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ABSTRACT 

 

            This study is focused on the effects of nitrogen content in biomass feedstock on the 

producer gas composition and the flue gas NOx emissions from a pilot-scale gasification 

and combustion system. Biomass gasification has the potential to produce carbon negative 

energy by using renewable resources. The greenhouse gases emitted by burning fossil fuels 

have to be reduced, and biomass gasification is one of the means to achieving this. When 

the biomass-derived gas is burned, NOx emissions are a critical factor that can limit the use 

of the system. The government regulations limit the amount of NOx that can be emitted 

into the atmosphere. These emission regulations are becoming more stringent every year. 

Hence it is imperative to design combustion systems that can produce low NOx emissions 

without compromising the intended purpose for heat and power generation. This work is 

aimed at helping with the design of a low NOx burner by conducting experimental 

investigations on an existing burner. 

 In this study, tests were conducted in a pilot-scale fluidized bed gasifier using biomass 

feedstock with different nitrogen contents. The producer gas from the gasifier undergoes a 

gas cleaning phase before its combustion in a burner. Fuel NOx and thermal NOx 

contributed to the total NOx formation in the burner. The main precursor to fuel NOx is 

ammonia in the producer gas. Ammonia and tars were collected from the producer gas 

using IEA (International Energy Agency) tar protocol and analyzed using spectrophotometer 

and GC-FID (Gas chromatograph-flame ionization detector), respectively. The producer gas 

and the exhaust flue gas were analyzed using a micro gas chromatograph (Micro-GC). The 
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NOx variation was investigated for different equivalence ratios and different flow rates of 

the producer gas.  

Results show that there is a direct and proportional relationship between nitrogen in 

biomass, ammonia in producer gas, and NOx in the flue gas. Additionally, NOx emissions do 

not vary noticeably with the overall equivalence ratio in the present burner but vary 

significantly with increased heat rate. It was also found that thermal NOx is less significant 

than fuel NOx, which constitutes a majority of the total NOx emissions when biomass-

derived producer gas is used. The flame length in a diffusion flame along with the residence 

time seems to have a major influence on the NOx emissions from the burner.   

These results form an essential part in understanding the fuel NOx behavior and functions 

as an important tool in the development of a low NOx burner, which was the overall 

objective of this project. This thesis work is mainly focused on the experimental 

investigation of the fuel NOx behavior and the effect of fuel nitrogen on the NOx formation 

in the burner. These experimental results along with detailed chemical analysis of ammonia 

oxidation mechanisms under different conditions will give a better understanding of the 

fuel NOx formation and will aid in the design of low NOx burners. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

The use of renewable energy is essential to alleviate global warming (McKendry 2002). 

Renewable energy can play a major role in reducing greenhouse gas emissions resulting 

from burning fossil fuels (Babu 2006). Unlike fossil fuel, biomass is a renewable energy 

resource that can potentially produce zero net carbon dioxide emissions (Tijmensen, Faaij 

et al. 2002). Biomass energy or bio-energy is the energy derived from plants or plant-

derived materials. Biomass is one of the renewable energy sources with a great potential to 

produce energy carriers such as transportation fuels and electricity, in addition to being 

carbon neutral (Ptasinski, Prins et al. 2007). The technological advancements have led to 

increased applications of biomass at comparatively lower costs and higher conversion 

efficiencies than previously possible. Biomass can be converted to gaseous or liquid fuels 

by thermo-chemical or bio-chemical processes (Darvell 2006). While the thermo-chemical 

conversion takes place at elevated temperature and pressure conditions, the bio-chemical 

conversion uses sophisticated fermentation processes to produce valuable liquid fuels.  

Biomass gasification is one of the few technologies that can potentially generate carbon 

negative energy with pollution-free power and also turn agricultural waste into energy. 

Biomass gasification is a thermo-chemical process that generates producer gas or synthesis 

gas by the partial oxidation of the biomass feedstock in fuel-rich conditions in the presence 

of air, steam, or oxygen (Li, Grace et al. 2004). Notice that “producer gas,” rather than 

“synthesis gas,” is the biomass derived gas used in this research. The gasification 
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technology has received attention due to the following advantages. First, the introduction 

of a new biomass feedstock requires little or no change to the system. Additionally, the 

resulting gases can be used in various applications such as heat and power generation or 

synthesis to produce liquid fuels (Chen et al. 2007). Another advantage is that the 

electricity production via biomass gasification can produce less exhaust emissions, as 

compared to coal. Thermo-chemical gasification can be classified on the basis of the 

gasifying agent, which could be air, steam, or oxygen (Lv, Xiong et al. 2004). Air blown 

gasification processes usually yield a low calorific value gas with a higher heating value 

(HHV) of 4 – 7 MJ/Nm
3
. Oxygen and steam blown gasification usually yield gases with a 

HHV of 10 – 18 MJ/Nm
3
. The disadvantage with the oxygen blown system is the high cost 

for the oxygen production equipment. The four popular gasifiers are downdraft, updraft, 

fluidized bed, and entrained flow. For large-scale applications, the most preferred and 

reliable system is the circulating fluidized bed, while for small scale systems, downdraft 

systems are more appropriate (Maniatis 2001). 

Nitrogen in biomass feedstock is converted to nitrogen-containing compounds such as 

ammonia (NH3) and hydrogen cyanide (HCN) during the gasification process. It has been 

shown that ammonia is the dominant nitrogen-containing compound in producer gas 

during the gasification of biomass (Tian, Yu et al. 2007). Ammonia is an important concern 

as it is the precursor to NOx emissions when producer gas is combusted in a burner or an 

internal combustion engine. Hence an accurate assessment of the quantity of ammonia is a 

key to controlling NOx emissions. As the emissions regulation becomes stringent, it is 

essential to reduce NOx emissions in order for biomass gasification to be viable. In theory, 
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NOx emissions include thermal NOx (due to high temperature), fuel NOx (due to fuel-

bound nitrogen), and prompt NOx (due to fuel rich conditions) (Turns, 2000). During 

biomass gasification,  nitrogen in biomass is released as ammonia, whose combustion will 

lead to significant NOx emissions, especially fuel NOx (Waibel 1993). Therefore, the 

relationship between nitrogen content in biomass feedstock and NOx emissions from 

producer gas combustion needs to be investigated. 

 

1.2 Objective 

 

The purpose of this work is to investigate the effects of biomass feedstock on producer gas 

composition and exhaust NOx emissions in a pilot-scale biomass gasifier integrated with an 

industrial burner. Different biomass feedstocks with varying nitrogen contents were tested. 

It is believed that biomass with higher nitrogen content will result in more ammonia in the 

producer gas which, in turn, will produce higher NOx emissions in the flue gas (Li and Tan 

2000). The goal of this work is to help understand the relationship between the fuel-bound 

nitrogen in the feedstock to ammonia formation in the producer gas and hence the NOx 

emissions from the burner. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

 

Gasification is a process that converts carbonaceous materials such as coal, petroleum, bio-

fuel or biomass into carbon monoxide, hydrogen and other hydrocarbons by subjecting the 

raw material to a high temperature, with controlled amount of oxygen or steam. The 

amount of oxygen is less than that required for complete combustion, and the addition of 

steam is to increase hydrogen production in the resulting gas product. The resulting gas 

mixture is called synthesis gas or syngas and is itself a fuel. Gasification is a method for 

extracting energy from many different types of organic materials whose direct combustion 

is not favorable. The advantage of gasification is that using the syngas is potentially more 

efficient than direct combustion of the original fuel because it can be combusted at higher 

temperatures or even in fuel cells, so that the thermodynamic upper limit to the efficiency 

defined by Carnot's rule is higher or not applicable. Syngas may be burned directly in 

internal combustion engines, used to produce methanol and hydrogen, or converted via 

the Fischer-Tropsch process into synthetic fuel. Gasification can also begin with materials 

that are not otherwise useful fuels, such as biomass or organic waste. In addition, the high-

temperature combustion refines out corrosive ash elements such as chloride and 

potassium, allowing clean gas production from otherwise problematic fuels. Gasification 

relies on chemical processes at elevated temperatures (>700°C), which distinguishes it 

from biological processes such as anaerobic digestion that produce biogas (Chen, 2007).  
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2.2 Gasification process 

 

In a gasifier, the carbonaceous material undergoes several different processes: 

� Pyrolysis : In this process the carbonaceous material heats up. Volatiles are 

released and char is produced, resulting in up to 70% weight loss for coal. The 

process is dependent on the properties of the carbonaceous material and 

determines the structure and composition of the char, which will then undergo 

gasification reactions. 

� Combustion: In this process the volatile products and some of the char reacts with 

oxygen to form carbon dioxide and carbon monoxide, which provides subsequent 

heat for the gasification reaction. 

� Gasification: The char reacts with the carbon dioxide and steam to form carbon 

monoxide and hydrogen. 

Also the reversible gas phase water gas shift reaction reaches equilibrium very fast at the 

temperatures in a gasifier. This balances the concentrations of carbon monoxide, steam, 

carbon dioxide and hydrogen. The water gas shift reaction is as follows. 

                                                    CO + H2O ↔ CO2 + H2 
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2.3 Coal gasification 

2.3.1 Introduction 

 

Coal gasification was first developed in about 1780 and was widely commercialized by the 

early 1900s. Before natural gas became widely available in the 1940s, many European and 

North American nations used town gas or producer gas derived from coal as a heating and 

lighting fuel. Later natural gas replaced producer gas because of its high heating value. The 

oil crisis of 1970s triggered a renewed interest in various coal utilization technologies like 

the coal gasification, in order to replace or compete with the petroleum resources such as 

oil or natural gas. 

2.3.2 Process 

 

The coal gasification process involves several stages before the actual gasification process 

can take place. The raw coal after preparation is introduced by a feeding system into the 

gasification reactor. The coal minerals, which remain as ash or slag, after the gasification 

process, are discharged and used for purposes such as the construction of buildings or 

roads, or disposed. The solids in the raw gas are either treated like the ash or if they 

contain considerable amounts of un-gasified carbon, they are recycled into the gasifier. 

There are different possibilities of heat being transferred to the gasifier. One is auto 

thermal coal gasification process in which the reaction heat is generated in the gasifier 

itself by using as a gasifying agent a mixture of oxygen and steam, whereby a certain 

amount of coal is burnt and the remainder reacts with steam. Second is the allo-thermal 
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coal gasification in which the heat is generated outside the gasifier by burning either coal 

or its products in a separate combustion chamber with air. The heat can be transferred to 

the gasifier either by superheated steam, steam/gas mixtures or by solid heat carriers. 

In the case of an autothermic process, gasification is performed with steam and oxygen, 

the latter being produced by a cryogenic air separation process. A schematic diagram of 

the coal gasification process is shown in Fig 2.1 (Nowacki, 1981).  

 

 

 

 

 

 

 

 

 

 

Fig 2.1 Schematic diagram of a coal gasification process 
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In a fixed or moving bed gasifier a bed of coal particles is moving downwards in a 

countercurrent flow of oxygen and steam. In order to attain reasonable gasification rates 

the gas velocity must be high and the pressure drop low. The product gas leaving the gas 

generator at the top contains pyrolysis products which are formed in the upper layer of the 

fixed bed. Most processes use a dry ash removal, thus the reaction temperatures must be 

below the fusion point of the ash. The raw gas is de-dusted, cooled down and finally 

purified and thus converted into a feedstock for following synthesis or other utilization. Gas 

purification and processing consists of a high number of washers and other chemical 

apparatus. The gas purification and processing account for about 60% of investment cost 

and hence is of high significance. 

