IOWA STATE UNIVERSITY Digital Repository

Graduate Theses and Dissertations

Graduate College

2011

A study on static pressure reset and instability in variable air volume HVAC systems

Brian Wayne Housholder *Iowa State University*

Follow this and additional works at: http://lib.dr.iastate.edu/etd Part of the <u>Mechanical Engineering Commons</u>

Recommended Citation

Housholder, Brian Wayne, "A study on static pressure reset and instability in variable air volume HVAC systems" (2011). *Graduate Theses and Dissertations*. 10427. http://lib.dr.iastate.edu/etd/10427

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

A study on static pressure reset and instability in variable air volume HVAC systems

By

Brian Housholder

A thesis submitted to the graduate faculty in partial fulfillment of the requirements for

the degree of

MASTER OF SCIENCE

Major: Mechanical Engineering

Program of Study Committee: Ron M. Nelson, Major Professor Gregory M. Maxwell Steven J. Hoff

Iowa State University

Ames, Iowa

2011

Copyright © Brian Housholder, 2011. All rights reserved

Table of Contents

LIST OF TABLES v
LIST OF FIGURES vi
ACKNOWLEDGEMENTS x
ABSTRACT xi
CHAPTER1: INTRODUCTION1
Background1
Literature Review2
Fan Energy Savings2
Control Strategies
Research Objectives7
CHAPTER 2: TEST PROCEDURE9
Test Facility9
Building Construction
Floor Construction
Test Room Wall Construction12
Roof Construction14
Internal Loading and Weather Station16
HVAC Systems
Test Room Air Handling Units21
Test Conditions
Control Strategies to be Tested28
Rogue Zone Strategies
Performance Criteria
Calculations
Summary
CHAPTER 3: ERS RESULTS
Similarity Tests
Test Series 243
Test Series 3
Test Series 4
Dropped Strategy Final Comments74
Test Series 574

CHAPTER 4: FIELD TESTING SETUP AND RESULTS	85
Field Test Setup	85
Implementation	87
Hardware	87
Software	89
Results	93
Weather	
Rogue Zones	
CHAPTER 5: SUMMARY AND FUTURE WORK	
Summary of Work	
Limitations	
Future Work	
Analysis	
New Strategies	
Strategy implementation	
Recommendations	
REFERENCES	
APPENDIX A: SIMILARITY TEST TABLES AND GRAPHS	
TEST 1.0	
TEST 2.0a	
TEST 2.0b	
TEST 3.0a	
TEST 3.0b	
TEST 4.0	141
TEST 5.0	148
APPENDIX B: TEST SERIES 2 RESULTS TABLES AND GRAPHS	155
TEST 2.1a	
TEST 2.1b	161
TEST 2.2a	
TEST 2.2b	
TEST 2.3a	
TEST 2.3b	
APPENDIX C: TEST SERIES 3 TABLES AND GRAPHS	
TEST 3.1	

TEST 3.2	
TEST 3.3	
TEST 3.4	
APPENDIX D: TEST SERIES 4 TABLES AND GRAPHS	
TEST 4.1a	
TEST 4.1b	
TEST 4.1c	
TEST 4.1d	239
TEST 4.2a	
TEST 4.2b	
TEST 4.3a	
TEST 4.3b	
TEST 4.4a	
TEST 4.4b	
APPENDIX E: TEST SERIES 5 TABLES AND GRAPHS	
TEST 5.5f	
TEST 5.5g	

LIST OF TABLES

TABLE 2.1: FENESTRATION THERMAL PROPERTIES, RECREATED FROM ERS (2010)	13
TABLE 2.2: LIGHT AND BASEBOARD HEATER MODE AND POWER OUTPUT, RECREATED FROM ERS (2010)	17
TABLE 2.3: OCCUPANCY SIMULATOR MODE AND POWER LEVEL, RECREATED FROM ERS (2010)	17
TABLE 2.4: TEST ROOM AHU DESIGN SPECIFICATIONS, RECREATED FROM ERS (2010)	21
TABLE 2.5: VAV BOX DESIGN SPECIFICATIONS, RECREATED FROM ERS (2010)	23
TABLE 3.1: SIMILARITY THRESHOLDS USED FOR DATA ANALYSIS	39
TABLE 3.2: RESULTS FROM THE INITIAL SIMILARITY TEST	40
TABLE 3.3: RESULTS FROM THE ARTIFICIAL LOAD SIMILARITY TEST	43
TABLE 3.4: COMPARISON OF CONTROL STRATEGY RESULTS FOR TEST SERIES 2	45
TABLE 3.5: COMPARISON OF CONTROL STRATEGY RESULTS FOR TEST SERIES 3	51
TABLE 3.6: RESULTS SUMMARY TABLE FOR TESTS USING STRATEGY 1, PI RESET OF STATIC PRESSURE SET POIN	IT
BASED ON MAXIMUM DAMPER POSITION	58
TABLE 3.7: RESULTS SUMMARY TABLE FOR TESTS EMPLOYING STRATEGY 2, TRIM AND RESPOND OF STATIC	
PRESSURE BASED ON MAXIMUM DAMPER POSITION	64
TABLE 3.8: RESULTS SUMMARY TABLE FOR TESTS USING STRATEGY 3, PI RESET OF FAN SPEED BASED ON	
MAXIMUM DAMPER POSITION	67
TABLE 3.9: RESULTS SUMMARY TABLE FOR TESTS USING STRATEGY 4, TRIM AND RESPOND OF STATIC PRESSU	JRE
SET POINT BASED ON THE NUMBER OF PRESSURE REQUESTS	70
TABLE 3.10: OSCILLATION RESULTS SUMMARY FOR INTERVAL TESTING	75
TABLE 3.11: RESULTS SUMMARY FOR ENERGY COMPARISONS BETWEEN STRATEGY 4, TIERED TRIM AND	
Respond, and a fixed pressure set point strategy	82
TABLE 4.1: EXECUTION DETAILS OF TR TEST STRATEGY	91
TABLE 4.2: TR PARAMETER VALUES	91
TABLE 4.3: RESULTS COMPARISON FOR THE HIXSON-LIED FIELD TEST.	93
Table 4.4: Local weather data averages, Temperature in $^{\circ}F$ and solar radiation in kcal/(hr*m ²)99

LIST OF FIGURES

FIGURE 2.1: ERS FLOOR PLAN, TAKEN FROM ERS (2010)	11
FIGURE 2.2 EXTERIOR WALL CENTER SECTION CROSS-SECTION, IMAGE TAKEN FROM ERS (2010)	15
FIGURE 2.3: HVAC MECHANICAL PLAN FOR AHUA AND AHUB, IMAGE TAKEN FROM ERS (2010)	20
FIGURE 2.4: MECHANICAL EQUIPMENT LOCATION, IMAGE TAKEN FROM ERS (2010)	22
FIGURE 2.5: INITIAL LOADING SCHEDULE CONSISTING OF THREE PHASES	24
FIGURE 2.6: INITIAL LOADING SCHEDULE WITH HIGH LOAD AND HIGH VARIABILITY	24
FIGURE 2.7: MODIFIED THREE PHASE LOADING SCHEDULE	25
FIGURE 2.8: MODIFIED INTERNAL ROOM LOADING SCHEDULE	26
FIGURE 2.9: EXTERIOR ROOM LOADING SCHEDULE FOR THE SECOND STAGE OF TEST 5	27
FIGURE 2.10: INTERIOR ROOM LOADING SCHEDULE FOR THE SECOND STAGE OF TEST 5	27
FIGURE 2.11: AN EXAMPLE OF OSCILLATION OBSERVED IN THIS EXPERIMENT	33
FIGURE 3.1 DUCT STATIC PRESSURE OVER TIME IN AHUA AND AHUB USING A SCHEDULED FIXED PRESSURE	
STRATEGY, NOTE THE DIFFERENCE IN NOISE AMPLITUDE BETWEEN THE TWO PLOTS	41
FIGURE 3.2: DETAIL OF OSCILLATION PRESENT WHEN EMPLOYING STRATEGY 1, PI RESET OF STATIC PRESSURE	
SET POINT BASED ON MAXIMUM DAMPER POSITION	46
FIGURE 3.3: DETAIL OF OSCILLATION PRESENT WHEN EMPLOYING STRATEGY 2, TRIM AND RESPOND STATIC	
PRESSURE SET POINT BASED ON MAXIMUM DAMPER POSITION	47
FIGURE 3.4: DETAIL OF OSCILLATION PRESENT WHEN EMPLOYING STRATEGY 3, PI RESET OF FAN SPEED BASED	1
UPON MAXIMUM DAMPER POSITION	48
FIGURE 3.5: STATIC PRESSURE PLOTS WHEN EMPLOYING A SCHEDULED FIXED PRESSURE STRATEGY ON AHUA	
(TOP) AND STRATEGY 1, PI RESET OF FAN SPEED BASED ON MAXIMUM DAMPER POSITION, ON AHUB	
(воттом)	52
FIGURE 3.6: STATIC PRESSURE PLOTS WHEN EMPLOYING A SCHEDULED FIXED PRESSURE STRATEGY ON AHUA	
(TOP) AND STRATEGY 2, TRIM AND RESPOND OF STATIC PRESSURE SET POINT BASED ON MAXIMUM	
DAMPER POSITION, ON AHUB (BOTTOM)	53

FIGURE 3.7: STATIC PRESSURE PLOTS WHEN EMPLOYING A SCHEDULED FIXED PRESSURE STRATEGY ON AHUA
(TOP) AND STRATEGY 3, PI RESET OF FAN SPEED BASED ON MAXIMUM DAMPER POSITION, ON AHUB
(воттом) 54
FIGURE 3.8: STATIC PRESSURE PLOTS WHEN EMPLOYING A SCHEDULED FIXED PRESSURE STRATEGY ON AHUA
(TOP) AND STRATEGY 4, TRIM AND RESPOND OF STATIC PRESSURE BASED ON PRESSURE REQUESTS, ON
АНUВ (воттом)
FIGURE 3.9: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 1, PI RESET OF STATIC PRESSURE SET POINT
BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S WITH SIMILAR OPERATING PARAMETERS AND A
MINIMUM STATIC PRESSURE OF 0.6 INCHES W.C
FIGURE 3.10: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 1, PI RESET OF STATIC PRESSURE SET POINT
BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S WITH SIMILAR OPERATING PARAMETERS AND A
MINIMUM STATIC PRESSURE OF 0.2 INCHES W.C
FIGURE 3.11: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 1, PI RESET OF STATIC PRESSURE BASED ON
maximum damper position, on both AHU's but with maximum damper position set to 80% on
AHUA and 70% on AHUB 61
FIGURE 3.12: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 1, PI RESET OF STATIC PRESSURE BASED ON
maximum damper position, on both AHU's but with the integral sum term limited to +/- 10
ON AHUA AND 0 ON AHUB63
FIGURE 3.13: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 2, TRIM AND RESPOND OF STATIC
pressure set point based on maximum damper position, on both AHU 's but with a 10%
REDUCTION IN MAXIMUM AND MINIMUM DESIRED DAMPER POSITIONS ON AHUB
FIGURE 3.14: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 2, TRIM AND RESPOND OF STATIC
PRESSURE SET POINT BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S BUT WITH A TRIM RATE OF
.005 ON AHUA AND .01 ON AHUB
FIGURE 3.15: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 3, PI RESET OF FAN SPEED BASED ON
MAXIMUM DAMPER POSITION, ON BOTH AHU'S BUT WITH THE MAXIMUM DESIRED DAMPER POSITION SET
TO 80% ON AHUA AND 70% ON AHUB

FIGURE 3.16: PRESSURE PLOTS WHEN EMPLOYING STRATEGY 3, PI RESET OF FAN SPEED BASED ON MAXIMUM
damper position, in both AHU's but with the integral sum term limited to +/- 10 in AHUA and
0 IN AHUB
FIGURE 3.17: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 4, TRIM AND RESPOND OF STATIC
PRESSURE SET POINT BASED ON STATIC PRESSURE REQUESTS, ON BOTH AHU'S BUT WITH A REDUCTION IN
DESIRED DAMPER POSITIONS OF 20% IN AHUA AND 10% IN AHUB72
FIGURE 3.18: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 4, TRIM AND RESPOND OF STATIC
PRESSURE SET POINT BASED ON STATIC PRESSURE REQUESTS, ON BOTH AHU'S BUT WITH TRIM RATES OF
.005 IN AHUA AND .007 IN AHUB
FIGURE 3.19: STATIC PRESSURE PLOTS WHEN USING STRATEGY 5, TIERED TRIM AND RESPOND OF STATIC
PRESSURE SET POINT BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S WITH THE RELATIVELY LOW
DEAD BAND
FIGURE 3.20: STATIC PRESSURE PLOTS WHEN USING STRATEGY 5, TIERED TRIM AND RESPOND OF STATIC
PRESSURE SET POINT BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S WITH THE RELATIVELY
HIGH DEAD BAND
HIGH DEAD BAND
FIGURE 3.21: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 4, TIERED TRIM AND RESPOND OF STATIC
FIGURE 3.21: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 4, TIERED TRIM AND RESPOND OF STATIC PRESSURE SET POINT BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S WITH A CALCULATION
FIGURE 3.21: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 4, TIERED TRIM AND RESPOND OF STATIC PRESSURE SET POINT BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S WITH A CALCULATION INTERVAL OF 3 MINUTES
FIGURE 3.21: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 4, TIERED TRIM AND RESPOND OF STATIC PRESSURE SET POINT BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S WITH A CALCULATION INTERVAL OF 3 MINUTES
 FIGURE 3.21: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 4, TIERED TRIM AND RESPOND OF STATIC PRESSURE SET POINT BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S WITH A CALCULATION INTERVAL OF 3 MINUTES
 FIGURE 3.21: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 4, TIERED TRIM AND RESPOND OF STATIC PRESSURE SET POINT BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S WITH A CALCULATION INTERVAL OF 3 MINUTES
 FIGURE 3.21: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 4, TIERED TRIM AND RESPOND OF STATIC PRESSURE SET POINT BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S WITH A CALCULATION INTERVAL OF 3 MINUTES
 FIGURE 3.21: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 4, TIERED TRIM AND RESPOND OF STATIC PRESSURE SET POINT BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S WITH A CALCULATION INTERVAL OF 3 MINUTES
Figure 3.21: Static pressure plots when employing Strategy 4, tiered Trim and Respond of Static pressure set point based on maximum damper position, on both AHU's with a calculation interval of 3 minutes
 FIGURE 3.21: STATIC PRESSURE PLOTS WHEN EMPLOYING STRATEGY 4, TIERED TRIM AND RESPOND OF STATIC PRESSURE SET POINT BASED ON MAXIMUM DAMPER POSITION, ON BOTH AHU'S WITH A CALCULATION INTERVAL OF 3 MINUTES

FIGURE 4.1: PHOTOGRAPH OF THE HIXSON-LIED ACADEMIC SUCCESS CENTER OBTAINED FROM THE ISU	
Facilities Planning and Management website	85
FIGURE 4.2: CURRENT TRANSDUCERS INSTALLED ON THE RETURN FAN POWER	88
FIGURE 4.3: STATIC PRESSURE PLOT WHEN TIERED TRIM AND RESPOND IS EMPLOYED IN HIXSON-LIED	95
FIGURE 4.4: STATIC PRESSURE PLOT WHEN FIXED PRESSURE STRATEGY IS EMPLOYED IN HIXSON-LIED	96
FIGURE 4.5: DETAIL STATIC PRESSURE PLOT WHEN TIERED TRIM AND RESPOND IS EMPLOYED IN HIXSON-LIED	97
FIGURE 4.6: DETAIL STATIC PRESSURE PLOT WHEN FIXED STATIC PRESSURE STRATEGY IS EMPLOYED IN HIXSON	1-
LIED	98

ACKNOWLEDGEMENTS

The author would like to express his gratitude to his mentor, Dr. Ron M. Nelson for his guidance, support, and patience; and thank committee members Dr. Steven Hoff and Dr. Gregory Maxwell for their support and participation.

The author would also like to thank the Iowa Energy Center for the financial support through their research grant IEC Grant 09-06. Deepest thanks are also expressed to Curtis Klaassen and Xiaohui Zhou at the Energy Resource Station for all of their hard work and helpful discussions, and to Clark Thompson, John Larson, and Stanley McAndrews of the Iowa State University Facilities Planning and Management department for their outstanding support and help in completing this project.

ABSTRACT

This project began with testing five different versions of supply duct static pressure reset strategies that fall into two general categories: Proportional plus Integral control loops, and Trim and Respond control strategies. The testing took place from July 2009 through January 2011 at the Energy Resource Station in Ankeny. During this time, these five experimental control strategies were modified and altered in order to achieve substantial energy savings without unwanted instability. In the end, only one strategy, tiered Trim and Respond, was able to perform as desired by saving energy without displaying unstable behavior or significantly impacting maintenance costs.

The final stage of this project saw the tiered Trim and Respond strategy implemented in the Hixson-Lied building on the Iowa State University campus. This field test resulted in no apparent unstable behavior and savings of 37% per week in fan energy savings alone.

CHAPTER1: INTRODUCTION

Background

For decades, people have been trying to reduce the operating costs of commercial buildings. One way to reduce operating costs is by reducing energy consumption. In commercial buildings, energy is used to heat and cool the building, run office equipment such as computer systems and printers, provide area lighting and hot water among others. Within the United States, commercial energy consumption accounts for approximately 19% of total U.S. energy consumption (U.S. DOE/EIA 2009) each year. Of the amount delivered to commercial buildings, over half (51%) is used to operate the HVAC system alone (U.S. DOE/EIA 2003). Reducing energy consumption within the HVAC system holds potential for significant reductions in operating costs in commercial buildings. One way of reducing energy consumption in HVAC systems is to improve the air distribution system control strategy to increase efficiency.

One common way to distribute air in an HVAC system is by use of a Variable Air Volume (VAV) fan. In a VAV system, the fan responds to zone load requirements by varying air volumetric flow rate. The volumetric flow rate is controlled by using a complex system of pressure sensors and damper positions. Typically, the fans in HVAC systems are chosen to cool a building under design conditions, such as the hottest day of the typical year. Under these conditions, the VAV system maintains a constant static pressure within the air supply duct that will keep the zone dampers near 90% open. When loads are less than the design maximum, the zone dampers close as less air volume is required to cool the zone. When this happens, the VAV fan reduces its speed in order to reduce the volumetric flow rate of air while still maintaining the fixed supply static pressure. This process reduces energy consumption in low demand conditions, but is still inefficient.

One way to save even more energy in VAV systems is to employ a strategy referred to as static pressure reset or air fan pressure reset. Under this process, as the zone load decreases and the zone dampers begin to close, the duct static pressure set point is reduced in order to maintain damper positions mostly open. Ideally, this strategy keeps maximum damper positions around 98-99% open at all times. This would ensure that the minimum fan pressure rise is used and every zone's demand is met by providing the required amount of airflow to cool the zone.

Unfortunately, employing energy saving strategies on commercial HVAC systems can be very difficult. There are many problems that can discourage the implementation of strategies such as static pressure reset. Some problems are the presence of unstable behaviors such as oscillation, the complexity of implementing some strategies, the abundance of transient effects present in complex HVAC systems, and the time consuming analysis required to select reliable performance parameters. With such difficulties present, energy saving control strategies are often overlooked in existing buildings. To combat this problem, the goal of this project is to investigate static pressure reset strategies and then to find operating parameters that both save energy and eliminate or minimize instability.

Literature Review

Fan Energy Savings

Fan energy can make up a significant portion of the energy used in commercial HVAC systems. The amount of power consumed by a fan is proportional to the product of

flow rate and pressure rise, both of which vary with fan speed. Fan power is proportional to the cube of fan speed. By reducing fan speed, energy can be saved in several ways. Not only does the slower fan speed reduce fan energy consumption, but it also leads to additional savings in other ways. Examples of these fringe benefits are reduced duct leakage due to lowered static pressure, reduced thermal load from cooling a smaller quantity of air, and a lesser heating effect from the fan's operation (Liu et. al, 2010). Of course these benefits are maximized when duct static pressure is reset when the system needs less cooling. Studies indicate that resetting static pressure can result in 30% to 50% fan energy savings (Taylor 2005).

Methods for saving fan energy can be as simple or as complicated as the operator desires. Simply scheduling fans to a reduced fixed static pressure during unoccupied times can save fan energy. Others choose to use advanced genetic algorithms to make HVAC systems operate more smoothly (Wang 2008). Others still incorporate many strategies together in an attempt to optimize performance while reducing energy consumption to the greatest extent possible (Murphy 2008).

Control Strategies

There are many different strategies to minimize HVAC energy consumption. These strategies can be as simple as scheduling events such as a decrease in duct static pressure or adjusting the heating and cooling temperature set points during unoccupied hours. Complex strategies can also be used that employ tools such as genetic algorithms to solve for ideal operating parameters and set points. The challenge inherent in implementing energy saving strategies is coming up with a strategy that is relatively simple to employ and requires minimal setup to operate effectively. Promising strategies for reducing duct static

3

pressure are the Proportional plus Integral (PI) control strategy and the Trim and Respond (TR) strategy. Among the literature, these two types of strategies emerged as the more prominent cost effective and relatively simple strategies.

PI control is a type of control that takes an error value and uses it to compute an output signal that can be used to increase or decrease the controlled variable. These control methods are a simpler set of a more complex control method known as PID or Proportional – Integral – Derivative. These control methods and their subsets have been used to control a wide range of equipment. As they pertain to HVAC, PID and PI controls are in place on many subsystems of a complex HVAC system. Fan speed, damper position, and flow rate demand are all often controlled by PI or PID controllers. In the past few decades, with the advent of Direct Digital Control (DDC) equipment, these control methods have begun to be implemented in pressure reset strategies.

Englander and Norford (1992) simulated the impact of modified PI and heuristic algorithms. The modified PI algorithm was written in such a way that it always increased the static pressure set point. To complement this, they included a positive decay term in the algorithm that gradually decreased static pressure. On its own, the PI algorithm used responds to increase duct pressure until the VAV boxes are at the desired damper position, but then is unable to decrease static pressure as it is written. With the addition of the decay term, the modified PI algorithm can then slowly reduce the static pressure until there is an unsatisfied zone, at which point the PI portion of the strategy again becomes dominant and begins the process again. One distinct advantage of this system is that it is continually trying to find the lowest possible static pressure. Also, this approach allows for different increase and decrease rates which might help to improve stability. However, this method may lead to some small "hunting" effect which is characterized by repeatedly increasing and decreasing the static pressure instead of finding an optimal set point.

The heuristic algorithm takes a look at the error and the change in error for all of the independent inputs (in this case the primary flow error from each VAV box) and then makes a decision to increase or decrease duct pressure slightly or to hold it as it is. This method is essentially a type of TR strategy. Like the other strategy employed, this one also possesses the ability to allow different rates when increasing or decreasing the duct static pressure. In the case of either control strategy, Englander and Norford stress that the use of a dead band may improve stability.

After implementing both of these strategies in simulation, Englander and Norford found that both strategies were acceptable for use. They both achieved relatively small steady-state flow rate error while allowing the damper positions to come to full-open (indicating minimum static pressure) within an hour. These factors mean that both strategies are able to save fan energy while satisfying occupant comfort requirements.

Despite the success of these two strategies, both exhibited some negative behaviors. The heuristic algorithm was not able to decrease duct pressure as rapidly as the modified PI algorithm. The heuristic algorithm also displayed a great deal of "hunting" behavior. The authors speculate that this could be dealt with by finding better control parameters. However, the authors note that finding the ideal control parameters is likely to be a time consuming task and simulation will probably be an extremely useful tool for finding them, particularly in the case of the modified PI algorithm, which is much more difficult to tune.

Wang and Burnett (1998) found that they were able to achieve relatively stable control in simulation by incorporating a dead band along with independent, separate PI controls for either increasing or decreasing the static pressure while using the VAV box damper positions as the error input. They also note that it was relatively easy to tune the PI

5

loops with a few iterations, but acknowledge that these iterations were accomplished with simulation.

One major difference in the implementation of this version of PI control (other than the use of separate PI loops) is the use of damper position error instead of flow rate error in order to drive the reset process. This technique was combined with allowing a certain number of VAV box dampers to reach full-open before forcing the reset process into action. This strategy has the potential to save even more energy, but may result in starving the zones with the ignored VAV box dampers.

The use of separate PI loops for controlling the increase or decrease of the supply static pressure is certainly able to provide different rates for increasing and decreasing the static pressure, which will ultimately make the strategy more flexible. This method may also be able to better deal with any transient effects that behave differently when increasing static pressure than when decreasing it.

Tung and Deng (1997) found a way to combine both the PI strategy and the trim and respond method. By using a dead band, they were able to apply a PI controller to the fan control in order to reduce static pressure based upon flow rate error. One unique thing they did was to create two sums, one for the requested air flow over all VAV boxes and one for the actual air flow through all VAV boxes, and then took the difference of these two sums and used it for the error signal. If this error signal was within the dead band for too long, the static pressure was trimmed in order to find a lower static pressure. Once the flow rate exceeds the error dead band again, the PI controller adjusts the static pressure accordingly, which starts the process over again.

Although PI reset has been thoroughly researched, it's not without limitation. For example, finding the error for the input requires knowledge of some indicator of airflow requirement for each zone. If the system does not report damper positions or flow rates to

6

the central console, this type of control is impossible to implement. One way to implement static pressure reset in these cases is to employ a trim and respond control strategy instead. In fact, this is the true advantage of trim and respond: it can be implemented in almost any VAV system. It can be implemented even if the only zone level knowledge of flow demand is the presence of binary low flow alarms or damper full-open end switches (Taylor, 2007). The versatility of trim and respond methods make them an ideal option for systems with limited information available.

The goal of employing any static pressure reset strategy is to reduce energy consumption. When reset strategies are implemented, energy is saved by reducing fan speed but also by reducing wasted energy through system air leakage and thermal energy used to cool air flow that is not needed (Liu et. al, 2010). Unfortunately, attempting to utilize these methods can often come at the expense of unstable behavior, which can increase maintenance costs by causing unnecessary wear to equipment. Though this instability is mentioned in the literature (Englander and Norford, 1992; Taylor, 2007), little is mentioned about what actually causes it or how to effectively deal with it.

Research Objectives

There are two distinct phases of this research project. The first is the testing phase, which took place in a laboratory-like setting where building control could be studied in great detail. During this phase, the objective was to identify energy saving control strategies and to attempt to map out stable operating parameters. The root causes of any observed instability were identified, if possible. The results of this phase are presented in Chapter 3 of this Thesis.

For phase two, the results from phase one of this project were then used to implement the best control strategy in a VAV equipped building on the Iowa State University campus. The best strategy was adapted to run in this building and then was observed to determine energy savings and to identify any additional instability in a new environment. The results of this phase are presented in Chapter 4 of this Thesis.

The contents of this thesis are arranged into 5 chapters and several appendices. Chapter 1 contains the introduction, which consists of the background information and literature review. Chapter 2 includes a description of the ERS testing facility as well as details of the tests themselves. Chapter 3 then discusses the results of the ERS testing and sets up a successful strategy for field testing. Chapter 4 contains information about the field test site and modifications required to implement a control strategy there. The results of the field test are also discussed in Chapter 4. Chapter 5 includes a summary of work as well as limitations and a discussion on future work.

CHAPTER 2: TEST PROCEDURE

Testing was accomplished in a series of five tests. In each new test series, something was altered in order to observe its effect on system performance. These alterations included different artificial loading profiles, the introduction of new control algorithms, and the changing of various parameters within these control algorithms. Throughout the testing process, these alterations were made in order to discover which parameters had the greatest effect on system performance and stability as well as to identify regions in which these parameters resulted in stable operation. Before discussing these tests in detail, a description of the test facility will be given.

Test Facility

Testing was performed at the Energy Resource Station (ERS) located at the Des Moines Area Community College (DMACC) campus in Ankeny, Iowa. This facility was built in 1995 by the Iowa Energy Center (IEC) for the purposes of demonstrating energy efficient technologies, training, testing, and the dissemination of information about energy efficient design and operation of buildings. This building is unique in that it offers two identical HVAC systems that can be tested side-by-side for comparison of energy efficient equipment and control strategies. A detailed description of the ERS can be obtained from documents published by the ERS (2010) or by Price and Smith (2000). The next few sections contain an overview of the pertinent information in these documents.

Building Construction

The ERS is located at 41.71 degrees North latitude and 93.61 degrees West longitude with elevation of 937.0 feet above sea level. The facility is oriented to true astronomical (not magnetic) North and has a building height of 15 feet with a total surface area of 9,208 ft². The structure consists of slab-on-grade flooring and primarily precast concrete and steel frame construction.

The ERS facility can be divided into three distinct areas: general service area, test rooms A, and test rooms B. The general service area consists of a mechanical room including storage and service rooms, east and west classrooms, east and west vestibules, offices, a break area, a reception area, computer center, a display room, a media center, and restrooms. The two test room sets are virtually identical with the same construction specifications and consist of an interior room and three exterior rooms each. The exterior rooms are located in pairs along the East, South, and West walls. As such, these rooms are called East A/B, West A/B, South A/B, and Interior A/B throughout this report. See Figure 2.1 (below) for the building layout.

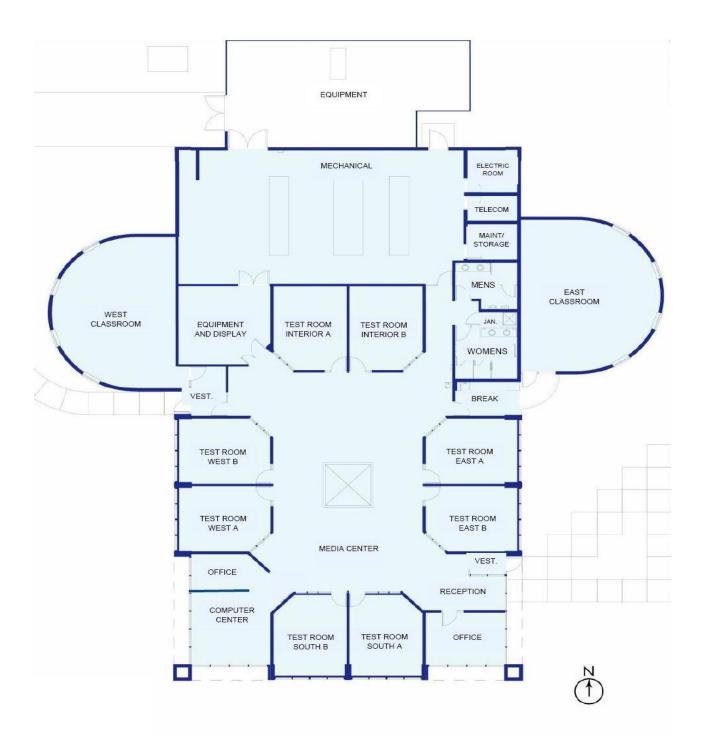


Figure 0.1: ERS floor plan, taken from ERS (2010)

The general service area is served by a single independent air handling unit (AHU-1) while the two sets of test rooms are served by two additional air handling units. These air handling units are named AHUA and AHUB and serve the A test rooms and B test rooms respectively. The HVAC systems will be discussed more extensively later in this report.

Floor Construction

The floor consists of slab-on-grade construction. It is made up of a 4 inch thick layer of concrete on top of a 4 inch thick layer of sand. The entire interior space is carpeted with the exception of the mechanical room, which remains bare concrete.

Test Room Wall Construction

The exterior test rooms have exterior walls that can be divided into three distinct sections: upper wall, lower wall, and window. The lower wall is 3 feet tall and consists of three sections that are the two sides and a center section. The center section consists of 5/8 inch gypsum board, 1 1/2 inch rigid insulation, and a 4 inch precast concrete panel. A fan coil unit is installed in the center section of the B test rooms while this space is left open for future fan coil unit installation in the A test rooms. See Figure 2.2 for a detailed construction drawing of the center section of the exterior wall in a typical test room. The side sections are made up of 5/8 inch gypsum board, 6 inches of air space, 3 5/8 inch metal studs 16 inches on center with batt insulation, 1 inch rigid insulation, and a 4 inch precast concrete panel. The upper wall is identical in all exterior test rooms and consists of 5/8 inch gypsum board, 3 5/8 inch metal studs with batt insulation, 3/4 inch air space, 1 inch rigid insulation, and a 6 inch thick precast concrete panel.

The exterior windows measure roughly 5 feet high and 14.8 feet wide. They have 2 inch wide aluminum frames with 2 inch wide mullions and no exterior shading devices are used. The windows consist of double glazed 1/4 inch clear insulating glass with 1/2 inch air space between. These windows can be interchanged for windows with lower emissivity if needed. Thermal properties for the fenestration are shown in Table 2.1 below.

Description	Туре	Color	Overall U-Value Summer Btu/h*ft ^{2*°} F	Overall U-Value Winter Btu/h*ft ^{2*°} F	Visible Transmittance	Shading Coefficient
Base Clear Windows	Annealed Insulated	Clear	0.55	0.48	81%	0.85
Alternate Standard Performance (Light Tint) Windows	Annealed Insulated	Light Tint	0.35	0.33	73%	0.76
Alternate Standard Performance (Dark Tint) Windows	Annealed Insulated	Dark Tint	0.33	0.31	23%	0.26

Table 0.1: Fenestration thermal properties, recreated from ERS (2010)

The test rooms have interior walls that extend to the roof of the building to ensure that the test rooms are isolated from one another. The interior walls consist of 3 5/8 inch metal studs sandwiched between 5/8 inch gypsum board for all interior walls except the following: The East walls of test rooms interior B and South A, and the West walls of test rooms interior A and South B. These excepted walls consist of 6 inch metal studs sandwiched between 5/8 inch gypsum board. The walls separating the test rooms from the media center contain a window that measures 7 feet high and 6 feet wide. The window consists of single glazed 1/4 inch clear insulating glass and has an aluminum frame with thermal breaks. In addition, each test room has a standard hollow-core metal door.

Roof Construction

The ERS has a flat roof that is constructed of an 8 inch thick pre-cast and prestressed cored-concrete slab, vapor barrier, 4 inch polyisocyanurate insulation, roof insulation tapering from nine inches thick at the center of the building to 4 inches thick near the perimeter, single-ply membrane, and river rock ballast. There is also a 100 square foot skylight that is centered above the media center.

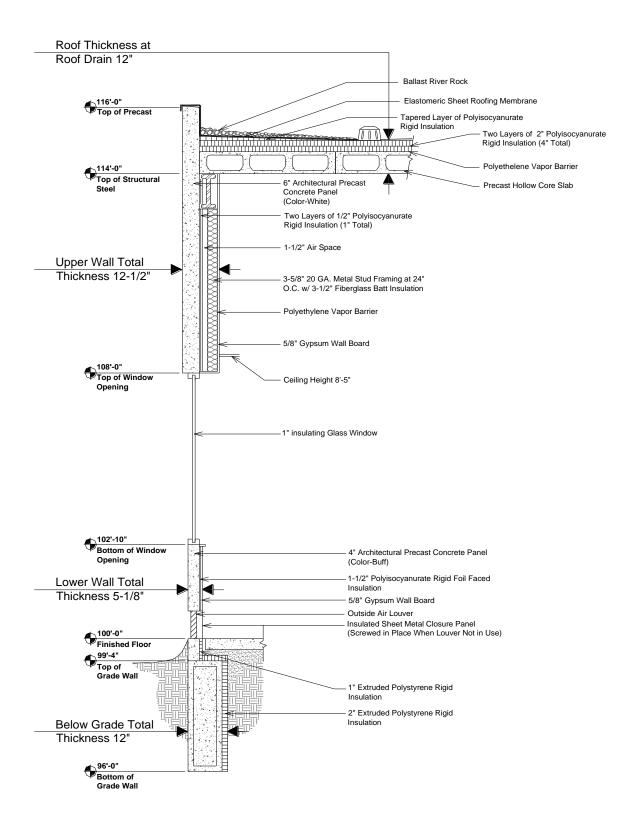


Figure 0.2 Exterior wall center section cross-section, image taken from ERS (2010)

Internal Loading and Weather Station

The ERS has the ability to apply a variety of artificial thermal loads to each test room that include baseboard heating, a fan coil unit, ceiling lighting, and occupant loads. These artificial thermal loads can be scheduled to come on and off as needed for testing. The baseboard heaters can be operated in any of three modes providing up to 1800 watts of sensible load. The fan coil units can be operated in heating, cooling, or ventilation mode. It is also possible to control the fan speed in a variety of ways as the situation requires. The specific amount of heating or cooling load applied to the room from the FCU will vary with heating and cooling water and air flow rates. The lighting at the ERS can be used as a load source to simulate a variety of loading patterns. There are six light fixtures in each test room which can be operated in one of four different modes and provide up to 90 watts of load per fixture. Lastly, the ERS can simulate a variety of occupant loads including people and equipment. People can be simulated by using androids. These are sheet metal cylinders that have the capability of creating a thermal load or producing CO2 for one or two people at an office work activity level. A computer can also be activated to simulate office equipment loads.

The false loading capabilities enable testing of a wide variety of loads and loading schedules. All false loads are computer controlled and can be switched on or off according to their capabilities in nearly any order or on nearly any schedule. Tables 2.2 and 2.3 Below show information about the false loads utilized in the experiments. For a comprehensive list of available false loads see ERS, 2010.

Lighting				Baseboa	ard Heater		
Mode	Stage Total		Mode	Stage		Total	
IVIOUE	1 (180 W)	2 (360 W)	Power (W)	Nioue	1 (900 W)	2 (900 W)	Power(W)
1	Off	Off	0	1	Off	Off	0
2	On	Off	180	2	On	Off	900
3	Off	On	360	3	On	On	1800
4	On	On	520				

Table 0.2: Light and baseboard heater mode and power output, recreated from ERS (2010)

Table 0.3: Occupancy simulator mode and power level, recreated from ERS (2010)

Simulator	Mode Capacity		Total
	On	250 BTU/hr Sensible	450BTU
People	On	200 BTU/hr Latent	~132 W
reopie	Off 0 BTU/hr		0 W
	On	42 Watts Computer	88 W
Equipment	Off	46 Watts Monitor	00 VV
Equipment		4 Watts Computer	<5 W
	011	<1 Watt Monitor	<5 VV

The ERS is also equipped with a weather station that is capable of acquiring a large amount of data regarding the natural environmental loads present. The ambient conditions and weather data that can be recorded include:

- Outdoor air dry-bulb temperature
- Relative humidity
- Wind speed
- Wind direction
- Barometric pressure
- Total normal incident solar flux
- Long wave radiation

The addition of the weather station along with the recorded false loads allows the formation of a complete picture of the natural and artificial loads present in each of the test rooms.

HVAC Systems

In general, the HVAC system at the ERS consists of a central heating plant, a central cooling plant and three different air handling units (AHU's). The central heating plant provides heated water for the entire HVAC system while the central cooling plant has the ability to use either locally produced chilled water from one of the three air cooled chiller units or to accept chilled water supplied by the DMACC campus' chilled water service. The

primary air handling unit, AHU-1, is used to supply the general service areas of the ERS and is also the largest due to the larger thermal load requirements. The two additional AHU's are called AHUA and AHUB and are used to service test rooms A and B respectively. A schematic of the HVAC layout for AHUA and AHUB is shown in Figure 2.3 (below).

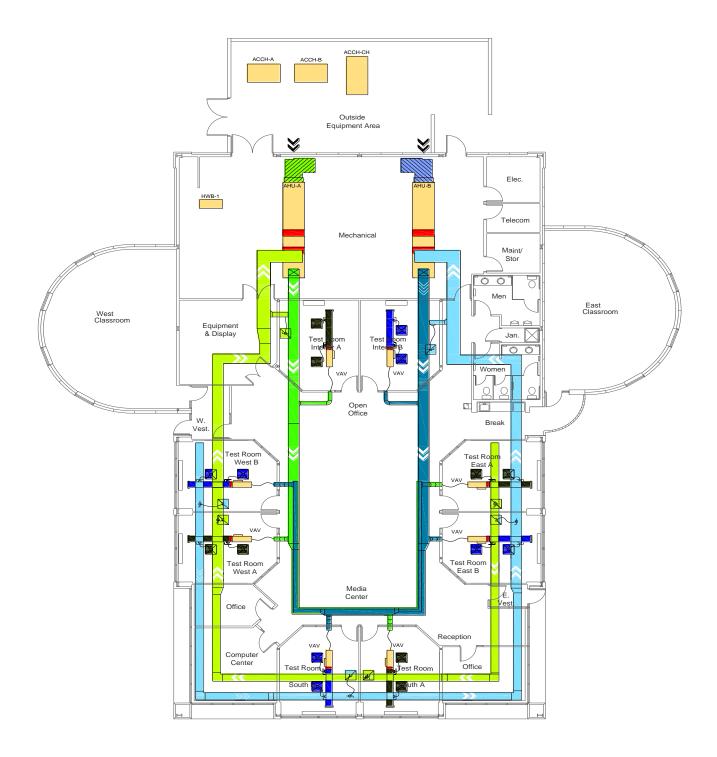


Figure 0.3: HVAC mechanical plan for AHUA and AHUB, image taken from ERS (2010)

Test Room Air Handling Units

The test room AHU's are identical in model and scale and nearly identical in layout. Each AHU supplies four pressure independent VAV boxes, one in each of the serviced test rooms. See Figure 2.4 for mechanical equipment location. Each VAV box supplies two air diffusers in a given test room. Each test room also contains a return air grill. The VAV boxes for each test room are identical in model number but differ in that the interior test room VAV boxes are smaller in size. The VAV boxes are also unique in that they contain both hot water coils and electric reheat coils for a dual reheat capability. See Table 2.4 and 2.5 for the AHU and VAV design specifications.

Design Item	AHUA and AHUB
Configuration	Horizontal Draw Through
Total Design Supply Air Flow	3200 CFM
Preheat Coil - Outside Air	Heating Water 69 MBH
	1 Row - 4.5 sq. ft. Face Area
Cooling Coil	Chilled Water 135 MBH
	6 Row - 6.0 sq. ft. Face Area
Heating Coil	Heating Water 208 MBH
	2 Row - 6.0 sq. ft. Face Area
Supply Air Fan	Centrifugal, Vertical Up Discharge
	3.20 in. WG - Total Static Pressure
Return Air Fan	Centrifugal, Horizontal Discharge
	1.25 in. WG - Total Static Pressure

Table 0.4: Test room AHU design specifications, recreated from ERS (2010)

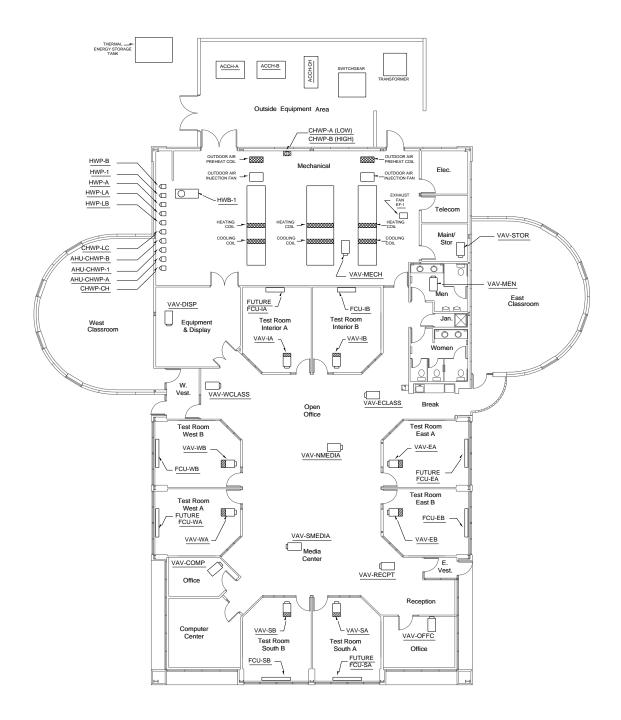


Figure 0.4: Mechanical equipment location, image taken from ERS (2010)

Design Item	Exterior Test Rooms	Interior Test Rooms
Туре	Single Duct, Pressure Independent	Single Duct, Pressure Independent
Size	9 Inches	7 Inches
Min/Max Airflow	200 CFM / 1000 CFM	80 CFM / 400 CFM
Hydronic Coil Flow Rate	3.0 GPM	2.0 GPM
Electric Coil Capacity	2.0 kW	5.0 kW
Electric Coil	2 Stages / 1.0 kW per Stage	3 Stages / 1.67 kW per Stage
# of Stages / kW per Stage		

Table 0.5: VAV box design specifications, recreated from ERS (2010)

Test Conditions

Each control strategy was tested under a variety of conditions. Tests were completed during various times of the year and under varying load conditions. Since the ERS provides the capability for testing different strategies side-by-side, one test strategy was often compared to another or to a fixed pressure strategy at the same time. During many of the tests, the strategies being compared were allowed to run for a period of time on one AHU and then were swapped so the effects of any system bias could be determined. For example, strategy 1 would be allowed to run on AHUA for three days during which time strategy 2 would run on AHUB. After the three days were completed, the strategies would switch so that strategy 1 was now on AHUB and strategy 2 was on AHUA.

Throughout testing, several different loading patterns were used. For the first two test series, the same load schedule was used for all test rooms. The initial test included two different loading schedules. The first loading schedule contained three distinct phases of loading. These phases were low load with low variability, high load with low variability, and a moderate load with high variability. The second loading schedule included only one phase

which was a high load with high variability. See figures 2.5 and 2.6 (below) for a chart of the planned loading schedule for the initial tests.

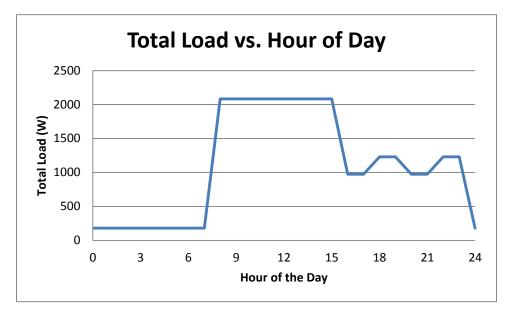


Figure 0.5: Initial loading schedule consisting of three phases

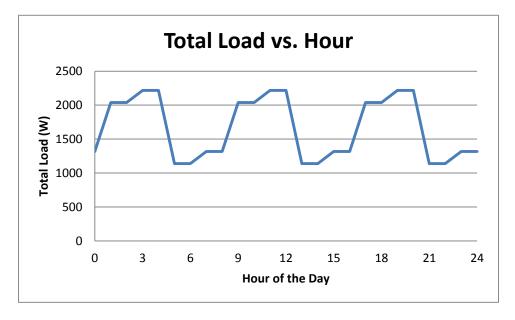


Figure 0.6: Initial loading schedule with high load and high variability

The second test series included a single load schedule that had the same three phases as the initial test, but in a different order (See Figure 2.7). By shifting the load schedule, it is more likely that the design conditions of the test rooms will not be exceeded by the combination of the artificial loads and the natural solar load. This load schedule was continually used for the exterior rooms for both the third and fourth test series. However, beginning in the third test series, the interior room load schedule was modified in order to avoid exceeding the design conditions of these rooms. See Figure 2.8 for the modified interior load schedule.

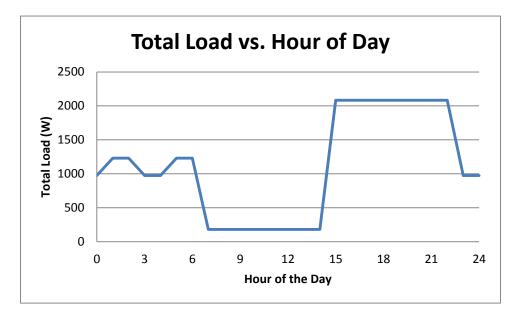


Figure 0.7: Modified three phase loading schedule

Figure 0.8: Modified internal room loading schedule

The fifth and final test included two different load schedules. The first load schedule was identical to those used in the third and fourth test (See Figures 2.7 and 2.8), while the second phase was changed to add additional variability. In the second phase, the large artificial load may cause the total room load to exceed design conditions and become an out of control zone. This was done in order to stress the control strategy to see how it would handle such a load. See Figure 2.9 and Figure 2.10 (below) for a chart of the planned external room and internal room loading schedule.

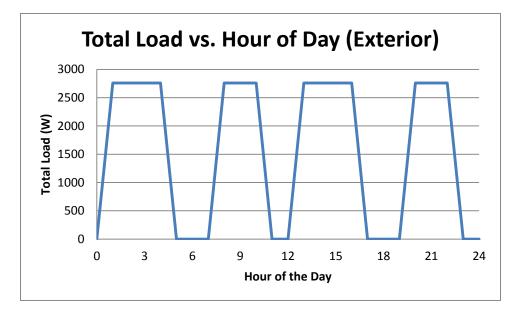


Figure 0.9: Exterior room loading schedule for the second stage of Test 5

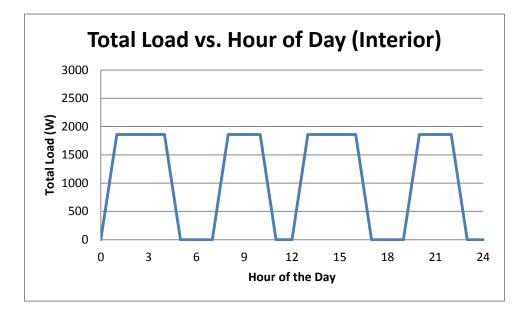


Figure 0.10: Interior room loading schedule for the second stage of Test 5

Control Strategies to be Tested

Throughout the testing process, several variations of control strategies were implemented and observed. Arguably the most basic of these is the Proportional plus Integral (PI) controller. The PI controller consists of two terms, the proportional term and the integral term. For illustration purposes, a generic PI algorithm is shown below in Equation 2.1.

$$PI(t) = K_{prop}e(t) + K_{int} \int_0^t e(\tau)d\tau$$
(Eq. 2.1)

In this equation, the first term is the proportional term and the second term is the integral term. The proportional term is found by calculating the present error, e, by taking the difference between the present set point and the present recorded value of a given control input and then multiplying this difference by a proportional gain factor, K_{prop}. In the case of static pressure reset based on damper position, this difference could be the difference between the recorded maximum damper position and the desired maximum damper position. The integral term requires keeping a running sum of all historical errors and then multiplying this sum by an integral gain factor, K_{int}. One potential problem of controlling with this method is that the integral term can become quite large before being multiplied by the gain factor. If this integral term becomes too large, it can cause additional overshoot and may lead to oscillating behavior. The chances of this overshoot and oscillation occurring are reduced if K_{prop} and K_{int} are properly set. Oscillation may also be minimized by using very small values for the gain constants, but this might also result in a very slow response.

