [41]. As part of the focus on improving wind turbine efficiency, both rotor

diameter and turbine hub hight have been increased significantly. To minimize the vibration

caused by gravity, thinner and lighter blades are needed for these large scale wind turbines,

which will in turn affect their reliability. As a result, the need to decrease the weight of blades

while ensuring reliability becomes an important issue.

The reliability of a wind turbine is affected by its inherent material and operating un-

certainty/randomness. Examples of these random factors include turbulence inflow, random
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property of composite material from which blades are made, and random location and severity

of structural defects in blades. These uncertainties in wind turbine system inevitably affect the

reliability of wind turbines. Therefore, the reliability analysis of wind turbines requires a rig-

orous incorporation of the effect of these randomness. This research focuses on developing and

implementing new methods that incorporating stochastic analysis in wind turbine simulation.

1.1 Current Status of Wind Turbine Design

A wind turbine design work based on computational simulations could be done in three

steps: representing the wind inflow as input of the wind turbine system, modeling the wind

turbine, and solving time responses of variables of interest as the simulation result. Reviews

on these three subjects are given in the following sections.

1.1.1 Status of wind modeling

The wind load on the turbine is a stochastic process whose direction and speed depends on

location, and time. In other words, “ ... at any instant they are distributed irregularly in space,

at any point in space they fluctuate chaotically in time, and at given point and a given time

they vary randomly from realization to realization.” [74] This randomness in wind conditions

leads directly to the fluctuations in rotating speed of the rotor (for variable-speed wind turbine).

Furthermore, randomness of wind direction causes random yaw motion of nacelle, which can

further affect wind turbine’s productivity. Turbulence introduces unsteady loads on the blades.

All of these effects excite structural vibrations, introduce components failures, and further

reduce the lifespan of wind turbine. Thus, stochastic wind loads have a critical impact on wind

turbine performance.

Most of the past wind turbine design work was based on simplified wind load models

that assume steady wind speed, constant wind speed gradient profile and constant turbulence

intensity [51]. This kind of simplified wind model does not provide any insight into the effect of

randomness in the wind load. They have, however, been used with some success in the context

of deterministic wind turbine analysis [7, 8]. Subsequently, wind models that are capable of

describing wind stochasticity have been developed. Gaussian and Weibull distributions have
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been used in approximating histograms of hourly mean wind speeds. These methods are based

on parameter estimation techniques such as maximum likelihood method (MLM) [12]. While

useful is representing randomness, these techniques lack the ability to describe temporal and

spatial correlations of wind, or location-dependent characterization capabilities. This results

in the development of methods that incorporate spatial variations, spatial correlation, and

temporal correlation.

There have been several seminal works that deal with preserving either spatial correlation

or temporal correlation. One such example is Veers/Sandia method [68]. The method first

uses empirical coherence function and wind speed power spectral densities (PSDs) to describe

the wind field. Choleski decomposition is then used to decompose the cross spectrum matrix.

Velocity time-series at different locations are finally calculated with a inverse Fourier transform

process. Another example is Mann’s method [44], which starts with a spectral tensor that

is achieved by taking incompressibility into account and solving the Navier-Stokes equations.

The wind field is described in wave vector space and then transformed into spatial domain.

Recently, proper orthogonal decomposition (POD) was used in [55] to simulate wind turbine

inflow. In this method, stochastic wind flow is viewed as wind field snapshots at different

instances. A spatial covariance matrix is decomposed to get multiple characteristic modes

that are further used in constructing stochastic wind field. By performing one POD analysis

at each time step, the wind flow is reproduced. Although the above three methods are easy

to implement and efficient enough to get random wind flows, they do not account for both

temporal correlation and spatial correlation of the wind flow at the same time. In software

package TurbSim [34], a turbulence simulation code developed by National Renewable Energy

Laboratory (NREL), Veers method is used. However, due to its inadequacy in describing

temporal coherence, additional information about coherent structure has to be included in the

model so that the turbulent structure in atmosphere could be more accurately represented [39].

most of existing stochastic wind models use assumptions of the certain stochastic proper-

ties of wind such as spatial coherence and temporal covariance, which may not be valid for

all applications. For analysis that focus on general wind conditions, such methods are efficient

and accurate enough. As the techniques of wind measurement developing, site specific high
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frequency data will become available. In this case, data driven stochastic wind models are

desired for next generation wind turbine design. In fact, data driven wind models do exist.

Messac et al. [47] developed a wind model that is customizable based on local geographical

and climatic conditions. They used a nonparametric model to characterize the uncertainties

in annual multivariate distribution of wind speed and orientation so that the model could be

used in various locations. This model has been used to evaluate wind farm performance [79].

Although the model contains sufficient information for the purpose of annual wind farm per-

formance evaluation, the diurnal variation of wind speed is not accounted for. Another method

that accounts for diurnal variability in wind speed was developed by Negra et al., where 10

minute average wind speed data over 7 years was used [49]. This method generates synthetic

wind speeds that are excellent statistical matches with the original data, but there is no easy

way to extend the method to describe spatial variations. It is worth noting that none of above

methods is able to model both spatial and temporal covariances at the same time.

Based on above discussion, there is a need of a more realistic parameterization of the wind

that encodes location-, topography-, diurnal-, seasonal and stochastic affects, and at the same

time be able to reproduce spatial and temporal covariances in the field measured wind data.

However, such a comprehensive data driven parameterization is useful in practice only if it is

relatively simple (low-dimensional), which is the bottleneck of data driven wind models.

1.1.2 Status of wind turbine modeling

There is a trade off between improving efficiency and increasing reliability of wind turbine.

On one hand, in order to improve wind turbine efficiency, both rotor diameter and turbine hub

height have to be increased significantly. On the other hand, to minimize the vibration caused

by gravity, thinner and lighter blades are needed for these large scale wind turbines, which

will in turn affect their reliabilities. A pressing challenge is to lighten the weight of blades and

simultaneously achieve high system reliability.

The reliability of a wind turbine is affected by material and operating uncertainty/randomness.

The stochasticity in the composite wind turbine blades depends on the type of composite ma-

terial used, the placement of composite fiber pieces, the design of structural reinforcement
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members such as shear web and spar caps, and structure parameters such as ply thickness.

Blades are made of composite laminate that has several plies. Each ply consists of a layer of

unidirectional fibers, whose thickness and material properties can vary from ply to ply. The

randomness in composite material is introduced by the manufacturing process where a large

number of reinforcing elements need to be embedded into matrix. The resulting microscopic

heterogeneity impacts random fiber positions, occurrence of defects in fiber, etc. and causes

random behavior of the fiberglass ply under external loading [40]. Randomness in wind turbine

structure and material causes non-uniform rotor deformation that further results in unbalanced

load on the rotor. The random vibration introduced by this unbalanced load will decrease wind

turbine’s efficiency and reliability. Therefore, in order to improve reliability of large scale off-

shore wind turbines, a crucial first step is to have a better understanding of how they are

affected by manufacturing uncertainties. To this end, a comprehensive wind turbine model

that are able to incorporate structural and material uncertainties is required.

Present wind turbine modeling techniques can be basically classified into three types: finite

element methods (FEM), multi-body-system (MBS), and the modal approach [43]. A good

review of existing wind turbine design codes in these three classifications are given in [2, 50]. In

the modal approach, modal analysis of beam-structured finite element wind turbine model is

performed first. The first few natural modal shapes are then superimposed to get the displace-

ment of turbine blade under certain give load. A good example is BLADED [21] which has

been an industrial standard tool for several years. However, it can not describe the torsional

blade deformations. This problem is solved in the MBS method, where the wind turbine system

is divided into a finite number of rigid/flexural bodies connected with elastic joints. On each

body 2-dimensional loads (lift, drag and aerodynamic moment) are applied at the aerodynamic

center of the airfoil. A few ordinary/partial differential equations are used to describe the be-

havior of the system. One examples of such design codes is FAST[36]. MBS method is fast and

reasonably accurate when general deflections of all rigid bodies are sufficient enough for simple

analysis. However, by simplifying the 3D geometry to 2D airfoil cross sections, the method fails

to capture the FSI between wind and rotor blades surface, which is essential for calculating the

detailed deflection of the entire blade surface. In addition, for the purpose of structure design,
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MBS method is insufficient since it can not describe the effect of local structural changes on

system outputs. To this end, FEM is introduced in wind turbine design. In FEM, the detailed

blade geometry is discretized into finite elements, and the governing equations of the whole sys-

tem is discretized into a set of differential equations. In contrast to the other two approaches,

FEM calculates accurate results but at high computational cost.1

Current wind turbines are upwind turbines whose rotors facing towards the wind 2. In this

case, blades may bend too much to hit the tower. To prevent such failure, the clearance between

the rotor blades and turbine tower (tip-tower clearance) should not be less than the minimum of

30% for the rotor turning and 5% for load cases with the rotor standing still, in relation to the

clearance in the unloaded state [18]. Three techniques are used to achieve this goal. One could

move the rotor further from the tower or change the angle of the rotor so that the bottom

of the rotor is further from the tower. However, the increased rotor overhang will increase

load on the shaft which may further reduce the reliability of the gearbox. A better approach

could be such that the blade is bent in the opposite direction of the blade bending moment

when unloaded. This process is called pre-bent or pre-coning [22]. This makes simulating wind

turbines more difficult because a pre-bent 3D wind turbine blade model is needed to fully assess

the impact of the new design to the blade stress as well as its performance. Although FEM

is very computational costly, it seems that it is the only choice among above methods when

performing structure design of rotors with complex geometry.

Most of existing wind turbine design codes assume small deflections so that the aerodynamic

loads can be applied to the undeformed structure. However, this assumption is less valid since

modern wind turbine blades are more and more flexible as their size increases. Given stable wind

load, the deformations of the flexible blade influences the aerodynamic force on blade surface

and vice versa. Therefore, analysis of offshore wind turbine blade is actually an aeroelastic

problem. To calculate the aeroelastic response, following aspects must be taken into account:

aerodynamic forces, blade deformations and the coupling between them [71]. By running the

analysis (with small displacement assumption) in a loop where the aerodynamic forces and

1High computational cost is regarded as the major limitation of FEM.
2Rotor of downwind turbine would suffer strong turbulent which is caused by the fluid structure interaction

between air flow and the tower, and generate large noise[53].
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blade shape are updated in every iteration, the coupling problem can be solved. The only

remaining issue is that the FEM result is approximation of the analytic solution, which means

a small deviation from the beginning of the calculation could propagate to a very large one

after several iterations. Therefore, a mesh update and refinement process is necessary in order

to minimize the calculation error in each iteration. Using FEM to solve aeroelastic problem for

flexible wind turbine becomes an very inefficient and cumbersome approach.

As an improvement of FEM, isogeometric analysis [28] provides much more accurate and

efficient geometric modeling. It represents exact geometries at the coarsest level of discretization

and eliminates geometrical errors from the beginning. The isogeometric method has been shown

to get accurate simulation results for flexible wind turbine. A realistic 3D rotor model should

have the ability to describe the complex 3D fluid-structure interaction (FSI) which will provide

us precise blade deformation and stress distribution [7, 8]. In addition, to assess the affects of

randomness in turbine structure to its performance, the wind turbine model must be able to

incorporate randomness in its structure and material. The advantages of isogeometric analysis

make it the ideal method for stochastic wind turbine analysis.

1.1.3 Status of stochastic analysis on wind turbine

Many turbulence models that are capable of describing long-term (10 minute average wind

speed) and short-term (spatial or temporal correlations) wind stochasticity have been devel-

oped. They have been successfully utilized in many applications. For instance, [47] developed

a wind model that is customizable based on local geographical and climatic conditions. They

used a nonparametric model to characterize the uncertainties in annual multivariate distri-

bution of wind speed and orientation so that the model could be used in various locations.

This model has been used to evaluate wind farm performance [79]. Simulation of wind turbine

aeroelastic response to wind turbine inflow turbulence is given in [1]. In [59], fatigue failure

analysis is done with random wind load and 3-D finite element wind turbine model.

It must be mentioned here that almost all wind turbine simulation works based on stochastic

wind inputs are done by generating time responses of certain quantities of interest of wind tur-

bines. These results only describe how wind turbines operate given specific wind inputs. They
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provides no information about how the randomness in turbulence input affect the performance

of wind turbines. To solve this problem, stochastic analysis/uncertainty quantification(UQ)

has to be incorporated in wind turbine design.

Stochastic analysis provides strategies to evaluate the relationship between a stochastic

input and various quantities of interest. In general, stochastic analysis is done by modeling

the system of interest, incorporating uncertainties in system model or its inputs, and getting

probability of the system output. For instance, to quantify the effect of the uncertainty that is

introduced by the random wind conditions, stochastic analysis (like polynomial chaos [77, 78],

stochastic collocation [16], or Monte Carlo analysis [20]) on a wind turbine model can be

performed [42].

By including uncertainty quantification in the modeling process, system governing equa-

tions (mostly a set of differential equations) possess stochastic property as well. Such kind of

equations are called stochastic differential equations (SDEs). Many methods have been devel-

oped to solve SDEs. Generally, these methods can be classified as statistical and non-statistical

methods [16]. One of the most commonly used statistical methods is Monte Carlo sampling.

In this method, realizations of random inputs are generated based on their probability distri-

bution. For each realization the data is fixed and the problem is deterministic. A very large

number of samples are needed to get accurate result. Monte Carlo method quickly becomes

impractical when dealing with higher order complicated systems.

Non-statistical methods approximate the uncertainties in the system or its input first, which

will be further used in system modeling. One example of this kind of methods is spectral

stochastic finite element method (SSFEM) [20]. In this technique, the random field is ex-

panded about its mean with a set of complete orthogonal polynomials whose coefficients are

realizations of a set of random variables. Generalized polynomial chaos (gPC) [77] is another

well developed non-statistical methods. With gPC, stochastic solutions are expressed as orthog-

onal polynomials of the input random parameters. Followed by Galerkin projection, the set of

stochastic differential equations become deterministic decoupled equations which can be solved

by using common numerical methods. Many orthogonal bases could be used to construct the

polynomials. Hermite polynomial expansion is of most commonly used. In addition, a whole
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family of polynomials named Wiener-Askey polynomial chaos can be used according to different

distribution functions of the random inputs [77]. In this way, the optimal convergence can be

achieved. Similar to Monte Carlo method, non-statistical methods also convert the stochastic

problem to a set of deterministic equations. However, the resulting equations generated by

non-statistical methods are often coupled, which makes using this method to solve complicated

system very difficult.

Most recently, stochastic collocation approach is used to solve SDEs [4]. This method is

based on deterministic sampling method like Monte Carlo method. Instead of finding the

solution of a huge amount of sampling points in the random field and then form a discrete

solution of the random input, one can use less sampling points, get the deterministic solutions,

and then use these solutions to form an approximate collocation solution. How to choose as

less as sampling points to reduce the computational cost and, at the same time, meet the

prescribed accuracy is the main concern of stochastic collocation method. One way is to use

tensor products of one-dimensional Gaussian quadrature points as sampling points [4]. As

the dimension of random fields increase, the number of sampling points grows exponentially

fast. Sparse grid collocation (SGC) technique is introduced in order to reduce the number of

sampling points in higher random dimensions [76]. Another issue of stochastic collocation is how

to choose basis functions to interpolate the collocation solutions. Lagrange polynomials and,

more general, gPC polynomials are used. Adaptive sparse grid collocation method is further

developed by introducing the concept of adaptability in to the algorithm [16]. SPG method is a

very efficient method that has its advantages in solving complicate, large stochastic dimensional

problems.

1.2 Possible Improvements and Challenges

Fig. 1.1 shows different subroutines in wind turbine simulation work and possible improve-

ments with respect to incorporating stochastic effects in the analysis. As the source of energy,

inflow wind plays an important role in wind turbine simulation. Based on discussion in previous

section, a data driven wind model that is able to reproduce temporal and spatial covariances

of the source wind is in great need. However such model has to be low-complexity and easy to
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use.

The second type of improvements could be done in wind turbine modeling. A full-scale, 3D

comprehensive wind turbine model is required. Such model would provide detailed deflections

and accurate surface stress distributions, which are very important for successful wind turbine

blade design. A developing work from [7, 8] is very promising. The difficulties of such model

lies in incorporating stochastic parameters, such as random defects, material properties, and

stochastic parameters, into the complicated wind turbine structure.