The typical gas compositions from the coal gasification depends on the kind of gasifier, the 

operating conditions like temperature, pressure, residence time and the gas velocity. The 

following mentions the producer gas composition in a Lurgi slagging gasifier under a given 

operating condition (Nowacki, 1981).  

2.3.3 Lurgi slagging gasifier 

 

Type of gasifier: Fixed bed gasifier 

Temperature: Combustion zone temperatures are around 2300 – 2500
0 

F 

Pressure: 5 – 26 atm 



9 

 

Gas velocity/Residence time: Gas velocity is approximately 2.5 fps above the slag bath. The 

coal residence time is about 10 to 15 min. 

The syngas composition resulting from the coal gasification process is shown in Table 2.1 

Table 2.1 - Syngas from coal gasification process 

Composition Vol % 

H2 28.05 

CO 61.20 

CO2 2.55 

CH4 7.65 

CnHm 0.45 

O2 0.10 

Heating value (HHV), Btu/scf 381 

 

2.4 Biomass Gasification 

2.4.1 Introduction 

 

Biomass gasification is the conversion of solid biomass into a combustible gas mixture 

usually of low heating value, by the partial oxidation of biomass at high temperatures, at 

atmospheric or elevated pressures. The gasification of biomass is carried out mainly via 

partial oxidation processes and steam reforming. Partial oxidation processes are those that 

utilize less than the stoichiometric amount of oxygen needed for complete oxidation, so 

partially oxidized products like carbon monoxide (CO) and higher hydrocarbons are formed. 

This gas mixture is called the producer gas or synthesis gas depending on the conditions 

run at the gasifier side. The producer gas or synthesis gas can be used in different 
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applications such as burning it to produce heat or it can be used to produce electricity, if 

used as a fuel for gas engines and gas turbines. It has been estimated that the overall 

efficiency of conversion of biomass to energy using gasification and pyrolysis is 70-75% 

(Ptasinski, 2008). 

Biomass gasification is one of the few technologies that can potentially generate 

carbon negative energy with pollution-free power and also turn agricultural waste into 

energy. Biomass gasification is a thermochemical process that generates producer gas or 

synthesis gas by the partial oxidation of the biomass feedstock in fuel-rich conditions in the 

presence of air, steam, or oxygen (Li et al. 2004). Notice that “producer gas,” rather than 

“synthesis gas,” will be used in this article to describe the biomass-derived gas. The 

gasification technology has received attention due to the following advantages. First, the 

introduction of a new biomass feedstock requires little or no change to the system. 

Additionally, the resulting gases can be used in various applications such as heat and power 

generation or synthesis to produce liquid fuels (Chen et al. 2007). Another advantage is 

that the electricity production via biomass gasification can produce less exhaust emissions, 

as compared to coal. Thermo-chemical gasification can be classified on the basis of the 

gasifying agent, which could be air, steam, or oxygen (Lv, Xiong et al. 2004). Air blown 

gasification processes usually yield a low calorific value gas with a higher heating value 

(HHV) of 4 – 7 MJ/Nm
3
. Oxygen and steam blown gasification usually yield gases with a 

HHV of 10 – 18 MJ/Nm
3
. The disadvantage with the oxygen blown system is the high cost 

for the oxygen production equipment. The four popular gasifiers are downdraft, updraft, 
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fluidized bed, and entrained flow. For large-scale applications, the most preferred and 

reliable system is the circulating fluidized bed, while for small scale systems, downdraft 

systems are more appropriate (Maniatis, 2001).  

 

2.4.2 Types of biomass gasifiers 

 

Mainly there are two types of gasifiers that are used. They are fixed bed gasifiers and 

fluidized bed gasifiers. The fixed beds suffer localized hot spots and thus have a wide 

temperature distribution. This includes possibilities for hot spots with ash fusion, low 

specific capacity, long periods for heat-up and a limited scale-up potential. Scaling up of a 

fixed bed gasification plant is unfeasible as it includes higher investment costs for a cascade 

of single fixed beds. The main advantages are the high carbon efficiency, the wide range of 

ash content in the feedstock and the possibility to melt ash. Furthermore, concurrent fixed 

beds produce a clean gas with very low tar content. Fluidized beds have good heat and 

material transfer between the gas and solid phases with uniform temperature distribution, 

high specific capacity and fast heat-up. They tolerate wide variations in fuel quality and a 

broad particle-size distribution. Disadvantages of fluidized beds are high dust content in 

the gas phase and the conflict between high reaction temperatures with good conversion 

efficiency and low melting points of ash components. 
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There are mainly three types of fixed bed gasifiers. 

Updraft gasifiers:  In this system the oxidant is introduced at the bottom of the reactor and 

the fuel gas produced moves up through a bed of solid feedstock, which gradually moves 

down as the feed at the bottom is consumed. The gas tends to leave the gasifier at low 

temperature, because it has percolated through the bed, and therefore contains a fair 

fraction of lower molecular weight hydrocarbons and tar. 

Downdraft gasifiers: In this system, the oxidant is introduced into a downward flowing 

packed bed of solid biomass and the product gas is drawn off at the bottom. Unlike the 

updraft gasifier, the product gas leaves the gasifier at high temperature, since it exits the 

reactor at the combustion zone, and hence resulting in an increased concentration of 

hydrogen and light hydrocarbons and less tar. This gasifier is preferred to updraft for 

internal combustion engines (Ragnar, 2000). 

Cross-flow gasifiers: In this system, the biomass moves downwards while the air is 

introduced from the side, and the gases exit the gasifier on the opposite side, at the same 

level. Because a combustion zone forms around the entrance of air, this results in gases 

leaving the vessel at a relatively high temperature, hence lowering the overall energy 

efficiency. 

There are mainly two kinds of fluidized bed gasifiers commercially used. 

Circulating fluidized bed:  In this system, the bed material is circulated between the unit 

and a cyclone separator, which removes the ash, and returns the bed material and char to 
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the gasifier. These gasifiers can be operated at higher pressures; hence it can be used in 

gas turbine applications. 

Bubbling bed gasifier: In this gasifier, the air is introduced through a grate at the bottom, 

and the feed is introduced above the grate into the moving bed of fine-grained material, 

where it is pyrolysed forming a char with gaseous compounds. This results in a gas with low 

tar content, since the high molecular weight compounds are cracked by the hot bed 

material (Ragnar, 2000).  

2.5 Effect of biomass feedstock on the gas composition 

 

Typical producer gas compositions obtained from the biomass gasification process are 

outlined below. These compositions are analyzed just before the purification process. The 

conditions under which the producer gas is produced are also described below. 

1. Tests were conducted at the Biomass Energy conversion facility (BECON) in Nevada, 

IA by the Iowa Energy Center. A pilot scale circulating fluidized bed reactor was used to 

conduct the experiments. The system is rated at 800kW thermal input, which corresponds 

to 180 kg/hr of solid biomass fuel with a heating value of 16000 kJ/kg. The gasifier was 

operated at an equivalence ratio between 0.25 and 0.35, which maintained the reactor in 

the range of 700 -760
0 

C. The experiments employed discard seed corn as a fuel. The 

chemical composition of the fuel is as shown in Table 2.2 (Nowacki, 1981).  
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Table 2.2 - Proximate and ultimate analysis for seed corn 

Items Seed Corn 

Proximate analysis (wt %)  

Fixed Carbon 11.7 

Volatile 77.90 

Moisture 9.00 

Ash 1.40 

Ultimate Analysis (wt %)  

C 41.7 

O 49.24 

H 6.43 

N 1.1 

S 0.13 

Cl 0.17 + 0.043 

Ash 2.5 + 0.44 

High Heating value (MJ/kg) 17.6 

Reference: Riquin Zhang, Robert.C. Brown, Andrew Suby, Keith Cummer. Catalytic destruction of tar 

in biomass derived producer gas – Energy Conversion and Management 45 (2004) 995–1014. 

 

The average raw producer gas composition on dry volumetric basis is shown in Table 2.3. 

Since the oxidizing agent is air, the heating value of the producer gas obtained is low, as 

indicated by the high nitrogen content. 
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Table 2.3 - Producer gas composition for seed corn 

Constituent of producer gas % Dry Volumetric  basis 

Nitrogen (N2) 51.2 

Carbon Monoxide (CO) 15.7 

Hydrogen (H2) 6.5 

Carbon dioxide (CO2) 14.2 

Methane (CH4) 4.8 

Higher Hydrocarbons 4.0 

Reference: Riquin Zhang, Robert.C. Brown, Andrew Suby, Keith Cummer. Catalytic destruction of tar 

in biomass derived producer gas – Energy Conversion and Management 45 (2004) 995–1014. 

 

 

2. Tests were conducted on leached orujillo (olive oil waste) in a pilot plant circulating 

fluidized bed reactor. The experiments were conducted for different equivalence ratios at a 

temperature of about 800
0 

C.  It is seen that as the equivalence ratio is increased, the lower 

heating value of producer gas decreases, as the there is more air utilized in the gasification 

process and hence higher nitrogen content in the resulting producer gas composition 

(Bridgwater, 2006). The dry producer gas composition by percentage volume for various 

equivalence ratios are as shown in the Table 2.4. It has to be noted that the nitrogen 

percentages increase with increasing equivalence ratio. 
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Table 2.4 - Producer gas for olive oil waste 

Constituent of producer Test 1 Test 2 Test 3 Test 4 

gas     

Equivalence ratio 0.41 0.73 0.59 0.67 

Nitrogen (N2) (%) 59.46 63.16 60.55 62.46 

Carbon Monoxide (CO) 8.6 6.9 8.4 7.5 

Hydrogen (H2) (%) 5.4 7.3 9.3 7.6 

Carbon dioxide (CO2) (%) 21.7 19.9 19.0 19.7 

Methane (CH4) (%) 3.0 1.8 1.9 1.8 

Higher Hydrocarbons (%) 1.9 0.9 1.0 1.1 

 

3. The following is a research conducted to clean the producer gas for I.C engine 

applications. This composition of producer gas is obtained from atmospheric air blown 

gasifiers. Tests were conducted with wood chips as the biomass feedstock. Three different 

types of gasifiers were tested for their producer gas compositions. One is the fixed bed 

concurrent gasifier, second being fixed bed counter-current gasifier and the third one is the 

circulating fluidized bed gasifier. The dry producer gas compositions are shown in Table 2.5 

(Hasler, 1999).  
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Table 2.5 - Producer gas composition for wood 

    Constituent of Fixed bed Fixed bed CFB 

Producer gas concurrent Countercurrent gasifier gasifier 

Nitrogen (N2) 35 – 60 53 – 65 45 - 56 

Carbon Monoxide 10 – 22 15 – 20 13 - 15 

Hydrogen (H2) 15 – 21 10 – 14 15 - 22 

Carbon dioxide 11 – 13 8 – 10 13 - 15 

Methane (CH4) 1 – 5 2 – 3 3 - 4 

Higher 0.5 - 2 - 0.1 – 1.2 

hydrocarbons    

Reference : P. Hasler, Th. Nussbaumer. Gas cleaning for IC  engine applications from fixed bed 

biomass gasification – Biomass and Bioenergy 16 (1999) 385 – 395. 

