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1

CHAPTER 1. Introduction

1.1 General introduction

Turbulent flow is a most important type of fluid flow yet it is one of the least understood.

Turbulent shear flows, such as turbulent jets and wakes, are especially of great importance due

to its presence in a very wide variety of engineering applications. The presence of turbulent

shear in fluid flows can greatly improve mixing efficiency. Particularly in the chemical process

industry, proper mixing is necessary to control product formation and therefore a well designed

reactor is critical. Thus, studies of mixing in turbulent shear flows are of great importance not

only in advancing turbulence theory, but also in engineering practices, such as the design and

optimization of various kinds of chemical reactors.

Experimental studies of the modern fluid dynamics research often play two roles, one is

to observe phenomena and try to understand the physical principles behind them, the other

is to validate and improve computational models. Since much of the turbulent transport,

conversion of mean flow energy into turbulent eddies, nonlinear transfer into smaller scales,

and eventual dissipation is associated with coherent structures, coherent structures are one

of the most popular phenomena to observe and study in turbulent flows. The properties of

coherent structures , such as population, size, circulation, and energy, can be useful in the

understanding of turbulence and property transport, and also can aid in the development of

more efficient and more environmentally benign applications.

In the past two decade, with the advancement of flow visualization techniques, particle

image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) have become very pop-

ular experimental techniques for the measurements of the instantaneous velocity and scalar

distribution in turbulent flows. As a whole-field measurement technique, PIV is superior to
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pointwise measurements, such as laser Doppler velocimetry (LDV), because flow field data

can be simultaneously collected at a large number of points over a two-dimensional or even

three-dimensional domain. The spatial nature of PIV data allows the identification and char-

acterization of coherent structures. Methods of analyzing and interpreting these spatially

resolved velocity field data were discussed in Adrian (1999) and Adrian et al. (2000a). Prime

examples of using PIV to study coherent structure are provided by Christensen and Adrian

(2001, 2002b,a) in the turbulent boundary layers and Agrawal and Prasad (2002a,b, 2003) in

turbulent axisymmetric jets. Simultaneous PIV and PLIF measurement has been proven to

be a very powerful tool to study turbulent mixing, especially the role of coherent structures in

mixing.

As mentioned above, the other role of experiments is to validate computational fluid dynam-

ics (CFD) models. Among turbulent modeling methods of CFD, large eddy simulation ( LES

) is currently applied in a wide variety of engineering applications. In large eddy simulation,

the principal operation is low-pass filtering, which is applied to the Navier-Stokes equations

to eliminate small scales of the solution. By resolving the large scales of the turbulent flow,

LES provides better fidelity than Reynolds-averaged Navier-Stokes (RANS) methods, which

doesn’t resolve any scales of the flow, and is much more practical in computational cost than

direct numerical simulation ( DNS), which resolves every scale of the flow. Therefore, LES has

become a popular tool for complex flow calculations. Nevertheless, despite the wide spread

acceptance of LES as a flow simulation tool, there are remarkably few reported detailed val-

idation studies for complex flows with experimental data. Because the predictive capability

of LES is generally attributed to its ability to capture large-scale flow structures (Lesieur and

Metais, 1996; Sagaut, 2001), it can be argued that a detailed validation study of LES simula-

tions should also include two-point flow statistics (e.g., two-point correlation functions). For

this purpose, PIV data are particularly well suited because they capture the same range of

large-scale flow structures as the LES models (Adrian, 1991; Agrawal and Prasad, 2002b).

The objectives of the present study are to perform both PIV and PLIF experiments in

a confined rectangular reactor, and to use collected data to fulfill the roles of fluids experi-
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ments, observing and studying the coherent structures, in both rectangular jet and wake, and

performing and validating large eddy simulation models.

1.2 Dissertation organization

The remainder of this thesis is organized as follows: In Chapter 2, vortex behavior and

characteristics in a confined rectangular jet with a co-flow are examined using vortex swirling

strength as a defining characteristic. Chapter 3 presents the results from the investigation of

the vortices in a confined rectangular wake flow. A large eddy simulation study of the confined

jet flow with a Reynolds number of 20,000 is presented in Chapter 4. Chapter 5 describes a

comparison study of turbulence statistics in the mixing regions of confined rectangular jet and

wake. Finally, summary and conclusions are given in Chapter 6. Some future work is also

briefly discussed.
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CHAPTER 2. Population, Characteristics and Kinematics of Vortices in a

Confined Rectangular Jet with a Co-flow

A paper published by Experiments in Fluids

Bo Kong, Michael G. Olsen, Rodney O. Fox and James C. Hill

Abstract

Vortex behavior and characteristics in a confined rectangular jet with a co-flow were exam-

ined using vortex swirling strength as a defining characteristic. On the left side of the jet, the

positively (counterclockwise) rotating vortices are dominant, while negatively rotating vortices

are dominant on the right side of the jet. The characteristics of vortices, such as population

density, average size and strength, and deviation velocity were calculated and analyzed in both

the cross-stream direction and the streamwise direction. In the near-field of the jet, the pop-

ulation density, average size and strength of the dominant direction vortices show high values

on both sides of the center stream with a small number of counter-rotating vortices produced

in the small wake regions close to jet outlet. As the flow develops, the wake regions disappear,

these count-rotating vortices also disappear, and the population of the dominant direction

vortices increase and spread in the jet. The mean size and strength of the vortices decrease

monotonically with streamwise coordinate. The signs of vortex deviation velocity indicate the

vortices transfer low momentum to high velocity region and high momentum to the low velocity

region. The developing trends of these characteristics were also identified by tracing vortices

using time-resolved PIV data. Both the mean tracked vortex strength and size decrease with

increasing downstream distance overall. At the locations of the left peak of turbulent kinetic

energy, the two point spatial cross-correlation of swirling strength with velocity fluctuation and
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concentration fluctuation were calculated. All the correlation fields contain one positively cor-

related region and one negatively correlated region although the orientations of the correlation

fields varied, due to the flow transitioning from wake, to jet, to channel flow. Finally, linear

stochastic estimation was used to calculate conditional structures. The large-scale structures

in the velocity field revealed by linear stochastic estimation are spindle-shaped with a titling

stream-wise major axis.

2.1 Introduction

The study of coherent structures in turbulent shear flows is of great importance due to the

structures’ significant contribution to fluid entrainment and the transfer of mass, momentum

and heat. The properties of these structures, such as population, size, circulation, and energy,

can be useful in the understanding of turbulence and property transport and can aid in the

development of more efficient and more environmentally benign applications. Moreover, de-

tailed measurements of the behavior and characteristics of large-scale structures can be used

to validate the predictions of computer modeling techniques, such as large eddy simulation,

where the largest scales of the turbulence are resolved. The objective of the work presented

here is to use a vortex identification method to analyze the experimental data collected in a

confined rectangular liquid jet with a co-flow with regards to the population, size, kinematics

and characteristics of vortices within the jet.

In the chemical process industry, liquid jets usually are placed in a confined space, as in

a mixer or a reactor, and are commonly applied within a co-flow or cross-flow to improve

mixing and chemical reaction between two or more fluids, like a concentric pipeline mixer

or a coaxial jet mixer (Lu et al., 1997). A typical geometry for this type of mixer is an

axisymmetric jet with a co-flow or cross-flow. However, cylindrical reactors pose challenges

in the laboratory with laser techniques such as particle image velocimetry (PIV) due to the

curvature and associated image distortion in the measurements. An alternative approach is to

use a rectangular configuration (Feng et al., 2005), which can provide much better measurement

accuracy and also a much simpler geometry to conduct CFD simulations. When the aspect
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ratio of a rectangular jet nozzle (w/h, where w and h are the long and short sides of the nozzle),

is not large enough to eliminate the 3D effect, the jet usually can no longer be considered a

planar jet, but instead a rectangular jet (Deo et al., 2007a). For example, Pope (2000) pointed

out that the aspect ratio of a plane nozzle must be significantly large, typically 50 or more,

to ensure that the flow is statistically two-dimensional and free from the effects of sidewalls.

For a liquid phase jet, especially when designed to study the mixing process in a high Schmidt

number environment, it is not practical to build and study a high aspect ratio planar jet

mixer. The aspect ratio of the jet in the current research is 5, which indeed a low-aspect-

ratio rectangular jet. But according to Deo et al. (2007b), the sidewalls of the confinement

can significantly limit the development of the jet in the spanwise direction, and make the 2-D

region extend a longer distance than a rectangular jet without sidewalls. In this study, the

farthest observation downstream location was X/d = 30, and thus the measured flow fields

are more comparable to planar jets, instead of most studies of low aspect ratio rectangular

jets in which the focus is mainly on a free jet, in which the 3-D vortex ring structure can

break-down faster than in axisymmetric jets due to the presence of sharp corners (Grinstein,

2001; Gutmark and Grinstein, 1999). Although the confined rectangular jet with a co-flow is

not common in turbulent jet research, it provides a simple and well defined geometry suitable

for both experimental measurements and numerical simulations, especially for PIV experiment

and 3-D CFD simulations.

The jet flapping phenomenon first reported by Goldschmidt and Bradshaw (1973) is one

of the first indications of large-scale structure in the planar turbulent jet. However, Oler

and Goldschmidt (1982) suggested that correlation results indicating the flapping motion can

also be explained by the presence of an antisymmetric array of counter-rotating spanwise

vortices. Antonia et al. (1983) also performed correlation measurements, which support this

concept and showed that the apparent flapping could indeed be explained in terms of the

passage of vortical structures past the fixed probe pair and was not associated with bulk

lateral displacement of the jet. The existence of a large-scale structural array has also been

demonstrated later by the velocity fluctuation two-point correlation fields obtained in different



7

jet facilities by Mumford (1982), Antonia et al. (1986) and Thomas and Brehob (1986). Such

large-scale structural arrays propagate at approximately 60% of the local centerline mean

velocity, estimated by Goldschmidt et al. (1981), Antonia et al. (1983) and Thomas and Brehob

(1986). Recently, Gordeyev and Thomas (2000) used proper orthogonal decomposition ( POD

) to analyze experimental data, also suggesting that the presence of planar structures aligned

in the spanwise direction as well as three-dimensional structures with asymmetrical shape in

the cross-stream direction and pseudo-periodically distributed in the spanwise direction.

Most of the earlier coherent structure investigations on planar jets were focused on the large

structures , because they were conducted using point-wise velocity measurements and then

analyzed with a correlation technique. In the past two decades, particle image velocitimetry

(PIV) has become a popular experimental technique for turbulence studies. Since PIV provides

instantaneous two-dimensional velocity field data, it is well suited for visualizing and identifying

vortical structures. Methods of analyzing and interpreting these spatially resolved velocity field

data were discussed in Adrian (1999) and Adrian et al. (2000a). Prime examples of using PIV

to study coherent structure are provided by Christensen and Adrian (2001, 2002b,a) in the

turbulent boundary layers and Agrawal and Prasad (2002a,b, 2003) in turbulent axisymmetric

jets. Of particular interest to the present study. Agrawal and Prasad (2003) and Chhabra

et al. (2006) reported results on small-scale vortices present in the axial plane of a self-similar

turbulent axisymmetric jet by using a high-pass filter and vortex extraction method based

on velocity quadrant and angular variance. These studies include measurements of the vortex

characteristics, such as the vortex population, energy, vorticity, and rms of velocity fluctuations.

Their studies also show that the centers of a larger vortices spin faster than centers of a smaller

vortices. After normalization, vorticity results for different vortex radii collapse upon each

other. In contrast, the similar studies of small-scale vortices in planar jets and rectangular jets

are lacking.

Besides the geometry of the jet, another new element of current study is the presence of

co-flow. Although the vast majority of the turbulent jet research has been focused on jets

discharged into ambient fluids, a jet with a co-flow is more commonly seen in industrial appli-
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cations. One of the earliest investigations of jets with a co-flow is the analytical study done

by Abramovich et al. (1984). He showed the presence of three essential regions in co-flow

jets: the initial, principal and transition areas. When the flow is confined, the process of the

co-flow driven by the jet is modified and the mixing process depends strongly not only on the

velocity ratio, but also on the interaction between the boundary layer, the mixing layer and

the main flow (Gazzah, 2010). Gutmark and Wygnanski (1976) found that a jet exhausting

into a slow-moving co-flowing stream is narrower than a comparable jet exhausting into qui-

escent surroundings. Curtet (1958) was interested by recirculation phenomena generated by

a considerable pressure gradient, and proposed a parameter of similarity called the parame-

ter of CrayaCurtet, which was formulated by Steward and Guruz (1977). For a CrayaCurtet

parameter value greater than 0.8, recirculation can be avoided. Because of its great practical

importance, an increasing attention has been given to the jet development and mixing in jets

with a co-flow (Bradbury and Riley, 1967; Nickels and Perry, 1996; Chu et al., 1999; Benayad

et al., 2001; Enjalbert et al., 2009). Another study of interest is the experimental investigation

of an axisymmetric jet discharging in a co-flowing air stream by Antonia and Bilger (2006),

which shows that the far jet flow may be strongly dependent on the nozzle injection conditions.

Despite all of this previous work, the behavior of turbulent vortices in such a flow remain rel-

atively unstudied. Thus, in the work that follows, the characteristics of vortices in a confined

rectangular turbulent jet with a co-flow have been investigated.

2.2 Experimental Facility and Methodology

The flow facility used in the experiments presented here is shown in Fig. 2.1. The mea-

surements are carried out in a Plexiglas test section with a rectangular cross-section measuring

60 mm by 100 mm and with an overall length of 1 m. There are three streams separated by

two splitter plates, each emitting from the its own flow conditioning section consisting of a

packed bed and turbulence reducing screens and a 16:1 contraction section. The slope of the

surface of the splitter plates is 3 degrees along the side channels and 1 degree along the center

channel, and the thickness of the tips of the splitter plates are less than 0.5 mm. Two different
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flow cases as defined by different bulk flow Reynolds numbers of, 20,000 and 50,000 (based on

average velocity and hydraulic diameter), were studied. The volumetric flow rates for the two

flow cases are listed in the Tab. 2.1.

Experimental data from simultaneous PIV/PLIF experiments and high speed PIV experi-

ments were collected and analyzed. The simultaneous PIV/PLIF technique has been used to

study many turbulent mixing problems, such as Westerweel et al. (2005, 2002) in a turbulent

jet. Approximately 24 grams of hollow glass spheres (Spherical, Potters Industries, Inc.) were

added to the water reservoir with total volume of 3500 liters in both the regular and high speed

PIV measurements. The nominal diameter of the seed particles was 11.7 µm and the density of

the particles was 1.1 g/cm3. The 0.5 mm thick laser sheet used in high speed PIV experiments

was produced by a Quantronix Darwin-Duo dual oscillator, single head Nd:YLF CW laser,

which passes through the centerline of the test section in the z-direction. A Photron ultima

APX-RS high speed 10-bit CMOS camera was used to capture particle images. The image

magnification of the CMOS camera was 0.27, and the numerical aperture was 8. The image

capturing frequency was 125 Hz for the Re = 20K case and 250 Hz for the Re = 50K case. A

multi-pass cross-correlation technique with decreasing window sizes was used to compute the

velocity field. The final interrogation spot size measured 16 pixels by 16 pixels, corresponding

to 1.02 mm on each side. With 50% overlap between interrogation windows, the velocity vector

spacing was 0.51 mm in both the x- and y-directions. The time interval between two laser

pulses was 1 ms in the low flow rate case, and 600 µs in the high flow rate case. Since the

memory capacity of CMOS camera is limited, 1024 PIV image pairs can be collected in each

run. At each observed location, the experiment was repeated 20 times, thus a total of 20480

PIV realizations were collected and analyzed at each locations in both cases.

In the simultaneous PIV/PLIF measurements, illumination was provided by a New Wave

Research Gemini PIV laser. PIV and PLIF images were obtained using two 12-bit LaVision

Flowmaster 3S CCD cameras. The image magnification of the two CCD cameras was 0.12, and

the numerical aperture was 8 for PIV and 5.6 for PLIF. A dichroic mirror (Q545LP, Chroma

Technology Corp.) was placed at an angle of 45◦ to the laser sheet to separate the light paths
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and direct them to either the PIV or the PLIF camera. The PLIF camera lens was filtered

with a long-pass optical filter (E560LP, Chroma Technology Corp.), and the PIV camera lens

was filtered with a narrow-band-pass optical filter (Z532/10X, Chroma Technology Corp.)

The seeding method, time interval between two laser pulses and cross-correlation technique

in PIV measurement in the simultaneous PIV/PLIF experiments were the same as in high

speed PIV measurement. The fluorescent dye Rhodamine 6G was used as a passive scalar

in PLIF. In the center stream, the source concentration of Rhodamine 6G was 45 µg/l,

while the other two streams were pure water. The in-plane spatial resolution of the PLIF

measurements in the present study was actually limited by the flow area imaged per pixel,

which was approximately 56 µm. The simultaneous PIV/PLIF data at high Reynolds number

are a subset of measurements reported by Feng et al. (2007). Since the experimental apparatus

and procedure have been described in detail elsewhere (Feng et al., 2005, 2007), the reader is

directed to the literature for further information. At each observed location, 3250 simultaneous

velocity and concentration realizations were analyzed in high Re cases and 2500 realizations in

low Re case. The simultaneous PIV/PLIF experimental data for the low Re case is available

at two locations, X/d = 4.5 and X/d = 7.5, where X is downstream distance and d is the

initial jet width, 20mm.

The smallest Kolmogorov scale in the flow field can be estimated based on the exit width

of the jet and the turbulent kinetic energy at the tips of the two splitter plates. Although the

smallest turbulent scales of the flow cannot be fully resolved, second-order quantities such as

velocity fluctuations and characteristics of large-scale structures can be measured accurately.

As in Prasad et al. (1992), the random error in the PIV measurements was estimated as one-

tenth of the effective particle image diameter. The measurement resolution and uncertainty of

the two cases are listed in the Tab. 2.2.

To assistant in the understanding of the flow configuration of current investigation, Fig.

2.3 gives the profiles of the mean of streamwise velocity, U, for both Reynolds number cases

at 3 different downstream locations, X/d =1, 4.5 and 15. After normalization by ∆U, which

is the average velocity difference between the center stream and two side streams (∆U = 0.2
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Table 2.1 Flow rates of two cases

Reynolds number
Flow rate (Liter/s)

Center stream Outer stream

20K 0.8 0.4

50K 2.0 1.0

Table 2.2 PIV Spatial resolution and measurement uncertainty

Reynolds number
Spatial resolution Uncertainty

(η : local Kolmogorov scale ) Center stream Outer stream

High Speed 20K 5.4 η ±1.2% ±2.5%

PIV 50K 6.7 η ±0.8% ±1.6%

Sitantaneous 20K 4.6 η ±1.7% ±3.4%

PIV/PLIF 50K 6.0 η ±1.3% ±2.7%

m/s for Re =20K and ∆U = 0.5 m/s for Re = 50K), the profiles of these two flow cases are

very similar. Near the channel inlet, at X/d =1, two small wake regions on both sides of the

tips of the splitter plates can be observed from the velocity profile. These result from the

boundary layers formed on the splitter plates. At the further downstream location, X/d= 4.5,

the two wake regions disappear and are replaced by two mixing layers regions that quickly

grow together, resulting in the potential core in the center jet disappearing for both cases. At

X/d = 15, the potential cores in the outer streams also disappear, and the flow continues its

development toward channel flow because of the confinement by the two walls in cross-stream

direction. The wake regions in the near-field of a jet and confinement configuration of the jet

are rather uncommon in turbulent jet research Again, as mentioned in the introduction, the

design of the the jet configuration is determined by the practical considerations of simulating

flow conditions in an industrial reactor.

2.3 Swirling Strength Vortex-ID Method

Several methods have been suggested and implemented by researchers to identify vortices

in instantaneous two-dimensional velocity fields, such as those obtained by PIV. Adrian et al.
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(2000a) described a number of vortex eduction techniques and compared their effectiveness in

identifying vortices. They found that swirling strength provides a reliable means of extract-

ing the small-scale vortices, including those which are not visible in velocity decompositions.

Vollmers (2001) also validated and compared several coherent structure eduction methods. He

also concluded that the swirling strength is the best indicator for the presence of vortices in

turbulent flow. Thus, the authors have chosen a vortex extraction technique based on swirling

strength to analyze the turbulent vortices in a confined rectangular turbulent jet in this paper.

The concept of swirling strength, λci, was described by Adrian (1999) as the imaginary

part of the complex conjugate eigenvalues (λcr ± λci) of the local velocity gradient tensor.

Physically, λ−1ci represents the period required for a fluid particle to swirl once about the λcr-

axis (Piomelli et al., 1996; Adrian, 1999). Thus, a non-zero λci indicates a local swirling motion,

and spatially connected regions of non-zero λci represent vortices (Wu and Christensen, 2006).

