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ABSTRACT

Holoimage is a technique that is capable of compressing 3D geometry scans into 2D

images. The main goal of this thesis was to develop a way to compress 3D geometry

coming from a structured light scanner into a manageable format. Structured light

scanners have made the acquisition and display of 3D data simple. Recently an area

of 3D scanning has emerged called realtime 3D scanning, which allows for the capture,

reconstruction, and display to be realized in 3D. With these advancements comes the

challenge of working with the large volume of data that comes from such a scanner.

In an uncompressed format, these realtime 3D scanners can have data rates surpassing

400 MB/s. For realtime applications, this amount is unmanageable, thus a method to

compress the data must be found.

Holoimage is a technique that was developed to compress data from such a scanner,

converting the raw 3D geometry into 2D images which can then be compressed using

2D image compression techniques. This conversion from 3D to 2D is achieved through

a virtual structured light scanner, which is similar to an actual structured light scanner

with some key differences. In the virtual system, traditional sources of error such as

lighting, camera properties, and system calibration can be controlled to provide an ideal

scanning system. Thus, unlike traditional structured light systems, Holoimage does

not suffer from disadvantages such as the inability to measure discontinuous surfaces or

surfaces with large step height variations. Also, the Holoimage technique is constructed

in such a way that all of the steps are pixel operations, thus it can be run on parallel

hardware such as a graphics processing unit (GPU).
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To further increase the compression of 3D geometry in the Holoimage format, 2D im-

age compression such as portable network graphics (PNG) or joint photographic experts

group (JPEG) can be applied. Since the JPEG format is a form of lossy 2D compression,

this form of compression introduces error into the reconstructed 3D geometry. Investiga-

tions of this error are performed with three different experiments, drawing conclusions

from each to construct a structured light pattern that is more resilient to the effects

of this lossy compression. In the end, results are shown which allow for compression

ratios of over (72 : 1) with root mean squared error of less than 0.1%. If further lossy

compression is applied, compression ratios of over (370 : 1) can be achieved with root

mean squared error of less than 4.0%. In all this thesis documents previous work in the

area of 3D geometry compression, the principle of the Holoimage technique, methods to

implement the technique on parallel hardware, experiments on properties of the resulting

images, and avenues for future work on the technique.
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CHAPTER 1. INTRODUCTION

Advancements in 3D imaging and computational technology have made acquisition

and display of 3D data simple. Techniques such as structured light, stereovision, and

LIDAR have led the path in 3D data acquisition. Stereoscopic displays have made the

display of 3D data a reality. However, as these fields and techniques evolve a growing

problem is being confronted; how can 3D data be efficiently stored and transmitted?

This thesis describes a novel approach that allows 3D data to be compressed into 2D

images and stored in a lossy format. This chapter will present an overview of structured

light scanning, explain why compression is needed, discuss the proposed approach, and

present the structure of this thesis.

1.1 Overview

Advancements in 3D imaging and computational technology have made acquisition

and display of 3D data simple (Zhang, 2010). As the computer graphics field continues to

mature, practitioners continue to create new ways to make photorealistic virtual worlds.

3D scanners allow these practitioners to scan real world objects into photorealistic virtual

objects giving them an easy way to create art assets. Techniques such as structured light,

stereovision, and LIDAR have led the path in 3D data acquisition (Gorthi and Rastogi,

2010). Recently an area of 3D scanning has emerged called realtime 3D scanning which

allows for the capture, reconstruction, and redisplay of 3D models in realtime (Zhang,

2010). This allows for a new level of photorealistic virtual worlds and applications that
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make use of this realtime technology such as live 3D video or 3D video conferencing.

With the advent of this new technology comes new challenges in terms of storage and

computing power. A structured light scanner with a resolution of 640×480 yields 307,200

vertices per frame; at 30 frames per second (FPS) this is 9,216,000 vertices a second,

which is over 110 MB/sec. This staggering amount of 3D information is too much to

store or transmit across a network in realtime.

1.2 Structured Light Scanning

Structured light scanning is a subfield of non contact 3D measurement (Salvi et al.,

2010). It is known as active scanning, since a pattern is projected on the object being

measured, versus passive which merely observes the object and infers its shape. Struc-

tured light scanning works by projecting a known structured pattern onto an object, and

then capturing the resulting scene from another angle. The structural pattern assists

in finding corresponding points between the projecting perspective and the capturing

perspective. If the correspondence between the projecting perspective and capturing

perspective is known, and the system is properly calibrated, 3D information can be

retrieved (Zhang and Huang, 2006c).

Within structured light scanning a new subfield is emerging, realtime structured light

scanning. In this subfield, structured light scanning systems can acquire, reconstruct,

and display 3D geometry in realtime. Techniques are emerging which allow for high

resolution realtime scanning, making the ability to perform highly detailed scans of

objects in realtime a reality (Karpinsky and Zhang, 2010b). With these highly detailed

scans comes the challenge of handling all of this data. Conventional 3D model formats

store a minimal amount of vertices, and then apply normal maps, bump maps, and

textures to achieve high visual fidelity. If high resolution models with animation are

stored, the vertices are typically constrained to a few skeletal points which are then
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animated. During animation these skeletal points are the ones that get animated, and

then the other points move within their constraints of the skeletal points. This allows

long series of animation to be performed on just a couple of points yielding small file

sizes for large amounts of animation. With video captured from 3D scanners, each point

is animated thus each frame of the animation contains the data for the entire model.

This yields extremely detailed meshes and animation, but at the cost of high amounts

of disk space ocupation.

1.3 Need for Compression

In a structured light scanner, a 3D coordinate is reconstructed for each pixel that

is captured, resulting in a large mesh; storing these meshes requires a large amount of

space. To illustrate this point consider a simple 2D color image that would come from a

movie frame. Each pixel has 8-bit color depth resulting in 24 bits per pixel or 3 bytes per

pixel. Now consider a 3D model generated from a structured light scanner, with a 4 byte

floating point number for each component of the 3D coordinate (x, y, z). This results in

12 bytes per point, making the 3D geometry an order of 4 times larger. If connectivity

information along with point normals are added, which is standard in most 3D formats,

the 3D geometry becomes more than 10 times larger. Table 1.1 illustrates this point,

where even one of the smallest 3D formats designed for point cloud compression, PLY is

still over 5 times larger than a uncompressed 2D image. Employ 2D image compression

such as PNG or JPEG compression and the ratio becomes staggering.

1.4 Proposed Approach

Since 3D geometry that is scanned by a structured light scanner comes from 2D

images, storing the original 2D images is a natural way to compress the 3D geometry.

Then when the 3D geometry is needed, it can be decoded back into 3D. Two major
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Bitmap Image PLY DAE OBJ STL
File size: 1.2MB 6.5MB 10.6MB 12.8MB 17MB

Ratio: 1 : 1 1 : 5.42 1 : 8.83 1 : 10.67 1 : 14.17

Table 1.1 3D file formats compared to an uncompressed 2D image. All of
the formats are 640× 480 points. Note the closest format is still
over 5 times as large as its 2D counterpart. Also 3D formats con-
tain only vertices and connectivity if required; no point normals
or texture coordinates are stored.

limitations exist: the 2D images captured are intolerant to noise and thus cannot be

stored in a lossy format; certain structured light systems project many images to capture

a single 3D geometry, thus the 2D format can be larger than the 3D format. Using the

natural 2D format, there exists a technique of rescanning 3D geometry back into 2D

virtually, so that a minimal number of images may be used that can be stored in a lossy

format. This technique is entitled Holoimage.

The original intent of Holoimage was to represent 3D geometry with a 2D image (Gu

et al., 2006). Holoimage was also used to merge separate scans from a structured light

scanner into a single scan with the combined information (Zhang and Yau, 2008). This

merging was done by creating a virtual structured light scanner and re-scanning the

separate 3D scans. By re-scanning the two separate scans, a single unified scan could

be created. Both of these implementations made use of the three-fringe-image tech-

nique (Zhang and Huang, 2006a), allowing the scans to be saved in a single image.

However, this implementation has limitations due to the required spatial phase un-

wrapping: it cannot handle large step height changes, nor can it resolve discontinuous

surfaces. These limitations existed in the scanner used to gather the original scans, so

these limitations were acceptable as the geometry being rescanned would not have large

step height changes or discontinuous surfaces.

Currently there are fringe projection techniques which allow for the acquisition of

geometry with large step height changes and discontinuous surfaces but require more

than three fringe images. Due to these advancements, the limitations of Holoimage
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are no longer acceptable, as information is lost, if Holoimage is applied to these new

techniques. This thesis presents research on how to make use of different fringe patterns

and create a pattern which can be embedded in the red, green, and blue color channels of

an image, yet scan geometry with large step height changes and discontinuous surfaces.

If this can be done, and the pattern is carefully constructed, a 3D scan can be saved

into a single 2D image and stored in a lossy format. This thesis looks at changing the

patterns used in Holoimag to mitigate the previous limitations and store 3D geometry

in a lossy format.

1.5 Thesis Overview

The following chapters will look into relevant literature, methods and procedures

for Holoimage, compression experiments and results, and future work and conclusions.

Chapter 2 reviews structured light scanning, fringe projection, phase shifting, and phase

unwrapping, along with a literature review of 3D compression techniques which have

been proposed for 3D scanning. Chapter 3 gives a detailed discussion on the theory of

Holoimage, provides derivations for how to convert from coordinates to phase and from

phase to coordinates, along with the discussion on how to implement Holoimage with

the OpenGL Shading Language (GLSL). Chapter 4 explores how changing the pattern

used in the Holoimage system affects its ability to withstand lossy 2D compression.

Finally, chapter 5 will talk about future directions for Holoimage research, specifically

how to extend it to video and other color spaces, and then will conclude the findings

from previous chapters.

1.6 Summary

Realtime structured light scanning has enabled the acquisition, reconstruction, and

display of 3D geometry in realtime. This advancement comes at the cost of large amounts
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of data that conventional 3D geometry formats cannot hold effectively. Since the 3D

geometry is generated from 2D images, these images are a natural format to use to re-

compress the 3D geometry. The technique of Holoimage has been used to merge separate

3D scans into a unified scan, but cannot reconstruct geometry with large step height

changes or discontinuous surfaces. If the fringe images used by this technique can be

modified, these limitations can be circumvented, and the Holoimage technique can be

used to store 3D geometry in a compressed 2D format.
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CHAPTER 2. RELATED WORK

Compression of 3D geometry has been increasingly studied, as 3D models are be-

coming more complex requiring more space. Realtime structured light scanning is a

technique which allows these complex models to be generated in realtime, resulting in

3D video. To give some insight into the complexity of 3D scanning, an introduction to

structured light scanning is presented along with an overview of phase shifting, phase

unwrapping, and an example from a real scanner. Then this chapter will give a short

introduction into some relevant methods to encode the data coming from a 3D scan-

ner. A short introduction to each method along with discussing some advantages and

disadvantages of each will be presented.

2.1 Structured Light

Before we investigate how to compress 3D geometry coming from a realtime 3D

scanner, it is important to understand how 3D geometry is digitized. This section

reviews how structured light scanning works along with relevant works in the field. An

overview of structured light scanning is presented, followed by fringe projection, phase

shifting, and then phase unwrapping. Finally, examples will be presented to illustrate

this technique.
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2.1.1 Overview of Structured Light Scanning Techniques

Structured light scanning is the process of projecting a known structured pattern

onto an object, and then recording from another angle. Figure 2.1 gives a conceptual

diagram of this process. Point C in Figure 2.1 illustrates a point being projected, point

B is where it lands on the geometry, and point A is where the point is being captured

by the camera. The structured pattern that is projected helps find corresponding points

(AandC) between the projector and camera. This approach of 3D scanning is known as

active scanning as a pattern is projected. The other approach to 3D scanning is known

as passive, where a scene is simply observed from multiple angles and then corresponding

feature points are found through the texture (Salvi et al., 2010). With either approach

once corresponding feature points are found (A, B, and C in Figure 2.1), 3D coordinates

can be triangulated, assuming that the system is properly calibrated (Zhang and Huang,

2006c).