 

 

4. This research involved combining the fast pyrolysis process and the gasification 

process to produce high quality producer gas. The producer gas is formed in a circulating 

fluidized bed reactor, which consists of a cyclone, riser, fuel feeder and a pre-heater. The 

raw fuel used is miscanthus pellet, the properties of which are shown in Table 2.6 (Chen, 

2004).  
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Table 2.6 - Ultimate and proximate analysis of miscanthus pellets 

Items Miscanthus pellet 

Proximate analysis (wt %)  

Fixed Carbon 15.0 + 3.50 

Volatile 73.8 + 3.50 

Moisture 8.70 + 1.47 

Ash 2.5 + 0.44 

Ultimate Analysis (wt %)  

C 43.9 + 0.95 

O 46.8 + 0.81 

H 5.90 + 0.40 

N 0.57 + 0.12 

S 0.14 + 0.049 

Cl 0.17 + 0.043 

Ash 2.5 + 0.44 

High Heating value (MJ/kg) 17.6 

Reference: G. Chen, J. Andries, H. Spliethoff, M. Fang, P.J van de Enden. Biomass gasification 

integrated with pyrolysis in a circulating fluidized bed. Solar Energy 76 (2004) 345 -349. 

 

The maximum thermal capacity of the CFBG is 100 kW. The fluidizing medium used is air 

and the average gasifier temperature is 820 
0
C. The equivalence ratio used for the 

gasification is 0.3. The gas phase was analyzed by a FT-IR spectrometer; a multi-component 

gas chromatograph and an online single component analyzer. The composition of producer 

gas, both in dry and wet compositions are shown in Table 2.7. 
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Table 2.7 - Raw producer gas composition for miscanthus pellets 

Gases Measured (mole fraction) 

 Wet (mol %) Dry (mol %) 

Carbon Monoxide (CO) 10.99 12.57 

Carbon dioxide (CO2 ) 14.00 16.02 

Methane (CH4) 2.14 2.45 

Ethene (C2H4) 0.65 0.74 

Hydrogen (H2) 5.24 6.00 

H2O (g) 12.59 0.00 

Nitrogen N2 (calc) 54.38 62.22 

LHV (wet, tar free) 3.46 MJ/Nm
3
 

HHV (dry, tar free) 3.69 MJ/Nm
3
 

Tar concentration 75 mg/Nm
3
 

Reference: G. Chen, J. Andries, H. Spliethoff, M. Fang, P.J van de Enden. Biomass gasification 

integrated with pyrolysis in a circulating fluidized bed. Solar Energy 76 (2004) 345 -349. 

 

From all these compositions for various biomass feedstocks, it can be seen that carbon 

monoxide, hydrogen and hydrocarbons are the main contributors to the heating value of 

the fuel. The more the percentage of these quantities, more will the heating value of the 

fuel and hence increase the thermal efficiency of the gasification process. 

 

2.6 Gas clean-up technologies 

 

The syngas or the producer gas produced by the gasification process contains different 

kinds of contaminants mainly particulates, condensable tars, alkali compounds, hydrogen 

sulphide (H2S), hydrogen chloride (HCl), ammonia (NH3) and hydrogen cyanide (HCN). 

These contaminants can lower the efficiency of producer gas combustion in the burner, 

when it is used for industrial applications like heating, and also cause potential damage to 
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the burner. Hence these impurities need to be removed before the syngas or the producer 

gas could be used for any application. Depending on the type of application, certain 

impurities are more critical and need to be below a certain limit. Hence there are different 

cleaning processes depending on the end product desired (Patrick, 2002).  

 

With the current state of the art gas cleaning technology, the contaminants can be 

eliminated to very low amounts. The gas cleaning usually comprises of dust removal by a 

cyclone separator, wet scrubbers to cool the gas and remove the tars by condensation and 

NH3 and HCl by adsorption, and finally an electrostatic precipitator (ESP) for dust and tar 

aerosols. A number of experimental results prove that these methods are very efficient in 

tar removal as well as effective particle capture. Venturi scrubbers have been shown to 

have an efficiency of 51% - 91%. The tar concentration can go down to as low as 20 – 40 

mg/m
3 

for a highly efficient scrubber system. It has also been shown that a water scrubber 

can produce a tar concentration as low as 20 – 40 mg/m
3 

and particulate levels of 10 – 20 

mg/m
3 

.Also wet scrubber is expected to remove about 60% of the tar from the raw gases 

in a circulating fluidized bed gasifier (Han, 2006).  

 

Another successful method to remove the tar from the raw producer gas is OLGA (oil-based 

gas washer) technique. Fig 2.2 shows a simplified diagram of the process (Patrick, 2002). 
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Fig 2.2 - Schematic of OLGA technique 

 

 

The simplified OLGA consists of two scrubbing towers. Syngas is fed to the collector in 

which the tars are removed to the desired level. The scrubbing liquid with the dissolved 

tars are regenerated in the stripper. Part of the scrubbing liquid exiting is purged and 

charged to the gasifier. In case of air blown gasification, air is used to strip the tar. 

The main issue with the raw producer gas is the condensation of tar. Hence it is believed 

that if the dew point of tar is reduced to levels below the lowest expected temperature, 

fouling related problems by the condensation of tar aerosols are solved. Upstream of the 

OLGA process, the syngas is cooled and de-dusted. The OLGA process removes the tar 

impurities from the syngas and then it goes downstream, where non-tar impurities NH3 and 

HCl are removed by wet scrubbing and water is condensed out due to further cooling of 

the gas. 

Air 

Syngas 

Liquid purge 

Scrubbing liquid 

regeneration Scrubbing liquid 

recirculation 
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2.7 Fate of nitrogen in biomass feedstock 

2.7.1 Introduction 

 

Nitrogen is a macronutrient in plants that is essential for their growth. Nitrogen in woody 

biomass is mostly found in the needles and leaves (around 1%), while the bark contains 

0.3-0.5% and the wood matter usually contains <0.1% nitrogen. During biomass 

gasification, the nitrogen in the fuel is released as ammonia, cyanides, molecular nitrogen, 

nitrogen oxides and various aromatic organic compounds. A very small quantity of this 

nitrogen is retained in the remaining unreacted solids. The concentration of nitrogen 

compounds in the product gas depends on the nitrogen content of the feedstock and also 

the gasification process. It has been found that almost regardless of the gasification 

process and feedstock used, the predominant compound formed is NH3, while the share of 

the other nitrogen compounds is small. A study was conducted by the researchers at the 

Royal Institute of Technology, Sweden to compare the precursors to NOx by measuring the 

weight percentage of various nitrogen compounds.  

 

For this analysis, five different fuel types were considered. Four of them being solid 

biomass and other one being coal, to compare the effects of nitrogen distribution in the 

fuels to the production of different precursors during the gasification process. The 

gasification process was carried out in a pressurized fluidized bed gasifier.  
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The gasification process was carried out at 900
0
C and 0.4 MPa. Oxygen enriched nitrogen 

was used as the fluidizing agent. The distribution of fuel nitrogen was analyzed in the 

gases, tar and char resulting from the gasification process, the data for which is provided in 

the Table 2.8 (Yu, 2007).  

 

Table 2.8 - Fuel nitrogen distribution in the resultant producer gas 

Raw material Reed Canary Miscanthus Salix Dawmill coal 

% of fuel N in char 0.7 9.4 0.0 34.1 

% of fuel N as NH3 34.3 12.7 24.4 7.5 

% of fuel N as HCN 0.1 0.12 0.22 0.10 

% of fuel N as NO 0.20 0.04 0.66 0.10 

% of fuel N as NHC 1.30 0.37 0.67 - 

Ratio (%) of N(HCN) to 0.29 0.94 0.90 1.33 

Ratio (%) of N(NO) to 0.58 0.31 2.70 1.33 

Reference: Q-Z Yu, C. Brage, G-X. Chen, K. Sjostrom. The fate of fuel-nitrogen during gasification of 

biomass in a pressurized fluidized bed gasifier. Fuel 86 (2007) 611-618. 

 

Table 2.8 shows that for all the biomass fuels, the majority of fuel NOx precursor is 

ammonia. The fuel nitrogen getting converted to ammonia could be due to three reasons.  

Firstly, nitrogen in biomass is believed to be mainly in the form of protein and free amino 

acid. The amine groups are believed to form ammonia directly at relatively low 

temperatures during pyrolysis. Secondly, the tar from thermo chemical processing of solid 

fuels will undergo secondary gas phase cracking releasing nitrogen mainly as ammonia. 

Thirdly, the thermal cracking of char is also an important course for ammonia formation. 

The presence of ammonia in the producer gas is the main source of NOx formation during 

the combustion of producer gas. Though the amount of ammonia is restricted by the 
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feedstock used and the gasification process, the formation of NOx could be reduced by 

ensuring relatively low temperatures are used during the combustion of producer gas, 

preventing the oxidation of molecular nitrogen. This would reduce the thermal NOx to 

good extent. Thermal NOx is predominant above temperatures of 1500
0
C. But the nitrogen 

in the form of ammonia would result in fuel NOx formation, which is mainly due to the 

nitrogen present in the fuel. The characteristics of fuel NOx with respect to different 

conditions of the burner operation are not known clearly and our effort in this work is to 

understand the behavior of fuel NOx. 

2.7.2 Fuel NOx chemistry 

 

 Various studies have shown that the main precursor to the formation of NOx in biomass is 

ammonia (NH3). The formation of NH3 requires the presence of the condensed phases of 

carbonaceous materials rich in hydrogen. Direct hydrogenation of N-sites by the H radicals 

generated in situ in the pyrolyzing solid is the main source of NH3 from the solid. The 

initiation of N- containing hetero-aromatic ring by radical is the first step for the formation 

of both HCN and NH3. While the thermally less stable N- containing structures are 

responsible for the formation of HCN, the thermally more stable N- containing structures 

may be hydrogenated slowly by the H-radicals to NH3 (Li, 2000) .  

It may be seen that part of the NH3 observed from the pyrolysis of biomass is due to the 

presence of amino groups in the biomass. In fact this does not seem to be the main source 

of NH3 even from the pyrolysis of biomass. The pyrolysis of amino acids in the solid biomass 
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would mainly yield HCN. Therefore the direct or indirect hydrogenation of the nitrogen in 

the hetero-aromatic structures is the main source of NH3 from the pyrolyzing solid 

particles. A simulation study was conducted at the University of Hawaii to understand the 

behavior of fuel bound nitrogen in biomass feedstocks. The simulation was conducted for 

fluidized bed gasifiers at an equivalence ratio of 0.25 with oxygen and steam as fluidizing 

medium, to eliminate the dilution of the nitrogen compounds formed in the gas, with the 

atmospheric nitrogen due to air blown gasification (Zhou, 1997). The study aimed at 

understanding the conversion of fuel based nitrogen to different nitrogen compounds like 

ammonia (NH3), hydrogen cyanide (HCN), nitric oxide (NO) and diatomic nitrogen. Fig 2.3 

shows the conversion of fuel bound nitrogen into different compounds at different 

gasification temperatures. It is seen that the concentration of ammonia is much higher 

than that of HCN or NO, and hence can be considered as the single main precursor for fuel 

NOx formation. 

