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Abstract 

Bioreactors are becoming more important in the production of biobased products such as 

proteins, medicines, and renewable fuels. The economic viability of these processes is dependent on 

the bioreactor’s ability to aid the microorganism and provide a friendly environment. One of the 

important microorganism requirements is proper gas concentrations so that the microorganism 

has the necessary inputs for proper metabolism. These gas concentrations are obtained and 

maintained through optimized gas-liquid mass transfer and mixing, also known as hydrodynamics. 

Other bioreactor responsibilities include damage mitigation and bioreactor volume utilization. A 

proper bioreactor design should also maximize profitability through ease of use, maintenance, and 

construction. 

This thesis work provides a survey of gas-liquid mass transfer theories, applications, and 

dependencies in major bioreactor and several novel designs. The major reactor designs include the 

stirred tank bioreactor, bubble column, airlift bioreactor, and fixed bed bioreactor. Variations of 

these major designs are also considered such as the slurry bubble column, internal- and external-

loop airlift, draught-tube bioreactor, and trickle, packed, and flooded bed bioreactor. 

Since the microorganisms used in biological processes are diverse, a best or preferred 

bioreactor design is not feasible. Rather, bioreactor options can be presented based on the 

microorganism properties and production scale. Stirred tank bioreactors generally produce the 

largest gas-liquid mass transfer rates, but they also tend to cause high shear rates and variations, 

which can be very harmful to microorganisms. The impeller often limits the operating range, scale, 

process time, especially with non-Newtonian liquids. The bubble column and internal-loop airlift 

bioreactor have similar gas-liquid mass transfer rates; however, the bubble column has significant 

backmixing while the airlift bioreactor has lower bioreactor volume utilization. The external-loop 

airlift bioreactor provides more process and mixing control and generally has lower shear rates, but 

the attainable gas-liquid mass transfer rate and volume utilization tend to be lower. The fixed bed 
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bioreactors protect and support microorganisms very well. On the other hand, the phase flow rates 

are much lower than in the other bioreactor designs. In other words, each bioreactor design has 

important advantages and disadvantages, and the microorganism may very well determine the 

optimal design. 

The bioreactor designs may be described as complementary rather than competitive. Each 

design and design variation has been implemented to fill a void caused by the original form. This 

design mentality has led to highly complex bioreactor relationships and the inability to identify the 

single best bioreactor because that was not the intent. Future research and development can be 

taken into two different directions. First, a design variation could be approached with the clear 

intent of superiority for biological processes. Such a device could possible use a mixture of airlift 

and stirred tank bioreactor attributes. Second, research could be oriented towards the continued 

niche creation. Each design improvement would be implemented with the intent of improving a 

certain bioreactor attribute or application with a specific type of microorganism. For example, the 

fixed bed bioreactor research could investigate new packing that would provide better support and 

shear protection for very sensitive microorganisms such mammalian cells. 
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1 Introduction 

The biological production of renewable fuels and chemical, medicines, and proteins is not 

possible without a properly functioning bioreactor. Bioreactors are expected to meet several basic 

requirements and create conditions favorable to the biological matter such that the desired 

production is maximized. The basic requirements may include minimal damage to the biological 

matter, maximize reactor volume utilization, maximum gas-liquid mass transfer, and/or maximum 

mass transfer from the liquid to the biological species (Bliem and Katinger, 1988a). Even though 

gas-liquid mass transfer is often the limiting reaction process, the biological species may incur 

additional limitations. For example, biological species can be very sensitive to shear while others 

may not grow well in low power concentrations and thrive in very turbulent conditions (Bliem and 

Katinger, 1988a; Hoffmann et al., 2008). In other words, the reactor has to accommodate very 

specific environmental conditions, and the operator has to be mindful of those when choosing 

bioreactors design and operating condition. 

Once the broadness of the problem is absorbed, it becomes clear that one bioreactor design or 

design ideology is insufficient to meet the spectrum of needs (Bliem and Katinger, 1988a). 

Therefore, each bioreactor design tries to produce a very specific set of conditions applicable to a 

certain cell or bacteria line. In order to help with this decision process, this thesis work provides a 

survey of relevant gas-liquid and gas-liquid-solid bioreactors, defines the bioreactors’ pros, cons, 

and hydrodynamics, and identifies research needs and figures of merit that have yet to be 

addressed. Since a large portion of the bioreactor designs have been ported over from the chemical 

and petrochemical industries, a significant portion of the research work also origninated from those 

areas. Hence, bioreactors will often be referred to as simply reactors in order to signal that some of 

the research used for the discussion and conclusion have been adapted from non-biological 

research areas. 
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2 Modes of Operation 

Batch, semi-batch, and continuous modes of operation are classified by the flow rates in and out 

of the system. Virtually all reactor types are capable of operating in these modes. This section will 

review the different modes by presenting some general information, operating procedures, and 

advantages and disadvantages. 

2.1 Batch Bioreactors 

The batch reactor is the oldest and most used bioreactor in industry (Bellgardt, 2000; Branyik 

et al., 2005). Its historical and most familiar use is in the production of alcoholic beverages (beer, 

wine, whiskey, etc.) and bread. Batch bioreactors combine all the necessary ingredients and then 

operate until the desired product concentration is reached at which point the product is extracted. 

In well-known processes where the final product is relatively cheap, product concentration can be 

correlated to time, leading to some process automation, lower capital needs, and lower operational 

costs (Bellgardt, 2000). Batch reactor systems are also useful in modeling environmental issues 

(Fogler, 2005). 

Biological application and experience has led to differentiation based on substrate input or 

sterilization frequency. The simplest and least applicable variant is the batch cultivation system 

(Bellgardt, 2000). Reactor sterilization is undertaken prior to the start of the process, followed by 

the medium being fed into the reactor creating a high substrate concentration (Bellgardt, 2000; 

Williams, 2002). Inoculated microorganisms are introduced to the batch reactor at a low 

concentration to allow proper growth which is practically uncontrollable until the process is 

finished. Ideally, the product is extracted once a satisfactory concentration is achieved, but the 

product in the batch cultivation system is also extracted if a necessary ingredient has been 

exhausted (Bellgardt, 2000). Finally, the reactor is cleaned, and the process starts over again with 

reactor sterilization. 
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The need for more control over the biological process created the fed-batch (also known as the 

semi-batch) cultivation system, which is the most widely used batch reactor. This deviation is a 

variable volume process that introduces additives, gradually creating a more responsive and 

friendly growth environment (Bellgardt, 2000). In other words, the bacteria receives the right 

amount and type of nutrients at the appropriate growth stage, creating a more efficient and 

controllable process. The final result is a product that can be adjusted or extracted when it achieves 

the desired properties. 

The fed-batch and batch cultivation systems share the same cleaning and sterilization process. 

This stoppage creates considerable costs and operational downtime. The repeated or cyclic system, 

which can be applied to both batch and fed-batch cultivation, may be installed in order to maximize 

productivity. The cyclic cultivation system does not enter the cleaning and sterilization process, but 

rather preserves part of the batch for the next cycle. Another method to increase productivity is cell 

retention techniques such as fluidized beds, membranes, or external separators. These options 

allow multiple cycles without cleaning and sterilization, which is initiated only if it is deemed that 

mutation risks exceed tolerable levels (Bellgardt, 2000). 

Batch bioreactor variants try to limit problems or expand applications of batch reactors, but 

some systematic advantages and disadvantages exist. For the most part, batch bioreactors have 

lower fixed costs due to the simple concept, design, and process control (Bellgardt, 2000; Donati 

and Paludetto, 1999; Williams, 2002); however, variable costs are generally higher for several 

reasons. First, cleaning and sterilization often add significant downtime and labor costs (Donati and 

Paludetto, 1999; Williams, 2002). These costs, however, can be limited in the cyclic cultivation 

system. Second, batch bioreactors have heat recovery difficulties leading to high environmental 

impact and energy consumption (Donati and Paludetto, 1999; Schumacher, 2000; Williams, 2002). 

Third, the additive nature of fed-batch and cyclic cultivation systems force the operator to prepare 

several subcultures for inoculation, which adds further variable cost pressures (Williams, 2002). 
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Lastly, batch bioreactors are not steady-state processes. The biological matter grows 

uncontrollably, leading to a changing environment which can bring about safety issues, runaway 

growth, or unexpected products (Westerterp and Molga, 2006). 

Runaway reactions are unlikely in biological systems, but the variable environment can create 

conditions that change the competitive situation favoring a different bacterial species than the 

initially dominant one (Hoffmann et al., 2008). Batch reactors have limited, albeit relatively simple, 

process control which can lead to inconsistent or unwanted product, especially in a batch 

cultivation system. This problem can get even more pronounced in operations with a high potential 

contact amid pathogenic microorganisms or toxins, adding to variable costs if more stringent 

cleaning and sterilization procedures are needed (Williams, 2002). 

The fed-batch cultivation system makes process control more challenging by creating a variable 

volume process. Any control mechanisms, therefore, require much more labor or capital (Bellgardt, 

2000; Donati and Paludetto, 1999; Simon et al., 2006; Williams, 2002). According to Simon et al. 

(2006), a fed-batch system can have thousands of control variables requiring a modern and 

powerful supervisory control and data acquisition system, programmable logic controllers, trained 

personnel, and an eight year upgrade cycle, all of which eliminate or limit upgradability of older 

systems or construction of larger batch bioreactor systems (Heijnen and Lukszo, 2006; Simon et al., 

2006). The complexity limits practical batch bioreactor application beyond a certain size, while 

other bioreactor modes enjoy economies of scale for much larger operations (Donati and Paludetto, 

1999; Heijnen and Lukszo, 2006; Simon et al., 2006; Williams, 2002).  

Some of the batch system costs can be offset by its flexibility. Batch bioreactors are able to 

produce the desired product consistently. They are also capable of producing several types of 

products with the same equipment or making the same type of product with different equipment. 

Significant product modifications can also be implemented online (Donati and Paludetto, 1999; 

Heijnen and Lukszo, 2006). These traits offer flexibility and competitive advantages to batch 



5 

reactor operations; however, many problems and complications are encountered when these 

reactor schemes are used for multiple separation processes, which is often the case in industry 

(Barakat and Sorensen, 2008). 

Most batch reactors operate in a changing external environment especially with respect to 

product and ecological demands (Heijnen and Lukszo, 2006). Researchers are able to take batch 

bioreactors and investigate reactions, both chemical and biological, for which data are unavailable 

or have never been documented, while limiting contamination and experimental or dangerous risks 

(Donati and Paludetto, 1999). These research reactors should be used for scaling purposes with 

care since most reactions and biological growth are affected by hydrodynamics, which are a 

function of reactor scale and type. 

Ultimately, batch bioreactors contain biological matter that tends to mutate. Growth periods, 

therefore, need to be kept short and controlled to prevent these microbial mutations, which could 

produce inconsistent or undesirable products (Williams, 2002). Some fermentation processes, 

however, are characterized by biological matter that mutates very little allowing for long reaction 

times (Donati and Paludetto, 1999). Either way, a positive side effect of the controlled growth 

period is a higher conversion level (Williams, 2002). 

A specific batch bioreactor application depends on multiple internal and external factors; 

however, general rules of thumb and process specific improvements can be employed to make a 

smarter and more profitable selection. Batch bioreactor selectivity is based on the following factors: 

economic balance, production scale, reaction times, production flexibility, and the nature of the 

process and product (Donati and Paludetto, 1999). Typically, batch bioreactors are used for smaller 

operations, specialty products, long growth periods (reactor of choice by elimination), operations in 

which flexibility is vital, unsteady processes, and experimental development (Donati and Paludetto, 

1999; Simon et al., 2006; Williams, 2002). 
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Batch bioreactor operation can be made more efficient by implementing several simple 

managerial procedures. First, a disturbance strategy should be developed by which personnel are 

trained to respond and actively scan for problems in the process leading to “lines of defense” that 

limit contamination and loss of product (Westerterp and Molga, 2006). These “lines of defense” 

should include an operating condition within which personnel and management are comfortable, 

an early warning system, and a reaction procedure to accidents and malfunctions including proper 

training and equipment (Westerterp and Molga, 2006). Second, a decision support framework 

(DSF) should be developed so all personnel and management are familiar with operating costs, 

benefits, objectives, etc. The DSF will make production more efficient and profitable; it provides a 

clear outline of benefits and costs associated with general and specific options. General models, 

such as ANSI/ISA88 or ANSI/ISA95, are available and can be applied to all batch reactors (Heijnen 

and Lukszo, 2006). Lastly, two improvement strategies can be implemented to make batch 

reactions more efficient. The “cook book” or “recipe” approach has been shown to improve yields in 

batch process operations. The user is able to adjust the biological reaction online as needed and is 

able to draw upon extensive experience and/or knowledge to have better process control and 

product quality and consistency. The second strategy, production schedule optimization, has been 

proven effective in situations where products are made with different equipment, or equipment is 

used to make different products by optimizing capacity utilization (Schumacher, 2000). 

2.2 Continuous Bioreactors 

Continuous bioreactors have several intrinsic properties that differentiate them from batch 

bioreactors. The largest distinction is that substrate and product continuously flow in and out of the 

reactor, which does not allow for a cleaning or sterilization processes and extracts product 

regardless of identity or qualities (Bellgardt, 2000). If output does not meet specifications, the 

resulting product has to be either discarded or separated and recycled back into the reactor. Either 

option creates a negative economic impact by increasing (i) initial investment due to the necessary 
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installation of a recycling system and (ii) variable costs due to the discarded product and the 

associated inputs (Williams, 2002). Product properties are controlled by substrate residence time 

which, by design, can only be controlled by material flow rate and reactor geometry. In order to 

ensure a homogeneous product, the process is assumed to be steady-state and conditions within 

the bioreactor are typically assumed to be independent with time (Williams, 2002). Therefore, 

continuous bioreactors are agitated mechanically and/or by gas injection. Substrate input is not 

used for agitation so as to decouple it from reactor hydrodynamics. In order to make the steady-

state conditions easier to achieve and maintain, most continuous bioreactors are run in a constant 

volume setting, which induces uniform volumetric substrate and product flow rates. Efficiency is 

enhanced using cell retention techniques such as fluidized beds, membrane reactors, or cell recycle 

(Bellgardt, 2000). The semi-continuous bioreactor, a hybrid between the batch and continuous 

bioreactor, is run in batch mode during start-up. Once necessary conditions are achieved, this 

bioreactor is operated continuously unless the product has not achieved the necessary properties, 

in which case the reactor is operated in batch mode until the desired specifications are met 

(Williams, 2002). 

Any continuous bioreactor discussion is ultimately related to batch systems which are seen as a 

proven technology with processes designed around their capabilities and properties. In addition, 

operators have more experience and are more comfortable dealing with batch disturbances 

(Branyik et al., 2005). Continuous bioreactors, however, offer many advantages such as control, 

production, and the potential for optimization (Williams, 2002). Control can be achieved with 

several schemes. Substrate and cell concentrations or reactor conditions can be modified online to 

influence bacterial growth rates which, in turn, modify reactor and reaction dynamics (Bellgardt, 

2000; Gonzalez et al., 1998; Ramaswamy et al., 2005; Reddy and Chidambaram, 1995; Sokol and 

Migiro, 1996). These changes provide an indirect influence over product type and properties 

(Ramaswamy et al., 2005). 
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The continuous bioreactor offers more operational control and flexibility over batch 

bioreactors. Practical production is made simpler and more profitable due to the possibility for 

automation and the lack of cleaning and sterilization processes (Bellgardt, 2000). The added 

equipment cost is offset with operational savings while control schemes, which are limited to a few 

hundred variables, are often much simpler than the corresponding batch reactor systems (Simon et 

al., 2006; Williams, 2002). 

In addition to the control advantages, the steady-state operation of continuous bioreactors 

allows for the production of a consistent and economically attainable product quality (Williams, 

2002). It also rectifies a major downside in the batch system – the bacterial concentration is very 

low in the initial stages while growth rates are sluggish at maturity, both leading to decreased 

productivity. The continuous system allows high bacterial concentrations throughout the process, 

boosting production capacity and consistency (Bellgardt, 2000). Combined with the lack of cleaning 

and sterilization processes, continuous bioreactors maximize production time while providing 

lower labor and variable costs and maximum capital utilization (Bellgardt, 2000; Williams, 2002). 

Lastly, continuous bioreactors allow for optimization. Operators are able to vary inputs and 

reactor conditions online, creating an optimized environment for the growth stage and age of the 

cell culture, resulting in a more consistent output (Bellgardt, 2000; Williams, 2002). In some series 

reactor applications, process augmentation is necessary to prevent wash-out or inconsistent 

product (in case of a upstream disturbance and varying substrate concentration). These 

disturbances and variances are often experienced when a batch reactor or other limiting cycles are 

used to prepare a substrate for the continuous process (Ramaswamy et al., 2005). 

Disturbance management depends greatly on the ability to investigate the cause of the 

disturbance. Batch reaction systems have complicated procedures to identify the cause of 

disturbances with the operator often left guessing (Schumacher, 2000). The continuous process 

provides a clear plan of attack. The effect of changing one variable while keeping all others constant 
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allows for a clear relationship and better understanding (Williams, 2002). Researchers are able to 

form global correlations or models aiding development, adoption, or on-going operations.  

Much higher production capacity, efficiency, capital utilization, and lower variable costs for 

continuous bioreactors may make operations appear efficient, but continuous systems have a 

number of disadvantages. Biological growth typically requires a batch start-up period to achieve 

conditions within the reactor to promote optimal production (Bisang, 1996; Gonzalez et al., 1998; 

Williams, 2002). In addition, bacterial matter, especially in recycle and retention processes, age and 

mutate which negatively impacts their productivity and efficiency and may even lead to the 

production of unwanted products (Branyik et al., 2005; Domingues and Teixeira, 2000). If so, a 

continuous system is either unable to produce the prescribed product quality or requires more 

equipment and control systems (Williams, 2002). Long lasting processes also have contamination 

problems and biological growth on the walls, requiring the reactor to be controlled more closely; 

otherwise, faster growing cultures overtake the desired ones (Bellgardt, 2000; Williams, 2002). 

Controlling continuous production is also made more difficult because it is usually non-linear 

(Ramaswamy et al., 2005; Reddy and Chidambaram, 1995). Several control mechanisms exist, but 

most make the mistake of varying substrate or bacterial concentrations based on indirect data, such 

as temperature or pH, and assuming a first order response (Bellgardt, 2000; Ramaswamy et al., 

2005). This type of control mechanism usually results in a system that is too slow and has stability 

problems (Reddy and Chidambaram, 1995). Non-linear controllers are available, but been have 

shown to be unreliable and complicated and usually report excessive variations (Gonzalez et al., 

1998; Reddy and Chidambaram, 1995). Operators may also be limited to a certain gas or liquid 

input range. Bacteria require a certain amount of gas for proper growth, and a low gas flow rate 

could suffocate the bacteria or create a hostile environment decreasing reactor productivity. On the 

other hand, too much gas may create suboptimal conditions and have a negative impact on bacterial 

growth or reactor hydrodynamics (Bellgardt, 2000). 
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The flexibility, reliability, efficiency, and cost reductions which the continuous systems are 

supposed to deliver can be offset by control issues, making the pure continuous bioreactor 

ineffective and even more expensive to operate than batch systems (Williams, 2002). In addition, 

some fermentation processes, such as beer production, are not able to easily use continuous 

systems since they change basic product properties, such as taste, color, and/or odor (Branyik et al., 

2005). 

Several scenarios exist for which continuous bioreactors are feasible and preferred, such as 

high volume production, use of mutation resistant bacteria culture, wastewater treatment, and 

processes which do not require a sterile environment. Currently, continuous bioreactors are used 

for the production of vinegar, baker’s yeast, alcohols, and solvents and for wastewater treatment 

(Bellgardt, 2000; Simon et al., 2006; Williams, 2002). Proper control systems also allow continuous 

principles to be used in other production systems. These requirements include that the process 

does not necessitate a sterile environment or that it can be easily controlled through alternative 

means such as flocculation, substrate and cell concentrations, or the use of secondary or genetically 

altered cell cultures (Bellgardt, 2000; Bisang, 1996; Domingues and Teixeira, 2000; Gonzalez et al., 

1998; Ramaswamy et al., 2005; Reddy and Chidambaram, 1995; Simon et al., 2006; Sokol and 

Migiro, 1996; Williams, 2002). The most practical option for the use of the continuous system 

would be with the semi-continuous bioreactor. This variant would require a smaller initial 

investment, offer productivity and optimization possibilities, and have less control problems than a 

continuous bioreactor (Williams, 2002). It would allow for start-up, residence time variations, more 

flexibility, and some positive batch reactor traits. 
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2.3 Summary 

The batch bioreactor is the oldest and most widely used bioreactor. The advantages of using a 

batch bioreactor are lower fixed cost, flexibility, and operational simplicity. Operational costs can 

be lowered if the process is well-known. These reactors are preferred for use in smaller operations, 

specialty products, long growth periods, operations in which flexibility is vital, unsteady-state 

processes, and experimental development. Continuous bioreactors, on the other hand, provide for 

more production optimization, automation, and capital utilization. If the continuous process is used 

properly, the larger initial investment can be easily offset by lower variable costs and faster 

production times. Therefore, this process is preferred for high volume production, processes using 

mutation resistant bacteria, and processes that do not require a sterile media. The production of 

alcohols, solvents, vinegar, or baker’s yeast and wastewater treatment are a few examples that take 

advantages of the continuous process. 

Although the choice may seem simple, the experience has been otherwise. The continuous 

process has had a hard time breaking into industries that have traditionally used batch bioreactors. 

Some operators have found the switch to a continuous process to be laborious. The unknown 

provides a situation which could be critical to the project’s survival. For example, even though the 

continuous process offers huge time savings in the production of beer, the batch bioreactor remains 

the most popular. More risk loving and high volume operators, such as producers of industrial 

alcohols and solvents and wastewater treatment plants, find the continuous system to be a huge 

economic advantage. The choice should be made with an understanding of risk capacity for the 

particular application. The analysis should also include an economic sensitivity analysis and 

foresight into equipment availability. The process selection may ultimately limit the type of 

bioreactor used or its operational conditions. 
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3 Gas-Liquid Mass Transfer Models 

Mass transfer operations in biological systems depend on a myriad of intermediate and parallel 

processes. Reactors for gas-liquid applications, which account for about 25% of all chemical 

reactions (Tatterson, 1994), fulfill two needs: dispersion and absorption (Oldshue, 1983). 

Dispersion requires that the entire reactor volume be used to mix the gas into the liquid. This step, 

however, is usually easily achieved or is not the critical system constraint (Oldshue, 1983). The low 

solubility of most gases limits gas absorption to the point that gas-liquid mass transfer becomes the 

rate limiting step for the overall reaction (Bouaifi et al., 2001; Fogler, 2005; Garcia-Ochoa and 

Gomez, 1998; Linek et al., 1996a; Moo-Young and Blanch, 1981; Ogut and Hatch, 1988; Oldshue, 

1983; Vazquez et al., 1997). This limitation is even more severe in systems using very low solubility 

gases, such as carbon monoxide found in synthesis gas, some of which are very important in 

industrial applications (Moo-Young and Blanch, 1981). Thus, the easiest way to increase the 

productivity for these processes is to increase the gas-liquid mass transfer (Kapic, 2005). 

Two transfer coefficients may be considered at the gas-liquid interface. The liquid-phase mass 

transfer coefficient is represented by kL, whereas the gas-phase mass transfer coefficient is 

identified by kG. Since the gas-phase mass transfer resistance is typically much smaller than the 

liquid side, kG >> kL and gas-liquid mass transfer is controlled by kL (Chisti, 1989); this value is 

modulated by the specific (gas-liquid) interfacial area, a. The driving force for mass transfer is the 

gas concentration gradient between the gas phase, C*, and the dissolved gas, C. The mass transfer 

rate is then determined by 

 
( )*

L

dC
k a C C

dt
= −

 (3.1) 

The volumetric gas-liquid mass transfer coefficient, kLa, is typically used when determining the 

mass transfer coefficient because it is difficult to measure kL or a independently. Variances in 

volumetric mass transfer coefficient during operation are often thought to be a direct result of 
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changes in the interfacial area (Hoffmann et al., 2007; Stenberg and Andersson, 1988b), which 

would imply that homogeneous (bubbly) operation is more desirable than heterogeneous flow 

(Bouaifi et al., 2001). However, according to Linek at al. (2005b), concise conclusions are often 

troublesome because liquid-phase mass transfer coefficient is calculated using the gas-liquid mass 

transfer coefficient (kL) and the specific interfacial area (a). Any measurement errors in either 

variable cause false conclusions or improper use of mass transfer models. 

Many mass transfer models exist, but most of them depend on three assumptions and are 

simplified versions of actual mass transfer mechanisms, many of which occur simultaneously. The 

first assumption is that the different phases and the phase interface offer resistance to mass 

transfer in series, in a similar fashion to heat transfer resistances. The second assumption 

maintains that mass transfer is controlled by the phase equilibrium near the interface which 

changes more quickly than the bulk phase equilibrium (Azbel, 1981). In other words, mass transfer 

occurs at the microscale (van Elk et al., 2007). Lastly, gases are assumed to be single component. 

Multiple component problems are more complicated because each individual gas component 

making up the mixture has to be considered for the limiting gas-liquid mass transfer step. The 

complexity grows further once the relationships between each gas component and the bacteria are 

considered. 

Single component gases are preferred for research purposes because direct and mechanistic 

relationships can be drawn. However, air has been used in many oxygen mass transfer studies 

because it is easily accessible; in this case, air is assumed to be composed of two components, 

oxygen and an inert gas comprised primarily of nitrogen. Nevertheless, its utilization in gas-liquid 

processes is often seen as inferior relative to other gases such as pure oxygen, carbon monoxide, 

carbon dioxide, or hydrogen (Bliem and Katinger, 1988b; Worden and Bredwell, 1998). For 

experimental purposes, air is treated as a single component gas with the realization that the driving 

force could change due to non-transferred gases (Worden and Bredwell, 1998). Multiple 
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component gases, however, are often encountered in industrial settings mainly due to biological or 

chemical reactions. Therefore, mass transfer models and correlations should be used to provide 

mass transfer and possibly production bounds. 

The oldest and most simplistic mass transfer model, which is often presented in undergraduate 

chemical reaction engineering textbooks (e.g., Fogler, 2005), is the film model originally presented 

by Nernst in 1904. The interface is assumed to be infinitesimally thin and its resistance is usually 

ignored. The liquid phase has a constant and definite boundary layer, or film, of thickness δeff which 

limits mass transfer (Azbel, 1981). Since these assumptions are made about the boundary layer 

characteristics, mass transfer is concluded to occur in a steady-state environment. Other limiting 

factors are the molecular diffusivity, D, and the driving force represented by the concentration 

gradient. The film model equation, therefore, predicts mass flux J as 

 
( )*

eff

D
J C C

−
= −
δ  (3.2) 

Molecular diffusivity and film thickness are combined into the liquid-phase mass transfer 

coefficient, kL, such that 

 
( )*

L
J k C C= −

 (3.3) 

This model has several limitations. The film model assumes that mass transfer is controlled by 

the liquid phase film, which is often not the case because the interface characteristics can be the 

limiting factor (Linek et al., 2005a). The film thickness and diffusivity may not be constant over the 

bubble surface or swarm of bubbles. Experiments also indicate that mass transfer does not have a 

linear dependence on diffusivity. Azbel (1981) indicates that others have shown that turbulence 

can have such a significant effect on mass transfer such that eddy turbulence becomes the 

controlling mechanism in which diffusivity does not play a role. In most instances, however, eddy 

turbulence and diffusivity combine to play a significant role in mass transfer (Azbel, 1981).  
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The Border Diffusion Layer Model was introduced as an amendment to the film model to 

present a more realistic description. It accounts for an undefined film thickness, turbulence effects, 

and the role of molecular diffusion. When the flow is turbulent, the flow around the bubble is split 

into four sections: the main turbulent stream, the turbulent boundary layer, the viscous sublayer, 

and the diffusion sublayer. Eddy turbulence accounts for mass transfer in the main turbulent 

stream and the turbulent boundary layer. The viscous sublayer limits eddy turbulence effects so 

that the flow is laminar and mass transfer is controlled by both molecular diffusion and eddy 

turbulence. Microscale eddy turbulence is assumed to be dominant in the viscous sublayer. Mass 

transfer in the diffusion sublayer is controlled almost completely by molecular diffusion (Azbel, 

1981). 

This model can be used as a rough estimate. It is still plagued by the steady-state assumption 

which is oftentimes an inadequate description of mass transfer. The diffusion sublayer, δ, is a 

function of viscosity (ν), diffusivity (D), and viscous sublayer thickness (δ0), but realistic 

measurements are difficult, if not impossible, to obtain. An empirical correlation has been 

suggested for δ (Azbel, 1981). 

 

1/

0

n
D 

δ = δ ν   (3.4) 

The power n is an experimental variable with a value of about two for gas-liquid mass transfer. The 

liquid-phase mass transfer coefficient can therefore be related to diffusivity as (Azbel, 1981; Moo-

Young and Blanch, 1981) 

 

1/n

L
k D≈

 (3.5) 

The Higbie penetration model for mass transfer compensates for transient behavior. It assumes 

that mass transfer occurs during brief phase contacts which do not allow enough time for steady-

state conditions. In other words, the phases collide, but do not have a definitive and continuous 

interface with respect to time. The mass transfer is prompted by turbulence which refreshes the 
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interface, and the refresh rate is the limiting step in mass transfer. Eddies approach the surface at 

which point mass transfer by molecular diffusion is initiated and is described by (Azbel, 1981): 

 

2

2

C C
D

t y

∂ ∂
= −

∂ ∂  (3.6) 

Equation (3.6) assumes that the gas phase is not reacted during the mass transfer process at the 

interface. Fast reactions, however, predominantly occur very close to the interface and have to be 

accounted for by (van Elk et al., 2007): 
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∂ ∂  (3.7) 

where rC represents the reaction rate of the gas phase at the interface. In this case, fast reactions are 

assume to occur when Ha > 2, where Ha is the Hatta number defined as the ratio of species 

absorption with and without reaction. The reactive absorption provides the advantage of 

separating the investigation of the interfacial area from the mass transfer coefficient (Hoffmann et 

al., 2007). 

All eddies spend approximately the same amount of time at the interface defined by τ. This 

interface contact time is assumed to be proportional to the amount of time it takes the bubble to 

rise one bubble diameter, dB, or  

 

B

B

d

U
τ =

 (3.8) 

where UB is the bubble velocity. The Higbie penetration model predicts (Azbel, 1981; Moo-Young 

and Blanch, 1981) 

 

1/2

2
L

D
k

 
=  πτ   (3.9) 

The assumption that each eddy spends the same amount of time at the interface is unrealistic. 

Modified penetration models, such as Danckwerts’ surface renewal theory model, allow each eddy 
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to have an independent, variable interface contact time based on a statistical probability function. It 

uses a fractional renewal, s, to account for the rate of surface renewal, in which case: 

 
( )1/2

L
k Ds=

 (3.10) 

The surface renewal theory model still shares the same power as the two previous models 

(Azbel, 1981). The difficulty with the surface renewal model is that the unknown variable, s, 

depends on operational conditions and reactor geometry. Hence, it would be difficult to use this 

model as a scaleup guide. 

Later research concluded that reality lies somewhere between the film and penetration models. 

These film-penetration models, such as those of Hanratty and Toor (Azbel, 1981; van Elk et al., 

2007), concluded that the original film model is accurate for highly diffusive gases, large interface 

contact times, or a small boundary layer thickness (relative to a penetration depth). If a penetration 

model is used during these situations, predicted mass transfer will be too high (van Elk et al., 2007). 

Other penetration-type or hybrid models allow for further modifications making their predictions 

more accurate or applicable for certain conditions. A common ground has been found in the 

exponential dependence of the diffusivity. Gas-liquid applications show the power n ranging from 

0.5 to 1. If water is used as the liquid, the power ranges from 0.65 to 0.985 (Azbel, 1981). 

Current research falls into one of two schools of thought: Calderbank’s slip velocity model and 

Lamont and Scott’s eddy turbulence model (Linek et al., 2004; Linek et al., 2005b). Even though 

both models are penetration-type models, they make very different assumptions. The slip velocity 

model assumes different behavior for small and large bubbles. It also assumes a significant 

difference between average velocities for the two phases. The slip velocity and the surface mobility 

control mass transfer and, in terms of penetration theory, surface renewal. 

Small bubbles with a diameter dB < 1 mm act as rigid spheres with an immobile surface and 

slipless interface (Linek et al., 2005a; Scargiali et al., 2007). The surface and its phase interface limit 

mass transfer. In this case, turbulence indirectly affects mass transfer by influencing the terminal 
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bubble rise velocity and, therefore, the residence time (Poorte and Biesheuvel, 2002). Larger 

bubbles, those with dB > 2.5 mm, have a mobile, ellipsoidal surface experiencing much larger drag 

forces than rigid spherical bubbles with the same total volume (Scargiali et al., 2007). Therefore, 

mass transfer in large bubbles is limited by eddy turbulence. In this case, other penetration models 

can properly describe mass transfer behavior. The transition area is highly variable. Bubble surface 

mobility in this region is dependent on liquid properties and surfactants (Linek et al., 2005a). 

The eddy turbulence model, or simply eddy model, assumes that small scale eddies control 

surface renewal and, subsequently, mass transfer. This model acknowledges a scale dependence. 

Macro scale movements, those represented by the Reynolds number ,Re, are assumed to have a 

small impact on surface renewal. The Reynolds number is defined as 

 
=

ν
Re B

Ud

 (3.11) 

where U is the velocity, dB is the (hydraulic) bubble diameter, and ν is the fluid kinematic viscosity. 

The eddy model postulates that small bubbles would not know the difference. Small scale effects 

are needed to incur a relative impact. Eddies are assumed to pound the bubble surface and cause 

surface renewal regardless of bubble size and interface properties (Linek et al., 2004; Linek et al., 

2005a; Linek et al., 2005b). 

Some of these models predict opposing results. For example, the slip velocity model predicts 

mass transfer to decrease with increasing turbulence once the bubble surface becomes rigid. The 

eddy turbulence model predicts the opposite. These theories represent effects that occur 

concurrently. The strength of each mode depends on the reactor type and process. For example, 

complex reactions, such as polymerization or cellular cultures, are highly sensitive to micromixing 

(Nauman and Buffman, 1983). Mass transfer during these highly complex processes are affected 

more by micro- than macromixing (Hoffmann et al., 2008). These models and their predictions will 

be revisited in the appropriate reactor sections. Furthermore, the models do not account for 
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surfactant effects on the interface, nor its influence on mass transfer behavior (Vazquez et al., 

1997). 

The fundamental gas-liquid mass transfer models lack the ability to obtain and process all 

necessary information and factors integral to reactor operation. Gas-liquid systems are simply too 

complex. Therefore, a theoretical equation, that is widely applicable, does not exist (Garcia-Ochoa 

and Gomez, 2004). Empirical correlations have been developed to simplify analysis and design and 

have become exclusive in literature and practice (Kawase and Moo-Young, 1988). Parameters are 

chosen that are thought to influence the operation, and their powers and constants are fitted to the 

experimental data. They are used for design and scaleup while mass transfer models are used to 

explain the influence of various operational inputs. 
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4 Stirred Tank Reactors 

4.1 Introduction 

Stirred tank reactors (STRs) are one of the standard reactors in the chemical industry and have 

therefore been widely implemented for biological applications (Williams, 2002). They are used with 

viscous liquids, slurries, very low gas flow rates, and large liquid volumes (Charpentier, 1981; 

Fujasova et al., 2007; Garcia-Ochoa and Gomez, 1998; Kawase and Moo-Young, 1988). Stirred tank 

reactors are also popular because a well-mixed state is easily achieved, which aids in providing 

necessary substrate contact, pH and temperature control, removal of toxic byproducts, uniform cell 

distribution, clog prevention, and particle size reduction (Branyik et al., 2005; Hoffmann et al., 

2008). This chapter provides an overview of STR operation and summarizes issues related to gas-

liquid mass transfer. Additional information is provided by Oldshue (1983), Tatterson (1991, 

1994), Ulbrecht and Patterson (1985), Harnby et al. (1992), McFarlane and Nienow (1995, 1996a, 

1996b), McFarlane et al. (1995), and Linek et al. (1987, 1996a, 1996b, 2004). 

Stirred tank reactors are widely applied in industry because of their low capital and operating 

costs (Williams, 2002). Popular applications are fermentation (Cabaret et al., 2008; Fujasova et al., 

2007; Garcia-Ochoa and Gomez, 1998; Hoffmann et al., 2008; Scargiali et al., 2007; Vasconcelos et 

al., 2000), carbonation, oxidation (Oldshue, 1983; Scargiali et al., 2007), chlorination (Fujasova et 

al., 2007; Oldshue, 1983; Scargiali et al., 2007), hydrogenation (Fujasova et al., 2007; Murthy et al., 

2007; Scargiali et al., 2007; Shewale and Pandit, 2006), dissolution, polymerization (Shewale and 

Pandit, 2006), chemical synthesis, and wastewater treatment (Cabaret et al., 2008; Ogut and Hatch, 

1988; Shewale and Pandit, 2006). Stirred tank reactors are preferred if high gas-liquid mass 

transfer coefficients are needed (Bredwell et al., 1999). These reactors are usually made out of 

stainless steel for industrial units or out of clear materials, such as glass or certain plastics, for 

experimental applications (Williams, 2002). 
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Typical STR units (Figure 4.1) have a small height-to-diameter ratio relative to other reactor 

types (Charpentier, 1981). The diameter DT can vary from about 0.1 m for experimental units to 10 

m for industrial applications (Harnby et al., 1992). As shown in Figure 4.1, the impeller and baffle 

dimensions, as well as the impeller clearance are typically a specified fraction of the tank diameter. 

The aspect ratio, defined as the liquid height-to-diameter ratio, is highly variable and depends on 

the number and arrangement of impellers and the reactor application. Single impeller systems 

typically have an aspect ratio of 1 (Charpentier, 1981; Tatterson, 1991), but certain exotic 

applications call for designs with aspect ratios up to 3 (Nielsen and Volladsen, 1993; Tatterson, 

1991). Industrial multiple impeller designs are mostly limited to an aspect ratio of less than ~4 due 

to practical considerations (Charpentier, 1981). 

 

Figure 4.1: Standard single impeller stirred tank reactor design (Adopted from Tatterson 
(1991)). 

Wall baffles 
BW = DT/12 to DT/10 

Di = Impeller diameter 
DT = Tank diameter 

Impeller clearance 
Ci = DT/6 to DT/2 

Di = DT/4 to DT/2 

Liquid height 
H ≈ DT 

Impeller blade width 
W = Di/6 to Di/4 

DT 

B
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Reactor shape, specifically the bottom, can vary greatly. The standard reactor design is 

cylindrical with a flat bottom (Ulbrecht and Patterson, 1985), but dished, conical, or curved bottoms 

have also been used (Harnby et al., 1992; Tatterson, 1991). The bottom shape does not seem to 

affect gas-liquid mass transfer or gas dispersion significantly, but the dished bottom is preferred for 

solid suspensions and mixing (Oldshue, 1983). Other reactor shapes, such as spherical or 

semispherical, are in use (Oldshue, 1983) but the standard design is preferred for gas-liquid 

dispersion due to operational experience and cost. Even though standard reactor designs exist in 

the chemical industry for liquid-liquid processes, customized STR use for biological and gas-liquid 

applications preclude an optimized stirred tank reactor design for all applications (Tatterson, 

1991). 

4.2 Stirred Tank Reactor Flow Regimes  

Superficial gas velocity, defined as the volumetric gas flow rate divided by the STR cross-

sectional area, influences gas-liquid mass transfer through two mechanisms: gas-filled cavities and 

gas holdup. The sweeping action of the impeller creates a low pressure void that quickly fills the 

sparged gas. These gas-filled cavities are the mechanism for gas dispersion and gassed power 

reduction (McFarlane et al., 1995). These cavities ultimately influence impeller loading, gas 

dispersion, and liquid circulation such that the impeller creates specific flow regimes which are of 

great importance for STR optimization. 

4.2.1 Radial Flow Impellers 

Radial flow impellers expel the fluid from the impeller region in the radial direction. The 

Rushton-type impeller is a standard example of radial flow impeller operation, which is often used 

as the basis for the typical flow regimes identified in radial flow impeller operation. As shown in 

Figure 4.2, three stable cavity groups are observed using this impeller: vortex cavities, clinging 

cavities, and large cavities. Vortex cavities form at constant impeller speeds and small gas flow 

rates. They are defined by two rolling vortices, one at the top and the other at the bottom of the 
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impeller blade. Clinging cavities are formed with an increase in gas flow rate. They are larger than 

vortex cavities and cling to the blade backside, but still produce vortices at the gas tail. Large 

cavities, which form with another increase in the gas flow rate, are larger, smoother, and behave 

differently in terms of hydrodynamics (Nienow et al., 1985; Smith and Warmoeskerken, 1985). 

 
Figure 4.2: Cavity types for the Rushton-type impellers where N is the impeller speed and QG is 

the volumetric gas flow rate (Smith and Warmoeskerken, 1985). 

Turbulent action forces the gas to break away from the cavity and exit the impeller zone. This 

breakage is the source of gas dispersion in stirred tank reactors. The large cavity deserves special 

attention because it induces gas breaking away less violently than the other cavity types. Large 

cavities also have an advantage in that they hold more gas and have more surface area from which 

gas can break away. Since these cavities form at higher gas flow rates and thus superficial gas 

velocities, they are able to sustain a higher gas dispersion rate than the other two cavity types; 

however, there is a breakeven point. Cavities can become too large and hamper gas-liquid mass 

transfer. For example, if the cavity volume to surface area ratio is too large, gas dispersion will 

decrease (Nienow et al., 1985; Smith and Warmoeskerken, 1985). 

Cavities also reduce the energy transfer between the impeller and liquid. A higher superficial 

gas velocity induces more gas dispersion at a lower power input. However, if too much gas is 

present and the cavities are too large, the energy transmission is reduced and the impeller’s gas 

dispersion and mixing capabilities are hampered. In this case, the cavities produce an unwanted 

energy loss and a state described as flooding (Ogut and Hatch, 1988). 



24 

The exact nature of these events is accompanied by changes in the cavity structures for the 

Rushton-type turbine (Figure 4.3). Vortex and clinging cavities form symmetric structures (i.e., 

their size and shape are similar for every impeller blade). Although these transfer energy well, they 

do very little for gas dispersion making them undesirable for gas-liquid processes. If the gas flow 

rate is increased, a 3-3 structure is formed, which is defined by alternating large and clinging 

cavities. Its importance comes from its stability and gas handling capacity. It offers the optimal gas 

dispersion for the lowest power input (i.e., most efficient). If the gas flow rate is increased further, 

the impeller is flooded. At this point, the stable 3-3 structure is replaced by a structure formed by 

large, unstable ragged cavities, which are inefficient for gas-liquid mass transfer and gas dispersion 

(Nienow et al., 1985; Smith and Warmoeskerken, 1985). The instability can also lead to varying 

impeller power draw which can damage the motor and gearbox system. 

 
Figure 4.3: Cavity structures for the Rushton-type impeller (Nienow et al., 1985; Smith and 

Warmoeskerken, 1985). 

These events have inspired improvements to the Rushton-type turbine to increase the gas 

handling capacity of the impeller to allow more gas and, hence, higher gas concentrations in the 

reactor. To accomplish this, impellers should create smaller cavities in similar structures while 

minimizing flooding. The concave blade disk turbine has been shown to accomplish these goals. 

The gas cavities on the impeller influence the gas dispersion and bulk flow regimes in a STR. For 

single impeller radial flow systems, five bulk flow regimes (Figure 4.4) have been defined (Nienow 
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et al., 1977). The different regimes occur at increased impeller speeds while holding the gas flow 

rate constant. At low impeller speeds, the power input is very small and negligible dispersion 

occurs (regime (1) in Figure 4.4). Increasing the impeller speed begins to disperse the gas phase 

(regime (2)). The bulk flow above the impeller acts like a bubble column while the lower section is 

not contacted by the gas phase. Further increasing the impeller speed allows the gas to be 

recirculated in the upper reactor section, and some gas dispersion occurs in the lower region 

(regime (3)). Regime (4) is identified by gas recirculation throughout the reactor. This condition is 

optimal for gas-liquid mass transfer and mixing processes. At the highest impeller speeds (regime 

(5)), significant circulation loops and gross recirculation are observed and high turbulence at the 

surface promotes gas entrainment (surface aeration) (Nienow et al., 1977). The progression of 

these bulk flow regimes are also shown in Figure 4.5 (Nienow et al., 1985). 

 
Figure 4.4: Bulk flow patterns for radial flow impellers at constant UG (Nienow et al., 1977). 
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Loading regimes and transitions for radial flow impellers where NFL 
transition from flooded to loaded regimes and NCD defines the transition to 
completely dispersed flow regime (Nienow et al., 1985). 

Nishikawa et al. (1984) determined that when negligible gas dispersion occurs, impeller type, 

location, or separation are irrelevant. In other words, if the total power input to the system is 

dominated by the sparged gas, the mixing in the stirred tank reactor approximates a bubble 

is effect was, however, recognized to occur at small power inputs, and the impeller 

power would start to dominate hydrodynamics and mass transfer at 30 W/m3 for Rushton

. This power level is almost never observed in application since most 

liquid dispersion with STRs occurs in the range of 500-4000 W/m3 (Bliem and Katinger, 1988b; 

Oldshue, 1983). 

The flow regime transitions can be determined from a gassed power number (or gassed

ungassed power ratio) vs. flow number graph where the flow number is defined as:
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are the volumetric flow rate, impeller speed, and impeller diameter, 

respectively. Generic and experimental examples are shown in Figure 4.6 and Figure 4.
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are the volumetric flow rate, impeller speed, and impeller diameter, 

Figure 4.7, 
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respectively. Flooding occurs at a local maximum of this graph represented by a flooding transition 

impeller speed NF. It has also been defined as the transition point from (3) to (2) or (4) to (3) (by 

decreasing N). The local minimum for the graph holds a special place. It represents the minimum 

power input required to achieve bulk flow regime (4), also known as complete dispersion or 

recirculation. The reactor should be operated such that N > NCD; this represents the most 

economical operation in terms of power usage and gas utilization. Mixing time, which is defined as 

the time required to mix incoming fluid homogeneously into the existing liquid volume, is also 

optimized, but it is still higher than in an unaerated system (Hadjiev et al., 2006). If the impeller 

speed is increased beyond the complete dispersion impeller speed, the power use increases 

(Nienow et al., 1985; Smith and Warmoeskerken, 1985). 

 
Figure 4.6: Generic transition plot where Npg is the gassed power number (Kapic, 2005). 
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Figure 4.7: Experimental transition plot. The numbered data points represent specific conditions 

tested by Ford et al. (2008). 

A second local maximum that follows represents the transition to the gross recirculation flow 

regime. This impeller speed, identified by NR, should be avoided because it leads to inefficient gas 

utilization and gas entrainment. If an oxygen probe were to be positioned near the entrained gas, 

oxygen depletion would be a matter of time and a reduction in kLa would be recorded. In other 

words, the impeller should be operated between NCD and NR to achieve maximum efficiency. The 

transition between these flow regimes and their representative impeller speeds have been shown 

to be a function of impeller type, Di/DT, and scale. Given a Di/DT and impeller type, the transition 

impeller speeds are scale independent, but the rate at which the transitions occur are not. Larger 

vessels have a gradual transition while smaller ones experience transition over a limited flow 

number range (Nienow et al., 1985; Smith and Warmoeskerken, 1985). As shown in Figure 4.6, 

increasing the gas flow rate leads to smoother and delayed transitions. 
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4.2.2 Axial Flow Impellers 

Axial flow impellers direct the fluid flow within the STR along the axis of the rotating shaft. 

Simple propeller-type impellers offer a simple example. In down-pumping axial flow impellers, the 

fluid is pumped downward while the gas is introduced below the impeller. The cavity propagation 

of axial flow impellers (Figure 4.8) is similar to the Rushton-type turbine, but gas dispersion differs 

in that pulsation forces gas to leave the impeller zone via the cavity tail (McFarlane et al., 1995). As 

shown in Figure 4.8, low impeller speeds and gas flow rates form vortex cavities at the impeller 

blade tip. Increasing the gas flow rate leads to the creation of a clinging cavity. The creation of 

larger cavities on axial flow impellers requires an increase in the gas flow rate and the impeller 

speed. A minimum impeller speed is needed to support larger cavities. If this minimum is not met, 

axial flow impellers experience vortex shedding such that the vortex detaches from the blade, 

leading to the next vortex creation cycle. This shedding can cause variations in torque and power 

draw, but usually do not cause any problems (McFarlane et al., 1995). 

 
Figure 4.8: Cavity types for axial flow impellers (McFarlane et al., 1995). 
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Incipient large cavities are formed in axial flow impellers if the gas flow rate is increased and 

the minimum impeller speed requirement is met. This cavity type occupies more space than the 

clinging cavity, but disperses gas in a similar pulsating fashion. At a higher gas flow rate, large, fully 

developed cavities form, which occupy almost the entire blade area, but they do not extend beyond 

the impeller blade edge. When large cavities are present, the liquid and gas are discharged 

predominately in a radial direction from the impeller zone. Prior to flooding, the large cavity loses 

its defined boundary and blends into the flow. Once the impeller is flooded, the cavity structure is 

completely lost and gas simply passes through the impeller zone without any breakage or 

dispersion (McFarlane et al., 1995). 

Unlike the Rushton-type turbine, cavities on axial flow impellers are rarely stable and 

frequently change shape, size, and identity, which can induce different gas loading regimes and 

torque and power draw variations. If gas enters the impeller zone via the impeller induced liquid 

flow, the impeller is said to be loaded indirectly. In contrast, direct loading is defined by sparged gas 

controlled flow into the impeller zone. In other words, the impeller generated flow is not able to 

deflect the sparged gas. The transition leads to changes in the cavity size, shape, and identity, which 

are significant for large cavities (McFarlane et al., 1995). 

Downward pumping axial flow impellers exhibit different bulk flow regimes at low and high gas 

flow rates due to the effects or large cavities; this phenomenon differentiates axial from radial flow 

impellers; however, the major regimes (flooding, loading, and complete dispersion) have similar 

characteristics. McFarlane et al. (1995) used an A-315 (axial flow impeller) for visualization 

purposes and noted that other downward pumping axial flow impellers exhibit similar behavior. 

Figure 4.9 depicts A-315 behavior as described by McFarlane et al. (1995) for low gas flow rates 

(relative to scale and power draw). The figures progress from (a) to (d) in terms of increasing 

impeller speeds. In (a), the impeller is flooded at a low impeller speed. Gas rises easily through the 

impeller zone and behaves similarly to flooded radial flow impellers. Increasing impeller speed 
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induces minor recirculation loops in the impeller vicinity and the impeller is said to be directly 

loaded. The transition between (b) and (c) signals the direct-indirect transition such that the 

impeller is partially directly and indirectly loaded. Increasing the impeller speed further leads to 

indirect loading (c). Cavity oscillations cause the bulk flow to vary between asymmetric (i) to 

occasional symmetric (ii) flow patterns. Variations in cavity type and loading are not damaging to 

the motor and gearbox because the flow remains mostly axial throughout the process such that the 

torque and power draw variations are limited. Further increase leads to complete dispersion as 

shown in (d) (McFarlane et al., 1995). 

 
Figure 4.9: Bulk flow regimes generated by downward pumping A-315 at low gas flow rates 

(McFarlane et al., 1995). 

McFarlane et al. (1995) describe different flow patterns when relatively high gas flow rates are 

present (Figure 4.10). At higher gas flow rates and beyond a minimum impeller speed, large cavities 

form and have a significant impact on flow stability and bulk flow regimes. Flooding occurs in the 

same manner as with low gas flow rates (a). If the impeller speed is above a threshold, large cavities 
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form causing a significant loss in pumping capacity; this is accompanied by direct loading and a 

significant radial and axisymmetric flow pattern as shown in (b). The impeller cavity distribution is 

also axisymmetric. The transition from direct to indirect loading is shown in (c). An increase in the 

impeller speed induces oscillations between predominantly radial (i) and axial (ii) flow. Occasional 

cavity shedding induces impeller dominance which would force gas to the tank bottom (iii); 

however, this event is temporary, and flow eventually reverts back to radial or oscillating 

dominance. This series of events occurs over a very short impeller speed range and a subsequent 

increase results in proper loading and dispersion (d). 

 
Figure 4.10: Bulk flow regimes generated by downward pumping A-315 at high gas flow rates 

(McFarlane et al., 1995). 

The oscillation in cavity size and flow direction (Figure 4.10c) can produce large and significant 

variations in power draw and torque such that the power number for the down-pumping A-315, for 

example, can vary between 0.84-1.48 at a frequency of 1-2 minutes. The variations in torque and 

power draw can have damaging effects on the motor and gear assembly (Tatterson, 1994) and can 

lead to vessel vibration (Sardeing et al., 2004b). Additionally, large cavities tend to create 
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asymmetric flow which can produce a significant bending moment on the impeller shaft, resulting 

in shaft damage. Smaller impellers at low power concentrations experience these problems much 

earlier because large cavities are able to form with a smaller amount of gas at these scales. Up-

pumping axial flow impellers have a more stable oscillation because the sparged gas enters the 

impeller zone in the same direction as the fluid (McFarlane et al., 1995). 

The detrimental effects of large cavity formations can be minimized by increasing the impeller 

speed. Reactor design improvements can be made such that large cavities require more gas or that 

the minimum impeller speed for large cavity formation is reduced. The goal is to reduce the impact 

on the normal operating range such that the event is outside normal parameters or induces 

fluctuations that are within the design specifications for the motor and gear assembly (McFarlane et 

al., 1995). 

4.3 Effects of Impeller Design and Arrangement 

The impeller provides mechanical agitation and gas dispersion. It is responsible for bubble 

breakup in gas-sparged stirred tank reactors and for solid suspension in gas-liquid-solid stirred 

tank reactors. Numerous impeller designs exist to meet various needs, and the economic success of 

a project depends on the evaluation and selection of a proper impeller in concert with reactor 

geometry (Ungerman and Heindel, 2007). A few standard impellers in gas-liquid dispersion are 

documented. Normal impeller-to-tank diameter ratio, Di/DT, is typically between 1/4 and 2/3 

(Harnby et al., 1992) with the standard ratio being 1/3 (based on industrial experience) and rarely 

going above 1/2 (Tatterson, 1991). This geometry minimizes cost and is capable of providing a 

well-mixed state for the liquid phase and complete dispersion of the gas phase. An impeller with a 

larger Di/DT ratio proves inefficient and unnecessary. The impeller power draw is proportional to 

the impeller speed to the third power and the impeller diameter raised to the fifth power. It is, 

therefore, cheaper to operate an impeller at a faster speed than a larger diameter if more dispersion 

or blending is needed. Impeller clearance, defined as the distance between the impeller and tank 
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bottom, is typically in the range DT/6-DT/2 (Tatterson, 1994) depending on the liquid viscosity, 

impeller type, sparger-impeller separation, and number of impellers. 

Impellers can be classified into groups based on the liquid viscosity used in the reactor (Harnby 

et al., 1992). Propellers, turbines, and paddles have a higher tip speed relative to other impeller 

types and are used for low viscosity Newtonian liquids which are encountered in most processes 

(Ogut and Hatch, 1988). Propellers are usually operated faster and paddles slower than turbines. 

The standard three-bladed propeller has poor gas-liquid dispersion and contacting characteristics 

and will be excluded from further discussion. 

4.3.1 Radial Flow Impellers 

A more common impeller classification is by flow leaving the impeller zone. Impellers can be 

classified into radial or axial flow impellers. Some examples of radial flow impellers are the 

Narcissus impeller (NS), concave blade disc turbine (Figure 4.11), (Chemineer) BT-6, and the multi-

bladed disc turbine. A six-bladed disc turbine, shown in Figure 4.12, is often referred to as a 

Rushton-type turbine (RT) (Ulbrecht and Patterson, 1985). The standard blade is Di/4 long and 

Di/5 wide (Oldshue, 1983). Increasing the number of blades (12 or 18) produces similar 

recirculation as the standard RT, but reduces the power draw drop upon gassing (Smith et al., 

1977). Increasing the number of blades, however, increases the ungassed power number from ~5 

to 8-9 (Nienow, 1996), which diminishes the  use of disc turbine with higher blade numbers as a 

mixing device (Nienow et al., 1995). Turbine designs using retreating, angled, or hollow faced 

blades are in existence, but have not been able to compete with the Rushton-type turbine for gas-

liquid dispersion tasks (Harnby et al., 1992; Williams, 2002). 
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Figure 4.11: Concave impeller. 

 
Figure 4.12: Rushton-type turbine. 

The RT is the most popular impeller for gas-liquid dispersion since the 1950s (Nienow, 1996). It 

has very good bubble breakup and gas dispersion capabilities leading to good mass transfer 

characteristics (Cabaret et al., 2008; Williams, 2002). It is the measuring stick to which other gas-

liquid impellers are compared. The high power number of the Rushton-type turbine, which is a 

disadvantage for mixing purposes, is an advantage for gas-liquid dispersion. The RT is capable of 

creating higher maximum shear zones and produce smaller bubbles. Smaller bubbles lead to a 

higher interfacial area, which in turn increases the mass transfer capacity. In addition, the disc 

feature of the RT prevents gas bubbles from passing through the lower shear region and forces the 

gas flow through the high shear impeller tip region (Oldshue, 1983; Tatterson, 1991). These 



36 

features give the Rushton-type turbine kLa values that are an average of 50% higher than other 

impellers operating under similar conditions (Sardeing et al., 2004a). 

Although commonly used, Rushton-type turbines exhibit several negative traits. Some are 

design specific, but others are shared by all radial flow impellers. This is mainly due to the fact that 

newer radial impellers were designed with the goal of improving on a small number of 

disadvantages (Nienow, 1996). The RT experiences a power draw drop upon gassing of 50-65% 

(McFarlane and Nienow, 1996b). This weakness is purely operational, but forces the reactor to have 

a complicated gearbox design (Ulbrecht and Patterson, 1985) which adds to the installation and 

maintenance costs. Concave (hollow) and 12 or 18 blade disc turbines can be used to minimize this 

effect. They form smaller cavities on the blade backside relative to the standard RT (Smith et al., 

1977). The smaller cavities lead to much smoother power curves and less variation in power draw 

upon gassing (Ungerman and Heindel, 2007), and hence lead to simpler gearbox designs (Ulbrecht 

and Patterson, 1985). 

Concave blade disc turbines are of interest in gas-liquid dispersion because they are able to 

handle more gas than Rushton-type turbines before flooding (Smith et al., 1977; Vasconcelos et al., 

2000). The mass transfer capacity for the concave blade disc turbine is very similar to the Rushton-

type turbine, but Chen and Chen (1999) found that the blade curvature could be optimized for a 

certain power input to produce higher gas-liquid mass transfer coefficients. Unlike the Rushton-

type turbine, the concave blade disc turbine requires the cup orientation to be in the direction of 

impeller rotation (Tatterson, 1994). 