PI control was used in two different reset strategies. The first was reset static pressure based upon maximum damper position and the second was reset fan speed based

upon maximum damper position. These two methods calculated error from the desired maximum damper position and the recorded maximum damper position. The difference between the two is that one resets the supply fan speed set point while the other resets the supply duct static pressure set point. It was thought at the time that since static pressure varies proportionally with fan speed, it may be easier to control fan speed than to control duct static pressure directly.

In addition to PI control, a Trim and Respond (TR) control strategy was also tested. In its simplest form, this control method looks at a value for damper position and decides if it is too high or too low. If the observed value is too high, the controller may reduce or trim the controlled static pressure set point. Likewise if the observed value is too low, the controller may increase the static pressure set point, which is called a response. This type of control is extremely flexible and can be implemented in a variety of ways. It also allows the user to set different trim and respond rates which may be advantageous in some cases.

This basic strategy was implemented in three distinct ways. The first was the most simplistic; in this case if the maximum damper position exceeded a certain value, the duct static pressure set point would increase slightly. Similarly, if the maximum damper position was below a certain value, the duct static pressure set point would decrease slightly. This type of implementation can be advantageous because it is extremely simple to program and set up. The second implementation used a system of requests to increase or decrease the pressure set point. This system worked by creating an increase pressure request for each damper that exceeded the desired set point. It is also capable of creating multiple requests for recorded values that differ greatly from the desired set point. These requests then act like a multiplying factor, effectively increasing the response rate for greater numbers of requests. The controller then trims the static pressure set point by a small amount if there

29

are no requests. In this way, the controller is always seeking to minimize static pressure while still supplying the necessary air flow to each zone.

The final implementation of the TR control strategy used a stepped response technique. In this technique, if the maximum damper position was within a specified range, the controller made no changes. If the damper position deviated from this range by a small amount, the controller created a small response in duct static pressure set point. If the deviation was large, the controller created a larger response in pressure set point. The steps were set up at small, moderate, and large deviations from the damper desired set point and created small, moderate, and large responses in duct pressure set point. This tiered response technique was used for both increasing and decreasing the pressure set point.

Throughout testing, the research team tested a variety of methods to attempt to stabilize system operation while saving fan energy. For each different type of strategy, different parameters were tested. For the PI control method, the test parameters were the desired maximum damper position, and the PI sum term. For the TR control method, the test parameters used were maximum damper position or maximum damper position range and trim rates. Although it is likely that additional parameters could have been tested and found to have an impact on stability and performance, this study is not an exhaustive one.

Rogue Zone Strategies

A rogue zone can occur for a number of different reasons and can have a varied definition. For the purposes of this report, a rogue zone will be defined as a VAV box with a damper position that is driving the reset strategy a disproportionately large amount of the time. In addition, this damper position must be significantly greater than the majority of the other damper positions. For example, a zone may be controlling the reset strategy most of

30

the time with a damper position of around 95% open, but this may not be considered a rogue zone if many other zone VAV damper positions are greater than 85% open. However, if this damper is at 95% open a majority of the time while most of the other damper positions are around 40% open, this zone may be considered a rogue zone.

There are many possible ways of dealing with rogue zones. While it is possible to deal with rogue zones in an automated way, this may not be desirable. It is far more useful to simply view data over a period of time to identify the rogue zone and then make a decision about what course of action to take. Since there are many different reasons why rogue zones occur, such as thermostat settings or equipment malfunction, it will be of the most benefit to investigate any rogue zone as it occurs.

Within the context of the testing phase at the ERS, rogue zones can be identified by the research team and then investigated to determine the cause and any effects on system or strategy performance. In addition to this, it is possible to introduce such a large artificial load into some of the rooms that it creates a rogue zone. This is a useful tool for determining the system's reaction to a known rogue zone or to a load that exceeds design conditions. If any undesired rogue zones occur while testing, the research team can eliminate them from the strategy altogether by eliminating their damper positions from the input to the control algorithm or by fixing the damper position.

Performance Criteria

Performance can be measured in a variety of ways; in this case the performance was measured with a mix of primary and secondary performance criteria. Primary performance criteria included fan energy used, presence of oscillation, and temperature control. Secondary performance criteria included damper travel per hour, static pressure travel per hour, static pressure control, and flow rate control.

The primary criteria serve as the primary means of evaluating one control strategy against another. Since the control strategies are often run simultaneously, it is possible to compare them with a percentage difference. This is true in the case of fan energy used. The fan energy used is the summation of the fan energy in kWh used throughout the test cycle for both the supply fan and the return fan of the AHU's on which the test is conducted. This sum can then be compared between control strategies. Temperature is a primary consideration for occupant comfort as well as an indication of a control strategy's effectiveness. This parameter can be evaluated by finding the difference between the room temperature set point and the temperature as recorded in the room. The presence of oscillation is not something that can be easily confirmed mathematically, but must be qualitatively observed and documented. Oscillation in this case primarily refers to oscillation in the static pressure level or in damper positions. Since these two parameters are closely related, an oscillation in one should be represented by an oscillation in the other. Oscillation can be interpreted in a number of ways, see Figure 2.11 (below) for an example of what is considered oscillatory behavior in this experiment.

32

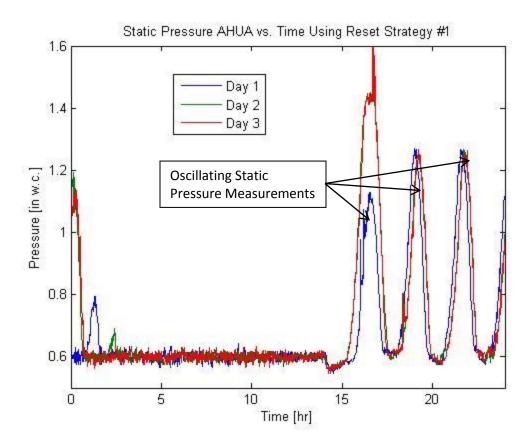


Figure 0.11: An example of oscillation observed in this experiment

The secondary criteria allow additional comparisons to be made between control strategies, but may not impact occupant comfort or energy usage. Damper travel per hour is a measure of the summation of the absolute value in damper position between each data point for each test divided by the number of test hours. This measurement is meant to give an idea of the level of wear-and-tear on the actuating mechanism on a damper. In this way it may be possible to make some inferences about additional maintenance costs. Static pressure travel per hour is measured and calculated in a similar way, but is meant to give an indication of potential oscillation or rapid changes in duct pressure. Static pressure and the duct static pressure set point. This measurement is intended to provide a means of evaluating

the ability of a control strategy to adhere to the assigned set point. Flow rate control is similar to static pressure control in that it is the summation of the differences between flow rate set point and measured flow rate for each damper at each data point. This measurement is intended to show a control strategy's ability to provide adequate air flow to each test room.

Calculations

Calculating the performance parameters is a straightforward task. As a reminder, these performance metrics are fan energy consumed, temperature control, presence of oscillation, static pressure control, static pressure travel per hour, damper travel per hour, and flow rate control. Details on how these parameters are calculated can be found in the next few passages.

Fan energy consumed is calculated from the fan power data available in the Metasys data. The data is collected on a one minute interval in the unit of Watts. This measurement is totaled over the course of a particular test and then converted from Watt-minutes to kWhr using standard conversions. The total kWh used by each AHU is then compared using a simple percentage difference with the experimental control value as the reference. The accuracy of the power measurements is +/- 0.2% of the reading plus an additional +/- 1.6 Watts for both the supply and return fan.

Temperature control is calculated based on the temperature data recorded from each room and a cooling set point of 72 °F. During each test, an arithmetic mean and variance is calculated for each test room as well as an aggregate mean and variance for all test rooms served by each air handler. The two sets of aggregate values are compared by a simple difference. The accuracy of the temperature measurements is +/- 0.18 °F.

Presence of oscillation is not a calculated data comparison. Instead, the duct static pressure data is plotted against the time of the test. Upon viewing the plot, a judgment is made on the presence of oscillation and then this oscillation is discussed if present.

Static pressure control is based upon the duct static pressure, as measured by the AHU, and the static pressure set point. The difference between these two values is then calculated before finding the arithmetic mean and variance for each AHU. These means should ideally be close to zero, and their difference is used to compare AHU performance. The accuracy of the pressure measurements is +/- 0.5% of full span output.

Static pressure travel per hour and damper travel per hour are calculated in exactly the same way. In either case, the difference is taken between successive values on a single AHU. The absolute value of this difference is then totaled over the entire test and then divided by the number of test hours. This aggregate static pressure or damper travel per hour is then compared for each AHU with a simple difference. The AHU with the least travel per hour will be considered to perform better. The accuracy of the damper positions measurements is unknown, and the accuracy of the static pressure measurements can be found in the previous paragraph.

Flow rate control is found in much the same way that static pressure control is found. That is, the difference is taken between the VAV flow rate and the flow rate set point for each VAV box. The arithmetic mean and variance are then found for each room in the test as well as the aggregate value for each AHU. The aggregate values are then compared with a simple difference. The AHU with the smaller aggregate value will be considered as performing better. The accuracy for the VAV box flow rates is not available from the ERS.

Summary

Testing at the ERS, with the abundance of data collection capabilities and calibrated equipment, provides the ability to study HVAC systems in a laboratory like setting. The two test HVAC units will have a variety of strategies tested on them under several different loading conditions. These test results can then be compared with the calculation of some simple performance parameters that reflect research goals.

CHAPTER 3: ERS RESULTS

From July 2009 through January 2011, five series of tests were run at the ERS testing facility. During these tests, several different experimental control strategies were employed as outlined in Chapter 2. These strategies are:

Strategy 0: Fixed pressure strategy that may or may not be changed on a schedule.

Strategy 1: PI pressure reset based on maximum damper position.

Strategy 2: Trim and respond based on maximum damper position.

Strategy 3: PI fan speed reset based on maximum damper position.

Strategy 4: Trim and respond based on the number of pressure requests.

Strategy 5: Tiered trim and respond based on maximum damper position.

In analyzing the test data, a numbering convention was created. The numbering convention will take the form of "Test 2.3a." This numerical test identifier uses the first numeral to the left of the decimal point to identify the test series. The first numeral to the right of the decimal place is used to identify the test strategy. Finally, the alphanumeric value at the end is used to indicate the particular test run within that series. In the example of "Test 2.3a," this would mean that this is the first in a series of tests run during Test 2 that tested the performance of control strategy three.

Before proceeding with the analysis of the test data, it is important to clarify a few assumptions made in data interpretation. These assumptions are:

1. Some equipment operation was not able to be measured directly. However, there are on/off signals available for most of these equipment data points. For the purposes of

analysis, it was assumed that if a device was turned on, that it was operating as expected unless otherwise proven.

- 2. The equipment operation, including power levels, outlined in Price and Smith (2000) and ERS (2010) is accurate and up to date.
- All of the power applied to any piece of equipment in the test room is transferred into the test room as a thermal load with the exception of data collection and control equipment which will be considered to have a negligible load impact.

Similarity Tests

Throughout the course of testing, it was necessary to prove that the two AHU's operated similarly to one another before testing any experimental control strategies. Indeed, this was the main focus for Test 1. In addition to Test 1, a similarity test was applied at some point during each test series to verify continued similar operation. The word "similar" as used above, is simply meant to imply that the two systems operate closely enough to one another that any systemic effects from either AHU can be ignored. This definition is applied a bit differently for each performance criterion. The performance criteria are fan energy consumed, temperature control, presence of pressure oscillation, static pressure travel per hour, static pressure control, damper travel per hour, and flow rate control. These criteria appear in Table 3.1 below along with their respective similarity thresholds.

Similarity Ru	les
Criterion	Similarity
Citterion	Threshold
fan	
energy	± 5%
temperature	
control	± 0.3 °F
static pressure	
travel per hour	±0.2" w.c.
static pressure	
control	±0.2" w.c.
damper travel	
per hour	± 5%
flow rate	
control	± 50 cfm

Table 0.1: Similarity thresholds used for data analysis

The similarity rules shown above were chosen based upon the expected range scale of the performance criteria used. In the cases of temperature control, static pressure travel per hour, and static pressure control, the value was set at 5% of the maximum theoretical difference range. For the criteria of fan energy, damper travel per hour, and flow rate control the value was set at 2.5% of the maximum theoretical difference range (not to be confused with the +/- 5% shown in the table for fan energy and damper travel per hour which stand for % difference and % open, respectively). The reason for the tighter thresholds on these variables is that they play a more important role in the study. The fan energy used will be one of the primary deciding factors when it comes to choosing a reset strategy to implement in a real building. As for the damper travel and flow rate criteria, they are directly related to independent variables in the control strategy. As such, it is prudent to hold them to a more stringent standard.

Applying these thresholds to the values calculated for each performance parameter yields the information shown in Table 3.2 (below). In most cases, the AHU's appear very

similar in operation to one another. The most common difference occurred in static pressure travel per hour. This may be due to the inherent difficulty in controlling static pressure exactly during the course of operation. When viewing the static pressure plots, there is a great deal of what appears to be "noise" in the measurements. This "noise" was not filtered out when calculating that static pressure travel criterion. Furthermore, there is a small difference in the amplitude of this phenomenon between AHU's. See Figure 3.1 (below) for a plot of one of the tests that exhibits this behavior. It is likely that this frequent small difference between successive static pressure measurements contributes greatly to this difference in static pressure travel. However, the similarity tests by and large suggest that the AHU's operate similarly enough to be considered the same for purposes of analysis. This can be stated because there are more cases of similarity than difference, even in the individual performance criterion categories.

Similarity Test Results Summary												
Parameter	Test Run											
Farameter	1.0	2.0a	2.0b	3.0a	3.0b	4.0	5.0					
Fan Energy	2.52%	0.35%	-0.15%	-2.11%	-3.78%	-4.71%	0.08%					
Temperature	0.17	0.11	0.12	0.00	0.00	0.01	0.14					
Static Pressure												
Oscillation	n/a	n/a	n/a	n/a	n/a	n/a	n/a					
Travel	0.01	0.22	0.28	0.24	0.19	0.02	0.09					
Control	0.01	0.01	0.01	0.00	0.03	0.00	0.01					
Damper Travel	-3.58%	-2.77%	-2.70%	-7.46%	0.33%	-3.20%	1.45%					
Flow Rate Control	-7.32	-2.02	-2.40	-0.70	-1.71	-23.01	0.88					
- Values shown are differences between AHU means.												
- Shaded values indicate disimilar behavior.												

Table 0.2: Results from the initial similarity test

40

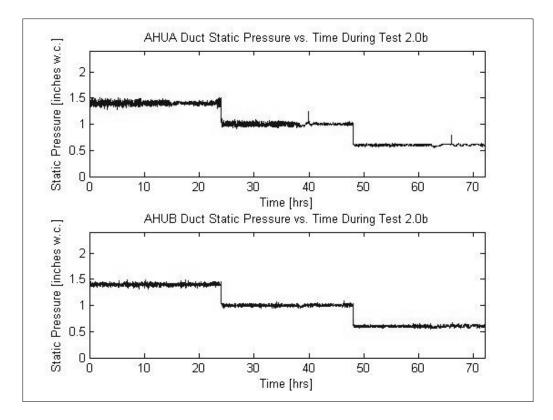


Figure 0.1 Duct static pressure over time in AHUA and AHUB using a scheduled fixed pressure strategy, note the difference in noise amplitude between the two plots

With similar operation verified to be a reasonable assumption, there is one additional condition which must be addressed before proceeding with the strategy analysis. The applied artificial load must be verified in order to conclude that the systems operate as expected and that similar loading is applied to each test strategy in a test series.

One problem in particular presented itself early on in the artificial load analysis. Due to the nature of the system, some loads may come on or turn off at different times in different rooms. The difference in time may only be a few minutes, but this can strongly impact the mean difference in calculated artificial load because of the size of some of the loads imposed. This resulted in several room pairs with a large mean difference in calculated artificial load because of the size of some of the loads imposed. This resulted in several room pairs with a large mean difference in calculated artificial load even though there was little effective difference between the two.

For example, it will make little difference in the grand scheme of the test if one stage of baseboard heat comes on five minutes later than its counterpart. For this reason a qualitative approach was taken instead. The loads were plotted over the course of the test for each room pair. These plots were then compared for any apparent major differences.

At this point, another major problem also presented itself. Some of the data was corrupted and resulted in false calculation data. This occurred during the second test series in the South A room as well as throughout most of the tests in the West A room. In specific, the South A room has the second stage baseboard heat signal recorded as -999.99 (an error value) for several minutes at a time during the second test series. This value is also present in the Android 2 signal from the West A room. In both cases, this value should either be a 0 or a 1 to indicate an on or off signal. Since the error value was recorded, it must be assumed that the true artificial load is unknown in these rooms.

Further analysis of this data corruption yields another way to assume that the artificial loads applied are similar to one another for each room pair. In the case of the similarity test runs, it can be observed that with similar control strategies there is no significant difference between the other performance criteria measured for each room. For example, even though the artificial loads are unknown, temperature control, flow rate control, and fan energy consumed are very similar in all of the tests where the data was corrupted. This lends credence to the notion that the artificial loads can be assumed to be the same even though the corrupted data doesn't allow this conclusion explicitly. In addition, the corrupted data may not matter that much. In the case of the South A room, the error values are only present for a few minutes at a time while the Android 2 signal in the West A room is not a major contributor to the uncertain load at only 163 Watts. These facts, along with the AHU performance data, provide sufficient support for the artificial load similarity assumption. Table 3.3 (below) gives the results of the qualitative analysis of the artificial

loads. The "unknown" conclusion will remain in place for posterity even though from this point forward, the artificial loads applied in those instances will be assumed to be similar.

				False Load	Similarity	Summary				
Room					Test	Run				
Pairs	1.0									
East	similar									
Internal	similar									
South	similar									
West	similar									
	2.0a	2.0b	2.1a	2.1b	2.2a	2.2b	2.3a	2.3b		
East	similar	similar	similar	similar	similar	similar	similar	similar		
Internal	similar	similar	similar	similar	similar	similar	similar	similar		
South	unknown	unknown	similar	similar	unknown	unknown	unknown	unknown		
West	similar	similar	similar	similar	similar	unknown	unknown	unknown		
	3.0a	3.0b	3.1	3.2	3.3	3.4				
East	similar	similar	similar	similar	similar	similar				
Internal	similar	similar	similar	similar	similar	similar				
South	similar	similar	similar	similar	similar	similar				
West	unknown	unknown	unknown	unknown	unknown	unknown				
	4.0	4.1a	4.1b	4.1c	4.2a	4.2b	4.3a	4.3b	4.5a	4.5b
East	similar	similar	similar	similar	similar	similar	similar	similar	similar	similar
Internal	similar	similar	similar	similar	similar	similar	similar	similar	similar	similar
South	similar	similar	similar	similar	similar	similar	similar	similar	similar	similar
West	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown
	5.0	5.5a	5.5b	5.5c	5.5d	5.5e	5.5f	5.5g		
East	similar	similar	similar	similar	similar	similar	similar	similar		
Internal	similar	similar	similar	similar	similar	similar	similar	similar		
South	similar	similar	similar	similar	similar	similar	similar	similar		
West	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown		

Table 0.3: Results from the artificial load similarity test

Test Series 2

With similarity established with a reasonable certainty, the experimental control strategies can now be analyzed. A summary for Test 2 is shown in Table 3.4 below. More specific values and tables can be found in the appendix. For the sake of analysis, specific

number values will be discussed in conjunction with the results shown in Table 3.4 below. One important point in the analysis is that the similarity thresholds for the performance criteria were used here to establish whether or not a particular control strategy was clearly better in regard to a particular performance criterion. This was done for reasons of consistency. After using a series of thresholds to determine if the systems operate similarly, it would be contradictory to define a different set of thresholds to determine if the systems operate differently.

For the series 2 tests, the following strategies were evaluated:

- Test 2.1 Strategy 1: PI static pressure reset based on maximum damper position.
- Test 2.2 Strategy 2: Trim and respond static pressure based on maximum damper position.
- Test 2.3 Strategy 3: PI fan speed reset based on maximum damper position.

Test 2 Results Summary														
Parameter		Test Run												
Parameter	2	2.1a	2	2.1b	2	2.2a		2.2b		2.3a		2.3b		
comparisons	rank	value	rank	value	rank	value	rank	value	rank	value	rank	value		
Fan Energy	B	14.65%	В	16.01%	B	15.71%	B	8.53%	-		-			
Temperature	-		-		-		-		-		-			
Static Pressure														
Oscillation	у		у		у		у		у		у			
Travel	В	0.36	В	0.31	В	0.20	W	0.31	W	0.78	-			
Control	-		-		-		-		W	0.45	W	0.21		
Damper Travel	-		-		-		W	10.98%	W	24.74%	W	16.99%		
Flow Rate Control	-		-		-		-		-		-			
- a "B" is used to indicate when the test strategy performed better than the fixed pressure strategy, "W" is used to indicate when the test strategy performed worse, and a "-" is used to indicate when the two are similar. Values will not be given for the case of similarity. - "yes" or "no" will be used to indicate presence of oscillation. These ratings are shown as "y" or "n." - Shaded rankings indicate an improvement in performance.														

Table 0.4: Comparison of control strategy results for Test Series 2

Table 3.4 represents the results of the first round of control strategy testing. A few items of note on the table are that the shaded cells represent when an experimental strategy outperformed a fixed pressure strategy in a particular performance criterion. Unshaded cells indicate when an experimental strategy performed similar to or worse than a fixed pressure strategy.

From the table above, it is possible to determine which control strategies outperformed the fixed pressure strategy. The results indicate that Strategy 1, the PI reset of static pressure strategy, outperformed the fixed pressure strategy more consistently than did the other two test strategies. Strategy 1 was able to reduce static pressure travel per hour in both tests while also consistently saving energy. Strategy 2 was able to save energy, but performed worse in one test on static pressure travel per hour and on damper travel per hour. Strategy 3 performed worse in the areas of static pressure travel per hour, static pressure control, and damper travel per hour. In all other unmentioned categories, the experimental strategies performed on a par with the fixed pressure strategy.

Oscillation of static pressure level is one of the potential instability problems mentioned in the research proposal used for this study. After the second test series, it can be concluded that this oscillation is present in all three experimental control strategies. However, the oscillation present in the experimental strategies takes on specific attributes for each strategy. Figures 3.2, 3.3, and 3.4 (below) contain examples of the types of oscillation present for Strategies 1, 2, and 3 respectively.

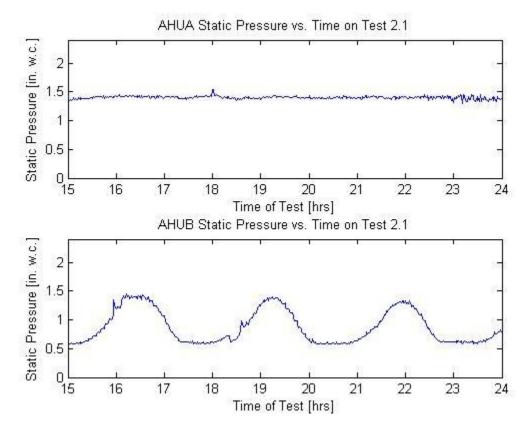


Figure 0.2: Detail of oscillation present when employing Strategy 1, PI reset of static pressure set point based on maximum damper position

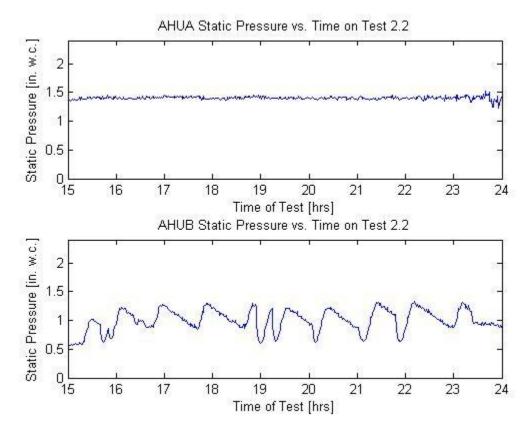


Figure 0.3: Detail of oscillation present when employing Strategy 2, Trim and Respond static pressure set point based on maximum damper position

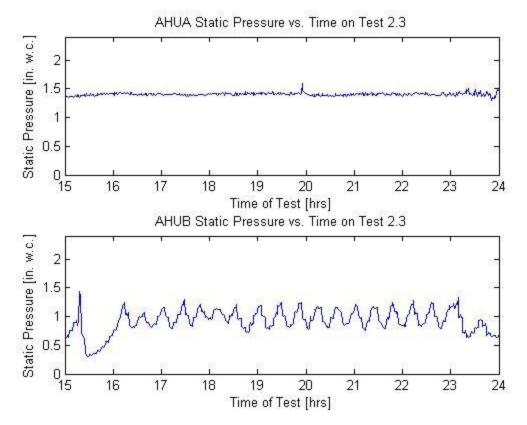


Figure 0.4: Detail of oscillation present when employing Strategy 3, PI reset of fan speed based upon maximum damper position

The types of oscillation shown above are very distinct from one another. The oscillation present for Strategy 1 is reminiscent of an undamped second order response, the oscillation during the use of Strategy 2 strongly resembles a saw-tooth waveform, and the oscillation observed during the use of Strategy 3 appears to resemble a triangular waveform but with much more jagged, irregular features. Although these three different types of oscillation seem to have little in common, their presence in all of the static pressure reset strategies may indicate that the oscillation itself may have a common underlying cause that is external to the reset control strategy.

To summarize the results of Test 2: All of the experimental control strategies displayed some sort of oscillatory behavior during the test. However, Strategy 1 and Strategy 2 were able to save fan energy over the course of the test. Overall, the majority of the performance criteria indicated performance similar to a fixed pressure strategy over the course of this test. The strategy that performed the worst was Strategy 3. This strategy performed similar to the fixed pressure strategy or worse for the duration of its employment. On the other hand, Strategy 1 performed the best in this test series as it performed better than or similar to the fixed pressure strategy for each performance category.

At this point, it would be premature to eliminate any strategy altogether. Some modifications to the control parameters may allow marked improvement in the next test series. Test 3 does exactly this; it seeks to observe any changes in the performance criteria by adjusting different parameters. Specifically, Test 3 was focused primarily on how the parameter changes affected the oscillatory behavior.

Test Series 3

Test series 3 saw the introduction of the fourth pressure reset strategy, Trim and Respond based upon a number of pressure requests. This strategy creates a pressure increase request for each damper position greater than a specified level. There are also provisions for making several pressure increase requests for each damper above an even higher specified level. When no dampers exceed the increase thresholds, the static pressure is trimmed.

In addition to the introduction of a new control strategy, the internal room artificial load was altered. Under the previous tests, the internal room load exceeded the room

design conditions. By reducing the internal room load, it was possible to determine to what extent the overloaded room contributed to unstable behavior. As in Test Series 2, the similarity thresholds will be used to compare strategies to a fixed pressure control strategy.

For the series 3 tests, the following strategies were evaluated:

- Test 3.1 Strategy 1: PI static pressure reset based on maximum damper position.
- Test 3.2 Strategy 2: Trim and respond static pressure based on maximum damper position.
- Test 3.3 Strategy 3: PI fan speed reset based on maximum damper position.
- Test 3.4 Strategy 4: Trim and respond static pressure reset based on pressure requests.

Test 3 Results Summary												
Daramotor	Test Run											
Parameter		3.1		3.2		3.3	3.4					
comparisons	rank	value	rank value		rank value		rank	value				
Fan Energy	В	15.59%	₿	18.14%	B	26.46%	₿	17.70%				
Temperature												
Static Pressure												
Oscillation	Y		N		N		N					
Travel	В	0.55	B	0.33			B	0.47				
Control					W	0.21						
Damper Travel					W	52.07%						
Flow Rate Control												
- a "B" is used to indicate when the test strategy performed better than the fixed pressure strategy, "W" is used to indicate when the test strategy performed worse, and a "-" is used to indicate when the two are similar. Values will not be given for the case of similarity.												
 "yes" or "no" will be used to indicate presence of oscillation. These ratings are shown as "Y" or "N." Shaded rankings indicate an improvement in performance. 												

The results of test series 3 are shown in Table 3.5 (above). As with previous tables, the shaded cells indicate that the experimental control strategy showed an improvement in performance over the fixed static pressure strategy. Unlike previous testing, all of the experimental control strategies saved some fan energy over the fixed pressure strategy. Strategy 3 saved the most energy by percentage at 26.46%. However, this strategy also performed the worst in the categories of static pressure control and damper travel per hour. In the performance category of static pressure travel per hour, strategies 1,2, and 4 all showed some improvement over the fixed pressure strategy. As in test series 2, this appears to be due to the reduced noise amplitude present in the static pressure

measurement. Finally, in the static pressure oscillation category, strategies 2, 3 and 4 showed little if any oscillatory behavior in static pressure. Strategy 1 still displayed wild swings in static pressure during two of the high load time periods. Figures 3.5, 3.6, 3.7 and 3.8 (all below) contain plots of the duct static pressure over time comparing the experimental strategies to their fixed pressure counterparts.

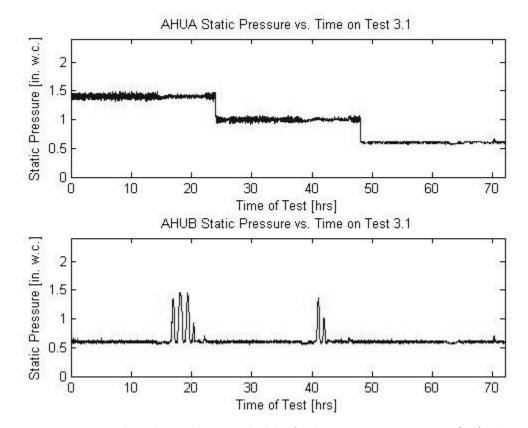


Figure 0.5: Static pressure plots when employing a scheduled fixed pressure strategy on AHUA (top) and Strategy 1, PI reset of fan speed based on maximum damper position, on AHUB (bottom)

The oscillations present in Figure 3.5 resemble that of previous tests for this strategy. During periods of high loading (even with the reduced internal loads), there were wild swings from the minimum to near the maximum static pressure set points of 0.6 in. w.c. and 1.4 in. w.c., respectively. However, these oscillations only occurred in two out of three high loading periods. Further investigation is needed to determine any possible systemic causes of this oscillation as well as any environmental factors that may contribute to its presence or its apparently intermittent behavior.

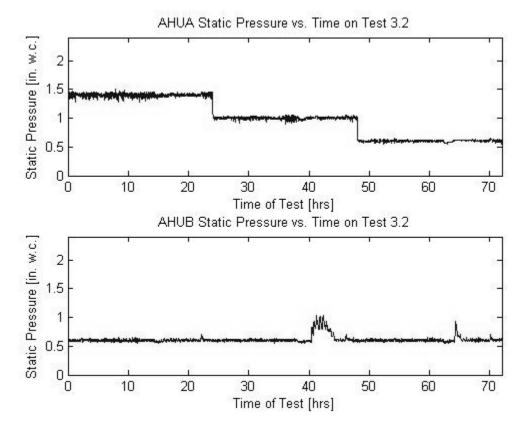


Figure 0.6: Static pressure plots when employing a scheduled fixed pressure strategy on AHUA (top) and Strategy 2, Trim and Respond of static pressure set point based on maximum damper position, on AHUB (bottom)

The static pressure plot depicted above in Figure 3.6 shows the static pressure response from Strategy 2 during test series 3 compared to the scheduled fixed static pressure strategy. At one of the peak loading times, shown on the plot beginning at 40 hrs into the test, there is an increase of static pressure that lasts for a few hours and appears to

"hunt" for a constant static pressure at its peak. This is somewhat different from the oscillation observed previously using this control strategy. Because of the significant improvement in duration and amplitude compared to Test 2, and because the amplitude is about the same as some of the noise in AHUA, this hunting at the peak of the static pressure plot was not considered oscillation. Still, the fact that this occurred in only one of the three peak loading periods implies an environmental trigger rather than a systemic one.

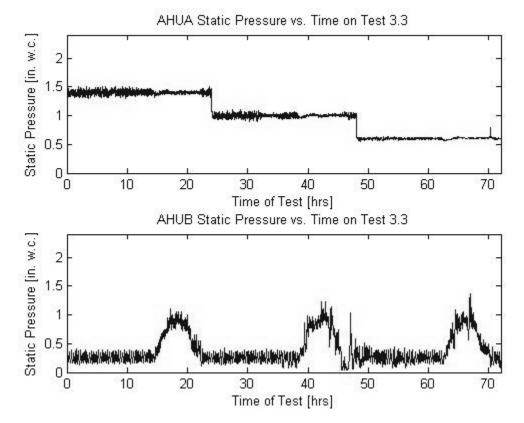
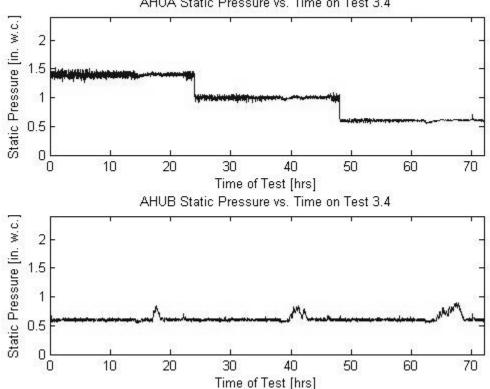



Figure 0.7: Static pressure plots when employing a scheduled fixed pressure strategy on AHUA (top) and Strategy 3, PI reset of fan speed based on maximum damper position, on AHUB (bottom)

The pressure plot of Strategy 3 compared to the fixed pressure strategy, shown above in Figure 3.7, is unlike the plots of the other strategies. The first thing to take notice of is the presence of increased noise amplitude in recorded static pressure level. This increased amplitude explains the poor performance of the static pressure control criterion. Even at the minimum static pressure set point, the strategy seems unable to adhere reliably to the set point. Also of note is that there was an increase in static pressure for each period of high loading, something not observed in Tests 3.1 and 3.2. In addition, there does not appear to be any oscillatory behavior (other than increased "noise"), although this could simply be obscured by the noise level.

AHUA Static Pressure vs. Time on Test 3.4

Figure 0.8: Static pressure plots when employing a scheduled fixed pressure strategy on AHUA (top) and Strategy 4, Trim and Respond of static pressure based on pressure requests, on AHUB (bottom)

Strategy 4 performed extremely well during Test 3. Figure 3.8 above depicts the static pressure when using the control strategy compared to the scheduled fixed static pressure. For each period of maximum loading, there appears to be a rise in static pressure in response. These rises appear to be very minimal and do not approach the maximum static pressure set point as in the first strategy. There is also no oscillation phenomenon present in the static pressure plot for the reset strategy.

One important trend to note in Figures 3.5, 3.6, 3.7, and 3.8 is that noise level on the scheduled fixed static pressure seems to decrease with static pressure set point, and also appears to decrease during times of peak loading. Further investigation is needed to identify the cause of this noise and to determine its impact, if any, on the static pressure reset strategies. A likely conclusion is that during high load and low pressure scenarios, damper positions would presumably be at or near 100% open. At this damper position level, there would be little effect on duct static pressure from minor damper position movements.

The results of Test 3 showed that overloading a zone likely contributes to the unstable behavior previously observed. In all cases, unstable oscillation was intermittent during Test 3 compared to universally present in Test 2. Also, with the exception of Strategy 1, the unstable oscillation was virtually eliminated from the static pressure reset strategies. The unstable behavior present may still be caused by overloading a zone. It is possible that the environmental load combined with the artificial load exceeded the cooling capacity of one or more of the exterior rooms. Additional analysis is required in order to confirm or refute this. In any case, overloaded rooms cannot cause instability by themselves. Instead, the control system responds to this environmental stimulus with the unstable behavior. To help identify whether or not the control strategies themselves contain parameters that can influence this instability, the increased load was returned to the interior rooms in the next test and various parameters were adjusted in order to view their effects on the unstable behavior. This was the purpose of Test Series 4.

56

Test Series 4

Test series 4 was broken up into four distinct segments, one for each control strategy tested. The control strategies tested were:

- Test 4.1 Strategy 1: PI static pressure reset based on maximum damper position.
- Test 4.2 Strategy 2: Trim and respond static pressure based on maximum damper position.
- Test 4.3 Strategy 3: PI fan speed reset based on maximum damper position.
- Test 4.4 Strategy 4: Trim and respond static pressure reset based on pressure requests.

During these four testing phases, parameters were adjusted in an attempt to view their impact on the oscillation level present. For the PI based control algorithms, the factors adjusted were the maximum damper position (used as the control input) and the magnitude of the error sum term found in the integral portion of the PI algorithm. For the trim and respond control strategies, the parameters that were adjusted were the maximum damper position and the trim rate. In order to keep the discussion coherent, the results from Test 4 are broken out into multiple tables. Each table contains the results obtained from testing only one type of control strategy. Table 3.6 below is the first of these tables and depicts only results obtained from using Strategy 1, PI reset of static pressure set point based upon maximum damper position.

				Test	4 Resu	lts Summ	arv					
Parameter		Test Run										
		4.1a			4.1b			4.1c		4.1d		
comparisons	AHUA	Rank	AHUB	AHUA	Rank	AHUB	AHUA	Rank	AHUB	AHUA	Rank	AHUB
Fan Energy		В	5.55%		В	6.00%					В	5.56%
Temperature												
Static Pressure												
Oscillation	Y		Y	Y		Y	Y	>	Y	Y	>	Y
Travel												
Control												
Damper Travel												
Flow Rate Control												
- a "B" is used to indicate when one test strategy performed better than the other while												

Table 0.6: Results summary table for tests using Strategy 1, PI reset of static pressure set point based on maximum damper position

a "-" is used to indicate when the two are similar. When a strategy performs better, a value will appear in the column of the AHU that performed better. Values will not be given for the case of similarity.

"yes" or "no" will be used to indicate presence of oscillation. These ratings are shown

as "y" or "n." If both AHU's show oscillation, an arrow may appear, pointing to the AHU showing an improvement in oscillation behavior.

Shaded rankings indicate an improvement in performance.

Table 3.6 (above) depicts the results of four different tests employing Strategy 1. Each test employed a unique set of parameters to observe the effects on AHU performance and stability. The first test was considered a rerun of the PI strategy used in in Test 3.1. Test 4.1b set the minimum duct static pressure to 0.2 in. w.c. instead of 0.6 in. w.c. In Test 4.1c, the minimum duct static pressure was reset to 0.6 in. w.c. in both AHU's while the maximum damper position was reset from 90% in both AHU's to 80% in AHUA and 70% in AHUB. In Test 4.1d, the maximum damper position was returned to 90% in both AHU's while the error sum used in the integral portion of the PI algorithm was limited to a value of +/- 10% on AHUA and a value of 0% on AHUB. In previous tests, the error sum was limited to +/- 100%.

A small difference in fan power used appears during Test 4.1a and 4.1b. This is unusual because the same strategy was implemented on both AHUA and AHUB in both of these tests. Because all of the known parameters in this test were implemented in the same manner, this energy consumption difference remains unexplained. However, it is very near to the threshold for similarity so the difference will be noted but ignored for the time being.

Figures 3.9, 3.10, 3.11, and 3.12 (all below) compare the duct static pressure in AHUA and AHUB for each test in the Test 4.1 series. As expected, the oscillation of the static pressure returned in both AHU's. The oscillation occurs once again during the peak load times. In this series the duct static pressure limits were 1.4 inches w.c. for the upper limit and 0.6 inches w.c. for the lower limit. When the oscillation occurs, the static pressure bounces back and forth between the minimum and maximum set point. For the next test, the effect on oscillation of reducing the minimum static pressure set point was observed.

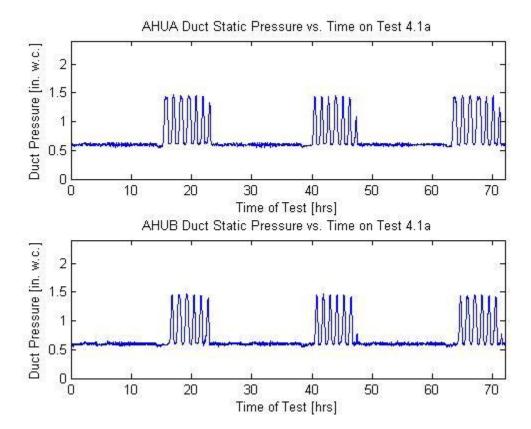


Figure 0.9: Static pressure plots when employing Strategy 1, PI reset of static pressure set point based on maximum damper position, on both AHU's with similar operating parameters and a minimum static pressure of 0.6 inches w.c.

Figure 3.10 (below) shows the effect of the reduced pressure set point in both AHU's. Oscillation similar to that previously observed still occurs during times of peak loading. However, additional oscillation occurs with reduced amplitude during times between these stronger oscillations. For the next test, the minimum static pressure will be returned to 0.6 inches w.c.

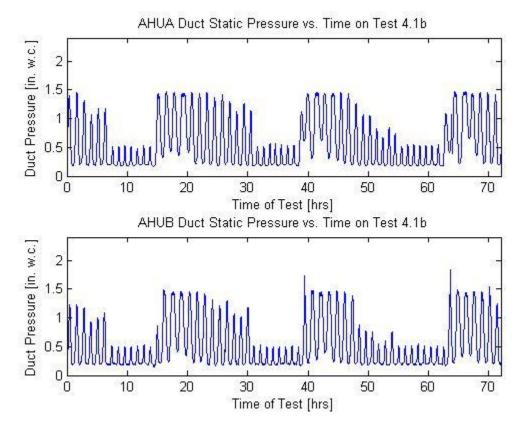


Figure 0.10: Static pressure plots when employing Strategy 1, PI reset of static pressure set point based on maximum damper position, on both AHU's with similar operating parameters and a minimum static pressure of 0.2 inches w.c.

Figure 3.11 (below) shows the effect of the parameter changes in Test 4.1c. This test saw the return of the static pressure minimum to 0.6 inches w.c. and the reduction in the maximum damper position used as the basis for calculating error in the PI equation. The

maximum damper position was adjusted from 90% in both AHU's to 80% in AHUA and 70% in AHUB. In this manner, two new set points were tested simultaneously so that their effects could be compared. It was hoped that by reducing the maximum damper position set point value, a greater degree of control would be possible with the damper. The effects visible in Figure 3.11 indicate that this reduction in parameter did little to affect the amplitude of the oscillation. However, it did result in a reduced number of oscillations, from eight peaks to only six. It would be possible to further reduce the maximum damper position set point, but this action would greatly reduce the energy savings potential for this control strategy. The lack of significant effect on the oscillation amplitude makes further reductions not worth the energy savings sacrifice.

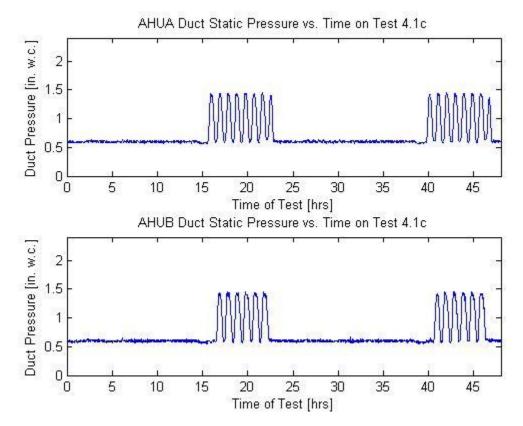


Figure 0.11: Static pressure plots when employing Strategy 1, PI reset of static pressure based on maximum damper position, on both AHU's but with maximum damper position set to 80% on AHUA and 70% on AHUB

Figure 3.12 (below) shows the effect on changing the value limit of the sum term used in the integral portion of the PI algorithm. In previous implementations, this value was limited to +/- 100. This was done to keep the PI algorithm from attempting to adjust the static pressure set point too quickly. During Test 4.1d, this sum was limited to +/- 10 in AHUA and 0 in AHUB. By making the sum term zero, the PI control algorithm effectively becomes a simple Proportional controller only. In the plots shown in Figure 3.12, the static pressure plot becomes more jagged when it transitions from increasing static pressure to decreasing static pressure. The oscillation still occurs in both AHU's, but it has slightly reduced amplitude. The reduction in oscillation without eliminating it altogether even without any integral term whatsoever suggests the oscillation is already present, but is made worse by the integral term. This seems to indicate that the instability may have its origins in the proportional error term or in some system external to the control algorithm.

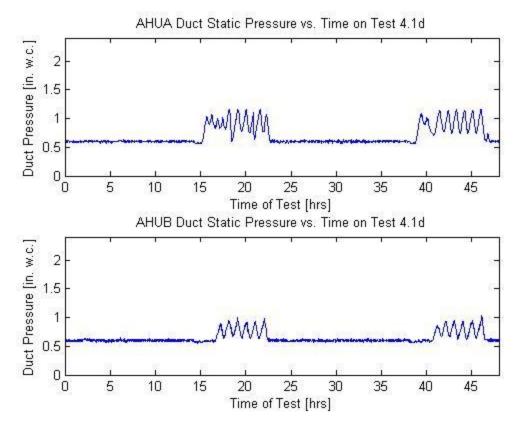


Figure 0.12: Static pressure plots when employing Strategy 1, PI reset of static pressure based on maximum damper position, on both AHU's but with the integral sum term limited to +/- 10 on AHUA and 0 on AHUB

Strategy 2 is the first of the two Trim and Respond strategies tested in this series. This particular version is the simpler of the two and adjusts static pressure based upon the maximum damper position only. The parameters tested during this test series were the maximum damper position and the trim rate. Table 3.7 (below) shows the results of changing these parameters. The details will be discussed in conjunction with the pressure plots to follow.

Test 4 Results Summary cont'd							
Parameter	Test Run						
Parameter		4.2a			4.2b		
comparisons	AHUA	Rank	AHUB	AHUA	Rank	AHUB	
Fan Energy					В	8.10%	
Temperature							
Static Pressure							
Oscillation	Y	В	N	Y	>	Y	
Travel							
Control							
Damper Travel							
Flow Rate Control							
- a "B" is used to indicate when one test strategy performed better than the other while a "-" is used to indicate when the two are similar. When a strategy performs better, a value will appear in the column of the AHU that performed better. Values will not be given for the case of similarity.							
 "yes" or "no" will be used to indicate presence of oscillation. These ratings are shown as "y" or "n." If both AHU's show oscillation, an arrow may appear, pointing to the AHU showing an improvement in oscillation behavior. Shaded rankings indicate an improvement in performance. 							

Table 0.7: Results summary table for tests employing Strategy 2, Trim and Respond of static pressure based on
maximum damper position

During the first test of this series (4.2a), the maximum and minimum damper positions were adjusted from 90% and 80% to 80% and 70%, respectively. Note that the 10% dead-band is maintained in this adjustment. The resulting performance was largely similar between the two AHU's. The key items to note are that the unstable behavior was virtually eliminated with the reduction in maximum damper position while energy consumption was not significantly different.

The second test of this series had the opposite results as the first test. By reducing the trim rate from .02 in both AHU's in the previous tests to .005 in AHUA and .01 in AHUB,

the intent was to smooth out the plot and eliminate some of the frequent oscillation. Resulting analysis yielded a reduction in fan energy by using a higher trim rate and little or no effect on oscillation amplitude with a change in trim rate. The only difference in the unstable behavior was that increasing the trim rate decreases the period of oscillation. Figures 3.13 and 3.14 (below) show the pressure plots of these two tests.

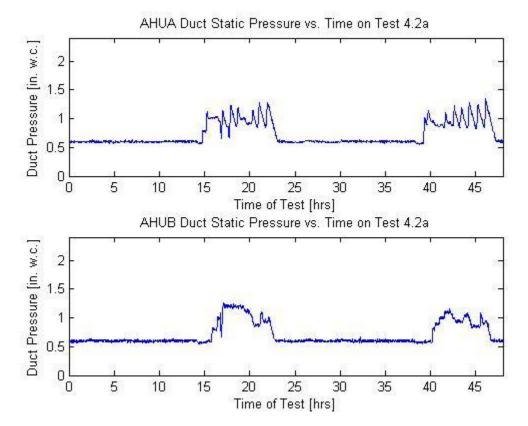


Figure 0.13: Static pressure plots when employing Strategy 2, Trim and Respond of static pressure set point based on maximum damper position, on both AHU's but with a 10% reduction in maximum and minimum desired damper positions on AHUB

The static pressure profile from Test 4.2a shows a distinct difference in oscillation between the two AHU's (see Figure 3.13 above). Reducing the maximum and minimum damper positions seems to have nearly eliminated any unstable behavior.