 

Fig 2.3 Conversion of fuel bound nitrogen in biomass  
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2.7.3 Comparison of thermal NOx and fuel NOx 

 

 The ultimate aim of this project is to reduce the NOx emissions from the burner. These 

NOx emissions are mainly due to two reasons. One is the high temperature of combustion, 

which oxidizes nitrogen compounds and molecular nitrogen (present in air) to nitric oxides 

(NOx). This is called thermal NOx, which can mainly be reduced by keeping the 

temperature of combustion low. The other reason for NOx emissions, and possibly the 

main in producer gas combustion, is the fuel NOx produced from the presence of nitrogen 

compounds in producer gas like ammonia (NH3) and HCN. The third way NOx formation 

occurs is by the prompt NOX. Prompt NOx is formed during the early, low temperature 

states of combustion and is insignificant. 

Thermal NOx is mainly caused due to high flame temperatures during the combustion 

process. The main aim is to reduce the thermal NOx, which can be achieved by reducing 

the flame temperature. In recent years, lean premixed (LPM) combustion has been used to 

reduce pollutant emissions by controlling the flame temperature. Lower flame 

temperatures in LPM combustion reduce soot and thermal nitric oxide production, 

although unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions rise as the 

lean blow-off (LBO) limit is reached. Thus the flame temperature in the combustor must be 

sufficiently high to prevent the LBO and to minimize emissions (Alavandi, 2008).  

One of the major concerns in the combustion of producer gas is the production of fuel 

NOx. The main precursors of fuel NOx during the biomass gasification are NH3 and HCN. In 
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biomass, nitrogen mainly exists as proteins and amino acids, together with some other 

forms such as DNA, RNA, alkoids, porphyrin, and chlorophyll. The thermal cracking of 

volatiles is seen to be one of the main routes of NH3 formation during the pyrolysis of 

biomass. During gasification, the distribution of fuel-N into volatile-N and char-N is 

significantly dependent on fuel rank. A large fraction of biomass-N would become volatile-

N, which under gasification conditions in the presence of gasifying agents like steam could 

reform, leading to the formation of HCN and NH3 (Tian, 2007).  

Experiments were conducted on a set of fuels ranging from cane trash to sewage sludge 

and the formation of HCN and NH3 were reported. Fig 2.4 below shows the reaction time 

resolved accumulated yields of NH3 during the gasification of cane trash. The first points in 

these figures refer to the yields from the feeding periods, during which biomass particles 

were continuously fed into the reactor. The other points refer to the yields from the “not 

feeding” periods, in which the feeding of biomass had stopped and the char inside the 

reactor continued to be gasified. 

During the gasification of cane trash, majority of NH3 was formed in the feeding periods. 

There are two pathways to form NH3: the hydrogenation of char-N by H radicals or the 

thermal cracking of volatile-N in the gas phase. Due to the presence of frit in the freeboard 

of the one stage fluidized bed reactor, there would be strong interaction between the 

volatiles and char. The volatiles generated within the fluidized bed contain H-rich 

structures and would readily be thermally cracked to generate radicals. As the radical rich 
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volatiles passed through the frit, the H radicals would react with the nascent char held 

underneath the frit to form NH3. 

 

Fig 2.4 - Ammonia formation at different gasification temperatures for cane trash 
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2.8 Producer gas combustion 

2.8.1 Differences between syngas and producer gas   

 

Synthesis gas (syngas) and producer gas are both obtained from the gasification process, 

but they differ in their compositions and other characteristics. The dominant species in the 

syngas include hydrogen (H2) and carbon monoxide (CO), usually in the ratio of 1:2. 

Producer gas, which typically has a lower energy content than the syngas, also contains 

traces of ethane, ethylene, propane and other hydrocarbons, along with ammonia, 

hydrogen suphide. Syngas is usually a product of high temperature gasification process, 

particularly using coal. In a high temperature gasification environment, the higher 

hydrocarbons are converted to CO and H2, thus increasing the heat content of the gas 

mixture. Producer gas is a product of low temperature gasification (particularly using 

biomass) and hence most of the hydrocarbons do not get oxidized. Air gasification of 

biomass feedstock generally results in producer gas, because of low temperatures of 

gasification as a result of dilution of the fluidizing medium with atmospheric nitrogen, 

which does not take part in the reactions. Oxygen and steam blown gasification result in 

high gasification temperatures and hence leads to the formation of syngas with higher 

energy content. The producer gas needs to be cleaned to remove impurities like tar, 

particles and other trace chemical elements before entering the burner. The heating value 

of producer gas is low, typically around 5.5-7.5 MJ/Nm
3
, approximately 15-20% of the 

heating value of natural gas (Wang, 2007).  
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2.8.2 Status of producer gas combustion research 

 

 The most important aspect when analyzing the combustion properties of any gas is to 

examine the ignition properties and the flame propagation characteristics. Since producer 

gas mainly contains carbon monoxide (CO) and hydrogen (H2), the combustion property of 

producer gas would be directly influenced by the properties of CO and H2. Studies have 

been conducted to understand the auto-ignition characteristics of H2 /CO mixtures. The 

following study was carried out in a rapid compression machine (RCM) at compressed 

pressures (Pc).  

Sung (2008) has conducted studies to measure the laminar flame speeds for CO/H2 /air as a 

function of equivalence ratio with different fuel concentrations and mixing ratios for 

pressures of 1, 2, 5, 10, 20, and 40 atm, with comparison to measured data from literature 

and also calculated values from different mechanisms. It is seen that the measured flame 

speeds increase with increasing H2 content in the CO/H2 mixtures. Fig 2.5 shows the plots of 

laminar flame speed at different equivalence ratios for pressures of 1 and 2 atm. Different 

ratios of CO and H2 are analyzed to see the effect of adding or removing CO and H2. It is 

seen that the addition of H2 increases the overall laminar flame speed of the mixture. H2 

has the highest laminar flame speed, with hydrocarbons having a value close to that of H2. 

High flame-speed combustion processes, which closely approximate constant-volume 

processes, should result in high efficiencies.  
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Fig 2.5 - Laminar flame speed for CO/H2 mixtures at different pressures 

                

             Despite the recent technological advances, the expreimental measurements of 

laminar flame speed, extinction limits, and ignition limits over a wide range of syngas 

compositions and initial conditions are still needed. 

A study was also conducted to investigate lean premixed combustion of hydrogen-

syngas/methane experimentally to demonstrate the fuel flexibilty of a two-section porous 
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burner. Lower temperatures in lean premixed combustion reduces soot and thermal nitric 

oxide production, although unburned hydrocarbon and carbon monoxide emissions rise as 

the lean blow-off limit is reached. Results show CO emissions decreasing with increasing 

amounts of H2 /CO in the fuel mixture. The NOx emissions are virtually unaffected by the 

fuel composition, evidently because of the insignificant thermal NOx produced at lower 

temperatures (Alavandi, 2008).  

Experiments were conducted by the University of Alabama to investigate the effect of 

adiabatic flame temperature on CO and NOx emissions for different concentrations of CO, 

H2 and CH4, the trend of which is shown in Fig 2.6. The temperature operating range of 

fuels with H2 /CO is different from that of CH4 because of the constraints imposed by the 

flame flashback and lean blow off limit. In fuels with H2 /CO, the flame is sustained at lower 

temperatures, evidently because of the high reactivity of H2. However at these low 

temperatures, the CO oxidation reactions are slower, and hence higher CO emissions are 

produced. Since the combustion properties of producer gas are mainly dictated by the 

combustion characteristics of CO and H2, these results are essential in understanding the 

combustion of producer gas. 
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Fig 2.6 - Effect of adiabatic flame temperature on CO and NOx emissions 

 

2.8.3 Low BTU Burner 

 

There are different techniques that have been applied to reduce the NOx emissions from 

the burners. The techniques that are most often used are utilization of air staging, fuel 

staging, flue gas recirculation and combinations of these to meet the required emission 

level. 

The flame stoichiometry for a burner has been studied with four different types of flames 

in a research conducted by John Zink. These flames are non-premixed diffusion flame and 

premixed flame, without flue gas recirculation and with flue gas recirculation. Fig 2.7 below 

shows the comparison of NOx emissions for these different flames (Athens, 1995).  
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                      Fig 2.7 - NOx emissions for different flames with and without FGR 

The curve shows that the NOx emissions are depressed for either premix or diffusion 

flames under fuel rich or sub-stoichiometric conditions with flue gas recirculation and also 

for very lean premixed flames with flue gas recirculation. It can be observed from the 

figure that operating with more than one combustion zone can lead to very low NOx 

emissions with reasonable overall excess air in the final combustion products. It is seen 

that firing a part of the fuel as a lean premix flame with flue gas recirculation will produce 

low NOx in that combustion zone. Firing the remaining fuel under fuel rich conditions with 

flue gas recirculation will produce low NOx emissions in the other combustion zone. Then 

properly combining the lean and rich combustion products to form a final burnout zone 

ultimately allows operation with low excess air and very low NOx emissions. Hence a two 

stage combustion process is most often the preferred technique for the production of low 

NOx exhaust in the operation of a burner. 
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The three ways in which NOx could be formed are thermal NOx, fuel NOx and prompt NOx. 

Thermal NOx is mainly formed at high temperatures of combustion, and the main 

contributor to its formation is the nitrogen from the air. Fuel NOx is formed from the 

nitrogen compounds present in the fuel like NH3 and HCN. Prompt NOx is mainly formed 

due to the presence of hydrocarbons. The nitrogen from the air combines with the 

hydrocarbon radical to form the precursors of prompt NOx. 

A schematic of the common process used in a low NOx burner is given below in Fig 2.8 

(Yamagishi, 1975).  

 

 

Fig 2.8 - Schematic representation of low NOx burner process 

A study was also conducted by the Department of Chemical Engineering, Brigham Young 

University, Utah to validate the impact of fuel type (biomass and coal) on the generation of 

nitrogen species by mapping species like NH3, HCN, CO, CO2 etc in a low NOx burning 

environment. CO and CO2 were used to conclude whether it was a fuel rich or a lean 

combustion zone. It was found that NH3 was the main precursor to the formation of NOx in 

biomass. 
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CHAPTER 3: METHODS AND PROCEDURES 

3.1 Introduction 

 

This chapter summarizes the gasification system, the combustion system and the 

measurement techniques used to carry out this study. Each section outlines the capacities 

of different systems, limitations of different techniques and methods used to conduct the 

experiments.   

3.2 BECON gasification system 

 

A pilot-scale gasification system at the Bio-energy conversion (BECON) facility in Nevada, IA 

was used to conduct the experiments. The gasification setup was operated by Frontline 

Bioenergy, LLC. The system consists of a feeding auger, a pressurized vessel, a fluidized bed 

reactor, and various gas clean-up components. The system is rated at 800 kW thermal 

input, corresponding to a feeding rate of 180 kg/hr of solid biomass with a heating value of 

16,000 kJ/kg. The gasifier was operated under fuel-rich conditions at an equivalence ratio 

varying between 0.22 and 0.25. Note that the equivalence ratio here is defined as the ratio 

of the actual air-fuel ratio to the stoichiometric air-fuel ratio. This definition is the inverse 

of the traditional definition used in combustion applications. The present definition is 

consistent with that used in the gasification industry.  

