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ABSTRACT

Many physical systems of fundamental and industrial importance are significantly affected by

the development of new materials. By establishing process-structure-property relationship one can

design new, tailor-made materials that possess desired properties. Conventional experimental and

analytical techniques like first-principle calculations, though accurate, are extremely tedious and

resource-intensive resulting in a significant gap between the time of discovery of a new material

and the time it is put to engineering practice. Furthermore, huge amounts of data produced by

these techniques poses a tough challenge in terms of analysis. This thesis addresses the challenges

in analyzing huge datasets by leveraging the advanced mathematical and computational techniques

in order to establish process-structure-property relationship of materials.

First of the three parts of this thesis describes application of dimensionality reduction (DR)

techniques to analyze a dataset of apatites (AI4AII6 (BO4)6X2) described in structural descriptor

space. This data reveals interesting correlations between structural descriptors like ionic radius

and covalence with characteristic properties like apatite stability; information crucial to promote

the use of apatites as an antidote in lead poisoning. Second part of the thesis describes a parallel

spectral DR framework that can process thousands of points lying in a million dimensional space,

which is beyond the reach of currently available tools. To further demonstrate applicability of our

framework we perform dimensionality reduction of 75,000 images representing morphology evolution

during manufacturing of organic solar cells in order to identify the optimal processing parameters.

Third significant approach discussed in this thesis includes applying well-studied graph-theoretic

methods to analyze large datasets produced from Atom Probe Tomography (APT) to quantify

the morphology of precipitates in a solvent material. The above three mathematical models and

computational strategies were applied to large-scale materials data in order to establish process-

structure-property relationship.
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CHAPTER 1. INTRODUCTION

1.1 Introduction

Many physical systems of fundamental and industrial importance are significantly affected by

the development of new materials, which is where materials engineering finds relevance. One of the

main objectives of materials engineering is to establish process-structure-property relationship; the

knowledge of which can be used to design tailor-made materials with desired properties. Experi-

mental techniques and analytical strategies like first-principle calculations have been very popular.

However, due to ever increasing demands of the industry in terms of the expected properties of mate-

rials, the experimental parameters to be analyzed to understand the property space kept exploding.

This resulted in a multi-fold increase in the complexity of the system to be analyzed. With every ad-

ditional parameter, the curse of dimensionality [84] states that the number of experiments required

to understand this complex process-structure-property space increases exponentially. Additionally,

huge amounts of data produced by these conventional experimental and analytical techniques along

with high-throughput experimentation poses a great challenge for materials scientists.

However, increasing computational capabilities provide promising set of numerical strategies to

performing large-scale data-mining thus converting this challenge to an opportunity. These compu-

tational strategies are aggregated under a single title called Materials Informatics [112]. Materials

Informatics is a new branch of materials engineering that focuses on applying advanced informa-

tion processing techniques to analyzing the data produced from high-throughput experimentation

of materials. These combinatorial techniques are expected to profoundly reduce the (2-10 year)

time required for a material discovered before being implemented in engineering practice [101].

This thesis addresses the challenges in analyzing huge datasets by leveraging the advanced mathe-
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matical and computational techniques in order to establish process-structure-property relationship

of materials.

1.2 Thesis Organization

This thesis is compiled based on the journal paper format, which means that each chapter

(except Introduction and Conclusion) of the thesis is a manuscript published in, accepted by,

submitted to, and/or prepared for submission to scholarly journals and proceedings (or modified

from those versions). While chapter 1 provides a general introduction to the entire thesis, chapters

2, 3, and 4 constitute the body of the thesis, and finally chapter 5 provides a summary of the

thesis.

Chapter 2 is a paper [119] to be submitted to the Computational Materials Science, 2013.

This paper reviews various spectral based techniques that efficiently unravel linear and nonlinear

structures in the data, which can subsequently be used to tractably investigate process-structure-

property relationships. We compare and contrast the advantages and disadvantages of these tech-

niques and discuss the mathematical and algorithmic underpinning of these methods. In addition,

we describe techniques (based on graph-theoretic analysis) to estimate the optimal dimensionality

of the low-dimensional parametric representation. We show how these techniques can be pack-

aged into a modular, computationally scalable software framework with a graphical user interface

- Scalable Extensible Toolkit for Dimensionality Reduction (SETDiR). This interface helps to

separate out the mathematics and computational aspects from the material science applications,

thus significantly enhancing utility to the materials science community. The applicability of this

framework in constructing reduced order models of complicated materials data is illustrated with

an example dataset of apatites described in structural descriptor space. Cluster analysis of the low-

dimensional plots yielded interesting insights into correlation between several structural descriptors

like ionic radius and covalence with characteristic properties like apatite stability. This information

revealed crucial insights to promote the use of apatites as an antidote in lead poisoning.

Chapter 3 is a paper [121] to be submitted to the Scientific Programming, 2013. This chapter 3
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extends the mathematics of [119] to illustrate a systematic analysis of spectral dimensionality

reduction techniques and recast them into a unified view that can be exploited by dimensionality

reduction algorithm designers. We subsequently identified the common computational building

blocks required to implement a spectral dimensionality reduction method. We used this insight

to design and implement a parallel framework for dimensionality reduction that can handle large

datasets, and that scales to thousands of processors. We demonstrated the capability and scalability

of this framework on several test data-sets. Additionally, we also showcased the applicability and

potential of the framework towards unraveling complex process-structure relationships by studying

the processing pathways of plastic solar cells.

Chapter 4 is a paper [120] which was submitted to the Computational Materials Science, 2013.

This chapter 4 represents a graph-based formulation of the problem of precipitate characterization

from point cloud Atom Probe Tomograph (APT) data. We present a robust, heuristic-free graph-

theoretic methodology to solve the formulated problem and provide an implementation of it along

with the results obtained by applying theGraph-theoretic methods to extractPrecipitateTopology

framework (GraPTop) to three APT point cloud datasets of Al-Mg-Sc alloy. Our framework is

robust due to its independence from heuristics like concentration level. We envision applying this

framework to an array of datasets obtained from atom probe reconstruction where each dataset is

prepared by regulated variation in the process of fabrication. This process of parametric study of

the space can give interesting insights into the relationship between the topology of the precipitates

and the fabrication process.

Chapter 5 provides a brief summary of the thesis and lists certain key achievements. This

chapter also presents a compilation of open-ended ideas to guide the future course of action.

1.3 Literature Review

Experimental and analytical (or first-principle based calculations) [11, 4, 41, 66] remained as

very popular strategies to establish process-structure-property relationship for a long period of

time. A few of the most popular quantum mechanical methods among materials scientists are
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Density functional theory [63, 105, 64] and Dynamic Mean-Field Theory [49]. Density functional

theory is a quantum-mechanical modelling used to map structural properties of elements using

electron density functional. Dynamic mean-field theory evaluates electronic structure of a given

material by extending the mean-field theory to quantum mechanics. Though popular and long

existent, analytical strategies are tedious and resource-intensive. Subsequently, there emerged

other alternative, shortcut analytical methods to partially address the difficulty of complex and

tedious nature of the system in hand. For example, ab initio pseudo-potential theory for metals

[6, 57, 27, 86], used approximate values of potentials to compute certain properties of metals.

Recent advances in nano-technology, sensors, and automation devices have marked an era of

powerful tool called High-Throughput Screening (HTS). High-Throughput Screening is a scientific

methodology to perform experiments in bulk allowing synthesis, process and screening of millions

of materials at a time. HTS is a popular methodology not just in materials [53, 71], but also in

various other fields like drug discovery and genomics [138, 160] producing large amounts of data.

These data repositories (also referred to as combinatorial libraries) are a rich source of information

to establish process-structure-property relationship. However, there exist two challenges here: (a)

Given the exploding amounts of process, structure, and property variables constituting the variable

space, the number of experiments to be performed can prove to be over-whelming and expensive;

and (b) Large amounts of data thus produced poses a huge challenge to materials scientists.

Materials Informatics [112] provides a comprehensive solution for both these challenges by

putting in use the advanced information processing techniques: (a) To search through the variable

space and identify interested parameter range for experimentation and (b) To leverage advanced

mathematical and computational techniques to analyze materials data. Furthermore, materials

informatics can form a very good supplementary strategy to provide insights and work hand-in-

hand not just with the experimentation but also with analytical techniques. Statistical techniques

are also a common solution to analyzing data from HTS: [19].

Current thesis is collection of generic scalable computational frameworks based on advanced

mathematical tools that were built during the process of analyzing huge materials data to establish

process-structure-property relationships. Though intended for materials data, these frameworks
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are generic in nature and can be applied to analyzing data irrespective of the domain. This thesis

also spins-off answers to certain common questions encountered while processing of such large data.

For example: choice of mathematical model, choice of algorithm, and working around heuristics.
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CHAPTER 2. NONLINEAR DIMENSIONALITY REDUCTION

TECHNIQUES FOR APATITES

A paper yet to be submitted

S. Samudrala, P. V. Balachandran, S. Broderick, K. Rajan & B. Ganapathysubramanian

As a first author of this paper, I (S. Samudrala) developed the computational framework of di-

mensionality reduction. Analysis of the results by applying the techniques to a materials dataset of

apatites was performed by P. V. Balachandran and S. Broderick under the supervision of K. Rajan.

2.1 Abstract

Materials Science research has witnessed an increasing use of data mining techniques in es-

tablishing structure-process-property relationships. Significant advances in high-throughput ex-

periments and computational capability have resulted in the generation of huge amounts of data.

Various statistical methods are currently employed to reduce the noise, redundancy, and the dimen-

sionality of the data to make analysis more tractable. Popular methods for reduction (like Principal

Component Analysis) assume a linear relationship between the input and output variables. Recent

developments in nonlinear reduction (Neural Networks, Self-Organizing Maps), though successful,

have computational issues associated with convergence and scalability. This paper reviews vari-

ous spectral based techniques that efficiently unravel linear and nonlinear structures in the data

which can subsequently be used to tractably investigate structure-property-process relationships.

We compare and contrast the advantages and disadvantages of these techniques and discuss the
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mathematical and algorithmic underpinning of these methods. In addition, we describe techniques

(based on graph-theoretic analysis) to estimate the optimal dimensionality of the low-dimensional

parametric representation. We show how these techniques can be packaged into a modular, and

computationally scalable software framework with a graphical user interface - Scalable Extensible

Toolkit for Dimensionality Reduction (SETDiR). This interface helps to separate out the mathe-

matics and computational aspects from the material science applications, thus significantly enhanc-

ing utility to the materials science community. The applicability of this framework in constructing

reduced order models of complicated materials dataset is illustrated with an example dataset of

apatites described in structural descriptor space. Cluster analysis of the low-dimensional plots

yielded interesting insights into correlation between several structural descriptors like ionic radius

and covalence with characteristic properties like apatite stability. This information is crucial as it

can promote the use of apatites as an antidote in lead poisoning.

2.2 Introduction

Using data mining techniques to probe and establish structure-process-property relationships

has witnessed a growing interest owing to its ability to accelerate the process of tailoring ma-

terials by design. Before the advent of data mining techniques, scientists used a variety of em-

pirical and diagrammatic techniques [111], like pettifor maps [100], or finite-element methods

[141, 83, 157, 23, 87] to establish relationships between structure and mechanical properties. Pet-

tifor maps, one of the earliest graphical representation techniques, is exceedingly efficient except

that it requires a thorough understanding and intuition about the materials. Recent progress in

computational capabilities has seen the advent of more complicated paradigms - so called vir-

tual interrogation techniques - that span from first principle calculations to multi-scale models.

These complex multi-physics and/or statistical techniques and simulations [91, 158] result in an

integrated set of tools which can predict the relationships between chemical, microstructure and

mechanical properties producing an exponentially large collection of data. Simultaneously, exper-

imental methods - combinatorial materials synthesis [134, 94], high-throughput experimentation,
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atom probe tomography- allow synthesis and screening of large number of materials while generat-

ing huge amounts of multivariate data. A key challenge is to efficiently probe the data to extract

correlations between structures, process, and property. This data-explosion motivated the use of

data-mining techniques in material science to explore, design and tailor materials and structures. A

key stage in this process is to reduce the size of the data, while minimizing the loss of information

during this data reduction. This process is called data-dimensionality reduction. By definition,

Dimensionality Reduction (DR) is the process of reducing the dimensionality of the given set of

(usually unordered) data points and extracting the low-dimensional (or parameter space) embed-

ding with a desired property (for example: distance, topology, etc;) being preserved throughout the

process. Examples for DR methods are Principal Component Analysis (PCA) [88], Isomap [136],

Hessian Locally Linear Embedding (hLLE) [39], etc. Applying DR methods enables visualization

of the high-dimensional data and also estimates the optimal number of dimensions required to

represent the data without considerable loss of information.

Data dimensionality reduction is not a novel concept. Page [102] describes different techniques

of data reduction and their applicability for establishing structure-property relationships. Statistical

methods like PCA (Principal Component Analysis) [113], FA (Factor Analysis) [17] have been used

on materials data generated by first-principles or experimental methods. However, dimensionality

reduction techniques like PCA or Factor Analysis to establish structure-property relationships

traditionally assume a linear relationship among the variables. This is often not strictly valid;

the data usually lies on a nonlinear manifold (or surface). Nonlinear Dimensionality Reduction

(NLDR) techniques can be applied to unravel the non-linear structure from unordered data. An

example of such application for constructing a low-dimensional stochastic representation of property

variations in random heterogenous media is shown in [47]. Another exciting application of data

dimensionality reduction is in combination with quantum mechanics based calculations to predict

structure [99, 29, 42]. For a more mathematical list of linear and nonlinear DR techniques, the

interested reader can consult [84, 140].