Since structured light systems project a pattern, they do not need to rely on the

natural texture and therefore can find corresponding feature points more accurately and

reliably. Typically, a feature point is found for each pixel within the camera allowing

for high resolution scans of geometry. Recently, a new classification of structured light

scanners has emerged known as realtime structured light scanners. Systems in this

classification can acquire, decode, and display geometry in realtime (Zhang and Huang,

2006b). One of the realtime scanning techniques is known as fringe projection. Typically

multiple patterns need to be projected and captured to reconstruct a single 3D shape due

to noise and required information. By using a fringe projection approach, the number

of images projected can be minimized, increasing the temporal resolution to realtime

speeds.
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Figure 2.1 Schematic diagram of a structured light system setup. Point A is
what the projector is projecting, Point B is where it falls on the
geometry, and point C is what the camera sees. If points A, B,
and C can be determined the 3D geometry can be triangulated.

2.1.2 Fringe Projection

In structured light scanning two types of patterns are commonly used, binary coded

and sinusoidaly varying patterns (Gorthi and Rastogi, 2010). With binary coded pat-

terns multiple different patterns are projected and captured. When the patterns are

overlaid on each other, they form a unique coded pattern for each pixel. Since each

projector pixel represents a binary value, the resolution of the system is limited to the

projects resolution. For higher spatial resolution systems, this approach is undesirable.

Sinusoidaly varying patterns known as fringe patterns increase the spatial resolution

beyond the projector’s resolution but require phase unwrapping. Instead of using images
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with binary grayscale values, fringe projection uses sinusoidally changing intensity values

for the structured light being projected. Like binary structured patterns, more fringe

images can be used to achieve higher accuracy, but this slows down the measurement

speed. To reach realtime 3D imaging, a small number of fringe images (patterns) are

typically used. Under certain conditions, only a single fringe pattern is needed to recon-

struct the 3D information, thus very high speed may be realized (Takeda and Mutoh,

1983). However, as the complexity of the geometries surface increases, the measurement

accuracy is affected, requiring more fringe patterns (Guo and Huang, 2008; Huang and

Zhang, 2006).

2.1.3 Phase Shifting

A phase shifting method is usually used to achieve camera pixel-by-pixel spatial

resolution during 3D shape recovery. Phase-shifting algorithms are extensively used

in optical metrology because of their precision and speed. Over the years, a number

of phase-shifting algorithms have been developed including three-step, four-step, least-

square algorithms, etc. (Schreiber and Bruning, 2007). All of these algorithms differ in

the number of fringe images required and the amount of phase shift, but they all share

the same properties: (1) high measurement speed, due to a minimal number of images

being projected to recover a 3D shape; (2) high spatial resolution, because the phase

can be obtained pixel-by-pixel, thus the measurement can be performed pixel-by-pixel;

(3) less sensitivity to surface reflectivity variations, since the calculation of the phase

will automatically cancel out the DC components.

In a real world 3D shape measurement system using a fringe projection technique, a

three-step phase-shifting algorithm is used extensively in high-speed applications because

it requires the least number of fringe patterns for 3D shape recovery. The fringe images

of a three-step phase-shifting algorithm with equal phase shift can be described as



11

I1(x, y) = I ′(x, y) + I ′′(x, y) cos(φ− 2π/3), (2.1)

I2(x, y) = I ′(x, y) + I ′′(x, y) cos(φ), (2.2)

I3(x, y) = I ′(x, y) + I ′′(x, y) cos(φ+ 2π/3). (2.3)

In these equations, I ′(x, y) is the average intensity, I ′′(x, y) the intensity modulation,

and φ(x, y) the phase to be solved for. Figure 2.2 (a) gives a visual representation of these

equations. The phase can be obtained by simultaneously solving equations (2.1)-(2.3).

φ(x, y) = tan−1
[√

3(I1 − I3)/(2I2 − I1 − I3)
]
. (2.4)

Since the arctangent function only ranges from 0 to 2π, the phase value provided

from Equation (2.4) will have 2π phase discontinuities shown in Figure 2.2 (b). To obtain

a continuous phase map, a phase unwrapping algorithm is usually needed (Ghiglia and

Pritt, 1998), which will be discussed next.

2.1.4 Phase Unwrapping

As stated before, phase unwrapping is used to remove 2π phase jumps that occur

during phase shifting. Figure 2.2 (b) gives an example of phase jumps that occur from

phase wrapping, Equation (2.4). A phase unwrapping algorithm will traverse along the

phase map, adding multiples of 2π to remove these discontinuities. This results in an

unwrapped phase map which is given by Equation (2.5), and shown in Figure 2.2 (c).

Φ(x, y) = φ(x, y) + 2π ×K(x, y). (2.5)

Φ(x, y) is the unwrapped phase, φ(x, y) is the wrapped phase obtained from Equa-

tion (2.4), and K(x, y) is the integer number to represent phase jumps. The key to a

phase unwrapping algorithm is quickly and correctly finding K(x, y) for each pixel in
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the phase map. All spatial phase unwrapping algorithms have two common limitations:

they cannot resolve large step height changes that cause phase changes large than π, nor

can they resolve discontinuous surfaces.

I(x,y)

I’(x,y)

I’’(x,y)
I1

I2

I3

(a)

φ(x,y)

−π

+π

(b)

Φ(x,y) 

8π

0
(c)

Figure 2.2 Example of three-step phase-shifting algorithm. (a) shows the
fringe images I1, I2, and I3, (b) contains the wrapped phase
φ(x, y), and (c) contains the unwrapped phase Φ(x, y).

2.1.5 3D Shape Measurement Results with the Phase-Shifting Technique

To better illustrate how structured light scanning with fringe projection works an

example is presented. The three fringe images modeled by Equations (2.1)-(2.3) are

projected onto the object being scanned, and then captured from a camera at another

angle. Figure 2.3 (a)-(c) shows the captured fringe images, and shows that the geometry

has distorted the fringe pattern. Applying Equation (2.4) to each pixel will result in
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a wrapped phase map as shown in Figure 2.3 (d). In the wrapped phase map the 2π

discontinuities can be visualized by the color changing from white to black. Next a

phase unwrapping algorithm is applied and the unwrapped phase map is generated,

which is shown in Figure 2.3 (e). If the system is calibrated, then 3D geometry can be

reconstructed. Figure 2.3 (f) shows the final recovered 3D shape.

(a) (b) (c) (d) (e) (f)

Figure 2.3 Example of a fringe projection scanner digitizing 3D geometry.
(a)-(c) shows the fringe images that are projected onto the ge-
ometry, model by Equations (2.1)-(2.3), (d) shows the wrapped
phase map which is generated by applying Equation (2.4) to
(a)-(c). (e) shows the unwrapped phase map which is gener-
ated by applying Equation (2.5) to (d). Finally (f) is the recon-
structed geometry that is retrieved from (e).

By taking this scanning process and speeding it up to realtime speeds, a realtime

structured light scanner is created. With such a realtime scanning system, the challenge

of storing, transmitting, and displaying this data emerges. The scan showed in Fig-

ure 2.3 (f) consists of 640× 480 points; in the OBJ file format this results in a 16.4MB

file. Thus, compression methods need to be explored, so that the data can be put into

a manageable format.

2.2 Overview of 3D Compression Techniques

Compressing 3D data is a challenge that has been studied for the last decade. Many

different methods for compressing or representing 3D data have been proposed, each
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with its own advantages and disadvantages. For the sake of brevity, only a few key

methods that are closely related to this proposed method within this large body of

literature are examined, namely, depth mapping, multiview depth mapping, geometry

images, heuristic based point cloud compression, and level of detail meshes.

2.2.1 Depth Mapping

To overcome the challenge of compressing large static models, computer graphics

has employed what is know as depth mapping for sometime. The idea behind depth

mapping is to encode 3D geometry into 2D images, which can then later be decoded

back to 3D, known as image based rendering (Krishnamurthy et al., 2002; Chai et al.,

2004). Typically, the model being depth mapped is aligned with a plane such as the

xy plane, and then the z component is encoded with a 2D image known as a depth

map. The result of the process is a 2D image, which assumes that it is xy axis aligned,

the points are uniformly spaced, and each pixel encodes the depth at the point or the

z value. Performing this operation allows for the use of decades of existing research in

2D image processing to be leveraged as the 3D geometry has been encoded into a 2D

image. Thus, storage and transmission of the geometry is simplified. Typically, large

static models in 3D worlds are terrain models, and depth mapping is often employed

to quickly generate these models at photorealistic levels. A problem with this method

is that coordinates in models are not always uniformly spaced, which is a requirement

of the depth map, thus geometry needs to be resampled to be put into the depth map.

Another limitation is that depth maps are typically saved to an 8-bit image, thus the

depth resolution is limited to 256 values. Due to nature of 3D scanners and their use of

2D images to generate 3D data, a natural connection with depth mapping is apparent.

In a typical 3D scanning system, the 3D coordinates are recovered from 2D images

captured by cameras. Therefore, there should be a way to convert these recovered 3D

scenes back into 2D images.
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2.2.2 Multiview Depth Mapping

As 3D video and 3DTV becomes more mainstream, standards are emerging for video

plus depth. The technique of depth mapping along with video works nicely for a single

view reconstruction, as left and right eye images can be constructed on the fly at the

receiver side before display (Kauff et al., 2007). As autostereoscopic displays emerge

with multiple view points, this approach no longer works well. Instead N different video

plus depth streams are required based on the number of views to be presented. Since this

increases the bit rate of the stream by a factor of N , this is only acceptable for a small

N . To cope with this, techniques are trying to make use of redundant information within

the depth maps, then encoding only the changing depth values, but this requires a time

consuming encoding procedure. Currently the motion picture experts group (MPEG) is

working on the specifications for an auxiliary video data representation for video plus

depth.

2.2.3 Geometry Images

Geometry images developed by Gu et al. (2002) is another technique, which com-

presses 3D geometry into 2D images. The basic premise behind the technique is to

find a way to cut a model and then unwrap it into a flat disc. Each point in the disc

corresponds to a single geometry point. Coordinates (x, y, z) for each point on the disc

are then encoded into an image as red, green, and blue (RGB). This allows 3D geome-

try to be projected onto a 2D image and then brought back to 3D. The constraints of

this technique are that geometry images cannot represent non-manifold geometry, and

greater distortion and less uniform sampling can occur when unwrapping an entire mesh

as a single chart.

Another disadvantage of geometry images is the encoding process. Since the model

needs to be cut in order to unwrap it into a flat disc, appropriate cut locations must be
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found. This is performed through an iterative cutting algorithm which weights various

cuts, finding the minimal cuts needed to unwrap the geometry. As the genus of the

geometry increases though, more cuts are needed, which takes long periods of time to

find. Even with low genus models, less than six, and a face count of approximately

300K it takes about 1 hour to convert. This makes realtime encoding challenging,

thus geometry images are not applicable for the transmission of data from a realtime

structured light scanner.

2.2.4 Heuristic Based Point Cloud Compression

Heuristic based point cloud compression is a lossless method of compressing point

cloud data from a 3D scanner. The idea behind this technique is to start at a single

point, then move to a neighboring point based off a set or rules, and then encode a

correction vector. Different methods use different heuristics to try and guess the next

neighboring point (Merry et al., 2006; Gumhold et al., 2005). When decoding the point

cloud, the decoder starts at the first point, then predicts the location of the second

point and corrects with the encoded correction vector. If the prediction heuristics are

good, the correction vectors become very small, yielding low bit rates and thus high

compression of the point clouds.

Challenges of these approaches include picking correct heuristics, achieving a high

speed on large meshes, and storing connectivity information if it is present. As stated

previously, the choice in heuristics determine what the resulting file size is. If they are

poorly chosen, the file size could result in a similar size as the uncompressed mesh.