Tomkins and Adrian (2003) multiplied λci by the sign of the local vorticity to capture the

direction of rotation at each location in the flow field. This modified form of swirling strength

can be written as (Wu and Christensen, 2006)

Λci(x, y) = λci(x, y)
ωz(x, y)

|ωz(x, y)|
(2.1)

This method has two great advantages. First, it is frame independent, meaning a priori

information of the bulk motion of the vortex core is not necessary. Second, it only reveals the

regions with vortices, which means the flow regions with high vorticity but no local swirling

motion, such as shear layers, do not produce non-zero λci. However, like other vortex extraction

methods based on the velocity gradient, the method does have one important drawback when

applied to PIV data. Due to the sensitivity of velocity gradient to noise, this type of method is

often not applicable to experimental data if no smoothing has been applied (Vollmers, 2001),

since the method may falsely identify measurement noise as vortices. However, too much

velocity smoothing may eliminate the small vortices. Thus, in addition to carefully choosing

experiment parameters to reduce the measurement uncertainty and applying slight smoothing,

we utilized a threshold of |Λci| ≥ 1.5Λrmsci (Wu and Christensen, 2006) to limit the influence of
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experiment noise, which only affects the edges of clusters and does not alter the populations

appreciably. Further information about this method can be found in the references mentioned

above.

2.4 Vortex Characteristics Analysis

2.4.1 Instantaneous structures

Two examples of the instantaneous swirling strength field at near-field 0 < X/d < 2.5

and far-field 6.5 < X/d < 9 of the jet at Re = 20K, are shown in Fig. 2.4 to illustrate the

effectiveness of the swirling strength as a vortex indicator. It is contrasted with the mean-bulk

Galilean decomposed velocity field in Fig. 2.4 (a1,a2), which reveals only the vortices moving at

their respective spatial convective velocities. The local Galilean decomposed velocity fields are

shown in Fig. 2.4(b1,b2), where the local convective velocities have been subtracted from each

vortex center. The background contours are the clusters of Λci after filtering with a universal

threshold of |Λci| ≥ 1.5Λrmsci . Where the clusters of filtered Λci identified vortices, all of the

local Galilean decomposed velocity vectors on Fig. 2.4 (b1,b2) display a clear swirling motion.

This demonstrates the effectiveness of using the swirling strength as a vortex identification

method, in the present flow field. Due to spatial resolution limitations, clusters of Λci with

fewer than three grid points across their span in both the x and y directions are not considered.

Comparing the definition of swirling strength above with Robinson’s definition of a vortex,

“A vortex exists when instantaneous streamlines mapped onto a plane normal to the vortex core

exhibit a roughly circular or spiral pattern, when viewed from a reference frame moving with

the center of the vortex core.” (Robinson, 1991), the edges of swirling strength clusters do not

necessarily accurately define the very edge of a vortex. By its definition, the swirling strength

is the indicator of how strong the swirling motion of a particular local fluid particle is , or how

fast the particle rotates. Therefore, the swirling strength clusters are only the parts of vortices

that only include fluid particles with distinguishable strong swirling motions. For those vortices

with weak rotation at the vortex edge, the filtering process performed to eliminate the effect

of the measurement noise will also eliminate the swirling strength signatures of these regions.
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A small fluid particle with close to zero swirling strength, with no rotation or swirling motions

itself, could be part of large-scale coherent motion. Therefore, the swirling strength clusters

identified from the instantaneous velocity fields are only defined as vortex cores, or the highly

rotating part of a vortex. As Agrawal and Prasad (2003) argued, vortices in turbulent flows

range in size from the integral length scale down to the Kolmogorov scale, and there are always

small-scale vortices embedded in large-scale structures. Large-scale vortices account for most

of the turbulent energy, while the small scales carry almost the entire vorticity. These swirling

strength clusters are those small-scale vortices in their argument.

Fig. 2.4 shows that on the left side of the jet, the positively (counterclockwise) rotating

vortices are dominant, while negatively rotating vortices are dominant on the right side of the

jet. One may notice from the instantaneous fields of vortices that in both the near-field and

the far-field of the jet, the distribution of the vortices seems random and doesn’t display as

the large-scale structural array in planar jet suggested by the Mumford (1982), Antonia et al.

(1986), nor the roller and helical modes revealed by the low-pass filter in axisymmetric jets

(Agrawal and Prasad, 2002a). The velocity fluctuation correlation reported by Feng et al.

(2007) actually shows, in this jet, there are the chain of large coherent structures in the

stream-wise direction, as previous researchers suggested in planar jets. As mentioned earlier,

the large-scale coherent motions visualized by the correlation technique are not the swirling

motions of the small-scale vortices in the individual instantaneous velocity field. Also, notice

that besides those dominant positively rotating vortices, there are also some negatively rotating

vortices on the left side of the jet. The counter-rotating vortices are due to the small wake

regions downstream of the splitter plates. In the far-field of the jet, the instantaneous vortex

fields bear some resemblance to the small-scale vortex field revealed by a high-pass filter in the

far-field of an axisymmetric jet (Agrawal and Prasad, 2002b, 2003), where small-scale vortices

spread across the jet body. Spatial correlation calculation with the swirling strength were also

performed in the present study, like the calculations done by Christensen and Adrian (2001),

who found a strong position and angle preference between the vortices in wall turbulence. The

results here show that the vortices in entire body of this jet have no strong spatial correlations



15

with other vortices at all, confirming the high level of randomness observed in the instantaneous

fields. In addition to the vortices in the jet region, there are also some vortices in the two

boundary layers near the walls, which are not of interest in the current study.

2.4.2 Vortex population

To identify the population trends of the vortices, a similar vortex definition as Wu and

Christensen (2006) is used to define the population density of vortices, Πp(n). Πp(n) is herein

defined as the local ensemble-averaged number of detectable positively rotating or negatively

rotating vortices whose centers reside at a given PIV grid node. Fig. 2.5 shows Πp(n)

crossstreamwise profiles at 3 downstream locations for the two different Reynolds numbers

investigated. To minimize scatter in the profiles, Πp(n) is presented as the vortex population

over a half jet width ( d/2 = 1cm) long area in the streamwise direction. The plots presented in

Fig. 2.5 demonstrate that the distributions of the positively and negatively rotating vortices

are nearly axially symmetric at all 3 downstream locations in both two cases.

These profiles confirm the observations from the instantaneous vortices fields above. At

X/d =1 in the near-field of the jet, the population density profiles of the dominant direction

vortices and counter-rotating vortices both show clear peaks, at the locations on either side of

the center of the wake region, according to the streamwise velocity mean profile in Fig. 2.3.

The population of the counter-rotating vortices almost disappears completely at X/d = 4.5, as

the wake regions decay and are replaced by mixing layer-like region population profiles. The

population profiles of the dominant vortices also broaden with increasing downstream distance.

These vortices are initially confined to the high shear, mixing layer regions with few vortices

existing in the free streams, but as the flow develops towards channel flow at the farthest

downstream locations, the distribution of the vortices spreads throughout the entire width of

the reactor. At X/d = 15, the population density profiles approach the vortex distribution of

a channel flow. One may notice the remarkable difference between the results here and the

small-scale vortex distribution results in far-field of a axisymmetric free jet in Agrawal and

Prasad (2002b), which shows that the probability of finding a vortex is uniform up to the edge
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of the jet and a substantial number of both clockwise and counter-clockwise rotating eddies

exist on both sides of the jet axis. In the far-field of the jet, the two walls on the spanwise

direction produces the new source of the turbulence, which reaching into the center of the jet

as the flow develops. This causes the small scale vortices distributed as in a channel flow,

instead of a free jet.

Also notice that the highest vortex population actually occurs in a very small region of the

wall boundary layers, which is not a surprise because of the higher velocity gradient in the

wall region. As mentioned earlier, the population here only includes the vortices whose core

(swirling strength cluster) diameters are larger than 13.8η in the low Re case and 33.9η in the

high Re case.

By adding the number of positively rotating vortices together between the center of the

center stream Y/d = 0 and the center of the left side stream Y/d = -1 in this 1cm long

region, the streamwise population changing trend of detectable positively rotating vortex can

be more easily observed, as shown in Fig. 2.6. The number of the vortices in the same size

region per velocity realization at different different downstream locations initially increased

and then decreased. This is reasonable because right after the flow enters the test section, the

high velocity gradients produce many vortices. At the same time, the decay and dissipation

of these vortices also occurs. As the flow progresses further downstream, the potential cores

disappear, fewer vortices are produced. The vortex dissipation process continues, though, and

later in the far-field of the jet it eventually overwhelms the jet vortex production. Also notice

the population is much higher in the high Reynolds number case than in the low Reynolds

case, specially in the far-field of the jet, where the flow approaches a fully-developed channel

flow and the boundary layers on the walls play a bigger role in the vortex production than the

shear layer caused by the jet. Figure 2.6 also shows that the development towards channel

flow is more rapid for the low Re case, which of course makes sense, since the entrance length

in a channel or pipe increases with increasing Reynolds number (Sadri and Floryan, 2002).
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2.4.3 Size and strength of vortex cores

In addition to the vortex population analysis presented above, other properties of the the

identified vortices can be obtained from the experimental data. The results of the size of

vortex core are presented in a similar manner to the vortex populations. Figure 2.7 shows

the mean vortex core size profiles across the channel, and Fig. 2.8 gives streamwise profiles.

The values of mean vortex core size appear to be rather small compared to the jet width. Also

the smallest size of swirling strength cluster we can identify is d2/400 for both investigated

Reynolds numbers.

The cross-stream profiles in Fig. 2.7 show that on both sides of the jet where the dominant

direction vortex population is highest, the average vortex size is also the largest, especially at

X/d = 1. Although the population density of the vortices in the wall boundary layers is highest,

the size of the vortices in the boundary layer is small. Figure 2.8 shows that the average

vortex core size between the center of the center stream and the left stream monotonically

decreases with increasing downstream distance. This might initially seems contrary to what

was reported in Feng et al. (2007). In the Re= 50K case, the size of the coherent structures

was observed linearly growing almost from X/d = 1 through at least X/d = 15, which

would be expected for jet flow. Glancing back at the instantaneous vortex field in Fig. 2.4,

the areas of the identified swirling strength clusters in the far-field are indeed smaller than in

the near-field. In the near-field of the jet, the current vortex areas are about two orders of

magnitude smaller than in the previous report; in the far-field of the jet, they are almost four

order of magnitude smaller than in the previous report. Again, this can be explained based

on the difference between the two measurement techniques. In Fig. 2.6, from X/d = 1 to

X/d = 7.5, the populations of vortex cores increase by at least 40%, while the mean sizes only

decrease by 15%. Therefore the overall swirling area in the jet grows by approximately 20 %.

However, as the jet progresses downstream, there are more small structures with increasing

downstream distance, as previously mentioned. The increase in the number of small structures

brings the mean size values down. When the flow becomes fully developed channel flow, the

mean structure size will remain constant beyond this point. This explains why the vortex core
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size becomes smaller with increasing downstream distance and eventually stabilizes as the flow

fully develops. This is to be expected as the confined jet flow transitions from a jet-like flow

to a channel-like flow, which would have the vortex size independent of downstream location.

The strength of the vortex cores also can be determined. Note that inside the swirling

strength clusters, the strength value is not evenly distributed. The highest swirling strength

value of the vortex core is used to characterize the vortex, since it gives the maximum rotation

speed of the given vortex, according to the swirling strength definition. Figure 2.9 shows cross-

stream profiles of the average peak value of the vortex core and Fig. 2.10 gives streamwise

profiles. All these profiles were normalized using ∆U/d. In Fig. 2.9, it can be observed that the

cross-stream profiles of the maximum strength of vortex core show very similar characteristics

as the plot of the size of vortex core. The center of the shear region of the jet has the maximum

vortex population density, the largest vortex size, and the strongest swirling motion. Figure

2.10 shows that as the flow develops, the strength of the vortices decreases, then eventually

stabilizes, just as the vortex size. Comparing the two Reynolds number cases, the values for

the Re = 20K case are higher than the Re = 50K case after normalization, specially at X/d

=1. However, the difference between the two Reynolds numbers becomes smaller and smaller

as the flow progresses downstream.

The cross-stream and streamwise profiles of both vortex size and vortex strength all indicate

that the high Reynolds number case develops more slowly than the low Reynolds number case,

just as the profiles of vortex population density show.

2.4.4 Deviation velocity of vortex cores

The instantaneous velocity field data can also lend insight into the motion of the vortices.

The velocity of vortex cores can be mapped back to the velocity field once the vortex is

identified. By subtracting the mean velocity from the velocity values of the vortex cores, what

we define as the deviation velocity of the vortex can be obtained, i.e. , the deviation of the

instantaneous vortex convection velocity from the local mean velocity. Figure. 2.11 and 2.12

show profiles of the average cross-stream (V) and streamwise (U) deviation velocities cross the
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channel at three downstream locations, which all are normalized by ∆U .

Figure 2.11 shows that the mean deviation velocity V is zero at the location of the popu-

lation density peak. Considering the left side of the jet, on the right side of population density

peak, vortices tend to move towards the center of the center stream, and on the left side,

the vortices tend to move towards the center of center of left side (or outer) stream, which

corresponds to the spreading of the shear layers at the center regions of the jet. Particularly,

at X/d = 1, the deviation velocity V is maximum at the very edge of the potential core of the

free streams. Since there are virtually no vortices in the potential core, the average deviation

velocity there is zero. In addition, the normalized values of vortex deviation velocity V are

higher in the low Reynolds number case than in the high Reynolds number case.

The mean deviation velocity U is also zero at the location of the population density peak

as shown in Fig. 3.12. At X/d =1, towards the jet center, the values are negative, and towards

the side streams, the values are positive, which corresponds to one of the roles of vortices in

the flow: transferring low momentum fluid to the high velocity region and transferring high

momentum fluid to the low velocity region. However, at further downstream locations, X/d =

4.5 and X/d = 15, the profiles of mean deviation velocity U of the counter-rotating vortices

overlap with the profiles of dominant rotating direction vortices. Once again, glancing back

at the instantaneous vortex field in the far-field of the jet in Fig. 2.4, these small number of

counter-rotating vortices are blending with the dominant direction vortices.

The probability density function of vortex deviation velocity was also calculated at three

downstream locations, X/d =1, X/d = 4.5 and X/d = 15 for the Re = 20K case, and compared

to the PDF of the velocity fluctuations of the overall flow, which are shown in Figs. 2.13,

2.14 and 2.15. At each downstream locations, three observation points were used, one is at

the location of the peaks of positively rotating vortex population density (Y/d = -0.45 at

X/d = 1, Y/d = -0.42 at X/d = 4.5 ), one is on the left side and one is on the right side

where the middle points of the population density peak declining slopes are. In each case,

all the distributions of the deviation velocity appear narrower than the velocity fluctuation

distribution. One reason to explain this is the swirling strength vortex identification method
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reveals the core of the vortex. It is actually the part of the vortex close to the vortex edge that

generates high velocity fluctuations, where the swirling motion could be very weak. Another

possible reason is the vortex identification method used here does have spatial limitations, and

vortices that are too small to be detected could play some role in the flow unsteadiness. It is

also possible that some of the fluctuations are due to other unsteadiness or large-scale coherent

motions in the jet flow, such as stream-wise jet pulsing or cross-stream flapping of the jet.

Similar to the mean vortex deviation velocity profiles, at the location of the population

density peak, the mean of both the vortex deviation velocities are zero. However, the mean

of velocity fluctuations are also close to zero at this location. Interestingly, on both sides of

the peak location, the distribution peaks of vortex deviation velocity appear on the opposite

side of zero as the distribution peaks of velocity fluctuation. It makes sense that the velocity

fluctuation close to the jet center is negative, because low momentum fluid is transferring into

the jet center (where the mean velocity is high); and the velocity fluctuation close to the outer

stream center (where the mean velocity is low) is positive, because high momentum fluid is

transferring in. Notice also, that compared to the distributions at X/d = 1, as downstream

distance increases, the vortex deviation velocity distributions become closer to the distribution

of the velocity fluctuation. (An exception to this is at X/d = 4.5 and Y/d = -0.16, where the

streamwise velocity fluctuation distribution has a much higher peak, which is simply because

the location is very close to the jet center). As the flow progresses further downstream, the

vortex deviation velocity should become more similar to the distribution shape of the velocity

fluctuations, as the mean vortex deviation velocity profiles indicate.

2.5 Vortex Tracking Analysis

From the high speed PIV data, the trajectories of individual vortices can also be determined.

After identifying a particular vortex in a pair of velocity realizations, the velocity of the swirling

strength cluster can be found from the change in the vortex position between the two frames.

Repeating this frame by frame over the high speed PIV data set, the location of the vortex in

each frame can be estimated. The vortex on the next frame which has the maximum overlap
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with the estimated location is considered the same vortex as the selected vortex from the

previous frame. Figure 2.16 shows two trajectories of a positively rotating vortex on the left

side of the jet and a negatively rotating vortex on the right side of the jet to demonstrate the

effectiveness of this tracking method. Only vortices that newly appear at the bottom of the

velocity fields were traced to maximize tracking time because the length of observation window

is limited. Once a vortex has been identified in a series of velocity realizations at different

time steps, how the size and strength of the vortex changes with time can be determined.

Because the vortex property development of one given vortex could be rather noisy, to obtain

the main characteristics of vortex development, averaging was performed for certain vortices

which traveled through the current watching window, t > 0.2s for Re = 20K and t > 0.08s for

Re = 50K. Those vortices which disappeared during this time frame are not included.

The mean vortex size and strength are shown in Figs. 2.17 and 2.18, using observation

windows beginning at X/d =0, X/d = 3.5 and X/d = 7.5. Since the experimental data at

these three locations were collected at different times, the vortices that were tracked in one

window definitely could not appear in the other windows. The mean tracked vortex maximum

strength decreases with increasing downstream distance after the flow enters the channel, the

same development as we observed in the previous section. However, the mean tracked vortex

size increases slightly after the vortices enter the reactor, and then decreases. The vortices

that were tracked close to the jet outlet, must have already existed when the flow entered

the test section. They are likely those well organized vortices reported in wall turbulence

(Adrian et al., 2000b), and continue to develop for a while before the changing of the flow

field affects them. When these vortices meet the counter-rotating vortices on the other side

of the splitter plates, and when vortices begin to be produced by the mean shear in the jet,

the properties of the vortex core will change. They can be weakened or pushed aside by the

counter-rotating vortices. Also, the swirling strength values in the swirling strength clusters

could be redistributed, as some parts of the rotating fluid particles can spin off from the cluster,

a phenomenon observed in some instantaneous vortices fields from the high speed PIV data.

Also compared to the mean vortex size and strength profiles, at X/d =1 and X/d = 4.5,
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presented in Figs. 2.7 and 2.9, all the values calculated by tracing individual vortices using

high speed PIV data are higher. This is because the averaging here is actually conditional

averaging as mentioned earlier. Those vortices chosen here have relatively long life spans, a

probable consequence of their being larger and stronger than the “average” vortex.

2.6 Spatial correlation functions and linear Stochastic estimation

2.6.1 Two-point spatial correlations

Normalized by the rms of swirling strength and some flow property, σ, the two point spatial

cross correlation of swirling strength and the fluctuation of σ can be defined as

Rλσ′(X,Y ;x, y) =
〈λci(X,Y )σ′(x, y)〉√
〈λ2ci(X,Y )〉〈σ′2(x, y)〉

(2.2)

where (X,Y) and (x,y) are the coordinates of the basis point (i.e. the point about which the

correlation is calculated) and an arbitrary point in the flow field, respectively. In the present

study, locations along the left peak of turbulent kinetic energy at different downstream locations

were chosen as basis points. This location also corresponds to the peak of the population density

of positively rotating vortices. The spatial correlations of Rλu′ and Rλv′ for basis points located

at four downstream locations for both Re cases are presented in Figs. 2.19 and 2.20. The

streamwise flow direction is from the bottom to the top of the figures.

The cross correlation fields of swirling strength and fluctuations of the two velocity com-

ponents exhibit “butterfly” like shapes. The right wing of Rλu′ contains positive values and

the left wing contains negative values. The symmetry line of this “butterfly” shape in Rλu′ ,

called “the axis” of these correlation fields hereafter, is oriented vertically in the streamwise

direction, which the contour line of Rλu′ = 0 overlaps in the region of the basis point. The

symmetry line of Rλv′ is oriented horizontally with negative values downstream of the basis

point and positive values upstream of the basis point. Notice at X/d = 1, the axis of Rλu′ is

not oriented vertically as it is at the other downstream locations. Instead, the axis tilts about

30 degree away from the jet center, which is caused by high velocity gradients in this narrow

wake region. Once the wake region disappears, the tilting of the axis becomes less significant
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due to smaller and smaller velocity gradients. There is a second positively correlated region on

the left side of the negative peaks, and a second negatively correlated region on the right side of

the positive peaks in the Rλu′ contours, especially in the low Re case, at X/d = 1. Also, there

is a weakly correlated negative region upstream of the strong positive region close to the basis

point and a weak positive region downstream of the strong negative region in Rλv′ . Assuming

the vortex at the basis point is accompanied by vortices upstream and downstream of the basis

point location, these two correlation fields indicate locations of accompanying vortices. Also

the correlation in the region far from the basis point is actually very weak (that is close to

zero), which makes the location of the Rλu′ = 0 contour somewhat random. This agrees with

the observation from the instantaneous vortex fields, in Fig. 2.4. Also, as the flow progresses

downstream, the correlation areas of both Rλu′ = 0 and Rλv′ = 0 grow larger. Notice the peak

values of these correlations in Fig. 2.22. The peak values of Rλu′ are approximately 0.2 for

both cases close to the jet inlet. The peak values of Rλv′ begin at approximately 0.4 near jet

inlet in both cases, and decrease with downstream distance, approaching a value of 0.25 for

both Reynolds number cases after the flow passes beyond X/d = 12.