In this paper, the theory and mathematics behind various linear and non-linear dimensionality

reduction methods is explained. Algorithms are sketched and advantages and disadvantages of
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methods are discussed. This paper also discusses and tackles questions pertinent to optimal dimen-

sionality and model reduction process for different input parameters - like ’What is the optimal

dimensionality of the manifold on which the data lies?’, ’How well does the elbow in the scree plot

reflect the optimal dimensionality?’, etc. The mathematical aspects of NLDR are packaged into

an easy-to-use software framework called Scalable Extensible Toolkit for Dimensionality Reduction

(SETDiR) which (a) provides a user-friendly interface that successfully abstracts user from the

mathematical intricacies, (b) allows for easy post-processing of the data, and (c) represents the

data in a visual format and allows the user to store the output in ’.JPG’ format, thus making data

more tractable and providing an intuitive understanding of the data. We conclude by applying the

techniques discussed on a dataset of apatites [40, 147, 146, 93, 108] described using several struc-

tural descriptors. Apatites(AI4AII6 (BO4)6X2) have the ability to accommodate numerous chemical

substitutions and hence can be used in the process of detoxification. Section 2.3 describes the con-

cepts, the algorithms of each DR method, dimensionality estimators and post-processing techniques

in detail. The software framework, SETDiR, developed to apply DR techniques is described in Sec-

tion 2.4. Section 2.5 discusses the interpretation of low-dimensional results obtained by applying

SETDiR to the apatites dataset. Section 2.6 refers to supplementary literature and conclusions of

this paper.

2.3 Materials and Methods

The problem of dimensionality reduction can be formulated as follows. Consider a set X =

{x0, x1, . . . , xn−1} of n points, where xi ∈ RD, and D � 1. We are interested in finding a set

Y = {y0, y1, . . . , yn−1}, such that yi ∈ Rd, d� D and ∀i,j |xi−xj |h = |yi−yj |h. Here, |a−b|h denotes

a specific norm that captures properties we want to preserve during dimensionality reduction [84].

For instance, by defining h as Euclidean norm we preserve Euclidean distance, thus obtaining

a reduction equivalent to the standard technique of Principal Component Analysis (PCA) [88].

Similarly, defining h to be the angular distance (or conformal distance [14]) results in Locally Linear

Embedding(LLE) [115] that preserves local angles between points. In a typical application [45, 153]
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xi represents a state of the analyzed system, e.g. temperature field, concentration distribution,

etc. Such state description can be derived from the experimental sensor data or can be result of a

numerical simulation. However, irrespective of the source, it is characterized by high dimensionality,

that is D is typically of the order of 106 [151, 55]. While xi represents just a single state of

the system, common data acquisition setups deliver large collections of such observations, which

correspond to the temporal or parametric evolution of the system [45]. Thus, the cardinality n of

the resulting set X is usually large (n ∼ 104–105). Intuitively, information obfuscation increases

with the data dimensionality. Therefore, in the process of Dimensionality Reduction (DR) we

seek as small a dimension d as possible, given the constraints induced by the norm |a − b|h [84].

Routinely, d < 4 as it permits, for instance, visualization of the set Y .

The key idea underpinning DR can be explained as follows. We encode desired information

about X, i.e. topology or distance, in its entirety by considering all pairs of points in X. This

encoding is represented as a matrix An×n . Next, we subject matrix A to unitary transformation

V , i.e. transformation that preserves norm of A, to obtain its sparsest form Λ, where A = V ΛV T

. Here, Λn×n is a diagonal matrix with rapidly diminishing entries. As a result, it is sufficient to

consider only d entries of Λ to capture all the information encoded in A. These d entries constitute

the set Y . The above procedure hinges on the fact that unitary transformations preserve original

properties of A [51]. Note also, that it requires a method to construct matrix A in the first place.

Indeed, what differentiates various spectral methods is the way information is encoded in A.

2.3.1 Dimensionality Reduction: Basic Ideas and Taxonomy

Before going further into the details of the functionality of DR methods, a brief taxonomy of

these techniques is useful. A classification of DR methods can be carried out in various ways. Based

on the topology of the manifold on which the data lies, they can be classified as:

• Linear DR methods: Linear DR methods assume that the dataset lies on a linear manifold.

They are an efficient technique when the manifold is linear, but fail to retrieve the hidden

structure if the manifold is nonlinear.
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Eg: PCA, Multi-Dimensional Scaling (MDS) [81]

• Nonlinear DR methods: Nonlinear methods do not assume anything about the linearity

of the manifold. Hence, they can extract the underlying structure of the manifold irrespective

of whether the manifold is linear or nonlinear in the embedding space.

Eg: Isomap, Locally Linear Embedding (LLE), Hessian LLE (hLLE)

Based on the property they preserve, the DR methods can be classified as:

• Isometric DR methods: They preserve pair-wise distances among all the input vectors in

the given dataset.

Eg: PCA, Isomap

• Topology Preserving DR methods:These methods preserve the topology or connectivity

of the dataset. These methods tend to stretch or twist but do not tear the manifold.

Eg: LLE, hLLE, Laplacian Eigenmaps (LE) [13]

2.3.2 Dimensionality Reduction Methods: Algorithms

We focus on four different DR methods: (a) Principal Component Analysis (PCA), a linear DR

method; (b) Isomap, a non-linear isometry preserving DR method; (c) Locally Linear Embedding

(LLE), a non-linear conformal preserving DR method; and (d) Hessian LLE (hLLE), a topology

preserving DR method.

2.3.2.1 PCA: Principal Component Analysis

Principal Component Analysis (PCA) is a powerful and a popular DR strategy due to its

simplicity and ease in implementation. It is based on the premise that the high dimensional data is

a linear combination of a hidden low-dimensional axes. PCA then extracts the latent parameters

or low-dimensional axes by reorienting the axes of the high-dimensional space in such a way that

the variance of the variables is maximized [84].

PCA Algorithm:



12
1. Compute the pair-wise euclidean distance matrix [E] from the input matrix [X].

2. Construct a matrix [W ∗] such that the elements of [W ∗] are square of the elements of the

euclidean distance matrix [E].

3. Find the dissimilarity matrix [A] by double centering [W ∗]: [A] = [HT ][W ∗][H]

Hij =


(1− 1/n) ∀ i = j,

(−1/n) ∀ i 6= j.
(2.1)

4. Solve for the largest d eigen-pairs of A: [A] = [U ][Λ][UT ]

5. Construct the low-dimensional representation in Rd from the eigen-pairs: [Y ] = [I] ∗ [Λ]1/2 ∗

[UT ].

The limitation of PCA lies in its assumption that the data lies on a linear space, and hence

performs poorly on data that lie on a nonlinear manifold. In these cases, PCA also tends to

over-estimate the dimensionality of the data.

2.3.2.2 Isomap

Figure 2.1 Comparison of performance of PCA and Isomap on a dataset lying on nonlinear
manifold

Isomap [136] relaxes the assumption of PCA that the data lies on a linear space. A classic

example of a non-linear manifold is the swiss roll. Figure 2.1 shows how PCA tries to fit best
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linear plane while Isomap unravels the low-dimensional surface. Isomap essentially smooths out

the non-linear manifold into a corresponding linear space and subsequently applies PCA. This

smoothing out can intuitively be understood in the context of the spiral, where the ends of the

spiral are pulled out to straighten the spiral into a straight line. Isomap accomplishes this objective

mathematically by ensuring that the geodesic distance between data-points are preserved under

transformations. The geodesic distance is the distance measured along the curved surface on which

the points rest [84]. Since it preserves (geodesic) distances, Isomap is an isometry (distance-

preserving) transformation. The underlying mathematics of the Isomap algorithm assumes that

the data lies on a manifold which is convex (but not necessarily linear). Note that both PCA and

Isomap are isometric mappings; PCA preserves pair-wise Euclidean distances of the points, while

Isomap preserves the geodesic distance.

Isomap Algorithm:

1. Compute the pair-wise euclidean distance matrix [E] from the input matrix [X].

2. Compute the k-nearest neighbors from the distance matrix [E].

3. Compute the pair-wise geodesic distance matrix [G] from [E].

4. Construct a matrix [W ∗] such that the elements of [W ∗] are square of the elements of the

geodesic distance matrix [G].

5. Find the dissimilarity matrix [A] by double centering [W ∗]: [A] = [HT ][W ∗][H]

Hij =


(1− 1/n) ∀ i = j,

(−1/n) ∀ i 6= j.
(2.2)

6. Solve for the largest d eigen-pairs of A: [A] = [U ][Λ][UT ]

7. Construct the low-dimensional representation in Rd from the eigen-pairs: [Y ] = [I] ∗ [Λ]1/2 ∗

[UT ].

The non-linearity in the data is accounted for by using geodesic distance metric. Since com-

putation of geodesic distance without the knowledge of the low-dimensional surface is close to
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impossible, graph distance is used to approximate the geodesic distance [15]. Graph distance be-

tween a pair of points in a graph (V, E) is the shortest path connecting the two given points. The

graph distances are calculated for a given graph using Floyd’s algorithm [44].

2.3.2.3 Locally Linear Embedding

In contrast to PCA and Isomap methods which preserve distances, Locally Linear Embedding

(LLE) [115] preserves the local topology (or local orientation, or angles between data-point). LLE

method uses the notion that locally the (non-linear) manifold on which the data lie on is well-

approximated by a d-dimensional Euclidean space(Rd ). In other words, the manifold is locally

linear. The algorithm first divides the manifold into patches, reconstructs each point in the patch

based on the information (or weights) obtained from its neighbors (i.e. infer how a specific point is

located with respect to its neighbors). This process extracts the local topology of the data. Finally,

the algorithm reconstructs the global structure by combining individual patches and finding an

optimized, low-dimensional representation. Numerically, local topology information is constructed

by finding the k-nearest neighbors of each data point and reconstructing each point from the

information about the weights of the neighbors. The global reconstruction from the local patches

is accomplished by assimilating the individual weight matrices to form a global weight matrix [W ]

and evaluating the eigenvalues of normalized global weight matrix [A].

LLE Algorithm:

1. For (i=1:n) each of the n input vectors from X = {x0, x1, . . . , xn−1} of n points, where

xi ∈ RD:

(a) Find the k nearest neighbors of the input vector xi.

(b) Construct the local covariance or Gram matrix G(i)

gr,s(i) = (xi − ν(r))T (xi − ν(s))

where ν(r) and ν(s) are neighbors of xi.

(c) Weights can be computed by solving for the linear system:[G(i)].w(i) = 1 where 1 is a

k × 1 vector of ones.



15
2. Knowing the vectors w(i), build the sparse matrix W such that for each ith row W (i, j) = 0

if xi and xj are not neighbors and the corresponding linear coefficient obtained by solving

the linear equation [G(i)].w(i) = 1 if otherwise.

3. From W build A: [A] = (I −W )T (I −W )

4. Compute the eigenpairs for A: [A] = [U ][Λ][UT ]

5. Compute the low-dimensional points in Rd from the eigen-pairs: [Y ] = n0.5 ∗ [U ]

2.3.2.4 Hessian LLE

Hessian Locally Linear Embedding (Hessian LLE or hLLE) [39] is an improvement upon LLE

and Laplacian Eigenmaps [13], which replaces the Laplacian (first derivative) operator with a

Hessian (second derivative) operator over the given connected graph. hLLE constructs patches,

performs a local PCA on each patch, constructs a global Hessian from the eigenvectors thus obtained

and finally finds the low dimensional representation from the eigenpairs of the Hessian. hLLE

(Hessian Locally Linear Embedding) is a topology preservation method and assumes that the

manifold is locally linear.

hLLE Algorithm:

1. At each given point xi , construct a k x n Neighborhood matrix [Mi] such that each row of

the matrix represents a point

xj = xj − x̄i,

where jε[0, N) and xi is the mean of the k neighboring points.

2. Perform singular value decomposition of the constructed [Mi] to obtain [U], [V], [D].

3. Construct the (N ∗d(d+ 1)/2) local hessian matrix [X]i such that the first column is a vector

of all ones and the next d columns are the columns of U followed by the products of all the

d columns of [U ].
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4. Compute Gram-Schmidt orthogonalization [51] on the local hessians [X]i and assimilate last

d(d+ 1)/2 orthonormal vectors of each to construct the global hessian matrix [A] [39].

5. Compute the eigenpairs of the hessian matrix:[A] = [W ][Λ][W ]T

6. Compute the low-dimensional points [Y ] in Rd from the eigenpairs: [Y ] = [W ] ∗ ([W ]T ∗

[W ])−1/2

An important point to note here is that as discussed in section 2.3, matrix [A] encodes the

required information for each of the DR techniques and the construction of this matrix is what

differentiates a spectral DR method from the rest. Matrix [A] is a normalized euclidean matrix in

the case of PCA, a normalized geodesic matrix in the case of Isomap, a normalized Hessian matrix

for hLLE, and so on.

2.3.3 Dimensionality Estimators

A key step in constructing the low-dimensional points from the data is the choice of the low-

dimensionality or optimal dimensionality d. Methods like PCA and Isomap have an implicit tech-

nique to estimate the low-dimensionality (approximately) using scree plots. We introduce a graph-

based technique that rigorously estimates the latent dimensionality of the data, that can be used

in conjunction with the scree-plot.

2.3.3.1 Dimensionality from the scree plot

Scree plot is a plot of the eigenvalues with the eigenvalues arranged in decreasing order of their

magnitude. Scree plots obtained from PCA and Isomap (distance preserving methods) give an

estimate of the dimensionality. A heuristic method of identifying the dimensionality by identifying

the elbow in the scree plot. A more quantitative estimate of dimensionality is estimated by choosing

a value for δ that ensures a threshold of the minimum percentage variability. If λ1 > λ2 > ..λn

are the individual eigenvalues arranged in descending order, the percentage variability (pvar(d))
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covered by considering first d eigenvalues is given by:

pvar(d) = 100 ∗

d∑
i=1

λi

n∑
i=1

λi

≤ δ

2.3.3.2 Geodesic Minimal Spanning Tree Estimator (GMST Estimator):

A tree is a graph where each pair of vertices is connected exactly with one path. A spanning

tree of a graph G(V,E) is a sub-graph that traces all the vertices in the graph. A Minimal Spanning

Tree (MST) of a weighted graph G(V,E,W) is a spanning tree with optimal sum of the edge weights

(length of the MST) along the tree. A Geodesic Minimal Spanning Tree (GMST) is an MST with

edge weight representing geodesic distance.