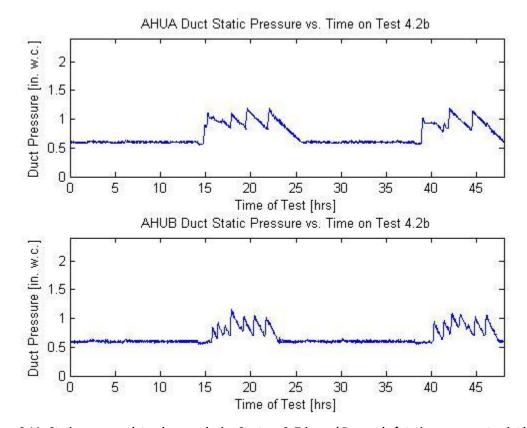


Figure 0.14: Static pressure plots when employing Strategy 2, Trim and Respond of static pressure set point based on maximum damper position, on both AHU's but with a trim rate of .005 on AHUA and .01 on AHUB

Reduction of the trim rate in Strategy 2 seems to have little effect on oscillation amplitude (see Figure 3.14). Though the pressure profile has fewer peaks with a lower trim rate, the amplitude of the peaks actually increased slightly. Reducing the trim rate also had the unwanted side effect of reducing the energy savings achieved by the strategy.

Test 4 Results Summary cont'd							
Parameter	Test Run						
Faranteter		4.3a		4.3b			
comparisons	AHUA	AHUA Rank AHUB			Rank	AHUB	
Fan Energy		В	6.72%		В	9.21%	
Temperature							
Static Pressure							
Oscillation	Y	>	Y	Y		Y	
Travel		В	0.42				
Control							
Damper Travel		В	35.22%		В	5.96%	
Flow Rate Control							

Table 0.8: Results summary table for tests using Strategy 3, PI reset of fan speed based on maximum damper position

- a "B" is used to indicate when one test strategy performed better than the other while a "-" is used to indicate when the two are similar. When a strategy performs better, a value will appear in the column of the AHU that performed better. Values will not be given for the case of similarity.

"yes" or "no" will be used to indicate presence of oscillation. These ratings are shown as "y" or "n." If both AHU's show oscillation, an arrow may appear, pointing to the AHU showing an improvement in oscillation behavior.

Shaded rankings indicate an improvement in performance.

Strategy 3 is the second strategy to employ a PI control method. In this strategy, maximum damper position resets fan speed rather than duct static pressure. Test 4.3 was executed in order to observe the effects on stability and performance of adjusting the maximum damper position and the PI sum term. This is very similar to what was done to Strategy 1 during Tests 4.1c and d. During the first test (4.3a), the maximum damper position was changed from 90% in previous tests to 80% in AHUA and 70% in AHUB. The results of these actions were a greatly improved damper travel per hour parameter in AHUB. There were also notable improvements in fan energy savings and static pressure travel per hour on AHUB. Table 3.8 (above) contains the outcome from Test series 4.3. The effects on oscillation will be discussed with the accompanying graph shown in Figure 3.15.

The second test (4.3b) of this series was used to observe the effect of limiting the integral sum term in the PI algorithm. The maximum value of the sum for this test was reduced from +/- 100 in previous tests to +/- 10 in AHUA and 0 in AHUB. Limiting the sum term to zero effectively makes it a proportional only control algorithm. Major improvements from this adjustment were a decrease in energy consumption and a reduction in damper travel per hour in AHUB.

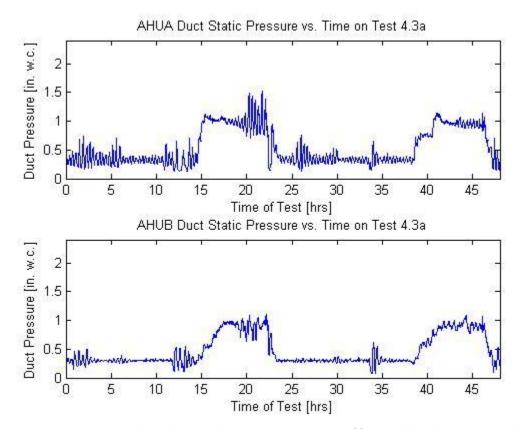


Figure 0.15: Static pressure plots when employing Strategy 3, PI reset of fan speed based on maximum damper position, on both AHU's but with the maximum desired damper position set to 80% on AHUA and 70% on AHUB

Test 4.3a showed remarkable improvement in the appearance of the static pressure plot (see Figure 3.15 above). There is far less hunting that occurs when the damper position is adjusted from 90% previously to 70% in AHUB. This reduced hunting effect is likely responsible for the improvements in both static pressure travel per hour and damper travel per hour.

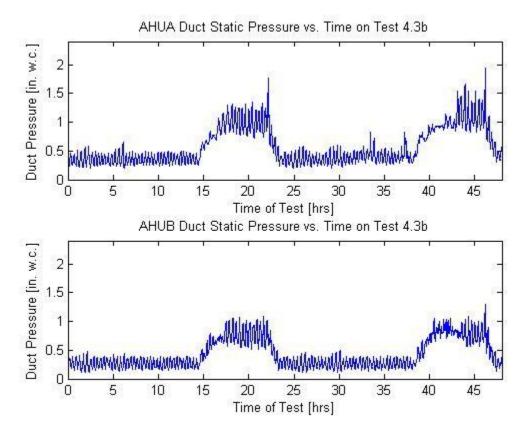


Figure 0.16: Pressure plots when employing Strategy 3, PI reset of fan speed based on maximum damper position, in both AHU's but with the integral sum term limited to +/- 10 in AHUA and 0 in AHUB

Limiting the integral sum term unfortunately did not yield any significant improvement in unstable behavior (see Figure 3.16 above). Hunting is present in both AHU's and seems relatively consistent between the two. The oscillation in AHUA is slightly more erratic during peak loading times, but there is not enough evidence to attribute this to the change in sum term limits.

The next strategy tested was the trim and respond by static pressure request method. As with the previous Trim and Respond method, the parameters adjusted were maximum and minimum damper positions and the pressure trim rate. The results from testing Strategy 4 are displayed in Table 3.9 (below).

 Table 0.9: Results summary table for tests using Strategy 4, Trim and Respond of static pressure set point based on the number of pressure requests

Test 4 Results Summary cont'd							
Parameter	Test Run						
Parameter		4.4a			4.4b		
comparisons	AHUA	Rank	AHUB	AHUA	Rank	AHUB	
Fan Energy							
Temperature							
Static Pressure							
Oscillation	Ν	В	Y	Y		Y	
Travel							
Control							
Damper Travel							
Flow Rate Control							
- a "B" is used to indicate when one test strategy performed better than the other while a "-" is used to indicate when the two are similar. When a strategy performs better, a value will appear in the column of the AHU that performed better. Values will not be given for the case of similarity.							
- "yes" or "no" will be used to indicate presence of oscillation. These ratings are shown as "y" or "n." If both AHU's show oscillation, an arrow may appear, pointing to the AHU showing an improvement in oscillation behavior.							
- Shaded rankings ind	dicate an i	mprove	ementin p	performan	ce.		

The results of Test 4.4a and 4.4b are shown in Table 3.9 (above). None of the performance parameters showed any significant improvement except for oscillation, which only showed improvement in Test 4.4a. The stability and oscillation results are discussed below in conjunction with the static pressure plots.

Some important features of Strategy 4 to remember are that there are two maximum damper positions and error in maximum damper position creates a number of requests which affects the magnitude of the static pressure set point adjustment. This strategy uses the lower of the two maximum damper positions to generate a single increase static pressure request, while the higher of the two generates multiple static pressure increase requests. The minimum damper position set point is used to trim the static pressure. These set points, in ascending order, were 70%, 80%, and 95% in previous tests. For this test, they were set to 60%, 70%, and 80% in AHUA and 70%, 80%, and 90% in AHUB. For Test 4.4b, these set points were returned to 70%, 80% and 95% in both AHU's while the pressure trim rate was set to 0.005 for AHUA and 0.007 for AHUB. The impact on static pressure oscillation for these two tests is shown below in Figure 3.17 and Figure 3.18.

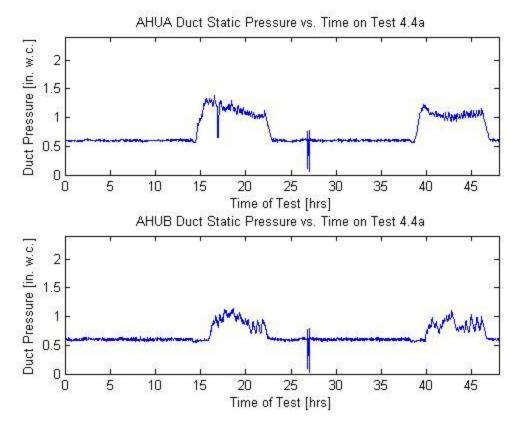


Figure 0.17: Static pressure plots when employing Strategy 4, Trim and Respond of static pressure set point based on static pressure requests, on both AHU's but with a reduction in desired damper positions of 20% in AHUA and 10% in AHUB

Test 4.4a resulted in a reduced level of hunting behavior in AHUA. Reducing the maximum and minimum damper positions in AHUA has resulted in a smoother curve that lacks almost any oscillation. Some of this hunting behavior is still present in AHUB with the slightly higher damper position set points.

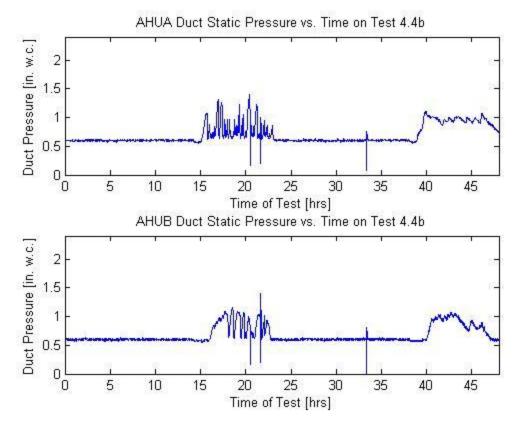


Figure 0.18: Static pressure plots when employing Strategy 4, Trim and Respond of static pressure set point based on static pressure requests, on both AHU's but with trim rates of .005 in AHUA and .007 in AHUB

Test 4.4b (results shown above in Figure 3.18) resulted in little comparable difference between the two AHU's. There may be marginally less oscillation present in AHUB, particularly during the first period of high loading, but this is insufficient to declare any significant difference between the two AHU's.

At this point in testing, a winning strategy had to be picked in order to proceed to final field testing in a campus building. Upon review of the previous tests, the strategy chosen was the Trim and Respond Strategy in general. Both versions of the Trim and Respond strategy were able to nearly eliminate any unstable behavior with minor parameter adjustments. As a result, this family of strategies was chosen to be the basis of another evolution of this strategy: Strategy 5. This strategy will be discussed at length in the appropriate section of this chapter, but comment is first necessary on the strategies dropped from this point forward in testing.

Dropped Strategy Final Comments

This study has not been an exhaustive one. Time and equipment scheduling factors left many possibilities unexplored. In choosing to halt additional testing on the PI based control strategies, it should be noted that additional testing may prove these strategies viable and reliable. Some of these unexplored possibilities include adjusting the proportional and integral gain constants, or perhaps changing the time between successive calculations. Though it is often dismissed out of hand, it may be worth investigating the addition of the derivative term to create a full PID strategy. Or, in the case of Strategy 3, it may be possible to eliminate many of the nested PI/D loops and control fan speed through room temperature or VAV flow rate.

Test Series 5

Test 5 will be analyzed somewhat differently than the previous tests. The primary focus of the first part of this test was observing the impact on performance of implementing various delay times between successive actions by the control strategy. This is in anticipation of field testing a version of the control strategy in a situation in which the control may only get to act every few minutes. As such, this test employs a strategy that is allowed to act every 1, 3, 5, or 15 minutes. After observing these time effects, the strategy was

tested for energy performance using the 15 minute interval. This interval was expected to be the interval used in the field controller. Although this turned out later to be a false expectation, it was necessary to study the energy performance in this scenario before implementation.

The test strategy used in this test series was modified from the two previous versions of Trim and Respond. This version uses a dead band, like the two previous versions, but also included the ability for the system to respond or trim faster for large deviations from dead band limits. Conceptually, it is a hybrid of the two previous versions, but it was modified to use maximum damper position instead of pressure requests and to be able to both trim and respond quickly in case of a large load change.

As previously stated, the first part of this test only sought to observe unstable behavior as a result of adjusting the delay interval. The results of this first round of tests are shown in Table 3.10 (below).

Test 5.5 Interval Testing						
Test	Interval (min)	Oscillation				
5.5a	1	Ν				
5.5b	1	Ν				
5.5c	3	Y				
5.5d	5	Y				
5.5e	15	Y				

Table 0.10: Oscillation results summary for interval testing

The results indicate that instability is present for interval times greater than 1 minute. These results suggest that the reaction speed of a control strategy could be a potential cause of unstable behavior. There were two tests run with 1 minute intervals, Test 5.5a and Test 5.5b. These tests used two different sets of damper position set points. The first test used a relatively low dead band group that included 90%, 75%, and 60% for the upper damper position limits, and 50%, 40%, and 30% for the lower damper position limits. This left a dead band of 50% to 60% in which no action would be taken. In the second test, the upper damper position limits were set to 90%, 85%, and 80% while the lower damper position limits were set to 70%, 65%, and 60%. This set a dead band of 70% to 80% which should allow for additional fan energy savings.

Plots of the static pressure over time during the interval test portion of Test 5 are displayed below in Figure 3.19 through Figure 3.23 with additional discussion.

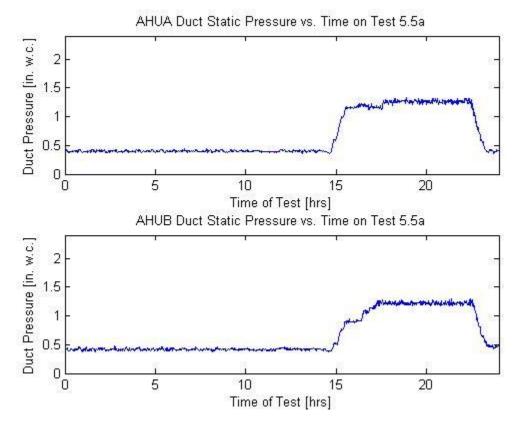


Figure 0.19: Static pressure plots when using Strategy 5, tiered Trim and Respond of static pressure set point based on maximum damper position, on both AHU's with the relatively low dead band

Test 5.5a (Figure 3.19 above) implemented the lower valued damper position dead band (50%-60%). This resulted in a relatively high static pressure of about 1.3 inches w.c. during peak load times. No unstable behavior was observed at this damper level and at this time interval.

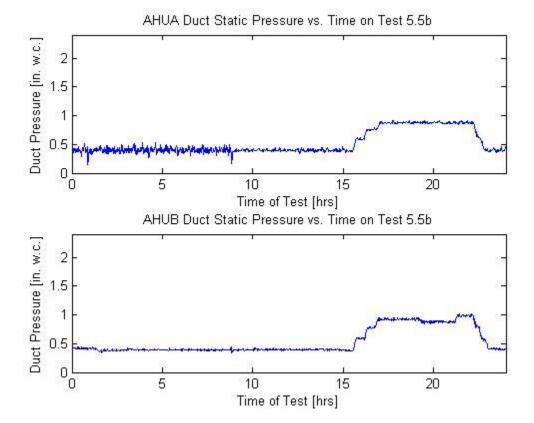


Figure 0.20: Static pressure plots when using Strategy 5, tiered Trim and Respond of static pressure set point based on maximum damper position, on both AHU's with the relatively high dead band

Test 5.5b (Figure 3.20 above) also used the 1 minute interval time, but relied on a higher dead band value (70% to 80%) to operate. The results were again no observed unstable behavior, but a significant reduction of duct static pressure from 1.3 inches w.c. to

0.9 inches w.c. during peak load times. This should translate into additional fan energy savings during this time period.

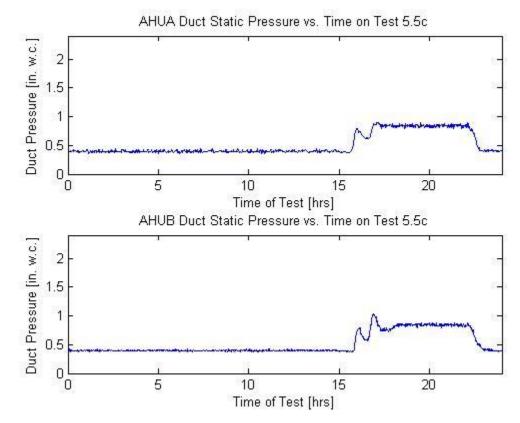


Figure 0.21: Static pressure plots when employing Strategy 4, tiered Trim and Respond of static pressure set point based on maximum damper position, on both AHU's with a calculation interval of 3 minutes

Test 5.5c (Figure 3.21 above) resulted in the first observation of unstable behavior.

The graph indicates that for a period of about two hours, from 3:40pm to 5:30pm,

oscillations took place in the duct pressure level. These oscillations then disappeared and a relatively constant pressure level followed for the remaining peak load segment. Though the strategy appeared to have gained control, the presence of this oscillation is the first indicator that response speed may contribute directly to unstable behavior.

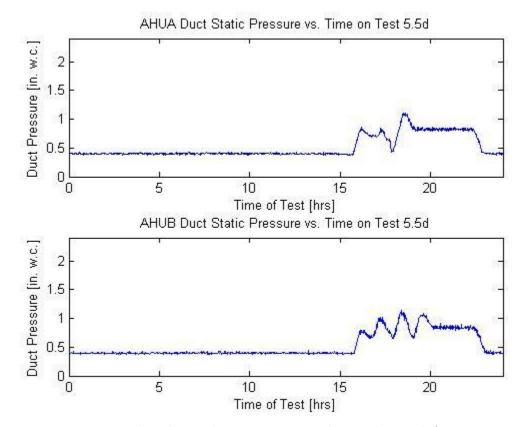


Figure 0.22: Static pressure plots when employing Strategy 4, tiered Trim and Respond of static pressure set point based on maximum damper position, on both AHU's with a calculation interval of 5 minutes

Test 5.5d (Figure 3.22 above) resulted in the worst display of unstable behavior for all of Test 5. The same type of oscillation as that found in Test 5.5c occurs, but for a much longer period of time; a little more than four hours from 3:50pm to 8:10pm. After this oscillation, the system appeared to have regained control and held a nearly constant set point for the duration of the high load period.

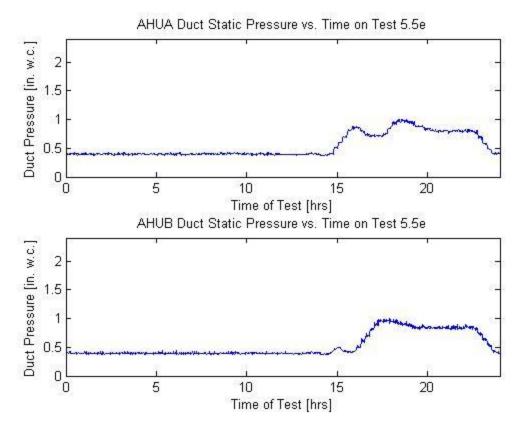


Figure 0.23: Static pressure plots when employing Strategy 4, tiered Trim and Respond of static pressure set point based on maximum damper position, on both AHU's with a calculation interval of 15 minutes

Test 5.5e (Figure 3.23 above) resulted in reduced oscillation for the 15 minute interval as compared to the two previous tests at intervals of 3 and 5 minutes. The oscillations present have a much longer period as observe on AHUA, but are virtually nonexistent on AHUB. This change in behavior suggests that there is a speed of action for the control algorithms that maximizes unstable behavior. The implications of this find are that control strategies would have to act either relatively quickly or very slowly in order to maintain stable control. This presents a few problems with algorithm programming. If a strategy acts too quickly, it can over drive a fan motor which could possible cause damage to the fan motor. If a strategy acts too slowly, it would be very difficult to save significant amounts of energy simply because the strategy would be less capable of responding to a reduced load quickly enough to capitalize on energy savings. These constraints combined with the interval effect could result in only a few narrow bands of acceptable action speeds that cool the space adequately, save fan energy, and protect the system from unnecessary damage.

With this in mind, the next test compared the tiered Trim and Respond algorithm against a fixed static pressure. For this test, the 15 minute interval was used in performing static pressure set point calculations. For the reset strategy, maximum and minimum damper positions were set to 90%, 85%, and 80% for the upper limits and 70%, 65%, and 60% for the lower limits. The supply pressure had a maximum of 2.0 inches w.g. and a minimum of 0.4 inches w.g. For the fixed pressure strategy, the duct static pressure used a fixed set point of 1.4 inches w.g. This set of parameters was used in two tests for this phase. The first test saw the Trim and Respond algorithm implemented on AHUA, while it was employed on AHUB during the second test. During these two tests, the fixed pressure strategy was employed on the opposite AHU. The results of these two tests can be found in Table 3.11 (below).

81

Test 5.5 Results Summary							
Daramatar	Parameter Test Run						
Falameter		5.5f			5.5g		
comparisons	AHUA	Rank	AHUB	AHUA	Rank	AHUB	
Fan Energy	55.90%	В			B	35.70%	
Temperature							
Static Pressure							
Oscillation	Ν		Ν	N		Ν	
Travel	0.82	B			B	1.02	
Control							
Damper Travel							
Flow Rate Control							
- a "B" is used to indicate when one test strategy performed better than the other while a "-" is used to indicate when the two are similar. When a strategy performs better, a value will appear in the column of the AHU that performed better. Values will not be given for the case of similarity.							
 "yes" or "no" will be used to indicate presence of oscillation. These ratings are shown as "y" or "n." If both AHU's show oscillation, an arrow may appear, pointing to the AHU showing an improvement in oscillation behavior. 							
- Shaded rankings inc	dicate an i	mprove	ement in p	erforman	ce.		

Table 0.11: Results summary for energy comparisons between Strategy 4, tiered Trim and Respond, and a fixed pressure set point strategy

As Table 3.11 indicates, the TR strategy resulted in substantial fan energy savings;

55.9% when employed on AHUA and 35.7% when used on AHUB. Also, there were no

unstable behavior observations. Plots of the static pressure vs. time can be found below in

Figure 3.24 and Figure 3.25 for tests 5.5f and 5.5g respectively.

Figure 0.24: Static pressure plots when employing Strategy 4, tiered Trim and Respond, on AHUA and a fixed pressure strategy on AHUB

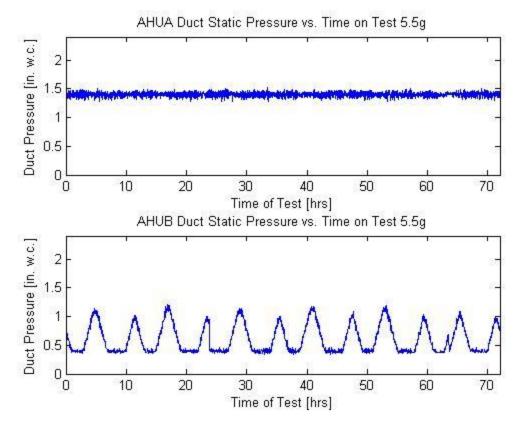


Figure 0.25: Static pressure plots when employing Strategy 4, tiered Trim and Respond, on AHUB and a fixed pressure strategy on AHUA

With the testing phase complete, progressing to a field test in an ISU campus building is the next stage of the research project. Implementing into an existing building presents several challenges. Up to this point, strategy programming has been external to the primary building control system. The primary challenge will be creating a version of the program in Metasys, the software package used in the Hixson-Lied Academic Success Center's building automation system.

CHAPTER 4: FIELD TESTING SETUP AND RESULTS

Field Test Setup

After testing a variety of control strategies, a best strategy was picked and then work began on implementing this strategy in a building. During this phase of the implementation, the research team met several times with representatives of the Facilities Planning and Management department of Iowa State University. The result of these meetings was choosing to implement the best control strategy at the Hixson-Lied Academic Success Center. This building is located on the Eastern side of the ISU campus on Beach Avenue. Figure 4.1 (below) shows a photograph (obtained from the Facilities Planning and Management website) of the building's Northeast façade.

Figure 0.1: Photograph of the Hixson-Lied Academic Success Center obtained from the ISU Facilities Planning and Management website

The primary relevant features of this building are that it was constructed in 2007 and is equipped with a full VAV system. The building is 35,000 square feet and contains rooms with functions expected at academic institutions including: a 52 station computer lab, quiet reading areas, two 60-seat classrooms, group learning rooms, conference rooms, and office space. In addition to these general characteristics, the building contains one air handling unit located in the third floor mechanical space.

The air handler, AHU-1, is a mixed air unit that contains a 50 HP supply fan and a 15 HP return fan. AHU-1 is designed to deliver 34,000 CFM of air at a maximum total static pressure of 3.00 inches w.g., though it is more frequently operated in the range of 1.5 – 2.2 inches w.g. The air handler delivers conditioned air to the non-mechanical parts of the building via pressure independent VAV boxes and fan powered VAV boxes. In all, there are 51 VAV damper positions to monitor for this test which includes 23 dampers associated with fan powered boxes, and four fan coil units. There is an additional pressure independent VAV box that supplies cooling to the mechanical room, but this damper was not tracked during the course of this test. In addition to the two larger fans, there are two exhaust fans in the building. The exhaust fans include a 1.00 HP unit which serves the bathroom exhaust, and a smaller 0.50 HP unit which serves two storage areas.

This building, with its DDC control system, is considered to be representative of many commercial and institutional buildings. As such, selecting this building for testing provided a platform for evaluating potential performance in real-world settings. This realworld setting included several obstacles to implementing a trim and respond control strategy.

Implementation

One problem confronted early on was the difference in monitoring capabilities. At the ERS, there was an extensive data collection system which provided data on virtually every control point in the HVAC system. In most buildings, this data collection system is not present or is scaled back significantly. In the Hixson building, there were many points that were not monitored, such as fan power and damper position feedback.

In addition to the physical hurdles, there was another significant challenge: implementing the control strategy completely in Metasys. In the ERS testing phase, the control strategies were all written in Matlab and then interfaced with Metasys. Creating the program in Johnson Controls' GPL required the assistance of a facilities engineer who was familiar with the program.

Hardware

In the ERS implementation, fan power was used as a metric to evaluate control strategy performance. In the Hixson building, this monitoring equipment had to be added to the existing control system. This included the installation of current transducers and their associated hardware. The transducers and hardware can be seen in Figure 4.2 (below). Transducers were added to both the supply fan and the return fan. The exhaust fans were ignored in this study.

Figure 0.2: Current transducers installed on the return fan power

As figure 4.2 indicates, the power wire was wrapped twice around the transducer in the return fan. This was to help overcome the limitations of the sensor's lower range. The value recorded by the meter was then corrected in Metasys with a meter multiplier. The only sensors available in the time required were units that had unreported accuracy below 10% of their maximum range. The maximum range for these CT's was 100A for the return fan unit, and 400A for the supply fan unit. These units spent a good deal of the time on this test recording data in the range below 10% of maximum range. It is presumed that below this range, the accuracy of the data collected will be good enough for comparison purposes.

Damper position feedback was not available in the Hixson building. Instead, damper position command was used as the input to the control strategy. This requires the assumption that the dampers are in working order and functional. If this is not the case, it

could result in either a starved zone or a VAV box stuck open too far. The effect of this situation on the control strategy is unknown and presently untested.

Software

The strategy was divided into three distinct sections for implementation into Metasys. The sections were the *maximum selection section, the response section*, and *the limit-check section*. Each section consisted of a number of fairly simple building blocks that worked together to achieve a specific function.

In the *maximum selection section*, damper positions were compared in order to select a single maximum damper position. This had to be done in increments; the comparator blocks could only compare eight values at a time, so seven blocks were used to compare all of the 51 dampers. Each block then output the maximum of the damper positions that were put into it. The seven resulting maximums were then put into another maximum comparison block to select the maximum of the maximum. This final maximum damper position was then passed to the next section of the program: the response section.

The *response section* is the most complicated part of the strategy. It consists of six comparison blocks, each with a true or false output. These comparison blocks compared the maximum damper position present value to a fixed set point that was different for each block and a bias value. This True/False output was then passed to another block. If this signal was true, the block would output a response value to increase or decrease the static pressure. These response outputs were then totaled among all of the response values. This totaled response value was then passed to the limit-check section.

To provide a better picture of how the response section works, a few more details need to be provided and perhaps an example. The first stage of the response section consists of six comparison blocks, as stated before. Each of these blocks compares the maximum damper position from the maximum selection section to a unique set point with a bias. The bias was set to 1 unit, in this case 1%. The unique set points were 98%, 95%, and 92% for the increase static pressure portion and 87%, 84%, and 81% for the decrease static pressure portion. In the increase static pressure portion, the block created a true value if the damper position was greater than the set point minus 1%, in the decrease static pressure portion, the block sends a true value if the damper position was less than the set point plus 1%. In other words, the 92% comparison block would be true at any value greater than 91%. Similarly, the 84% comparison block would be true for any value less than 85%.

The next part of the response section is made up of the output blocks. If these blocks receive a true signal, they output a static pressure adjustment value. The adjustment value is different for each block. In the case of the increase pressure portion, the values are .01 inches w.g. for the 92% block, .02 inches w.g. for the 95% block, and .03 inches w.g. for the 98% block. Similarly, the values are -.01 inches w.g. for the 87% block, -.02 inches w.g. for the 84% block, and -.03 inches w.g. for the 81% block. The outputs from these blocks are then totaled before sending this total to the next section. Totaling the blocks has the effect of allowing the pressure set point to rapidly increase in the event of a dramatic and sudden load change. For illustration purposes, a maximum damper position of 95% will create two true signals: one at the 92% block and the other at the 95% block. These two true outputs then trigger the next blocks to output their adjustment values of .01 inches w.g. and .02 inches w.g. The total for these two blocks is then .03 inches w.g. and this value is sent to the limit check section. A functional description of this process is shown in Table 4.1 (below) and the parameter values chosen for the Hixson test are shown in Table 4.2 (below).

90

Table 0.1:	Execution	details	of TR tes	t strategy
------------	-----------	---------	-----------	------------

	Hixson Test Execution Details						
	parameter information						
sy	mbol	definition					
MDP		Maximum Damper Position					
SPSet		Static Pressure Setpoint					
H1,2,3		High Damper Position cutoff values (see Table 4.2)					
L1,2,3		Low Damper Position cutoff values (see Table 4.2)					
Trim1,2,3		Trim Rates (see Table 4.2)					
Respond 1,2,3		Respond rates (see Table 4.2)					
	execution statements						
cor	ndition	response					
IF	MDP > H3	SPSet = SPSet + Respond1 + Respond2 + Respond3					
IF	MDP > H2	SPSet = SPSet + Respond1 + Respond2					
IF	MDP > H1	SPSet = SPSet + Respond1					
IF	MDP < L1	SPSet = SPSet + Trim1					
IF	MDP < L2	SPSet = SPSet + Trim1 + Trim2					
IF	MDP < L3	SPSet = SPSet + Trim1 + Trim2 + Trim3					

Table 0.2: TR Parameter values

TR Strategy Parameter Test Values							
	Н	H L Trim Respond					
1	98	87	-0.01	0.01			
2	95	84	-0.02	0.02			
3	92	81	-0.03	0.03			

Selection of the adjustment values followed a simple rule of thumb: The strategy should be able to traverse the range of static pressure limits from one end to the other in 15 minutes at the lowest adjustment level. Metasys is capable of making calculations and adjustments every 5 seconds as configured at the Hixson building. In this case, the static pressure maximum and minimum were 2.2 and 0.4 inches w.g., respectively. Simple arithmetic then yields a value of .01 inches w.g. This value was then doubled for the second

tier and tripled for the third tier. This means that if a damper position of 99% were maintained, the strategy would increase static pressure from its minimum to its maximum or vice versa in only 2.5 minutes.

The *limit check section* is designed to make sure that the increase or decrease in static pressure does not exceed preset limits. This is also the portion of the strategy that applies a new set point to the system. This section takes the proposed total increase or decrease in static pressure and then adds it to the current system static pressure. This proposed new static pressure is then compared to both the minimum and maximum static pressure limits, in this case 0.4 inches w.g. and 2.2 inches w.g., respectively. If the proposed new pressure set point is less than the minimum limit or greater than the maximum limit, the strategy chooses the minimum limit or the maximum limit, respectively, as the new static pressure set point. For example, if the proposed new pressure is 0.2 inches w.g., the strategy will choose 0.4 inches w.g. instead. If the proposed new set point is 1.8 inches w.g., this value will be allowed through unchanged and become the new static pressure set point.

Once the strategy was programmed, the next step was making a schedule. The proposed schedule was to alternate between the TR control strategy and a fixed static pressure override on a weekly basis. This would provide for a comparison between strategies that would minimize environmental effects from weather changes. In total, there would be 7 weeks of TR strategy control and 6 weeks of fixed pressure override. In this case, the Facilities Planning and Management staff chose 1.5 inches w.g. for the fixed pressure override.

92

Results

After implementation, the data collected was downloaded and analyzed. For the purposes of consistency, the same similarity thresholds used for the ERS were also used in the Hixson building. The TR strategy and fixed pressure strategy were then compared for similarity. The results of this comparison can be found in Table 4.1 (below).

Field Test Results Summary							
Parameter	Strategy						
Farameter	TR	strate	gy	fixed strategy			
comparisons	value	Rank	diff.	value	Rank	diff.	
Fan Energy	1395.01	В	37.03%	2215.23			
Temperature	0.19	В	0.47	0.66			
Static Pressure							
Oscillation		Ν			Ν		
Travel	0.66	-		0.48	-		
Control	0.00	-		0.02	-		
Damper Travel	7.39%			2.33%	B	5.06%	
Flow Rate Control	-5.25	I		-2.21	-		
 a "B" is used to indicate when one test strategy performed better than the other while a "-" is used to indicate when the two are similar. When a strategy performs better, a value will appear in the diff column of the AHU that performed better. Values will not be given for the case of similarity. "yes" or "no" will be used to indicate presence of oscillation. These ratings are shown as "Y" or "N." Shaded rankings indicate an improvement in performance. 							

 Table 0.3: Results comparison for the Hixson-Lied field test

In analyzing the data, there were a few modifications needed in order to make a

better comparison. Since the TR strategy operated for 7 weeks and the fixed strategy

operated for 6 weeks, a comparison of total fan energy used would be fruitless. Instead, the total fan energy used by each strategy was averaged on a weekly basis. This enables a comparison of the fan energy used per week. The other performance metrics were calculated in the same way as with the ERS data (see Chapter 2).

As Table 4.1 shows, the TR strategy and the fixed pressure strategy performed similarly to one another in the performance parameters of static pressure travel per hour, static pressure control, and flow rate control. The TR strategy performed worse than the fixed pressure strategy in the damper travel per hour column. This result is somewhat expected since the premise of this strategy is to alter duct static pressure, which will cause damper position movement. In this case, the difference is relatively small at 5.06% per hour, which is just outside of the similarity threshold.

The parameters that showed improvement were the fan energy per week and the temperature control. The temperature control difference is outside the similarity threshold of +/- 3 °F at a value of 0.47 °F. This means that on an aggregate level, the TR strategy did a better job of controlling room temperature to set point. This is somewhat surprising, since this result was never observed in the ERS testing. Fan energy used per week was calculated as a percentage difference. The TR strategy was able to use on average %37.03 less energy each week over the fixed pressure strategy. This means 820.2 kWh less per week, 42,651 kWh less per year, and at a rate of \$0.09/kWh, a savings of \$3,839/year on fan energy alone.

Oscillation of static pressure is the final performance parameter. During the field test, there was no oscillation observed. There was a small amount of hunting that was present during certain times while employing the TR strategy. Figure 4.3 through Figure 4.6 (below) show plots of static pressure over the course of the tests for each strategy.

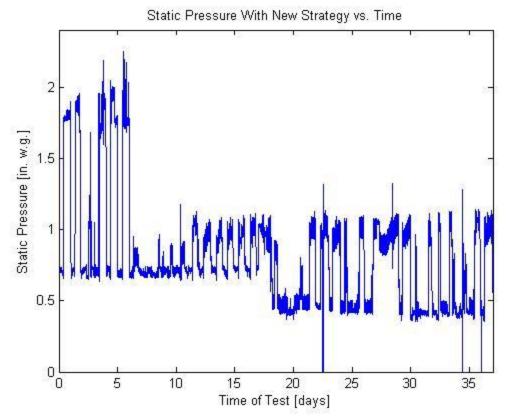


Figure 0.3: Static pressure plot when tiered Trim and Respond is employed in Hixson-Lied

Figure 4.3 shows a plot of static pressure over time when the TR strategy is employed on AHU-1 in the Hixson-Lied building. The plot is comprehensive and shows the weeks when the TR strategy was run concatenated together in one long graph. One striking feature of this graph is the dramatic increase and decrease in static pressure that coincides with the building's occupancy schedule. This is a major indication that the strategy is doing well at responding to changes in applied load. Also, there is no oscillation visible in the aggregate view.

There were some minor changes that were implemented during the testing phase. One was the elimination of two rogue zones (more on this later) after the first week. The effect of this can be observed on the graph when the maximum static pressure stops rising above 1.0 inches w.g. after about day 7. The other change was made at about day 18; at this point, the minimum static pressure was lowered to 0.4 inches w.g., which was the originally intended value.

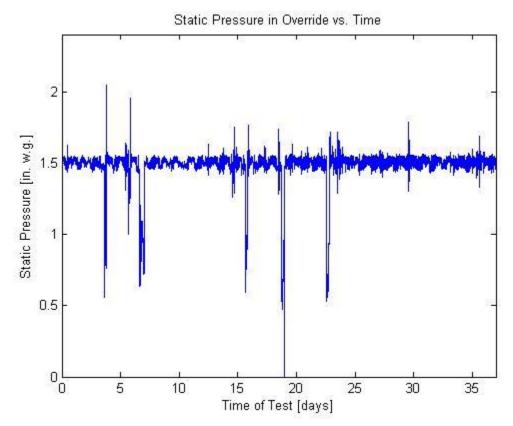


Figure 0.4: Static pressure plot when fixed pressure strategy is employed in Hixson-Lied

The plot of the constant static pressure strategy results vs. time can be found in Figure 4.4 (above). One feature of the plot is that, for the most part, the override strategy was able to maintain a relatively constant set point. However, there were large departures from set point that cannot be completely explained at present. It is possible that these large dips and spikes are due to equipment malfunction or measurement errors, but more investigation is needed.

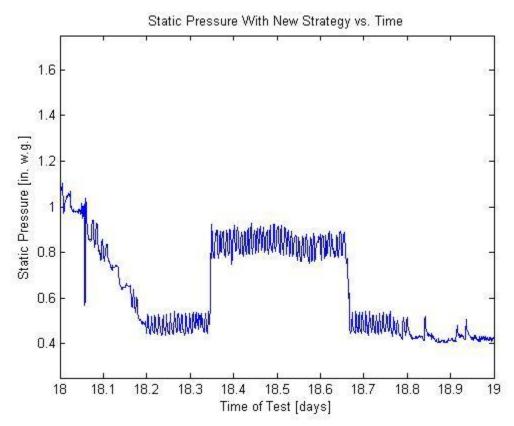


Figure 0.5: Detail static pressure plot when tiered Trim and Respond is employed in Hixson-Lied

Figure 4.5 is a detail view of Figure 4.3 that focuses on day 18. This is a good example of the hunting behavior previously mentioned. This behavior is somewhat undesirable, but the strategy is able to limit this phenomenon to amplitude of 0.15 inches w.g. Some possible reasons this behavior occurs could be that the dead band is too narrow, causing the strategy to slightly overshoot it each time. On the other side of that argument, the strategy may act slightly too quickly without giving the dampers sufficient time to respond to the increased pressure, which could result in the same overshoot.

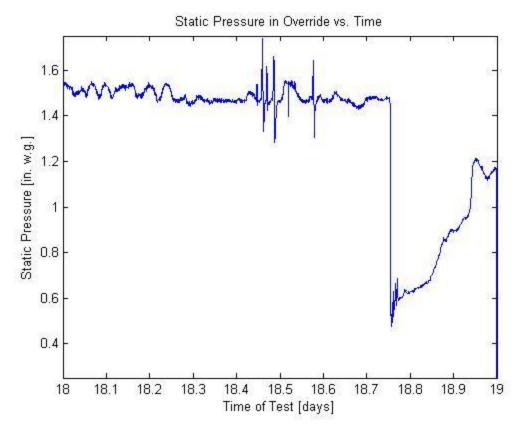


Figure 0.6: Detail static pressure plot when fixed static pressure strategy is employed in Hixson-Lied

Similar to Figure 4.5, Figure 4.6 (above) is a detail image of static pressure vs. time for the override static pressure strategy. The intent of this graph is to show the difference in variation of static pressure between the two strategies employed. This plot should depict a relatively constant static pressure, but at different times throughout testing, there were sharp changes in static pressure.

Weather

Weather data specific to the Hixson-Lied building is unavailable. However, local weather data including hourly temperature readings and hourly solar radiation are available for the Ames area. This data allows for an inferred comparison of weather during the test weeks at the Hixson-Lied building. Table 4.4 (below) contains total average hourly air temperature and average daytime solar radiation during the test weeks. Table 4.4 also includes maximum and minimum weekly averages of these values for further comparison.

Hixson t	Hixson test weather comparison									
fixed pressure	solar radiaion	temperature								
average	270.7	63.5								
max weekly avg	364.6	81.1								
min weekly avg	143.9	45.2								
TR reset	solar radiaion	temperature								
average	283.8	57.2								
max weekly avg	368.4	81.1								
min weekly avg	145.9	38.7								

Table 0.4: Local weather data averages, Temperature in ^oF and solar radiation in kcal/(hr*m²)

The weather comparisons contain some mixed results. The solar radiation per hour was slightly higher for the TR strategy tests weeks, but the average hourly air temperature was lower. From the raw data, the reason for the difference in temperature means is largely due to a single week with a very low average air temperature. The solar radiation, on the other hand, is different due to a consistently slightly higher weekly average. To put this into context: The TR strategy may have had a slightly reduced cooling load one week due to a lower than average outdoor air temperature, but had to contend with a consistently higher

solar heat gain. These two conditions and their effects on the fan energy used may cancel to some extent, but it is highly unlikely that a single week of reduced cooling load due to outdoor air temperature would account for all of the 37% reduction in fan energy, which is also a weekly average.

Rogue Zones

During the initial week of testing, two rogue zones were discovered. These two zones were originally flagged in analysis of the data when they were consistently in control of the static pressure reset strategy. These rooms were 1080D and 2242; both rooms were originally scheduled as study rooms. In both cases, these study rooms had later had computers installed in them. In the case of 2242, three large network printers were also installed. The additional equipment load was not accounted for in the original commissioning and balancing.

To combat this problem, a determination was first made regarding occupant comfort and equipment cooling. In this case, it was decided that since these spaces do not contain regular offices or classrooms, that their cooling requirements could be somewhat sidelined. This was accomplished by implementing an operator override on the damper position point in Metasys.

Overriding the damper position in Metasys has no actual effect on the damper position in this case. Since this point was brought out as an analog output, it cannot be commanded with any result. An override of damper position that resulted in a change in damper position can only happen if the damper position point is an analog input. However, since the control strategy uses damper position command, it will reference the overridden value instead of the value given to the damper by the system. These damper commands were overridden to values of 40% open for 1080D and 60% open for 2242. This most likely resulted in certain periods where the dampers were at or near 100% open (despite the command value) but were not meeting airflow requests, i.e. the VAV boxes were starved.

This method appears to have been effective, during the course of the test, the maximum static pressure never greatly exceeded 1.0 inches w.g. after this change was implemented, and there were no related customer complaints.

CHAPTER 5: SUMMARY AND FUTURE WORK

Summary of Work

Over the course of testing, two families of static pressure reset strategies were evaluated: Trim and Respond and Proportional plus Integral control. After five rounds of testing at the ERS, a version of Trim and Respond, called tiered Trim and Respond, was chosen to be modified for implementation in a campus building. This strategy was chosen because its operation was shown to be stable, without oscillation, and capable of saving fan energy. Once implemented in the building, the strategy demonstrated its ability to reduce operating costs by cutting fan energy. It could handle rogue zones effectively with some operator monitoring. The strategy was able to do this without significant adverse effects on the system. The only performance category where the tiered Trim and Respond underperformed was damper travel per hour. This increase was just outside the similarity threshold and may have a very minor impact on maintenance costs, which should be outweighed by the significant 37% energy savings.

Limitations

The control strategies developed in this research, were done with one type of system in mind. Specifically, a mixed-air AHU which supplies air to pressure-independent VAV boxes with DDC controls. It is also worth noting that both test buildings had relatively new equipment and were less than or about 10 years old. The ERS was the oldest building at about 12 years old, but its equipment is continually being calibrated and repaired in order to be ready to perform research. The Hixson building was only about 4 years old when this research was completed, which would make the equipment relatively new. It is also worth noting that many campus buildings have laboratories and research areas. These areas have their own unique ventilation requirements that depend upon a variety of factors. Some of these factors include equipment heat rejection, chemicals present, research schedule, and whether or not animals are present to name a few. Implementing a static pressure reset strategy that includes laboratory rooms will require an extra level of scrutiny to verify that ventilation requirements are met and comply with local health and safety requirements.

As with laboratory ventilation requirements, there remain a variety of untested aspects of static pressure reset strategies. The next section, Future Work, discusses many of these aspects in more detail.

Future Work

This research focused on only a small aspect of static pressure reset. There is much additional work that can be done. There are questions raised by this research that should be further investigated. These sets of questions and comments can be divided into three sections: Analysis, New Strategies, and Strategy Implementation.

Analysis

The ERS was able to collect extensive data on the versions of static pressure reset strategies tested here. Some of this data was unused in this report, such as solar and meteorological data. Analyzing this data might help to direct additional research and perhaps answer a few questions along the way. Some important aspects to study would be the effect of solar load on oscillation. It is likely that with the addition of solar load, the total load on some of the exterior rooms may have exceeded design conditions for the room. In this situation, the room may call for more air than the damper maximum will allow. This could have an impact on stability.

Data errors were problematic in calculating applied artificial load. Studying these data errors to find out how the equipment behaved when they were present is important. The equipment could have operated normally, but there is no way to know for certain without redundant monitoring.

Plotting VAV flow rate vs. damper position for several pressure levels may help to determine an optimal set point for maximum damper position. Ideally, this set point would be as high as possible and in a region of fairly constant slope. In this type of region, small changes in damper position in one direction would not result in extremely large or small changes in VAV flow rate.

Finally, studying the data for clues as to why strategies oscillate. Ideally, when overloaded, these strategies would simply operate at their maximum pressure or damper position levels until the load subsided. In the observations here, the static pressure would sometimes oscillate wildly. Analysis could yield the reason these oscillations occurred.

New Strategies

In addition to analyzing existing data, it would be beneficial to continue to test new strategies or revise and retest old ones. It is possible that a set of parameters can be found for each control strategy that would result in stable operation. This would provide building operators with a variety of choices for energy saving strategies. The PI strategies tested earlier should be retested with a variety of parameters in order to find a root cause for unstable operation. It is just as important to know what causes the instability as it is to know how to avoid it. In the process, newer more robust strategies may be discovered that will operate without oscillation and with increased efficiency.

Commissioning is a key factor in deploying any HVAC system. A look into commissioning processes and how they could incorporate selecting and tuning a static pressure reset strategy would be beneficial. Although buildings change over time, it is likely easier to start out with a static pressure reset strategy employed than it would be to try and get one to work after commissioning.

Strategy implementation

Once a control strategy has been found that operates in a stable manner, incorporating this strategy in to a broader energy saving concept is the next logical step. There are other pieces of equipment that contribute to energy consumption in an HVAC system such as pumps and electric heaters. These devices should be studied to find additional energy savings.

In addition to controlling other devices, fan energy may be further reduced by operating the supply and return fans on a schedule. For example, the fans could be turned off altogether at night throughout the year, provided that the logic to accomplish this includes a night-cycle that keeps pipes from freezing or prevents equipment from overheating. Another possible scheduling solution is to turn off air to classrooms when class is not scheduled. These types of strategies would necessarily need to incorporate some sort of warm-up or cool-down cycle in the beginning to ensure occupant comfort.

105

Recommendations

The recommendation of this research is that static pressure reset strategies like the final Trim-and-Respond strategy be implemented in the buildings that can support them as part of a broader energy saving concept that includes a variety of equipment and controls. By incorporating additional energy saving strategies and concepts, energy savings on the order of 30%-50% would be a reasonable goal.

In the near future, this strategy could be implemented on any campus air handler that serves classrooms and student spaces. The proposed air handler would have to have pressure independent VAV boxes for air distribution and a variable speed fan. It would have to be able to collect information on damper position (command signal is sufficient) and duct pressure at a minimum.

REFERENCES

- Englander, S.L. and L.K. Norford. 1992. Saving fan energy in VAV systems—Part 2: Supply fan control for static pressure minimization using DDC zone feedback. *ASHRAE Transactions* 98(1): 19-32.
- Energy Resource Station (ERS), 2010. Iowa Energy Center Energy Resource Station technical description. Iowa Energy Center, U.S.A.
- Goswami, D. 1986. VAV fan static pressure control with DDC. *HPAC Heating, Piping, Air Conditioning* 58(12): 113-117.
- Lee, R.L.Y. and T. Chow. 2004. Performance of variable-air-volume air-conditioning system under reduced static pressure control in an occupied office. *Architectural Science Review* 47(1):63-70.
- Lui, M., J. Feng, Z. Wang, L. Wu, K. Zheng, and X. Pang. 2010. Impacts of static pressure reset on VAV system air leakage, fan power, and thermal energy. ASHRAE *Transactions* 116(1): 428-36.
- Murphy, J. 2008. Energy-saving strategies for rooftop VAV systems. *HPAC Engineering* 80(May): 28-35.
- Price, B. and T. Smith. 2000. Description of the Iowa Energy Center Energy Resource Station: facility update III. Technical report: ME-TFS-00-001, Iowa Energy Center, U.S.A.
- Taylor, S. 2005. Increasing efficiency with VAV system static pressure setpoint reset. ASHRAE Journal 49(6): 24-32.