Figure 2.21 shows Rλciφ′ , the cross-corrlation of swirling strength with the concentra-

tion fluctuation, for Re=50K and Re= 20K, respectively. Note that simultaneous PIV/PLIF

data were only collected for 2 downstream locations for Re= 20K, compared to six locations

for Re=50K. There are two correlated areas in the contours; one positively correlated region

downstream of the basis point and one negatively correlated region upstream. This shape

suggests that the positively rotating (counterclockwise) vortices bring high concentration fluid

(i.e., positive concentration fluctuations) from the center stream to the side stream downstream

of the vortex core and bring the low concentration fluid from the side stream to the center

stream upstream of the core. These two correlation areas are not only comparable in size but

also in absolute peak values. As mentioned before, the locations chosen here also are the loca-

tions of the peak of positive vortex population density, which means there are predominately

positively rotating vortices centered at this location. The contour lines of Rλciφ′ = 0.1 and

Rλciφ′ = −0.1 are nearly symmetrical about the basis point, except at the location X/d = 1.
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As previously stated, because the axis of positively rotating vortices close to the jet outlet is

obliquely oriented, positive Rλciφ′ is located in the second quadrant instead of the first quad-

rant. Considering these two regions together provides an explanation for the elliptic shape of

the Rφ′φ′ with the major axis inclined at 45-degrees, reported in a previous paper (Feng et al.,

2007). Also, considering the location of the correlation peaks with respect to the basis point,

the results are consistent with the location of the vortex core in linear stochastic estimates of

the velocity field given the event of φ′(xo) = +2φ′rms(xo) (Feng et al., 2007). Notice also that

with increasing downstream distance,the size of the correlation area becomes steadily larger.

However, the peak values of Rλciφ′ , shown in Fig. 2.22, also first increase, then decrease in

the high Re case. Compared to the high Re case, the correlation area in the low Re case is

considerably larger and the peak values are lower. Also, unlike the high Re case, the negative

region not only occupies most of the third quadrant but also the fourth quadrant, with the

contour line of Rλciφ′ = 0 inclined at approximately 30-degree with respect to the x direction.

2.6.2 Linear stochastic estimation

One useful tool to interpret spatial correlation data is linear stochastic estimation, in which

conditional averages are calculated from measured correlation fields (Adrian, 1994; Olsen and

Dutton, 2002, 2003) Although conditional averages can be calculated directly from an exper-

iment dataset, this requires either a very large ensemble size or averaging over a large flow

region instead of a particular location in the flow, due to the low population density of the

vortices. Derived directly from the two point spatial correlation, LSE can give the typical

underlying flow structures more precisely with a smaller ensemble size.

Letting λci(X,Y ) be the swirling strength value at location (X,Y), the linear stochastic

estimate of the velocity fluctuation u′i(x, y) over the entire flied given the condition λci(X,Y )

is,

〈u′i(x, y)|λci(X,Y )〉 ≈ Liλci(X,Y ) (2.3)

The linear coefficient, Li , can be determined in the following way,

Li =
〈u′i(x, y)λci(X,Y )〉
〈λci(X,Y )λci(X,Y )〉

(2.4)
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, where 〈u′i(x, y)λci(X,Y )〉 is the ( unnormalized ) spatial correlation of u′i and λci.

As Christensen and Adrian (2001) argued, since the event of the conditional average is a

single scalar value, the character of the conditionally average results remains the same for all

values, just the magnitudes are simply amplified and attenuated. Thus, the thresholding of

the λci is not necessary for just examining the fluctuation field. But to see the real typical

structure in the flow field, the estimated fluctuation fields need to be added with the mean

field. Thus, the thresholding of the event will only change the size of the structure. Here we

chose the event of λci = 2λrmsci in order to get the features of typical structure in the flow.

Adding the mean field and subtracting U(xo) from each vector results in Fig. 2.23, which

shows the typical velocity field of one vortex at different downstream locations. All the roller

structures revealed by the linear scholastic estimation are spindle-shaped with a stream-wise

major axis. The tilting of the major axis becomes much more visible here than in the spatial

correlation fields. The high momentum of the jet pushes the upper part of the roller structure

outwards, and the low momentum fluid was entrained inwards to the center of the jet by the

lower part of the structure. In the near-field of the jet, there are two vortices seen adjacent

to the vortex at the base point in both upstream and downstream direction. As the flow

progresses downstream, the roller structures grow larger. Although the sizes of the vortex

cores decrease, the large-scale coherent motions of the flow, which the swirling motions at the

base point are part of, are indeed growing. Comparing the two Reynolds number case, the

roller structures in Re= 20K are larger than those in the Re= 50K case.

2.7 Conclusions

A vortex identification method based on swirling strength was employed to analyze the

properties of vortices in a confined rectangular jet. Experimental data from simultaneous

PIV/PLIF experiments and high speed PIV experiments were used in this analysis. Swirling

strength fields were computed from velocity fields, and then filtered with a universal threshold

of |Λci| ≥ 1.5Λrmsci . By identifying clusters of filtered Λci, vortex structures were identified.

Instantaneous swirling strength field data indicate that positively (counterclockwise) rotat-
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ing vortices are dominant on the left side of the jet and negatively (clockwise) rotating vortices

are dominant on the right side. The population density, average size and strength, deviation

velocity of vortices were calculated and analyzed, in both the cross-stream direction and the

streamwise direction. In the region close to the channel inlet, the population density, average

size and strength all show high values on both sides of the center stream. There are some

counter-rotating vortices next to the dominant direction vortices, that are indicative of a wake

region formed downstream of the splitter plate tips by the boundary layers that form on both

sides of the splitter plates. At the further downstream location, X/d = 3.5, the wake disap-

pears, as do most of the counter-rotating vortices. As the flow develops towards channel flow

at the farthest downstream locations, the distribution of the vortices spreads throughout the

entire reactor. The mean size and strength of the vortices decrease continuously downstream

from the channel inlet. The mean vortex deviation velocity in both the X and Y directions

are zero at the location of the population density peak. The signs of vortex deviation velocity

V indicate the vortices move from the high vortex population regions to the low vortex pop-

ulation regions. The signs of mean deviation velocity U are negative on the side near the jet

center, and positive on the side of near center of the outer stream, which indicates vortices

transfer low momentum fluid to high velocity regions and transfer high momentum fluid to the

low velocity regions.

The development trends of vortex size and strength were also identified by tracking vortices

using high speed PIV experimental data. Both the average tracked vortex strength and size

decrease with increasing downstream distance overall. However the average tracked vortex size

increases before it starts to decrease in the area close to the jet inlet.

Two point spatial cross-correlations of swirling strength with velocity fluctuations and

concentration fluctuations were calculated at the location of the left peak of turbulent kinetic

energy. The cross correlation fields of swirling strength and fluctuations of the two velocity

components exhibit a “butterfly” like shape. The right wing ofRλu′ contains positive values and

the left wing contains negative values. The axis of Rλu′ , the contour line of Rλu′ = 0, is oriented

vertically in the streamwise direction, slightly tilted toward the outer stream. With increasing
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downstream distance, the angle of orientation of the Rλu′ axis becomes smaller. Also at the

X/d =1.0 downstream locations for both Reynolds number cases, there are a weak negatively

correlated regions upstream of the strong positively correlated region close to the basis point

and a weak positively correlated region downstream of the strong negatively correlated region

in Rλv′ . This indicates that a vortex at the basis point is usually accompanied by at least

one counter-rotating vortex. The axis of Rλv′ is aligned with the cross-stream direction with

negative values downstream of the basis point and positive values upstream of the basis point.

There are also two correlated areas in the Rλφ′ correlation field; one positively correlated region

downstream of the basis point and one negative upstream of the basis point, indicating that

the positively rotating vortices bring high concentration field from the center stream to the

side stream downstream of the vortex core and bring the low concentration field from the side

stream to the center stream upstream of the core. Finally, linear stochastic estimation was

used to calculate conditional structures. The estimation was based on the swirling strength

values at chosen locations in the flow. The large-scale structures in the velocity field revealed

by linear stochastic estimation are spindle-shaped with a titling stream-wise major axis.
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Figure 2.1 Photograph and schematic of the confined planar jet test section

  
Figure 2.2 Schematic of the optical setup for the combined PIV and PLIF

experiments
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Figure 2.4 Example of vortex identification in an instantaneous PIV veloc-
ity field in near-field 0 < X/d < 2.5and far-field 6.5 < X/d < 9
of the jet, at Re = 20K. (a) The Galilean decomposition of
this instantaneous velocity field with 0.7Uc, where Uc is the
mean velocity of the center stream at each X location. (b) Lo-
cal Galilean decomposition of vortices with the velocity at each
vortex core. The contours of Λci = 1.5Λrmsci are also shown in
the background of the figure (a) and (b).
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Figure 2.5 Local vortex population density of positively and negatively ro-
tating vortices at different streamwise locations. ©: positively
rotating vortices, · : negatively rotating vortices.
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Figure 2.6 Mean populations of positively rotating vortex in the half jet
width (1cm) streamwise long region between the centers of the
center of center stream (Y/d =0) and the center of left side
stream (Y/d = -1). ©: Re = 50K, � : Re = 20K.
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Figure 2.7 Profiles of the size of vortex cores. ©: positively rotating vor-
tices, · : negatively rotating vortices.
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Figure 2.9 Profiles of the peak swirling strength value of vortex cores. ©:
positively rotating vortices, · : negatively rotating vortices.
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Figure 2.11 Vortex deviation velocity in the cross-stream direction. ©:
positively rotating vortices, · : negatively rotating vortices.
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Figure 2.12 Vortex deviation velocity in the streamwise direction. ©: pos-
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CHAPTER 3. Study of Coherent Structures in a Confined Rectangular

Wake

A paper submitted to Experimental Thermal and Fluid Science

Bo Kong, Michael G. Olsen, James C. Hill and Rodney O. Fox

Abstract

Vortex behavior and characteristics in a confined rectangular wake were examined using

swirling strength as a defining characteristic of a vortex. Instantaneous swirling strength field

shows that positively (counterclockwise) rotating vortices are dominant on the right side of

the wake and negatively (clockwise) rotating vortices are dominant on the left side. The

population density, average size and strength of vortex cores all shows high peak values both

sides of the wakes, while these peaks decrease quickly and the profiles broaden as the flow

progresses downstream. The changing of vortex core maximum strength is seen relatively

faster than the change of the core size. The results of mean cross-stream wise deviation velocity

of vortex core shows the vortices in the wake spread from the neighborhood of wake to the

centers of the free stream, and the mean streamwise deviation velocity indicates that vortices

bringing high momentum fluid of the free stream into the the wake. Two point spatial cross-

correlations of swirling strength with velocity fluctuations and concentration fluctuations were

also calculated. All the cross correlation fields shown here exhibit a “butterfly” like shape, with

one “wing” with positive correlation values and the other “wing” with negative values. The

axises of correlation fields are oriented in the streamwise direction in Rλu′ contours, and they

tile towards the wake center on the both sides of the wake,while the axises in Rλv′ are oriented

in the cross-stream direction, and they tile downstream on the both sides of the wake. The
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Rλciφ′ results show some similarity to those of Rλv′ , indicating the vortices play a similar role

in mass transfer as in momentum transfer. Linear stochastic estimation was used to interpret

the cross correlation result and visualize the underlining large scale coherent structures. The

LSE results show a clear vortex street pattern in far fields of the wake, indicating the vortices,

developed independently on both sides of the splitter plates, are reorganized and coherent as

the flow develops downstream.

3.1 Introduction

Turbulent shear flows (e.g., wakes, jets and mixing layers) are commonly seen in many

engineering applications involving with fluid flows. The coherent structures in these shear

flows play key roles due to the structures’ significant contribution to noise generation, drag,

fluid entrainment and the transfer of mass, momentum and heat. For this reason, the study

of coherent structures in turbulent shear flows has long been the focus of the a lot of fluid

dynamics researchers. However, the detailed study of properties of these structures, such as

population, size, circulation, and energy, is still lacking, which can be useful in the understand-

ing of turbulence and property transport and can aid in the development of more efficient and

more environmentally benign applications. Moreover, with increasing feasibility and popular-

ity computer modeling techniques, such as large eddy simulation, where the largest scales of

the turbulence are resolved, detailed measurements of the behavior and characteristics of large-

scale structures can be used to validate these computation methods on a different perspective.

The primary objective of the work presented here is to use a vortex identification method to

analyze the experimental data collected in a liquid-phase turbulent confined, rectangular wake

with regards to the population, size, kinematics and characteristics of vortices within this wake

flow.

Wake flows generated by two-dimensional bluff bodies have been the focus of many fluid

researchers since early 1900’s. There are some detailed review and bibliography on this type

of flow, like Berger and Wille (1972) , Oertel Jr (1990) and Roshko (1993) . The coherent

structures in wake flows, like von Kármán vortex street, are among the most recognized
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structures in fluid flows. Due to its engineering significance and the simplicity in setting up

such an arrangement in an experimental or computational laboratory, in the case of the circular

cylinder wake alone, there have been literally hundreds of papers published (Williamson, 1996).

For example, Cantwell and Coles (Cantwell and Coles, 1983) investigated transport processes in

the near wake of a circular cylinder using an X-array of hot wire probes for a Reynolds number

of 140,000. Ong and Wallace (Ong and Wallace, 1996) also conducted hot-wire measurements in

the wake of a circular cylinder at a Reynolds number of 3900. They noticed that measurements

of the streamwise velocity component were inaccurate for such flow fields and the near wake

region was pre-dominantly 2-dimensional. Using rectangular and square cylinders as wake

generators are also common in wake studies . With laser Doppler velocimetry (LDV), Nakagawa

et al. (Nakagawa et al., 1999) measured the unsteady turbulent near wake of a rectangular

cylinder in channel flow and found that the turbulent intensities on the centerline of the

channel reached their maxima near the rear stagnation point of the recirculation region. Also

there are some studies done on the wakes generated by a flat plate normal to the streamwise

direction, which is s characterized by fixed separation points at the edge of the plate. Najjar and

Balachandar (Najjar and Balachandar, 1998) conducted a numerical simulation of a Re=250

wake after a normal flat plate and found that except the frequency of the prime vortex shedding,

there is a nearly 10 time lower frequency unsteadiness in the wake.

The bluff bodies, like those mention above, educe flow separation behind them when

Reynolds number is high enough, which is one of the key issues in most the previous wake

studies. However, in chemical engineering applications, the improvement of turbulent mixing

and reaction is the main subject, while flow separation is not commonly seen. The wake gen-

erated by a flat plate parallel to the streamwise direction, or so called “splitter-plate flows”

(Williamson, 1996), can be considered as the simplest form of wake, which is characterized

by the absence of a wake producing blunt body with the inevitable local separation and large

pressure gradients (Ali and Ibrahim, 1996). This form of wake flow is of great interest to the

study of the turbulent mixing process instead of the drag or lift force produced by the flow

separation, such as the mixing of reactants in chemical processing. The wake is formed by the
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meeting of two boundary layers at the tip of the splitter plate, which are developed on the

two side of the plate. Taneda conducted a series studies on the wake behind a flat plate using

photograph of wake and hot-wire speed meter. In Taneda (1956), he found that for the pure

laminar case, the wake begins to oscillate sinusoidally some distance downstream at about Re

= 700 (Re is UL/ν, where L is the length of the plate). Later he also found that not only lami-

nar wakes but also turbulent wakes show a strong tendency to form von Kármán vortex street

Taneda (1958). Another experimental study conducted by Sato and Kuriki (Sato and Kuriki,

1961) was made of the laminar-turbulent transition of a wake behind a thin flat plate which

was placed parallel to a uniform flow at subsonic speeds. They also observed that a sinusoidal

velocity fluctuation which is axisymmetrical with respect to the centre-line of the wake, and

the frequency of fluctuation is proportional to the 2
3 power of the free-stream velocity, and the

amplitude increases exponentially in the direction of flow. When the wake reach turbulent,

velocity fluctuations in the non-linear region are still sinusoidal and two-dimensional, but the

growth rate deviates from being exponential due to non-linear effects. There are also some

analytical instability studies of laminar wake behind flat plate, like Papageorgiou and Smith

(1988, 1989). Overall, most of the previous studies were focused on laminar cases. However,

the most of the flows in chemical mixers/reactors are turbulent, and the behavior of turbulent

vortices in the wake of a flat plate parallel to the streamwise direction remain relatively rare.

A lot of the earlier studies were conducted using some flow visualization techniques or point-

wise velocity measurements, such as hot-wire or LDV. In the past two decades, particle image

velocitimetry (PIV) has become a popular experimental technique for turbulence studies, which

is well suited for visualizing and identifying vortical structures, since it provides instantaneous

two-dimensional velocity field data . Methods of analyzing and interpreting these spatially

resolved velocity field data were discussed in Adrian (1999) and Adrian et al. (2000a). Prime

examples of using PIV to study coherent structure are provided by Christensen and Adrian

(2001, 2002b,a) in the turbulent boundary layers , Agrawal and Prasad (2002a,b, 2003) in

turbulent axisymmetric jets, and also Huang et al. (2006); Perrin et al. (2007); Kim et al.

(2004) in wake flow behind a circular cylinder. These sccefucessful studies shows the virtue of
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PIV technique on coherent structure research. Confined with planar laser induced fluorescence

(PLIF), simultaneously measurement of velocity and spicy concentration can be achieved ,

which has already been proven to be a powerful tool to study the turbulent mixing, such as

Westerweel et al. (2005, 2002) in a turbulent jet. . In the current study, the simultaneous

PIV/PLIF technique was used in order to study the role of coherent structures in turbulent

mixing.

With increasing popularity of PIV techniques, many methods have been proposed and

implemented to extracting turbulence information and identify vortices in instantaneous two-

dimensional velocity fields, such as those obtained by PIV. One of the prime review on the

topic is Adrian et al. (2000a), in which a number of vortex eduction techniques were described

and compared on their effectiveness in identifying vortices. They concluded that swirling

strength provides a reliable means of extracting the small-scale vortices, including those which

are not visible in velocity decompositions. Vollmers (2001) also validated and compared several

coherent structure eduction methods. A similar conclusion was reached in his work, which is

the swirling strength is the best indicator for the presence of vortices in turbulent flow. The

concept of swirling strength, λci, was introduced by Adrian (1999); Wu and Christensen (2006)

as the imaginary part of the complex conjugate eigenvalues (λcr ± λci) of the local velocity

gradient tensor. The physical meaning of λ−1ci is the period required for a fluid particle to swirl

once about the λcr-axis (Piomelli et al., 1996; Adrian, 1999). Therefore, a non-zero λci indicates

a local swirling motion, and spatially connected regions of non-zero λci represent vortices (Wu

and Christensen, 2006). In a two-dimensional flow field, vortices can either positive or negative

in the direction normal to two-dimension plane, while the value of λci is always be positive

by nature, which is inadequate to distinguish the difference. The problem can be solved by

multiplying λci the sign of the local vorticity to capture the direction of rotation at each location

in the flow field, which was proposed by Tomkins and Adrian (2003) . The first advantage

of this method is that it is frame independent, meaning the information bulk motion of flow

field where the vortex is embedded is not necessary. Also, it only reveals the regions with

vortices, which means the flow regions with high vorticity but no local swirling motion, such



51

as shear layers, do not produce non-zero λci. Due to the sensitivity of velocity gradient to

noise, vortex extraction methods based on the velocity gradient are often not applicable to

experimental data if no smoothing has been applied (Vollmers, 2001), since the method may

falsely identify measurement noise as vortices. As (Wu and Christensen, 2006) suggested, in

addition to carefully choosing experiment parameters to reduce the measurement uncertainty

and applying slight smoothing, a filter with a threshold of |Λci| ≥ 1.5Λrmsci was applied to

each instantaneous swirling strength field to limit the influence of experiment noise. A similar

study on vortices in a confined rectangular jet with a co-flow used this technique was conducted

earlier by the authors, thus more detailed implementation of the technique can be found in

Kong et al. (2010).

The remainder of the paper is organized as follows. In Section 2, the rectangular-wake

flow facility and the experimental methodology are introduced and Section 3 discusses the

properties of vortices in the wake. Then section 4 gives the spatial correlation and linear

stochastic estimation results. A summary of results and conclusions is given in Section 5.

3.2 Experimental Facility and Methodology

The experimental data used in the current study was collected by Feng and published in

Feng et al. (2010). The following is a brief description of the flow facility and experiment setups,

and more detailed information can be found in Feng et al. (2010). The flow facility used in the

experiments presented here is shown in Fig. 3.1. The test section in which the measurements

were performed was made of Plexiglas, with a rectangular cross-section measuring 60 mm

by 100 mm and with an overall length of 1 m. Three flow streams entering the test section

were separated by two splitter plates, after passing through its own flow conditioning section

consisting of a packed bed and turbulence reducing screens and a 16:1 contraction section. The

slope of the surface of the splitter plates is 3 degrees along the side channels and 1 degree along

the center channel, and the thickness of the tips of the splitter plates are less than 0.5 mm.