Computationally, GMST is computed using Prim’s (greedy) algorithm [109]. Starting with any

random vertex in the weighted graph G(V,E,W), Prim’s algorithm constructs an MST by picking

edges that have (a) minimal weights and (b) that connect to an untraced vertex. By joining one

edge after the other following these constraints, at the end of algorithm, one has a tree that spans

all the n vertices with n− 1 edges and whose sum of edge weights is optimal.

We have recently utilized a dimensionality estimator based on Breadwood-Halton-Hammersley

Theorem (BHH theorem) [12]. This theorem states that the rate of convergence of the length of

minimal spanning tree (Ln) gives us a measure of the dimensionality d as n→∞. This allows one

to express the dimensionality (d) of an unordered dataset as a function of the length of GMST of the

graph. Specifically, the slope of a log(n) vs. log(Ln) plot constructed by calculating the GMST with

respect to increasing size of data-points (n) provides an estimate of the dimensionality: d = 1
(1−m) ,

where m is the slope of the log-log plot.

2.3.3.3 Correlation Dimension:

Correlation dimension is given by: dcor(ε1, ε2) = log(Ĉ2(ε2))−log(Ĉ2(ε1))
log(ε2)−log(ε1) where Ĉ2(ε2) is a measure

of proportion of distances less than ε [52, 84]. Intuitively, these epsilon values are like window

ranges through which one zooms through the data. This means if they are too small the data
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would look like individual points and if too huge, the entire dataset is seen as a single fuzzy spot.

Hence, correlation dimension is sensitive to the epsilon values. A qualitative technique to choose

epsilon is adopted to estimate the dimensionality of the data. This is done by plotting a graph

between Ĉ2(ε2) and ε and choosing a range of ε where the graph is relatively stable. However, one

important point to note is that the correlation dimension provides the user with a lower bound of

the optimal-dimensionality.

2.3.4 Post-Processing:Clustering

Clustering is the post-processing step of the low-dimensional plots obtained by applying di-

mensionality reduction. Clustering the obtained low-dimensional points often helps in extracting

interesting features and thus allows one to draw conclusions that can provide insights into the

physics that drives the data. Clustering also has the capability to quantify the intuitive ideas

generated by visual analysis of the plots. Clustering of unordered set of points is a common and

well-studied problem [156, 20, 58]. For a start, we implemented k-means clustering (iterative)

algorithm [58] that is described as follows:

1. Read input [Y ]n×d and the number of clusters κ.

2. Initialize the κ-centroids to a set of κ random points in [Y ] and store them in [cent]κ×1.

3. Initialize the cluster index as an array of -1s in [indx]n×1.

4. For each low-dimensional point yiε[Y ]:

(a) Compute the distance of yi from each of the κ centroid points and store them in a vector

[Di]κ×1.

(b) Compute the index of occurrence of the minimum in the vector [Di].

(c) Update the cluster index of the current point yi in indxi.

5. Update old centroid as: [oldcent] = [cent].

6. Compute the centroids of the newly formed clusters and store them in [cent]
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7. For each centroid point: i = 1 : κ

(a) if(centi == oldcenti) continue;

(b) Else go to 5

8. Output is the cluster mapping: ([Y ],indx).

The k-means clustering requires the user to input a heuristic κ of number of clusters. However,

since the low-dimensional points [Y ] are easy to visualize to estimate a suitable κ value should not

be difficult.

2.4 Software: SETDiR

These DR techniques can be packaged into a modular, scalable framework for ease of use by the

materials science community. We call this package, Scalable Extensible Toolkit for Dimensionality

Reduction (SETDiR). This framework contains two major components:

1. Core functionality: Developed using C++

2. User Interface: Developed based on Java (Swings)

Fig. 2.2 describes the scope of the functionality of both modules in SETDiR. Details of the

implementation are described in the subsequent subsections.

2.4.1 Core Functionality

Functionality is developed using Object Oriented C++ programming language. It implements

the following methods: PCA, Isomap, LLE and dimensionality estimators like: GMST and corre-

lation dimension estimators [84].

2.4.2 User Interface

A graphical user interface (shown in fig. 2.3) is developed using JavaTM Swings Components

with the following features which make it user-friendly:
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Figure 2.2 Description of the software

1. Abstracts the user from the mathematical and programming details.

2. Displays the results graphically and enhances the visualization of low-dimensional points.

3. Easy Post-processing of Results: In-built cluster analysis, ability to save plots as image files.

4. Organized settings tabs: Based on the niche of the user, the solver settings are organized as:

Basic User and Advanced User tabs which abstract a new or a naive user from, otherwise

overwhelming, details.

This framework can be downloaded from SETDiR Download 1. We next showcase the framework

and the mathematical strategies on apatites dataset.

2.5 Results and Discussion

In this section of the paper, we compare and contrast the algorithms on an interesting dataset

of apatites with immense technological and scientific significance. Data dimensionality reduction

offers unique insights into the originally intractable datasets by enabling visual clustering and pat-

tern association. Apatites have the ability to accommodate numerous chemical substitutions and
1http://setdir.engineering.iastate.edu/doku.php?id=download

http://setdir.engineering.iastate.edu/doku.php?id=download
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Figure 2.3 Snapshot of clustering pattern displayed using SETDiR for apatite dataset

exhibit a broad range of multifunctional properties. The rich chemical and structural diversity pro-

vides a fertile ground for the synthesis of technologically relevant compounds [40, 147, 146, 93, 108].

Chemically apatites are conveniently described by the general formula AI4AII6 (BO4)6X2 , where AI

and AII are distinct crystallographic sites that usually accommodate larger monovalent (Na+, Li+,

etc.), divalent (Ca2+, Sr2+, Ba2+, P b2+, etc.) and trivalent (Y 3+, Ce3+, La3+, etc.) and the X-site

is occupied by halides (F−, Cl−, Br−), oxides and hydroxides. Establishing the relationship be-

tween the microscopic properties of apatite complexes with those of the macroscopic properties can

help us in gaining understanding and promoting the use of apatites in various daily life applica-

tions. For example, information about the relative stability of the apatite complexes can promote

the utilization of apatites as an antidote for lead poisoning (by finding an apatite which is more

stable than a lead apatite). DR techniques can be used to establish structure-property relation-

ship for apatites described using various structural descriptor by enhancing the visualization and

understanding of the data.
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Figure 2.4 Crystal structure of a typical P63/mCa
I
4Ca

II
6 (PO4)6F2 apatite with hexagonal

unit cell. [8, 7]

2.5.1 Apatite Data Description

The crystal structure of a typical P63/mCa
I
4Ca

II
6 (PO4)6F2 apatite with hexagonal unit cell is

shown in the fig. 2.4 with the atoms projected along the (001) axis.The polyhedral representation

of AIO6 and BO4 structural units are clearly shown with the CaII -site (pink atoms) and F-site

(green atoms) occupying the tunnel. Thin black line represents the unit-cell of the hexagonal lattice.

The sample apatite dataset considered consists of 25 different compositions described using 29

structural descriptors. These structural descriptors, when modified, affect the crystal structure

of the composition [8]. By establishing the relationship between the crystal structure and these

structural descriptors and analyzing the clustering of different compositions, conclusions can be

drawn about how the changes in these structural descriptors (defining the microscopic properties)

of the crystal structure can affect the macroscopic features (like melting point, Young’s modulus,

etc.). The bond length, bond angle, lattice constants and total energy data is taken from the
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work of Mercier et al. [93], the ionic radii data is taken from the work of Shannon [126] and the

electronegativity data is based on the Pauling’s scale [106]. The ionic radii of AI -site (rAI) has

a coordination number nine, rAII has a coordination number seven (when the X-site is F− ) or

eight (when the X-site is Cl− or Br− ). Our database describes Ca, Ba, Sr, Pb, Hg, Zn and Cd

in the A-site, P, As, Cr, V and Mn in the B-site and F, Cl and Br in the X-site. The twenty-five

compounds considered in this study belong to P63/m hexagonal space group. We utilize SETDiR

on the apatite data and present some of the results below.

2.5.2 Dimensionality Estimation

SETDiR first estimates the dimensionality using the Scree Plot. A Scree Plot is a plot of

eigenvalue indices vs eigenvalues. The occurrence of an elbow (or a sharp drop in eigenvalues) in

a scree plot gives the estimate of the dimensionality of the data. Fig. 2.5 displays the scree plots

when the input vectors {x0, x1, . . . , xn−1} were normalized with respect to that when they were

not normalized. For comparison, we plot the eigenvalues that are obtained from both PCA and

Isomap. This plot shows how the second eigenvalue collapses to zero when the input vectors are

not normalized and hence emphazises the importance of normalization of input vectors. It is also

interesting to compare the eigenvalues of PCA and Isomap for normalized input. PCA being a

linear method over-estimates the dimensionality as 5, while Isomap estimates it to be 3. SETDiR

subsequently uses the Geodesic Minimal Spanning Tree method to estimate the dimensionality of

the apatite data. This method gives a rigorous estimate of 3, which matches the outcome of the

more heuristic Scree Plot estimate.

2.5.3 Low-dimensional Plots

Fig. 2.6(Left) shows the 2D plot between principal components 2 and 3. The reason for showing

this classification map is that PC2-PC3 map captures pattern that is similar to IsoMap components

1 and 2. While we find associations among compounds that are exactly the same as shown in Fig.

2.6(Right), the nature of information is manifested in different ways. This is mainly attributed

to the difference in the governing mathematics of the two techniques, where PCA is essentially a
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Figure 2.5 Scree plots for PCA and Isomap -Normalized vs. Unnormalized input [9]

linear technique and IsoMap is a non-linear technique. To further interpret the hidden information

captured by IsoMap classification map (Fig. 2.6), we have focused on the three regions separately.

Figure 2.6 Apatite PCA (left) and Isomap (right) Result Interpretation [7]

Fig. 2.6 (Right) shows a two-dimensional classification map with IsoMap components 1 and 2 in

the orthogonal axes [9]. The two-dimensional classification map groups various apatite compounds

into three distinct regions that capture various interactions between A, B, and X-site ions in complex

apatite crystal structure. Region 1 corresponds to apatite compounds with fluoride (F) ion in the

X-site. All apatite compounds in this region contain only F in the X-site, but has different Asite

(Ca, Sr, Pb, Ba, Cd, Zn) and B-site elements (P, Mn, V). Therefore, this unique region classifies F-

apatites from Cl and Br-apatites. Region 2 belongs to apatite compounds with phosphorus (P) ion

in the B-site and contains Cl and Br ions in the X-site. The uniqueness of this region is manifested
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Figure 2.7 Apatite LLE (left) and hLLE (right) Result Interpretation. [7]

Figure 2.8 Apatite hLLE Result Interpretation [7]

mainly due to the presence of only smaller P ions in the B-site. Similarly, region 3 belongs to

apatite compounds with Cl ions in the X-site and contains larger B-site Cr, V and As cations.

Fig. 2.7 (Right) presents the results from hLLE. It can be observed that the compounds that

have highly covalent A-site cation (e.g. Hg2+ and Pb2+) and highly covalent B-site cation (P 5+)

clearly separate out from the rest. An exception to this rule is Pb10(CrO4)6Cl2 and the physical

reason behind this could be attributed to the tetrahedral distortion of Cr5+ cation, which causes

structural distortion. For example, Sr10(PO4)6Cl2 has a P63/m hexagonal symmetry whereas
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Figure 2.9 Apatite Isomap Result Interpretation Region 1 [7]

Sr10(CrO4)6Cl2 has a reduced P63 symmetry [146]. This result is in agreement with our PCA-

derived structure map work, where we find that Pb10(CrO4)6Cl2 does not obey the general trend

and is seen as an exception. Based on our PCA work [9], we attributed the cause for this exception

to two bond distortion angles: rotation angle of AII − AII − AII triangular units and the angle

that bond AI −O1 makes with the c-axis.

Fig. 2.8 shows a zoomed in plot of Hessian LLE result 2. Around the origin we can find two

clusters of compounds: (a) one on the left and have negative component 1 values correspond to

compounds that have ionic alkaline earth metal cations in the A-site and (b) one on the right with

positive component 1 value correspond to compounds that have covalent A-site cations. An excep-

tion here is Ca10(CrO4)6Cl2 found among the covalent A-site cluster and the physical reason behind

this could be attributed to the tetrahedral Cr− cation. This result suggests that Ca10(CrO4)6Cl2

may have a reduced symmetry. Further experimental and theoretical calculations are required to

validate this findings. PCA did not capture this trend and this is a new finding. The physical
2Hessian LLE is highly sensitive to neighborhood size and is much more sensitive to the input estimated dimen-

sionality. Incorrect input of estimated dimensionality implies construction of tangent planes of incorrect dimensions
which, in turn, implies sub-optimal low-dimensional representation.
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Figure 2.10 Apatite Isomap Result Interpretation Region 2 [7]

reason for Pb10(AsO4)6Cl2 and Pb10(V O4)6Cl2 to cluster around origin (0,0) could be attributed

to the large ionic size of V 5+ and As5+ cations.