- Tung, D.S.L. and S. Deng. 1997. Variable-air-volume air-conditioning system under reduced static pressure control. *Building Services Engineering Research and Technology* 18(2): 77-83.
- U.S. Department of Energy. Energy Information Administration. 2003. Overview of Commercial Buildings, 2003.

http://www.eia.gov/emeu/cbecs/cbecs2003/overview.pdf

- U.S. Department of Energy. Energy Information Administration. 2011. Energy Consumption by Sector and Source, United States, AEO2011 Reference Case. http://www.eia.gov/oiaf/aeo/tablebrowser/#release=AEO2011&subject=0-AEO2011&table=2-AEO2011®ion=1-0&cases=ref2011-d120810c
- Wang, J. and Y. Wang. 2008. Performance improvement of VAV air condition system through feedforward compensation decoupling and genetic algorithm. *Applied Thermal Engineering* 28:566-574.
- Wang, S. and J. Burnett. 1998. Variable-air-volume air-conditioning systems: Optimal reset of static pressure setpoint. *Building Services Engineering Research and Technology* 19(4): 219-31.
- Wei, G., M. Lui, and D. Claridge. 2004. Integrated damper and pressure reset for VAV supply air fan control. *ASHRAE Transactions* 110(2): 309-13.
- Wu, L., M. Lui, G. Wang, and X. Pang. 2007. Integrated static pressure reset with fan airflow station in dual-duct VAV system control. *Proceedings of the Energy Sustainability Conference 2007*, 1:441-49.

APPENDIX A: SIMILARITY TEST TABLES AND GRAPHS

TEST 1.0

Total Fan Consumption [kW-hr]						
Days	1-6					
AHUA	131.26					
AHUB	127.95					
% difference	2.52%					

Fan Power Consumed [kW-hr]												
	1 2 3 4 5 6 mean variand											
AHUA	28.30142	27.89835	19.76791	21.05689	14.03746	20.19313	21.87586	29.38888				
AHUB	26.21801	26.90093	18.73958	20.01003	14.97864	21.10436	21.32526	20.75423				
% difference	7.36%	3.58%	5.20%	4.97%	-6.70%	-4.51%	2.52%					

Temperature Control							
Agg	Aggregate Values						
AHUA	mean [^o F]	-0.21237					
	variance	2.098164					
AHUB	mean [°F]	-0.38188					
	variance	1.548309					
diffe	0.169509						

	Temperature Control [°F Average]												
	Day 1		2	3	4	5	6	mean					
AHUA	East	-0.26321	-0.03452	-0.62421	-0.53415	-0.82421	-0.90278	-0.53051					
	Internal	0.235583	0.411699	0.360144	0.434812	0.632887	0.291481	0.394434					
	South	South -0.33792		-0.6298	-0.58218	-0.79655	-0.88009	-0.53721					
	West	-0.71091	-0.61718	-0.68914	-0.72673	-0.9953	-1.1523	-0.81526					
	mean	-0.26911	-0.05918	-0.39575	-0.35206	-0.49579	-0.66092						
	Day	1	2	3	4	5	6	mean					
AHUB	East	-0.79343	-0.63276	-0.67781	-0.70851	-0.95076	-0.97382	-0.78951					
	Internal	0.006142	0.1694	0.094918	0.294037	0.486183	-0.03286	0.169636					
	South	-0.69948	-0.5531	-0.57713	-0.56949	-0.77419	-0.81688	-0.66505					
	West	-0.95481	-0.68331	-0.66604	-0.70253	-0.92486	-1.29216	-0.87062					
	mean	-0.61039	-0.42494	-0.45652	-0.42162	-0.54091	-0.77893						

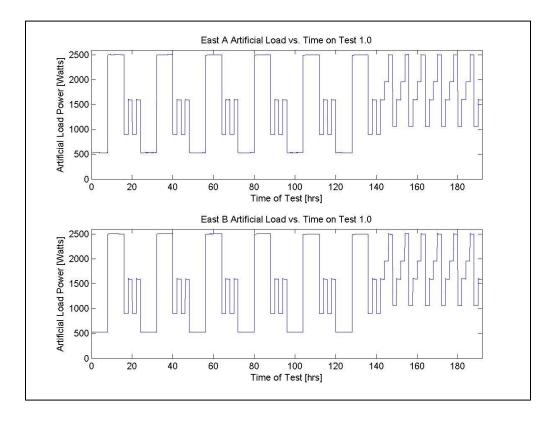
		Ten	nperature	Control [^o F	Variance]			
	Day	1	2	3	4	5	6	mean
AHUA	East	2.783281	3.17789	1.044253	1.273904	0.929657	0.929325	1.689718
	Internal	3.547996	4.344698	4.023172	4.271809	5.214999	3.770618	4.195549
	South	2.275898	3.52047	0.977056	1.21501	0.942299	0.92554	1.642712
	West	1.358506	1.290356	1.052964	1.033565	0.908523	0.941407	1.097554
	mean	2.49142	3.083354	1.774361	1.948572	1.99887	1.641722	
	Day	1	2	3	4	5	6	mean
AHUB	East	1.274093	1.281066	1.053516	1.058499	0.876697	0.923655	1.077921
	Internal	2.574858	3.382486	2.981253	3.487059	4.349049	2.43112	3.200971
	South	1.330275	1.319224	0.910255	1.090609	0.965971	0.966724	1.097177
	West	1.754663	1.342833	1.025764	1.023421	0.923185	1.039857	1.184954
	mean	1.733472	1.831402	1.492697	1.664897	1.778726	1.340339	

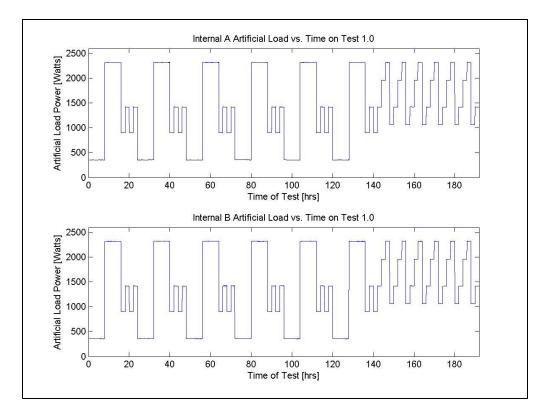
Static Pressure Travel								
Aggregate Values								
AHUA	AHUA mean							
	variance	0.201163						
AHUB	mean	1.046632						
	variance	0.044764						
diffe	0.013076							

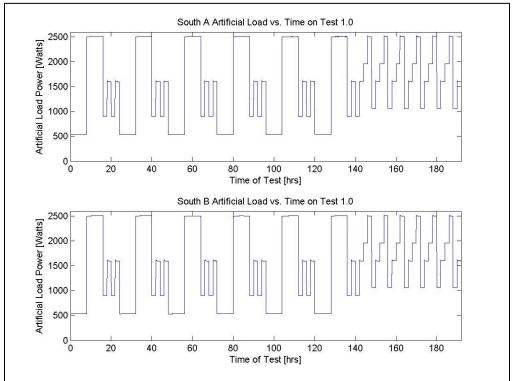
Static Pressure Travel per Hour [inches w.g. per hour]											
Day	ay 1 2 3 4 5 6 mean varian										
AHUA	1.287292	1.001583	0.972125	0.678417	0.595917	1.822917	1.059708	0.201163			
AHUB	1.137083	1.077417	0.921375	0.9095	0.825458	1.408958	1.046632	0.044764			

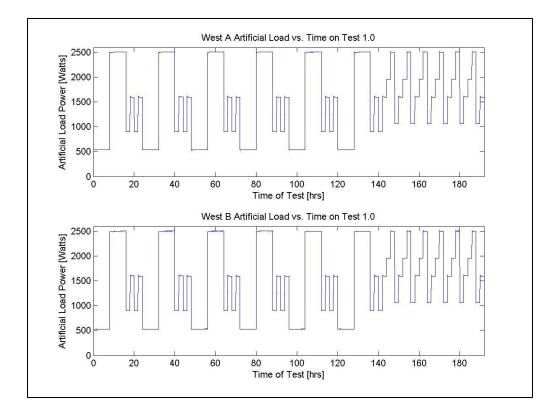
Static Pressure Control									
Agg	regate Val	ues							
AHUA	AHUA mean								
	variance	0.001346							
AHUB	mean	-0.00674							
	variance	0.182378							
diffe	0.005324								

	Static Pressure Control [inches w.g.]												
	Day 1 2 3 4 5 6												
AHUA	mean	-0.00409	-0.00316	0.000303	-0.00146	0.000621	-0.00286	-0.00177					
	variance	0.001836	0.001892	0.000998	0.001203	0.000392	0.001836						
AHUB	mean	-0.00081	-0.02701	-0.00051	-0.00175	-0.02114	-0.00099	-0.0087					
	variance	0.000529	0.899338	0.00037	0.000863	0.554686	0.000861						


Damper Travel								
Agg	Aggregate Values							
AHUA	mean	31.21877						
	variance	100.6048						
AHUB	mean	34.79807						
	variance	61.78332						
diffe	difference							


	Damper Travel per Hour [% of Maximum Damper Position per Hour]												
	Day	1	2	3	4	5	6	mean	variance				
AHUA	East	26.639	27.52242	38.18638	36.763	47.05496	32.35975	34.75425	58.20246				
	Internal	19.50992	22.16638	16.79375	15.94783	14.47679	26.82596	19.28677	21.13616				
	South	28.43242	31.84858	30.95496	44.95288	34.51458	31.02092	33.62072	34.62819				
	West	40.694	41.90096	46.77583	41.53592	27.60896	24.11092	37.10443	81.61224				
	mean	28.81883	30.85958	33.17773	34.79991	30.91382	28.57939						
	Day	1	2	3	4	5	6	mean	variance				
AHUB	East	32.26117	37.80329	37.88379	36.81438	43.91254	42.70579	38.56349	17.91792				
	Internal	23.25975	22.37408	26.50738	21.04667	14.30425	35.99475	23.91448	51.20768				
	South	38.09725	31.51754	35.93463	46.71396	43.10196	27.16913	37.08908	52.11794				
	West	44.89317	37.66683	35.39863	45.24133	42.70113	32.30733	39.7014	28.79384				
	mean	34.62783	32.34044	33.9311	37.45408	36.00497	34.54425						


Flow Rate Control					
Aggregate Values					
AHUA	mean	-10.3901			
	1478.586				
AHUB	mean	-3.0664			
	327.1906				
diffe	difference				


Flow Rate Control [CFM Average]								
		FIC	w Rate Co	ntrol [CFIV	Average			
	Day	1	2	3	4	5	6	mean
AHUA	East	-21.7911	-55.2019	-0.0099	-65.1197	0.16684	0.191146	-23.6274
	Internal	-0.01701	-0.02422	-3.15825	-15.4692	-32.1362	0.209549	-8.43255
	South	-18.2846	-39.0198	-0.05399	-13.2888	0.028559	-0.04905	-11.778
	West	0.282813	-2.78906	-0.04141	0.029774	-0.11406	-0.05391	-0.44764
	mean	-9.95247	-24.2587	-0.81589	-23.462	-8.01372	0.074436	
	Day	1	2	3	4	5	6	mean
AHUB	East	-0.11059	-5.31832	-0.05625	-0.01719	-0.00373	0.063368	-0.90712
	Internal	-0.03915	0.023177	-7.99036	-20.6889	-35.9219	0.418056	-10.6998
	South	-1.7099	-25.5754	-0.09861	-1.48403	0.010503	0.028906	-4.80476
	West	-0.02691	-0.62648	0.024219	0.082292	0.061111	0.050521	-0.07254
	mean	-0.47164	-7.87426	-2.03025	-5.52695	-8.9635	0.140213	

		Flo	w Rate Co	ntrol [CFM	Variance]			
	Day	1	2	3	4	5	6	mean
AHUA	East	1848.916	7081.287	138.2364	11693.37	30.30304	23.29909	3469.236
	Internal	25.63266	32.79266	80.49085	424.9557	1142.724	18.23939	287.4726
	South	1561.077	4831.461	22.12273	2891.262	13.75011	18.30546	1556.33
	West	518.1728	1033.884	115.4134	124.7222	17.5145	20.5697	305.0462
	mean	988.4497	3244.856	89.06587	3783.578	301.073	20.10341	
	Day	1	2	3	4	5	6	mean
AHUB	East	24.72699	312.0145	19.60802	23.27472	17.28448	20.29654	69.53421
	Internal	37.63338	28.64945	167.354	599.8314	1322.211	46.51951	367.0331
	South	388.0512	3733.655	21.11014	323.1571	44.72627	33.76453	757.4106
	West	25.53185	501.6961	92.1011	103.4919	49.84399	13.42717	131.0153
	mean	118.9859	1144.004	75.04333	262.4388	358.5164	28.50194	

TEST 2.0a

Total Fan Consumption [kW-hr]				
Days 1-3				
AHUA	49.66901062			
AHUB	49.4969804			
% difference	0.35%			

Fan Power Consumed [kW-hr]							
1 2 3 mean variance							
AHUA	21.63803	15.28759	12.74339	16.55634	20.98595		
AHUB	20.37843	15.89858	13.21997	16.49899	13.08126		
% difference	5.82%	-4.00%	-3.74%	0.35%			

· · · · · · · · · · · · · · · · · · ·						
Temperature Control Aggregate Values						
168	regute vui	ucs				
AHUA	mean [°F]	-0.80044				
	variance	2.105061				
AHUB	mean [°F]	-0.90557				
	variance	1.811237				
diffe	0.105128					

	Temperature Control [°F Average]							
	Day	1	2	3	mean			
AHUA	East	-1.06335	-1.06914	-1.00685	-1.04645			
	Internal	0.066476	0.171939	0.412917	0.217111			
	South	-0.95747	-1.18243	-1.19365	-1.11119			
	West	-1.33337	-1.27529	-1.17503	-1.26123			
	mean	-0.82193	-0.83873	-0.74065				
	Day	1	2	3	mean			
AHUB	East	-1.31133	-1.29111	-1.25738	-1.28661			
	Internal	-0.34579	-0.19932	0.281121	-0.088			
	South	-0.8518	-1.08187	-1.01682	-0.9835			
	West	-1.67276	-1.10925	-1.01048	-1.26416			
	mean	-1.04542	-0.92039	-0.75089				

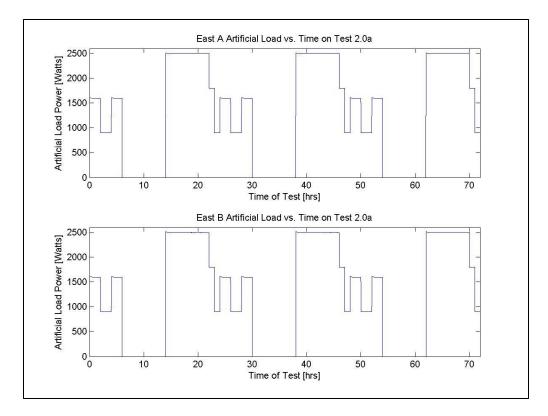
	Temperature Control [^o F Variance]							
	Day	1	2	3	mean			
AHUA	East	1.012195	0.992794	0.963381	0.989457			
	Internal	2.823789	3.226353	4.534548	3.52823			
	South	1.150681	0.9967	1.070326	1.072569			
	West	1.684134	1.139313	1.351371	1.391606			
	mean	1.6677	1.58879	1.979907				
	Day	1	2	3	mean			
AHUB	East	1.191062	1.075321	1.0691	1.111828			
	Internal	1.652859	1.952933	3.607667	2.404486			
	South	1.107567	0.994406	0.97548	1.025818			
	West	2.618738	1.083256	1.073123	1.591706			
	mean	1.642557	1.276479	1.681342				

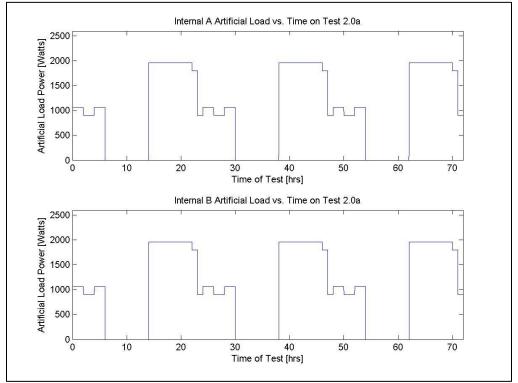
Static Pressure Travel					
Aggregate Values					
AHUA	mean	1.317431			
	variance	0.447374			
AHUB	mean	1.101806			
	0.093223				
diffe	rence	0.215625			

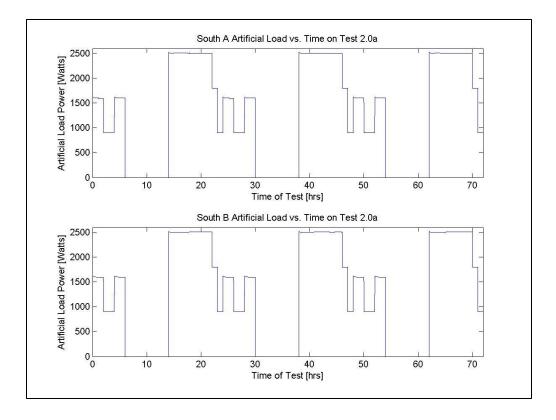
Static Pressure Travel per Hour [inches w.g. per hour]						
Day	Day 1 2 3 mean variance					
AHUA	1.869333333	1.509375	0.573583	1.317431	0.447374	
AHUB	1.378583333	1.152542	0.774292	1.101806	0.093223	

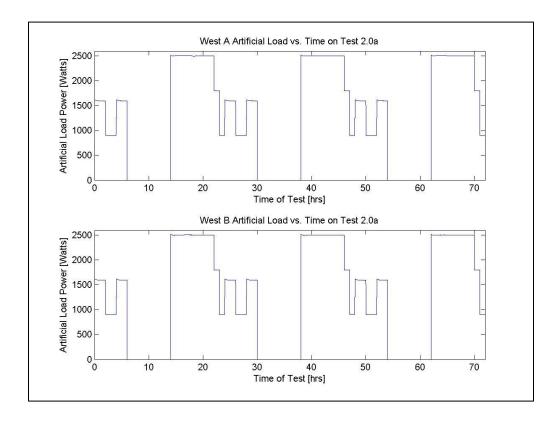
Static Pressure Control					
Aggregate Values					
AHUA	mean	0.00057			
	variance	0.00074			
AHUB	mean	-0.01276			
	variance	0.742146			
diffe	0.013329				

Static Pressure Control [inches w.g.]							
	Day 1 2 3 mean						
AHUA	mean	-0.00052	0.000647	0.001582	0.00057		
	variance	0.00106	0.000792	0.000366			
AHUB	mean	-0.03827	-0.00042	0.000415	-0.01276		
	variance	2.225635	0.000464	0.000392			


Damper Travel					
Agg	regate Val	ues			
AHUA mean 32.071					
	86.46655				
AHUB	mean	34.84617			
	100.3904				
diffe	-2.77438				


Damper	Damper Travel per Hour [% of Maximum Damper Position per Hour]							
	Day	1	2	3	mean	variance		
AHUA	East	22.39221	26.953	36.90496	28.75006	55.07703		
	Internal	34.52096	24.84621	11.9065	23.75789	128.7418		
	South	36.73779	34.72058	31.52796	34.32878	6.900725		
	West	42.30167	36.07587	45.97371	41.45042	25.03525		
	mean	33.98816	30.64892	31.57828				
	Day	1	2	3	mean	variance		
AHUB	East	35.41254	36.01638	23.82575	31.75156	47.20495		
	Internal	34.37179	30.34733	11.16054	25.29322	153.8486		
	South	42.57621	45.479	45.72475	44.59332	3.066651		
	West	31.65354	44.50813	37.07804	37.74657	41.64528		
	mean	36.00352	39.08771	29.44727				


Flow Rate Control					
Agg	gregate Val	ues			
AHUA mean -4.80294					
	809.8154				
AHUB	mean	-2.78655			
	266.4912				
diffe	-2.0164				


	Flow Rate Control [CFM Average]							
	Day	1	2	3	mean			
AHUA	East	-0.10825	-0.03316	-0.02595	-0.05579			
	Internal	-0.03229	-0.16797	-35.6949	-11.965			
	South	0.086198	0.036806	-0.04036	0.027546			
	West	0.185764	0.034635	-21.8759	-7.21849			
	mean	0.032856	-0.03242	-14.4093				
	Day	1	2	3	mean			
AHUB	East	0.018576	-0.01398	-0.05304	-0.01615			
	Internal	0.244358	-0.11623	-33.6262	-11.166			
	South	0.001997	0.054427	-0.01615	0.013426			
	West	0.021528	0.007378	0.038802	0.022569			
	mean	0.071615	-0.0171	-8.41415				

Flow Rate Control [CFM Variance]						
	Flow Rate	Control [C	FIVI Varian	cej		
	Day	1	2	3	mean	
AHUA	East	23.05	20.95586	20.81292	21.60626	
	Internal	15.09225	17.817	1688.224	573.7111	
	South	20.10259	13.93591	21.10844	18.38231	
	West	101.8966	18.93058	6285.076	2135.301	
	mean	40.03536	17.90984	2003.805		
	Day	1	2	3	mean	
AHUB	East	16.54281	14.4323	9.89515	13.62342	
	Internal	22.39263	24.26868	1920.149	655.6034	
	South	33.3473	20.91487	41.33747	31.86655	
	West	14.52985	17.26694	26.50793	19.43491	
	mean	21.70315	19.2207	499.4724		

TEST 2.0b

Total Fan Consumption [kW-hr]				
Days 1-3				
AHUA	45.86817348			
AHUB	45.935144			
% difference -0.15%				

Fan Power Consumed [kW-hr]					
1 2 3 mean variance					
AHUA	18.28158	15.63877	11.94782	15.28939	10.12069
AHUB	18.24103	15.6841	12.01002	15.31171	9.810367
% difference	0.22%	-0.29%	-0.52%	-0.15%	

Temperature Control					
Agg	Aggregate Values				
AHUA mean [°F] -0.9264					
	variance				
AHUB	mean [°F]	-1.05119			
	2.159245				
diffe	0.124782				

	Temperate	ure Contro	l [°F Avera	ge]			
	Day	1	2	3	mean		
AHUA	East	-1.11387	-1.17235	-1.21711	-1.16778		
	Internal	-0.01091	-0.20437	0.359858	0.048193		
	South	-1.20451	-1.06291	-1.33268	-1.20003		
	West	-1.28507	-1.46286	-1.41007	-1.386		
	mean	-0.90359	-0.97562	-0.9			
	Day	1	2	3	mean		
AHUB	East	-1.31388	-1.36155	-1.36408	-1.3465		
	Internal	-0.42879	-0.29261	0.283336	-0.14602		
	South	-1.10809	-0.90393	-1.20617	-1.07273		
	West	-1.19769	-1.90347	-1.81731	-1.63949		
	mean	-1.01211	-1.11539	-1.02605			

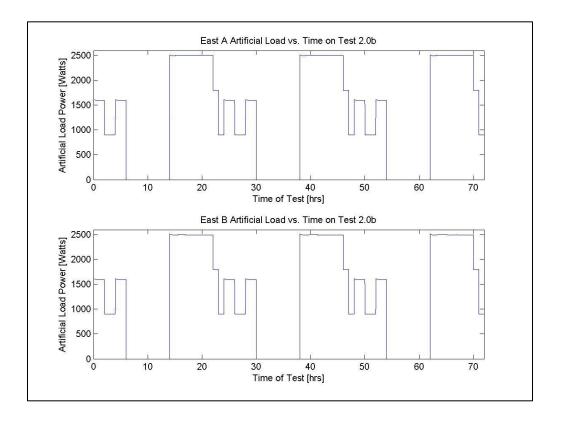
	Temperature Control [^o F Variance]						
	Day	1	2	3	mean		
AHUA	East	1.029088	1.083579	1.103901	1.07219		
	Internal	2.749655	1.96486	4.109707	2.941407		
	South	1.05313	1.404089	1.258338	1.238519		
	West	1.129471	1.87782	2.000286	1.669192		
	mean	1.490336	1.582587	2.118058			
	Day	1	2	3	mean		
AHUB	East	1.097301	1.201017	1.222742	1.173687		
	Internal	1.512419	1.698895	3.647228	2.28618		
	South	1.017999	1.164826	1.188643	1.123823		
	West	1.150609	4.013553	2.618424	2.594195		
	mean	1.194582	2.019573	2.169259			

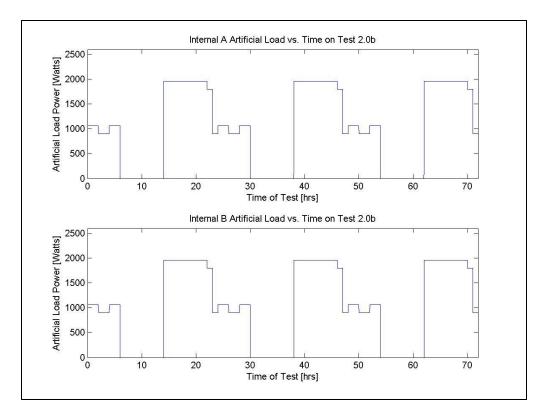
Static Pressure Travel						
Aggregate Values						
AHUA	AHUA mean 1.383847					
	0.561492					
AHUB	1.101097					
	0.10874					
diffe	0.28275					

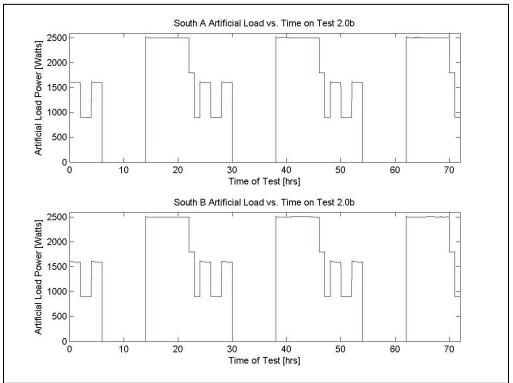
Static Pressure Travel per Hour [inches w.g. per hour]					
Day 1 2 3 mean variance					variance
AHUA	2.068958333	1.498958	0.583625	1.383847	0.561492
AHUB	1.469458333	1.000417	0.833417	1.101097	0.10874

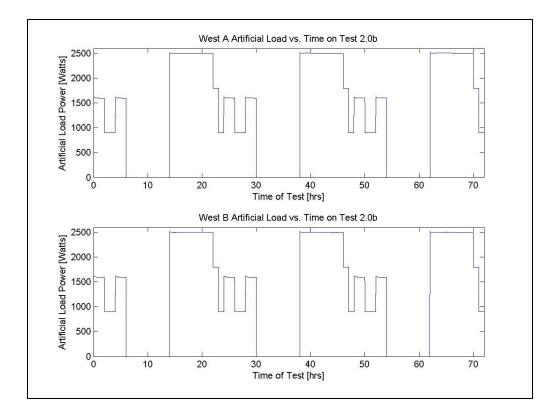
Static Pressure Control				
Aggregate Values				
AHUA	UA mean 0.00054			
	variance			
AHUB	mean	-0.00801		
	0.276909			
diffe	0.008554			

Static Pressure Control [inches w.g.]					
Day 1 2 3 mean					
AHUA	mean	-0.00085	0.000616	0.001851	0.00054
variance 0.001645 0.000961 0.000376					
AHUB	mean	-0.00062	-0.02376	0.000331	-0.00801
	variance	0.001033	0.829061	0.000645	


Damper Travel					
Ag	Aggregate Values				
AHUA	32.35145				
	78.80776				
AHUB	mean	35.04698			
	59.99078				
diffe	-2.69552				


Damper Travel per Hour [% of Maximum Damper Position per Hour]								
Damper	i lavei pei lio	ui [/8 01 191		aniper ros	luon per n	ourj		
	Day	1	2	3	mean	variance		
AHUA	East	23.61517	35.52438	43.70013	34.27989	102.0129		
	Internal	34.5395	27.11542	12.86458	24.83983	121.3342		
	South	31.93342	35.20704	36.8395	34.65999	6.241866		
	West	25.36475	37.50288	44.01071	35.62611	89.55962		
	mean	28.86321	33.83743	34.35373				
	Day	1	2	3	mean	variance		
AHUB	East	36.13413	42.44408	38.00679	38.86167	10.502		
	Internal	36.19825	31.87679	12.96758	27.01421	152.6495		
	South	32.42496	42.98838	33.93454	36.44929	32.63942		
	West	37.17508	37.619	38.79417	37.86275	0.699918		
	mean	35.4831	38.73206	30.92577				


Flow Rate Control					
Ag	Aggregate Values				
AHUA mean -5.29271					
	1090.469				
AHUB	mean	-2.89706			
	291.008				
diffe	erence	-2.39565			


	Flow Rate Control [CFM Average]							
	Day	1	2	3	mean			
AHUA	East	0.316493	-0.01424	0.01684	0.106366			
	Internal	0.301997	-0.01337	-32.4286	-10.7133			
	South	0.070139	0.104601	-0.03958	0.045052			
	West	0.116667	0.05	-31.9935	-10.6089			
	mean	0.201324	0.031749	-16.1112				
	Day	1	2	3	mean			
AHUB	East	-0.06693	0.072569	-0.02977	-0.00804			
	Internal	0.438194	-0.00512	-35.2061	-11.591			
	South	-0.10747	0.082639	-0.04557	-0.02347			
	West	0.061719	0.066406	-0.02526	0.034288			
	mean	0.08138	0.054123	-8.82667				

	Flow Rate Control [CFM Variance]						
	Day	Day 1 2 3					
AHUA	East	21.36363	15.03348	24.50934	20.30215		
	Internal	36.44039	16.75714	1801.155	618.1175		
	South	19.48526	32.21828	17.00466	22.90274		
	West	21.54608	154.1431	9193.832	3123.174		
	mean	24.70884	54.538	2759.125			
	Day	1	2	3	mean		
AHUB	East	19.6786	17.16242	13.30174	16.71426		
	Internal	44.17243	32.89555	2102.815	726.6275		
	South	15.00299	21.76026	23.38588	20.04971		
	West	15.34147	17.3496	31.67873	21.4566		
	mean	23.54887	22.29196	542.7952			

TEST 3.0a

Total Fan Consumption [kW-hr]			
Days 1-3			
AHUA	46.79221443		
AHUB	47.77730408		
% difference	-2.11%		

Fan Power Consumed [kW-hr]						
1 2 3 mean variance						
AHUA	18.4434	15.78429	12.56453	15.5974	8.666467	
AHUB 18.84443 16.07262 12.86025 15.92577 8.96877						
% difference	-2.17%	-1.83%	-2.35%	-2.11%		

Temperature Control					
Agg	regate Val	ues			
AHUA mean [°F] -1.6406					
	variance				
AHUB	mean [°F]	-1.6443			
	variance	2.730581			
diffe	0.003669				

Temperature Control [°F Average]						
	Temperati	ure Contro	I [F Avera	gej		
	Day	1	2	3	mean	
AHUA	East	-1.64689	-0.74533	-1.13607	-1.1761	
	Internal	-1.61611	-1.67822	-1.65426	-1.64953	
	South	-1.7666	-1.82858	-1.70473	-1.76664	
	West	-1.94477	-2.05517	-1.91082	-1.97025	
	mean	-1.74359	-1.57683	-1.60147		
	Day	1	2	3	mean	
AHUB	East	-1.87592	-1.157	-1.58885	-1.54059	
	Internal	-1.70736	-1.80816	-1.7766	-1.76404	
	South	-1.66278	-1.59883	-1.47679	-1.57946	
	West	-1.70045	-1.77109	-1.60776	-1.6931	
	mean	-1.73663	-1.58377	-1.6125		

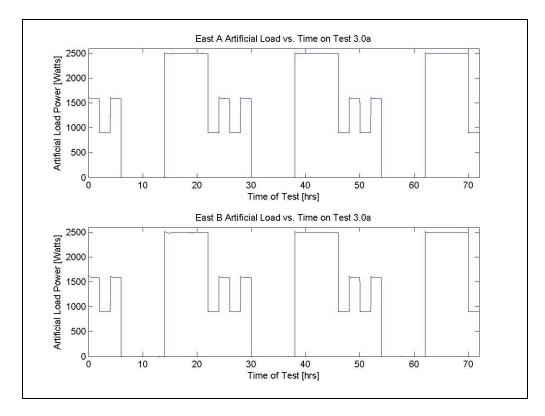
	Temperature Control [^o F Variance]						
	Day	1	2	3	mean		
AHUA	East	3.008255	0.784279	1.541135	1.777889		
	Internal	3.010223	2.951974	2.998689	2.986962		
	South	2.964897	2.750412	2.919218	2.878175		
	West	3.005989	3.02782	3.024653	3.019487		
	mean	2.997341	2.378621	2.620924			
	Day	1	2	3	mean		
AHUB	East	2.896914	1.310511	2.109877	2.105767		
	Internal	2.82E+00	2.70E+00	2.78E+00	2.765335		
	South	3.012777	2.644861	2.756429	2.804689		
	West	3.13E+00	3.066181	3.17E+00	3.122216		
	mean	2.964234	2.429349	2.704923			

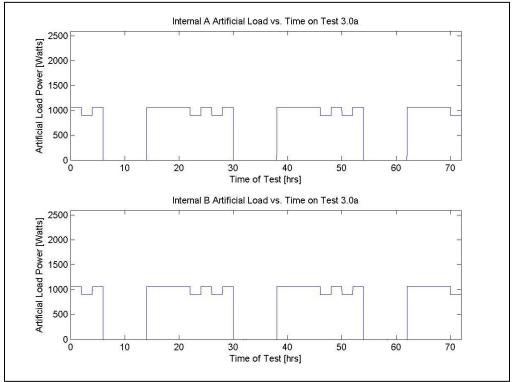
Static Pressure Travel					
Aggregate Values					
AHUA	AHUA mean 1.339431				
	0.53733				
AHUB	AHUB mean				
variance 0.12812					
diffe	0.243833				

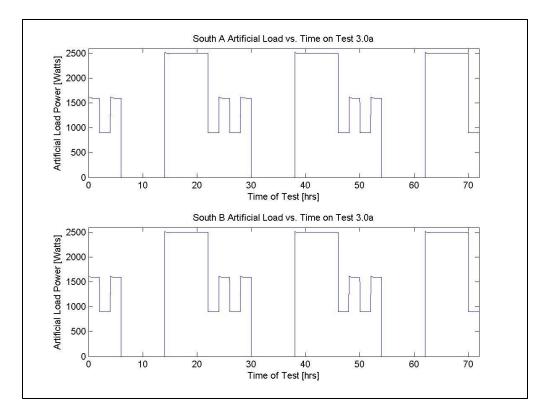
Static Pressure Travel per Hour [inches w.g. per hour]							
Day 1 2 3 mean variance							
AHUA	1.933042	1.565167	0.520083	1.339431	0.53733		
AHUB 1.463542 1.074667 0.748583 1.095597 0.12812							

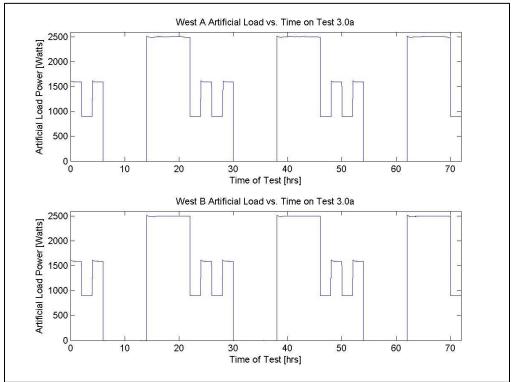
Static Pressure Control					
Aggregate Values					
AHUA	AHUA mean 0.001232				
	variance				
AHUB	AHUB mean				
	0.000413				
diffe	0.001011				

Static Pressure Control [inches w.g.]							
	Day 1 2 3 mean						
AHUA	mean	0.000135	1.05E-03	2.51E-03	0.001232		
	variance 0.001029 0.000849 0.000317						
AHUB	mean	0.000459	-0.00025	0.00046	0.000222		
	variance 0.000483 0.000424 0.000331						


Damper Travel Aggregate Values						
AHUA mean 30.9101						
	59.67758					
AHUB	mean	38.37425				
	84.41422					
diffe	-7.46415					


Damper Travel per Hour [% of Maximum Damper Position per Hour]							
	Day	1	2	3	mean	variance	
AHUA	East	30.41508	28.51363	30.73379	29.8875	1.441043	
	Internal	26.29258	23.41025	14.15992	21.28758	40.17969	
	South	32.63667	36.16904	42.00033	36.93535	22.35998	
	West	28.47667	38.98071	39.13258	35.52999	37.31775	
	mean	29.45525	31.76841	31.50666			
	Day	1	2	3	mean	variance	
AHUB	East	33.97538	38.63321	38.7675	37.12536	7.446318	
	Internal	44.5865	48.03279	13.04213	35.22047	371.8785	
	South	39.59658	44.32675	43.07771	42.33368	6.008802	
	West	36.52388	45.78921	34.13938	38.81749	37.87514	
	mean	38.67058	44.19549	32.25668			


Flow Rate Control					
Agg	gregate Val	ues			
AHUA	mean	-1.02012			
	101.1192				
AHUB	AHUB mean				
	44.25697				
diffe	-0.70459				


	Elow Data Control [CENA Average]							
	Flow Rate Control [CFM Average]							
	Day	1	2	3	mean			
AHUA	East	-0.03429	0.085677	-0.03012	0.007089			
	Internal	-0.0145	-0.03993	-0.0658	-0.04008			
	South	0.062153	0.023698	0.051302	0.045718			
	West	0.186806	0.000694	-12.4672	-4.09323			
	mean	0.050043	0.017535	-3.12795				
	Day	1	2	3	mean			
AHUB	East	-0.19314	-0.03568	-0.07057	-0.0998			
	Internal	0.019184	-0.02283	-0.07361	-0.02575			
	South	-0.06398	0.042622	-0.01675	-0.0127			
	West	0.044965	0.020399	-3.43698	-1.12387			
	mean	-0.04824	0.001128	-0.89948				

Flow Rate Control [CFM Variance]							
	Day 1 2 3 mea						
AHUA	East	20.08939	17.62498	21.64795	19.78744		
	Internal	7.072507	6.596389	4.747448	6.138782		
	South	15.62748	21.88444	22.21841	19.91011		
	West	24.15123	20.66945	888.7733	311.198		
	mean	16.73515	16.69382	234.3468			
	Day	1	2	3	mean		
AHUB	East	1.99E+01	1.58E+01	1.53E+01	16.97557		
	Internal	12.30652	12.26178	4.141663	9.569987		
	South	1.79E+01	1.95E+01	2.30E+01	20.11362		
	West	15.88145	20.83911	344.0398	126.9201		
	mean	16.48012	17.08518	96.61918			

TEST 3.0b

Total Fan Consumption [kW-hr]			
Days	1-3		
AHUA	49.07252482		
AHUB	50.92571775		
% difference	-3.78%		

Fan Power Consumed [kW-hr]					
1 2 3 mean variance					
AHUA	16.82003	13.57784	18.67465	16.35751	6.654809
AHUB	AHUB 17.19008 14.1954 19.54024 16.97524 7.176451				
% difference	-2.20%	-4.55%	-4.64%	-3.78%	

Temperature Control			
Agg	regate Val	ues	
AHUA	A mean [°F] -1.36194		
	variance	3.018425	
AHUB	mean [°F]	-1.36627	
	2.851027		
d	0.004333		

	Temperature Control [^o F Average]					
	Day	1	2	3	mean	
AHUA	East	-1.06642	-0.22027	-1.34424	-0.87698	
	Internal	-1.59112	-1.61409	-1.64345	-1.61622	
	South	-1.34518	-1.4914	-1.47809	-1.43822	
	West	-1.48886	-1.52021	-1.53992	-1.51633	
	mean	-1.37289	-1.21149	-1.50142		
	Day	1	2	3	mean	
AHUB	East	-1.30516	-0.54734	-1.50909	-1.12053	
	Internal	-1.73357	-1.79259	-1.83138	-1.78585	
	South	-1.06489	-1.28016	-1.33029	-1.22511	
	West	-1.33277	-1.28097	-1.38703	-1.33359	
	mean	-1.3591	-1.22527	-1.51445		

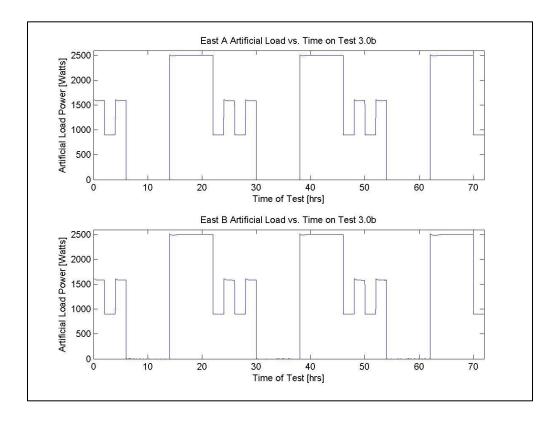
	Temperature Control [^o F Variance]					
	Day	1	2	3	mean	
AHUA	East	2.199331	0.228374	3.248844	1.892183	
	Internal	3.092278	3.070986	2.971889	3.045051	
	South	3.010116	2.829537	3.200506	3.013387	
	West	3.297612	4.170131	3.233626	3.567123	
	mean	2.899834	2.574757	3.163716		
	Day	1	2	3	mean	
AHUB	East	2.686125	0.462668	3.175795	2.108196	
	Internal	2.78E+00	2.68E+00	2.57E+00	2.679155	
	South	2.231689	2.675623	3.119229	2.675514	
	West	3.22E+00	3.95185	3.34E+00	3.50282	
	mean	2.729841	2.442789	3.051633		

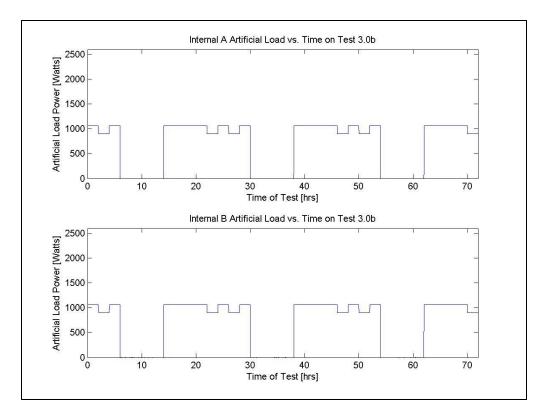
Static Pressure Travel				
Agg	regate Val	ues		
AHUA mean 1.264278				
	0.547284			
AHUB	mean	1.069667		
	0.142528			
di	ff	0.194611		

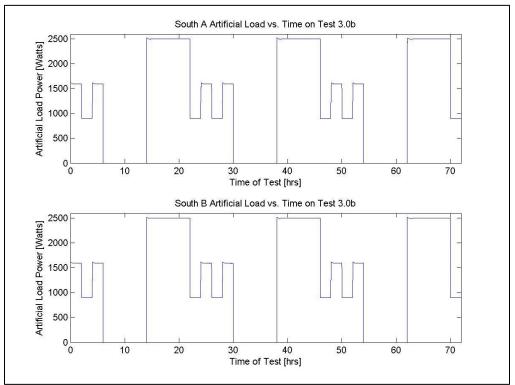
Static Pressure Travel per Hour [inches w.g. per hour]							
Day	Day 1 2 3 mean variance						
AHUA	1.213917 0.550958 2.027958 1.264278 0.547284						
AHUB	1.0485 0.703167 1.457333 1.069667 0.142528						

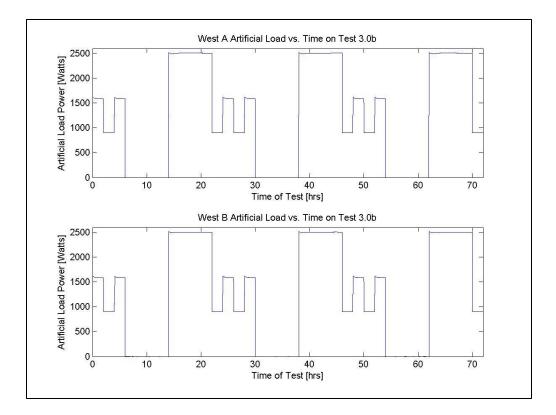
Static Pressure Control			
Agg	regate Val	ues	
AHUA	mean 0.00145		
	variance	0.000915	
AHUB	mean	-0.02582	
	1.069387		
di	0.027273		

Static Pressure Control [inches w.g.]							
	Day	Day 1 2 3 mean					
AHUA	mean	0.002556	2.84E-03	-1.05E-03	0.00145		
	variance 0.000684 0.000393 0.001661						
AHUB	mean	-0.03202	-0.01479	-0.03066	-0.02582		
	variance	1.481065	0.361503	1.366895			


Damper Travel			
Ag	gregate Val	ues	
AHUA	AHUA mean		
	41.59257		
AHUB	AHUB mean		
	109.8767		
difference		0.330021	


Damper	Damper Travel per Hour [% of Maximum Damper Position per Hour]					
	Day	1	2	3	mean	variance
AHUA	East	38.32033	36.07283	28.68992	34.36103	25.38394
	Internal	31.55067	15.89879	33.25375	26.90107	91.51271
	South	38.41146	35.45433	33.36633	35.74404	6.42627
	West	38.61221	39.11417	35.91667	37.88101	2.956986
	mean	36.72367	31.63503	32.80667		
	Day	1	2	3	mean	variance
AHUB	East	41.42846	36.40283	25.79779	34.54303	63.67359
	Internal	27.64863	10.45029	49.91675	29.33856	391.5422
	South	43.19746	30.26229	24.72575	32.7285	89.86264
	West	41.08292	34.54929	35.23875	36.95699	12.88632
	mean	38.33936	27.91618	33.91976		


Flow Rate Control Aggregate Values			
Age	gregate var	ues	
AHUA mean -6.986			
	variance		
AHUB	AHUB mean		
	1753.373		
diffe	rence	-1.71111	


Flow Rate Control [CFM Average]					
	Day	1	2	3	mean
AHUA	East	-0.25686	-4.20208	0.136111	-1.44094
	Internal	-0.00243	-0.08238	0.099045	0.004745
	South	-0.03811	-0.01215	0.040191	-0.00336
	West	0.050174	-79.4359	-0.13472	-26.5068
	mean	-0.06181	-20.9331	0.035156	
	Day	1	2	3	mean
AHUB	East	-0.06328	-0.06085	0.129427	0.001765
	Internal	-0.02622	-0.06667	0.136111	0.01441
	South	0.005816	0.004253	0.122309	0.044126
	West	0.032118	-63.5487	0.029861	-21.1622
	mean	-0.01289	-15.918	0.104427	

Flow Rate Control [CFM Variance]					
	Day 1 2 3				
AHUA	East	29.6768	301.9923	20.25348	117.3075
	Internal	8.705345	5.791192	11.2345	8.577014
	South	17.45145	18.81928	19.0891	18.45328
	West	27.71955	21253.77	25.27918	7102.258
	mean	20.88829	5395.094	18.96407	
	Day	1	2	3	mean
AHUB	East	1.67E+01	1.63E+01	1.53E+01	16.11602
	Internal	7.85429	3.358587	14.97269	8.728521
	South	2.22E+01	2.35E+01	2.27E+01	22.80081
	West	18.47306	17167.91	17.44299	5734.61
	mean	16.3201	4302.787	17.58456	

TEST 4.0

Total Fan Consumption [kW-hr]		
Days	1-3	
AHUA	53.37155798	
AHUB	55.88558348	
% difference	-4.71%	

Fan Power Consumed [kW-hr]					
1 2 3 mean variance					
AHUA	19.82698	19.55705	13.98753	17.79052	10.86528
AHUB 20.85409 19.3724 15.6591 18.62853 7.162003					
% difference	-5.18%	0.94%	-11.95%	-4.71%	

Temperature Control					
Agg	Aggregate Values				
AHUA mean [°F] -1.05					
	3.281008				
AHUB	AHUB mean [°F]				
	2.685982				
diffe	0.007349				

Temperature Control [°F Average]					
	Day	1	2	3	mean
AHUA	East	-1.21496	-0.4532	0.155824	-0.50411
	Internal	-1.44543	-1.44239	-0.9024	-1.2634
	South	-1.31164	-1.10263	-1.05376	-1.15601
	West	-1.44707	-1.45653	-0.94173	-1.28178
	mean	-1.35477	-1.11369	-0.68552	
	Day	1	2	3	mean
AHUB	East	-1.27552	-0.49124	-0.22469	-0.66382
	Internal	-1.48152	-1.50562	-1.34187	-1.443
	South	-1.10536	-0.84014	-0.79907	-0.91486
	West	-1.26283	-1.28307	-1.09317	-1.21303
	mean	-1.28131	-1.03002	-0.8647	