Improvements could also be done in interpreting simulation results. To improve wind tur-

bine reliability, a crucial step is to have a better understanding of how they are affected by

stochastic sources of the system such as wind input and random defects. This can be accom-

plished using stochastic analysis. Since wind turbine simulation is a very complicated and time

consuming process, even getting one set of simulation results would require huge amount of

computational effort. It becomes very difficult to perform stochastic analysis in wind turbine

design, where a large number of simulations need to be done.

FSI Solver Structure 
Solver 

Stochastic Wind 
Generator 

Stochastic 
Structure 

Force u,v,w 

Aeroelastic Solver 

Stochastic 
Results 

Material Properties 
Random Defects 
Stochastic Parameters 
… 

Data Driven Model 
Temporal Covariance 
Spatial Coherence 
… 

Surface Stress 
Detailed Deflection 
Probability Results 
… 

Figure 1.1 Possible improvements in stochastic wind turbine analysis.

1.3 My Contribution

The contributions of this work are listed as follows.

1. Stochastic wind modeling:

(a) formulated a mathematical framework that is able to accurately represent wind flow

using a low-complexity yet realistic stochastic model (see Chapter 2);



11

(b) implemented a computational framework based on the mathematical framework that

extracts statistical information from any given turbulence data and constructs an

easy-to-use model (see Chapter 2);

(c) applied the computational framework to three numerical examples (see Chapter 3).

2. Stochastic analysis of wind turbine:

(a) used the stochastic wind flow that was developed in this work performed wind turbine

simulation on a simplified wind turbine model (see Chapter 4);

(b) performed stochastic analysis on the simplified wind turbine model using adaptive

sparse grid collocation method (see Chapter 4);

(c) Incorporated stochastic material properties into a full-scale, 3D, complex geometry,

wind turbine rotor model (see Chapter 5);

(d) performed stochastic analysis, stress analysis, and failure analysis on the 3D wind

turbine model (see Chapter 5).
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CHAPTER 2. TEMPORAL SPATIAL DECOMPOSITION: AN

TURBULENCE SIMULATION METHOD

The motivation for this chapter is the fact that no single existing wind simulation method

can provide a data-driven model that seamlessly accounts for spatial variations, diurnal vari-

ations, and temporal correlations. To this end, an efficient method that leverages the huge

amount of meteorological data that is readily available will be very useful for various aspects

of wind turbine analysis. In this chapter, we develop a data-driven space-time parameteriza-

tion of any given large data set of wind to construct a low-dimensional yet realistic stochastic

wind flow model. The framework is based on a two-stage model reduction: Bi-orthogonal De-

composition (BD) followed by Karhunen-Loève expansion (KLE). The resulting time-resolved

stochastic model encodes most of the statistical properties in the given wind flow. Moreover,

the temporal modes encode the variation of wind speed in the mean sense and resolve temporal

correlation while the spatial modes provide deeper insight into spatial of the wind field - which

is a key aspect in current wind turbine sizing, design and classification. In addition, several

interesting ramifications of this low dimensional model are discussed. These include informa-

tion about the energy cascade, which is computed as correlations between random energy of

different spatial modes.

In the following part, section 2.1 focuses on constructing a low-complexity model of the

random wind flow. Bi-orthogonal Decomposition (BD) [70, 69] and Karhunen-Loève expansion

(KLE) [20] are used in constructing the low-dimensional wind model. The algorithmic details

of the computational framework is give in section 2.1.4. Finally, section 2.2 concludes this

chapter.
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2.1 Mathematical Framework

Denote by x = (x1, x2, x3) = (x, y, z) the three-dimensional coordinates with x, y, and z rep-

resents along-wind, transverse, and vertical axis respectively, Wind velocity v = (v1, v2, v3) =

(u, v, w) consists of three wind speed components along the three spatial axes. A stochastic

wind can be defined as v(x, t, ξ), where ξ = {ξi, i = 1, . . . , n} is a random vector associated

with the random field. It is worth noting that the random field described above is actually a

function v : X × T × Σ → R where X ⊆ Rd(d = 1, 2, 3) denotes the spatial domain, T ⊆ R

denotes the temporal domain and Σ is the sample space of a set of random variables ξ that is

related to the random field.

The analysis is clearer when the mean component v̄(x) of the velocity data is removed so

that only the fluctuation components u(x, t, ξ) are left, i.e.

u(x, t, ξ) = v(x, t, ξ)− v̄(x), . (2.1)

The mean component is defined as

v̄(x) =
1

|T|

∫
T
〈v(x, t, ξ)〉dt. (2.2)

where 〈·〉 denotes the average in the stochastic domain, |T| is the span of the temporal domain,

v̄ is the ensemble average.

The goal of this work is to construct a simple stochastic model that encodes

temporal and spatial covariance, and preserve all the statistical information, such

as spatial coherence and wind speed power spectral density (PSD), present in the

collected field measured data. We look for a model that has the form

u =
∑

KijkXi(x) Tj(t) ξk (2.3)

where Kijk are coefficients, the deterministic functions Xi track spatial correlations, Tj track

temporal correlations and the random variables ξk encode the inherent variability. The goal

becomes to find the simplest possible representation that still encodes all the required informa-

tion.
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The main idea of the next section is to formulate a mathematical strategy of representing

this meteorology data in terms of the smallest possible number of terms in Eqn. 2.3, by opti-

mally designing X, T , and ξ. Noting that the data contains spatial, temporal and stochastic

variabilities, we solve this problem in three stages. In the first stage, we decompose the data

into temporal (T (t)) and coupled spatial-stochastic (Φ(x, ξ)) parts through the concept of Bi-

orthogonal Decomposition; in the second part we decompose the spatial-stochastic part into

spatial (X(x)) and stochastic (ξ) components using the concept of the Karhunen-Loève decom-

position; the third stage focuses on estimating probability density functions of TSD generated

random variables.

2.1.1 Stage 1: a low-dimensional representation via bi-orthogonal decomposition

In the first stage, we are looking for a minimal representation of the data in the form

u(x, t, ξ) =
∑
i,j

KijΦi(x, ξ) Tj(t) (2.4)

where i and j are independent indices. Consequently, the expression on the right hand side has

an dramatically large number of terms. This is handled utilizing the Schmidt decomposition

theorem [57], which states that – any representation of a tensor product space H = H1 ⊗H2

can be expressed as linear combination of tensor product of basis functions Φi ⊗ Ψi, where

Φi ∈H1, Ψi ∈H2. As a result, the representation can be reduced to

u(x, t, ξ) ≈
M∑
i=1

KiΦi(x, ξ) Ti(t). (2.5)

where Φi(x, ξ) are stochastic spatial modes and Ti(t) are temporal modes.

Our goal becomes searching for the best choices for Φi and Ti such that the decomposition

uses the least number of terms M that will give us an accurate representation of u(x, t, ξ).

We pose this as an optimization problem. To do so, we define the error in this representation

and design Φi and Ti that minimize this error. The error, denoted by ε, is defined as the

low-complexity stochastic model subtracted from the true data

ε(x, t, ξ) = u(x, t, ξ)−
M∑
i=1

KiΦi(x, ξ) Ti(t). (2.6)
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Approximation theory suggest that the best choice for the functions Φi and Ti (we will also call

them modes) is when they are orthogonal to each other [29]. Thus, we set Ti, i = 1, . . . ,M to

be orthogonal to each other in the time domain and Φi, i = 1, . . . ,M to be weakly orthogonal

in spatial domain. Mathematically, this is denoted in terms of the inner products:

〈Ti, Tj〉T =

∫
T
Ti(t)Tj(t)dt = δij (2.7)

and

〈Φi,Φj〉X =

∫
X
Φi ·Φj dx = δij , (2.8)

where Φi denotes the expectation of the spatial-stochastic mode, i.e.

Φi(x) =

∫
Φi(x, ξ)W (ξ) dξ, (2.9)

and W (ξ) is the multivariate joint probability density of random variables in the set ξ.

Note that the error ε itself is an random field. We construct an associated scalar value with

this random field to accomplish subsequent optimization. To this end, an error functional E is

defined as the norm of ε, i.e.

E =

∫
T
〈ε, ε〉Xdt. (2.10)

The error-functional is simply the inner product (i.e. an average) of the field over space, time

and stochastic dimensions. Note that error functional depends on the choice of functions Ti(t)

and Φi(x, ξ), i.e. E [T1, · · · , TM ,Φ1, · · · ,ΦM ].

We now search for temporal functions that minimizes this error functional. This is ac-

complished by applying the calculus of variations and solving the associated Euler-Lagrange

equations [15]. We provide full details of the derivation as follows.

Theorem 1. (Euler’s equation) Let J [y] be a functional of the form∫ b

a
F (x, y, y′)dx, (2.11)

defined on the set of functions y(x) which have continuous first derivatives in [a, b] and satisfy

the boundary conditions y(a) = A, y(b) = B. Then a necessary condition for J [y] to have an

extremum for a given function y(x) is that y(x) satisfy Euler’s equation

Fy −
d

dx
Fy′ = 0 (2.12)
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The goal of BD is to minimize the error functional

E [T1, · · · , TM ] =

∫
T
〈ε, ε〉Xdt. (2.13)

Substituting representation error (Eqn. 2.6) in above equation yields

E [T1, · · · , TM ] =

∫
T

〈
u(x, t, ξ)−

M∑
i=1

KiΦi(x, ξ)Ti(t), u(x, t, ξ)−
M∑
j=1

KiΦj(x, ξ)Tj(t)

〉
X

dt

(2.14)

According to the definition in Eqn. 2.8, by taking the spatial inner product, the randomness

in Eqn. 2.14 is removed by the ensemble average operation, the error functional becomes

E [T1, · · · , TM ] =

∫
T

∫
X

[
u(x, t)−

M∑
i=1

KiΦi(x)Ti(t)

]  u(x, t)−
M∑
j=1

KjΦj(x)Tj(t)

 dx dt

=

∫
T

∫
X
u2(x, t)− 2u(x, t)

M∑
i=1

KiΦi(x)Ti(t) +

M∑
i=1

KiΦi(x)Ti(t)

M∑
j=1

KjΦj(x)Tj(t) dx dt

=

∫
T

∫
X
u2(x, t)− 2u(x, t)

M∑
i=1

KiΦi(x)Ti(t) +
M∑
i=1

K2
i Φ

2
i (x)T 2

i (t) dx dt

=

∫
T

[∫
X
u2(x, t)dx− 2

M∑
i=1

KiTi(t)

∫
X
u(x, t)Φi(x)dx+

M∑
i=1

K2
i T

2
i (t)

]
dt

=

∫
T
F (t, T1, · · · , TM , T ′1, · · · , T ′M )dt

where

F (t, T1, · · · , TM , T ′1, · · · , T ′M ) =

∫
X
u2(x, t)dx− 2

M∑
i=1

KiTi(t)

∫
X
u(x, t)Φi(x)dx+

M∑
i=1

K2
i T

2
i (t).

(2.15)

In above derivation, the orthogonality of basis functions Φi and Ti is applied. According to

Theorem 1, the error functional E [T1, · · · , TM ] has extremum when Ti satisfy Euler’s equations

FTi −
d

dx
FT ′

i
= 0. (2.16)

That is ∫
X
u(x, t)Φi(x)dx−KiTi(t) = 0, (2.17)
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where

Ti(t) =
1

Ki
〈u(x, t, ξ),Φi(x, ξ)〉X. (2.18)

Applying temporal inner product 〈·, Ti〉T to Bi-orthogonal Decomposition (Eqn. 2.5) and

considering the orthogonality of the temporal basis functions yields

Φi(x, ξ) =
1

Ki
〈u(x, t, ξ), Ti(t)〉T. (2.19)

Above two equations define a coupled relationship between Ti and Φi. Now that we have two

unknowns and two equations, they can be solved by substituting Eqn. 2.19 into Eqn. 2.18,

which results in eigenvalue problem for temporal modes

K2
i Ti(t) =

∫
T
C(t, t′)Ti(t

′)dt′, (2.20)

where C(t, t′) is called temporal covariance that can be obtained by taking the inner product

in spatial domain, i.e

C(t, t′) = 〈u(x, t, ξ), u(x, t′, ξ)〉X. (2.21)

Setting µi = K2
i , Eqn. 2.20 can be transformed to

µiTi(t) =

∫
T
C(t, t′)Ti(t

′)dt′, (2.22)

where µi and Ti(t) are eigenvalues and eigenfunctions of the covariance function C(t, t′). The

optimal choice of temporal modes Ti and Φi can be obtained by solving the eigenvalue problem.

Once µi and Ti are solved for, the spatial-stochastic functions are calculated using

Φi(x, ξ) =
1
√
µ
i

〈u(x, t, ξ), Ti(t)〉T. (2.23)

It should be mentioned that the first M (usually M ∼ 3−6) eigenvalues and eigenfunctions

usually represent the data exceedingly well [16]. Thus, the first stage of the decomposition of

the wind data results in representation involving temporal functions Ti and spatial-stochastic

functions Φ(x, ξ). Eqn. 2.5 now becomes

u(x, t, ξ) =

M∑
i=1

ai(x, ξ) Ti(t), (2.24)
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where

ai(x, ξ) = KiΦi(x, ξ) =
√
µi Φi(x, ξ). (2.25)

are spatial-stochastic modes.

Remark 1. We chose to decompose the data into spatial-stochastic and temporal parts in the

first stage of the decomposition. This decomposition is one of three possible decomposition

choices. These choices are enumerated in Table 2.1 where X, T, and Σ denote the spatial,

temporal, and stochastic domains respectively. Such decompositions have been explored in other

works. For instance, Venturi et al. [70, 69] investigated Type 1 decomposition. The decomposi-

tion suggested by Type 2 can be achieved by using generalized polynomial chaos [77, 78]. Type

3 decomposition is used in [46] to model uncertain cylinder wake. It can be shown that Type 1

and Type 3 decompositions will result in identical result.

Table 2.1 Choices for Bi-orthogonal Decomposition.
Type Space 1 Space 2

1 X×Σ T
2 X× T Σ

3 T×Σ X

Remark 2. The choice of the inner products (temporal Eqn. 2.7 and spatial-stochastic Eqn. 2.8)

affect the properties of the decomposition. In particular, there are several different ways in which

we can define an inner product over the spatial-stochastic modes (i.e. different ways to average

over space and stochastic dimensions). These include the following possibilities:

〈Φi,Φj〉0 =

∫
X
Φi ·Φj dx,

〈Φi,Φj〉1 =

∫
X
Φi ·Φj dx,

〈Φi,Φj〉2 =

∫
X
Φi ·Φj −Φi ·Φj dx,

The first inner-product (denoted by 〈·〉0) is a spatial integral of the product of expected values,

while the second inner-product (denoted by 〈·〉1 ) is the expectation of the spatial integral.

It can be shown that by taking inner products, 〈·〉h, of type h = 0, 1, 2, we obtain optimal

representations with respect to mean, second-order moment, and standard deviation of the data,
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respectively. We have chosen to focus on representation that is optimal in the mean sense [70].

2.1.2 Stage 2: Karhunen-Loève expansion of spatial stochastic modes

In this stage, we decompose the spatial-stochastic functions ai(x, ξ) into a spatial part and

a set of uncorrelated random variables. First, the mean of spatial-stochastic functions ā(x) are

removed so that only the fluctuation component is left for analysis.