Achieving high speed is also difficult with these methods as the operations are typically

serial operations. Gumhold et al. (2005) were able to achieve an encoding speed of 20

seconds per mesh on a 100K point mesh. For high resolution real time scanning this

is not viable since the frame rate would be too slow. Finally connectivity information

cannot be easily stored since the neighboring points are selected based on a heuristic.
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If this information would be stored it would have to be stored separately in a different

compressed medium and applied after the mesh is decoded from its encoded state.

2.2.5 Level of Detail Meshes

A technique that is often employed with depth mapping and geometry images is

level of detail (LOD) meshes (Lindstrom et al., 1996). As a camera moves farther from

its subject, the perspective makes the subject appear to get smaller and smaller. As

the subject gets smaller from the cameras viewpoint, less camera pixels can capture the

subject, thus the subjects level of detail can be decreased without affecting the detail

at the cameras viewpoint. LOD meshes take advantage of this principle and reduce the

number of vertices in the overall mesh to display an appropriate level of detail, while

displaying as few vertices as possible for speed. Since depth maps are applied per vertex,

the fewer vertices the faster the decoding process. Thus LOD meshes work nicely with

depth mapping, decoding and displaying only the needed level of detail in a mesh. The

challenge in LOD meshes is how to determine which vertices to drop in a fast and efficient

manor. Since this technique is supposed to aid in speeding up rendering, it needs to be

extremely fast and efficient.

2.3 Summary

Over the past decade there have been many ways that have been developed to com-

press 3D point clouds and 3D scans. Examples of these methods include depth mapping,

multiview depth mapping, geometry images, and heuristic based point cloud compres-

sion. Furthermore, level of detail meshes have helped speed up decoding with these

methods. Each of these methods come with advantages and disadvantages. In addition

to new compression methods, new methods for acquiring 3D geometry have been dis-

covered, namely structured light scanning. With structured light scanning and fringe
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projection, a special classification of systems has emerged entitled, realtime structured

light scanners. These systems are able to acquired, decode, and display in realtime, mak-

ing 3D video a reality. This chapter examined the basic principles behind structured

light scanning, specifically fringe projection, phase shifting, and phase unwrapping. An

example with real data was shown, providing an illustration of how structured light

scanning with fringe projection works.
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CHAPTER 3. METHODS AND PROCEDURES

To compress 3D scanned data, the technique of Holoimage is proposed. This tech-

nique effectively depth maps a 3D scene through the use of a virtual fringe projection

scanner. The fringe pattern is constructed so that all fringe fit in the red, green, and

blue (RGB) color channels of a 2D image, and can be calculated in parallel. Parallel

calculation allows this technique to be performed on a graphics processing unit (GPU)

through the use of the OpenGL Shading Language (GLSL). This chapter gives an in-

troduction to the principle, how encoding is performed, how encoding through GLSL is

performed, how to decoding a Holoimage, how to decoding though GLSL, and finally

presents some experimental results to verify the performance of this proposed technique.

3.1 Holoimage

The proposed Holoimage technique uses a virtual fringe projection system achieved

through the use of OpenGL Shading Language (GLSL) Shaders. The pattern that is

chosen is a composite phase shifting pattern which allows for the phase to be solved for

pixel by pixel (Karpinsky and Zhang, 2010a). This section gives the principle behind

the Holoimage technique, how encoding is performed, how encoding can be implemented

with GLSL Shaders, how decoding is performed, how decoding can be implemented with

GLSL Shaders, and finally gives some experimental results.
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3.1.1 Principle

The principle behind Holoimage (Gu et al., 2006) is borrowed from optical metrology

and is known as fringe projection explained in Section 2.1.2. Figure 3.1 shows the

Holoimage system schematic, which consists of a projector and a camera. The projector

projects a structured pattern or structured light onto an object, and a camera captures

the resulting scene. As the structured pattern from the projector lands on the objects

in the scene, the 3D geometry distorts the pattern, which is what the camera captures.

Assuming that the geometric relationship between the projector pixels and the camera

pixels are known, the 3D geometry can be reconstructed from the distortion between

each image (Zhang and Huang, 2006c). Thus 3D geometry is transformed into a single

2D image, and then the 2D image can be used to reconstruct the 3D geometry.

In the Holoimage setup, Figure 3.1, the system differs slightly from a real 3D fringe

projection system, Figure 2.1, in that the camera and projector are both virtual orthog-

onal devices instead of perspective ones. In a real system the pinhole camera model,

a perspective projection, is used which complicates the technique of encoding and de-

coding. The camera and projector lens distortion usually brings 3D shape measurement

errors. Thus, using an ideal orthogonal projection simplifies the process further. An-

other difference is that in a real 3D fringe projection system, the light usually cannot

pass through an opaque object, but in a virtual fringe projection (Holoimage) system,

the fringe patterns can pass through any object to generate fringe patterns for 3D re-

construction. Moreover, since the position of the virtual camera and projector can be

precisely configured, the geometric relationship between the two can be precisely defined

resulting in no need to calibrate the camera and projector. This is usually a compli-

cated calibration procedure with a real 3D fringe projection system (Zhang and Huang,

2006c). With the Holoimage setup, 3D shape reconstruction is significantly simplified

and is highly precise, resulting in a quick and efficient way to depth map a 3D scene.
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Figure 3.1 Holoimage setup. The projector pixel is what the projector is
projecting, into the object, and is captured by the camera at the
camera pixel. The projector pixel and object point are achieved
through GLSL Shaders, and the camera pixel is the pixel loca-
tion in the resulting Holoimage.
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3.1.2 Encoding - Coordinate to Phase Conversion

Typically, three phase-shifted fringe patterns are required in order to perform 3D

shape measurement due to background lighting and random noise. In a virtual Holoim-

age system, all environmental variables can be precisely controlled; therefore only two

phase-shifted fringe patterns are needed to solve for the phase. These two fringe patterns

can be modeled and encoded into two of the primary color channels of the projector.

Since the background light can be precisely controlled, the fringe images can be ideally

sinusoidal and described in the following two equations:

Ir(x, y) = [1.0 + sin(ω × x)]× 0.5, (3.1)

Ig(x, y) = [1.0 + cos(ω × x)]× 0.5. (3.2)

Where ω = 2π × f , f is the desired frequency of the fringe, Ir is the color assigned

to the red color channel, and Ig is the color assigned to the blue color channel. x is the

coordinate value ranging from (0, 1) from the projectors perspective. From these two

equations, the wrapped phase may be obtained point-by-point.

φ(x, y) = arctan

[
Ir(x, y)− 0.5

Ig(x, y)− 0.5

]
. (3.3)

Similar to the three-step phase-shifting algorithm discussed in Section 2.1.3, this

yields a phase value for each pixel that ranges from [−π,+π) with 2π phase jumps,

which can later be used to reconstruct the 3D geometry. The unwrapped phase Φ(x, y)

can be obtained by adopting a conventional spatial phase unwrapping algorithm to find

K(x, y). If such an algorithm is used, the technique would not be able to encode large

step height variations or discontinuous surfaces. However, since there are three primary

color channels and the blue channel is not yet utilized in the Holoimage system, we can

encode K(x, y), the integer number to represent phase jumps, into the third channel by
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projecting it along with the fringe patterns, given with Equation (3.4).

Ib(x, y) =
floor(x× f)

f
. (3.4)

Here, f is the frequency of the fringe used in Equations (3.1)-(3.2) and x is the

coordinate value ranging from (0, 1) from the projectors perspective. To solve for the

unwrapped phase Φ(x, y), the result from Equation (3.3) can be combined with Ib(x, y)

to yield an absolute phase, given by Equation (3.5).

Φ(x, y) = φ(x, y) + Ib(x, y)× 2π. (3.5)

Embedding the three color channel functions (Ir, Ig, Ib) in the red, green and blue

color channels, a gradient image to be projected is created; this image is seen in Fig-

ure 3.2 (a). Figure 3.2 (b) shows a single cross section of the pattern.
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Figure 3.2 Ideal fringe for the Holoimage technique. (a) shows the Holoim-
age Equations (3.1)-(3.4) displayed as an image, (b) shows a
single cross section plot of the three color channels (Ir, Ig, Ib).
Note a f of 4 was used to generate this fringe.

Given that there are only three images, these functions can be encoded into the three

primary color channels (red, green, blue, or RGB) of a 2D image and projected in the
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virtual system at once, achieving depth mapping of 3D geometry into a 2D image. Since

the 3D information can be encoded into a single color image, it drastically reduces the

size of storing 3D geometry data. In addition, because the phase at each point can

be solved for point-by-point without referring to any neighboring point, the decoding

can be achieved in parallel. With a highly parallel operation device, such as GPU, the

decoding step can be realized quickly.

3.1.3 GLSL Encoding

Since each pixel of the resulting Holoimage is calculated with f which is constant for

each Holoimage, and x which is unique for each pixel horizontally, the step of encoding

can be performed in parallel. To perform the parallel calculation of the Holoimage,

GLSL Shaders can be used to color a 3D scene with the structured light pattern, with

small modifications to the rendering pipeline. Once encoded, the scene can be rendered

to a texture, retrieved from the GPU via direct memory access (DMA), and saved to

an image. Figure 3.3 illustrates the encoding pipeline. The process starts by setting the

frame buffer object to render to a new texture. Next the Holoimage encoding shader,

detailed in Section 3.1.3.2, is bound and the geometry to be encoded is rendered. Finally

the Holoimage encoding shader is unbound, and the texture which the scene was rendered

to is saved out as the 2D Holoimage.

3.1.3.1 Model View Matrix

In the OpenGL pipeline before Version 3.2, the model view matrix for a camera is

created and passed into the shaders. In versions after 3.2, this is left to the users, but

can be applied in the same manner as versions before 3.2. The model view creates the

transform that brings coordinates into the camera’s perspective before it is projected

onto the screen with the projection matrix. This camera perspective is the same camera

that is needed in the fringe projection system. In order to color the scene, x is needed
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to new texture Render Geometry Save Resulting 

Texture
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Unbind 
Holoimage 

Encoding Shader

Encoding Pipeline

Figure 3.3 Holoimage encoding pipeline. The pipeline starts by setting the
frame buffer object (FBO) to render to a new texture. Next the
Holoimage encoding shader is bound and then the geometry to
be encoded is rendered. Finally the Holoimage encoding shader
is unbound, and the texture which the scene was rendered to is
saved out as the Holoimage.

from the projector’s perspective. To do this a second model view matrix is needed for the

projector’s perspective. This can be created by acquiring the base model view matrix

before any transforms are applied, saving it to the projector’s model view matrix, and

then rotating the model view matrix some angle θ about an axis (eg. 30◦ about the y

axis in the case of this thesis). Now before the scene is drawn, the Holoimage shader

needs to be bound, and any transform that is applied to the cameras model view matrix

needs to be applied to the projectors model view matrix as well. When geometry is

drawn, the value of the projector’s model view matrix must be passed to the shader, so

that the appropriate x coordinate value can be determined for each vertex drawn. From

this point, the rest of the encoding is performed on the Holoimage shader.

3.1.3.2 Holoimage Encoding Shader

Figure 3.4 gives a graphical representation of how the Holoimage encoding shader

works. Since the Vertex Shader is only called once for each vertex, it is not desirable

to encode the Holoimage in this stage of the pipeline. If there is a vertex for each pixel

it could be done, but the Fragment Shader already gets called for each pixel, thus it

is the location to perform the calculation. The Vertex Shader does need to pass the x
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position relative to the projector to the Fragment Shader, thus some work does need to

be done. To pass x, the Vertex Shader needs to take the projector’s model view matrix

and multiply it by the vertex and pass it to the Fragment Shader. Figure 3.4 illustrates

the Holoimage encoding shader with the Vertex Shader taking in the projector model

view matrix and camera model view matrix, and emitting a projector vertex and a

camera vertex. This will give the Fragment Shader the x value of the pixel interpolated

across the scene.