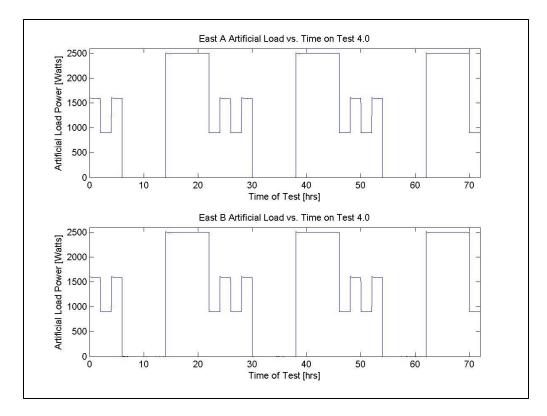
Temperature Control [^o F Variance]					
	Day	1	2	3	mean
AHUA	East	2.860652	0.77634	0.766054	1.467682
	Internal	3.418257	3.446085	5.590105	4.151482
	South	3.080841	2.303313	2.447144	2.610433
	West	3.320915	3.316647	5.493647	4.043736
	mean	3.170167	2.460596	3.574237	
	Day	1	2	3	mean
AHUB	East	2.992514	0.744315	0.29621	1.344346
	Internal	3.33E+00	3.30E+00	3.91E+00	3.513621
	South	2.476269	1.555455	1.635515	1.88908
	West	3.22E+00	3.232263	3.82E+00	3.425379
	mean	3.004274	2.208855	2.41619	

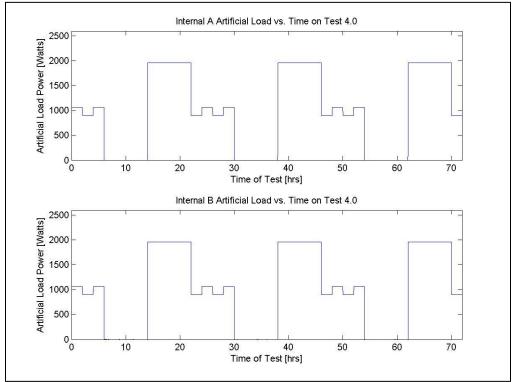
Static Pressure Travel				
Aggregate Values				
AHUA	mean 0.970722			
	0.54962			
AHUB	AHUB mean			
variance 0.099147				
diffe	0.023097			

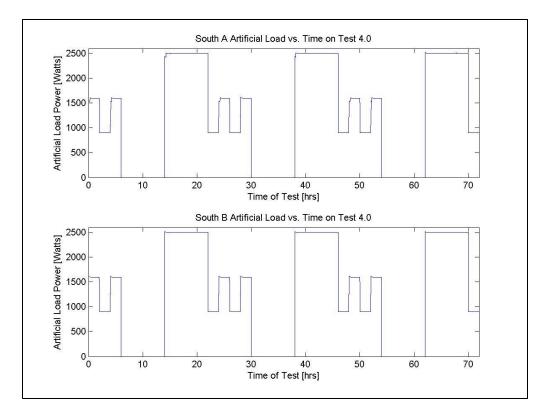
Static Pressure Travel per Hour [inches w.g. per hour]					
Day 1 2 3 mean variance					
AHUA	1.794833	0.759292	0.358042	0.970722	0.54962
AHUB 1.234458 0.997708 0.610708 0.947625 0.099147					

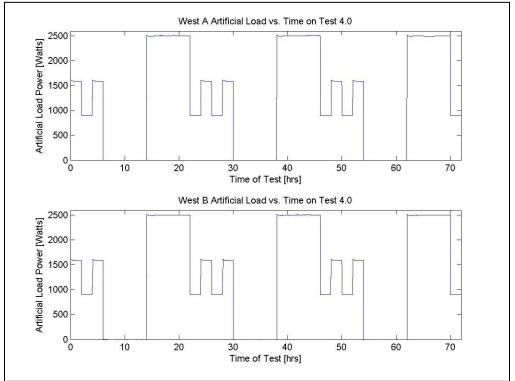
Static Pressure Control				
Aggregate Values				
AHUA	HUA mean 0.00098			
	variance			
AHUB	mean	3.29E-05		
	0.000413			
diffe	0.000947			

Static Pressure Control [inches w.g.]						
	Day 1 2 3 mean					
AHUA	mean	0.001847	1.99E-03	-8.94E-04	0.00098	
	variance	0.000902	0.000425	0.000332		
AHUB	mean	-0.00012	0.000158	5.97E-05	3.29E-05	
	variance	0.000452	0.000436	0.000352		


-		-		
Damper Travel Aggregate Values				
AHUA	27.80039			
	50.82359			
AHUB	AHUB mean			
	66.14053			
diffe	-3.20332			


Damper	Damper Travel per Hour [% of Maximum Damper Position per Hour]							
	Day	1	2	3	mean	variance		
AHUA	East	31.34946	38.64725	30.52879	33.5085	19.97344		
	Internal	26.19846	23.61008	9.767958	19.85883	78.04424		
	South	26.21317	30.80904	23.58579	26.86933	13.36675		
	West	34.18592	28.60179	30.10696	30.96489	8.347647		
	mean	29.48675	30.41704	23.49738				
	Day	1	2	3	mean	variance		
AHUB	East	32.66371	38.37858	38.21996	36.42075	10.59281		
	Internal	26.83063	22.781	14.02204	21.21122	42.8631		
	South	27.33046	29.51288	39.49992	32.11442	42.09994		
	West	40.63796	36.74892	25.41842	34.26843	62.52322		
	mean	31.86569	31.85534	29.29008				


Flov	Flow Rate Control				
Agg	gregate Val	ues			
AHUA mean -30.2389					
	9994.091				
AHUB	mean	-7.23001			
	1950.015				
diffe	difference				


	Flow Rate Control [CFM Average]					
	Flow Rate	Control [C	.FIM Averag	gej		
	Day	1	2	3	mean	
AHUA	East	-0.04878	-9.79453	-134.172	-48.0051	
	Internal	0.042361	-0.02161	-36.9366	-12.3053	
	South	-0.13741	-0.14644	-56.5076	-18.9305	
	West	-0.08186	-11.667	-113.395	-41.7148	
	mean	-0.05642	-5.4074	-85.2529		
	Day	1	2	3	mean	
AHUB	East	-0.01701	-0.19635	-0.02153	-0.0783	
	Internal	0.055903	-0.0059	-19.64	-6.53001	
	South	0.024826	0.047396	-0.06493	0.002431	
	West	-0.11753	-0.0105	-66.8145	-22.3142	
	mean	-0.01345	-0.04134	-21.6352		

	Flow Rate Control [CFM Variance]					
	Day	1	2	3	mean	
AHUA	East	23.16512	1182.16	39265.34	13490.22	
	Internal	8.017336	9.761791	2765.983	927.9207	
	South	20.04064	19.57339	16675.89	5571.836	
	West	21.97802	1659.161	33659.78	11780.31	
	mean	18.30028	717.6641	23091.75		
	Day	1	2	3	mean	
AHUB	East	2.02E+01	2.06E+01	1.82E+01	19.65085	
	Internal	8.26075	7.784147	1194.238	403.4275	
	South	1.31E+01	2.14E+01	2.85E+01	20.98556	
	West	18.80719	21.77107	17816.68	5952.42	
	mean	15.08074	17.87345	4764.409		

TEST 5.0

Total Fan Consumption [kW-hr]		
Days	1-3	
AHUA	43.28097713	
AHUB	43.24513023	
% difference 0.08%		

Fan Power Consumed [kW-hr]					
1 2 3 mean variance					
AHUA	18.12841	14.65745	10.49511	14.42699	14.60666
AHUB	18.01957	14.58656	10.63901	14.41504	13.64024
% difference	0.60%	0.48%	-1.37%	0.08%	

Temperature Control				
Agg	regate Val	ues		
AHUA	AHUA mean [°F] -2.17796			
	variance			
AHUB	AHUB mean [°F]			
	3.904535			
diffe	0.136504			

Temperature Control [^o F Average]						
	Day	1	2	3	mean	
AHUA	East	-2.16361	-2.25722	-2.3779	-2.26624	
	Internal	-1.3842	-1.41072	-1.26926	-1.35472	
	South	-2.33889	-2.42643	-2.50991	-2.42508	
	West	-2.61494	-2.63972	-2.74271	-2.66579	
	mean	-2.12541	-2.18352	-2.22494		
	Day	1	2	3	mean	
AHUB	East	-2.58332	-2.63529	-2.70303	-2.64055	
	Internal	-1.43649	-1.47016	-1.26374	-1.39013	
	South	-2.39025	-2.50796	-2.53295	-2.47705	
	West	-2.46311	-2.58161	-3.20566	-2.75013	
	mean	-2.21829	-2.29876	-2.42634		

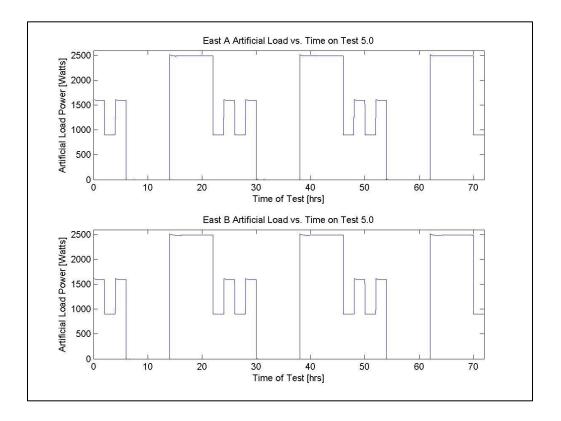
1							
	Temperature Control [^o F Variance]						
	Day	1	2	3	mean		
AHUA	East	2.9493	3.058216	3.193155	3.06689		
	Internal	3.419593	3.440203	3.987556	3.615784		
	South	3.059184	3.191689	3.289893	3.180256		
	West	3.474499	3.529973	3.729612	3.578028		
	mean	3.225644	3.30502	3.550054			
	Day	1	2	3	mean		
AHUB	East	3.257454	3.414338	3.500734	3.390842		
	Internal	3.30E+00	3.27E+00	4.13E+00	3.567775		
	South	3.145042	3.283721	3.320296	3.249687		
	West	3.37E+00	3.557472	5.44E+00	4.121376		
	mean	3.268649	3.381751	4.096859			

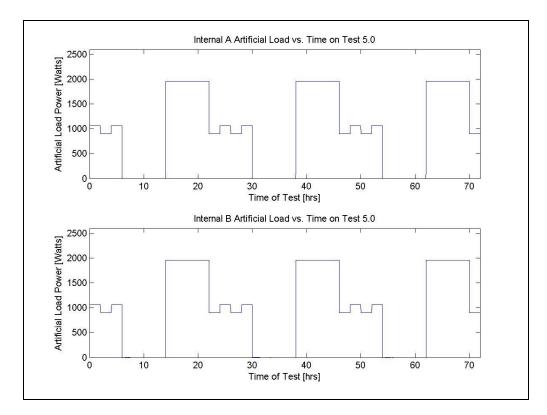
Static	Static Pressure Travel			
Agg	regate Val	ues		
AHUA mean 1.459792				
variance 0.418659				
AHUB	mean	1.367458		
	0.249974			
difference 0.092333				

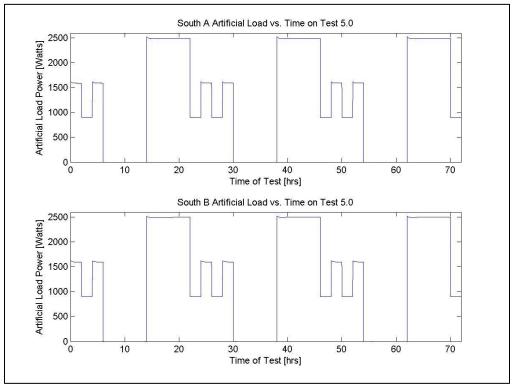
Static Pressure Travel per Hour [inches w.g. per hour]						
Day	Day 1 2 3 mean variance					
AHUA	1.921583	1.737542	0.72025	1.459792	0.418659	
AHUB 1.857375 1.387 0.858 1.367458 0.249974						

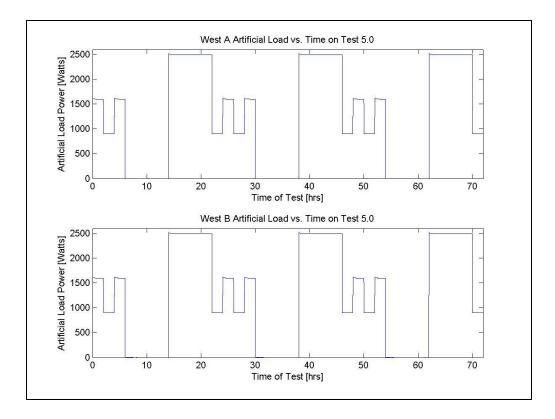
Static Pressure Control			
Agg	regate Val	ues	
AHUA	mean 0.000604		
	variance	0.000772	
AHUB	mean	-5.96E-03	
	0.156746		
diffe	0.006564		

Static Pressure Control [inches w.g.]						
	Day 1 2 3 mean					
AHUA	mean	0.001278	-7.99E-05	6.14E-04	0.000604	
	variance	0.001026	0.000928	0.000362		
AHUB	mean	-0.00023	0.000353	-1.80E-02	-0.00596	
	variance	0.001077	0.000794	0.468366		


Damper Travel			
Ag	gregate Val	ues	
AHUA	mean	28.12132	
	67.39729		
AHUB	AHUB mean		
	42.76123		
diffe	1.447271		


Damper	Damper Travel per Hour [% of Maximum Damper Position per Hour]							
	Day	1	2	3	mean	variance		
AHUA	East	28.27233	24.54704	38.13008	30.31649	49.25868		
	Internal	27.01433	26.03058	14.75188	22.59893	46.42415		
	South	18.05492	21.54921	32.50033	24.03482	56.80121		
	West	27.32183	36.96938	42.31392	35.53504	57.73362		
	mean	25.16585	27.27405	31.92405				
	Day	1	2	3	mean	variance		
AHUB	East	19.57721	37.57221	24.99621	27.38188	85.22356		
	Internal	28.01879	28.0635	14.17508	23.41913	64.08973		
	South	21.31254	30.43571	33.08725	28.2785	38.1511		
	West	26.84175	33.04742	22.96092	27.61669	25.88477		
	mean	23.93757	32.27971	23.80486				


Flow Rate Control				
Agg	gregate Val	ues		
AHUA mean -1.28963				
	variance			
AHUB	mean	-2.16926		
	210.6492			
diffe	rence	0.87963		


	Flow Rate Control [CFM Average]						
	Day	1	2	3	mean		
AHUA	East	0.23776	0.171528	-0.05729	0.117332		
	Internal	0.016753	-0.05816	-15.7108	-5.25072		
	South	-0.00304	0.065017	-0.0349	0.009028		
	West	-0.09688	0.059635	-0.06519	-0.03414		
	mean	0.03865	0.059505	-3.96704			
	Day	1	2	3	mean		
AHUB	East	-0.30564	0.043663	0.007813	-0.08472		
	Internal	-0.00095	-0.05686	-25.3491	-8.46898		
	South	-0.18811	-0.1434	0.019444	-0.10402		
	West	0.007552	-0.05712	-0.00833	-0.0193		
	mean	-0.12179	-0.05343	-6.33255			

	Flow Rate Control [CFM Variance]						
	Day 1 2 3						
AHUA	East	23.26734	20.04752	15.71149	19.67545		
	Internal	8.837226	9.230545	768.0165	262.0281		
	South	20.09371	8.563427	12.06964	13.57559		
	West	20.06859	19.12319	15.15596	18.11591		
	mean	18.06672	14.24117	202.7384			
	Day	1	2	3	mean		
AHUB	East	2.15E+01	1.67E+01	1.04E+01	16.18336		
	Internal	7.859222	7.420746	1796.009	603.763		
	South	1.95E+01	1.82E+01	1.35E+01	17.07895		
	West	10.84551	11.74204	9.061019	10.54952		
	mean	14.9343	13.51356	457.2332			

APPENDIX B: TEST SERIES 2 RESULTS TABLES AND GRAPHS

TEST 2.1a

Total Fan Consumption [kW-hr]				
Days	1-6			
AHUA	44.01866428			
AHUB	50.46723947			
% difference	-14.65%			

Fan Power Consumed [kW-hr]					
1 2 3 mean variance					
AHUA	13.33962	15.34585	15.3332	14.67289	1.333245
AHUB 19.85371 17.19587 13.41767 16.82241 10.46025					
% difference	-48.83%	-12.06%	12.49%	-14.65%	

· · · · · · · · · · · · · · · · · · ·				
Temperature Control				
Agg	regate Val	ues		
AHUA	AHUA mean [°F] -0.78737			
	variance	2.213394		
AHUB	AHUB mean [°F]			
variance		1.763165		
diffe	0.122293			

	Temperate	ure Contro	l [[°] F Avera	ge]	
	Day	1	2	3	mean
AHUA	East	-1.21297	-0.97694	-1.06136	-1.08375
	Internal	0.171806	0.079044	0.049718	0.100189
	South	-1.21462	-0.80056	-0.79597	-0.93705
	West	-1.24519	-1.30782	-1.13366	-1.22889
	mean	-0.87524	-0.75157	-0.73532	
	Day	1	2	3	mean
AHUB	East	-1.29145	-1.20734	-1.23919	-1.24599
	Internal	-0.288	-0.34071	0.124499	-0.16807
	South	-1.19439	-0.86496	-0.74541	-0.93492
	West	-1.2358	-1.49469	-1.13858	-1.28969
	mean	-1.00241	-0.97692	-0.74967	

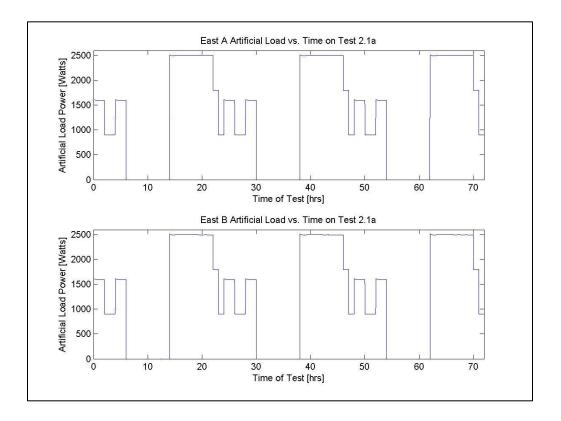
1					
	Temperati	ure Control	[°F Varian	ce]	
	Day	1	2	3	mean
AHUA	East	1.094229	0.989366	0.958447	1.014014
	Internal	3.467752	3.11909	3.04813	3.211657
	South	1.274745	1.659039	1.636738	1.523507
	West	1.731497	2.041306	2.108203	1.960335
	mean	1.892056	1.9522	1.937879	
	Day	1	2	3	mean
AHUB	East	1.174714	1.127618	1.052861	1.118398
	Internal	1.676464	1.625787	3.066846	2.123032
	South	1.109195	1.111631	1.272387	1.164404
	West	1.242872	1.926075	2.049403	1.73945
	mean	1.300811	1.447778	1.860374	

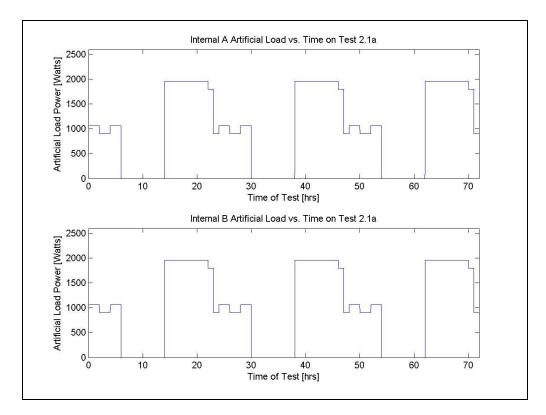
Static Pressure Travel				
Agg	regate Val	ues		
AHUA mean 0.741417				
	variance	0.002724		
AHUB	AHUB mean			
	0.116112			
diffe	rence	-0.35929		

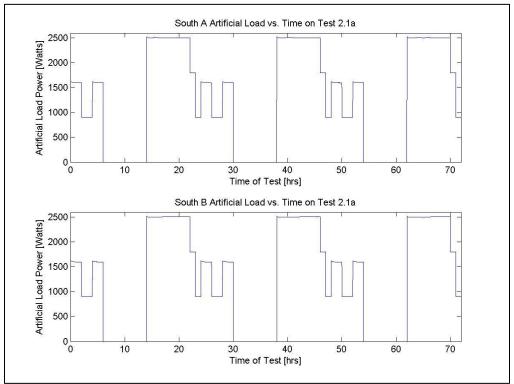
Static Pressure Travel per Hour [inches w.g. per hour]						
Day 1 2 3 mean variance						
AHUA	0.6915	0.737125	0.795625	0.741417	0.002724	
AHUB 1.442166667 1.099292 0.760667 1.100708 0.116112						

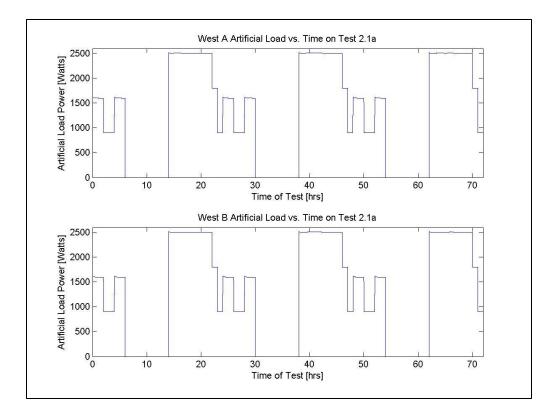
· · · · · · · · · · · · · · · · · · ·				
Static Pressure Control				
Agg	regate Val	ues		
AHUA mean -0.00063				
	variance			
AHUB	mean	-0.01079		
	0.467765			
diffe	0.01016			

Static Pressure Control [inches w.g.]							
	Day 1 2 3 mean						
AHUA	AHUA mean -0.00119 -0.00016 -0.0						
	variance 0.000422 0.000474 0.00052						
AHUB mean 0.000474 -0.03185 -0.001					-0.01079		
	variance 0.000491 1.402335 0.000453						


Damper Travel				
Ag	gregate Val	ues		
AHUA mean 37.58582				
	77.16903			
AHUB	mean	34.75559		
	68.23776			
diffe	2.830226			


Damper Travel per Hour [% of Maximum Damper Position per Hour]								
Damper	Travel per Ho		aximum Da	amper Pos	Ition per H	ourj		
	Day	1	2	3	mean	variance		
AHUA	East	41.56392	40.11458	38.87992	40.18614	1.804804		
	Internal	24.06963	23.0995	26.65613	24.60842	3.380118		
	South	36.94754	39.91075	43.56954	40.14261	11.00304		
	West	46.291	38.3795	51.54783	45.40611	43.93852		
	mean	37.21802	35.37608	40.16335				
	Day	1	2	3	mean	variance		
AHUB	East	37.55625	37.79946	41.08037	38.81203	3.873837		
	Internal	32.12908	33.55125	11.43654	25.70563	153.2107		
	South	32.4065	42.28958	40.74713	38.48107	28.27009		
	West	32.40063	40.89175	34.77858	36.02365	19.18745		
	mean	33.62311	38.63301	32.01066				


Flow Rate Control					
Ag	Aggregate Values				
AHUA mean -13.021					
	2925.467				
AHUB	mean	-8.90533			
	2199.918				
diffe	erence	-4.11564			


	Flow Rate	Control [C	CFM Averag	ge]	
	Day	mean			
AHUA	East	0.087326	-0.002	-0.0441	0.013744
	Internal	-18.8758	-16.4161	-15.5728	-16.9549
	South	-5.5072	-20.1921	-20.2773	-15.3255
	West	-15.1302	-22.4753	-21.8462	-19.8172
	mean	-9.85647	-14.7714	-14.4351	
	Day	1	2	3	mean
AHUB	East	-0.12005	-0.08455	-0.02075	-0.07512
	Internal	-0.04835	-0.02813	-32.9685	-11.015
	South	-0.10634	0.040712	-30.9846	-10.3501
	West	0.040712	-0.02396	-42.5602	-14.1811
	mean	-0.05851	-0.02398	-26.6335	

	Flow Rate Control [CFM Variance]							
	Day	1	2	3	mean			
AHUA	East	21.77353	19.03243	20.43794	20.41463			
	Internal	1235.08	1097.696	1087.206	1139.994			
	South	944.3781	6153.792	6228.128	4442.099			
	West	4935.867	6261.336	6228.326	5808.51			
	mean	1784.275	3382.964	3391.025				
	Day	1	2	3	mean			
AHUB	East	15.97123	14.55322	15.0568	15.19375			
	Internal	14.34763	24.0798	1897.418	645.2819			
	South	21.25535	21.50411	9119.684	3054.148			
	West	13.61375	23.98672	12325.62	4121.074			
	mean	16.29699	21.03096	5839.445				

TEST 2.1b

Total Fan Consumption [kW-hr]				
Days 1-6				
AHUA	55.90979232			
AHUB	46.9588971			
% difference	16.01%			

Fan Power Consumed [kW-hr]							
1 2 3 mean variance							
AHUA 22.82817 19.05931 14.02231 18.6366 19.51							
AHUB 15.599 15.72115 15.63874 15.65297 0.003882							
% difference	31.67%	17.51%	-11.53%	16.01%			

Temperature Control Aggregate Values					
1,95	icoute vui	465			
AHUA mean [°F] -0.7109					
	variance				
AHUB	mean [°F]	-0.79495			
	1.69751				
diffe	0.084048				

Temperature Control [^o F Average]							
	remperati			50]			
	Day	1	2	3	mean		
AHUA	East	-1.03926	-1.10037	-1.0358	-1.05848		
	Internal	-0.01655	0.047558	0.426457	0.152487		
	South	-0.89702	-0.81545	-0.77804	-0.83017		
	West	-1.23679	-1.18643	-0.8991	-1.10744		
	mean	-0.79741	-0.76367	-0.57162			
	Day	1	2	3	mean		
AHUB	East	-1.24458	-1.28142	-1.25564	-1.26055		
	Internal	-0.12213	-0.08404	-0.084	-0.09672		
	South	-0.69094	-0.65752	-0.71104	-0.6865		
	West	-1.1293	-1.19546	-1.08329	-1.13602		
	mean	-0.79674	-0.80461	-0.78349			

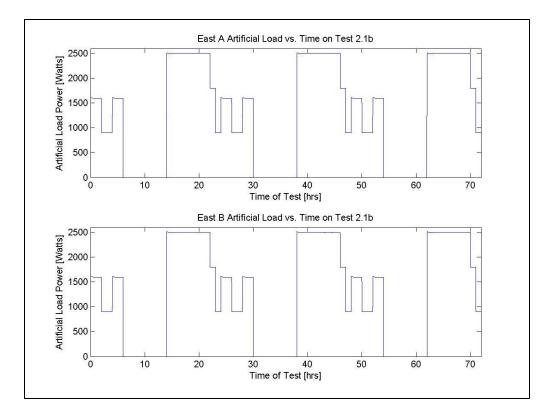
	Temperature Control [^o F Variance]						
	Day	3	mean				
AHUA	East	0.958152	0.983948	0.951984	0.964695		
	Internal	2.593941	2.821429	4.271428	3.228933		
	South	1.137294	1.293955	1.551426	1.327558		
	West	1.376613	1.501773	2.836148	1.904845		
	mean	1.5165	1.650276	2.402746			
	Day	1	2	3	mean		
AHUB	East	1.086522	1.06828	1.108611	1.087804		
	Internal	2.330237	2.360142	2.333098	2.341159		
	South	1.242605	1.183768	1.154417	1.193597		
	West	1.291286	1.517403	1.198298	1.335662		
	mean	1.487662	1.532399	1.448606			

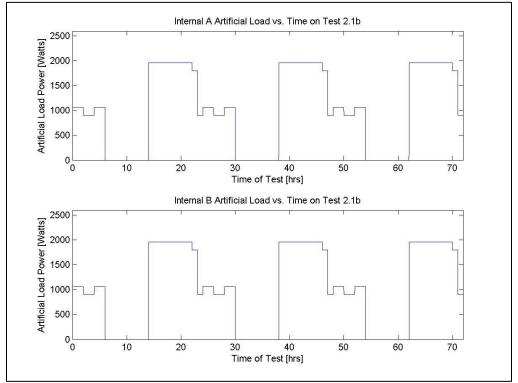
Static Pressure Travel					
Aggregate Values					
AHUA mean 1.252764					
	0.40576				
AHUB	mean	0.94425			
variance 0.002692					
diffe	rence	0.308514			

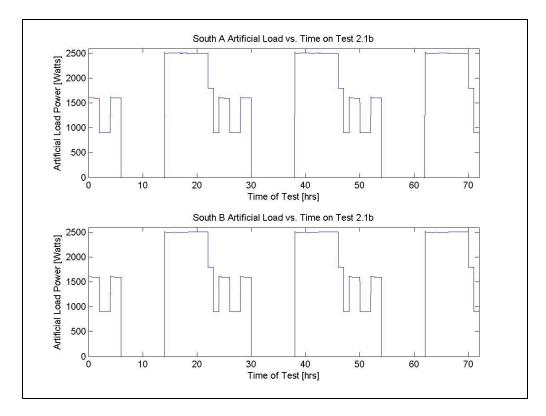
Static Pressure Travel per Hour [inches w.g. per hour]							
Day 1 2 3 mean variance							
AHUA	AHUA 1.795291667 1.411625 0.551375 1.252764 0.40576						
AHUB 0.927916667 1.002333 0.9025 0.94425 0.002692							

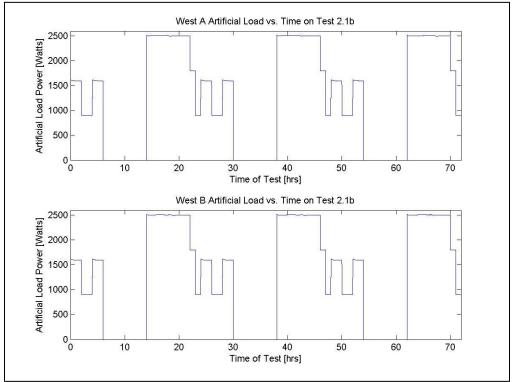
Static Pressure Control				
Aggregate Values				
AHUA mean -0.0006				
	0.000791			
AHUB	mean	-0.0013		
	0.000743			
diffe	0.000701			

Static Pressure Control [inches w.g.]								
	Day 1 2 3 mean							
AHUA	mean -0.00121 -0.00049 -8.82E-05 -0.0							
	variance 0.001036 0.000934 0.000403							
AHUB	mean	-0.00224	-0.00123	-0.00043	-0.0013			
	variance	0.000828	0.00071	0.000692				


Damper Travel Aggregate Values				
AHUA mean 32.24026				
	83.76938			
AHUB	mean	33.20001		
	53.17159			
diffe	-0.95975			


Damper	Damper Travel per Hour [% of Maximum Damper Position per Hour]							
	Day	1	2	3	mean	variance		
AHUA	East	21.2845	27.52158	29.63938	26.14849	18.86503		
	Internal	33.00925	26.13458	14.15325	24.43236	91.06035		
	South	37.29592	44.36321	43.22033	41.62649	14.39191		
	West	41.76133	37.04075	31.45904	36.75371	26.5961		
	mean	33.33775	33.76503	29.618				
	Day	1	2	3	mean	variance		
AHUB	East	26.48442	28.85196	41.16142	32.16593	62.09039		
	Internal	24.27017	27.28858	21.05738	24.20538	9.710138		
	South	38.74638	39.49233	42.93004	40.38958	4.97956		
	West	34.47179	37.93458	35.71108	36.03915	3.078454		
	mean	30.99319	33.39186	35.21498				


Flow Rate Control				
Agg	gregate Val	ues		
AHUA mean -13.7087				
	3437.039			
AHUB	mean	-11.086		
	2207.948			
diffe	rence	-2.62271		


	Flow Rate Control [CFM Average]						
	Day	1	2	3	mean		
AHUA	East	0.348264	0.131076	-0.01884	0.153501		
	Internal	0.024913	-0.09063	-31.8426	-10.6361		
	South	0.032378	-11.8666	-47.5324	-19.7889		
	West	0.322569	-16.8204	-57.1924	-24.5634		
	mean	0.182031	-7.16163	-34.1466			
	Day	1	2	3	mean		
AHUB	East	0.027951	-0.0092	-0.05252	-0.01126		
	Internal	-16.2343	-14.0319	-16.0853	-15.4505		
	South	-17.3107	-17.9207	-16.5897	-17.2737		
	West	-10.6937	-13.5887	-10.5435	-11.6086		
	mean	-11.0527	-11.3876	-10.8178			

	Flow Rate Control [CFM Variance]							
	Day	Day 1 2 3						
AHUA	East	20.96178	20.63289	17.5402	19.71162			
	Internal	14.93457	16.68892	1716.918	582.8471			
	South	25.66868	2109.855	13860.49	5332.005			
	West	168.7664	2804.371	15777.54	6250.226			
	mean	57.58287	1237.887	7843.122				
	Day	1	2	3	mean			
AHUB	East	12.69191	12.86247	17.60509	14.38649			
	Internal	1133.735	1135.091	1089.068	1119.298			
	South	5706.922	5891.892	5289.796	5629.537			
	West	1490.965	2241.786	1938.867	1890.539			
	mean	2086.079	2320.408	2083.834				

TEST 2.2a

Total Fan Consumption [kW-hr]				
Days 1-6				
AHUA	43.17386232			
AHUB	49.95628943			
% difference	-15.71%			

Fan Power Consumed [kW-hr]						
1 2 3 mean variance						
AHUA 13.70022 13.85255 15.62108 14.39129 1.14						
AHUB 19.81637 16.61398 13.52594 16.6521 9.893473						
% difference	-44.64%	-19.93%	13.41%	-15.71%		

Temperature Control		
Aggregate Values		
AHUA	mean [^o F]	-0.78368
	variance	1.730546
AHUB	mean [°F]	-0.83947
	variance	1.424626
difference		0.055787

	Temperature Control [°F Average]					
	Day	1	2	3	mean	
AHUA	East	-1.05637	-0.91524	-0.90533	-0.95898	
	Internal	0.054262	-0.02777	0.112494	0.04633	
	South	-1.13992	-1.04487	-0.99561	-1.06013	
	West	-1.21538	-1.17852	-1.09193	-1.16194	
	mean	-0.83935	-0.7916	-0.72009		
	Day	1	2	3	mean	
AHUB	East	-1.27477	-1.19252	-1.16993	-1.21241	
	Internal	-0.31576	-0.36135	0.066168	-0.20365	
	South	-1.10079	-0.95893	-0.89613	-0.98528	
	West	-1.03334	-0.99348	-0.84278	-0.95653	
	mean	-0.93117	-0.87657	-0.71067		

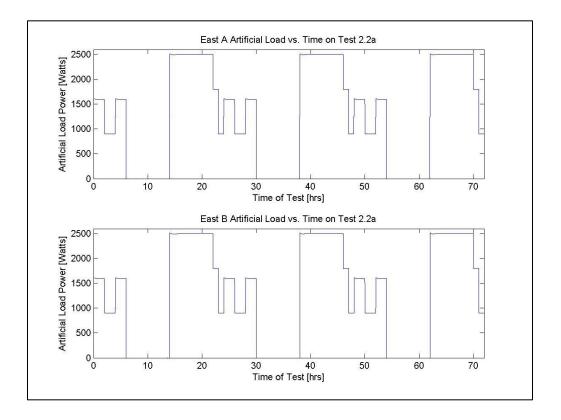
	Temperature Control [^o F Variance]						
	Day	1	2	3	mean		
AHUA	East	0.963202	0.947471	0.954135	0.954936		
	Internal	3.107815	2.787878	3.007746	2.967813		
	South	0.973376	0.938761	0.964437	0.958858		
	West	1.031218	1.040186	1.201101	1.090835		
	mean	1.518903	1.428574	1.531855			
	Day	1	2	3	mean		
AHUB	East	1.039133	0.986431	0.977294	1.000953		
	Internal	1.65428	1.551016	2.824462	2.00992		
	South	1.013025	0.965227	0.959744	0.979332		
	West	0.998117	1.073035	1.169847	1.080333		
	mean	1.176139	1.143927	1.482837			

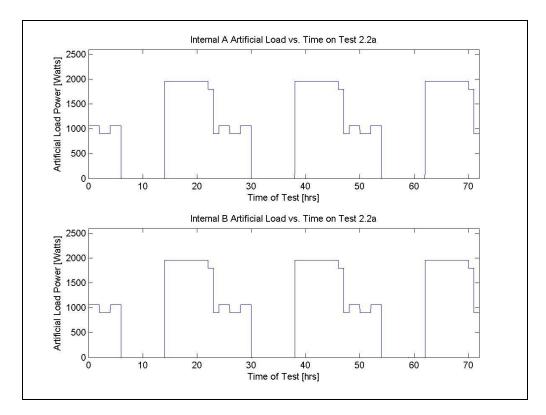
Static Pressure Travel			
Agg	regate Val	ues	
AHUA mean 0.880486			
	variance	0.000722	
AHUB mean		1.082097	
	0.127418		
difference -0.20			

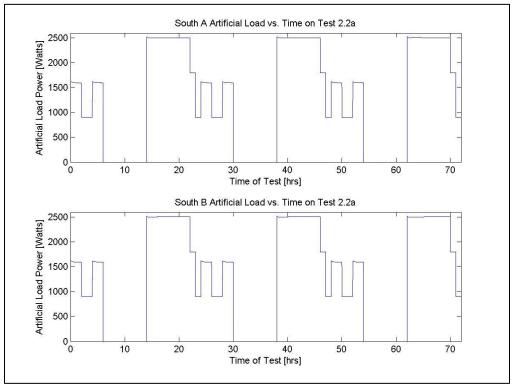
Static Pressure Travel per Hour [inches w.g. per hour]					
Day	1	2	3	mean	variance
AHUA	0.907291667	0.853542	0.880625	0.880486	0.000722
AHUB	1.469208333	1.011125	0.765958	1.082097	0.127418

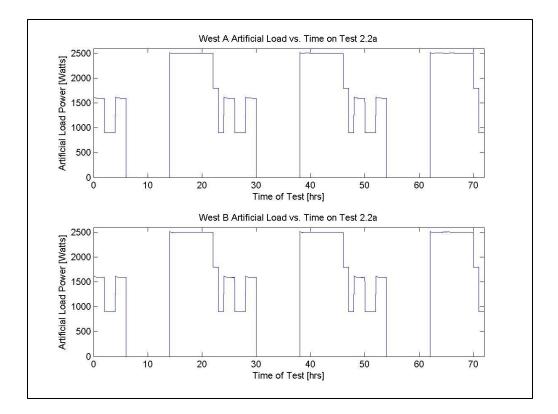
Static Pressure Control				
Aggregate Values				
AHUA mean 0.00270				
variance		0.00071		
AHUB	AHUB mean			
	0.000436			
diffe	0.002804			

Static Pressure Control [inches w.g.]					
	Day 1 2 3 mea				mean
AHUA	mean	0.002542	0.003097	2.47E-03	0.002702
	variance	0.000826	0.000562	0.000743	
AHUB	mean	-0.00011	0.000128	-0.00032	-0.0001
	variance	0.000525	0.000413	0.000371	


Damper Travel				
Agg	regate Val	ues		
AHUA	36.71073			
	75.36977			
AHUB	AHUB mean			
	82.63293			
diffe	1.998903			


-							
Damper	Damper Travel per Hour [% of Maximum Damper Position per Hour]						
	Day	1	2	3	mean	variance	
AHUA	East	33.27504	40.88092	30.03596	34.73064	30.99235	
	Internal	42.68175	37.60925	37.68875	39.32658	8.444438	
	South	24.82713	23.3935	45.956	31.39221	159.5918	
	West	29.51221	43.07213	51.59608	41.39347	124.0378	
	mean	32.57403	36.23895	41.3192			
	Day	1	2	3	mean	variance	
AHUB	East	36.28454	42.01575	23.96742	34.08924	85.05011	
	Internal	40.19867	34.02792	10.565	28.26386	244.4568	
	South	36.72404	35.18108	35.1985	35.70121	0.784717	
	West	43.18096	39.43229	39.76571	40.79299	4.3046	
	mean	39.09705	37.66426	27.37416			


Flow Rate Control Aggregate Values				
	, 0			
AHUA	mean	-0.28218		
	134.6213			
AHUB	mean	-5.22099		
	1037.286			
diffe	4.938809			


	Flow Rate	Control [C	FM Averag	ge]	
	Day	1	2	3	mean
AHUA	East	0.006337	-0.00399	-0.00148	0.000289
	Internal	-0.77231	-0.43464	-0.53082	-0.57925
	South	0.013455	-0.01345	0.055469	0.01849
	West	0.014497	-0.07101	-1.64818	-0.56823
	mean	-0.18451	-0.13077	-0.53125	
	Day	1	2	3	mean
AHUB	East	-0.07023	0.003906	-0.06215	-0.04282
	Internal	0.054688	-0.03672	-32.814	-10.932
	South	0.104253	-0.00234	-0.13403	-0.01071
	West	-0.00443	0.002604	-29.6934	-9.89841
	mean	0.021072	-0.00814	-15.6759	

	Flow Rate Control [CFM Variance]					
	Day	1	2	3	mean	
AHUA	East	31.81249	26.74575	28.01026	28.85617	
	Internal	299.6458	210.9455	207.533	239.3747	
	South	19.75285	17.76916	71.21946	36.24716	
	West	22.26604	31.06319	646.8821	233.4038	
	mean	93.3693	71.63089	238.4112		
	Day	1	2	3	mean	
AHUB	East	17.1943	16.50479	10.05855	14.58588	
	Internal	21.76477	29.75867	1908.745	653.423	
	South	19.34053	17.06177	36.70451	24.36894	
	West	16.5252	16.48247	8712.691	2915.233	
	mean	18.7062	19.95193	2667.05		

TEST 2.2b

Total Fan Consumption [kW-hr]		
Days	1-6	
AHUA	66.43631352	
AHUB	60.76872032	
% difference	8.53%	

Fan Power Consumed [kW-hr]						
1 2 3 mean variance						
AHUA 23.64715 19.09068 23.69849 22.14544 6.999						
AHUB 19.33787 20.64526 20.78558 20.25624 0.637471						
% difference	18.22%	-8.14%	12.29%	8.53%		

Temperature Control					
Agg	regate Val	ues			
AHUA mean [°F] -0.64428					
	variance	1.866947			
AHUB	mean [°F]	-0.77496			
	1.290087				
diffe	0.13068				

Temperature Control [°F Average]						
	Day	1	2	3	mean	
AHUA	East	-1.10152	-0.69212	-0.45981	-0.75115	
	Internal	-0.14757	0.289559	-0.04208	0.033303	
	South	-1.1341	-0.73649	-0.6262	-0.83227	
	West	-1.28375	-0.82595	-0.97136	-1.02702	
	mean	-0.91674	-0.49125	-0.52486		
	Day	1	2	3	mean	
AHUB	East	-1.20753	-0.93353	-0.7164	-0.95249	
	Internal	-0.34277	-0.28126	-0.31646	-0.3135	
	South	-0.94345	-0.68835	-0.58348	-0.73843	
	West	-1.40268	-0.98258	-0.90105	-1.09544	
	mean	-0.97411	-0.72143	-0.62935		

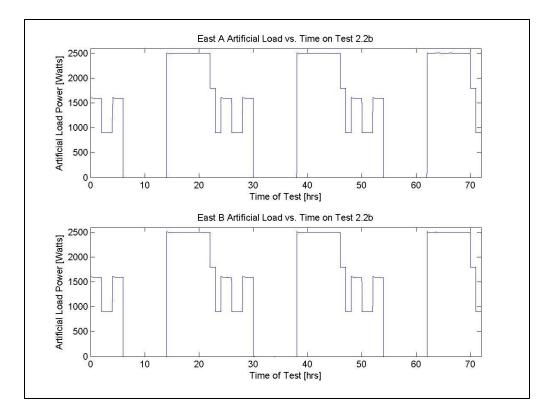
	Temperature Control [^o F Variance]							
	Day	mean						
AHUA	East	1.015458	0.789902	0.793645	0.866335			
	Internal	2.348499	3.984606	2.769605	3.034236			
	South	0.973181	1.222881	0.988639	1.061567			
	West	1.217878	2.494079	1.293035	1.66833			
	mean	1.388754	2.122867	1.461231				
	Day	1	2	3	mean			
AHUB	East	1.075268	0.968202	0.76351	0.93566			
	Internal	1.62E+00	1.74E+00	1.72E+00	1.691676			
	South	0.873569	0.866859	0.850235	0.863555			
	West	1.52E+00	1.069032	1.05E+00	1.211748			
	mean	1.272235	1.160353	1.094391				

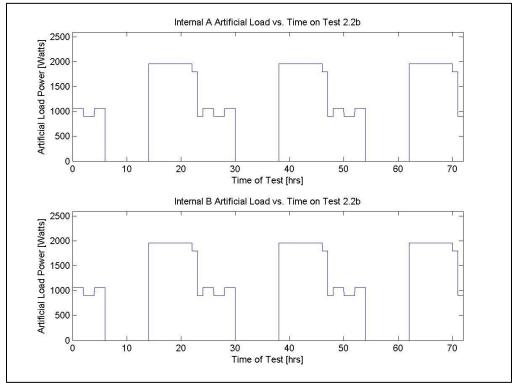
Static Pressure Travel				
Agg	regate Val	ues		
AHUA mean 1.756556				
	0.226402			
AHUB	mean	2.068583		
variance 0.006575				
diffe	rence	-0.31203		

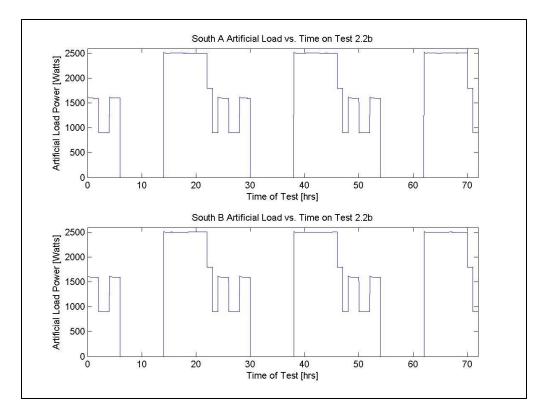
Static Pressure Travel per Hour [inches w.g. per hour]							
Day 1 2 3 mean variance							
AHUA	AHUA 2.2845 1.360833 1.624333 1.756556 0.226402						
AHUB							

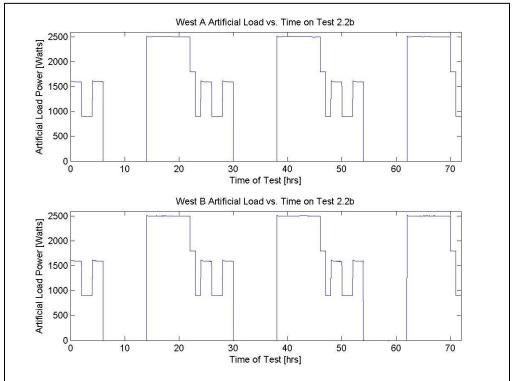
Static Pressure Control				
Agg	regate Val	ues		
AHUA mean -0.00057				
	variance			
AHUB	mean	0.039629		
	0.009451			
diffe	-0.0402			

Static Pressure Control [inches w.g.]							
	Day 1 2 3 mean						
AHUA	mean	-0.00186	-8.19E-05	2.37E-04	-0.00057		
	variance 0.001843 0.001692 0.0018						
AHUB	mean	0.062438	0.008733	0.047717	0.039629		
	variance	0.013512	0.003767	0.009546			


Damper Travel Aggregate Values				
AHUA mean 34.18119				
	62.01452			
AHUB	mean	45.15715		
	60.99215			
diffe	variance difference			


Damper	Travel per Ho	ur [% of M	aximum Da	amper Pos	ition per H	our]
	Day	1	2	3	mean	variance
AHUA	East	22.81529	38.95096	39.01829	33.59485	87.15025
	Internal	28.61779	25.51025	29.43313	27.85372	4.285089
	South	27.33538	33.4065	47.29288	36.01158	104.6653
	West	35.16704	36.01921	46.60758	39.26461	40.62098
	mean	28.48388	33.47173	40.58797		
	Day	1	2	3	mean	variance
AHUB	East	39.66958	40.16629	39.87417	39.90335	0.062318
	Internal	59.50738	55.88392	57.87354	57.75494	3.292912
	South	41.49163	42.9405	45.09988	43.17733	3.296935
	West	39.84842	40.31358	39.21688	39.79296	0.302999
	mean	45.12925	44.82607	45.51611		


Flow Rate Control				
Agg	gregate Val	ues		
AHUA mean -13.5117				
	3545.013			
AHUB	mean	-0.26632		
	111.8046			
diffe	rence	-13.2454		


	Flow Rate Control [CFM Average]							
	Day	Day 1 2 3 r						
AHUA	East	-0.2553	-1.31189	-2.90538	-1.49086			
	Internal	-0.01328	-30.356	0.228385	-10.047			
	South	0.217622	-51.5637	-3.27179	-18.206			
	West	-0.01563	-73.1066	0.212674	-24.3032			
	mean	-0.01664	-39.0845	-1.43403				
	Day	1	2	3	mean			
AHUB	East	-0.08125	0.094184	-0.06849	-0.01852			
	Internal	-2.31493	-0.08264	-0.42726	-0.94161			
	South	-0.06016	0.022743	-0.20061	-0.07934			
	West	0.040365	0.007986	-0.12578	-0.02581			
	mean	-0.60399	0.010569	-0.20553				