Vasconcelos et al. (2000) investigated the influence of the impeller blade shape, shown in 

Figure 4.13, on gas-liquid mass transfer. They concluded that the importance of blade shape was 

negligible for disc turbines as long as the power number, power draw drop upon gassing, and gas 

flow rate were similar. Other authors have come to a similar conclusion, but also stipulated that the 

process has to be in the turbulent regime (Nienow, 1996). Angled, concave, and lancelet blade disc 
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turbines provided lower impeller power numbers, but also offered smaller power draw drops upon 

gassing and smaller, if any, gas cavities. Hence, they are more efficient and capable of handling gas. 

Increasing the impeller diameter could discount the power draw disparity while allowing 

retrofitting to be easily accomplished. As such, the retrofitted system would provide similar gas-

liquid mass transfer performance and would handle more gas, potentially allowing for an increased 

operational range and gas-liquid mass transfer. 

 
Figure 4.13: Possible blade shapes for use with disc turbines (Vasconcelos et al., 2000). 

Another major weakness for radial flow impellers stems from one of the strengths: the high 

shear rates. The power dissipation (or shear) rates are concentrated at the blade tips (Gagnon et al., 

1998) and are not uniformly distributed throughout the reactor (Fujasova et al., 2007; Ungerman 

and Heindel, 2007). This unbalanced shear distribution can lead to stagnant zones in the outer 

reactor region (Bellgardt, 2000) and higher mass transfer in the impeller stream relative to the 

working volume (Stenberg and Andersson, 1988a, 1988b). According to Stenberg and Andersson 
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(1988b), 50% of the energy is dissipated in the impeller stream, 20% in the immediate impeller 

vicinity, and 30% is dissipated through the rest of the reactor. This disparity leads to radial flow 

impellers, especially the RT, providing very poor top-to-bottom mixing (McFarlane and Nienow, 

1995), particularly in more viscous fluids. 

If a constant impeller speed scaleup rule is used, the impeller tip energy dissipation rate will 

increase due to its connection to the impeller diameter (Bliem and Katinger, 1988b). The power 

decay is more pronounced in larger vessels and contributes to scaleup issues (Figueiredo and 

Calderbank, 1979). This concentration leads to the local energy dissipation rate in the impeller 

vicinity being up to 270 times higher than the average. Furthermore, the local rate experiences 

large fluctuations creating problems in scaleup and reactor design comparisons. These high shear 

fluctuations can be harmful to some bioreactor microorganisms (Bliem and Katinger, 1988a, 1988b; 

Bredwell and Worden, 1998). 

Lastly, the fluid can experience low bulk circulation leading to low gas holdup in the bottom 

reactor section (Fujasova et al., 2007; Ungerman and Heindel, 2007) and gas compartmentalization 

(Moucha et al., 2003). Gas compartmentalization is to be avoided since it poses the danger of spent 

gas entrainment or gas starvation. Spent gas is inactive in production and limits the practical 

working volume (Fujasova et al., 2007) while gas starvation can limit the effectiveness of the 

microorganisms (Pollack et al., 2008). 

As scale increases, a proper mixing state gains in importance which can lead to radial flow 

impellers providing very poor mixing conditions in a significant portion of the reactor volume 

(McFarlane and Nienow, 1995). The solution has been to simply operate the impeller at a faster 

speed which can have detrimental effects on microorganisms, power usage, and impeller 

characteristics. Retrofitting a system with a larger radial flow impeller to resolve some of these 

problems is not usually possible because different turbine diameters produce very different 

torques. The higher torque of a larger diameter turbine can be damaging for the motor and drive 
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train to the point that this practice is seen as high-risk-low-reward and rarely implemented 

(McFarlane and Nienow, 1995). The smoother power curves of the concave blade turbine are very 

promising for this purpose and should be seriously considered. 

Chen and Chen (1999) investigated the possible replacement of the RT. The comb blade and 

perforated blade disc turbine were found to have higher kLa values than the standard RT at similar 

power inputs. They came to the conclusion that bubble breakup was not only a function of the shear 

gradient magnitudes, but also the amount of time the gas phase remained in the shear field. By 

spatially increasing the shear field, bubbles spent longer time periods in this region and decreased 

the probability that larger bubbles would pass through this region without significant breakup. The 

results were that the comb and perforated blade disc turbine produced kLa values that were almost 

12% and 30%, respectively, higher than the Rushton-type turbine at the same power input and 

superficial gas velocity while producing lower shear gradient magnitudes. Currently, there is no 

available information of these impellers being used in processes involving microorganisms. 

4.3.2 Axial flow impellers 

Many attempts have been made to replace radial flow impellers with axial flow impellers. 

Examples of axial flow impellers include the Lightnin A-310 (Figure 4.14), Lightnin A-315 (Figure 

4.15), Pitched Blade Turbine (PBT) (Figure 4.16), Techmix 335 (TX), Prochem Maxflo T, SuperMIG 

(EKATO), marine propeller, A-3 impeller, or a multibladed paddle. The PBT and hydrofoil impellers, 

such as the Lightnin A-315, are the most commonly used axial flow impellers. These devices have 

much lower power numbers than radial flow impellers which makes them ideal for mixing 

purposes. Their blending prowess is due to the fact that the mixing time is independent of the 

impeller type (Nienow, 1996). Hence, the operation can be accomplished at a lower cost with axial 

flow impellers; however, as shown in Figure 4.17, axial flow impellers are usually inferior to radial 

flow impellers for mass transfer purposes. They usually produce flow in the axial direction, but can 
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create some radial flow if Di/DT > 0.5 (Tatterson, 1991). This situation is usually avoided since the 

standard low viscosity impellers have a Di/DT ratio of about 1/3 (Harnby et al., 1992). 

 
Figure 4.14: Lightnin A-310 axial flow impeller. 

 
Figure 4.15: Lightnin A-315 axial flow impeller. 

 
Figure 4.16: Pitched blade turbine (PBT) axial flow impeller. 
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Figure 4.17: Gas-liquid mass transfer for various impeller types (Adopted from Moucha et. al 

(2003)). 

Axial flow impellers used in low bottom clearance tanks can also create radial flow if the 

direction of the flow is downward. In this case, the flow can leave the impeller zone only by flowing 

in the radial direction (Tatterson, 1991). This phenomenon is usually not observed since the 

standard bottom clearance for low-viscosity impellers in gas-liquid dispersions is between one 

impeller diameter and one half the tank diameter (Ulbrecht and Patterson, 1985). The hydrofoil 

impeller discharge is affected by the impeller Reynolds number based on the impeller diameter and 

speed. If the system is operated with a viscosity such that Re is about 5000, the flow becomes more 

and more radial. This change could have a significant impact on mixing and gas dispersion and 

would be especially important for viscous non-Newtonian processes (McFarlane and Nienow, 

1995). 

The PBT discharges fluid from the impeller zone at an angle of 45°-60°. The standard design has 

flat blades that are 45° from the horizontal and have a 1/5 blade width-to-diameter ratio. This 

discharge angle causes a significant radial component regardless of the impeller size or position 
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which has led to the PBT to being classified as a mixed impeller in the axial family (McFarlane and 

Nienow, 1995). These features make the PBT an excellent mixing device. The mixing (blending) 

time is reduced and heat transfer is improved; however, the PBT makes a bad impeller for gas 

breakup. Gas bubbles are led to the blade tip where they are sliced apart, but the blade shape does 

not accumulate bubbles in a sufficient manner. Therefore, a large number of bubbles pass through 

the impeller zone without interacting with the breakup mechanism (Martín et al., 2008b). The 

solidity ratio, which relates the impeller blade area to the impeller swept area, is about 0.43 for the 

PBT (Oldshue, 1983). Low solidity ratio impellers flood before radial flow impellers and high 

solidity ratio impellers, so their use in gas-liquid processes in single impeller systems is atypical 

(Ungerman and Heindel, 2007). 

In order to reduce flooding, high efficiency hydrofoil impellers, distinguished by their profiled 

blades (McFarlane and Nienow, 1995), were introduced. These impellers, such as the Lightnin A-

315 (see, for example, Figure 4.15), have a much higher solidity ratio of about 0.87, flood later 

(Ungerman, 2006), and have a smaller power draw drop upon gassing (30-50%) (McFarlane and 

Nienow, 1996b) than radial flow impellers. It is therefore capable of handling more gas than the 

radial or PBT impellers (Chen and Chen, 1999). In fact, it can handle 86% more gas than a Rushton-

type turbine before flooding (Yawalkar et al., 2002) and 40% more gas than the PBT before the 

onset of gas loading transition (described in Section 4.2.2) (McFarlane and Nienow, 1996b). 

However, the A-315 is still an axial flow impeller and produces lower shear gradients relative to the 

Rushton-type turbine. The advantage of using the A-315 over a RT depends upon the gas flow rates 

and shear sensitivity of the microorganisms. If neither of these situations is important, the RT is still 

the better choice. If the gas flow rates are of importance but shear sensitivity is not, the concave 

blade disc turbine is the more effective impeller. 

The axial flow direction makes particulate suspension easier relative to radial flow impellers 

(Tatterson, 1991). Axial flow impellers are also better blending devices because they have a lower 
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power number – hence power usage – and shorter blending times; however, results for gas-liquid 

contact have been unimpressive relative to the Rushton-type turbine, and axial flow impellers tend 

to have smaller gas-liquid mass transfer coefficients. Additionally, large reactors using axial flow 

impellers have shown highly asymmetric and oscillating gas holdup distributions with periods of up 

to several minutes (Bakker and Oshinowo, 2004). Therefore, their use has been limited to mixing 

and shear normalizing in multiple impeller gas-liquid systems (Bouaifi et al., 2001) and mixing and 

solid suspension in single impeller systems (Oldshue, 1983). 

The direction of the flow, up or down, depends on the geometry and rotation of the axial flow 

impeller. In general, up-pumping impellers push the gas to the surface faster (lower gas holdup) 

while down-pumping impellers induce recirculation and longer residence times, defined as the time 

a particle spends in the reactor, which leads to higher gas holdup (Moucha et al., 2003). These 

circulation loops are important with respect to gas holdup and contribute to multiple impeller 

systems offering 30% higher gas holdup values than single impeller systems (Bouaifi et al., 2001). 

The down-pumping impeller also offers shorter mixing times, which can lead to lower operational 

costs in systems where mixing is important (Gogate and Pandit, 1999). 

Some researchers, on the other hand, do not find a preference for up- or down-pumping axial 

flow impellers (Fujasova et al., 2007) or find the up-pumping configuration produces more 

macromixing than down-pumping systems, which led to smaller bubble diameters (Majirova et al., 

2004; Sardeing et al., 2004b). Sardeing et al. (2004b) observed that gas holdup in the up-pumping 

configuration was determined to be 10-25% higher than the down-pumping orientation. The gas 

holdup conclusions were drawn based on constant impeller speed data. Down-pumping axial flow 

impellers also have significant stability and hydrodynamic problems in certain operating ranges, 

which may have contributed to the up-pumping axial flow impeller’s superior gas holdup 

performance (McFarlane and Nienow, 1995; McFarlane et al., 1995). Sardeing et al. (2004b) focused 

on power concentration, which they indicated to be more relevant, and the down-pumping PBT was 
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determined to be more efficient than the up-pumping PBT, confirming similar conclusions made by 

Moucha et al. (2003), Bouaifi et al. (2001a), and Gogate and Pandit (1999). 

4.3.3 Multiple Impeller Systems 

Multiple impeller STR designs, schematically represented in Figure 4.18, are very popular in 

practice (Nocentini et al., 1998) and were implemented due to shortcomings of the single impeller 

system and industrial requirements. For example, when a single impeller system is used in an 

industrial-scale reactor, it may not provide proper agitation and gas dispersion in large reactors. 

Additionally, viscous or non-Newtonian liquids do not mix well in a single impeller system. Large 

gas-filled cavities on the back of the impeller blades also limit the amount of gas that can be 

properly dispersed in a single impeller STR (Cabaret et al., 2008). 

 
Figure 4.18: Standard multiple stirred tank reactor design. 

Multiple impeller systems are able to distribute energy throughout the reactor more efficiently, 

which leads to a more homogeneous shear rate distribution. Liquid circulation and gas dispersion 

are also improved, leading to longer gas-phase residence times. These factors lead to better gas 
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C = DT/4 to DT/3 
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utilization, higher gas-liquid mass transfer coefficients (Bouaifi and Roustan, 2001; Cabaret et al., 

2008; Fujasova et al., 2007; Moucha et al., 2003; Nocentini et al., 1998), longer gas phase residence 

times, better bulk flow characteristics (Shewale and Pandit, 2006), and higher gas holdup (Bouaifi 

et al., 2001; Bouaifi and Roustan, 2001; Shewale and Pandit, 2006) relative to single impeller 

systems. The industrial implementation of multiple impellers can be made to single impeller 

systems with minimal retrofitting and without changes to the motor and gearbox (Lines, 2000), 

especially if the addition is an axial flow impeller (McFarlane and Nienow, 1995). 

In order to achieve a proper working condition, however, proper impeller placement has to be 

considered. The bottom clearance for most multiple impeller designs is between DT/4 and DT/3. If 

the impellers are too close to each other, impeller-impeller interference can lead to inefficient 

operation and an inability to separate operational inputs; this would add complications without 

enhancing efficiency. Interference also provides limited, if any, increase in kLa (Nishikawa et al., 

1984). The power draw for a multiple impeller configuration will be normal upon startup, but may 

decrease to about 70% of the initial value and remain at those levels throughout the process when 

the impellers are too close. The flow patterns of interfering impellers may also exhibit 

characteristics of a single impeller system (Mishra and Joshi, 1994) leading to negligible 

improvements and increased costs (Oldshue, 1983). For example, a second RT has been reported to 

increase kLa by 74% if placed correctly, but would provide no improvement if interference occurred 

(Nishikawa et al., 1984). 

The separation between impellers depends on the impeller type, but should be a minimum of 

1Di (Linek et al., 1996b). The Rushton-type turbine, for example, requires a separation of 1.5Di, but 

2Di would be preferred to ensure independence (Fujasova et al., 2007). Linek et al. (1996b) found 

that if the impellers were acting independently, each impeller’s mass transfer characteristics could 

be evaluated as a single impeller system. The overall mass transfer coefficient could be calculated 

using a weighted average, with the lower and upper section having a weight of 0.25 and 0.75, 
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respectively (Linek et al., 1996a). However, this approach failed using non-coalescing media and 

was not proven at larger scales (Linek et al., 1996b). 

The impeller is the key component for proper STR operation, especially for multiple impeller 

systems. A proper selection procedure has to consider numerous options and their applicability to 

the particular process of interest. A mixed configuration using a radial and axial flow impeller is 

assumed to be more efficient for gas dispersion and mixing in a low viscosity Newtonian fluid than 

a dual axial or radial configuration, even though the Rushton-type turbine combination provides 

better kLa (see, for example, Figure 4.19). Efficiency, in this case, is defined as the capability to 

maximize gas-liquid mass transfer while minimizing power input (Gagnon et al., 1998). It is often 

advantageous to use a Rushton-type or concave blade turbine as the bottom impeller. This impeller 

would provide optimal bubble breakage. The upper impeller can be a downward pumping axial 

flow impeller to enhance gas-liquid circulation (Puthli et al., 2005). 



Figure 4.19: Effects of multiple impellers on gas
Moucha et al. (2003)).

Experiments using a radial setup are often performed to set the bar for mass transfer 

comparisons. Gagnon et al. (1998) contributed to this discussion by investigating the effect of 

adding impellers to the same reactor. A second Rushton

residence time, and the gas-liquid mass transfer coefficient. The addition of a third Rushton

turbine increased these further, but at a much lower amount. They came to the conclusion that gas 
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Effects of multiple impellers on gas-liquid mass transfer in a STR (Adopted from 
Moucha et al. (2003)). 

Experiments using a radial setup are often performed to set the bar for mass transfer 

comparisons. Gagnon et al. (1998) contributed to this discussion by investigating the effect of 

adding impellers to the same reactor. A second Rushton-type turbine increased gas holdup, gas 

liquid mass transfer coefficient. The addition of a third Rushton

turbine increased these further, but at a much lower amount. They came to the conclusion that gas 

liquid mass transfer does not increase linearly with the number of 

impellers and power drawn. Moucha et al. (2003) came to a similar conclusion when going from 

Figure 4.19, the additional mass transfer was negligible

s made from 2RT to 3RT. 
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The mixed configuration efficiency and the declining increase in kLa with increasing number of 

turbines are determined by the impeller loading. The bottom impeller is loaded directly (by 

sparged gas) while the other impeller(s) are loaded indirectly (by impeller generated flow loops). 

Direct loading enhances gas dispersion capabilities of the Rushton-type turbine, while indirect 

loading puts more emphases on liquid mixing efficacy. Impeller loading is a more important 

consideration in experimental-scale reactors. Larger industrial-scale reactors require more 

effective blending and top-to-bottom mixing than the Rushton-type turbine can provide (Bouaifi 

and Roustan, 2001; Fujasova et al., 2007). The Rushton-type turbine is oftentimes limited in this 

regard, and the conditions created in these impeller zones (cells) are more geared towards axial 

flow impellers (McFarlane and Nienow, 1995).  

Furthermore, radial flow impellers’ discharge divides the reactor volume into well-mixed 

systems with minimal interchange (Nienow, 1996). As a result, radial flow impellers in large-scale 

systems may produce compartmentalization, caverns (impeller is encased by its flow field while 

most of the reactor is stagnant), higher gas recirculation, and low volumetric exchange zones 

(Nocentini et al., 1998). For large STRs, the combination of a radial flow impeller on the bottom and 

a down-pumping axial flow impeller on the top enhances the reactor fluid mixing such that the 

reactor volume contact is maximized with minimal power input (Fujasova et al., 2007; Vasconcelos 

et al., 2000). 

Some discrepancies and opposing suggestions in the literature can be explained by using the 

studies of Linek et al. (1996a) and Nocentini et al. (1998). They found unequal amounts of gas pass 

through each impeller section regardless of loading type, resulting in gas distribution 

nonuniformity which can lead to the bottom impeller being flooded far earlier than the others. 

Since the bottom impeller contacts the most gas and is responsible for initial bubble breakup, 

flooding of this impeller is severely detrimental to system operation (Nocentini et al., 1998). 



49 

Linek et al. (1996a) concluded that the bottom impeller section had gas holdup and mass 

transfer values that were 15% and 45%, respectively, lower than the upper section when the STR 

was filled with non-coalescing media (0.5M Na2SO4). Similar conclusions were reached when using 

water, with the upper section producing higher kLa values by 15%. This also implies that impeller 

power consumption was not balanced, i.e., one of the impellers consumed more power and created 

higher shear gradients than the other, producing higher kL and a values for the upper reactor 

section. The problem is made worse due to the fact that gas tends to coalesce faster and easier in 

regions of low power (relatively speaking), creating larger bubbles which reduce the interfacial 

surface area and possibly lowers kL. Coalescence, however, would be far less likely in non-

coalescing media which should explain Linek et al. (1996a) results. 

Bouaifi et al. (2001) found that the average bubble diameter was larger in the bottom section of 

the reactor than the upper section. They concluded that bubbles formed a distribution such that the 

larger bubbles were in a region outside the impeller stream and were up to four times larger than 

the bubbles entrained in the impeller stream. More specifically, gas in these setups would 

concentrate about the impeller shaft, impeller tip, and within the radial area between the impeller 

and reactor walls (Boden et al., 2008; McFarlane and Nienow, 1996a). These observations were 

made for an axial system, but are very similar to those made by Stenberg and Andersson (1988b) 

for a 1RT setup, which produced a similar qualitative mass transfer behavior for these impeller 

types.  

Bouaifi et al. (2001) also observed that a “very heterogeneous bubble distribution” would form 

in a dual axial flow impeller system once the bottom impeller was flooded. If the impeller was 

properly loaded and complete dispersion occurred, 50-60% of the bubbles had a diameter of 1-3 

mm. Thus, it was more effective to operate in the loaded and complete dispersion regime. These 

experiences confirm and explain the unbalanced mass transfer performance observed by Linek et 
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al. (1996a, 1996b) and Gagnon et al. (1998) in multiple impeller systems and by Bellgardt (2000), 

Moilanen et al. (2008), and Stenberg and Andersson (1988a, 1988b) in single impeller systems. 

The impeller choice in multiple impeller reactors is therefore vital. A proper selection requires 

a minor power increase of ~15% to produce similar kLa of a Rushton-type setup but with a much 

friendlier environment for microorganisms and larger scales (Fujasova et al., 2007). The required 

radial and axial flow impeller often depends on the operational conditions. The simplest 

configuration includes a Rushton-type turbine for the lower impeller and a down-pumping PBT for 

the upper turbine(s). Since these impellers tend to flood relatively early, it has been proposed to 

replace the Rushton-type turbine and down-pumping PBT to extend the operational use. For 

example, Pinelli et al. (2003) did not find an advantage to using two Rushton-type turbines over 

two BT-6 impellers (asymmetric concave blade impellers designed by Chemineer). Gas holdup and 

macromixing were observed to be very similar, which would imply that the concave blade disc 

turbine could replace a Rushton-type turbine in a single or multiple impeller system without major 

hydrodynamic implications while providing more gas handling capacity (Vasconcelos et al., 2000). 

While holding power concentration and superficial gas velocity constant, Chen and Chen (1999) 

observed much higher mass transfer potential and smaller bubbles by replacing the RT with a comb 

and perforated blade disc turbine. The A-315 could replace the down-pumping PBT if a higher gas 

capacity is necessary. A more homogeneous environment is also expected with this replacement at 

larger scales because the A-315 (e.g., Figure 4.15) provides better recirculation exchange and 

interaction with the other impeller(s) (Bouaifi et al., 2001). 

It is common to use multiple impeller systems in operations that are expected to undergo 

significant changes in viscosity and rheology. These processes are operated in the laminar regime 

which puts more emphases on the viscous behavior of the fluid. Multiple impellers have been 

determined to produce better gas-liquid mass transfer in viscous fluids than the commonly used 

helical ribbon impeller. Most researchers, however, spend time investigating low viscosity impeller 
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combinations for viscous non-Newtonian applications (Tecante and Choplin, 1993). These low 

clearance impellers can require large amounts of power, making their operation impractical, 

especially for very viscous non-Newtonian liquids (Gagnon et al., 1998). In these cases, the 

operation is simply shut down if the impellers are not capable of providing proper conditions (Ogut 

and Hatch, 1988). 

Cabaret et al. (2008) and Gagnon et al. (1998) concluded that better mixing and higher product 

conversion can be achieved if a close clearance impeller, such as the helical ribbon, is used in 

conjunction with a radial flow impeller such as the RT in a highly viscous system. The Rushton-type 

turbine provides proper gas dispersion, while the close clearance impeller attempts to contact most 

of the reactor volume and provides proper bulk mixing, shear distribution, lower apparent 

viscosity, and minimal stagnant zones (Tecante and Choplin, 1993). These effects also lead to higher 

reactor utilization and can decrease power requirements. 

4.3.4 Surface Aeration 

Stirred tank reactors are highly turbulent mixers which can induce a high degree of surface 

turbulence. Although the effects of turbulence in the reactor volume are known, the interaction at 

the gas-liquid surface can be complicated. Unbaffled vessels can experience flow destructive 

vortices and solid-body motion at normal operating impeller speeds. If the vessel is baffled, these 

vortices tend to be minor, but their influence on mass transfer can be important. Highly turbulent 

surfaces allow the STR to entrain head space gas, effectively adding to the sparged gas flow rate. 

This phenomenon is referred to as surface aeration. Therefore, direct sparging, which has been the 

only option discussed so far, is not required. However, this form of indirect sparging affects 

impeller performance and reactor hydrodynamics in the same fashion as direct sparging 

(Patwardhan and Joshi, 1998). 
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Surface aeration is used in wastewater treatment, water aeration (fishing ponds for example), 

and processes requiring the gas phase conversion to be maximized (toxic or highly valuable gases). 

If the system requires the gas phase to be recycled, surface aeration allows the reactor to be capped 

creating a dead end system. Hence, a recycle gas compressor is not necessary which minimizes 

fixed costs (Patwardhan and Joshi, 1999). Such reactor designs limit potentially toxic exposure, 

increase work reliably, and have limited maintenance costs. The lack of a sparger can further 

extend these benefits for processes containing an excessive amount of a solid phase such as 

wastewater treatment (Patwardhan and Joshi, 1998). 

Surface aeration is most common in multiple impeller systems and/or semibatch and batch 

processes (Lines, 1999). Multiple impeller designs place an impeller relatively close to the surface 

which can induce surface aeration at relatively low impeller speeds. Most authors do not check for 

this phenomenon, and it is often unclear as to which models are used for the mass balance in the 

gas phase. The exclusion of a dynamic gas holdup term (assuming dynamic conditions) does not 

affect the results if surface aeration is limited; however, if surface aeration is significant, 

experimental errors could be large (Figueiredo and Calderbank, 1979). 

The critical impeller speed for surface aeration (NCSA) can be identified using indirect sparging. 

A simple kLa vs. N graph produces a sharp increase in kLa at NCSA. Direct sparging makes this 

identification more difficult. Although gas may be entrained, additional gas dispersion does not 

occur until the impeller speed is increased by about 20% above the initial entrainment speed. Other 

factors controlling surface aeration are impeller type and diameter, tank diameter, impeller 

clearance and submergence, baffling, and gas and liquid properties (Patwardhan and Joshi, 1998). 

Surface aerators are, however, highly limited by impeller submergence and require an impeller 

to be very close to the surface in order to be effective. Furthermore, the operation becomes 

hampered with scaleup such that dead zones are common (Lines, 1999; Patwardhan and Joshi, 

1998). Design and scaleup for surface aerated systems are even more challenging than a standard 
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STR (Lines, 1999). As such, this reactor design is not capable of competing with conventional 

designs. However, surface aeration is an important phenomenon that occurs in stirred tank 

reactors (Patwardhan and Joshi, 1998). Although it may not have a significant impact on gas-liquid 

mass transfer, it should be kept in mind especially if comparisons are to be made between 

competing designs. Many experimental reactors include an operating range that is much higher 

than traditional industrial applications (Benz, 2008). These designs may induce surface aeration 

and artificially increase mass transfer performance. 

4.3.5 Self-Inducing Impellers 

Self-inducing impellers are also used for indirect sparging purposes. The spinning action of the 

impeller creates a low pressure region at the impeller intake. Orifice holes are exposed to this low 

pressure region and connected by a hollow shaft to the atmosphere or head space (for dead end 

systems) (Patwardhan and Joshi, 1999; Vesselinov et al., 2008). As such, the gas flow rate is a 

function of the impeller speed. The “atmospheric” pressure can be adjusted by pressurizing the 

shaft entrance such that additional gas is pumped into the system (Patwardhan and Joshi, 1999). 

Self-inducing impellers are classified by the flow in and out of the impeller zone. Type 11 

impellers are shown in Figure 4.20a and are defined by the gas being the only phase at the inlet and 

outlet. The most common and simplest design is a hollow pipe with orifice holes at the ends. The 

hollow pipe impeller induces gas flow through Bernoulli’s equation. Gas induction occurs once the 

pressure differential is large enough to overpower the liquid hydrostatic head. Type 12 impellers 

(Figure 4.20b) have a gas phase at the inlet and a gas-liquid flow at the outlet. Gas induction occurs 

in a similar fashion to Type 11, but Type 12 impellers mix the phases in the impeller zone through 

some intricate designs. Type 22 impellers (Figure 4.20c) are intricate devices which have a two-

phase inlet and outlet composition. The impeller induces a large vortex until the impeller is able to 

induce phase interface (“surface”) aeration. The design calls for an axial gas-liquid inlet and radial 

outlet. An optional impeller hood prevents gas outlet in the axial direction, inducing a pressure 
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differential so that the liquid is pumped into the impeller zone from the bottom reactor section 

(Patwardhan and Joshi, 1999). 

 
Figure 4.20: Self-inducing impeller types (Patwardhan and Joshi, 1999). 

These impellers have both advantages and disadvantages. Type 12 and 22 impellers force the 

gas phase to travel through a high shear volume, creating smaller average bubble diameters and 

higher interfacial area in the outlet flow. These designs also allow for a reduction in power usage, 

but this usually comes at a cost of reduced residence time which can have a negative impact on 

conversion. Since dead end zones are feasible, this design provides similar advantages to surface 

aerators. The disadvantages of self-inducing impellers are usually their complicated designs, 

diminished control (with power input often being the only control variable), and gas-liquid mass 

transfer performance comparable to “standard” stirred tank reactors. Unless the gas phase is highly 
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toxic or the gas recycling system too expensive, self-inducing impellers have little to offer in 

microorganism systems. 

4.4 Superficial Gas Velocity  

The superficial gas velocity, UG, is a description of the amount of gas present in the reactor 

volume and is defined as the volumetric gas flow rate per unit cross-sectional area of the reactor. 

This definition is easily quantifiable and has been used by many researchers as a correlation 

parameter for gas holdup and gas-liquid mass transfer. Most researchers cited in this chapter, with 

the exception of Linek et al. (2005), have proposed a positive correlation of superficial gas velocity 

with gas-liquid mass transfer; however, its specific influence on mass transfer is often confusing. 

If the impeller is operated below a minimum tip speed (2.25 m/s for RT), the reactor 

hydrodynamics are dominated by the gas flow and the reactor acts as a bubble column. At this 

point, gas-liquid mass transfer has an exclusive dependence on the superficial gas velocity 

(Charpentier, 1981). Since the intent of the stirred tank reactor is to provide agitation that would be 

superior to gas sparging alone, stirred tank reactors are operated such that impeller agitation 

dominates the hydrodynamics (Nishikawa et al., 1981). 

The superficial gas velocity is often recognized to influence gas-liquid mass transfer through gas 

holdup (Nocentini et al., 1993) and its influence on the interfacial surface area (Garcia-Ochoa and 

Gomez, 2004). It is generally assumed that the interfacial surface area can be increased by 

entraining more gas in the reactor, and this results in increased gas dispersion and gas-liquid mass 

transfer.  

Bubble-bubble interaction and coalescence have to be considered when the superficial gas 

velocity is increased. Coalescence occurs through a three step process. First, bubbles collide and 

form a liquid layer (typically 10-3 to 10-4 cm thick). Second, the film drains assuming that the 

collision force is sufficient to deform the bubble interface and that the bubbles spend enough time 

in contact for the film to drain. Third, assuming a critical film layer thickness (~10-6 cm) is achieved, 
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the film breaks and the bubbles combine (Martín et al., 2008b; Tse et al., 1998). The entire sequence 

of events is completed in milliseconds for coalescing liquids (Tse et al., 1998), but may take up to 15 

seconds for liquids containing surface active agents (Laari and Turunen, 2005), which will be 

discussed in Section 4.6. Coalescence is, therefore, influenced by the collision frequency, collision 

force, bubble deformation, and coalescence efficiency (Bredwell et al., 1999; Martín et al., 2008b), 

and is controlled by the film drainage rate (Tse et al., 1998). 

Superficial gas velocity has an influence over the collision frequency. If more gas is present, 

there is a higher probability of collision (Martín et al., 2008b). Coalescence efficiency and drainage 

rate depend on the film properties which are a function of the liquid properties. The collision force, 

however, is the controlling factor because the bubble diameter is a function of the power input 

(Bouaifi et al., 2001; Nocentini et al., 1993). 

Thus, increasing the superficial gas velocity may initially increase kLa because there will be 

more gas bubbles and a larger gas-liquid interfacial area. However, further increasing superficial 

gas velocity could lead to bubble coalescence, which would increase the average bubble diameter 

and bubble rise velocity and lower the gas residence time (Moilanen et al., 2008). All of these 

factors would lower gas-liquid mass transfer (Charpentier, 1981). Under these conditions, the 

impeller fails to disperse the gas properly, and bubbles form a heterogeneous distribution (Bouaifi 

et al., 2001) and rise easily (Ford et al., 2008). Even if a higher kLa is achieved by increasing UG, a 

lower residence time can still lead to lower fermentation conversion levels (Bredwell et al., 1999). 

The effect of increasing gas holdup on a is often ambiguous. This is a special situation for the 

stirred tank reactor because the power input determines the bubble diameter and hydrodynamics 

(Bouaifi et al., 2001; Nocentini et al., 1993), while the gas flow rate has a driving influence on 

bubble dynamics in other reactor designs (to be discussed in other chapters). In other words, gas 

holdup information does not necessarily contain any (quantitative or qualitative) information 

about bubble diameter and interfacial surface area for STRs such that an increase in gas holdup 
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does not necessarily increase a (Moilanen et al., 2008). However, gas holdup is still reported as an 

indicator of hydrodynamic performance, gas distribution (Boden et al., 2008), and gas-liquid 

contacting (Garcia-Ochoa and Gomez, 2004). 

Gas-liquid mass transfer correlations, however, typically fail to reflect STR hydrodynamics and 

predict an increase in mass transfer with an increase in the superficial gas velocity. If these 

correlations are used improperly, such as during scaleup or outside its representative size and 

operating conditions, inaccurate kLa estimates will result. In other words, the correlation form is 

simply incapable of representing the hydrodynamic situation and fails to decouple events occurring 

due to the superficial gas velocity and those occurring due to the power concentration. The current 

state-of-the-art kLa correlations with respect to STR conditions will be described in detail in Section 

4.12, but it is important to realize that a correlation that is capable of communicating a more 

complete hydrodynamic picture still remains elusive. 

4.5 Power Input  

Power dissipation has a direct impact on the gas-liquid mass transfer in STR. As the power 

dissipation increases, the bubble diameter decreases (Bouaifi et al., 2001; Nocentini et al., 1993), 

which, in turn, increases the interfacial surface area. Bubbles break apart because the surface 

tension forces are overcome by a higher power density. Coalescence behavior is reduced because 

bubbles are not allowed enough contact time for film drainage between adjacent bubbles. At the 

same time, however, a higher power density implies that the collision force is also increased which 

would enhance coalescing. Thus, an equilibrium point is reached. As the bubble diameter is reduced 

to dB < 1 mm, the effect of increased power concentration is decreased. These small bubbles tend to 

have immobile interfaces which are more resistant to mass and energy transfer. These diminishing 

returns cause low viscosity Newtonian fluids to have an optimal bubble diameter distribution of 1-3 

mm (Bouaifi et al., 2001) unless surfactant stabilized microbubbles are produced (Bredwell and 

Worden, 1998; Worden and Bredwell, 1998). 



58 

The power dissipation influence on the liquid-phase mass transfer coefficient (kL) is highly 

debated in stirred tank reactors, especially at higher power densities. The slip-velocity and eddy 

turbulence models have been used to explain mass transfer, but they come to different conclusions 

with respect to power. The slip-velocity model predicts a decrease in mass transfer with increasing 

power dissipation while the eddy turbulence model predicts an increase. Linek et al. (2004) 

postulate that the main reason for the confusion stems from the miscalculation of kL. They 

investigated different measurement methods and models used by others and concluded that the 

slip-velocity models were underestimating kLa and, hence, kL. 

It was recognized that both models represent parallel mass transfer processes, but that stirred 

tank reactors were prone to induce higher rates of eddy diffusion and turbulence (rather than 

molecular diffusion and surface rigidity control) over surface renewal and mass transfer. Hence, 

shear rates in stirred tank reactors regulate surface renewal during normal operating conditions. A 

similar conclusion could be drawn from the Border Diffusion Layer Model (Azbel, 1981). It 

stipulates, for example, that the eddy diffusion coefficient is three orders of magnitude higher than 

the molecular diffusivity in the viscous sublayer. If power rates were increased, the viscous 

sublayer would decrease, which in turn would limit the effect of molecular diffusion on mass 

transfer and the liquid-phase mass transfer coefficient would increase. 

Other researchers have taken an engineering approach. Nocentini et al. (1993) concluded that 

kL changes relatively little with power dissipation with respect to a. Thus, any changes in kLa during 

an operation are dominated by changes in a and kL is of little interest (Hoffmann et al., 2007; 

Stenberg and Andersson, 1988b). STR flow patterns should also be considered and neglecting them 

can lead to a fivefold underestimation in gas-liquid mass transfer (Linek et al., 2004). 

One may conclude that power dissipation is the only variable that definitely and directly 

influences gas-liquid mass transfer in STRs. It has direct control over bubble diameter (interfacial 

area) and the liquid-phase mass transfer coefficient; however, increasing the impeller speed to 
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achieve higher gas-liquid mass transfer rates can be inefficient. Stirred tank reactors also operate 

under an economical constraint. The impeller speed is related to the power draw by an exponential 

factor of three. Along with operational limitations such as the motor and gearbox assembly and 

microorganism shear constraint, most gas-liquid mass transfer processes operate in the power 

dissipation range of 3,000-4,000 W/m3 (Bredwell and Worden, 1998; Oldshue, 1983). Certain 

specialized processes require extreme power dissipations of 40,000-100,000 W/m3 (Gezork et al., 

2000, 2001). Operation below 30 W/m3 is not practical with a stirred tank reactor (Gagnon et al., 

1998). 

Superficial gas velocity does not necessarily control the interfacial area or liquid-phase mass 

transfer in stirred tank reactors directly, but influences the gas dispersion efficiency and power 

dissipation rate. It is very difficult to disconnect the superficial gas velocity from the power 

concentration in stirred tank reactors, even under experimental settings. Thus, most kLa 

correlations include the power concentration and superficial gas velocity as variables with the 

power concentration having a larger role than the superficial gas velocity; this will be discussed in 

more detail in Section 4.12. 

4.6 Liquid Properties 

Liquid properties affect gas-liquid mass transfer in STRs through their influence on impeller 

and reactor hydrodynamics and bubble coalescence. Impeller loading, flow patterns, and power 

dissipation rates depend on the viscosity of the fluid. The power draw is influenced by the dynamic 

viscosity during laminar operation while density is the main parameter during turbulent 

conditions. The transition regime is very large for STRs (10 < Re < 20,000) (Nienow, 1998) during 

which the power draw is influenced by both liquid properties simultaneously (Tatterson, 1994). 

More importantly, however, is the viscosity’s influence over coalescence and impeller loading. 

Increased viscosity dampens turbulent eddies, and the viscosity gradients force gas towards the 

impeller zone (Kawase and Moo-Young, 1988). If the fluid is highly viscous, it can lead to 
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compartmentalization, dead zones, poor gas dispersion, and excessive gas accumulation in the 

impeller zone highlighted by large and stable gas cavities. Gas accumulation leads to impeller 

flooding at lower gas flow rates and may limit the amount of the gas that can be sparged. These 

events also effectively reduce the working volume, requiring large reactors for very viscous and/or 

non-Newtonian processes (Ogut and Hatch, 1988). 

Liquid properties have a direct influence on gas-liquid mass transfer through liquid film 

behavior and bubble coalescence. Liquid properties influence the boundary layer thickness, surface 

tension, and surface pressure which determine the coalescence frequency, coalescence efficiency, 

mixing time, residence time, and liquid-phase mass transfer coefficient. Liquid viscosity influences 

the thickness of the boundary layer which affects eddy turbulence and diffusion at the gas-liquid 

interface (Worden and Bredwell, 1998). As the turbulence is reduced, liquid surface renewal is 

dampened as well. 

The thicker boundary layer also means that the mass transfer resistance offered by the liquid 

film increases. Boundary layer thickness, surface tension, and surface pressure influence surface 

rigidity. As the bubble surface becomes more rigid, eddy turbulence encounters a higher resistance 

to the diffusive sublayer penetration. These effects combine to decrease eddy diffusion, molecular 

diffusion, and, consequently, the liquid-phase mass transfer coefficient (Azbel, 1981). Surface 

mobility is also an important factor in determining residence time. As the surface rigidity increases, 

the drag force decreases allowing the bubble to rise faster than those with mobile surfaces 

(Scargiali et al., 2007). 

The effect of liquid viscosity has been investigated by many authors by adding CMC 

(carboxymethyl cellulose) to water (Puthli et al., 2005). The solution viscosity increases with CMC 

concentration while providing a negligible influence on bubble coalescence (Fujasova et al., 2007) 

and bulk flow patterns (McFarlane and Nienow, 1996a). The results show that kL and kLa decrease 

as viscosity increases (Charpentier, 1981; Fujasova et al., 2007; Linek et al., 2005a; Puthli et al., 
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2005). The gas-liquid interfacial area tends to decrease in these situations as well because the 

larger cavities and large cavity formations at lower gas flow rates induce a lower power draw 

(McFarlane and Nienow, 1996a) and larger average bubble diameters (Cabaret et al., 2008). The 

power draw drop and flow pattern changes are more gradual such that torque and power draw 

oscillations are reduced. This behavior is attributed to more stable gas-filled cavities that form at 

lower gas flow rates in high viscosity liquids. The power draw drop, however, can be too smooth for 

some hydrofoil impellers such that it becomes difficult to identify NCD, requiring purely visual 

identification (McFarlane and Nienow, 1996a). 

The influence of various liquids on coalescence has led to their categorization into coalescing or 

non-coalescing liquids. Coalescing liquids, such as water or ocenol solution (anti-foaming agent), do 

not reduce, or may even enhance, bubble coalescence. The bubble film in these liquids tends to be 

relatively thin and provides minimal resistance to film drainage. Non-coalescing liquids have 

surface tension reducing properties which, together with turbulence, determine the bubble 

diameter (Garcia-Ochoa and Gomez, 2004). As surface tension decreases, the turbulent forces 

provided by impeller agitation are able to decrease the bubble diameter. The smaller bubbles 

provide more interfacial area increasing the gas-liquid mass transfer coefficient (Charpentier, 

1981). Impeller performance and bulk flow patterns are not retarded using non-coalescing liquids 

even if gas residence time and holdup are increased such that the qualitative interaction is 

analogous to an air-water system (McFarlane and Nienow, 1996a). 

Although water is often used for experimental studies and flow visualization (McFarlane and 

Nienow, 1996a), it is of little industrial importance according to Linek et al. (1996a) because it is 

not able to mimic the hydrodynamic behavior of industrial mixtures (McFarlane and Nienow, 

1996a). Gas-liquid processes, especially in fermentation (McFarlane and Nienow, 1996a), utilize 

inputs and/or outputs which are surface active agents such as sugars, alcohols, or electrolytes. 

Surface active agents exhibit non-coalescing behavior while dampening bubble interface activity 



62 

(Stenberg and Andersson, 1988b), potentially reducing the liquid-phase mass transfer coefficient 

by 75% (Bredwell and Worden, 1998). As the bubble shrinks, the resistance offered by the liquid 

film changes significantly, further hindering surface velocity and turbulence (Bredwell and Worden, 

1998). The gas-liquid mass transfer is therefore determined by the balance of increased interfacial 

area and decreased liquid-phase mass transfer coefficient (Garcia-Ochoa and Gomez, 1998). 

The exact effect on kLa depends on the particular surface active agent(s) and its concentration. 

Generally speaking, surface active agents increase mass transfer at low concentrations and 

decrease it at higher ones (Fujasova et al., 2007). Electrolytes (like Na2SO4) can be used to describe 

the general behavior and is also representative of low-viscosity Newtonian fluids such as alcohol 

(Bouaifi et al., 2001). Na2SO4 causes an increase in kLa up to a certain concentration (0.2M), above 

which its coalescence-inhibiting effects are cancelled by kL retardation. Increasing the 

concentration above 0.5M leads to a decrease in kLa (Linek et al., 2004). 

Gas holdup may increase by up to 40% with the addition of electrolytes regardless of 

concentration (Majirova et al., 2004), but the resulting increase in a (and kLa) is offset by the 

potentially dominating decrease in kL. These effects are unique to stirred tank reactors because 

dispersion and agitation are controlled by the impeller and its energy dissipation rate. Glycerol may 

be used to simulate viscous Newtonian liquids and has a non-coalescing influence in concentration 

of 5-50% by weight. The maximum kLa is exhibited at 45% by weight (Nocentini et al., 1993). 

Sokrat44, which has comparable viscosity properties to CMC TS.20 (produced by Lovochemie, 

Czech Republic), caused a reduction of 40-80% in kLa (Linek et al., 2005a), but has been shown to 

behave qualitatively similar to electrolytes (Fujasova et al., 2007). 

The chemical industry has developed two classes of special surface active agents which are of 

importance in biological gas-liquid processes: surfactants and anti-foaming agents. Surfactants are 

used in processes containing coalescence-prone liquids or requiring minimal bubble diameters. The 

name itself is derived from surface active agent, but is meant to distinguish the industrial products 
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with coalescence inhibiting properties from other surface active agents which occur naturally, 

especially in fermentation broths (Kawase and Moo-Young, 1988; van der Meer et al., 1992), or 

exhibit coalescence inciting properties. A common surfactant is soap. Common surfactants for 

research purposes are Tween 80 (polysorbate 80) and PEG 1000 (polyethylene glycol). They are 

nonionic surfactants, which make them less effective for non-coalescing duties, but they are fairly 

benign, safe, and quite common in the food industry. 

Surfactants are amphiphilic and tend to accumulate at the gas-liquid interface, which provides 

the bubble with a stabilizing interface effect. The formation of these clusters, referred to as micelles, 

requires a critical micelle concentration, CMC (not to be confused with carboxymethyl cellulose 

which shares the same abbreviation). This shielding effect is achieved by the surfactant 

construction. Standard surfactants have a nonpolar hydrophobic tail and polar hydrophilic head. 

The charged nature of the hydrophilic head would repel two stabilized micelles (bubbles) and not 

allow enough contact time for the film to drain. Because the interface rigidity is increased, the 

bubbles are more likely to simply bounce off each other and not form a proper interface connection 

for drainage. The result is that surfactants may lead to smaller bubbles, higher interfacial surface 

areas, and higher gas-liquid mass transfer coefficients (Cheng and Sabatini, 2007). 

Surfactants provide similar negative impacts on the liquid-phase mass transfer coefficient as 

other surface active agents with two exceptions. The first is that surfactants usually do not change 

surface tension relative to non-surfactant solutions, but the surface tension remains steady while 

stirring (Vazquez et al., 1997). The second is that soluble surfactants do not impede diffusion of 

small molecules (Bredwell and Worden, 1998) and may not affect the film resistance (but this is 

rare). On the other hand, the polar group induces an energetic barrier for the turbulence to 

overcome and is usually seen as decreasing the surface renewal rate. The exact nature of the barrier 

depends on the polarity and molecular weight of the hydrophilic head, the length of the 

hydrophobic tail, and the surfactant orientation at the gas-liquid interface (Linek et al., 2005a). An 
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increase in the ionic strength, for example, would decrease coalescence frequency, decrease bubble 

diameter, and increase the interfacial surface area (Charpentier, 1981; Stenberg and Andersson, 

1988b). The overall impact of surfactants on the interface is represented by a 75% decrease in kL 

(Bredwell and Worden, 1998). 

The downside of using surfactants is economical and practical in nature. Surfactants are sold by 

the chemical industry and would add to the product cost. Surfactants also have a tendency to attach 

to the product or microorganisms and wash out, which would require a surfactant separation 

and/or recovery system. The recovery system would minimize the surfactant cost, but would add a 

fixed cost element. Most separation or recovery units for gas-liquid processes use a charged filter, 

which cannot be reused, to attract the polar head (Cheng and Sabatini, 2007). If microorganisms are 

involved in gas-liquid processes, surfactants could suffocate or expose them to an unfriendly 

environment. For example, hand soap is designed to lyse bacteria. Other design options usually 

exist to increase gas-liquid mass transfer, which do not carry the added fixed or variable costs 

associated with surfactants. 

The exception to the surface active agent rule is provided by anti-foaming agents, such as 

ocenol. These surface active agents are used by the chemical industry in processes that create 

excessive foaming which limits gas disengagement at the reactor surface (Bliem and Katinger, 

1988b). Anti-foaming agents are designed to induce bubble coalescence such that gas 

disengagement is maximized. This requires large bubbles and causes a rapid decline in kLa up to a 

certain concentration where the rate of decline stabilizes (Linek et al., 2005a). In addition to a 

lower kLa, anti-foaming agents require higher energy inputs and down-stream processing that is 

similar to surfactants. Anti-foaming agents also denaturize the biological components. Therefore, 

anti-foaming agents have limited application in most gas-liquid processes (Bliem and Katinger, 

1988b) and are usually avoided. 
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A more challenging situation is presented for viscous non-Newtonian liquids or, more 

commonly, processes which change a low viscous Newtonian fluid into a viscous non-Newtonian 

fluid with a complex rheology. Common non-Newtonian processes are encountered in fermentation 

due to mycelin growth and polymerics produced by the involved microorganisms (Cabaret et al., 

2008; McFarlane and Nienow, 1996a). Mycelin growth is simulated using a material with similar 

macroscopic structure resembling fungal hyphae suspended in water, commonly achieved with 

paper-pulp suspensions. The polymeric effect on viscosity is simulated using CMC, Carbopol 

(carboxypolymethylene), or Xanthan gum (Kawase and Moo-Young, 1988; McFarlane and Nienow, 

1996a). The viscosity of the solution is simulated by increasing the concentration of those additives 

over time. 

Operations with these types of complex fluids proceed fairly efficiently while the fluid is 

Newtonian, even if it turns viscous; however, once the liquid becomes non-Newtonian, it adds an 

additional dampening effect that is very hard to overcome. It becomes very hard to provide proper 

mixing and dispersion and the reactor volume experiences a wide array of possible Reynolds 

numbers (Tecante and Choplin, 1993) and energy dissipation rates (Ogut and Hatch, 1988). As a 

matter of fact, stagnant regions outside the impeller zone and cavern and channel formation are 

very common. Furthermore, the impeller is easily flooded due to the viscosity gradients which force 

the gas into the impeller zone (Kawase and Moo-Young, 1988). Hence, the gas flow rate must be 

limited and increasing the impeller speed is a disadvantage (Ogut and Hatch, 1988). 

The result is a poor gas and nutrient distribution and reduced productivity (Gagnon et al., 

1998), which in turn causes the process time to be governed by the final 10-20% conversion (Lines, 

2000) and requires greater vessel size relative to Newtonian processes (Ogut and Hatch, 1988). The 

solution has been to simply stop the process once the viscosity reaches a certain level (Ogut and 

Hatch, 1988) or to implement shear normalizing setups using traditional axial or nontraditional 

helical impellers which produce a lower apparent viscosity solution (Tecante and Choplin, 1993). 
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4.7 Baffle Design 

Whirlpool effects are often troublesome for STR operation with low-viscosity liquids because 

they diminish mixing and dispersion (Williams, 2002). Multiphase systems that are mixed with 

impellers can experience a central vortex which causes recirculation, low power consumption, 

minimal mixing (Patwardhan and Joshi, 1998), and phase separation (Tatterson, 1994). If the 

impeller speed is increased even further, this vortex can reach the impeller (Patwardhan and Joshi, 

1998). Baffles are often used to alleviate these effects in low viscosity Newtonian liquids, but are 

avoided with viscous and/or non-Newtonian liquids (Cabaret et al., 2008; Harnby et al., 1992; 

Williams, 2002). A secondary advantage is that baffles reduce the liquid velocity forcing a larger 

differential with the impeller velocity. The consequence is that the ungassed power draw is higher 

in baffled than unbaffled vessels, potentially increasing eddy turbulence and gas-liquid mass 

transfer. These events are exclusive to turbulent operation, and baffles are unnecessary in the 

laminar regime (Tatterson, 1994). Gassed power draw can be expected to be similar in baffled and 

unbaffled vessels while the impeller is loaded (Gagnon et al., 1998). A less common application for 

baffles in gas-liquid processes is as fins for heat transfer purposes or as gas or liquid feeding device. 

Baffle designs are quite numerous and include half, finger, triangle, partition, and bottom baffles 

with vertical, horizontal, or spiral direction and a wide array of cross-sectional shapes. The basic 

design, however, is by far the most common because the advantages of non-standard designs are 

often limited and because the standard design has been widely researched with easily accessible 

information, scaleup data, and design specs (Ungerman, 2006). The standard design specifies 4-8 

equally spaced, vertical plates (Williams, 2002) with a width between DT/12 to DT/10 (Oldshue, 

1983; Tatterson, 1991, 1994). Baffles are often offset from the reactor wall to discourage dead 

zones. The standard wall clearance is about 1.5% DT (Paul et al., 2004). Baffles are either welded or 

bolted to the vessel (Bakker and Oshinowo, 2004). If the vessel is made from or lined by a fragile 
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material, baffles can be supported by a ring placed on top of the tank. The mounting limits these 

vessels to one or two baffles (Torré et al., 2007). 

Prefixes are often used to describe the length or shape. For example, full baffles describe 

standard baffles having a length equal to the reactor height, half baffles have a length equal to half 

the height, etc. The shape is often distinguished by a prefix affiliated with a common object. For 

example, beavertail baffles have a shape that looks like a beavertail (wide in the bottom and tappers 

off at the top), C-baffles have a semi-circular cross-sectional shape, etc. 

Several STR baffle arrangements have been tested to optimize gas-liquid mass transfer or 

process time. Surface baffles, which are half baffles located in the upper half of the reactor, limit 

vortex formation while increasing surface turbulence (Patwardhan and Joshi, 1998). This baffle 

design induces small vortices which entrain gas more effectively, increasing gas holdup and kLa. 

The limitation of baffle usage in the lower portion of the reactor volume allows for higher 

turbulence and enhances sparged gas and power utilization (Gagnon et al., 1998); however, 

Sivashanmugam and Prabhakaran (2008) noted that such nonstandard baffles also lead to lower 

impeller power draw, which may decrease mass transfer in that portion of the tank. Regardless, this 

setup has limited application for batch and semi-batch operation. 

Lines (2000) came to a different conclusion in addressing similar goals of enhanced operation 

for batch and semi-batch modes. He concluded that half baffles in the lower portion of the reactor 

volume allow for more efficient operation that would induce surface aeration without allowing 

large vortices to reach deep into the vessel and influence the impeller. The limitation, of course, is 

the liquid height. The baffles break even at a liquid height to reactor diameter ratio of 1.1 for single 

impeller systems. A 2 beavertail baffle system can be used to extend the range to a ratio of 1.5 and 

any further increase in reactor height relative to its diameter negates this advantage. 
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These two examples help to point to a common occurrence: the prescription of opposing 

systems. Both researchers are correct, and their suggestions are useful for their particular task, but 

they are not universal. Each system and process has an optimal design - including baffles - that may 

differ from the standard. It is recommended that a proper baffle design be investigated in the initial 

design stages and should be compared to the standard option; however, most prefer to avoid this 

situation and use full baffles due to their simplicity, reduced design costs, and known operation 

compared to non-standard designs (Oldshue, 1983; Tatterson, 1991, 1994). 

4.8 Sparger Design 

Spargers are used to input gas into the reactor and affect impeller power consumption (Ni et al., 

1995), critical impeller speed for complete dispersion, and critical impeller speed for suspension 

(Murthy et al., 2007). Spargers are typically located underneath the impeller with the distance and 

size being dependent on impeller type. The most common placement is 1Di below the impeller. The 

sparger diameter is usually smaller than the impeller diameter (Birch and Ahmed, 1997). The 

orifice holes are usually placed on the sparger bottom. This placement prevents the holes from 

getting plugged during processes that use high viscosity fluids, a solid phase, or fine particles 

(Patwardhan and Joshi, 1998). The conditions in the sparger orifice have to be such that the gas 

flow Reynolds number is in excess of 2100 to ensure that all holes are operational (Rewatkar and 

Joshi, 1993). 

Standard sparger designs include ring (Figure 4.21), single orifice (point) (Figure 4.22), pipe, 

porous (Figure 4.23), and membrane spargers. A ring sparger with equally spaced holes is the most 

commonly used design for stirred tank reactors since it provides the most consistent results, uses 

less power, causes a smaller power drop upon gassing, and is thought to provide higher gas holdup 

and gas-liquid mass transfer coefficients than other sparger types. To be more exact, a small ring 

sparger is preferred because it produces higher kLa values than the large ring sparger or quadruple 

pipe sparger (Bakker, 1992). 
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Figure 4.21: Ring sparger (Micromold Products, 2008). 

 
Figure 4.22: Orifice sparger (Canadian Process Technologies, 2008). 

 
Figure 4.23: Porous spargers (Chand Eisenmann Metallurgical, 2008). 

  



70 

4.8.1 Spargers for Axial Flow Impellers 

The selection of the sparger design has to include a discussion of the accompanying impeller 

type. An improper selection is often used to explain inconsistencies in published data (Ungerman 

and Heindel, 2007). The most common source of error is to simply use the standard ring sparger 

design for all impeller types. This may lead to problems with the down-pumping axial flow 

impellers (Birch and Ahmed, 1996, 1997; McFarlane and Nienow, 1995; McFarlane et al., 1995; 

Sardeing et al., 2004b). The standard ring sparger forces gas to flow in the opposite direction of the 

impeller flow field and induces direct loading such that variations in torque and power draw are 

easily realized. Larger orifice diameters exasperate this problem by increasing the rate at which 

cavities are allowed to grow on the impeller blades (Murthy et al., 2007). Replacement of a ring 

sparger with a pipe sparger can reduce gas holdup by 25% (Rewatkar et al., 1993) and does not 

address the flow issue since gas is sparged in a similar manner. A single orifice sparger enhances 

the problem since most of the gas is sent into the impeller center promoting cavity formation 

(McFarlane et al., 1995). 

The influence on axial flow impellers can, however, be negated by using a large ring sparger 

such that gas exhausts in the impeller periphery. Direct loading is avoided and power draw and 

torque variations are reduced (McFarlane and Nienow, 1996a) because the gas is sparged into a 

strong downward stream such that the probability of indirect loading is increased. This regime 

provides the down-pumping axial flow impeller with steady operation (McFarlane et al., 1995), a 

lower critical impeller speed for complete dispersion and suspension, while flooding is avoided. 

Particle suspension is achieved with less power and gas is distributed more uniformly for this 

arrangement (Murthy et al., 2007). Increasing the impeller diameter has also proven to increase 

stability (Birch and Ahmed, 1996) and suspension efficiency (Sardeing et al., 2004a). Large axial 

flow impellers solve the problem due to their stable vortex formations and inherent “periodic 

vortex shedding” (McFarlane and Nienow, 1995). 
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Another solution for the loading problem, which is not always practical, is to increase the 

distance between the sparger and impeller, which makes it more likely that the gas is diverted away 

from the axial flow impeller by the flow stream, leading to more indirect loading (McFarlane et al., 

1995). Increasing the distance also tends to delay the power drop upon gassing, making the 

separation distance an important design parameter (Garcia-Ochoa and Gomez, 1998). The 

advantage, however, decreases with increasing viscosity (McFarlane and Nienow, 1996a). 

Sparger placement for down-pumping axial flow impellers is suggested to be 0.8Di below the 

impeller. Larger distances increase the flow instabilities and affect the operating range (McFarlane 

et al., 1995) while smaller distances increase the frequency at which impeller loading fluctuates 

(McFarlane and Nienow, 1996a). The exact sparger position is often determined by other 

equipment, and the impeller position requirement such that most designs place the sparger 1Di 

below the impeller and optimize the proper sparger size and type to provide maximum gas holdup 

and minimum power drop upon gassing (Birch and Ahmed, 1996; Ungerman, 2006). 