Projector
Model 
View

Vertex Shader

Camera
Model 
View

Projector
Vertex

Camera
Vertex

Fragment Shader

Color

Holoimage 
Encoding Shader

Figure 3.4 Holoimage encoding shader. The Vertex Shader takes in the
projector model view matrix and camera model view matrix, and
emits both a projector vertex and camera vertex. The Fragment
Shader takes both of these vertices and then emits a colored
fragment which holds the value of the fringe at the specified
fragment.
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Within the Fragment Shader is where the actual encoding is performed. The Frag-

ment Shader requires x from the Vertex Shader, and f which is a uniform variable passed

from OpenGL CPU side. With these inputs Equations (3.1)-(3.2) and (3.4), are used to

color the fragment that is emitted. Figure 3.4 shows this with the Fragment Shader tak-

ing in the projector vertex and camera vertex, and emitting the encoded color. Once the

scene is encoded with the Holoimage texture, it can be rendered to a texture, retrieved

from the GPU, and saved to an image.

3.1.4 Decoding - Phase to Coordinate Conversion

Decoding the resulting Holoimage requires more steps than encoding, but can be

efficiently done through triangulation in parallel. Figure 3.5 shows how a single pixel

can be decoded once the absolute phase map is acquired. Equation (3.5) gives the

unwrapped phase map using the Holoimage. This unwrapped phase map gives a unique

phase value for each pixel varying across the x axis.

Decoding a Holoimage is achieved through a very simple triangulation. Figure 3.5

shows the diagram of decoding z from phase for the Holoimage system. It decodes a

single depth value z using a reference plane (a flat surface with z = 0). In other words,

the depth z value is relative to the flat plane. The ultimate goal is to be able to calculate

the z value for each point in a point-by-point manner from the computed phase value

in Equation (3.5).

To begin, from Figure 3.5, we can use basic trigonometry to find z in terms of

∆XC − A and tan θ , where θ is the angle between the capture plane and the projection

plane.

z =
∆XC−A

tan θ
. (3.6)

To simplify the 3D rendering, the graphics pipeline is usually set up in a way that the
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Figure 3.5 Diagram for the decoding of a single depth value z using a ref-
erence plane (flat surface with z = 0).

rendered scene gets visualized within a unit cube, thus the size of a pixel is 1
W

, where W

is the total number of pixels horizontally in the unit cube. If the origin of the coordinate

system for the unit cube is aligned with the origin of the image then x can be found by

simple scaling, that is

x =
i

W
. (3.7)

where i is the index of the pixel being decoded in the Holoimage. Therefore, the

distance between C and A in the unit cube is actually:

∆XC−A =
∆iC−A
W

. (3.8)

At this point Equations (3.6)-(3.8) can be combined yielding
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z =
∆iC−A
W tan θ

. (3.9)

This gives z in terms of the change of index from point C to point A, along with the

number of pixels horizontally, and the angle between the projection and capture planes.

Since there is no easy way to find i for point C because it only exists virtually, we will

have to look further to see if the phase value can be leveraged.

For an arbitrary pixel K in the Holoimage system, the point A on the reference

plane would have a phase value of Φr
A. From the camera perspective or the Holoimage

perspective, point B would be in the place of point A and the phase value would be

ΦB or just Φ. From the projectors perspective, point B and point C (on the reference

plane) have the same value, i.e. Φ = ΦB = Φr
C . Since the fringe stripes are uniformly

distributed on the reference plane we have the following equation.

∆Φ = Φr
C − Φr

A = ΦB − Φr
A. (3.10)

The phase of a point on the reference plane can be defined as a function of the index

i and the fringe pitch (number of pixels per period of fringe) on the reference plane.

Φr =
2πi

Pr
. (3.11)

Here Pr is the fringe pitch on the reference plane. Again using more trigonometry

we can define the fringe pitch on the reference plane in terms of the fringe pitch of the

projector.

Pr =
P

cos θ
. (3.12)

Here, P is the fringe pitch, the number of pixels per period that the projector actually

projects, which is simply 1
f
. Combining Equation (3.11) and Equation (3.12), we obtain
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the phase of a point on the reference plane in terms of the fringe pitch P and the angle

between the capture plane and projection plane θ.

Φr =
2πi cos θ

P
. (3.13)

Furthermore, Equation (3.10) and Equation (3.13) can be combined to obtain

∆Φ =
2πiC cos θ

P
− 2πiA cos θ

P
= Φ− 2πiA cos θ

P
. (3.14)

or in another means as,

∆Φ = Φ− 2πiA cos θ

P
=

2π cos θ∆iC−A
P

. (3.15)

Rearranging Equation (3.15) yields

δiC−A =
∆ΦP

2π cos θ
. (3.16)

From here we can go back to where we left off with Equation (3.9) and substitute in

Equation (3.16).

z =
∆ΦP

2πW cos θ tan θ
. (3.17)

Or

z =
∆ΦP

2πW sin θ
. (3.18)

Substituting in ∆Φ from Equation (3.15) we obtain:

z =
P [Φ− 2πiA cos θ

P
]

2πW sin θ
. (3.19)

Now we relate the depth information z with the projected fringe patterns, the Holoim-

age pixel index, and the setup of the Holoimaging system, that is
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z =
PΦ− 2πiA cos θ

2πW sin θ
. (3.20)

This yields a value z in terms of P , the fringe pitch; iA, the index of the pixel being

decoded in the Holoimage; θ, the angle between the capture plane and the projection

plane; Φ, the phase at the current pixel being decode in the Holoimage; and W , the

number of pixels horizontally.

Because the system is an orthogonal system and the rendering is performed within

a unit cube, the x and y coordinates can be calculated by scaling the i and j as,

x =
i

W
, (3.21)

y =
j

W
. (3.22)

All of these terms are specific to the point at which the Holoimage is being decoded,

thus making the decoding a point-by-point function; given parallel hardware, a Holoim-

age scene can be decoded in parallel giving a large speed boost. Figure 3.6 shows the

process of converting a Holoimage back to 3D geometry. (a) shows the original geom-

etry, (b) shows the Holoimage after encoding (resolution of 512 × 512 with f = 6, and

θ = 30◦), (c) - (e) shows the fringe images for the red green and blue color channels, (f)

shows the unwrapped phase map, (g) shows the median filtered unwrapped phase, (h)

shows the coordinate map (i) shows the normal map, (j) shows the resulting geometry.

3.1.5 GLSL Decoding

For each point the z is calculated with P the fringe pitch, iA the index of the pixel

being decoded in the Holoimage, θ the angle between the capture plane and the pro-

jection plane, Φ the phase at the current pixel being decode in the Holoimage, and W

the number of pixels horizontally it can be calculated in parallel. Since decoding has
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.6 Example of 3D geometry encoding and decoding using Holoim-
age. (a) original scan of David, (b) Holoimage of scan, (c)-(e)
fringe images in the red, green, and blue color channels, respec-
tively, (f) unwrapped phase, (g) median filtered phase map, (h)
coordinate map (i) normal map, (j) reconstructed figure.
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multiple steps unlike encoding, a set of GLSL Shaders are required along with multipass

rendering. This allows image processing to be performed on the phase map, creation of

a normal map, and then the final rendering. Figure 3.7 illustrates the decoding pipeline.

The start of the decoding pipeline involves creating a texture from the Holoimage

and setting the frame buffer object (FBO) to render to a new texture. This setup allows

image processing to be done using the GPU, by running the Holoimage through the

Fragment Shader and then outputting the result to the texture that is bound by the

FBO. The first step in the pipeline is to calculate the phase from the Holoimage. This

is done by binding the phase calculator shader and rendering out a screen aligned quad,

which applyies Equation (3.5) to each pixel in the Holoimage. Next the FBO is set to a

new texture and median filtering is performed on the phase map by binding the median

filter shader and rendering out a screen aligned quad. Afterwards, the FBO is again

set to another new texture, the coordinate calculator shader is bound, and the screen

aligned quad is rendered yielding a coordinate depth map from the filtered phase map.

If normals need to be calculated, this can be done by setting the FBO to another new

texture, binding the normal map shader, and rendering the screen aligned quad. If a

normal map is specified, the previous step can be skipped, and the pipeline can go to

final rendering. For final rendering, the FBO is set to the original buffer, either the back

or front buffer, the final render shader is bound, and then a plane of pixels is rendered

out. The following sections discuss in detail the steps of the pipeline from Figure 3.7.

Specifically, we will cover phase calculation, median filtering of the phase, coordinate

calculation, normal calculation, and final rendering.

3.1.5.1 Phase Calculator

Before the phase can be calculated the frame buffer object (FBO) must be set to a

render texture. This allows the phase calculator shader to render the phase value out to

a texture which can be used by shaders later in the pipeline. The texture that it renders
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Figure 3.7 Holoimage decoding pipeline. The pipeline starts with creating
a texture from the Holoimage to be decoded. Next the FBO is
set to render to a new texture and the phase calculator shader is
run by binding it and rendering a screen aligned quad. This pro-
cess is then repeated with the median filter shader, coordinate
calculator shader, and normal map shader, each time setting the
FBO to render to a new texture. Finally the FBO is reset to the
original buffer and the final render shader is run. This takes a
plane of pixels and recreates the geometry, rendering the result
to the screen.
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out to needs to be a floating point texture, and can be single channel or known as a

luminance map. Once the FBO is bound, and the phase calculator shader is bound, a

screen aligned quad is rendered so that the Fragment Shader is called for each pixel in

the Holoimage.

Model 
View

Vertex Shader

Fragment Shader

Phase
Map

UV
Coord

Holo-
image

Phase Calculator 
Shader

Figure 3.8 Holoimage phase calculator shader. The Vertex Shader takes
in the model view matrix and then emits a UV coordinate.
The Fragment Shader takes the UV coordinate along with the
Holoimage texture, applies Equation (3.5) and emits the phase
map.

Figure 3.8 shows how the phase calculator shader works. The phase calculator works

by applying Equation (3.5) to each pixel in the Holoimage. The Vertex Shader simply

applies the model view projection transform on the vertices, and varies the texture

coordinate for the Fragment Shader. Actual phase calculation is done on the Fragment
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Shader since it is called for each pixel. In the Fragment Shader, the Holoimage texture is

read in, and Equation (3.5) is applied, outputting the result as the fragment color. The

Fragment Shader takes in the UV coordinate and Holoimage, and emits the phase map.

This effectively calculates the phase for each pixel in the Holoimage and then saves the

result in a texture to be used by shaders later in the pipeline.

3.1.5.2 Median Filtering

For median filtering, the same FBO is used with screen aligned quad being rendered,

but a different texture output is used. This allows the median filtering to read the

phase, filter, and then output to a new texture. Again the texture that it renders out

to needs to be a floating point texture, and should be the same number of channels as

the previous phase map texture. Once the FBO is bound and the median filter shaders

is bound, the screen aligned quad is rendered so that the Fragment Shader is called for

each pixel in the phase map.

Figure 3.9 shows how the median filter shader works. The 3 × 3 median filtering

shader is borrowed from McGuire (2008). Once again the Vertex Shader simply ap-

plies the model view projection matrix to the vertex, and varies the texture coordinate.

Actual median filtering is done in the Fragment Shader. In the Fragment Shader, the

neighboring values for a pixel in the phase map are read into an array and a series of

dropping the minimum and maximum is performed. The resulting value, once the iter-

ations are done, is the median value and it outputs as the fragment color, being saved

in the texture bound by the FBO.

3.1.5.3 Coordinate Calculation

Coordinate calculation once again makes use of the same FBO, screen aligned quad,

and a different texture for the output. Like previous steps, this allows calculation on

each pixel of the phase map. The texture that coordinate calculation renders to needs
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Figure 3.9 Holoimage median filter shader (McGuire, 2008). The Vertex
Shader takes in the model view matrix and emits a UV coordi-
nate. The Fragment Shader takes in the UV coordinate along
with the unfiltered phase map, performs a 3 × 3 median filter,
and then emits the filtered phase.
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to be a floating point texture, and can be a single channel texture known as a luminance

map. Once the FBO is bound, and the coordinate calculator shader is bound, the screen

aligned quad is rendered, calling the Fragment Shader on each pixel in the phase map.