Although the splitter plates used in the current study is not ideal flat plate perfectly parallel

to the streamwise direction, it provides the same cross-section area for three streams and a
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smooth connection between the flow conditioning section and the test section The volumetric

flow rate of each stream was 1.0 l/s, corresponding to a mean velocity of 0.5 m/s. The Reynolds

number of this wake flow was 37,500, based on the area-averaged velocity and the hydraulic

diameter of the test section.

In the simultaneous PIV/PLIF measurements, a New Wave Research Gemini PIV laser

was used to produce a 0.5 mm thick laser sheet, which passes through the centerline of the test

section in the z-direction. Approximately 24 grams of hollow glass spheres were added to the

water reservoir with total volume of 3500 liters in PIV measurements. The nominal diameter

of the seed particles was 11.7 µm and the density of the particles was 1.1 g/cm3. In the PLIF

measurements, Rhodamine 6G was used as fluorescence dye, and added to the water reservoir

feeding the center stream, while the other two streams were pure water. The concentration

of the fluorescence dye in the center stream is 45 µg/l. PIV and PLIF images were obtained

using two 12-bit LaVision Flowmaster 3S CCD cameras. The image magnification of the two

CCD cameras was 0.12, and the numerical aperture was 8 for PIV and 5.6 for PLIF. A dichroic

mirror (Q545LP, Chroma Technology Corp.) was placed at an angle of 45◦ to the laser sheet

to separate the light paths and direct them to either the PIV or the PLIF camera. The PLIF

camera lens was filtered with a long-pass optical filter (E560LP, Chroma Technology Corp.),

and the PIV camera lens was filtered with a narrow-band-pass optical filter (Z532/10X, Chroma

Technology Corp.) A multi-pass cross-correlation technique with decreasing window sizes was

used to compute the velocity field, and the final interrogation spot size is 16 pixels by 16 pixels.

With 50% overlap between interrogation windows, the velocity vector spacing was 0.45 mm in

both the x- and y-directions. The in-plane spatial resolution of the PLIF measurements in the

present study was actually limited by the flow area imaged per pixel, which was approximately

56 µm.

3.3 Vortex Characteristics Analysis

To assistant in the understanding of the flow configuration of current investigation, the

profiles of the mean and r.m.s. (root mean square) of streamwise velocity were given in Fig.
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5.10 at 4 different downstream locations, X/d=1, 4.5, 7.5 and 12 . Just downstream of the

splitter plate tips, at X/d=1, the mean streamwise velocity profile shows two wake regions

appear just downstream of the tips of the splitter plates as the boundary layers on the splitter

plate surfaces merge downstream of the tips. The profiles of rms streamwise velocity displays

two peaks in each wake, which show that the high fluctuation peaks in the boundary layers

on the walls of splitter plates remain distinct for some distance downstream of the splitter

plate tip. The velocity deficit of the two wakes diminishes quickly at the further downstream

locations. The two wake regions meet at X/d=4.5 near the channel centerline, as seen by

the potential core in the center stream disappearing at this position. At the same time the

two peaks of rms streamwise velocity become indistinct and only a single peak is observed in

each wake. At X/d=12, the velocity profile starts to approach the velocity profile of a fully

developed turbulent channel flow. More detailed experimental results, such as turbulent fluxes,

turbulent viscosity and dissipative, and turbulent Schmidt number, can be found in in Feng

et al. (2010) .

3.3.1 Instantaneous structures

The demonstration made in Kong et al. (2010) with the instantaneous swirling strength

field in jet flow case showed that the effectiveness of using the swirling strength as a vortex

identification method. In the present wake flow, a similar demonstration can be made, which

is shown in Fig. 3.4, at near-field 0 < X/d < 2.5 and 3.5 < X/d < 6 . The contours in

Fig. 3.4 (a1,a2) are instantaneous swirling strength fields, which are filtered with a universal

threshold of |Λci| ≥ 1.5Λrmsci and the obtained strength clusters are shown in Fig. 3.4 (b1,b2).

Note that due to spatial resolution limitations, clusters of Λci with fewer than three grid points

across their span in both the x and y directions are not considered. The vectors in Fig. 3.4

(a1,a2) are the mean-bulk Galilean decomposed velocity field, which reveals only the vortices

moving at their respective spatial convective velocities. And those in Fig. 3.4 (b1,b2) are the

local Galilean decomposed velocity vectors, which means the local convective velocities have

been subtracted from neighboring points around the vortex centers, which all display a clear
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swirling motion. This shows again the swirling strength as a vortex identification method can

work effectively in the present wake flow.

Also with Fig. 3.4, some observations can be made on these instantaneous vortices. As

expected, on the right side of the both wakes, the positively (counterclockwise) rotating vortices

are dominant, while negatively rotating vortices are dominant on the left side of the wakes.

However the distribution of the vortices seems quite random and doesn’t display as the large-

scale structural array, like vortex street, which usually seen in wake flows. Besides the fact that

the Reynolds number of the current wake flow is high, meaning the flow itself is quite turbulent,

the vortices on both sides of the wake are less coherent, since they are the continuation of the

vortices developed independently on both sides of the splitter plates. This is quite rare in

commonly studied wake flows, where a flow with a uniform free stream velocity passes a

obstacle. However, the type of wake flow is common in the engineering practices, where two

flow streams meet together parallelly. The linear stochastic estimated velocity fields based on

concentration fluctuation reported by Feng et al. (2010) actually shows the presence of the

vortex street in the wakes indeed. As we argued in Kong et al. (2010), the large-scale coherent

motions visualized by the correlation technique are not the swirling motions of the small-scale

vortices in the individual instantaneous velocity field. And the swirling strength clusters here

are the highly rotating part, the core of the vortices. In the other words, although the vortex

cores detected by the swirling strength, those highly rotating fluid particles in the instantaneous

flow fields seem random and incoherent, they are actually embedded in large scale coherent

motions. Compare the two downstream locations, the vortices apparently spread towards the

centers of three flow streams. Also notice that there are the positively (counterclockwise)

rotating vortices on the left side wall, and negatively rotating vortices on the right side wall.

However these vortices on the walls are not of the interest of the present study.

3.3.2 Vortex population

Fig. 3.5 shows Πp(n) cross-streamwise profiles at 4 downstream locations, X/d=1, 4.5, 7.5

and 12 . Πp(n) is herein defined as the local ensemble-averaged number of detectable positively



55

rotating or negatively rotating vortices whose centers reside at a given PIV grid node, the same

definition used in Kong et al. (2010) and Wu and Christensen (2006) . The profiles in Fig.

3.5 are the average vortices numbers on one flow realization over a half stream width (d/2 =

1cm) long area in the streamwise direction, instead of the results on just one grid point, to

minimize scatter in the profiles.

As the observations from the instantaneous vortices fields above, the population density

profiles of the positively rotating vortices show clear peaks on right side of the wake region and

also in the regions close to the left wall, and the profile of positively rotating vortices show peaks

on the left side of the wake and in the right wall region. At X/d = 1, the near field of the wake,

the vortices are highly concentrated in the region close to the wake center, where the splitter

plates are absent, since these vortices in the wake come from the vortices in the boundary layers

on the surfaces of the splitter plate. And there is almost no overlapping between the population

density profiles of positive and negative vortices. With increasing downstream distance, the

these population peaks decrease quickly while the population profiles also broaden. Also notice

that the overlapping of the different direction vortices increases in the wake regions as the flow

progresses, indicating the vortices in the wake can move across the center of the wake as the

velocity defect of the two wakes diminishes. Compared with the profiles at the center of the

three streams, the overlapping of two profiles doesn’t appear until the potential cores in the

three streams start to disappear. At further downstream location, X/d = 12, the peaks of

the population density profiles start to diminish and the profiles start to approach the vortex

distribution of a channel flow. Also notice that the highest vortex population actually occurs

in a very small region of the wall boundary layers, which is not a surprise because of the higher

velocity gradient in the wall region. And the profiles in the wall boundary region almost remain

unchanged while the flow develops.

Figure 3.6 shows the vortex population in the streamwise direction, which is obtained by

adding the number of vortices between the center of the center stream Y/d = 0 and the center

of the left side stream Y/d = -1 in 1cm long region, like from X/d = 0.75 to X/d = 1.25 on

one instantaneous flow realization, And then averaging over all flow realizations . In this way,



56

the streamwise population changing trend of detectable positively rotating vortex can be more

easily observed. The number of the vortices in the same size region per velocity realization at

different different downstream locations monotonously decreased with increasing downstream

locations, and the slope of decreasing is almost linear. Compared to the jet case in Kong et al.

(2010) , in which the vortex population first increases and then decreases, the results here are

reasonable because in the wake flow the driving force of behind vortex generation, the velocity

deficit of the wake, only decreases once the flow passes the obstacle, while in the jet there

is new shear created once the jet flow is formed. There are still new vortices generated, but

the decay and dissipation of these vortices is overwhelmingly dominant on the flow developing

process. Also notice that the number of negatively rotating vortices are slightly higher than

the number of positively rotating vortices, which can be explained by the mean streamwise

velocity profiles in Fig. 5.10 . The mean velocity of the left stream is a little bit higher than

the center stream, which results in a little more negatively rotating vortices.

3.3.3 Size and strength of vortex cores

In addition to the vortex population density, other properties of the the identified vortices

can be obtained after the vortices are identified on instantaneous flow realizations, such as the

size and strength of vortex core are presented in a similar manner to the vortex populations.

Note that the smallest size of swirling strength cluster we can identify is d2/400. Also note

that inside the swirling strength clusters, the strength value is not evenly distributed. Since

the highest swirling strength value of the vortex core gives the maximum rotation speed of the

given vortex, it is used to characterize the vortex strength and averaged to obtain the results

here.

Figure 3.7 shows the mean vortex core size profiles across the channel, normalized using

d2, and Fig. 3.8 gives the mean vortex core strength, normalized by U0/d. The values of mean

vortex core size appear to be rather small compared to the stream width, and the length scale

is about one tenth of the of the stream width, d. The mean size of vortex cores profiles seem

similar to the profiles of the vortex population density, and show high peak values in region
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of wake and also in the wall boundaries, where the vortex population is highest, the average

vortex size is also the largest, especially at X/d = 1. As the flow progresses, the values of

the size peaks decrease and locations move away from the center of the wake, like the profiles

of the vortex population density. Although there is some overlapping between the profiles of

different direction rotating vortices in the region of the stream centers, considering the vortices

population density in those regions is extremely low, the overlapping is not significant. Also

notice that the size of the vortices in the wall boundary region are quite constant, keeping

high peek values close to the walls. However, in the near wake, the current vortex areas are

about two orders of magnitude smaller than in the previous report Feng et al. (2010) ; in the

far wake, they are almost four order of magnitude smaller. Again, this can be explained based

on the difference between the two measurement techniques, as we argued in Kong et al. (2010)

and also in previous section. In Fig. 3.8, the difference between the strength of vortex cores

and the size is quite obvious. At X/d = 1, there are still very distinct peaks on the profiles

of the strength of vortex cores , at where peak values of population and size are located. The

center of the wake has the maximum vortex population density, the largest vortex size, and the

strongest swirling motion. However at all the other downstream locations, the peaks disappear,

the strength of the vortices are quite uniform, not sensitive to the cross-streamwise locations,

which is also observed in the far-field of the jet case Kong et al. (2010). On both the current

wake case and the previous jet case, the flow is confined by the two side walls. Once the flow

passed the transition stage, it start to approach the fully developed channel flow, the strength

of the vortex cores are quite uniform except the small regions close to the walls.

Instead of the showing the average size and strength of vortex cores at different downstream

locations, the probability density functions of these properties were calculated and given in

. Fig. 3.9 and 3.8 to show how the distribution of these values change in the streamwise

direction. In Fig. 3.9 , the number of vortices with large core size decreases and the number

of small ones increases as the flow goes down stream, which indicates when those vortices

originated from the boundary layers on the surfaces of the splitter plates decay and dissipate,

they also break down to small size vortices. As we mentioned earlier, the vortex detection
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technique has a lower-limit on spatial resolution, d2/400, which is indicated by the lower

end of the pdf profile of the core size. Notice that the locations of the peak values of the

profiles of core size pdf remain almost constant in all downstream locations. Although the

pdf profiles show vortex number decreases quickly to almost zeros when the size is lower

than the peaks, it doesn’t mean there population of vortices of that size in the flow is low,

which actually is expected to become higher, in the other words, more and more small size

vortices as the flow develops downstream. This can be explained by the dual filtering process

in the vortex detection procedure to eliminate the effect of PIV measurement noise, which

is already described above. The a filter with a threshold of |Λci| ≥ 1.5Λrmsci was applied to

the instantaneous swirling strength fields first , and then a filter based on cluster size also was

applied to the all the identified swirling strength clusters. Therefore, some of the small vortices

could be missed even they are larger than prescribed spatial filter size because their strength

is less the strength filter threshold value. Fig. 3.8 shows a similar trend as the core size

distribution, the number of high strength vortices decreases and the number of low strength

vortices increases as the flow develops. In the other words, the vortices in the near wake region

are much stronger than the vortices in the far wake. Also notice that the shape of the core

distribution change very rapidly in the near wake region and tends to stabilize in the far wake

region as the flow approaches fully developed. The effect of the dual-filtering procedure also

can be seen in the core strength distribution in the low value region, as the curves decrease to

zeros at the value of the filter threshold. These effect in the low value region is mainly caused

by the spatial limitation of the PIV measurements, and also in some degree caused by the

high sensitivity of the swirling strength method to measurement noise, since it is based on the

velocity gradient.

3.3.4 Deviation velocity of vortex cores

Another very important character of vortices can be examined here how the vortex moves.

Once the vortex is identified, the velocity of vortex cores can be obtained by mapping back to

the velocity field . Here we used the concept of deviation velocity of the vortex, the deviation of
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the instantaneous vortex convection velocity from the local mean velocity, which is proposed in

our previous study in the jet flow case Kong et al. (2010). It can be calculated by subtracting

the local mean velocity from the instantaneous velocity values of the vortex cores. Figure. 3.11

and 3.12 show profiles of the average cross-stream (V) and streamwise (U) deviation velocities

cross the channel at four downstream locations, which all are normalized by U0 = 0.5m/s.

Figure 3.11 shows that the mean deviation velocity V is zero at the location of the popula-

tion density peak for both the positively and negatively rotating vortices. The results here are

very similar to the results in the jet flow case. The profiles indicating the vortices in the wake

simply move towards where the vortex population density is low, the center of free stream and

the other side of the wake. The profiles of the mean deviation velocity U of the positively and

negatively rotating vortices are nearly overlap on each other as shown in Fig. 3.12. At the

location of the population density peak, the mean deviation velocity U is very close to zero.

Both the profiles of positively and negatively rotating vortices shows high positive peaks in

the wake center and high negative peaks close to the free stream centers, which corresponds

to the vortices bringing high momentum fluid of the free stream to the low velocity region, the

wake, and transferring low momentum fluid from the wake to the centers of the free streams,

which is the same in the previous jet case.

3.4 Spatial correlation functions and linear stochastic estimation

3.4.1 Two-point spatial correlations

Following the the same definition used in the previous study, the two point spatial cross

correlation of swirling strength and the fluctuation of σ is defined as

Rλσ′(X,Y ;x, y) =
〈λci(X,Y )σ′(x, y)〉√
〈λ2ci(X,Y )〉〈σ′2(x, y)〉

(3.1)

where (X,Y) and (x,y) are the coordinates of the basis point (i.e. the point about which the

correlation is calculated) and an arbitrary point in the flow field, respectively Kong et al.

(2010). In the present study of wake flow, instead of locations along the left peak of turbulent

kinetic energy, four points at different cross-stream locations on each side of the wake (total
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eight points ) and three streamwise locations, X/d = 1, 4.5, and 7.5 , were chosen as basis

points. Note here the absolute value of swirling strength of λci is used, instead of the the

swirling strength with the sign Λci, giving rotating direction, since velocity data used here

already carry that information. The spatial correlations of Rλu′ are presented in Figs. 3.13,

3.15, and 3.17, correlations of Rλv′ are presented in Fig. 3.14, 3.16, and 3.18, and correlations

of Rλciφ′ are presented in Fig. 3.19, 3.20, and 3.21 . In these figures, the first row of figures

show the correlation of on the left side of the wake and second row of figures give results on

the right side of the wake, with the basis point moving from the left to the right, crossing the

center of the left wake in the middle. The streamwise flow direction is from the bottom to the

top of the figures.

The cross correlation fields of swirling strength and fluctuations of the velocity at all lo-

cations exhibit “butterfly” like shapes with different orientation with respect to the velocity

component, similar to the correlations results in our previous jet study Kong et al. (2010) and

the results in boundary layer in Christensen and Adrian (2001). The symmetry line of this

“butterfly” shape, called “the axis” of these correlation fields hereafter, is oriented vertically

( in the streamwise direction) in Rλu′ contours and oriented horizontally ( in the cross-stream

direction) in Rλv′ contours, in which the contour lines of zero correlation overlaps in the region

of the basis points. Since on two sides of the wake vortices rotate in different direction, the

cross correlation fields carry different signs on the two ”wings” on each side of the wake. On

the left side of the wake, the right wing of Rλu′ contains negative values and the left wing

contains positive values, while the the upper wing of Rλv′ contains positive values and lower

wing contains negative values, indicating the vortices in this region dominantly rotate nega-

tively and bringing the high momentum flux to the wake. On the right side of the wake, the

correlation fields are almost exact axisymmetric to those on the left side, with the signs on the

two “wings” switch sides , since the vortices on the right side of the wake dominantly rotate

positively.

In the region close to the center of the wake, the two wings of the correlation fields of Rλu′

at all three downstream locations are axisymmetric about the their own axis, while those on
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each side of the wake strongly tilt towards to the wake center. The tilting of the correlation

fields can also observed in the Rλv′ fields, with the axis of the correlations slightly tilt upwards

on the side closer to the wake center. However, by carefully examining these plots, there is no

obvious trend on how the angle of tilting change with locations of the basis points. This tilting

of the axis , which is also reported in the previous jet study Kong et al. (2010), suggests the

strong momentum transfer in these regions and also the high velocity gradients in this narrow

wake region. As the flow develops downstream and the wake decays, the tilting of the axis

becomes less significant due to smaller and smaller velocity gradients.

Also notice there is a trend in how the size of the two wings of the correlation fields changes.

In the region close to the center of the wake, the upper wings of the correlation fields of Rλv′

are much larger than the lower wings, while in the far left and far right figures, the lower

wings are larger than the upper wings, and in between the two wings are more balanced. The

upper wing of the Rλv′ represents the positive turbulent flux from the free stream to the low

momentum wake region, while the lower wing represents the negative turbulent flux from the

wake to the free stream. In the the far left and far right area of the wake, the high momentum

regions, the positive velocity fluctuations are less likely than than negative fluctuations, and

the negative turbulent flux is more significant, which is also suggested the very weak correlation

values on the wings of Rλv′ far away from the wake. In the wake center, the positive velocity

fluctuations, the positive turbulent momentum flux are very dominant, but they are educed

by both positively and negatively rotating vortices. Thus, the upper wings of Rλv′ are large

and strong, while the two wings of Rλu′ are quite symmetric.

Notice also, there is a weakly correlated negative region upstream of the strong positive

region close to the basis point and a weak positive region downstream of the strong negative

region in Rλv′ , which is more noticeable in further downstream locations , like X/d = 7.5. This

is the indication of the presence of adjacent vortices upstream and downstream of the vortices

at the basis points. Last, as the flow progresses downstream, the correlation areas of both Rλu′

and Rλv′ grow larger.

Figure 3.19, 3.20, and 3.21 show results of Rλciφ′ , the cross correlation of swirling
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strength with the concentration fluctuation. The shape and characteristics of the correlation

fields of Rλciφ′ are similar to results of the Rλv′ , showing the deep connection between the

momentum and mass transfer. There are also two correlated areas in the contours; one pos-

itively correlated region and one negatively correlated region, which the distribution of the

sign of correlation values are the same as those in the Rλv′ . On the right side of the wake,

the positively rotating (counterclockwise) vortices bring high concentration fluid (i.e., positive

concentration fluctuations) from the center stream to the left side stream downstream of the

vortex core (the basis point) and bring the low concentration fluid from the side stream to

the center stream upstream of the core. On the left side of the wake, the negatively rotat-

ing (clockwise) vortices bring high concentration fluid upstream of the vortex core and bring

the low concentration fluid downstream of the core. Also as the corrections of Rλv′ , in the

wake center, the upper wings are larger than the lower wings, and in the far left and far right

locations, the lower wings are larger.

However, there are still some difference can be seen. It is noticeable that in near wake,X/d

= 1, the strong correlation areas of Rλciφ′ are relatively smaller than those of Rλciv′ , while in

the further downstream locations these areas grow quickly, and show nearly the same size as

Rλciv′ . This indicates that the different stages of mass and momentum transfer in the near

wake. The mass transfer from the center stream to the side streams only starts right after

the flow enters test section, while the momentum transfer already exits on the surfaces of the

splitter plates, as those boundary layer vortices. And then as the flow goes downstream, the

mass transfer catches on the momentum transfer fast. In Fig. 3.20 and 3.21, the correlations

in far upstream and downstream are very weak, unlike Rλv′ contours showing the neighboring

vortices. Also, considering these two horizontally oriented wings of the Rλciφ′ together, one can

imagine the auto-correlation of Rφ′φ′ will have a horizontally orientated elliptic shape, which

is reported in a previous paper (Feng et al., 2010). Notice also as the corrections with the

velocity fluctuations, the size of the correlation area becomes steadily larger with increasing

downstream distance.
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3.4.2 Linear stochastic estimation

Conditional averages can be calculated from measured correlation fields by using linear

stochastic estimation (LSE)technique, which is a useful tool to interpret spatial correlation

data above (Adrian, 1994; Olsen and Dutton, 2002, 2003) As we argued in previous jet study

Kong et al. (2010), due to the low population density of the vortices , directly calculating

conditional averages from an PIV experiment data requires either a very large ensemble size

or averaging over a large flow region instead of a particular location in the flow, while LSE

can give the typical underlying flow structures more precisely with a smaller ensemble size.