The bubbling fluidized bed gasifier at Becon is shown in Fig 3.1. Solid biomass is pelletized 

and fed to a vessel at atmospheric pressure using a feed auger. The cylindrical biomass 

pellet is approximately 15 mm in length and 5 mm in diameter. The feeding mechanism is 
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screw operated, which feeds the biomass feedstock into the vessel at a constant rate as 

shown in Fig 3.2. Once the vessel is filled to its capacity, this vessel is pressurized to about 

15 – 18 psi gage pressure and the feedstock is transferred to another pressurized vessel, 

also maintained at the same pressure. Air is purged into the first vessel to prevent the 

backflow of producer gas. The feedstock is then introduced into the bubbling fluidized bed 

reactor, which is air blown from the bottom. The fluidized bed has a bed depth of 1 – 1.3 m 

and is operated under atmospheric pressure conditions. The temperature inside the 

gasifier is maintained at 815 
0
C to attain steady-state conditions by using electrical heating 

coils. Limestone is used to prevent bed agglomeration and reduce the tar formation. 

          

Fig 3.1 - Bubbling fluidized bed gasifier at BECON 
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Fig 3.2 - Feed auger with screw operated mechanism 

 

Biomass feedstock at such elevated temperature conditions with insufficient oxygen will be 

gasified to form producer gas, containing carbon monoxide (CO), hydrogen (H2), nitrogen 

(N2), methane (CH4) along with other hydrocarbons, ammonia, water, char, and tar. The gas 

coming out of the gasifier is at a pressure of 15 – 18 psi gage. The producer gas contains a 

lot of impurities in the form of char, tar and sulphur compounds, which restricts the 

application of producer gas as a source of energy. The impurities in the form of heavy char 

particles need to be removed before the gas is sent to the burner for combustion. During 

the gas cleaning stage (i.e., gas conditioning), the gas from the fluidized bed reactor is 

passed through a baghouse to remove the char particles and ash in order to prevent the 

pipes from clogging over time. The baghouse is essentially a cyclone filter, which separates 

heavy char and ash particles by gravimetric method, a picture of which is shown in Fig 3.3. 

The gas coming out of the baghouse is usually at 5 psi gage and a temperature of 400 
0
C. 

The schematic representation of the entire gasification system is shown in Fig 3.4. 
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Fig 3.3 - Char collected at the bottom of baghouse 
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Fig 3.4 - Schematic representation of the gasification and the combustion system 

3.3 COMBUSTION SYSTEM 

 

An industrial burner was used for producer gas combustion. The burner is Eclipse 

TJ-0300, a medium velocity burner. It is rated at a maximum input of 879 kW. The producer 

gas coming out of the baghouse flows through a gas flow meter which measures the flow 

rate of the gas before entering the non-premixed burner. This producer gas is at a high 

temperature (325 
0
C) when entering the burner, thus it is unsafe to operate in the 

premixed mode to prevent explosion in the fuel-air inlet.  
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The flow meter is an orifice plate flow meter that has been calibrated for measuring 

the high temperature producer gas. A combustion chamber surrounds the burner to 

prevent heat loss to the surroundings and to carry away the exhaust gases. The combustion 

chamber is built with refractory lining in order to reduce heat loss. The combustion 

chamber also ensures that the flame is stable without external disturbances. The 

combustion chamber is shown in Fig 3.5. Producer gas enters the burner through the 

bottom inlet. The entry of fuel and air are shown in Fig 3.6. The atmospheric air is blown by 

a motor and enters the burner in four different stages. In the first three stages, the air is 

introduced through a series of holes that are located at different positions. In the fourth 

stage, the air enters the exit of the burner. The first three stages create rich mixtures and 

the fourth stage is to create lean mixtures in order to oxidize any unburned hydrocarbons. 

The burner is initially fired up using natural gas and then slowly switched to use producer 

gas. The flame length is usually around 1 m from the base of the burner and varies with 

biomass feedstock and equivalence ratios. Thermocouples are placed at different heights 

along the axis of the combustion chamber to obtain an overall idea of the temperature 

distribution inside the chamber. Since producer gas is a low heating value fuel as compared 

to natural gas, higher fuel flow rates are needed to maintain the same heat rate and also to 

provide a stable flame. The exhaust gas sample passes through a set of impingers placed in 

an ice bath to remove the moisture in the gas. The dry flue gas is then analyzed for its 

composition.    
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Fig 3.5 - Combustion chamber surrounding the burner 
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Fig 3.6 - Point of entry for fuel and air 

3.4 Producer gas analysis 

3.4.1 Micro gas chromatograph (GC) 

 

Producer gas and combustion exhaust flue gas are analyzed using a micro gas 

chromatograph (GC), which measures the dry gas composition. The micro GC is a Varian 

CP-4900 Quad Micro GC that has four columns. It works on the principle of comparing the 

thermal conductivities of various gases with reference to carrier gases such as Helium and 

Argon. Depending on the thermal conductivities, different gases elute at different times. 

Since water is removed from the producer gas before it is analyzed by the micro GC, 

ammonia, being soluble in water is also removed from the producer gas. Therefore, to 
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analyze ammonia and tar in the producer gas, the International Energy Agency (IEA)  tar 

protocol was followed (Good, Ventress et al. 2005). 

 

3.4.2 International Energy Agency (IEA) tar protocol 

 

This guideline provides a procedure for the sampling and further analysis of tars and 

particles in biomass derived producer gas. It is valid for updraft and downdraft fixed bed 

gasifiers and also for fluidized bed gasifiers. In fluidized bed gasifiers, raw producer gas 

contains concentrations of tars in the order of approximately 20 g/Nm
3
 (Knoef, 1999). The 

motivation for further research on tar quantity and consistency is given not only by the 

technical issues in the producer gas transportation, storage, and use, but also in the toxicity 

of these compounds to human health and environment in general. 

 

The sampling line described by the guideline consists of four modules including a module 

for gas preconditioning in which the sample is obtained and conditioned to a certain 

temperature and pressure, some sort of filter or device for particle separation and 

collection, the tar collection module, and last but not least the volume sampling with 

included temperature and pressure measurement and recording as shown in Figure 3.7. 



45 

 

        

Fig 3.7 - Scheme of the sampling line for the IEA Tar Protocol  

The IEA protocol is based on the principle of discontinuous sampling of a gas stream 

containing particles and tars under iso-kinetic conditions. First the sample is drawn from 

the producer gas pipe with a heated probe. This module is responsible for the 

preconditioning of the sample gas. The pressure is adjusted, and depending on the gasifier 

type, the gas is either heated or cooled. In the second module, all the solid components in 

the sample gas stream are separated from the gas and collected for further analysis. These 

particles consist mainly of carbon particulates, called char, but depending on the feed 

stock, heavy metal contents can be found in these chars. The third module is an impinger 

train with six impinger bottles shown in Fig 3.7. The setup for collecting tars consists of a set 

of six impingers. Among these six impingers, three are placed in a water bath maintained at 
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40 
0
C and the other three are maintained at – 20 

0
C. The low temperature of – 20 

0
C is 

maintained with the help of a mixture of salt, water and ice. Since tars usually drop out at 

80 
0
C, the higher temperature bath (40 

0
C) ensures the smooth condensation of the tar in 

order to prevent clogging. The first impinger consists of 100 ml of isopropyl alcohol (IPA), 

the next four contain 50 ml of IPA, and the last impinger is left empty. Since the 

temperatures are low, water vapor must condense in these impingers. Since ammonia 

readily dissolves in water, condensed water would contain ammonia in it, and these are 

collected in all the six impingers. Hence these six impingers should contain all of tar, with 

some quantity of water and ammonia.  

The gas coming out of the six impingers would contain little bit of moisture along with 

ammonia. Hence an additional set of three impingers containing distilled water and 0.05% 

HCl solution is placed downstream of the above six impingers to collect any ammonia that 

might have slipped from the six impingers in the form of ammonium chloride (NH4Cl) and 

ammonium hydroxide (NH4OH). This is a safety measure to make sure all the ammonia is 

captured. A sufficient sampling time is allowed to pass around 10 cu. ft. of producer gas 

through these impingers. This usually corresponds to a sampling time of two hours. The IEA 

setup along with the three impingers downstream is shown in Fig 3.8.  
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Fig 3.8 - IEA setup with the three impingers downstream 
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After the sample is collected, the sample valve is closed, and the contents in the impingers 

are allowed to cool to release any unwanted pressure in the impingers. Sufficient 

precaution must be taken to ensure that the sample in the impingers are brought to room 

temperature before collecting them, else it would result in loss of sample. The sample from 

the impinger is then carefully transferred into PTFE bottles, and these samples are stored 

at temperatures of 5 
0
C or below. The samples from the impingers 1 to 6 are collected into 

two bottles named primary and rinse respectively. The primary mainly contains all the 

contents of impingers 1 to 6 that are easily transferrable. There are tars and salts that 

remain stuck to the impingers and are difficult to collect. Reagents like IPA, di-chloro 

methane (DCM) are used to separate the tars, and water is used to separate the salts from 

the impingers. This solution is collected in the rinse. 

                   

 

Fig 3.9 - IEA sampling method 



49 

 

Figure 3.10 shows a simplified representation of the sampling and analysis procedure and 

chronology. 

 

Fig 3.10 - Sampling and analysis Procedure 

To calculate all the collected compounds back to the actual concentrations in the producer 

gas, the gas flow properties such as volume, temperature, and pressure are measured and 

recorded in the fourth module. A dry gas meter with a thermocouple and pressure gauge 

provided the needed data. 
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3.4.3 Moisture analysis 

Since the micro GC gives the dry gas composition, to obtain the actual gas composition of 

the producer gas, i.e., the wet gas composition, the amount of water vapor in the producer 

gas needs to be determined. A Karl Fischer titrator was used to measure the moisture 

content from the sample collected in the impingers. The sample in the primary bottle is 

used to determine the moisture content as it contains the undiluted sample. The Karl 

Fischer titrator gives the weight percentage of water in a given sample. The instrument is 

checked for few specific concentrations of water, close to the range that is expected from 

these samples. The deviation of the actual value from the measured value is corrected for 

in the final calculation of moisture from the actual sample.  The moisture content obtained 

in the sample is then correlated to the amount of moisture in the producer gas by 

measuring the volume of gas passing through the impingers. 

3.4.4 Tar and ammonia separation  

Tar found in biomass-derived producer gas is a complex material consisting of hundreds of 

different compounds that vary widely in polarity and molecular weight, ranging from 80 

g/mol to more than 300 g/mol. The analysis of the collected samples should be completed 

no more than one month after the collection of the sample even when stored under proper 

conditions in a dark PTFE bottle. 

The collected sample from the impingers mainly contains tar, char, and salts dissolved in 

water. The collected solution from the impingers is then roto-evaporated to separate out 

all the distillates like IPA, DCM from the tar. The equipment consisting of the roto-
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evaporating unit and a chiller unit is shown in Fig 3.11. The roto-evaporating unit consists 

of six flasks into which the solutions from the primary and rinse are equally distributed. 

Since tar has a boiling point of 80 
0
C and above, the sample is gradually heated from room 

temperature to around 60 
0
C to remove all the distillates such as IPA, DCM, acetone, and 

other hydrocarbons used as solvents. The flasks revolve, subjecting the contents in them in 

a swirling motion. This allows for uniform heat distribution. The sample may also contain 

water, which, if in large quantities, would take a long time to be separated from tar, with 

the sample being heated to a maximum temperature of 60 
0
C. Hence, methanol is added to 

water to accelerate the evaporation of water and help with the complete separation of 

water from tar. The chiller has a vacuum pump in it to accelerate the evaporation process. 