In Fig. 2.9, the ionic radius of A-site elements increases along the direction, with Zn2+ cation

being the smallest and Ba2+ being the largest. This ionic radii trend is not very clear in the

PC2-PC3 classification map (Fig. 2.6). Besides the ionic radii trend captured using IsoMap,

Pb10(PO4)6F2 apatite is identified as an outlier. Ionic size of Pb2+ is larger than Ca2+ but

smaller than Sr2+ cation. Ideally, Pb10(PO4)6F2 should have been between Ca10(PO4)6F2 and

Sr10(PO4)6F2 compounds in the map. However, this was not the case. The physical reason behind

this observation could be manifested in the electronic structure of Pb2+ ions [90]. The theoretical

electronic structure calculations indicate that in the partial density of states curves, the Pb2+ ions

have active 6s2 lone-pair electrons that hybridize with oxygen 2p electrons resulting in a strong co-

valent bond formation. This feature was identified to be unique with respect to Pb2+ ions and this

caused the Pb-apatites to behave differently. In our database, the electronic structure information

of A-site elements was quantified using Pauling’s electronegativity data. While PCA captures this
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Figure 2.11 Apatite Isomap Result Interpretation Region 3 [7]

behavior, the dominating effect of the electronic structure of Pb2+ ions is more transparent within

the mathematical framework of IsoMap analysis. Besides, from Fig. 2.9 it can also be inferred that

the bond distortions of Zn-apatite is different from other compounds. This trend correlates well

with the non-existence of Zn10(PO4)6F2 compounds due to the difficulty in experimental synthesis

[43]. On the other hand, the relative correlation position of Hg10(PO4)6F2 compound indicate that

it might be difficult to experimentally synthesize fully stoichiometric Hg10(PO4)6F2, but partial

substitution in the host lattice of apatite compounds with Ca, Sr, Pb or Ba in the A-site might

be a feasible practical solution. The ionic size of Hg2+ is very close to that of Ca2+ and if cation

size is the key factor that governs the apatite stability, from Fig. 2.10 the bond distortions of

Hg and Ca compounds are closely correlated. When this structural association between Hg and

Ca compounds is combined with the low energy-cost of Ca-apatites, we conclude that Ca-apatites

could be tailored to immobilize toxic Hg element. In Fig. 2.10, the region 2 alone is highlighted

where we find a clear trend of apatite compounds with respect to the ionic radii of A-site elements.

Similar to region 1, Pb-apatites manifest themselves as outliers in region 2. The unique electronic
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structure of Pb2+ cations in forming a covalent bond with oxygen 2p electrons is identified as the

reason for the deviation of Pb-apatites from the expected trend. The covalent chemical bonding

among Pb-compounds appears to be independent of X-site anion, when the B-site is occupied by

phosphorus cations. In Fig. 2.10, Hg10(PO4)6Cl2 compound is found to be closely associated with

Ca10(PO4)6Br2 indicating some similarity in the bond distortions of the two compounds. In com-

paring the relative correlation position of all Cl-containing apatites (except Pb-based compounds)

in region 2, the bond distortions in Hg10(PO4)6Cl2 appear to favour stable apatite compound

formation.

Fig. 2.11 describes region 3 where we find clusters of apatite compounds with Cl ions in the

X-site and contain larger V, Cr and As cations in the B-site. The ionic radius of A-site element

increases in the direction as shown in the figure and in this case, the Pb-apatites are not outliers.

The presence of large V, Cr and As cations (compared to smaller P cations in region 1 and 2)

in the B-site were identified as the reason for this behaviour. Besides, region 3 also identifies the

existence of complex relationship observed in Cl-apatites with Pb in the A-site and containing V,

Cr, As in the B-site whose bond distortions do not appear to be closely associated unlike the Ca

and Cd apatites, which are closely associated. The lattice distortions appear to be a strong function

of electronic structure interaction between Pb and B-site elements in Cl-apatites. In the apatite

literature, this pattern is not known and has been unravelled for the first time using data mining

in this work.

Topological observations made on the data were: Nature of the loadings on the principal com-

ponents did not change much with a change in the p value of the distance metric. Since low-

dimensional points obtained are different for both Isomap and PCA, it can be said that the apatite

data lies on a nonlinear manifold in the embedding space.

2.6 Conclusion

In this paper, we have detailed a mathematical framework of selected nonlinear dimensionality

reduction techniques for constructing reduced order models of complicated datasets and discussed
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key questions involved in data selection. During that process we have also introduced the basic

principles behind data dimensionality reduction and illustrated their use with the help of example

apatite dataset in materials science using both linear and non-linear methods 3. Another significant

contribution of this paper is that we also describe a rigorous technique (based on graph-theoretic

analysis) to estimate the optimal dimensionality of the low-dimensional (or parametric) representa-

tion. The techniques are packaged into a modular, computational scalable software framework with

a graphical user interface - Scalable Extensible Toolkit for Dimensionality Reduction (SETDiR).

This interface helps to separate out the mathematics and computational aspects from the scientific

applications, thus significantly enhancing utility of DR techniques to the scientific community.

The applicability of this framework in constructing reduced order models of complicated ma-

terials dataset is illustrated with an example dataset of apatites described in structural descriptor

space. Apatites(AI4AII6 (BO4)6X2) have the ability to accommodate numerous chemical substitu-

tions and hence can be used in the process of detoxification. SETDiR was applied to a dataset of

25 apatites being described by 29 of its structural descriptors. The corresponding low-dimensional

plots revealed insights into the correlation between structural descriptors like ionic radius, cova-

lence, etc; with properties like apatite stability. The plots also concluded that the shape of the

surface on which the data lies is nonlinear. This information is crucial as it can promote the use of

apatites as an antidote in lead poisoning.
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CHAPTER 3. PARALLEL FRAMEWORK FOR DIMENSIONALITY

REDUCTION OF LARGE-SCALE DATASETS

A paper submitted to The Journal of Scientific Programming 2013

S. Samudrala, J. Zola, S.Aluru, B. Ganapathysubramanian

As a first author of this paper, I (S. Samudrala) developed the parallel dimensionality reduction

framework, packaged into a software called Parallel Dimensionality Reduction PaDRe with help

from J.Zola under the supervision of B. Ganapathysubramanian and S. Aluru.

3.1 Abstract

Dimensionality reduction refers to a set of mathematical techniques used to digest the origi-

nal high-dimensional data, while preserving its selected properties. Improvements in simulation

strategies and experimental data collecting methods result in the deluge of heterogeneous and

high-dimensional data, which often makes dimensionality reduction the only viable way to gain

qualitative and quantitative understanding of the data. However, existing dimensionality reduc-

tion software do not scale to datasets arising in real-life applications that may consist of thousands

of points lying in millions of dimensions. In this paper, we propose a parallel framework for di-

mensionality reduction of large-scale data. We identify key components underlying the spectral

dimensionality reduction techniques, and we describe their efficient parallel implementation. We

show that the resulting framework can be used to process datasets consisting of millions of points

when executed on a 16,000-core cluster, which is beyond the reach of currently available tools. To
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further demonstrate applicability of our framework we perform dimensionality reduction of 75,000

images representing morphology evolution during manufacturing of organic solar cells in order to

identify the optimal processing parameters.

3.2 Introduction

Computational analysis of very high dimensional data continues to be a challenge and spurs the

development of numerous techniques. An important and emerging class of techniques for dealing

with such high dimensionality is dimensionality reduction. In many applications, features of interest

can be preserved while mapping the high dimensionality data to a small number of dimensions and

while preserving certain properties. Such mappings include popular techniques such as Principle

Component Analysis (PCA) [88] and complex non-linear maps such as Isomap [136] and Kernel

PCA [77].

Linear manifold learning techniques like PCA or Multi-dimensional scaling [137, 130, 80, 31]

existed as an orthogonalization technique for several decades. Nonlinear methods like: Isomap,

Locally Linear Embedding (LLE) [115], Hessian LLE (hLLE) [39], were discovered recently. An-

other league of methods that emerged in the past few years is the unsupervised learning techniques

including artificial neural networks like Sammon’s nonlinear map [118], Kohenen’s or Self Orga-

nizing Maps (SOM) [76], Curvilinear Component Analysis [36], etc; Modifications to the existing

algorithms of manifold learning, either to improve the efficiency or performance, was another area

where efforts were focused [154, 33, 159, 135, 117]. For example, Landmark Isomap [131] is a

modification to the original Isomap method to extend its usage to larger datasets by picking a

few representative points and applying Isomap technique to it. Along with the emergence of new

manifold learning techniques, there emerged simultaneously, different sequential implementations

of these techniques on various platforms and in various programming languages [139, 140].

Dimensionality reduction techniques are often compute-intensive and do not easily scale to large

datasets. Recent advances in high-throughput measurements using physical entities such as sensors

or results of complex numerical simulations are generating data of extremely high dimensionality.
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It is becoming increasingly difficult to process such data serially. In this paper, we propose a

parallel framework for dimensionality reduction. Rather than focus on a particular dimensionality

reduction method, we consider the class of spectral data decomposition methods. We perform a

systematic analysis of these dimensionality reduction techniques and provide a unified view that can

be exploited by dimensionality reduction algorithm designers. We identify common computational

building blocks required for implementing spectral dimensionality reduction methods, and use these

abstractions to derive a common parallel framework. Till date, little efforts have been made in

developing parallel implementations of these dimensionality reduction methods; other than a version

of PCA [161, 3] and algorithm development for GPU platforms [69, 155].

We design and implement such a parallel framework for dimensionality reduction that can

handle large datasets, and which scales to thousands of processors. We demonstrate advantages of

our software by analyzing 75,000 images of morphology evolution during manufacturing of organic

solar cells, which enables us to identify the optimal fabrication parameters.

The remainder of this paper is organized as follows. In Section 3.3 we introduce the dimensional-

ity reduction problem and describe basic spectral dimensionality reduction techniques, highlighting

their computational kernels. In Section 3.4 we provide detailed description of our parallel frame-

work including algorithmic solutions. Finally, in Section 3.5 we present experimental results and

we conclude the paper in Section 3.6.

3.3 Materials and Methods

The problem of dimensionality reduction can be formulated as follows. Consider a set X =

{x0, x1, . . . , xn−1} of n points, where xi ∈ RD, and D � 1. We are interested in finding a set

Y = {y0, y1, . . . , yn−1}, such that yi ∈ Rd, d� D and ∀i,j |xi−xj |h = |yi−yj |h. Here, |a−b|h denotes

a specific norm that captures properties we want to preserve during dimensionality reduction [84].

For instance, by defining h as Euclidean norm we preserve Euclidean distance, thus obtaining

a reduction equivalent to the standard technique of Principal Component Analysis (PCA) [88].

Similarly, defining h to be the angular distance (or conformal distance [14]) results in Locally Linear
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Embedding (LLE) [115] that preserves local angles between points. In a typical application [45, 152],

xi represents a state of the analyzed system, e.g. temperature field, concentration distribution,

etc. Such state description can be derived from experimental sensor data or can be the result of a

numerical simulation. However, irrespective of the source, it is characterized by high dimensionality,

that is, D is typically of the order of 106 [151]. While xi represents just a single state of the system,

common data acquisition setups deliver large collections of such observations, which correspond to

the temporal or parametric evolution of the system [45]. Thus, the cardinality n of the resulting

set X is usually large (n ∼ 104–105). Intuitively, information obfuscation increases with the data

dimensionality. Therefore, in the process of Dimensionality Reduction (DR) we seek as small

dimension d as possible, given constraints induced by the norm |a− b|h [84]. Routinely, d < 4 as it

permits, for instance, visualization of the set Y .

DR techniques have been extensively researched over the last decade [84]. In particular, methods

based on the spectral data decomposition have been very successful [88, 136, 39], and have been

widely adopted. Early approaches in this category exploited simple linear structure of the data,

e.g. PCA or Multidimensional Scaling (MDS) [81]. More recently techniques that can unravel

complex non-linear structures in the data, for example Isomap [136], LLE, Kernel PCA [77], etc.

have been developed. While all these methods have been proposed taking into account specific

applications [140, 84], their underlying formulations share similar algorithmic mechanisms. In

what follows we provide a more detailed overview of spectral DR techniques, and we identify their

common computational kernels that form the basis for our parallel framework.

3.3.1 Spectral Dimensionality Reduction

The goal of DR is to identify low-dimensional representation Y of the original dataset X, that

preserves certain predefined properties. The key idea underpinning spectral DR can be explained

as follows. We encode desired information about X, i.e. topology or distance, in its entirety by

considering all pairs of points in X. This encoding is represented as a matrix An×n. Next, we

subject matrix A to unitary transformation V , i.e. transformation that preserves norm of A, to

obtain its sparsest form Λ, where A = V ΛV T . Here, Λn×n is a diagonal matrix with rapidly



35
diminishing entries. As a result, it is sufficient to consider only d entries of Λ to capture all the

information encoded in A. These d entries constitute the set Y . The above procedure hinges on the

fact that unitary transformations preserve original properties of A [51]. Note also, that it requires

a method to construct matrix A in the first place. Indeed, what differentiates various spectral

methods is the way information is encoded in A.

We summarize the general idea of spectral DR in Algorithm 1. In the first four steps we

construct the matrix A. As indicated, this matrix encodes information about the property that

we wish to preserve in the process of DR. To obtain A we first identify the k nearest neighbors

(KNN) of each point xi ∈ X. This enables us to define a weighted graph G that encapsulates,

both distance and topological, properties of the set X. Given graph G, we can construct a function

FG : X ×X → R to isolate the desired property. For instance, consider the Isomap algorithm in

which the geodesic distance is maintained. In this case, FG returns the length of the shortest path

between xi and xj in G. Note that for some methods FG is very simple, e.g. for PCA it is equivalent

to ω, FG(xi, xj) = ω(xi, xj), while for other methods FG can be more involved. Differences between

various DR methods and their corresponding function FG are outlined in Table 3.1. The property

extracted by function FG is stored in an auxiliary matrix W , which is next normalized to obtain

matrix A. This process of normalization is a simple algebraic transformation, which ensures that

A is centered, and hence, that the final low-dimensional set of points [Y] contains the origin and

is not an affine translation [51]. Subsequently, A is spectrally decomposed into its eigenvalues

that constitute the sparsest representation of A. Resulting eigenvectors and eigenvalues are then

post-processed to extract a set Y of low-dimensional points.