α(x, ξ) = a(x, ξ)− ā(x). (2.26)

Following the rational of Bi-orthogonal Decomposition (Eqn. 2.5), our goal is to decompose

α(x, ξ) into a minimal set of linear combination of deterministic spatial functions and uncor-

related random variables, that is

α(x, ξ) ≈
N∑
i=1

Ci ξiXi(x). (2.27)

where Ci are coefficients of the expansion, ξi is a set of uncorrelated random variables, Xi

are deterministic spatial functions. We pose this decomposition problem as an optimization

problem, where the optimization problem is to minimize the error. The representation error is

defined as

ε = α(x, ξ)−
N∑
i=1

Ci ξiXi(x) (2.28)

This is a standard formulation of the Karhunen-Loève expansion. The goal of KLE is to find

the optimal choice for functions Xi such that the representation error is minimized with a

finite number (N) of expansion terms. We briefly describe the mathematical framework of

KLE below [20]: The representation error is converted into a cost-functional for optimization

by simply considering the mean-square error (i.e. the inner-product)

E 2 =

∫
X
ε2 dx. (2.29)

Minimization of the error-functional results in an eigenvalue problem, whose eigenfunctions are

the desired spatial functions Xi∫
X
R(x1,x2)Xi(x2) dx1 = C2

i Xi(x2), (2.30)
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where R(x1,x2) is the covariance kernel constructed from the spatial-stochastic functions

α(x, ξ). We denote C2
i = λi so that λi and Xi(x) are the eigenvalues and the eigenvectors of

the covariance kernel. Eqn. 2.27 becomes

α(x, ξ) ≈
N∑
i=1

√
λi ξiXi(x). (2.31)

In order to solve the eigen-problem (Eqn. 2.30), the covariance kernel must be given or

calculated from measured data. The Wiener-Khinchin theorem allows computing the covariance

in a very efficient way.

Given realizations of the spatial-stochastic mode, i.e. α(x), the covariance, R, can be

computed as:

R = F−1(F (α)×F (α)′). (2.32)

where F (α)′ is the complex conjugate of Fourier transform of α, and the diagonal entries of

R contains the covariance.

To solve Eqn. 2.30 numerically, the equation should be discretized first. To this end, eigen-

function can be approximated by linear combination of N basis functions [20]

Xk(x) =
N∑
i=1

d
(k)
i hi(x). (2.33)

Substitute above equation to the eigen-equation and set the error to be orthogonal to each

basis function yields

N∑
i=1

d
(k)
i

[∫
X

[∫
X
R(x1,x2)hi(x2)dx2

]
hj(x1)dx1 − λn

∫
X
hi(x)hj(x)dx

]
= 0. (2.34)

Above equation can be written in matrices form

AD = BDΛ. (2.35)

Aij =

∫
X

∫
X
R(x1,x2)hi(x1)hj(x2)dx1dx2. (2.36)

Bij =

∫
X
hi(x)hj(x)dx =

∫
X
HT (x)H(x)dx. (2.37)

Dij = d
(j)
i . (2.38)

Λij = δijλi. (2.39)
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where H(x) = (h1(x), h2(x), · · · , hN (x)). Matrix A can be rewritten as

A =

∫
X

∫
X
HT (x1)R(x1,x2)H(x2)dx1dx2

=

∫
X

∫
X
HT (x1)H(x1)RH

T (x2)H(x2)dx1dx2

=

∫
X
HT (x1)H(x1)dx1R

∫
X
HT (x2)H(x2)dx2

= BRB.

and

R(xk,xl) =

N∑
i=1

N∑
j=1

hi(xk)Rijhi(xl)

= hk(xk)Rklhl(xl)

= Rkl.

2.1.3 Stage 3: density estimation

The final step of the formulation is to identify the probability distributions of the uncorre-

lated random variables ξi. Note that we have same number of realizations of ξi as the number

of random samples of the stochastic wind. Each realization is computed by inverting Eqn. 2.31

for ξi:

ξi =
1√
λi

∫
X
αXi(x)dx. (2.40)

Density estimation is a process of estimating the probability density function (PDF) of an

undefined stochastic process based on observed data. Many approaches to density estimation

have been developed, which can roughly be divided into two categories, namely parametric

estimation and non-parametric estimation. Maximum likelihood estimation (MLE)[11] and

Bayesian estimation[17] are two examples of parametric estimation. In MLE, the parameters

of the targeting distribution are assumed as fixed but unknown. Then the parameters are

found with certain optimization method such that the resulting PDF best describes the data

observation. Bayesian estimation assumes the parameters are random variables with some

known priori distributions. The distribution of the undefined process can be calculated using

theorem of total probability and Bayes rule. To perform these methods, whether the targeting
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distribution or the prior density of parameter need to be known, which is usually not given or

easily constructed. In this case, non-parametric density estimation can be used.

The simplest form of non-parametric density estimation is histogram which has drawbacks,

such as discontinuity, dependence on the starting position, and the dependence of the number

of samples. To avoid these shortcomings, more advanced approaches have been developed. The

general expression for non-parametric density estimation is

p(x) ∼=
k

NV
, (2.41)

where V is the volume surrounding x, N is the total number of samples, k is the number of

examples inside V . Choosing a fixed value of k and determine the corresponding volume V from

the data yields the k Nearest Neighbor (kNN) approach[14]. On the other hand, if choosing a

fixed value of V and determine k from the data, Kernel Density Estimation (KDE) is resulted.

A good introduction of KDE could be found in[58].

With respect to addressing stochasticity in wind, all wind simulation methods can be divided

into two categories, i.e. parametric and nonparametric methods. All methods discussed in the

introduction section use parametric methods. In most cases, the probability density function

of the velocity fluctuations in homogeneous turbulence is assumed to be Gaussian or sub-

Gaussian [31]. Although this assumption is often valid for most of the physical phenomena

(including wind at a flat terrain) in nature, it is not necessarily true in the case of complicated

terrain. On the other hand, although nonparametric methods are robust and easy to implement,

its accuracy strongly depends on number of available data samples.

In this research, a nonparametric method, named kernel density estimation (KDE), is used

to describe the stochasticity of the turbulence. It is worth noting that the applicability of the

framework developed in this context should not depend on the choice of density estimation

techniques. The choice of technique to construct the probability distribution of ξi given a

finite number of observations of ξi is crucial. We utilize Kernel Density Estimation (KDE)

methods [58] to construct the probability distributions of ξi in a non-parametric way.

In KDE, the PDF of a random variable ξ is estimated as

p(ξ) =
1

Nh

N∑
i=1

K

(
ξ − ξi
h

)
, (2.42)
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where K(·) is the kernel which is a symmetric function that integrates to one, and h > 0 is

a smoothing parameter called the bandwidth. Common choices for K(·) are the multivariate

Gaussian density function. The choice of the bandwidth is critical since a small values of

h result in the estimated density with many ’wiggles’, while large values of h result in very

smooth estimations that do not represent the local distributions. Several approaches have been

developed to chose proper h values. A good review on bandwidth selection can be found in [64].

We advocate using a simple formula based on Silverman’s rule [60]. The optimal choice for h

according to Silverman’s rule is given by

h =

(
4σ̂

3N

) 1
5

≈ 1.06σ̂n−
1
5 , (2.43)

where σ̂ is the standard deviation of the samples.

Based on above three techniques, we are now able to construct space-time decomposition of

the wind filed snapshots and preserve the spatial and temporal correlations. In next chapter,

we look at an numerical example that illustrate the power of this framework.

2.1.4 Algorithm & implementation

The algorithmic details of the framework is outlined in Table 2.2. The matrix of wind

flow snapshots is first constructed. The temporal covariance matrix is calculated from the

snapshot matrix and stored as a datafile. Next, the eigenvalue problem (corresponding to the

Bi-orthogonal Decomposition) is solved to get temporal and spatial-stochastic modes. Fol-

lowing this, the spatial-stochastic modes are decomposed into spatial functions and uncorre-

lated random variables via the Karhunen-Loève expansion. This is accomplished by solving an

eigenvalue problem. The eigenvectors computed are the spatial functions and they are used to

compute realizations of the uncorrelated random variables (via Eqn. 2.40). Finally, a Kernel

Density Estimator is used to construct the PDFs of random variables ξij . At this time, all the

necessary elements for constructing synthetic wind flow were known. Finally, synthetic wind re-

alizations are constructed by reversing above process. The complete framework is implemented

in C++. SLEPc [26], which is based on PETSc [5], was used in solving eigenvalue problems.

The complete framework can be downloaded from this URL [23].
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Table 2.2 Steps of computational framework.

1. Data preparation

(a) Construct matrix of wind speed field snapshots from given data

2. Bi-orthogonal Decomposition

(a) Calculate temporal covariance from snapshots matrix

(b) Solve eigenvalue problem, get eigenvalues and eigenfunctions

(temporal modes)

(c) Solve spatial stochastic modes

3. Karhunen-Loève expansion

(a) Calculate covariance kernel of each spatial mode (M spatial modes

in total)

(b) Solve eigenvalue problem for each spatial mode, get basis spatial

functions

(c) Calculate observations of each random variable ξij based on

Eqn. 2.40

4. Kernel density estimation

(a) Estimate PDF for each random variable ξij based on observations

5. Construct synthetic wind flow

(a) Get random samples from random variables ξij

(b) Construct stochastic spatial modes according to Eqn. 2.31

(c) Construct synthetic wind flow using Eqn. 2.5
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2.2 Discussion and Conclusion

Incorporating the effects of randomness in wind is critical for a variety of application in-

volving wind energy. Continuous advances in data-sensing and meteorology has made possible

the availability of large data-sets of location-, topography-, diurnal-, and seasonal sensitive

meteorology data. While this data contains rich information, ease of use is bottlenecked by

the unwieldy data-sizes. A pressing challenge is to utilize this data to construct a location-

, topography-, diurnal-, and seasonal-, dependent low-complexity model that is easy to use

and store. We formulate a data-driven mathematical framework that is capable of represent-

ing the spatial- and temporal- correlations as well as the inherent randomness of wind into

a low-complexity parametrization. We leverage data-driven decomposition strategies like Bi-

orthogonal Decomposition and Karhunen-Loève expansion for constructing the low-complexity

model. We provide a software package that can be used to construct the low-complexity model

to the community.
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CHAPTER 3. NUMERICAL EXAMPLES OF TSD

Chapter 2 provides data-driven low-complexity turbulence simulation tool that is powerful

in representing location- and topography specific wind given comprehensive wind field measure-

ment. In this chapter, we test the framework by providing three numerical examples. Analysis

on the examples include generating synthetic stochastic wind flow and comparing several wind

turbulence statistics between synthetic and original flows.

3.1 Numerical Example 1: CWEX-11

First, we illustrate the methodology based on a recent meteorological experiment named

CEWX-11. CWEX-11 is a collaborative experiment (Iowa State University (ISU) and the Uni-

versity of Colorado (UC), assisted by the National Center for Atmospheric Research (NCAR)).

CWEX-11 and its 2010 counterpart (CWEX-10) in the Crop Wind-energy EXperiment, ad-

dress observational evidence for the interaction between large wind farms, crop agriculture, and

surface-layer, boundary-layer, and mesoscale meteorology [52].

3.1.1 Experiment setup

In the experiment, a surface flux station was installed to the south of a wind turbine,

which makes the station measure upstream inflow of the wind turbine due to the fact that

predominant summer winds in Iowa originate from south to slightly south-east. The surface

station was equipped with a CSAT3 sonic anemometer that was located at height 4.5 m and an

RMY propeller and vane anemometer that was located at height 10.0 m. The former measured

wind speed in 3 directions at 20 Hz whereas the latter gave wind speed amplitude and its
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direction at 1 Hz. The experiment started on June 29 and lasted for 48 days.1

A schematic of the experiment is shown in Fig. 3.1. Note that the figure is for illustrative

purpose and is not drawn to scale. In this experiment, only wind speed magnitude was analyzed,

but it is straightforward to perform analysis on any one of the three components of turbulence.

Stochastic 

wind load 

NCAR 

surface flux 

station 

,v t   x ξ

z 

x 
y 

( , )x zx

Figure 3.1 Setup of experiment

Ideally, we would like to have multiple wind field snapshots taken at regular intervals on a

vertical plane that is perpendicular to the rotor. However, due to the constrain of the experi-

ment, only two time-series were measured at heights 4.5 m and 10.0 m. Linear interpolation of

the two time-series at 18 spatial points on z direction were performed to simulate more vertical

measurements. The wind snapshots are constructed by using Taylor’s frozen turbulence hy-

pothesis [62]. Specifically, all measurements in the resulting 20 time-series over certain interval

were treated as if they were taken at the same instant in the interval. This would provide us

along-wind (x direction) measurements. Finally, one 2D snapshot taken at certain instant is

constructed2. Similarly, snapshots of the wind field at other instants were created to represent

one full day of measurements. We have data for 28 such days. The full meteorology data

1Excluding the days that mostly have opposite wind direction and the days with sudden rain, only data for
28 days that had the desired weather condition and wind direction were used in the analysis.

2Since no measurements were taken in transverse direction, only 2D wind field is analyzed in this analysis.
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curated into this form can be represented as following matrix

v11(x, z) v12(x, z) · · · v1m(x, z)

v21(x, z) v22(x, z) · · · v2m(x, z)

...
...

...

vn1(x, z) vn2(x, z) · · · vnm(x, z)

In the matrix, each element {vij(x, z), i = 1, 2, · · · ,m; j = 1, 2, · · · , n} represents a snapshot

of wind field. Each column contains snapshots that span an entire day. Each row represents

data for a particular interval measured over different days. Thus, each row of data can be

considered to be realizations of the stochastic wind field at a particular interval.

It is noteworthy that the length of time interval that was used to obtain wind field snapshots

can be arbitrarily chosen. Although, most guidelines for wind turbine design and siting suggest

considering wind variabilities over a period of 10 minutes for wind data analysis [18], in this

example, analysis based on different choices of time intervals were performed and compared.

In the results section, we will show that using 10 minutes time interval to construct wind field

snapshots is a reasonable choice.

The meteorological data is provided in the common NetCDF (Network Common Data

Form) format. The original meteorological data contains a variety of information, including

wind speed and orientation, temperature, humidity, surface CO2 flux. For this analysis we only

consider the wind speed data. The wind speed data is extracted from the NetCDF file using

MATLAB. TSD software package is then used to perform the decomposition and construct

synthetic wind flow.

3.1.2 BD results

As discussed previously, CWEX-11 meteorological data consists of wind speed amplitude

measured at 1 Hz over 28 days. Snapshots curated based on 10 minutes interval are used first

and the reason of doing so is going to be explained in the following part. As a result, there are

144 snapshots in one day and we have 28 such days (samples). We will describe the stage wise

construction of the low-dimensional model and its accuracy in the next few subsections.
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The mean component of the flow that is averaged across all 144 snapshots and 28 realizations

according to Eqn. 2.2 is shown in Fig. 3.2. This plot shows us the mean wind profile such as

vertical wind shear load. Note that the x-axis represents length of the snapshots that was

calculated based on 10 minute interval and average wind speed.

Figure 3.2 10 minute period, averaged across all 144 time intervals and 28 realizations

The temporal covariance are calculated based on Eqn. 2.21. By taking the inner products

across the spatial domain, we construct the covariance function C(t, t′) which is shown in

Fig. 3.3. Note that C has block structure, with regions of high covariance (marked by the solid

boxes) along the diagonal and regions of large negative covariance along the off-diagonal. This

structure of the covariance function follows the dynamics of stable, and unstable stratification

of the atmospheric boundary layer seen in the US central plains. We discuss this by dividing the

analysis into several distinct time periods (marked by the solid boxes). Following meteorological

practice, the data starts at Coordinated Universal Time (UTC, or Greenwich time) 00:00. The

first period is UTC 00:00-06:00 (CST 18:00-00:00) which corresponds to the time between

sunset to midnight. In this period, insolation and, thus, heating is gradually cut off and the

temperature of atmosphere cools down (from the ground up) due to rapid cooling of the ground.

Because of the heavier density of the cooler air, the cooler air stays at the bottom (close to

the surface). This generates a stably stratified boundary layer that does not change during

the duration of the night. This results in the high covariance between adjacent time periods

marked in the lower left box. The second period is the region of reduced covariance between

UTC 06:00-13:00 which is basically the time from midnight to shortly after sunrise. During
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summer, the nocturnal Great Plains low-level jet (LLJ) exists in Iowa. For a good overview

of LLJ, see [30]. The LLJ causes low level turbulence and enhanced mixing which reduces

the covariance between adjacent-time wind fields. The third time period is between UTC

13:00-00:00 which corresponds to sunrise and day time. Because of the sunrise, the ground is

rapidly heated. As a result, the warmer air near the ground becomes buoyant and rises rapidly

with its place being taken by compensating flow of colder air from higher up in the atmospheric

boundary layer. Eddies are thereby created, changing from smaller scale to larger scales, finally

becoming the circulatory motion that crosses the entire boundary layer so that the high speed

free stream flow is brought in the circulation. This phenomenon usually happens at noon,

which can also be found in Fig. 3.5 at UTC 18:00. In addition, the covariance function exhibits

periodic behavior that is caused by the periodical motion of eddies.