4.8.2 Spargers for Radial Flow Impellers 

One may think that sparger design may have an important role in the initial bubble diameter 

and, as such, will influence the interfacial surface area and gas-liquid mass transfer coefficient 

(Bouaifi et al., 2001; Garcia-Ochoa and Gomez, 1998). Designers should choose a sparger that would 

offer a smaller initial bubble diameter to increase the efficiency of the operation. However, it has 

been shown that Rushton-type impellers control the bubble diameter and dispersion such that the 

sparger choice is noncritical (Garcia-Ochoa and Gomez, 1998). Even if the bubble diameter 

originating from the sparger is very large, the bubbles are broken apart by the time they reach the 

impeller and do not affect cavity size, impeller loading, gas-liquid interfacial area, and gas-liquid 

mass transfer. However, in order to ensure that bubbles pass through the high shear impeller zone, 

the sparger diameter is suggested to be smaller than the impeller diameter with a standard of 0.8Di 

(McFarlane et al., 1995; Tatterson, 1991). 
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This discussion sheds light into the superior performance of a multiple impeller system with a 

radial-axial flow impeller combination, with a radial flow impeller in the lower position and an axial 

flow impeller in the upper position. The radial flow impeller is not affected by the sparger type and 

is able to efficiently disperse small bubbles. The upper impeller is loaded indirectly by the flow 

field, which it generates, and is able to provide proper mixing conditions. As such, the sparger 

choice does not affect the performance of the other impellers. If the impellers operate 

independently, impellers are optimally loaded for gas dispersion and liquid mixing such that 

progressive reduction in kLa is minimized and the desired process time can be reduced by more 

than 30% (Lines, 2000). 

4.9 Microbial Cultures 

Microbial cultures are used as catalysts in bioreactors. Bacteria are the most commonly used 

culture, but animal, plant, or insect cells have also been implemented (Bliem and Katinger, 1988a). 

Stirred tank reactors are popular for microorganism growth (Vazquez et al., 1997) because STRs 

enhance feedstock contact, provide pH and temperature uniformity, and maximize mixing 

(Hoffmann et al., 2008). Their impact on reactor hydrodynamics is mostly indirect. Occasionally, 

microorganisms retard turbulence if the organic holdup is above 11-15% depending on the species. 

The other possibility is that the microorganisms produce surface active agents (van der Meer et al., 

1992); however, their most common impact on hydrodynamics is that reaction kinetics may be 

limited by the environment such that the operational range (power concentration, superficial gas 

velocity, etc.) may be reduced. As such, it is more constructive to concentrate on the impact that 

hydrodynamics have on microorganisms. 

The most influential factor is for shear gradients which most commonly hinder productivity 

regardless of the mass transfer situation (Bliem and Katinger, 1988a, 1988b; Hoffmann et al., 2008). 

Shear gradients damage microorganisms through several mechanisms. The simplest one is cell wall 

(physical) damage. This mechanism also separates animal and plant cell applications from bacterial 
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ones. Bacteria are usually smaller and have stronger cell walls relative to their size than animal or 

plant cells such that bacterial processes use a power range of 1-5 W/kg (comparable to chemical 

processes) while cellular processes use 0.0005-0.1 W/kg (Bliem and Katinger, 1988a). In other 

words, smaller cultures are usually able to withstand higher shear gradients because the most 

damaging eddies have to be on the order of the cell size. As such, animal cell growth rate has been 

found to be reduced with eddies smaller than 130 μm (Bliem and Katinger, 1988b). 

Shear gradients may also interfere with cell-to-cell interaction, cell-to-substrate adhesion, and 

microbial competition. Additionally, certain microorganisms prefer to flocculate. Hoffmann et al. 

(2008)1 concluded that bacteria, which tended to form elongated filaments, were more prone to 

shear induced damage than those which formed cocci (spherical formations). Although the 

elongated filaments were more advantageous for food collection during calmer operation, the 

introduction of strong turbulence provided a competitive advantage for cocci forming bacteria such 

that those dominated the population at the end of the experiment. 

The bacteria’s spatial juxtaposition (awareness relative to other bacteria) may also be hindered 

by turbulence. In the worst case scenario, the bacteria are not able to make significant contact and 

are not able to achieve the necessary cell density for optimal operation (Bliem and Katinger, 1988b) 

or are not able to make syntropic relationships with other bacterial cultures (Hoffmann et al., 

2008). The result is that startup performance is very poor with minimal or insignificant conversion 

while long term performance is not hindered in a bacterial mixture that allows competition and has 

at least one shear tolerant species. Conditioning with feast and famine cycles improved recovery 

time and tolerance to feed and shear shocks (Hoffmann et al., 2008). 

                                                           

 

 

1
 The conclusions are based on a particular set of microbial species and have not been verified by other 

researchers. According to their published article, Hoffmann et al. (2008) experimented with different 
sized vessels at the same impeller speed. Since turbulence is more intense and power concentration 
higher with scale, their results and conclusions may not be universally applicable. 
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Thus, bioreactors using shear sensitive microorganisms have to minimize cellular damage, 

maximize feedstock transfer to microorganisms, and maximize mixing. The latter requirements are 

important because the bacterial structure may change during starvation mode to make the culture 

even more susceptible to cell wall degradation. This situation is true for mycelia (fungi) and may be 

applicable to other branching bacteria. A healthy specimen, shown in Figure 4.24a, has relatively 

thick branches without vacuoles (empty pockets). As the bacteria starves (Figure 4.24b), it reduces 

the number of branches and starts to consume its internal reserves, which leads to the formation of 

vacuoles. As the number and size of vacuoles increases, the cell wall strength and its ability to resist 

environmental stresses decreases. As starvation is extended, the specimen will consume as much of 

its own mass as it can (which depends on the species) and vacuoles will dominate its structure, as 

can be seen in Figure 4.24c. At this point, the microorganism is easily and significantly damaged by 

shear gradients (Hoffmann et al., 2008). Energy and mass is diverted to the tip, as pointed out in 

Figure 4.24c, in order to search for a food source. This tip is of solid construction relative to the 

main body. Insufficient mixing can have similar effects in that the reactor volume is partially in 

starvation mode and not producing an optimal amount (if any) of product in those regions (Shewale 

and Pandit, 2006). 

 
Figure 4.24: Bacteria starvation; (a) a healthy specimen, (b) a bacterium under starvation 

conditions, and (c) extensive starvation with the formation of many vacuoles (empty 
pockets) (Hoffmann et al., 2008). 
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Microorganisms and their reaction kinetics may start out being gas-liquid mass transfer limited, 

but the process and changing environment may change the limiting factor to temperature or pH 

level. Bacteria are classified by their temperature preference into mesophilic or thermophilic 

families. Mesophilic bacteria operate optimally at about 30°C with a sharp drop-off in efficiency as 

temperature approaches 50°C. These cultures are used more widely because they are easier to 

control and produce a more consistent product, but are generally able to convert only 40% of the 

biological matter in 30 to 40 days. Thermophilic bacteria, on the other hand, prefer temperatures of 

about 60°C and have proven conversion rates up to 48% in just 10 days (Demirel and Yenigün, 

2002; Ros and Zupancic, 2002). Acidity is quite variable (although not for a specific bacterial 

culture) and can range from pH 4.3 to pH 7.9 for anaerobic bacteria (Demirel and Yenigün, 2002). 

Output can be maximized for acid sensitive processes using syntropic relationships (i.e., volatile 

fatty acids oxidizing bacteria and hydrogen utilizing methanogens) (Hoffmann et al., 2008). 

Furthermore, the production and conversion process often introduces unwanted byproducts or 

creates products which negatively affect bioreactor operation. For example, protein producing 

microorganisms, which are often used in pharmacokinetics, produce a mixture over time that is 

damaging to the bacteria aside from the surface active agent properties of the protein. Shear is 

tolerated by the microorganisms in this mixture, but air-liquid interfaces, which are naturally very 

common in gas-liquid processes, can lead to denaturation (Titchener-Hooker and Hoare, 2008). 

Batch and semibatch stirred tank bioreactors are also influenced by the accumulation of products in 

the volume, which can significantly change liquid phase properties. Although the production is 

certainly welcome, it can lead to the process being tail dominated (process time controlled by last 

20%, for example) or creating an extremely viscous liquid phase, which, in most cases, forces the 

operation to cease. 
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Many industries, in which the stirred tank bioreactors are being implemented, require 

production to be very consistent and/or the design phase to be completed quickly. For example, it 

is common in the biopharmaceutical industry to start the design phase once approval of a drug has 

been secured; however, the design process requires a significant amount of time during which the 

patent clock is ticking. Hence, costly delays are very common (Titchener-Hooker and Hoare, 2008). 

The need for better results has led to the implementation of process and genetic engineering. 

Process engineering is described throughout this section. Its goal is to optimize the conditions such 

that production and/or conversion are increased; however, it can be difficult to predict 

hydrodynamic effects on microorganisms. The answer has been to carefully test microorganism on 

the micro (experimental) scale and implement genetic engineering techniques to create more shear 

resistant strains (Zeng and Deckwer, 1996). Process engineering, however, prevails in practice as 

genetic engineering has not been able to produce very resistive strains (although productivity has 

been increased) such that stirred tank bioreactors are limited in their power dissipation rates. 

4.10 Solid Suspension 

A solid phase is often used to represent microorganisms or, more commonly, feedstock used by 

the microbial culture. Solids have a similar impact on hydrodynamics as surface active agents. The 

liquid-phase mass transfer coefficient is decreased considerably due to decreased interfacial 

mobility (Charpentier, 1981; Scargiali et al., 2007; Vazquez et al., 1997). Furthermore, the apparent 

viscosity is increased (Charpentier, 1981) such that turbulence is reduced and energy dissipation is 

dampened. The final result is a degradation in both kL and a. 

The solid phase is required to be dispersed throughout the reactor volume to provide optimal 

conversion. This dispersion requires a minimum (critical) impeller speed, which depends on the 

impeller type, particle size, solid loading, and other solid and liquid properties affecting particle 

drag. Lowering the critical impeller speed is important because it implies that suspension is more 

efficient, distribution is more uniform (Murthy et al., 2007), and conversion is increased. 
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The behavior of suspended solids depends on the forces acting on the particle: gravity, drag, 

and lift force (Basset and virtual mass forces may also be considered). Particles with a similar 

density as the liquid are fluidized and have a velocity approximately equal to the liquid velocity. If 

the particles are heavier, their velocities are different (usually lower). Much lighter particles tend to 

disengage from the mixture at the surface and may require some form of surface aeration if 

uniformity is desired (Paul et al., 2004). 

Increased particle size and solid loading require more power to suspend the material such that 

impeller power and torque draw are increased. The higher load occurs due to the increased mass of 

solids that need to be lifted from the tank bottom and kept in suspension. The liquid phase (or gas-

liquid mixture) has to impart more power to the solid phase, and the impeller is the only significant 

power source for normal stirred tank reactor operation. The higher power need is met by 

increasing the impeller speed, but larger impeller diameters may also be advantageous. 

Solid suspension leads to the formation of a gas-liquid-solid mixture. The solid phase is 

regarded as increasing the apparent viscosity of the mixture so that power dissipation is dampened. 

Generally, as particle size and solid loading increase, the apparent viscosity increases, which lowers 

the level of turbulence and increases the impeller power draw. The lower level of turbulence 

translates to a decreased level of mixing, which may decrease uniformity in the reactor volume as 

well. On the other hand, particles smaller than the liquid film thickness (assuming small solid 

loading) are able to penetrate the interface film and actually increase turbulence and induces gas-

solid mass transfer at the bubble interface. Therefore, the effective liquid-phase mass transfer 

coefficient is increased (Kluytmans et al., 2003; Patwardhan and Joshi, 1998). This phenomenon is 

often referred to as the shuttle (or grazing) effect (Kluytmans et al., 2003; van der Meer et al., 

1992). Uniformity, which is defined as solid phase concentration variation with a coefficient of 0.05, 

is important since it allows starvation to be avoided and provides optimal growth conditions (Paul 

et al., 2004). 
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The solid phase requires special considerations for stirred tank reactor designs. For example, 

batch STRs require 10-25% more power for solid suspension relative to continuous operation 

because continuous flow provides another bottom lifting source. Startup of stirred tank reactors 

with a settled solid phase may require water or air to help the impeller loosen the packed mass. 

This problem is often encountered in the mining industry, but is usually avoided in chemical and 

biological applications; however, the torque draw is going to be higher during startup until particle 

suspension is achieved (Oldshue, 1983). 

Impellers and their arrangements also require modification for solid suspension. Impellers used 

in single impeller configurations for solid suspension are preferred to have a bottom clearance up 

to Di/3. This clearance is dependent on the process and impeller type. In order to provide proper 

mixing, the tanks are shorter than standard gas-liquid designs with a H/DT ratio about 0.6 to 0.7, 

and a second impeller is warranted for H/DT above 1. Solids will settle and stack around the wall if 

the reactor has a diameter that is too large or an impeller that is too small relative to the tank 

diameter (Tatterson, 1994). The bottom impeller in a multiple impeller arrangement is more 

important for solid suspension because the upper impeller can only suspend as much as is fed by its 

partner (Oldshue, 1983); however, an improper spacing can cause the upper impeller to interfere 

with the bottom impeller, usually degrading suspension (Tatterson, 1994). 

Certain impellers create flow patterns that induce suspension at lower impeller speeds. For 

example, the down-pumping PBT is more efficient at solid suspension due to its axial bottom-lifting 

flow than the RT or the up-pumping PBT. The standard Rushton-type turbine is not an efficient 

suspension impeller (Tatterson, 1994) because the particle lifting occurs through axial flow 

impeller suction which usually uses about half the impeller flow. Therefore, the Rushton-type 

turbine requires as much as three times the power for the same level of suspension as the down-

pumping PBT (Oldshue, 1983). The advantage and the use of down-pumping axial flow impellers 

for solid suspension places more relevance on the selection and performance of the sparger design. 
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Operators are potentially presented with an awkward choice of achieving better gas breakage 

with a radial flow impeller or better suspension with an axial flow impeller. The decision depends 

on the gas flow rate. Since most biological processes require a significant amount of gas to proceed 

efficiently, the instabilities present in the down-pumping PBT and necessary gas-liquid mass 

transfer have led to a close clearance Rushton-type turbine (clearance of H/4 and Di=DT/2) to be 

the safest impeller choice for three phase systems if the impeller is operated under complete 

dispersion conditions (Ulbrecht and Patterson, 1985). The close clearance RT has a significant axial 

component while still preserving some of its gas breakage capabilities (Harnby et al., 1992). 

Standard baffle designs for gas-liquid systems can be used with solids that have a similar 

density as the liquid. If the solid phase is denser than the liquid, baffles should be much thinner if 

they are used at all. This is due to the fact that the decreased level of turbulence may lead to 

stratification, dead zones, and/or recirculation loops near the baffles. These occurrences can cause 

excessive buildup of solid material and poor performance. Therefore, baffles used for this purpose 

may have a plate thickness up to DT/24 (Oldshue, 1983). 

The presence of the solid phase requires the tank bottom to be adjusted as well. Flat-bottomed 

tanks are modified with corner fillets to prevent buildup in those lower turbulence areas (Oldshue, 

1983), but dished (Paul et al., 2004) or contoured (Ulbrecht and Patterson, 1985) tank bottoms are 

more effective (in terms of critical impeller speed for suspension) for solid suspension. Although 

bottom roughness is usually ignored, solid suspension can benefit from a rough finish depending on 

the particle size. If turbulent eddies created by bottom roughness are of similar size as the particle, 

their energy is high enough to lift the particle and aid suspension. Surface roughness may also limit 

the contact between particles and the reactor bottom, lowering the likelihood of a momentum 

losing interaction. If the eddies are significantly smaller than the particle, their momentum and 

energy is not capable of influencing the particle. In fact, smaller eddies can contribute to the 
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(parasitic) drag force experienced by the particle such that bottom roughness may increase the 

critical impeller speed for suspension for larger particles (Ghionzoli et al., 2007). 

The necessity of a solid phase decreases the hydrodynamic performance; however, little gas-

liquid mass transfer information and data are present for three phase STRs, especially using CFD 

modeling (Murthy et al., 2007). Therefore, three phase designs use gas-liquid systems as a starting 

point, which, of course, provides very optimistic predictions for gas-liquid mass transfer (Vazquez 

et al., 1997). A proper design procedure should be conducted using a three phase experiment as a 

basis or using microreactors to obtain the next iterations. Scaleup from these microreactors has to 

be handled with care since a general scaleup strategy does not exist (Gill et al., 2008). 

4.11 Novel Stirred Tank Reactor Designs and Modifications 

Novel STR designs tend to be hybrid systems; an example of which is an impeller system is 

integrated into an airlift reactor. Such modifications will be covered in Section 8.3. Torus reactors 

are seldom-used mechanically agitated reactors for biological applications although they are 

oftentimes brought up as alternatives. They are very similar to stirred tank reactors except that 

torus reactors are horizontal reactors with the stirrer entering the vessel from the side, as shown in 

Figure 4.25. The most significant difference between a torus and stirred tank reactor is that the 

torus reactor is a mechanical loop reactor. The torus reactor has a much more defined flow and 

backmixing is less prevalent. Hence, microorganisms that prefer less turbulent environments or 

polymerization processes perform better with the torus reactor than the stirred tank reactor. For 

example, Laederach and Widmer (1984) observed a 40% higher biomass production in a batch 

torus reactor than a batch stirred tank reactor. The limited amount of backmixing also tends to 

minimize foam production and dead zones. At the same time, the lack of turbulence can be less 

appealing for shear resistive microorganisms and non-foaming liquids. A continuous torus reactor 

also experiences some complexities due to the flow altering behavior of the injection and extraction 

points (Pramparo et al., 2008). 
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Figure 4.25: Torus reactor example (Nouri et al., 2008). 

A much more common approach is to adjust stirred tank reactor components, especially the 

impeller design and setup. New impeller designs are quite numerous and tend to produce marginal 

improvements and are usually variations of existing impellers. An interesting impeller type for gas-

liquid mass transfer is the spinning disk. As the name implies, the impeller is a disk without blades. 

Recent research has been concentrated on using these impellers for microbubble generation and 

mineral flotation due to their bubble break-up characteristics. The spinning disk has lower shear 

rates than the Rushton turbine at both the tip and stream; however, the spinning disk dissipates 97-

98% of its energy at the impeller tip under unaerated conditions. When aerated, energy dissipation 

increased by 40-60% at the impeller tip and in the impeller stream. This increase is countered by a 

decrease in the bulk flow intensity. These properties make the spinning disk excellent as bubble 

breakup devices, but the disk impeller is not capable of mixing a significant amount of liquid 

(Deglon et al., 1998). A spinning disk could be used in a multiple impeller system, although research 

has not addressed this possibility. One possible reason is that its strength, high shear rates, may 

also be its weakness for some biological applications. 

Another popular adjustment, that covers a significant number of impeller modifications, is to 

change the shape or pitch of the blades. For example, Pinelli et al. (2003) experimented with 

asymmetric blades (i.e., Chemineer BT-6). The BT-6, shown in Figure 4.26, is a concave impeller, 

which has a top edge longer than the bottom. The result is that the BT-6 has a shallower power 

curve, which leads to smaller torque fluctuations and broader gas flow operating ranges than 
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hydrofoil impellers or Rushton turbines. Although the BT-6 cannot compare to the Rushton 

turbine’s bubble breakup characteristics, it is a much better mixing impeller that floods much later. 

The user can either exchange bubble breakup performance for lower power consumption or use 

the BT-6 as a pumping device in combination with a Rushton turbine. 

 
Figure 4.26: Chemineer BT-6 schematic (Pinelli et al., 2003). 

Impellers usually enter the vessel from the top; however, very large or novel vessels find it 

useful for the impeller to enter from the bottom or side (Harnby et al., 1992) because it can 

minimize the amount of structural steel needed to support the shaft and impeller (Aden et al., 

2002). Impeller shafts usually have a circular cross-section and are oriented perpendicular to the 

reactor bottom and placed along the tank centerline. Other impeller shaft placement relative to the 

centerline, known as impeller eccentricity, has been practiced (Tatterson, 1991). Off-centering the 

impeller shaft has been shown to improve mixing, minimize the appearance of vortices (Oldshue, 

1983), and produce smaller bubbles in the turbulent regime (Cabaret et al., 2008). Shaft 

eccentricity (changing the cross-sectional shape) minimizes vortices and can be used in place of 

baffles. In these applications, mixing time decreases while power input increases. Industrial 

applications may find this configuration undesirable due to construction and maintenance costs 

(Cabaret et al., 2008). 
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Although common shafts are standard, dual shaft systems have been investigated. Dual shafts 

allow the impellers to spin at independent speeds and directions. Although this configuration adds 

to setup and maintenance costs, it provides operational flexibility. Since the amount of gas that 

passes through each impeller zone differs, independent controls allow optimal operation for each 

impeller. Cabaret et al. (2008) found that the upper impeller needs to run 20% faster for 

homogenous gas distribution. Dual shafts can also accommodate counter-rotation. Cabaret et al. 

(2008) claims that counter-rotating Rushton-type impellers in unbaffled tanks is just as efficient as 

standard, baffled operation. The costs of implementing dual shafts would usually be expected to 

outweigh any gains made using dual impellers in low viscosity liquids. 

Foam breakers can be introduced in stirred tank reactors as well as aerated vessels (bubble 

column or airlift reactors) in order to avoid the usage of anti-foam agents. Anti-foam agents tend to 

form an additional barrier to gas-liquid mass transfer and thus reduce the gas-liquid mass transfer 

coefficient. A mechanical stirrer can be introduced to break the bubbles that accumulate in the 

separator allowing for more efficiency gas disengagement (Deshpande and Barigou, 1999). 

4.12 Correlation Forms 

The mass transfer theories from Chapter 3 have been used to define operational boundaries for 

stirred tank reactors. The hydrodynamic complexity of gas-liquid flows in STRs has curbed the 

practical application of theoretical models. Currently, a universal model or correlation has not been 

successfully developed and applied over a wide range of system configurations, scales, operating 

conditions, or inputs (Garcia-Ochoa and Gomez, 2004; Kawase and Moo-Young, 1988), which is a 

major disadvantage of stirred tank reactors. The situation is even worse in gas-liquid-solid 

processes due to lack of relevant data and increased hydrodynamic complexity (Garcia-Ochoa and 

Gomez, 2004; Murthy et al., 2007). Design and scaleup are implemented using an iterative method, 

where previous works are used as the first step in a trial-and-error process (Benz, 2008), which 

continues until the reactor produces the desired conditions (Bliem and Katinger, 1988a). 
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In order to streamline the process, empirical, semi-empirical, or dimensionless group 

correlations have been proposed of which empirical correlations are the most commonly used 

(Bliem and Katinger, 1988a; Garcia-Ochoa and Gomez, 2004; Kawase and Moo-Young, 1988). 

Variables are chosen based on a gas-liquid mass transfer model believed to dominate the process as 

well as practical considerations. These correlations have been used in design and scaleup, but are 

only valid for the particular system and operating range (Benz, 2008; Garcia-Ochoa and Gomez, 

2004) and have an accuracy of about +/- 30% at best (Benz, 2008) even if they are in dimensionless 

form (Bliem and Katinger, 1988a). 

In general, STR correlations lack the ability to account for reactor variations and the specific 

hydrodynamic state; however, they can be used as an estimate if the corresponding systems have 

geometric, hydrodynamic, and flow pattern similarity. Industrial designs based on experimental 

setups should be referenced to systems that properly reflect the desired industrial settings and 

circumstances (Bliem and Katinger, 1988b; Kapic and Heindel, 2006; Kapic et al., 2006). For 

example, most experimental setups are operated in a Reynolds range of 5,000-10,000 while large 

industrial units operate in the range 10,000-100,000 (Bliem and Katinger, 1988b). The disconnect 

becomes more obvious when we consider that a significant number of experiments include data in 

a power range of 5-10 kW/m3, while industrial units are rarely operated beyond 3 kW/m3 (Benz, 

2008) or below 500 W/m3 (Bliem and Katinger, 1988b). This is mainly due to the theoretical 

models’ requirement of a well-mixed state for the liquid phase while industrial units require 

minimal costs. Hence, mixing and process time often grows much quicker with scale than 

anticipated and often leads to production difficulties (Nienow, 1996). 

A simple approach for finding an appropriate gas-liquid mass transfer correlation is to break 

kLa down into its components (a and kL) and find separate correlations for each, after which those 

would be combined to generate a kLa correlation. It is very convenient to start with the interfacial 
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area since an applicable theoretical correlation is readily available (Figueiredo and Calderbank, 

1979) 

 

G

Sm

6ε
a=

d
 (4.2) 

where εG is the gas holdup and dSm is the Sauter mean bubble diameter. 

Next, an assumption is made on the mass transfer model, and the two terms are combined. If a 

film model is used, kL is assumed to be inversely proportional to dB. Therefore, 
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where dB is the mean bubble diameter and β and n are fitted constants. If a penetration model is 

used, kL is correlated to a power concentration, usually defined in terms of PG/VL: 
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where A and C are fitted values, PG represents the gassed power, and VL is the liquid volume within 

the STR. It should be noted that Eqns. (4.3) and (4.4) fall in the semi-empirical family of 

correlations. Gas holdup correlations, which are presented in Table 4.1, could be substituted into 

Eqn. (4.4) to obtain gas-liquid mass transfer approximations. 

Some researchers have found a better statistical fit by using the total power, Ptot, defined as the 

gassed impeller power plus the buoyancy power of the sparged gas (Moucha et al., 2003). This has 

been done because the sparged gas power has been shown to impact gas-liquid mass transfer in a 

similar fashion to impeller power (Stenberg and Andersson, 1988b). On the other hand, Gagnon et 

al. (1998) came to the conclusion that the impeller transfers energy to the fluid in the impeller zone 

and that the gas phase does not influence this energy transfer directly. Most researchers, therefore, 

ignore the effect of the buoyancy force and the gas expansion energy in stirred tank reactors. The 

power dependence can also be accomplished by using the impeller speed N or a combination of the 
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impeller diameter Di and N. Correlations based on Di and N are more scale dependent then the 

power concentration. Therefore, correlations will be compared on a power concentration basis. 

Equation (4.4) has two control and measurement difficulties: gas holdup and bubble diameter. 

Gas holdup can have dynamic features and its measurement may be difficult to implement in a 

reactor control scheme. The bubble diameter, especially in heterogeneous flow, is not uniform and 

its measurement requires visual inspection, which is troublesome in industrial or large-scale 

experimental units. Therefore, the representative control inputs (power concentration and 

superficial gas velocity) for the bubble diameter and gas holdup can be used (Moo-Young and 

Blanch, 1981). The two inputs represent forces acting on the bubbles such as the drag, buoyancy, 

inertial, and the surface tension forces. These substitutions have led to the most widely used 

empirical correlation form: 
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where A, B, and C are fitted constants and UG is the superficial gas velocity. Correlations based on 

Eqn. (4.5) are presented in Table 4.2. 

Although Eqn. (4.5) has been widely used in practice (Kawase and Moo-Young, 1988), it 

conveys very little information about the particular system and mass transfer mechanism (Moucha 

et al., 2003). For example, impeller operating regimes, flow patterns, forces, and liquid and gas 

properties are not accounted for in this correlation. The particular results are global 

representations of the system and have little hope of representing microscale effects which are vital 

in gas-liquid mass transfer (Bouaifi et al., 2001). As shown in Figure 4.27, these issues have caused 

wide variability in the available gas-liquid mass transfer (and gas holdup) correlations and their 

dependence on power concentration and superficial velocity (Yawalkar et al., 2002). For example, 

the power concentration exponent ranges from 0.32 (Gagnon et al., 1998) to 1.32 (Linek et al., 

1996a), and the UG exponent ranges from 0 (Linek et al., 2005a) to 0.77 (Moucha et al., 2003). 
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Hence, depending on the particular correlation, estimated kLa values may vary by a factor of two or 

more for a fixed power concentration. 

 
Figure 4.27: Sample mass transfer results for an STR with a single Rushton-type impeller from the 

correlation based on Eqn. (4.5). 

It would be fair to conclude that the choice of fitted variables is based on statistical methods 

with little thought to implications on mass transfer models and forces acting on the system, thus 

reducing the usefulness outside the experimental range. For example, the exponents depend on the 

reactor size (Stenberg and Andersson, 1988b), system geometry, experimental range, and 

experimental method (Figueiredo and Calderbank, 1979). Therefore, one may conclude that Eqn. 

(4.5) is leaving out major variables. 

A second problem with Eqn. (4.5) is that the two measured variables, power concentration and 

superficial gas velocity, are inherently connected through hydrodynamics. Their experimental and 

statistical separation is a very difficult task and is rarely achieved (Garcia-Ochoa and Gomez, 2004; 

Stenberg and Andersson, 1988b). As stated in the STR literature, questionable measurement 
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techniques (Linek et al., 1996a) and experimental assumptions (Nocentini, 1990) make a large 

number of the STR correlations inadequate and conflicting (Nishikawa et al., 1984). 

The need to define the system more accurately has led to several improvements on Eqn. (4.5). 

Fujasova et al. (2007) and Moucha et al. (2003) have added a power term, NPg, to account for the 

impeller type: 
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where A, B, C, and D are fitted constants. The (gassed) power number is defined as: 
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where ρ is the liquid density and PG is the gassed impeller power draw. Cavity effects are reflected 

by a decrease in the gassed power draw and hence the gassed power number. Although the power 

number helps to identify the particular impeller type, it does not identify the flow regime in which 

the impeller is operating. 

Fujasova et al. (2007) and Linek et al. (1996a, 1996b) went further and attempted to account 

for multiple impellers. Linek et al. (1996a, 1996b) pointed to the fact that different amounts of gas 

pass through each impeller zone. It was suggested that one correlation should be formulated for the 

bottom section while the other impellers were packaged into a separate correlation. Linek et al. 

(1996a) presented a weighed power term that could be used in Eqn. (4.5). The bottom impeller 

would account for 25% of the power draw while the other impellers accounted for 75%. Fujasova 

et al. (2007) added a gassed to ungassed power ratio term that would account for the different 

amounts of gas passing through each impeller and communicate the impeller performance upon 

gassing relative to its ungassed state (McFarlane and Nienow, 1996b). Hence, the total mass 

transfer coefficient was determined from an average of the mass transfer coefficients of each 

impeller section which was calculated using:  
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( )DA B E

L tot G G P
k a CP U P P N0=

 (4.8) 

where A, B, C, D, and E are fitted constants and P0 is the ungassed power. 

The previous equations assume that liquid properties do not change throughout the process or 

hope that any viscosity changes or liquid type is reflected in the power concentration term (Ni et al., 

1995). These circumstances lead Eqn. (4.5) to fail when the fluid viscosity changes during the 

process or if the fluid exhibits or becomes non-Newtonian. Several authors have suggested the 

inclusion of a viscosity term to account for these effects (Garcia-Ochoa and Gomez, 1998, 2004; 

Linek et al., 2005a; Ogut and Hatch, 1988; Tecante and Choplin, 1993): 

 

A

B CG
L G a

L

P
k a=C U μ

V

 
 
   (4.9) 

where A, B, C, and D are fitted constants and μa is the apparent viscosity based on the Ostwald-de 

Waele model. A Casson viscosity (Garcia-Ochoa and Gomez, 1998, 2004) and a liquid-to-water 

viscosity ratio (Nocentini et al., 1993) have also been used successfully. Unfortunately, Eqn. (4.9) 

also shares the same disadvantages as Eqn. (4.5) – it is limited to similar systems operating over 

similar ranges. 

Flow patterns and impeller loading conditions have not been considered thus far. They are 

important characteristics of a system, but are identified through indirect and inefficient means. 

Yawalkar et al. (2002a, 2002b), Kapic (2005), Kapic and Heindel (2006), and Kapic et al. (2006) 

have attacked this prospect using a correlation based on a complete dispersion impeller speed NCD. 

It defines the point at which complete gas dispersion is achieved at the minimal power input (e.g., 

see Figure 4.6 and Figure 4.7). Yawalkar et al. (2002) proposed 

 

A

B

L G

CD

N
k a C U

N

 
=  

   (4.10) 

where A, B, and C are fitted constants. Various correlations of this form are summarized in Table 

4.3. It was noted that this kLa correlation was independent of reactor geometry, impeller type, 
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position of the impeller, and sparger if operated at the same N/NCD ratio. For example, Kapic and 

Heindel (2006) correlated data from several different sources and STR sizes into a single 

correlation2: 

 

B D

L

A

G CD

k a N D
=C

U N T

   
   

    (4.11) 

where A, B, C, and D are fitted constants. These results are shown in Figure 4.28. This correlation 

does a good job of fitting the experimental data for a variety of tank sizes. However, the correlation 

is valid only for STRs with Rushton-type impellers operating in the completely dispersed flow 

regime. 

 
Figure 4.28: Scaleup correlations developed by Kapic and Heindel (2006). 

  

                                                           

 

 

2 The original correlation in Kapic and Heindel (2006) inadvertently transposed the D/T fraction. 
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In order to achieve more consistent scaleup success, full-scale and pilot reactors should have 

geometric and hydrodynamic similarity. The pilot reactor used for preliminary design should have 

operational relevance to the full-scale unit especially with respect to the impeller speed (Kapic and 

Heindel, 2006). Yawalkar et al. (2002a) went further to address the question of scaleup by defining 

Eqn. (4.10) in terms of gas volume per unit liquid volume per minute (vvm): 

 

A

B

L

CD

N
k a=C (vvm)(T)

N

 
 
   (4.12) 

where A, B, and C are fitted constants. Eqn. (4.12) proved more effective at predicting kLa for larger 

volumes. This scaling approach is, however, limited because it requires the pilot reactor to provide 

a vvm ten to twenty times higher than the full-scale version (Benz, 2008). 

A much simpler approach can be taken with systems having geometric and hydrodynamic 

similarity. It is often thought the gas-liquid mass transfer coefficient could be increased by 

increasing the amount of gas in the reactor volume. This idea has been in extensive use in multiple 

impeller systems because of the difficulty in determining kL (Moucha et al., 2003). Gas holdup εG 

was used to represent this concept (Moucha et al., 2003) and is defined as: 

 

G
G

G L

V
ε =

V +V
 (4.13) 

where VG and VL are the gas and liquid volume, respectively. A very simple form of the gas-liquid 

mass transfer coefficient proposed by Stenberg and Andersson (1988b) is 

 L Gk a=Cε
 (4.14) 

where C is a fitted value. 

Stenberg and Andersson (1988b) found that Eqn. (4.14) accounted for over 93% of their data. It 

was concluded that the gas-liquid mass transfer coefficient variations in a system are explained by 

changes in the interfacial area due to its connection to gas holdup by Eqn. (4.2). They also found 

that a large error in the bubble diameter would create a relatively small error in kLa, which was 
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shown using Eqn. (4.3). Unfortunately, the correlation does not communicate any information 

regarding the mass transfer process, hydrodynamics, or fluid properties and is somewhat 

unconventional since no other authors have presented their work in this form. The reactor design 

and operational uniqueness are not accounted for with Eqn. (4.14). In addition, Moucha et al. 

(2003) found that axial flow impellers, which could provide higher gas holdup, would still 

underperform radial flow impeller in term of mass transfer due to their inability to provide smaller 

bubble diameters (Moucha et al., 2003). Therefore, Eqn. (4.14) will fail during scaleup, but could be 

used as a first approximation for a similar design and size. 

The scaleup problems arise from the fact that all STR gas-liquid mass transfer correlations are 

empirical. They are, for the most part, unable to account for hydrodynamic or liquid property 

changes with scale and time. Extensive attempts have been made in using nondimensional groups, 

especially towards solving gas-liquid processes involving non-Newtonian liquids. These 

correlations tend to be more complicated and require numerous static, but only few dynamic, 

inputs. One of the simplest correlations is presented by Ogut and Hatch (1988) which involves four 

dimensionless groups and requires six inputs. One of the more complicated forms, proposed by 

Nishikawa et al. (1981), uses 12 dimensionless groups because the model tries to explain operation 

during low power input leading to the stirred tank reactor behaving like a bubble column. A general 

word of warning would be that if a correlation is based on statistical fitting, it runs the risk that the 

fit is achieved by probability rather than causality. The result could be that the correlation predicts 

improbable outcomes when extended beyond the operating range (Stenberg and Andersson, 

1988b). 
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4.13 Needed Research 

A few basic research needs are left to be explored for the stirred tank reactor. The 

hydrodynamics are known for the standard impellers, but the explanation of the physics behind 

each of the phenomena is not well understood. If a new impeller is designed, its predicted effects 

are determined based on its similitude to standard impellers rather than the impeller design. Since 

stirred tank reactors use a wide variety of shear producing impellers, the gas-liquid mass transfer 

correlations are highly specific on the type of impeller. Current correlations are not capable of 

accounting for the impeller type and usually cannot be applied to other impellers without 

significant error. A correlation that would have this capacity would be incredibly helpful. An issue 

tied to the impeller type is scaleup procedures and guidelines, which may not agree on the 

predicted effects. The worst case scenario is that the impeller power law is ignored, which would 

lead to practically irrelevant comparisons. The best case is that the guideline helps to maintain a 

constant variable of interest such as shear rates in the impeller zone. Unfortunately, other variables, 

which can have a significant impact on microorganism production, often change unpredictably such 

as the level of mixing in the scaled vessel. A holistic, although complicated, approach could be 

helpful. 

The use of multiple impeller systems should be customized towards a particular application and 

its goals. Optimization should be an attainable goal. Research could be directed towards 

determining which impeller combinations should be preferred for process specfic goals (i.e., 

mixing, gas-liquid mass transfer, shear). It would be helpful to develop a suggestion matrix such 

that a user could look up a range of possible impeller combinations for a given maximum shear rate. 

Then, the user could decide between mixing and gas-liquid mass transfer. For example, if the 

microorganism is somewhat shear resistant, but it also forms potentially toxic byproducts due to 

secondary reactions or concentrations, mixing might be more important than gas-liquid mass 

transfer. 
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Stirred tank bioreactor research and design is not focused enough on microorganism 

applications. A majority of research is conducted with and by the chemical fields. If the application 

is biological in nature, several different requirements have to be met. For example, little research 

has been completed with live microorganisms, which leads many scaleup procedures into the 

unknown. Microorganism behavior, such as flocculation, is often not accounted for. Such properties 

could be studied by simulating microorganisms using fibers. Fibers could also be studied as a 

microorganism support carrier to better protect microorganisms from shear. 

Microorganism tend to produce proteins and other byproducts that may significantly alter 

liquid properties. Non-Newtonian liquids are often left out of hydrodynamic research work or non-

Newtonian behavior is investigated on its own; however, microorganisms change several liquid 

properties in parallel and through different means. For example, the proteins may cause the fluid to 

become non-Newtonian, but the microorganisms may also flocculate. The current research is not 

capable of predicting hydrodynamics in such a case. The only conclusion that could be drawn is that 

gas-liquid mass transfer will decrease and mixing will be significantly hampered. This question 

could be investigated by adding fibers to non-Newtonian mixtures. 

Naturally, impeller designs could also be investigated to fit the needs of microorganisms. In 

such a world, honeycombed impellers might become less attractive since they might kill 

microorganisms in the high shear impeller zone. In addition, multiple impeller arrangements could 

be investigated or designed better so that the impellers aid each other’s operation. For example, the 

axial impeller would mix the reactor so that the radial impeller is loaded properly and the radial 

impeller would not allow the gas phase to enter the axial impeller zone in such a way to cause axial 

impeller loading instabilities. It would be feasible that the optimum designs and combination do not 

have the standard separation distance. 
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4.14 Summary 

Stirred tank reactors are one of the standard bioreactor designs used in biological applications 

because gas-liquid mass transfer can be easily increased through faster impeller speed and higher 

gas flow rate. Stirred tank reactors come in many different flavors and scales. Small and 

experimental scale STRs can be serviced by a single impeller while most industrial applications use 

multiple impellers. The best choice for single impeller STRs is a radial disc impeller, but other 

designs may be more advantageous depending on the application. For example, retrofitting with 

some radial flow impeller, such as the Rushton-type turbine, may be difficult due to its high torque; 

however, replacement or addition of an axial flow impeller, such as the A-315, is easily achieved 

without further stress on the motor and gearbox. Therefore, a multiple impeller design with a non-

interfering radial flow impeller (bottom) and axial flow impeller(s) is preferred. 

Theoretical models explaining mass transfer are in place, but a kLa equation, which is applicable 

over a wide array of designs and operational range, is still not available. The interaction between 

the impeller and the gas and liquid phases is very complicated and a lot of ambiguity and 

controversy exists. Literature is often filled with contradictory suggestions and explanations. 

Hence, practical design procedures, such as scaleup or retrofitting, can be very complicated and 

results are often hard to predict correctly. Furthermore, microorganisms add another level of 

complication because they may be sensitive to the reactor conditions so that production declines 

even if gas-liquid mass transfer, the supposed limiting factor, increases. These interactions in turn 

have led to industrial applications often being dominated (in terms of time) by the last 10-20% of 

conversion (relative). 

Therefore, great care has to be used in designing, operating, or retrofitting stirred tank reactors 

for biological applications. Scaleup may be more successful if the experimental and industrial scale 

designs have hydrodynamic and geometric similarity because the probability of similar conditions 

is increased. In such cases, it is expected that production would also meet predicted values. In 
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addition, the implemented scaleup strategy has to account for increased turbulence with scale. A 

common error is to use a constant impeller speed scaleup strategy, which leads to much higher 

levels of turbulence and power costs at the industrial scale. In fact, a global scaleup strategy does 

not exist, and any designs and modifications have to be thoroughly tested. The trial and error 

method cannot be avoided, but hydrodynamic and geometric similarity reduces the time and cost 

required to achieve satisfactory results. 
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Note: The correlations by Calderbank (1958), Hickman (1988), Linek et al. (1987), Smith and 
Warmoeskerken (1985), Van’t Riet (1979), Whitton and Nienow (1993), and Zhu et al. (2001) are 
as cited by Yawalkar et al. (2002b). 

Researchers C a b
U G  range 

(mm/s)

P G /V  range 

(W/m
3
)

Gas Liquid
Impeller 

Configuration
H  (m) T  (m)

22.4 0.24 0.65
2 (PBT, A310, 

A315)

24.8 0.24 0.65
2 (RT, PBT, 

A310, A315)

Figueiredo and 

Calderbank (1979)
0.34 0.25 0.75 n/a n/a n/a n/a n/a n/a n/a

0.23 0.31 0.73 Water

0.05 0.49 0.58 0.5M Na 2SO4

0.07 0.36 0.54

0.29 0.30 0.73

0.02 0.59 0.44

0.05 0.46 0.52

0.02 0.63 0.52 1 (TXU)

0.05 0.49 0.57 2 (TXU)

0.17 0.42 0.75 3 (TXU)

0.05 0.42 0.53 1 (TXD)

0.14 0.32 0.59 2 (TXD)

0.26 0.36 0.74 3 (TXD)

0.05 0.47 0.58 1 (PBD)

0.08 0.52 0.71 2 (PBD)

0.35 0.29 0.80 3 (PBD)

0.19 0.44 0.75 3 (RT, 2TXU)

0.24 0.45 0.82 3 (RT, 2TXD)

0.10 0.52 0.71 3 (RT, 2PBD)

0.03 0.51 0.50 2 (RT, TXU)

0.11 0.42 0.66 2 (RT, TXD)

0.05 0.50 0.57 2 (RT, PBD)

0.02 0.62 0.57 1 (RT)

0.05 0.49 0.58 2 (RT)

0.04 0.54 0.58 3 (RT)

0.10 0.28 0.48

0.25 0.24 0.65

Vasconcelos  et a l . (2000) 0.10 0.37 0.65 n/a n/a n/a Water 2 (RT) n/a n/a

Whitton and Nienow 

(1993) 1.28 0.26 0.66 11.8-33.1 1.4-1.7 rps n/a n/a 1 (RT) n/a
0.61, 

2.67

0.56 0.25 0.41

0.52 0.25 0.40

Moucha  at a l . (2003)

0-1,300
2.12, 4.24, 

8.48

Table 4.1: Gas holdup correla tions  for s ti rred tank reactors .

ε G =C(P G /V)
a

U G
b

Bouai fi  et a l . (2001)

0.86 0.43Tap waterAir0-1,0003.7-18.1

Linek a t a l . (1994)

Linek a t a l . (1996)

0.5M Na 2SO4

4 (RT)

WaterNitrogen 

and 

oxygen

0-4,0000-0.00848

2 (RT)

0.19

0.19, 

0.38, 

0.57, 

0.76

Air 2 (BT-6)
0.96, 

1.44
0.48Water

0.29, 

0.58, 

0.87

0.290.5M Na 2SO4Oxygen

n/a n/an/a n/a n/a

0.57

Pinel l i  et. a l  (2003)
7.0-14.0 200-2,600

0.57Air Water 1 (PBD)
Yawalker et. a l  (2002)

4.0-15.7 0.7-8.3 rps
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Researchers C A B
U G  range 

(mm/s)

P G /V  range 

(W/m
3
)

Gas Liquid
Impeller 

Configuration

H 

(m)

T 

(m)

Bouai fi  et a l . (2001)
0.022 0.50 0.60

3.72-

18.10
0-1,000 Air Tap water

2 (RT, PBT, 

A310, A315)
0.86 0.43

0.006 0.74 0.53 Water

0.001 1.22 0.51 0.5M Na2SO4

0.002 0.95 0.58 Sokrat 44

0.006 0.69 0.53 Water

0.001 1.25 0.57 0.5M Na2SO4

0.001 1.00 0.50 Sokrat 44

0.006 0.69 0.53 Water

0.001 1.20 0.58 0.5M Na2SO4

0.001 0.95 0.53 Sokrat 44

0.005 0.72 0.50 Water

0.000 1.22 0.45 0.5M Na2SO4

0.002 0.95 0.57 Sokrat 44

0.5 0.01 0.86 1 (RT)

0.8 0.02 0.92 2 (RT)

0.2 0.02 0.72 2 (RT)

0.3 0.03 0.79 3 (RT)

0.4 0.01 0.87 HR

0.5 0.06 0.88 HRB

12.2 0.57 0.47 1 (RT)

2.9 0.83 0.50 2 (RT)

3.2 0.79 0.48 2 (RT)

9.2 0.60 0.50 3 (RT)

15.4 0.32 0.50 HR

31.1 0.38 0.65 HRB

0.005 0.59 0.27 Water

0.004 0.70 0.18 0.2M Na2SO4

0.043 0.40 0.57 0.6

0.027 0.54 0.68 2

Kapic and Heindel  (2006) 0.040 0.47 0.60 0.5-7.2 6.7-13.3 rps Ai r Tap water 1 (RT) 0.21 0.21

0.026 0.61 0.61 CO Water 1 (RT)

0.001 1.23 0.55 Air 0.5M Na2SO4 2 (RT)

0.005 0.59 0.40 Water

0.001 0.95 0.40 0.5M Na2SO4

Linek et a l . (1990) 0.000 1.24 0.40 n/a n/a Air Water n/a n/a n/a

Linek et a l . (1994) 0.000 1.21 0.40 n/a n/a Air 0.3M Na2SO4 3 (RT) n/a n/a

0.009 0.63 0.54

0.006 0.68 0.50

0.001 1.17 0.46

0.001 1.32 0.33

0.21

0.29

Linek et a l . (1996)

0-8.48 0-4,000

Nitrogen 

and 

oxygen

Water

4 (RT)

0.19, 

0.38, 

0.57, 

0.76

0.19

0.5M Na2SO4

n/a
Linek at a l . (1987)

2.12, 4.24 100-3,500 Air 1 (RT)

Kapic et a l . (2006)
0.5-7.2 6.7-13.3 rps 0.21

Water

0.29 0.29

Hickman (1988)
2-17 50-3,500 Air Water 1 (RT) n/a

Gezork et a l . (2001)
0-130000 0-100,000 Air 1 or 2 (RT)

Table 4.2: Standard gas -l iquid mass  transfer correlations  based on Eqn. (4.5).

k L a=C(P G /V)
A

U G
B

Air

3 (RT in 

bottom; PBD, 

PBU, TXD, 

LTN, NS)

0.29, 

0.58, 

0.87

0.29

Gagnon et. a l  (1998)

0-1.2

0.001-30

0.55 0.23

0.001-100

30-10,000

100-10,000

Fujasova  et a l . (2007)

2.12, 

4.24, 8.48
0-1,200

Air
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Researchers C A B
U G  range 

(mm/s)

P G /V  range 

(W/m
3
)

Gas Liquid
Impeller 

Configuration

H 

(m)

T 

(m)

0.00003 1.18 0.00 0.8M Na2SO4

0.00003 1.16 0.00

0.8M Na2SO4 

and Sokrat44 

(3% vol )

0.00004 1.08 0.00

0.8M Na2SO4 

and CMC TS.5 

(0.2 wt%)

0.00022 0.77 0.00

0.8M Na2SO4 

and CMC TS.5 

(0.6 wt%)

0.00013 0.73 0.00

0.8M Na2SO4 

and Ocenol    

(3 ppm by vol )

0.00003 1.15 0.00

0.8M Na2SO4 

and PEG 1000 

(100 ppm by 

mas s)

0.001 1.25 0.63 1 (TXU)

0.002 1.20 0.74 2 (TXU)

0.002 1.20 0.70 3 (TXU)

0.018 0.88 0.77 1 (TXD)

0.006 1.01 0.69 2 (TXD)

0.009 1.01 0.75 3 (TXD)

0.002 1.05 0.46 1 (PBD)

0.001 1.11 0.39 2 (PBD)

0.001 1.15 0.51 3 (PBD)

0.003 1.01 0.54 3 (RT, 2TXU)

0.003 1.04 0.51 3 (RT, 2TXD)

0.001 1.14 0.46 3 (RT, 2PBD)

0.001 1.06 0.36 2 (RT, TXU)

0.002 1.02 0.47 2 (RT, TXD)

0.001 1.13 0.43 2 (RT, PBD)

0.000 1.24 0.34 1 (RT)

0.001 1.23 0.56 2 (RT)

0.001 1.24 0.47 3 (RT)

0.001 1.19 0.55 Al l  Data

Ni  et. a l  (1995)

1.645 0.50 0.64 0.5 vvm 0-10,000 Air
Yeast and 

feed
2 (RT)

0.195 

0.37

0.12 

0.24

3

Nocentini  et a l . (1993)
0.015 0.59 0.55

0.1-0.7 

vvm
100-10,000 Air

Water and 

glycerol
4 (RT)

0.70, 

0.93
0.23

0.018 0.37 0.29

0.005 0.59 0.40
2 (BT-6)

0.96, 

1.44
0.48

Pinel l i  et. a l  (2003)
7.0-14.0 200-2,600 Air Water

0.12 0.12

Table 4.2 cont.: Standard gas-l iquid mass  transfer correlations  based on Eqn. (4.5).

Moucha  at a l . (2003)

2.12, 

4.24, 8.48
0-1,300 Oxygen 0.5M Na2SO4

0.29, 

0.58, 

0.87

0.29

Linek et. a l  (2005)

1.8, 3.6, 

5.4
10-1,500

Pure 

oxygen or 

a i r

1 (RT)

k L a=C(P G /V)
A

U G
B
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Note: The correlations from Linek et al. (1987), Van’t Riet (1979), and Zhu et al. (2001) are as cited 
by Yawalkar et al. (2001a). The correlation from Linek et al. (1994) is as cited by Fujasova et al. 
(2007). 

  

Researchers C A B
U G  range 

(mm/s)

P G /V  range 

(W/m
3
)

Gas Liquid
Impeller 

Configuration

H 

(m)

T 

(m)

0.0001 0.58 0.43 1 (RT)

0.0001 0.61 0.43 2 (RT, PBT)

0.0002 0.67 0.53 3(RT, 2PBT)

0.0001 0.68 0.53
0.25% 

(w/v)CMC

0.0001 0.66 0.54
0.375% 

(w/v)CMC

0.0022 0.36 0.56
0.50% 

(w/v)CMC

Riggs  and Heindel  (2006)
0.051 0.51 0.65 0.5-2.88 200-600 rpm CO Water 1 (RT) 0.21 0.21

0.010 0.48 0.40 4.0-20.0 20-5,000 Air Water

0.020 4.75 0.40 4.0-46.0 0-700 Air 0.11 Na 2SO4

0.026 0.40 0.50 Coalescent

0.020 0.70 0.20
Non-

coa les cent

Vasconcelos  et a l . (2000) 0.006 0.66 0.51 n/a n/a n/a Water 2 (RT) n/a n/a

Zhu et. a l  (2001) 0.031 0.40 0.50 1.0-7.5 100-1,500 Air Water 1 (RT) n/a 0.39

n/a n/a

Van't Riet (1979)

n/a n/a n/a 1 (RT)

Puthl i  et a l . (2005)

1.7-6.4 300-600 rpm Air

Water

0.22 0.13

3(RT, 2PBT)

Table 4.2 cont.: Standard gas-l iquid mass  transfer correlations  based on Eqn. (4.5).

k L a=C(P G /V)
A

U G
B

1 (RT)

0.44 

0.61 

0.91 

1.83

0.60 

0.61 

0.91 

1.63

Smith et. a l  (1977)
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Researchers C A B
U G  range 

(mm/s)
N /N CD Gas Liquid

Impeller 

Configuration

H 

(m)

T 

(m)

Chandrasekharan and 

Ca lderbank (1981)
2.7 1.15 0.96 3.5-18 0.85-1.56 Air Water 1 (RT) n/a 1.22

Calderbank (1958), van't 

Riet (1979)
2.8 1.14 0.97 5-36 0.67-2.65 Air Water 1 (RT) n/a 0.5

Hickman (1988)
4.3 1.35 1.04 2-17 066-1.61 Air Water 1 (RT) n/a

0.60, 

2

Linek et. a l  (1987) 5.2 1.69 1.09 2.12-4.24 1.4-3.8 Ai r Water 1 (RT) n/a 0.29

Smith et. a l  (1977)

2.4 1.38 0.96 4.4-46 0.25-2.44 Air Water 1 (RT)

0.61 

0.91 

1.63

0.61 

0.91 

1.83

Smith (1991)

6.5 1.44 1.12 n/a n/a Air Water 1 (RT) n/a

0.6, 

2.7, 

2.7

Smith and 

Warmoeskerken (1985)
12.6 1.54 1.27 n/a n/a Air Water 1 (RT) n/a 0.44

Whitton and Nienow 

(1993)
3.5 1.17 1.00 n/a n/a Air Water 1 (RT) n/a

0.61, 

2.67

Yawalker et. a l  (2002) 3.4 1.46 1.00 n/a n/a Air Water 1 (RT) n/a

Zhu et. a l  (2001) 3.3 1.14 0.97 1.0-7.5 n/a Air Water 1 (RT) n/a 0.69

Table 4.3: Gas-l iquid mas s  transfer correlations  based on Eqn. (4.10).

k L a=C(N /N CD )
A

U G
B 

(Adopted from Yawalkar et al. (2002a))
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5 Bubble Column Reactors 

5.1 Introduction 

Bubble columns (BC) belong to a family of pneumatic bioreactors. The concept, in which 

compressed air is injected into the base of a cylindrical vessel, is a cheap and simple method to 

contact and mix different phases (Díaz et al., 2008). The liquid phase is delivered in batch or 

continuous mode, which can be either counter- or cocurrent. The batch bubble column is the more 

common form, but the cocurrent version, shown in Figure 5.1, is also encountered. Countercurrent 

liquid flow is rarely used in industry as it provides minor, if any, advantages and multiple 

complications (Deckwer, 1992), with separation by evaporation being one of the few exceptions 

(Ribeiro and Lage, 2005). 

 
Figure 5.1: Bubble column schematic; if the liquid is also flowing continuously, in the same 

direction as the gas then the bubble column would be identified as cocurrent. 
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The gas throughput has a significant impact on the column design. Superficial gas velocity in 

BCs is limited to UG = 0.03-1 m/s with most applications operating at the lower end. The exact value 

is scale and flow regime dependent and only large industrial projects would use UG ≈ 1 m/s. Such 

flow rates lead to very fast-rising bubbles (Deckwer, 1992; Krishna et al., 2001). 

Bubble columns tend to be tall vessels with a large aspect  ratio (H/DR) because the height is a 

controlling factor for the process and residence times, especially for batch and semi-batch 

operations (Roy and Joshi, 2008). Biochemical processes require an aspect ratio between 2 to 5, 

even for experimental work. Industrial applications require much taller vessels with an aspect ratio 

of at least 5 (Kantarci et al., 2005), but it is fairly common to have vessels with an aspect ratio 

greater than 10 (Bellgardt, 2000). An aspect ratio greater than 5 is also preferred because it does 

not influence bubble column hydrodynamics (Ribeiro, 2008). 

The upper section of the bubble column is often widened to encourage gas separation. Bubble 

column volume is dependent on the application. The chemical production industry uses columns 

with volumes on the order of 100-200 m3 while the biotechnology industry and wastewater 

treatment use columns that may be up to 3,000 and 20,000 m3, respectively (Deckwer, 1992). 

Bubble columns require very little maintenance or floor space and have low operating costs 

compared to other reactor types (Ribeiro, 2008). The low operating and maintenance costs are 

mainly due to the lack of moving parts. Compressed gas is capable of producing a friendlier and 

uniform environment, which is important for processes involving shear sensitive microorganisms 

or pressure sensitive catalysts (Kantarci et al., 2005). Compressed gas is also a more effective 

power source for very large reactor volumes (up to 500 m3) (Bellgardt, 2000). The pneumatic 

power source typically produces lower energy dissipation rates compared to stirred tank 

bioreactors. Furthermore, BC designs allow for online modification of microorganism 

concentrations (Kantarci et al., 2005) and handling of materials that may cause erosion or plugging 

(Ribeiro, 2008). 
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The above advantages make bubble columns ideally suited for a variety of process industries 

including the chemical, petrochemical, biochemical, pharmaceutical, food, environmental, and 

metallurgical industries, and are used in operations such as oxidation, chlorination, alkylation, 

polymerization, and hydrogenation. Bubble columns are also widely used for the treatment of 

wastewater and manufacture of synthetic fuels (through fermentation), enzymes, proteins, and 

antibiotics (Kantarci et al., 2005). 

The major disadvantage of bubble column reactors is the difficulty in controlling the complex 

hydrodynamics found in the reactor, which have a controlling effect on the transport and mass 

transfer characteristics (Kantarci et al., 2005). The flow patterns, which are not well-defined 

(Bellgardt, 2000), create considerable backmixing and a large pressure drop through the column. 