The abstract representation of spectral DR methods in Algorithm 1 is based on a thorough

analysis of existing techniques [88, 136, 115]. While this representation is compact, it offers sufficient

flexibility to, for instance, design new dimensionality reduction procedures. At the same time it

provides clear separation of individual computational steps, and explicates data flow in any DR

process. We exploit both these facts when designing our parallel framework.
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Input: Set X = {x0, x1, . . . , xn−1} , xi ∈ RD, and the target dimension d.
Output: Set Y = {y0, y1, . . . , yn−1} , yi ∈ Rd.

1: For each xi ∈ X find its k nearest neighbors.
2: Define directed weighted graph G = (X,E, ω),

where (xi, xj) ∈ E iff xj is a neighbor of xi,
and ω(xi, xj) is a distance measure,
usually ω(xi, xj) = |xi − xj |2.

3: Let Wij = FG(xi, xj), where FG extracts specific property
from graph G.

4: Normalize W to obtain matrix A.
5: Find eigenvectors of A, A = V ΛV T .
6: Identify latent dimensionality d.
7: Y is represented by the first d rows of V .

Algorithm 1: Spectral Dimensionality Reduction.

Table 3.1 Comparison of selected spectral dimensionality reduction methods.

PCA Isomap LLE

Parameter k in KNN n ∼ d ∼ d

Function FG ω(xi, xj) Length of the
shortest path be-
tween xi and xj
in G.

αij if (xi, xj) ∈ E, 0 otherwise,
where xi =

∑
xl:(xi,xl)∈E αilxl.

Normalization W ∗ij = W 2
ij ,

A = HTW ∗H

W ∗ij = W 2
ij ,

A = HTW ∗H

A = (I −W )−1(I −W )−T

Note: I is the identity matrix, and H = I − 1
n 1n×n.

Table 3.2 Run time (in seconds) of different DR components.

n 100 1000 2000 4000

KNN 0.08640 1.34998 5.66768 27.91930
W in PCA – – – –
W in Isomap 0.06470 14.9030 130.130 1153.30
W in LLE 0.08960 0.12601 0.24609 0.49253
Normalize 0.00195 0.11875 0.74934 5.56630
Eigensolve 0.02916 0.05536 0.23267 0.85211
Extract Y 0.00020 0.00014 0.00016 0.00022
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3.3.2 Performance Analysis of Dimensionality Reduction Methods

We used the above presentation of DR methods to identify their basic computational kernels. To

better understand how these kernels contribute to the overall performance of different DR methods

we performed a set of experiments using domain specific implementation in Matlab. Experiments

were carried out for varying n and a fixed D = 1000 on a workstation with 8 GB of RAM and an

Intel 3.2 GHz processor. Obtained results are presented in Table 3.2.

As can be seen, the run time of analyzed methods is dominated by two steps, namely KNN and

construction of the auxiliary matrixW . Together they account for 99.8% of the total execution time

for n=4000. In our implementation the KNN procedure depends on all-vs.-all distance calculations.

This is justified taking into account that D is very large, and thus efficient algorithmic strategies for

KNN, e.g. based on hierarchical space decomposition [56], are infeasible. Consequently, complexity

of this step is O(Dn2). The cost of computing matrix W depends explicitly on the definition of

function FG. Among existing DR techniques this function is the most complex for the Isomap

method. Recall, that in the process of DR we are interested in preserving either distance or local

topology characteristics. Local topology properties can be directly obtained from KNN [115, 13,

39], inducing computationally efficient definition of FG. Conversely, distance characteristics must

conform to global constraints and therefore have higher computational complexity [123]. In case of

Isomap, pairwise geodesic distances can be efficiently derived from all-pairs shortest path distances

using e.g. Floyd-Warshall algorithm, with O(n3) worst-case complexity.

Another significant DR component is normalization. Although implementation of this step

varies between different methods it is invariably dominated by matrix-matrix multiplication. There-

fore, we assume overall normalization complexity to be O(n3). The last important component is the

eigenvalue solver. In general complexity of this kernel varies depending on the particular solver used.

Commonly employed algorithms include Lanczos method [82], Krylov sub-space methods [116], or

deflation based power methods [148, 104]. The choice of method is driven by the structure of

the matrix and the number of required eigenvalues. Standard distance preserving DR methods

operate on dense symmetric matrices, while topology preserving methods involve sparse symmetric
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matrices. Accordingly, complexity of these techniques is usually O(dn2), where d is the number of

desired eigenvalues.

A final key factor we have to consider is memory complexity of the described kernels. Here, the

main contributing structure are matrices W and A. These matrices are most often dense, and in

the majority of cases require O(n2) storage. Because KNN directly depends on distances between

all pairs it utilizes a n× n matrix as well. Finally, input dataset X requires O(Dn) memory.

One important caveat that affects the above analysis is the relationship between D and n. In

many applications D is significantly greater than n. This is not surprising taking into account

that acquiring high resolution data (hence high dimensional) is resource intensive. Therefore one

may expect that with increasing D there is rapid decrease of n. In our applications [151, 55] it is

not uncommon that D = O(n2) or even D = O(n4). Consequently, the KNN step in Algorithm 1

becomes the most compute intensive while memory requirement is dominated by the input data.

Observe that this trend is reflected in our experimental data.

3.4 Parallel Framework for Dimensionality Reduction

Dimensionality reduction very quickly becomes both memory and compute prohibitive, irre-

spective of the particular method. Memory consumption arises from the size of input data and

the auxiliary matrices created in the process. The computational cost is dominated by pairwise

computations and weight matrix construction. The goal of our framework is to scale DR methods

to very large datasets that could be analyzed on large parallel machines.

We designed our parallel DR package following the general outline presented in Algorithm 1.

Taking into account significant memory and computational complexity we focused on distributed

memory machines with MPI. To ensure modularity of the framework without sacrificing perfor-

mance and scalability, we decided to employ a scheme in which processors are organized into a

logical 2D mesh. In what follows, we assume a simple point-to-point communication model with

latency τ and bandwidth 1
µ .
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3.4.1 Constructing Graph G

The graph construction procedure is based on identifying k nearest neighbors of each input

point. Because of the high dimensionality of the input data, it is advantageous to implement KNN

in two steps where we first compute all pairwise distances and then we identify neighbors in a

simple scan. Note that these pairwise distances actually represent the distance measure ω (see

Algorithm 1). Therefore, we will consider ω to be a n × n distance matrix. Parallel pairwise

computation is a well studied problem [60]. Here, we benefit from our earlier experience with

accelerating pairwise computations on heterogeneous parallel processors [122].

Let p = q2 denote the number of processors conceptualized as organized into a q×q virtual mesh.

We decompose ω into blocks of n
q ×

n
q elements. Processor with coordinates (i, j) is responsible

for computing elements of ω within block (i, j). This scheme requires that each processor store

two blocks of nq points of the input dataset X, that correspond to row-vectors and column-vectors

used to compute respective part of the matrix ω. In our implementation, the distribution of the

input dataset is performed by parallel I/O with initially preprocessed X. Note that to obtain a

single element of ω we perform |a − b|2 norm computations, which are particularly well suited for

vectorization. Therefore, we hand-tuned our code to benefit from the SSE extension of modern

processors.

Given pairwise distances, the second step is to identify neighbors of individual points (i.e.,

vertices of G). This step is executed only for methods where k < n, which virtually involves

all methods other than PCA (see Table 3.1). As in the case of pairwise computations, it can

be efficiently parallelized using the following scheme. Initially, each processor creates a set of k

candidate neighbors with respect to the block of matrix ω it stores. Specifically, processor with

coordinates (i, j) searches for neighbors of the set of points
[
x in

q
, . . . , x (i+1)n

q

)
by analyzing rows of

its local block of ω. Because k is very small this operation can be performed using a simple linear

scan. Next, all processors within the same row perform all-to-all communication to aggregate

candidate neighbors. Here, the candidate neighborhood of point xl is assembled on the processor

with coordinates
(⌊

lq
n

⌋
,
⌊
lp
n

⌋
mod q

)
. This processor merges candidate neighborhood lists into the
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final set of k nearest neighbors. Observe that this completes the graph construction phase - graph

G is now stored in the form of adjacency list distributed over p processors. The computational

complexity of the entire procedure is O
(
Dn2

p + (τ + µnkp )√p
)
, which is optimal for p < n2.

3.4.2 Building Auxiliary Matrix W

Given graph G we proceed to the next step, which involves constructing the auxiliary matrix

W from the information encapsulated in G. As is the case of ω we distribute W over q × q mesh

of processors.

Recall that the formulation of DR methods proposed in Algorithm 1 ensures that the only step

that is method dependent is the construction of matrix W . Consequently, any parallel implemen-

tation of this step will vary, but it will reflect limitations inherent to the sequential counterpart.

Specifically, topology preserving methods, such as e.g. LLE, will involve only local data, and

hence will be amenable to embarrassing parallelism with limited or no communication. Conversely,

distance preserving methods will inevitably require a global data view, and thus potentially more so-

phisticated parallelization strategies. Following our previous claim regarding complexity of Isomap

we focus our presentation on the parallel implementation of this particular method.

The function FG used in Isomap is based on the geodesic distance, which has been mathemati-

cally shown to be asymptotically equivalent to graph distance in G (i.e., shortest path distance) [15].

However, the geodesic distance is a metric, while all-pairs shortest path in directed graph G does

not have to satisfy the symmetry condition. Therefore, to obtain W , special attention must be

paid to how shortest path distances are used. More precisely, graph G must be transformed to

ensure that it is symmetric. Note that after such transformation the graph is no longer regular,

i.e., certain nodes may have more than k neighbors (see Figure 3.1).

Taking into account the above requirements we obtain the following procedure of constructingW

in parallel. First, all processors within the same row perform all-to-all communication to replicate

graph G. As a result, each column of processors stores a copy of the entire graph G that is row-wise

distributed between q processors in that column. Thanks to this, each processor can initialize its

local part of W without further communication. After initialization W represents the distributed
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Figure 3.1 Graph G before (top) and after (bottom) symmetrization for an example set of 7
points and k = 2.

adjacency matrix of G, where Wij = ω(xi, xj) if xj is a neighbor of xi, and +∞ otherwise. In

the next step symmetrization procedure is executed. Processors with coordinates (i, j) and (j, i),

where i 6= j, exchange respective blocks of W , and select element-wise minimum value between

blocks. Similar operation is performed locally by processors on the diagonal, i.e., processors for

which i = j. At this stage W can be used to identify all-pairs shortest paths. Several parallel

algorithms have been proposed to address this problem, including on the PRAM model [28, 73, 95],

shared memory architectures [72], multi/many cores [1, 35, 75] as well as distributed memory

machines [67, 95]. Amongst the existing parallel strategies we decided to adopt the checkered-

board version of the parallel Floyd’s algorithm [72]. Briefly, the method proceeds in n iterations,

where in each iteration every processor performs O
(
n2

p

)
operations to update its local block of W .

All processors are synchronized at the end of each iteration, owing to the fact that in iteration l

each processor requires l-th row and l-th column of W . After n iterations matrix W stores all-pairs

shortest path, which concludes the entire procedure.

Complexity of this phase is dominated by the parallel Floyd’s algorithm. While replication and

symmetrization of G can be executed efficiently in O
(
n2

p + τ + µn
2

p

)
time, all-pairs path searching

involves extensive communication that slightly hinders scalability. Nevertheless, the algorithm

remains scalable as long as p < n
log(n) , with overall complexity O

(
n3

p + n (τ + µn log(p))
)
.
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3.4.3 Matrix Normalization

The goal of normalization is to transform matrix W such that resulting matrix A is both row

and column centered, i.e.,
∑
iAij = 0 and

∑
j Aij = 0. The normalization stage in all cases

consists of matrix-matrix multiplication (see Table 3.1). However, in certain situations, especially

in distance-preserving methods, explicit matrix multiplication can be avoided by taking advantage

of structural properties of one of the matrices (e.g. the matrix H in Table 3.1). This is the

case for, e.g. PCA and Isomap, where we exploit the fact that matrices H and HT are given

analytically, and thus can be generated in-place on each processor that requires them to perform

multiplication. Consequently, the communication pattern inherent to the standard parallel matrix-

matrix multiplication algorithms is simplified to one parallel reduction in the final dot-product

operation. The complexity of this approach is O
(
n3

p + (τ + µn
2

p )√p
)
.

3.4.4 Finding Eigenvalues

Computing eigenvalues is the final step in the dimensionality reduction process. Although, par-

allel eigensolvers are readily available, they are usually designed for shared-memory and multi/many-

core architectures [25, 10, 18, 37]. This unfortunately makes them impractical for our purposes.

At the same time, existing distributed memory solutions are not scalable and cannot handle large

and dense data. For instance, one of the more popular packages, SLEPc [61], uses a simple 1D

decomposition and in our tests did not scale to more than 4096 processors. A more recent library,

elemental [70], which is still under development, offers 2D block-cyclic decomposition, but relies on

a fixed block size (private communication). For these reasons we decided to implement a custom

eigenvalue solver that exploits special properties of matrix A (symmetric, positive semi-definite),

and computes only the first d eigenvalues. Our solver is based on the power method [51] and matrix

deflation and is outlined in Algorithm 2. Note that power methods are considered easy, but not

efficient to parallelize. At the same time, however, they are at heart of several important real-life

systems, for instance, Google’s PageRank [2].

In general, our approach follows the standard scheme of power method (lines 3–18), repeated d
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Input: Matrix An×n and the required numbed of eigenvalues d.
2D mesh of p = q × q processors.

Output: Set of eigenvalues and eigenvectors of A,
Λ0..d−1 = {λ0, λ1, . . . , λd−1} and V0..d−1 = {v0, v1, . . . , vd−1}.