Daytime Sunset  to midnight 

Figure 3.3 Covariance function C(t, t′)

The temporal covariance function plays a very important role in this analysis since it pro-

vides almost all the needed information that describes the behavior of the wind flow. Compared

to the original meteorological data, the temporal covariance is much easier to store and trans-

mit, yet contains nearly the same amount of information as the original meteorological data.
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The eigenvalues of the temporal covariance function are shown in Fig 3.4. Fig 3.4(a) compares

the relative magnitudes of eigenvalues; the magnitudes of the eigenvalues provide a notion of

how much energy about the data is stored in each spatial mode [27]. Notice that the first

eigenvalue is much larger than the other subsequent eigenvalues, which means the first mode

contains largest portion of the energy in the turbulence field. In Fig 3.4(b) this is represented

as the cumulative fraction of energy contained in the first k modes. This plot provides us with

a precise notion of how many terms are needed to incorporate [27], say, 90% of the information

available in the data into the low-complexity model. The first five eigenvalues cover about 90

% of the total energy of the turbulence field, which ensures that a five term decomposition

will have a 90% accuracy of representation. This illustrates the advantage of Bi-orthogonal

Decomposition. As a reduced order model, Bi-orthogonal Decomposition is able to represent

a random flow with much fewer random modes compared to the number of original snapshots.

In other words, by using BD, we reduced the terms in representing the given stochastic random

flow from 144 snapshots to a simple 5-variable parametrization.

(a) (b) 

Figure 3.4 Spectrum of C(t, t′)

Fig. 3.5 shows the first three eigenfunctions of C(t, t′). Note that the eigenfunctions are

the temporal functions Ti. They track how the fluctuation component of the random flow

varies during a day. Based on the plot, the largest mean (and standard deviation, which is

not reported here) of wind speed occurs at UTC 18:00 because of the reason stated previously.
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From Fig. 3.4, we notice that the first mode carries about 85% of the total energy in the

turbulence. Therefore, the trend of diurnal fluctuation of the turbulence field can be mostly

seen in the first temporal mode, with the next two temporal modes look like white noise. Once

2	

 3	



Figure 3.5 First three eigenvectors of temporal covariance function

eigenvalues and eigenvectors for temporal covariance function are solved, the spatial-stochastic

modes ai(x, ξ) can be constructed (Eqn. 2.23 and Eqn. 2.25). Fig. 3.6 shows the expectation

of the first three spatial modes. It is clear that the first spatial mode that carries the largest

part of turbulence energy describes the vertical shear pattern, while the second mode describes

the lateral shear pattern of the wind field. Higher modes that account for more complicated

turbulence structures are insignificant since they contain limited turbulence energy.

Based on Remark 2, different choices of inner products result in optimal representation

with respect to different statistical properties of turbulence. For the sake of illustration, BD

results calculated by using inner product h = 2 are shown in Fig. 3.7, 3.8, 3.9, and 3.10. It

is worth noting that by choosing inner product 〈·〉2, we are solving the eigenvalue problem

with a different covariance kernel. The diagonal of Fig. 3.7 represents the (spatial) average

of the flow standard deviation [70]. It can be seen that the maximum standard deviation

occurs at UTC 18:00 which is the same time as maximum mean wind speed occurs (see in

Fig 3.3). In addition, Fig. 3.8 shows that in order to get 90% of representation accuracy with

respect to higher order statistics of turbulence, much more eigenvalues are needed. The first

three eigenvectors (temporal modes) are shown in Fig. 3.9. Unlike Fig. 3.5 that corresponds

to the case of h = 0, where the second and third temporal modes are “white noises”, all three

temporal modes have apparent trends of wind speed fluctuation. This is because the first
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Figure 3.6 Stochastic spatial modes of C(t, t′)

three eigenvalues only preserve 55% of total energy, which means none of them dominates the

turbulence. Similar result is shown in Fig. 3.10 all three spatial modes contribute to the vertical

sheer load.

Although analysis based on inner product type h = 2 shows many interesting results, when

it comes to the resulted synthetic wind flow, we found that it is very similar to the case of

h = 0. In fact, the two simulated flows only differ at the accuracies when representing the

random flow for different applications. Therefore, in the following context, only the results

using inner product h = 0 are shown.

3.1.3 KLE results

Using the technique introduced in section 2.1.2, the spatial-stochastic modes are decom-

posed into deterministic modes and random variables. KLE results of the first three spatial

modes are shown in Table 3.1. Covariance matrices, eigenvalues, deterministic spatial modes,

and probably distributions of random variables are shown in the table from top to bottom. As
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Figure 3.7 Covariance function C(2)(t, t′)

(a) (b) 

Figure 3.8 Spectrum of C(2)(t, t′)

Figure 3.9 First three eigenvectors of C(2)(t, t′)
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Figure 3.10 Stochastic spatial modes of C(t, t′)

discussed in Sec. 2.1.3, the distributions of ξij are estimated by using KDE.

From Fig. 3.6 we notice that as the mode order increases, the complexity of spatial mode

also grows. As a result, higher order spatial modes require more KLE terms to be accurately

represented. This statement can be verified by comparing results of the first three spatial

modes. For instance, the smoothness of the covariance kernels, the complexity of deterministic

modes, and the required numbers of KLE terms to achieve 90% of representation accuracies all

increases as the mode number becomes higher.

It is worth to mention that the PDFs of ξij are not always Gaussian. Although Gaussian

assumption is commonly used in turbulence analysis, it is seen from Fig. 3.1 that Gaussian

assumption may not always be valid. Notice that each random sample corresponds to one day

wind history, the randomness of this long term stochastic process may be different from the

randomness of the more commonly used 10-minute average wind speed whose distribution is

always regarded as Gaussian or Weibull.



36
a
1
(x
,ξ

)
a
2
(x
,ξ

)
a
3
(x
,ξ

)

(a
) 

(b
) 

(a
) 

(b
) 

(a
) 

(b
) 

X 1
	



X 2
	



X 3
	



X 1
	



X 3
	



X 2
	



X 1
	



X 3
	



X 2
	



T
ab

le
3.

1
K

L
E

re
su

lt
s

of
th

e
fi

rs
t

th
re

e
sp

at
ia

l
m

o
d

es



37

3.1.4 The low-complexity wind model

The above two stages result in the calculation of the temporal functions, Ti(t) (from Bi-

orthogonal Decomposition), the spatial functions (Xi
j(x)) (from KLE decomposition), and the

uncorrelated random variables, ξij (from the KDE fitting).3 Putting it all together gives us the

low-complexity model for the wind

u(x, t, ξ) =
∑

Kij Ti(t)X
i
j(x)ξij (3.1)

Note thatXi
j and Ti are deterministic functions that encode spatial and temporal correlations of

the wind. Different realizations (or stochasticity) of the wind is included into the low-complexity

model via the uncorrelated random variables, ξij . Note that the probability distributions of ξij

are constructed in a data-driven way from the meteorology data. As we will show in the results

section, only a few terms (M = 3) are required to reconstruct a synthetic wind snapshot

that contains all the temporal and spatial correlations exhibited by the original

data. Fig. 3.11 gives a graphical description of this process. Synthetic wind snapshots exactly

mimicking the meteorological data can be constructed by sampling from the distributions of

the random variables, ξij . Interestingly, only 800 KB of storage space is needed to store all the

necessary information of the reduced-order model, whereas more than 200 MB of storage space

is needed to store all the wind flow snapshots that are used in the analysis! This demonstrates

the advantage of the low-complexity model in terms of data size.

3.1.5 Statistical comparison

As discussed previously, to get 90% representation accuracy, five terms in Bi-orthogonal

Decomposition and seven terms in Karhunen-Loève Expansion are needed. However, for the

purpose of demonstration, 1-, 3-, and 10-term BD and three terms in KLE for each BD term

were used in the analysis. In order to quantify the accuracy, 28 realizations (same as the

number of samples of meteorological data set) of the synthetic wind flow are generated. Each

realization is a 24-hour wind data consisting of 144 ten-minute snapshots (see Fig. 3.11 for one

24 hour synthetic dataset).

3The superscript in Xi
j(x) and ξij represents the index of Bi-orthogonal Decomposition terms whereas the

subscript denotes the index of KLE terms.
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Figure 3.11 The low-complexity model: Process of constructing synthetic wind snapshots

In Fig. 3.12, realizations of the stochastic flow at height 10.0 m using one, three, and ten

spatial modes are compared. Result shows that when smaller number of terms are used, the low

frequency characteristics of the turbulence can be represented accurately. However, in order to

describe high frequency behavior, higher modes in BD must be used.

One of the most important variables of turbulence is the power spectral density (PSD)

that describes how the energy in turbulence is distributed to different frequency spectrum.

To verify the similarity of the reconstructed wind flow and the meteorological data, their

PSD functions are compared in Fig. 3.13 (a). The figure shows that the synthetic wind flow

accurately reproduces energy in low frequency region. However, more terms need to be used

in the representation to preserve energy in high frequency region. It is worth to mention that

compare with POD method, even with only one BD mode, the synthetic wind mimics the true

data in great detail.

Coherence spectrum is another important variable that describes the similarity of turbulence

at two different spatial locations. Comparison of coherences between same set of time-series

used in PSD analysis is given in Fig. 3.13 (b). Note that using only one BD mode, the synthetic

wind can still preserve most of the spatial coherence information. This can be explained by

the advantages of STD. Since STD performs orthogonal decompositions of both temporal and
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Figure 3.12 Realizations of the stochastic flow

spatial covariances, the temporal variations and spatial correlations are preserved in an optimal

way.

As previously mentioned, there are different choices of time intervals when constructing

wind flow snapshots. In above content, only analysis on 10 minute snapshot was performed.

The reason for choosing 10 minute snapshot can be demonstrated by comparing PSDs and

coherences of the synthetic turbulence using different choices of time interval averaging pro-

cesses. Fig. 3.14 shows results of such analysis. Since the accuracy of PSDs of synthetic wind

only depends on how many total terms in the decomposition, there is no apparent difference

in PSDs of different choices of time intervals. On the other hand, comparison of coherences

tells us if performing analysis on snapshots that are constructed from less than 10 minute field,

important information in turbulence coherence will be lost. Coherences correspond to 10, 15,

and 20 minute snapshots are very close, which means the additional turbulence data provided

by 15 and 20 minute snapshots, comparing to 10 minute snapshot, does not contain much more

coherence information. This result is consistent with GL guideline that states the coherence

structure in turbulence can be assumed to be unchanged in 10 minutes period of time [18].

According to Fig. 3.4, certain number of spatial modes are needed to achieve a desired
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(a) (b) 

Figure 3.13 PSDs and coherences of the synthetic turbulence at 10 m using one, three, and
ten modes compared with original flow

representation accuracy. On the other hand, the number of random inputs to the reduced order

model equals the number of spatial points on each snapshot. By using different choices of time

intervals, the resulting snapshots have different dimensions. Table 3.2 shows the relationship

between the number of random inputs and the number of needed spatial modes for certain level

of accuracy. Based on the table, when the number of random inputs increases by 20 times,

the needed random spatial modes to achieve 94% of accuracy only increases from 3 to 8. In

other words, the required number of spatial modes does not strongly depend on

the number of random inputs, which makes TSD to be practical for problems with

very large stochastic dimensions.

Table 3.2 Relationship between the number of random spatial modes (94% accuracy) and the
number of random inputs.

Number of random inputs 1200 6000 12000 18000 24000

Number of spatial modes 3 5 6 7 8

Finally, since the temporal covariance contains important temporal information, it is worth

to compare the temporal covariances of the source and synthetic winds. The temporal covari-

ance function of synthetic data Ĉ(t, t′) is constructed by using the 28 simulated realizations

of the synthetic random flow. Comparing it with the temporal covariance of the original data
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(a) (b) 

Figure 3.14 Comparing PSDs and coherences of the synthetic turbulence using different
choices of snapshot

reveals that they have almost identical pattern. The temporal error (or the information loss)

(a) (b) 

Figure 3.15 Comparison of covariance functions of original (a) and synthetic (b) flows

can be defined as the L2-norm of the difference between the covariance functions:

ε =
‖ C − Ĉ ‖2
‖ C ‖2

=

(∑n
i=1

∑n
j=1 | C(ti, tj)− Ĉ(ti, tj) |2∑n
i=1

∑n
j=1 | C(ti, tj) |2

)1/2

. (3.2)

where n = 144 is the number of snapshots in 24 hours. The temporal information-loss using

a 9-term expansion is 2.25%. Thus, a 9-term data-driven expansion reproduces the temporal

and spatial covariance of the original meteorological data to 97.75% accuracy.
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The spatial and temporal functions used in the construction of the low-complexity model

provide significant insight into the structure of the wind field. For example, each spatial-

stochastic mode describes the wind field at different grades of detail [27]. The (stochastic)

kinetic energy contained in each spatial-stochastic mode is defined as

θi =
1

2

∫
X

[ak(x, ξ)]2 dx. (3.3)

This allows us to calculate the correlation between the kinetic energy content across different

spatial-stochastic modes

CKE(i, j) =
θiθj − θi θj
σθiσθj

, (3.4)

where σθi is the standard deviation of the random energy of ith spatial stochastic mode. The

correlation provide information about how different spatial-stochastic modes exchange energy

(i.e. how kinetic energy cascades across length scales). A high correlation between two modes

means the energy transition between them is prominent. The mean value and standard devia-

tion of the kinetic energy of different spatial modes are shown in Fig. 3.16.
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Figure 3.16 Kinetic Energy of Spatial Modes.

Correlation between the different spatial-stochastic modes is shown in Fig. 3.17. Interest-

ingly, the energy cascade occurs between consecutive and also some prominent non-consecutive

modes. For example, it can be seen that the energy transfer from both the first and second

modes mainly transfer to the fourth mode, which explains the reason that the kinetic energy

of the fourth mode is larger than the third mode (see Fig. 3.16).
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Figure 3.17 Correlation of random energy of spatial modes.

3.2 Numerical Example 2: CWEX-10

One of the challenges in wind farm commissioning is the social acceptance of onshore wind

turbines. Wüstenhagen et al. defined three dimensions of social acceptance, namely socio-

political acceptance, community acceptance and market acceptance [73]. Specifically, the com-

munity acceptance refers to the public opinion to wind energy project. Although people usually

have positive attitudes about wind energy in general, they tend to resist wind projects dur-

ing the actual on-site planning process with the so called NIMBY (Not In My Back Yard)

argument. In fact, the public acceptance of wind projects is influenced by many factors. For

example, the financial benefit to the community, the impact of wind farm to public activities,

and the awareness of the local population to the benefits and impacts of wind facilities [32].

The impacts of wind farm on environment, wildlife, and people’s ordinary life are among the

most concerns of the community. The impact of wind turbines on wildlife (birds and bats) has

been well studied in [6, 3]. Visual impact (disturbance) of wind turbine is investigated in [10].

A good review on wind turbine acoustic noise is given in [54].

On the other hand, despite the fact that most of the land-based wind resources are located

in the states that contain a lot of farmlands, the effect of wind farm on crops is still unclear.

It is important to investigate the upwind and downwind variation in air conditions to assess
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the impact of wind turbines on crops. This necessitates a realistic parameterization of air flow

that encodes location-, topography-, diurnal-, seasonal and stochastic affects. However, such a

parameterization is useful in practice only if it is relatively simple (low-dimensional). Interest-

ingly, the data to construct such models are available at various resolutions from meteorological

measurements. Such meteorology data contain rich information about location- and topogra-

phy specific temperature, H2O, and CO2 concentration data which are important factors in air

flow that would affect crop’s growth. In this section, we utilized the data-driven framework

developed previously to generate space-time parameterizations of the large scale meteorology

data measured at upwind and downwind meteorology towers. Comparing the two parameter-

izations gave us deeper understanding of how wind turbine may variate CO2 concentration in

air flow.