Model 
View

Vertex Shader

Fragment Shader

Depth
Map

UV
Coord

Filtered
Phase

Coordinate Calculator
Shader

Figure 3.10 Holoimage coordinate calculator shader. The Vertex Shader
takes in the model view matrix and emits a UV coordinate. The
Fragment Shader takes the UV coordinate and filtered phase,
applies Equations (3.20)-(3.22), and then emits the depth map.

Coordinate calculation works by applying Equations (3.20)-(3.22). This process is

shown by Figure 3.10. Again like previous steps the Vertex Shader simply applies the

model view projection matrix to the vertex, and varies the texture coordinate. The

coordinate calculation is performed in the Fragment Shader. To calculate the x used in

decoding, Equation (3.21) is used, along with the U component of the texture coordi-

nates. Equation (3.21) simply yields the texture coordinate normalized to the range of
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(0, 1). Since texture coordinates are already normalized to this range s may be directly

used for x, as well as V being directly used for y. Next the phase value is read in from

the filtered phase map, and Equation (3.20) is applied. For the values of P , θ, and W

these may be passed in as uniform variables allowing for them to flexibly change with

different Holoimages. The resulting z is written out as the fragment color, yielding a

floating point depth map, which can be used to render the geometry.

3.1.5.4 Normal Calculator

Without normals the lighting of the Holoimage will be missing. A normal map can be

applied, allowing this stage of the pipeline to be skipped, or normals can be calculated.

Assuming that normals are to be calculated, a normal map must be generated. This

is once again done with the same FBO, screen aligned quad, and a different texture.

The normal map texture used in the system developed for this research makes use of

a floating point texture with three color channels. This allows the normalized normal

vector to be saved to the texture, yielding a normal map for the final render stage. Once

the FBO and normal calculator are bound, the screen aligned quad is rendered, calling

the Fragment Shader for each pixel on the depth map.

Normal calculation works by averaging adjacent surface normals to generate a point

normal for each point on the Holoimage. The shader process is shown with Figure 3.11.

Again the Vertex Shader takes in the model view matrix and outputs a varying UV

coordinate. Next the Fragment Shader takes in the UV coordinate along with the depth

map performing normal calculation. To calculate a normal an array with vectors to each

of a pixels neighbors is constructed, and then the cross product of successive indices is

taken. The last vector is crossed with the beginning vector, which yields a surface normal

for each of the neighboring polygons. All of these normals are averaged, and then the

result is normalized, yielding a point normal for the index being evaluated. The result

is written out as the fragment color, yielding a normalized normal map for each pixel in
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Figure 3.11 Holoimage normal calculator shader. The Vertex Shader takes
in the model view matrix and emits a UV coordinate. The
Fragment Shader takes in the UV coordinate along with the
depth map, averages the surfaces normals for all adjacent poly-
gons, and then emits a normal map.
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the depth map.

3.1.5.5 Final Render

Finally, a depth map with accompanying normal map has been generated for each

pixel in the Holoimage. At this step the FBO that was used for image processing is

unbound, and the frame buffer is set to render to the previously used buffer. Also,

the projection is switched back to a perspective projection, although an orthographic

projection could be used. The final render shader is bound, and a plane of pixels

uniformly spaced for each pixel in the Holoimage is rendered. This causes the Vertex

Shader to be called for each pixel, along with the Fragment Shader to be called for each

pixel.

Figure 3.12 shows the final render shader process. In the Vertex Shader, for each

vertex. For a given vertex, the value in the coordinate map is read in, and the z com-

ponent of the vertex is displaced by this amount. After this the model view projection

transform is applied, and the texture coordinates are varied for the Fragment Shader.

Inside the Fragment Shader, per pixel Phong shading is applied with the normal map

that was previous generated. This yields the correctly shaded point for each pixel, which

is written out as the fragment color.

3.2 Experimental Results

At this stage, 3D geometry has been successfully encoded with GLSL encoding

shaders, saved to an image, read back in, and decoded with GLSL decoding shaders. To

further verify this technique, the rest of this section performs the Holoimage technique

on four test objects, a unit circle, a flat plane, a step height object, and multiple spheres.

These objects are chosen as they are representative 3D objects, having features such as

round and flat surfaces, sudden large height variations, and discontinuous surfaces.
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Figure 3.12 Holoimage final render shader. The Vertex Shader takes in the
model view matrix, a UV coordinate, and the coordinate map,
emitting a modified vertex according to the coordinate map.
The Fragment Shader takes in the modified vertex along with
the normal map and then applies per vertex Phong shading,
emitting the colored fragment.
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Figure 3.13 shows the four objects, with (a) - (d) showing the resulting Holoimage,

(e) - (h) showing the reconstructed objects, and (i) - (l) showing a difference map of the

ideal and reconstructed object. On the unit sphere there are some very small deviations

which are a single pixel in size. This is due to quantization error, as the fringe is kept

in a floating point format until it is saved to an image, at which point the floating point

value ranging from (0, 1) gets quantized into a byte in the range of (0, 255). This is also

shown on the plane, step height object, and multiple spheres. The deviation is subtle,

but noticeable on flat surfaces or perfectly round surfaces when zoomed in.

Another type of error that shows up is subpixel shifting. Subpixel shifting occurs

when an edge goes through the middle of a pixel in the Holoimage. This can be seen by

looking at Figure 3.13 (k), which has a single horizontal line. This line occurs between

the second and third step of the step height object. Since this edge goes though the

middle of a set of pixels in its Holoimage there is an error with an incorrectly encoded

height. In the recovered object, Figure 3.13 (g) it is not noticed since it just blends in

with the step.

To quantify the amount of error being observed, root mean squared error (RMSE)

was calculated using Equation (3.23). When this error is calculated, any pixel that is

background in ideal figure and the Holoimage is masked off. This is done so that error

calculation is only performed on the actual shape. As can be seen in Table 3.1, the error

in each figure is less than 1%. Most off the error is actually less than 0.1%, except for

the step height object which has error along the second and third step due to subpixel

shifting. This shows that the Holoimage technique can successfully encoding and decode

geometry with little error.

NRMSE =

√√√√√√(
n∑
i=0

[ZIdeal − ZObserved]2)− nZ̄2
observed

n− 1
. (3.23)
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Figure 3.13 Sample renderings of objects (unit sphere, plane, step height
block, and multiple spheres) that have been encoded and de-
coded with the Holoimage technique. The (a - d) contains the
Holoimages that were generated, (e - h) contains the result-
ing renders, and (i - l) contains the difference map between
the ideal and reconstructed figures. Note the resolution of the
Holoimage used was 512 × 512, an f = 6 was used within a
viewing volume of x varying from (−1, 1) thus the fringe fre-
quency was 12, and θ = 30◦.The viewing volume was changed
to fit a unit sphere, which requires a simple scaling factor in
Equations (3.21)-(3.22).
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Plane Sphere Multiple Spheres Step Height
RMSE 0.01% 0.07% 0.01% 0.93%

Table 3.1 The error due to encoding the test objects. The largest error,
the step height blocks error, is due to subpixel shifting along the
bottom of the second and third step, shown in Figure 3.13 (k).

3.3 Summary

Holoimage has the ability to effectively encode and decode 3D geometry into a single

2D image. Since all of steps only require local pixel information, both the encoding and

decoding process can be performed in parallel. This chapter demonstrated the principle

behind both encoding and decoding, and then showed how encoding and decoding could

be performed in parallel using the OpenGL Shading Language (GLSL). Finally sample

renderings of objects that were Holoimage were shown, proving that the technique not

only works in theory, but in actuality.
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CHAPTER 4. HOLOIMAGE COMPRESSION

In the ideal lossless case, the Holoimage technique stores 3D geometry as a 2D image

with little loss of quality, less than 0.1% root mean squared error (RMSE). Although

this is good, many 2D image formats make use of lossy encoding to further encode visual

information with small artifacts that are typically not noticed. This chapter explores

how to store a Holoimage in lossy Joint Photograph Experts Group (JPEG) format.

Three different experiments are performed on the pattern used by Holoimage to create

a pattern that is resilient to artifacts introduced by JPEG compression.

4.1 Experiments

Now that Holoimages can be generated, and ideal lossless ones can be saved with

little error (approximately 0.01% RMSE), this chapter looks at how lossy compression

affects the Holoimage. The first experiment looks at how JPEG compression affects the

red and green color channels, and how changes in the frequency of the fringe affect the

RMSE. The second experiment looks at how to encode stair step K from Equation (3.4)

in the blue color channel, and does this by creating large distances between successive

values of K through a step height algorithm. Finally the third experiment takes findings

from experiment two, and embeds a cosine wave into the step height algorithm, making

it more resilient to JPEG compression. In all of these experiments a Holoimage of

512× 512 pixels is used that is rotated 30◦ about the y axis.
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4.2 Varying Frequency of Fringe Pattern

The first experiment is to evaluate how variations in the frequency of the encoded

fringe pattern affect the reconstruction of the geometry, in a lossless format and a lossy

format. The fringe in the red and green color channel is given with Equations (3.1)-(3.2)

where f is the frequency of the fringe, and x is the x position of the geometry. Figure 4.1

shows a plot of the fringe in the red and green color channels. In this experiment the

encoding of K is in the blue color channel and is kept in a lossless format to ensure that

only variations in the fringe pattern are having an effect. Frequencies ranging from 1 to

16 were tested on a unit sphere, a plane, a stair height block, and four separate spheres.

Masks were created by checking every pixel for a color value and assigning a value

of either 1 or 0. If a color value existed (i.e. not 0) in either the Holoimage in review

or in the ideal image, then it was considered part of the geometry and given value 1; all

other pixels were assigned 0. After this, erosion, an image morphology operation, was

applied with a disk shaped structuring element that was one unit wide. This removed a

single pixel around the entire border of the shape, to reduce the noise on the boundary.

From here the RMSE was calculated and results were analyzed.

The hypothesis is that there is an optimal frequency, which will minimize error in the

reconstructed object when compared to the original. This will be found by Holoimaging

the test shapes and calculating the root mean squared error. Frequencies that are less

than and greater than this optimal frequency should result in a larger RMSE.

4.2.1 Results

The hypothesis for the varying frequency of the fringe pattern was that there would

be an optimal frequency for the fringe in the red and green color channels. Tables 4.1-4.4

give the results for the unit sphere object, flat plane, step height block, and multiple

spheres, respectively. Figure 4.3 shows a sample rendering of the unit sphere after



48

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

X

In
te

n
s
it
y

(a) (b)

Figure 4.1 The encoded structured pattern used to test the varying fringe
frequency. (a) single cross section of the pattern, with the x
position of the geometry along the x axis and color intensity
in the red and green color channels along the y axis. (b) the
structured pattern plotted as a flat texture. Note that a fringe
frequency f = 2 was used.

encoding. The following sections will look in detail at the results of each figure, discussing

sources of error.

4.2.1.1 Unit Sphere

Quantization error is more prevalent in the lower frequencies such as f = 1 and

f = 2. This makes sense, as small errors in the fringe such as those associated with

quantization, have a much higher impact in the unwrapped phase maps. Figure 4.2

shows an example of this with the quantized unit sphere with an f = 1. There is a

spot on the right of the sphere which is erroneously encoded. Rounding errors due to

quantization in the red and green channels actually make the correct K = 2 but as in

the ideal case it should actually be K = 1. This is because this spot is near the far right

of the projectors projecting volume, right next to the phase shift. As f increases, this

quantization error is reduced since larger jumps in the fringe are needed to create such
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an error. Looking at the Figure 4.2, this spot gets smaller and smaller until f = 6 is

achieved. At this frequency and higher quantization error has little impact.