1: Let x be a column-wise distributed vector in Rn.
2: for i← 1 : d do
3: Initialize x randomly. Processors within the same column use the same seed.
4: column← true

5: while not converged do
6: Compute z = Ax locally.
7: if column = true then
8: Perform column-wise all-reduce to obtain z.
9: else
10: Perform row-wise all-reduce to obtain z.
11: end if
12: column← ¬column
13: x← z

14: end while
15: Compute u = Az as in steps 6–11.
16: Replicate entire vector u and z on each processor.
17: λi ← z·u

z·z
18: vi ← z

|z|2
19: Deflate local block of A: A← A− λivivTi .
20: end for

Algorithm 2: 2D-Block Parallel Power Method.
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times to identify first d largest eigenvalues. After identification of an eigenvalue and its associated

eigenvector, the matrix A is deflated – the contribution of the vector is removed from A (line 19).

Observe that power method involves nested matrix-vector product (lines 6–11) that under normal

circumstances would require parallel vector transposition. However, our parallel implementation

benefits from the fact that A is symmetric, hence eliminating need for vector transposition. Indeed,

the entire procedure consists of local matrix-vector product followed by all-reduce operation. Here,

the reduction operation alternates between columns and rows as needed to ensure that vector x is

stored properly. Note that the power method is bounded by convergence criteria (line 5). In our

case we use one of several popular conditions, which involves checking relative error between the

current and previous estimate of the eigenvalue that can be performed every several iterations. We

also note that convergence is significantly improved by using a matrix shifting strategy in the form

A = A− δI, where δ is a positive number [92].

Extracting eigenvalue and eigenvector in iteration i (lines 11–18) depends on vectors u and z,

while deflation step involves λi. Therefore, it is advantageous to replicate both u and z in their

entirety on each processor. We achieve this with all-to-all communication executed by processors

within the same row. This allows us to execute the deflation step in parallel, with each processor

updating its local block of matrix A. Thus, the complexity of a single iteration of the power method

is O
(
n3

p +
(
τ + µ n√

p

)
log(p)

)
, while the deflation step is O

(
n2

p + τ
√
p+ µn

)
.

To conclude this section we would like to emphasize that our solver operates under the same

assumptions as any power method. It requires that the first d eigenvectors of A are linearly

independent, the initial vector x generated in i-th iteration is not orthogonal to the eigenvector

vi, and finally, the first d eigenvalues are non-degenerate [51]. Note that these conditions are not

restrictive and are easily satisfied in the context of dimensionality reduction.

3.5 Results and Discussion

To assess scalability of our framework and test its performance in real-life applications, we

performed a set of experiments using the Ranger cluster [30]. A single node of this machine is based



45

Table 3.3 Run time in seconds for different p, and varying problem size n. Due to mem-
ory limitations problem with n = 32768 cannot be solved on less than p = 256
processors.

p n

4096 8192 16384 32768

16 404.63 3492.28 45288.93 –
64 101.72 761.75 6906.64 –
256 33.99 263.24 1655.39 14613.33
1024 39.06 124.19 682.91 3964.65
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Figure 3.2 Relative speedup for different problem sizes.

on AMD processors working at 2.3 GHz, and provides 16 cores with 32 GB of DDR2 RAM, and

512 KB of L2 cache per core. Nodes are connected by a multi-stage Infiniband network that offers

1 Gbit/s bandwidth. To compile all test programs and the framework we used the Intel C++ 10.1

compiler with standard optimization flags, and MVAPICH 1.0.1 MPI implementation. In every

test we ran one MPI process per CPU core, which we refer to as processor.

3.5.1 Scalability Tests

In the first set of experiments we measured how problem size influences performance of our

solution. We created a collection of synthetic datasets consisting of n = {4096, 8192, 16384, 32768}

points with D = 10000. Next, we performed Isomap dimensionality reduction using different

number of processors. Obtained results are summarized in Table 3.3 and Figure 3.2.
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Table 3.4 Component-wise run time in seconds for varying problem size and p = 1024 and
D = 10000.

n 2048 4096 8192 16384 32768

KNN 0.623 1.389 5.721 22.254 86.706
W in Isomap 9.132 56.517 128.225 457.306 1697.124
Normalize 0.160 0.905 6.526 223.240 2546.11
Eigensolve 0.050 0.155 0.188 0.699 2.838

The results show that our framework provides very good scalability for large problem sizes

irrespective of the number of processors used. The super-linear speedup observed for n = 16384

is naturally explained by cache performance. Observe that the dominating computational factors

in our framework are operations like matrix-matrix and matrix-vector products, which are well

suited to exploit memory hierarchy. A slightly weaker performance for small problem sizes and

large number of processors can be attributed to network latency that offsets computational gains.

To further understand how different components of the framework perform, we measured their

run time obtained for changing problem sizes. Table 3.4 shows that all modules scale as we would

expect based on their theoretical complexity. The most time consuming stages are construction of

the auxiliary matrix W for Isomap and normalization. This is not surprising taking into account

that both components scale as O(n3), and the parallel Floyd’s algorithm involves n rounds of com-

munication. The abrupt performance decrease in the normalization stage, which can be observed

for n = 16384, can be attributed to cache performance. Recall that normalization depends on

matrix-matrix multiplication, and hence is inherently sensitive to data locality. The final remark

concerns k nearest neighbors module and eigenvalue solver. The KNN scales linearly with the data

dimension D (see Table 3.5), and both modules can be used as standalone replacements whenever

KNN or d largest eigenvalues problem has to be solved.

In the final test we compared our parallel eigensolver with SLEPc [61], one of the most popular

and widely used libraries providing eigensolvers. SLEPc is an efficient and portable framework

that offers intuitive user interface. In many cases it is the first choice for solving large scale sparse

eigenvalue problems.
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Table 3.5 Run time in seconds of KNN component for n = 1024 and different number of
processors and varying D.

p D

100 1000 10000 100000

16 0.053 0.530 5.466 92.014
64 0.015 0.115 1.373 22.984
256 0.005 0.027 0.349 5.860
1024 0.002 0.007 0.682 1.875

Table 3.6 Comparison of PaDRe and SLEPc. For p = 1024 SLEPc failed to execute.

p n = 1024 n = 4096
PaDRe SLEPc PaDRe SLEPc

16 0.0444 4.8159 2.5315 0.7049
64 0.0088 2.1666 0.6056 0.8134
256 0.0705 8.5538 0.1251 2.4143
1024 0.0742 * 0.1320 *
4096 0.0411 N/A 0.2024 10.9992

Table 3.6 shows that our implementation systematically outperforms SLEPc. This can be ex-

plained by two main factors: first, unlike SLEPc our implementation follows 2D data decomposition

scheme, which offers better scalability, and second, we are seeking only the d largest eigenvalues.

3.5.2 Using dimensionality reduction to explore manufacturing pathways

Solar cells (or plastic solar cells) manufactured from organic blends (i.e., a blend of two poly-

mers) represent a promising low-cost, rapidly deployable strategy for harnessing solar energy. While

highly cost-effective and flexible, their low power conversion efficiency makes them less competi-

tive on a commercial scale in comparison with conventional inorganic solar cells. A key aspect

determining the power conversion efficiency of organic solar cells is the morphological distribution

of the two polymer regions in the device. Recent studies reveal that significant improvement in

power conversion efficiency is possible through better morphology control of the organic thin film

layer during the manufacturing process [151, 24, 65, 107, 124, 34, 103]. High-throughput explo-

ration of the various manufacturing parameters (evaporation rate, blend ratio, substrate patterning
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Figure 3.3 Snapshots of Microstructures representing final morphologies of 50 different pro-
cesses under consideration

frequency, substrate patterning intensity, solvent) can potentially unravel process-morphology re-

lationships that can help tailor processing pathways to obtain enhanced morphologies. Note that

such high-throughput analysis results in data-sets that are too large to visually look for trends and

relationships. A promising approach towards unraveling process-morphology relationships in this

high-throughput data is via data-dimensionality reduction. We showcase the parallel framework

on this pressing scientific problem. In particular, we focus on using dimensionality reduction to

understand the effects of substrate patterning (patterning frequency and intensity) on morphology

evolution. 1

The dataset consists of n = 75150 morphologies. Each morphology is a 2-dimensional snapshot

which is vectorized to have dimensionality D = 8326. Fig. 3.3 shows several representative final

morphologies obtained by varying (a) the patterning frequency, lp, from 0.5 to 1.50, and (b) the

intensity of the attraction/repulsion, µ, from 1 + 1e − 6 to 1 + 8e − 4. In all these cases, the
1Nano-tip photo-lithography patterning of the substrate has shown significant potential to guide morphology

evolution [26]
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lower surface of the domain is patterned to attract and/or repel specific classes of polymers, thus

affecting the morphology. We performed dimensionality-reduction on this data set using p = 16384

processors on TACC Ranger. The total run time was 1058.4 seconds.

Figure 3.4 (A)Scree Plot for largest 10 Eigenvalues (B)Proportional Energy covered by first
10 Eigenvalues

Fig 3.4 plots the first 10 eigenvalues of the data. Note that the first three eigenvalues (and

hence the first three principle components of the data) represent ∼ 70% of the information content

of the entire data. We therefore characterize each morphology in terms of this three dimensional

representation.



50

Figure 3.5 Morphology evolution with respect to the first 3 Prinicipal Components color coded

with respect to (A) Patterning Frequency (lp), (B)Patterning Intensity (µ)

Fig 3.5 represents all the morphologies on this three dimensional reduced space. In Fig 3.5(A),

the points are color coded according to the patterning frequency used, while in Fig 3.5(B), the

points are color coded according to the patterning intensity used. This plot provides significant

visual insight into the effects of patterning frequency and intensity.

Least 
Sensitive 
Region 

Most 
Sensitive 
Region 

Figure 3.6 Morphology evolution in lp = 1.50: Categorization of parametric space
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Figure 3.7 Multiple Pathways to Morphology Evolution

There exists a central plane of patterning frequency where the morphology evolution is highly

regulated irrespective of the patterning intensity (lp ≤ 1). This is particularly valuable information

as the patterning frequency is much easier to control than patterning intensity from a manufacturing

perspective. For patterning frequencies above lp = 1, the morphologies are highly sensitive to

slight variations in both frequency and intensity. This is also clearly seen in Fig 3.6, where

slight variations in the intensity give dramatically different final morphologies. Notice also the

key insight that higher intensity do not necessarily give different morphologies. This allows us to

preclude further (expensive) exploration of the phase space of increasing patterning intensity.

Finally, the low-dimensional plots also illustrate the ability to achieve the same morphology

using different processing conditions. For instance, in Fig 3.7, we isolate the morphology evolution

under two processing conditions that result in an identical morphology. Such correlations - most

sensitive regions, least sensitive regions (Fig 3.6), configurations resulting in identical morphologies

- are enormously useful as we tailor processing pathways to achieve designer morphologies. This

analysis illustrates the power of parallel data-dimensionality reduction methods to achieve this goal.

We defer a comprehensive physics based analysis of this data set to a subsequent publication.
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3.6 Conclusion

In this work we illustrate a systematic analysis of dimensionality reduction techniques and recast

them into a unified view that can be exploited by dimensionality reduction algorithm designers.

We subsequently identified the common computational building blocks required to implement a

spectral dimensionality reduction method. We used this insight to design and implement a parallel

framework for dimensionality reduction that can handle large datasets, and scales to thousands of

processors. We demonstrated the capability and scalability of this framework on several test data-

sets. We finally showcased the applicability and potential of the framework towards unraveling

complex process-morphology relationships in the manufacture of plastic solar cells.
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CHAPTER 4. A GRAPH-THEORETIC APPROACH FOR

CHARACTERIZATION OF PRECIPITATES FROM ATOM PROBE

TOMOGRAPHY DATA

A paper under-review with The Journal of Computational Materials Science

S. Samudrala, O. Wodo, S. K. Suram, S. Broderick, K. Rajan, B. Ganapathysubramanian

As a first author of this paper, I (S. Samudrala) developed a graph-based computational framework

built upon another graph-based framework developed by O.Wodo under the supervision of B. Gana-

pathysubramanian. I also performed quantitative analysis of the results obtained by applying the

current framework to a heterogenous atom probe data of Al-Mg-Sc prepared by experimentalists

by S. K. Suram and S. Broderick under the supervision of K. Rajan.

4.1 Abstract

Atom Probe Tomography (APT) represents a revolutionary characterization tool that allows

direct-space three-dimensional, atomic-scale resolution imaging along with the chemical identities of

each detected atom. Quantitative analysis of APT data to perform characterization of precipitates

in alloys gives clear insights into the structure-property relationships and helps in achieving the

larger goal of materials-by-design. Most techniques currently used to extract precipitate topology

and interface information from APT data are efficient; however, they are based on homogenization of

the rich point cloud data which is inherently lossy. Furthermore, these methods require a specified,

usually heuristic, concentration-level to draw iso-contours in order to extract characteristics of the
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precipitate topology. These twin issues of homogenization and heuristics are compelling rationale for

the development of a robust, scalable, heuristic-free, graph-based framework, which we call Graph

methods for Precipitate Topology Characterization (GraPTop). This framework is motivated by

the equivalence between a 3D point cloud data of atoms and an undirected, weighted, and labeled

graph. By considering the 3D point cloud data as an undirected, weighted, and labeled graph, we

leverage powerful graph-based algorithms to identify the local topology of precipitates without the

necessity of any heuristics. Since GraPTop is based on nearly linear-complexity graph-algorithms,

it is scalable to extremely large data sets. Furthermore, the performance of this framework is

insensitive to the complexity of the geometry or the number of the precipitates in the point cloud

data. We showcase this framework by analyzing several regions of interest in a point cloud Al-Mg-Sc

(Aluminium-Magnesium-Scandium) specimen APT data and extract several interesting measures

describing the precipitate topology like area, volume, and nonconvexity.