The linear stochastic estimate of the velocity fluctuation u′i(x, y) over the entire flied given the

condition λci(X,Y ) is, is given by following formula,

〈u′i(x, y)|λci(X,Y )〉 ≈ Liλci(X,Y ) (3.2)

The linear coefficient, Li , can be determined in the following way,

Li =
〈u′i(x, y)λci(X,Y )〉
〈λci(X,Y )λci(X,Y )〉

(3.3)

, where 〈u′i(x, y)λci(X,Y )〉 is the ( unnormalized ) spatial correlation of u′i and λci. Again we

chose the event of λci = 2λrmsci in order to get the features of typical structure in the flow,

same as the event used in jet vortex study. After 〈u′i(x, y)|λci(X,Y )〉 is calculated, the mean

velocity field was add and U(xo), the velocity values at the basis point the correlations were

calculated was subtracted from the all the vectors in the field, resulted in results in Fig. 3.22,

which is able to show the typical velocity field of one vortex at different downstream locations.

Here only the results at one basis point at one downstream location on the each side of the

wake were presented, while the first row figures in Fig. 3.22 are the results on the left side of the

wake and the second row are the those on the right side of the wake, and from left to the right

the basis point moving downstream. There are clear roller structures revealed by the linear

scholastic estimation at the all six locations, those on the left side of wake rotate negatively

and those on the right side rotate positively. All the roller structures are spindle-shaped

with a stream-wise major axis. Here, the tilting of the major axis toward the wake center

becomes much more visible here than in the spatial correlation fields. As the flow progresses
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downstream, the roller structures grow larger. Although the sizes of the vortex cores decrease,

as we already concluded in the previous section, the large-scale coherent motions of the flow,

which the swirling motions at the base point are part of, are indeed growing. Again this

suggesting the vortices detected by the swirling strength are likely the small scale structures

embedded in some large scale coherent motions. In the previous jet study, there are no any

neighboring structures visible in the LSE velocity fields. However, in Fig. 3.22 , there are some

weak structures can be seen at the upstream and downstream corner on the opposite side of

the wake, especially at the far field of the wake, at X/d = 7.5. To make those structures more

visible, all the vectors in Fig. 3.22 are made uniform length, shown in Fig. 3.23. This method

has been used in the vortex study in wall boundary layer by Christensen and Adrian (2001).

At X/d = 4.5 and X/d = 7.5, the neighboring counter-rotating vortices at the upstream and

downstream corner on the opposite side of the wake are very obvious in Fig. 3.23, with

nearly the same size as the vortices shown at the basis points. These structures here are very

resemble to the von Kármán vortex street, which is very common in typical wake flow after

blunt bodies. In the current wake study, the vortex street is not visible either in instantaneous

velocity fields or identified swirling strength clusters, while it is indeed still present in the flow.

There are two combined factors, which can explain this. First, the Reynolds number of the

current wake flow is quite high, 37,500, which means the flow is quite turbulent, and the size

of the vortices is expected to be rather small and more random, since the Kolmogorov length

scale is small. Second, although there is a flow conditioning section for each stream, which is

placed before the contraction and the splitter plates, the flow develops again on the walls of

contract section and splitter plates after it passes the packed spheres and screens. There are

separated boundary layers developed independently before the wake is formed. As we can seen

in Fig. 3.23, in the near wake, X/d = 1, the vortex street pattern is not quite identifiable,

because the vortices on each side of the wake are quite independent, incoherent to each other.

However, as the flow develops downstream, these vortices are reorganized and become more

and more coherent. Therefore the vortex street pattern is merged in the LSE fields at X/d =

4.5, 7.5, which is capable of detecting the large scale coherent structures in turbulent flow.
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3.5 Conclusions

As a continuation of the previous jet vortex study, a similar study of the vortices in a

confined rectangular wake flow was conducted in the current study, with the same flow rate for

all three streams. Experimental data from simultaneous PIV/PLIF experiments were used in

this analysis. The swirling strength were computed from instantaneous velocity fields, and the

filtered with a universal threshold of |Λci| ≥ 1.5Λrmsci . The remaining swirling strength clusters

were used as the indicator of a vortex in the flow field. Instantaneous swirling strength field

shows that positively (counterclockwise) rotating vortices are dominant on the right side of the

wake and negatively (clockwise) rotating vortices are dominant on the left side. In both the

cross-stream direction and the streamwise direction, the population density, average size and

strength, deviation velocity of vortices were calculated and analyzed. The population density,

average size and strength of vortex cores all shows high peak values both sides of the wakes,

while these peaks decrease quickly and the profiles broaden as the flow progresses downstream.

The change of vortex core maximum strength is seen relatively faster than the change of the

core size. The results of mean cross-stream wise deviation velocity of vortex core shows the

vortices in the wake spread from the neighborhood of wake to the centers of the free stream,

and the mean streamwise deviation velocity indicates that vortices bring high momentum fluid

of the free stream into the the wake.

Two point spatial cross-correlations of swirling strength with velocity fluctuations and

concentration fluctuations were calculated at three different streamwise locations and eight

cross-stream wise locations in the flow field. All the cross correlation fields shown here exhibit

a “butterfly” like shape, with one “wing” with positive correlation values and the other “wing”

with negative values. The axes of correlation fields are oriented in the streamwise direction

in Rλu′ contours, and they tilt towards the wake center on the both sides of the wake, except

those with basis points already located close to wake center oriented exact vertically. The axes

in Rλv′ are oriented in the cross-stream direction, and they tile downstream on the both sides

of the wake, except those near wake center. On the left side of the wake, the right wing of

Rλu′ contains negative values and the left wing contains positive values, while the the upper
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wing of Rλv′ contains positive values and lower wing contains negative values, indicating the

vortices in this region dominantly rotate negatively. Since on two sides of the wake vortices

rotate in different direction, the cross correlation fields carry different signs on the two ”wings”

on each side of the wake. In the region close to the center of the wake, the upper wings of the

correlation fields of Rλv′ are much larger than the lower wings, while in the far left and far

right figures, the lower wings are larger than the upper wings, and in between the two wings

are more balanced. The Rλciφ′ results show some similarity to those of Rλv′ , indicating the

vortices play a similar role in mass transfer as in momentum transfer. However, in the near

wake, the strong correlation areas of Rλciφ′ are relatively smaller than those of Rλciv′ , while in

the further downstream locations these correlations show nearly the same size as Rλciv′ . The

mass transfer from the center stream to the side streams only starts right after the flow enters

test section, while the boundary layers are already developed on the surfaces of the splitter

plates, thus strong momentum transfer already exist at the inlet. As the flow goes downstream,

the mass transfer catches on the momentum transfer. Also, as the flow progresses downstream,

all the correlation areas grow larger, indicating the large scale coherent motions grow larger.

Finally, linear stochastic estimation was used to visualize the underlining large scale coher-

ent structures. The estimation was based on the swirling strength values at chosen locations

in the flow. The results of LSE show clear roller structures at the basis points, and those on

the left side of wake rotate negatively and those on the right side rotate positively. The tilting

of the streamwise oriented major axis toward the wake center can be observed easily. As the

flow progresses downstream, the roller structures grow larger. Also a vortex street pattern can

be seen in these LSE results, which becomes more visible after the length of the vectors were

made the same, especially in further downstream locations. The pattern revealed by LSE,

which can be seen in instantaneous flow fields actually shows the unique characteristics of the

current high Reynolds number wake flow. When the flow enters the test section, there are

vortices developed independently on both sides of the splitter plates, which are incoherent to

each other. As the flow develops downstream, these vortices are reorganized and become more

and more coherent, therefore the vortex pattern becomes visible.
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Figure 3.1 Photograph and schematic of the confined planar jet test section

  
Figure 3.2 Schematic of the optical setup for the combined PIV and PLIF

experiments
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Figure 3.3 The mean and rms of streamwise velocity.
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Figure 3.4 Example of vortex identification in an instantaneous PIV ve-
locity field at 0 < X/d < 2.5and textit6.5 < X/d < 9 . (a)
The Galilean decomposition of this instantaneous velocity field
with 0.6U0, where Uc is the mean velocity of the center stream
at each X location. (b) Local Galilean decomposition of vor-
tices with the velocity at each vortex core. The contours of
Λci = 1.5Λrmsci are also shown in the background of the figure
(a) and (b).
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Figure 3.5 Local vortex population density of positively and negatively ro-
tating vortices at different streamwise locations. ©: negatively
rotating vortices, · : positively rotating vortices.

Figure 3.6 Mean populations of vortices in the half jet width (1cm) stream-
wise long region between the centers of the center of center
stream (Y/d =0) and the center of left side stream (Y/d = -1).
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Figure 3.7 Profiles of the size of vortex cores. ©: negatively rotating vor-
tices, · : positively rotating vortices.

Figure 3.8 Profiles of the peak swirling strength value of vortex cores. ©:
negatively rotating vortices, · : positively rotating vortices.
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Figure 3.9 Mean vortex size in the half jet width (1cm) streamwise long
region between the centers of the center of center stream (Y/d
=0) and the center of left side stream (Y/d = -1).

Figure 3.10 Mean the peak swirling strength value of the vortex cores in
a half jet width (1cm) streamwise long region between the
centers of the center of center stream (Y/d =0) and the center
of left side stream (Y/d = -1).
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Figure 3.11 Vortex deviation velocity in the cross-stream direction. ©:
negatively rotating vortices, · : positively rotating vortices.

Figure 3.12 Vortex deviation velocity in the streamwise direction. ©: neg-
atively rotating vortices, · : positively rotating vortices.
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CHAPTER 4. Predictive capability of Large Eddy Simulation for

pointwise and spatial turbulence statistics in a confined rectangular jet

A paper submitted to Chemical Engineering Science

Bo Kong, Anup Gokarn, Michael G. Olsen, F. Battaglia, Rodney O. Fox and James C. Hill

Abstract

Large-eddy simulations (LES) were performed for a confined rectangular liquid jet with

a co-flow and compared in detail with particle image velocimetry (PIV) measurements. A

finite-volume CFD library, OpenFOAM, was used to discretize and solve the filtered Navier-

Stokes equation. The effects of grid resolution, numerical schemes and subgrid models on

the LES results were investigated. The second and fourth order schemes showed the nearly

same performance, while the fourth order scheme costs much more computationally. Subgrid

model comparison showed that the locally dynamic procedure is necessary for complex flow

simulation. Model validation was performed by comparing LES data for the point-awise ve-

locity statistics such as the mean and the root-mean-square velocity, shear stress, correlation

coefficient, velocity skewness and flatness with the PIV data. In addition, LES data for the

two-point spatial correlations of velocity fluctuations that provide structural information were

computed and compared with PIV data. Good agreement was observed leading to the con-

clusion that the LES velocity field accurately captures the important characteristics of all the

turbulent length scales present in the flow, from the fully resolved energy-containing eddies to

the subgrid-scale dissipative eddies.
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4.1 Introduction

The presence of turbulence in fluid flows can greatly improve mixing efficiency. In the

chemical process industry, proper mixing is necessary to control product formation, and there-

fore a well designed reactor is critical to both maximize reactor efficiency and minimize the

formation of pollution. Turbulent mixing in reacting flows is important when the goal is to

increase reaction rates by increasing the surface area for molecular contact. Computational

fluid dynamics (CFD) can be used as a design tool to improve reactor design since it is a rela-

tively inexpensive approach compared to the costs associated with experiments. However, one

challenge that exists with CFD in predicting complex turbulent liquid-phase flows is validating

appropriate models due to the lack of available experimental data.

Typical reactor configurations employed for industrial applications are cylindrical, contin-

uously stirred tank reactorsPatterson and Passino (1990), coaxial jet stirred reactors Brodkey

(1975); Forney et al. (1996) and cross-flow or tee-mixed reactors Lu et al. (1997). Cylindrical

reactors pose challenges in the laboratory with flow visualization techniques such as particle

image velocimetry (PIV) due to the curvature and associated image distortion in the measure-

ments. An alternative approach is to use a rectangular configuration. Although a rectangular

configuration is not common in industrial applications, a rectangular reactor provides a simple

geometry suitable for both experimental measurements and CFD simulations.

Large eddy simulation (LES) is a computational methodology that can be used in sim-

ulations of turbulent flow problems. The technique aims to reduce the high grid resolution

requirements of direct numerical simulation (DNS) by obtaining solutions for the energy con-

taining large scales and modeling the effect of the unresolved small (subgrid) scales. With

present computing power still not making DNS feasible except in the simplest turbulent flows,

LES is a popular tool of choice for complex flow calculations. Nevertheless, despite the wide

spread acceptance of LES as a flow simulation tool, there are remarkably few reported de-

tailed validation studies for complex flows such as the one considered in this work. Moreover,

even for relatively simple flows (such as fully developed turbulent channel flow), reported LES

validation studies are usually limited to point-wise statistical quantities (e.g. mean velocity,
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Reynolds stresses), which depend only indirectly on the spatial structure of the flow Kim and

Menon (1999); Fureby and Grinstein (2002); Sagaut and Ciardi (2006). Because the predictive

capability of LES is generally attributed to its ability to capture large-scale flow structures

Lesieur and Metais (1996); Sagaut (2001), it can be argued that a detailed validation study of

LES simulations should also include spatial , or two-point, flow statistics (e.g., two-point corre-

lation functions). For this purpose, PIV data are particularly well suited because they capture

the same range of large-scale flow structures as the LES models Adrian (1991); Agrawal and

Prasad (2002b).

In the literature, two distinct approaches to LES can be found: numerical and physical

LES Pope (2000); Fureby and Grinstein (2002). Numerical LES utilizes special numerical

schemes to provide an effective viscosity (implicit numerical filtering) Pope (2000), whereas

physical LES uses an explicit subgrid stress (SGS) model to close the governing equations. In

the present work, a physical LES approach is utilized and an explicit subgrid closure model is

used.

Subgrid scale models have improved over the last thirty years, from the simple eddy vis-

cosity model of Smagorinsky Smagorinsky (1963) to the more complex high-order models

described by Berselli et al Berselli et al. (2006). The Smagorinsky model is one of the first

and simplest closure approximations to the SGS and is of the eddy viscosity type. The length

scale and velocity scale are obtained from the filter width (related to grid size) and the re-

solved strain rate tensor. The proportionality constant Cs is obtained by equating production

and dissipation rates in the inertial range for homogeneous isotropic turbulence. The dynamic

Smagorinsky model was originally formulated by Germano et al Germano et al. (1991) and

then modified by Lilly Lilly (1992). These authors describe a procedure to evaluate the co-

efficient Cs as a function of space and time, so that the SGS is applied only where required

and important effects such as backscatter are accounted for by the model. The scale similarity

model described by Bardina et al Bardina et al. (1980) is based on wavenumber asymptotics

and is established on the idea that the smallest resolved scale energy is a good representation

of the largest subgrid scale energy. The model has been found to be unstable and is often
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complemented by an eddy viscosity term (making it a mixed model), illustrated by Zhang et

al Zhang et al. (1993). The eddy viscosity type models represent phenomenologically what one

generally observes in a turbulent flow, i.e., turbulence is dissipative in the mean. A second

approach that has recently received attention is to treat the closure mathematically. One such

technique, by Geurts Geurts (1997), is the approximate deconvolution method in which one

obtains an approximation to the true turbulent field from the filtered field. For further details

on the history and development of LES models, one may refer to articles by Metais Lesieur

and Metais (1996) and Berselli et al Berselli et al. (2006).

SGS models, when formulated are usually tested for simple canonical flows such as homoge-

neous isotropic turbulence and turbulent channel flows for which DNS data are available Kim

and Menon (1999); Volker et al. (2002). In such flows the models can be validated a priori and

a posteriori Piomelli et al. (1988); Stolz and Adams (1999). Some models have been found to

work well in a priori tests but not so well in a posteriori tests. However, the ultimate test

for the subgrid scale models and LES is to compare the simulations with more complex flows

similar to those that occur in real applications. An attempt in this direction is made in the

present study.

In the present study, LES has been performed for a confined rectangular jet with co-

flowing fluid and the results are compared with experimental PIV data collected for the same

geometry and flow conditions. The effects of five subgrid scale models are studied: the constant

Smagorinsky, the dynamic Smagorinsky, the one equation eddy, the dynamic one equation

eddy, and the mixed Smagorinsky model. Grid-resolution studies are also performed to seek

a grid size sufficient to represent the flow physics. A thorough validation of the flow is made

with experimentally measured data for the velocity field, including point-wise statistics, the

mean and the variance of velocity, shear stress, correlation coefficient, skewness and flatness,

and two-point statistics, spatial correlations. Two-point spatial correlations based on the LES

velocity field provide information about large-scale turbulent structures that to our knowledge

have not been previously validated against PIV data in a manner similar to that presented in

the current study.
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4.2 Flow configuration and experimental procedures

The confined rectangular jet apparatus and experimental setup are shown in Fig. 4.1.

As previously mentioned, the rectangular configuration is preferred in order to avoid optical

distortion due to refraction, and because it is also easier to model computationally. For the

present study, the flow rates in each of the inlet channels are 0.4, 0.8, and 0.4 L/s, corresponding

to free-stream velocities of 0.2 m/s, 0.4 m/s, and 0.2 m/s, respectively. The Reynolds number

is 20,000 based on the distance (0.06 m) between the two side walls of the test section and the

bulk velocity.

A schematic of the measurement system is shown in Fig. 4.2. The laser sheet used in the

PIV measurements passes through the centerline of the reactor in the z-direction, and the

laser sheet thickness was 0.5 mm. Approximately 24 grams of hollow glass spheres were added

to the total reservoir volume of 3500 liters. The nominal diameter of these seed particles was

11.7 µm and the particles’ density was 1.1 g/cm3. The image magnification of the CCD camera

was 0.12, and the numerical aperture was 8. Two distinct images were captured per velocity

field with a 1000 µs time delay. A multi-pass cross-correlation technique with decreasingly

small window sizes was used to compute the velocity field. The final interrogation spot size

measured 16 pixels by 16 pixels, corresponding to 0.9 mm on each side. With 50% overlap

between interrogation windows, the velocity vector spacing was 0.45 mm in both the x- and

y-directions. At each observed location, 5000 velocity realizations were obtained and analyzed.

The smallest Kolmogorov scale (η) in the flow field is estimated to be approximately

94.5 µm, based on the exit width of the jet and the turbulent kinetic energy at the tips

of the two split plates Feng et al. (2005). Thus, the spatial resolution of the PIV measure-

ments is approximately 4.6η. Although the smallest turbulent scales of the flow cannot be fully

resolved, second-order quantities such as velocity fluctuations and characteristics of large-scale

structures can be measured accurately.

According to Prasad et al Prasad et al. (1992), the random error in PIV measurements

can be estimated as one-tenth of the effective particle image diameter. For the results pre-

sented here, the particle image diameter was 8.3 µm. Thus, the error relative to the particle
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displacement is ±1.7% for the center stream and ±3.4% for the outer streams.

Another important consideration in PIV measurements is the peak locking effect, in which

the correlation peak location is biased towards the nearest integer pixel Christensen (2004).

The peak-locking effect can be quantified by the peak-locking coefficient, which ranges from

0 to 1: 0 indicates no peak locking effect and 1 indicates strong peak locking effect Stanislas

et al. (2005). In the present experiments, this coefficient was found to be 0.05, indicating an

acceptably low degree of peak locking. Further details on the experimental apparatus and PIV

measurement can be found in Feng et al. (2005).

4.3 Numerical modeling and formulation

4.3.1 Governing equations and subgrid models

In order to separate the large scales from the small scales, a filtering operation is performed

to the incompressible Navier-Stokes equations, resulting in the dimensionless filtered equations

expressed as,

∂ui
∂xi

= 0, (4.1)

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂

∂xj

(
∂ui
∂xj

)
− ∂τij
∂xj

, (4.2)

where the turbulent SGS tensor that requires modeling is

τij = uiuj − uiuj

and t represents time, ui is the filtered velocity field, p is the pressure and Re is the Reynolds

number.