	Flow Rate Control [CFM Variance]							
	Day	1	2	3	mean			
AHUA	East	21.06683	85.88994	550.4591	219.1386			
	Internal	10.19489	1579.355	30.67936	540.0765			
	South	20.40688	13814.54	520.0111	4784.987			
	West	18.25091	18971.67	184.8898	6391.603			
	mean	17.47988	8612.865	321.5098				
	Day	1	2	3	mean			
AHUB	East	3.68E+01	3.17E+01	3.57E+01	34.74846			
	Internal	404.6781	196.8273	197.5917	266.3657			
	South	7.06E+01	9.07E+01	1.22E+02	94.34995			
	West	52.65765	52.2141	46.46353	50.44509			
	mean	141.1947	92.86229	100.3749				

TEST 2.3a

Total Fan Consumption [kW-hr]			
Days 1-6			
AHUA	59.39611958		
AHUB	60.23032318		
% difference	-1.40%		

Fan Power Consumed [kW-hr]							
1 2 3 mean variance							
AHUA 21.76851 19.64311 17.9845 19.79871 3.59							
AHUB 24.02777 19.31117 16.89139 20.07677 13.17158							
% difference	-10.38%	1.69%	6.08%	-1.40%			

Temperature Control					
Aggregate Values					
AHUA	AHUA mean [°F] -0.54509				
	variance				
AHUB	mean [°F]	-0.70901			
	1.353481				
diffe	0.163919				

Temperature Control [^o F Average]								
	Day	1	2	3	mean			
AHUA	East	-0.67543	-0.75839	-0.86248	-0.76543			
	Internal	-0.01024	0.052819	0.063453	0.035346			
	South	-0.25079	-0.21425	-0.37242				
	West	-1.07327	-1.13378	-1.02652	-1.07786			
	mean	-0.60279	-0.52253	-0.50995				
	Day	1	2	3	mean			
AHUB	East	-0.87014	-1.03661	-1.04021	-0.98232			
	Internal	-0.38415	-0.28469	0.137198	-0.17721			
	South	-0.64831	-0.75257	-0.81287	-0.73792			
	West	-0.9501	-0.98484	-0.88082	-0.93859			
	mean	-0.71318	-0.76468	-0.64918				

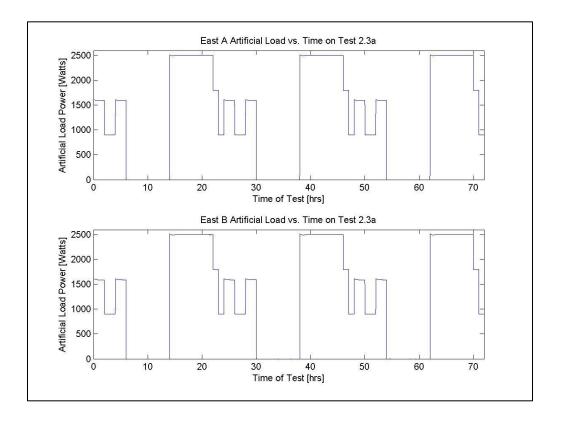
	Temperature Control [^o F Variance]								
	Day	1 2 3		mean					
AHUA	East	0.788068	0.803015	0.976093	0.855725				
	Internal	2.742947	2.857626	2.989699	2.863424				
	South	1.277374	0.441602	0.483198	0.734058				
	West	1.168364	1.179908	1.123879	1.157383				
	mean	1.494188	1.320538	1.393217					
	Day	1	2	3	mean				
AHUB	East	0.83465	0.957573	0.950812	0.914345				
	Internal	1.51E+00	1.75E+00	3.13E+00	2.127015				
	South	0.817047	0.851013	0.937134	0.868398				
	West	1.08E+00	1.016826	9.96E-01	1.032375				
	mean	1.060486	1.143036	1.503077					

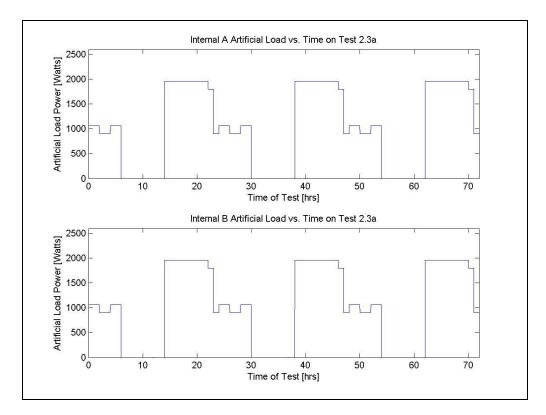
Static Pressure Travel					
Aggregate Values					
AHUA mean 1.970722					
	0.048847				
AHUB	mean	1.194278			
	0.106322				
diffe	rence	0.776444			

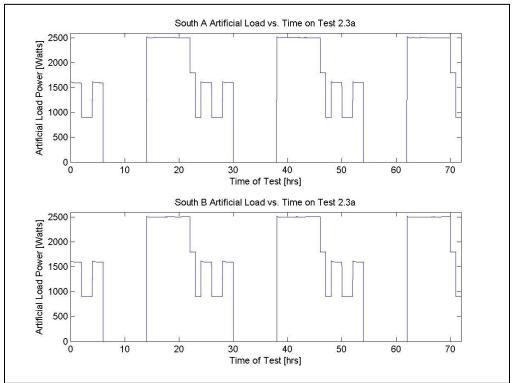
Static Pressure Travel per Hour [inches w.g. per hour]							
Day 1 2 3 mean variance							
AHUA	AHUA 2.069541667 1.717542 2.125083 1.970722 0.048						
AHUB	1.54325	1.142208	0.897375	1.194278	0.106322		

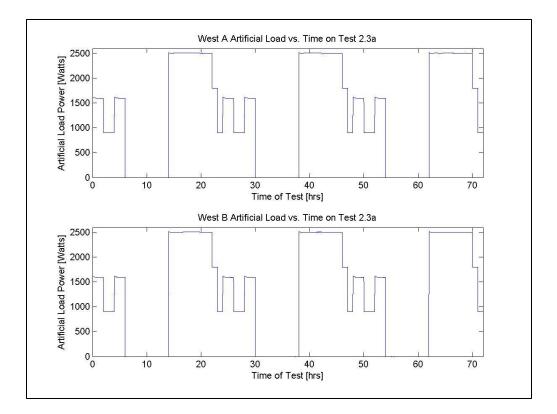
Static Pressure Control Aggregate Values					
, , , 90	regate tai	465			
AHUA	HUA mean -0.39133				
	variance				
AHUB	mean	0.059137			
	0.013835				
diffe	-0.45047				

Static Pressure Control [inches w.g.]								
	Day 1 2 3 mean							
AHUA	mean	-3.99E-01	-0.39133					
	variance 0.086945 0.074386 0.070327							
AHUB	mean	0.176554	0.059137					
	variance	0.000655	0.000871	0.019302				


Damper Travel					
Aggregate Values					
AHUA mean 60.88244					
	297.5042				
AHUB	mean	36.14549			
	52.08469				
diffe	24.73695				


Damper Travel per Hour [% of Maximum Damper Position per Hour]							
Damper	Travel per Ho		aximum Da	amper Pos	Ition per H	ourj	
	Day	1	2	3	mean	variance	
AHUA	East	46.00571	43.23392	49.66996	46.30319	10.42203	
	Internal	83.77471	83.83362	95.25967	87.62267	43.74369	
	South	47.88354	55.15837	62.07558	55.03917	50.36417	
	West	60.63679	50.25821	52.79925	54.56475	29.26649	
	mean	59.57519	58.12103	64.95111			
	Day	1	2	3	mean	variance	
AHUB	East	42.15054	22.69875	45.18308	36.67746	148.8523	
	Internal	39.10433	30.18888	25.25813	31.51711	49.25253	
	South	40.38321	40.98538	35.59188	38.98682	8.734887	
	West	42.34871	38.69921	31.15383	37.40058	32.59613	
	mean	40.9967	33.14305	34.29673			


Flow Rate Control Aggregate Values				
	, , , , , , ,			
AHUA mean -4.3115				
	variance	1304.072		
AHUB	mean	-2.57493		
	229.5735			
diffe	rence	-1.73664		


	Flow Rate Control [CFM Average]						
	Day	1	2	3	mean		
AHUA	East	0.01441	-0.11936	-0.0375	-0.04748		
	Internal	-5.62465	-3.45755	-6.15781	-5.08001		
	South	-16.6488	-4.98325	-12.7946	-11.4755		
	West	-0.99783	-0.10686	-0.82509	-0.64326		
	mean	-5.81421	-2.16675	-4.95375			
	Day	1	2	3	mean		
AHUB	East	0.058941	-0.01667	-0.12813	-0.02862		
	Internal	0.026649	-0.05113	-30.778	-10.2675		
	South	0.114931	-0.12101	-0.01936	-0.00848		
	West	0.024219	0.042708	-0.05234	0.004861		
	mean	0.056185	-0.03652	-7.74447			

	Flow Rate Control [CFM Variance]						
	Day	1	2	3	mean		
AHUA	East	82.36013	74.74891	108.5702	88.55974		
	Internal	747.7918	622.5505	796.7213	722.3545		
	South	6818.37	809.2978	4489.815	4039.161		
	West	350.8116	225.2385	206.476	260.842		
	mean	1999.833	432.9589	1400.396			
	Day	1	2	3	mean		
AHUB	East	1.92E+01	1.10E+01	2.05E+01	16.91028		
	Internal	25.31399	27.11317	1649.448	567.2917		
	South	1.95E+01	2.34E+01	3.04E+01	24.41767		
	West	22.44051	17.71462	22.23889	20.79801		
	mean	21.61095	19.80764	430.6446			

TEST 2.3b

Total Fan Consumption [kW-hr]			
Days 1-6			
AHUA	73.7513365		
AHUB	71.97171942		
% difference	2.41%		

Fan Power Consumed [kW-hr]						
1 2 3 mean variance						
AHUA	26.65218	26.79202	20.30714	24.58378	13.72214	
AHUB	19.60263	19.34109	33.028	23.99057	61.27343	
% difference	26.45%	27.81%	-62.64%	2.41%		

· · · · · · · · · · · · · · · · · · ·					
Temperature Control Aggregate Values					
1,95	icguic vui	ucj			
AHUA	JA mean [°F] -0.31833				
	variance	1.899286			
AHUB	mean [°F]	-0.57651			
	1.611803				
diffe	rence	0.258186			

	Temperature Control [°F Average]						
	Day	1	2	3	mean		
AHUA	East	-0.90937	-0.63005	-0.17284	-0.57076		
	Internal	-0.20054	0.082469	0.490589	0.124173		
	South	-0.28098	-0.17007	0.209785	-0.08042		
	West	-1.06425	-0.9286	-0.24606	-0.74631		
	mean	-0.61379	-0.41156	0.070368			
	Day	1	2	3	mean		
AHUB	East	-1.05671	-0.88798	-0.46851	-0.8044		
	Internal	-0.39488	-0.29733	0.323717	-0.12283		
	South	-0.6847	-0.55719	-0.46036	-0.56742		
	West	-1.00724	-0.91252	-0.51445	-0.81141		
	mean	-0.78588	-0.66375	-0.2799			

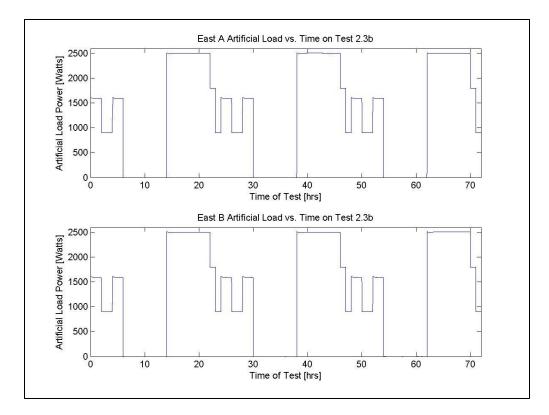
	Temperature Control [^o F Variance]						
	Day	1	2	3	mean		
AHUA	East	0.957362	0.803458	1.13539	0.965403		
	Internal	2.207746	3.023132	4.938586	3.389821		
	South	0.356414	0.277085	0.556459	0.396653		
	West	1.138118	1.525787	3.351775	2.005227		
	mean	1.16491	1.407366	2.495553			
	Day	1	2	3	mean		
AHUB	East	0.958224	0.85217	0.912969	0.907788		
	Internal	1.60E+00	1.79E+00	4.57E+00	2.651063		
	South	1.07882	1.071172	0.998281	1.049424		
	West	1.12E+00	1.048203	1.77E+00	1.313191		
	mean	1.188348	1.189736	2.063016			

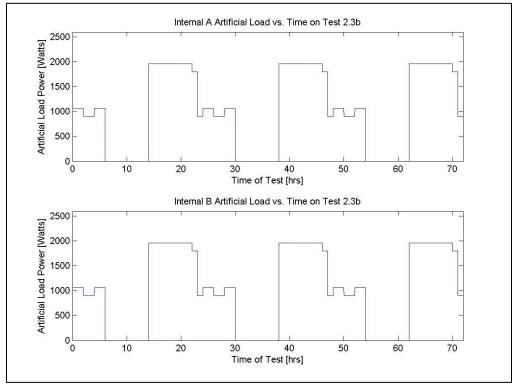
Static Pressure Travel					
Aggregate Values					
AHUA	JA mean 1.464347				
	0.323475				
AHUB	IUB mean 1.419611				
variance 0.009765					
diffe	rence	0.044736			

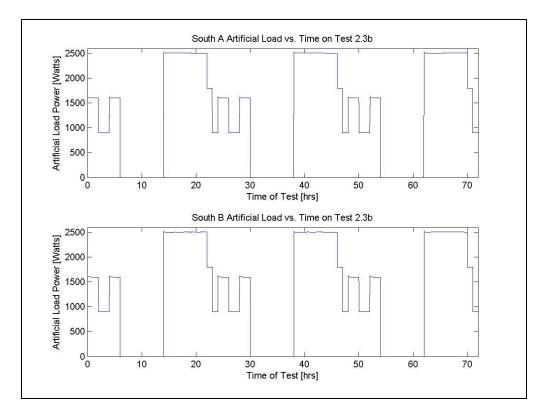
Static Pressure Travel per Hour [inches w.g. per hour]							
Day 1 2 3 mean variance							
AHUA 2.055125 1.417375 0.920542 1.464347 0.323475							
AHUB							

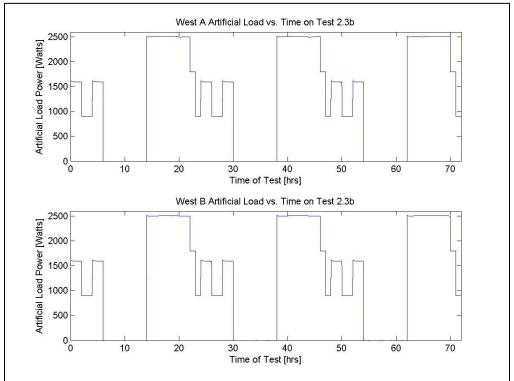
Static Pressure Control				
Agg	Aggregate Values			
AHUA	AHUA mean -0.00078			
	variance			
AHUB	mean	0.206906		
	0.060646			
diffe	rence	-0.20768		

Static Pressure Control [inches w.g.]						
	Day 1 2 3 mean					
AHUA	mean	-0.00167	1.31E-03	-1.98E-03	-0.00078	
variance 0.001823 0.001634 0.001401						
AHUB	mean	0.222226	0.145131	0.253361	0.206906	
	variance	0.02777	0.04177	0.106269		


Damper Travel Aggregate Values					
AHUA mean 31.13845					
	18.26055				
AHUB	mean	48.13082			
	65.2177				
diffe	-16.9924				


Damper	Travel per Ho	ur [% of M	aximum Da	amper Pos	ition per H	our]
	Day	1	2	3	mean	variance
AHUA	East	36.86633	30.30892	29.34617	32.17381	16.74658
	Internal	34.10938	26.53208	21.06896	27.23681	42.88559
	South	30.57163	34.30383	29.47371	31.44972	6.410818
	West	33.77458	33.57971	33.72613	33.69347	0.010294
	mean	33.83048	31.18114	28.40374		
	Day	1	2	3	mean	variance
AHUB	East	34.564	45.04808	41.93771	40.5166	28.99367
	Internal	56.45	54.06896	37.87192	49.46363	102.1931
	South	53.37233	55.11846	38.91817	49.13632	79.07022
	West	57.51108	53.05971	49.64938	53.40672	15.54193
	mean	50.47435	51.8238	42.09429		


Flow Rate Control					
Agg	gregate Val	ues			
AHUA mean -29.1655					
	7631.059				
AHUB	mean	-3.79814			
	1153.311				
diffe	rence	-25.3673			


		·			
	Flow Rate	Control [C	CFM Avera	ge]	
	Day	1	2	3	mean
AHUA	East	0.142188	-6.61875	-101.379	-35.9519
	Internal	0.473264	-0.06311	-30.5978	-10.0626
	South	0.052257	-8.65295	-89.0573	-32.5527
	West	0.198438	-19.0255	-95.4573	-38.0948
	mean	0.216536	-8.59008	-79.1229	
	Day	1	2	3	mean
AHUB	East	-0.06658	-0.09557	0.130295	-0.01062
	Internal	-3.7303	-2.30208	-1.53325	-2.52188
	South	-4.49931	-10.3853	-13.8827	-9.58912
	West	-3.55894	-1.87899	-3.77491	-3.07095
	mean	-2.96378	-3.66549	-4.76515	

	Flow Rate Control [CFM Variance]						
	Day	1	2	3	mean		
AHUA	East	20.95925	526.1203	24343.76	8296.946		
	Internal	30.90475	17.77906	1454.512	501.0652		
	South	20.14318	881.2618	21199.13	7366.844		
	West	69.07254	2468.488	22055.35	8197.638		
	mean	35.26993	973.4123	17263.19			
	Day	1	2	3	mean		
AHUB	East	3.14E+01	4.75E+01	1.09E+02	62.64352		
	Internal	610.3688	473.9028	182.1285	422.1334		
	South	9.12E+02	4.16E+03	5.16E+03	3409.743		
	West	649.6552	411.6541	903.7748	655.028		
	mean	550.7441	1272.279	1589.138			

APPENDIX C: TEST SERIES 3 TABLES AND GRAPHS

TEST 3.1

Total Fan Consumption [kW-hr]				
Days 1-3				
AHUA	48.2534336			
AHUB	40.73122578			
% difference	15.59%			

Fan Power Consumed [kW-hr]						
1 2 3 mean variance						
AHUA	20.06565	16.68424	11.50354	16.08448	18.59721	
AHUB 14.45781 13.85701 12.4164 13.57708 1.1					1.100609	
% difference	27.95%	16.95%	-7.94%	15.59%		

Temperature Control					
Agg	regate Val	ues			
AHUA mean [°F] -1.37664					
	variance	2.766387			
AHUB	mean [^o F]	-1.35769			
	2.728751				
diffe	-0.01895				

Temperature Control [°F Average]							
	Temperau	ure Contro	i [F Avera	gej			
	Day	1	2	3	mean		
AHUA	East	-0.47691	-0.32567	-1.3336	-0.71206		
	Internal	-1.65682	-1.59395	-1.55515	-1.60197		
	South	-1.51056	-1.38783	-1.55306	-1.48382		
	West	-1.75481	-1.65144	-1.71985	-1.7087		
	mean	-1.34978	-1.23972	-1.54041			
	Day	1	2	3	mean		
AHUB	East	-0.78025	-0.58133	-1.6019	-0.98783		
	Internal	-1.74119	-1.6816	-1.66165	-1.69481		
	South	-1.26669	-1.15666	-1.41096	-1.27811		
	West	-1.50407	-1.43909	-1.4669	-1.47002		
	mean	-1.32305	-1.21467	-1.53535			

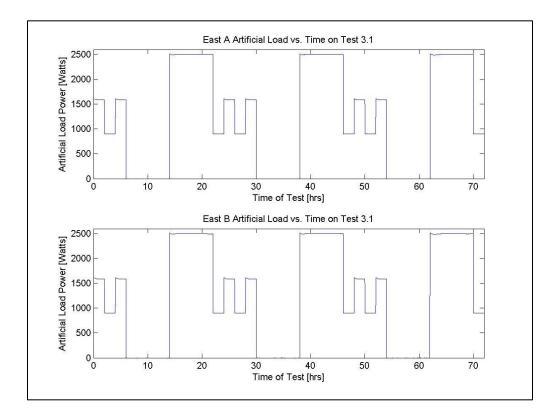
	Temperature Control [^o F Variance]							
	Day	1	2	3	mean			
AHUA	East	0.508068	0.357923	2.87586	1.247284			
	Internal	2.963019	3.114001	3.180904	3.085975			
	South	2.699359	2.649635	3.096886	2.815293			
	West	3.078306	3.163263	3.069869	3.103813			
	mean	2.312188	2.321206	3.05588				
	Day	1	2	3	mean			
AHUB	East	0.812989	0.562283	2.940219	1.438497			
	Internal	2.83E+00	2.96E+00	2.94E+00	2.909236			
	South	2.656772	2.451029	3.25044	2.78608			
	West	3.32E+00	3.365505	3.24E+00	3.310579			
	mean	2.406584	2.334218	3.092492				

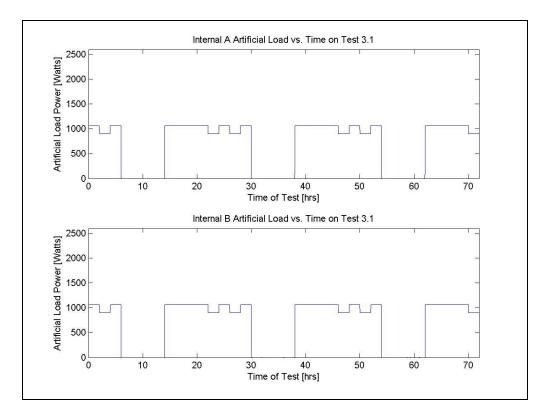
Static Pressure Travel						
Agg	regate Val	ues				
AHUA mean 1.345847						
variance 0.530433						
AHUB	mean	0.798958				
	0.008289					
diffe	0.546889					

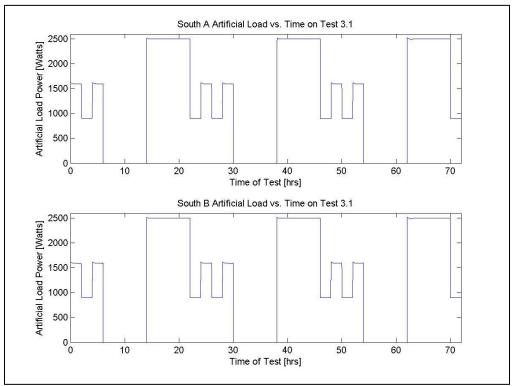
Static Pressure Travel per Hour [inches w.g. per hour]						
Day 1 2 3 mean variance						
AHUA	1.944917	1.557458	0.535167	1.345847	0.530433	
AHUB	0.901042	0.769667	0.726167	0.798958	0.008289	

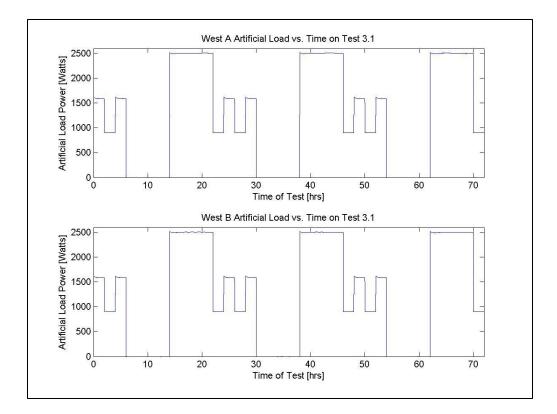
Static Pressure Control				
Agg	regate Val	ues		
AHUA	IA mean 0.000505			
	variance			
AHUB	mean	-0.00059		
	0.000431			
diffe	rence	0.001093		

Static Pressure Control [inches w.g.]						
	Day 1 2 3 mean					
AHUA	mean	-0.00019	5.64E-04	1.14E-03	0.000505	
variance 0.000952 0.000847 0.000283						
AHUB	mean	-0.00038	-0.00013	-0.00126	-0.00059	
	variance	0.000719	0.000385	0.000188		


Damper Travel				
Aggregate Values				
AHUA	31.96239			
	74.51218			
AHUB	mean	32.52723		
	144.0868			
diffe	-0.56483			


Damper Travel per Hour [% of Maximum Damper Position per Hour]								
	Day					variance		
AHUA	East	27.122	31.74146	41.07242	33.31196	50.50338		
	Internal	19.9315	30.496	14.11196	21.51315	68.98542		
	South	36.45804	35.029	36.11208	35.86638	0.555819		
	West	31.592	33.88554	45.99671	37.15808	59.90605		
	mean	28.77589	32.788	34.32329				
	Day	1	2	3	mean	variance		
AHUB	East	44.55079	37.12208	44.45646	42.04311	18.16461		
	Internal	17.64004	12.84583	12.92929	14.47172	7.530427		
	South	43.53096	28.76554	40.91167	37.73606	62.06776		
	West	40.19704	30.78592	36.59108	35.85801	22.54536		
	mean	36.47971	27.37984	33.72213				


Flow Rate Control					
Flow Rate Control					
Agg	gregate Val	ues			
AHUA mean -0.00635					
	17.86463				
AHUB	mean	-1.43197			
	261.6922				
diffe	rence	1.425615			


	Flow Rate Control [CFM Average]							
	Day	Day 1 2 3						
AHUA	East	0.214757	0.084635	0.000694	0.100029			
	Internal	0.010938	-0.04653	-0.0678	-0.03446			
	South	0.032986	-0.02995	-0.00226	0.00026			
	West	-0.2434	0.032552	-0.06285	-0.09123			
	mean	0.003819	0.010178	-0.03305				
	Day	1	2	3	mean			
AHUB	East	0.023958	-0.02752	-0.00226	-0.00194			
	Internal	0.018924	0.002431	-0.01701	0.001447			
	South	0.031684	-0.0237	-0.00911	-0.00038			
	West	-14.126	-3.10964	0.054688	-5.727			
	mean	-3.51287	-0.78961	0.006576				

	Flow Rate Control [CFM Variance]						
	Day	1	2	3	mean		
AHUA	East	20.63544	24.41992	21.93381	22.32972		
	Internal	4.937901	8.527021	4.980253	6.148392		
	South	20.57029	18.7798	15.84987	18.39999		
	West	23.21636	25.42603	25.10941	24.58393		
	mean	17.34	19.28819	16.96833			
	Day	1	2	3	mean		
AHUB	East	2.78E+01	2.22E+01	1.81E+01	22.67513		
	Internal	10.10851	5.337425	3.508505	6.318145		
	South	4.29E+01	3.21E+01	2.36E+01	32.87287		
	West	2399.912	352.1714	19.88074	923.9882		
	mean	620.1872	102.9316	16.27199			

TEST 3.2

Total Fan Consumption [kW-hr]			
Days 1-3			
AHUA	51.85688927		
AHUB	42.44829728		
% difference	18.14%		

Fan Power Consumed [kW-hr]						
1 2 3 mean variance						
AHUA	19.98839	18.36137	13.50714	17.28563	11.36956	
AHUB 13.34386 15.28453 13.81991 14.14943 1.02298						
% difference	33.24%	16.76%	-2.32%	18.14%		

Temperature Control Aggregate Values				
Agg	siegale val	ues		
AHUA mean [°F] -1.25112				
	variance			
AHUB	mean [°F]	-1.21254		
	variance	2.547241		
diffe	-0.03858			

	Temperature Control [^o F Average]						
	Day	mean					
AHUA	East	-1.19297	-0.20988	-0.5569	-0.65325		
	Internal	-1.68331	-1.59421	-1.59135	-1.62296		
	South	-1.33996	-1.13133	-1.35279	-1.2747		
	West	-1.44768	-1.44097	-1.47202	-1.45356		
	mean	-1.41598	-1.0941	-1.24327			
	Day	1	2	3	mean		
AHUB	East	-1.37573	-0.35317	-0.80333	-0.84408		
	Internal	-1.75272	-1.64335	-1.7452	-1.71375		
	South	-1.01892	-0.76042	-0.97844	-0.91926		
	West	-1.38723	-1.375	-1.35697	-1.37307		
	mean	-1.38365	-1.03299	-1.22098			

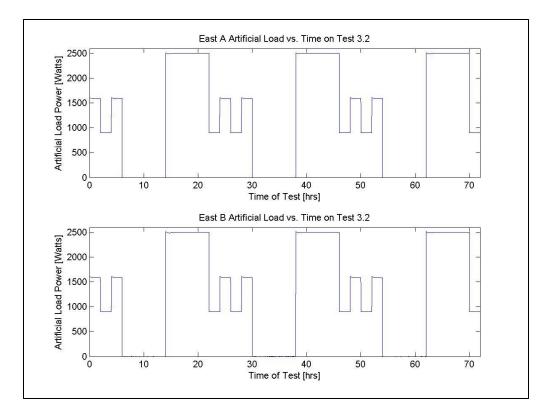
	Temperature Control [^o F Variance]						
	Day	1	2	3	mean		
AHUA	East	2.759413	0.273322	0.825044	1.285926		
	Internal	2.908971	3.098667	3.086653	3.03143		
	South	3.202929	2.410487	3.095029	2.902815		
	West	3.328096	3.26989	3.323219	3.307068		
	mean	3.049852	2.263092	2.582486			
	Day	1	2	3	mean		
AHUB	East	3.023517	0.335931	1.158859	1.506102		
	Internal	2.79E+00	2.96E+00	2.77E+00	2.83712		
	South	2.275933	1.41357	1.884818	1.858107		
	West	3.29E+00	3.295174	3.32E+00	3.304253		
	mean	2.844976	2.000906	2.283305			

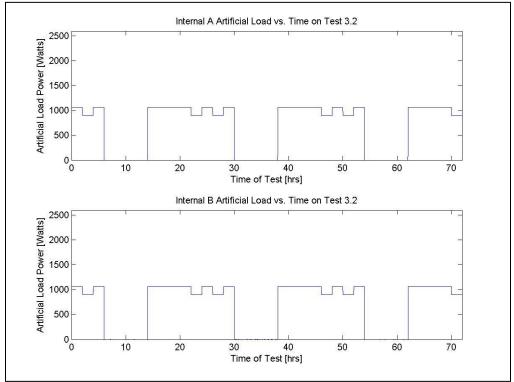
Static Pressure Travel						
Agg	Aggregate Values					
AHUA	mean	1.039569				
	0.28333					
AHUB	AHUB mean					
	9.58E-06					
diffe	0.331306					

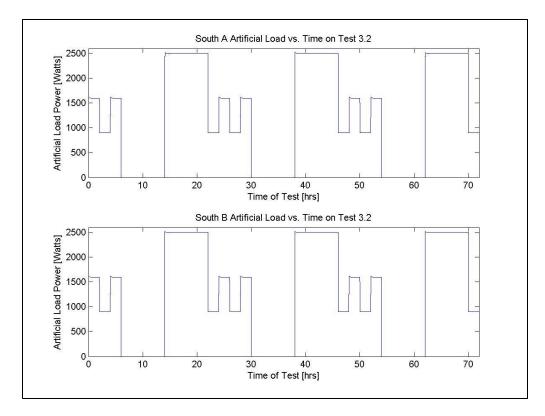
Static Pressure Travel per Hour [inches w.g. per hour]							
Day	Day 1 2 3 mean variance						
AHUA	1.590667 0.999708 0.528333 1.039569 0.28333						
AHUB 0.7115 0.705333 0.707958 0.708264 9.58E-06							

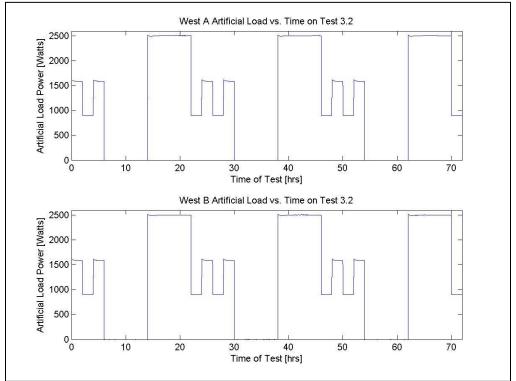
Static Pressure Control					
Agg	Aggregate Values				
AHUA	AHUA mean 0.002787				
	variance				
AHUB	mean	-0.00039			
	0.000279				
diffe	0.003173				

Static Pressure Control [inches w.g.]							
	Day 1 2 3 mean						
AHUA	mean	0.003212	2.95E-03	2.20E-03	0.002787		
	variance 0.000758 0.000435 0.000295						
AHUB	mean	-0.00138	0.000704	-0.00048	-0.00039		
	variance 0.000234 0.000341 0.00026						


Damper Travel						
Agg	Aggregate Values					
AHUA	mean	31.68802				
	65.65034					
AHUB	mean	30.85588				
	147.3069					
diffe	0.832146					


Damper	Damper Travel per Hour [% of Maximum Damper Position per Hour]							
	Day	1	2	3	mean	variance		
AHUA	East	26.03662	33.91446	35.64479	31.86529	26.22853		
	Internal	46.36721	27.65254	13.72942	29.24972	268.2196		
	South	26.86638	32.69042	32.74554	30.76744	11.41452		
	West	29.01438	35.77708	39.81742	34.86963	29.79404		
	mean	32.07115	32.50863	30.48429				
	Day	1	2	3	mean	variance		
AHUB	East	31.25113	34.47283	38.96121	34.89506	14.99505		
	Internal	12.05125	13.19467	11.59438	12.2801	0.679512		
	South	34.921	44.58975	37.52338	39.01138	25.03179		
	West	29.90121	46.02479	35.78492	37.23697	66.57383		
	mean	27.03115	34.57051	30.96597				


FI	Flow Rate Control				
A	ggregate Val	ues			
AHUA	mean	-2.11998			
variance 499.5541					
AHUB	-0.00668				
variance 26.75235					
diff	erence	-2.1133			


	Flow Rate Control [CFM Average]						
	Day 1 2 3				mean		
AHUA	East	-0.28464	-0.01345	-0.04488	-0.11432		
	Internal	0.032465	-0.02865	-0.06589	-0.02069		
	South	0.173785	-0.18134	-0.07066	-0.02607		
	West	0.094618	0.034462	-25.0856	-8.31884		
	mean	0.004058	-0.04724	-6.31675			
	Day	1	2	3	mean		
AHUB	East	-0.03802	-0.06788	0.04401	-0.02063		
	Internal	0.011198	0.005295	-0.00391	0.004196		
	South	0.008247	0.014236	0.035764	0.019416		
	West	-0.04453	0.033941	-0.07856	-0.02972		
	mean	-0.01578	-0.0036	-0.00067			

Flow Rate Control [CFM Variance]							
	Day 1 2 3 me						
AHUA	East	19.47751	27.95453	31.05659	26.16287		
	Internal	12.34176	8.11015	4.983441	8.478451		
	South	20.18303	19.33919	17.15171	18.89131		
	West	20.40053	22.31916	5219.228	1753.982		
	mean	18.10071	19.43076	1318.105			
	Day	1	2	3	mean		
AHUB	East	1.62E+01	2.05E+01	2.03E+01	19.02306		
	Internal	3.162542	4.220231	3.51296	3.631911		
	South	2.92E+01	3.46E+01	3.60E+01	33.26009		
	West	16.0415	89.27666	48.15091	51.15636		
	mean	16.15249	37.16929	26.98178			

TEST 3.3

Total Fan Consumption [kW-hr]			
Days	1-3		
AHUA	54.00671753		
AHUB 39.71534922			
% difference	26.46%		

Fan Power Consumed [kW-hr]						
	1 2 3 mean variance					
AHUA	21.37976 18.34327 14.28369 18.00224 12.6757					
AHUB 13.06779 13.25516 13.3924 13.23845 0.026552						
% difference	38.88%	27.74%	6.24%	26.46%		

Temperature Control				
Agg	regate Val	ues		
AHUA	mean [^o F] -1.151			
	variance 2.699326			
AHUB	mean [^o F]	-1.15133		
	2.477233			
diffe	0.000335			

	Temperature Control [^o F Average]					
	Day	1	2	3	mean	
AHUA	East	-0.21317	-0.18163	-0.17355	-0.18945	
	Internal	-1.68252	-1.61274	-1.57959	-1.62495	
	South	-1.36612	-1.37184	-1.30443	-1.34746	
	West	-1.56445	-1.55907	-1.20289	-1.44213	
	mean	-1.20656	-1.18132	-1.06511		
	Day	1	2	3	mean	
AHUB	East	-0.51567	-0.47958	-0.40477	-0.46667	
	Internal	-1.74982	-1.62463	-1.65426	-1.67624	
	South	-1.13034	-1.07134	-1.05739	-1.08636	
	West	-1.43355	-1.33321	-1.36144	-1.37607	
	mean	-1.20735	-1.12719	-1.11946		

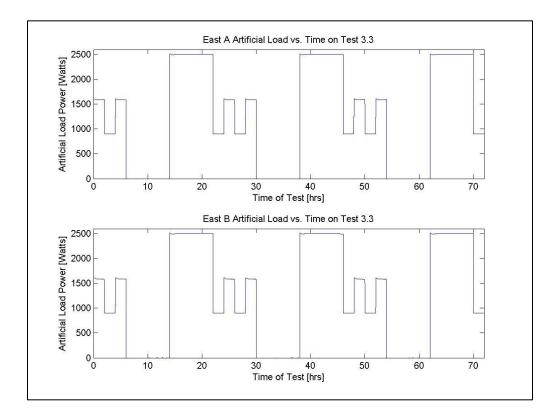
	Temperature Control [^o F Variance]						
	Day	1	2	3	mean		
AHUA	East	0.241931	0.20905	0.210382	0.220454		
	Internal	2.939737	3.063252	3.104153	3.035714		
	South	2.53926	2.527929	2.568836	2.545341		
	West	3.241117	3.252798	4.598654	3.697523		
	mean	2.240511	2.263257	2.620506			
	Day	1	2	3	mean		
AHUB	East	0.468345	0.510068	0.387423	0.455278		
	Internal	2.75E+00	3.11E+00	2.91E+00	2.923195		
	South	2.28595	2.349708	2.173489	2.269716		
	West	3.37E+00	3.604105	3.41E+00	3.459712		
	mean	2.219167	2.392567	2.219192			

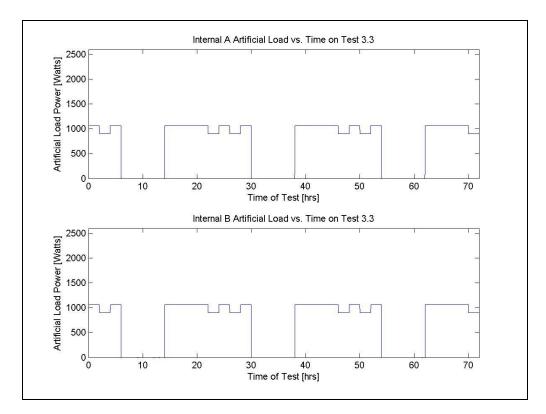
Static Pressure Travel					
Agg	regate Val	ues			
AHUA	mean 1.314556				
	variance 0.58982				
AHUB	AHUB mean 1.502458				
variance 0.005329					
diffe	difference -0.1879				

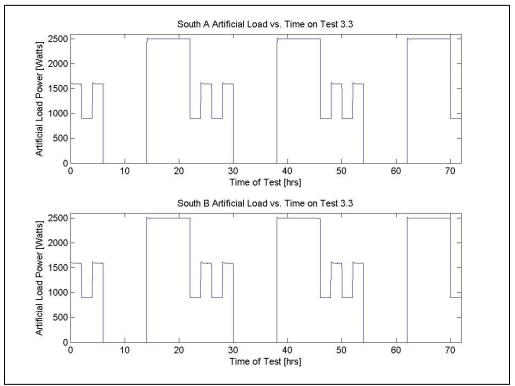
Static Pressure Travel per Hour [inches w.g. per hour]							
Day	1 2 3 mean variance						
AHUA	2.01975 1.427625 0.496292 1.314556 0.58982						
AHUB	1.418167						

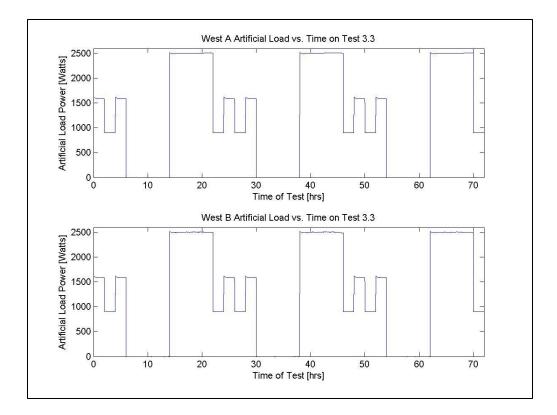
	-			
Static Pressure Control				
Agg	regate Val	ues		
AHUA	mean 0.001182			
	variance 0.000799			
AHUB	mean -0.21328			
variance 0.062185				
diffe	rence	0.214466		

Static Pressure Control [inches w.g.]							
	Day 1 2 3 mean						
AHUA	mean	0.000726	-3.33E-04	3.15E-03	0.001182		
	variance 0.001128 0.000903 0.000362						
AHUB	mean	-0.20994	-0.21535	-0.21456	-0.21328		
	variance 0.057018 0.070253 0.059353						


Damper Travel				
Ag	gregate Val	ues		
AHUA	mean	29.35234		
variance 36.21				
AHUB	mean	81.41971		
variance 178.5497				
diffe	-52.0674			


Damaga				D = =		l
Damper	Damper Travel per Hour [% of Maximum Damper Position per Hour]					
	Day	1	2	3	mean	variance
AHUA	East	32.37254	36.02067	31.61117	33.33479	5.555366
	Internal	19.52267	30.85208	17.37954	22.58476	52.40967
	South	25.06958	31.76096	31.67521	29.50192	14.73602
	West	26.84438	32.63088	36.48838	31.98788	23.56177
	mean	25.95229	32.81615	29.28857		
	Day	1	2	3	mean	variance
AHUB	East	62.55892	68.32267	72.75167	67.87775	26.1215
	Internal	98.27483	92.91767	97.00404	96.06551	7.835434
	South	66.867	70.62625	76.80179	71.43168	25.16156
	West	90.95063	82.38246	97.57858	90.30389	58.04425
	mean	79.66284	78.56226	86.03402		


Flow Rate Control				
Ag	gregate Val	ues		
AHUA	mean	-7.76748		
	2449.27			
AHUB	-10.1012			
variance 4589.19				
diffe	erence	2.333715		


	Flow Rate Control [CFM Average]					
	Day	1	2	3	mean	
AHUA	East	-0.32543	-0.24106	-5.78924	-2.11858	
	Internal	-0.02977	-0.09696	-0.06354	-0.06343	
	South	0.158333	-0.18134	-0.03837	-0.02046	
	West	-0.04861	-1.21233	-85.3415	-28.8675	
	mean	-0.06137	-0.43292	-22.8082		
	Day	1	2	3	mean	
AHUB	East	-0.21545	-16.2352	-0.20556	-5.55205	
	Internal	-2.39714	-13.4685	-7.24622	-7.70396	
	South	-0.90234	-31.7096	-0.5513	-11.0544	
	West	-1.16762	-43.949	-3.16641	-16.0944	
	mean	-1.17064	-26.3406	-2.79237		

	Flow Rate Control [CFM Variance]					
	Day	1	2	3	mean	
AHUA	East	23.3134	26.07896	506.5586	185.317	
	Internal	4.671987	8.096188	6.383512	6.383896	
	South	17.84331	19.72709	16.39768	17.98936	
	West	21.33682	73.68297	22086.91	7393.975	
	mean	16.79138	31.8963	5654.061		
	Day	1	2	3	mean	
AHUB	East	1.96E+02	5.59E+03	2.69E+02	2018.351	
	Internal	562.2149	1851.635	879.2602	1097.703	
	South	3.52E+02	1.71E+04	3.47E+02	5920.569	
	West	544.5958	24323.16	897.7485	8588.502	
	mean	413.7901	12206.71	598.3439		

TEST 3.4

Total Fan Consumption [kW-hr]		
Days	1-3	
AHUA	52.25118787	
AHUB	43.00119755	
% difference	17.70%	

Fan Power Consumed [kW-hr]					
1 2 3 mean variance					
AHUA	21.05823	17.13417	14.05878	17.41706	12.30811
AHUB	14.13462	14.23076	14.63581	14.33373	0.07075
% difference	32.88%	16.95%	-4.10%	17.70%	

· · · · · · · · · · · · · · · · · · ·				
Temperature Control				
Agg	regate Val	ues		
AHUA	AHUA mean [°F] -1.24793			
	variance			
AHUB	AHUB mean [°F]			
	2.424431			
diffe	-0.01605			

Temperature Control [°F Average]					
	Day	1	2	3	mean
AHUA	East	-0.18836	-0.87521	-0.2124	-0.42532
	Internal	-1.62935	-1.61545	-1.60255	-1.61578
	South	-1.32646	-1.39643	-1.37052	-1.36447
	West	-1.53044	-1.59915	-1.6288	-1.58613
	mean	-1.16865	-1.37156	-1.20357	
	Day	1	2	3	mean
AHUB	East	-0.43359	-1.17354	-0.51434	-0.70716
	Internal	-1.74587	-1.76177	-1.77387	-1.76051
	South	-0.9643	-1.11804	-1.10113	-1.06116
	West	-1.3382	-1.40638	-1.45143	-1.39867
	mean	-1.12049	-1.36493	-1.21019	

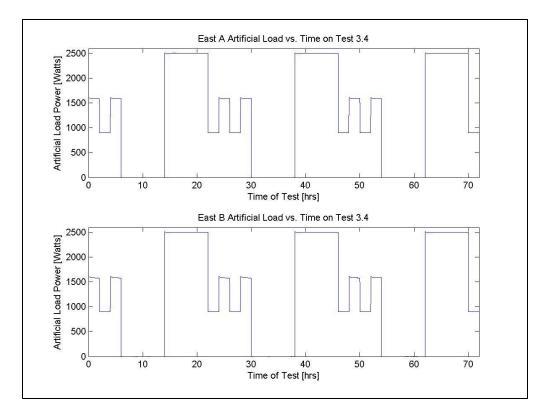
Temperature Control [^o F Variance]					
	Day	1	2	3	mean
AHUA	East	0.222264	1.690015	0.217709	0.709996
	Internal	3.037289	3.042231	3.074312	3.051277
	South	2.565679	2.826755	2.654804	2.682413
	West	3.194486	3.185804	3.427506	3.269265
	mean	2.25493	2.686201	2.343583	
	Day	1	2	3	mean
AHUB	East	0.343956	1.940576	0.432732	0.905755
	Internal	2.79E+00	2.75E+00	2.70E+00	2.747989
	South	1.753756	2.282923	2.233002	2.089894
	West	3.10E+00	3.262335	3.34E+00	3.231134
	mean	1.996834	2.558063	2.176182	

Static Pressure Travel				
Aggregate Values				
AHUA	mean 1.186167			
	variance			
AHUB	AHUB mean			
	0.00051			
difference		0.471194		

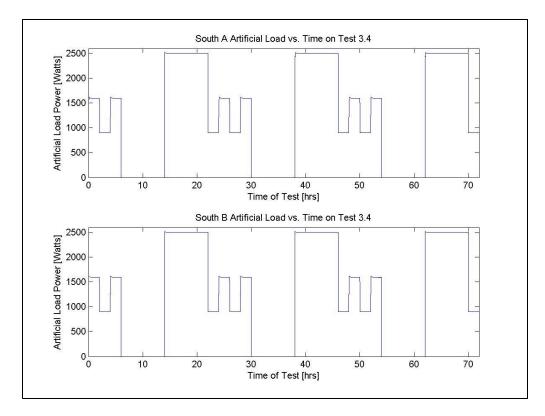
Static Pressure Travel per Hour [inches w.g. per hour]						
Day 1 2 3 mean variance						
AHUA	1.9875	1.060083	0.510917	1.186167	0.556997	
AHUB						

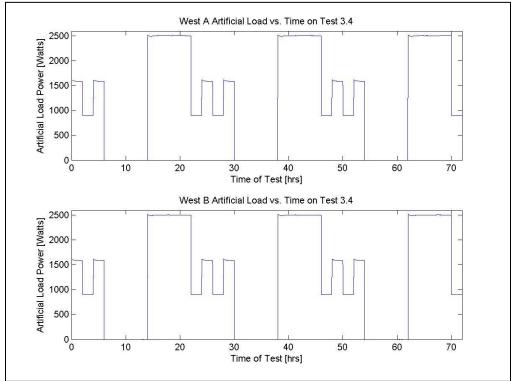
Static Pressure Control				
Aggregate Values				
AHUA	mean 0.001624			
	variance	0.000731		
AHUB	mean	0.000263		
variance		0.000265		
difference		0.001361		

Static Pressure Control [inches w.g.]					
Day 1 2 3 mean					
AHUA	mean	-0.00097	2.92E-03	2.92E-03	0.001624
	variance	0.001138	0.000655	0.00039	
AHUB	mean	0.000269	0.000577	-5.69E-05	0.000263
	variance	0.000242	0.00026	0.000292	


· · · · · · · · · · · · · · · · · · ·				
Damper Travel				
Agg	regate Val	ues		
AHUA	mean	30.80696		
	68.74676			
AHUB	mean	31.45037		
	153.7411			
difference		-0.64341		

Damper	Travel per Ho	ur [% of M	aximum Da	amper Posi	ition per H	our]
	Day	1	2	3	mean	variance
AHUA	East	32.41796	38.56704	34.16738	35.05079	10.03813
	Internal	43.42233	16.67129	15.86329	25.31897	245.962
	South	33.78542	26.49088	31.58058	30.61896	13.99613
	West	38.15325	31.84258	26.7215	32.23911	32.78915
	mean	36.94474	28.39295	27.08319		
	Day	1	2	3	mean	variance
AHUB	East	34.91246	41.99108	39.26604	38.72319	12.74775
	Internal	10.99375	11.4755	11.10729	11.19218	0.063425
	South	37.37875	39.53429	38.27696	38.39667	1.172338
	West	40.26667	38.04854	34.15308	37.48943	9.578429
	mean	30.88791	32.76235	30.70084		