4.2 Introduction

Atom Probe Tomography (APT) [98], [96] represents a revolutionary characterization tool for

material scientists by providing direct-space three-dimensional, atomic-scale resolution with chem-

ical identities of all the detected atoms. It involves controlled removal of atoms from a specimen’s

surface by field evaporation and then sequentially imaging and analyzing them with a TOF (Time of

Flight) mass spectrometer. This technique currently provides the highest spatial resolution of any

microanalysis technique. This capability provides a unique opportunity to experimentally study –

with atomic resolution – chemical clustering and 3-D distributions of atoms; and directly test and

refine atomic and molecular based modelling studies. While APT is a powerful technique with the

capacity to gather information containing hundreds of millions of atoms from a single specimen,

the ability to effectively use this information creates significant challenges. The main technological

bottleneck lies in handling the extraordinarily large amounts of data in a reasonable amount of

time [112]. This imposes a constraint for any quantitative technique to analyze the data to be

both scalable and efficient.
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One key material-science problem that can be analyzed using the APT is the characteriza-

tion of precipitates in multi-component systems [112]. Of particular interest is the analysis and

classification of precipitate topology, shape, size distributions as well as their interfacial proper-

ties [79, 125, 129, 128, 78, 127]. Addressing this problem can give clear insights into structure-

property relationships (especially in the context of energy storage devices) and, thus, help in

achieving a larger goal of accelerated materials-by-design [150]. Recent work in detecting nano-

scale bio-geo-chemical interfaces [114] also show the increasing relevance and applicability of Atom

Probe Tomography in fields outside materials science.

There exist several contemporary techniques for analyzing precipitates and clusters in 3D atom

probe data. These chemical clusters are normally defined by calculating the concentration of

different elements in the sample across a chosen bin size [59, 144], through the use of nearest

neighbor approaches [132, 50], and cluster finding approaches [89, 142, 21]. Specifically, some of

the approaches for precipitate analysis include: (i) proximity histograms, (ii) Fourier analysis, and

(iii) friends-of-friends analysis. While chemical analysis of a chosen bin size through proximity

histograms is a convenient technique for linking spatial features with chemistry and has shown

good results [46, 110], the definition of the region analyzed is mathematically arbitrary. The region

is defined by a user-defined chemical threshold value, and therefore a precipitate is defined largely

through assumption. Additionally, the concentration is calculated as an averaging of the voxels

comprising the region, thereby reducing the information resolution. Fourier analysis of APT data

has previously been performed for analyzing regions of interest with the objective of identifying

crystallographic structure [143, 145]. Among the outputs of this approach are mean precipitate

size, shape and composition. While this approach is well suited for crystallographic analysis, the

extensive computer memory requirements and limited resolution away from the poles prevents the

ability to define the detailed shape and interface of precipitates [48]. Finally, a friends-of-friends

approach for analyzing phases has shown promise [68, 97]. This approach is based on the finding

solute atoms that are nearer to each other in the solute phase as opposed to the matrix. However,

this approach is inefficient for high solute concentrations, and also has been found to falsely identify

clusters due to bridging effects and insensitivities of parameters [133].
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The standard approaches for defining precipitates, such as through proximity histograms or

cluster analyses, result in precipitates defined with largely convex surfaces. For example, defining

precipitate regions based on atomic clustering requires inputting a parameter defining the maximum

distance allowed between atoms within the same cluster and an additional envelope parameter which

effectively serves as defining the convex hull of the precipitate. However, even a small number of

atoms within the cutoff distance can extend the envelope region to incorporate a region of limited

solute concentration. By defining convex volumes, either regions of low solute concentration are

included in the defined precipitate, or conversely high solute regions are omitted. The ability to

define a non-convex surface for precipitates is necessary because the morphology of a cluster within

this convex hull can be defined only by capturing the non-convex surfaces of these precipitates.

Parameters traditionally measured from convex surfaces include volume and surface area, while

non-convex parameters capture information including degree of kinetic coagulation. For example,

clusters that are at initial stages of kinetic coagulation will have large non-convexity.

Convex precipitates define the minimum volume necessary to envelope the cluster. However,

the information regarding the morphology of the cluster within this volume can be captured only

by studying the non-convex nature of these precipitates. Convex parameters define traditionally

studied parameters of clusters such as size, surface area. Whereas, non-convex parameters capture

information such as degree of kinetic coagulation. For example, clusters that are at initial stages of

kinetic coagulation will have large non-convexity. ROI 3 is an example of a cluster that is formed

by initial stage coagulation of two clusters.

Most current approaches to performing precipitate analysis on APT point cloud data are ei-

ther based on homogenization, or are dependent on heuristics to characterize the precipitates.

These issues motivate the development of an efficient and heuristic-free method for performing the

characterization of precipitates that can directly work with the point cloud (APT) data without

homogenizing it. In this work, we detail a method of performing cluster selection and surface

construction using a graph-based formalism that is heuristic-free, works directly with the point

cloud data without homogenization into concentration fields, is very scalable to analyze very large

data-sets, and is applicable to a wide range of chemistries, environments, and geometries. We call
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this framework, Graph based methods for Precipitate Topology Characterization (GraPTop). The

following observations motivated our choice of a graph-based approach:

• The APT point-cloud data of atomic positions and their chemistry can be equivalently repre-

sented using an undirected, weighted, and labeled graph. Each atom becomes a graph vertex

with a label denoting its chemistry. Each vertex is connected to its neighboring vertices

through edges whose weight is proportional to the distance between the vertices (atoms).

Fig. 4.1 shows a simple example of this concept.

• Most precipitate characterization properties (like size, shape, number of atoms, bounding

shape, etc.) can be naturally recast as estimating properties of the equivalent graph.

Figure 4.1 (a) Simple example of a Al-Mg-Sc alloy illustrating the equivalence between a
graph and point cloud data (b) A larger example where the precipitate is labeled
black and the solvent is labeled white.

Furthermore, a graph-based formalism is ideally suited for large-scale APT data sets, particu-

larly due to the fact that:

1. Graph based methods are well-studied and have fast and efficient algorithms – for computing

neighborhood and distance information – that are important for precipitate characterization.

Furthermore, a graph approach directly works on the point cloud data without homogenizing

it.

2. Graph based methods are easily scalable and hence, can be easily extended to larger problem

sizes. Given the fact that APT deals with atomic scales, even for a moderately dense material



58
specimen a minute increase in the dimensions of the region of interest can cause an exponential

increase in the size of the dataset. In such cases, scalability of the method becomes a critical

factor in qualifying the applicability of a technique.

3. A graph-based approach is generic. That is, by making modifications to the definitions of

parameters like edges, weights, and labels, different problems relating to the physical process

can be solved. For example, while we focus on extracting precipitate shapes in this work,

by replacing the Euclidean distance with radial distance (as weight definition) one can study

the radial distribution of atoms in a precipitate. We have recently used such analysis to

characterize the morphology of thin film organic photovoltaic [150, 149].

The outline of this paper is as follows: Section 4.3 gives an overview, methodology and asso-

ciated algorithmic implementations of the framework. In section 4.4 we present results obtained

by applying GraPTop to three different regions of interests in a point cloud data of an Al-Mg-Sc

alloy. Quantified variables of the topology include area, volume and a measure of non-convexity of

the scandium precipitates in the APT data. We conclude in section 4.5.

While working on this paper, we found a recent work based on Delaunay cluster selection

method [85] which demarcates clusters by constructing Delaunay tessellation of a user-provided

radius on a distribution of precipitate atoms. This method works directly on point cloud data

instead of homogenized space, thus preventing loss of information. However, this method assumes

that the Delaunay radii of the cells follow Poisson’s distribution and requires a user input of the

Delaunay radius. Our framework, detailed in this paper, can seamlessly integrate with the work of

Lefebvre [85] – as GraPTop makes no assumptions on the distribution of atoms – in providing a

data-driven Delaunay radius.

4.3 Materials and Methods

A schematic outline of the framework is shown in Fig. 4.2. The framework consists of three

stages: The first stage (pre-processing) converts the point cloud data (atomic positions and chem-

istry information of all the atoms in the region of interest) into a undirected, weighted, and labeled
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Figure 4.2 Outline of the graph based framework, GraPTop

graph. The second stage deploys graph algorithms to isolate the atoms that constitute the pre-

cipitates. The third stage (post-processing) constructs a bounded surface using tessellation and

surface mesh generation methods.

The rest of this section details the algorithms in each stage of the framework. The input to

the framework is the point cloud data from the Atom Probe given as a set of x, y, z coordinates

and mass-to-charge state ratio (m/q) of each of n atoms. We assume that the input is given as a

matrix, [X], of size n × 4.

4.3.1 Pre-processing – Converting the point-cloud data into a Graph

The pre-processing stage constitutes of constructing an equivalent graph G from the given

atomic position and chemistry information stored in [X]. A graph G consists of a set of vertices,

V connected with a set of edges E. A label is associated with each vertex and is stored in L.

Finally, a non-negative number, called weight, is associated with each edge and is stored in W .
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These four components describe a graph, G completely and is denoted as G(V,E,L,W ). In order

to transform the 3D point cloud data into the equivalent graph G, we assign values to each of the

data-structures, V , E, L, W .

Vertex, V : Each atom in the data-set becomes a vertex. 1

Edge, E: An edge joins a pair of vertices. Intuitively, two neighboring atoms (or vertices) should

contain an edge. In order to construct edges of the equivalent graph, G, a notion of neighborhood is

needed. We define the ε-neighborhood of an atom by a ball of radius ε around that atom. All atoms

that lie within this ε-neighborhood are neighbors (of this atom). The radius ε can be chosen between

zero to infinity. A neighborhood radius of zero yields a set of disconnected vertices while a radius of

infinity connects every vertex with an edge to every other vertex in the graph (complete graph). We

determine the value of ε based on statistical analysis of neighborhood information of the complete

point cloud data. The cumulative histogram of the nearest (precipitate) neighbor (NPN) distance is

first constructed (see, for example, Fig.4.7). Probability distribution of nearest precipitate neighbor

(NPN) distance, and hence the histogram of NPN distance, is decaying in nature as shown in

[62, 22]. This implies that the cumulative of the NPN histogram with optimal bin-size is going to

be monotonically increasing. Hence, ε radius corresponds to the flat region closest to the elbow on

cumulative plot represents the minimum neighborhood radius that is required to capture almost

all the atoms in the vicinity of any given atom in the point cloud data as its neighbors. A detailed

explanation of the procedure is provided in the form of a step-by-step algorithm provided below.

Label, L: Each atom is given a data-label corresponding to its chemical identity. For ease of

implementation, we replace alpha-numeric labels with numbers. Functionality of labels is to classify

the atoms based on precipitate and solvent atoms. In algorithmic perspective, the rationale behind

defining labels is to have the ability to efficiently apply group-specific operations using graph

techniques and extract connectivity information.

A step-by-step algorithmic implementation of edge generation is given below. We assume that
1 The atoms in [X] are usually arrayed in the order in which they are detected by the mass spectrometer. In this

analysis, we do not require information on arrival order. This can however be trivially incorporated for future work
by defining another label, L1 with each atom that represents the arrival time.
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we are interested in the precipitate of one particular type of element and (without loss of generality)

label the atoms of that element as 1 and the rest of the atoms as 0.

1. Distance Calculation: For each atom (of label type 1), find the nearest (precipitate) neigh-

bor distance to an atom of the same label type. Store this data in a set Dpr.

2. Optimal Bin Size: Compute the optimal bin, hopt, width required to construct the his-

togram using Silverman’s formula: hopt = 0.9m/n1/5
pr

where m = min(
√
V ar(Dpr), IQR(Dpr)/1.349),

where npr is the number of observations and Dpr is the set of observations, and IQR is the

inter quartile range. This formula yields a good estimate of optimal window width and, hence,

the bin size to be considered for a given histogram.

3. Histogram Construction: Construct a histogram of Nearest Precipitate Neighbor (NPN)

distance using the optimal window width hopt.

4. Cumulative Histogram Construction: Compute the cumulative of the NPN histogram

5. Optimal Neighborhood Determination: Consider the region of the neighborhood in the

cumulative of NPN where ε > 0.554 1
3√ρ [62, 22] and pick the minimum ε value in that region

where differential to the cumulative reaches zero (ρ here is the number density or number of

particles per unit volume). This forms our optimal neighborhood distance εopt. The reason

being, this choice of neighborhood defines a strict boundary by casting the outliers out while

capturing maximum amount of information about the cluster. This also justifies the term

’optimal’ of the optimal neighborhood.

6. Edge determination: For every pair of atoms (vertex pairs in the graph), construct an edge

between them if they are within εopt distance to each other.

Weight, W : Weights are positive real numbers associated with each edge. The edge weight, W is

the (euclidean) distance between the two vertices. Note, only vertices that are neighbors have an

edge between them and hence a weight associated with that edge.
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These five steps convert the point cloud data, [X] into a labeled, weighted graph, G(V,E, L,W )

4.3.2 Graph Methods: Extracting precipitate properties from the Graph

In a multi-component alloy system, solvent and precipitates form distinct domains of various

sizes and shapes. It is of interest to identify and quantify these sub-domains in the data. These sub-

domains correspond to sets of ’connected’ groups of vertices (of the same label) in the equivalent

graph, G. We utilize efficient computation of the connected components of a graph in conjunction

with filtering of the graph to identify and quantify these precipitates. Graph filtering involves

virtual masking of edges to retain only those edges satisfying specific properties. Specifically, the

filtering step consists of virtually masking edges between vertices of different labels (i.e. different

chemical identity). This is followed by a simple enumeration step that counts the number of

connected components (see Fig. 4.3). The full process is accomplished using a simple depth-first-

search (DFS) algorithm on the graph. A salient feature of this stage is that the complexity of the

DFS algorithm is linear (O(n)), resulting in a highly scalable algorithm. 2 As the outcome of this

algorithm, each vertex of the graph has an assigned index of the corresponding component. Fig. 4.3

illustrates a simple example with the three distinct connected components (precipitates) circled.