The flask in the chiller collects all the distillates, which come from the roto-evaporating 

unit. The outlet of the chiller is connected to a set of three impingers containing distilled 

water. These impingers ensure the entrapment of ammonia that may otherwise escape in 

the vapor phase. The tar collected as shown in Fig 3.12 can be characterized in a gas 

chromatography with flame ionization detection (GC-FID). This process of distillation 

usually takes about 2-3 hours, depending on the quantity of water in the mixture.  
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Fig 3.11 - Roto evap system with a chiller (left) and the samples equally 

distributed in six flasks (right) 

 

 

Fig 3.12 - Tars after the distillation process. 
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3.4.5 Ammonia analysis 

 

The samples from the distillate and the three impingers downstream used in the tar and 

ammonia separation process are collected in PTFE bottles, so that they can be analyzed for 

ammonia using an Aquanal ammonium test kit.  After adding the reagents to the sample 

for the ammonia analysis, the sample is placed in a UV-visible spectrophotometer, which 

gives the intensity of the light at a wavelength that corresponds to the color of the 

ammonium ions in the visible range. This intensity, in terms of absorbance, is then 

correlated to the calibration curve to obtain the exact ammonia content in the sample. The 

calibration curve co-relates the ammonium ion concentration in mg/L to the absorbance 

(AU) as shown in the graph in Fig 3.13. The ammonia content in the producer gas is then 

calculated using the known ammonia concentration in the analyzed samples. 
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Fig 3.13 - Calibration curve on the UV-Vis Spectrophotometer 

 

3.5 Flue gas analysis 

The sampling point to extract the flue gas is located midway on the combustion chamber. 

The flue gas from the combustion chamber follows the sample path to a set of three 

impingers containing distilled water immersed in an ice cold bath. The water in the exhaust 

gas sample is condensed in these impingers and the gas out of the impingers is a dry gas, 

which is then analyzed by the micro GC. The NOx values were measured using a NOx 

analyzer by Thermo Scientific, Model 42i series based on the chemiluminescence 

technology, which was calibrated before each test. The analyzer used for the 

measurements is shown in Fig 3.14. The NOx data was collected for each of the condition 
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run at the burner. The burner is allowed to attain steady state before starting to record the 

data. Data is recorded for 10 minutes at each condition with a sampling rate of 10 seconds. 

Average of all this data is then assumed as the representation of NOx at that condition with 

error bars in the plots indicating the minimum and maximum variation. 

 

 

Fig 3.14 - Thermo scientific NOx analyzer 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1 Test matrix 

 

Tests were conducted for five different feedstock and the compositions of both 

producer gas and flue gas were measured. Different biomass will result in different 

producer gas compositions. For the same feedstock, the burner was operated at various 

fuel flow rates. For each flow rate (i.e., heat rate), various equivalence ratios were tested 

by adjusting the air flow rate. The test matrix for different feedstocks are shown in Table 

4.1. All the combustion test conditions were in the lean mixture range with the richest 

mixture being close to stoichiometry. The combustion chamber can reach very high 

temperature when using stoichiometric mixtures, reaching the upper limits of temperature 

for the present combustion chamber material. Hence richer mixtures were avoided. The 

producer gas flow rates were chosen in the bandwidth of the gas flow meter to ensure 

accurate measurement. The feedstocks tested have different nitrogen contents. All the 

tests were performed with the gasifier operating at 815 
0
C. Notice that the specific burner 

test conditions (e.g., equivalence ratios, heat rates) are not exactly the same for different 

feedstock, as will be seen in Fig. 2. The specific operating conditions of the burner were 

determined considering the limitations of the system and operating points of interest. In 

general, at high heat rates, more test points were based on the lean operating conditions 

to prevent from overheating the combustion chamber. 
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Table 4.1 - Test Conditions 

Feedstock Nitrogen content 

(%) 

Producer gas flow rate, 

pounds per hour (pph) 

Burner Eq. Ratio 

Wood 0.14 50 – 250 1.2 – 3.0 

Wood+7%DDGS 0.37 50 – 250 1.0 – 2.1 

Wood+13%DDGS 0.66 50 – 250 1.0 – 2.2 

Wood+20%DDGS 0.95 50 – 250 1.0 – 2.2 

Wood+40%DDGS 1.75 50 – 250 1.0 – 2.3 

Wood+70%DDGS 2.81 50 – 250 1.0 – 2.2 

Yellow Corn 1.05 50 – 250 1.0 – 2.2 

 

 

Table 4.2 - Proximate and ultimate analysis of different biomass feedstock 

 

Feedstock Wood Wood+7%

DDGS 

Wood+13% 

DDGS 

Wood+20% 

DDGS 

Wood+40% 

DDGS 

Wood+70% 

DDGS 

Yellow Corn 

                                                                      Proximate analysis (wt %)   

Fixed Carbon 16.81 17.14 17.27 17.48 17.40 15.58 15.12 

Volatiles 75.11 75.76 75.18 74.14 71.93 71.20 70.47 

Moisture 6.25 6.22 6.02 6.24 8.20 10.17 13.37 

Ash 1.83 0.88 1.53 2.13 2.47 3.04 1.04 

       Ultimate Analysis (wt %)   

C 46.56 46.48 46.01 45.50 45.15 44.62 39.71 

O 46.13 46.08 45.68 44.98 44.05 42.85 51.35 

H 6.24 6.40 6.43 6.40 6.72 7.05 7.01 

N 0.14 0.37 0.66 0.95 1.75 2.81 1.05 

S 0.02 0.06 0.10 0.13 0.23 0.42 0.08 
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The proximate and ultimate analysis for each feedstock is shown in Table 4.2. These 

analyses are very important to determine the fuel nitrogen present in the feedstock. This 

helps in understanding the conversion of this nitrogen into ammonia and finally to NOx in 

the burner. 

 

4.2 Producer gas compositions 

 

The feedstock are gasified under fuel rich conditions to generate producer gas, 

which mostly comprises of nitrogen (N2), carbon monoxide (CO), hydrogen (H2), methane 

(CH4), carbon dioxide (CO2) , water (H2O), ammonia (NH3), and other hydrocarbons. The 

wet gas composition of the producer gas using various biomass feedstock is shown in Table 

4.3. Note that the producer gas composition (except ammonia) was measured using a 

micro GC, which indicated steady reading throughout the measurement. For ammonia, due 

to the complexity in the measurement, one sample was taken and analyzed for each 

feedstock. As a result, only a set of gas composition data corresponding to each feedstock 

are reported in Table 4.3. It can be seen that ammonia concentration increases with 

increased nitrogen content in the feedstock. The gasifier was maintained at a steady state 

of 815 
0
C for all the different operating conditions of the burner. 
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Table 4.3 - Producer gas composition using different biomass feedstock 

 % wet volumetric  basis   

Feedstock Wood Wood+7% 

DDGS 

Wood+13% 

DDGS 

Wood+20% 

DDGS 

Wood+40% 

DDGS 

Wood+70% 

DDGS 

Yellow 

corn 

Components of 

Producer gas 

       

Nitrogen (N2) 

 

39.02 39.67 40.16 39.86 41.51 50.57 38.97 

Carbon monoxide 

(CO) 

16.91 17.74 16.26 

 

15.86 12.55 12.54 13.63 

Hydrogen (H2) 11.33 9.54 10.46 

 

8.97 7.01 4.39 4.63 

Carbon dioxide 

(CO2) 

13.56 14.57 14.88 

 

14.01 12.87 10.98 11.40 

Methane (CH4) 5.27 6.32 5.88 

 

5.68 5.17 4.50 3.93 

Ethane (C2H6 ) 0.26 0.32 0.30 

 

0.25 0.29 0.43 0.20 

Ethylene (C2H4 ) 1.18 1.82 1.66 

 

1.83 1.93 2.36 1.83 

Acetylene (C2H2 ) 0.07 0.11 0.10 

 

0.12 0.10 0.15 0.18 

Propane  (C3H8 ) 0.07 0.13 0.11 

 

0.10 0.17 0.18 0.13 

Ammonia (NH3) 0.06 0.13 0.18 

 

0.23 0.24 1.15 0.54 

Water (H2O) 

 

9.97 10.67 10.64 13.58 18.63 12.33 24.14 

Lower heating 

value (MJ/kg) 

5.58 5.95 5.69 5.52 4.96 4.83 4.49 

Adiabatic flame  

temperature (K) 

1932 1959 1932 1908 1822 1825 1761 

 

 

4.3 Emissions using natural gas 

 

Baseline tests were performed for the burner using natural gas as the fuel and the 

results are shown in Fig. 2a. The reported NOx emissions data have been normalized based 

on 3% oxygen level in the exhaust using the following equation. 
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NOx NOx

−
×

−
   (1) 

The above adjustment in reporting flue gas NOx emissions is to consider the dilution effect 

and is a common practice in the burner industry. For instance, at very lean conditions (i.e., 

high oxygen concentrations in the exhaust), the measured raw NOx emissions have been 

diluted by the excess air. By using Eq. (1), the reported NOx @ 3% O2 will be higher than 

the raw data, thus resulting in a fair comparison. The NOx values are also plotted in g/kW-

hr. This is a standard way to compare different combustion systems, especially in the 

engine industry, having different rated power. This NOx reported is independent of the fuel 

flow rate as indicated below in equation 2. 

���	 � �
�� 	 
�� 


yNOX
�� � ��� � 1�																																																 �2��

 

 

where           yNOX is the mass fraction of NOx in the flue gas 

                       HV is the heating value of the producer gas 

                          
�
  is the air-fuel ratio 

For the same heat rate, the NOx emissions variation with equivalence ratio is small. Here 

the equivalence ratio is defined as the ratio of the actual air-fuel ratio to the stoichiometric 

air-fuel ratio. That is, an equivalence ratio greater than 1.0 indicates a lean mixture. It is 

known that the thermal NOx is mainly a function of the adiabatic flame temperature. In a 

premixed flame, the stoichiometric mixture produces the highest flame temperature which 

in general will result in the highest thermal NOx emissions. However, it should be noticed 
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that the present burner is based on non-premixed combustion in which fuel and air are 

introduced into the burner at different stages. It is believed that a diffusion flame is 

established in the burner because the fuel and air are not premixed. In a diffusion flame, 

the exhaust NOx emissions are less sensitive to the overall equivalence ratio. Thus, NOx 

emissions do not vary significantly with the equivalence ratio, as shown in Fig. 4.1. The 

graphs are present in terms of NOx at 3% exhaust oxygen and also in terms of g/kW-hr 

which is independent of the fuel flow rate. The adiabatic flame temperature for natural gas 

is 2325 K calculated from the EES (Engineering equation solver) code. Nonetheless, 

relatively speaking, NOx emissions seem to reach a maximum at slightly lean conditions 

due to the availability of excess oxygen to produce NOx. On the other hand, NOx emissions 

increase noticeably as the heat rate is increased. This outcome is attributed to the 

increased thermal loading inside the combustion chamber due to the higher fuel flow 

rates, as supported by the results of NOx in g/kW-hr (which is independent of fuel flow 

rate). At higher thermal loading, the chamber will reach a higher temperature, which in 

turn causes the overall gas temperature to rise, hence contributing to the increased NOx 

emissions. 
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Fig. 4.1 - NOx variation with equivalence ratio for different heat rates using natural gas 
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4.4 Emissions using wood 

 

Fig. 4.2 shows the NOx emissions using producer gas resulting from wood 

gasification. The NOx emissions increase with increased fuel flow rates for a given 

equivalence ratio. Table 4.1 shows that the nitrogen content in the present wood feedstock 

is 0.13% and ammonia is approximately 600 ppm in the producer gas. This amount of 

ammonia is significant enough to increase the NOx emissions in the combustion exhaust. 