3.2.1 Experiment setup

The data to construct the stochastic model of wind is based on meteorological data mea-

sured by the CWEX-10 that addresses observational evidence for the interaction between large

wind farms, crop agriculture, and surface-layer, boundary-layer, and mesoscale meteorology

(Rajewski et al. 2012) [52]. In the experiment, a surface concentration station (NLAE 1, where

NLAE is the abbreviation of National Laboratory for Agriculture and the Environment) was

installed 4.5 D (D denotes turbine’s rotor diameter) to the south of a wind turbine, which makes

the station measure upstream inflow of the wind turbine due to the fact that predominant sum-

mer winds in Iowa originate from south to slightly south-east. Three downwind concentration

towers (NLAE 2, NLAE 3, and NLAE 4) were placed at 2.5 D, 17 D, and 35 D, respectively,

north of the wind turbine. Since the NLAE 3 and NLAE 4 did not measure H2O and CO2,

measurements of surface concentrations at height 6.45m from the NLAE 1 and NLAE 2 are

used in current analysis. The meteorological data consisted of high-speed (20 Hz) velocity,

temperature, CO2 and moisture measurements upwind and downwind of a working 1.5 MW

turbine taken over two months.

Similar to the CWEX-11 example, the meteorology data is curated into a set of time-series

vectors. To exclude the effects of environmental factors to the wind field and to make sure
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NLAE 1 is upwind tower, days with rain, wrong wind direction, and invalid measurements are

taken out from the original data set. As a result, 15 days of measurements are left for analysis.

In this work, CO2 surface concentrations data consisting of certain duration of measurements

are treated as one snapshot of the time-series. The full meteorology data curated into this form

can be represented as a matrix

ϑ11(x) ϑ12(x) · · · ϑ1m(x)

ϑ21(x) ϑ22(x) · · · ϑ2m(x)

...
...

...

ϑn1(x) ϑn2(x) · · · ϑnm(x)

In the matrix, each element {ϑij(x), i = 1, 2, · · · ,m; j = 1, 2, · · · , n} represents a snapshot

of surface concentration time-series. Each column contains snapshots that span an entire day.

Each row represents data for a particular time interval measured over different days. Thus, each

row of data can be considered to be realizations of the stochastic wind flow at a particular time

interval. This naturally motivates us to consider the wind flow as a one-dimensional random

field with spatial and temporal variations, ϑ(x, t; ξ), where x, t, and ξ represents the spatial

domain, temporal domain, and stochastic variability respectively.

The analysis is clearer when the mean component ϑ̄(x) of the data is removed so that only

the fluctuation components θ(x, t, ξ) are left, i.e.

θ(x, t, ξ) = ϑ(x, t, ξ)− ϑ̄(x), (3.5)

where the mean component is defined as

ϑ̄(x) =
1

|T|

∫
T
ϑ(x, t, ξ)dt. (3.6)

and |T | is the total time, i.e 24 hours, for one realization.

BD of ϑ is given in the following equation

ϑ(x, t, ξ) ≈ ϑ̄(x) +

M∑
i=1

√
µiΦi(x, ξ) Ti(t). (3.7)

where Φi(x, ξ), i = 1, . . . ,M are stochastic spatial modes that are weakly orthogonal in the

time domain and Ti(t) i = 1, . . . ,M are temporal modes that are orthogonal in spatial domain,

and
√
µi are coefficients.
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In Eqn. 3.7, ϑ̄(x) represents the mean component and the second term on the right hand

side represents the fluctuation part of the quantity of interest in the flow. The variance of the

quantity of interest can be defined as

V ar(ϑ) = E[(ϑ− ϑ̄)2]

= E

( M∑
i=1

√
µiΦi(x, ξ) Ti(t)

)2


=

M∑
i=1

µi (3.8)

where we utilized the orthogonality of temporal and spatial modes.

3.2.2 Result: CO2 uptake

Currently, most guidelines for wind turbine design and siting suggest considering wind

variabilities over a period of 10 minutes for wind data analysis [18]. On the other hand, much

longer averaging period is accepted for agricultural and atmospheric analysis. This is because

changes in air flow conditions need about 20-30 minutes for the boundary layer to achieve a

quasi-equilibrium. The process may take much longer at night, which implies even 30-minute

average may not be long enough. Without loss of generality, 30-minute average is used in the

analysis.

Based on Eqn. 3.6, the mean component of CO2 concentration is calculated by taking

the average on temporal and stochastic domain. Fig. 3.18 shows the comparison of mean

components of the upwind and downwind flows. The increment of the mean CO2 concentration

is shown as 1.08% in the figure.

Fig. 3.19 shows the upwind temporal covariance with respect to 30-minute averaging pe-

riod. Following meteorological practice, the plots start at Coordinated Universal Time (UTC,

or Greenwich time) 00:00. This structure of the covariance matrix follows the behavior of

metabolism of crops. The temporal covariance functions of upwind tower and downwind tower

(not shown in the figure) are very similar, which makes drawing conclusion based on the com-

parison between them becomes difficult.
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Figure 3.18 Mean components of the CO2 concentrations at upwind and downwind towers.

Figure 3.19 Temporal covariance of CO2 surface concentration
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Eigenvalues and cumulative fraction of the first several modes are plotted in Fig. 3.20.

Based on Eqn. 3.8, the cumulative of the first M eigenvalues account for the variance of the

CO2 concentration field. It can be seen from the figure that the first eigenvalue accounts for

about 99.6% of the total variance of the field, which could imply the CO2 concentration field

has a very simple structure so that it has only one dominating mode. By simply compare the

first eigenvalue (since it is so prominent) of upwind and downwind data, we found that the

variance of CO2 concentration at downwind position decreases by 8.5%.

Figure 3.20 Eigenvalues (left) and cumulative fraction (right) of the first 20 modes.

The first temporal mode of the upwind and downwind field are given in Fig. 3.21. This

figure shows the pattern of fluctuation of CO2 concentration through time.

To sum up, following primary results are found in this analysis:

1. The mean CO2 concentration at downwind tower increases by 1.08%

2. The variance of CO2 concentration at downwind tower decreases by 8.5%

3. The CO2 concentration field has only one dominating mode

These results suggest that wind turbine may have very limited effect on the crop’s growth

with respect to CO2 concentration which is regarded as to be more crucial to crop’s growth

than CO2 flux. On the other hand, CO2 flux is more likely to be affected by wind turbine since
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Figure 3.21 The first temporal mode of CO2 surface concentration

surface flux consists information of turbulence that will certainly agitated by the wind turbine

rotor. Therefore, analysis on CO2 surface flux could show more interesting results.

3.3 Numerical Example 3: Full-field Stochastic Wind Simulation

The meteorological data used in previous two examples have limitations. The CWEX-11

data measures the wind profile at two locations: 4.5 meters and 10 meters. Obviously, this

data do not describe the wind speed profile at hub height. Similarly, CWEX-10 only measures

CO2 concentration at height 6.45 m. Measurements at only one or two different heights are

certainly not enough to capture all the spatial stochasticity in the wind. Third, the data dose

not contain measurements on transverse direction, which makes getting wind flow snapshots on

the plane of turbine rotor becomes impossible. To circumvent this insufficiency in measurement,

wind filed snapshots on the plane that is perpendicular to the rotor is used, for which certain

time interval has to be chose to construct snapshots. It is worth noting that the framework is

generally applicable to a variety of meteorology data, and the its applicability should not be

affected by choosing different snapshot constructing time intervals.
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3.3.1 Experiment setup

Ideally, a good measurement should include high frequency data of wind speeds at different

locations on the rotor plane. The accuracy of using LIDAR (LIght Detection And Ranging)

to measure wind field has been investigated in [61]. Result of this research shows a promising

application of LIDAR in wind turbine simulation. Given that more time is needed to put this

technique into practice, a different source of data is used in this chapter to generate synthetic

turbulence inflow of wind turbine. Specifically, a turbulence simulator that is developed by

NREL, named TurbSim [34], is used to generate multiple realizations of a stochastic wind, which

are further used as the source data of the temporal-spatial decomposition (TSD) framework

developed in the research. By doing such analysis, we showcase the ability of TSD to reproduce

the important turbulent statistic properties of given measured wind data.

TurbSim utilizes Veers/Sandia method [68] together with various spectral models, such as

Kaimal [38] model and Von Karman Normal Turbulence Model (NTM) [72] that are recom-

mended in the IEC guidelines [13], to simulate 3-D full-field turbulence. TurbSim also provides

several spectral modes according to different terrain conditions and application scenarios. For

the purpose of illustration, Kaimal spectral model and the IEC exponential coherence model

are used in the simulation. The generated wind is designed for using as inflow of NREL 5MW

offshore baseline wind turbine [35]4, which has 90 m hub height and 63 m blade tip to rotor

center distance (this simulation is given in chapter 4). Therefore, the wind time-series are

simulated on a 15 × 15 rectangular grid on the rotor plane that spans a 150 m × 150 m area

with the center of the grid located at the center of the rotor, which is shown in Fig. 3.22.

30 ten-minute simulations (realizations) of full field wind turbulence on this grid were

generated with sampling frequency of 4 Hz. They serve as the original wind data of the

TSD. The wind inflow can be looked as a time variant wind speed field on the rotor plane.

Snapshots of this wind field are taken every 0.25 second (since the sampling frequency is 4 Hz).

For ten-minute simulations, there are 2400 snapshots available. In the simulation, TurbSim

used a referencing wind speed of 6.0 m/s at 10.0 m height, which results in about 8.3 m/s mean

4It is noteworthy that the NREL 5MW turbine is a conceptual design, thus no structural and material
specification is provided.
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Figure 3.22 15 × 15 grid on the 150 m × 150 m rotor plane (yz plane) of the NREL 5MW
wind turbine.

wind speed at hub-height.

Note that TurbSim simulates all three components of turbulence. The along-wind com-

ponent u has the strongest correlation over different spatial scales among the three compo-

nents [56]. For the purpose of demonstration, only the along-wind turbulence component is

decomposed in this analysis. 5

3.3.2 Result: statistical comparison

The temporal covariance function of the TurbSim simulated along-wind turbulence field

is illustrated in Fig. 3.23. Comparing to Fig. 3.3 in the first numerical example, this figure

has a more uniform pattern. This is because a 10-minute turbulence is regarded as stationary

whereas a 24-hour wind flow is apparently transient. Fig. 3.24 shows the eigenvalues and the

cumulative fractions of the first several modes. Since the dimensions of temporal covariance

function are 2400× 2400, which is much bigger than the case in numerical example one, much

more number of BD modes are needed to get accurate parameterizations. In addition, the first

5It does not mean the other two turbulence components are not important in wind turbine simulation.
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four eigenvalues are so close that the four corresponding modes are all crucial in contributing

the randomness of the turbulence field. As seen in Fig. 3.25, the first spatial mode that accounts

for the largest portion of total turbulence energy is mostly uniform, the second and third modes

describe vertical and lateral shear pattern, and the fourth mode possess a more complicated

pattern.

Figure 3.23 Covariance function of the TurbSim simulated turbulence.

Following the same process described in section 3.1.4, we simulated the synthetic wind

that preserves temporal and spatial correlations of the TurbSim generated full-field wind. In

Fig. 3.26, reconstructed time-series of the turbulence at the rotor center (using 2, 5, and 10

BD modes) are compared with the TurbSim full-field wind. Not surprisingly, the more modes

used in the simulation, the greater detail in the original turbulence is preserved.

To determine how many modes to use in order to get reasonably accurate representation,

we compare the PSDs of the synthetic turbulence (using 2, 5, and 10 BD modes) at rotor center

with the PSD of the TurbSim full-field wind in Fig. 3.27.

In addition, the coherence spectra (calculated using 2, 5, and 10 BD modes) between hub

center p0 and three lateral positions p1, p2, and p3 (see Fig. 3.22), are shown in Fig. 3.28

(a), (b), and (c) respectively. It is seen in the two figures that by using only 5 modes, the
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(a) (b) 

Figure 3.24 Spectrum of covariance matrix, (a) eigenvalues, (b) cumulative fraction of energy.
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Figure 3.25 Mean of the first four stochastic spatial modes.
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Figure 3.26 Reconstructed time series of the along-wind turbulence at the rotor center com-
pared with the original TurbSim simulated flow.

reconstructed turbulence closely reproduces the original wind. In addition, it seems that the

coherence of further separated locations is preserved better by TSD.

3.4 Discussion and Conclusion

In this chapter, three numerical examples of TSD are given. The results of these exam-

ples show that TSD is promising in representing turbulence. However, it is worth to mention

following issues. First, the meteorological data used in this analysis is measured by only one

met tower. Because the lack of the measurement on transverse direction, getting wind flow

snapshots on the plane of turbine rotor becomes impossible. To circumvent this insufficiency

in measurement, wind filed snapshots on the plane that is perpendicular to the rotor is used,

for which certain time interval has to be chose to construct snapshots. It is worth noting that

the framework is generally applicable to a variety of meteorology data, and the its applicability

should not be affected by choosing different snapshot constructing time intervals. In addition,

the framework is able to incorporate both short-term (10-minute) and long-term (years) tem-

poral coherences as long as corresponding data is available. Third, while the mathematical
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Figure 3.27 PSDs of the synthetic turbulence at rotor center using 2, 5, and 10 modes

(a) (b) (c) 

Figure 3.28 Coherence spectra (calculated using 2, 5, and 10 BD modes) between hub center
p0 and three lateral positions p1, p2, and p3 (see Fig. 3.22).
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framework developed here is used to analyze wind speed, it can also be used to represent other

atmospheric data such as temperature and carbon dioxide flux. This framework can also be

naturally extended to represent ocean waves, which is crucial for off-shore wind turbine siting,

layout and design analysis.
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CHAPTER 4. WIND TURBINE SIMULATION BASED ON

STOCHASTIC WIND

In the previous chapter, three numerical examples are given to showcase the ability of TSD

in wind field modeling. In this chapter, the result of the third numerical example 3.3 is used

to perform stochastic analysis on the NREL 5MW offshore wind turbine model.

In general, stochastic analysis is done by representing the random input, modeling the

system of interest, incorporating the randomness in system model or its inputs, and getting

probability of system output. Therefore, this chapter is organized in the same fashion. In

section 4.1, the wind turbine simulation software (FAST) and the NREL 5MW wind turbine

model are introduced. Section 4.2 briefly describes the sparse grid collocation algorithm that

is used in the stochastic analysis. The implementation details are introduced in 4.3. In section

4.4, simulation results are given and discussed. Section 4.5 finally concludes this chapter.

4.1 NREL 5MW Wind Turbine Model and FAST

FAST (Fatigue, Aerodynamics, Structures, and Turbulence) is a wind turbine simulator

developed by NREL (National Renewable Energy Laboratory) [36]. It is able to predicting

the responses of both two- and three-bladed horizontal-axis wind turbines with respect to both

fatigue and extreme loads. In FAST, the wind turbine system is divided into a finite number

of rigid/flexural bodies connected with elastic joints. The rigid bodies include the tower base,

nacelle, and hub; the flexible bodies are blades, drive shaft, and tower. The behavior of the

system is described by a few ordinary/partial differential equations.

FAST code contains a aerodynamic subroutine package, called AeroDyn [48], that is used to

generate aerodynamic loads along the blade and tower. A schematic of how FAST operates with
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AeroDyn is shown in Fig. 4.1. Both FAST and AeroDyn need few input files to operate. Input

files for FAST include a primary input file that contains the data for simulation control, turbine

control, initial and environmental conditions, turbine configuration, and output definition; a

tower input file that describes tower structure and tower mode shapes; and a blade input file

contains blade structure parameters and blade mode shapes. Input files for AeroDyn contain a

primary input file that specifies simulation configuration, directories of airfoil input files, and

information of blade nodes. During the simulation process, FAST communicates with AeroDyn

so that aerodynamic force along the blade at each step is calculated. Finally, FAST provides

a summary output file about the entire simulation and an output file contains time-series of

output variables that was defined in the FAST primary input file.

FAST AeroDyn 

Primary 

Tower 

Blade(s) Primary 

Airfoil(s) 

Wind 

Summary Time-series 

Figure 4.1 Schematic of how FAST operates with AeroDyn and their input/output files.