Solutions to the filtered Navier-Stokes equations are obtained by using OpenFOAM ( Open

Field Operation and Manipulation), an open source Computational Fluid Dynamics (CFD)

software package. OpenFOAM is a suite of C++ libraries and applications for manipulating

field variables using the finite volume method. In the current study, the pisoFoam solver in

OpenFOAM is used, which use the PISO(pressure-implicit split operator) Issa (1986) algorithm

as its iterative solver.
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The choice of a subgrid scale model is a critical aspect in numerical modeling of a turbulent

flow using LES. Five SGS models are considered to close the subgrid stress tensor in the current

study. The simpliest model is the Smagorinsky model Smagorinsky (1963), which is an eddy-

viscosity-type model that represents the effect of the subgrid scales as an enhanced diffusivity

for the large-scale flow. The SGS tensor is modeled as

τij −
1

3
τkkδij = −2νtSij

where νt is the turbulent eddy-viscosity, δij is the Kronecker delta function, and the filtered

rate of the deformation tensor is

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The turbulent eddy-viscosity is parameterized by equating the subgrid scale energy production

and dissipation to obtain νt = Cs∆
2|S|, where |S| =

√
2SijSij and Cs is the Smagorinsky

coefficient to be specified. For the constant Smagorinsky model, the coefficient Cs = 0.17 was

chosen to be consistent with the findings of Lilly Lilly (1967) using an energy balance analogy

for isotropic turbulence. The effective filter width ∆ is a function of the grid resolution and is

defined as ∆ = (∆1∆2∆3)
1/3, where ∆1, ∆2, and ∆3 represent the filter widths in x, y, and z

directions, respectively.

The dynamic Smagorinsky model of Germano et al Germano et al. (1991) and Lilly Lilly

(1992) defines the coefficient Cs as a function of space and time. The dynamic model permits

the eddy-viscosity to asymptotically approach zero near solid walls and in regimes where the

flow is laminar. The model however requires a new filtering operation to be performed within

a test filter volume, where the test filter width ∆̂ is assumed to be greater than the grid filter

width ∆. A Gaussian filter is used for the test-filter operation. On application of the test filter

to the Navier-Stokes equations, the sub-test scale stress tensor, Tij , is obtained as

Tij = ûiuj − ûiûj .

The quantities τij and Tij are related by the identity of Germano et al. (1991):

Lij = Tij − τ̂ij = ûiuj − ûiûj
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where Lij is the resolved turbulent stress that can be explicitly calculated. The term Tij is

also modeled similar to the subgrid scale turbulent stress τij using a Smagorinsky model with

the same model constant Cs. Using a least squares approach, Lilly Lilly (1992) obtained the

coefficient Cs as

Cs =
〈LijMij〉
〈MijMij〉

(4.3)

where angled brackets denote averaging over the test filter volume and Mij =
̂

∆
2|S|Sij −

∆̂2|Ŝ|Ŝij .

The subgrid kinetic energy model was proposed by Yoshizawa Yoshizawa (1986) , and is

also called the one equation eddy viscosity model, since it solves the transport equation for the

subgrid kinetic energy, k, given as,

∂k

∂t
+ ui

∂k

∂xi
= νt|S|2 − ε+

∂

∂xj

(
νt
∂k

∂xi

)
(4.4)

where the eddy viscosity, νt is calculated by νt = Ck∆k
1/2

and the dissipation rate, ε, is

given by ε = Cεk
3/2
/∆, where the constants Cτ and Cε use the suggested values in Fureby et

al Fureby et al. (1997), 0.05 and 1.00 respectively. The dynamic procedure used to determine

Cs in the dynamic Smagorinsky model also can be used to determine Ck and Cε here, which

results in the dynamic subgrid kinetic energy model, first proposed by Kim and Menon Kim

and Menon (1995). Here, Ck and Cε are calculated using the precedure formulated by Fureby

et al Fureby et al. (1997) ,

Ck =
〈LijMk

ij〉
〈Mk

ijM
k
ij〉
, and Cε =

〈ξm〉
〈mm〉

where, Mk
ij =

̂
∆ k

1/2 |S| − 2∆̂ k̂
1/2
|Ŝ| , ξ = Lii and m = k̂

3/2
/∆̂ −

̂
k
3/2
/∆. There are also

other slightly different dynamic procedures proposed, such as Winkler and Rani (2006) and

Yoshizawa (1986). When this dynamic procedure is used in the subgrid kinetic energy coeffi-

cient, the baseline assumption is that there exists a balance equation for the kinetic energy at

the second filter level Fureby et al. (1997).
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The scale-similar model was introduced by Bardina et al Bardina et al. (1980) , in which

it was assumed that the component of the SGS most active in the energy transfer from large

to small scales can be estimated with sufficient accuracy from the smallest resolved scales,

which can be obtained by filtering the SGS velocity. In other words, it can be simply assumed

that the SGS stresses for the full velocity field are the same as the ones corresponding to the

resolved field.

τij = uiuj − uiuj ∼ ûiuj − ûiûj .

However, the scale-similar model is inadequate as a stand-alone SGS model, since it is not

very robust numerically as it does not introduce enough dissipation in some cases. Therefore,

it needs to be combined with a purely dissipative model, e.g., Smagorinsky like, which leads

to mixed Smagorinsky model Zhang et al. (1993),

Tij = ûiuj − ûiûj − 2
(
Cs∆

)2 |S|Sij (4.5)

.

More information on the implementation of SGS models in OpenFOAM can be found in

Fureby et al. (1997).

4.3.2 Simulation methodology of the confined rectangular jet

LES was performed for the confined rectangular jet using the same geometry as in the

experiments. There are three inlet streams at the inflow boundary, each separated by splitter

plates, and the flow is bounded by walls in the y- and z-directions, thus mimicking the ge-

ometry of the experimental apparatus. The flow is numerically complex due to the presence

of sharp gradients in the two shear layers that form downstream of the splitter plates and in

the boundary layers that form along the walls. At the walls, the no-slip boundary condition

is applied, and at the exit a convective outflow boundary condition, as in Ferziger and Peric

Ferziger and Peric (2002), is used. For the pressure Poisson equation, a zero normal gradient
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condition is used at the inflow and at the walls. At the outflow boundary zero gauge pressure

is specified.

In order to compare the LES with experimental data, inflow conditions that are similar to

those in the experiments are required. For this purpose, the inflow conditioning technique of

Klein et al Klein et al. (2003) is used. The method generates inflow velocity signals that have

statistical properties similar to those in the experiments. The inflow velocities are given by

ui = 〈ui〉+ aijUj

where 〈ui〉 is the mean in flow velocity, Uj is obtained from a random field with a prescribed

two-point statistic, and

(aij) =


(R11)

1/2 0 0

R21/a11 (R22 − a221)1/2 0

R31/a11 (R32 − a21a31)/a22 (R33 − a231 − a232)1/2


where Rij is the correlation tensor. 〈ui〉 and Rij are obtained from the experimental data at the

location of the trailing edge of the splitter plates. This location is denoted as x/d = 0 cm and

henceforth, all other positions are relative to this location. The third velocity component in

the span-wise direction is not measured in the experiments, and an approximation of 〈w′w′〉 =

〈v′v′〉 is used. Some statistics at the node next to the inlet surface are presented in Fig. 4.3,

which shows that this approximation at the inlet is consistent with the PIV data.

LES results are strongly dependent on the choice of simulation parameters (i.e. grid resolu-

tion, finite-difference scheme, SGS model), so a series of “pre-simulations” were carried out to

determine the optimal choices needed to adequately capture the flow physics of the rectangular

jet. Note the same inflow generator parameters were used in all the ‘pre-simulations” . First, a

grid-resolution study using the dynamic Smagorinsky model and the linear (second order cen-

tral) scheme for interpolation and Gaussian integration for velocity gradient was performed.

The effect of increasing grid resolution was investigated. Since the geometry of the test section

is strictly rectangular, it is natural to use hexahedral shaped cells. It is important to note that

the grid size cannot be changed independently of the filter length scale because the filtering is

performed implicitly by the grid. The grid sizes investigated were
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1. 160× 60× 80 cells in x, y, and z directions, respectively,

2. 240× 90× 110 cells,

3. 320× 120× 134 cells,

4. 400× 150× 166 cells.

Note that all the cells are exactly the same in size for a given resolution. The near wall

resolution is commonly expressed in terms of dimensionless units of y+, and y+ for the first

off-wall grid point is approximately 10, 8, 6 and 4 for the four grid resolutions above. Figure 4.4

compares the resolved stream-wise and cross-stream rms velocity profiles for the LES (lines)

with those obtained from PIV (symbols) at x/d = 1 and x/d = 7.5 . The results of all

four grid resolutions show fairly good agreement with the experiment data. However, the

cross-stream velocity rms profile of the lowest grid resolution shows significantly lower peak

values at the stream interfaces than the experimental results and the results using higher grid

resolutions at x/d = 1, and higher peak values at x/d = 7.5. The difference between the results

of the three higher grid resolutions is quite small, thus grid independence can be considered

achieved, especially in the jet region. There is indeed some improvement in the wall region

using higher grid resolution because at higher resolutions, more of the flow is resolved and the

LES is approaching DNS. The role of subgrid models and numerical schemes can be seen to be

diminishing with the increasing of grid resolution. Therefore, the LES results reported hence

forth are performed using the grid resolution of 240 × 90 × 110 cells in order to observe the

different performances of the different subgrid models .

OpenFOAM offers a wide selection of schemes for numerical simulations, which are classified

into three basic categories: interpolation, gradient, and component of gradient normal to a cell

face. Since all cells are hexahedral shaped, the gradient normal to a cell face scheme is not

important for the current study. All the scheme tests here used the dynamic Smagorinsky

model, and the second order backward scheme was used to march in time implicitly. It is often

argued that a dissipative scheme should not be used for LES since it is difficult to differentiate

between numerical and SGS dissipation Mahesh et al. (2004). Since the main role of SGS model
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is to dissipate a proper amount kinetic energy, non-dissipative schemes are preferred for LES,

therefore central differencing schemes are adopted hereafter. Figure 4.5 shows the velocity

rms results using linear (second order) and cubic (fourth order) interpolation schemes with the

same gradient scheme, namely, the Gauss integration. There is virtually no difference in the

quality of the solutions. However, the cubic scheme costs much more computationally, nearly

twice the linear scheme. This agrees with the conclusion of Meinke Meinke et al. (2001), which

compared the performance of second- and six-order central differencing. Similar conclusions

can be found in Breuer (1998). Figure 4.6 gives the results of the different gradient schemes

with the linear interpolation scheme, including Gaussian integration, second and fourth order

least squares method. No difference can be observed, and the computational costs are almost

the same. Therefore, the linear interpolation scheme and second order least squares gradient

scheme are used in the simulations performed in this study.

Finally, the constant Smagorinsky, dynamic Smagorinsky, one equation eddy, dynamic

one equation eddy and mixed Smagorinsky models were used to compare the effect of the

SGS model on the resolved-scale solution (Fig. 4.7). When using the three non-dynamic

models, a van Driest wall functionvan Driest (1956) is used to reduce the SGS viscosity to

zero near wall boundaries. Figure 4.7 also shows the rms of velocities in the stream-wise

and cross-stream direction, respectively. The mixed Smagorinsky model under predicts the

rms velocities in both the shear layers and boundary layers, indicting it generates too much

dissipation. The performance of the mixed Smagorinsky model was already found to decreases

rather quickly with decreasing grid resolution Fureby et al. (1997). At x/d = 1, the constant

Smagorinsky and one equation eddy models also under predict the peak values in the stream

interfaces significantly. This is because that close to the inlet, the flow is not fully developed

yet. However the velocity gradient is quite high in this region, and thus the turbulent viscosity

is over predicted without the locally dynamic adjustment. At x/d = 7.5 , all the other four

subgrid models except the mixed Smagorinsky model agree well with the experimental data.

In general, the two dynamic models show the best results in the shear layers, showing the

importance of dynamically adjusting the coefficient. However in the boundary layers, the two
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one equation eddy models ( constant coefficient and dynamic model) can capture the sharp

streamwise velocity peaks, while the constant and dynamic Smagorinsky can not. The one

equation models also show slightly better results in the cross-stream rms velocity profiles in

the boundary layer regions. Table 4.1 shows the dimensionless computational time cost of

these models, normalized with the values of constant Smagorinsky.

Smagorinsky dynSmagorinsky mixedSmagorinsky oneEqEddy dynOneEqEddy

1 1.144 1.128 1.134 1.275

Table 4.1 Dimensionless CPU time comparison between subgrid models.

Fureby et al Fureby et al. (1997) found the dynamic models cost 20% more cpu time than

their constant coefficient counterparts, and one extra subgrid energy equation also costs 20 %

more cpu time. The values in table 4.1 only show a less than 15 % increase. The LES results

generated for comparison with experiments in the following section are obtained using the

dynamic one equation eddy model, since it gives the best results in the turbulent jet, despite

its higher computational costs.

In summary, it is noteworthy that this series of simulations clearly suggests that grid

resolution and subgrid models are the important parameters for obtaining accurate simulations

of the confined rectangular jet.

4.4 Results and discussion

In this section, LES data from the resolved scales of the simulations are compared with the

results from PIV experiments to determine how accurately the LES model predicts both the

point-wise and spatial two-point turbulent velocity statistics. As noted in the Introduction,

the spatial two-point statistics provide insights into the large-scale turbulent structures in the

flow. For these comparisons, the LES code is run for sufficiently long times to allow for the

flow to reach a dynamical steady state, after which data are collected at time intervals roughly

equal to those used for the PIV experiments. For consistency, the LES data are treated to

extract the one- and two-point statistics using the same algorithms as used for the PIV data.
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4.4.1 Point-wise (one point) statistics

First, comparisons between the LES and PIV data are made for point-wise flow statistics.

These comparisons are made at four different downstream locations in the flow field. One

of these locations is at 2cm downstream of the tips of the splitter plates (corresponding to

x/d = 1), and the other three locations are x/d = 4.5, x/d = 7.5, and x/d = 12 downstream of

the tips of the splitter plates. Note that for all of the quantities compared up to second-order

moments (i.e., not skewness nor kurtosis), at x/d = 1 the LES statistics agree almost exactly

with the PIV data since the inflow condition was provided using PIV experimental data. Also

note that because the inflow conditions in the experiments are not exactly symmetric about

the jet centerline, neither are those used in the LES.

A comparison of the mean stream-wise velocity profiles at the four locations is shown in

Fig. 4.8. As in all of the comparison plots, the LES data in Fig. 4.8 are represented by

lines, and the PIV data are presented using symbols. As can be seen in Fig. 4.8, initially the

flow resembles a planar jet. However, unlike a planar jet, which has unbounded outer streams

and can thus approach a self-similar profile, the flow in the present study is confined, and

lacking a semi-infinite geometry, does not achieve self similarity. Instead, as both the jet and

the boundary layers at the top and bottom walls of the channel grow, the potential core of the

outer streams rapidly disappears, and the flow progresses towards fully developed channel flow.

As depicted in Fig. 4.8, the LES mean velocity profiles compare well with the experiments

for all four locations downstream of the splitter plates. The agreement is especially good in

the steep gradients at the wall boundaries, indicating that the LES model is performing very

well in the near-wall regions.

The stream-wise rms velocity profiles are shown in Fig. 4.9, and close agreement is observed

between the LES predictions and the PIV measurements. For example, at x/d = 4.5, x/d = 7.5,

and x/d = 12, the differences between the peak urms as measured by PIV and computed using

LES are 5.8 %, 6.5%, and 7.6 %, respectively. At location x/d = 1 , the turbulent boundary

layers forming along the top and bottom of the splitter plates merge together, resulting in

two highly turbulent regions centered at the tips of the splitter plates. Note that there is a
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small “dip” in turbulence intensity at y/d = −1 and y/d = 1. This is indicative of a small

wake region formed in the vicinity just downstream of the splitter plates. Also, due to the

no-slip condition, within the boundary-layer regions upstream of the splitter plate, the peak

in turbulence within the boundary layer occurs some distance above the splitter plate. Thus,

just after the boundary layers merge at the trailing edge of the splitter plates, these lower

turbulence regions near the walls manifest themselves in the lower turbulence region observed

just downstream of the splitter plates at x/d = 1. Note that this wake region is short-lived

however, as at x/d = 4.5 downstream, the “dip” in turbulence intensity is no longer observed.

While the rms peaks at x/d = 1 are due to the turbulence in the inlet boundary layers,

this turbulence rapidly decays, and at further downstream locations, the turbulence is instead

primarily due to the mean shear in the flow. The rapid decay in the turbulence formed from the

inlet boundary layers was demonstrated in Liu et al Liu et al. (2006), where PIV measurements

were performed in the same geometry as the present study, but with the velocities in all three

streams uniform (and thus no mean shear in the flow). Thus, downstream of the splitter plates,

the peaks in turbulence fluctuations are most prominent in regions where the mean shear is

greatest. The shear is greatest in the near-wall regions (i.e., the boundary layers along the top

and bottom walls of the reactor) and in the shear regions formed at the boundaries between

the center jet and the outer streams. As the flow progresses downstream, the steep velocity

gradients in the boundary region between the jet and outer streams decrease, and consequently,

the peaks in turbulence fluctuations in these regions also decrease.

The cross-stream (i.e., wall-normal) rms velocity profiles are shown in Fig. 4.10, and

as with the stream-wise rms results there is good agreement between LES and experiment.

However, in shear layer flows, such as a jet or wake, the cross-stream velocity are much harder

to numerically predict and measure than the stream-wise component, but it is the component

actually responsible for the mass and momentum transfer. At further downstream locations,

the differences between the peak rms measured by PIV and computed using LES at the stream

interfaces are 7.7 %, 1.5%, and 15.4%, at x/d = 4.5, x/d = 7.5, and x/d = 12, respectively.

The cross-stream fluctuation profiles exhibit similar behavior to the stream-wise fluctuation



101

profiles, although the peak intensities for the cross-stream rms velocities are slightly lower than

the stream-wise rms velocities.

The span-wise rms velocity w′ for the four downstream locations is shown in Fig. 4.11.

However, corresponding PIV measurements are unavailable for the span-wise velocity compo-

nent, since only two-dimensional PIV data were collected. The inlet boundary conditions for

the LES were derived from the PIV data with the assumption that 〈w′w′〉 = 〈v′v′〉. Note

that a comparison of the computed v′ and w′ fluctuations at the downstream locations shows

close agreement between these two quantities, validating the assumption used for the inlet flow

conditions for the LES. In a RANS simulation of this flow geometry, Feng et al Feng et al.

(2005) used the same assumption about the cross-stream and span-wise velocity fluctuations to

estimate the turbulent kinetic energy from PIV data in order both to obtain inflow conditions

for the RANS k-ε turbulence model and also to compare the PIV results with the RANS pre-

dictions. The accuracy of this assumption regarding the cross-stream and span-wise velocity

fluctuations has been demestrated by the present LES study.

A comparison of the resolved shear stress 〈u′v′〉 is shown in Fig. 4.12. As with the u− and

v−velocity fluctuations, the comparison between LES and experiment is quite good. However,

this should come as no surprise based on the excellent agreement that was observed in the mean

velocity profiles. The Reynolds shear stress is responsible for the spreading and growth of the

jet, and the agreement observed in the mean velocity profiles at all three downstream locations

implies similar growth behavior for the jet. This similar growth behavior suggests that the

Reynolds stresses should be similar, which, indeed they are. Note that the computed LES shear

stress is determined purely from the resolved scales and does not include any contribution from

the subgrid scales.

Normalizing the Reynolds shear stress in the manner

ρuv =
〈u′v′〉√
〈u′2〉〈v′2〉

yields the correlation coefficient ρuv. Figure 4.13 is a comparison of profiles of the correlation

coefficient at the four different downstream locations. The profiles display good agreement

between the LES and experimental data, and provide additional confidence in the reliability
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the LES methodology. Recall that as the flow progresses downstream, it transitions from a

jet flow towards fully developed channel flow. Indeed, at x/d = 12, both the LES and PIV

correlation coefficient profiles closely resemble the correlation coefficient observed in the fully

developed turbulent channel flow simulations of Moin and Kim Moin and Kim (1982).

Further comparisons between the LES and PIV data for the velocity skewness and flatness

factors, defined by

S(ui) =
〈u′i

3〉

〈u′i
2〉3/2

and F (ui) =
〈u′i

4〉
〈u′i

2〉2
,

are shown in Figs. 4.14 and 4.15 for x/d = 4.5 and x/d = 7.5, respectively. Skewness is a

measure of the asymmetry of the velocity probability distribution. The stream-wise skewness

S(u) is consistent with a u-velocity distribution that is symmetric about the centerline at

y/d = 0, and also symmetric about the shear layers, whose centers are located at approximately

y/d = −1 and y/d = 1, and indeed, the mean stream-wise velocity profiles presented earlier

showed this to be the case. The cross-stream skewness, S(v), suggests that the v-velocity

distribution is approximately antisymmetric about the centerline. This is consistent with

fluid being entrained from the higher velocity jet region into the slower outer streams. Fluid

entrained from the jet into the upper outer stream corresponds to a positive cross-stream

velocity, while fluid entrained from the jet into the lower outer stream corresponds to a negative

cross-stream velocity, resulting in antisymmetry in the cross-stream velocity component around

the centerline of the reactor.