As compared to Fig. 2a using natural gas, the exhaust NOx emissions using wood-derived 

producer gas are noticeably higher. It should be noted that producer gas has lower energy 

content and lower flame temperature than natural gas. Thus, the increase in NOx 

emissions is due to “fuel NOx” resulting from combustion of fuel-bound nitrogen, i.e., 

ammonia in this case. On the other hand, similar to natural gas, NOx emissions increase as 

the heat rate increases due to the higher combustion chamber temperature as more fuel is 

burned. Additionally, the increased amount of ammonia in the fuel flow can also increase 

fuel NOx emissions.  
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Fig 4.2 - NOx emissions using producer gas resulting from gasifying wood 
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4.5 Emissions using wood with 7% DDGS 

 

As the biomass feedstock contains more nitrogen, it is expected that producer gas 

will contain more ammonia which, in turn, results in higher NOx emissions. Fig 4.3 shows 

the NOx emissions corresponding to wood with 7% DDGS. As can be seen, the magnitude 

of NOx is about 100 to 200 ppm higher than that using wood. This increase in NOx 

emissions is attributed to the higher nitrogen content in the biomass feedstock, thus 

resulting in higher ammonia in the producer gas. It can also be seen that the difference in 

NOx emissions for different heat rates is more significant than the cases using wood or 

natural gas. The reason is due to the increased amount of ammonia in producer gas that 

leads to the significant increase in fuel NOx emissions after combustion. Effects of fuel flow 

rate on the NOx emissions become more significant for feedstock with high nitrogen 

content.  
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Fig 4.3 - NOx emissions using producer gas resulting from gasifying wood with 7% 

DDGS 
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4.6 Emissions using wood with 13% DDGS 

 

Table 4.3 shows that the ammonia in producer gas increases with the nitrogen 

content in the biomass feedstock. NOx emissions using wood with 13% DDGS as seen in Fig 

4.4 are higher compared to the previous cases. The higher nitrogen content leads to more 

fuel NOx formation and hence the overall NOx increases. In these cases, it is believed that 

the fuel NOx is the main contributor to the total NOx emissions since the heating value and 

flame temperature of producer gas are lower than those using natural gas and yet NOx 

emissions are much higher. 
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Fig 4.4 - NOx emissions using producer gas resulting from gasifying mixtures of 

wood and 13% DDGS 
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4.7 Emissions using wood with 20% DDGS 

 

The nitrogen content of wood with 20% DDGS is very close to that of seed corn (i.e., 

approximately 1.05%), shown in Table 4.2. The NOx emissions using wood with 20%DDGS, 

as shown in Fig 4.5, have higher NOx values compared to wood with 13%DDGS as 

expected. It is evident that the NOx emissions continue to increase as the nitrogen content 

in biomass feedstock increases. The NOx represented in g/kW-hr, being independent of 

fuel flow rate, still seems to be varying with the fuel flow rate. This trend is seen for all the 

cases of producer gas. This is due to the NOx values varying with the fuel flow rate and 

hence is attributed to the presence of ammonia in the producer gas. 
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Fig 4.5 - NOx emissions using producer gas resulting from gasifying mixtures of wood and 

20% DDGS 
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4.8  Emissions using wood with 40% DDGS 

 

The mixture of wood and 40%DDGS has relatively high nitrogen content and 

subsequently results in high NOx emissions when producer gas is burned as shown in Fig 

4.6. Such high NOx emissions may make it impractical to utilize such feedstock for heat and 

power generation under the emission regulations even for burners with good combustion 

design. 
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Fig. 4.6 - NOx emissions using producer gas resulting from gasifying mixtures of wood 

and 40% DDGS 
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4.9 Emissions using wood with 70% DDGS 

 

As seen in Table 4.2, the nitrogen content in this feedstock is about 2.5%, and 

hence it is expected that there will be higher concentrations of ammonia in the 

producer gas as shown in Table 3. This feedstock could not be pelletized effectively and 

was too moist which prevented it from remaining as a pellet. This resulted in uneven 

feed of the biomass to the gasifier resulting in varying composition of producer gas. 

Thus the conditions at the burner were not steady and the data collected can be 

considered reasonable only for the producer gas as it was sampled for a longer 

duration and represents an average composition of producer gas. The plots of NOx 

shown in Fig 4.7 present the range of NOx for wood with 70%DDGS and such high 

values make it impossible to consider using it as a feedstock. 
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Fig 4.7 - NOx emissions using producer gas resulting from gasifying mixtures of 

wood and 70% DDGS 
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4.9 Emissions using yellow corn 

 

 Yellow corn is a standard biomass feedstock used for most of the applications. 

Yellow corn was gasified along with the other feedstocks so that it could provide a basis 

to compare our analysis results with the literature. Yellow corn has nitrogen content 

comparable to that of wood with 20% DDGS as shown in Table 4.2. This results in a 

considerable amount of ammonia in the producer gas forming a precursor to fuel NOx. 

The trends for NOx emissions at different equivalence ratios and for different heat 

rates are shown in Fig 4.8. 
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Fig 4.8 - NOx emissions using producer gas resulting from gasifying yellow corn 
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4.11 Discussions 

 

There were a few problems encountered during the testing phases with one of 

them being the condensation of tars on the spark plug. The producer gas enters the burner 

at a temperature slightly below 350 
0
C. The tars begin condensing at temperatures ranging 

between 80 
0
C and 200 

0
C. These tars collect on the spark plugs and will eventually clog 

them. Hence spark plugs had to be replaced once in every three to four days of run. During 

the present measurements, it was found that it is of great challenge to measure ammonia 

concentration in the hot producer gas stream (with a temperature approximately 325 
0
C at 

the measurement point after gas clean-up). Initially a mass spectrometer (MS) was used, 

but the various contaminants in producer gas have caused numerous equipment 

malfunctions. The sampling tube of the mass spectrometer has a diameter of 1/16 inch, 

which makes it difficult to sample producer gas containing particulates like chars. 

Particulate filters with meshes of micron size were employed to overcome this issue. The 

major hurdle encountered was that ammonia and water have very similar molecular 

weights, causing extreme difficulties in distinguishing between these two species in the 

MS. It was also found impossible to calibrate the MS for water due to the high moisture 

content in producer gas (shown in Table 4.3). As a result, it was agreed to first filter out the 

tars with sanoprene tubes and then condense the water in the impingers. The rationale 

behind this was to use the sample collected in the sanoprene tube for tar analysis and the 

sample collected in the impingers for water and ammonia analysis. But it was found that 

some of the salts were lost in the sanoprene tubes along with the tars. Hence these salts 
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were being un-accounted for in the calculation of ammonia. As a result, the IEA sampling 

method was employed for ammonia measurement in the hostile environment encountered 

in the present application. This ensured that the salts are captured effectively and the 

three impingers downstream make sure that there is no ammonia slip. 

 

Fig 4.9 - Effect of fuel nitrogen on NOx emissions for producer gas flow rate of 150 pph 

It was found that the concentration of ammonia is the highest in the last three 

impingers placed downstream of the IEA sampling method. This could be attributed to the 

fact that the IEA impingers contain IPA in them, which does not dissolve salts easily. Hence 
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water and 0.05% HCl in the three impingers downstream readily dissolves all the salts. The 

high vapor pressure of ammonia in these impingers may lead to loss of ammonia during 

the collection and roto-evaporation process, if not handled correctly. The containers also 

need to be stored in a cold environment to reduce the loss of ammonia in the form of 

vapor. The loss can be avoided by storing the samples at 0 – 5 
0
C and measuring for 

ammonia as soon as possible to avoid potential storage losses. The present results show 

that ammonia concentrations tend to follow an increasing trend with the increase in the 

nitrogen content in the feedstock. Though some of the feedstocks report low ammonia 

concentration, it is understood that these feedstocks were run at the early stage of the test 

and not much detail was known regarding their storage and handling. The experiments for 

later feedstocks show good agreement with literature for the similar nitrogen content in 

the feedstock. Thus, the relationship between the nitrogen content in biomass feedstock, 

ammonia concentration in producer gas, and NOx emissions from the burner is discussed 

as follows.  

Fig. 4.9 shows the variation of NOx emissions with different equivalence ratios for 

all the different biomass feedstocks at a fuel flow rate of 150 pph (pounds per hour), 

corresponding to a heat rate of approximately 100 kW. There is a tendency for the peak 

NOx values for some of the feedstock to shift towards leaner mixtures as the percentage of 

nitrogen in the feedstock is increased. This can be explained as follows. As the percentage 

of nitrogen is increased in the feedstock, the corresponding ammonia concentration in 

producer gas increases. Since the fuel NOx results from the oxidation of ammonia in 

producer gas, the higher the ammonia concentration is, the more oxygen is required to 
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react with ammonia to form NOx. Thus, the excessive oxygen at lean conditions will further 

result in high NOx emissions. From Fig. 4.9, it can be seen that wood with 40%DDGS has 

the maximum NOx at an equivalence ratio of 1.5 as compared to wood with 7%DDGS which 

has the peak NOx at an equivalence ratio of 1.25. This tendency of shifting the peak NOx 

value is apparent for wood with 7%DDGS, wood with 20%DDGS, wood with 40%DDGS and 

yellow corn. Future tests can be conducted over a wider range of equivalence ratio to help 

identify the trend. Also, it has to be noted that yellow corn and wood+20%DDGS have 

similar percentage of nitrogen in the raw biomass feedstock and have very close NOx 

values under similar conditions of run. 

It is also worth investigating the contributions of thermal NOx and fuel NOx in 

producer gas combustion. In the present setup, NOx emissions using natural gas ranges 

between 50 to 130 ppm, which are entirely due to thermal NOx, shown in Fig. 4.1. The 

combustion temperature attained using producer gas is lower than that using natural gas 

due to its low energy content, the adiabatic temperatures for each feedstock is shown in 

Table 3. Therefore, thermal NOx formed using producer gas will be lower than that using 

natural gas and usually negligible as thermal NOx is significant only above 1800K. Also, it is 

understood that the thermal NOx is formed mainly by the following reaction (Glarborg et 

al., 2003). 