These phenomena are due to the complex bubble interactions and their coalescence behavior 

(Martín et al., 2008a), which limit the designer’s ability to control reactor performance (Dhaouadi 

et al., 2008; Roy and Joshi, 2008; Vial et al., 2001). The result is that bubble column behavior is 

fairly unknown, especially if reactor geometries, liquid properties, or operating ranges are varied in 

parallel (Godbole and Shah, 1986; Vial et al., 2001). Hence, design and scaleup are difficult (Ribeiro, 

2008; Vial et al., 2001) and require a tedious and iterative process (Godbole and Shah, 1986). 

Guidelines have been developed to shorten this method and will be addressed in the relevant 

sections below. Additional information on bubble columns is provided by Beenackers and Van 

Swaaij (1993), Deckwer (1992), Godbole and Shah (1986), Han and Al-Dahhan (2007), Kantarci et 

al. (2005), Lau et al. (2004), and Ribeiro and Lage (2005). 
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5.2 Flow Regimes 

Gas-liquid mass transfer behavior in bubble columns is closely tied to gas holdup through the 

various flow regimes identified in Figure 5.2. The two principal and industrially useful flow regimes 

are the homogeneous and heterogeneous flow regimes (Mena et al., 2005). At low gas flow rates, 

the bubbly or homogeneous flow regime develops (Figure 5.2a). The regime is characterized by 

small bubbles which are a few millimeters in diameter and uniformly distributed in the radial 

direction and, therefore, rise uniformly. The bubble diameter in the homogeneous regime tends to 

be controlled by the sparger design and liquid properties. There is limited bubble-bubble 

interaction in this regime and bubble coalescence and breakup are negligible. So, if the sparger is 

capable of producing smaller bubbles, these bubbles tend to stay stable at the smaller diameter. 

 
Figure 5.2: (a) Homogeneous, (b) transition, (c) heterogeneous, and (d) slug flow regimes 

(Kantarci et al., 2005). 

As the gas flow rate increases, more bubbles are created without affecting the bubble diameter 

or distribution significantly. Hence, the interfacial area and gas holdup increase almost linearly 

(Kantarci et al., 2005). Mixing is minimal, which leads to very fast average bubble rise velocity (20-

30 cm/s) and short residence times, even in very tall bubble columns (Deckwer, 1992). Therefore, 

better performance can be achieved at the subsequent flow regimes, which have much better 

mixing features; however, a significant amount of research has been directed towards the stability 

of the homogeneous flow regime because certain biochemical processes require the calm 

environment experienced in this regime. The size of most industrial units makes it difficult for the 
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homogeneous flow regime to be used because the amount of gas throughput and mixing is often 

inadequate (Kantarci et al., 2005). There are additional geometric restraints on the homogeneous 

flow regime which will be discussed in the geometry section. 

As the gas flow rate is increased, the flow evolves into an unstable structure, referred to as the 

transition regime (Figure 5.2b). The flow regime transition in terms of gas holdup as a function of 

superficial gas velocity is shown in Figure 5.3. Bubbles collide and distinct bubble classes are 

formed. The nature of the transition can occur through two different paths. The first is described by 

line “a” in Figure 5.3. The gas holdup and interfacial area are still increasing within the transition 

regime up to a local maximum. This effect is mainly due to the balancing act between more gas 

being present in the reactor and coalescence phenomenon, which lead to larger bubbles and faster 

bubble rise velocities, leading to a local gas holdup maximum (Kantarci et al., 2005). Another 

reason for the increase is that the larger bubbles tend to breakup and coalesce frequently, adding to 

turbulence (Dhaouadi et al., 2008). 

After the maximum has been reached, gas holdup and interfacial area decrease as the larger 

bubbles start to take control of gas holdup behavior (Kantarci et al., 2005). The second path, 

described by line “b” in Figure 5.3, occurs much faster and is identified by a continuous increase in 

gas holdup, albeit at a shallower slope, once the flow reaches the heterogeneous flow regime. Line 

“c” in Figure 5.3 represents a pure heterogeneous flow regime, which may occur with viscous 

liquids, large orifices, and/or small bubble column diameters (Ruzicka et al., 2003; Ruzicka et al., 

2001b). 
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Figure 5.3: Flow regime progression (Su, 2005). 

The instability that triggers the flow regime transition is mainly due to the bubble size and 

shape – smaller bubbles with rigid interfaces stabilize the flow because these bubbles have an 

inherent aversion to coalescence and breakup (León-Becerril and Liné, 2001). If the colliding 

bubbles are deformable, the collision is inelastic and will have an easier time forming a liquid 

channel to drain the liquid film, which separates the two bubbles. If, on the other hand, the colliding 

bubbles are non-deformable (rigid), the bubbles have a higher probability of simply bouncing off 

each other or separating quickly (Martín et al., 2008a). Hence, experimental results show that 

spherical bubbles correlate to a transition from homogeneous flow at about UG = 5 cm/s while 

ellipsoidal bubbles have a transition at a lower superficial gas velocity of UG = 3 cm/s. Therefore, the 

transition regime is dependent on bubble behavior in the homogeneous regime. If the 

homogeneous flow regime is more stable, the transition regime will be better defined, shorter, and 

occur at a higher superficial gas velocity (León-Becerril et al., 2002). In the practical application, the 

transition superficial gas velocity also tends to deviate with the column dimensions, sparger design, 

and liquid properties (Kantarci et al., 2005). In general, coalescence starts to occur at UG = 2 cm/s 

while the actual transition to heterogeneous flow occurs UG = 4-5 cm/s (Deckwer, 1992). 
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Even though the transition regime may offer a maximum for the gas holdup and interfacial area, 

it is not desired for industrial processes due to its unstable and unpredictable nature. The 

instability has made the identification of the transition point nearly impossible. Although 

computational fluid dynamics and other methods are capable of predicting the other flow regimes, 

these methods are not capable of predicting the transition point or the hydrodynamic behavior 

near it (Olmos et al., 2003). Hence, even if the operator wanted to work in the transition regime, it 

would be nearly impossible to achieve consistent results. 

The evolution to the next flow regime, the churn-turbulent or heterogeneous flow regime 

(Figure 5.2c), is signaled by an increase in gas holdup and interfacial area with increasing gas flow 

rate. This growth is fairly small (less than linear) and tends to trail off. The mean bubble diameter, 

which tends to be on the order of a few centimeters, is controlled by coalescence and breakup 

mechanisms in the center section of the bubble column. Even though the gas-liquid mass transfer 

coefficient is lower in the heterogeneous regime than the homogeneous regime, most industrial 

units operate in this flow regime (Ruzicka et al., 2001a) because it offers significantly better mixing 

and acceptable gas holdup and interfacial area values. Furthermore, selectivity and productivity 

requirements force a large number of industrial operations to be highly turbulent, which is an 

advantage of the heterogeneous regime (Jakobsen et al., 2005). Phase backmixing is a characteristic 

of the heterogeneous flow regime and represents a major disadvantage. It causes very complex 

hydrodynamic behavior, which leads to significant problems for the design and scaleup of bubble 

columns. The backmixing and recirculation are induced by a differential static pressure between 

the central and wall region (Zahradnik et al., 1997). 

As the flow transitions to the heterogeneous flow regime, two different bubble classes emerge, 

small and large, and behave differently with a unique influence on gas holdup. In the transition 

regime, the gas holdup for large bubbles increases much faster than the gas holdup contribution 

due to the small bubbles. This trend continues until the coalescence rate of smaller bubbles 
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increases so that the growth in gas holdup and interfacial area caused by large bubbles cannot 

account for the decrease caused by the shrinking number of small bubbles. 

As the heterogeneous flow regime is entered, bubble coalescence and breakup rates stabilize, 

and the gas holdup due to the large bubble class increases consistently, but at ever decreasing rates 

while the smaller bubble class gas holdup is relatively constant (Kantarci et al., 2005). This 

progression can be seen in Figure 5.4; it is due to the very high bubble rise velocity of the large 

bubble class (UR ≈ 160 cm/s at UG = 20 cm/s) while the rise velocity for the small bubble class 

remains relatively unchanged (UR ≈ 21 cm/s at UG = 20 cm/s) (Schumpe and Grund, 1986).  

 
Figure 5.4: Bubble class contributions to gas holdup (Deckwer, 1992). 

For small column diameters (DR < 0.15 m), a fourth flow regime is feasible: slug flow (Figure 

5.2d). It is characterized by a train of large bubbles, which spans the entire column diameter, 

dominating the flow. This flow regime is not practical and is not achieved in industrial units. 

Another flow regime that is not often encountered is the foaming flow regime, which is present 

under high superficial gas velocities, viscosity, and pressure (Kantarci et al., 2005; van der Schaaf et 

al., 2007). 
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Since most industrial processes are performed in the heterogeneous flow regime, studies have 

been directed towards its macroscopic flow patterns. Tzeng et al. (1993) classified these 

macroscopic flow structures into four regions using a 2D bubble column: descending flow, vortical 

flow, fast bubble flow, and central plume. The central region of the bubble column is made up of a 

central plume through which relatively small bubbles ascend. This central plume is surrounded by a 

fast bubble flow that is made of larger bubbles. At the edge of this motion, vortices form that trap 

bubbles and liquid, forming the vortical flow region. These vortices direct bubbles near the column 

wall to descend (descending flow region). Chen et al. (1994) arrived at similar macroscopic 

structures using a 3D bubble column. The fast and descending bubble flows, however, flowed in a 

spiral pattern. In addition, the homogeneous flow regime also displayed a descending flow 

structure near the wall region. A graphic depiction of the heterogeneous flow regime described by 

Chen et al. (1994) is presented in Figure 5.5. 

 
Figure 5.5: Macroscopic flow structure in the heterogeneous flow regime (Chen et al., 1994). 

The progression and behavior of these flow regimes is often quite complicated and depends on 

the superficial gas velocity, liquid properties, column dimensions, operating temperature and 

pressure, sparger design, and the solid phase properties (if present) (Kantarci et al., 2005). This 
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dependence is derived from the controlling factors determining the bubble diameter. The influence 

of each will be addressed in the relevant sections below. 

Gas holdup and superficial gas velocity effects on gas-liquid mass transfer are analyzed based 

on the previously mentioned bubble interactions and flow regime progression. Global gas holdup is 

assumed to be directly correlated to the gas-liquid mass transfer coefficient because local variations 

in the interfacial area and gas holdup coincide. Having reviewed the flow regimes, it can be 

concluded that the transition regime offers a dilemma. Its hydrodynamics are not linear and do not 

follow general behavior in the homogeneous and heterogeneous flow regimes (Chaumat et al., 

2005). Therefore, errors in the gas-liquid mass transfer coefficient are expected to be greater 

around the transition region, and better approximations are expected for correlations that take into 

account the regime identification. 

The flow regime identification is often assumed to be based on the superficial gas velocity (all 

else being equal). If a correlation is based on a certain design with a specific process in mind, 

adjustments could be incorporated into operation while assuming that the results will be close to 

the predicted values. At the same time, most correlations neglect any changes in the liquid-phase 

mass transfer coefficient. If operation is expected to include rheological changes, which may have a 

significant effect on the liquid-phase film resistance, the correlation could fail. It would produce 

additional variations in the gas-liquid mass transfer correlation that could not be accounted for by 

variations in the interfacial area and its codependent variations in gas holdup. Therefore, a proper 

gas-liquid mass transfer study should attempt to separate the approximation of the liquid-phase 

mass transfer coefficient and the interfacial area under such circumstances. 
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5.3 Column Geometry 

5.3.1 Column Diameter 

The gas-liquid mass transfer coefficient and gas holdup tend to decrease with increasing bubble 

column diameter in the homogeneous and transition flow regime (Zahradnik et al., 1997) up to a 

critical value (Deckwer, 1992; Shah et al., 1982; Zahradnik et al., 1997), which is usually cited to be 

DR = 0.15 m (Kantarci et al., 2005); however, gas holdup has been influenced by column diameters 

greater than 0.15 m in the homogeneous and heterogeneous flow regimes (Ruzicka et al., 2001a; 

Vandu and Krishna, 2004), and the critical diameter is more accurately described to lie in the range 

of 0.1-0.2 m (Zahradnik et al., 1997). 

The diameter dependence is created by several factors such as wall effects (Lau et al., 2004), 

which are negligible for water-filled columns larger than 0.10 m (Kantarci et al., 2005; Lau et al., 

2004), and the flow and mixing conditions (Krishna et al., 2001; Zehner, 1989). The wall effect on 

gas holdup is summarized in Figure 5.6. Figure 5.6A and 5.6C represent radial gas holdup profiles in 

small bubble columns (DR ≤ 0.060 m) while Figure 5.6B and 5.6D represent more realistic effects in 

larger bubble columns. Hence, smaller bubble columns distort gas holdup behavior and may also 

misrepresent bubble diameter measurements (if done visually). Column diameter also has a strong 

influence on flow stability, defined by a critical gas holdup and gas flow rate at which the onset of 

the transition flow regime occurs. A larger diameter causes instability and earlier transition while a 

smaller diameter would induce the opposite behavior (Ruzicka et al., 2001a). 
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Figure 5.6: Radial gas holdup profiles for small (A and C) and large (B and D) bubble column 

diameters (Veera and Joshi, 1999). 

Although the slug flow regime is defined by low gas holdup and is observed in small bubble 

columns, small bubble columns do not necessarily have low gas holdup. The smaller bubble column 

diameter may limit the bubble size distribution, which can lead to smaller bubbles, increase 

stability, and sustain a higher gas holdup. Once the column diameter is larger than 0.10-0.15 m, the 

bubble size distribution is controlled by the coalescence and breakup mechanisms (Lau et al., 

2004). This effect has been confirmed by Bouaifi et al. (2001) who investigated different gas 

distributors and column sizes; their results are shown in Figure 5.7. 
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Figure 5.7: Gas holdup dependence on column diameter and gas distributor (adopted from 

Bouaifi et al. (2001)). 

It is often observed that the smaller bubble class is not affected by bubble column diameter 

while the larger one is (Kantarci et al., 2005; Li and Prakash, 2000). Larger bubble columns 

experience a larger degree of recirculation, which may lead to a higher degree of coalescence, 

higher bubble rise velocities, and lower gas holdup values (Krishna et al., 2001; Zehner, 1989). It is 

also feasible to observe lower gas holdup values in a smaller bubble column if it is operated in the 

slug flow regime, which is dominated by very large and fast rising bubbles. Larger columns cannot 

maintain this mode of operation so that a direct comparison at a higher gas flow rate may lead to 

the conclusion that larger columns have larger gas holdup values (Daly et al., 1992). This effect can 

be seen in Figure 5.8 where the bubble column with the largest diameter shows the best gas holdup 

performance. A fairer comparison would be made on a gas flow rate per unaerated liquid volume 

basis.  
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Figure 5.8: Gas holdup correlation sample using tap water at 15°C as liquid phase: (1) Anabtawi 

et al. (2003) (H = 0.60, DR = 0.074 m), (2) Deckwer (1992) (DR = 0.14 m), (3) Godbole 
et al. (1982), (4) Hammer (1984), (5) Hikita and Kikukawa (1974) (DR = 0.10 m), (6) 
Hughmark (1967) (DR = 0.0254-0.10 m), and (7) Reilley et al. (1986) (DR = 0.30 m). 

Research work by Krishna et al. (2001) and Zehner (1989) concluded that most studies did not 

account for the flow regime dependence. For example, the heterogeneous flow regime, for which 

significant column geometry research exists, has a positive effect due to the higher degree of liquid 

recirculation. The homogeneous flow regime, on the other hand, has limited liquid recirculation by 

design. Instead, the larger bubble column diameter leads to faster bubble rise velocities, especially 

in the central region, which leads to lower gas holdup and gas-liquid mass transfer. Unfortunately, a 

significant number of gas holdup and gas-liquid mass transfer studies fail to identify the flow 

regime in which the bubble column is operating, which makes meaningful comparisons often 

difficult. 

The effect of column diameter on bubble size and flow regime has led to the introduction of 

flow regime maps, such as the one presented in Figure 5.9. These maps plot the regimes depending 

on the superficial gas velocity and bubble column diameter and attempt to predict the gas holdup; 
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however, the maps are only examples and cannot be applied universally. Flow regimes and bubble 

behavior are also influenced by the gas distributor design and physiochemical properties of the 

liquid phase. Changes in these factors bring about significant variations, which are not accounted 

for by flow regime maps. Nonetheless, these maps may be used as operating instructions for a 

reactor design that has been extensively studied. 

 
Figure 5.9: Flow regime dependence on column diameter (Kantarci et al., 2005). 

5.3.2 Unaerated Liquid Height 

The bubble column height, defined by the static liquid level, regulates the residence time over 

which the bubbles are allowed to go through the coalescence and breakup process. In other words, 

the column height may allow enough time for equilibrium to be reached. Hence, shorter columns 

often experience smaller bubble size distributions and higher gas holdup values (Kantarci et al., 

2005; Wilkinson, 1991; Zahradnik et al., 1997). A height greater than 1-3 m or an aspect ratio 

greater than 5 usually ensures that equilibrium has been established. Even though the gas holdup 

behavior indicates that operation with shorter bubble columns is more effective (Kantarci et al., 

2005), the practical application is limited. The residence time is simply too short and would require 

extensive gas recycle and a very large column footprint for meaningful bubble column volumes; 

however, the idea can be advantageous and has been applied to microreactors, which will be 

reviewed at a later time. 



117 

The column height may lead to bubble behavior stratification. For example, the top of the 

bubble column may experience high gas holdup due to foaming. The volume surrounding the 

sparger behaves differently depending on the gas distributor design. If the gas distributor is capable 

of producing smaller bubbles, the gas holdup is higher; however, this effect is limited only to the 

immediate area. The reactor bulk (middle section) usually behaves according to coalescence and 

breakup principles and the prevailing flow regime. Hence, the bulk region would be expected to 

have smaller gas holdup values (Ruzicka et al., 2001a). If the column is tall enough, such as a height 

greater than 1-3 m or an aspect ratio greater than 5, the sparger and foaming effects on gas holdup 

become negligible and the bulk region dominates reactor hydrodynamics (Veera and Joshi, 1999; 

Wilkinson et al., 1992; Zahradnik et al., 1997); however, foaming should still be avoided since it 

may damage any microorganisms. 

5.3.3 Aspect Ratio 

Bubble columns are assumed to decrease gas holdup with increased size, but an aspect ratio 

above 5 does not seem to affect hydrodynamics significantly and is usually ignored. Comparisons 

based on aspect ratio have failed in the past due to large gas holdup data scatter. A good fit could 

not be obtained such that scaleup rules still need to be based on column diameter and height 

individually (Ruzicka et al., 2001a). Aspect ratios below 5 are rarely used in industry and are often 

ignored in experimental settings. 
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5.4 Other Operating Conditions 

5.4.1 Pressure 

Pressure affects bubble dynamics and, therefore, has an important influence on gas holdup and 

gas-liquid mass transfer. It should be noted that correlations often fail to account for pressure and 

provide poor predictions if pressure variances are encountered, as is often the case in industrial 

applications (Dhaouadi et al., 2008). Generally, increased pressure is seen as decreasing the bubble 

surface tension and increasing bubble inertia (Kantarci et al., 2005; Luo et al., 1999) and gas 

solubility (Dhaouadi et al., 2008). These factors decrease the average bubble diameter, which 

allows for higher interfacial area and gas holdup values (Kojima et al., 1997). Thus, the higher 

interfacial area leads to higher gas-liquid mass transfer coefficients (Lau et al., 2004). In addition, as 

the bubble diameter decreases with increasing pressure, the bubble rise velocity also decreases, 

leading to an increased gas residence time and a more efficient gas-liquid mass transfer 

performance. 

The effect on the liquid-phase mass transfer coefficient is most likely neutral to positive. Past 

experience has been that the liquid-phase mass transfer coefficient is only dependent on the phase 

data (Gestrich et al., 1978), but current research efforts have presented contradictory evidence 

(Han and Al-Dahhan, 2007), likely due to the previously discussed kL calculation method in Chapter 

3. It is probable that the effect on kL is negligible at lower pressures due to the much more 

important changes in the bubble diameter; however, the solubility dependence on pressure could 

be significant, especially at higher pressure (Kojima et al., 1997). 

The extent of the effect often depends on the pressure increase, liquid properties, and gas flow 

rates. It is often cited that pressures below 1 MPa have a negligible impact on bubble size and gas 

holdup; however, the references usually point to older articles which used stirred tank reactors and 

have significantly different power characteristics than bubble columns (Stegeman et al., 1995). 

More recent work, on the other hand, suggests that pressure, even below 1 MPa, has a significant 
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impact on gas holdup and the interfacial area. Furthermore, pressurization has been determined to 

have a more significant impact in viscous liquids and slurries, and when operating in the 

heterogeneous flow regime (Lau et al., 2004). 

As the liquid becomes more viscous, bubbles have a tendency to coalesce more readily. The 

increased pressure serves as a detriment to coalescence and decreases the average bubble 

diameter. Hence, systems with a slurry phase benefit from pressurization (Luo et al., 1999). Bubble 

characteristics in the heterogeneous flow regime are defined by bubble breakup and coalescence 

frequencies. Once again, higher pressure tends to suppress coalescence and decrease the average 

bubble diameter. For example, Lau et al. (2004) varied pressure and gas flow rate in their study and 

found that increasing the pressure from 0.1 to 2.86 MPa led to a 130% increase in kLa at a gas flow 

rate of 10 cm/s. When the same pressure increase was implemented at a gas flow rate of 20 cm/s, 

an increase of 187% was observed. These results can be seen in Figure 5.10. It should be noted that 

the gas holdup failed to predict gas-liquid mass transfer increase as pressure increased. This effect 

can be clearly seen when a comparison is made between Figure 5.10 and Figure 5.11, which related 

gas holdup to pressure. 

 
Figure 5.10: Pressure effects on gas-liquid mass transfer in a 10.16 cm bubble column with a 

single nozzle gas distributor (Lau et al., 2004). 
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Figure 5.11: Pressure effects on gas holdup in a 10.16 cm bubble column with a single nozzle gas 

distributor (Lau et al., 2004). 

The gas holdup data of Lau et al. (2004) are basically parallel while the gas-liquid mass transfer 

data have different slopes. Furthermore, the gas holdup increase of 1.48 MPa versus 2.86 MPa is 

modest (~10%) while the gas-liquid mass transfer is a more impressive, especially at higher gas 

flow rates. This would lead one to conclude that interfacial area increased significantly from 

0.1 MPa to 1.48 MPa while the liquid-phase mass transfer coefficient seems to become important in 

the increase from 1.48 MPa to 2.86 MPa. More data points for gas-liquid mass transfer would give a 

larger resolution and more confidence in this conclusion. 

Even more surprising was the increase in kLa with liquid velocity at high pressures observed by 

Lau et al. (2004). Usually, the superficial liquid velocity is ignored and is cited as having an 

insignificant or negative effect on gas-liquid mass transfer because a higher superficial liquid 

velocity is thought to decrease the gas residence time and, therefore, kLa (Chaumat et al., 2005). At a 

pressure of 2.86 MPa, Lau et al. (2004) observed a kLa increase by 30% when the superficial liquid 

velocity was increased from UL = 0.17 to 0.26 cm/s. 
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5.4.2 Temperature 

Temperature is a much more contentious issue. It is thought that higher temperatures reduce 

the liquid viscosity and bubble surface tension, which lead to a higher stability of small bubbles and 

higher interfacial area. In addition, the liquid-phase mass transfer (kL) is thought to increase with 

an increase in temperature due to the lower viscosity according to Calderbank’s slip velocity model. 

At the same time, kL is thought to decrease due to lower surface tension and turbulence. Therefore, 

the liquid-phase mass transfer coefficient could go in either direction according to a balancing act of 

the two forces as temperature is increased. 

Lau et al. (2004) also varied temperature with the gas flow rate and concluded that higher 

temperatures lead to higher gas-liquid mass transfer coefficients at constant gas flow rates. For 

example, an increase in temperature from 25 to 92°C at a superficial gas velocity of 20 cm/s led to 

an increase in the gas-liquid mass transfer coefficient of 470% while gas holdup increased by only 

25%. Although this temperature increase is huge, Lau et al. (2004) noticed a significant increase in 

the gas-liquid mass transfer coefficient with even a few degree Celsius change in temperature. At 

the same time, gas holdup did not show any significant variation. 

A secondary effect of higher temperatures would be that the rate of reaction is often directly 

correlated to temperature and (partial) pressure. An industrial process may benefit further with a 

higher rate of reaction in the bulk as well as at the interface. The reaction, which may occur at the 

interface, is often ignored during experimental measurements and correlation formulations as 

these are not significant in pure liquids without the presence of bacteria; however, industrial 

processes may experience a significant degree of interfacial reaction. Therefore, industrial 

processes would be expected to perform better than experiments might suggest due to the 

application of higher temperatures and pressures. At the same time, the microorganisms may limit 

the extent of the operating range. 
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Hence, the conclusion is made that higher temperature (most likely) and pressure lead to an 

increase in the liquid-phase mass transfer coefficient and gas-liquid mass transfer coefficient. The 

more troublesome aspect for most gas-liquid mass transfer correlations is that gas holdup is 

decoupled from gas-liquid mass transfer. This review has not encountered any correlations that 

includes these operating conditions directly. Instead, most correlations attempt to quantify this 

effect with changes in liquid properties, which are much harder to measure in industrial settings. 

5.5 Liquid Properties 

Liquid properties influence the behavior of the bubble interface and, consequently, have a 

strong effect on both the liquid-phase mass transfer coefficient and the interfacial area. It should be 

noted that research using organic liquids, which would be very useful for bioreactor and gas-liquid 

mass transfer optimization, are scarce due to measurement difficulties (Jordan et al., 2002). 

Interestingly enough, liquids behave similarly regardless if they are pure or mixed. The only 

important factor seems to be that the liquids have similar properties such as viscosity and surface 

tension (Ozturk et al., 1987). Hence, researchers have mixed a variety of constituents with tap 

water to simulate a wide array of mixtures including organic liquids. 

The mixing has contributed to the wide array of gas holdup and gas-liquid mass transfer results. 

Even with all the care, obtaining quality data is extremely challenging. For example, salt water is 

often simulated using a sodium chloride additive (NaCl); however, salt water includes a wide array 

of salts, and the exact constituencies depend on the salt water source. As a result, real salt water 

actually has higher coalescence-inhibiting abilities than an equivalent NaCl mixture. In other words, 

the real mixture could have synergies between the different constituents, which are traditionally 

not addressed (Merchuk et al., 1998). 
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5.5.1 Viscosity 

The liquid viscosity determines the degree to which the bubbles are deformable. As the 

viscosity increases, the bubbles become more deformable, coalescence occurs much easier and 

faster (Martín et al., 2008a), and breakup is suppressed (Zahradnik et al., 1997). Deformable 

bubbles allow for the bubble interface to drain much easier and allow coalescence to occur in a 

shorter amount of time. Bubble breakup is suppressed because the higher viscosity tends to have a 

negative effect on turbulence. A second negative effect is that the larger bubbles have a higher rise 

velocity and lead to a shorter residence time for the gas phase (Zahradnik et al., 1997). Hence, 

higher viscosity liquids are observed to have larger bubbles and smaller gas holdups and interfacial 

areas (Li and Prakash, 1997; Zahradnik et al., 1997). 

The preference of larger bubbles with viscosity often favors the heterogeneous flow regime and 

may even suppress the homogeneous and transition flow regime above a critical viscosity (µL ≈ 8 

mPa s) (Ruzicka et al., 2003; Ruzicka et al., 2001b). Zahradnik et al. (1997) studied the influence of 

viscosity by increasing the sugar concentration in an aqueous saccharose solution. The results are 

summarized in Figure 5.12. As the sugar concentration increased, the mixture’s viscosity increased 

as well. They found that distilled water, which has a viscosity of about 1 mPa s at room 

temperature, showed the familiar flow regime pattern in a gas holdup versus superficial gas 

velocity graph as shown by line “a” in Figure 5.3. A similar pattern was observed with a 30% sugar 

mixture which had a viscosity of 3 mPa s; however, a 43% mixture (viscosity of 8.2 mPa s) failed to 

produce the homogeneous flow regime. These results may have a significant negative impact on 

processes which rely on the presence of the homogeneous flow regime and high viscosity liquids. 
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Figure 5.12: Viscosity effect on the stability of the homogeneous flow regime (D=0.15m; H/D=3.5) 

(Zahradnik et al., 1997). 

Viscosity also affects the liquid-phase mass transfer coefficient through the Stokes-Einstein 

effect. Einstein proposed that the diffusion coefficient could be expressed as 
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where R, T, NA, µL, and rU are the gas constant, temperature, Avogadro number, viscosity, and radius 

of the gas particle, respectively (Sharma and Yashonath, 2006). Hence, a higher viscosity could 

significantly reduce the diffusivity, which in turn would decrease the liquid-phase mass transfer 

coefficient (Chaumat et al., 2005; Lau et al., 2004; Sharma and Yashonath, 2006; Waghmare et al., 

2008); however, the decrease in the interfacial area is expected to dominate the decrease in the 

liquid-phase mass transfer coefficient. 

Ruzicka et al. (2003) observed, in opposition to most published work, an increase in gas holdup 

and stabilization of the homogeneous flow regime at a very low viscosity, µL = 1-3 mPa s. This may 
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be attributed to an increased in bubble layer stability due to the low viscosity (Ruzicka and Thomas, 

2003), which does not show major negative effects described previously. 

5.5.2 Surface Tension and Additives 

Surface tension is a liquid property that tends to counter bubble deformation and encourages 

bubble breakup (Akita and Yoshida, 1974; Mehrnia et al., 2005; Walter and Blanch, 1986). The 

result is a more stable bubble interface which leads to smaller bubble diameters, a more stable flow 

regime (Lau et al., 2004; Schäfer et al., 2002), and higher gas holdups and interfacial areas 

(Kluytmans et al., 2001). It is also thought that a lower surface tension leads to a higher contact 

time because the liquid flow over the bubble surface is slowed (Lau et al., 2004). 

Surface tension is influenced by the presence of surfactants (Kantarci et al., 2005), which act in 

the same fashion as described in Section 4.6. Surfactants attach themselves to the bubble interface 

and form a hydrophilic boundary at the bubble surface. The result is a much smaller bubble size, 

which offers a more rigid surface. This surface, in turn, lowers the bubble surface tension and 

further reduces the bubble rise velocity. 

Surfactants may offer several advantages. First, the homogeneous and transitional flow regimes 

benefit from the additional stability (Zahradnik et al., 1997) while the heterogeneous flow regime 

benefits from much smaller bubbles (Krishna et al., 2000). Second, the negative effects due to 

viscosity can be reversed with the use of surfactants (Zahradnik et al., 1999a; Zahradnik et al., 

1999b). Lastly, industrial processes often produce surfactants (such as certain proteins or alcohols) 

naturally (Kantarci et al., 2005). It should be noted that, just like stirred tank reactors, bubble 

columns experience diminishing returns with increasing surfactant concentration (Krishna et al., 

2000) and a reduction in the liquid-phase mass transfer coefficient (due to barrier effects) (Álvarez 

et al., 2008). 

Electrolytes have been shown to increase gas holdup and decrease the bubble diameter 

(Kantarci et al., 2005) even at high concentrations where they usually have a higher surface tension 
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than pure water (Levin and Flores-Mena, 2001). At relatively low concentrations, electrolytes 

decrease surface tension and reduce the film drainage speed, leading to higher gas holdup 

(Kluytmans et al., 2001). Anti-foam agents, on the other hand, caused a decrease in gas holdup due 

to higher surface tension and bubble diameters (Veera et al., 2004). Other impurities, especially of 

organic origin, tend to increase gas holdup and create immobile bubble interfaces; however, most 

research is conducted using inorganic mixtures or pure liquids (Chaumat et al., 2005). 

Alcohols create smaller bubbles and higher gas holdups because they are either amphiphilic or 

have a lower surface tension so that the aqueous mixture supports smaller bubbles. This behavior 

has been observed for a large number of alcohols in an aqueous saccharose solution. The only 

exception proved to be methanol. The theory, which was successfully tested experimentally by 

Zahradnik et al. (1999b), is that the longer carbon chains increase the effectiveness (of alcohols as 

coalescence suppressants) and cause methanol, the simplest alcohol, to lose its usefulness at a 

much lower concentration relative to the other alcohols (Zahradnik et al., 1999a; Zahradnik et al., 

1999b). 

5.6 Gas Properties 

Gas properties are often not considered and effect on gas holdup and gas-liquid mass transfer 

have not been extensively investigated. It is perceived that the gas identity is immaterial or does 

not have a significant impact within a process and operating range since the gas phase mass 

transfer resistance is almost always negligible relative to the liquid phase mass transfer resistance 

(Hughmark, 1967). The research that provided and verified these conclusions, such as work by 

Ozturk et al. (1987), was often conducted using low densities and superficial gas velocities; 

however, Jordan et al. (2002) have shown that higher pressures and superficial gas velocities result 

in a much stronger effect. For example, Ozturk et al. (1987) found a low power of the gas density of 

0.04 while Jordan et al. (2002) calculated a much higher value of 0.24. 
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The explanation for the different results can be attributed to Kelvin-Helmholtz instabilities of 

larger bubbles. The theory stipulates that the mean slip velocity (relative velocity of the gas and 

liquid phases) at the interface leads to wave formation. Once these waves become too large, the 

bubble breaks. This critical wave length has a nonlinear dependence on gas density. Hence, lower 

gas densities do not lead to the formation of this critical wave length, and researchers, such as 

Ozturk et al. (1987), did not find a relationship. In addition, the mean slip velocity is highly 

correlated to the superficial gas velocity such that high superficial gas velocities also aggravate the 

interfacial waves. In other words, the Kelvin-Helmholtz instability is rarely observed at relatively 

low gas densities and superficial gas velocities (Jordan and Schumpe, 2001; Jordan et al., 2002). 

5.7 Solid/Slurry Phase Properties 

The mixture present in the gas-liquid-solid bubble column is referred to as slurry. Hence, the 

gas-liquid-solid bubble column is often called a slurry bubble column (SBC) or slurry column. In the 

special scenario in which the liquid phase is not present, the gas-solid bubble column can also be 

referred to as a fluidized bed reactor because the solid phase is usually well dispersed and acts as a 

fluid. 

The slurry bubble column is generally modeled and thought of as a bubble column with a higher 

liquid phase apparent viscosity (Krishna et al., 2000). It is also thought that solids decrease gas 

holdup and gas-liquid mass transfer, especially in the heterogeneous flow regime, due to a decrease 

in turbulence. Gas-liquid mass transfer correlations for gas-liquid bubble columns may be applied 

to gas-liquid-solid bubble columns if the density difference between the solid and liquid phase is 

small or if the liquid viscosity is high; however, such action does not account for any solid phase 

effects on the bubble interface, possible surface reaction, and often provide highly variable results. 

It should be noted that microorganisms are technically very small solid phase particles, but are 

almost always neglected and assumed to form a pseudo-homogeneous mixture with the liquid 

phase. It is also common for microorganisms to have non-Newtonian properties at higher 
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concentrations, which is usually not addressed in bubble column discussions and correlations and 

yet represents an important feature of bioreactor behavior (Beenackers and Van Swaaij, 1993). 

The effect and understanding of solid loading on gas-liquid interactions is currently ambiguous, 

contradictory, or inadequate and requires further research. The main reason is that recent work 

has shown an important correlation between the dominant flow regime and solid loading while 

most research does not identify the flow regime under which the experiment was operated (Mena 

et al., 2005). In the case of low solids loading (less than 5% by volume), a SBC indeed acts like a BC. 

As the solids loading increases, the behavior of the SBC starts to deviate from that of the BC. For 

solids loading up to 25% by volume, the gas holdup decreases significantly. Beyond this 

concentration, gas holdup increases slightly as small bubbles start to accumulate because of the 

decrease the bubble rise velocity (Kantarci et al., 2005). Three-phase bubble columns could see an 

improvement in fluidization characteristics through the introduction of a screw-like promoter 

element (Ramesh et al., 2009). 

The particle type and size can have a positive effect as it does with the stirred tank reactor. If 

the particle is wettable, a repelling force is observed against the gas phase, which creates a buffer 

zone between gas bubbles (Kluytmans et al., 2001), slows film drainage, and suppresses bubble 

coalescence (Mena et al., 2005). Hence, wettable particles usually increase gas holdup while non-

wettable particle decrease it. 

Particles are thought to be too big to contribute to gas-liquid mass transfer in a positive way 

and simply increase the apparent viscosity; however, fine particles with a particle diameter less 

than 10 µm are able to penetrate the bubble surface (creating smaller bubbles), increase film 

density (suppresses bubble coalescence and decreases bubble rise velocity) (Kluytmans et al., 

2001; Mena et al., 2005; Sada et al., 1986), or create reactions at the bubble interface. Another 

possibility is that the smaller particles stick to the bubble interface, which would block or diminish 

surface reactions (Langmuir-Hinshelwood mechanism) or physically get in the way of particle 
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diffusion. At the same time, the nested particles could increase the active area or destabilize the 

bubble interface. Very large particles are thought to decrease the bubble rise velocity and increase 

gas holdup by simply being in the way (Beenackers and Van Swaaij, 1993). 

The exact particle size at which these events would occur is system dependent and may be 

defined using the Reynolds number based on the particle diameter. Particles which cause Re < 2 are 

defined as small while medium and large particles are associated with Re = 2-300 and Re > 500, 

respectively (Mena et al., 2005). Beenackers and Van Swaaij (1993) defined particles more 

specifically. Particles with dP < 100 µm and a concentration by volume cs < 0.6 % cover the bubble 

surface, which stabilizes the bubble interface and leads to smaller bubbles. This effect, in turn, leads 

to an increase in the interfacial area by more than a factor of 2. Particles with dP = 100-1000 µm 

(the range has been tightened more recently by Luo et al. (1999) to dP = 44-254 µm) or dP < 100 µm 

and cs > 0.6 % may have an inconclusive effect on hydrodynamics, which supports the idea that a 

qualitative decision rule is also needed. Beenackers and Van Swaaij (1993), unlike Mena et al. 

(2005), did not find convincing data and information, especially for particle densities similar to the 

liquid phase, to justify any prediction on the effects of dP > 1000 µm. Since Mena et al. (2005) work 

is more recent, it would give their conclusions more credence. 

Kluytmans et al. (2001) investigated the effect of carbon particles with a mean particle diameter 

of 30 µm. They found a critical carbon particle concentration, which was determined to lie between 

0.2 to 0.5 g/L, above which gas holdup did not increase. In addition, the bubbles, which were 

created using a carbon concentration of 0.5 g/L, were larger than the bubbles using a 0.2 M 

electrolyte solution. Kluytmans et al. (2001) also investigated the effects of adding carbon particles 

to an electrolyte solution. The homogeneous flow regime did not benefit as the gas holdup was 

comparable to bubble columns with only carbon particles or electrolytes. The heterogeneous flow 

regime, on the other hand, benefited greatly with an increase of about 50% and 100% in gas holdup 
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relative to a 0.1 M electrolyte solution and 1.0 g/L carbon particle concentration, respectively. It 

was unclear if the addition of carbon particles and/or electrolytes affected the transition point. 

Low solids loading (cs ≤ 3%) tends to stabilize the homogeneous flow regime, increasing the 

critical flow rate and gas holdup 11-13%, while higher loading (cs > 3%) leads to instability. At 

much higher solids loading (cs > 20%), the solid phase decreases gas-liquid mass transfer by simply 

occupying too much volume. In effect, bubble-bubble interactions are increased and coalescence is 

encouraged (Mena et al., 2005). This may be of importance if the process requires operation in a 

specific flow regime. The current problem with gas-liquid-solid systems is that these effects work in 

parallel. The nature of the relationship is not well-understood such that solids may increase, 

decrease, or have a neutral effect on gas holdup and gas-liquid mass transfer, which has led to the 

wide array of discussion, conclusions, and results. 

Fiber slurries offer a special type of solid phase used in bubble columns. The fibers, depending 

on type, are flexible and have a large aspect ratio. These traits make fiber characteristics an 

important influence on bubble column hydrodynamics (Su and Heindel, 2004). Although gas-liquid-

fiber slurries are currently found in the pulp and paper industry in relation to flotation deinking 

and extensive research has been accomplished in the area (Su, 2005; Su and Heindel, 2004, 2005a, 

2005b; Su et al., 2006; Tang and Heindel, 2005a, 2005b, 2006a, 2006b, 2007), their application 

could expand. The addition of fibers cause drag reduction, lower levels of fouling, and possible gas 

holdup improvement (Tang and Heindel, 2005a, 2006a). Gas holdup enhancement may occur due to 

coalescence suppression and longer gas phase residence time; however, gas holdup may also 

decrease due to enhanced bubble coalescence (bubble trapping) and reduced bubble velocity and 

interface fluctuations (Tang and Heindel, 2005a). A particular characteristic of fiber suspensions is 

its flocculation properties. Hence, gas-liquid-fiber slurries could be used as well-characterized 

model microorganism systems in future gas holdup and gas-liquid mass transfer studies. 
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5.8 Gas Distributor Design 

Gas distributors used in bubble columns include sintered, perforated, or porous plates, 

membrane or ring-type distributors, arm spargers, and single-orifice nozzles. The sintered plate 

(Figure 5.13a), which is usually made out of glass or metal, produces very small bubbles; however, 

the sintered plate is rarely used for industrial applications because they can plug easily and require 

cocurrent operation; it is preferred for laboratory use. Perforated plates (Figure 5.13b), which are 

normally made out of rubber or metal, usually have holes 1-5 mm in diameter and are the most 

common gas distributor for bubble columns. The total aeration open area is usually maintained 

between 0.5 to 5% of the cross-sectional area of the reactor. Single-orifice nozzles (Figure 5.13c) 

are simple tubes, which are able to produce uniform flow some distance into the column. The flow, 

however, tends to be somewhat unstable. Bubble columns may also use ring spargers (Figure 

5.13d) that are used with stirred tank reactors. Ring spargers are able to produce uniform and 

stable flow, but are usually unable to produce smaller bubbles (Deckwer, 1992) and lead to earlier 

transition to the heterogeneous flow regime than the perforated plate (Schumpe and Grund, 1986). 

 
Figure 5.13: (a) sintered plate, (b) perforated plate, (c) orifice nozzle, and (d) ring sparger 

(Deckwer, 1992). 

The effects of gas distributor design and its extent depends on the superficial gas velocity and 

flow regime in which the bubble column operates. In the case of heterogeneous flow, the sparger 
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has a negligible influence on the bubble size and gas-liquid mass transfer because the bubble 

dynamics are determined by the rate of coalescence and breakup, which are controlled by the liquid 

properties and the nature and frequency of bubble collisions (Chaumat et al., 2005). Hence, the 

sparger effect is more pronounced for UG < 0.15 m/s while it is much less important at UG > 

0.20 m/s and nonexistent at UG > 0.30 m/s (Han and Al-Dahhan, 2007). Viscous liquids are also not 

affected by the gas distributor design if the column is sufficiently tall (Zahradnik et al., 1997). 

Furthermore, the mechanisms that dominate gas holdup (e.g., surface tension, particle 

wettability, ionic force of surfactant, viscosity, and density) require consideration. If the liquid 

undergoes viscosity or density changes through, for example, particle addition, the initial bubble 

diameter does not affect gas holdup in the heterogeneous flow regime. If, on the other hand, the 

other mechanisms are affected or adjusted, such as the addition of surfactants or electrolytes, the 

heterogeneous flow regime is affected by the initial bubble diameter up to a relatively high 

superficial gas velocity (of about 0.5 m/s) and, hence, gas distributor design is important. Once a 

high enough superficial gas velocity is reached, the probability and frequency of bubble collision 

increases greatly and a precipitous decrease in gas holdup is observed (Kluytmans et al., 2001). 

The homogeneous and transition regimes are highly influenced by the gas distributor design. A 

sparger, which is able to produce smaller initial bubble diameters, is able to produce a higher 

number of bubbles at the same flow rate and a more stable homogeneous flow regime (Álvarez et 

al., 2008). If the sparger is able to produce smaller bubbles in the homogeneous regime, the sparger 

would also be able to produce higher gas holdups and interfacial areas (Bouaifi et al., 2001). Hence, 

these spargers are also able to produce higher gas-liquid mass transfer coefficients under the 

homogeneous flow regime (Verma and Rai, 2003). 

The distributor effect can be quite significant such that the gas-liquid mass transfer correlation 

can vary by up to a factor of 2 (Lau et al., 2004). The extent to which the gas distributor affects gas 

holdup and bubble dynamics depends on the bubble column geometry and superficial gas velocity. 
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The taller the column is, the smaller the influence of the initial bubble diameter will be on the global 

gas holdup. A higher superficial gas velocity increases the probability and frequency of bubble 

collision and decreases the effect of the initial bubble diameter and gas distributor design. 

The assumption made to this point is that the spargers are indeed capable of producing all flow 

regimes; however, Wilkinson (1991) noted that the discussion was irrelevant if the orifice diameter 

was larger than 1-2 mm because it would create bubbles that are too large and would be affected by 

the macroscopic flow pattern alone. In order to create significant influence, the aeration holes have 

to be smaller than 1 mm. Zahradnik et al. (1997), however, investigated the performance of a 

perforated plate and concluded that the hole diameter has to be smaller than 0.5 mm for a 

significant effect. A perforated plate with an orifice diameter of even 0.6 mm only created the 

heterogeneous flow regime using different liquids. 

The open area ratio, defined as the total aeration orifice area divided by the column cross 

sectional area, was investigated and led to many conflicting conclusions. Different researchers 

approached the subject from different aspects. One camp has chosen to adjust the number of holes 

while keeping the orifice diameter constant while the other increases the orifice diameter while 

keeping the number of holes equal. Both approaches are potentially troublesome. If the open area 

ratio is increased by increasing the number of holes and keeping the orifice diameter constant, the 

holes could be spaced too closely such that they act as a single sparger hole. This sparger behavior 

is caused by immediate coalescence from neighboring bubbles as they are created and prior to their 

disengagement from the sparger orifice (Martín et al., 2008a; Su and Heindel, 2005a). If the holes 

are made larger while the number is held constant, the homogeneous flow regime could be skipped 

entirely (Zahradnik et al., 1997). Regardless, the agreement exists that if the open area ratio 

decreases, gas holdup increases, but the homogeneous flow regime stability may not necessarily be 

affected (Su and Heindel, 2005a). Naturally, the open area ratio did not affect gas holdup in the fully 

developed heterogeneous flow regime (Kantarci et al., 2005; Su and Heindel, 2005a). 
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Bubble formation and orifice activity are two important factors determining stability. 

Synchronous bubble formation, where almost all holes are active, tend to produce uniform bubble 

and gas holdup distribution. This, in turn, leads to a more stable homogeneous flow regime, lower 

liquid recirculation, and higher gas holdup and gas-liquid mass transfer. Asynchronous orifice 

operation is often accompanied by alternating or oscillating orifice activity which leads to flow 

instability. The instability creates more bubble-bubble interaction and leads to lower gas holdup 

and gas-liquid mass transfer. Hence, the gas distributor affects the critical superficial gas velocity at 

which the transition regime is detected. 

Perforated plates are defined by a critical flow rate above which the orifice operation is 

asynchronous and the flow is relatively unstable. As the hole spacing is decreased, the critical flow 

rate would decrease as well. At the same time, perforated plates require a minimum pressure drop 

in order to achieve uniform orifice activity. In other words, a critical flow rate is also created at the 

lower end such that a lower flow rate would lead to instability as well (Kang et al., 1999; Ruzicka et 

al., 2003; Su and Heindel, 2005a). This effect would produce additional complications in making 

comparative analysis between research works using different open area ratio adjustment methods. 

Vial et al. (2001) compared different gas distributor designs and made several interesting 

observations. The single-orifice nozzle tended to produce highly non-uniform flow while the porous 

plate and multiple-orifice sparger produced a fairly uniform flow pattern. This led the single-orifice 

sparger to always operate in the heterogeneous flow regime. Furthermore, the multiple-orifice 

sparger proved to be the most dependable. It produced the homogeneous flow regime until the 

superficial gas velocity reached about 4 cm/s. The heterogeneous flow regime would be fully 

developed at 11-12 cm/s. The porous plate, on the other hand, was sensitive and provided different 

results depending on the startup procedure. 
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Kluytmans et al. (2001) compared initial bubble diameters produced by different gas 

distributors and found that a 30 µm porous plate produced much smaller bubble diameters (0.2-0.5 

mm) than the 0.5 mm perforated plate (1-2 mm). The higher gas holdup performance of the porous 

plate was attributed to the creation of these smaller bubbles. 

Bouaifi et al. (2001) used two different columns (Column 1 with DR = 0.15m; Column 2 with DR = 

0.20m; H = 2m) and found that the porous plate generally produced higher gas holdup, followed by 

the membrane distributor and perforated plate. They agreed that smaller bubbles would lead to 

higher gas holdup values, but also concluded that the power consumption can vary significantly. For 

example, the membrane gas distributor would create very small bubbles with 80% of the bubble 

population being in the 3.5-4.5 mm range, which compared well with the results of the porous plate 

and its range of 2.5-4.5 mm. The membrane gas sparger, however, used much more power to obtain 

similar results. This is usually not a concern in an experimental setting, but may be of concern in 

(larger) industrial operations. Bouaifi et al. (2001) are the only researchers to account for the 

power usage of the different gas distributor designs. This is most likely due to the often ignored or 

relatively minor cost of compressed gas. 

5.9 Correlations 

Correlations attempt to reflect the reactor environment as closely as possible. This goal is most 

often achieved through empirical data fitting, similar to the technique for stirred tank reactors. 

Analytical expressions are rarely used because they are burdensome with regard to the required 

data (Dhaouadi et al., 2008). A single correlation, based on first principles, does not exist due to the 

complexities discussed above. For example, Tang and Heindel (2006b) described what is needed to 

develop a dimensionless correlation for gas holdup in a bubble column based on the Buckingham-Pi 

Theorem, and they identified 9 dimensionless parameters containing 13 variables representing 3 

basic dimensions: 
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where RA, H, DR, d0, ρG, ρL, µG, µL, ReL, Fr, and We are the gas distributor open area ratio, bubble 

column height, bubble column diameter, gas distributor orifice diameter, gas and liquid phase 

densities, gas and liquid phase viscosities, gas and liquid phase superficial velocities, liquid phase 

Reynolds number, Froude number, and Weber number, respectively. 

Unfortunately for industrial settings, a majority of gas holdup and gas-liquid mass transfer 

correlations require inputs which are not easily collected for large tanks used in mass production 

settings. For example, commonly used inputs for gas holdup are the average bubble diameter and 

superficial gas velocity. Although superficial gas velocity is easily collected, average bubble 

diameter data are very hard to obtain. Large reactors have a great deal of spatial variation. In 

addition, industrial tanks are made out of steel and include nontransparent liquids. Visual bubble 

diameter observations, which are commonly used in experimental settings, would be unlikely to 

yield proper bubble size approximations. The changing environment would also provide many 

problems for process automation. Hence, it is rarely used in industrial-sized reactors. 

Furthermore, many of the inputs are interdependent, which is a similar problem encountered in 

stirred tank reactor correlations. One cannot change the superficial gas velocity without impacting 

the average bubble diameter. This leads to the requirement of either a second data stream or an 

approximation for the bubble diameter, which could be built into the model to begin with. An 

approximation for the bubble diameter has not been presented within a gas holdup model. Another 

example would be that a significant number of correlations include the diffusivity and liquid 

properties as inputs. If the liquid is expected to change rheologically, which often occurs in 

industrial settings, measurement or approximation of these inputs would be needed. Once again, 

this is information that is not easily obtained, even in an experimental setting. 
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A minor inconvenience is that many review, and a few original articles, do not include proper 

classification of variables and units, which is particularly troublesome when the correlation is not 

dimensionless. The inputs are not categorized as being in English or SI units. Moreover, some 

correlations use standard units, such as Pa-s, while others use nonstandard units, such as mPa-s, 

without acknowledgement. Many review articles also do not define the reactor or the phases 

involved. The classification and definition of variables are made more difficult if the correlation is 

based on a theoretical derivation. These correlations often include terms that are left as constants, 

and further work is required to define these more accurately for practical applications. 

Temperature or pressure readings are usually not included as inputs, but are of significant 

importance for industrial practice. 

These problems can be dealt with if the correlation is selected and fit for the process in 

question. For example, one could easily use a gas holdup correlation such as (Guy et al., 1986) 
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where εG, N0, g, DR, νL, U0, and d0 are gas holdup, a sparger dependent constant, gravitational 

acceleration, bubble column diameter, liquid viscosity (kinematic), gas velocity in the sparger 

orifice, and sparger orifice diameter, respectively. A separate gas-liquid mass transfer correlation 

may then be used, such as (Jordan and Schumpe, 2001) 
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where kLa, db, DL, A, νL, g, ρL, ρG, σ, and UG are gas-liquid mass transfer coefficient, average bubble 

diameter, liquid-phase diffusion coefficient, sparger dependent coefficient, liquid viscosity 

(kinematic), gravitational acceleration, liquid-phase density, gas-phase density, surface tension, and 
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superficial gas velocity, respectively. These correlations include almost all required information to 

define the reactor environment except pressure and temperature. 

In contrast, an industrial design has several choices. First and most complicated would be to use 

the experimental approach, which would be very intensive and costly. Second, a simplified 

correlation for gas holdup and gas-liquid mass transfer coefficient could be used: 

 2
x

G G
C Uε =

 (5.5) 

 
0.820.467

L G
k a U=

 (5.6) 

where εG is gas holdup, kLa is the gas-liquid mass transfer coefficient, UG is the superficial gas 

velocity, and C2 and x are constants. Here, Eqns. (5.5) and (5.6) came from Bouaifi et al. (2001) and 

Shah et al. (1982), respectively. The constant would include system definitions. This approach 

would be highly practical and simple, but also non-transferable or limited relative to rheological 

changes. 

Lastly, a cook book approach could be used. As such, a simplified correlation would be used and 

time-adjusted based on experience and parameter variables like concentrations and 

temperature/pressure. This approach has a high upfront cost for correlation development, but 

would not require many data inputs and would have a low variable cost. It would represent a 

compromise between industrial practicality and scientific reality. 

Ultimately, these problems have led to a large degree of variation in results and correlations 

which can be seen in Table 5.1 for gas holdup, Table 5.2 for the liquid-phase mass transfer 

coefficient, and Table 5.3 for the volumetric gas-liquid mass transfer correlation. The presented 

correlations, for example, show a wide degree and range of dependencies and variables. The result, 

as seen in Figure 5.14, is that some systems have anemic performance while others seem to be 

superstars of efficiency. Hence, the end user and designer have a great deal of work to ensure 

logical application of existing data and proper design constraints. 
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Figure 5.14: Gas-liquid mass transfer by (1) Behkish et al. (2002) (CO-Hexanes mixture without 

solids, DR = 0.316 m), (2) Cho and Wakao (1988) (air-aqueous solutions, porous 
plate; DR = 0.115 m), (3) Water, (4) Ethanol (96%), (5) 1-Butanol, (6) Toluene from 
Jordan et al. (2002) (DR = 0.115 m), and (7) Shah et al. (1982). 

5.10 Needed Research 

Although a lot of research exists on bubble column gas holdup and gas-liquid mass transfer, 

little focuses specifically on bioreactors with microorganisms present. Controlled experiments 

containing actual microorganisms as well as materials able to mimic microorganism behavior, such 

as fiber suspensions or other liquid additives, need to be incorporated into more comprehensive 

studies. For example, microorganism flocculation and its effects on hydrodynamics are not 

commonly studied or simulated, but obviously have serious consequences on bioreactor 

performance. The goal would be twofold. The first would be to quantify possible surface reactions 

and other phenomena when microorganisms are present in the reactor environment. The second 
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goal would be to quantify the quality of currently used substitutes to simulate microorganisms and 

attempt to identify newer organic possibilities. In connection to these goals, more study is needed 

on the effect of higher temperature, pressure, and viscosity on microorganisms as well as 

bioreactor hydrodynamics. 

A major study should be attempted to compare the different bioreactor performance 

characteristics. Comparisons between bubble columns and airlift reactors are available, but a wider 

array is lacking, but needed. Research towards this end, such as Bouaifi et al. (2001) who compared 

stirred tank reactors and bubble columns, is sparse. Different bioreactor designs have quite unique 

scaling abilities and associated costs, and the economic benefits and decisions would be better 

understood if such studies would be more common. 

5.11 Summary 

Bubble interactions are tightly connected to hydrodynamics so that gas holdup is usually 

capable of representing gas-liquid mass transfer trends fairly accurately and, more importantly, 

predicting reactor hydrodynamics. Thus, any bubble column experiment (or series of experiments) 

starts with a gas holdup study. The literature provides a wide array of gas holdup information; 

however, the more detailed experiments, especially those that investigate gas-liquid mass transfer, 

are much fewer in number and smaller in scope. 

Most studies, for example, are based on air-water interaction in an isothermal setting, even 

though most industrial processes have thermal interactions and complex fluid properties. It is also 

common for industrial processes to be performed at relatively high temperatures and/or pressure. 