Flatness, also known as kurtosis, is a measure of whether the velocity probability distribu-

tion is peaked or flat relative to a normal distribution. Data sets with high kurtosis tend to

have a distinct peak near the mean, decline rapidly, and have long tails extending far from the

mean. Data with low kurtosis tend to have a flat top near the mean. The kurtosis for a stan-

dard normal distribution is 3. For the confined jet flow, a kurtosis value close to 3 is observed

over much of the channel at x/d = 12, where the flow is rapidly approaching fully developed

turbulent channel flow. The overall good agreement in the skewness and kurtosis between the

LES and experiments is especially encouraging, considering the difficulties associated with the

measurement of high-order statistics.
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4.4.2 Spatial (two-point) statistics

In the previous section, comparisons between the LES and PIV data were confined to

ensemble-averaged quantities determined at one point within the flow field. However, one

distinct advantage of LES over ensemble-averaged computational methods (such as Reynolds-

averaged Navier-Stokes methods) is that LES fully resolves the instantaneous large-scale tur-

bulent structures in the flow field. Since PIV similarly captures the instantaneous large-scale

structures, it is possible to compare the spatial characteristics of the turbulence for both sim-

ulations and experiments in addition to point-wise statistics. In this way, the LES model can

be validated to both accurately model the point-wise statistical properties of the turbulence

and also accurately represent the underlying large-scale turbulent structures.

Much of turbulence theory begins with the concept of an energy cascade where energy from

the large scales in the flow is transferred to the small scales and is eventually dissipated by the

viscous length scales. Two-point correlations give useful information about this energy cascade

and form the basis of spectral theories. Parameters such as the stream-wise and cross-stream

length scales based on the two-point correlations are often used to provide an estimate of the

eddy sizes involved in the flow Pope (2000). For canonical flows such as isotropic turbulence,

the two-point correlation is completely determined by the longitudinal length scale, and a

posteriori testing of closure models often involves the prediction of these length scales. For

more complex flows with no directional homogeneity, eddy structures of different shapes and

sizes are prevalent and two-dimensional plots of spatial correlations give a better sense of the

energetic eddy structures in the flow. In order to obtain two-point spatial correlations from

experiments, measurements with one fixed probe and one moving probe can be simultaneously

utilized, as done by Shaw et al Shaw et al. (1995). PIV, however, enables measurement of a

complete two-dimensional flow field, making the determination of spatial correlations relatively

easy. Spatial correlations can also be easily obtained from LES based on the resolved velocity

field to provide information about the characteristic large-scale structures. Similar calculations

with LES data can be found in the recent publications, such as the prediction of 2-time features

of turbulence in He et al. (2002) and the two-point velocity autocorrelations calculation in
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Larchevêque et al. (2004). However, a detailed two-point statistics comparison between an

LES model and experiments is still very rare in the LES literature.

The two-point spatial correlations of the velocity fluctuations are defined as

Ru′iu′j (x, y;X0, Y0) =
〈u′i(x, y)u′j(X0, Y0)〉√
〈u′2i (x, y)〉〈u′2j (X0, Y0)〉

where (X0, Y0) are the coordinates of a “basis point” about which the correlation is measured,

and (x, y) are displacements from the basis point. Spatial auto- and cross-correlations of

velocity fluctuations were calculated at various locations in the flow field from both the LES

and PIV data for comparison. Since the PIV data were obtained in the plane z = 0.05 m (the

center-plane of the reactor), all spatial correlations presented here are for this measurement

plane. Within this plane, the spatial correlations were obtained for basis points at three

downstream locations, namely x/d = 4.5, x/d = 7.5, and x/d = 12. At each of these stream-

wise locations, spatial correlations were obtained for three different cross-stream locations,

y/d = 0, y/d = 0.5, and y/d = 1, corresponding to the cross-stream coordinates of centerline

of the reactor, the tip of the top splitter plate, and the centerline of the top outer stream,

respectively. The locations of these nine basis points are illustrated schematically in Fig.

4.16, where the circles indicate the locations of the basis points.

Figures 4.17–4.20 show the spatial correlations Ru′u′ , Rv′v′ , Ru′v′ , and Rv′u′ , respectively,

for the various basis points where the experimentally measured values and those obtained

from LES are superimposed on the same plots for comparison. In these figures, the spatial

correlations as measured by PIV are shown as colored contours, and the spatial correlations

from the LES results are shown by contour lines. Each figure is shown as a matrix of nine

sub-figures; moving from left to right, the X0 basis point changes from x/d = 4.5, x/d = 7.5,

to x/d = 12, and moving from top to bottom, Y0 changes from y/d = 0, y/d = 0.5, to y/d = 1.

Figure 4.17 shows the stream-wise autocorrelation of Ru′u′ for the nine basis points through-

out the flow-field. Strong agreement is observed between the autocorrelation fields measured

by PIV and those predicted by LES. At all nine locations Ru′u′ appears as an ellipse with

the major axis aligned in the stream-wise direction with a slight inclination. This shape has

been observed previously for mixing layers by other researchers Oakley et al. (1996); Olsen and
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Dutton (2002, 2003). The physical dimensions of the correlation for each cross-stream location

grow larger as the stream-wise distance of the basis point from the splitter plates increases, in-

dicating that the turbulent structures grow larger in size with increasing downstream distance.

Of interest are the additional weak regions of positive correlation upstream and above and

below the primary autocorrelation for basis point ( x0/d = 4.5 , y0/d = 0.5). These positively

correlated regions suggest the presence of additional turbulent structures at these locations.

Similar behavior was observed in cross-correlation fields of stream-wise velocity fluctuation

and concentration fluctuation in an analysis of simultaneous PIV and planar laser induced

fluorescence (PLIF) data collected for the same flow geometry by Feng et al Feng et al. (2007),

albeit for a Reynolds number of 50,000. These correlation regions are artifacts of a vortex

street that forms in the previously described wake region that forms just downstream of the

splitter plates. They are displaced obliquely by about 45 degrees from the primary correlation

region due to the presence of mean shear in the flow. These additional correlation regions are

not visible in the autocorrelation fields for basis points further downstream in the flow since

the structures responsible for their presence decay as the flow progresses downstream.

The spatial autocorrelation of the cross-stream velocity fluctuation, Rv′v′ , is shown in Fig.

4.18, and once again, excellent agreement is seen between simulation and experiment. For all

nine basis points, this correlation field is a vertically-oriented ellipse, once again consistent

with what other researchers have observed in incompressible shear flows Olsen and Dutton

(2002). As with Ru′u′ , Rv′v′ is observed to grow in size with increasing downstream distance

for basis points taken at the same y-location, indicating that the large-scale structures grow

with increasing downstream distance from the splitter plates.

Finally, the spatial cross-correlations of the stream-wise and cross-stream velocity fluctu-

ations Ru′v′ and Rv′u′ are shown in Figures 4.19 and 4.20, respectively, and once again the

agreement between the PIV and LES results is quite strong. Note that for y0/d = 0 (the jet

centerline), the value of Ru′v′ is equal to zero, since this is a line of symmetry at which the

Reynolds shear stress 〈u′v′〉 = 0. The cross-correlation is antisymmetric about this y-location,

since the shear stress is positive above this line of symmetry and negative below. At the other
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y-locations about which Ru′v′ was calculated, the correlation at the basis point is not equal

to zero. Also note that as the basis point is moved downstream, the features observed in the

cross-correlation fields grow larger, once again indicative of the growth of the largest turbulent

structures with increasing downstream distance.

4.5 Summary and conclusions

Large-eddy simulations were performed for a confined rectangular liquid jet, which is an

especially challenging flow to model due to the presence of free-shear regions and solid walls at

the boundaries of the geometry. Particle image velocimetry experiments were performed in an

experimental apparatus of the same geometry as the simulations in order to both provide inlet

conditions for the simulations and also to provide detailed one- and two-point velocity statistics

that could be used to validate the accuracy of the LES models used in this investigation. It

was shown that an in situ turbulence generation procedure can represent the experimental

data at the inflow boundary quite well once it has been parameterized by the measured inlet

turbulence statistics. The effect of grid resolution, numerical schemes, and subgrid turbulence

models on the resolved-scale statistics were studied in a systematic manner to determine the

effect of these parameters on the simulation results. Four different grid resolutions were tested,

the improvement of the two higher resolutions compared to the resolution chosen for the

presented simulation is rather small, thus the grid independence was considered obtained. The

performance of second and fourth order central schemes for interpolation and second order

Gaussian integration, second order and fourth order least square as gradient scheme have been

tested, and no noticeable differences were seen. The constant Smagorinsky and one equation

eddy model, using the standard value for the constant was found to be overly dissipative, as is

generally observed in large-eddy simulations. The two dynamic models, dynamic Smagorinsky

and dynamic one equation eddy model, show similar resolved-scale statistics in the jet region,

which suggests that they were able to resolve most of the turbulent energy and accurately model

the subgrid scales. Although the dynamic one equation eddy model is more computationally

expensive than the dynamic Smagorinsky, it gives better agreement with experimental results
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in the wall boundary layers, and thus the presented simulations were conducted with the

dynamic one equation eddy model.

A comparison of point-wise velocity statistics, including mean stream-wise velocity, rms

velocity fluctuations, Reynolds shear stress, and the correlation coefficient showed excellent

agreement between the LES and PIV data. Third- and fourth-order point-wise resolved-scale

velocity statistics corresponded well with the experimental values, further verifying the accu-

racy of the LES model used in the present study. In addition to the point-wise statistical

comparisons, the capability of LES to model large-scale turbulent structures was evaluated

by comparing two-point spatial correlations of velocity fluctuations as derived from the LES

data with the corresponding results calculated from the PIV data. Both spatial auto- and

cross-correlations were compared. The spatial correlations from the LES data compared very

well with the spatial correlations from the experimental data, demonstrating that the LES

correctly predicts the length scales and orientation of the large-scale turbulent structures and

also correctly models their growth rate. The excellent agreement observed between both the

point-wise statistics and two-point spatial correlations of velocity fluctuations demonstrates

that the LES model is able to accurately capture the important characteristics of all the tur-

bulent length scales present in the flow, from the fully resolved energy-containing eddies to the

subgrid-scale dissipative eddies.
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Figure 4.1 Photograph and schematic of the confined rectangular jet test
section.

Figure 4.2 Schematic of the optical setup for the PIV experiments.
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Figure 4.4 Stream-wise and cross-stream wise rms velocity profiles at
x/d = 1 and x/d = 7.5 for four different grid resolutions com-
pared with PIV experiments.
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Figure 4.5 Stream-wise and cross-stream wise rms velocity profiles at
x/d = 1 and x/d = 7.5 for linear and cubic interpolation
schemes compared with PIV experiments.
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Figure 4.6 Stream-wise and cross-stream wise rms velocity profiles at
x/d = 1 and x/d = 7.5 for Gaussian, second and four order
least square gradient schemes compared with PIV experiments.



113

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

X
/d

 =
 1

u’
rms

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

X
/d

 =
 1

v’
rms

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

Y/d

X
/d

 =
 7

.5

u’
rms

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

Y/d

X
/d

 =
 7

.5

v’
rms

 

 

Smag dynSmag oneEq dynOneEq mixedSmag Exp

Figure 4.7 Stream-wise and cross-stream wise rms velocity profiles at
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of the splitter plates depicting growth of mixing layer. Experi-
ments are shown as symbols and LES as lines.
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Figure 4.9 Stream-wise rms velocity profiles at four locations downstream
of the splitter plates. Experiments are shown as symbols and
LES as lines.
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Figure 4.10 Wall-normal rms velocity profile at four locations downstream
of the splitter plates. Experiments are shown as symbols and
LES as lines.
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Figure 4.11 Span-wise rms velocity profile at four locations downstream
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118

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Y/d

<
u’

v’
>

X/d = 1

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Y/d

<
u’

v’
>

X/d = 4.5

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Y/d

<
u’

v’
>

X/d = 7.5

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Y/d

<
u’

v’
>

X/d = 12
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Figure 4.13 Correlation coefficient profiles at four locations downstream
of the splitter plates. Experiments are shown as symbols and
LES as lines.
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Figure 4.14 Skewness and kurtosis for u- and v-velocity at x/d = 4.5 .
Experiments are shown as symbols and LES as lines.
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Figure 4.15 Skewness and kurtosis for u- and v-velocity at x/d = 7.5 .
Experiments are shown as symbols and LES as lines.
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Figure 4.16 Schematic of measurement plane for two-point velocity corre-
lations. Correlations are obtained at nine points in the plane
shown with circles.
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Figure 4.17 Spatial correlations of stream-wise velocity Ru′u′ . Left to right
shows correlations at increasing cross-stream wise distance
from center of the jet. Bottom to top shows correlations at in-
creasing downstream distance. Experimental data are shown
as colored contours and LES data are superimposed as solid
lines.
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Figure 4.18 Spatial correlations of cross-stream velocity Rv′v′ . Measure-
ment locations and contours are the same as in Figure 4.17.
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Figure 4.19 Spatial correlations Ru′v′ . Measurement locations and con-
tours are the same as in Figure 4.17.
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Figure 4.20 Spatial correlations Rv′u′ . Measurement locations and con-
tours are the same as in Figure 4.17.
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CHAPTER 5. A Comparison Study of Turbulence Statistics in the Mixing

Regions of Confined Jet and Wake

Abstract

Experimental data from combined particle image velocimetry (PIV) and planar laser-

induced fluorescence (PLIF) measurements are used to analyze the flow between the two scalar

interfaces of a confined turbulent jet and a turbulent wake flow. The fluid of the center stream

in both flow cases contains a fluorescent dye, and normalized PLIF images were used to identify

the inner and outer boundaries of the center stream. The growth of the boundaries of both flow

cases are determined and analyzed. The mean and fluctuations of the passive scalar, velocity,

stain rate, and vorticity are determined relative to the locations of the two boundaries. The

results show some unique perspectives of this co-flowing confined rectangular jet flow. The

fluctuations of the passive scalar show high values close to the outer boundary of the jet, and

most of the properties of the velocity fields show high values near the inner boundaries of the

jet. The results of the wake case are very symmetrical about the center of the wake, indicating

the presence of the vortex street.

5.1 Introduction

The presence of turbulence in fluid flows can greatly improve heat and mass transfer effi-

ciency. Being commonly occurring classes of turbulent flow in engineering applications, tur-

bulent jets and wakes are encountered in numerous components, such as jet pumps, ejectors,

combustors, heat exchangers and noise suppression devices.

In the chemical process industry, efficient mixing is necessary to control product formation,

maximize efficiency, and reduce the formation of undesired byproducts. Therefore a well-



128

designed reactor is critical for optimal performance. Consequently, experimental studies of

mixing in turbulent shear flows (i.e., wakes, jets and mixing layers) are of great importance

not only in advancing turbulence theory, but also in improving engineering practices, such as

the design and optimization of various kinds of chemical reactors.

The present research focuses on the turbulent mixing of a passive scalar. In studies involving

passive scalar mixing, this passive scalar can be the concentration of a substance (such as a

fluorescent dye) or temperature, as long as the effect of variations in the passive scalar itself

on the flow kinematics is negligible. The scalar interface, which is the surface separating the

scalar-marked regions from the rest of the flow field are of considerable interest (Prasad and

Sreenivasan, 1989). Various turbulence properties across scalar interface, such as fluctuations,

strain rate, and vorticity, can provide valuable insights into this basic type of mixing process.

This scalar interface is commonly used as the detector of the interface between turbulent

and non-turbulent regions of the flow field. For example, Chen and Blackwelder (1978) used

temperature as a passive marker to distinguish the turbulent fluid from (cooler) non-turbulent

fluid in a turbulent boundary layer flow using an array of cold wires. LaRue and Libby (1974)

used a same method to study the wake of a heated cylinder. Some of the most distinguished

work on this area was done by Westerweel et al. (2002, 2005). They employed a novel method

of performing simultaneous PIV and PLIF experiments on an axisymmetric turbulent free

jet. The threshold to detect the scalar interface in their works was determined by using the

procedure proposed by Prasad and Sreenivasan (1989). After the interfaces were detected,

the PIV data were used to obtain conditionally averaged quantities across the turbulent/non-

turbulent interface. In their study, one of the most important discoveries is that nibbling by

the small eddies contributes substantially to the total fluid entrained. This technique has also

been utilized by Holzner et al. (2007, 2008) to study the process of entrainment and the role

of small scale eddies in a flow without strong mean shear with both experimental and direct

numerical simulation (DNS) data. da Silva and Pereira (2008) have computed the invariants of

the velocity gradient, rate-of-strain, and rotation tensors across the turbulent/non-turbulent

interface of a turbulent jet flow in an effort to understand the process of turbulent entrainment
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better.

However, in many engineering applications, both of the fluids participating the mixing

process are to some degree turbulent already. For example, a jet with a co-flow or a cross-flow

is commonly seen in industrial applications. However, investigating the scalar interface can

still be a powerful tool to study passive scalar mixing in these types of flow. Thus, in the

work that follows, the characteristics of turbulent flow across the scalar interface in a confined

turbulent jet with co-flow and a confined turbulent wake have been investigated by using a

similar technique described in Westerweel et al. (2002) .

The results of the present study are presented here in the sections that follow. The flow

facility and the experimental configuration are described in section 2. The method of stream

boundary detection is explained in section 3, and the results and discussion are presented in

section 4. Summary and conclusions are given in section 5.

5.2 Experimental Facility

The flow facility used in the experiments presented here is shown in Fig. 5.1. The mea-

surements are carried out in a Plexiglas test section with a rectangular cross-section measuring

60 mm by 100 mm and with an overall length of 1 m. There are three streams separated

by two splitter plates, each emitting from the its own flow conditioning section consisting of

a packed bed, turbulence reducing screens, and a 16:1 contraction section. The slope of the

surface of the splitter plates is 3 degrees along the side channels and 1 degree along the center

channel, and the thickness of the tips of the splitter plates are less than 0.5 mm. Three Fisher

control valves and feedback control systems with flow accuracy of 0.5 % are used to supply

constant flow rates to the three inlet channels. In the jet case, the flow rates for three stream

are 1.0, 2.0 and 1.0 liter per second, corresponding to free stream velocities of 0.5 m/s, 1.0

m/s, and 0.5 m/s, respectfully, and in the wake case, the flow rates for all three streams are

equally 1.0 liter per second (a velocity of 0.5 m/s). The Reynolds number for these two cases

was calculated based on the hydraulic diameter of the test section and the bulk velocity and

was 50,000 for the jet case and 37,500 for the wake case.
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Simultaneous PIV/PLIF measurements were performed for these two flow cases. This

technique has been used to study many turbulent mixing problems, such as Westerweel et al.

(2002, 2005) in a turbulent jet. The optical configuration of this combined PIV/PLIF system

is shown in in Fig. 5.2. The 0.5 mm thick laser sheet was provided by a New Wave Research

Gemini PIV laser, which passes through the centerline of the test section in the z-direction. PIV

and PLIF images were obtained using two 12-bit LaVision Flowmaster 3S CCD cameras. The

image magnification of the two CCD cameras was 0.12, and the numerical aperture was 8 for

PIV camera and 5.6 for PLIF camera. A dichroic mirror (Q545LP, Chroma Technology Corp.)

was placed at an angle of 45◦ to the laser sheet to separate the light paths and direct them to

either the PIV or the PLIF camera. The PLIF camera lens was fitted with a long-pass optical

filter (E560LP, Chroma Technology Corp.), and the PIV camera lens was fitted with a narrow

band-pass optical filter (Z532/10X, Chroma Technology Corp.) Approximately 24 grams of

hollow glass spheres (Spherical, Potters Industries, Inc.) were added to the water reservoir

with total volume of 3500 liters. The nominal diameter of the seed particles was 11.7 µm

and the density of the particles was 1.1 g/cm3. A multi-pass cross-correlation technique with

decreasing window sizes was used to compute the velocity field. The final interrogation spot

size measured 16 pixels by 16 pixels, corresponding to 1.02 mm on each side. With 50% overlap

between interrogation windows, the velocity vector spacing was 0.51 mm in both the x- and

y-directions. The fluorescent dye Rhodamine 6G was used as a passive scalar in the PLIF

experiments. In the center stream, the source concentration of Rhodamine 6G was 45 µg/l,

while the other two streams were pure water. The in-plane spatial resolution of the PLIF

measurements in the present study was actually limited by the flow area imaged per pixel,

which was approximately 56 µm. At each observed location, 3250 simultaneous velocity and

concentration realizations were collected and analyzed. Since the experimental apparatus and

procedure have been described in detail elsewhere for both the turbulent jet (Feng et al., 2005,

2007) and the turbulent wake (Liu et al., 2006; Feng et al., 2010), the reader is directed to the

literature for further information.
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5.3 Identification of Inner and Outer Boundaries

Most of the previous studies with scalar interfaces usually focus on the turbulent/non-

turbulent boundary (dye/no-dye boundary, in PLIF measurements), and flow quantities have

been evaluated across this boundary. For example, in a turbulent free jet flow, this boundary

represents the outer most reach of the jet fluid particles into the quiescent fluid in one instan-

taneous flow realization. However, the mixing process not only involves just one fluid reaching

out into the other fluid, but also at the same time the other fluid is passivity entrained into

or even actively reaches out into the first fluid. In a typical free jet case, the entrainment of

surrounding fluid into the jet body is a commonly recognized phenomenon. Therefore, there

exists another type of boundary in jet flow, which identifies the deepest reach of quiescent fluid

particles into the jet body. It is of interest to observe how turbulent characteristics across this

boundary vary too. To distinguish these two types of the boundary, in this study the first

type of boundary is called the outer boundary of the jet flow and the second type boundary is

called the inner boundary of the jet flow. In the early stage of jet flow, these two boundaries

usually overlap with each other at the places where no entrainment takes place, or no vortices

are present. As the jet flow develops, the region between these two boundaries grows. In the

present study, the fluorescent dye was carried by the center stream in both confined jet with

co-flow and wake flow cases and was transported to the outer streams by turbulent mixing.