Figure 4.3 (a) Illustration of a graph built using all atoms in a region of inter-
est of APT dataset with black atoms(label=1) representing the precipitate.
(b) Three connected components of precipitate identified in the graph

2From an algorithmic perspective, this is the only step which works on the full data (both solvent and precipitate)
while the pre-processing and post-processing steps work only on precipitate data
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4.3.3 Post Processing: Rendering bounded surfaces from connected component data

The connected component information is subsequently used to construct a smooth bounding

surface and further processed to extract precipitate topology characteristics like area, volume,

nonconvexity of the precipitates. We use local Delaunay tessellation [32] to construct a solid mesh

of the precipitate and subsequently render the surface. Delaunay tessellation is a mathematical tool

for reconstructing a volume-covering from a discrete point cloud data. Following the constructing

of the precipitate shape, we extract a variety of topological information from the shape.

We enumerate these steps below:

1. Each connected component represents a unique precipitate. Store the x, y, z coordinates of

atoms belonging to each connected component in a matrix, [Xpr]

2. Construct Delaunay tessellation [32] with a radius equal to the neighborhood radius (Rdelaunay =

εopt) over the above extracted set of points [Xpr] using the Quickhull algorithm [16]. Note

that the choice of Rdelaunay = εopt is optimal based on the fact that neighborhood radius

(εopt) is the minimum radius required to obtain all the neighborhood information. Choosing

Rdelaunay < εopt will lead to isolation of atoms and choosing Rdelaunay > εopt will lead to loss

of non-convexity information of the precipitate. The output from this step is a list of sets

of three vertices which form a unique triangle (or face) which form tetrahedra (the Delauny

tessellation).

3. Extract surface elements from volume elements: The Delauny tessellation meshes the entire

volume of the precipitate. We are interested in only rendering the outer surface. We easily

reduce this data set by extracting the surface tessellation. This is done by removing the faces

(triangles) occurring twice (these form part of the inner elements).

4. Using this mesh (tessellation) information, a surface is rendered and characteristics like area,

volume and non-convexity is extracted as follows:

(a) The surface area of the precipitate is computed using Heron’s formula:

Ai =
√
s ∗ (s− a) ∗ (s− b) ∗ (s− c) (4.1)



64
where s is the semiperimiter of each triangle in the Delaunay tessellation. i varies from

1 to δ where δ is the number of surface triangles. The total surface area is the sum of

the areas of individual triangles:

Areatotal =
∑δ
i=1Areai

(b) Volume is computed by summing up the volumes of each individual (tetrahedral or

volume) element of the tessellation. Volume of a tetrahedron is given by:

Vj = 1
3 ∗ Aj ∗Hj where Aj is the area of the base triangle and Hj is the height of the

tetrahedron with respect to the base triangle. The total volume is given by:

Vtotal =
∑nt
j=1 Vj where nt is the number of tetrahedral elements.

(c) A measure of non-convexity is estimated by computing the percentage difference the ac-

tual rendered surface and the convex surface that circumscribe the precipitate: Vconvex−Vactual
Vactual

where V olconvex is the volume of the convex hull circumscribing precipitate. This convex

hull is constructed by using a delaunay radius of infinity (Rdelaunay =∞).

Fig. 4.4 illustrates a representative set of output for a simple, model example. Note that the

connected component with single isolated atom is discarded at this post-processing stage.

Figure 4.4 (a) Connected component vertices (b) 2D surface tessellation along with a rendered
surface

These three stages accomplish the conversion of a point cloud APT data into rendered surface

describing the precipitate geometry. Fig. 4.5 shows a block diagram of the complete framework.
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Figure 4.5 Methodology of GraPTop

4.4 Results and Discussion

This section showcases the results obtained by applying GraPTop to three different regions

of interest in a point cloud data of Al-Mg-Sc (Aluminium-Magnesium-Scandium) alloy.The com-

position of the alloy is Al-3.65 Mg-0.566 Sc (at.%). APT images show the presence of Sc rich

(Li2−Al3Sc) precipitates embedded in an Al-rich solvent. However, information about the volume

of the precipitate and the interconnectivity of the precipitates is not clear directly from the APT

images. Such information is necessary to understand the kinetic pathways for coagulation of the

precipitates and help design the precipitate microstructure in the alloy. The GraPTop methodology

uses graph based heuristic-free methods to identify the interconnectivity amongst the precipitates

and quantify the size and shape of the precipitates.

4.4.1 Description of the input dataset: Al-Mg-Sc alloy

We consider three separate regions of interests in a point cloud of atoms of an Al-Mg-Sc

alloyed specimen, and is shown in Fig. 4.6. The input to the framework is a set of x,y,z coordinates

and the m/q (mass-to-charge state) ratios of all atoms in each region of interest.

Vertices (V), edges (E), weights (W) and labels (L) for constructing the undirected, weighted,
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Figure 4.6 3D Atom probe tomograph reconstruction of Al-Mg-Sc alloy, regions of interests:
ROI 1,2,3 that form inputs to GraPTop

labeled graph G(V,E,W,L) are first evaluated. We are interested in understanding Scandium pre-

cipitate shapes. Consequently, the label for Sc atoms is 1, while the rest are assigned a label 0

Al=0, Mg=0, Sc=1, others=0.

Fig. 4.7- 4.9 represent the histograms (on the left) and cumulative histograms (on the right) for

the three regions of interest. The optimal ε is chosen from the cumulative histogram as the point

where the cumulative value reaches stability (or the slope of the curve diminishes). This point is

marked with a circle in the cumulative plots (εopt). In all the 3 cases, there is an abruptly curving

elbow in cumulative plots indicating the choice of optimal neighborhood radius (εopt).
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Figure 4.7 (a) ROI 1: Histograms of NPN distance at window width, hopt1 = 0.07 (b)ROI 1:
Cumulative of the histogram
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Figure 4.8 (a)ROI 2: Histograms of NPN distance at window width, hopt2 = 0.057 (b)ROI 2:
Cumulative of the histogram
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Figure 4.9 (a)ROI 3: Histograms of NPN distance at window width, hopt3 = 0.061 (b)ROI 3:
Cumulative of the histogram

The undirected, weighted, labeled graph G(V,E,W,L) is constructed and the connected compo-

nents are extracted. Tessellation of the connected components yields the output shown in Fig. 4.10-

4.12. These figures show the qualitative output of the GraPTop framework. Adjacent to each of

these figures, the corresponding convex hull circumscribing the precipitate is also shown. By com-

puting and comparing the volumes of the convex hull and the original surface topology, a measure

of non-convexity of the original surface can be obtained. The change in volume estimated by

convex and non-convex surfaces gives a measure of non-convexity of the precipitate. Convex and

non-convex volumes as well as other measures like optimal epsilon and optimal window width are
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tabulated in Table 4.1. These values indicate that ROI 3 has the largest non-convexity. This

information is very valuable to understand the kinetic pathways for coagulation of the precipitates.

ROI 1: Scandium precipitate 
ROI 1: Convex Hull

Figure 4.10 ROI 1: (a) Non-convex surface of precipitate. (b)Convex hull of precipitate

ROI 2: Scandium precipitate ROI 2: Convex Hull

Figure 4.11 ROI 2: (a) Non-convex surface of precipitate. (b)Convex hull of precipitate

This measure of non-convex volume provides a meaningful parameter that is gained through this

technique. For example, by identifying the large change in volume for ROI 3, we are able to identify

it as an example of a cluster that is formed by initial stage coagulation of two clusters. Quantitative

evidence of this stage is not obtained through typical analyses. An additional advantage of the

GraPTop technique is the more defined procedure for defining precipitates, as opposed to typical
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ROI 3: Scandium precipitate ROI 3: Convex Hull

Figure 4.12 ROI 3: (a) Non-convex surface of precipitate. (b)Convex hull of precipitate

approaches where the primary effort is in defining concentration thresholds and voxel sizes which

provide an image matching the assumed shape of the precipitate. By defining precipitates based

on a parameter that has a clear guideline for selection (εopt), a single measure of area and volume is

determined. This provides a significant advantage over the typical approach of reporting values for

multiple concentration thresholds, as shown in Figure 4.13, where the definition of precipitate is

based on visual bias.This figure demonstrates a standard approach for defining precipitates, where

the threshold is defined based on visual bias, resulting in arbitrary measurements of precipitate size

and volume. The GraPTop approach removes this arbitrariness from defining the precipitates.

Figure 4.13 Concentration isosurfaces of precipitates as a function of Sc concentration thresh-
old value
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Table 4.1 Quantitative Results for ROI 1,2,3
Parameter ROI 1 ROI 2 ROI 3
εopt 1.1264 0.8512 0.9389
Area(nm2) 76.0146 99.2236 168.0230
Convex Volume (nm3) 44.7701 86.1100 962.5300
Non-convex Volume (nm3) 25.9072 41.9127 58.3814
% Change in Volume 72.8095 105.4509 1548.6930

4.5 Conclusion

In this paper,we formulate the problem of characterization of the precipitates from point cloud

APT data as a graph problem. We present a robust, heuristic-free graph-theoretic methodology to

solve the formulated problem and provide an implementation of it along with the results obtained

by applying the GraPTop framework to three APT point cloud datasets of Al-Mg-Sc alloy. Our

framework is robust due to its independence from heuristics like concentration level. We envision

applying this framework on an array of datasets obtained from atom probe reconstruction where

each dataset is prepared by regulated variation in the process of fabrication. This process of

parametric study of the space can give insights into the relationship between the topology of

the precipitates and the fabrication process. We are currently also extending and integrating

this framework to analyze the homological properties [74] of precipitates. We are also currently

working on a mathematical formulation based on random graphs to extend the current framework

to account for epistemic uncertainties. This will enable us to provide probabilistic bounds on

precipitate descriptors due to the inherent uncertainty in APT measurements.
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CHAPTER 5. CONCLUSION

Large materials data generated using high-throughput experimentation formed a rich source of

information to establish process-structure-property relationships. This necessitated the develop-

ment of several mathematical models and scalable techniques to analyze the data.

In the first part of the thesis, we have detailed a mathematical framework of selected nonlinear

dimensionality reduction techniques for constructing reduced order models of complicated datasets

and discussed key questions involved in data selection. During that process we have also introduced

the basic principles behind data dimensionality reduction and illustrated their use with the help of

example apatite dataset in materials science using both linear and non-linear methods 1. Another

significant contribution of this paper is that we also describe a rigorous technique (based on graph-

theoretic analysis) to estimate the optimal dimensionality of the low-dimensional (or parametric)

representation. These techniques are packaged into a modular, computational scalable software

framework with a graphical user interface - Scalable Extensible Toolkit for Dimensionality Reduc-

tion (SETDiR). This interface helps to separate out the mathematics and computational aspects

from the scientific applications, thus significantly enhancing utility of DR techniques to the scientific

community.

In order to cater to the needs of larger datasets we illustrated a systematic analysis of spectral

dimensionality reduction techniques in the second part of the thesis. We also recast these tech-

niques into a unified view that can be exploited by dimensionality reduction algorithm designers.

We subsequently identified the common computational building blocks required to implement a

spectral dimensionality reduction method. We used this insight to design and implement a parallel
1 A comprehensive catalogue of nonlinear dimensionality reduction techniques along with the mathematical pre-

requisites for understanding dimensionality reduction could be found at: [84]
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framework for dimensionality reduction that can handle large datasets, and scales to thousands of

processors. We demonstrated the capability and scalability of this framework on several test data-

sets. We finally showcased the applicability and potential of the framework towards unravelling

complex process-morphology relationships in the manufacture of plastic solar cells.

In the third part of the thesis, we formulate the problem of characterization of the precipitates

from point cloud APT data as a graph problem. We present a robust, heuristic-free graph-theoretic

methodology as well as an implementation to solve the formulated problem. The applicability of the

framework was illustrated on 3 different regions of Scandium precipitate in Al-Mg-Sc alloy. Inter-

esting quantitative measures of area, volume and non-convexity were extracted, which can be used

to understand parameters like degree of kinetic coagulation of the precipitates in a heterogenous

mixture.

5.1 Future Work

Dimensionality Reduction (DR) techniques have proved to be quite successful on a set of mi-

crostructure evolution data in image (or pixel) space in extracting process-structure-property rela-

tionships. We are currently applying DR to a set of microstructures defined, not in image space,

but in topology space (with each high dimension axis representing one topological property like:

connectivity, domain-size, interfacial area of a binary microstructure). These topological properties

of a given binary microstructure are extracted using a Graph-based Structure Property Investigator

(GraSPI) [151]. We anticipate to map a much more efficient low-dimensional representation with

this novel metric, and extract interesting quantitative correlations between the process variables,

microstructures and specific topological properties. Furthermore, applying DR techniques can also

give us insights into an optimal quantitative representation of a given microstructure. Another

interesting problem in the pipeline stems from the fact that a change in the choice of solvent, sol-

vent properties like evaporation rate can affect the structure (or nanomorphology) and hence the

performance of organic solar cells [5, 54]. We plan to apply our in-house DR framework to a set

of potential solvents described in property space along with the performance variables in order to
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establish process-structure-property relationship.

The current version of parallel DR framework (PaDRe) has a capability of solving thousands

of points in a million dimensional space. However, due to several calls of large, dense, matrix-

matrix multiplications (O(n3)), as the problem size increases it begins to grow extremely slow. To

overcome this difficulty, we are currently implementing matrix-matrix multiplication routines from

BLAS [38] package in our framework. We anticipate a significant performance difference not just

with respect to the DR framework but also with respect to the power-iteration based eigensolver

since majority of the latter solver involves performing matrix-vector multiplications.

As a part of future work, we envision applying the GraPTop framework on an array of datasets

obtained from atom probe reconstruction where each dataset is prepared by regulated variation

in the process of fabrication. This process of parametric study of the space can give insights into

the relationship between the topology of the precipitates and the fabrication process. We are

currently also extending and integrating this framework to analyze the homological properties [74]

of precipitates. We are also currently working on a mathematical formulation based on random

graphs to extend the current framework to account for epistemic uncertainties. This will enable us

to provide probabilistic bounds on precipitate descriptors due to the inherent uncertainty in APT

measurements.
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