These settings still lack experimental coverage (Lau et al., 2004). Furthermore, gas holdup and gas-

liquid mass transfer are decoupled under thermal operation, and pressure variances are rarely 

accounted for in currently available correlations. 
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Gas-liquid mass transfer correlations and their design applications have to be handled very 

carefully. Bubble-bubble interactions are very complicated processes, which still have not been 

mastered and are not easily represented with the current set of tools. Although a change in gas 

holdup can predict the direction of the change in gas-liquid mass transfer, it cannot predict the 

amount due to the hydrodynamic complexity (Chaumat et al., 2005). Scaleup, design, and 

application require patience and due diligence. Since most gas-liquid mass transfer correlations use 

gas holdup data, hydrodynamic and geometric similarity should be attempted in order to maximize 

the probability of successful prediction. Approximation of gas-liquid mass transfer using third party 

gas holdup correlations or data have a low probability of success and should be used as a first 

iteration for scaleup or design. Follow-up investigations are then strongly advised. 
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Table 5.1: Gas holdup correlations for bubble columns. 
Reference System Conditions Correlation 

(Akita and 
Yoshida, 
1973)1 

Air-H2O, O2-H2O, He-
H2O, CO2-H2O, Air-
Glycol, Air-Aqueous 
glycol solution, Air-
Methanol 

α = 0.2 for pure 
liquids, 0.25 for salt 
solutions 
DR = 0.152 m 
H = 4.0 m 
d0 = 0.5 mm (SO) 
UG = 0.5-33 cm/s 
P up to 0.1 MPa 
T up to 293K 

( )
ε ρ ρ

α
σ µε

  
=   

−    

11
2 3 2 128

4 2
1

G GR L R L

L RG

UD g D g

gD
 

(Anabtawi et 
al., 2003)2

 

Air-(light oil, 
machine oil, five 
different engine oils) 

DR = 74 mm 
d0 = 10 mm 
H = 0.12-0.60 m 
UG = 0.18-29 cm/s 
ρL = 906-928 kg/m3 
µL = 63-320 mPa s 
σ = 24.8-35 mN/m 

ε
µ

=
0.60

0.38 0.24
0.362 G

G

L

U

H
 

(Bach and 
Pilhofer, 
1978)3 

Air-(Water, 
butandiol-1,3, 
ethylene glycol, n-
octanol, 
tetrabromomethane, 
cyclohexane, 
cyclohexanol, 
ethanol, propanol, 
ethyl acetate) 

DR = 0.10 m 
d0 = 5 mm (PP) 
UG = 1-20 cm/s 
ρL = 0.8-2.98 g/cm3 

νL = (0.7-124)*102 
cm2/s, 
σ = 21.7-72 mN/m 

0.23

3

0.115
1

G G

LG

L

U

g

ε
ν ρε

ρ

 
 

=  ∆−  
   

(Bouaifi et al., 
2001) 

Air-Water UG = 0.25-4.0 cm/s 
Column 1 
DR = 0.15 m 
H = 2 m 
Column 2 
DR = 0.20 m 
H = 2 m 

x

G G
C U

2
ε =

 

 
Porous 

Plate 
Membrane 

Perforated 

Plate 

 C2 x C2 x C2 x 
Column 1 3.62 0.91 4.25 0.99 3.66 0.83 
Column 2 3.43 1.03 3.12 1.05 2.2 1.06 

 

(Deckwer, 
1992) 

Air-CMC 
concentration 0.8-1.8 
%wt 

DR = 0.14 m 
d0 = 2 mm (PP) and 
0.15 or 0.2 mm (SP) 
µL > 50 mPa s 

ε = 0.6740.0322
G G

U  for slug flow regime (UG > 3 cm/s) 

ε = 0.850.0908
G G

U  for homogeneous flow regime (UG < 2 

cm/s) 
(Gestrich and 
Rahse, 1975)2 

Air-organic liquids 
(methanol, ethanol, 
n-butanol, ethyl 
acetate, glycol, 
methylethylketone, 
C2H4Cl2) 

H/DR = 0.26-20 
UG = 1-8 cm/s 

ρ σ
µ

=
3

4 10

4
8 *10 –5*10L

Lg

 

( ) ( )

ε
− + +

     
= −     

     

0.035 15.7 log 0.3 0.025 2.6 log2
0.0470.89 0.05

K K

GB
G

R R B

UdH
K

D D gd

3

4
L

L

K
g

ρ σ
µ

=  and dB = 3 mm 

(Godbole et al., 
1982)1 

Air-Viscous media  ε −= 0.634 0.50.239
G G R

U D
 

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992)  
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Table 5.1 cont.: Gas holdup correlations for bubble columns. 

Reference System Conditions Correlation 

(Grover et al., 
1986)1 

DR = 0.10 m 
d0 = 100-120 µm 
UG = 0.1-4.5 cm/s 
T = 303-353K 

0.27 0.09 0.350.76 4
1

3
2

1 V G L G GL
G

V L L L

b P U g

b P

µ ρ µµ
ε

σ ρ σ ρ µ

−
       +  

=         
          

b1 = 1.1*10-4 and b2 = 5-10-4 
(Guy et al., 
1986)2 

Air-Water 
Air-Aqueous 
solutions 
(glycerol, 
carboxyl 
methyl-
cellulose) 

DR = 0.254 m 
d0 = 1 mm 
UG = 1-8 cm/s 

µ
ν ρ σ
∞ >

4

3
4.02b e L

L L

U d g

 
ρ

σ
>>

2

8e Lgd

 

0.840.025 2.0753
0 0

0 2
0

0.386 R
G

L R

U dgD
N

Dgd
ε

ν

    
=            

(Guy et al., 
1986)2 

Air-Water 
Air-Aqueous 
solutions 
(glycerol, 
carboxyl 
methyl-
cellulose) 

DR = 0.254 m 
d0 = 1 mm 
UG = 1-8 cm/s 

µ
ν ρ σ
∞ >

4

3
4.02b e L

L L

U d g

 
ρ

σ
>>

2

8e Lgd

 

0.840.025 2.0753
0 0

0 2
0

0.386 R
G

L R

U dgD
N

Dgd
ε

ν

    
=            

(Hammer, 
1984)2 

N2-Organic 
liquids 
(methanol, 
cyclohexane, 
cyclehexanol, 
n-octanol, 
C2H4Cl2) 

d0 = 0.15-2mm 
UG = 0.5-2 cm/s 
ρL = 780-1250 kg/m3 

µL = 0.31-22 mPa s 
σ = 21.8-31.9 mN/m 

ε
ν

−
     

=      
     

0.46 0.08 0.172 3
0

2
0.20 G R

G

R L R

U dD g

gD D
 

(Haque et al., 
1986)2 

Air-Aqueous 
carboxy-
methyl-
cellulose 
solutions 

DR = 0.10-1.0 m 
d0 = 0.3-2.0 mm 
UG > 3 cm/s 

( )
0.2210.6 0.150.171 5000

n

G G G R
U K U Dε

−− − =
   (SI) 

(Hikita and 
Kikukawa, 
1974)2 

Air-Water 
Air-Aqueous 
solutions 
(methanol, 
sucrose) 

DR = 0.10 and 0.19 m 
d0 = 13.0-36.2 mm 
UG = 4.3-33.8 cm/s 
ρL = 911-1233 kg/m3 

µL = 1-19.2 mPa s 
σ = 38.2-75.5 mN/m 

2 0.05
3

0.470.505 w w
G G

L

U
σ µ

ε
σ µ

  
=   

     (SI) 

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992)  
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Table 5.1 cont.: Gas holdup correlations for bubble columns. 
Reference System Conditions Correlation 

(Hikita et al., 
1980)3 

DR = [0.10,0.19] m 
H = [1.5,2.4] m 
d0 =1.1 cm (SO) 
UG=4.2-39 cm/s 
P up to 0.1 MPa 
T = 283-303K 
Non-electrolytes 
ρL = 0.79-1.24 g/cm3 

ρG = (0.0837-1.84)*10-3 g/cm3 

µL = 0.66-17.8 mPa s 
µG = (0.8-1.81)*10-2 mPa s 
σ = 30-76 mN/m 
Electrolytes 
ρL = 1.01-1.17 g/cm3 

µL = 0.9-1.87 mPa s 
σ = 71.9-79.6 mN/m 

µ ρ µµ
ε

σ ρ σ ρ µ

−
      

=       
       

0.131 0.062 0.1070.578 4

3
0.672 G L G GL

G

L L L

U g
f

 
 

Where: 
f = 1 for electrolytes, 100.0414I for ion strength I<1 g-ion/L, 

1.1 for I>1 g-ion/L 

(Hughmark, 
1967)1 

Air-(Water, 
Na2CO3 
solution, light 
oil, glycerol, 
ZnCl2 and 
Na2SO3 
solution) 

DR = 0.0254-1.07m (PP) 
UG = 0.4-45 cm/s 
UL = 0-12 cm/s 
ρL = 777-1698 kg/m3 

µL = 0.9-152 mPa s 
σ = 25-76 mN/m 

ε
σ

ρ

=
  +     

1
3

1

0.35
2

72

G

L

GU
 

(Idogawa et al., 
1987)2 

(Air, H2, He)-
Water 
Air-organic 
liquids 
(acetone, 
ethanol, 
methanol) 
Air-aqueous 
solutions 
(ethanol, 
isoamyl 
alcohol) 

DR = 0.05 m 
d0 = 1 mm 
UG = 0.5-5 cm/s 
ρL = 791-1000 kg/m3 

ρG = 0.084-120.8 kg/m3 
µL = 0.35-3.0 mPa s 
σ = 22.6-72.1 mN/m 

ε σ
ρ

ε σ

− −
 

=  
−  

0.22exp( )

0.8 0.170.059
1

P

G
G G

G w

U

 

(Ityokumbul et 
al., 1994)2 

Air-Water DR = 0.06 m 
d0 = 134 µm 
UG = 0-2.5 cm/s 

5.9
G G

Uε =
 (SI) 

(Jean and Fan, 
1987)2 

Air-Water DR = 0.0762 (PP) 
UG = 0-12.08 cm/s 
UL = 3.27-32.18 cm/s 

( )0.988 5 20.00164 28.821 0.564 0.221*10
G G L L

U U Uε = + −
 for 

UG ≤ 5.19 cm/s 

( ) ( )
ε

− −
=

− +

0.34

0.648 0.648

0.2933

exp 0.248 exp 0.243
G

G

L G L G

U

U U U U
 

for UG ≥ 5.19 cm/s 
1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992)  
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Table 5.1 cont.: Gas holdup correlations for bubble columns. 
Reference System Conditions Correlation 

(Jordan and 
Schumpe, 2001)1 

(Air, N2, He, 
CO2, H2)-23 
different 
organic 
liquids 

DR = 0.095-0.115 m 
d0 = 1.0-4.3 mm 
UG = 1-21 cm/s 

2
6825 1.55*10L bg dρ

σ
= −

 

0.06 1.22G

b

U

gd
= −

  
59.3*10  –  0.059G

L

ρ
ρ

−=

 

 

ε ρ ρ
ε σ ν ρ

          =   +           −          

0.70 0.520.04 0.580.162 3

2
1 27.0

1
G L b b G G G

G L Lb b

g d gd U U
B

gd gd
 

B is sparger dependent 

(Jordan et al., 
2002) 

(Air, N2)-
(Water, 
ethanol 
(96%), 
1-butanol, 
toluene) 

DR = 0.115 m 
H = 1.370 m 
UG = 0.01-0.15 m/s 
ρL = 759-884 kg/m3 

µL = 0.58-2.94 mPa s 
σ = 19.9-32.5 mN/m 
DL (10-9 m2/s) = 1.60-4.38 
P = 1-10 bar 
T = 293K 

( ) ( )0.86 0.24

G G GB Uε ρ=
 

Values for B 
Water = 1.69 

Ethanol (96%) = 1.62 
1-Butanol = 1.34 

Toluene = 1.95 

(Joshi and 
Sharma, 1979)1 ε =

+0.3 2
G

G

G

U

U
 

(Kang et al., 
1999) 

Air-(water, 
aqueous 
solutions of 
carboxy-
methyl-
cellulose) 

DR = 0.152 m 
d0 = 1.0 mm 
UG = 2-20 cm/s 
µL = 1-38 mPa s 
P = 0.1-0.6 MPa 

0.254

2.100.910 *10 R G G
G

L

D U ρ
ε

µ
−  

=  
   

(Kato and 
Nishiwaki, 
1972)2 

Air-Water DR = 0.066-0.214 m 
d0 = 1.0-3.0 mm 
UG = 0-30 cm/s 
UL = 0-1.5 cm/s 

( )
ε

β γ
=

+ −0.831 1 exp( )
G

G

G

U

U
 

Where: 

( )β = − − 1.84.5 3.5exp 0.064 RD
 

γ β −= − 1.8 10.18
G

U
 

(Kawase and 
Moo-Young, 
1987)1 

1
31.07G Frε =  

Where: 

= G

R

U
Fr

gD
 

(Kawase et al., 
1992)1 

ε
ε ν

 
=  

+  

1
4

0.0625
1

G G

G L

U

g
 

(Kim et al., 
1972)2 

DR = 0.049 m 
d0 = 3.175 mm 
UG = 0-26 cm/s 
UL = 1.4-10.2 cm/s 

µ ρ ρ
ε

ρ ρ ν ν

− −−
    

− =     
     

0.036 0.0150.0092 2

1 1.02 L G G L G L R
G

R L R G G L

U U U D

D g D g
 

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992)  
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Table 5.1 cont.: Gas holdup correlations for bubble columns. 
Reference System Conditions Correlation 

(Koide et al., 
1979)1 ( )

ε
β

=
+ −31 1

G
G

G

U

e U
 

Where: 
( )1.34.5 3.5exp 0.064 RDβ = − −

 and 
β

−
=

1.80.18
G

U
e  

(Koide et al., 
1984)1 

Air-Water 
Air-Aqueous 
solutions 
(electrolytes, 
glycol, 
glycerol) 

DR = 0.10-0.30 m 
d0 = 0.5-2.5 mm (MO) 
UG = 1-18 cm/s 
ρL = 997-1178 kg/m3 
ρs = 2500 and 8700 kg/m3 
µL = 0.894-17.6 mPa s 
σ = 51.5-73 mN/m 
cs = 0-200 kg/m3 
ds = 47.5-192 µm 

( )

µ µ
σ ρ σε

ε ρ ρ
ρ ρ ν

−

−

  
  

   =
−      −

+     
    

0.2520.918 4

3

4 0.748 0.88 0.168
1

1 4.35

G L L

LG

G s s L G R

s L L

U g
A

c U D

 
Where: A = 0.277 for water and non-electrolyte 

solutions, A = 0.364 for electrolyte solutions 

(Kojima et al., 
1997)2 

(N2, O2)-Water 
(N2, O2)-
Aqueous 
solutions 
(enzyme, 
Na2HPO4, 
citric acid) 

DR = 0.045 m 
d0 = 1.38-4.03 mm 
UG = 0.5-15 cm/s 
ρL = 1000-1025 kg/m3 
µL = 0.890-1.075 mPa s 
σ = 63.36-71.96 mN/m 
P = 0.1-1.1 MPa 

0.546

0.679
0 1.18

0.076G G
U

σ
ε ε

−
 

= =  
   for P = 101 kPa 

4 2

0 3
0

exp
16

B

R L G
G

atm

D U P
A

d P

π ρ
ε ε

σ

   
 =   
      for P > 101 kPa 

Where: A = 1.27*10-4 and B = 1.0 
(Kumar et al., 
1976)1 

Air-H2O 
Air-Kerosene 
Air-40% 
glycerol 
Air-2M NaOH 
solution 

DR = 0.05-0.10 m 
d0 = 0.087-0.309 cm (PP) 
UG = 0.2-14 cm/s 
ρL = 0.78-1.11 g/cm3 

µL = 0.88-11.5 mPa s 
σ = 31.2-74.5 mN/m 

ε = − +* *2 *30.728 0.485 0.0975
G G G G

U U U
 

Where: 

1
4

*
G G

L

g
U U

σ ρ
ρ

 ∆
=  

 
 

(Lau et al., 2004) DR = 0.045-0.45 m 
H/DR > 5 
d0 = 1.5 mm 
UG = 2.8-67.8 cm/s 
UL = 0-0.089 cm/s 
P up to 22 MPa 
T up to 250°C 
ρL = 790-1580 kg/m3 

ρG = 0.97-33.4 kg/m3 

µL = 0.36-38.3 mPa s 
σ = 23.3-72.6 mN/m 

( )

α β
ρ ρ

σ ρε
ε

   
   

  =
−  

 

4

4.1
0.054

2.9

1 cosh

G G G

G mG

G
m

U

Mo
 

Where: 
0.00790.21

m
Moα =

, 
0.0110.096

m
Moβ −=

, 
( )4

3

L

m

m

g
Mo

ξµ

ρ σ
= , 

( ){ }0.58 0.22ln 4.6 5.7 sinh 0.71exp 5.8 ln 1
s s s

Moξ ε ε ε = − − +  , and 
4

3
L

L

g
Mo

µ
ρ σ

=
 

(Lee et al., 
2000)2 

Air-Water DR = 0.083-0.15 m 
d0 = 4 mm 
UG = 0-270 cm/s 
UL = 0-23 cm/s 

0.687 0.1160.759
1

G
G L

G

U U
ε
ε

−=
−

 (SI) 

(Lockett and 
Kirkpatrick, 
1975)1 

( ) ( ) ( )ε ε ε ε ε− + = − +
2.39 31 1 1 2.55

G G L G B G G G
U U V

 

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992) 
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Table 5.1 cont.: Gas holdup correlations for bubble columns. 

Reference System Conditions Correlation 

(Luo et al., 
1999)2 

DR = 0.1-0.61 m 
UG = 5-69 cm/s 
UL = 0 m/s 
ρL = 668-2965 kg/m3 

ρs = 2200-5730 
kg/m3 
ρG = 0.2-90 kg/m3 
µL = 0.29-30.0 mPa s 
σ = 19.0-73.0 mN/m 
φs = 0, 0.081,0.181 
T = 301K, 351K 
P = 0.1-5.62 MPa 

(Air, He, CO2, N2)-Water 
Air-Organic liquids (methanol, glycol, glycerol, C2H3Br3, n-octanol, heptanes, n-
butanol, 1,3-butanediol, trichloroethylene) 
Air-Isopar G, Paratherm F Liquids with and without suspended solids 

( )
βα

ε ρ ρ
ε σ ρ

−    =     −    

4 4.10.054
2.9 cosh

1
G G G G

s

G L

U
Mo

g
 

Where: 
0.0790.21

s
Moα =

, 
0.0110.096

s
Moβ −=

, s s s L L
ρ ϕ ρ ϕ ρ= +

, 
( )4

1 3

L

s

s

g
Mo

ξµ

ρ σ
=  

( ) µ
ξ ϕ ϕ ϕ

ρ σ

    
= − − +   

     

0.58

3
ln 4.6 5.7 0.1562exp 5.8 ln 1L

s s s

L

g
senh

 
(Mashelkar, 
1970)2 

Air-Water 
Air-Electrolyte 
aqueous solutions ( )

σ
ε

ρ σ

−
 

=  +  

1
3

30 2
G w

G

L G

U

U
 

(Mersmann, 
1977)2 

 

( )
( ) ( )

ρ ρ ρ σ ρ
ε ε

σ ρ ρ ρ ρ ρ µ ρ ρ

      
− =       

− − −         

1 15 1
4 2472 32 3 2

4
1 0.14

n L L L L
G G G

L G G L G L L G

U
g g

 
(Mok et al., 
1990)2 

Air-Water 
Air-CMC aqueous 
solutions 

DR = 0.14 m 
d0 = 0.3 mm 
UG = 0.96-5.04 cm/s 
ρL = 997.1-998.2 
kg/m3 

σ = 70.5-72 mN/m 

ε
ν ν

−

−      
=      

    

1.09 0.096 0.19
3

5 0
2

1.07 *10 R G R
G

G L R

D U dgD

D
 

(Mouza et al., 
2005)2 

Air-Water 
Air-Aqueous 
solutions (glycerin, 
n-butanol) 

Square column with 
Width = 0.10 m 
d0 = 20 and 40 µm 
UG < Utrans 

ρL = 991-1173 
kg/m3 

µL = 0.9-22.5 mPa s 
σ = 48.0-72 mN/m 

ρ ρ
ε

µ σ

    
 =    
    

2
0.1 2.2 33 2 2

2
0.001 G dR L R L

G

L RR

U DD g D g

DgD
 

(Reilley et al., 
1986)1 

DR = 0.30 m 
d0 = 1.5 mm 
UG = 0.77-21.7 cm/s 
ρL = 771-1482 kg/m3 

µL = 0.489-1.29 mPa s 
σ = 28.3-72 mN/m 
ρG = 0.185-1.48 kg/m3 

ε ρ σ ρ− −= + 0.44 0.98 0.16 0.190.009 296
G G L L G

U
 
 

can replace ρL with ρs 

(Roy et al., 
1963)1 ( )

0.441
3

333.88 *10 Re 1W
G T s

L

v
σ

ε
σ

−
   = −      for ReT > 500 

Where: 
( ) ( )

s s
s

s s L L

W
v

W W

ρ
ρ ρ

=
+

 
 

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992)  
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Table 5.1 cont.: Gas holdup correlations for bubble columns. 
Reference System Conditions Correlation 

(Sada et al., 
1984)1 

(N2, He)-(Water, molten 
NaNO3, molten LiCl-KCl) 
N2-Methanol 
N2-Aqueous solutions 
(glycerol, Na2SO4) 

DR = 0.073 m 
d0 = 1.5-5.7 mm 
UG = 0.56-8.3 cm/s 
ρL = 788-1888 kg/m3 

µL = 0.45-3.658 mPa s 
σ = 21.5-130 mN/m 

( ) ρ
ε ε

ρ
 

= −  
 

0.068
4 0.21 0.0860.32 1 G

G G

L

Bo Ga Fr

 

Where: 

ρ
σ

=
2

L R
gD

Bo
, 

3

2
R

L

gD
Ga

υ
= , and = G

R

U
Fr

gD
 

( )
ε

ε

−
∞−

∞=
−

0.161 0.12516
3

0.019
1

UG
s G

G

U v U

 
(Salvacion et 
al., 1995)2 

DR = 0.14-0.30 m 
d0 = 0.5-2.5 mm 
UG = 2-15 cm/s 
ρL = 995-997 kg/m3 

ρs = 1000-1087 kg/m3 
φs = 0-0.20 
µL = 0.863-0.894 mPa s 
σ = 55.6-72.0 mN/m 

( )
( ) ( )

( )
ρ σε

ε
ε ϕ ρ σ

−

−−

 +
 =
 − + 

0.4652 1

4 0.04640.799 2 1

1 0.00468

1 1 2.34

R LG
B

G s R L

D g f A

D g
 
 

Where: A = 0, 

µ µ
ε

σ ρ σ

−
  

=   
   

0.2520.918 4

3
0.277 G L L

B

L

U g

, ( )−= +
10.223 0.466( ) 1 0.0143f A A A  

(Schumpe and 
Deckwer, 
1987)1 

Bo = 1.4*103-1.4*105 
Ga = 1.2*107-6.5*1010 
Fr = 3*10-3-2.2*10-1 

ε −= 0.13 0.11 0.540.2
G

Bo Ga Fr
 

For highly viscous media 

(Smith et al., 
1983)1 ρ

ε µ

−
  

= +  
   

10.31

0.0160.379
2.25

72
L

G L

GU
 

µL can be replaced with µs, except 
( )

µ µ
 

=  
− 

5 3
exp

1
s

s L

s

v

v
 

(Sotelo et al., 
1994)2 

(Air, CO2)-water 
(Air, CO2)-
aqueous solutions 
(sucrose, ethanol 
glycerin) 

DR = 0.04-0.08 m 
d0 = 30-150 µm 
UG = 0.64-4.9 cm/s 
ρL = 928-1147 kg/m3 

ρG = 1.18-1.83 kg/m3 
µL = 1.0-4.17 mPa s 
µG = 0.0148-0.0191 mPa s 
σ = 29.8-73.4 mN/m 

µ ρ µµ
ε

σ ρ σ ρ µ

− −
        

=         
         

0.123 0.187 0.343 0.0890.99 4
0

3
129 G L G GL

G

L L L R

U dg

D
 

(Syeda et al., 
2002)2 

Air-(Water, 
methanol, 
glycerol, 
i-propanol) 

DR = 0.09 m 
d0 = 5 mm 

ρ µ ρ µµ
ε

σ σ ρ σ ρ µ

−
        

=         
         

0.131 0.062 0.1070.016 0.578

3
1.1855 L b G L G GL

G

L L L

d U g

 

(Ulbrecht and 
Patterson, 
1985)2 

N2-(Tellus oil, 
aqueous glucose 
solution) 

DR = 0.15 and 0.23 m 
d0 = 0.5-1.5 mm 
UG = 0-25 cm/s 
ρL = 867-1380 kg/m3 
µL = 70-550 mPa s 
σ = 31.0-76.0 mN/m 
P = 0.1-1.0 MPa 

( )µρ
ε

µ

−

=
0.3exp 90.58

0.18 0.12
0.21

L

G G
G

R L

U

D  

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992)  
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Table 5.1 cont.: Gas holdup correlations for bubble columns.

 Reference System Conditions Correlation 

(Zahradnik 
and Kastanek, 
1979)2 

Air-Water DR = 0.152 and 0.292 m 
d0 = 0.87-3 mm 
UG = 3.1-27.6 cm/s 

0.3 2.0
G

G

G

U

U
ε =

+  (SI) 

(Zahradnik et 
al., 1997) 

Air-Water DR = 0.29 m 
H0 = 1.5 m 
UG = 0.4-16.6 cm/s 

0.92.81
G G

Uε =
 

(Zehner, 1989) 

2
3 (0)

1 4

G

G

LG

U

VU

αε

α α

=
 +  
   

Where: 

1
4

1.4 L G

L L

g
ρ ρσ

α
ρ ρ

 −
=  

   and 

1
21

(0)
2.5

L G
G R

L

V U gD
ρ ρ
ρ

 −
=  
   

(Zou et al., 
1988)1 

DR = 0.10 m 
d0 = 10 mm 
ρL = 748.3-997.1 kg/m3 
ρG = 1.833-2.161 kg/m3 
µL = 0.295-0.894 mPa s 
σ = 18.77-71.97 mN/m 
T = 298.15-369.65K 

0.15 0.58 1.614

3
0.17283 G L satL

G

L L L

U P Pg

P

µµ
ε

ρ σ σ

−
    + 

=      
      

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992) 
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Table5.2: Liquid-phase mass transfer correlations for bubble columns. 
Reference System Conditions Correlation 

(Akita and 
Yoshida, 
1974)2 

(Air, O2, He, CO2)-
Water 
Air-Organic 
liquids (glycol, 
methanol) 
Air-Aqueous 
solutions (glycol, 
methanol, 
glycerol, 
electrolyte) 

DR = 0.07-0.600 m 
d0 = 0.01-5.0 mm 
UG = 4.0-33 cm/s 
ρL = 790-1165 kg/m3 

µL = 0.58-21.14 mPa s 
σ = 22.3-74.2 mN/m 
DL (10-9 m2/s) = 0.26-4.22 

ρν
ν σ

     
=      

    

1 1 3
3 22 4 8

2
0.5L b b b LL

L L L

k d d g gd

D D
 

(Calderbank 
and Moo-
Young, 1961)2 

ρL = 698-1260 kg/m3 

µL = 0.371-8.7 mPa s 
λL = 0.60-27.92 W/(m K) 
DL (10-4 m2/s) = 1.9*10-6-0.26 

( )
1

3 3

2.0 0.31 b L GL b

L L L

d gk d

D D

ρ ρ

µ

 −
= +  

    for db < 2.5 mm 

( )
11

32

2
0.42 L G LL

L

L L

g
k

D

ρ ρ µν
ρ

 − 
=   

     for db . 2.5 mm 
(Cockx et al., 
1995)2 

ν
ε

−
−  

=  
 

1
224.47 *10

L L

G G L

k

U D
 

(Fair, 1967)2 
ν

ν

     = +         

1 1
2 3

2.0 1 0.276L b b b L

L L L

k d d U

D D
 

(Fukuma et al., 
1987)2 

UG = 0.30-1.5 cm/s 

ν
= −

3
5 8

2
3.2*10 2.6 *10b

L

gd

 
ρ
σ

= −
2

1.4 120L b
g d

 
ν

= −480 1600L

LD  

ρν
σ ν

−

−     
=     

    

1 0.80.22 32
4

2
4.5 *10L b L b bL

L L L

k d g d gd

D D
 

(Gestrich et al., 
1978)2 

(CO2, O2)-Water 
(CO2, O2)-Aqueous solutions (glycerine, 
glycerol, electrolyte) 

µ
ρ σ

− −
+

− −   
= +   

   

0
0.180 0.6054 0.65 0.0335

4 3 0
3

2.23*10 3.85*10 R

H

DL
L G

L R

Hg
k U

D

 
(Gestrich et al., 
1978)2 

(CO2, O2)-Water 
(CO2, O2)-Aqueous solutions (glycerine, 
glycerol, electrolyte) 

µ
ρ σ

− −
+

− −   
= +   

   

0
0.180 0.6054 0.65 0.0335

4 3 0
3

2.23*10 3.85*10 R

H

DL
L G

L R

Hg
k U

D

 
(Hughmark, 
1967)2 

Air-(Water, 
Na2CO3 solution, 
light oil, glycerol, 
ZnCl2 and Na2SO3 
solution) 

DR = 0.0254-1.07 m 
UG = 0.4-45 cm/s 
UL = 0-12 cm/s 
ρL = 777-1698 kg/m3 

µL = 0.9-152 mPa s 
σ = 25-76 mN/m 

ν
ε ν

       = +            

1.610.07210.484 0.339
3

2
3

2.0 0.0187L b G b bL

L G L L
L

k d U d d g

D D D

 

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992)  
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Table 5.2 cont.: Liquid-phase mass transfer correlations for bubble columns. 
Reference System Conditions Correlation 

(Kawase et al., 
1987)2 

νπ

 
=  

 

1
42

G
L L

L

U g
k D

 
(Kawase and 
Moo-Young, 
1992)2 

2 1
3 3

1
3

0.28 L
L

L

D g
k

ν
=

 for small bubbles 
11

32

1
6

0.47 L
L

L

D g
k

ν
=

 for large bubbles 
(Linek et al., 
2005a) 

O2-Water 
O2-Aqueous 
solutions (Na2SO3 
pure and with the 
addition of Sokrat 
44 and carboxy-
methyl-cellulose) 

DR = 0.19 m 
UG = 0.18-0.54 cm/s 
ρL = 1000-1093 kg/m3 

µL = 1.11-3.14 mPa s 

( )ν
ν

 
=  

 

1
2

1
40.463 L

L G L

L

D
k gU

 

(Miller, 1974)2 Air-Water DR = 0.152-0.686 m 
d0 = 1.6-6.4 mm 
UG = 0.762-15.2 cm/s 

π
= 1.3761366 L b

L b

b

D U
k d

d
 

(Nedeltchev, 
2003)2 

N2-Gasoline, 
toluene 

DR = 0.316 m 
UG = 5-25 cm/s 
ρL = 692-866 kg/m3 

µL = 0.46-0.59 mPa s 

7 2.9282.43*10 L b
L b

b

D U
k d

dπ
=

 (SI) 

(Ruckenstein, 
1964)2 

( )
ε

ε ε ε

 
 − 

=   
 + − − 

 

1
3

15
33

5 1 23 3

1
1.252

2 3 2

L b G b b

L L
G G G

k d U d

D D

 
(Sokolov and 
Aksenova, 
1983)2 

(Air, CO2)-Water 
(Air, CO2)-
Aqueous 
solutions 
(sucrose, 
carbonate-
bicarbonate 
buffer) 

DR = 0.05-0.60 m 
d0 = 2.25-40 mm 
UG = 0.05-4.0 cm/s 
ν

= −310 8320L

LD
 

ρ σµ
= −5 740G

L
L

U

g  

σ ν ρ σ
ρ

   
=    

  

0.5 0.5

0.05 GL L L

L L L L

Uk

D g D U g
 

(Vázquez et al., 
2000) 

DR = 0.113 m 
d0 = 0.04-0.20 mm (MO) 
UG = 0.085-0.181 cm/s 
νL = 1.22*10-6 m2/s 
σ = 66.00-75.01 mN/m 

σ= 1.35 0.5
L G

k A U
 (SI) 

Where: 
Equivalent pore diameter (106 m) A 

150-200 0.17587 
90-150 0.18233 
40-90 0.18689 

 

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992)  
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Table 5.3: Gas-liquid mass transfer correlations for bubble columns. 
Reference System Conditions Correlation 

(Akita and 
Yoshida, 
1973)1 

Air-H2O 
O2-H2O 
He-H2O 
CO2-H2O 
Air-Glycol 
Air-Aqueous 
glycol solution 
Air-Methanol 

DR =0.15-0.600 m 
H = 4.0 m 
d0 = 0.5 mm 
UG=0.4-32.8 cm/s 
P up to 0.1 MPa 
T up to 293K 

= −0.0024 0.135G

R

U

gD
 

ρ
σ

= −
2

43050 4.85 *10R L
gD

ν
= − 3173 7.25*10L

LD
 

υ ρ
ε

σ ν
    

=     
    

0.5 0.622 2 3
1.1

2
0.6L R L R L R

G

L L L

k aD gD gD

D D
 

(Álvarez et al., 
2000) 

CO2-Water 
CO2-Aqueous 
solutions 
(sucrose, sodium 
lauryl sulfate) 

DR = 0.113 m 
d0 = 0.04-0.20 mm 
(MO) 
UG = 0.085-0.150 cm/s 
ρL = 997-1030 kg/m3 

µL = 0.896-1.135 mPa s 
σ = 65.20-72.49 mN/m 
DL (10-9 m2/s) = 1.549-
1.897 

σ ρ

µ
=

2 3 3
3 4 2

3
4

G L
L

L

U
k a A

 
Where: 

Equivalent pore 

diameter (106 m) 
A (107) 

150-200 1.924 
90-150 1.969 
40-90 2.079 

 

(Behkish et al., 
2002) 

(H2, CO, N2, CH4)-
(hexane mixture, 
Isopar-M) with 
and without 
solids (iron 
oxides catalyst 
and glass beads) 

DR = 0.316 m 
UG = 5-25 cm/s 
ρL = 680-783 kg/m3 

µL = 0.32-2.7 mPa s 
σ = 27.0-230 mN/m 
DL (10-9 m2/s) = 1.33-
9.40 
ϕ = −0 0.36

s  

( ) ( )ν ρ
ρ ϕ

ρ

−−
  

= −  
   

2.840.16
0.49

0.18 exp 266L L
L G G s

L G

k a U
D

 

(Cho and 
Wakao, 1988)2 

N2-aqueous 
solutions 
(benzene, CCl4, 
CHCl3, C2H4Cl2, 
C2H3Cl3) 

DR = 0.11 m 
UG = 0.71-5.0 cm/s 
DL (10-9 m2/s) = 0.99-
2.42 

= 0.5 0.81
L L G

k a AD U
 

Where: A = 6500 for single nozzle sparger 
or A = 23000 for porous plate 

(Hikita et al., 
1981)3 

DR = [0.10,0.19] m 
H = [1.5,2.4] m 
d0 =1.1 cm (SO) 
UG=4.2-39 cm/s 
P up to 0.1 MPa 
T = 283-303K 
Non-electrolytes 
ρL = 0.79-1.24 g/cm3 

ρG = (0.0837-1.84)*10-3 g/cm3 

µL = 0.66-17.8 mPa s 
µG = (0.8-1.81)*10-2 mPa s 
σ = 30-76 mN/m 
Electrolytes 
ρL = 1.01-1.17 g/cm3 

µL = 0.9-1.87 mPa s 
σ = 71.9-79.6 mN/m 

0.284 0.243 0.6041.76 4

3

14.9 G L GL L
L

G L L L L

U ggf
k a

U D

µ µµ µ
σ ρ σ µ ρ

− −
      

=       
       

 
Where: f = 1 for electrolytes, 100.0414I for ion strength 

I<1 g-ion/L, 1.1 for I>1 g-ion/L 

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992)  
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Table 5.3 cont.: Gas-liquid mass transfer correlations for bubble columns. 
Reference System Conditions Correlation 

(Jordan and 
Schumpe, 
2001) 

DR = 0.095-0.115 m 
d0 = 1.0-4.3 mm (SO, MO) 
UG = 0.80-21 cm/s 

ρ
σ

= −
2

1.21 5.39L bg d

 

ν
−

3
6

2
825 1.55*10b

L

gd

 

= −0.06 1.22G

b

U

gd
 

ρ
ρ

−= −59.3*10 0.059G

L  
ν

= − 471 6.89*10L

LD
 

ρ ρν
σ ν ρ

            =   +                       

0.72 0.370.5 0.27 0.490.342 2 3

2
1 13.2L b L b b G G GL

L L L Lb b

k ad g d gd U U
A

D D gd gd
 

Where A is sparger dependent 

(Jordan et al., 
2002) 

(Air, N2)-(Water, 
ethanol (96%), 1-
butanol, toluene) 

DR = 0.115 m 
H = 1.370 m 
UG = 0.01-0.15 m/s 
ρL = 759-884 kg/m3 

µL = 0.58-2.94 mPa s 
σ = 19.9-32.5 mN/m 
DL (10-9 m2/s) = 1.60-
4.38 
P = 1-10 bar 
T = 293K 

( ) ( )0.91 0.24

L G Gk a C U ρ=
 

( )1.06

L G
k a D ε=

 
Liquid C D 

Water 0.99 0.56 
Ethanol (96%) 1.14 0.67 

1-Butanol 0.83 0.60 
Toluene 1.49 0.72 

 

(Kang et al., 
1999)  

Air-(water, 
aqueous solutions 
of carboxy-
methyl-cellulose) 

DR = 0.152 m 
d0 = 1.0 mm 
UG = 2-20 cm/s 
µL = 1-38 mPa s 
P = 0.1-0.6 MPa 

0.254

3.080.930 *10 R G G
L

L

D U
k a

ρ
µ

−  
=  

   

(Kawase and 
Moo-Young, 
1987)1 

31 73
22 2 4 2 605

0.452 R G GL R L R L

L L L R

D U Uk aD gD

D D D g

ν ρ
ν σ

      
=       

        
(Khudenko 
and Shpirt, 
1986)2 

Air-Water Rdt = 0.125-1 

= −0 0.25 1
b

H

H
 

UG = 0.055-2.1 cm/s 
T = 17-24°C 

 
=  

 

0.67

0.180.041 G
L dt

b

U
k a R

H
 

(Koide et al., 
1984)2 

Air-Water 
Air-Aqueous 
solutions 
(electrolytes, 
glycol, glycerol) 

DR = 0.10-0.30 m 
d0 = 0.5-2.5 mm (MO) 
UG = 1-18 cm/s 
ρL = 997-1178 kg/m3 

ρs = 2500 and 8770 
kg/m3 
µL = 0.894-17.6 mPa s 
σ = 51.5-73 mN/m 
cs = 0-200 kg/m3 

ds = 47.5-192 µm 

ν µ
ε

ρ σσ
ρ ρρ

ρ σ µ

−

−−

   
   
   =
     

+              

0.5 0.1594
1.18

3

0.4860.612 0.3450.4772
4

2.11

1 1.47 *10

L L
G

L LL

L L
s L G RP L R

s LR

g

Dk a

D g c U DU gD

D g

 

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992)  
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Table 5.3 cont.: Gas-liquid mass transfer correlations for bubble columns.
Reference System Conditions Correlation 

(Lau et al., 
2004) 

(Air, N2)-(water, 
Paratherm NF 
heat-transfer 
fluid) 
(Air, N2, CO, He, 
H2)-9 different 
organic liquids 

DR = 0.045-0.45 m 
H/DR > 5 
d0 = 1.5 mm (PP) 
UG = 2.8-67.8 cm/s 
UL = 0-0.089 cm/s 
ρL = 790-1580 kg/m3 

ρG = 0.97-33.4 kg/m3 

µL = 0.36-38.3 mPa s 
σ = 23.3-72.6 mN/m 
P up to 22 MPa 
T up to 250°C 

( )σ µ ε−= −0.22 1.21.77 exp 1.65 65.3
L L L G

k a U
 

(Nakanoh and 
Yoshida, 
1980)2 

Air-Water 
Air-Aqueous 
solutions 

DR = 0.14 m 
d0 = 4 mm 
UG < 10 cm/s 
ρL = 995-1230 kg/m3 

νL (10-6 m2/s) = 0.804-
8.82 
DL (10-9 m2/s) = 1.06-
2.6 

ν ρ
ν σ

     
=      

    

1 0.39 0.752 2 3

2
0.09 GL R L R R L

L L L R

Uk aD D g gD

D D gD

 

(Ozturk et al., 
1987)2 

(Air, N2, CO2, He, 
H2)-organic 
liquids 

DR = 0.095 m 
d0 = 3 mm (SO) 
UG = 0.80-10 cm/s 

ρ
σ

= −
2

1.2 5.4L bg d

 

ν
= −

3
6

2
830 1.5 *10b

L

gd

 

= −0.043 0.6G

b

U

gd
 

ρ
ρ

− −= −5 39.3*10 2.0 *10G

L  
ν

= − 532 1.5*10L

LD
 

P = 0.1 MPa 
T = 293K 

0.680.5 0.040.332 2 2 3

2
0.62 G GL B L L B L B

L L L L LB

Uk ad g d g d

D D gd

ρµ ρ ρ
ρ σ µ ρ

       
=                   

(Salvacion et 
al., 1995)2 

Air-Water 
Air-Aqueous 
solutions 
(methanol, 
ethanol, 
n-butanol, 
n-hexanol, 
n-octanol) 

DR = 0.14-0.30 m 
d0 = 0.5-2.5 mm (MO) 
UG = 2-15 cm/s 
ρL = 995-997 kg/m3 

ρs = 1000-1087 kg/m3 

ϕ = −0 0.20
s  

µL = 0.863-0.894 mPa s 
σ = 55.6-72.0 mN/m 

( )σ ν µ ρ
ϕ

ρ ρ σ σ

−
     

= +     
    

1 0.1592 4 2

3
12.9 1 0.62 ( )L L L L R
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Where: B = 0 for water

(Schumpe and 
Grund, 1986)1 

Air-Water DR = 0.30 m 
H = 4.4 m 
d0 = 1 mm 
UG < 20 cm/s 
T = 20°C 

µ −= 0.82 0.39
L G eff

k a KU
 

Where: K=0.063 (water/salt solution) or 0.042 
(water/0.8M Na2SO4 solution) 

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992)  
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Table 5.3 cont.: Gas-liquid mass transfer correlations for bubble columns. 
Reference System Conditions Correlation 

(Shah et al., 
1982)3 

= 0.820.467L Gk a U
 

(Shpirt, 1981)2 Air-Aqueous 
solutions of NH4Cl 

DR = 0.107 m 
H0 = 0.30-1.0 m 
UG = 0.094-0.75 cm/s 
T = 20°C 

ν

−
  

=   
   

0.300.452
0L b G b

L L b

k ad U d H
A

D d
 

Where: A = 0.007 for heterogeneous flow regime 
Or A = 0.0136 for homogeneous flow regime

 
(Sotelo et al., 
1994)2 

CO2-Water 
CO2-Aqueous 
solutions 
(sucrose, ethanol, 
glycerin) 

DR = 0.04-0.08 m 
d0 = 30-150 µm (MO) 
UG = 0.064-0.49 cm/s 
ρL = 998-1147 kg/m3 

µL = 1.00-4.17 mPa s 
µG = 1.48-1.53 mPa s 
σ = 29.8-73.4 mN/m 
DL (10-9 m2/s) = 0.51-
1.78 

µ µµ ν
σ ρ σ µ

− − −
        

=         
         

0.518 0.074 0.038 0.9082.14 4
0

3
16.9L G G L GL L

L L L R

k aU U dg

g D D
 

(Vasquez et al., 
1993)2 

CO2-Water 
CO2-Aqueous 
solutions 
(glycerin, glucose, 
sucrose) 

ρL = 997-1151 kg/m3 

µL = 0.896-6.42 mPa s 
σ = 66.9-73.4 mN/m 
DL (10-9 m2/s) = 0.40-
1.92 

10.5 0.2 60.779L L L Gk a D Flµ −=
(SI) 

1 Adopted from Kantarci et al. (2005) 
2 Adopted from Ribeiro and Lage (2005) 
3 Adopted from Deckwer (1992)  
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6 Airlift Reactors 

6.1 Introduction 

The airlift reactor (ALR) is a pneumetic device which attempts to reconcile bubble column 

shortcomings and provide more control to the operator. Two general families of airlift reactors 

exist: internal- and external-loop airlift reactors (ILALRs and ELALRs, respectively). The internal-

loop variant is sectioned by a baffle (Figure 6.1a) or draught tube (Figure 6.1b). The external-loop 

airlift reactor (Figure 6.2) connects the up- and down-flowing regions with additional piping. These 

basic designs can be modified extensively to create a wide array of application specific 

requirements (Fu et al., 2004; Fu et al., 2003; Karamanev et al., 1996; Merchuk et al., 1999; Wei et 

al., 2000a; Wei et al., 2000b). 

 
Figure 6.1: Internal-loop airlift reactor with (a) a baffle separating the riser and downcomer, (b) 

a continuous draught tube separating the riser and downcomer, and (c) a sectioned 
draught tube separating the riser and downcomer. 
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Figure 6.2: External-loop airlift reactor schematic. 

Airlift reactor construction is very simple and similar to that of a bubble column (Al-Masry, 

1999; Blazej et al., 2004b). There are four basic sections: riser, gas separator, downcomer, and base. 

The riser is the up-flowing section of the airlift reactor. The gas sparger is oriented such that gas is 

injected into the riser. The gas sparger location may be within the riser or the base, which is simply 

the region that connects the downcomer to the riser. The gas separator is at the top of the reactor. 

As the name implies, gas disengages from the liquid phase (or slurry) in the gas separator. The 

downcomer is defined as the region in which down-flowing phases are present. 

Airlift reactors tend to be taller vessels. Industrial units have a height and diameter up to 10-40 

and 2-10 m, respectively. The dimensions are a function of process requirements. Industrial scale 

units may operate with a liquid circulation velocity up to about 1 m/s and gas residence time of 

approximately 1 minute (Giovannettone et al., 2009; van Benthum et al., 1999a; van Benthum et al., 

1999b). Hence, the height is adjusted to achieve the necessary conversion (van Benthum et al., 
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1999b). Pilot scale bioreactors tend to have volumes of 0.05-0.30 m3. Biological applications use 

industrial volumes of approximately 10 m3, but certain applications, such as wastewater treatment, 

may use reactors up to 1000 m3 in size (Joshi et al., 1990). 

Biological applications use smaller scale vessels because turbulence increases with scale, which 

leads to an increase in shear stresses as well. Airlift reactors have become popular in mammalian 

cell suspension applications for which shear stresses become important above 20 L. Increasing the 

reactor size leads to increased mechanical damage and lower cell densities (Martin and Vermette, 

2005). 

Airlift reactors can be viewed in two different lights. One is that the ALRs are variations of the 

bubble column. The bubble-bubble interactions, forces, construction, and reactor applications in 

ALRs are very similar with those of the bubble column. On the other hand, ALR hydrodynamics are 

based on interactions between the riser and downcomer gas holdup. The gas separator in 

conjunction with gas injection in the riser section generally leads to the gas holdup in the riser 

section being larger than in the downcomer. This effect creates a hydrodynamic pressure 

difference, which leads to the liquid and/or gas phases circulating in a fairly controlled manner. 

This mechanism is a source of many advantages unique to the airlift reactor. 

Additionally, the liquid and gas phase flow rates may be controlled independently of each other 

(Williams, 2002). This ability introduces much more control, making the airlift reactor ideal for 

industrial applications. The phases are circulated by design, which allows much higher gas and 

liquid flow rates over that of bubble columns (Figure 6.3) without the requirement of a complicated 

recycle system. The difference between Figure 5.6a and 6.6b is that Figure 5.6a can be achieved 

through a throttling device. In other words, mixing, heat transfer, and residence time can be 

optimized while providing the ability to protect any microorganism or catalyst. 
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(a) (b)

 
Figure 6.3: Comparison between superficial liquid and gas velocities in bubble columns and 

airlift reactors from (a) Merchuk (1986) and (b) Chisti (1989).  

Dead or high shear zones are minimized in airlift reactors because the influence of sparged gas 

is limited and the gas phase distribution tends to be practically homogeneous throughout the riser 

volume, although a non-uniform phase distribution may be observed for approximately the first 

meter in the riser, which introduces variability in relatively short columns (hR < 4 m) 

(Giovannettone et al., 2009). The only possible high shear areas are caused by turns (Merchuk et al., 

1999), but these can be eliminated or minimized. 

The price for these advantages in ALRs is that the capital investment is usually larger relative to 

bubble columns. The higher costs can be offset with a liquid and/or gas input increase that is not 

feasible in a bubble column, which would lead to higher output; however, operation at larger flow 

scales in airlift reactors can lead to increased variable costs associated with additional gas 

throughput and pressurization. Foaming also becomes more likely at high gas and liquid flow rates, 

which leads to inefficient gas separation and recirculation of spent gas bubbles (Wei et al., 2000; 

Williams, 2002). Complete mixing typically requires 4-9 cycles (the number of times that the liquid 
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circulates in the ALR) (Karamanev et al., 1996), which would cause further problems if continuous 

operation is required. Luckily, external-loop airlift reactors can be designed to have much better 

mixing performance over that of bubble columns. 

6.2 Circulation Regimes 

The airlift reactor and bubble column have very similar bubble-bubble interactions and 

behavior, which leads to almost identical gas flow regimes and progression. These have been 

covered in detail in Section 5.2; however, more attention is placed on liquid flow behavior in airlift 

reactors since the liquid phase is a significant source of momentum and gas recirculation. 

The process of gas entrainment and circulation is complicated and not easily quantified. 

Problems arise from an abstract relationship between the liquid and gas phase. On one hand, the 

gas flow rate affects the liquid flow rate through the gas holdup and hydraulic pressure differential 

relationship. As the gas flow rate increases, larger bubbles with high bubble rise velocities could 

form, which would lead to lower downcomer gas holdup and increase the circulation velocity. A 

higher circulation velocity, in turn, would decrease the slip velocity and make entrainment easier. 

On the other hand, if the liquid velocity is higher than the bubble rise velocity, bubbles would 

experience a drag (lift) force, which would aid entrainment. 

Quantification of this process becomes complex very quickly, and a theoretical measure or 

technique does not exist. Researchers, instead, have to rely on empirical techniques. Nevertheless, a 

rough understanding of the circulation process exists and is very helpful in the empirical 

understanding of ALRs. ALR circulation can be sectioned into three general regimes, as shown in 

Figure 6.4. At very low gas flow rates, which correspond to UGr < 0.012 m/s, the induced liquid 

circulation velocity is not strong enough to entrain gas bubbles into the downcomer. Note that UGr is 

the superficial gas velocity in the riser. The gas phase is able to almost completely disengage from 

the liquid phase (regime 1). This regime, referred to as the bubble free regime, is usually not 

significantly influenced by the liquid properties simply because the amount of gas present in the 
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system is still fairly low. In order for the liquid properties to become more important, a higher 

degree of bubble-bubble interaction is needed. 

 
Figure 6.4: Circulation regime progression in a draught tube internal-loop airlift reactor (van 

Benthum et al., 1999b) where vL,D is the downcomer liquid velocity and vsG is the gas 
slip velocity. 

The liquid is capable of entraining only very small bubbles (dB < 1 mm) in regime 1. The 

resulting downcomer gas holdup is usually small with a maximum of about 3%. Once these small 

bubbles are entrained in the downcomer, they are not transported very far and are expected to 

reach depths up to 30% of the downcomer height (Albijanic et al., 2007). Any increase in the 

superficial gas velocity leads to a significant increase in the liquid circulation velocity (Blazej et al., 

2004b; van Benthum et al., 1999b). The basic guideline is that the bubble free regime exists as long 

as the downcomer superficial liquid velocity is lower than the average slip velocity (van Benthum et 

al., 1999a). 

Once the gas is in the downcomer, the liquid has to flow even faster to cause circulation. Gas 

bubbles are still lighter than the liquid and have a buoyant force, which propels them to rise against 

the flow. The liquid phase momentum has to provide the power to overcome the buoyant force and 

create a net downward force in order to cause forward motion and eventual circulation. In effect, a 
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superficial liquid velocity exists at which gas bubbles can be suspended or are stagnant in the 

downcomer (regime 2 in Figure 6.4). Hence, this circulation regime is referred to as the transition 

regime. 

When the liquid velocity in the downcomer is about equal to the average slip velocity, an 

approximate stationary bubble behavior can be observed. In addition, bubble-bubble interactions 

become more frequent, and liquid properties start to have more influence on reactor performance 

(Albijanic et al., 2007). Unlike regime 1, the liquid velocity does not deviate significantly and stays 

approximately constant in regime 2, but the transition regime is not very stable and minor 

variations in the superficial gas velocity can lead to regime transition. Unfortunately, a theoretical 

prediction of gas holdup is very challenging and experimental values vary over a wide range (van 

Benthum et al., 1999b). Regime 1 and the beginning of regime 2 can be described as homogeneous, 

while the later portion of regime 2 occurs in the bubble column transition flow regime described in 

Section 5.2 (Merchuk et al., 1998; van Benthum et al., 1999b). 

If the downcomer liquid velocity is larger in magnitude than the bubble rise velocity, the bubble 

will circulate with the liquid (Albijanic et al., 2007). This minimum superficial liquid velocity usually 

occurs at UGr = 3.5-5.0 cm/s (Jones, 2007; Wei et al., 2008) and is described by thorough gas bubble 

circulation (complete bubble circulation regime – regime 3 in Figure 6.4). It should be noted that 

regime 3 is by far the most commonly encountered circulation regime. The required gas flow rate 

for pilot and industrial scale reactors requires very high superficial gas velocities, which all but 

guarantee circulation (Blazej et al., 2004b; Chisti, 1989). Bubble free (regime 1) and transition 

(regime 2) regimes are usually avoided because they have poor phase contacting, mixing, and 

selectivity (Wei et al., 2008). In addition, special attention and effort are required to keep the flow 

in the bubble free and transition regimes for an industrial-scale reactor. 
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Reactors operating in regime 1 or possibly early regime 2 are usually found when cultivating 

mammalian cell structures or highly shear sensitive microorganisms for which shear stress 

becomes the limiting operational factor; however, designers have found it easier to operate in non-

standard designs, which at least partially circulate (see, for example, van Bentham et al. (1999a)). 

The transition from regime 2 to regime 3 is not well understood. It is suspected that the 

transition is initiated by the gas phase entering the heterogeneous or transition flow regime 

identified for bubble columns. These flow regimes would produce larger bubbles with faster bubble 

rise velocities, which disengage easier, decrease the downcomer gas holdup, and increase the 

circulation driving force. This behavior is often confirmed with circulation starting and flow 

entering the transition flow regime at UGr ≈ 0.045 m/s (Joshi et al., 1990; Merchuk et al., 1998). The 

faster liquid circulation velocity eventually surpasses the gas slip velocity in the downcomer, and 

gas bubbles are entrained in the downcomer flow. The circulating gas adds to the riser gas holdup, 

potentially reinforcing the trend. 

Complications arise when/if the gas disengagement leads to a smaller riser gas holdup, such 

that the driving force is not heavily influenced. The gas disengagement process has some geometric 

influences which cause the transition to regime 3 to occur relatively early in the transition flow 

regime or well into the heterogeneous flow regime. A second complication is that the recirculated 

gas can lead to more frequent bubble collisions and coalescence so that the riser gas holdup may 

decrease early in regime 3 until the flow structure stabilizes. This case requires the downcomer gas 

holdup to decrease at a faster rate than the riser gas holdup. Otherwise, the circulation would stay 

in regime 2. This behavior makes circulation regime transition highly variable. Interestingly, the 

transition to regime 3 occurs at a gas holdup of 10-12% regardless of the bubble flow regime, and 

for reasons and through mechanisms which are not well understood at this time (van Benthum et 

al., 1999b). The liquid circulation velocity resumes its relationship in regime 3 and increases with 
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the riser superficial gas velocity. In general, the maximum downcomer gas holdup is about 20% 

(van Benthum et al., 1999b). 

The riser superficial gas velocity at which transition occurs depends significantly on liquid 

properties. Generally, liquids containing surfactants or alcohols tend to experience circulation 

relatively early (UGr ≈ 0.035 m/s) while water experiences it later (UGr ≈ 0.045 m/s) (Albijanic et al., 

2007; Jones, 2007; van Benthum et al., 1999b). Large bubbles, 3-5 mm in diameter, are not 

entrained in the downcomer in a water system until UGr ≈ 0.20 m/s. Large, ellipsoidal bubbles at 

these velocities also form significant wakes which limit the effective interfacial area. This factor is 

almost always ignored in theoretical gas-liquid mass transfer coefficient correlations or models 

(Talvy et al., 2007). 

A simple measure to correlate liquid circulation velocity to the superficial gas velocity would be 

through a power law such as (Bello et al., 1984; Merchuk, 1986): 

 Lr Gr
U U βα=

 (6.1) 

where ULr and UGr are the riser superficial liquid and gas velocities, and α and β are fitted constants. 

The coefficient α depends on the reactor geometry and liquid properties while the exponent β is a 

function of the flow regime and reactor geometry. This base equation can be further enhanced, and 

terms can be added to account for specific properties or reactor design (Chisti, 1989). The fitted 

terms are usually positive, implying that the liquid circulation velocity increases with increasing 

superficial gas velocity; however, if slugging, choking, or throttling occurs, the liquid circulation 

velocity can actually decrease with increasing superficial gas velocity (Jones, 2007). 

A more detailed correlation could be arrived at by accounting for each force. For example, one 

could balance the hydrostatic pressure difference to reactor specific pressure drops (e.g., head 

losses due to wall friction, elbows, bends, etc.). This approach would be based on a theoretical 

foundation, but attempts have not been very successful due to the specific geometric dependence, 

and empirical correlations are still the most practical approach (Albijanic et al., 2007; Chisti, 1989). 
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Analysis could be skewed to favor riser versus downcomer data due to the riser cross-sectional 

area usually being larger than that of the downcomer. A better strategy would be to analyze each 

section separately. One approach is to assume a large degree of independence, which would work 

relatively well if the controlling factors in each section are independent of the other. A large 

effective riser diameter would not impact the riser gas holdup and would cause the riser gas holdup 

behavior to be a function of just the gas flow rate and liquid properties. A small downcomer 

diameter, on the other hand, could cause the downcomer to enter the slug flow regime, which 

would limit circulation. Even larger downcomer diameters can be affected by trapped gas, which 

can grow with superficial gas velocity. The effect could be a reduction in the effective downcomer 

cross-sectional area and possible flow choking (Chisti, 1989; Jones, 2007). A single correlation does 

not take these interactions into account. 

6.3 Configuration 

The specific reactor configuration has a significant effect on gas holdup and gas-liquid mass 

transfer performance, as can be seen in Figure 6.5. Other factors, such as downcomer-to-riser cross-

sectional area ratio or the gas separator design, can also play significant roles. For example, 

external-loop airlift reactors use gas separators that allow more time for the gas phase to disengage 

than in internal-loop airlift reactors. Hence, the downcomer in ELALRs has a negative effect on 

global or total gas holdup and gas-liquid mass transfer. 
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Figure 6.5: Achievable gas-liquid mass transfer in bubble columns and internal-loops versus 

external-loops (Chisti, 1989). 

Furthermore, airlift reactor studies often use an effective riser diameter that is less than 0.15 m, 

which has been shown to influence the bubble size distribution in bubble columns (Kantarci et al., 

2005). Not surprisingly, research work which compares ALR designs based on the reactor diameter 

use smaller riser and downcomer columns, and find a strong reactor diameter dependence, noting 

that bubble diameters increase with reactor size (Ruen-ngam et al., 2008). The reactor (riser) 

diameter effect is expected to be very similar to that of bubble columns, which has been reviewed in 

Section 5.3.1. 

The reactor base is usually not discussed. The understanding is that as long as the base does not 

interfere with flow and increase frictional losses, one does not pay attention to it; however, some 

evidence exists that curved or filled bottoms may promote this limited impact (Chisti, 1989). With 

this in mind, the base height has a minimal impact on ALR operation as well. The only restriction is 

that a short base height can cause a large pressure drop, which would increase the operational cost. 

In such a case, gas holdup is expected to increase with bottom clearance (Al-Masry, 1999). Luckily 

for designers, a restrictive bottom clearance in the experimental scale is often self-corrected during 
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scaleup such that minimal problems are encountered in the pilot or industrial stage. None of the 

presented correlations at the end of this chapter attempt to reflect the bottom designs in any form. 

6.3.1 Reactor Height 

The reactor height can be defined in two ways. The first definition is often termed the effective 

reactor height and is defined as the distance between the base and the bottom of the gas separator. 