The next area of error occurs from under sampling the encoding pattern. As the

frequency gets higher and higher, recreating the sinusoidal fringe gets difficult, as the

number of points used for reconstructing a period of fringe goes down. Errors in the

quantized Holoimage do not show this problem as much, but errors in the lossy encoded

Holoimage show this quite a bit more. As f >= 12 this error is shown with small ripples

on the surface of the reconstructed object. This is somewhat hard to see on the sphere

but becomes more apparent on the plane.

Finally there is error due to lossy encoding of the Holoimage. Figure 4.3 shows the

reconstruction of the unit sphere with f = 2 at varying levels of JPEG encoding. As

the quality of the JPEG image goes down so does the Holoimage which is expected, but

even at a quality level of 75, once f is greater than 2 there is less than 2% error. Again

like the error due to quantization, most of the error occurs next to the phase jumps, as

the fringe goes gets rounded above or below the correct value of K.

(a) (b) (c) (d) (e) (f)

F = 1

(g)

F = 2

(h)

F = 3

(i)

F = 4

(j)

F = 5

(k)

F = 6

(l)

Figure 4.2 Reconstructed unit sphere with varying frequency f . Note the
small error spot on the right of the sphere which shrinks as f
increases.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3 Samples of the reconstructed sphere. (a) ideal sphere figure (b)
Holoimage encoded and kept in lossless png format (c) Holoim-
age encoded in JPEG level 100, (d) Holoimage encoded in JPEG
level 75. Note that a fringe frequency f = 6 was used.

Unit Sphere Quantized JPEG 100 JPEG 95 JPEG 90 JPEG 85 JPEG 80 JPEG 75
f = 1 2.35% 2.99% 3.92% 5.33% 6.96% 7.42% 6.98%
f = 2 0.76% 1.24% 1.24% 1.28% 1.46% 1.44% 1.64%
f = 3 0.36% 1.36% 1.34% 1.26% 1.30% 1.24% 1.37%
f = 4 0.20% 1.03% 1.01% 1.11% 1.02% 1.07% 1.15%
f = 5 0.13% 0.93% 0.93% 0.93% 0.94% 0.94% 0.96%
f = 6 0.07% 1.03% 1.03% 1.04% 1.05% 1.04% 1.04%
f = 7 0.05% 1.00% 1.00% 1.00% 1.00% 1.01% 1.00%
f = 8 0.02% 0.78% 0.78% 0.79% 0.79% 0.78% 0.79%
f = 9 0.01% 0.98% 0.98% 0.99% 0.99% 0.99% 0.99%
f = 10 0.01% 1.00% 1.00% 1.00% 0.99% 0.99% 0.99%
f = 11 0.01% 0.84% 0.84% 0.84% 0.84% 0.85% 0.85%
f = 12 0.03% 0.92% 0.92% 0.92% 0.93% 0.93% 0.93%
f = 13 0.01% 0.76% 0.76% 0.76% 0.76% 0.76% 0.76%
f = 14 0.01% 0.81% 0.80% 0.81% 0.81% 0.81% 0.81%
f = 15 0.01% 0.91% 0.91% 0.91% 0.91% 0.91% 0.91%
f = 16 0.01% 0.87% 0.87% 0.87% 0.87% 0.87% 0.87%

Table 4.1 RMSE of encoding a unit circle. Along the column gives the dif-
ferent types of encoding performed on the Holoimage, and down
the rows gives increasing frequencies of encoding.
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4.2.1.2 Plane, Step Height Block, and Multiple Spheres

As seen previously with the unit sphere there is more error in the lower frequencies,

but it is minimized after f > 4. Figure 4.4 shows an example of the quantized objects

at f = 10. Tables 4.2-4.4, give the RMSE for the plane, step height block, and multiple

spheres, respectively. One thing to note is that in the lower frequencies there are some

very small ripples on the plane and step height block, which occurs from quantization.

Small minute differences change the objects flat surfaces from being perfectly flat, to

having small ripples which are accentuated by lighting. Since the point normals are

calculated by averaging all adjacent surface normals, this error persists into the normal

map. If a normal map created from the ideal figure was used, it would minimize this

effect.

(a) (b) (c)

(d) (e) (f)

Figure 4.4 Plane, Step Height Block, and Multiple Spheres quantized with
f = 10. The (a)-(c) is the quantized holoimage, and (d)-(f)
bottom row contains the reconstructed object.

Examining Table 4.3, it can be seen that the percentage of error with the step height
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block is higher than it is with the other objects. This error comes from the step along

the second and third step of the block and is caused by subpixel shift, as explained

in Section 3.2. Since the depth is encoded in the pixel values of the Holoimage, the

resolution is limited by the resolution of the Holoimage. If the edge does not perfectly

line up with the edge of a pixel, there is a slight shift in the edge, and this shift is called

subpixel shift. By using a higher resolution Holoimage, this error could be mitigated.

Finally, error due to the lossy encoding is reduced when f > 4. Similar to the

quantization, the error is reduced with higher frequency fringe since the small variations

in the fringe have less impact on the resulting wrapped phase map. Once the frequency

gets too high, error due to under sampling the encoding pattern occurs which is shown

by the lossy encoding. Although very minimal, slight rises in error occur when f = 16.

Plane Quantized JPEG 100 JPEG 95 JPEG 90 JPEG 85 JPEG 80 JPEG 75
f = 1 0.07% 1.13% 1.13% 1.14% 1.14% 1.14% 1.14%
f = 2 0.04% 0.60% 0.60% 0.60% 0.67% 0.62% 0.66%
f = 3 0.03% 0.40% 0.40% 0.40% 0.40% 0.40% 0.40%
f = 4 0.02% 0.28% 0.28% 0.28% 0.28% 0.28% 0.28%
f = 5 0.01% 0.22% 0.24% 0.22% 0.26% 0.26% 0.26%
f = 6 0.01% 0.16% 0.20% 0.14% 0.16% 0.16% 0.16%
f = 7 0.01% 0.14% 0.14% 0.13% 0.13% 0.18% 0.17%
f = 8 0.01% 0.02% 0.03% 0.03% 0.03% 0.09% 0.05%
f = 9 0.01% 0.09% 0.10% 0.09% 0.08% 0.11% 0.04%
f = 10 0.01% 0.07% 0.03% 0.03% 0.07% 0.10% 0.08%
f = 11 0.02% 0.06% 0.09% 0.06% 0.09% 0.07% 0.09%
f = 12 0.01% 0.08% 0.08% 0.08% 0.08% 0.10% 0.09%
f = 13 0.01% 0.08% 0.08% 0.08% 0.09% 0.08% 0.06%
f = 14 0.01% 0.08% 0.08% 0.08% 0.10% 0.07% 0.06%
f = 15 0.00% 0.07% 0.07% 0.08% 0.05% 0.07% 0.08%
f = 16 0.00% 0.06% 0.06% 0.06% 0.06% 0.07% 0.08%

Table 4.2 RMSE of encoding a plane. Along the column gives the different
types of encoding performed on the Holoimage, and down the
rows gives increasing frequencies of encoding.

4.2.2 Experiment Summary

Varying the frequency of the fringe pattern in the red and green channel caused error

in the lower frequencies, and the error is reduced in the higher frequencies. The data
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Step Height Quantized JPEG 100 JPEG 95 JPEG 90 JPEG 85 JPEG 80 JPEG 75
f = 1 0.71% 9.05% 7.47% 11.91% 12.59% 10.50% 11.81%
f = 2 0.49% 6.50% 6.51% 6.51% 6.55% 6.55% 6.50%
f = 3 0.04% 6.47% 6.47% 6.47% 6.48% 6.51% 6.48%
f = 4 0.13% 6.62% 6.62% 6.64% 6.63% 6.64% 6.66%
f = 5 0.04% 6.71% 6.71% 6.72% 6.72% 6.71% 6.71%
f = 6 0.05% 6.71% 6.71% 6.70% 6.70% 6.71% 6.71%
f = 7 0.09% 6.79% 6.79% 6.79% 6.79% 6.79% 6.79%
f = 8 0.11% 6.70% 6.70% 6.70% 6.70% 6.70% 6.67%
f = 9 0.05% 6.75% 6.75% 6.75% 6.75% 6.75% 6.75%
f = 10 0.04% 6.76% 6.76% 6.77% 6.77% 6.76% 6.74%
f = 11 0.04% 6.76% 6.76% 6.76% 6.75% 6.75% 6.74%
f = 12 0.02% 6.78% 6.79% 6.79% 6.78% 6.78% 6.78%
f = 13 0.04% 6.77% 6.77% 6.77% 6.77% 6.77% 6.77%
f = 14 0.04% 6.82% 6.82% 6.81% 6.82% 6.81% 6.82%
f = 15 0.02% 6.80% 6.80% 6.80% 6.80% 6.80% 6.79%
f = 16 0.06% 6.82% 6.82% 6.81% 6.82% 6.82% 6.82%

Table 4.3 RMSE of encoding a step height block. Along the column gives
the different types of encoding performed on the Holoimage, and
down the rows gives increasing frequencies of encoding.

Multiple Circles Quantized JPEG 100 JPEG 95 JPEG 90 JPEG 85 JPEG 80 JPEG 75
f = 1 0.07% 1.44% 1.45% 1.58% 1.69% 1.64% 1.75%
f = 2 0.04% 1.84% 1.83% 1.87% 1.93% 1.89% 1.90%
f = 3 0.03% 1.87% 1.88% 1.91% 1.90% 1.91% 1.95%
f = 4 0.02% 1.78% 1.79% 1.74% 1.79% 1.77% 1.78%
f = 5 0.02% 1.66% 1.65% 1.67% 1.69% 1.68% 1.71%
f = 6 0.01% 1.74% 1.75% 1.75% 1.74% 1.73% 1.75%
f = 7 0.01% 1.73% 1.73% 1.73% 1.73% 1.74% 1.74%
f = 8 0.01% 1.72% 1.72% 1.73% 1.73% 1.73% 1.72%
f = 9 0.01% 1.73% 1.73% 1.73% 1.73% 1.73% 1.74%
f = 10 0.01% 1.50% 1.50% 1.50% 1.50% 1.49% 1.50%
f = 11 0.01% 1.69% 1.70% 1.69% 1.70% 1.69% 1.70%
f = 12 0.01% 1.70% 1.70% 1.70% 1.70% 1.70% 1.70%
f = 13 0.01% 1.58% 1.58% 1.58% 1.58% 1.58% 1.58%
f = 14 0.01% 1.59% 1.59% 1.59% 1.59% 1.59% 1.59%
f = 15 0.01% 1.53% 1.53% 1.53% 1.53% 1.53% 1.53%
f = 16 0.01% 1.67% 1.67% 1.67% 1.67% 1.67% 1.68%

Table 4.4 RMSE of encoding multiple spheres. Along the column gives
the different types of encoding performed on the Holoimage, and
down the rows gives increasing frequencies of encoding.
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showed that once the frequency f was above 6, quantization error had little effect and

lossy encoding error could be kept around 1%. From the data, the optimal frequency

seems to be between 8 <= f <= 12. This is the range that has the smallest error across

all the objects. The object that had the largest error was the step height block which was

due to subpixel shifting along one of the steps. JPEG encoding increases this error since

it performs the best on what is know as natural images, thus sharp discontinuities do not

encode very well. If another image encoding technique that preserved the discontinuities

was used, this error could be further reduced.

4.3 Varying Encoding of K for Phase Unwrapping

In the previous experiment the encoding of K in the blue color channel was kept

in a lossless format so that error analysis on the fringe could be performed without

compounding it with the error due to encoding K. The next two experiments look at

different encodings of K so that it can be put into a lossy format along with the fringe

patterns. For each of these experiments the red and green color channels are kept in a

lossless floating point format so that there is no quantization error.

4.3.1 Step Height Encoding of K

In this experiment, the value of K used for phase unwrapping is multiplied by a

step height and then encoded in the blue color channel. The step height is chosen such

that it can be the largest possible with uniform height variations for each value of K.