The wind turbine that is used in the following simulation is NREL 5 MW offshore baseline

wind turbine [35]. According to the specification of NREL 5MW wind turbine, the blade length

is 61 m. Three blades are connected with the hub whose radius is 2 m to form a rotor with

radius equals 63 m. The blade surface is composed of a series of airfoil shapes stacked along

axial direction. Starting from the cylinder blade root, the airfoil shape is smoothly shifted into

a series of DU (Delft University) airfoils and NACA64 airfoils. Airfoil cross-sections that are

used in the model are shown in Fig. 4.2. Table 4.1 shows the geometry definition of the blade

model. Fig. 4.3 provides a graphical demonstration of the specifications of the blade geometry.
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Figure 4.2 Airfoil cross-sections used in the design of the wind turbine rotor blades. [37]

Figure 4.3 Illustration of quantities from Table 4.1. [37]

Table 4.1 Wind turbine rotor geometry definition. [37]
RNodes (m) AeroTwst (deg.) Chord (m) AeroCent (-) AeroOrig (-) Airfoil

2.0000 0.000 3.542 0.2500 0.50 Cylinder
2.8677 0.000 3.542 0.2500 0.50 Cylinder
5.6000 0.000 3.854 0.2218 0.44 Cylinder
8.3333 0.000 4.167 0.1883 0.38 Cylinder
11.7500 13.308 4.557 0.1465 0.30 DU40
15.8500 11.480 4.652 0.1250 0.25 DU35
19.9500 10.162 4.458 0.1250 0.25 DU35
24.0500 9.011 4.249 0.1250 0.25 DU30
28.1500 7.795 4.007 0.1250 0.25 DU25
32.2500 6.544 3.748 0.1250 0.25 DU25
36.3500 5.361 3.502 0.1250 0.25 DU21
40.4500 4.188 3.256 0.1250 0.25 DU21
44.5500 3.125 3.010 0.1250 0.25 NACA64
48.6500 2.310 2.764 0.1250 0.25 NACA64
52.7500 1.526 2.518 0.1250 0.25 NACA64
56.1667 0.863 2.313 0.1250 0.25 NACA64
58.9000 0.370 2.086 0.1250 0.25 NACA64
61.6333 0.106 1.419 0.1250 0.25 NACA64
62.9000 0.000 0.700 0.1250 0.25 NACA64
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The above wind turbine blade model provides us a deterministic solver B where an one-on-

one relationship between the wind speed input v time-series and the turbine response output

time-series u exists, i.e.

B(u : x,v) = 0. (4.1)

where x ∈ D are the coordinates in R3 that defines the location of the output time-series on

the wind turbine structure.

For a stochastic turbulent input that is generated by TSD, the above equation becomes

B(u : x,v(ξ)) = B(u : x, ξ) = 0. (4.2)

where ξ is a set of TSD generated random variables that represent the randomness in the

synthetic turbulence. If m terms of decomposition are used in BD and n terms in KLE are

used to describe each BD term, the resulting random variables ξ = {ξi}pi=1 where p = m× n.

Eqn. 4.2 defines a stochastic solver where the output of interest u is the stochastic response

of p-dimensional random inputs ξ at location x, i.e. u(x, ξ).

4.2 Uncertainty Quantification Using Adaptive Sparse Grid Collocation

Method

In previous section, we introduced a stochastic wind turbine system whose wind input

is full-field turbulence. By performing multiple simulations of the system, finite number of

realizations of the stochastic output can be calculated. The problem now becomes how to solve

Eqn. 4.2 and find the approximate solution u(x, ξ).

Let ΘN = {ξi}Mi=1 be a set of nodes in the N -dimensional random space Γ, where M is the

number of nodes. Consider a smooth function u : RN → R, the Lagrange interpolation of u

can be written as

Iu(x, ξ) =
M∑
k=0

u(x, ξk)Lk(ξ), (4.3)

where Lk(ξ) are Lagrange polynomials given by

Lk(ξ) =
M∏

i=1,i 6=k

ξ − ξi
ξk − ξi

. (4.4)
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u(x, ξk) is the value of u at the given node ξk ∈ ΘN . Therefore, the value of u at any point

ξ ∈ Γ can be approximated by Iu(x, ξ).

In the same fashion, ξ can be approximated by

ξ̂ =
M∑
k=1

ξk Lk(ξ). (4.5)

Substituting Eqn. 4.5 into the system governing equation yeilds

B

(
u : x,

M∑
k=1

ξk Lk(ξ)

)
= 0. (4.6)

The collocation method converted the original stochastic problem to M deterministic problems,

i.e.

B(u : x, ξi) = 0, i = 1, · · · ,M. (4.7)

The stochastic solution is approximated by

û(x, ξ) =

M∑
i=1

u(x, ξk)Lk(ξ). (4.8)

Choosing appropriate sampling points for Lagrange interpolation is a crucial first step for

collocation methods. For the simplest one-dimensional problem, the optimal selection is usually

the Gauss quadrature. It is straight forward to use the tensor product of the one-dimensional

nodes to chose nodes in multi-dimensional random spaces. Let u(x, ξ) be a function in N-

dimensional space that need to be approximated, the tensor product interpolation formula can

be written as

(Ii1 ⊗ · · · ⊗ IiN )(u)(x, ξ)

=

M1∑
k1=1

· · ·
MN∑
k1=1

u(x, ξi1k1 , · · · , ξ
iN
kN

) (Li1k1 ⊗ · · · ⊗ L
iN
kN

), (4.9)

where Mk is the number of nodes used in the interpolation in the kth dimension, Iik is the

interpolation function in the ik direction, and ξikkm is the kthm point in the ik direction. According

to the equation, M1×· · ·×MN number of points are needed in the computation. This number

grows quickly as the N increases. For the case that M points are chose at each direction, the

total number of points in N-dimensional space is MN . Full tensor product method will become

impractical when dealing with high dimensional stochastic space.
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To overcome this difficulty, one need to find a method that can both satisfy the interpolation

accuracy and minimize the computational cost, i.e. use as less of points as possible. To this end,

sparse grid method is used. The sparse grid method, based on Smolyak algorithm, reduces the

number of nodes from full tensor product formula. In other words, it is a subset of full tensor

product grids. It uses limited numbers of nodes while satisfy the prescribed computational

accuracy.

Consider the one-dimensional interpolation function

UM (f) =
M∑
k=1

f(ξk)Lk. (4.10)

Let ∆i be the incremental interpolate defined as

∆i = U i − U i−1, U0 = 0. (4.11)

Smolyak’s interpolation Aq,N is given by

Aq,N (f) = Aq−1,N (f) +
∑
|i|=q

(∆i1 ⊗ · · · ⊗∆iN )(f), (4.12)

where N is the stochastic dimension and q−N is the interpolation order. i = (i1, · · · , iN ) and

|i| = i1 + · · ·+ iN . ik is the level of interpolation along the kth direction.

Let Θ(k) = {xi}Mi=1 be the set of nodes that is used to interpolate the one-dimensional

function, where k denotes the order of polynomial that is used in the interpolation. To compute

the sparse grid interpolation function, only the function values at the sparse grid are needed,

i.e.

Hq,N =
⋃

q−N+1≤|i|≤q

(Θ(i1) × · · · ×Θ(iN )) (4.13)

Adaptive sparse grid collocation method is developed by following the dimension adaptive

quadrature approach [19]. The basic idea of the adaptive procedure is to assess the stochastic

dimensions according to the error of interpolation in that dimension. Details of this method

can be found in [16].

4.3 Computational Implementation

The solution procedure of this chapter can be divided into three steps:
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• A subroutine for computing deterministic solutions.

• A subroutine for allocating nodes and building interpolation functions.

• A subroutine for post-processing operations.

Deterministic solver: In section 3.3, a full-field turbulence representation is developed

based on TSD and the along-wind turbulence component that was originally simulated by

TurbSim. The newly simulated along-wind component (by TSD) together with the other two

orthogonal components (lateral and vertical) are combined and then used as the input full-field

turbulence of AeroDyn. This process is illustrated in the schematic in Fig. 4.4. By going

through this detour, we seek to demonstrate the ability of TSD to reproduce given wind data

(or field measurements when available). After incorporating all models as a compact solver,

the input of the solver becomes realization of a set of TSD generated random variables, and the

output becomes wind turbine response time-series. This provides us the deterministic solver.

TrubSim AeroDyn 

u, v, w 

Full-field wind 

TSD 

u 

v, w 

Full-field wind 

u' 

Figure 4.4 Schematic of incorporating TSD into full-field wind simulation.

Sampling and interpolation: A package named FT-AdaGiO (Fault Tolerant ADAptive

sparse GrId allOcator) in C++ developed by Xie et al. [75] was used to allocate the sampling

points in the stochastic domain. In this analysis, 5 BD modes and 3 KLE modes for each

BD mode were used, which makes a 15-dimensional stochastic domain. We used FT-AdaGiO

to generate coordinates of nodes according to adaptive SGC algorithm and to construct the

probabilistic output. The full-field turbulences were generated based on random samples and

used as input of FAST.
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Post-processing: Post-processing of current analysis includes extracting basic statistical

solutions. Turbine responses include out-of-plane blade root bending moment, fore-aft tower

bending moment, and power generation were calculated. Probability density functions of the

maximum of these responses were estimated by using KDE.

4.4 Results

In this section, we show the results of NREL 5MW wind turbine simulation with TSD

generated full-field turbulence inflow. The output of the simulation is defined (in the primary

input file of FAST) as 39 variables of interest of the wind turbine. Examples of these variables

include electrical generation, blade and tower deflections, and forces and moments acted on

blade and tower. The results of a single simulation are given first followed by the results of

stochastic analysis using SGC method.

4.4.1 Time responses

Time responses of power generation by using 2, 5, and 10 modes of BD are shown in Fig. 4.5.

It is seen that all four responses have similar structure and the randomness in the wind has

very limited influence on the power generation. Note that the rated wind speed for NREL

5MW wind turbine is 11.4 m/s, whereas the mean speed of TurbSim wind at hug height is 8.3

m/s. This explains the reason that the average power generation seen in Fig. 4.5 is much less

than the rated 5 MW capacity.

Fig. 4.6 and 4.7 show the 200 seconds response time-series of flapwise and edgewise bending

moment at the half span of blade. Fig. 4.8 shows time response of fore-aft bending moment

at tower base. By visual inspection of these figures, it can be seen that a few TSD modes

can accurately preserve the low frequency components of the turbine response. However, to

reproduce the high frequency response seen in the full-simulation based on TurbSim wind,

larger number of TSD terms are required.

To further investigate how well the PSD simulated wind describe the original TurbSim wind,

comparisons between the PSDs of wind turbine time responses corresponding to reconstructed

wind and original wind are given in Fig. 4.9 and 4.10. It is seen in the two figures that PSD
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Figure 4.5 Time response of power generation by using 2, 5, and 10 modes and TurbSim wind
(top to bottom).
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Figure 4.6 Time response of flapwise bending moment at the half span of blade by using 2,
5, and 10 modes and TurbSim wind (top to bottom).
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Figure 4.7 Time response of edgewise bending moment at the half span of blade by using 2,
5, and 10 modes and TurbSim wind (top to bottom).
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Figure 4.8 Time response of fore-aft bending moment at tower base by using 2, 5, and 10
modes and TurbSim wind (top to bottom).
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wind is able to locate frequency modes of wind turbine blade and tower vibrations as well as

the TurbSim wind. As expected, as the number of terms in TSD model increases, its accuracy

of estimating frequency responses of wind turbine increases as well.

Figure 4.9 PSD of flapwise bending moment at half span of the blade.

Figure 4.10 PSD of edgewise bending moment at half span of the blade.
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4.4.2 Convergence analysis

Note that the analysis in last section are based on one simulation. With SGC method,

multiple realizations of the stochastic output of the wind turbine system could be achieved,

which allows us to investigate the system in the statistical point of view. Results of SGC

simulation are shown in this section.

In the simulation, m modes of BD and 3 modes of KLE for each BD mode are used. In

other words, to get one realization of the random wind flow, we need to sample from m × 3

random variables. Therefore, the number of random dimensions of the wind input is m× 3. It

is comparatively hard for a system with large number of random input dimensions to converge.

Thus, convergence checks on the computations of SGC by using m = 1, · · · , 4 BD modes are

performed. Fig. 4.11 shows the result of one such convergence analysis where m = 2. It can be

seen in the figure that as the interpolation level increases from 2 to 6, the differences between

PDFs of succeeding interpolation levels become indistinguishable. To quantitatively check

the rate of convergence, the mean square errors (MSEs) of the inverse cumulative distribution

functions (ICDFs) of different levels with respect to level 6 are shown in Table 4.2. We conclude

that for the case of m = 2, good convergence (MSE < 5%) is achieved at interpolation level 4.

Table 4.2 Normalized MSEs of different computational levels with respect to level 6, m = 2.
Computational Level # of samples MSE

2 85 1.0
3 230 0.42
4 434 0.033
5 672 0.015

The adaptive sampling procedure of SGC method is achieved by allocating new random

samples in the next computation level based on the surplus of certain or all output variable(s)

in current computation level. In this analysis, the out-of-plane bending moment at blade root is

considered as the output that determines the sampling procedure. Although only the specified

output has best convergence, the rest of the outputs should converge as well since they are

coupled with each other.

According to Fig. 4.11, using the result of interpolation level 4 provides accurate estimations

of the PDFs of out-of-plane bending moment. To check whether consistent convergences of other
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Figure 4.11 PDFs of out-of-plane bending moment at blade root result from different SGC
computation levels.

output variables have been achieved, similar analysis of convergences are done for edgewise and

flapwise bending moments and shown in Fig. 4.12 and Fig. 4.13 respectively. The results of

these analysis verify that the assumption on consistent convergence made in previous context

is valid.

Follow the same procedure, convergence checks for cases m = 2, 3, 4 are performed and the

results are shown in Table 4.3. It is worth to mention that the numbers of sampling points

at the convergent level that are result from adaptive SGC method are much smaller than the

result of non-adaptive approach. This fully illustrates the advantages and necessities of using

adaptive SGC method.

Table 4.3 Number of random samples at convergent level for the case of m = 1, 2, 3, 4.
# of BD modes convergent level # of non-adaptive samples # of adaptive samples

1 3 69 40
2 4 1457 434
3 5 26017 11499
4 5 93489 36158

In order to check how many BD modes are sufficient in the context of stochastic analysis,



70

Figure 4.12 PDFs of edgewise bending moment at half-span of blade, m = 2.

Figure 4.13 PDFs of flapwise bending moment at half-span of blade, m = 2.
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another convergence analysis on the simulation results with respect to number of BD modes

is performed. PDFs of the out-of-plane bending moment at blade root resulted from different

values of m are shown in Fig. 4.14. It is seen that the curve of m = 4 is very close to the

curve of m = 3, which means by using three spatial modes in BD (see the first three images in

Fig. 3.25), the resulting synthetic wind is sufficient to be used as the stochastic input of this

stochastic analysis. In other words, the fourth spatial mode is not prominent enough to affect

the probabilistic output of wind turbine. This implies that the stochastic performance

of wind turbine is only sensitive to larger turbulent structures that are described

by the first three spatial modes (mean stream flow, vertical shear, and horizontal

shear).

Figure 4.14 PDFs of out-of-plane bending moment at blade root based on the turbulent in-
flows that are constructed by 1, 2, 3, and 4 BD spatial modes.
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4.5 Discussion and Conclusion

In this chapter, stochastic simulation of NREL 5 MW wind turbine based on full-field tur-

bulence was performed. Results showed time and frequency responses of the wind turbine with

TSD generated turbulence input are in accordance with the responses resulted from the original

TurbSim wind. After that, stochastic analysis on the wind turbine system was performed. The

result of this analysis provides valuable information on the probability distribution of structural

vibration, forces, shearing, and bending of many flexible components (tower, blade, and main

shaft) of the wind turbine system.