The second is the unaerated liquid height, which is defined as the distance from the base to the fluid 

surface prior to aeration. These definitions can be seen in Figure 6.6 for the internal- and external-

loop airlift reactor. 

 
Figure 6.6: Airlift reactor component definitions. 

The effective reactor height influences the circulation path, which has many hydrodynamic 

implications as implied by the liquid circulation velocity defined by Blenke (1979): 

 

c
Lc

c

x
U

t
=

 (6.2) 

where ULc, xc, and tc are the liquid circulation velocity, circulation path length, and circulation time, 

respectively. By changing the reactor height, the circulation path length changes. The circulation 
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length path influences the liquid circulation velocity, gas disengagement, and the hydraulic 

pressure difference, which drives the circulation flow. As the circulation length path increases, the 

liquid circulation velocity is expected to increase. The result would be an increase in gas 

disengagement and decrease in gas holdup and gas-liquid mass transfer. At the same time, a long 

circulation path or time could be dangerous because it could lead to spent gas or minimal surface 

renewal in the downcomer (Talvy et al., 2007), possibly leading to microorganism starvation. It 

should be noted that the circulation time is largely influenced by the riser and downcomer 

residence times, while the separator and base residence times are oftentimes ignored (Joshi et al., 

1990). 

Bentifraouine et al. (1997a) varied the effective reactor height from 1-1.6 m and observed a 

significant increase in the superficial liquid velocity, which was attributed to an increase in the 

hydrostatic pressure differential. They also concluded that the increase in superficial gas velocity 

caused a decrease in the gas phase residence time and, hence, gas holdup; however, the other 

possibility is that the faster liquid velocity is able to prevent the gas from disengaging and may lead 

to higher gas residence time. This was observed by Snape et al. (1995) who concluded that gas 

holdup increased and superficial liquid velocity varied minimally with increasing reactor height. In 

other words, the effective reactor height’s influence is dependent on the liquid flow regime and 

liquid velocities; however, gas-liquid mass transfer is usually seen as increasing with the effective 

reactor height (Siegel and Merchuk, 1988) unless gas holdup decreases significantly as well. It 

should be noted that the risk of recirculating used gas increases with higher liquid circulation 

velocity.  

The effect of the unaerated liquid height is more complicated. If the unaerated liquid height was 

less than the effective reactor height, an increase in the unaerated liquid height would lead to an 

increase in the superficial liquid velocity and decrease in gas holdup (Bentifraouine et al., 1997a, 

1997b; Wei et al., 2008). If, on the other hand, the unaerated liquid height was equal to or greater 
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than the effective reactor height, gas holdup, superficial liquid velocity, and, hence, ALR operation 

are not affected (Bentifraouine et al., 1997a, 1997b; Snape et al., 1995). 

Wei et al. (2008) concluded that the unaerated liquid height had a negligible influence in the 

transition from the bubble free (regime 1) to the transition regime (regime 2), but had a very 

important influence in the shift from the transition to complete bubble circulation regime (regime 

3). Bubbles were entrained in the downcomer at approximately the same superficial gas velocity, 

regardless of unaerated liquid height; however, the flow resistance decreased with increased 

unaerated liquid height such that bubble penetration also increased in the downcomer, which led to 

an earlier transition into the complete bubble circulation regime. 

The reactor height is often presented in the form of the riser aspect ratio (hR/dR). The effect of 

riser aspect ratio is expected to depend on the gas flow and gas circulation rate. An increase in the 

riser aspect ratio does not significantly change the liquid circulation velocity. Therefore, the 

circulation path length and circulation time increases with increasing riser aspect ratio, which 

allows the gas phase to achieve its equilibrium bubble diameter more efficiently. 

If the superficial gas velocity and gas circulation rate are low, such that bubble-bubble 

interaction is low as well, an increase in the riser aspect ratio is expected to increase the average 

bubble diameter, decrease the gas holdup, and decrease the gas-liquid mass transfer coefficient. 

This effect occurs until the reactor is tall enough to achieve equilibrium. Bubble columns achieve 

this at an aspect ratio of approximately 5 and height of 1-3 m. The airlift reactor, especially the 

external-loop variant, is expected to require a higher riser aspect ratio due to the limited axial 

velocity variations. Evidence suggests that the superficial gas velocity is an important variable in 

this determination and a decrease in gas holdup may be observed up to a riser aspect ratio of 20-40. 

Therefore, it is fairly common to observe bubble size variations with reactor height in both the 

draught tube and external-loop airlift reactor (Ruen-ngam et al., 2008). If, on the other hand, the 
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superficial gas velocity and gas circulation rate is relatively fast, a riser aspect ratio much less than 

20 shows a negligible influence (Joshi et al., 1990). 

6.3.2 Area Ratio 

The area ratio is defined as the ratio of downcomer to riser cross-sectional area, but can also be 

represented by a downcomer to riser hydraulic diameter ratio. It is a simple representation of the 

flow restriction that exists in the reactor design since wall friction is of little importance unless 

viscosity is significantly increased (Chisti, 1989). 

The area ratio influences the liquid circulation rate by adjusting the flow restriction. If the 

downcomer diameter or area ratio is reduced too much, the liquid flow becomes restricted and the 

liquid circulation velocity is expected to decrease. According to Eqn. (6.2), the gas phase could 

follow for the same circulation path length (xc) but the circulation time (tc) could increase, which 

would lead to higher gas-liquid mass transfer (Blenke, 1979). Mere scale can have a perceived 

influence as well, and studies using area ratios higher than 0.25 on the pilot and industrial scale do 

not observe any restrictive effects. In general, frictional losses decrease with increasing scale such 

that the losses in a 10.5 liter ILALR are four times higher than those observed in a geometrically 

similar 200 liter ILALR (Blazej et al., 2004b). Generally, correlations model the area ratio with a 

negative exponent, meaning that an increase in the downcomer-to-riser area ratio leads to a 

decrease in gas holdup and the gas-liquid mass transfer coefficient (Garcia-Ochoa and Gomez, 

2009); however, very large or very small area ratios often do not follow this rule. 

An excessive reduction in the downcomer diameter (very low area ratio) would be too 

restrictive and reduce the liquid velocity such that the gas phase could easily disengage, which 

would reduce the amount of available gas (gas holdup), the driving force, and gas-liquid mass 

transfer. In other words, a restrained system would decrease the liquid circulation velocity, driving 

force, gas holdup, and gas-liquid mass transfer by decreasing the area ratio. In general, research 

work has not focused on area ratios below 0.10 with the exception of Jones (2007) who used an 
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ELALR with an area ratio of 0.063. Popovic and Robinson (1984) confirmed this by increasing the 

area ratio from 0.11 to 0.44, which increased the superficial liquid velocity about four-fold. Airlift 

reactors are defined by the riser and very large area ratios result in bubble column-like 

performance; hence, area ratios beyond 4.0 are rarely used. 

Valves are occasionally used to adjust the area ratio for experimentation, such as the research 

by Bendjaballah et al. (1999). They closed the valve from fully to 40% open without major effects 

on gas holdup. This would lead to the conclusion that an optimum area ratio exists, which does not 

impact gas holdup and also minimizes cost. The optimum ratio may not be easily determined since 

it depends on the scale and operating range, and the installation of a restrictive valve in the 

downcomer (assuming the optimum area ratio is below the valve-free area ratio) would provide the 

necessary flexibility and means to get there (Weiland, 1984). Additional losses and dynamics would 

be introduced by the valve and must also be addressed. 

If circulation is a major design goal, Joshi et al. (1990) concluded that an area ratio of about one 

maximizes the liquid circulation rate in a 10 m3 volume reactor regardless of sparger location. If the 

reactor volume is increased to 100 m3, the optimum area ratio increases to 2. When the area ratio is 

adjusted, the circulation velocity monotonically decreases with increasing area ratio. In Joshi’s 

work, a reactor with VL = 10 m3, hR/dR = 40, and P/VL = 0.3 kW/m3 experienced a liquid circulation 

velocity decrease from 3.0 to 0.5 m/s when the area ratio increased from 0.25 to 4.0. The higher 

liquid velocities at lower area ratio also introduced circulation instabilities, which disappeared at 

Ad/Ar = 0.3 at 10 m3 and Ad/Ar = 0.5 at 100 m3. Hence, a stable and optimum area ratio can be 

achieved with a riser-to-downcomer diameter ratio of about 1.41 (Joshi et al., 1990). Variations 

exist for the draught tube internal-loop and external-loop airlift reactor, which depend on the 

maximizing characteristic and are presented in Section 6.3.4 and 6.3.5, respectively. 
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6.3.3 Gas Separator 

The gas separator is an important design feature which is often ignored. The simple reason is 

that internal-loop airlift reactors have only a few options, and the design is essentially the same: a 

vented headspace, which is similar to the tank separator shown in Figure 6.7c. The external-loop 

airlift reactor, however, is presented with additional design options (shown in Figure 6.7a and 

6.7b), which provides the external-loop airlift reactor with some advantages for certain processes. 

 
Figure 6.7: Common gas separator designs for external-loop airlift reactors (Jones, 2007). 

The tank separator (Figure 6.7c) is the simplest and most common design and is used for both 

the ELALR and ILALR. It is usually a simple, rectangular vented box that connects the riser to the 

downcomer. The tank separator, however, has a negative effect in the ELALR. It increases the 

available gas separation area and gas separator residence time relative to a comparable ILALR 

design. If a comparison is made between an ELALR and ILALR on the basis of unaerated liquid 

height, the ELALR will have a shallower separator liquid height and higher rate of gas 

disengagement. Hence, the ELALR is often cited to have a lower gas holdup and gas-liquid mass 

transfer performance, as shown in Figure 6.5, but also higher liquid circulation velocity (Chisti, 

1989). 
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The unaerated liquid level is an important feature. Liquid circulation can usually be achieved by 

injecting more gas and ensuring a sufficiently high aerated fluid level; however, in some extreme 

cases, additional gas would not cause additional circulation or could actually suppress circulation to 

the point of no liquid circulation. This may occur when the aerated liquid level is too shallow in the 

gas separator such that complete gas disengagement is promoted. Therefore, increasing the liquid 

level to a minimal operational level would allow gas-phase circulation (Merchuk et al., 1999). The 

operator is expected to have the ability to add enough liquid to have control, and, naturally, 

research has not gone towards quantifying the necessary unaerated liquid height. 

More importantly for operation, the gas residence time in the separator controls disengagement 

such that decreasing the gas residence time in this region would lead to an increase in the 

downcomer gas holdup, which could decrease the hydraulic pressure differential and liquid 

circulation velocity (Siegel et al., 1986). The negative effect would be if the gas residence time in the 

separator is too long such that gas easily disengages and causes a decrease in gas holdup and gas-

liquid mass transfer (Al-Masry, 1999). 

One cannot easily quantify the critical fluid level since it is highly dependent on liquid 

properties, but a simple guideline can be used. If the gas separator residence time is longer than the 

minimum separation time (time required for the average bubble to rise from the top of the riser to 

the liquid surface), gas disengagement is encouraged (Al-Masry, 1999). In other words, the 

separator would encourage gas detachment if bubbles are allowed to spend enough time in the gas 

separator to rise to the surface given their bubble rise velocity. Hence, increasing the superficial gas 

velocity could increase the bubble rise velocity and decrease the minimum separation time. Luckily 

for ELALR operators, this design allows liquid circulation velocity adjustments (Chisti, 1989) so 

that the described situation may be offset. The gas separator, however, is sometimes designed to 

decrease the liquid velocity such that spent gas disengages more readily. Such a system might 
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require a second sparger in the downcomer in order to provide sufficient gas for microorganism 

viability (Merchuk et al., 1999). 

A system specific operational rule could be introduced based on a ratio between tank separator 

volume to total reactor volume. An optimum volume ratio is expected to minimize power input 

without affecting downcomer gas holdup, which would lower operational cost and optimize output. 

Al-Masry (1999) varied separator volume in air-water and air-glycerol systems from 0-37%. He 

found that the optimum ratio, based on hydrodynamics and power input, was 11% for the air-water 

system. Increasing the volume ratio did not lead to significantly higher riser or downcomer gas 

holdup. Decreasing the volume ratio produced higher gas holdup, but it also led to much lower 

liquid circulation velocities. The air-glycerol system proved more difficult due to coalescence, and a 

volume ratio of 0% failed to lead to circulation until UGr = 0.08 m/s. Hence, the airlift reactor acted 

as a bubble column. Increasing the volume ratio beyond 7% would cause negative effects such that 

gas holdup was minimal at 37%. The liquid circulation velocity in the air-glycerol system was much 

lower than in the air-water system, which made the air-water system hydrodynamically superior. 

The other gas separator designs offer an alternative such that the gas separator residence time 

is limited. The (closed) tube (Figure 6.7a) and vented tube (Figure 6.7b) represent the same idea. 

The tube separator is a simple design that basically increases the separator liquid height (assuming 

comparable volume as with a tank separator), which increases the amount of time required for 

bubbles to reach the surface and disengage from the liquid phase; however, in reality, it works too 

well. Gas often fails to disengage completely and tends to build in the connector and eventually in 

the downcomer. This accumulation leads to flow choking and reduces the liquid circulation velocity. 

Another way to interpret the gas accumulation is that it reduces the effective downcomer-to-riser 

area ratio. Making the situation worse, the downcomer can enter the plug flow regime. Gas holdup 

increases, but the representative bubbles are very large and gas-liquid mass transfer suffers 
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greatly. Ultimately, the connector and downcomer could be completely choked, at which point the 

airlift reactor acts just like a bubble column (Jones, 2007). 

The vented tube connector minimizes the problem of gas accumulation, and gas is allowed to 

separate fairly efficiently. Unfortunately for some processes, the additional separator volume 

increases the gas separation efficiency relative to an internal-loop airlift reactor for the same 

reasons as for the tank separator; however, the liquid circulation velocity keeps increasing with 

superficial gas velocity without a local maximum (Bentifraouine et al., 1997a; Choi, 2001), which 

may be advantageous for some processes. The vented tube separator is also susceptible to the risk 

of operating in the slug flow regime and the formation of very large bubbles, which can choke the 

downcomer flow (Jones, 2007). 

The vented tube separator, in turn, can be improved with the introduction of a valve, which 

allows the overhead pressure to be varied. The valve would introduce an additional circulation 

control mechanism. As the valve closes, the overhead pressure would increase, and the gas would 

not disengage as readily. The assumption is that gas disengages too easily in the vented state, while 

it almost fails to disengage in the tube separator (Jones, 2007; van Benthum et al., 1999a), which a 

closed valve would imitate. Hence, the optimum would be somewhere in the middle, and a valve 

adjustment would allow this operational point to be reached. If the initial assumption does not hold 

true for the design, the valve addition to the vented tube separator would not improve operation. 

The connector length (vented or closed) is expected to decrease the separator liquid height and 

minimum separation time and increase the separation efficiency (Choi and Lee, 1993). Hence, the 

liquid circulation velocity increases with a longer connector length, which leads to a decrease in 

downcomer gas holdup. The gas-liquid mass transfer coefficient also decreases with downcomer 

gas holdup for similar reasons (Choi, 2001). Frictional losses would also increase, but wall losses 

can be ignored for water-like substances and would only be important in highly viscous liquids 

(Chisti, 1989). 
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The flow in the separator is much different than the other airlift components. The riser and 

downcomer have very well defined flow without backmixing. The separator, on the other hand, has 

defined regions of up- and down-flow. As with the bubble column, the up-flow region was present 

in the central region while the down-flow region occurs near the wall. The results are that a 

stagnant region is present between these flow regions, which may lead to bubble coalescence, and a 

lower liquid velocity in the separator than in the top of the riser (Lo and Hwang, 2003). 

6.3.4 Internal-Loop Airlift Reactor 

The internal-loop airlift reactor is a very simple design that presents some advantages for gas-

liquid mass transfer. The two basic variants, shown in Figure 6.1, include a vessel separated by a 

full baffle and a draught tube internal-loop airlift reactor. Regardless of the variant, the internal 

airlift reactor has very similar gas holdup characteristics to that of a bubble column, as long as the 

comparison is made within the bubble column's feasible superficial gas velocity range. This 

similarity is due to the fact that the downcomer gas holdup is 80-95% of the riser gas holdup, and 

the riser gas holdup is comparable to that of the bubble column. Hence, the global or total ILALR gas 

holdup is very similar to that of the bubble column (Bello et al., 1984; van Benthum et al., 1999b). 

The draught tube ILALR (DT-ILALR) is more efficient than the baffled ILALR at gas-liquid mass 

transfer, and much more research has been directed towards this variant. This imbalance is due to 

the advantage that the gas residence time may be up to twice as long in the DT-ILALR than in the 

baffled ILALR. As a matter of fact, a majority of the correlations for ILALRs, which are presented in 

Table 6.1 and 6.2, have been developed using draught tubes. The baffled ILALR is usually used to 

study hydrodynamic behavior. Industrial application seems to be dominated by draught tube 

ILALRs as well. Baffled ILALRs are a little cheaper, but the advantages of the draught tube far 

outweigh the costs. 
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Since the gas phase spends more time in the liquid phase, gas-liquid mass transfer in the ILALR 

is usually higher than the ELALR (Shariati et al., 2007). Gas-liquid mass transfer coefficients in 

DT-ILALRs are even slightly higher than in bubble columns due to higher operating gas flow rates. 

The draught tube diameter can be optimized to minimize costs and maximize a desired variable. 

General guidelines have been developed for different applications using a draught tube to column 

diameter ratio (dD/dR). A ratio of 0.8-0.9 maximizes mixing and mass transfer. A range of 0.5-0.6 

maximizes circulation while 0.6-1.0 minimizes the mixing time (Chisti, 1989). The problem for 

microorganism applications and the mass transfer guideline (dD/dR = 0.8-0.9) is that the 

downcomer provides minimal contribution to global gas-liquid mass transfer or gas holdup, which 

runs the risk of starving the microorganisms. If microorganism gas consumption in the downcomer 

is important, the operator has basically two solutions. First, circulation has to become more 

important. A tradeoff would have to be struck and the ratio (dD/dR) be reduced. The result would be 

that the microorganisms could spend less time in the oxygen deprived environment or the 

circulation could be designed to entrain more gas in the downcomer. Second, the microorganisms 

could be suspended. If the microorganisms are sensitive to shear, they can be suspended in the 

downcomer. If, on the other hand, the microorganisms require lots of gas, they could be suspended 

in the riser. Suspension could involve packed particles, porous media, etc. 

6.3.5 External-Loop Airlift Reactor 

The external-loop airlift reactor has a wide array of variants ranging from the fairly simple, 

shown in Figure 6.2, to quite complex multistage designs. An important advantage is that the design 

allows access to all major reactor components, which is a great benefit for troubleshooting reactor 

performance or visualization (Merchuk et al., 1999); however, this advantage is often not enough, 

and the ELALR is typically limited for use with shear sensitive cells, photosynthetic microorganisms 

like algae, or processes requiring fluid recirculation. For example, mammalian cell structure can 

usually tolerate shear stresses in the range of 0.05-500 N/m2 (Chisti, 1989), but the sensitivity is 
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highly variable with cell structure and density such that cells could be highly shear sensitive at low 

cell density and somewhat resistant at higher densities (Martin and Vermette, 2005). Hence, the 

reactor operating conditions need to be flexible enough to adjust from very low shear conditions 

and still potentially operate with a high degree of turbulence (high shear stress). 

Stirred tank reactors (discussed in Chapter 4) usually create shear stresses much larger than 

those that can be tolerated by mammalian cells, and bubble column reactors (discussed in Chapter 

5) and ILALRs may reach the high end of the spectrum at best. Bubble-bubble interactions, 

especially bubble bursts or breakup, create high local shear stresses, which have a negative impact 

on mammalian cell growth. ELALRs, on the other hand, can maintain low shear rates while still 

providing a respectable oxygen transfer of 0.6-1.0 mmol/(L min) (Chisti, 1989), which is sufficient 

even for human skin (0.0011 mmol/(L min) at 106 cells/ml) and liver cells (0.005 mmol/(L min) at 

106 cells/ml) (Martin and Vermette, 2005). This is doable using minimal circulation in the 

downcomer, and cell suspension on packed material in the lower portion of the downcomer. The 

cells have minimal bubble-bubble interactions and usually have enough oxygen for growth and 

liquid flow for waste disposal. 

Nonetheless, cell density can become a major problem. For example, mammalian cells are 

usually 100 µm within a blood capillary for oxygen transfer. Therefore, nature has provided a 

design limitation. Cells can only be 150-200 µm away from an oxygen source, such as dissolved 

oxygen in a liquid, because oxygen has a maximum diffusion depth of about 240 µm for cellular 

material. This may limit the cell density and, in turn, the operational gas flow or local shear rate. 

Some production problems of critical cells are mitigated by cellular design. Connective tissue cells 

are elongated and form low density cell structures, while some critical ones, such as liver or kidney 

cells, operate at high density, but also form many more blood capillaries (Martin and Vermette, 

2005). In other words, the ELALR provides the possible production of a wide array of mammalian 

cell structures as well as shear sensitive microorganism byproducts. 
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The ELALR can be used for these processes because gas disengagement is very efficient. The 

bubbles have a relatively fast rise velocity and slow radial velocity. Hence, bubble-bubble 

interactions are diminished in the ELALR relative to the bubble column or stirred tank reactor, 

which, in turn, leads to higher gas holdup sensitivity to liquid property variations in bubble 

columns than in ELALRs (Chisti, 1989; Joshi et al., 1990; Shariati et al., 2007). In other words, the 

bubble-bubble collision frequency is lower in ELALRs, which makes coalescence adjusting liquid 

properties, such as viscosity, surface tension, or ionic strength, less important. So, while bubble 

column and internal-loop airlift reactor gas holdup are usually similar, the downcomer gas holdup 

in an external-loop airlift reactor is only 0-50% of the riser gas holdup (Bello et al., 1984), which 

leads to much lower global gas holdup in ELALRs. 

The reactor geometry effects in an ELALR can be quite complex and dynamic. As the area ratio 

increases, the liquid circulation velocity decreases. Hence, the gas phase circulation time decreases 

and gas holdup increases. The increase in gas holdup leads to an increase in the interfacial area. 

Some bubble dynamics are reflected in the growth, but, due to the lower bubble-bubble interactions 

in ELALRs, the increase is fairly continuous, but at a relatively slow rate. For example, Joshi et al. 

(1990) showed that by increasing the area ratio from 0.25 to 1.0 using a 10 m3 ELALR at 0.3 kW/m3 

yielded a negligible increase in the interfacial area while a further increase in area ratio to 4.0 

increased the interfacial area by about 30%. 

The area ratio effects on the liquid-phase mass transfer coefficient are more difficult to predict. 

Area ratio effects are usually studied by keeping the reactor volume constant, which requires the 

effective reactor height to be adjusted. As the height is increased, the interfacial solute gas 

concentration increases as well, which decreases the gas solubility and, in turn, the liquid-phase 

mass transfer coefficient. In addition, an increase in the area ratio decreases the liquid circulation 

rate, which increases gas holdup, but may decrease surface renewal. The greater height also raises 

the pressure drop and power consumption, which increases surface renewal and the liquid-phase 
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mass transfer coefficient. The extent of these effects is dependent on the operational scale and 

power level, and it is hard to predict which of the two will dominate. 

For example, at a power consumption of 0.3 kW/m3, Joshi et al. (1990) observed a local 

maximum when VL = 10 m3; this led to the conclusion that the decrease in gas solubility and surface 

renewal due to the liquid circulation velocity decline was not dominant until the area ratio was 

increased to about 0.5. The decline, though, was somewhat gradual. At a power consumption of 0.6 

kW/m3, a local maximum was not observed, which suggested the solubility effect was stronger; 

however, the gas-liquid mass transfer coefficient was about 50% higher at 0.6 kW/m3 than at 0.3 

kW/m3, which was attributed to a doubling of the interfacial area. Hence, Joshi et al. (1990) 

concluded that the solubility decrease must have played a more significant role. 

6.4 Liquid Properties 

Bubble columns and airlift reactors have very similar reaction to liquid properties. Therefore, 

the information provided and conclusions made in Section 5.5 are applicable for airlift reactors as 

well. 

6.4.1 Viscosity 

An increase in viscosity has a much stronger effect on external-loop than internal-loop airlift 

reactors. At higher viscosities, the lower gas holdup in ILALR is attributed to the lower bubble rise 

velocity, which causes the bubbles to have a longer circulation time. At lower increases in viscosity, 

gas entrapment into the downcomer actually becomes easier and may increase gas holdup slightly. 

This behavior has been observed with a 25% glycerol concentration (Hallaile, 1993). It has also 

been reported that a viscosity increase in the range of 1.54-19.5 mPa s has a minimal effect on 

liquid circulation rate and mixing time inside a draught tube airlift reactor (Molina et al., 1999). The 

experience in the ELALR, however, is opposite. The bubble disengagement efficiency increases 

because the bubble residence time in the gas separator increases significantly. The result is that if 
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the viscosity is increased to 14 mPa s through the addition of glycerol, the ELALR experiences a 

severe gas holdup decrease (McManamey and Wase, 1986; Shariati et al., 2007). 

6.4.2 Surface Tension and Additives 

Alcohol addition to airlift reactors causes larger amounts of gas being entrained into the 

downcomer. Hence, the liquid velocity is reduced, and circulation time is increased relative to pure 

water. The resulting gas holdup and gas-liquid mass transfer tend to be higher. Albijanic et al. 

(2007) tested the carbon chain length hypothesis, as defined by Zahradnik et al. (1999b), in a 

draught tube airlift reactor. The circulation time, shown in Figure 6.8, deviated as expected, but 

only up to 0.07 m/s after which the circulation time converged to a similar value regardless of the 

aqueous solution. This result was attributed to the downcomer gas holdup in the 1 wt% methanol 

and n-butanol solutions being 2 and 2.7 times higher than with tap water at UG = 0.04 m/s. Freitas 

et al. (2001) detected similar behavior using an aqueous ethanol solution; however, the gas-liquid 

mass transfer coefficient increased only slightly at UGr < 0.075 m/s, but was 1.5-2 times higher at 

higher riser superficial gas velocities. This trend would cease at approximately UGr = 0.167 m/s 

because the collision frequency increased sufficiently to allow coalescence to occur more readily 

and counteract the increasing gas holdup. 

 
Figure 6.8: Circulation time dependence on alcohol type and superficial gas velocity (Albijanic et 

al., 2007). 
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The experimental gas-liquid mass transfer data of Albijanic et al. (2007) are shown in Figure 6.9 

for UGr < 0.05 m/s. The results for the superficial gas velocity at which the circulation time 

converged were not presented. It is speculated that a convergence to a common gas-liquid mass 

transfer coefficient would be reached at higher superficial gas velocities, as is suggested by the 

results presented by Freitas et al. (2001). It should be noted that Albijanic et al. (2007) used a dD/dR 

ratio of 0.51. Gas holdup and gas-liquid mass transfer performance could be optimized at a higher 

diameter ratio (Chisti, 1989). 

 
Figure 6.9: Experimental gas-liquid mass transfer coefficient dependence on alcohol type and 

superficial gas velocity (Albijanic et al., 2007). 

6.5 Solid/Slurry Phase Properties 

Gas-liquid mass transfer studies in three phase airlift reactors are limited (Freitas and Teixeira, 

2001; Muthukumar and Velan, 2006; Nicolella et al., 1998b). A significant amount of information 

and conclusions are therefore drawn from the slurry bubble column studies and are expected to 

apply to airlift reactors. 

The gas-liquid-solid airlift reactor has a huge advantage for particle suspension (Gjaltema et al., 

1997a). Since phase backmixing is limited (Giovannettone et al., 2009), the liquid phase has a clear 

flow path, which makes suspension much easier and possible at lower gas flow rates (Merchuk et 

al., 1999). In addition, the low shear rates present in ALRs allow biofilms to grow easier and faster 

on suspended particles (Gjaltema et al., 1997a; Gjaltema et al., 1997b). 
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It is also thought that solids decrease gas holdup and gas-liquid mass transfer, especially in the 

heterogeneous flow regime, due to a decrease in turbulence. Gas-liquid mass transfer correlations 

for gas-liquid airlift reactors may be applied to gas-liquid-solid airlift reactors if the density 

difference between the solid and liquid phase is small or if the apparent viscosity is similar, as with 

bubble column reactors; however, such action does not account for any solid phase effects on the 

bubble interface, possible surface reaction, and often provides highly variable results. The ability to 

extend gas-liquid mass transfer correlations in ALRs to gas-liquid-solid systems is due to the 

particles being fluidized readily and having similar flow behavior if the density difference is small 

enough. In other words, the particles blend in (van Benthum et al., 2000). The minimal phase 

backmixing in airlift reactors can add additional complications because the solid distribution may 

be skewed towards the lower portion of the riser and downcomer. This accumulation may cause a 

higher rate of coalescence and, in turn, smaller interfacial area and gas-liquid mass transfer 

coefficients (Freitas and Teixeira, 2001). 

The effect and understanding of solid loading on gas-liquid interactions is currently ambiguous, 

contradictory, or inadequate and requires further research. The main reason is that recent work 

has shown an important correlation between the dominant flow regime and bubble-particle 

interactions. In the case of low solids loading (less than 5% by volume), a slurry bubble column 

indeed acts like a bubble column. As the solids loading increases, the behavior of the SBC starts to 

deviate from that of the BC. For solids loading up to 25% by volume, the gas holdup decreases 

significantly. Beyond this concentration, gas holdup increases slightly as small bubbles start to 

accumulate because of the decrease the bubble rise velocity (Kantarci et al., 2005; van Benthum et 

al., 2000). This observation is often attributed to a significant increase in the apparent viscosity 

once the solid holdup increases beyond 20% (van Benthum et al., 2000). This experience is 

reflected in airlift reactor studies, with some minor differences. Small amounts of drag-reducing 

polymers could actually enhance fluidization and recirculation, especially in airlift reactors (Chisti, 
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1989). Airlift reactors tend to have less phase backmixing, and an increase in solid holdup often 

results in an increase phase buildup in the reactor base and wall regions (Freitas and Teixeira, 

2001; Trilleros et al., 2005). 

Solid loading shifts the regime transition for the internal-loop airlift reactor to an earlier 

superficial gas velocity, such that only the complete bubble circulation regime can be observed with 

high solid loadings. Solid loading also has a strong effect on gas holdup, especially when the solid 

loading is greater than 20% by volume. It is suspected that a higher solid loading increases the 

apparent viscosity, which leads to larger bubbles and an increase in the bubble rise velocity. The 

result is that bubbles spend more time in the gas separator and disengage more efficiently. Hence, 

the downcomer gas holdup decreases faster than the riser gas holdup (riser gas holdup could even 

increase), which leads to a higher gas holdup differential and larger circulation driving force (van 

Benthum et al., 1999b). 

Another option is that solids affect flow stability. Low solid loading (cs ≤ 3% where cs is the solid 

volume fraction) tends to stabilize the homogeneous flow regime, increasing the critical flow rate 

and gas holdup 11-13%, while higher loading (cs > 3%) leads to instability. At much higher solid 

loading (cs > 20%), the solid phase decreases gas-liquid mass transfer by simply occupying too 

much volume. In effect, bubble-bubble interactions are increased and coalescence is encouraged 

(Mena et al., 2005). For example, Lu et al. (1995) observed a gas holdup decrease in the 

downcomer-to-riser gas holdup ratio from 0.88 to 0.68 when solid holdup was increased from 0 to 

30%. Van Bentham et al. (1999a) observed a similar trend. Freitas et al. (2001) studied solid 

loading effects on gas-liquid mass transfer in airlift reactors and observed a decrease of 40 and 60% 

at solid loading of 20 and 30%, respectively. This may be important if the process requires 

operation in a specific flow regime. The current problem with gas-liquid-solid systems is that these 

effects work in parallel. The nature of the relationship is not well-understood such that solids may 
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increase, decrease, or have a neutral effect on gas holdup and gas-liquid mass transfer, which has 

led to a variety of discussions, results, and conclusions. 

The particle type and size can have a positive effect as it does with the stirred tank reactor. If 

the particle is wettable, a repelling force is observed against the gas phase, which creates a buffer 

zone between gas bubbles (Kluytmans et al., 2001), slows film drainage, and suppresses bubble 

coalescence (Mena et al., 2005). Hence, wettable particles usually increase gas holdup while non-

wettable particles decrease it. 

Airlift reactor studies examining particle size effects are limited, and the existing research 

agrees fairly well with the bubble column data. The only problem is that the lack of three phase 

airlift studies also limits the extent of covered material. Hence, specific conclusions for airlift 

reactors have been made mostly using bubble column studies and their conclusions. Particles are 

thought to be too big to contribute to gas-liquid mass transfer in a positive way and simply increase 

the apparent viscosity; however, fine particles with a particle diameter less than 10 µm are able to 

penetrate the bubble surface (creating smaller bubbles), increase film density (suppressing bubble 

coalescence and decreasing bubble rise velocity) (Kluytmans et al., 2001; Mena et al., 2005; Sada et 

al., 1986), or create reactions at the bubble interface. Another possibility is that the smaller 

particles stick to the bubble interface, which would block or diminish surface reactions or 

physically create a resistance to mass transfer. At the same time, the nested particles could increase 

the active area or destabilize the bubble interface. Very large particles are thought to decrease the 

bubble rise velocity and increase gas holdup by simply being in the way (Beenackers and Van 

Swaaij, 1993; Muthukumar and Velan, 2006). The other option is that different effects or studied 

particle sizes simply have a limited influence on gas-liquid mass transfer (Nicolella et al., 1998a). 

Studies using fibers would also be of interest in airlift reactors because it could shed more light on 

the circulation behavior and transition requirements if the microorganism shows flocculation 

behavior. 
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6.6 Sparger Design 

Gas distributors used in airlift reactors are very similar to those used in bubble columns and 

include sintered, perforated (most common), or porous plates, membrane or ring-type distributors, 

arm spargers, and single-orifice nozzles. Airlift reactors may also use ring spargers that are used 

with stirred tank reactors and bubble columns. Ring spargers are able to produce uniform and 

stable flow, but are usually unable to produce small bubbles (Deckwer, 1992) and lead to an early 

transition to heterogeneous flow regime when compared to perforated plates (Schumpe and Grund, 

1986). If the sparger is placed within the riser in an airlift reactor, the sparger is often a perforated 

tube or ring that attempts to mimic the perforated plate performance. 

The sparger effect is more pronounced for UG < 0.15 m/s while it is much less important at UG > 

0.20 m/s and nonexistent at UG > 0.30 m/s (Han and Al-Dahhan, 2007). Hence, in the case of 

heterogeneous flow, the sparger has a negligible influence on the bubble size, gas holdup, or gas-

liquid mass transfer because the bubble dynamics are determined by the rate of coalescence and 

breakup, which are controlled by the liquid properties and the nature and frequency of bubble 

collisions (Chaumat et al., 2005; Merchuk et al., 1998). Since airlift reactors are operated most 

commonly above 0.15-0.20 m/s, as seen in Figure 6.3, and using rheologically complex fluids, most 

research work ignores the sparger effect (Merchuk et al., 1998). Of the reviewed work in Tables 6.1 

and 6.2, almost all (with very few exceptions) use perforated plate or tube spargers. 

The commonly observed high gas flow rates result in correlations that can be fitted across data 

sets without accounting for sparger design (Kawase and Moo-Young, 1986b). Even a correlation for 

the liquid circulation velocity can be formed without regard to the sparger, and the results are still 

within 10%, even for very short vessels (Miyahara et al., 1986). The gas spargers usually do not 

provide enough kinetic energy from the gas jets to influence the liquid circulation rates (Chisti and 

Moo-Young, 1987). Hence, the preference and selection for spargers is based on operational 
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restrictions. The perforated plates and tubes provide the cheapest and most reliable operation, 

while the others have major drawbacks (Chisti, 1989). 

Merchuk et al. (1998) investigated the use of different sparger designs in a draught tube airlift 

reactor using UGr = 0-0.20 m/s. Their results concurred with the bubble column experience. If a 

sparger created a smaller initial bubble diameter, it would lead to higher gas holdup in the 

homogeneous and transition flow regime and longer mixing times. This dependence diminished 

with gas flow rate and practically disappeared when UGr > 0.15 m/s, which was determined to 

correspond to the transition into the heterogeneous flow regime. A cylindrical perforated-pipe 

sparger created additional mixing due to a more radial bubble distribution, which interfered with 

bubble detachment and led to a higher rate of coalescence, especially in the sparger zone, and 

easier transition to the heterogeneous flow regime. The sparger zone in airlift reactors is defined as 

the liquid volume up to one column diameter above the sparger location (Giovannettone et al., 

2009). 

Although the sparger type does not appear to significantly affect ALR performance, sparger 

position is important and can be optimized. If the gas sparger is left at the bottom of the reactor, the 

incoming flow tends to interfere and cause a flow imbalance, which in turn leads to accumulation of 

gas and possible coalescence, as can be seen in Figure 6.10a and 6.10b. If the sparger is placed just 

within the riser, the incoming fluid flow does not interfere with the incoming gas flow, and the 

sparged gas is not affected. Elimination of dead zones in the aeration region, as shown by the 

shaded regions in Figure 6.10c and 6.10d, would also be beneficial. Moving the sparger too close to 

the surface, however, could lead to surface aeration and a higher rate of gas separation such that 

gas recirculation could be troublesome. Thus, placing the sparger too far beyond the downcomer 

inlet does not provide additional benefits. 



188 

 
Figure 6.10: Location behavior of gas spargers in airlift reactors (Chisti, 1989). 

Placing a sparger in the downcomer can alleviate some problems with oxygen suffocation of 

microorganisms and circulation, improve control, and reduce energy usage (Merchuk et al., 1999). 

In effect, the complete bubble circulation regime could be induced earlier and with finer bubbles, 

which could potentially decrease the bubble diameter and increase the interfacial area; however, 

downcomer sparging introduces circulation instability, which can only be solved by placing the 

downcomer sparger at a critical height (hDC). 

The critical height can also be used to compare the stability between the different designs. The 

system is more stable if the critical height is higher. The unfortunate aspect of downcomer sparging 

is that it is also dependent on the riser and downcomer gas flow rates, which makes the measure 

highly variable. A higher riser gas flow rate increases the critical height, but the rate of increase 

decreases with higher downcomer gas flow. Placing the riser sparger farther into the riser may also 

increase the critical height (Joshi et al., 1990). 



189 

According to Joshi et al. (1990), system stability can be optimized by adjusting certain reactor 

geometries (aspect and area ratio) such that the critical height ratio (hDC/hR) is the highest possible. 

The area ratio was easily optimized by Joshi et al. (1990) for this purpose with a critical value of 

approximately 0.75. The sparger location was then dependent on the power consumption such that 

the critical height ratio was 0.70 at 0.6 kW/m3 and 0.60 at 0.3 kW/m3. In other words, the critical 

height determined by Joshi et al. (1990) was scale dependent. As a geometrically similar reactor 

gets larger, the critical height will increase as well. 

The aspect ratio is a bit more difficult. Joshi et al. (1990) showed that the critical height rose 

quickly with aspect ratio up to 10. A change in the aspect ratio from 10 to 40 yielded a relatively 

minor change in the critical height ratio (from 0.7 to 0.75) with a liquid volume of 10 m3. In order to 

achieve hDC/hR = 0.80, the necessary aspect ratio was about 80, which is usually not used for 

biological applications. A similar trend was observed with reactor scale (using an aspect ratio of 

40). The critical height ratio increased quickly up to 10 m3 and changed slightly (from 0.7 to 0.75) 

with a volume increase from 10-100 m3. A volume of 1000 m3 was required to achieve hDC/hR = 0.80 

(Joshi et al., 1990). 

6.7 Correlations 

Approaches used to develop gas-liquid mass transfer correlations in bubble columns have been 

ported over to airlift reactors, and, unfortunately, they have brought some issues along with them. 

Airlift reactor correlations are highly empirical, and a unifying development method does not exist. 

Some correlations attempt to be very specific and use multiple inputs, which are hard to quantify in 

an industrial setting, or use inputs which are not independent of each other. The suggestion is 

similar as with the bubble column: experimental units can use these more complicated correlations, 

but pilot or industrial scale units will have to depend on empirical and design specific correlations. 
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Further problems are presented by the downcomer and riser. Conditions in the two different 

sections can be very different, either by design or operation. Gas holdup correlations, which are 

summarized in Table 6.1, often reflect the different conditions, and two different approaches have 

been developed. The first approach is to develop correlations and models for the riser. The 

downcomer is then modeled based on the riser. One such approach has been taken by Bello et al. 

(1985a) by suggesting 

 Gd Gr
.ε ε=0 89

 (6.4) 

where εGd and εGr are the downcomer and riser gas holdups, respectively. The other approach is to 

develop correlations for the riser and downcomer independently. The correlations would use 

similar inputs such as the riser superficial gas velocity. The assumption is that the downcomer 

hydrodynamics are ultimately controlled by the riser conditions and its inputs. This approach has 

been taken by Li et al. (1995) 

 
. .

Gr Gr a
. Uε µ −= 0 841 0 1350 441

 (6.5) 

 
. .

Gd Gr a
. Uε µ −= 0 935 0 1070 297

 (6.6) 

where UGr and µa are the riser superficial gas velocity and the apparent viscosity. 

Interestingly, gas-liquid mass transfer correlations for ALRs, presented in Table 6.2, do not 

differentiate between the reactor components and are displayed in global form. The situation can 

get troublesome for processes employing microorganisms. Gas holdup correlations have to be used 

and relied upon to predict the gas-liquid mass transfer conditions in the downcomer, where the 

danger of starvation is the highest. Although this relationship oftentimes is intact, industrial 

processes often create surfactants, temperatures, and pressures, which may decouple the 

relationship. 
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Gas-liquid mass transfer coefficients follow the gas holdup experience well. As shown in Figure 

6.11, kLa increases monotonically with riser superficial gas velocity. The correlations by Chisti et al. 

(1988b) and Popovic and Robinson (1984) were developed using external-loop airlift reactors, 

while the others used the draught tube internal-loop airlift reactor. The DT-ILALR has much better 

performance than the ELALR. It is unfortunate to note that gas-liquid mass transfer correlations are 

much fewer in number than their gas holdup counterpart. 

 
Figure 6.11: Sample gas-liquid mass transfer coefficients for ALRs. 

The gas holdup correlations also have a high degree of variability, as shown in Figure 6.12. 

Correlations are able to reflect the consensus that the internal-loop airlift reactor has better gas 

holdup performance than the external-loop. This advantage is reflected in the power law presented 

in the correlations in Table 6.1. The internal-loop airlift reactors consistently have a higher constant 

and stronger dependence on the superficial gas velocity. As a matter of fact, the ILALR usually has a 
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UG power close to unity while the ELALR is usually less than 0.5. A similar observation is made for 

the gas-liquid mass transfer correlations in Table 6.2. The advantage of the airlift reactor relative to 

the bubble column also comes through. The bubble column correlations show a leveling effect at 

higher superficial gas velocities. This trend is not present in the airlift reactor correlations. 

 
Figure 6.12: Sample gas holdup correlations for the internal-loop airlift reactor. 

A significant problem with a large number of available correlations is that they require 

knowledge of the liquid phase behavior. This need is quite logical, but replication often requires a 

correlation for the liquid velocity, and additional error would be introduced in the generated gas 

holdup and gas-liquid mass transfer data. 

A few measurement and assumption issues are built into the existing correlations. Gas-liquid 

mass transfer correlations, which are calculated at high gas flow rates, may be 15% lower than the 

system experiences because an incorrect assumption of ideal phase mixing is often made (Blazej et 
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al., 2004a). A further problem is that a normal bubble distribution is often assumed in the analysis, 

but the truth of this or any other assumption has not been thoroughly verified (Fadavi et al., 2008). 

6.8 Needed Research 

The research on airlift reactors is relatively young compared to stirred-tank and bubble column 

reactors. Figure 6.13 and Figure 6.14 have been developed to illustrate this point graphically. The 

data have been collected using EngineeringVillage2 (EV2) in spring 2009, which allows access to 

several engineering-related databases and services. The inputs into EV2 are shown in the legend. A 

moving three year average was used to smooth the data. This simple search reveals some 

interesting trends. Research performed in stirred tank reactors and bubble columns is currently 

preferred to airlift reactors. This fact also increases the likelihood of having in-depth research into 

more specific topics, such as gas-liquid mass transfer, and, perhaps more importantly, reliable 

sources of information, experts, and established research groups. 

 
Figure 6.13: General research articles available in the public domain for different reactor types. 
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Figure 6.14: Research articles available in the public domain specific to mass transfer for different 

reactor types. 

Figure 6.14 leads to the conclusion that research into mass transfer in airlift reactors, in 

general, has increased considerably since 1995. The progression seems quite natural. Research in 

stirred tank reactors had made its short-comings obvious, and the advent of the bubble column was 

a natural transition. As research into the bubble column matured, some of its issues also came to 

light, and the solution, the airlift reactor, was seen as the next stage. It may also be concluded that 

the number of articles related to airlift reactors is suppressed because research in bubble columns 

can be largely ported to the airlift reactor; however, some major differences do exist. 

The liquid circulation behavior differs largely in the airlift reactor, but is still not very well 

understood. The basic structure and behavior is known, but quantification requires deeper 

understanding, which is not available at this time. The relationship between the superficial gas and 

liquid circulation velocity can be ambiguous. The bubble distribution is also not well defined. In 

other words, the basic principles need more research. 
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Bioprocessing could also use more specific attention. Research incorporating a solid phase is 

scarce, and it is unclear how many of the slurry bubble column characteristics would be expected to 

behave similarly in an airlift reactor. Tissue growth applications could use more extended studies. 

Current effects of variable local conditions on cellular biochemistry are not understood. As such, 

cells could be grown to mimic the macroscopic behavior of the desired cells, but still miss the 

molecular, cellular, and biochemical interactions necessary to mimic the operations of the target 

cells. Thus, for example, one could grow kidney cells, which do not filter anything. This problem is 

limited with connective tissue, but only because of the cell function, which does not necessarily 

require biochemical reactions. 

Proper startup procedures, such as initial cell density and distribution, and tracking important 

or toxic byproducts are also troublesome (Martin and Vermette, 2005). Fiber suspensions have not 

been widely applied in airlift reactors, but its application would be of interest for suspended cell 

growth and density propagation. The incorporation of microorganisms in hydrodynamic studies 

have not been widely attempted even though microorganisms are known to increase the gas-liquid 

mass transfer coefficient due to a higher rate of oxygen consumption (Garcia-Ochoa and Gomez, 

2009), especially at and near the surface. 

More focus on consistent variable testing is needed. Oftentimes, multiple variables are adjusted 

while the analysis is focused on just one. The conclusions are based on one variable, and the 

changes in the others are ignored. Particle size comparisons are often done based on scale. One 

group is often referred to as large with a diameter on the millimeter scale, while the small particles 

are defined by a diameter less than 1 millimeter. In addition, these particles are often constructed 

of differing materials, such that a density variance is introduced, or are used in different 

concentrations. These facts make hydrodynamic and gas-liquid mass transfer conclusions highly 

variable in the literature. 
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This mistake may be made for scale comparison studies as well. Blazej et al. (2004b), for 

example, compared vessels with volumes of 10.5, 32, and 200 liters. The 10.5 and 32 liter versions 

can be classified as experimental scale, while the 200 liter ALR may be considered pilot scale 

(Garcia-Ochoa and Gomez, 2009). Hence, the results, shown in Figure 6.15, could be very helpful for 

scaleup. Each vessel, however, was geometrically different with varying downcomer-to-riser area 

and aspect ratio and bottom clearance. Although the differences were not great and comply with 

the scaleup procedure of Garcia-Ochoa and Gomez (2009), it introduces an additional dilemma. 

Which effects are related to the scale and which to the downcomer-to-riser area ratio, or is the 

difference even significant? If a control study with constant ratios is not done, these questions are 

much harder to answer and conclusions are based on the experimenters’ interpretation and 

inference. 

 
Figure 6.15: Airlift reactor scale effects (adopted from Blazej et al. (2004b)). 
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6.9 Summary 

Bubble column reactors are the main competitor to airlift reactors, and deployment decisions 

are usually based on a competitive basis that excludes the stirred tank reactor. Hence, studies 

rarely compare the stirred tank reactor, bubble column, and airlift reactor. Usual comparisons are 

made either between the stirred tank reactor and the bubble column or the bubble column and the 

airlift reactor. The first stage in identifying a bioreactor usually involves a comparison between the 

STR and BC, which clarifies the reactor and process requirements. If the bubble column is found to 

be competitive, the airlift reactor is introduced to the discussion. 

The airlift reactor is often used in cases for which the bubble column lacks the operational 

flexibility or requirements. In other words, the stirred tank reactor does not have the necessary 

features, and the bubble column has traits which could have negative effects on the production 

process. These negative traits often include extensive phase backmixing, undefined flow paths, 

limited gas flow rates, and potentially damaging shear rates. The airlift reactor can successfully 

address these issues and can provide further control, such as a downcomer sparger, and access to 

major reactor components. 

The negative aspect of airlift reactors is that research is in its early stages in many respects. A 

basic hydrodynamic understanding is lacking. For example, the onset of liquid circulation has been 

reported to vary between UGr = 0.035-0.050 m/s. It is occasionally reported to coincide with the 

introduction of the heterogeneous flow regime while the homogeneous flow regime is prevalent in 

other cases of circulation onset. 

Bubble-bubble contacts are regulated by the same forces and interactions as those found in 

bubble columns, which would imply that the basic behavior should be very similar to bubble 

columns. This assumption is often invoked, and bubble column research is used in these cases to set 

expectations and explain outcomes; however, many assumptions have not been tested. The fact that 

bubble collisions do not occur as frequently in the airlift reactor as in the bubble column leads to 
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the conclusion that certain aspects of the bubble column may not be applied to airlift 

hydrodynamics as easily or at all. 

These issues, positive and negative, are reflected in the available correlations. These 

correlations are both highly useful and also limited. Some are useful because the inputs are easily 

measured and adjusted as needed; however, correlations are mostly empirical or semi-empirical, 

which means that they are not widely applicable but, rather, are reactor design dependent at best. 

Hence, geometric similarity is very important. Furthermore, most studies are performed in air-

water systems while most industrial processes use much more complicated and time variant 

liquids. In other words, the airlift reactor correlations have similar problems as those for stirred 

tank reactors and bubble columns and are due to the fact that they share the “problem” source: 

bubble-bubble interactions. Bubble-bubble interactions are highly variable and lead to 

hydrodynamics which, in turn, are difficult to quantify and predict. Hence, the result has been airlift 

reactor correlations and models that are either system dependent or not adequately constrained. 

(Bendjaballah et al., 1999; Bentifraouine et al., 1997a, 1997b; Blazej et al., 2004b; Blenke, 1979; 

Lu et al., 1995; Popovic and Robinson, 1984; Snape et al., 1995; van Benthum et al., 2000) 
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Table 6.1: Gas holdup correlations for airlift reactors. 
Reference Reactor 

Type(s) 

Reactor Parameters Correlations 

(Albijanic et 
al., 2007) 

DT-ILALR Air-(Water, 1 wt% aqueous 
solutions of methanol, ethanol, n-
propanol, isopropanol, and n-
butanol) 
UG = 0-0.07 m/s 

.
.

.

G G

A

d
. U

dC

σ
ε

  
 = +  
   

1 520 20

0 971 65 1

 

(Bello, 1981)3 ELALR .

G d
Gr

Lr r

U A
.

U A
ε

   
= +   

   

0 562

0 16 1

 

Gd Gr
.ε ε=0 89

 (Bello et al., 
1985a)1 

ELALR Air-(water, NaCl solution) 
CNaCl = 0.15 kmol/m3 
dR or dr = 0.152 m 
hD = 1.8 m 
UGr = 0.0137-0.086 m/s 
Ad/Ar = 0.11-0.69 

Gr d
Gr

L r

U A
.

U A

α

ε
   

= +   
   

0 16 1

 

Gd r
.ε ε=0 89  for DT-ILALR 

Gd r
. .ε ε= −0 79 0 057  for ELALR 

α = 0.56 for water 
α = 0.58 for salt solution 

(Bello et al., 
1985b)1 

ELALR 
DT-ILALR 
BC 

Air-(Water, NaCl solution) 
CNaCl = 0.15 kmol/m3 
dR or dr = 0.152 m 
hD = 1.8 m 
UGr = 0.0137-0.086 m/s 
Ad/Ar = 0.11-0.69 (ELALR) 
Ad/Ar = (0.13, 0.35, 0.56) (ILALR) 
Ad/Ar = 0 (BC) 

d G
G

r D

A P
. *

A V
ε

−

−    
= +   

   

21
3

33 4 10 1  

(Bentifraouine 
et al., 1997a)2 

? UG = 0.002-0.06 m/s 
ULr = 0-0.2 m/s 

( ). .

Gr G LrU . Uε = −0 88 0 492 1 0 97
 

(Blazej et al., 
2004b) 

ILALR Air-Water 
For 10.5 L: 
dR = 0.108 m dr = 0.070 m 
hR = 1.26 m hD = 1.145 
Ad/Ar = 1.23 hc = 0.030 m 
hR/dR = 11 
For 32 L: 
dR = 0.157 m dr = 0.106 m 
hR = 1.815 m hD = 1.710 
Ad/Ar = 0.95 hc = 0.046 m 
hR/dR = 12 
For 200 L: 
dR = 0.294 m dr = 0.200 m 
hR = 2.936 m hD = 2.700 
Ad/Ar = 1.01 hc = 0.061 m 
hR/dR = 10 

For 10.5 L: 
.

Gr Gr
. Uε = 0 5050 829

 
Gd Gr

. .ε ε= −0 857 0 0095
 in regime 2 

Gd Gr
. .ε ε= −0 432 0 0139

 in regime 3 
For 32 L: 

.

Gr Gr. Uε = 0 4490 815
 

Gd Gr
. .ε ε= +0 885 0 0065

 in regime 2 

Gd Gr
. .ε ε= −0 670 0 0037

 in regime 3 
For 200 L (only regime 3 was presented): 

.

Gr Gr. Uε = 0 4270 792
 

Gd Gr
. .ε ε= +0 967 0 0068

 
(Cai et al., 
1992)3 

ILALR .

Gr Gr. Uε = 0 972 47
 

(Chakravarty 
et al., 1973)1 

DT-ILALR Air-(Water, sulphate, glycerol, 
and iso-butyl alcohol solutions) 
dR = 0.10 m 
dD = (0.074, 0.59, 0.45) m 
LD = 0.40 m 
Lc = 0.026 m 

( ) . .

Gr L W Gr

.
* * U

.

σ
ε µ µ

σ
−− 

= − + − 

2 75 4 0 8873 3
161 10

79 3
 

.

. .d
Gd L Gr

r

A.
. * U

. A

σ
ε µ

σ
−  − 

=   −   

1 08

2 0 45 0 8874 2
1 23 10

79 3
 

1 Adopted from Chisti (1989) 
2 Adopted from Jones (2007) 
3 Adopted from Merchuk et al. (1999)  



200 

Table 6.1 cont.: Gas holdup correlations for airlift reactors. 
Reference Reactor 

Type(s) 

Reactor Parameters Correlations 

(Chakravarty 
et al., 1974)3 

ILALR 
( ) . .

Gr L W Gr

.
. U

.

σ
ε µ µ

σ
− 

= − − − 

2 75 0 8873 3
0 0057 161

79 3  
(Chisti and 
Moo-Young, 
1986)1 

ILALR 
(rectangular) 

Air-(Water, aqueous salt 
solution)+1-3 dry wt./vol. % 
KS-1016 cellulose fiber 

Homogeneous flow regime: 

( )ε ±= − . .

G s G
. . c U 0 892 0 0751 488 0 496  

Heterogeneous flow regime: 

( )ε ±= − . .

G s G
. . c U 0 430 0 0150 371 0 089  

(Chisti et al., 
1988a)3 

ILALR 
( )

.

. . C d
Gr Gr

r

A
. U

A
ε

−

+  
= + 

 
0

0 258

0 603 0 0780 65 1

 

Gd r
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(Chisti, 1989) ILALR UGr = 0.026-0.21 m/s 
Ad/Ar = 0.25-0.44 
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.
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(Choi, 2000)2 ? UG = 0.02-0.18 m/s 
hR = 0.04-0.20 m 
Ad/Ar = 0.11-0.53 
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(Choi, 2001)2 ELALR UG = 0.02-0.18 m/s 
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Ad/Ar = 0.11-0.53 
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(Ghirardini et 
al., 1992)3 
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(Li et al., 
1995)3 
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(Kawase et al., 
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(Kawase and 
Moo-Young, 
1986b)1 

DT-ILALR 
BC 

Air-(Water, pseudoplastic 
fluids) 
UG = 0.008-0.285 m/s 
dR = 0.14-0.35 m 
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ε
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1 07  

1 Adopted from Chisti (1989) 

2 Adopted from Jones (2007) 

3 Adopted from Merchuk et al. (1999)  
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Table 6.1 cont.: Gas holdup correlations for airlift reactors. 
Reference Reactor 

Type(s) 

Reactor Parameters Correlations 

(Kemblowski 
et al., 1993)3 

ELALR .
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(Merchuk, 
1986)2 

? UG = 0.002-0.5 m/s .

Gr Gr. Uε = 0 590 047

 
(Merchuk et 
al., 1998) 

DT-ILALR Air-Sea water from 
Almeria Bay 
UG = 0-0.21 m/s 
hR = 2 m 
dR = 0.096 m 
hD = 1.5 m 
Ar = 0.00283 m2 
Ad = 0.00280 m2 

Gr
Gr

Lr

U

U

β

ε α
 

=  
   

Sparger Α β 

PP with 30xd0 = 1 mm 0.48 1.03 

PP with 30xd0 = 0.5 mm 0.37 0.79 

CS with d0 = 120 µm 0.34 0.69 

CS with d0 = 60 µm 0.33 0.68 

PS with d0 = 120 µm 0.48 1.13 

PS with d0 = 60 µm 0.40 0.99 

PS with d0 = 30 µm 0.38 0.88 

1 Adopted from Chisti (1989) 

2 Adopted from Jones (2007) 

3 Adopted from Merchuk et al. (1999)  
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Table 6.1 cont.: Gas holdup correlations for airlift reactors. 
Reference Reactor 

Type(s) 

Reactor Parameters Correlations 

(Miyahara et 
al., 1986)1 

DT-ILALR Air-Non-Newtonian 
CMC solutions 
ρL = 952-1168 kg/m3 
µL = 1.0-14.9 mPa s 
σ = 34.1-72.0 mN/m 
dR = 0.148 m 
Ld = 1.0 m 
hR = 1.20 m 
d0 = 0.0005-0.0015 m 
Ad/Ar = 0.128-0.808 

Gr

L

Gr

. Fr

U
. Fr

U

ε =
 

+ + 
 

0 4

1 0 4 1  

For 

ε
−

 
<  

 

.

r
Gr

d

A
.

A

1 32

0 0133

: 
.

. .r
Gd Gr

d

A
. * Mo

A
ε ε

 
=  

 

4 2

6 0 115 4 24 51 10

 

For 

.

r
Gr

d

A
.