Figure 4.5 gives an example of the step height encoding of K in the blue channel along

with the red and green channels. The encoding of K is given by
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Ib = floor(x× f)× stepHeight+ 0.5, (4.1)

K = floor(
Ib

stepHeight
), (4.2)

stepHeight =
1.0

2.0× f
. (4.3)

Where x is the x position of the geometry, f is the frequency of the fringe, stepHeight

is the height increment between successive values of K, and Ib is the value to be used in

the blue channel.
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Figure 4.5 The encoded structured pattern used to test the step height
encoding of K. (a) shows a single row of the pattern, with the
x position of the geometry along the x axis and color intensity
in the red green and blue color channels along the y axis. (b)
shows the structured pattern plotted as a flat texture. Note that
a fringe frequency f = 2 was used, with a stepHeight = 1

4
.

The hypothesis for this experiment is that lossy compression will not significantly

affect the encoding of K in the middle of a step, but will have an effect near the K jumps.

This will be tested by varying levels of JPEG compression on the the unit sphere, plane,

step height block, and four separate spheres. Again RMSE will be calculated, compared

to the actual geometry, along with visual comparisons of the reconstructed geometry.
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4.3.2 Results

The hypothesis for this experiment was that lossy encoding would not have a large

effect in the middle of the step but would have a large effect along the steps, or phase

changes of the geometry. Tables 4.5-4.8 give the results for the unit sphere object, flat

plane, step height block, and multiple spheres, respectively. Figure 4.6 shows a sample

rendering of the unit sphere after encoding. The following sections will look in detail at

the results of each figure, discussing sources of error.

4.3.2.1 Unit Sphere

Quantization error had a very small effect on the reconstruction of the object when

K was encoded into the blue color channel using the step height encoding. While

performing the experiments using Equation (4.3) to generate K, it was found that many

of the results were off by a single phase jump due to quantization and would have

large errors, greater than 80% due to this fact. To circumvent this problem, a modified

equation was substituted.

K∗ = floor(
Ib + 1

28

stepHeight
). (4.4)

This equation adds the amount that the blue channel could be off due to quantiza-

tion. This removed most of the quantization error and was then used in the rest of the

experiments.

As f increased, error slightly rose in the quantized figures. This is due to the fact

that the step width and the step height shrunk. Therefore, a slight deviation had more

impact, because the step height was smaller. This seemed to have little effect, as the

error in the quantized object never went over 0.03%.

Error due to lossy encoding had a much more profound effect. The JPEG encoded

columns of Table 4.5 show this, along with Figure 4.6. Unlike the lossy encoding of the
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red and green channels, ripples are no longer an effect. Instead there is spiking error,

which comes from incorrect values of K during phase unwrapping. Since K is off by at

least an entire phase jump, an error of at least 2π is introduced into the phase map.

This leads to large depth distance discrepancies during reconstruction which leads to

spiking noise. As f increases this error seems to go down, and then goes up again as

it gets to high. Approximately at f = 10 seems to be where the error is minimized in

terms of lossy encoding. The surface of the reconstructed object is no longer acceptable

though as is shown by Figure 4.6.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6 Unit circle under varying levels of JPEG compression with step
height encoding of K. The left figure is the ideal, and then
moving right is JPEG quality level 100, 90, and 75. Note all of
the holes that are generated in the reconstructed object due to
the lossy encoding of K in the blue channel. Fringe frequency
f = 1 was used with a stepHeight = 1

2
.

4.3.2.2 Plane, Step Height Block, and Multiple Spheres

As has been seen with the unit sphere, errors due to quantization have a very small

effect on K and the reconstruction. The only object that it seems to have a large effect
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Unit Sphere Quantized JPEG 100 JPEG 95 JPEG 90 JPEG 85 JPEG 80 JPEG 75
f = 1 0.00% 9.33% 15.04% 19.48% 23.10% 26.22% 29.30%
f = 2 0.00% 7.13% 11.38% 14.91% 17.50% 19.06% 20.61%
f = 3 0.00% 10.07% 12.47% 13.89% 14.93% 15.44% 15.77%
f = 4 0.00% 5.88% 8.01% 9.30% 10.43% 11.10% 11.33%
f = 5 0.01% 7.00% 8.27% 9.00% 9.38% 9.71% 9.90%
f = 6 0.01% 6.96% 7.68% 8.07% 8.31% 8.50% 8.65%
f = 7 0.01% 6.80% 7.14% 7.32% 7.56% 7.71% 7.81%
f = 8 0.03% 5.66% 6.00% 6.31% 6.61% 6.85% 7.01%
f = 9 0.02% 6.13% 6.27% 6.39% 6.54% 6.74% 6.91%
f = 10 0.01% 5.97% 6.04% 6.18% 6.35% 6.57% 6.77%
f = 11 0.01% 6.09% 6.15% 6.24% 6.41% 6.68% 6.86%
f = 12 0.01% 6.21% 6.25% 6.38% 6.56% 6.80% 7.05%
f = 13 0.01% 6.42% 6.46% 6.60% 6.78% 7.02% 7.39%
f = 14 0.01% 6.67% 6.70% 6.85% 7.07% 7.37% 7.70%
f = 15 0.01% 7.08% 7.13% 7.27% 7.48% 7.79% 8.16%
f = 16 0.02% 7.43% 7.47% 7.66% 7.90% 8.15% 8.52%

Table 4.5 RMSE of encoding the unit circle with the step height encod-
ing of K. Along the column gives the different types of encoding
performed on the Holoimage, and down the rows gives increasing
frequencies of encoding.

on is the step height block. Subpixel shifting along the step variations is where this error

is coming from.

As with the unit circle, error due to lossy encoding presents. Looking at the data in

Tables 4.6-4.8 f = 10 is where the error is minimized. As was seen with the unit circle

the error going down as f increases is due to 2π errors in the phase map not having as

profound effect. Error going up as f > 10 is resulting from the step height and step

width being so small that the errors are becoming more frequent.

4.3.3 Experiment Summary

Encoding K in the blue color channel works when the image medium is lossless.

Quantization error was shown to be under 1%, but this technique fails when the image

medium is lossy. Error for JPEG encoding at quality level 100 was over 6% in most

cases, and resulted in reconstructed objects with large amounts of spiking error. Even

median filtering was unable to remove all of the spiking noise, thus a different method
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Plane Quantized JPEG 100 JPEG 95 JPEG 90 JPEG 85 JPEG 80 JPEG 75
f = 1 0.00% 7.95% 9.42% 6.27% 6.28% 19.04% 18.38%
f = 2 0.00% 3.43% 6.58% 14.09% 16.55% 18.51% 19.78%
f = 3 0.00% 6.76% 10.08% 10.69% 12.45% 15.19% 14.30%
f = 4 0.00% 1.29% 5.88% 6.66% 9.66% 10.70% 9.98%
f = 5 0.00% 6.29% 7.24% 8.38% 8.58% 9.21% 9.48%
f = 6 0.00% 5.58% 6.47% 7.47% 7.62% 7.72% 7.91%
f = 7 0.00% 4.94% 5.46% 6.07% 6.59% 6.76% 6.67%
f = 8 0.00% 4.35% 4.85% 5.23% 5.81% 5.92% 6.02%
f = 9 0.00% 4.90% 4.75% 4.87% 5.05% 5.15% 5.29%
f = 10 0.00% 4.33% 4.48% 4.52% 4.60% 4.76% 4.71%
f = 11 0.00% 4.77% 4.80% 4.60% 4.63% 4.79% 4.89%
f = 12 0.00% 3.93% 3.99% 3.82% 3.94% 4.07% 4.09%
f = 13 0.00% 3.71% 3.77% 3.79% 3.65% 3.82% 4.01%
f = 14 0.00% 4.16% 4.19% 4.18% 4.05% 4.53% 4.73%
f = 15 0.00% 3.31% 3.28% 3.26% 3.69% 4.04% 4.15%
f = 16 0.00% 3.15% 3.14% 3.18% 3.86% 4.17% 4.42%

Table 4.6 RMSE of encoding a plane with the step height encoding of K.
Along the column gives the different types of encoding performed
on the Holoimage, and down the rows gives increasing frequencies
of encoding.

Step Height Quantized JPEG 100 JPEG 95 JPEG 90 JPEG 85 JPEG 80 JPEG 75
f = 1 0.63% 15.65% 23.74% 29.51% 29.92% 32.47% 37.16%
f = 2 0.70% 9.93% 12.93% 17.84% 19.37% 20.94% 21.12%
f = 3 0.93% 10.73% 13.28% 14.43% 15.22% 15.88% 16.31%
f = 4 0.85% 6.49% 9.19% 9.91% 11.14% 11.54% 11.95%
f = 5 0.96% 6.40% 8.25% 9.40% 9.92% 10.03% 10.56%
f = 6 0.93% 7.46% 8.11% 8.80% 8.69% 9.13% 9.19%
f = 7 0.89% 7.89% 8.35% 8.71% 8.85% 8.65% 8.83%
f = 8 0.95% 6.63% 7.17% 7.27% 7.42% 7.82% 8.11%
f = 9 0.94% 6.73% 6.82% 6.98% 7.19% 7.54% 7.79%
f = 10 0.96% 6.84% 6.99% 6.99% 7.15% 7.22% 7.57%
f = 11 0.95% 6.46% 6.55% 6.62% 6.70% 6.92% 7.34%
f = 12 0.98% 6.82% 6.79% 6.91% 6.96% 7.33% 7.84%
f = 13 0.95% 6.78% 6.92% 6.84% 6.67% 7.08% 7.61%
f = 14 0.94% 6.39% 6.37% 6.54% 6.80% 7.22% 7.57%
f = 15 0.97% 5.99% 6.05% 6.11% 6.42% 6.80% 7.18%
f = 16 0.95% 6.08% 6.10% 6.34% 6.50% 6.74% 7.09%

Table 4.7 RMSE of encoding the step height block with the step height
encoding of K. Along the column gives the different types of en-
coding performed on the Holoimage, and down the rows gives
increasing frequencies of encoding.
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Multiple Circles Quantized JPEG 100 JPEG 95 JPEG 90 JPEG 85 JPEG 80 JPEG 75
f = 1 0.00% 8.19% 13.39% 16.93% 21.57% 23.79% 25.08%
f = 2 0.00% 7.53% 11.75% 14.72% 17.52% 19.52% 20.13%
f = 3 0.00% 10.39% 13.07% 14.31% 15.08% 15.66% 15.93%
f = 4 0.00% 6.67% 8.64% 10.15% 10.77% 11.47% 11.99%
f = 5 0.00% 7.18% 8.30% 8.97% 9.48% 9.80% 10.01%
f = 6 0.00% 6.92% 7.64% 7.97% 8.31% 8.50% 8.73%
f = 7 0.00% 6.69% 7.10% 7.31% 7.56% 7.74% 7.98%
f = 8 0.00% 6.14% 6.45% 6.78% 7.18% 7.42% 7.67%
f = 9 0.00% 6.27% 6.44% 6.66% 6.93% 7.27% 7.51%
f = 10 0.01% 6.17% 6.26% 6.51% 6.72% 7.02% 7.24%
f = 11 0.00% 6.09% 6.18% 6.34% 6.57% 6.77% 7.22%
f = 12 0.00% 6.18% 6.22% 6.53% 6.67% 7.04% 7.31%
f = 13 0.00% 6.56% 6.66% 6.88% 7.15% 7.49% 7.81%
f = 14 0.01% 6.56% 6.68% 6.99% 7.23% 7.62% 7.87%
f = 15 0.01% 7.09% 7.16% 7.41% 7.60% 8.03% 8.53%
f = 16 0.00% 7.51% 7.59% 7.75% 8.08% 8.38% 8.72%

Table 4.8 RMSE of encoding multiple spheres with the step height encod-
ing of K. Along the column gives the different types of encoding
performed on the Holoimage, and down the rows gives increasing
frequencies of encoding.

needed to be investigated.