On the other hand, FAST models the wind turbine as rigid/flexible bodies connected with

elastic joints. Though it is sufficient in simple applications that only require general deflections

of bodies, it does not provide enough information on the local loads and detailed deformations

on each body, which is very important information for blade design and fatigue analysis. In

next chapter, we will perform such analysis on a full-scale 3D wind turbine model with rich

structure details.
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CHAPTER 5. WIND TURBINE SIMULATION BASED ON

DETERMINISTIC WIND AND STOCHASTIC-ISOGEOMETRIC

APPROACH

In previous chapter, we performed stochastic analysis on a simplified wind turbine model

using full-filed turbulent inflow. As an attempt to achieve more accurate and detailed results on

the deformation and surface stress distributions of wind turbine blades, this chapter focus on

integrating stochastic analysis with a full-scale 3D pre-bent wind turbine rotor model, which

is developed based on isogeometric analysis. An adaptive sparse grid collocation method is

used to account for the stochastic input. Kernel density estimation is used to estimate the

distribution of random variables that are related to the randomness of wind turbine model.

This analysis gives insights into failure probability and critical regions of blade shell surface,

which provide wind turbine developers a good reference to improve the design of wind turbine

blades.

This chapter is organized as follows. The randomness in the composite material in wind

turbine blades is first represented in section 5.1. In section 5.2, the comprehensive wind turbine

blade model that is based on isogeometric analysis is introduced. Adaptive sparse grid colloca-

tion (SGC) algorithm is used in the stochastic analysis (see Chapter 3). The implementation

details are introduced in 5.3. In section 5.4, simulation results are given and discussed. Section

5.5 finally concludes the paper.

5.1 Representing Randomness in Wind Turbine Blade Material

There is a trade-off between blade efficiency and strength in wind turbine blade design. From

the aerodynamic point of view, the ideal blade should be as thin as possible. It also needs to
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be light to minimize loads on the nacelle and tower, and to minimize the manufacturing cost.

On the other hand, blade must be strong enough to withstand the bending load that is caused

by lift and gravity. As a result, existing wind turbine blades have a common structure which

balances their performances with regards to these aspects. The cross section of a typical blade

structure is shown in Fig. 5.1, where the blade has a hollow structure with thick root and

thin tip. In the structure, spar caps carry the major flapwise bending moment; the blade shell

maintains the aerodynamic shape, carries the edgewise bending load, and transfers this load to

spars and other structure components; shear web joins the two spar caps and withstands the

shearing load caused by tension and compression on both sides.

Spar caps Shear webs 

Blade shell 
Structural cores 

Figure 5.1 Wind turbine blade cross section.

The material used in wind turbine blades are usually fiber-reinforced composite material.

This is because the material has larger strength-weight ratio than wood and metal and is

also much cheaper than high quality carbon fiber. It is worth noting that fiberglass is mostly

unidirectional and thus exhibits strength in one direction. Biaxial fabric (±45◦) is used to

make the shear web and some part of the shell so that it bears shear stress most effectively.

When it comes to the blade shell, both fibers along the diagonal and fibers along axial and

radial directions are needed to resist the torsion loads as well as both flapwise and edgewise

bending loads. Therefore, the shell is made of laminated sandwich composites which consist of

multiple plies in different directions. The choice of ply directions could be triaxial (±45◦, 0◦)

or quadraxial (±45◦, 0◦, 90◦) where material in certain direction takes up to certain percentage

of the space. For example, one such shell layup could be 16 plies with 90% of the fiber oriented

in the 0◦/90◦ direction and 10% in the ±45◦ direction. Manufacturers may have different

ply layup procedures. It is noteworthy that the plies that are used in the layup process are

usually smaller pieces compared to the length of the blade. To cover the entire blade geometry,
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multiple plies are needed on each layer of fabric, which results in different concentration of fiber

toes at different locations. In addition, fiber alignments are subject to variabilities due to the

prevalence of manual layup processes.

Resin infusion processes are performed after all plies are properly placed on the blade mold.

In general, there are two types of resin infusion processes [22]. Resin transfer molding (RTM) is

one of the commonly used methods. Under pressure, low viscosity resin is pushed or pulled (by

pressure difference between atmosphere and vacuum) into the mold where several glass fiber

cloths are placed. The other method is resin film infusion (RFI), where partially cured resin

films are stacked with fiberglass textiles in a mold. Followed by a process that applies pressure,

heat and vacuum, the stack is fully cured such that resin is infused throughout the mold. Both

processes have to be controlled carefully to prevent occurrence of defects (void, waviness).

Due to this random nature of wind turbine blade manufacturing process, uncertain material

properties inevitably exist between blades. To represent this randomness, the properties that

are required to fully describe the material need to be identified first.

Fiberglass laminate is an orthotropic material. Since wind turbine blade shell mainly carry

loads on edgewise and flapwise directions, the material properties along the thickness are not

significant. In this case, 4 properties are used to describe orthotropic blade shell: elastic

modulus on flapwise (axial) direction E1, elastic modulus on edgewise (transverse) direction E2,

shear modulus G12, and major Poisson’s ratio ν12. Based on previous discussion, 4 properties

are actually random variables that fully describe the stochastic behavior of composite material

in wind turbine blades. We use the composite materials handbook (MIL-HDBK-17-2F) [65] as

a guide in getting properties of composite materials. The probability density functions of all

material properties are assumed to be Gaussian. In addition, the handbook suggests following

relationship that defines ν12,

ν12 = −ε2
εt1
, (5.1)

where εt1 and ε2 denote axial tension strain and transverse strain respectively. The probability

density function of random variable ν12 is estimated using an algorithm that is developed by

Marsaglia [45]. Finally, the mean and standard deviation of all 4 properties of the fiberglass
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that is used in this research are listed in Table 5.1 1.

Table 5.1 Properties of fiberglass that is used.
µ(Pa) σ(Pa)

E1 46.54× 109 2.03× 109

E2 12.69× 109 0.26× 109

G12 4.69× 109 0.25× 109

ν12 0.13 0.01

5.2 Wind Turbine Blade Model Based on Isogeometric Analysis

The primary advantage of isogeometric analysis is the solution space for dependent variables

can be represented in terms of the same functions that represent the geometry. The isogeometric

procedure that is used in our wind turbine rotor analysis is based on Non-Uniform Rational

B-Splines(NURBS).

Just as its name implies, NURBS are developed from B-splines. Unlike FEM whose physical

domain is divided into sub-domains, B-spline parametric space is divided into “patches”. Define

a set of coordinates in one dimension of the parametric space as a knot vector, denote by

Ξ = {ξ1, ξ2, . . . , ξn+p+1}, where ξi ∈ R, i = 1, 2, . . . , n+ p+ 1 are the knots, p is the polynomial

order, and n is the number of basis functions. Note that p = 0, 1, 2, 3 represents constant,

linear, quadratic, and cubic piecewise polynomials respectively. If knots are equally spaced in

the parametric space, they are said to be uniform. Correspondingly, non-uniform knots are

unequally spaced.

B-spline basis functions are defined recursively as

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (5.2)

where p = 1, 2, 3, . . ., and

Ni,0(ξ) =


1 if ξi ≤ ξ < ξi+1,

0 otherwise.

(5.3)

1The material is S2-449 17k/sp 381 unidirectional tape whose resin content is 28-29 wt%; fiber volume is
50.1-54.0 %; density is 1.85-1.92 g/cm3; and ply thickness is 0.0033-0.0037 in.
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With this definition, one may notice that for p = 0 and 1, B-spline basis functions are the same

standard piecewise constant and linear basis functions in finite element method. However, this

identity does not hold for p ≥ 2. Repeated knots are allowed in knot vectors. A knot vector

is said to be open if its first and last knots appear p + 1 times. Basis functions over open

knot vectors are interpolatory at the ends of the parametric space interval, [ξ1, ξn+p+1], and

generally not interpolatory at knots within the interval. In general, basis functions in order p

are Cp−1-continuous. The continuity at a knot decreases by k if the knot is repeated k times.

The basis function is interpolatory at a knot if it is repeated p times. Finally, it is worth noting

that the support of Ni,p is [ξi, ξi+p+1] and
∑n

i=1Ni,p(ξ) = 1 for any ξ.

Now that B-spline basis function is defined, B-spline curves in Rd, denoted by C(ξ), can be

constructed by taking linear combination of B-spline basis functions

C(ξ) =

n∑
i=1

Ni,p(ξ)Bi. (5.4)

where Bi ∈ Rd, i = 1, 2, . . . , n, are referred to as control points.

Consider a control net with control points Bi,j , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, and knot

vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1}, and H = {η1, η2, . . . , ηm+q+1}, a B-spline surface can be

defined as

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j , (5.5)

where Ni,p and Mj,q are pth order and qth order B-spline basis functions respectively.

Similarly, given control net {Bi,j,k}, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, k = 1, 2, . . . , l, and

knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1}, H = {η1, η2, . . . , ηm+q+1}, and Z = {ζ1, ζ2, . . . , ζl+r+1},

a B-spline solid is defined by

S(ξ, η, ζ) =

n∑
i=1

m∑
j=1

l∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Bi,j,k, (5.6)

where Lk,r are rth order B-spline basis functions.

To obtain exact geometry in Rd, projective transformation of B-spline entity in Rd+1 must

be done. Let {Bw
i } be a control net for a B-spline curve in Rd+1 with knot vector Ξ. Control

points for desired NURBS curve in Rd are derived from {Bw
i } which are referred as “projective”
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control points for the desired curve.

(Bi)j = (Bw
i )j/wi, j = 1, . . . , d,

wi = (Bw
i )d+1. (5.7)

where (Bi)j is the jth component of vector Bi, and wi is referred to as the ith weight. Non-

Uniform Rational B-Splines(NURBS) curve is given by

C(ξ) =
n∑
i=1

Rpi (ξ)Bi, (5.8)

where Rpi (ξ) are rational basis functions given by

Rpi (ξ) =
Ni,p(ξ)wi∑n
k=1Nk,p(ξ)wk

, (5.9)

Rational surfaces and solids could be defined similarly

Rp,qi,j (ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j∑n

î=1

∑m
ĵ=1

Nî,p(ξ)Mĵ,q(η)wî,ĵ
. (5.10)

Rp,q,ri,j,k (ξ, η, ζ) =
Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k∑n

î=1

∑m
ĵ=1

∑l
k̂
Nî,p(ξ)Mĵ,q(η)Lk̂,r(ζ)wî,ĵ,k̂

. (5.11)

Isogeometric analysis represents the geometry, motions of the model, properties such as

strain states and etc. with the same basis functions. Based on the fact that NURBS forms

almost the exact geometry of the model, resulting quantities of interest could be more accurate

than the results by using FEA. Therefore, the rotor and surrounding fluid are modeled by

NURBS in this work.

The NREL 5MW wind turbine blade model is constructed by using isogeometric analysis,

which is shown in Fig. 5.2. The surrounding fluid domain is modeled with volumetric NURBS

so that we can analyze the FSI between them. It is worth noting that the rotor can be divided

into three equal portions, thus only one third of the rotor and the fluid domain is modeled

for the purpose of increasing computational efficiency. The dimensions of the entire problem

domain and the NURBS mesh are shown in Fig. 5.3. More details of modeling wind turbine

rotor based on isogeometric analysis can be found in [7, 8].

The above wind turbine blade model provides us a deterministic solver where an one-to-one

relationship between input and desired output exists. In our stochastic analysis, the inputs are
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Figure 5.2 Surface meshes of the NREL 5MW wind turbine blade. . [9]

(a) (b) 

Figure 5.3 (a) Volumetric NURBS mesh of the computational domain and (b) A planar cut
to illustrate mesh grading toward the rotor blade. [9]
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the 4 wind turbine material parameters (E1, E2, G12, and ν12), and the outputs of interest are

blade deformation, stress distribution, and etc. i.e.

B(u : x, q) = 0. (5.12)

where B represents the deterministic solver, x ∈ D are the coordinates in R3, q = {q1, q2, ...}

is a set that represents boundary conditions, material properties as well as any condition that

defines the physical system, u is the output of interest at location x. For a deterministic wind

turbine model with no random material properties, one can find the value of u at any point x

with given q. This results in a function u : D → R.

Suppose one of the conditions, qi ∈ q, denote by α for the sake of convenience, is actually

uncertain. Let Ωα be the sample space of α which contains possible values ω that α can take,

i.e. ωα ∈ Ωα. Define a σ-algebra, denote by F , a non-empty set of events in Ωα, such that it

is closed under complements and countable unions. Let P : F → [0, 1] be a function returning

the probability of particular event in F happens. According to the properties of σ-algebra, P

should be countably additive and satisfy that P(Ωα) = 1. The three definitions introduced

above can be composed as a probability space (Ωα,F ,P), where F is the σ-algebra over sample

space Ωα, P is the probability measure on F . Based on above discussion, the deterministic

system has been changed to stochastic system with random input α(ωα) and random output.

It is worth noting that α(ωα) is an abstract quantity that lies in abstract probability space

(Ωα,F ,P). The problem becomes

B(u : x, {q−i, α(ωα)}) = 0. (5.13)

where q−i = {q1, q2, ..., qi−1, qi+1, ...}. The solution of above set of differential equations is

actually a function u : D ×Ωα → R.

Since α(ωα) is just an abstract concept which could not be quantified. To solve equation

(5.13), the randomness in input must be represented by numerical mean. To this end, define

a measurable space (R, ε), on which lies a real-valued random variable θα : Ωα → R. By

measurable, it means for every subset B ∈ ε, its pre-image θ−1α (B) ∈ F where θ−1α (B) = {ωα :

θα(ωα) ∈ B}. With this definition, we relate the abstract quantity α(ωα) to a real-valued
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quantity θα. The solver becomes

B(u : x, θα) = 0. (5.14)

where θα is the random variable which represents the randomness in the input parameter α.

Furthermore, if multiple input parameters are actually random, the above equation is converted

to

B(u : x, θ1, θ2, ..., θk) = 0. (5.15)

where θi, i = 1, 2, ..., k are random inputs. Since 4 material parameters are considered to be

random as discussed previously, the wind turbine solver becomes

B(u : x,θ) = 0, (5.16)

where θ = {θi}4i=1. As a result, the output of interest u is the stochastic response of 4 random

inputs.

The next step of the analysis is to use SGC method to find the solution u(x,θ) of the

stochastic solver (Eqn. 5.15). Mathematical background can be found in section 4.2.

5.3 Computational Implementation

As discussed in section 1.1.3, SGC is used to perform stochastic analysis. It is noteworthy

that SGC assumes all random variables are uncorrelated to each other. However, no analysis

or experiment suggests that the four material properties satisfy this assumption. Yet for the

purpose of demonstration, in this research we assume they are uncorrelated without loss of

generality. In case of correlated random variables, SGC scheme can be used after principal

component analysis (PCA), which is a technique to convert a set of possibly correlated variables

into a set of uncorrelated variables (principal components) [33].

The solution procedure of this chapter can be divided into three steps:

• A subroutine for computing deterministic solutions.

• A subroutine for allocating nodes and building interpolation functions.

• A subroutine for post-processing operations.



82

Deterministic solver: In this research, we are interested in assessing the impact of the

randomness which is caused by the random nature of wind turbine manufacturing process to

rotor performance. To this end, a wind turbine blade model based on isogeometric analysis was

used in the simulation. The blade shell was made of a symmetric fiberglass-epoxy composite

with [±45/0/902/03]s layup. The model was then simulated at prescribed steady wind velocity

of 11.4 m/s and rotor angular velocity of 12.1 rpm 2. Fig. 5.4 shows the simulation setup.

Results of the simulation including the blade wake velocity field, pressure contour on the blade

surface, blade deformation, shell stress distribution, and etc. More details about the simulation

could be found in [7, 8]. In our analysis, stress distribution on the blade was calculated and

regarded as stochastic output of the system.

Figure 5.4 Simulation setup.

Sampling and interpolation: FT-AdaGiO was used to allocate the sampling points in

the 4-dimensional random domain. The package generated coordinates of nodes θi = {θj ∈

[0, 1], j = 1 · · · 4} according to adaptive SGC algorithm and construct the probabilistic output.

The random material properties of the blade were generated based on θi and incorporated

in the deterministic solver. After that, outputs were calculated based on the random material

properties. Although the number of samples greatly reduced by using adaptive SGC algorithm,

solving the complicated deterministic solver so many times is still a time consuming task.