A
ε

−
 

>  
 

1 32

0 0133

: 
.. Mo

.

. r
Gd Gr

d

A
. Mo

A
ε ε

−

−
  
 =  
   

0 0730 310 5

0 220 05

 
(Shariati et al., 
2007) 

DT-ILALR Air-(Distilled water, 
aqueous isomax 
diesel) 
UG = 0-0.07 m/s 
dR = 0.14 m 
hD = 1.1 m 
dr = 0.1 m 
hc = 0.024 m 
Ad/Ar = 0.906 
h0 = 25x1 mm (PP) 
νL = 46.142*10-6 m2/s 

. .

G Gr L. Uε ν −= 1 066 0 3554 92

 
Gd Gr

. .ε ε= −0 788 0 004

 

1 Adopted from Chisti (1989) 

2 Adopted from Jones (2007) 

3 Adopted from Merchuk et al. (1999)  
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Table 6.1 cont.: Gas holdup correlations for airlift reactors. 
Reference Reactor 

Type(s) 

Reactor Parameters Correlations 

(Trilleros et 
al., 2005) 

DT-ILALR Air-Water 
hR = 1.25 m 
dR = 0.42 m 
dpg = 0.25 and 1 mm 
ρpg = 2.6 g/cm3 
dpc = 3 mm 
ρpg = 1.0 g/cm3 

d0 = 12x1 mm (PP) 
dD = (0.044, 0.082, 
0.125, 0.240) m 
hD = 0.630 and 1.050 
m 
εs = 1-7% 

Large glass particles: 

( )Gr
Gr Lr Sr

Gr

U
. U U U .

ε
 = + + + 0 43 0 26

 
UGr = 0.02-0.10 m/s 

(UGr + ULr + USr) = 0.80-14.05 m/s 

εGr = 0.013-0.14 

Small glass particles: 

( )Gr
Gr Lr Sr

Gr

U
. U U U .

ε
 = + + + 0 35 0 15

 
UGr = 0.006-0.12 m/s 

(UGr + ULr + USr) = 1.05-14.75 m/s 

εGr = 0.005-0.17 

Polystyrene particles: 

( )Gr
Gr Lr Sr

Gr

U
. U U U .

ε
 = + + + 0 22 0 15

 
UGr = 0.005-0.12 m/s 

(UGr + ULr + USr) = 0.50-15.20 m/s 

εGr = 0.005-0.16 
(Posarac and 
Petrovic, 
1988)3 

ELALR 

( )

. . . .

G L G Gr
Gr .. .

L L Gr Lr

. U

S U U

ρ ρ µ
ε

µ
=

+

0 062 0 069 0 107 0 936

0 4740 053 0 185

0 6

 

(Popovic and 
Robinson, 
1984)3 

ELALR 
BC 

Air-Non-Newtonian 
CMC solutions 
µL = 0.015-0.5 Pa s 
Ad/Ar = (0, 0.11, 0.25, 
0.44) 

.

. .d
Gr Gr a

r

A
. U

A
ε µ

−

− 
= + 

 

1 06

0 65 0 1030 465 1

 

(Vatai and 
Tekic, 1986)3 

ILALR 
( )

.

. .d
Gr Gr r a

r

A
. . U d

A
ε µ

−
 

= −  
 

0 254

0 706 0 06840 491 0 498

 

1 Adopted from Chisti (1989) 

2 Adopted from Jones (2007) 

3 Adopted from Merchuk et al. (1999)  
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Table 6.2: Gas-liquid mass transfer coefficient correlations for airlift reactors. 
Reference Reactor 

Type(s) 

Reactor 

Parameters 

Correlations 

(Albijanic et 
al., 2007) 

DT-
ILALR 

Air-(Water, 1 wt% 
aqueous solutions 
of methanol, 
ethanol, n-
propanol, 
isopropanol, and n-
butanol) 
UG = 0-0.07 m/s 

.
.

.

L G

A

d
k a . U

dC

σ  
 = +  
   

0 710 15

0 770 28 1

 

(Bello et al., 
1985a)1 

ELALR Air-(water, NaCl 
solution) 
dR or dr = 0.152 m 
hD = 1.8 m 
UGr = 0.0137-0.086 
m/s 
Ad/Ar = 0.11-0.69 

.

Gr dL r

L L r

U Ak ah
.

U U A

−
   

= +   
   

0 90 1

2 28 1  

(Bello et al., 
1985b)1 

ELALR 
DT-
ILALR 
BC 

Air-(water, NaCl 
solution) 
dR or dr = 0.152 m 
hD = 1.8 m 
UGr = 0.0137-0.086 
m/s 
Ad/Ar = 0.11-0.69 
(ELALR) 
Ad/Ar = (0.13, 0.35, 
0.56) (ILALR) 
Ad/Ar = 0 (BC) 

.d
L Gr

r

A
k a . U

A

−
 

= + 
 

2

0 80 76 1  

. .

d G
L

r D

A P
k a . *

A V

−

−    
= +   

   

1 2 0 8

45 5 10 1  

(Blazej et al., 
2004a) 

DT-
ILALR 

(Air, pure oxygen, 
nitrogen)-(Na2SO3 
aqueous solution) 
dR = 0.157 m 
dD = 0.106 m 
VL = 40 dm3 
d0 = 25x1 mm (PP) 

.

L Gr
k a . ε= 1 390 91

 

(Chisti et al., 
1988b)3 

ELALR 
( ) . d

L s Gr

r

A
k a . . C U

A

−
 

= − + 
 

1

0 8370 349 0 102 1  

(Freitas and 
Teixeira, 
2001) 

DT-
ILALR 

Low density solids: 
dP = 2.131±0.102 
mm 
ρs = 1023±+1 
kg/m3 
High density solids: 
dP = 2.151±0.125 
mm 
ρs = 1048±+1 
kg/m3 
εs = 0-30% 
UGr = 0.01-0.5 m/s 

Water/low density solids 

( )( )L Gr Gr s sk a . U . U . . . .ε ε= − + − − − +2 20 93 1 33 0 012 0 0000016 0 00099 0 054

 
Water/high density solids 

( )( )L Gr Gr s sk a . U . U . . . .ε ε= − + − − − +2 20 33 0 43 0 0064 0 000080 0 0056 0 17

 
Ethanol (10 g/L)/low density solids 

( )( )L Gr Gr s sk a . U . U . . . .ε ε= − + − − − +2 20 95 1 34 0 021 0 000072 0 00079 0 075

 
Ethanol (10 g/L)/high density solids 

( )( )L Gr Gr s sk a . U . U . . . .ε ε= − + − − − +2 20 78 1 20 0 021 0 000074 0 0035 0 081

 1 Adopted from Chisti (1989) 

2 Adopted from Jones (2007) 

3 Adopted from Merchuk et al. (1999)  
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Table 6.2 cont.: Gas-liquid mass transfer coefficient correlations for airlift reactors. 
Reference Reactor 

Type(s) 

Reactor Parameters Correlations 

(Kawase and 
Moo-Young, 
1986a)3 

ILALR . . n . . . nSh . n Fr Sc− + −= 0 72 0 38 0 52 0 38 0 140 68
 

(Kawase and 
Moo-Young, 
1986b)1 

DT-
ILALR 
BC 

Air-(Water, 
pseudoplastic fluids) 
UG = 0.008-0.084 m/s 
dR = 0.14-0.305 m 
n=0.543-1 
K = 0.00089-2.82 Pa sn 

. n . . n .

. R G L aL R

L a L L

d Uk ad
. n

D D

ρ µ
µ ρ

+ −

−    
=    

  

0 38 0 52 0 38 0 142
6 720 68  

(Koide et al., 
1983a)1 

DT-
ILALR 

Air-Newtonian fluids 
µL = 0.9-13 mPa s 
σ = 51-73 mN/m3 
DL (109) = 0.18-2.42 
m2/s 
UG = 0.0098-0.156 m/s 
dR = 0.10-0.30 m 
dD = 0.06-0.19 m 
Ld = 0.70-2.10 m 
L = 0.84-2.24 m 
d0 = 0.001-0.015 m (SO) 
d0 = 7x0.001 m (PP) 

.. . .

.L R L R L R L D
G

L L L L R

k ad gd D gd D d
.

D D d

µ
ε

ρ σ µ

−
      

=       
      

0 8370 5 0 257 0 542 2 3 2
1 36

2
0 477  

L

L L

. * . *
D

µ
ρ

≤ ≤2 43 69 10 5 68 10  

R Lgd D
. * . *

σ
≤ ≤

2
3 41 36 10 1 22 10  

R L

L

gd D
. * . *

µ
≤ ≤

3 2
8 11

2
2 27 10 3 32 10  

D

R

d
. .

d
≤ ≤0 471 0 743  

G
. .ε≤ ≤0 037 0 21  

(Koide et al., 
1983b)1 

DT-
ILALR 

Air-Newtonian fluids 
µL = 0.9-13 mPa s 
σ = 51-73 mN/m3 
DL (109) = 0.18-2.42 
m2/s 
UG = 0.0098-0.156 m/s 
dR = 0.10-0.30 m 
dD = 0.06-0.19 m 
Ld = 0.70-2.10 m 
L = 0.84-2.24 m 
d0 = 0.001-0.004 m (SO) 

. . .

.L L L
G

L L L L L R

dk a
.

D g D g d

σ µ ρ σ
ε

ρ ρ µ

−
     

=      
     

0 5 0 136 0 09053
1 260

4
2 25  

L

L L

. * . *
D

µ
ρ

≤ ≤2 43 71 10 6 00 10  

L

L

. * . *
g

ρ σ
µ

≤ ≤
3

6 10

4
1 18 10 5 93 10  

D

R

d
. .

d
≤ ≤0 471 0 743  

c

d
. * . *

d

− −≤ ≤3 207 41 10 2 86 10  

G
. .ε≤ ≤0 0302 0 305  

(Koide et al., 
1985)3 

ILALR .

. . . .r
G

R

d
Sh . Sc Bo Ga

d
ε

−
 

=  
 

0 429

0 5 0 715 0 25 1 342 66

 
(Li et al., 
1995)3 

ILALR . .

L Gr ak a . U µ −= 0 524 0 2550 0343

 
(Merchuk et 
al., 1994)3 

ILALR 
. . . d

r

A
Sh Fr M Ga

A

−

−  
= + 

 

1

0 97 5 4 0 04530000 1

 
1 Adopted from Chisti (1989) 

2 Adopted from Jones (2007) 

3 Adopted from Merchuk et al. (1999)  
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Table 6.2 cont.: Gas-liquid mass transfer coefficient correlations for airlift reactors. 
Reference Reactor 

Type(s) 

Reactor Parameters Correlations 

(Muthukumar 
and Velan, 2006) 

DT-ILALR Air-(Isoamyl alcohol, benzoic acid, propanol, CMC solution) 
εs = 5-20% 
dR = 0.19 m 
dr/dR = (0.34, 0.44, 0.49, 0.59, 0.76) 
hR = 2 m 
hD = 1.22 m 
hc = 0.05 m 
d0 = 37x1 mm (PP) 

For three-phase systems that enhance kLa: 

ρ ρ µρ ρ
µ σ ρ σ

− − − −
− −          

=           
         

. . . .. .

p L. G t LL R r R L R L
s

L R R L L

U Uk ad d gd gd
. c

D gd d

0 49 0 46 0 209 0 1442 515 0 12 3 2 2
0 214

2
0 7  

For three-phase systems that decrease kLa: 
. . . .

. G t LL R r R L
s

L R R L

U Uk ad d gd
.

D gd d

µρ
ε

µ σ

− −
−        

=        
      

0 49 0 46 0 576 0 34322 3 2
0 214

2
0 64  

. .

L G eff
k a . U µ −= 0 907 0 0860 678  

where: µeff = (5000UG)n-1 
(Nicolella et al., 
1998a) 

DT-ILALR Air-Water-Biofilm 
particles 
UG = 0.002-0.027 m/s 
εs = 5, 10, 15% 
ds = (0.47, 0.91, 1.67, 
1.95) mm 
dR = 0.060 m 
dr = 0.043 m 
hR = 0.700 m 
hD = 0.360 m 

L G
k a . ε=0 6

 

(Popovic and 
Robinson, 
1984)1, 3 

ELALR 
BC 

Air-Non-Newtonian CMC 
solutions 
µL = 0.015-0.5 Pa s 
Ad/Ar = (0, 0.11, 0.25, 
0.44) 

.

. .d
L Gr a

r

A
k a . * U

A
µ

−

− − 
= + 

 

0 853

4 0 525 0 891 911 10 1

 

. d
L Gr

r

A
k a . U

A

−
 

= + 
 

1

0 8370 24 1  

(Ruen-ngam et 
al., 2008) 

DT-ILALR Air-(Tap and sea water) 
Salinity = (0, 15, 30, 45) 
ppm  
UG = 0.01-0.07 m/s 
hR = 1.2 m 
LD = 1 m 
hc = 0.05 m 
dR = 0.137 
Ad/Ar = (0.067, 0.443, 
0.661, 1.008) 
VL = 1.5 L 
d0 = 30x1 mm (PR) 

When salinity = 0 ppm 
.Sh . . Gr= + 0 480 41 1 05

 When salinity = 15-45 ppm 
. . . .Sh . . Gr Sc . Re Sc= + +0 16 0 3 0 46 0 060 41 1 04 0 13

 

(Siegel and 
Merchuk, 1988)3 

ELALR .

.

L L

L R

P
k a U

V d

− 
=  

 

1 04

0 15913

 
1 Adopted from Chisti (1989) 

2 Adopted from Jones (2007) 

3 Adopted from Merchuk et al. (1999)  
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7 Fixed Bed Reactors 

7.1 Introduction 

Fixed bed reactors are three-phase systems for which the solid phase is structurally fixed. There 

are two basic categories of fixed bed reactors which are defined by the phase flow directions. The 

first class is the packed bed reactors (PBRs), shown in Figure 7.1. Packed bed reactors are defined 

by countercurrent phase flow, which can lead to reactor stability and safety issues during 

exothermic reactions (Yakhnin and Menzinger, 2008). The liquid phase is sprayed from the top 

while the gas phase is fed from the bottom. The second class is trickle bed reactors (TBRs), shown 

in Figure 7.2, which have very similar designs, but each component is adjusted to conform to 

particular phase flow patterns. Trickle bed reactors are defined by cocurrent, downward phase flow 

– the liquid and gas phases are fed from the top (Maiti and Nigam, 2007; Medeiros et al., 2001). The 

gas phase is pressurized to improve process efficiency. If the gas and liquid phases flow occurs 

upward, the reactor is referred to as flooded bed reactor. Although the differences may seem minor, 

the dynamics can be very different. For example, flooded-bed reactors operate with the packed 

material being almost or completely submerged while the trickle bed reactor is usually operated 

with minimal flooding (Al-Dahhan et al., 1997; Kolev, 2006). 
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Figure 7.1: Packed bed column internals: (1) vessel, (2) packed material, (3) support plate, (4) 

liquid distributor, (5) gas input, (6) gas output, (7) liquid input, and (8) liquid output 
(Kolev, 2006). 

 
Figure 7.2: Trickle bed reactor schematic (Maiti and Nigam, 2007). 
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Flooded bed reactors ensure that the entire packing surface is wetted, which is highly important 

for liquid-phase limited processes and reactions; however, most biological applications are gas-

phase limited, which would make the flooded bed reactor less useful in its current state (as used by 

the chemical industry). This reactor design could be useful for biological applications if the 

microorganisms require significant substrate flow or are sensitive to gas-liquid interfaces; 

however, flooded bed reactors are typically not used in industry because they are difficult to design 

and manage (Maiti and Nigam, 2007). 

The exact reactor choice is highly dependent on the type of reaction required by the process. 

Since biological applications are not very fast, the choice is going to be more dependent on the 

microorganism’s environmental requirements. For biological applications, fixed bed reactors have 

traditionally been used for shear sensitive microbes and cells (especially mammalian). In contrast, 

shear resistive strains would be expected to experience better results in a bubble column or airlift 

reactor since these devices operate at much higher gas and liquid flow rates. 

Fixed bed reactors, especially TBRs, are heavily used in industrial practice. They are used by the 

petroleum, petrochemical, and chemical industries for waste treatment and processing, biochemical 

and electrochemical processes, and hydrotreatment. Catalysts provide a mechanism to accelerate 

and channel very complex processes, which would normally require high pressures and/or 

temperatures and long processing times, into a more manageable reaction and reactor 

environment. The fixed bed reactor is the perfect reactor-of-choice to achieve these goals such that 

the trickle bed reactor has been used to process approximately 1.6 billion metric tons of products 

by the petroleum industry in 1991 alone (Al-Dahhan et al., 1997). Hence, large amounts of research 

and development have and will continue to go into these reactors because even marginal 

improvements can yield significant profitability increases. 

The negative aspects of fixed bed reactors are often tied to the performance, behavior of the 

particular catalyst, and potentially difficult design and scaleup (Nacef et al., 2007). If the catalyst is 
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deactivated or spent fairly quickly, construction of the fixed bed reactors makes the processes 

impractical. The catalyst would have to be replaced too frequently, leading to high labor and 

packing costs. One of the main objectives is to ensure that the packing material experiences optimal 

wetting. Catalysts that do not wet provide inefficient reaction sites. Hence, the flow has to stay 

within an acceptable pattern. Flow channeling is quite problematic since it can cause inactive 

catalyst and performance and economic losses (Doan et al., 2008; Maiti and Nigam, 2007). On the 

extreme, flow channeling can lead to runaway reactions and potentially to combustion/explosion 

(Al-Dahhan et al., 1997). 

A related issue is that identifying flow problems or catalyst utilization is often hard to 

accomplish in an industrial setting. There are two basic approaches. The first involves measuring 

pressure drop and/or temperature differentials in the reactor; however, this technique is useful 

only if flow channeling is significant to cause variations, and it often does not account for wetting 

problems. The second is to visually inspect the catalyst, but this is often done once the catalyst is 

spent, which can take up to 2-3 years (Maiti and Nigam, 2007). After the inspection and 

determination of catalyst inactivity, a plan is made to correct the flow, but the soundness of those 

corrections cannot be determined until the next inspection. There are other methods to investigate 

liquid maldistribution, but these can often be complicated or expensive (see Llamas et al. (2008) for 

an example). 

Each reactor type has specific operational parameters. Trickle bed reactors are usually 

operated adiabatically at high pressure (20-30 MPa) and temperature and employ UG < 30 cm/s and 

UL < 1 cm/s (Al-Dahhan et al., 1997; Attou et al., 1999; Nigam and Larachi, 2005) although research 

work is often conducted at atmospheric pressures (Attou et al., 1999). Packed bed columns use 

similar phase velocity ranges, but those can be increased up to UG < 3.5 m/s and UL ~ 0.11 m/s for 

some special reactor configurations (Kolev, 2006). Biological operation, however, may call for much 
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lower velocities. If the fixed bed reactor is used as a biofilter, UG < 0.001 m/s and UL < 0.005 m/s are 

common (Maldonado et al., 2008). 

7.2 Column Geometry and Components 

The packed bed and trickle bed reactors have very similar construction. Both devices are made 

of a cylindrical vessel, but the internal construction varies greatly between the designs, engineering 

firm, or even application. The basic components consist of a support mechanism for the packed 

material and phase distributors and extractors. The major difference for trickle bed reactors is that 

they tend to use packaged gas-liquid distributors rather than separate units. Other parts are 

basically the same although the flooded bed reactor has a different collection system. 

The packed bed reactors consist of support plates, hold-down plates, liquid (re)distributors, gas 

or vapor distributors, gas deflection plates, and screen mesh. The identity and type of the particular 

parts is dependent largely on reactor scale (Figure 7.1). The gas deflection plates and screen mesh 

are used in a cross-flow cascade packed column, which is only useful for chemical processes. The 

support plates are primarily for structural integrity. They simply hold the packed material in place 

and allow the gas and liquid to pass through. Since the packed bed reactor is sectioned into multiple 

stages in industrial applications, as shown in Figure 7.1, the support plates also have to prevent 

phase maldistribution, which is usually accomplished with proper plate leveling. Uneven packing 

loading may cause support plate bending and flow maldistribution is likely (Kolev, 2006; Maiti and 

Nigam, 2007). As with aeration plates in bubble columns, the uniform liquid distribution objective 

is important, difficult, and often not completely achieved. 

The design direction often involves using the lightest and least obstructive support plates in 

order to achieve packed material and flow stability. Since the packed bed reactors are mainly used 

by the chemical industry, fouling and erosion are important side effects of the reactants. Hence, the 

chemical industry requires ready access to the packed material and support plates that are easily 

removed and changed. This requirement would most likely be necessary for biological applications 
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as well. The support plate is usually fastened to a supporting ring, which is welded to the vessel, 

due to possible pressure surges, which could potentially lift the support plate and the supported 

packing. 

Support plates are classified according to the type of packing (random or structured) used in 

the reactor. Support plates used for random packing have inclined walls to support free solid 

particles and ensure that these stay static. Some examples include the SP 1 (Figure 7.3), 2, and 3 

Multibeam support plates. The SP 1 is used for packed bed columns with a diameter larger than 

1200 mm while the SP 2 and 3 (Figure 7.4) are used for diameters of 100-300 mm and 300-1200 

mm, respectively. 

 
Figure 7.3: SP 1 Multibeam support plate used for columns with dR > 1200 mm (Raschig Jaeger 

Technologies, 2006). 
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Figure 7.4: SP 2 and 3 Multibeam support plates used for 100 < dR < 300 mm and 300 < dR < 

1200 mm, respectively (Raschig Jaeger Technologies, 2006). 

The column diameter and geometry of the support plates also impose a minimum packing size. 

The support plate height is dependent on material construction. For example, carbon and stainless 

steel call for a height of 265 mm while thermoplastic support plates have a height of 300 mm. Due 

to material properties, larger columns (with larger amounts of supported packing) require further 

strengthening of the support plates. 

The downside of these Multibeam support plates is that they are plagued by fouling and 

uncontrolled growth, which can lead to improper flow distribution and inefficient reactor 

operation. Hence, biological processes might find it more advantageous to use a more open support 

plate such as the hexa-grid (SP-HG) or cross-flow-grid (SP-CF) support plate; however, these plates 

are usually flat and are more applicable to structured packings. The SP-HG, shown Figure 7.5, is 

preferred for mass transfer processes while the SP-CF, as shown in Figure 7.6, ensures a more 

uniform gas distribution. Other possibilities include the flat bar plate (exclusively for structured 

packing), vapor distributing packing (used to reduce vapor velocity), or ceramic packing (used for 

corrosive processes) support plates. 
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Figure 7.5: SP-HG support plate (Raschig Jaeger Technologies, 2006). 

 
Figure 7.6: SP-CF support plate (Raschig Jaeger Technologies, 2006). 

Hold-down plates are used to secure packing in case of flooding or pressure surges. In these 

situations, it is possible that the packing would wash away and enter the output stream. The 

standard hold-down plate (HP-1) is constructed from a frame with a metal screen. This hold-down 

plate is not meant to interfere with the liquid flow, but is also not designed to stabilize the packed 

material. Hence, more fragile packing, such as ceramics or carbon steel, cannot use the HP-1 plate 

without a breakage or grinding risk. As such, fragile packing should use the HP-2 hold-down plates, 

which has a grid-like structure that inhibits packing movement. Structured packing typically utilize 

hold-down plates (HP-P), which are bolted to the vessel and are designed to prevent movement 

within the bed or packing wash-out. An example of the hold-down plate is the grid-like Raschig grid 
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(RG) or HP-1, shown in Figure 7.7. Plates are intended for larger vessels (dR > 3000 mm), but can 

also be designed for some smaller ones (dR = 500-3000 mm). 

 
Figure 7.7: HP-1 hold-down plate (Raschig Jaeger Technologies, 2006). 

Since packed bed columns are mainly designed for the chemical industry, a lot of attention is 

paid to liquid phase distribution, because the liquid distributor design is crucial while gas-phase 

distribution gets less attention. If the liquid distribution operates or performs poorly, the packing is 

not going to be wetted effectively, which is important for soluble gases. Nonwetted packing leads to 

reactor underperformance (Maiti and Nigam, 2007). Although biological systems would also need 

significant attention, these processes could mostly do with simpler options. 

There are two basic options for liquid distribution: single stream and spray distributors. Single 

stream distributors basically feed the liquid phase through a perforated pipe to channels, which, in 

turn, distribute the liquid over the cross-sectional area. This is shown in Figure 7.8. Some examples 

of these are the shower type (perforated) distributor, trough distributor, distributor with weirs, 

bottom-hole distributor, splash-plate distributor, channel-type distributor, distributor with gas 

risers, or pipe liquid distributors. Spray distributors are used for processes requiring large amounts 

of liquid surface, gas cooling, or homogeneous liquid distribution. Since the droplets are smaller, the 

spray distributors are also better at wetting particles, which produces more efficient packing 

operation. 
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Figure 7.8: Example of liquid distributor (Raschig Jaeger Technologies, 2006). 

Liquid redistributors are often used to correct liquid flow to a more uniform pattern and/or to 

add more liquid to the reactor. Liquid distributors are often used to redistribute the liquid phase as 

well, but a simpler option, shown in Figure 7.9, would be a perforated plate with directional facing. 

Liquid collectors are used to channel the liquid into the liquid outlet in order to prevent 

converted/used liquid to stay in the column bottom. The hardest portion of designing a collector is 

to not interfere with gas distribution, and the available designs are quite wide and diverse. Trickle 

bed reactors, on the other hand, tend to use liquid collectors, which are only used for collecting and 

extracting liquid. 

 
Figure 7.9: Example of a liquid redistributor (Raschig Jaeger Technologies, 2006). 

Gas distributors are also an important component of packed bed columns and influence phase 

distribution. The design issue is to ensure uniform flow distribution through the column or a 

necessary ratio relative to the liquid phase. The liquid-gas ratio is only important if the process 

requires a chemical reaction of the liquid phase induced by the gas phase. The packing, on the other 
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hand, is responsible for the pressure drop profile and, hence, the downstream gas phase 

distribution. 

The simplest gas distributor is a perforated pipe. Since the pipe creates a significant amount of 

flow irregularity in the distributor region, the packed material is usually placed a distance away 

from the gas inlet to ensure the gas flow becomes more uniformly distributed upon entering the 

packed region. The separation distance is dependent on the column diameter such that a column of 

1 m requires a distance of about 0.4 m. Columns with dR = 1-2 m require a separation distance of 0.7 

m while larger columns should have a distance of about 1 m (Kolev, 2006). An actual rule, which is 

often linear, can be developed to quantify a column diameter to separation distance ratio, but this 

rule would be dependent on the level of turbulence. This turbulence can be represented by a ratio 

of inlet to column gas velocity. 

Other gas distributor options include more complicated systems such as a guided vane gas 

distributor, which attempts to create a more uniform gas distribution through higher turbulence, or 

a liquid collector-gas distributor combination; this design is more appropriate for high pressure 

columns, especially if multiple packed beds are necessary. For example, the process may require the 

product to be extracted and more liquid/gas phase to be input into the column. Hence, such a 

device would be necessary. Trickle bed reactors share the basic designs with packed bed reactors 

and make more extensive use of combination devices. Examples of combination distributors for the 

trickle bed reactors include perforated plate (Figure 7.10), chimney tray, bubble cap tray, and vapor 

assist lift distributors. 
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Figure 7.10: Example of a combination liquid collector-gas distributor system (Kolev, 2006). 

A simple choice is the perforated plate while the chimney is useful if vapors are present. If the 

perforated plate is used and flow uniformity is desired, the number of drip points should be as large 

and as close as possible. The problem with most perforated devices is that coking or accumulation 

of other materials may clog the holes and lead to the initial liquid flow maldistribution. Secondly, 

the perforated plate requires a certain minimal liquid loading. If the minimal liquid amount is not 

present, some perforations will stay dry and once again lead to initial liquid maldistribution. The 

perforated plate cannot be designed for some minimal and universally used value because the 

pressure drop at nominal operation has to be minimized. Hence, the plate is usually designed for 

normal state of operation while turndown conditions may be a challenge. A quick summary of 

available devices for trickle bed reactors is presented in Table 1 (Maiti and Nigam, 2007). 

Table 7.1: Distributor comparison (Adopted from Maiti and Nigam (2007)). 
Type Spacing 

Density 
Level 

Sensitivity 
Liquid 

Rangeability 
Vapor-Liquid 

Flexibility 
LiquidVapor 

Mixing 
Perforated Plate Best Worst Worst Worst Worst 

Chimney Average Poor Poor Poor Poor 
Multiport Chimney Average Average Average Average Poor 

Bubble Cap Worst Average Good Good Best 
Gas-Lift Assisted Best Best Best Best Best 
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The negative aspects and age of perforated plate distributors have led to improvements over 

the years. A historical performance summary is presented in Figure 7.11. The chimney-type 

distributors attempt to improve gas-liquid contacting and prevent clogging issues. The liquid is 

injected as jets while the air is used to break up the liquid into smaller droplets. Unfortunately, 

chimney-type distributors are highly sensitive to the liquid level and have a limited number of 

liquid entry points. Bubble caps are distributors which do not use the liquid hydraulic head to 

perform liquid distribution duties. Bubble caps, in turn, use the gas flow to distribute the liquid. 

Therefore, the bubble cap trays allow much wider liquid flow rates, but the design requires a larger 

diameter, which leads to even fewer drip points than the chimney-type distributors. Vapor-lift 

tubes, as the name implies, use the gas phase to push the liquid from an established level through a 

U-tube and distribute droplets onto the packing. The biggest advantages of the vapor-lift tubes are 

that they are smaller, simpler, and cheaper to construct, provide more wall coverage, and increase 

wetting efficiency. Hence, vapor-lift tubes are expected to become dominant for chemical processes, 

but a perforated plate might be good enough for biological applications. Graphical examples of 

combination devices for trickle bed reactors are shown in Figure 7.12 (Maiti and Nigam, 2007). 

 
Figure 7.11: Historical distributor performance changes (Maiti and Nigam, 2007). 
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Figure 7.12: Examples of (a) perforated plate, (b) chimney, (c) bubble cap, and (d) vapor-lift tube 

used in TBRs (Maiti and Nigam, 2007). 

7.3 Flow Regime 

Packed and trickle bed reactors (PBRs and TBRs, respectively) share some basic flow 

characteristics, but major differences exist, which lead to differing reactor performance and 

application. At very low superficial gas velocities, the superficial liquid velocity has a significant 

impact on the relative gas velocity for both PBR and TBR operation. Furthermore, liquid holdup is 

solely a function of the superficial liquid velocity (Alix and Raynal, 2008). Under PBR operation, 

increasing the superficial liquid velocity causes an increase in the relative gas velocity. This effect, 

in turn, increases the pressure drop of wetted to dry packing. TBR operation, on the other hand, 

leads to the opposite effect. 

By increasing the superficial gas velocity in packed bed reactors, a critical superficial gas 

velocity is reached at which the friction between the gas and liquid phases leads to an increase in 

liquid holdup. This critical point also represents the inflection shown in Figure 7.13 and is caused 

by the emerging and powerful influence of the superficial gas velocity on the liquid holdup. This 

point is referred to as the loading point. 
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Figure 7.13: Representation of the loading point in packed bed columns (Stichlmair et al., 1989). 

As the superficial gas velocity is increased, the liquid holdup increases as well until another 

critical point, the flooding point, is reached. At the flooding point, the slope of the pressure drop 

versus superficial gas velocity line becomes exponential. The drag force of the gas phase becomes 

the dominating influence on the pressure drop (Kolev, 2006; Stichlmair et al., 1989). The effect of 

the loading and flooding points and the transition on the pressure drop and slope can be seen in 

Figure 7.14. The identification of these boundaries allow for optimal operation, which is observed 

between the loading and flooding points for most industrial processes, such that mass transfer is 

maximized while operating costs are minimized. 

 
Figure 7.14: Example illustrating loading and flooding points (Breijer et al., 2008). 
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The operating range between the loading and flooding points is referred to as the loaded 

regime. The loaded regime is important for mass transfer purposes. One way to judge mass transfer 

efficiency in fixed bed reactors is with the height equivalent to a theoretical plate (HETP). A 

theoretical plate is an abstract stage in which two phases are capable of establishing an equilibrium. 

Thus, having an actual height that is lower at the same superficial gas velocity implies a more 

efficient mass transfer process. In the same line of reasoning, having the same equivalent height 

with a higher superficial gas velocity implies that more mass has been transferred, and the reaction 

occurs under more optimal circumstances. 

Figure 7.15 represents the effect of increasing the liquid rate in direct proportion with the 

vapor (gas) rate. The important markers are points C, E, G, and F. Point A illustrates a minimal 

liquid loading or a minimal liquid and vapor rate at which the column converts the feed. If the vapor 

rate is lower than the critical value at point A, the HETP increases such that a practical column is 

not operable. Points C and F represent the loading and flooding points, respectively. The region 

between points B and C define the constant separation efficiency region, where the interaction 

between the liquid and vapor is weak. Point E represents the minimal HETP, which would yield the 

operating condition for the shortest and smallest column; however, a more efficient point can be 

obtained at point G, which represents the maximal efficiency capacity (MCE). The maximal 

efficiency capacity provides the most stable operations while also maximizing the mass transfer 

potential. Increasing the vapor rate beyond point G yields an inefficient result such that the column 

requires larger and larger scale in order to achieve the same result (Kolev, 2006) – not something 

designers and operators look for. 
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Figure 7.15: Packed bed reactor operating regimes (Kolev, 2006). 

Another way to define the flow in packed bed reactors is using the Reynolds number, which is 

defined by the packing diameter and superficial (gas) velocity. Creeping flow is observed at 

Reynolds numbers less than 1. This region is defined by a linear pressure drop with increasing 

interstitial velocity. A steady laminar inertial flow is observed within a Reynolds range of 10-150 

where the pressure drop develops a nonlinear relationship with interstitial velocity. An unsteady 

laminar inertial flow develops at Reynolds numbers of 150-300; this region is defined by laminar 

wake oscillations in the pores. Furthermore, vortices start developing at a Reynolds number of 

approximately 250. At Reynolds numbers above 300, the flow becomes unsteady and resembles 

turbulent flow. It should be noted that experimental scale vessels experience Reynolds numbers in 

the creeping and steady laminar inertial flow while industrial scales operate at higher Reynolds 

numbers (Schuurman, 2008). 

In trickle bed operation, the frictional force acts in the flow direction, decreasing the liquid 

holdup. For TBR operation, the flooding point does not exist in the same sense as in a PBR. Instead, 

the same critical (“flooding”) point in the trickle-flow regime is defined by a decreasing slope 

relative to dry packing (Kolev, 2006; Stichlmair et al., 1989). Hence, the trickle bed reactor is not 

affected by flooding or loading conditions and can be applied to wider gas and liquid phase flow 

ranges (Breijer et al., 2008). The trickle-flow reactor is only limited by the pressure drop, which 
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causes economic constraints for TBR application. The downside is that the packed bed reactor is 

necessary for equilibrium reactions, which are not easily carried out in a trickle bed reactor due to 

the countercurrent nature of the phase flow directions (Al-Dahhan et al., 1997; Kolev, 2006). 

The general PBR flow structure is highly dependent on the initial liquid phase flow distribution, 

liquid velocity, particle shape, particle size, and packing method. The fact that the packing method 

is influential can be somewhat troubling with random packing as results are harder to replicate 

once the packing is replaced. On a smaller scale, the flow structure is affected by start-up 

procedure, wettability, flow modulation, and particle coordination number (number of touching 

neighbors per particle). The level of the nonuniformity is largely controlled by reactor internals. A 

properly designed and operated reactor is expected to have uniform flow distribution or at least 

become stable relatively quickly (Doan et al., 2008; Maiti and Nigam, 2007). 

Nonuniform flow has several causes. The first cause is that the initial liquid distribution is not 

uniform such that the liquid does not enter the packing volume uniformly (shown in Figure 7.16a). 

If the liquid is not well-distributed and adjustments are not effective or easily implemented, a layer 

of inert packing particles on top of the reactive packing may lead to some flow improvement. The 

more common cause is that the packing has not been packed well, damaged, or that its shape makes 

the flow unstable (shown in Figure 7.16b). The shape may lead to liquid maldistribution in the case 

that the reactor-to-particle diameter is too small (i.e., the particles are too large relative to the 

reactor diameter). For example, if the ratio is less than 20, the liquid starts to show maldistribution 

near the wall region at higher superficial liquid velocities. Hence, the reactor-to-particle diameter 

should be at least 20 to ensure proper liquid distribution for nominal liquid velocities (Metaxas and 

Papayannakos, 2008). If axial dispersion is problematic, a ratio larger than 50 minimizes the 

influence of axial variations (Schuurman, 2008). It should be noted that liquid flow at the wall 

requires a bed height-to-diameter ratio of at least 4.0 (Doan et al., 2008). The unfortunate result is 

that the packing is not properly wetted (shown in Figure 7.16c), and the mistake is often not 
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realized until the packing is replaced, which may not occur for at least 2-3 years (Maiti and Nigam, 

2007). 

 

 
Figure 7.16: (a) Initial liquid maldistribution and (b) restrictive packing leading to (c) different 

levels of wetted pellets (Maiti and Nigam, 2007). 

Packing manufacturers develop and test their packing extensively, but oftentimes do not have 

the expertise or infrastructure to test packing flow behavior. Engineering firms have the expertise, 

but are missing the infrastructure and incentives to test packing. Hence, the customer and end-user 

is expected to experience some trouble that usually requires on-site adjustment (Maiti and Nigam, 

2007). 

The trickle bed reactor hydrodynamics are influenced by the operating conditions, reactor 

design, reactor internals, distributor design, and phase properties (Nacef et al., 2007). There are 

four basic flow regimes in a TBR. At low superficial liquid and gas velocities, the liquid trickles onto 

the packing, forming streams and films, while the gas phase flows through the residual voids; this is 

called the trickle regime. The trickle bed reactor performance in the trickle regime is dependent on 

the pressure gradient and liquid saturation. A significant portion of the packing is unwetted in the 

trickle regime, which is addressed by increasing the superficial liquid velocity. The extent of 

unwetted packing may be used to identify flow nonuniformity and its causes (Liao et al., 2008) 

since the packing should be completely wetted during the transition from the trickle to pulsing flow 
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regime. The liquid holdup can be increased by increasing the liquid flow rate, while increasing the 

gas flow rate leads to a decrease in the holdup (Burghardt et al., 1995). 

At higher superficial liquid velocity, the pulsing regime is formed because the liquid blocks the 

flow paths and forces alternating liquid- and gas-rich regions in the reactor volume. This is very 

similar to the slug flow regime in bubble columns. An interesting behavior in the pulsing flow 

regime is that the liquid holdup is mostly independent of the liquid flow rate although it is still 

negatively affected by an increase in the gas flow rate (Burghardt et al., 1995). The identification of 

the pulsing regime is achieved by using the transition between the trickling and pulsing regimes. 

This transition is defined by a temporary decrease in drift flux (velocity) as the superficial gas 

velocity is increased, as seen in Figure 7.17. Correlations have been developed that attempt to 

model the velocity at which the transition may occur; however, these correlations are limited to 

only a few important parameters (phase velocities, liquid viscosity, particle diameter, and bed 

height) (Nacef et al., 2007) such that more complicated processes, such as those involving non-

Newtonian liquids, are almost impossible to predict. 

 
Figure 7.17: Flow regime detection in trickle bed reactors (Nacef et al., 2007). 
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At high superficial gas and low superficial liquid velocities, a spray regime occurs that is defined 

by the liquid phase being turned into droplets by the continuous gas phase. At low superficial gas 

and higher superficial liquid velocities, the dispersed bubble (gas) regime is observed and defined 

by a continuous liquid phase, which entrains the gas phase as bubbles (Attou et al., 1999). The 

dispersed bubble is most often used in the trickle bed reactor, but pulsing regime operation is also 

common (Burghardt et al., 1995). Biological application would benefit the most from the dispersed 

bubble regime while the pulsing regime may cause damage to the microorganisms as well as 

potential exposure to the gas-liquid interface. A generalized regime map has not been developed 

because the regime transitions are dependent on material properties like wettability, size, shape, 

packing, etc. (Maldonado et al., 2008). 

7.4 Liquid Properties 

Liquid properties influence the behavior of the bubble interface and, consequently, have a 

strong effect on both the liquid-phase mass transfer coefficient and the interfacial area. Research 

using organic liquids, which would be very useful for bioreactor and gas-liquid mass transfer 

optimization, is almost nonexistent for fixed bed reactors. 

It should be noted that packed bed reactors operate differently than other gas-liquid reactors 

covered so far. In the other reactor designs, the gas phase is dispersed in the liquid phase such that 

bubbles are formed from which the gas phase is transferred to the liquid. The surface area through 

which the transfer occurs is the bubble’s. In packed bed reactors, general operation yields droplets 

immersed in the gas phase, which causes the main transfer surface to be the droplet-gas interface. 

In order to increase the mass transfer interface, smaller droplets have to be produced. This process 

is often turbulent and may result in liquid droplet breakup and coalescence, which may be 

destructive to some microorganisms (specifically those that are shear sensitive). 
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A unique property of fixed bed reactors in general is that the wetted particles also become part 

of the mass transfer interface. This difference is not too important for chemical systems due to the 

commonly used packing designs, but biological systems may have additional problems. For 

example, the packing serves as a supporting mechanism for the microorganisms. Hence, the 

microorganisms feed and breath through the liquid layer on top of the colonies. If the liquid 

droplets do not touch or interact in some way with the liquid-microbial interface, mass transfer 

may not occur. Another design objective has to be added to biological systems that stipulates that 

the packing is refreshed with liquid and that the liquid’s interaction with the microbial interface is 

optimized. The liquid properties play a crucial role in this process. The viscosity of the liquid 

determines the stickiness or the wettability of the packing. The degree to which this property is 

important is highly variable with the specific microbial needs, and research determining this 

requirement in fixed bed reactors is nonexistent; however, if trickle- or flooded-bed reactors are 

used, gas bubbles are the mass transfer mechanisms, and the same bubble behavior and 

interactions are to be expected as with (three-phase) bubble columns and airlift reactors (Nacef et 

al., 2007). 

Unfortunately for biological applications, the liquid property influence is often ignored in fixed 

bed reactor research. Approximately half the data for fixed bed reactors has been obtained using 

air-water systems with glass bead packing (Nacef et al., 2007). Hence, a significant problem arises. 

The available data is biased towards a situation that does not occur in industrial settings or 

biological applications, even if they are for experimental purposes. To make matters worse, 

experimental phase flow ranges oftentimes differ significantly from industrial practice (Burghardt 

et al., 1995) such that those results by themselves would have little meaning for real-world 

application. Furthermore, these test systems experience constant properties, such as liquid 

viscosity or particle density. This state is often not observed in biological systems since 
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microorganisms change the liquid properties and consume or colonize the solid phase. Hence, the 

effective liquid viscosity and particle density may be unsteady. 

7.5 Packing Material 

Packing is the solid and fixed phase in the reactor volume. It is often used to judge reactor 

performance and utilization. The wettability or wetting efficiency is the representative parameter 

of choice and is defined as the ratio of wetted-to-external particle surface area (Metaxas and 

Papayannakos, 2008). The external area is not equal to the total surface area because the external 

area excludes the contact areas (Burghardt et al., 1995). The wetting efficiency is a function of 

phase flow rates, pressure, liquid properties, and packing diameter. In most cases, the wetting 

efficiency varies between 0.6 and 1.0. The most common approach to measuring wettability is by 

using tracers and visual inspection. Reaction methods can be used, but are difficult to implement 

from a theoretical point of view (Nigam and Larachi, 2005). The type of packing generally does not 

determine wettability directly, but rather influences the liquid distribution, which may lead to non-

wetting if flow maldistribution occurs. 

As summarized by Nigam and Larachi (2005), wettability may be modeled using saturated 

pores and solid surfaces. At low wettability, the liquid volume per unit wetted surface area is large 

(represented by Figure 7.18A). As the wettability increases and the liquid volume per unit wetted 

surface area decreases, and the contact angle and the wetting efficiency increases (Figure 7.18B); 

however, this is followed by a small contact angle and decrease in efficiency (transition between 

Figure 7.18B and C) and then a resumption of the nominal increase (Figure 7.18C). A further 

increase in wettability causes a steep contact angle and quick increase in wetting efficiency 

(transition between Figure 7.18C and D), which is followed again by a contact angle and efficiency 

decrease (Figure 7.18D). As the wetted pores reach each other, the contact angle becomes 

stationary and further liquid flattening is not possible such that wetting efficiency is abnormally 

high (transition between Figure 7.18D and E). If there are any partially solid surfaces left, the liquid 
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film ruptures and a quick decrease in wetting efficiency is observed (Figure 7.18F). The result of 

higher wetting efficiency is a thinner liquid film, which would also represent a smaller resistive 

mass transfer force (Liao et al., 2008; Nigam and Larachi, 2005). Hence, porosity has a significant 

impact on wetting efficiency and hysteresis behavior. 

 
Figure 7.18: Wetting efficiency dependence on the contact angle movement (Nigam and Larachi, 

2005). 

The startup procedure for fixed bed reactors often involves prewetting the packing in order to 

limit operational variations. Interestingly, reactors may demonstrate better or worse performance 

due to a different startup procedure. In other words, the pressure drop or liquid holdup are not 

good indicators of flow uniformity, but rather shows significant dependence on the startup and 

prewetting procedure. The possible startup procedures include a dry, Levec, Kan liquid, Super, and 

Kan gas mode. The dry mode starts the process with the packing dry. The Levec mode prewets the 

packing  for about 20 minutes by flooding the reactor volume and then allowing the liquid to drain 

out after which the liquid is reintroduced and the process is allowed to start normal operation. The 

Kan liquid mode prewets the packing by cycling the reactor between the pulsing regime and the 

operating set point. The Super mode simply floods the reactor volume and then reduces the phase 
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flow rates to the operational set points. The Kan gas mode prewets the packing by operating in the 

pulsing regime. The pulsing regime is achieved by increasing gas flow to the critical pulsing point 

after which the phase flow rates are adjusted to the operational set point (van der Westhuizen et al., 

2007). Prewetting has not been studied with biological media so that its influence is currently 

unknown for this application. 

7.5.1 Random Packing 

There are two basic types of packing materials: random and structured packings. Random 

packings are commonly formed from different shapes such as rings, shown in Figure 7.19, or 

saddles, shown in Figure 7.20. They are constructed out of ceramic, metal, plastics, or coke with the 

most popular metal application being stainless steel. A chemical treatment may be applied to the 

surface in order to increase the wettability and process efficiency (Kolev, 2006; Strigle, 1994). 

 
Figure 7.19: Raschig ring packing examples (Reichelt, 1974). 
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Figure 7.20: Saddle-type packing examples (Reichelt, 1974). 

The simplest random packings are spherical, but are not used very often in industry. The most 

commonly used packing are the Raschig rings and its descendents. The historical development of 

random packing is summarized in Figure 7.21. Each alteration stems from the need to improve 

packing performance for the particular process. The most common goal is to increase the surface 

area available for mass transfer and reaction. The great advantage of random packing is the ease 

with which it can be produced and loaded into the column. Typically, the packing is simply loaded 

from the top onto the support plate and secured by the hold-down plates. On the other hand, the 

random and unstructured distribution of the packing also leads to poor phase distribution, possible 

flow channeling, and higher pressure drop (Kolev, 2006; Strigle, 1994). The pressure drop, on the 

other hand, may also be an advantage as it leads to a higher level of turbulence and, hence, higher 

gas-liquid mass transfer efficiency relative to structured packing (Schultes, 2003). 
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Figure 7.21: Historical random packing development (Schultes, 2003). 

The first and most logical adaptation has been to add dividers, internal spirals, and corrugated 

surfaces to the Raschig ring. Although these rings effectively increase the area, the pressure losses 

and gas clogging/slugging can be significant, which may limit the operating range. The second 

adaptation has been to make the rings out of mesh and spirals. Lastly, the rings can be perforated. 

Interestingly, the pall ring has been determined to fulfill most mass transfer requirements and a 

better random packing has not been found in the last 30 years; however, other options, such as the 

Hiflow ring, Ralu-Flow, IMTP, Nutter ring, and Raschig Super Ring, are available and provide 

satisfactory mass transfer results. Although statistics and performance measures are collected, they 

are highly dependent on the column diameter such that results presented in the literature may vary 

greatly and be a challenge to reproduce (Kolev, 2006). 
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The mass transfer requirement stipulates that the patella (connecting strip) cannot be larger 

than 5 mm in width. If the patella is larger than that, a droplet will form on the surface, which will 

effectively reduce the wetted surface available for the reaction. If the patella is less than 5 mm in 

width, the liquid is capable of moving over the surface without accumulating. The result is that the 

operating range is widened. The downside is that as the width is decreased, the pressure drop 

increases. This increase may limit the economics of the process. 

7.5.2 Structured Packing 

Structured packing is constructed to provide optimal phase channeling and uniform phase 

distribution. Structured packing material is very similar to the random packing and includes metals, 

ceramics, plastics, and other materials like wood. Structured packing is usually subdivided into 

smooth-walled packing, packing with turbulizers, expanded metal packing, corrugated metal sheet 

packing, and packing for very low superficial liquid velocities (Kolev, 2006; Strigle, 1994). 

Smooth-walled packing is constructed using vertical walls, which attempts to limit the pressure 

losses for a given operating condition. As such, they provide the lowest pressure drop per mass 

transfer unit for a given volumetric mass transfer coefficient. The first generation of structured 

packing were fixed rings, such as Raschig rings. Although the construction was very simple, a 

significant problem became apparent early on. The interior ring channel (labeled 1 in Figure 7.22) 

is much larger than the exterior ring channel (labeled 2 in Figure 7.22). This discrepancy leads to 

flow channeling and a dry packing surface. Hence, the natural evolution has been to construct 

structured packing using similar members and forming them into symmetrical arrangements. Some 

popular formations are shown in Figure 7.23. Honeycomb has quickly become very popular, largely 

because they are able to provide a lower pressure drop for a given volumetric mass transfer 

coefficient. For example, honeycomb packing (Honeycomb No. 1) provide a pressure drop that was 

8.3 times lower than the Raschig rings (Kolev, 2006). 
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Figure 7.22: Cross-section of structured (Raschig) ring packing (Kolev, 2006). 

 
Figure 7.23: Examples of a) slit block, b) grid block, and c) honeycomb block packing structures 

(Kolev, 2006). 

Packing with turbulizers, referred to as Turbo-pack, is made by thermo-pressing or stamping 

plates such that the packing surface is ribbed, which increases turbulence near the wall. This 

increased turbulence leads to better heat and mass transfer performance. Turbulizers are usually 

made in the horizontal direction in order to achieve axial flow uniformity. The result of using 

turbulizers is that the operable superficial gas and liquid velocities are increased. For example, P15-

235 (type of structured packing with turbulizers) allows for superficial gas and liquid velocities up 

to 3.5 and 0.11 m/s (in PBRs), respectively (Kolev, 2006). The interesting behavior of these 

turbulizers is that at low superficial liquid velocity, the pressure drop of the wetted packing is half 

the pressure drop experienced by the dry packing. At high superficial liquid velocity, the pressure 

drop equalizes for wetted and dry packing. 
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Expanded metal packing is constructed by stamping or otherwise forming a channel from metal 

plates. The greatest advantage of this type of packing is that the channels are exclusively in the 

vertical direction such that the pressure drop is lower relative to the other packing types. Another 

derived advantage is that this also allows for very high superficial gas velocities, potentially 

reaching 2.5-3.5 m/s. In order to achieve even higher gas velocities, the gas phase is input and 

extracted horizontally from the vessel, which allows operational superficial gas velocities up to 6 

m/s. The most important disadvantage is that the vertical channel leads to the liquid preferentially 

wetting the leading edges. Hence, this packing requires more rigorous collection and redistribution 

than the other options. The exact behavior of the expanded metal packing is highly dependent on its 

construction, which can vary significantly. Major design considerations are the pitch, step height, 

and the existence and extent of perforations. The pitch, for example, can be designed so that the 

packing may be almost completely wet at relatively low superficial liquid velocities or able to 

handle an extreme (relative to other packing) amount of liquid (Kolev, 2006; Strigle, 1994). 

The structured packing of corrugated sheets attempts to fix a major disadvantage of the 

smooth-walled packing: the possibility of free-falling liquid through the open cross-sectional area. 

The corrugated sheets are designed to intercept liquid (usually within half of one wave) and 

enhance axial mixing (Kolev, 2006). The downside is that the pressure drop is larger relative to 

other structured packing options, but lower than random packing. 

Certain processes, such as those relying on equilibrium absorption with low initial 

concentration of highly soluble gases, require very low superficial liquid velocities in the 

countercurrent configuration such that existent packing does not perform well. The operator has 

the option of using very easily wettable materials or using a highly specific packing form. This 

circumstance is rarely encountered for biological application. 
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7.6 Biological Considerations 

Biocatalysis and microorganisms have become great hopes and are seen as possible solutions to 

a multitude of problems. As such, research efforts are starting to turn towards suspending 

microorganisms on packing material to perform similar roles as reactive packing or perhaps 

completely new functions (Llamas et al., 2008). Biological microorganisms are typically attached to 

the packing surface since the microorganisms either perform better when cell adhesion occurs or 

when the cells are highly shear sensitive and need to be protected. Hence, fixed bed reactor 

performance is highly dependent on the liquid distribution uniformity. It should be noted that the 

liquid phase usually serves as the food source for the microorganisms. So, if the packing is not 

wetted, microorganisms will not colonize that section of the reactor. This, in turn, can severely limit 

reactor performance (Doan et al., 2008). 

In addition, column internals may be of significant importance. Even though the perforated 

plate is a simple and effective device, it tends to provide minimal wall wetting and tends to channel 

liquid through the central region. This effect can cause interesting performance variations at 

different liquid flow rates and may make comparisons between different research work difficult. If 

the outer regions need to have liquid exposure, a better liquid distributor should be selected. 

Similar channeling can also be experienced by uneven cellular growth rates within the reactor 

volume. 

Biomass and microorganism tend to have a positive effect on fixed bed performance. Packing is 

usually judged on the basis of wettability, which biomass seems to increase. Doan et al. (2008) 

compared the wettability of plastic spheres with the same plastic spheres in the presence of 

microorganisms. The result has been that the liquid holdup increased by approximately 20% in the 

presence of microorganisms. 
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Liquid flow distribution and gas solubility issues can be enhanced with periodic liquid flushing 

of the reactor volume. The flushing tends to renew interfaces and reduce the gas-phase transport 

resistance (Nigam and Larachi, 2005). This practice may also have additional benefits in controlling 

microorganism growth. If the microorganisms do very well, the colonies might grow too thick and 

kill the lower cell layers. In order to prevent buildup in the reactor volume, a flushing cycle could be 

performed to detach a specific region or amount of microbial growth. 

7.7 Correlations 

Correlations for fixed bed reactors, which are shown in Tables 7.2 and 7.3, are currently 

available for specific operating regimes and packing types. Some aspects can be generalized; 

however, correlations are developed for either random or structured packing even though the same 

major theories are used to explain gas-liquid mass transfer and behavior (Larachi et al., 2008). 

Current fixed bed correlations are very design specific, and any broad correlations produce highly 

variable and sometimes impractical results. This has been at least partially the result of many 

experiments being conducted at much lower pressure than those observed during industrial 

application (Attou et al., 1999). Kolev (2006) collected gas-liquid mass transfer correlations for the 

packed bubble column for his book on packed bed columns; however, the number of correlations is 

small because research is limited on gas-liquid mass transfer in packed bed reactors. The most 

recent correlation (other than Kolev’s) is from Billet (1989). Most of the work seems to have been 

done in the 1950s and 60s. Since then, correlations have been seldom formed. 

Perhaps the reason for the lack of correlations is twofold. First, the more important information 

for chemical engineers is the pressure and temperature predictions. With these in hand, chemical 

engineers are able to predict the other factors of importance. Biological processes are not expected 

to behave like this, and more work would need to be done for this purpose. 
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A second reason is perhaps the research group represented by Professor Larachi at Laval 

University. They have been at the forefront of providing correlations capable of predicting fixed bed 

performance for a wide variety of packing and designs. Their approach has been based on 

developing a large database, which incorporates 861 and 4291 experiments for structured and 

random packings, respectively, and the use of a neural network to determine the most important 

factors in predicting the necessary output. The resulting average error varies between 20.9-29.2% 

among six different mass transfer parameters. They have created separate correlation Excel files for 

the packed, flooded, and trickle bed reactors, which can be accessed from Professor Larachi’s 

homepage at the Laval University (Larachi et al., 2008; Piché et al., 2001a; Piché et al., 2001b; Piché 

et al., 2001c); the link to this site is http://www.gch.ulaval.ca/bgrandjean/pbrsimul/pbrsimul.html. 

This is currently the best and most comprehensive resource for gas-liquid mass transfer 

information applicable to fixed bed opeartion. 

7.8 Needed Research 

Fixed bed reactors have been largely used by the chemical and related industries. Industrial 

biological applications are limited. Since fixed bed reactors operate at lower superficial gas and 

liquid velocities, it is going to be very hard for these reactor types to compete with bubble columns, 

airlift reactors, or membrane reactors (Gottschalk, 2008). A second competitive problem is that 

interfacial area in fixed bed reactors is made of liquid droplets and wetted packing. If fixed bed 

reactors are to be used in biological applications, more research needs to be directed towards 

increasing the surface area available for mass transfer. One solution that could use more 

investigation is operation in the flooded regime, which would allow for more bubbles and a larger 

interfacial area; however, the problem with this approach is that such operation may be described 

as more bubble column than fixed bed reactor. So far, biological research has been concentrated on 

waste treatment and providing a support mechanism for highly shear sensitive media such as 
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mammalian cell structures. In other words, if the microorganism is tough enough for a bubble 

column or airlift reactor, the fixed bed reactor is not effective. 

The current research effort in fixed bed reactors is directed towards the improvement of 

packing. The view is that the packing choice can make or break the success of the operation and 

that current operations are so large that even minimal improvements would yield tremendous 

savings. Although the reactive function is very important given the supporting role packing has in 

chemical reactions, biological systems are going to be less dependent on this packing function and 

would be better served with packing that supports larger amounts of microorganisms. 

7.9 Summary 

Fixed bed reactors use packed, fixed material with the purpose of achieving higher reaction 

rates than would be possible with two-phase interaction alone. In order to conform to different 

types of reactions, several styles and forms of fixed bed reactors and packing are in use. The packed 

bed reactor is a countercurrent model, which injects the liquid from the reactor top and gas from 

the bottom. The trickle bed reactor is a downward flowing cocurrent reactor. If the flow occurs in 

the upward direction, it is referred to as a flooded bed reactor. As far as the packing goes, the 

designer and operator have a wide array of options, which are mainly due to a tremendous amount 

of customization that has occurred over the years. This experimentation has led to dozens of 

different packing materials and classifications. 