Flow Rate Control				
Agg	gregate Val	ues		
AHUA mean -5.22313				
	1575.419			
AHUB	mean	0.717975		
	851.9381			
diffe	-5.94111			


					· · · · · · · · · · · · · · · · · · ·
	Flow Rate	Control [C	CFM Averag	ge]	
	Day	1	2	3	mean
AHUA	East	0.189497	-0.01901	-2.54167	-0.79039
	Internal	-0.01953	-0.02352	-0.05885	-0.03397
	South	-0.15521	-0.01311	-0.04887	-0.0724
	West	0.193229	-0.07465	-60.1059	-19.9958
	mean	0.051997	-0.03257	-15.6888	
	Day	1	2	3	mean
AHUB	East	0.067708	0.002257	0.025	0.031655
	Internal	-0.01215	0.017969	8.340705	2.782174
	South	0.005556	-0.00443	-0.00521	-0.00136
	West	0.038976	0.112153	0.02717	0.059433
	mean	0.025022	0.031988	2.096917	

	Flow Rate	Control [C	FMVarian	ce]	
	Day	1	2	3	mean
AHUA	East	23.03985	23.88038	155.6468	67.52234
	Internal	11.55429	4.997959	5.878114	7.476787
	South	19.56007	20.89658	14.73733	18.39799
	West	20.92544	20.16138	15301.59	5114.224
	mean	18.76991	17.48407	3869.462	
	Day	1	2	3	mean
AHUB	East	1.95E+01	1.92E+01	2.40E+01	20.91058
	Internal	2.705355	3.033305	9932.951	3312.897
	South	2.66E+01	2.65E+01	2.45E+01	25.87179
	West	27.40563	33.90702	25.97399	29.09555
	mean	19.05222	20.67293	2501.856	

APPENDIX D: TEST SERIES 4 TABLES AND GRAPHS

TEST 4.1a

Total Fan Consumption [kW-hr]			
Days	1-3		
AHUA	56.34772258		
AHUB	53.21972252		
% difference	5.55%		

Fan Power Consumed [kW-hr]					
1 2 3 mean variance					
AHUA	19.75555	18.05292	18.53925	18.78257	0.769138
AHUB	18.15891	17.47309	17.58772	17.73991	0.134961
% difference	8.08%	3.21%	5.13%	5.55%	

·i				
Temperature Control				
Agg	regate Val	ues		
AHUA mean [°F] -0.97268				
	variance			
AHUB	AHUB mean [°F]			
	2.654684			
diffe	-0.01027			

Temperature Control [^o F Average]					
	Day	1	2	3	mean
AHUA	East	-0.59163	-0.423	-0.19753	-0.40405
	Internal	-0.88158	-0.86481	-0.91562	-0.88734
	South	-1.18881	-1.18479	-1.27373	-1.21578
	West	-1.34692	-1.37529	-1.42844	-1.38355
	mean	-1.00224	-0.96197	-0.95383	
	Day	1	2	3	mean
AHUB	East	-0.73559	-0.57832	-0.21015	-0.50802
	Internal	-1.1049	-1.09652	-1.11805	-1.10649
	South	-0.93921	-0.95891	-1.0521	-0.98341
	West	-1.24231	-1.20878	-1.30402	-1.2517
	mean	-1.0055	-0.96063	-0.92108	

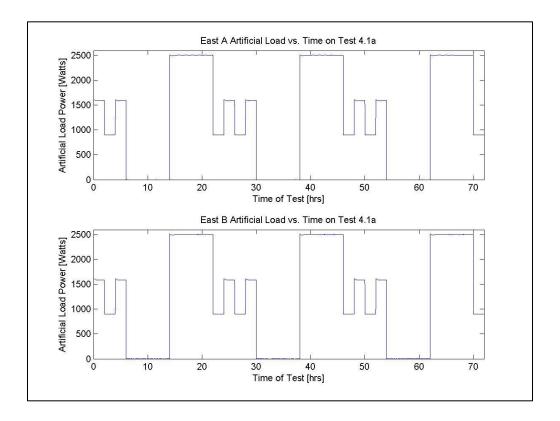
1						
	Temperature Control [^o F Variance]					
	Day	1	2	3	mean	
AHUA	East	1.332003	1.272833	0.379562	0.994799	
	Internal	4.585736	4.743012	4.564125	4.630958	
	South	2.811289	2.714358	2.826636	2.784094	
	West	3.552111	3.400816	3.458002	3.47031	
	mean	3.070285	3.032755	2.807081		
	Day	1	2	3	mean	
AHUB	East	1.432944	1.136685	0.183668	0.917766	
	Internal	4.12E+00	4.22E+00	4.06E+00	4.13266	
	South	1.989927	1.919344	2.082412	1.997227	
	West	3.25E+00	3.071199	3.32E+00	3.213687	
	mean	2.698205	2.586744	2.411055		

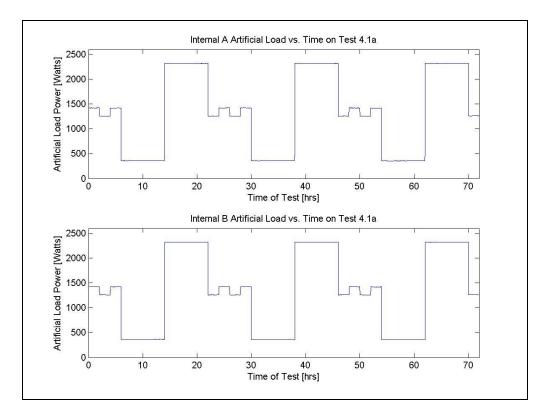
Static Pressure Travel					
Agg	regate Val	ues			
AHUA	AHUA mean 0.909069				
variance 0.000309					
AHUB	mean	0.9875			
variance 4.9E-06					
diffe	-0.07843				

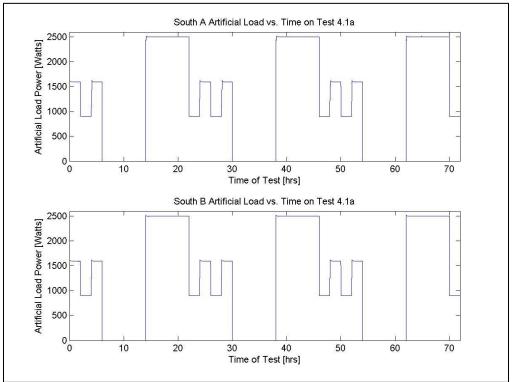
Static Pressure Travel per Hour [inches w.g. per hour]							
Day	Day 1 2 3 mean variance						
AHUA	AHUA 0.909625 0.926375 0.891208 0.909069 0.000309						
AHUB							

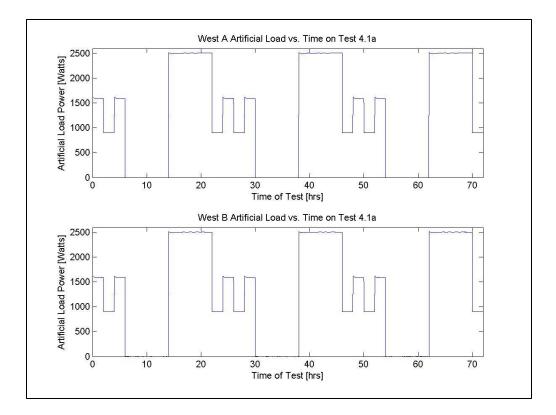
Static Pressure Control				
	regate Val			
AHUA mean 0.000229				
	variance	0.000958		
AHUB	mean	-0.00132		
	0.000746			
diffe	0.001546			

Static Pressure Control [inches w.g.]					
Day 1 2 3 mean					mean
AHUA	mean	0.000133	-2.39E-04	7.93E-04	0.000229
	variance	0.000726	0.000628	0.00152	
AHUB	mean	-0.00124	-0.00095	-1.76E-03	-0.00132
	variance	0.000524	0.000464	0.001251	


Damper Travel				
Ag	gregate Val	ues		
AHUA mean 39.9317				
	21.93456			
AHUB	AHUB mean			
	25.42171			
diffe	-0.56898			


Damper Travel per Hour [% of Maximum Damper Position per Hour]							
	Day	1	2	3	mean	variance	
AHUA	East	39.51879	44.38413	45.97683	43.29325	11.31908	
	Internal	34.97879	35.46854	33.90992	34.78575	0.635277	
	South	38.05525	38.54583	40.22383	38.94164	1.293185	
	West	45.67329	35.64588	46.79958	42.70625	37.7038	
	mean	39.55653	38.51109	41.72754			
	Day	1	2	3	mean	variance	
AHUB	East	43.75683	41.83738	41.01633	42.20351	1.978128	
	Internal	32.51208	32.72846	32.51921	32.58658	0.015109	
	South	43.53729	47.23654	41.84583	44.20656	7.60087	
	West	43.25213	41.51763	44.24871	43.00615	1.910081	
	mean	40.76458	40.83	39.90752			


r				
Flow Rate Control				
Agg	gregate Val	ues		
AHUA mean -13.2475				
	2734.49			
AHUB	mean	-5.92564		
	889.9999			
diffe	-7.3219			


Flow Rate Control [CFM Average]						
	Day	1	2	3	mean	
AHUA	East	-19.0931	-31.8579	-15.3075	-22.0861	
	Internal	-10.5212	-12.3261	-10.7319	-11.1931	
	South	0.031684	0.073177	-0.14809	-0.01441	
	West	-22.0691	-16.676	-20.3444	-19.6965	
	mean	-12.9129	-15.1967	-11.633		
	Day	1	2	3	mean	
AHUB	East	0.096094	-0.01684	-0.19149	-0.03741	
	Internal	-10.0003	-10.6592	-9.52786	-10.0624	
	South	0.042708	0.056076	0.049913	0.049566	
	West	-15.377	-8.84132	-16.7385	-13.6523	
	mean	-6.30961	-4.86532	-6.60197		

	Flow Rate Control [CFM Variance]						
	Day	1	2	3	mean		
AHUA	East	3743.272	8566.534	3358.666	5222.824		
	Internal	1004.008	1101.375	1040.002	1048.461		
	South	43.27463	36.69384	41.69491	40.55446		
	West	5051.421	3155.032	4627.392	4277.948		
	mean	2460.494	3214.909	2266.939			
	Day	1	2	3	mean		
AHUB	East	3.92E+01	4.18E+01	4.25E+01	41.16318		
	Internal	869.9885	925.7432	859.9827	885.2382		
	South	4.95E+01	6.74E+01	4.95E+01	55.49104		
	West	2768.934	1363.645	3130.318	2420.966		
	mean	931.9062	599.6553	1020.582			

TEST 4.1b

Total Fan Consumption [kW-hr]		
Days	1-3	
AHUA	51.39672352	
AHUB	48.31388003	
% difference	6.00%	

Fan Power Consumed [kW-hr]					
1 2 3 mean variance					
AHUA	17.4311	16.97613	16.9895	17.13224	0.067032
AHUB	16.27643	16.13734	15.90012	16.10463	0.036204
% difference	6.62%	4.94%	6.41%	6.00%	

· · · · · · · · · · · · · · · · · · ·				
Temperature Control				
Agg	regate Val	ues		
AHUA	AHUA mean [°F] -1.1066			
	variance			
AHUB	mean [°F]	-1.07594		
	202.2545			
diffe	-0.03067			

Temperature Control [^o F Average]						
	Day	1	2	3	mean	
AHUA	East	-0.23528	-0.97153	-0.11976	-0.44219	
	Internal	-0.63976	-1.38394	-0.97491	-0.99954	
	South	-1.35808	-2.09733	-1.31681	-1.59074	
	West	-1.40337	-1.41662	-1.36184	-1.39395	
	mean	-0.90912	-1.46736	-0.94333		
	Day	1	2	3	mean	
AHUB	East	-0.2996	-1.02535	-0.27329	-0.53274	
	Internal	-0.81606	-1.62526	-1.17003	-1.20379	
	South	-1.20345	-1.79613	-0.99576	-1.33178	
	West	-1.26994	-1.21801	-1.21837	-1.23544	
	mean	-0.89726	-1.41619	-0.91436		

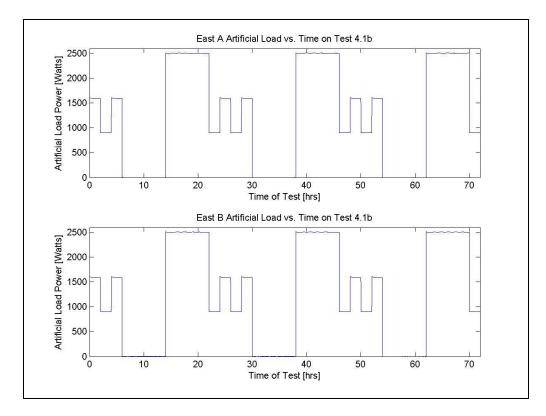
Temperature Control [^o F Variance]					
	Day	1	2	3	mean
AHUA	East	0.433286	798.1092	0.466688	266.3364
	Internal	5.544835	802.4705	4.772342	270.9292
	South	2.804134	798.9868	2.985921	268.259
	West	3.812947	3.775985	4.026692	3.871875
	mean	3.148801	600.8356	3.062911	
	Day	1	2	3	mean
AHUB	East	0.28715	797.9039	0.274598	266.1552
	Internal	5.01E+00	8.02E+02	4.26E+00	270.3789
	South	2.652628	799.1158	2.715222	268.1612
	West	4.03E+00	4.170052	4.06E+00	4.088553
	mean	2.99479	600.765	2.828085	

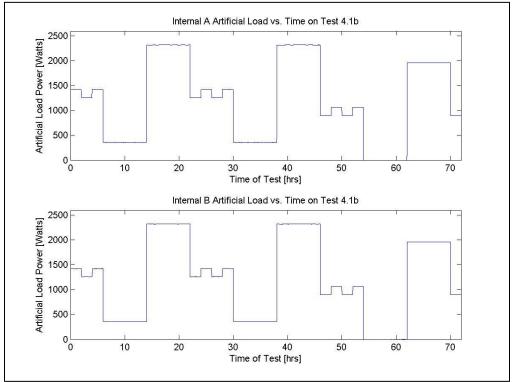
Static Pressure Travel				
Aggregate Values				
AHUA	mean 1.43975			
	variance 0.			
AHUB	mean	1.464722		
variance 0.010685				
diffe	rence	-0.02497		

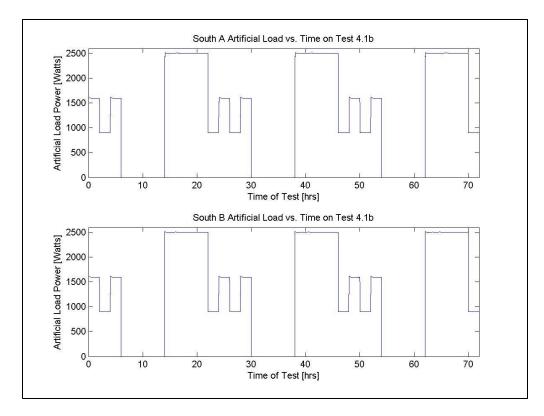
Static Pressure Travel per Hour [inches w.g. per hour]						
Day	Day 1 2 3 mean variance					
AHUA	AHUA 1.478167 1.481292 1.359792 1.43975 0.004797					
AHUB 1.460083 1.570333 1.36375 1.464722 0.010685						

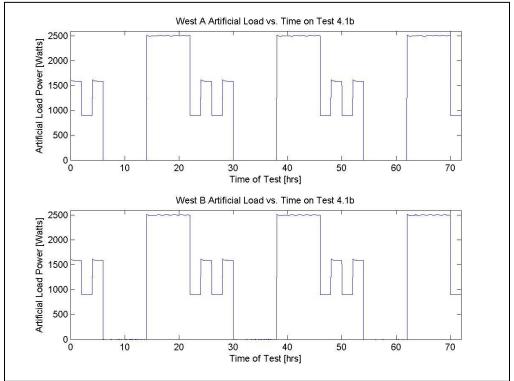
Static Pressure Control				
Agg	regate Val	ues		
AHUA	mean -0.0009			
	variance			
AHUB	mean	-0.00094		
variance 0.002278				
diffe	4.44E-05			

Static Pressure Control [inches w.g.]						
	Day 1 2 3 mean					
AHUA	mean	-0.00023	-1.52E-03	-9.48E-04	-0.0009	
	variance 0.002853 0.002331 0.002813					
AHUB	mean	-0.00108	-0.0007	-1.05E-03	-0.00094	
	variance	0.002442	0.002357	0.002038		


Damper Travel				
	gregate Val			
~55	Sicguic var	ucs		
AHUA	mean	89.99852		
	variance	2003.322		
AHUB	mean	87.74868		
	2198.443			
diffe	2.249844			


Damper	Damper Travel per Hour [% of Maximum Damper Position per Hour]							
	Day	1	2	3	mean	variance		
AHUA	East	59.61092	156.9106	67.71146	94.74433	2914.891		
	Internal	74.35392	161.7648	80.34087	105.4865	2384.396		
	South	50.12929	140.5679	56.14563	82.28093	2557.075		
	West	46.54463	134.4978	51.40446	77.48229	2443.98		
	mean	57.65969	148.4353	63.9006				
	Day	1	2	3	mean	variance		
AHUB	East	50.1685	142.1885	50.10992	80.82231	2824.358		
	Internal	72.87425	166.0988	76.91642	105.2965	2776.775		
	South	53.20113	150.1995	60.79796	88.06621	2909.841		
	West	46.32825	138.6351	45.46583	76.80972	2866.967		
	mean	55.64303	149.2805	58.32253				


Flow Rate Control				
Agg	gregate Val	ues		
AHUA mean -33.4244				
variance 8485.34				
AHUB mean -29.				
variance 8379.542				
diffe	rence	-3.5786		


Flow Rate Control [CFM Average]						
	Day	1	2	3	mean	
AHUA	East	-32.9665	-31.9953	-45.5311	-36.831	
	Internal	-52.1966	-54.5765	-45.752	-50.8417	
	South	-1.89948	-1.17309	-5.82517	-2.96591	
	West	-46.0259	-41.2778	-41.8731	-43.0589	
	mean	-33.2721	-32.2557	-34.7453		
	Day	1	2	3	mean	
AHUB	East	-5.69236	-6.86137	-7.14922	-6.56765	
	Internal	-45.62	-47.8917	-34.4743	-42.662	
	South	-13.4344	-22.6951	-23.8511	-19.9935	
	West	-48.0765	-51.7481	-50.6552	-50.1599	
	mean	-28.2058	-32.299	-29.0325		

Flow Rate Control [CFM Variance]								
	Day	1	2	3	mean			
AHUA	East	7849.482	8028.164	14757.86	10211.83			
	Internal	5847.792	7260.885	4968.136	6025.604			
	South	411.3045	1642.893	1569.376	1207.858			
	West	14685.52	15119.11	15557.42	15120.69			
	mean	7198.526	8012.763	9213.198				
	Day	1	2	3	mean			
AHUB	East	1.51E+03	2.70E+03	1.50E+03	1900.768			
	Internal	4678.947	6101.382	3716.1	4832.143			
	South	3.54E+03	9.38E+03	9.10E+03	7341.129			
	West	16897.17	19934.3	17738.1	18189.86			
	mean	6656.023	9530.319	8011.582				

TEST 4.1c

Total Fan Consumption [kW-hr]			
Days	1-2		
AHUA	31.01263		
AHUB 30.9361475			
% difference	0.25%		

Fan Power Consumed [kW-hr]						
1 2 mean variance						
AHUA	15.57445	15.43818	15.50631	0.009284		
AHUB 15.56419 15.37196 15.46807 0.018477						
% difference	0.07%	0.43%	0.25%			

Temperature Control				
Agg	regate Val	ues		
AHUA	mean [^o F] -1.36387			
	variance 3			
AHUB	mean [°F]	-1.36993		
	3.231102			
difference		0.006063		

Т	Temperature Control [°F Average]							
	Day	1	2	mean				
AHUA	East	-1.21375	-1.32414	-1.26895				
	Internal	-1.31111	-1.33866	-1.32488				
	South	-1.35822	-1.39516	-1.37669				
	West	-1.4381	-1.53179	-1.48495				
	mean	-1.33029	-1.39744					
	Day	1	2	mean				
AHUB	East	-1.33135	-1.41232	-1.37184				
	Internal	-1.46173	-1.48154	-1.47164				
	South	-1.23082	-1.33995	-1.28539				
	West	-1.32771	-1.374	-1.35085				
	mean	-1.3379	-1.40195					

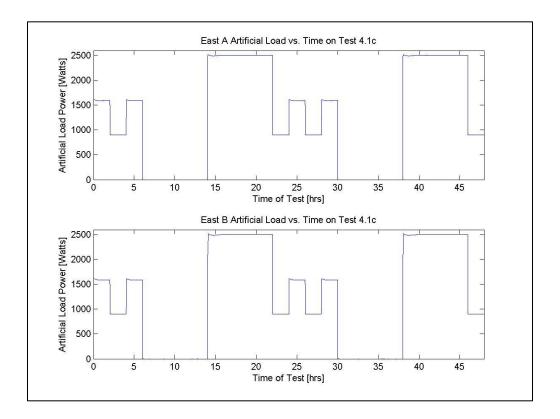
Т				
	Day	1	2	mean
AHUA	East	2.915824	3.184161	3.049993
	Internal	3.781909	3.661397	3.721653
	South	3.336152	3.243533	3.289842
	West	3.330652	3.22327	3.276961
	mean	3.341134	3.32809	
	Day	1	2	mean
AHUB	East	3.207228	3.210826	3.209027
	Internal	3.35E+00	3.33E+00	3.338058
	South	2.935326	3.15035	3.042838
	West	3.32E+00	3.322274	3.319217
	mean	3.202081	3.252488	

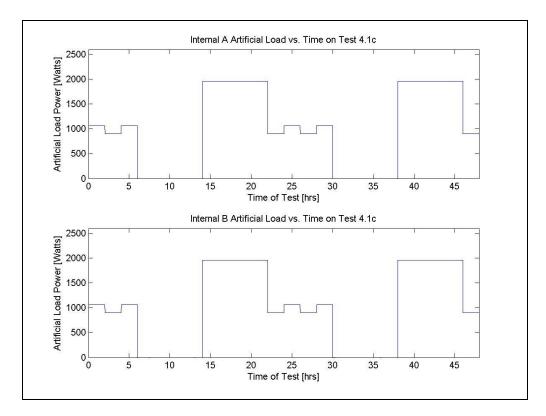
Static Pressure Travel					
Aggregate Values					
AHUA	mean	0.976521			
variance 0.000384					
AHUB	AHUB mean 1.0324				
variance 0.001524					
diffe	-0.05592				

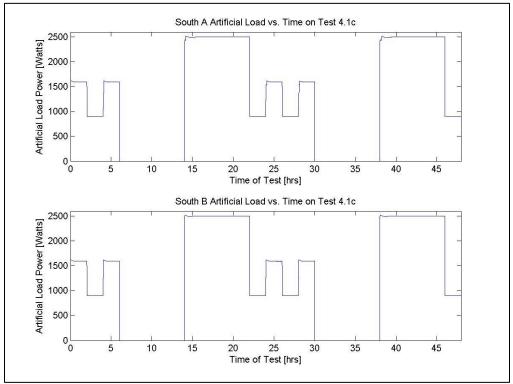
Static Pressure Travel per Hour [inches w.g. per hour					
Day 1 2 mean variand					
AHUA	0.962667	0.990375	0.976521	0.000384	
AHUB	1.004833	1.060042	1.032438	0.001524	

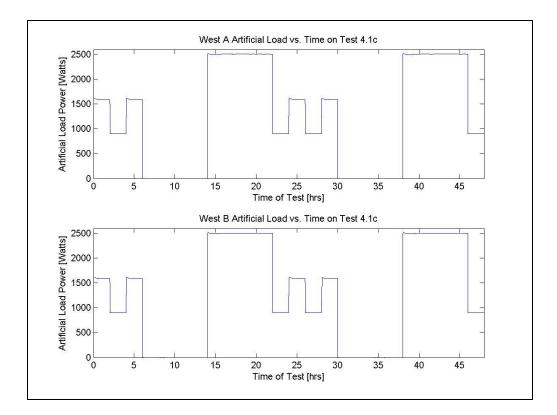
Static Pressure Control				
Agg	regate Val	ues		
AHUA	mean 4.48E-05			
	variance 0.00103			
AHUB	mean	-0.00064		
variance 0.000758				
diffe	0.000682			

Static Pressure Control [inches w.g.]				
	Day	1	2	mean
AHUA	mean	0.000216	-1.26E-04	4.48E-05
	variance	0.001098	0.000962	
AHUB	mean	-0.00071	-0.00057	-0.00064
	variance	0.000815	0.000702	


Damper Travel					
Agg	Aggregate Values				
AHUA	mean	40.98771			
variance 46.8847					
AHUB	mean	36.5662			
variance 21.97815					
diffe	4.421516				


Damper Travel per Hour [% of Maximum Damper Position per Hour]						
	Day	1	2	mean	variance	
AHUA	East	48.22854	52.40892	50.31873	8.737768	
	Internal	36.48371	37.35858	36.92115	0.382703	
	South	30.87667	41.40925	36.14296	55.46766	
	West	42.70108	38.43496	40.56802	9.099911	
	mean	39.5725	42.40293			
	Day	1	2	mean	variance	
AHUB	East	37.93792	36.81892	37.37842	0.62608	
	Internal	32.94504	32.8255	32.88527	0.007145	
	South	45.33963	35.23379	40.28671	51.06393	
	West	40.4365	30.99229	35.7144	44.59654	
	mean	39.16477	33.96763			


Flow Rate Control Aggregate Values					
	Ū				
AHUA	mean	-2.55207			
variance 381.97					
AHUB	mean	-0.31606			
	101.7396				
difference		-2.23601			


Flow Rate Control [CFM Average]					
	Day	1	2	mean	
AHUA	East	-3.56441	-3.63932	-3.60187	
	Internal	-6.61684	-6.54028	-6.57856	
	South	-0.02188	-0.00599	-0.01393	
	West	0.004861	-0.03273	-0.01393	
	mean	-2.54957	-2.55458		
	Day	1	2	mean	
AHUB	East	-0.0487	-0.0428	-0.04575	
	Internal	-1.28194	-1.10165	-1.1918	
	South	-0.03854	0.034028	-0.00226	
	West	-0.01762	-0.03125	-0.02444	
	mean	-0.3467	-0.28542		

Flow Rate Control [CFM Variance]					
	Day	1	2	mean	
AHUA	East	568.4115	591.3169	579.8642	
	Internal	808.6745	790.7184	799.6965	
	South	40.13462	39.29569	39.71515	
	West	85.04723	73.5809	79.31406	
	mean	375.567	373.728		
	Day	1	2	mean	
AHUB	East	3.53E+01	3.62E+01	3.58E+01	
	Internal	273.1308	257.844	2.65E+02	
	South	5.27E+01	4.99E+01	5.13E+01	
	West	51.78125	55.42456	5.36E+01	
	mean	103.2433	99.84274		

TEST 4.1d

Total Fan Consumption [kW-hr]			
Days 1-2			
AHUA	32.69675108		
AHUB 30.87736553			
% difference 5.56%			

Fan Power Consumed [kW-hr]					
1 2 mean variance					
AHUA	15.8392	16.85755	16.34838	0.518519	
AHUB	15.14598	15.73138	15.43868	0.171346	
% difference	4.38%	6.68%	5.56%		

	perature Co				
Aggregate Values					
AHUA	mean [°F]	-1.19361			
	variance	2.793741			
AHUB	mean [^o F]	-1.15296			
	variance	2.593475			
difference		-0.04064			

Temperature Control [^o F Average]							
	Day	1	2	mean			
AHUA	East	-1.04862	-0.32481	-0.68672			
	Internal	-1.4084	-1.42025	-1.41432			
	South	-1.26462	-1.18048	-1.22255			
	West	-1.43222	-1.46947	-1.45084			
	mean	-1.28847	-1.09875				
	Day	1	2	mean			
AHUB	East	-1.20993	-0.36238	-0.78615			
	Internal	-1.51277	-1.51801	-1.51539			
	South	-1.04618	-0.97527	-1.01072			
	West	-1.27318	-1.326	-1.29959			
	mean	-1.26051	-1.04541				

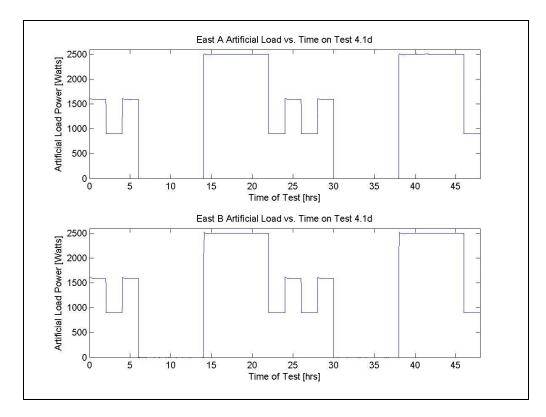
Temperature Control [^o F Variance]					
	Day	1	2	mean	
AHUA	East	2.069123	0.494618	1.281871	
	Internal	3.503351	3.429765	3.466558	
	South	2.844959	2.487799	2.666379	
	West	3.23197	3.289648	3.260809	
	mean	2.912351	2.425458		
	Day	1	2	mean	
AHUB	East	2.535394	0.437327	1.486361	
	Internal	3.34E+00	3.32E+00	3.331887	
	South	2.059938	1.820263	1.9401	
	West	3.04E+00	3.228495	3.132338	
	mean	2.744117	2.201227		

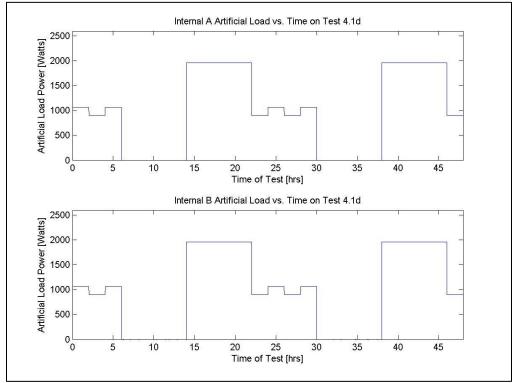
Static Pressure Travel				
Agg	Aggregate Values			
AHUA	mean	0.676479		
	variance 0.000283			
AHUB	AHUB mean 0.			
variance 0.001269				
difference		-0.05717		

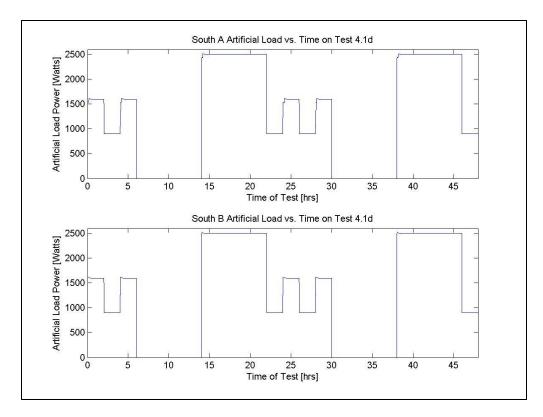
Static Pressure Travel per Hour [inches w.g. per hour				
Day	1	2	mean	variance
AHUA	0.688375	0.664583	0.676479	0.000283
AHUB	0.758833	0.708458	0.733646	0.001269

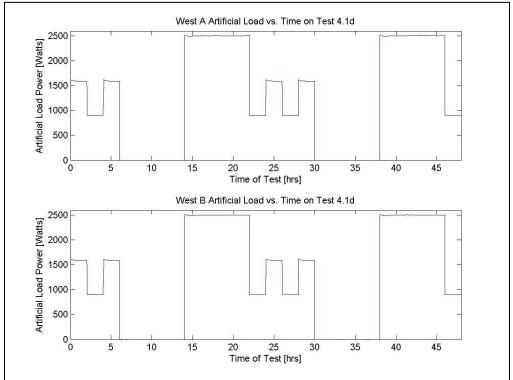
Static Pressure Control			
Agg	regate Val	ues	
AHUA	mean	-6.84E-05	
	variance	0.000557	
AHUB	mean	-0.00157	
	0.000334		
difference		0.001503	

Static Pressure Control [inches w.g.]				
	Day	1	2	mean
AHUA	mean	-0.00044	3.05E-04	-6.8E-05
	variance	0.000641	0.000474	
AHUB	mean	-0.00134	-0.0018	-0.00157
	variance	0.000343	0.000325	


1	· · · · · · · · · · · · · · · · · · ·		
Damper Travel			
Agg	regate Val	ues	
AHUA	mean	35.14702	
	variance		
AHUB	mean	33.59019	
	65.3987		
difference		1.556823	


Damper Travel per Hour [% of Maximum Damper Position per Hour]					
	Day	1	2	mean	variance
AHUA	East	46.79888	40.40246	43.60067	20.45707
	Internal	24.99521	30.31471	27.65496	14.14854
	South	30.5175	30.76463	30.64106	0.030535
	West	43.85054	33.53221	38.69138	53.234
	mean	36.54053	33.7535		
	Day	1	2	mean	variance
AHUB	East	43.17588	36.66988	39.92288	21.16402
	Internal	22.76633	24.90571	23.83602	2.288463
	South	45.82196	32.04171	38.93183	94.94765
	West	30.17721	33.16288	31.67004	4.457103
	mean	35.48534	31.69504		


Flow Rate Control				
Ag	gregate Val	ues		
AHUA	mean	-2.05917		
	variance			
AHUB	mean	-0.35662		
	48.83776			
diffe	rence	-1.70255		


F	Flow Rate Control [CFM Average]				
	Day	1	2	mean	
AHUA	East	-1.39948	-9.15356	-5.27652	
	Internal	-3.64635	-2.38203	-3.01419	
	South	0.067014	-0.00955	0.028733	
	West	0.05434	-0.00373	0.025304	
	mean	-1.23112	-2.88722		
	Day	1	2	mean	
AHUB	East	0.026389	0.031858	0.029123	
	Internal	-1.24748	-1.29566	-1.27157	
	South	0.01684	-0.05182	-0.01749	
	West	-0.08967	-0.2434	-0.16654	
	mean	-0.32348	-0.38976		

F	Flow Rate Control [CFM Variance]				
	Day	1	2	mean	
AHUA	East	194.6189	1554.05	874.3344	
	Internal	315.4444	222.7887	269.1166	
	South	21.62841	17.84253	19.73547	
	West	38.83793	29.6306	34.23426	
	mean	142.6324	456.0779		
	Day	1	2	mean	
AHUB	East	2.49E+01	1.83E+01	2.16E+01	
	Internal	100.4941	107.7642	1.04E+02	
	South	3.29E+01	2.13E+01	2.71E+01	
	West	28.46955	54.44063	4.15E+01	
	mean	46.70346	50.45868		

TEST 4.2a

Total Fan Consumption [kW-hr]			
Days	1-2		
AHUA	35.97204708		
AHUB 35.14246025			
% difference	2.31%		

Fan Power Consumed [kW-hr]				
	1	2	mean	variance
AHUA	18.26069	17.71135	17.98602	0.150888
AHUB	18.0869	17.05556	17.57123	0.53183
% difference	0.95%	3.70%	2.31%	

Temperature Control			
Agg	regate Val	ues	
AHUA	mean [°F]	-1.1825	
	variance	2.993841	
AHUB	mean [°F]	-1.12159	
variance		2.784856	
difference		-0.06091	

Т	Temperature Control [°F Average]				
	Day	1	2	mean	
AHUA	East	-0.19705	-1.19737	-0.69721	
	Internal	-1.39778	-1.38871	-1.39325	
	South	-1.20646	-1.29676	-1.25161	
	West	-1.40247	-1.37343	-1.38795	
	mean	-1.05094	-1.31407		
	Day	1	2	mean	
AHUB	East	-0.19677	-1.30282	-0.74979	
	Internal	-1.44943	-1.45248	-1.45095	
	South	-0.9347	-1.14537	-1.04004	
	West	-1.23759	-1.25355	-1.24557	
	mean	-0.95462	-1.28856		

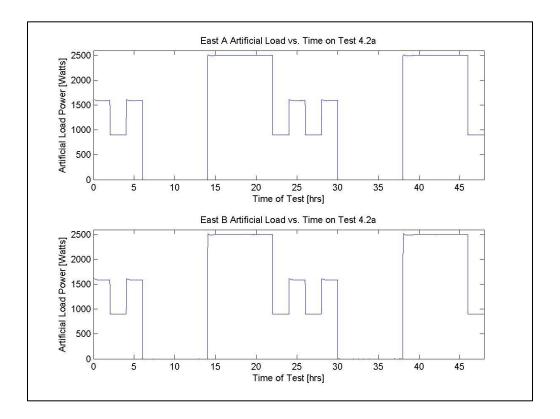
Те	Temperature Control [°F Variance]				
	Day	1	2	mean	
AHUA	East	0.299213	2.840906	1.570059	
	Internal	3.474829	3.539355	3.507092	
	South	2.747192	3.133636	2.940414	
	West	3.388881	3.381794	3.385337	
	mean	2.477529	3.223923		
	Day	1	2	mean	
AHUB	East	0.191309	3.084004	1.637656	
	Internal	3.42E+00	3.39E+00	3.406406	
	South	1.889488	2.663882	2.276685	
	West	3.19E+00	3.290161	3.239307	
	mean	2.173016	3.107011		

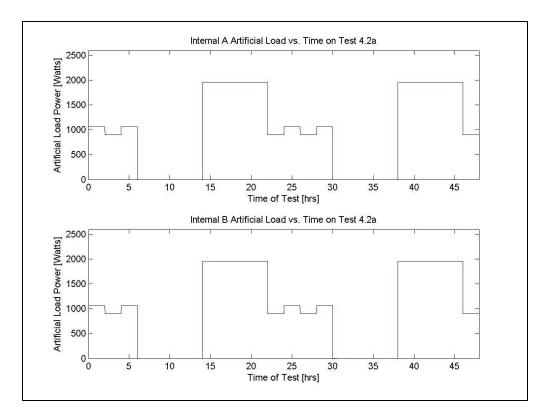
Static Pressure Travel				
Agg	regate Val	ues		
AHUA mean 0.659875				
variance 0.00017				
AHUB	mean	0.778271		
	0.00115			
difference -0.1184				

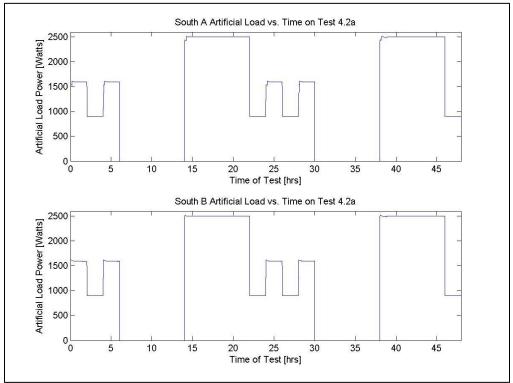
Static Pressure Travel per Hour [inches w.g. per hour					
Day 1 2 mean variance				variance	
AHUA	0.669292	0.650458	0.659875	0.000177	
AHUB	0.80225	0.754292	0.778271	0.00115	

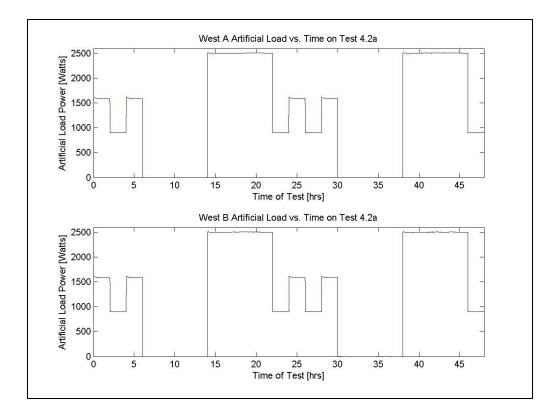
Static Pressure Control Aggregate Values				
AHUA	mean 0.000932			
	0.000378			
AHUB	AHUB mean			
	0.000325			
diffe	0.001332			

Static Pressure Control [inches w.g.]				
	Day 1 2 mean			
AHUA	mean	0.000637	1.23E-03	0.000932
	variance	0.000416	0.000341	
AHUB	mean	-0.00026	-0.00054	-0.0004
	variance	0.000362	0.000287	


Damper Travel			
Agg	gregate Val	ues	
AHUA	mean	37.23197	
	70.95583		
AHUB	mean	33.19678	
variance 108.644			
diffe	4.035193		


Damper Travel per Hour [% of Maximum Damper Position per Hour]					
	Day	1	2	mean	variance
AHUA	East	43.59633	41.24942	42.42288	2.754009
	Internal	24.79371	26.66121	25.72746	1.743778
	South	37.36304	33.21388	35.28846	8.607792
	West	48.735	42.24321	45.4891	21.07168
	mean	38.62202	35.84193		
	Day	1	2	mean	variance
AHUB	East	37.17463	38.58754	37.88108	0.998167
	Internal	16.33113	18.16233	17.24673	1.676662
	South	41.06588	43.95596	42.51092	4.176291
	West	31.99879	38.298	35.1484	19.84001
	mean	31.6426	34.75096		


Flow Rate Control				
Agg	gregate Val	ues		
AHUA	mean	-0.089		
	75.17751			
AHUB mean		-0.03422		
	30.2512			
difference		-0.05477		


Flow Rate Control [CFM Average]				
	Day	1	2	mean
AHUA	East	-0.58012	-0.12717	-0.35365
	Internal	-0.0967	0.002517	-0.04709
	South	0.014149	0.008073	0.011111
	West	0.023264	0.04401	0.033637
	mean	-0.15985	-0.01814	
	Day	1	2	mean
AHUB	East	-0.09306	0.057552	-0.01775
	Internal	0.013889	0.000868	0.007378
	South	0.061372	-0.1263	-0.03247
	West	-0.17109	-0.01701	-0.09405
	mean	-0.04722	-0.02122	

F	Flow Rate Control [CFM Variance]				
	Day	1	2	mean	
AHUA	East	159.696	77.07145	118.3837	
	Internal	86.32217	92.98257	89.65237	
	South	26.05899	21.41258	23.73578	
	West	79.66707	58.27326	68.97016	
	mean	87.93606	62.43497		
	Day	1	2	mean	
AHUB	East	2.28E+01	1.83E+01	2.05E+01	
	Internal	15.58548	12.60743	1.41E+01	
	South	3.70E+01	3.07E+01	3.38E+01	
	West	75.66549	29.45767	5.26E+01	
	mean	37.76238	22.76377		

TEST 4.2b

Total Fan Consumption [kW-hr]		
Days 1-2		
AHUA	36.45458538	
AHUB	33.50292815	
% difference 8.10%		

Fan Power Consumed [kW-hr]					
1 2 mean variance					
AHUA	18.54501	17.90958	18.22729	0.201887	
AHUB	16.86351	16.63942	16.75146	0.025106	
% difference	9.07%	7.09%	8.10%		

· · · · · · · · · · · · · · · · · · ·					
Temperature Control Aggregate Values					
1.95					
AHUA	mean [°F]	-1.08214			
	variance	2.576609			
AHUB	mean [°F]	-1.01009			
	2.253421				
diffe	-0.07205				

Temperature Control [°F Average]						
	Day	1	2	mean		
AHUA	East	-0.5054	-0.47599	-0.49069		
	Internal	-1.42061	-1.41679	-1.4187		
	South	-1.00037	-1.08674	-1.04355		
	West	-1.36509	-1.38616	-1.37563		
	mean	-1.07286	-1.09142			
	Day	1	2	mean		
AHUB	East	-0.60568	-0.5288	-0.56724		
	Internal	-1.50262	-1.49926	-1.50094		
	South	-0.7157	-0.82914	-0.77242		
	West	-1.12541	-1.27413	-1.19977		
	mean	-0.98735	-1.03283			

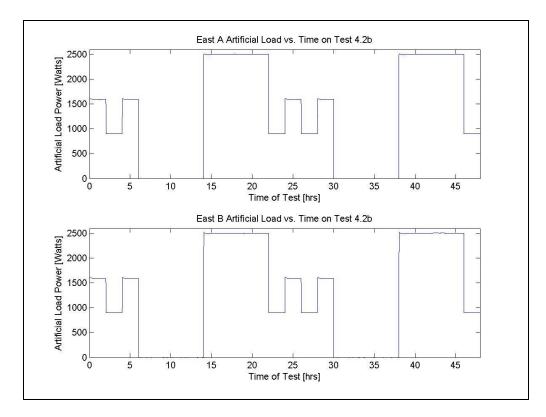
Temperature Control [°F Variance]						
	Day	1	2	mean		
AHUA	East	0.825407	0.778105	0.801756		
	Internal	3.505019	3.428667	3.466843		
	South	2.073031	2.291298	2.182165		
	West	3.274231	3.343087	3.308659		
	mean	2.419422	2.460289			
	Day	1	2	mean		
AHUB	East	0.891533	0.798265	0.844899		
	Internal	3.32E+00	3.32E+00	3.319762		
	South	1.269568	1.512544	1.391056		
	West	2.61E+00	3.2402	2.923329		
	mean	2.022304	2.217219			

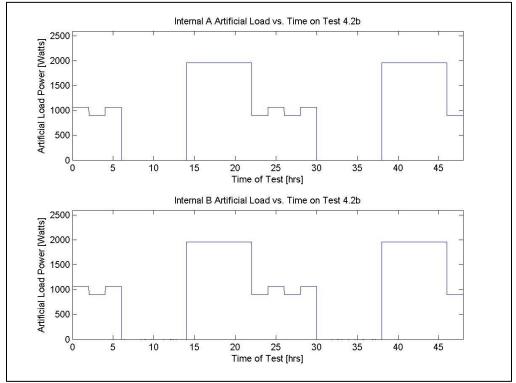
Static Pressure Travel					
Agg	regate Val	ues			
AHUA	mean 0.602521				
	variance 5.91E-05				
AHUB	B mean 0.756				
variance 0.000268					
diffe	rence	-0.15348			

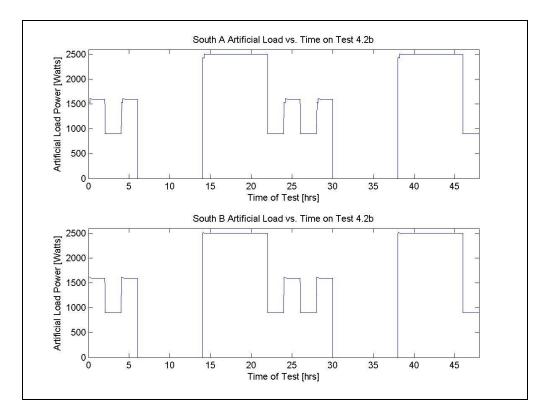
Static Pressure Travel per Hour [inches w.g. per hour						
Day 1 2 mean variance						
AHUA	0.597083	0.607958	0.602521	5.91E-05		
AHUB 0.744417 0.767583 0.756 0.000268						

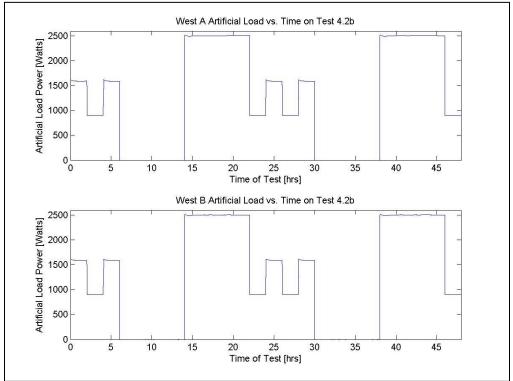
Static Pressure Control				
Agg	regate Val	ues		
AHUA	mean 0.00198			
	variance	0.000292		
AHUB	mean 0.00120			
variance 0.000355				
diffe	rence	0.000778		

Sta					
	Day	1	2	mean	
AHUA	mean	0.001248	2.71E-03	0.00198	
	variance 0.000296 0.000288				
AHUB	mean	0.001121	0.001284	0.001202	
	variance	0.00037	0.000339		


Da	Damper Travel					
Agg	gregate Val	ues				
AHUA mean 34.0223						
	110.9106					
AHUB	mean	35.04188				
variance 62.04854						
diffe	-1.01958					


Damper Travel per Hour [% of Maximum Damper Position per Hour]						
	Day	1	2	mean	variance	
AHUA	East	45.94888	45.924	45.93644	0.000309	
	Internal	20.05092	20.84992	20.45042	0.319201	
	South	28.46708	30.95096	29.70902	3.084818	
	West	37.52658	42.46004	39.99331	12.16951	
	mean	32.99836	35.04623			
	Day	1	2	mean	variance	
AHUB	East	38.22446	37.96275	38.0936	0.034246	
	Internal	20.63046	24.39771	22.51408	7.096086	
	South	38.67967	40.7625	39.72108	2.169097	
	West	38.67404	41.00346	39.83875	2.713091	
	mean	34.05216	36.0316			


Flo	Flow Rate Control			
Ag	gregate Val	ues		
AHUA	mean	-0.0073		
	variance	46.97225		
AHUB	HUB mean			
variance 47.32815				
diff	erence	0.034494		