Post-processing: Post-processing of current analysis includes extracting basic statistical

2Ideally, stochastic inflow should have been used, however, the wind turbine model used in this experiment
does not allow us to implement stochastic wind in the simulation. Thus, steady wind was used.
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solutions. Mean and standard deviation of stress distribution on blade shell can be calculated

with all realizations of the output of interest. Probability density function of the stress value

at critical location on the blade can also be generated by KDE.

5.4 Results

The calculation of adaptive SGC procedure was carried out up to a level of interpolation

(6) which has 168 sampling points. In order to make sure the selected samples are appropriate

to get accurate solutions, the convergence property of the SGC framework was checked by

comparing the PDFs at a critical location (where comparatively large stress occurs) of different

SGC computation levels. The result of the convergence check is shown in Fig. 5.5. From

the figure we notice that the difference between two consecutive levels decreases drastically as

interpolation level increases, which implies good convergence. To have a better view of the

convergence, the mean square error (MSE) of inverse cumulative distribution functions (ICDF)

of different levels with respect to level 6 are shown in Table 5.2. Good convergence of the

approximation error that is shown in Table 5.2 indicates using results of level 6 is sufficient.

Stress (M Pa)

P
D
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64 66 68 70 72 74

5E-08

1E-07
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2E-07
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Level3

Level4

Level5

Level6

Figure 5.5 PDFs at a critical location of different SGC computation levels.

Fig. 5.6 (a) shows one of the 3D scatter plots of the nodes that are allocated in computation
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Table 5.2 Normalized MSE of different computational levels with respect to level 6.
Computational Level # of samples MSE

2 8 1.0
3 40 0.28
4 88 0.064
5 136 0.0068

level 6. It can be seen from the figure that the nodes are sparsely distributed in the stochastic

domain. As discussed previously, the number of samples used in computation level six is 168.

The advantage of the adaptive procedure can be seen clearly by comparing Fig. 5.6 (a) with

Fig. 5.6 (b) where 1824 samples are generated according to non-adaptive SGC algorithm.

Although much less sampling points was used in the adaptive method, good convergence was

achieved (see Fig. 5.5). Fig. 5.6 (a) also sheds light on the physical properties of the system.

For example, the plot shows a inside-sparse structure which means taking more samples from

the region where E1, E2, and G12 are in their intermediate values does not help a lot in refining

the stochastic results.

E1

0

0.2

0.4

0.6

0.8

1

E2

0

0.2

0.4

0.6

0.8

1

G
1

2

0

0.2

0.4

0.6

0.8

1

E2

0

0.2

0 .4

0 .6

0.8

1

E1

0

0.2

0.4

0.6

0.8

1

G
1

2

0

0.2

0 .4

0 .6

0 .8

1

(a) (b) 

Figure 5.6 Sampling points allocated by adaptive SGC algorithm (a) and non-adaptive SGC
algorithm (b) at computation level 6.

In order to increase the clearance between blade tip and turbine tower, large turbine blades

are pre-bent such that the clearance is still sufficient after wind load is applied and blades are

deformed. Blade deformation is shown in Fig. 5.7. It can be seen in the figure that after the

deformation, the blade is almost straight. Noting that the 11.4 m/s wind speed is close to the
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rated wind speed of most wind turbines, this result implies that pre-bent rotor will have the

optimized power output at the rated wind speed. Similar analysis can be done to become a

good reference of designing the optimal curvature of pre-bent blades.

11.4 m/s 

Deformed shape 

Pre-bent shape 

Figure 5.7 Blade deformation under 11.4 m/s wind load and 12.1 rpm rotating speed.

5.4.1 Stress analysis

The deformation of the blade causes stress on the blade structure. A blade design has

to be verified such that the stress introduced by structure deformation will not exceed the

design strength of the material. According to the GL design code [18], the design strength

is the characteristic value of the material divided by the partial safety factor of the material,

where the characteristic value is calculated based on experiment results and corresponds to

95% survival probability and confidence level.

Since the flapwise bending load dominates the deformation of blades, mean contour plot of

stress along flapwise direction on the 13th ply, where maximum mean stress exists, is shown in

Fig. 5.8. The red region on the Fig. 5.8 shows the area that suffers the largest average flapwise

stress over the entire blade surface.

Although this figure gives us a general idea of the critical region, it does not provide all the

information of the statistical behavior of the stress. A point with low mean and high variance

of stress could be more critical than the point that has the maximum mean stress because high
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Stress, Pa 

Figure 5.8 Mean stress contour the 13th ply.

variance may result in unexpected peak of stress that may damage the blade. Therefore, a

plot of standard deviation of flapwise stress on the 13th ply is shown in Fig. 5.9 (Noting that

the 13th ply is where maximum standard deviation of flapwise stress exists). Comparing with

Fig. 5.8, the point with maximum standard deviation is almost identical to the point with

maximum mean.

Stress, Pa 

Figure 5.9 Contour of the standard deviation of stress on the 13th ply.

We are interested in the probability density function at critical region. KDE method (see
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Appendix 2.1.3) was used in estimating PDFs. Fig. 5.10 shows the PDF of the node that has

the maximum standard deviation of stress values. It is interesting to note that the PDF is

Gaussian-like that is commonly used for modeling physical phenomena.

Stress, Pa x
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Figure 5.10 PDF of the stress at the point that has the maximum standard deviation of
flapwise stress.

According to the GL design code [18], the design strength Rd = Rk/γMx . In this equation,

Rk is the characteristic value given as

Rk(υ, n) = x̄

[
1− υ

[
1.645 +

1.645√
n

]]
, (5.17)

where x̄ denotes the mean of the test strength and n is the number of test values. γMx can be

calculated as follows

γMx = 1.35
∏
i

Cix, (5.18)

where Cix is the reduction factors decided by different types of analysis (for material produced

by resin infusion method, and for short-term strength verification, γMx = 1.35× 1.1 = 1.485).

According to the test method in [65], the characteristic value of the material that is used

in current analysis is 1.68 GPa. As a result, the design strength of the given material is

Rd = 1.68/1.485 = 1.13 GPa, which means any stress on the blade that is higher than Rd

would fail the stress verification. In Fig. 5.10, the flapwise stress takes values that are much
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smaller than the design strength of the material, which means current design is safe but either

the blade material is unnecessarily strong or the structure design is redundant.

With probability density function at critical points, we can further investigate the proba-

bility of the stress at a critical point exceeding the design strength of the material. For the

purpose of demonstration, consider the case whose design strength Rd = 68MPa. It is valuable

to know where on the blade would break first. According to the definition of probability density

function, the area for stress value σ > Rd on the PDF equals the probability of the point has

stress exceeds the design tensile strength of the material. Critical regions that have a large

probability of failure can be calculated. As shown in Fig. 5.11, value at each point represents

the probability of the stress at that point exceeds the design tensile strength. It can be seen

in Fig. 5.11 that critical regions are located at the root transition area and half-length of the

blade.

Failure Probability 

Figure 5.11 Critical region that could have stress higher than 68MPa with large probability.

Remark 3. The current example only shows the result of the laminate failure analysis in

normal load case. However, the framework presented in this research can be used in many

other analysis which includes analysis on laminate failure and stability failure with regard to

the short-term strength, fatigue strength and stability in all load cases (normal/operational and

extreme) [18].
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5.4.2 Failure analysis

In the previous section, the analysis on flapwise stress was provided. However, failure in

orthotropic material depends on stress components in all axis and the interaction between them.

Tsai-Wu failure criterion [63] is widely used for identifying failures in the analysis of anisotropic

composite materials. In Tsai-Wu criterion, failure is evaluated based on a combination of

stress components. It is designed such that the combination of different stress components are

considered for failure initiation in composite materials. The failure index can be calculated

based on a multi-axial stress condition and regarded as an important indicator of failure.

A failure index that is greater than 1.0 means failure occurs.3 Contour plot of the mean

and standard deviation of failure index (calculated based on the actual design strength Rd =

1.13 GPa) on the blade surface was shown in Fig. 5.12. As seen in Fig. 5.12 (a), the maximum

mean value of failure index (∼ 0.4) is much smaller than 1.0. Fig. 5.12 (b) shows the standard

deviations of failure index. In addition, it is noteworthy that maximum failure index is located

at the 14th ply rather than the 13th ply that contains maximum flapwise stress. Although

falpwise stress is a very important indicator in wind turbine structure analysis, it is not enough

to predict failure.

To further investigate the probability that the maximum failure index exceeds 1.0, the

PDF of failure index at the location that has maximum mean failure index on the blade was

estimated and is given in Fig. 5.13. Result shows that the probability of failure (FI > 1.0) is

nearly zero. This analysis provides us a unique method to check wether a wind turbine design

is valid. We envision this analysis as a useful reference in wind turbine design.

5.5 Discussion and Conclusion

Current wind turbine simulations are mostly based on simplified blade models which could

not meet the requirement for accurately analyzing the fluid structure interaction between blade

and surrounding air domain. On the other hand, in spite of the fact that randomness inher-

ent in blade manufacturing process may impact blade performance and turbine efficiency, the

3Tsai-Wu criterion does not provide the information about when and how the failure occurs.
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(a) 

(b) 

Tsai-Wu FI 

Tsai-Wu FI 

Figure 5.12 Contour of failure index on the 14th ply.
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Figure 5.13 Probability density function of failure index at the point that has maximum mean
failure index on the blade.

mechanism of randomness affecting the performance of wind turbines is still an open question.

In this research, we try to solve these problems by integrating stochastic analysis, which is

based on adaptive sparse grid collocation method, on a full scale pre-bent 3D wind turbine

rotor model constructed with isogeometric analysis. With a given steady wind load, the model

gives the deformation and the stress distribution of the blades. Four material properties regards

to composite laminate were given as stochastic input of the system. Stochastic results were

generated based on 168 sparsely allocated sampling points.

An example of stress analysis and failure analysis on NREL 5MW wind turbine blade

design was given. The results identify the region that is most likely to have large stress or large

variation of stress. Moreover, the probability density functions of the stress values at critical

regions were calculated. Finally, the probability of the critical region to have stress values lager

than given threshold was calculated. If we define the threshold according to the design strength

of the material, this probability becomes the probability for the blade design to fail. All above

results should give us a better understanding of how the randomness affect the performance of

the blade.
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CHAPTER 6. SUMMARY AND DISCUSSION

In this research, we explored the feasibility of incorporating stochastic analysis on wind

turbine design. We first developed a low-complexity yet realistic data-driven turbulence simu-

lation framework using temporal and spatial decomposition. A synthetic turbulent inflow was

generated using this framework and used as the stochastic input of a simplified wind turbine

model. We utilized adaptive sparse grid collocation method and performed stochastic analysis

on this system, where primary results on stochastic wind turbines’ performance were found. As

an attempt to achieve more accurate and detailed results on the deformation and surface stress

distributions of wind turbine blades, a 3D comprehensive wind turbine model that was devel-

oped based on isogeometric analysis and a deterministic wind input were used in simulations.

Stochastic analysis on random composite material properties was done on this comprehensive

wind turbine model, where stress and failure analysis were performed.

From the analysis performed in this research, we found that the temporal spatial decompo-

sition framework is able to precisely reproduce the temporal and spatial statistics of any given

large data set of wind. The random variables that are generated in the decomposition process

showed that Gaussian randomness assumption may not be valid for turbulences in various en-

vironmental conditions. The temporal and spatial modes resulted from the decomposition also

showed valuable information about the turbulence. Simulation results of using TSD synthetic

inflow showed good consistency with the results of using original wind data. The results of

stochastic analysis show that the stochastic performances of wind turbines are only sensitive

to few largest spatial modes in the turbulent inflow. From the stochastic analysis on the 3D

comprehensive wind turbine model, critical regions on blades were located, the probability of

blades to have failures were calculated, and suggestions of blades design were made.

A data-driven low-complexity model that encodes the spatial- and temporal-correlations
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and is location- and topography- sensitive has significant utility in a variety of wind energy

applications. These include, wind farm layout optimization using realistic wind models; robust

control of turbine operations based on the low-complexity stochastic wind model; stochastic

analysis for robust (and lean) design of turbine-blades and other components; and using re-

alistic wind models to analyze wind farm output integration with the power grid. While the

mathematical framework developed here is used to analyze wind speed, it can also be used to

represent other atmospheric data such as temperature and carbon dioxide flux. This frame-

work can also be naturally extended to represent ocean waves, which is crucial for off-shore

wind turbine siting, layout and design analysis. On the other hand, stochastic analysis of wind

turbine provides us a better understanding of how the randomness affect the performance of

wind turbine, which could be a good reference for the wind turbine design guideline.

It is worth noting that although TSD is capable of representing any given wind data, and its

accuracy does not strongly depend on the number of modes used in the decomposition (see the

discussion in Sec. 3.1.5), more modes are still desired for accurately representing the full-field

wind. As a result, using it as the stochastic input of wind turbine model results in a very high-

dimensional stochastic problem whose convergence is difficult to achieve. In addition, we only

showed the ability of TSD in modeling the along-wind turbulence component that has apparent

temporal and spatial correlations, more work need to be done to show the usefulness of this

framework on representing the transverse and vertical turbulence components. Moreover, the

development TSD framework is still in the initial stage, thus more work need to be done for

it to be used in industry. Furthermore, the availability of high frequency field measurements

is the bottleneck of applying TSD in data-driven analysis. Finally, although the 3D wind

turbine model that is used in this research has rich surface geometry, it does not have complete

structure components such as shear webs and structural cores. To better estimate stress and

predict failure, rotor models with complete blade structure are required.

Future works of this research include but not limit to the following topics. First, the

computational framework of TSD needs to be tailored such that it is consistent with IEC

industry standard, and easy to be used in existing wind simulation codes. Second, by comparing

the TSD parameterizations of wind turbines inflow and wake, possible conclusions on how the
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statistics structure of turbulence is changed by wind turbines could be drawn. Third, other

properties of blades can be used as stochastic input. For example, random waviness defects

and stochastic structure parameters. Fourth, incorporating TSD framework in complete wind

turbine models, which would reveal more realistic simulation results.
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layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98(417):563–589,

1972.

[39] ND Kelley, BJ Jonkman, GN Scott, JT Bialasiewicz, and LS Redmond. The impact of

coherent turbulence on wind turbine aeroelastic response and its simulation. In Windpower

2005 Conference Proceedings, 2005.



99

[40] Y. W. Kwon, D. H. Allen, and R. Talreja, editors. Multiscale Modeling and Simulation of

Composite Materials and Structures. Springer, New York, 2008.

[41] E. Lantz, M. Hand, and R. Wiser. WREF 2012: The Past and Future Cost of Wind

Energy. 2012 World Renewable Energy Forum, May 2012.

[42] Jesper Winther Larsen, R Iwankiewicz, and Søren RK Nielsen. Nonlinear stochastic sta-

bility analysis of wind turbine wings by monte carlo simulations. Probabilistic engineering

mechanics, 22(2):181–193, 2007.

[43] D. Lee, D. H. Hodges, and M. J. Patil. Multi-flexible-body Dynamic Analysis of Horizontal

Axis Wind Turbines. Wind Energy, (5):281–300, 2005.

[44] Jakob Mann. Wind field simulation. Probabilistic engineering mechanics, 13(4):269–282,

1998.

[45] George Marsaglia. Ratios of Normal Variables. Journal of Statistical Software, 16(4), may

2006.

[46] L. Mathelin and O. L. Maitre. Robust control of uncertain cylinder wake flows based on

robust reduced order models. Computers & Fluids, 38(6):1168–1182, 2009.

[47] A. Messac, S. Chowdhury, and J. Zhang. Characterizing and Mitigating the Wind

Resource-based Uncertainty in Farm Performance. Journal of Turbulence, 13(13):1–26,

2012.

[48] Patrick J Moriarty and A Craig Hansen. AeroDyn theory manual. National Renewable

Energy Laboratory Golden, Colorado, USA, 2005.

[49] Nicola Barberis Negra, Ole Holmstrøm, Birgitte Bak-Jensen, and Poul Sørensen. Model

of a synthetic wind speed time series generator. Wind Energy, 11(2):193–209, 2008.
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