Generally speaking, fixed bed reactors are not able to transfer as much mass as the previously 

covered reactor types because the phase flow rates in fixed beds is usually much lower. This is due 

to the fact that the pressure drop across the bed would increase to a value that would make almost 

any operation either unprofitable or nonreactive. Hence, the general application of fixed bed 

reactors is to provide a support structure on which microorganisms can grow. Another application 

of the fixed bed reactors is to serve as biofiltration devices. 
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There is still a lot of work – including more basic research – left to do on fixed bed reactors for 

biological applications. Most of the data, conclusions, and designs have been developed for chemical 

processes and reactions, which usually require very high pressures and temperatures. 

Microorganisms often have very different requirements and interactions, which have not been 

explored very deeply, if at all. For example, there isn’t a single gas-liquid mass transfer correlation 

that is directly applicable to microbial design mainly because most of them have been developed in 

the 1940-60s. So, if the fixed bed reactor limitations are kept in mind, the design can be adapted to 

serve roles currently supplied by chemical reactions or open the doors to new applications. 
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Table 7.2: Gas-liquid mass transfer correlations for fixed bed reactors (Adopted from Kolev (2006)). 
Researcher(s) Reactor Packing Correlation 

(Billet, 1989)  RP /
/

. / eL
L L L L.

h L

aga
k a C D U

d a

ρ
µ

 
=  

 

1 62 3
0 50 1 3

0 50

 
where CL is an experimental, packing dependent constant 

(Fujita and 
Hayakawa, 1956) 

PBR Rings 5-35 mm 
Saddles 13-40 
mm 

.

. .P
L L L

h
Sh . Re Sc

δ

−
 

=  
 

0 19

0 67 0 500 025
 

(Kasatkin and 
Ziparis, 1952) 

PBR Rings 8-20 mm . .

L L LSh . Re Sc= 0 75 0 500 0021
 

(Hikita and Ono, 
1959) 

PBR Wetted single 
element 

.

. .P
L L L

d
Sh . Re Sc

δ

−
 

=  
 

0 50

0 545 0 500 27
 

(Krevelen and 
Hoftijzer, 1948) 

PBR Rings, coke, and 
others 

. .

L L LSh . Re Sc= 0 67 0 330 00595
 

(Koch et al., 1949) PBR RP .

L mk a . L= 0 960 25
 

L L
k a . U=0 0085

 
(Kolev, 1976)  RP . . .

L Le L LSh . Re Ga Sc= 0 50 0 28 0 500 030
 

L
Le

e L

U
Re

aν
=

4

 
ShL and GaL determined by dP 

(Kolev and 
Daraktschiev, 1976) 

 Holpack ( ) ( ). .. . .

L L L Lh P P
Sh . Re Sc Ga s / t at=

4 0 0 10 635 0 5 0 3660 00113
 

(Kolev and Semkov, 
1983) 

 RP ( ) .. . .

L L L L P
Sh . Re Ga Sc ad

−
=

0 370 33 0 42 0 50 0115
 

(Kolev and Nakov, 
1994) 

 FP with 
turbulizers 

( ) ( ). .. .

L L L P
Sh . Sc Re ah as

− −
=

0 29 0 190 5 0 700 0077
 

(Larachi and 
Grandjean, 2001) 

Correlation Excel files available at  
http://www.gch.ulaval.ca/bgrandjean/pbrsimul/pbrsimul.html 

(Mangers and 
Ponter, 1980) 

 RP . . . .

L L L L L P L

L L L L L L

k a U gd
.

D D g MWR

α
ρ µ ρ ρ σ
µ ρ µ µ

         
=          

        

0 50 0 70 0 33 1 672 3 3

2 4

1
0 0039

 
.. MWRα = 0 1080 484  

( )
.

. L

L

MWR . cos
g

θ

ρ σ
θ

µ

  
 = −  
   

0 203
0 60

4
1 12 1

 
where θθ is the contact angle 

(Onda et al., 1961)  RP . .

L L LSh . Re Sc= 0 50 0 500 01
 

(Onda et al., 1958) PBR Rings 6-10 mm . .

L L L
Sh . Re Sc= 0 50 0 500 00625

 
(Onda et al., 1959) PBR Rings 6-10 mm . .

L L LSh . Re Sc= 0 90 0 500 0107
 

(Ramm and Chagina, 
1965) 

PBR FP . .

L L Pk a . U h −= 0 768 0 18511 6  

Raschig rings 
25 and 50 mm 

. .

L L LSh . Re Sc= 0 77 0 500 00216
 

Pall rings 50 
mm 

. .

L L LSh . Re Sc= 0 77 0 500 0036
 

(Raschig LTD)  FP ( ) .. . . . .

L L L L P
Sh . Re Sc Ga ah

εε ε
−− −=

0 351 1 0 4 0 5 0 01 2 90 01019
 

( ) ( ) ( ) ( ) ( ). . .. . . ..

L L L L PSh . Re Sc Ga ah
εε ε ε

− + − −− − − −= −
0 41 0 6 1 0 20 66 0 4 1 0 07 0 25 10 50 0026 1

 
 

  



243 

Table 7.2 cont.: Gas-liquid mass transfer correlations for fixed bed reactors (Adopted from Kolev (2006)). 
Researcher(s) Reactor Packing Correlation 
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Table 7.3: Liquid-phase mass transfer correlations for fixed bed reactors (Adopted from Kolev (2006)). 
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8 Novel Reactors 

8.1 Introduction 

Novel reactors are nonstandard devices, which attempt to deliver better performance, bring 

new features, or introduce production through a new method. Novel designs accomplish these tasks 

by either introducing new or significantly adjusting components in standard devices or by 

introducing a completely new approach and/or concept into the production. This section will 

concentrate on both aspects of novel reactor design, but more attention will be paid to novel 

reactor design strategies.  

8.2 Novel Bubble-Induced Flow Designs 

Novel bubble-induced flow designs apply a plethora of mechanisms that help differentiate each 

specific design from other novel and standard devices. Some changes are structural and include 

using different materials and internals. Others include the use of novel methods to excite the bubble 

interface and induce gas-liquid mass transfer. Novel methods will exclude devices that are created 

to study specific events relating to standard devices. For example, the study by Sotiriadis et al. 

(2005) using a specially designed bubble column where the phases move downwards to specifically 

study bubble behavior, bubble size, and gas-liquid mass transfer in the downcomer of airlift 

reactors would fall in the excluded devices. 

Perhaps the simplest variation to aerated designs is to inject the phase(s) using the jetting 

principle. Such devices are often grouped as jet reactors. It should be noted that jet reactors do not 

necessarily share any other commonalities besides the phase input techniques. The reactor 

internals and phase flow can vary significantly. Jet reactors use liquid jets and injection devices in 

order to achieve high liquid velocities and turbulence. The higher turbulence generally yields to 

better gas-liquid mass transfer performance, which is its largest advantage. On the other hand, the 

shear rates, especially in the injection vicinity, tend to be much higher than the average. 

Microorganism growth could produce uneven reactor performance. Furthermore, the generated 
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shear stresses are potentially too high for microorganisms to survive. Hence, the current 

application of jet reactors is limited to strictly chemical processes, and research with 

microorganisms is limited. 

Some examples of jet reactors include submerged- and plunging-jet reactors, ejector reactors, 

hydrocyclones, and venturi devices. Plunging-jet reactors throw a liquid jet through a gas phase, 

which is usually reactive, into the liquid volume. In other words, these reactors attempt to transfer 

the gas phase by creating gas entrainment at the liquid surface. This jet reactor requires jet 

velocities of up to 30 m/s (Charpentier, 1981). Submerged-jet reactors pump a liquid phase 

through a venture where the liquid is combined with the gas phase. The result is a mixture that has 

a very bubbly appearance. The generated bubbles are very small and would be expected to have a 

large gas-liquid surface area. Varley (1995) reported a Sauter mean diameter of 0.29-1.92 mm in a 

72 liter submerged-jet reactor using UL = 3-12 m/s. 

The ejector reactor uses a similar injection device as the submerged-jet reactor, but the created 

jet is injected into an airlift-like vessel. The gas-liquid mixture is allowed to go through a riser and 

into a separator. Since the gas phase separates, a density difference is created and liquid 

recirculates into the injection zone. These reactors are capable of operating with liquid velocities of 

at least 20 m/s. With this kind of turbulence, the ejector reactor outperforms stirred tank reactors 

at equivalent operating conditions (Charpentier, 1981). 

Venturi-based reactors work similarly to submerged-jet and ejector reactors, but the big 

difference is that the liquid is injected into a high velocity gas phase field whereas the ejector 

reactors inject gas into a high velocity liquid phase field. Hence, the venturi-based reactors create 

small liquid droplets similar to an atomizer. Venturi-based reactors are used as scrubbers or with 

quantities of gas phase present in the reactor volume. In contrast, ejector reactors create small 

bubbles that are used in liquid phase dominated reactor volumes (Charpentier, 1981). 
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Jet injectors may also be combined with monolith reactors as shown in Figure 8.1. Monoliths 

are usually tube reactors with channeled flow. The reaction occurs at the gas-liquid interface as 

well as on the channel wall, which are usually catalytic or coated with catalytic material. Monoliths 

can be made into vertical (similar to bubble column) or horizontal tubes, airlift devices (whereby 

the riser would a monolith), or even into a mechanically stirred device. Usually, however, monoliths 

are designed like bubble columns or airlift reactors (Broekhuis et al., 2001).  

 
Figure 8.1: Monolith reactor example (Process Systems Enterprise Limited, 2009). 

Monolith reactors could be considered a novel class on their own. The problem is that the 

monolith reactor relies on the catalytic properties of the wall in order to have better mass transfer 

and reaction performance than the other reactor types. If these properties do not exist, as they are 

not expected to with biological applications, the channels are too small and cause gas to slug. Hence, 

a monolith reactor would be limited by the amount of biological media and phase flow media, 

specifically the gas phase. If the microorganisms grow well, the channels could be plugged and 

extensive cleaning may be necessary. For most biological applications, monoliths do not provide 

theoretical advantages to a fixed bed reactor, bubble column, or airlift reactor. This fact is reflected 

in the lack of biological application of traditional monolithic reactors; however, monolith-like 

principles are sometimes hidden within fixed bed reactors. In these cases, the monolith-like packing 

is used as a support mechanism for cellular growth. For biological studies that are available, 
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monolith reactors tend to compete with trickle-down (fixed bed) or membrane reactors. For 

example, the 2007 AIChe Annual Meeting held in Salt Lake City, UT had a conference section 

dedicated to monoliths and membranes (Bauer et al., 2007). It is also a popular option to design 

monolith microreactors (Schönfeld et al., 2004), which are basically scaled-down versions of large-

scale reactors. 

Researchers have also combined reactor types. Guo et al. (1997), for example, designed an 

external loop airlift reactor that incorporates a fluidized bed within the downcomer section, shown 

in Figure 8.2. The fluidized bed section is used to immobilize microorganisms on carrier particles in 

order to protect them from damage. The design is meant for the production of enzymes, 

biofluidization, and wastewater treatment. Although shear rates were minimized, bubbles were not 

entrained within the downcomer. Furthermore, the gas-liquid mass transfer coefficient was 

observed to increase with gas holdup. The result is that the gas-liquid mass transfer is limited due 

to the fact that global gas holdup for the reactor is strictly defined by the riser gas holdup without 

any addition by the downcomer. 

 
Figure 8.2: Novel external loop airlift reactor designed by Guo et al. (1997). 
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Wastewater treatment plants oftentimes use vessels that combine the (slurry) bubble column 

with a mechanical extractor and/or mixer. The mechanical extractor is used to scrape heavy 

residue at strategically located divider walls. Such a system implies that the liquid flows across the 

gas flow field. Siemens’ proprietary Attached Growth Airlift Reactor (AGAR)-Moving Bed Bioreactor 

is an example of such a device (Figure 8.3). 

 
Figure 8.3: Siemens AGAR system (Siemens Water Technologies, 2009). 

Wastewater treatment may also require the use of UVA-UVB rays as a mechanism to kill any 

unwanted cellular material. Unsparged photoelectrochemical reactors, which resemble unsparged 

slurry bubble columns, are standard devices for such an operation. Harper et al. (2001), however, 

experimented with a modified aerated airlift reactor, shown in Figure 8.4. The design uses an UVA-

UVB lamp core around which the photochemical reaction is allowed to occur. The liquid and gas can 

be recirculated to maximize output and conversion and optimize residence times. A similar design 

could be very useful for photosynthetic microorganism growth, such as algae, but no information on 

such a system has been found in the open literature. 
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Figure 8.4: (a) Novel sparged photoelectrochemical reactor cross-section and (b) schematic 

diagram used by Harper et al. (2001). 

Ellenberger and Krishna (2002) introduced vibrations in order to reduce the bubble rise 

velocity, destabilized the bubble surface, and reduced surface tension forces. These changes lead to 

an improved liquid-phase mass transfer coefficient and, hence, gas-liquid mass transfer coefficient. 

This goal has been accomplished using mechanical vibration devices in previous studies cited by 

the authors. In contrast, Ellenberger and Krishna (2002) introduces sinusoidal pressure variations 

at a frequency on the order of 100 Hz and amplitude of 0.0025-0.01 mm; this leads to a reduction in 

the bubble diameter by 40-50% and an increase of 100-300% in gas holdup and 200% in the gas-

liquid mass transfer coefficient when compared to the no pressure variation system. 

Another less commonly applied adjustment with bubble columns and airlift reactors is to 

introduce additional turbulence by pumping or mechanically exciting the liquid phase. Such 

adjustments have long been viewed as being advantageous and increasing gas-liquid mass transfer, 

but they have also been seen as very expensive options (Lundgren and Russel, 1956). The 

advantage of such a system is that it allows more control of the liquid phase flow, but the cost is 
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usually represented by the additional power required by the pump or impeller motor. The need for 

such a device stems from the potentially limiting suspension capabilities, liquid circulation rates, 

and axial nutrient gradients provided by standard airlift reactors. These issues are exaggerated 

with height. The pumped circulation column is shown in Figure 8.5. As expected, the high liquid 

flow rate (QL = 2 m3/h) used by Fadavi and Chisti (2005) added to the turbulence and nearly 

doubled gas-liquid mass transfer relative to an airlift reactor. Liquid flow in an airlift reactor 

generally does not contribute significantly to bubble breakage, but the fast liquid flow in the 

pumped variant did so and led to a smaller average bubble diameter.  

 
Figure 8.5: Experimental pumped circulation column proposed by Fadavi and Chisti (2005). 

A mechanically induced circulation loop reactor is shown in Figure 8.6. This variant works on 

similar principles as the pumped circulation column. The mechanically induced circulation loop 

reactor attempts to increase liquid velocity using impeller sets. Chisti and Jauregui-Haza (2002) 

accomplished this by imbedding a down-pumping Prochem Maxflo T hydrofoil impeller. Air is 

injected into the annular region of the reactor for several reasons. First, the impellers may flood 
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with the higher gas flow rates usually applied in airlift reactors. Second, the operational set 

becomes easier to handle if the impellers are placed in the reactor center. Lastly, the impellers are 

used to increase the liquid velocity rather than bubble breakage. So, the impellers used for 

pumping, such as the Prochem Maxflo T, do not necessarily handle gas well and placing them in the 

riser would make the situation unnecessarily more complicated. Additionally, the riser flow is 

already influenced by the gas flow rate. It should be noted that many airlift reactor issues can be 

solved with proper airlift reactor design and phase flow rates; however, these hybrid variants are 

useful when high gas flow rates are not possible or for more control. Generally, mechanically 

agitated airlift reactors are still seen as economically inhibitive except for a set of specialized cases. 

 
Figure 8.6: Experimental mechanically induced circulation loop reactor proposed by Chisti and 

Jauregui-Haza (2002). 

Another area of reactor modifications has been to add or adjust column internals. For airlift 

reactors, some research has gone into replacing the draught-tube with a net draught-tube that 

would allow for bubble breakage near the wall region (Fu et al., 2004; Fu et al., 2003). This 

additional bubble breakage leads to a smaller bubble diameter in the riser, which in turn leads to 



252 

higher gas-liquid mass transfer. If the process is mass transfer limited, it is expected that an 

increase in productivity would be observed. Although the net draught-tube reactor has the 

potential to easily increase gas-liquid mass transfer, it also has the potential to be easily plugged by 

biomass growth or otherwise foul in an industrial setting. 

Static mixers can be installed in bubble columns or airlift reactors to provide additional mixing 

efficiency. Such devices are used to break bubbles before they have a chance to coalesce. The 

performance of these devices range greatly, but increase in gas-liquid mass transfer of 500% has 

been observed (Chisti et al., 1990; Fadavi and Chisti, 2005). Such increases, however, are to be 

expected with highly viscous media. Viscosities that are nearer to water are going to see much 

smaller performance increases. So, operators interested in adding static mixers to their bubble 

column or airlift reactor also have to consider the additional cleaning requirements that may come 

from such devices. In other words, static mixers may not provide enough of an improvement in low 

viscosity fluids to pay for their additional maintenance costs. 

8.3 Miniaturized Reactors 

Miniaturized reactors can be divided into two categories based on scale: Micro- and 

nanoreactors. These reactors present several fundamental advantages and open new venues. 

Miniaturized reactors allow for personal-scale chemical and biochemical production, which can be 

used by researchers. They also allow for cost effective production when smaller quantities of a 

chemical is required. Other larger reactors are often not feasible because the production is not cost 

effective if the product is not very valuable or if the production is not consistent or pure enough for 

higher value chemicals. Miniaturized reactors, however, provide a great deal of control over 

reaction kinetics and hydrodynamics.  
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Another very important advantage of miniaturized reactors is that scale-up takes on a different 

form. The scaleup procedure for standard reactors and miniaturized reactors is compared in Figure 

8.7. The scaleup procedure for standard reactors involves a complicated iteration processes. A 

laboratory reactor is designed as a proof-of-concept. Next, an experimental-scale reactor is 

designed to ensure production viability. After a few iterations, a small-scale pilot plant is 

constructed to test and finalize the production process, equipment placement, and economic 

viability. Once this step is accomplished, a large-scale plant is constructed. The iteration 

requirement stems from the significant hydrodynamics and/or reaction kinetics changes that are 

experienced as scale is increased (Watts and Wiles, 2007). 

 
Figure 8.7: Scaleup procedure comparison (Watts and Wiles, 2007). 

With miniaturized reactors, however, scale-up is a much simpler process. The procedure 

involves putting miniaturized reactors into series and/or parallel in order to produce larger output 

quantities. This approach keeps the reaction kinetics and hydrodynamics predictable for each 

component regardless of plant scale. Hence, the process is often referred to as “numbering-up”. In 

other words, the laboratory reactor is very similar to the industrial production with the reactor 

quantity and controls being the most significant differences. This property keeps the startup and 

development costs lower and more flexible (Ehrfeld et al., 2000; Watts and Wiles, 2007). 
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The numbering-up method also introduces another potential advantage. The scaled model 

operates as a continuous reactor rather than batch while providing the operator with the same 

control advantages of the batch operation at the same time. Therefore, the process time is expected 

to be shorter with miniaturized reactors since most standardized reactors use a process time that is 

longer than the kinetic minimum. Safety is also increased tremendously since the process can be 

stopped at any point in the process flow (Ehrfeld et al., 2000). These controls can be instituted 

automatically without the need for human supervision. 

8.3.1 Microreactors 

Microreactors are defined by their size rather than construction. Microreactors are 

miniaturized with channels between the (sub-)millimeter and nanometer scale. Microreactors mix 

the gas and liquid phases pneumatically or mechanically. The size of the complete reactor 

construction is less important. A microreactor example is shown in Figure 8.8. Microreactors are 

generally compounded into microreactor elements, which are placed into mixing units. These units 

are placed into microreactor devices, which have inputs and outputs for all the microreactor units 

placed within it. Microreactor devices are placed in parallel or series in order to achieve the 

necessary conversion. Finally, the output is treated (Ehrfeld et al., 2000; Watts and Wiles, 2007). 

Typical microreactor assembly is shown in Figure 8.9. 

 
Figure 8.8: Microreactor example (Ehrfeld et al., 2000). 
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Figure 8.9: Microreactor assembly (Ehrfeld et al., 2000). 

Microreactor construction can be accomplished using numerous tools. Costs, however, 

dominate the construction options. Hence, possible construction techniques are defined by channel 

flow scale, precision, reliability, and material selection. Naturally, as the reactor scale becomes 

smaller and precision requirements higher, the costs tend to increase as well. An accepted approach 

when constructing microreactors out of metals, ceramics, or plastics is using lithography, 

electroplating, and molding (LIGA). LIGA is a three step process by which a laser, electron beam, ion 

beam, UV-ray lithography, or X-ray lithography is used to print microstructures. Then, 

electroforming is used to generate a metal layer onto the microstructure. This metal structure can 

be used as a mold or embossing tool for mass manufacture (Ehrfeld et al., 2000; Hruby, 2002; 

Wirth, 2008). The available construction techniques are summarized in Figure 8.10. Ehrfeld et al. 

(2000) and Wirth (2008) are good and recent sources for the current construction techniques and 

their applications. 
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Figure 8.10: Microreactor construction techniques (Ehrfeld et al., 2000). 

Mixing in microreactors is almost exclusively assumed to be laminar due to the small flow 

channel width. Laminar flow through microchannels requires the phase flow to be alternated in 

some fashion in order to create the mixing environment. This operation is important because mass 

transfer, in this case, is driven only by molecular diffusion. Hence, the creation of larger gas-liquid 

interfaces is the only practical course of action for gas limited operations. Miniaturized bubble 

columns are able to accomplish this task well. For example, a standard reactor can create interfacial 

areas in the range of 2000 m2/m3 while a single channel micro bubble column and micro bubble 

column with channel arrays can create interfacial areas of 1,700-25,300 and 5,100-16,600 m2/m3, 

respectively (Ehrfeld et al., 2000). 

Unfortunately, the extreme numbers are somewhat misleading. In order to properly understand 

their context for biological application, an understanding of micro bubble column flow regimes is 

necessary. Bubble velocity in microreactors is defined by a gas space velocity. This velocity is 
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similar to the superficial gas velocity, but it tends to be slower due to very significant wall effects. 

So, the gas space velocity is approximated using a sample bubble velocity. 

Bubbles in micro bubble columns are observed to be separated by a liquid film from the wall at 

almost all gas space velocities. At low gas space velocities, the micro bubble column experiences 

bubbly flow. The bubbly flow is defined by microbubbles, which are spherical and as large as the 

channel diameter. Since bubbles this size are highly unstable without surfactants, the gas space 

velocity has to be low enough to allow enough space between bubbles in order to prevent 

coalescing. 

As the gas space velocity is increased, bubbles tend to coalesce and a slug flow regime develops. 

The slug flow regime is defined by bubbles that are longer than the channel diameter and are still 

separated by some amount of liquid. Increasing the gas space velocity leads to the slugs coalescing 

even further, and a slug-annular flow regime is observed. The slug-annular regime experiences very 

long bubbles, which are separated by a very small amount of liquid. Increasing the gas space 

velocity more combines the elongated bubbles into an annular gas flow (annular flow regime). 

The extreme interfacial values are experienced by the latter two regimes and are most likely 

useless for biological applications. The channel diameters are very small to begin with, and the 

liquid film that develops in the slug, slug-annular, and annular flow regimes is not sufficient to 

support microorganisms. In order to have microorganisms survive in micro bubble columns, the 

reactor would almost certainly have to be operated in the bubbly regime, which experiences 

interfacial areas of 1,700-5,100 m2/m3. Lower values are observed with micro bubble columns with 

a diameter of 1,100 µm while the larger values are experienced with a channel diameter of 

approximately 300 µm (Ehrfeld et al., 2000). Even though these values are higher than those for 

standard equipment, the advantage for micro bubble columns is not astronomical, and competition 

and performance are likely to be more comparable and competitive. 
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Although micro bubble columns are popular, other microreactor mixing methods exist, such as 

the falling film principle. In such a system, the liquid phase would be input into the microreactor’s 

reaction chamber from the top while the gas phase input is at the bottom. The principle is very 

similar to the annular flow regime in the micro bubble columns. The liquid would line the reactor 

walls while the gas phase would move through the annular region. The difference with the falling 

film reactor is that the liquid is fed at a rate and way that it would guarantee flow only at the wall 

region and would prevent the liquid phase from mixing into the gas phase (Zhang et al., 2009). 

In addition to the micro bubble column and falling film microreactor, several other theoretical 

schemes exist in order to achieve proper mixing conditions of two phases. The simplest mechanism 

is defined by the phases entering a tee intersection either as single streams, shown in Figure 8.11a, 

or numerous substreams, shown in Figure 8.11d. Control over the mixing is provided by the phase 

flow rates. A more energetic method is to collide high energy (velocity) streams in order to create 

large interfacial areas due to atomization or spraying (Figure 8.11b). This method is most likely not 

useful for biological applications as it would most likely damage the microorganisms. It could, 

however, be used as a phase premixer for semi-suspended microorganisms. One of the phases could 

also be broken down into substreams, which are then injected into a larger stream of the other 

phase (Figure 8.11c). For example, gas could be injected into a liquid stream in order to generate 

bubbles with liquid intervals. 
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Figure 8.11: Micromixing arrangements: (a) substream contacting, (b) high energy substream 

contacting, (c) multiple substream injection into major stream, (d) multiple 
substream contacting, (e) flow restriction, (f) stream splitting, (g) forced mass 
transfer, and (h) periodic fluid injection (Löwe et al., 2000). 

An interesting method for mass transfer problems is to channel the phase flows into a 

constricted area, which would increase velocity and decrease the diffusion path (Figure 8.11e). 

Although useful in this regard, it could create problems in biological systems by either damaging 

the microorganisms or not allowing enough room for the microorganisms to pass through. A more 

popular approach is to use splitting arrays (Figure 8.11f). The phases would be mixed into a single 

stream and then continuously broken apart by alternating horizontal and vertical splitters, which 

get finer as the mixture moves along. Although this method is popular in the chemical industry, 

microorganism growth would most likely cause blockage. Naturally, these methods can be 

combined into a single, more complex device. These mixing schemes have been applied to liquid-
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liquid contacting problems, but only substream tee contacting and substream injection have been 

tested for gas-liquid problems (Ehrfeld et al., 2000). 

The natural cause for a lack of microreactor research in gas-liquid processes is that most 

miniaturized reactor research is concentrated on problems experienced in the chemical industry, 

specifically catalyzed liquid-liquid reactions. Gas-liquid and especially biological reactions have not 

been widely attempted since the field of microreactor engineering is emerging to fulfill the highest 

margin needs first. Biological applications are still being mastered with standardized equipment, 

and economic viability using microreactors seems to be some distance away. Another issue is that 

much of the work is still not published. For example, Ehrfeld et al. (2000) includes numerous 

unpublished reports and correspondences, such as the interfacial areas data. The same information 

for standard reactors, on the other hand, is easily obtained across different print media. 

8.3.2 Nanoreactors 

A differentiation between nanoscaled and microscaled miniaturized reactors is necessary 

because the naming convention is not universally applied. Nanoscaled reactors were introduced in 

the late 90s and are a possible microreactor alternatives for the chemical industry (Ostafin and 

Landfester, 2009). An example of a nanoreactor in nature is the mitochondrion, which is the energy 

producing portion in most complex cells. Nanoreactors are more accurately described as molecular 

reactors, and the reactor volume is defined by the number of molecules confined within the reactor 

rather than a standard volumetric measurement. Nanoreactor’s biological applications, however, 

will most likely stay very limited. The nanoreactor has some critical faults and problematic 

characteristics for biological application. The first and largest problem is that the channel size is too 

small for most microorganisms of interest, such as bacteria. Nanoreactors are on usually on the 

nanometer scale while smaller bacteria are in the micrometer scale. Hence, no additional discussion 

on nanoreactors will be presented. 
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8.4 Membrane Reactor 

Some products or intermediaries in biological processes are highly shear sensitive. Standard 

reactors may not be able to protect the microorganisms sufficiently. Membrane reactors allow for 

semi-suspension of cells by placing the cellular material within or between (semi)permeable 

membranes. Membranes are not novel ideas for the chemical industry for which membranes have 

$9 billion in component sales in 2006 (Nunes and Peinemann, 2006), but their biological 

application is novel. The chemical industry, however, has used membrane technology for 

experiments since the 1920s and for industrial applications since the 1960s while the membrane 

bioreactor concept has been first defined in the literature in 1979 (Hall et al., 2001; Nunes and 

Peinemann, 2006). It should be noted that permeation and membrane concepts were first 

scientifically described in 1748 (Baker, 2004). 

The initial membrane bioreactors cross-flowed the liquid phase through the membrane, which 

increased energy costs significantly. Currently viable membrane bioprocesses submerged the 

membrane in the liquid phase whereby the liquid flows parallel to the membrane matrices. This 

creates low pressure drops and makes the economic viability a reality. Current membrane reactors 

also tend to vary the volumetric membrane amount or carrier particles at 60-70% (Leiknes and 

Odegaard, 2007). 

Membranes allow the gas phase to transfer to the microorganisms without exposing the 

microorganisms to the bubble interface or other potentially high shear areas. This allows high cell 

densities which, in turn, allows for higher conversion effectiveness (Ko et al., 2008). The membrane 

may also allow the product to permeate away to a collection area. Since the microorganisms have 

little exposure to bubbles and the gas has to travel through the membrane, the membrane reactor 

allows for relatively small amount of gas-liquid mass transfer to occur and almost any other reactor 

types outperform it on that measure. Unfortunately, some microorganisms, such as animal cells, are 
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so shear sensitive that they are able to survive only in a membrane protected environment 

(Bellgardt, 2000). 

The most significant disadvantages of membrane bioreactors is that they are very costly to 

construct and maintain, and their long-term viability is yet to be proven (Dudukovic, 1999; Kumar 

et al., 2008). For example, microporous membranes have to be replaced every 3 years, which leads 

to operating and maintenance costs that are approximately 10 times higher than with a 

conventional gas treatment options (Kumar et al., 2008). Long-term viability is an issue because the 

current membrane technology has permeate mass fluxes which are an order of magnitude too small 

to be competitive on volumetric productivity basis. Furthermore, membranes provide an additional 

heat transfer barrier, which introduces temperature control issues that are generally not present in 

standard reactor designs (Dudukovic, 1999). 

Mass transfer through a membrane occurs at several steps, which differentiate it from mass 

transfer in standard reactors. The first two processes are very similar. First, the gas is injected into 

the reactors volume. Then, the gas is transported into the liquid phase. This is usually accomplished 

by molecular diffusion. The mixing is not turbulent enough for bubble interface excitement. The 

diffused gas phase transports through the membrane, which adds a significant mass transfer 

barrier. Membrane transportation is a two part process whereby the gas phase is first absorbed by 

the membrane and then diffuses through the membrane. This process may lead to separation of the 

transfer material, which is an advantageous property of membranes for specific product removal. 

For example, this property would allow separate gas phases to enter the biofilm at different rates or 

would allow for protein separation (Gottschalk, 2008) or filtration (Ko et al., 2008). Hence, 

membrane reactors can be split into permselective and nonpermselective categories (Dudukovic, 

1999). 
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The dissolved gas phase then has to diffuse through the biofilm, and the reaction is allowed to 

occur. The biofilm is usually attached to the membrane rather than being allowed to float (Henstra 

et al., 2007). Additional problems are created because any byproducts, which may be toxic if they 

are allowed to concentrate, have to leave the reactor through the same manner. In other words, 

microbial operation may have significant effects on the gas phase concentrations (gas-liquid mass 

transfer driving force), which could become an additional restriction on total gas-liquid mass 

transfer (Kumar et al., 2008). 

Membranes can be classified by either geometry (symmetrical or anisotropic) or construction 

(dense, porous, or composite). Membrane selection becomes the main design criterion for a 

membrane bioreactor. The membrane can be very dense and complex, which would allow for a high 

degree of selectivity while microporous materials would allow gas, regardless of identity, to 

permeate easier. Composite membranes have been developed, which attempt to allow the gas 

phase to permeate easily while allowing a high degree of selectivity. Biological applications make 

extensive use of microporous membranes, and some attempts have been made to incorporate 

composite membranes. The most commonly encountered problem with microporous membranes is 

that they easily plug, which leads to even higher maintenance costs (Kumar et al., 2008). In such a 

case, the operation becomes limited by the net material accumulation at or within the membrane. 

This accumulation can be controlled if the fouling is reversible by backwashing; however, some 

fouling is irreversible and requires chemical treatment, which would force the membrane 

bioreactor to be shut down and then restarted after the cleaning procedure (Leiknes and Odegaard, 

2007). 

Hence, issues have led the membrane bioreactor to be a perfect choice for a select few 

problems. Interestingly, even with its advantages for those shear sensitive microorganisms, their 

industrial viability and application has yet to be proven. In practical terms, membrane bioreactors 

have to compete with fixed bed bioreactors, hybrid systems (fixed bed incorporated into an airlift), 
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bubble columns, and airlift reactors, all of which are able to provide much higher gas-liquid mass 

transfer rates. In other words, production could be optimized within an environment that is less 

friendly than the membrane bioreactor simply because the higher productivity due to higher 

amounts of gas-liquid mass transfer could offset the productivity losses due to microorganism 

shear damage. More information on membrane technology for chemical and biological applications 

can be found in Baker (2004), Nunes and Peinemann (2006), and Peinemann and Nunes (2008a, 

2009b). 

8.5 Summary 

Novel bioreactors can be represented by many different designs and variations, but the most 

novel and promising approach may turn out to be miniaturized reactors. Novel mechanical or 

bubble-induced flow designs are not trend setters nor do they solve many of the scaleup and gas-

liquid mass transfer problems. Miniaturized reactors, however, could decrease process design and 

implementation significantly. The numbering-up scaleup method for these reactors reduces the 

time and amount of work necessary for scaleup to simply figuring the process out for the one 

experimental unit. The rest of the work is spent on the industrial and economics problems rather 

than hydrodynamic. 
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9 Figures of Merit 

Figures of merit are quantities that are used to compare reactor performance across all reactor 

types or just the different designs of stirred tank bioreactors. This section summerizes some reactor 

specific figures of merit and problems which have prevented meaningful and significant figures of 

merit being developed as well as some possibilities that could be considered for further research. 

The figures of merit are also oriented towards stirred tank reactors, bubble columns, and airlift 

reactors since these are the most common gas-liquid and gas-liquid-solid bioreactors. Fixed bed 

reactors use a much smaller gas and liquid flow rate so that they are not able to compete with the 

other reactors unless the microorganisms have to be suspended or otherwise protected. 

Figures of merit for stirred tank reactors are especially difficult because of the wide variety of 

equipment and arrangements used and the high degree of phase interaction complexity. Although 

the impeller is always used for gas breakup, mixing, and dispersion, the effects of different 

impellers, setups, inputs, or microorganisms make universal conclusions on hydrodynamics almost 

impossible. The varieties of microorganisms also make predictions on production or conversion 

very difficult. Furthermore, a practical model describing conditions for stirred tank reactors across 

wide operational ranges and scales is currently unavailable. Since this underlying information is not 

available, a figure of merit, which is applicable across a wide variety of designs, control variables, 

inputs, and microorganisms, is also not easily within reach and rarely addressed in available 

research. 

The task, however, is not impossible. A practical representation of the mass transfer 

performance is L

G

L

k a

P
V

. It represents the mass transfer rate per unit power input. This figure of merit 

does not attempt to predict output or conversion, but that outcome is implied if the process is still 

gas-liquid mass transfer limited. If other microorganisms’ performance measures are important, a 
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time dependent representation of output in terms of systems size (units of 
−

Mass

Liter Hour
) can be 

used. Its downfall is that design or control variables are not accounted for, but it can still be used in 

tandem with the previous mass transfer based figure of merit or as a long-term assessment tool. 

These same measures have not been extended to the different reactors designs, but they 

certainly could be. A few fundamental issues exist. The first arises from the fact that variable costs 

differ significantly between the reactor designs. For example, the stirred tank reactor power draw 

increases to the fifth power with the impeller diameter and third power with the impeller speed. 

Hence, increasing the scale of a stirred tank reactor increases the power usage at a fast pace. At the 

same time, larger mechanical systems, such as the motor and gear systems, may require more or 

more expensive maintenance. These properties ultimately lead to the operational cost growing 

faster than with the bubble column or airlift reactor; however, the stirred tank reactor may be able 

to produce smaller bubbles if it is properly designed and setup. As scale increases, a theoretical 

inflection point would exist at which the stirred tank reactor advantages are outstripped by the 

power usage and the bubble column or airlift reactor become a superior economic alternative. This 

inflection point has not been studied, and such comparisons between stirred tank reactor, bubble 

column, and/or airlift reactors are very rare. So, such a study could produce a map that could be 

microorganism specific, which shows the prefered reactor for a given scale and gas or liquid flow 

rate(s). Many variations and variables would not be accounted for, but a process specific guide 

could be developed. 

A second issue with figures of merit is more of a derived problem. The scaleup procedure for 

any given reactor design is highly variable. The stirred tank reactor alone has numerous 

alternatives such as constant power density, impeller velocity, impeller tip speed, or a 

variation/combination of these variables. Bubble column scaleup might be even harder since the 

gas and liquid hydrodynamics are not easily controlled or predicted. The airlift reactor scaleup is 
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perhaps easier due to the more controlled gas and liquid flow patterns. Regardless, the scaleup for 

each reactor design varies significantly, and, more importantly, the reactors do not have a standard, 

optimal, or commonly applied and agreed upon scaleup procedure. For example, bubble columns 

have to be scaled up by increasing the experimental reactor by a factor of 5-10 for each iteration. By 

approximately 300 L, the reactor is supposed to be scale independent and a pilot plant can be 

seriously considered. The airlift reactors seem to show this property at a much earlier point, 32 L 

(see Figure 6.17). The stirred tank reactor, on the other hand, may never lose its scale dependence 

(after accounting for the power usage). In other words, comparison of industrial bubble columns 

and airlift reactors could be well defined, but the experimental and pilot scaled reactors may not be. 

Since most research is done with experimental (small) reactors, figures of merit are often not 

attempted. 

It is clear that a defined winner among the reactor designs does not exist. More importantly, the 

reactors may not be interchangable and design competition is not clearly defined. The previously 

discussed issues shed light on the lack of interchangability. The specific project or process helps to 

further explain the lack of figures of merit in published research. Many of the reactor applications 

are process or project specific. Without having an idea of the microorganism requirements or its 

influence on the liquid properties over time, it may be difficult to predict which reactor would be 

better without experience. At best, some reactors could be ruled out. 

An example of the problem difficulty can be simulated by assuming economic product qualities. 

Let’s assume that the product of interest is highly valuable and that its quality impacts the earned 

price significantly. The reactor for such a product should be chosen on the its ability to consistently 

produce the same product quality. In other words, the reactor design, which accomplish this task, 

can get away with costing more (feed, maintenance cost, variable cost, capital cost, etc.) on an 

annualized output basis. Specifically, it can cost more on a marginal or variable basis since the 

marginal product price would be able to at least cover those expenses. Such a product also implies a 
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certain degree of pricing power on the part of the producer. An example of such production is often 

encountered with patented products (proteins, antibiotics, medicines,etc.). Such a producer may be 

perfectly happy employing stirred rank reactors regardless of scale. 

A commoditized product, on the other hand, requires the marginal product cost be optimize 

using whatever method works. The producer does not have significant pricing power. If the cost of 

capital is low or the economies of scale large, the reactor of choice may be quite complicated and 

the facility may be very large such as many refinaries in the United States. If the cost of capital is 

high, input prices variable, and the price risks not easily accounted for, producers may be interested 

in smaller facilities with a smaller initial investment and higher variable cost such as many of the 

early ethanol facilities. The reactor choice becomes dependent on preference, economic 

resourcefulness, and a reflection of the producer’s risk appetite. The reactor selection for such a 

producer becomes much more important. It should be noted that competitive markets theory calls 

for commodity producers to optimize the marginal cost rather than the average. 

Some figures of merit, however, could be defined without accounting for the economic impact 

and trying to judge a reactor’s efficiency and feasibility for a given process. The scale of interest for 

such figures of merit would not be industrial. By the time a process reaches even the pilot stage, the 

designer has to start considering the economic impact, and the economic decisions become more 

and more important. The efficiency and feasibility of production has to be decided early in the 

experimental and scaleup portion of the project. Hence, figures of merit are going to be highly 

dependent on the reactor scaleup procedures and knowledge thereof. So, more research would 

need to be directed into producing a unified or at least more uniform scaleup procedure set in 

order to predict and compare the potential output gains between the reactors. 

Cost analysis is usually implemented based on a previous project which used similar 

components. A size ratio is introduced to relate the base design to the current one. A scaling factor 

is used to properly represent the equipment relative to its scale basis. The scale basis is determined 
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by the type of equipment and process and commonly includes flow, volume, area, power, etc. An 

installation multiplier is introduced which is based on the material cost and type of equipment. This 

factor hopes to account for the necessary machining, design, and installation costs. For example, a 

carbon steel agitator has a multiplier of 1.3 while a stainless steel version has one of 1.2. If different 

equipment has a higher design and installation cost, such as heat exchangers, they carry a higher 

multiple (2.1 in this case) (Aden et al., 2002; Wooley et al., 1999). 

In order to account for inflation in the monetary supply and fluctuations in equipment costs due 

to technology and commodity prices, an equipment index, such as the Chemical Engineering 

Purchased Equipment Index (CE Index), is used. This index in particular is popular because 

bioreactors are completely based on chemical reactor principles such that the index properly 

reflects fluctuations for bioreactor equipment. Proper usage should project prices to the year when 

purchasing decisions and commitments are to be made. A formula for the practice can be 

summarized by (Aden et al., 2002; Wooley et al., 1999): 

 

ScalingExp
Base CEIndexBase

Cost=InstalledBaseCost* *InstallationFactor*
Current CEIndexCurrent

   
   
     (4.15) 

Equation (4.15) assumes economies of scale, which is only true for relatively cheap materials 

such as mild steal. If the material is more expansive, this relationship breaks down. For medium 

material costs (~$10/kg), a breakeven point (diminishing returns) develops such that larger 

reactors prove too costly in terms of capital, but smaller reactors are too energy intensive such that 

the variable costs are higher. As the material becomes more expensive, the breakeven point shifts 

towards a smaller scale. The opposite is true for cheaper material costs. Capital and input (labor, 

electricity, or feed) costs also induce similar behavior. As the cost of capital increases, operators 

prefer smaller scales such that continued operation is used to pay for variable costs which occur 

during the same period (may be offset due to payment arrangements). Therefore, lower capital and 

input costs induce larger scales (Patwardhan and Joshi, 1999). 
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Economies of scale also explain industrial practices for processes which turn from low viscosity 

Newtonian to viscous and/or non-Newtonian liquids. If feed costs are reduced, the process is more 

likely to yield a positive return with scale (Ogut and Hatch, 1988) even though the amount of 

unused volume and discarded feed would increase as well. The rate of diminishing returns would 

be dependent on product price(s), material costs, and other input costs (electricity, labor) such that 

the operator may be inclined to halt operation (Ogut and Hatch, 1988) once the power draw 

becomes economically unbearable. On the other hand, if input costs are too high, the reactor design 

would require maximum conversion and recycling, leading to diminishing returns such that the 

amount of equipment may limit the scale of operation. 

Equipment selection and recommendations are dependent on a proper cash flow analysis that 

includes costs and price shocks to inputs, capital costs (debt facilities, lines of credit), and products 

(Aden et al., 2002; Patwardhan and Joshi, 1999; Wooley et al., 1999). The ultimate goal hinges on 

investment criteria. Operation can be optimized to meet a certain level of output, maximize profit, 

maximize the return on equity/capital, or a combination of those which would depend on the 

investors and their priorities. 
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10 Concluding Remarks 

The interesting aspect of the reactor design developments has been that the different designs 

are more complementary than competitive in nature. For example, the stirred tank reactor is 

capable of producing small bubbles, but costs too much to operate at a large scale. The fix has been 

the bubble column. The bubble column has too much backmixing. The solution is the airlift reactor. 

If suspension is necessary, one can use a fixed bed reactor. Ultimately, these relationships may be a 

significant cause that research work rarely attempts to describe more than 2 reactor designs. In 

addition, any comparisons that are done have been accomplished at the experimental scale where 

the stirred tank reactor weaknesses are not as apparent. 

For gas-liquid mass transfer purposes, the stirred tank reactor ranks better than the bubble 

column or airlift reactor, and the bubble column outperforms the airlift reactor most of the time. 

The fixed bed reactors cannot compete unless the microorganisms or biological material is highly 

shear sensitive. On a cost basis, the bubble column is the cheapest followed by the airlift reactor. 

The stirred tank reactors have a high power costs associated with impeller scaling while the fixed 

bed reactors tend to have significant pressure drops and packing and maintenance costs. On the 

other hand, the airlift reactor is the easiest to scale based on hydrodynamics. The bubble column is 

harder to scale effectively while the stirred tank reactor has the largest variety of published scaleup 

procedures. These procedures also tend to have variable success as defined by the process and 

depend on the reference and final scale. 

The ultimate success of the reactor will depend on the comfort and wellbeing of the 

microorganisms in the bioreactor. In addition to gas-liquid mass transfer, the bioreactor also has to 

provide efficient mixing, a friendly shear environment, and proper pressure and temperature 

controls so that the microorganism output can be optimized. Hence, bioreactor design can have 

significant variation depending on the microorganism employed by the process. 
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The information that is available for the different reactor designs provides a good 

understanding of each reactor operation, construction, advantages, and disadvantages. These 

aspects have been summerized qualitatively in Table 10.1 for each reactor design. A summary of 

some of the less common or novel reactor options is presented in Table 10.2. 

 

Airlift Reactor 
(ALR)

Modified BC with a channel for up- and downflow. 
Driving force is supplied by a density difference between 
these sections. More control than BC. Two major variants.

Flow defined by reactor design; 
Minimum fluid level; 
Modifications possible leading to 
further improvements

Stirred Tank 
Reactor (STR)

Mechanically agitated and mixed vessel with flow 
dependent on impeller design. High power consumption. -- - +++ ++ +

High shear gradients; Ideally 
mixed; Limited economical 
operating range

Slurry Bubble 
Column (SBC)

G-L-S or G-S Bubble Column. The G-S SBC has analogous 
hydrodynamic behavior as the G-S Bubbling FBR. +++ ++ + +++ ---

Table 10.1: Reactor comparison.

Internal Loop 
Airlift Reactor 
(ILALR)

External Loop 
Airlift Reactor 
(ELALR)

ELALR has distinct conduits for fluid flow which are 
connected at the base and gas separator sections.

ILALR has an internal flow separator creating channels 
for up- and downflow. ++
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Packed-Bed 
Reactors

Reactor in which liquid flows over immobilized solid 
material also known as packing material. Solids cannot 
be present in input or product.

Trickle-Bed 
Reactor 
(TBR)

Liquid is sprayed over packing with product extraction at 
the bottom of the reactor. +

Packed-
Bubble 
Column (PBC)

Packed BC.

Fluidized Bed 
Reactor (FBR)

BC variant that can also be operated in G-S mode.

ALR variant.

Bubbling

Circulating

Reactor in which the solid phase is suspended in 
medium.

++

Liquid flow is negligible

Many variants available; Usually 
operated as gas-solid system.
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Brief DescriptionReactor Type

Bubble Column 
(BC)

Column reactor in which the medium is aerated and 
mixed by gas introduced at its base. ++ ++ ---

Lack of control; High shear 
gradients; Reactor of choice for 
gas conversion; No moving parts

G
as

-L
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d

Large units possible; Usually 
countercurrent configuration 
which is limited by flooding

Limited flow control

Even more control and design 
flexibility; Better hydrodynamics 
than ILALR
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Table 10.2: Summary of less important and novel reactors.

Large interfacial areas allowing high 
mass and heat transfer; Not 
applicable to most organic 
substances

Liquid is channeled by plates (such as a muffler) and run countercurrently with the gas 
phase.  Able to handle large variations in flow rates and high pressures.

Two major variants: Bubble-cap and 
sieve plates

Cocurrent BC variant with pipelines or coils serving as guidelines. Very similar to heat 
exchanger.

Baffled tower separating the reactor into different sections being mixed by upward 
flowing gas. Similar to Plate Columns.

FBR variant which uses a retaining mesh or grid to contain solids and allow a liquid-
only product.

FBR variant which uses top and bottom inlets to minimize gas logging (gas phase lifts 
solids to reactor surface)

Inverse FBR

Contained FBR

Double Entry FBR

Novelty:

Magnetically Stabilized 
FBR

Dually Injected 
Turbulent Separation 
FBR

Continuous Centrifugal 
Bioreactor

May not be suitable for three phase 
fermentation

Superior to ALR for aerobic 
wastewater treatment with certain 
cultures

FBR in which a magnetic field is used to stabilize magnetic particles in the fluidized 
bed.

FBR variant in which large and small particles are injected separately allowing for 
separate residence times.

FBR variant in which cells are fluidized using centrifugal forces. Allows high density 
cell cultivation.

FBR variant in which low density particles with a biofilm are used. The biofilm causes 
a change in its thickness over time causing the bed to growing downward.

Reactor size and cost is minimized

Vertical reactor with liquid phase entering at the top and flowing along its wall with gas 
flowing through its core.

Torus Reactor
Mechanically agitated loop reactor. Lower power consumption, better mixing, and good 
heat transfer capacity than STR.

Many variants based on different 
cross-sectional shapes

Blenke-Cascade Reactor

G-L-S or G-L reactor in which liquid is diffused through a membrane and converted by 
the biofilm, which is attached to the membrane, to the final product. Biofouling or 
clogging is possible. High construction and operating cost.

Four membrane types: 
Microporous, porous, dense, and 
composite.

Liquid or liquid-solid mixture can 
be operated co- or countercurrently

Jet Reactors

Membrane Reactor

Plate Columns

Tube Reactors

Spray Towers/Column

Wetted Wall Reactor

horizontal, vertical, or coiled; 
variety of flow regimes

Description Comments

Others:

Usually treated as a Gas-Liquid reactor. Liquid is sprayed countercurrently to gas flow. 
Used for corrosive and liquids containing substantial amount of solid materials.

Higher energy usage and capital 
investment

Reactor in which the liquid (submerged-jet reactor) or gas (ejector reactor) is 
introduced at a high velocity. Another variant, the venturi scrubber reactor, injects 
liquid into a high velocity gas stream causing the liquid to atomize.
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Nomenclature 

a Gas-liquid interfacial area (per unit liquid volume) (m2 m-3) 

ae Effective surface area (per unit liquid volume) (m2 m-3) 

as Surface area of a single element (m2) 

A Constant (-) 

Ad Downcomer cross-sectional area (m2) 

Ar Riser cross-sectional area (m2) 

B Constant (-) 

BW Baffle width  (m) 

b1 Constant (-) 

b2 Constant (-) 

C Experimental constant (-) 

CB Experimental constant (-) 

Ci Impeller clearance  (m) 

CL Experimental constant (-) 

cs Solid concentration (kg m-3) 

C2 Constant (-) 

Di Impeller diameter  (m) 

dB Average bubble diameter  (m) 

dd Downcomer (hydraulic) diameter (m) 

ddisc Disc diameter of the disc column (m) 

dD Draught tube diameter (m) 

Dd Gas distributor diameter (m) 

dh Hydraulic diameter of the packing (m) 

DL Liquid diffusivity (m2 s-1) 
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dSm Sauter mean bubble diameter  (m) 

dp Average particle diameter (m) 

dP Packing diameter (m) 

dr Riser diameter (m) 

dR Reactor diameter (m) 

DR Bubble column diameter (m) 

DT Tank diameter  (m) 

d0 Diameter of sparger orifice (m) 

e Constant (-) 

F Constant (-) 

Ff Coefficient of form (-) 

g Gravitational acceleration (m s-2) 

H Liquid height (m) 

Hb Liquid height with bubbling (m) 

hc Downcomer clearance height (m) 

hDC Critical downcomer sparger distance (m) 

hP Packing height (m) 

hR Effective reactor height (m) 

H0 Liquid height without bubbling (m) 

I Ion strength (g-ion L-1) 

K Constant (-) 

kG Gas-phase mass transfer coefficient (m s-1) 

kL Liquid-phase mass transfer coefficient (m s-1) 

kLa Gas-liquid mass transfer coefficient  (s-1) 

Lc Tube connector length (-) 
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LD Draught tube length (-) 

Lh Reactor height; used by Choi (2001) (-) 

Lm Liquid mass superficial velocity (kmol m-2 s-1) 

n Constant (-) 

N Impeller speed  (rev min-1) 

NA Avogadro’s constant (mol-1) 

NCD Impeller speed required for complete dispersion  (rev min-1) 

NCSA Critical impeller speed for surface aeration  (rev min-1) 

NF Flooded regime impeller speed  (rev min-1) 

NR Gross recirculation regime impeller speed  (rev min-1) 

N0 Constant (-) 

P Pressure (MPa) 

P0 Ungassed impeller power draw  (W) 

Pg Gassed impeller power draw  (W) 

Psat Saturation pressure (MPa) 

Pv Energy dissipation rate (kW m-3) 

QG Volumetric gas flow rate  (m3 s-1) 

R Universal gas constant (kJ K-1 kmol-1) 

RA Gas distributor open area ratio (-) 

rU Radius of the gas particle (m) 

s Thickness of the sloped metal sheet (m) 

T Temperature (°C) 

tc Circulation time (s) 

tP Thickness of the expanded metal sheets (m) 

Ub Bubble terminal velocity (m s-1) 
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UG Superficial gas velocity (m s-1) 

UGr Riser superficial gas velocity (m s-1) 

UL Superficial liquid velocity (m s-1) 

ULc Liquid circulation velocity (m s-1) 

ULl Peripheral liquid flow rate (kg m-1 s-1) 

ULr Riser superficial liquid velocity (m s-1) 

ULs Liquid velocity in the separator (m s-1) 

UP Superficial velocity losses to the surroundings (m s-1) 

UR Bubble rise velocity (m s-1) 

UsG Average slip velocity (m s-1) 

Ut Terminal bubble velocity (m s-1) 

Utrans Superficial gas velocity at which flow transitions out of the homogeneous flow regime 

into the transition flow regime (m s-1) 

U0 Gas velocity in the sparger orifice (m s-1) 

U∞ Terminal rise velocity (m s-1) 

VL(0) Center-line liquid velocity; used by Zehner (1989) (m s-1) 

vvm Gas volume per liquid volume per minute (m3 m-3 min-1) 

W Impeller blade width  (m) 

WL Found in Kantarci et al. (2005); not defined (-) 

Ws Found in Kantarci et al. (2005); not defined (-) 

x Constant (-) 

xc Circulation path (m) 
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Abbreviations 

ALR Airlift Reactor 

A-310 Lightnin A-310 axial flow impeller (hydrofoil) 

A-315 Lightnin A-315 axial flow impeller (hydrofoil) 

BC Bubble column 

BT-6 Concave blade disc turbine (radial flow impeller) 

Carbopol Carboxypolymethylene 

CMC Carboxymethylcellulose 

CS Cylindrical sintered sparger 

DT-ILALR Draught tube airlift reactor 

ELALR External-loop airlift reactor 

FBR Flooded-bed reactor 

FP Fixed packing 

ILALR Internal-loop airlift reactor 

NS Narcissus impeller (radial flow impeller) 

PBT Pitched blade disc turbine 

PBD Down-pumping pitched blade turbine 

PBR Packed bed reactor 

PBU Up-pumping pitched blade turbine 

PP Perforated plate or tube 

PS (Perforated) Plane sparger (as cited by Merchuk et al. (1998)) 
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RP Random packing 

RT Rushton-type impeller (radial flow impeller) 

STR Stirred tank reactor 

TBR Trickle bed reactor 

TX Techmix 335 (axial flow impeller) 

TXD Down-pumping Techmix 335 

TXU Up-pumping Techmix 335 

Greek Symbols 

α Constant and parameter used by Zehner (1989) (-) 

β Constant (-) 

δ Modified film thickness, 
/

L

L g

µ
δ

ρ
 

=  
 

1 32

2
 (m) 

γ Shear rate (s-1) 

ε Bed void fraction (-) 

εb Baseline gas holdup, used by Salvacion et al. (1995) (-) 

εG Gas holdup (-) 

εGr Riser gas holdup (-) 

εGd Downcomer gas holdup (-) 

εL Liquid void fraction (-) 

εs Solid holdup (-) 

ε0 Gas holdup at atmospheric pressure, used by Kojima et al. (1997) (-) 
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λL Liquid thermal conductivity (W m-1 K-1) 

μ Liquid dynamic viscosity (Pa s) 

μa Apparent dynamic viscosity (Pa s) 

μG Gas dynamic viscosity (Pa s) 

μL Liquid dynamic viscosity (Pa s) 

μw Dynamic viscosity of tap water (Pa s) 

νL Liquid kinematic viscosity (m2 s-2) 

ρ Liquid density (kg m-3) 

ρG Gas density (kg m-3) 

ρL Liquid density (kg m-3) 

ρm Slurry density in the absence of gas (kg m-3) 

ρs Solids density (kg m-3) 

Δρ Phase density difference (kg m-3) 

σ Liquid phase surface tension (mN m-1 or dyn cm-1) 

σw Surface tension of tap water (mN m-1 or dyn cm-1) 

θθ Contact angle of wettability (deg) 

φs Volumetric solids fraction (-) 

Dimensionless numbers 

Bo Bond number, 
2

L R
gD

Bo
ρ
σ

=  

FlG Gas flow number, 
3

G

G

Q
Fl

ND
=  
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Fr Froude number, G

R

U
Fr

gD
=  

Ga Galileo number, 
3

2
R

L

gD
Ga

υ
=  

GaL Galileo number, 
2

3 2
L

L

L

g
Ga

a

ρ
µ

=  

GaLh Galileo number, 
3

2
P

Lh

L

gt
Ga

ν
=  

Gr Grashof number, 
3

2
Bs L

L

d g
Gr

ρ ρ
µ
∆

=  

Mo Morton number, 
4

3
L

L

g
Mo

µ
ρ σ

=  

Mo Modified Morton number, 
( )4

3

L

m

m

g
Mo

ξµ

ρ σ
=  where 

( ){ }0.58 0.22ln 4.6 5.7 sinh 0.71exp 5.8 ln 1
s s s

Moξ ε ε ε = − − +   

NPg Gassed power number, 
3 5
G

Pg

P
N

N Dρ
=  

Re Reynolds number, 
2ND

Re
ρ
µ

=  

ReL Liquid phase Reynolds number, L L R
L

L

U D
Re

ρ
µ

=  

ReLe Reynolds number, 
4

L

Le

e L

U
Re

aν
=  

ReP Reynolds number, used by Mena et al. (2005); defined in terms of particle diameter 

ReT Reynolds number, used by Kantarci et al. (2005); not defined 

Sc or ScL Schmidt number, L

L

Sc
D

ν
=  

Sh Sherwood number, usually L R

L

k ad
Sh

D
=  
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ShL Sherwood number, usually L P
L

L

k d
Sh

D
=  

We Weber number, 
2

L L R
U D

We
ρ

σ
=  
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