4.3.4 Wavy Step Height Encoding of K

In this experiment a cosine function is embedded in the step height encoding so

that each step oscillates versus having a constant value. The encoding of K is given by

Equations (4.5)-(4.7) and an example of the fringe color channels is shown in figure 4.7.

Ib = cos(ωstair × (x− (
K × stepWidth

S
)) + π)× (

S

2.5
) + (

S

2.0
) +K, (4.5)

ωstair = f × (fstair + 0.5), (4.6)

S =
1.0

2.0× f
. (4.7)

The hypothesis is that since the value of K is encoded using cosine waves, it will

encode better with the discrete cosine transform that is applied in JPEG compression,

resulting in less error on the reconstructed figures. Since K is encoded with cosine
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Figure 4.7 The encoded structured pattern used to test the wavy step en-
coding of K. (a) shows a single row of the pattern, with the
x position of the geometry along the x axis and color intensity
in the red green and blue color channels along the y axis. (b)
shows the structured pattern plotted as a flat texture. Note that
a fringe frequency f of 2 was used and a stair fringe frequency
fstair of 4 was used.

functions in each step, the frequency of the waves can be adjusted. The second part

of the hypothesis is that there is an optimal frequency of fringe; frequencies below and

above this optimal range should result in higher root mean squared error. To test

this hypothesis, frequencies ranging from 6 <= f <= 8 for the fringe were tested and

frequencies for the stairs 1 <= fstair <= 4 from were tested, again using a unit sphere,

a stair height block, and four separate spheres.

4.3.5 Results

The hypothesis for this experiment was that by encoding K within a cosine wave,

lossy encoding would not have as large of an effect on the overall error and the spiking

error along the phase changes. Tables 4.9-4.12 give the results for the unit sphere object,

flat plane, step height block, and multiple spheres, respectively. Figure 4.8 shows a

sample rendering of the unit sphere after encoding. The following sections will look in
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detail at the results of each figure, discussing sources of error.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.8 Unit circle under varying levels of JPEG compression with wavy
encoding of K. (a) is the ideal, (b) is the quantized figure, (c) is
JPEG quality level 100, and (d) is JPEG quality level 75. Note
that most of the holes seen in the step height encoding of K
are gone and most of the noise occurs around the boundary of
the object. Note that a fringe frequency of f = 6, a stair fringe
frequency fstair = 4, and a stepHeight = 1

12
was used.

4.3.5.1 Unit Sphere

As was seen with the step height encoding of K, quantization error had a very small

effect on the reconstruction of the object. Comparing Table 4.5 to Table 4.9 the errors

in the quantization are exactly the same. This is to be expected as quantization effects

would only result if the stair height was too small, which for frequencies in the range of

[6, 8] this is not a problem. Error due to under sampling the encoding pattern was not as

apparent as it was in previous experiments. Since fstair is a multiple of f its frequency

is multiplicative. For f = 8 and fstair = 4 the frequency in the blue channel is 32. Since

the Holoimage is 512 pixels wide, there is only 16 pixels which can make up an entire
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period of the blue fringe. This would theoretically result in under sampling error, but

it does not seem to be very apparent.

Error due to lossy encoding has gone down by a factor of 2 in some frequencies.

Again comparing Table 4.5 to Table 4.9 the error is noticeably different. JPEG quality

level 100 for f = 6 was 6.96% and has gone down to 3.13% with fstair = 4. Figure 4.9

gives a comparison of the step height encoding of K at f = 6 compared to the wavy

encoding of K. Furthermore, looking at the reconstructed figure it seems that most of

the error is around the edge of the sphere, and that the phase jumps are close to being

intact. With more median filtering performed on the phase map, what remains of the

spiking error could be removed.

(a) (b) (c)

(d) (e) (f)

Figure 4.9 Comparison of the unit circle at f = 6. The(a)-(c) gives the step
height encoding of K reconstruction, and (d)-(f) gives the wavy
encoding of K reconstruction. (a) and (d) are the ideal, (b) and
(e) are JPEG quality level 100, and (c) and (f) are JPEG quality
level 75. Note that a stepHeight = 1

12
was used.
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4.3.5.2 Plane, Step Height Block, and Multiple Spheres

As was seen with the unit sphere, errors due to quantization have the same effect

as they did with the step height encoding of K. Under sampling error is also not very

apparent, and lossy error has been cut in half in most of the frequencies. The only

object which did not drastically improve in error was the step height block which only

seemed to improve slightly. This is still due to the subpixel shifting that is occurring on

the boundary of the second and third step height variation. Comparing the results in

Tables 4.10-4.12 f = 6andfstair = 4 had the best reaction to the lossy data compression.

4.3.6 Experiment Summary

Encoding K in the blue color channel with a cosine wave was shown to reduce the

error by a factor of 2 in most cases. Quantization error was the same as it was with the

step height encoding of K which was to be expected, but lossy JPEG encoding error

was reduced drastically. The main source of spiking error in the reconstructed figures

was around the boundaries and the phase jumps of the step height object. This is due

to the fact that JPEG encoding favors natural images which do not have discontinuities

in the color channels. Error resulting from this was also seen in the varying frequency

of the fringe pattern experiment.

4.4 Summary

The three experiments performed in this chapter looked at encoding Holoimages

with lossy JPEG encoding. Results from the first experiment showed that if fringe

frequencies f above 6 are used, the RMSE is minimized. Results from the second

experiment showed that K cannot be directly encoded into the blue color channel, even

with step height variations if lossy JPEG encoding is used. Large spiking errors occurred

near the phase jumps resulting in spikes on the reconstructed surfaces. The results from
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the last experiment showed that JPEG compression could be applied if the step height

K was encoded with a cosine wave. This encoding fits naturally with the discrete cosine

transform that is used in JPEG compression, and error on most of the figures was shown

to drop in half.



70

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

In previous chapters, the principle of the Holoimage technique has been explained,

ideal results have been demonstrated, and it has been shown that the Holoimages them-

selves can be encoded in lossy formats. This chapter concludes the work that was done,

discusses future work and how the Holoimage technique can be extended. Specifically,

conclusions on what this work contributes along with its findings are concluded, and

future work on different types of phase map filtering, how to extend the technique to

video, and different color spaces will be explored.

5.1 Conclusion

This work has developed a new and novel way to compress 3D geometry. Specifically

it makes use of structured light scanning to virtually scan 3D geometry into fringe images,

which can be saved into the three color channels of a standard 2D image. Due to the

parallel pixel operations that are performed to achieve the encoding, the entire encoding

process can be performed on a graphics processing unit (GPU). Once in a standard

2D image format, the image can easily be saved in a lossless format such as PNG,

which results in less than 0.1% RMSE. Finally, the 2D image can be decoded through

triangulation, effectively reconstructing the geometry. Once again, due to the parallel

pixel operations that are performed, the entire decoding process can be performed on a

GPU.

Three experiments were performed on various Holoimages to see how they react
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to lossy compression, and to see whether or not the pattern used by the Holoimage

technique could be tailored to be more resilient to lossy image compression. The first

experiment explored how changing the fringe frequency f affected lossy compression

with the red and green color channel. For this experiment, the blue color channel was

left in a lossless state, so that error in this channel would not compound the results.

The findings suggested that higher frequencies provided a better encoding pattern, and

that an optimal frequency would be in the range of [10, 12].

The second experiment looked at encoding K using a step height function, and how

this encoding would react to lossy compression while varying the fringe frequency f . For

this experiment the red and green color channels were kept in a lossless format so that

they would not compound the error. The findings suggested that lower fringe frequencies

provided a better pattern, but even with lower frequencies, this form of encoding resulted

in error greater than 6%. Thus, this encoding of K does not work for lossy compression.

Finally the third experiment looked at encoding K using a cosine function, and

how this encoding would react to lossy compression while varying the fringe and step

frequency f and fstair. For this experiment, the red and green color channels were kept

in a lossless format. The findings showed that this format reduced the error by a factor

of 2, and that upon visual inspection of the figures they looked much better. Thus,

encoding K in this format works for lossy compression. Using JPEG quality level 100,

a compression ratio of over (72 : 1) Holoimage to OBJ can be achieved in this format.

Furthermore, compressing using JPEG quality level 75, a compression ratio of over (370 :

1) Holoimage to OBJ can be achieved with this encoding. Thus the Holoimage technique

provides quick and efficient encoding of 3D scans at high compression ratios.
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5.2 Future Work

The next major steps in this research is to more efficiently filter the phase map

and move from static frames to movies. Since median filtering involves conditional

statements to find the median it is not the most efficient on the GPU, and also results in

some artifacts being introduced. The jump from static frames to moving frames requires

the streaming of the Holoimages to the GPU as textures which is a bottleneck in the

GPU. Another problem with movies formats is that they are typically in different color

spaces such as the YUV color space. This requires more than just a transform back and

forth, thus the color space has to be encoded directly.

5.2.1 Filtering the Phase Map

On the decoding pipeline, currently the slowest step is median filtering the phase map.

This is due to the fact that the median filter involves conditional statements, resulting

in divergent threads on the GPU. If another type of filtering that uses convolution could

be used, this speed could be dramatically increased. Another disadvantage of median

filtering is that it has the potential to flatten certain areas of the phase map. This

results in small artifacts on the reconstructed geometry. Although this is unnoticeable

on most scans, on the unit sphere these show up quite easily. A solution to this could

be a modified median filter which looks for discrepancies and then finds figures out the

correct phase jump.

5.2.2 Video

As stated before in order to jump from static frames to moving frames requires the

stream of the Holoimages to the GPU as textures. If playing a previously encoded set

of Holoimages, they can be transferred to the GPU as a batch of textures and then

played back to produce a 3D video. This works well for applications such as replaying



73

a previous recording. If on the other hand the Holoimages are not previously encoded,

such as those coming from a realtime 3D scanner, this technique will not work.

A technique to mitigate this is using direct memory access (DMA) with pixel buffer

objects. This allows the CPU to place a texture in reserved memory for the graphics

card and trigger a transfer. At this point the CPU can continue to work while the

GPU performs the transfer to global GPU memory. On the GPU side, the transfer is

also asynchronous of current calculations, as long as the texture is not mapped by any

current operations. Thus a single frame delay can be introduced which allows the GPU

to display one frame while loading another frame.

5.2.3 Video Color Spaces

Another challenge to address is the color spaces used by video codecs. Typically

video codecs do not make use of the same color spaces as image codecs. An example

of such a color space is the YUV color space which encodes its information in luma

(Y) and chromance (UV). The reasoning behind using different colorspaces is due in

part to support old displays, as YUV is backwards compatible with black and white

displays. The luma (brightness) or Y component allows black and white displays to

simply display the value and ignore the chromance (color) UV components. This color

space is also conveniently tailored to the human eye. The human eye has a higher spatial

sensitivity to luma (brightness) than chromance (color). Knowing this, bandwidth can

be saved by reducing the sampling accuracy of the chromiance channels with little impact

on human perception of the resulting video. An example of a codec doing this is the

H.264 codec which compresses the UV components more than the Y component if more

bandwidth is needed, with YUV422 compression. Although this works nicely for video

being perceived by humans, it does not hold true for a Holoimage, which has been

designed to have reductions in the RGB color space, but not the YUV color space. Thus

a future direction in this research is how to embed the fringe patterns into the YUV
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color space, and make them tolerable to compression.

5.3 Summary

In conclusion, the Holoimage technique has been shown to effectively compress 3D

geometry, especially that coming from a high resolution 3D scanner. Since it only ac-

quires geometry from a specific view, like a depth map, it cannot represent complete 3D

geometry. For 3D scanners, this does not pose a problem as 3D data is only being gener-

ated from a single view. Holoimage was also shown to be tolerant of lossy compression,

thus lossy image formats such as JPEG can be leveraged to hold 3D geometry. This

allows the large body of 2D image compression research and 2D image infrastructure

to be extended into 3D. Future research directions were explored, and directions for

extending the technique to video and different color spaces have been elaborated upon.
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