O + N2  → NO + N 

In the presence of ammonia in the fuel, the NO formed from the oxidation of fuel 

nitrogen tends to react with the nitrogen free radical and reverse the above reaction. The 
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thermal NOx for fuels with nitrogen species is only dominant beyond 2200K because of this 

effect (Pershing, 1976). In addition, the heat loss to the surroundings would lower the 

actual flame temperature and hence limit the formation of thermal NOx. However, by 

comparing Fig 4.1 and Fig 4.2, NOx emissions increase from 50 – 130 ppm using natural gas 

to 190 – 250 ppm using wood-derived producer gas. Hence, the majority of NOx formed 

during the combustion of producer gas is believed to be predominantly fuel NOx. For the 

feedstocks tested in this study, it was found that the effect of nitrogen compounds (i.e., 

ammonia) in the producer gas on NOx emissions is very significant, particularly for 

feedstock with high concentrations of DDGS. Additionally, as can be seen in Fig 4.9, for the 

same equivalence ratio, NOx emissions increase significantly as the nitrogen content in the 

feedstock increases. As discussed above, since the thermal NOx for producer gas 

combustion can be relatively insignificant, the increase in NOx emissions is likely due to 

fuel NOx, resulting from ammonia combustion. It is noted that the change of NOx with 

nitrogen content in the biomass feedstock is not a constant and the rate of increase in NOx 

seems to be reducing with increasing nitrogen content as shown in Fig 4.10. This is 

explained by the fact that at higher ammonia concentrations in the fuel, NOx is reduced to 

nitrogen and hence higher the ammonia, more dominant is the de-NOx mechanism (Koger, 

2005). This is the same principle used in the selective catalytic reduction (SCR) for the 

aftertreatment systems. 
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Fig 4.10 - Change in NOx for different nitrogen contents in the biomass feedstock 
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seen in Fig 4.1 is not significant enough to let the residence time have any major effect on 

the NOx formation. Thus there is an overall increase in the NOx emissions with increasing 

fuel flow rate. It can be observed from Fig 4.2 to Fig 4.8 that for a given equivalence ratio, 

NOx emissions for producer gas increases significantly with increasing fuel flow rate. As 

discussed earlier, the increase in fuel flow rates, increases the flame length and hence the 

area of reaction between fuel (ammonia) and air. In the conditions tested for producer gas, 

the variation in the fuel flow rates is significant and hence the effect of residence time on 

the NOx formation cannot be neglected. At high residence times (i.e. low fuel flow rates), 

there is sufficient time for ammonia (from the fuel) to react with NOx formed (de-NOX 

mechanism) and hence converting it to nitrogen. Hence we see low NOx emissions at lower 

flow rates. Thus in the case of fuel NOx, the residence time seems to be inversely 

proportional to the NOx formation. The difference in the adjacent NOx curves for different 

heat rates in Fig 4.2 to Fig 4.8 is larger than that in Fig 4.1, further illustrating the 

importance of fuel NOx in the biomass-derived producer gas combustion. 

Figure 4.11 shows the relationship between the nitrogen content in biomass, 

ammonia concentration in producer gas, and NOx emissions in the flue gas. The data is 

based on a fuel flow rate of 150 pph and an equivalence ratio of 1.65. Since there is a lot 

more confidence in the results of ammonia concentrations for wood, wood+70%DDGS and 

yellow corn, these feedstocks have been selected to show the nitrogen conversion path. As 

the nitrogen content in the biomass feedstock increases, the corresponding ammonia 

concentrations and NOx emissions increase as expected. The plot in Fig 4.12 confirms the 

reduction in the slope of NOx with increasing ammonia. This is because at higher ammonia 
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concentrations, the de-NOx effect becomes significant and hence lowering the conversion 

of ammonia to NOx. It is anticipated that there will be practical constraints on the nitrogen 

content in biomass in order to limit the NOx emissions level when the producer gas is used 

for combustion. These constraints will depend on the design of the combustion device and 

the exhaust after-treatment system for NOx reduction.  

 

 

Fig 4.11 - Relation of nitrogen content, ammonia, and NOx emissions for producer gas 

flow rate of 150 pph and equivalence ratio of 1.65 
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Fig 4.12 – NOx vs NH3 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

 

             Experiments were conducted on a pilot-scale biomass gasification and combustion 

system using different biomass feedstock. The feedstock vary mainly only in the nitrogen 

content, but ammonia concentrations in producer gas vary significantly, leading to vastly 

different NOx emission levels from the burner. It can be concluded that there is a direct 

relationship between the nitrogen content in biomass, ammonia in producer gas, and NOx 

emissions in the flue gas. It was found that fuel NOx accounts for a majority of the total 

NOx emissions when the biomass-derived producer gas is used. In the present setup, NOx 

emissions will reach a maximum level at lean conditions. At the same equivalence ratio, 

NOx emissions increase significantly as the heat rate increases due to the increase in the 

flame length and low residence time. 

            This study was able to establish the relationship between the nitrogen content in the 

biomass to the fuel NOx formation in the burner. The fuel NOx in this case seemed un-

influenced by the temperature (equivalence ratio) of the producer gas, mainly because of 

the characteristic of a diffusion flame. But its dependence on the heat rate was significant 

and is attributed to the ammonia content in the fuel. More ammonia in the fuel will 

enhance the effect of equivalence ratio on the NOx formation in the burner. Contrary to 

thermal NOx, the residence time seemed to be inversely proportional to the fuel NOx due 

to the presence of ammonia in the fuel. 
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5.2 Future recommendations 

 

             The overall objective of the project is to design a low NOx burner for fuels with 

nitrogen content. This would require a detailed understanding of the combustion and 

flame chemistry, especially for ammonia. Ammonia being the dominant nitrogen species in 

producer gas, the affinity of ammonia to various radicals under different conditions would 

give us a clear picture of NOx formation. Hence, a detailed chemical and computational 

analysis of non-premixed flames with a given producer gas composition would give us a 

better understanding of the flame and the NOx chemistry. These results could be 

compared to the experimental results to validate the computational model.  

The ammonia capture using the IEA protocol is an effective way to ensure that all of the 

ammonia is accounted for. But this method is very time consuming. The setup of the 

impingers (a total of nine), followed by the collection and processing of the samples will 

amount to a minimum of 3-4 days. The use of a gas chromatography-mass spectrometer 

(GC-MS) or similar analytical instruments would have saved a lot of time, which could 

otherwise be used for extensive testing. The mass spectrometer was procured for this 

same reason, as it was known to have been successful in analyzing the producer gas 

composition for similar fluidized bed gasifiers. However, the present gasifier is a 

pressurized fluidized bed gasifier, which resulted in a large pressure drop when the 

producer gas entered the inlet capillary tube of the mass spectrometer, hence condensing 

water in some cases and clogging the capillaries with char coming at high pressures. In 

addition, the high moisture content and various contaminants also prohibited the 
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successful employment of GC-MS. If a convenient and accurate method for on-line 

ammonia measurement can be developed, more tests can be performed in a timely 

manner. 

            An experimental simulation of the gasifier setup, if replicated in a small scale with 

different ammonia seeding concentrations, would give options to explore more conditions 

to better understand the fuel NOx behavior. This will also reduce the development time for 

the low-NOx burner. 

            It would be advisable to run the producer gas in the burner with pure oxygen as the 

oxidizing agent, instead of air. This will eliminate nitrogen from atmospheric air, thus 

removing thermal NOx and focusing the study on fuel NOx, which is an essential part of this 

discussion. These results can then be compared to the air blown case, which will give a 

better understanding of the effects of different parameters on the fuel NOx formation. This 

will act as an important tool in the design of low NOx burner for fuels with nitrogen 

content. 
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APPENDIX A1. ENGINEERING EQUATION SOLVER (EES) CODE 

 

           The following code is to calculate the flame temperature of the producer gas 

resulting from the gasification of yellow corn as the biomass feedstock. The EES code for 

the rest of the feedstocks are similar. 

" 
Tr = reactant temperature (K) 
Tp = prodct temperature (K) 
hr = reactant enthalpy (kJ/kmol) 
hp = product enthalpy (kJ/kmol) 
atom balances and first law of thermodynamics is used to find adiabatic flame temperature 
 
mf_n2*N2+mf_co*CO+mf_h2*H2+mf_co2*CO2+mf_ch4+mf_c2h6*C2H6+mf_c2h4*C2H4+mf_c2h2*
C2H2+mf_c3h8*C3H8+mf_nh3*NH3+mf_h2o*H2O + 
a(O2+3.76N2) --> d N2+b CO2+c H2O 
 
" 
 
"composition" 
mf_n2     =39.02/100*1 
mf_co     =16.91/100*1 
mf_h2     =11.33/100*1 
mf_co2   =13.56/100*1 
mf_ch4   =5.27/100*1 
mf_c2h6 =0.26/100*1 
mf_c2h4 =1.18/100*1 
mf_c2h2 =0.07/100*1 
mf_c3h8 =0.07/100*1 
mf_nh3   =0.06/100*1 
mf_h2o   =09.97/100*1 
 
"check sum" 
sum_molef_check = 
mf_n2+mf_co+mf_h2+mf_co2+mf_ch4+mf_c2h6+mf_c2h4+mf_c2h2+mf_c3h8+mf_nh3+mf_h2o 
 
"atom balance" 
d = a*3.76+mf_n2+mf_nh3/2 
b = mf_co+mf_co2+mf_ch4+2*mf_c2h6+2*mf_c2h4+2*mf_c2h2+3*mf_c3h8 
2*c = 2*mf_h2+ 4*mf_ch4+6*mf_c2h6+4*mf_c2h4+2*mf_c2h2+8*mf_c3h8+2*mf_h2o 
a = b+c/2-mf_co/2-mf_co2-mf_h2o/2 
 
"elemental composition for hpflame" 
nC= b  
nH = c 
nO=2*b+c-2*a 
nN=2*d-3.76*2*a 
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"reactant properties" 
Tr = 298.15 
a_act = a 
Pr = 1.013e5 [Pa] 
 
"reactant enthalpy" 
hrn2=ENTHALPY(N2,T=Tr) 
hrco=ENTHALPY(CO,T=Tr) 
hrh2 = ENTHALPY(H2,T=Tr) 
hrco2=ENTHALPY(CO2,T=Tr) 
hrch4=ENTHALPY(CH4,T=Tr) 
hrc2h6=ENTHALPY(C2H6,T=Tr) 
hrc2h4=ENTHALPY(C2H4,T=Tr) 
hrc2h2=ENTHALPY(C2H2,T=Tr) 
hrc3h8=ENTHALPY(C3H8,T=Tr) 
hrnh3=ENTHALPY(AMMONIA,T=Tr,P=Pr) 
hrh2o=ENTHALPY(H2O,T=Tr) 
hro2=ENTHALPY(O2,T=Tr) 
 
hrefco2=ENTHALPY(CO2,T=Tr) 
hrefh2o=ENTHALPY(H2O,T=Tr) 
hrefn2=ENTHALPY(N2,T=Tr) 
 
 
"product enthalpy" 
hpco2=ENTHALPY(CO2,T=Tp) 
hph2o=ENTHALPY(H2O,T=Tp) 
hpn2=ENTHALPY(N2,T=Tp) 
 
"net reactant enthalpy, used for LHV" 
h_reac = 
(mf_n2+3.76*a)*hrn2+mf_co*hrco+mf_h2*hrh2+mf_co2*hrco2+mf_ch4*hrch4+mf_c2h6*hrc2h6+mf_
c2h4*hrc2h4+mf_c2h2*hrc2h2+mf_c3h8*hrc3h8+mf_nh3*hrnh3+mf_h2o*hrh2o+a*hro2 
 
"energy balance" 
h_reac = d*hpn2+b*hpco2+c*hph2o 
 
LHV = h_reac - (d*hrefn2+b*hrefco2+c*hrefh2o) 
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