Flow Rate Control [CFM Average]						
	Day	1	2	mean		
AHUA	East	0.059983	0.009375	0.034679		
	Internal	0.033767	-0.1263	-0.04627		
	South	0.068229	-0.09488	-0.01332		
	West	-0.00182	-0.00677	-0.0043		
	mean	0.040039	-0.05464			
	Day	1	2	mean		
AHUB	East	0.034115	0.012066	0.02309		
	Internal	-0.02734	0.004514	-0.01141		
	South	-0.06892	-0.03056	-0.04974		
	West	-0.20877	-0.04948	-0.12912		
	mean	-0.06773	-0.01586			

Flow Rate Control [CFM Variance]						
	Day	1	2	mean		
AHUA	East	102.7602	88.49205	95.62615		
	Internal	44.58343	38.39877	41.4911		
	South	19.83579	20.72228	20.27904		
	West	26.83792	34.34197	30.58994		
	mean	48.50435	45.48877			
	Day	1	2	mean		
AHUB	East	2.14E+01	2.11E+01	2.12E+01		
	Internal	52.31511	57.92343	5.51E+01		
	South	2.80E+01	3.02E+01	2.91E+01		
	West	92.24972	75.71867	8.40E+01		
	mean	48.46969	46.2342			

TEST 4.3a

Total Fan Consumption [kW-hr]			
Days 1-2			
AHUA	30.58512665		
AHUB 28.52858767			
% difference	6.72%		

Fan Power Consumed [kW-hr]					
1 2 mean variance					
AHUA 15.63479 14.95034 15.29256 0.23423					
AHUB 14.18808 14.3405 14.26429 0.011616					
% difference	9.25%	4.08%	6.72%		

Temperature Control				
Agg	regate Val	ues		
AHUA	mean [°F] -1.22916			
	variance 2.897678			
AHUB	mean [°F]	-1.20688		
variance 2.7515				
diffe	rence	-0.02229		

Т	Temperature Control [°F Average]						
	Day 1 2		mean				
AHUA	East	-0.97602	-0.92736	-0.95169			
	Internal	-1.38392	-1.37203	-1.37797			
	South	-1.19571	-1.21545	-1.20558			
	West	-1.34327	-1.41953	-1.3814			
	mean	-1.22473	-1.2336				
	Day	1	2	mean			
AHUB	East	-1.18674	-1.10116	-1.14395			
	Internal	-1.46745	-1.44985	-1.45865			
	South	-0.95647	-1.02569	-0.99108			
	West	-1.1933	-1.27435	-1.23382			
	mean	-1.20099	-1.21276				

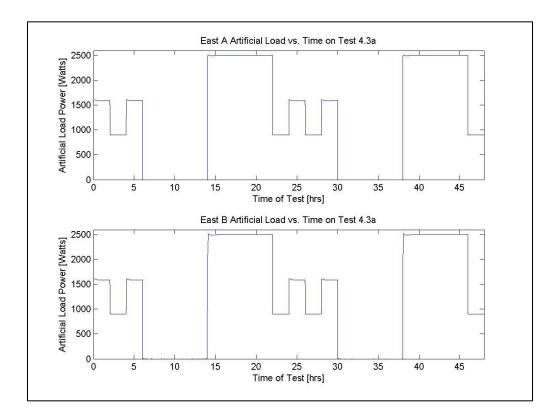
Т				
	Day	1	2	mean
AHUA	East	2.036157	1.810364	1.92326
	Internal	3.500661	3.483995	3.492328
	South	2.895207	2.740523	2.817865
	West	3.209953	3.268394	3.239174
	mean	2.910494	2.825819	
	Day	1	2	mean
AHUB	East	2.629553	2.138705	2.384129
	Internal	3.39E+00	3.42E+00	3.406496
	South	2.008958	2.107784	2.058371
	West	2.98E+00	3.112791	3.044345
	mean	2.751564	2.695106	

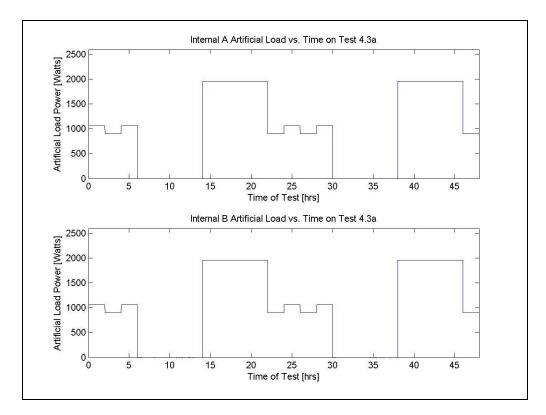
Static Pressure Travel					
Agg	regate Val	ues			
AHUA	mean	1.305729			
variance 0.1263					
AHUB	0.886333				
	0.009293				
difference 0.419396					

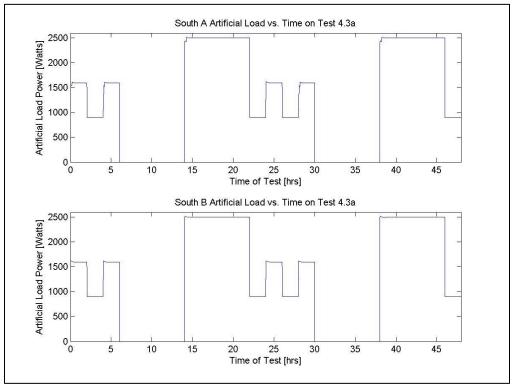
Static Pressure Travel per Hour [inches w.g. per hour						
Day 1 2 mean variance						
AHUA 1.557042 1.054417 1.305729 0.1						
AHUB 0.9545 0.818167 0.886333 0.00929						

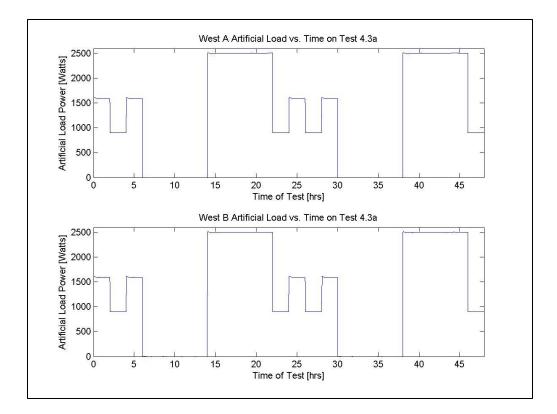
Static Pressure Control				
Agg	regate Val	ues		
AHUA	mean -0.86222			
	variance 0.096945			
AHUB	mean -0.92681			
variance 0.069078				
diffe	rence	0.064582		

Static Pressure Control [inches w.g.]						
	Day 1 2 mean					
AHUA	mean	-0.85124	-8.73E-01	-0.86222		
	variance 0.110962 0.082753					
AHUB	mean	-0.92576	-0.92785	-0.92681		
	variance 0.069917 0.068284					


Damper Travel					
Agg	gregate Val	ues			
AHUA	mean	75.5819			
variance 382.923					
AHUB	mean	40.36169			
variance 24.67393					
diffe	rence	35.2202			


Damper Trav	Damper Travel per Hour [% of Maximum Damper Position per Hour]						
	Day	1	2	mean	variance		
AHUA	East	87.76567	64.67721	76.22144	266.5385		
	Internal	114.635	80.68687	97.66096	576.239		
	South	76.63821	57.15912	66.89867	189.7173		
	West	69.52779	53.56525	61.54652	127.4014		
	mean	87.14168	64.02211				
	Day	1	2	mean	variance		
AHUB	East	39.076	35.94321	37.5096	4.907192		
	Internal	50.69038	36.75558	43.72298	97.08921		
	South	43.09471	37.94017	40.51744	13.28465		
	West	42.66646	36.72704	39.69675	17.63834		
	mean	43.88189	36.8415				


Flow Rate Control Aggregate Values					
Age	siegale vai	ues			
AHUA	mean	-1.25157			
variance 527.44					
AHUB	mean	-0.18787			
	120.9634				
difference		-1.06369			


Flow Rate Control [CFM Average]					
	Day	1	2	mean	
AHUA	East	-0.33576	-0.14366	-0.23971	
	Internal	-6.27902	-2.65199	-4.46551	
	South	-0.05061	-0.21476	-0.13268	
	West	-0.17986	-0.15686	-0.16836	
	mean	-1.71131	-0.79182		
	Day	1	2	mean	
AHUB	East	-0.02491	0.025521	0.000304	
	Internal	-0.4684	-0.84249	-0.65545	
	South	-0.10017	-0.06849	-0.08433	
	West	-0.01172	-0.01233	-0.01202	
	mean	-0.1513	-0.22445		

F	Flow Rate Control [CFM Variance]					
	Day	1	2	mean		
AHUA	East	599.5291	302.5846	451.0568		
	Internal	1519.467	579.2919	1049.379		
	South	439.8053	230.9677	335.3865		
	West	329.7476	186.5195	258.1336		
	mean	722.1372	324.8409			
	Day	1	2	mean		
AHUB	East	7.62E+01	6.53E+01	7.07E+01		
	Internal	233.9023	199.8086	2.17E+02		
	South	1.07E+02	8.57E+01	9.65E+01		
	West	116.8365	82.69328	9.98E+01		
	mean	133.5291	108.379			

TEST 4.3b

Total Fan Consumption [kW-hr]			
Days 1-2			
AHUA 33.1032527			
AHUB 30.05533768			
% difference	9.21%		

Fan Power Consumed [kW-hr]					
1 2 mean variance					
AHUA	15.83754	17.26571	16.55163	1.019835	
AHUB	14.49899	15.55635	15.02767	0.559	
% difference	8.45%	9.90%	9.21%		

· · · · · · · · · · · · · · · · · · ·					
Temperature Control Aggregate Values					
1,95	regute var	465			
AHUA	mean [°F]	-1.00514			
	2.745071				
AHUB	mean [°F]	-0.99034			
	2.40773				
difference		-0.0148			

Temperature Control [°F Average]				
	Day	1	2	mean
AHUA	East	-0.2049	-0.07644	-0.14067
	Internal	-1.38571	-1.37463	-1.38017
	South	-1.16674	-1.04835	-1.10755
	West	-1.41521	-1.36914	-1.39217
	mean	-1.04314	-0.96714	
	Day	1	2	mean
AHUB	East	-0.4329	-0.24045	-0.33668
	Internal	-1.4448	-1.45007	-1.44744
	South	-0.96408	-0.83148	-0.89778
	West	-1.30357	-1.25536	-1.27946
	mean	-1.03634	-0.94434	

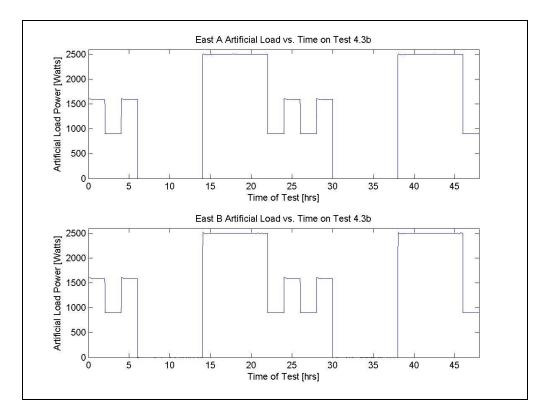
Temperature Control [^o F Variance]					
	Day	1	2	mean	
AHUA	East	0.781644	0.394009	0.587827	
	Internal	3.518991	3.508907	3.513949	
	South	2.579825	2.374191	2.477008	
	West	3.30778	3.39425	3.351015	
	mean	2.54706	2.417839		
	Day	1	2	mean	
AHUB	East	0.54815	0.300616	0.424383	
	Internal	3.41E+00	3.43E+00	3.422284	
	South	1.897074	1.652685	1.774879	
	West	3.28E+00	3.260282	3.272093	
	mean	2.285928	2.160892		

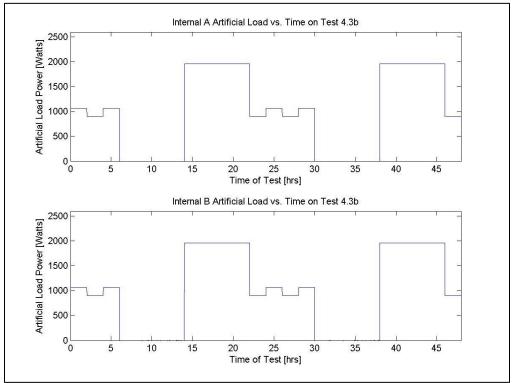
Static Pressure Travel					
Aggregate Values					
AHUA	mean	1.68075			
variance 0.005253					
AHUB	AHUB mean 1.613021				
variance 6.66E-05					
diffe	0.067729				

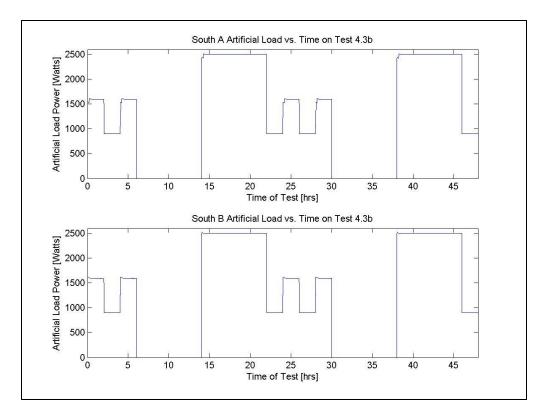
Static Pressure Travel per Hour [inches w.g. per hour						
Day 1 2 mean variance						
AHUA 1.6295 1.732 1.68075 0.005253						
AHUB 1.60725 1.618792 1.613021 6.66E-05						

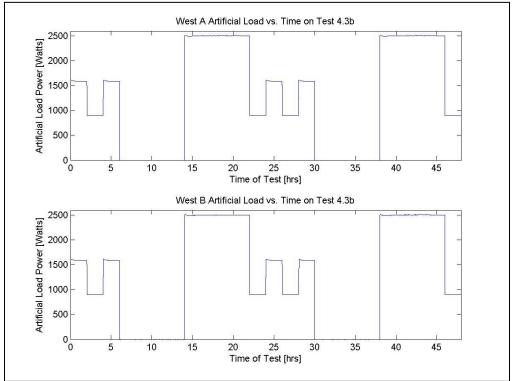
Static Pressure Control				
Agg	regate Val	ues		
AHUA	mean	-0.83342		
	variance C			
AHUB	mean	-0.97784		
variance 0.062496				
difference		0.144422		

Static Pressure Control [inches w.g.]				
	Day	1	2	mean
AHUA	mean	-0.85719	-8.10E-01	-0.83342
	variance	0.089261	0.103331	
AHUB	mean	-0.98743	-0.96825	-0.97784
	variance	0.056123	0.068728	


· · · · · · · · · · · · · · · · · · ·				
Damper Travel				
Agg	gregate Val	ues		
AHUA mean 92.36976				
	540.1814			
AHUB	mean	86.41214		
	494.2623			
diffe	5.95762			


Damper Travel per Hour [% of Maximum Damper Position per Hour]						
	Day	1	2	mean	variance	
AHUA	East	84.77958	98.02488	91.40223	87.71888	
	Internal	132.7485	121.9439	127.3462	58.36951	
	South	73.76571	71.69225	72.72898	2.149615	
	West	77.833	78.17033	78.00167	0.056897	
	mean	92.28169	92.45783			
	Day	1	2	mean	variance	
AHUB	East	66.37746	68.95108	67.66427	3.311773	
	Internal	123.6677	115.9545	119.8111	29.74679	
	South	69.91388	71.82421	70.86904	1.824687	
	West	85.53721	89.07117	87.30419	6.244431	
	mean	86.37405	86.45023			


Flo	Flow Rate Control			
Ag	gregate Val	ues		
AHUA	mean	-12.7742		
	variance	3742.455		
AHUB	AHUB mean			
variance 478.20				
diff	erence	-11.3214		


Flow Rate Control [CFM Average]						
	Day	1	2	mean		
AHUA	East	-46.4865	-42.1711	-44.3288		
	Internal	-5.98008	-6.5954	-6.28774		
	South	-0.26337	-0.45512	-0.35924		
	West	-0.10113	-0.14063	-0.12088		
	mean	-13.2078	-12.3406			
	Day	1	2	mean		
AHUB	East	-0.02899	-0.04036	-0.03468		
	Internal	-4.1191	-3.69462	-3.90686		
	South	-0.91944	-1.54609	-1.23277		
	West	-0.62509	-0.6487	-0.63689		
	mean	-1.42316	-1.48244			

Flow Rate Control [CFM Variance]						
	Day 1 2					
AHUA	East	13453.5	10455.28	11954.39		
	Internal	1044.626	1020.557	1032.591		
	South	287.5744	304.1621	295.8683		
	West	324.289	352.435	338.362		
	mean	3777.497	3033.109			
	Day	1	2	mean		
AHUB	East	2.07E+02	2.39E+02	2.23E+02		
	Internal	823.0779	763.3326	7.93E+02		
	South	3.72E+02	4.51E+02	4.11E+02		
	West	465.0295	489.6911	4.77E+02		
	mean	466.747	485.8059			

TEST 4.4a

Total Fan Consumption [kW-hr]				
Days 1-2				
AHUA	36.03336572			
AHUB	34.43465765			
% difference	4.44%			

Fan Power Consumed [kW-hr]					
1 2 mean variance					
AHUA 18.91424 17.11912 18.01668 1.61122					
AHUB 17.5611 16.87356 17.21733 0.236361					
% difference	7.15%	1.43%	4.44%		

Temperature Control					
Agg	regate Val	ues			
AHUA	mean [^o F] -1.05669				
variance 2.6482					
AHUB	mean [°F]	-0.98907			
variance 2.3026					
diffe	-0.06762				

Temperature Control [°F Average]						
	Day 1 2					
AHUA	East	-0.16568	-0.58919	-0.37744		
	Internal	-1.42667	-1.42215	-1.42441		
	South	-1.04725	-1.09425	-1.07075		
	West	-1.36393	-1.3444	-1.35416		
	mean	-1.00088	-1.1125			
	Day	1	2	mean		
AHUB	East	-0.18372	-0.70626	-0.44499		
	Internal	-1.50869	-1.50468	-1.50669		
	South	-0.7964	-0.86167	-0.82904		
	West	-1.20649	-1.14464	-1.17557		
	mean	-0.92382	-1.05431			

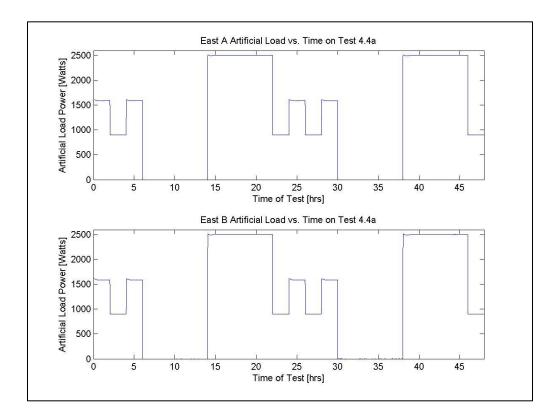
Temperature Control [°F Variance]					
	Day	1	2	mean	
AHUA	East	0.294507	0.984524	0.639515	
	Internal	3.443256	3.473184	3.45822	
	South	2.298709	2.470028	2.384369	
	West	3.371347	3.400349	3.385848	
	mean	2.351955	2.582021		
	Day	1	2	mean	
AHUB	East	0.243964	1.160971	0.702467	
	Internal	3.33E+00	3.35E+00	3.33851	
	South	1.50907	1.656658	1.582864	
	West	3.07E+00	2.720651	2.897202	
	mean	2.039526	2.220995		

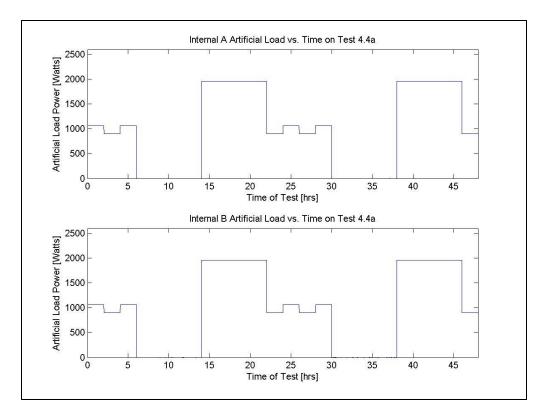
Static Pressure Travel					
Agg	regate Val	ues			
AHUA mean 0.720167					
	0.001634				
AHUB	mean	0.8265			
	0.004705				
diffe	-0.10633				

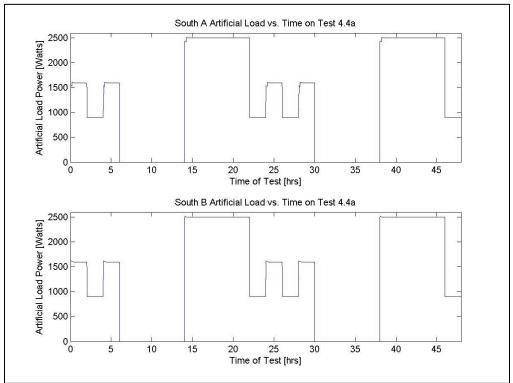
Static Pressure Travel per Hour [inches w.g. per hour						
Day 1 2 mean variance						
AHUA	0.691583	0.74875	0.720167	0.001634		
AHUB	0.778	0.875	0.8265	0.004705		

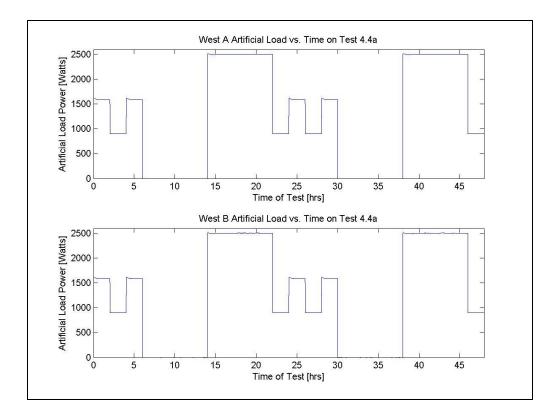
Static Pressure Control				
Agg	Aggregate Values			
AHUA	mean 0.000527			
	variance			
AHUB	mean	0.000112		
	variance	0.00061		
difference		0.000415		

Static Pressure Control [inches w.g.]					
	Day 1 2 mea				
AHUA	mean	0.000444	6.10E-04	0.000527	
	variance 0.00039 0.000717				
AHUB	mean	-6.25E-06	0.000231	0.000112	
	variance	0.00037	0.00085		


Damper Travel					
Aggregate Values					
AHUA	HUA mean 36.1337				
	102.763				
AHUB	AHUB mean				
	variance	96.51685			
difference		0.986562			


Damper Travel per Hour [% of Maximum Damper Position per Hour]						
	Day	1	2	mean	variance	
AHUA	East	39.22733	40.06996	39.64865	0.355008	
	Internal	20.8205	19.76213	20.29131	0.560079	
	South	39.00867	39.30708	39.15787	0.044526	
	West	45.04771	45.82692	45.43731	0.303583	
	mean	36.02605	36.24152			
	Day	1	2	mean	variance	
AHUB	East	42.138	39.11638	40.62719	4.565109	
	Internal	19.68492	20.31142	19.99817	0.196251	
	South	41.01454	44.35863	42.68658	5.591447	
	West	33.85192	40.702	37.27696	23.46182	
	mean	34.17234	36.1221			


Flow Rate Control Aggregate Values					
AHUA	mean -0.0473				
	35.13936				
AHUB	AHUB mean				
	variance	32.62534			
difference		-0.05042			


Flow Rate Control [CFM Average]				
	Day	1	2	mean
AHUA	East	-0.17543	-0.09167	-0.13355
	Internal	0.001128	-0.04102	-0.01994
	South	-0.12196	-0.01879	-0.07038
	West	0.052257	0.017101	0.034679
	mean	-0.061	-0.03359	
	Day	1	2	mean
AHUB	East	0.090017	-0.08646	0.00178
	Internal	0.029514	-0.02786	0.000825
	South	0.103733	-0.03993	0.031901
	West	0.009288	-0.0533	-0.02201
	mean	0.058138	-0.05189	

Flow Rate Control [CFM Variance]					
	Day	1	2	mean	
AHUA	East	83.30104	35.40722	59.35413	
	Internal	17.55567	17.1142	17.33493	
	South	30.69226	26.93116	28.81171	
	West	41.74223	28.50083	35.12153	
	mean	43.3228	26.98835		
	Day	1	2	mean	
AHUB	East	3.23E+01	2.72E+01	2.97E+01	
	Internal	19.01898	30.24645	2.46E+01	
	South	2.91E+01	4.49E+01	3.70E+01	
	West	32.90967	45.46849	3.92E+01	
	mean	28.33426	36.94799		

TEST 4.4b

Total Fan Consu	mption [kW-hr]
Days	1-2
AHUA	34.20974293
AHUB	32.76051893
% difference	4.24%

F	an Power (Consumed	[kW-hr]	
	1	2	mean	variance
AHUA	16.7731	17.43664	17.10487	0.220145
AHUB	16.16981	16.59071	16.38026	0.088579
% difference	3.60%	4.85%	4.24%	

Temperature Control			
Age	regate Val	ues	
AHUA	mean [°F]	-1.22367	
	variance	2.965734	
AHUB	mean [^o F]	-1.20456	
	variance	2.691385	
difference		-0.01911	

	о			
Т	emperature Co	ontrol [°F A	verage]	
	Day	1	2	mean
AHUA	East	-1.21731	-0.54179	-0.87955
	Internal	-1.34672	-1.42542	-1.38607
	South	-1.28793	-1.19319	-1.24056
	West	-1.39383	-1.38315	-1.38849
	mean	-1.31145	-1.13589	
	Day	1	2	mean
AHUB	East	-1.35993	-0.65098	-1.00545
	Internal	-1.51227	-1.52061	-1.51644
	South	-1.13753	-0.94996	-1.04375
	West	-1.29187	-1.21331	-1.25259
	mean	-1.3254	-1.08371	

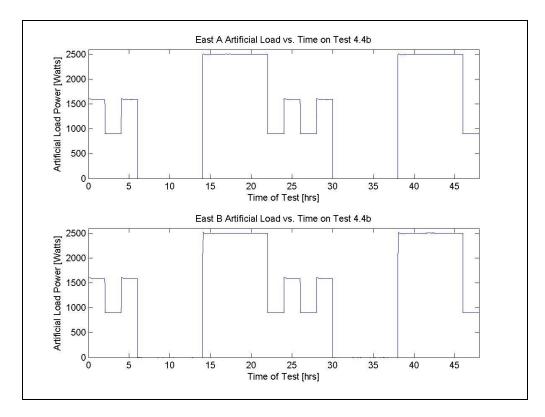
Temperature Control [°F Variance]				
	Day	1	2	mean
AHUA	East	2.751629	0.702744	1.727187
	Internal	3.757307	3.429922	3.593615
	South	2.952028	2.638569	2.795299
	West	3.577839	3.349564	3.463702
	mean	3.259701	2.5302	
	Day	1	2	mean
AHUB	East	2.972693	0.749425	1.861059
	Internal	3.30E+00	3.32E+00	3.309404
	South	2.542619	1.835735	2.189177
	West	3.27E+00	2.954611	3.111143
	mean	3.021063	2.214328	

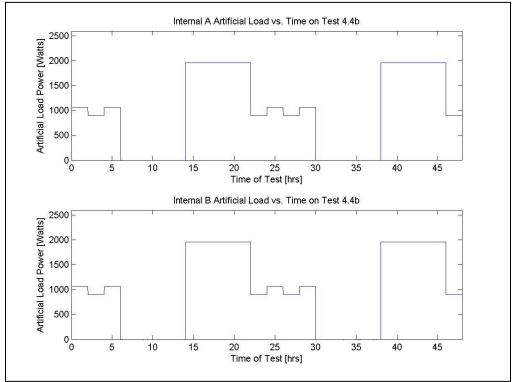
Static Pressure Travel		
Agg	regate Val	ues
AHUA	mean	0.886625
	variance	0.147515
AHUB	mean	0.905354
	variance	0.021021
diffe	rence	-0.01873

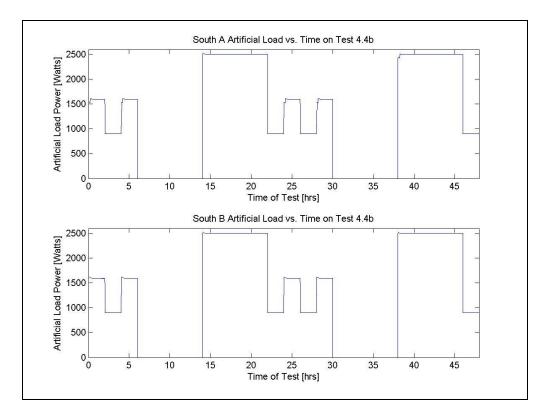
Static Pressure Travel per Hour [inches w.g. per hour				
Day	1 2 mean variance			
AHUA	1.158208	0.615042	0.886625	0.147515
AHUB	1.007875	0.802833	0.905354	0.021021

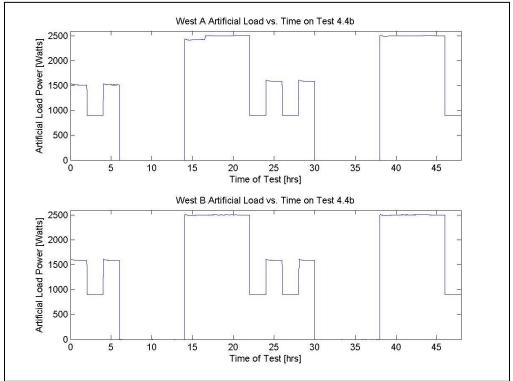
Static Pressure Control		
Agg	regate Val	ues
AHUA	mean	-0.00039
	variance	0.001436
AHUB	mean	-0.001
	variance	0.0011
diffe	rence	0.000619

Sta	atic Pressure C	Control [inc	hes w.g.]		
	Day 1 2 me				
AHUA	mean	-0.0017	9.28E-04	-0.00039	
	variance	0.002375	0.000494		
AHUB	mean	-0.00202	8.33E-06	-0.001	
	variance	0.001589	0.00061		


Da	amper Trav	el
Agg	gregate Val	ues
AHUA	mean	40.77022
	variance	189.3917
AHUB	mean	37.39457
	variance	83.86508
diffe	rence	3.375646


Damper Trav	el per Hour [%	of Maxim	um Dampe	r Position	per Hour]
	Day	1	2	mean	variance
AHUA	East	57.07617	43.99942	50.53779	85.5007
	Internal	26.16133	18.42592	22.29363	29.91834
	South	48.51354	32.37767	40.4456	130.1832
	West	54.44796	45.15975	49.80385	43.13541
	mean	46.54975	34.99069		
	Day	1	2	mean	variance
AHUB	East	44.67363	37.92258	41.2981	22.78828
	Internal	32.13379	17.92563	25.02971	100.936
	South	45.40042	40.50713	42.95377	11.97215
	West	44.56579	36.02763	40.29671	36.45015
	mean	41.69341	33.09574		


Flow Rate Control				
A	ggregate Val	ues		
AHUA	AHUA mean -8.04198			
	variance	1909.628		
AHUB	mean	-0.46089		
	variance	113.4307		
difference		-7.58109		


F	low Rate Cont	rol [CFM A	verage]	
	Day	1	2	mean
AHUA	East	-14.9737	-0.19722	-7.58546
	Internal	-11.369	0.040104	-5.66445
	South	-0.10469	0.007899	-0.04839
	West	-37.7496	0.01033	-18.8696
	mean	-16.0492	-0.03472	
	Day	1	2	mean
AHUB	East	-0.05095	0.020399	-0.01528
	Internal	-0.85686	-0.01589	-0.43637
	South	-0.05078	-0.00833	-0.02956
	West	-2.69141	-0.03333	-1.36237
	mean	-0.9125	-0.00929	

F	low Rate Cont	rol [CFM V	ariance]	
	Day	1	2	mean
AHUA	East	3433.388	53.16697	1743.277
	Internal	864.118	13.77028	438.9441
	South	101.6558	21.55298	61.6044
	West	9495.959	40.66621	4768.312
	mean	3473.78	32.28911	
	Day	1	2	mean
AHUB	East	7.67E+01	2.19E+01	4.93E+01
	Internal	166.884	13.86718	9.04E+01
	South	9.75E+01	2.53E+01	6.14E+01
	West	471.782	27.7645	2.50E+02
	mean	203.2209	22.206	

APPENDIX E: TEST SERIES 5 TABLES AND GRAPHS

TEST 5.5f

Total Fan Consumption [kW-hr]		
Days	1-3	
AHUA	35.13192463	
AHUB	54.76945332	
% difference -55.90%		

Fan Power Consumed [kW-hr]							
1 2 3 mean variance							
AHUA	12.94391	10.98268	11.20533	11.71064	1.153112		
AHUB 19.11389 17.76895 17.88661 18.25648 0.554822							
% difference	-47.67%						

Temperature Control			
Agg	gregate Val	ues	
AHUA	mean [°F]	-1.67271	
	variance	4.633502	
AHUB	mean [°F]	-1.82679	
	4.739998		
diffe	0.15408		

·						
	Temperature Control [°F Average]					
	Day	1	2	3	mean	
AHUA	East	-1.60396	-1.83413	-1.87212	-1.77007	
	Internal	-1.22189	-1.15228	-1.19226	-1.18881	
	South	-1.41064	-1.81512	-1.8272	-1.68432	
	West	-2.03919	-2.01727	-2.08647	-2.04764	
	mean	-1.56892	-1.7047	-1.74451		
	Day	1	2	3	mean	
AHUB	East	-1.86726	-1.94349	-1.98909	-1.93328	
	Internal	-1.35238	-1.34692	-1.36731	-1.35554	
	South	-1.46152	-1.83378	-1.83421	-1.70984	
	West	-2.1095	-2.1415	-2.67454	-2.30851	
	mean	-1.69767	-1.81642	-1.96629		

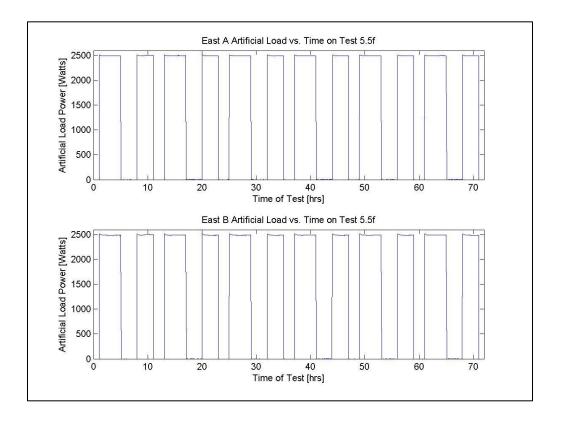
	Temperati	ure Control	[°F Varian	ce]	
	Day	1	2	3	mean
AHUA	East	4.848311	4.180625	4.347457	4.458797
	Internal	4.717095	4.876458	4.753026	4.782193
	South	4.173302	4.163415	4.26967	4.202129
	West	4.656246	4.581208	4.757202	4.664886
	mean	4.598738	4.450426	4.531839	
	Day	1	2	3	mean
AHUB	East	4.01979	3.892834	3.957601	3.956742
	Internal	3.96E+00	3.99E+00	3.95E+00	3.967097
	South	4.048176	4.257464	4.282091	4.19591
	West	5.61E+00	5.579971	7.63E+00	6.272178
	mean	4.408611	4.430557	4.954778	

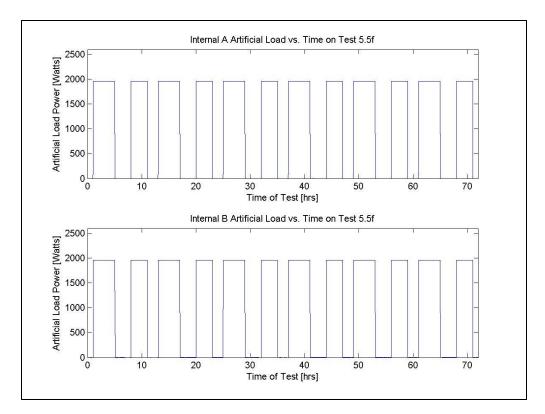
· · · · · · · · · · · · · · · · · · ·				
Static Pressure Travel				
Agg	regate Val	ues		
AHUA mean 0.796944				
variance 0.000176				
AHUB	1.615111			
	0.00845			
diffe	-0.81817			

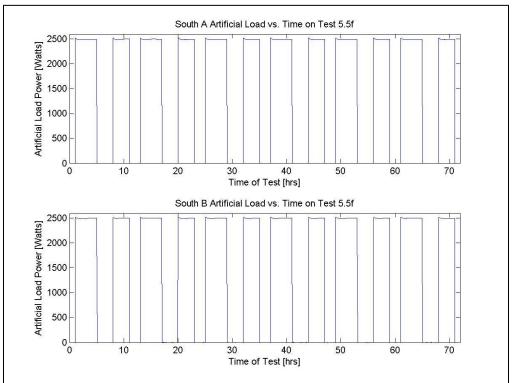
Static Pressure Travel per Hour [inches w.g. per hour]					
Day 1 2 3 mean variance					variance
AHUA	0.789667	0.81225	0.788917	0.796944	0.000176
AHUB 1.509042 1.66475 1.671542 1.615111 0.00845					

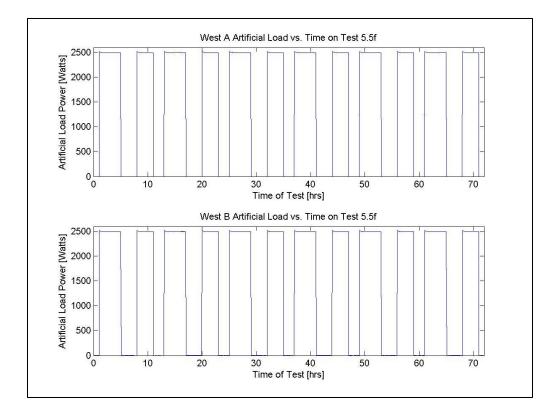
Static Pressure Control				
Agg	Aggregate Values			
AHUA	mean -0.00145			
	variance	0.000597		
AHUB	mean	-0.00045		
	0.000658			
difference		-0.001		

Static Pressure Control [inches w.g.]					
	Day 1 2 3 mean				
AHUA	mean	-0.00138	-1.76E-03	-1.22E-03	-0.00145
	variance	0.000677	0.000554	0.000561	
AHUB	mean	6.04E-05	-0.00129	-1.22E-04	-0.00045
	variance	0.000596	0.000698	0.000679	


Damper Travel				
Ag	gregate Val	ues		
AHUA	mean	32.46584		
	variance	19.87183		
AHUB	mean	29.82643		
	27.27984			
difference		2.63941		


Damper	Damper Travel per Hour [% of Maximum Damper Position per Hour]						
	Day	1	2	3	mean	variance	
AHUA	East	40.03888	34.44467	33.5715	36.01835	12.31409	
	Internal	27.21788	29.35217	29.09529	28.55511	1.357647	
	South	40.77367	34.59396	27.38533	34.25099	44.90009	
	West	30.12763	30.86613	32.123	31.03892	1.017773	
	mean	34.53951	32.31423	30.54378			
	Day	1	2	3	mean	variance	
AHUB	East	29.55783	27.36567	26.43838	27.78729	2.566081	
	Internal	24.71483	26.49483	26.91567	26.04178	1.364861	
	South	36.07996	27.74146	22.59538	28.8056	46.30779	
	West	36.29254	37.22625	36.49438	36.67106	0.241365	
	mean	31.66129	29.70705	28.11095			


Flow Rate Control			
Agg	gregate Val	ues	
AHUA	AHUA mean		
	variance		
AHUB	mean	0.019604	
	16.49232		
diffe	-4.5549		


	Flow Rate Control [CFM Average]					
	Day	1	2	3	mean	
AHUA	East	-19.889	-0.08576	-0.01276	-6.6625	
	Internal	-7.5178	-12.0512	-10.1934	-9.9208	
	South	-4.73845	0.024219	0.002431	-1.5706	
	West	0.000868	0.035503	0.001736	0.012703	
	mean	-8.03609	-3.01931	-2.5505		
	Day	1	2	3	mean	
AHUB	East	0.08559	0.075868	0.124306	0.095255	
	Internal	0.00599	-0.05243	-0.02179	-0.02274	
	South	0.059028	-0.25139	0.263542	0.023727	
	West	0.013281	-0.07205	0.005295	-0.01782	
	mean	0.040972	-0.075	0.092839		

	Flow Rate Control [CFM Variance]					
	Day	1	2	3	mean	
AHUA	East	6014.887	23.18518	24.42367	2020.832	
	Internal	523.6258	805.2102	671.1331	666.6564	
	South	654.7429	16.28085	14.4902	228.5047	
	West	16.9909	13.78341	16.05611	15.61014	
	mean	1802.562	214.6149	181.5258		
	Day	1	2	3	mean	
AHUB	East	1.53E+01	1.40E+01	1.33E+01	14.21566	
	Internal	13.73807	15.79092	17.40348	15.64416	
	South	1.85E+01	2.16E+01	2.18E+01	20.62407	
	West	14.97532	15.30327	16.1348	15.47113	
	mean	15.64703	16.65502	17.16421		

TEST 5.5g

Total Fan Consumption [kW-hr]		
Days	1-3	
AHUA	54.42497252	
AHUB	34.99376257	
% difference	35.70%	

Fan Power Consumed [kW-hr]					
1 2 3 mean variance					
AHUA	17.7529	17.88859	18.78349	18.14166	0.313561
AHUB	11.5088	11.71569	11.76928	11.66459	0.018921
% difference	35.17%	34.51%	37.34%	35.70%	

Temperature Control				
	Aggregate Values			
AHUA	mean [°F]	-1.78046		
	variance	4.608779		
AHUB	mean [^o F]	-1.84259		
	4.834749			
diffe	0.062138			

Temperature Control [^o F Average]					
	Day	1	2	3	mean
AHUA	East	-2.00837	-1.92396	-1.80189	-1.91141
	Internal	-1.32383	-1.28666	-1.30577	-1.30542
	South	-1.88745	-1.85121	-1.70208	-1.81358
	West	-2.15476	-2.02561	-2.09387	-2.09141
	mean	-1.8436	-1.77186	-1.7259	
	Day	1	2	3	mean
AHUB	East	-2.17973	-2.10085	-1.9361	-2.07223
	Internal	-1.33381	-1.25555	-1.2441	-1.27782
	South	-1.88395	-1.86726	-1.66866	-1.80662
	West	-2.01338	-1.82913	-2.79859	-2.2137
	mean	-1.85272	-1.7632	-1.91186	

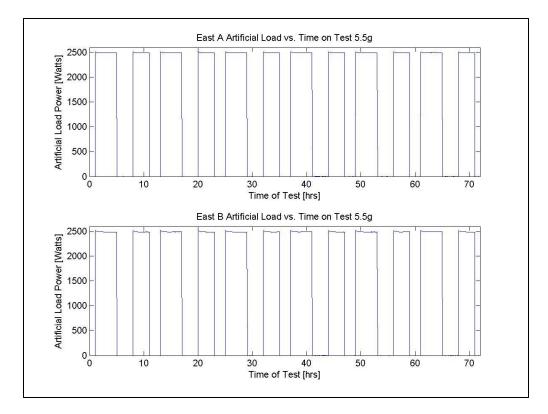
	Temperature Control [^o F Variance]					
	Day	1	2	3	mean	
AHUA	East	4.955437	4.566498	4.363921	4.628619	
	Internal	4.396381	4.354891	4.356941	4.369404	
	South	4.503073	4.311024	4.144567	4.319555	
	West	4.97537	4.572336	4.767692	4.771799	
	mean	4.707565	4.451187	4.40828		
	Day	1	2	3	mean	
AHUB	East	4.344038	4.09258	3.938091	4.124903	
	Internal	4.34E+00	4.36E+00	4.47E+00	4.387729	
	South	4.494354	4.337305	4.020798	4.284152	
	West	5.18E+00	4.495604	7.86E+00	5.845158	
	mean	4.589204	4.320664	5.071589		

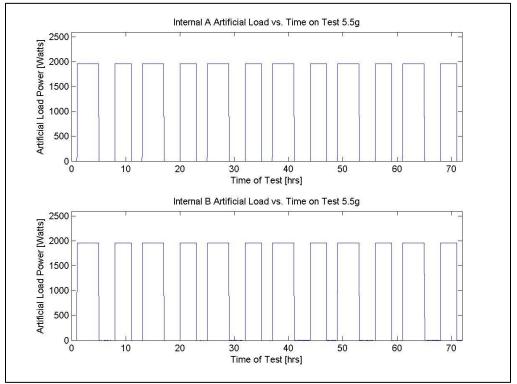
Static Pressure Travel				
Agg	Aggregate Values			
AHUA	mean 2.051333			
	variance			
AHUB	AHUB mean			
	0.001517			
diffe	1.020986			

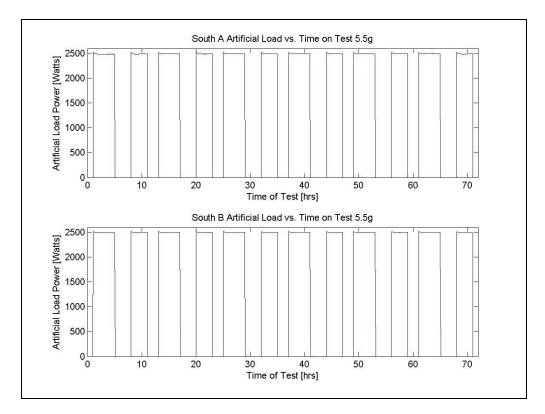
Static Pressure Travel per Hour [inches w.g. per hour]					
Day 1 2 3 mean variance					
AHUA	2.087333	2.131875	1.934792	2.051333	0.010682
AHUB	1.053375	1.052292	0.985375	1.030347	0.001517

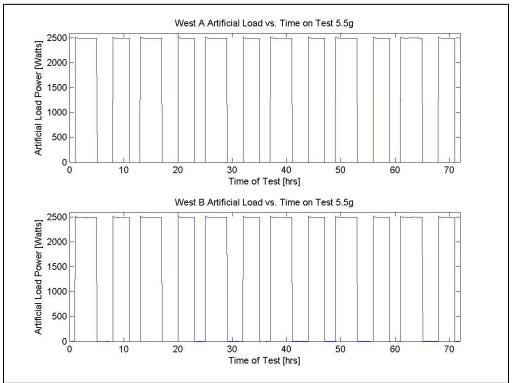
Static Pressure Control			
Agg	regate Val	ues	
AHUA	AHUA mean 0.000617		
	variance		
AHUB	mean	-0.00168	
variance		0.000877	
diffe	0.002294		

Static Pressure Control [inches w.g.]					
	Day	1	2	3	mean
AHUA	mean	0.000331	8.16E-04	7.03E-04	0.000617
	variance	0.001127	0.001167	0.001037	
AHUB	mean	-0.00212	-0.00171	-1.20E-03	-0.00168
	variance	0.000852	0.00088	0.000901	


Damper Travel Aggregate Values				
AHUA mean 28.61				
	22.2862			
AHUB	mean	30.82015		
	15.8787			
diffe	-2.20415			


Damper	Damper Travel per Hour [% of Maximum Damper Position per Hour]					
	Day	1	2	3	mean	variance
AHUA	East	26.08867	25.42146	28.79788	26.76933	3.197528
	Internal	31.73458	26.68654	35.22992	31.21701	18.44822
	South	24.44433	22.24275	37.53296	28.07335	68.32492
	West	25.72483	33.12733	26.36075	28.40431	16.83134
	mean	26.9981	26.86952	31.98038		
	Day	1	2	3	mean	variance
AHUB	East	29.33204	32.6365	35.41842	32.46232	9.283744
	Internal	26.96629	28.47171	23.89692	26.44497	5.43601
	South	34.0805	33.15529	38.239	35.15826	7.332204
	West	28.50042	29.787	29.35767	29.21503	0.429084
	mean	29.71981	31.01263	31.728		


Flow Rate Control				
Agg	gregate Val	ues		
AHUA mean 0.019				
	28.44045			
AHUB	mean	-3.48764		
	248.4191			
diffe	3.507538			


	Flow Rate Control [CFM Average]				
	Day	1	2	3	mean
AHUA	East	0.063108	0.28151	-0.23993	0.034896
	Internal	0.03342	0.051215	-0.02517	0.019821
	South	-0.02813	0.091146	-0.07109	-0.00269
	West	0.23342	0.144965	-0.29566	0.027575
	mean	0.075456	0.142209	-0.15796	
	Day	1	2	3	mean
AHUB	East	-0.10851	0.050174	-0.0421	-0.03348
	Internal	-12.2892	-13.4293	-16.0691	-13.9292
	South	-0.08576	0.06684	-0.03299	-0.0173
	West	-0.02995	0.097309	0.02092	0.029427
	mean	-3.12836	-3.30373	-4.03082	

Elow Pata Control [CEM//arianco]						
Flow Rate Control [CFM Variance]						
	Day	1	2	3	mean	
AHUA	East	23.96145	22.31143	24.95236	23.74175	
	Internal	49.54975	58.25954	37.40394	48.40441	
	South	19.84585	19.52617	22.94355	20.77186	
	West	21.87658	19.70007	20.85435	20.81033	
	mean	28.80841	29.9493	26.53855		
	Day	1	2	3	mean	
AHUB	East	1.34E+01	1.61E+01	2.18E+01	17.09272	
	Internal	645.3543	771.0503	925.0781	780.4942	
	South	2.39E+01	2.39E+01	4.86E+01	32.14707	
	West	13.23111	16.48139	20.04261	16.58504	
	mean	173.9598	206.8963	253.8832		