Thus, we generalized these two flow boundary concepts as the inner and outer boundaries of

the center stream. Unlike the other scalar criteria previous researchers have used to detect the

scalar interfaces, such as vorticity or stream wise velocity (Anand et al., 2009), the normalized

PLIF experiment results, whose range is from 0 to 1, are very suitable for detection of both

the inner and outer boundaries.

The outer boundary of the center stream was detected by using a similar procedure used

in Westerweel et al. (2002). The instantaneous PLIF images were first rendered into binary

form by applying a threshold. The threshold value was determined by the procedure proposed

by Prasad and Sreenivasan (1989), which is demonstrated in Fig. 5.3. First, the mean

concentrations of all the pixels above one concentration value were calculated and plotted.
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The intersection point of the two linear regions is the threshold point. After the images were

rendered into binary form by this value, all the holes and islands in the binary images were

eliminated so that resulting interface corresponds to only the outer boundary of the center

stream. An example of the detection of outer boundary was shown in Fig. 5.5 for the jet case.

The inner boundary of the center stream was detected in a similar manner. Instead of

finding the upper averaged mean of the passive scalar function, the inversed upper averaged

mean of the passive scalar was calculated. To calculate this, all the concentration values are

subtracted from the highest possible concentration values first. In this way, the inner boundary

of the jet was treated as the outer boundary of the two side streams. The determination of the

threshold for the inner boundary is shown in Fig. 5.4. However, by the nature of the PLIF

measurement, the contrast in the images on both sides of the inner boundary is less significant

than the contrast on both sides of the outer boundary, since at the inner boundary there is

significant fluorescence on both sides of the boundary, but at the outer boundary, the outer

stream fluid fluorescence is zero.

Thus, the detection of the inner boundary is more difficult than the outer boundary detec-

tion. However, since these boundaries are only representative of large scale motions of the flow

(Westerweel et al., 2002), and since the in-plane spatial resolution of the PIV measurement

is much lower than the PLIF experiment, the effect of any inaccuracy in the inner boundary

detection can be considered very limited. An example of raw and binary PLIF images for inner

boundary detection for the jet case is shown in Fig. 5.6.

After both the outer boundary and inner boundary were identified, turbulent quantities that

can be derived from the experiment data, such as the velocity, vorticity and turbulence flux,

can be calculated as conditional averages along the line connected by these two locations over

all PIV/PLIF realizations. Although the PIV/PLIF measurements were taken at 6 different

downstream locations, only the three closest to the splitter plates are analyzed here. This is

because the interest of the current study is the pure jet/wake region, and after twenty center

stream diameters the influence of the boundary layers on the two sidewalls causes the flow in

both cases to begin to resemble channel flow. Further information about this method can be
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found in the references mentioned above.

5.3.1 Geometry of Scalar Boundaries

Figure 5.7 shows the ensemble averaged inner and outer boundaries at different downstream

locations, as detected by using the method described above. The center of the test section is

located at y/d = 0, and the two sidewalls are located at y/d = 1.5 and y/d = −1.5. Thus

the boundary lines close to the center in Fig. 5.7 are the inner boundaries, and the boundary

lines close to the test section walls are the outer boundaries. In both the jet and wake cases,

the inner and outer boundaries originate from the tips of the splitter plates. As the fluorescent

dye begins to transport from center stream to the two side streams, the mean outer boundaries

begin to move towards the walls of the test section. At the same time, low concentration fluid

from the outer stream is transported into the center stream, thus the mean inner boundaries

begin to move towards the center of the test section. Although the momentum of the center

stream in the jet case is twice of that in the wake case, the mean boundary locations in both

cases are very close to each other overall. However, there are some noticeable differences. The

boundaries of the jet case are located slightly further away from the center of the test section,

especially at the observing window, x/d = 6.5 ∼ 8.5. This is consistent with the common

observations in Liepmann et al. (1947) and Olsen and Dutton (2002) that mixing layers are

inclined to grow towards the low speed stream.

By the definition of the inner and outer boundaries, the mixing process primarily occurs

in the region between these two boundaries. Figure 5.8 shows the mean and rms (root mean

square) of distance between boundaries at different downstream locations. In Fig. 5.8, the

mean distance initially grows quickly close to the test section inlet, but as the flow progresses,

the growth rate decreases. Since the flow is bounded by two sidewalls and not an infinite

expanse of fluid like a free jet, the growth of the distance between boundaries cannot grow

without bounds since the dye must eventually fill up the entire channel. Since the mean

locations of the boundaries are very similar in both the jet and the wake case, the mean values

of the distance between the boundaries overlap with each other in Fig. 5.8. However, the rms
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of the distance between boundaries in the wake case is larger than in the jet case.

This is due to the jet case having a mean shear, while the wake case does not have a mean

shear. In the jet case, the presence of the mean shear results in continuous generation of new

turbulent eddies as the flow progresses downstream. Thus, for the jet case, there are turbulent

eddies ranging from large to small at all downstream locations and the presence of the small

eddies, the nibbling behavior, results in more uniformity in the local distance between the

boundaries. In the wake case, the absence of mean shear means the turbulence in this case

dissipates as the flow progresses downstream. The smallest scales are the first to dissipate, and

as the wake flow progresses downstream, the large scale eddies are the dominant structures in

the mixing process. There is a deficiency of small nibbling eddies compared to the jet case,

resulting in less uniformity. The inner and outer boundaries can be considered as an indicator

of large scale mixing process. Therefore, the higher rms value in wake case shows that there

are more large scale motions that predominate the mixing process in the wake case compared

to in the jet case at the same downstream locations.

5.3.2 Means and Fluctuations of Passive Scalar and Stream wise Velocity

After identifying the inner and outer boundaries on the instantaneous PLIF images, the

simultaneous PIV/PLIF technique allows for the examination of various turbulence properties

across these two boundaries, where most of the transport process takes place.

All the measured turbulence properties are presented at the two downstream location,

x/d = 4.5 and x/d = 7.5 . Figures 5.9 and 5.10 show the mean of passive scalar concentration

and stream wise velocity across the mixing region on the left side of the center stream. In

these two figures, the x-coordinate is defined based on the local distance between these two

boundaries. x/Dm = 0 is the location of the outer boundary and x/Dm = 1 is the location of

the inner boundary, where Dm is the distance between the inner and outer boundaries.

Figure 5.9 shows that the inner and outer boundaries of the center stream are very sharp

for both the jet and wake cases. As suggested in the previous sections, the outer boundary

can be considered as the frontier of the center stream (i.e., the high concentration region).
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Beyond the outer boundary is the undyed region, consisting almost entirely of pure water.

Similarly, the inner boundary can be considered as the frontier of the left side stream, beyond

this boundary is the region with almost uniform dye solution of the initial inlet concentration.

Also, considering the early stage of development of the flow, large scale coherent motions are

dominant here. Therefore, the sudden jumps at the outer/inner boundaries are expected, just

like the observed sudden jumps of the mean stream wise velocity across the outer boundary in

Westerweel et al. (2002), when velocity and concentration are closely coupled. However, in Fig.

5.10, the mean stream wise velocity profile across these two boundaries does not show a sudden

jump for the jet case. One reason could be, as Westerweel et al. (2002) argued, the poorer

spatial resolution of the PIV measurements compared to the PLIF measurements. However,

it is more likely that this is caused by the fact that in the present experiments, the jet is

not discharged into quiescent fluid, but instead discharged into two co-flowing streams. There

are very short-lived wake regions between the center and side streams in the jet case. The

outer boundaries close to the splitter plates are not the turbulence/non-turbulence interfaces

as in the free jet studies. The regions on both sides of the outer boundaries do contain some

turbulence and there are still some small turbulent structures outside of the outer boundaries.

Therefore, the velocity profiles are more likely to be continuous than show sudden jumps.

Note that at x/d = 7.5, the mean passive scalar profile shows lower values beyond the

inner boundary, where x/Dm > 1, in the wake case than in the jet case, and the mean values

also decrease as moving further from the inner boundary. Considering the high rms values of

mixing region size of the wake case at this downstream location, the two inner boundaries on

both sides of the center stream will have higher probability to be very close, when the low

concentration values coming from the right outer stream will be taken into the conditional

average calculation. Actually, the mean passive scalar profile of the jet case also begins to

slightly decrease at the right end of the x-axis, which is caused by the same reason in the wake

case.

Also notice that, in Fig. 5.9, between the jumps at the inner and outer boundaries, the

mean passive scalar profiles show obvious differences for the jet and the wake cases. The jet
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profile is ”fuller” than the wake profile, and the values are higher than the linear connection

between the two points at the end of the jumps. However, the right half of the wake profile

actually has a similar shape as the jet profile and the left half of the profile is slightly depressed.

These features can be explained by the coherent structures in the two flows. In the jet case,

on the left side of the jet, the dominant structures are the positively (counterclockwise) ro-

tating vortices. The downstream parts of the vortices are actively out-bursts from the high

momentum center stream, which generate the positive turbulent fluxes from the center stream.

And the upstream parts of the vortices are caused by the passively entrainment, which educe

the negative turbulent fluxes from the low concentration side stream. Overall, the positive

turbulent fluxes are expected to contribute more than the negative flux in the passive scalar

transport. Therefore, the values between the two boundaries on the profiles are closer to the

values of the high momentum stream.

Compared to the mean passive scalar profiles, there is another difference in the mean stream

wise velocity profile in Fig. 5.10 besides the lack of sudden jumps across these two boundaries.

For the wake case, there is obviously an already very weak wake region between the inner and

outer boundaries. In the profile of the jet case, the mean stream wise velocity beyond outer

boundary is close to the potential core velocity of the side stream. This is not the case beyond

the inner boundary where the potential core of the jet has almost disappeared, unlike the

passive scalar profile. Again, this is another sign of the decoupling between the momentum

transport and passive scalar transport, caused by the very different inlet conditions. Before

the flow enters the test section and the mixing process starts, there are already boundary

layers formed on the sidewalls of the splitter plates. Thus, the velocity potential disappears

much earlier than the potential of the passive scalar. Also notice that the highest velocity

gradient takes place at the left side of the inner boundary, whereas across the inner boundary,

the velocity gradient decreases very quickly. Also, the mean velocity values for the jet case at

further downstream location, x/d = 7.5, begin to decrease approaching x/Dm = 1.5, just like

the mean passive scalar profile. This indicates that the potential core of the jet is beginning to

disappear at this location. Also notice that at the left side of the profiles of both the jet and
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wake case, the mean velocity profile is also begins to decrease, which shows the effluence of the

boundary layer along the left wall of the test section. Moreover, the mean velocity profile also

shows that velocity deficit in the wake flow almost disappears here.

In addition to the mean properties, the fluctuations of the flow properties provide informa-

tion on the behavior of turbulence field. Figures 5.11 and 5.12 shows the mean value of the

positive and negative fluctuations of the passive scalar and stream wise velocity. The data are

presented in this way is to observe the response of positive or negative fluctuations at the two

boundaries. For the jet case, at X/d = 4.5, as seen in Fig. 5.11, the positive profile shows

very few fluctuations beyond the outer boundary, a very sharp jump at the outer boundary,

a significant peak at the region close to the outer boundary and then approaching to the jet

center, the fluctuation level decreases. As was argued for the mean passive scalar profile, at

this stage of flow development, the outer boundary is usually the edge of a high concentration

fluid pocket, representing an outburst from the high concentration center stream. Therefore

the sharp jump at the outer boundary and high values close to the outer boundary are ex-

pected. The negative profile for the jet displays nearly the opposite behavior to the positive

profile, which is much more responsive to the inner boundary. However the highest values on

the negative profile are located closer to the outer boundary, instead of closer to the inner

boundary. This indicates that the low concentration fluid pockets entrained into the center

stream from the outer streams are less able to penetrate deep into the high concentration region

than are high concentration fluid pockets from the center stream able to penetrate into the low

concentration regions. At the further downstream location, x/d = 7.5, the fluctuation level

in the jet case slightly increases; while in the wake case it slightly decreases. This is another

piece of evidence demonstrating that the mean shear in the jet is still generating turbulence

and enhancing mixing at this further downstream distance, while the turbulence in the wake

flow just keeps decaying. Also here the negative passive scalar fluctuation in the wake case

begins to increase in magnitude approaching x/Dm = 1.5, which indicates that the decay of

mean passive scalar value here is indeed caused by the negative fluctuation from the other side

of the center stream.
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The stream wise velocity fluctuation profiles for the jet case, shown in Fig. 5.12 display

very different characteristics compared to the passive scalar fluctuation profiles. The positive

and negative fluctuation profiles are nearly axially symmetric to each other about x/Dm = 0.5.

Since the side stream is not quiescent fluid, the fluctuations beyond the outer boundary are

small but not close to zero as in the positive passive scalar fluctuation profile. In the study of

a jet discharging into quiescent fluid, Westerweel et al. (2002) found the Reynolds stress has

a finite value at the interface which indicates the presence of irrotational velocity fluctuations

in a region outside the interface. The mean stream wise velocity profile for the confined jet

already indicates that the mean shear exists on the right side of the inner boundary, and the

velocity fluctuations there are more significant than in the region on the left side of the outer

boundary. However, the most noticeable difference here is that the highest velocity fluctuations

are located at the region close to the inner boundary where the highest velocity gradient is

located, instead of the outer boundary where the highest passive scalar gradient is located.

For the wake case, also shown in Figs. 5.11 and 5.12, both the passive scalar and stream

wise fluctuation profiles are very axially symmetric about the x/Dm = 0.5 line. Although there

are sharp jumps at the boundaries, the peak of the passive scalar fluctuations located at the

center of these two boundaries. This is simply because there are counter-rotating vortices on

each side of the wake bringing negative passive scalar fluctuations on the downstream side and

positive fluctuations on the upstream side, and the vortices in the vortex street of the wake do

not penetrate deeply into the other side of the wake. In Fig. 5.12, the stream wise velocity

fluctuations for the wake case also indicate the presence of the vortex street in the wake flow.

Both the passive and negative velocity fluctuations show high values close to the locations of

the boundaries, and are symmetric to the center of the wake. Also notice that the velocity

fluctuation profiles in the wake case are almost uniform across the mixing region, especially

at X/d = 7.5, just like the mean velocity profile, and are further evident of the decay of the

wake.
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5.3.3 Compression and Rotations

The compression in a two-dimensional (2D) fluid field can be quantified by the minimum

2D principal strain rate, which is the smaller of the two 2D the eigenvalues of the strain

rate tensor. Although the strain rate tensor requires three-dimensional (3D) velocity data

to compute all of its nine components, Kothnur and Clemens (2005) argued that the 2D PIV

data are sufcient to calculate the correct in-plane principal strain rate, since the laser sheet was

oriented orthogonal the span wise direction and out-of-plane shear components of the strain

rate tensor are expected to be small. Figure 5.13 shows the mean minimum strain rate, which

does not exhibit a sudden change at either boundary. In the jet case, the minimum strain rate

values in the center of the potential cores are quite constant, 10 1/s for the side scream and

20 1/s for the center stream. Moving from the outer stream towards the center stream, the

minimum strain begins to increase before reaching the outer boundary, which shows the transfer

of compression in the turbulent flow is faster than the passive scalar convection. The peak

value of the profile is located close to the inner boundary and then profile begins to decrease

moving towards the center of the jet. The minimum strain rate behavior indicates the high

momentum center stream pushes the two co-flowing streams outwards, and this compression

reaches a maximum close to the location of inner boundary, where the fluctuations are also

the highest. For the wake case, the strain rate is slightly higher in the wake region than in the

center of the center and side stream. Although the wake is a low momentum region, the high

momentum fluid particles of counter-rotating vortices from the center and side streams collide

with each other, generating compression. At the further downstream, X/d = 7.5, the profile

of the jet case rises on both its left and right ends, again indicating the growing influence of

the boundary layer along the sidewall and also the mixing layer on the other side of the center

stream.

Figure 5.14 shows the mean vorticity across the inner and outer boundaries, providing

information on the rotating motions of the flows. For the jet case, just as Westerweel et al.

(2002) observed in their study, at the region beyond the outer boundary of the jet, the vorticity

is close to zero. There is a small rise at the far left side of the profile, which indicates the
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influence of the boundary layers growing along the sidewalls and that the potential core of the

side stream is disappearing. However, here there is no sudden jump at the outer boundary.

Instead, the vorticity values increase gradually moving towards the jet center and reach a peak

value at the same location as the strain rate peak, where the highest velocity gradient exists.

Note that in this analysis, all the averaging is performed after all the instantaneous values are

interpolated from the inner/outer boundary locations to the uniform range of −0.5 ∼ 1.5Dm

in the x-axis plotted here. It is possible that any sudden jumps in vorticity are smoothed away

by this interpolation. However, since sudden jumps in the other turbulent properties have

been easily observed using this analysis technique, this is not likely to be true. Considering

the plots here are taken at locations no more than 7.5 jet diameter from the jet outlet, the

jet is still developing and all the vortices generated in the shear regions of the developing jet

have yet to move to the side stream. Moving from the outer stream to the jet center, after it

reaches its highest value, the vorticity profile decreases quickly until the inner boundary of the

jet, and then moving still closer to the center stream it decreases more slowly. Considering the

mean stream wise velocity profile, this is not surprising. For the wake profile shown in Fig.

5.14, the negative vorticity values on left side of the wake and positive values on the right side

of the wake, are a consequence of the vortex street in the wake flow. As the mixing region

grows larger at the further downstream location, X/d = 7.5, the vorticity profile of the jet case

shows a much sharper jump at the outer boundary and a flatter profile in the middle of the

mixing region. While the sharper jump is expected, the quite uniform vorticity value can be

explained by the near uniform velocity gradient in the mixing layer formed here.

5.4 Conclusions

A combined particle image velocitimetry and planar laser induced fluorescence system was

used to conduct simultaneous velocity and concentration measurements for turbulent confined

jet and wake flow. The procedure of Prasad and Sreenivasan (1989) was used to detect the

inner and outer boundaries of the center stream in PLIF images. The average locations of the

inner and outer boundaries were observed to move away the center faster in the jet case than
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in the wake case. The mean distance between these two boundaries was nearly the same in

both cases, and the rms of the distance shows that the large scale motions in the wake case

are more dominant than in the jet case at the same downstream locations.

After the boundaries of the center stream were identified, various turbulent properties

were calculated conditionally across these two boundaries. Both the jet and the wake case

showed sharp jumps at the boundaries in the mean passive scalar profiles, and the curvatures

between the two boundaries showed the different characteristics of the two flows. For the jet

case, the positive passive scalar fluctuations show a sharp jump at the outer boundary and

higher values moving towards the jet center, and the negative fluctuations show high values

at the same locations, with sharp jumps at the inner boundary. The stream wise velocity

profiles show no sharp jumps at the boundaries, and the velocity values continue to change

beyond the boundaries, showing the effect of co-flowing motion of the jet. Both positive and

negative velocity fluctuations are relatively high on the left side of the inner boundary of the

jet. Although passive scalar properties in the wake case also show sharp responses at the

inner and outer boundaries, the velocity properties do not display sharp response at the scalar

interfaces.

The mean minimum strain rate and vorticity profiles across the boundaries were also mea-

sured. The jet case shows a higher mean strain than the wake case between the two boundaries,

and the peak value of the jet profile is located close to the inner boundary of the center stream.

The mean vorticity profile of the jet case also showed the highest values on the outer stream

side of the inner boundary, indicating the entrainment of the surrounding fluids of the jet are

the results of the large scale vortices. The wake vorticity profiles showed the two different sign

rotations on the two sides of the wake that one would expect from a vortex street.
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Figure 5.1 Photograph and schematic of the confined planar jet test section

  
Figure 5.2 Schematic of the optical setup for the combined PIV and PLIF

experiments
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Figure 5.3 Threshold detection for outer boundary.
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Figure 5.4 Threshold detection for inner boundary.
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X/d = 3.5 ∼ 5.5.
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Figure 5.9 The mean of passive scalar across the mixing region. a, x/d =
4.5; b, x/d =7.5.
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Figure 5.10 The mean of streamwise velocity across the mixing region. a,
x/d = 4.5; b, x/d =7.5.
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Figure 5.11 Passive scalar sign-differential fluctuation across the mixing
region. a, x/d = 4.5; b, x/d =7.5.
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Figure 5.12 Streamwise velocity sign-differential fluctuation across the
mixing region. a, x/d = 4.5; b, x/d =7.5.
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Figure 5.13 The mean of principle strain rate across the mixing region. a,
x/d = 4.5; b, x/d =7.5.
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Figure 5.14 The mean of vorticity across the mixing region. a, x/d = 4.5;
b, x/d =7.5.
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CHAPTER 6. Conclusions and future directions

In this chapter, the important findings in this thesis work and the conclusions that can be

drawn from the data are summarized. Future directions with the experimental and computa-

tional investigation of the turbulent shear flows are also identified.

6.1 Summary and conclusions

6.1.1 Vortex study with a swirling strength based vortex identification method

A vortex identification method based on swirling strength was employed to analyze the

properties of vortices in both confined rectangular jet and wake flows. Swirling strength fields

were computed from velocity fields, and then filtered with a universal threshold of |Λci| ≥

1.5Λrmsci . By identifying clusters of filtered Λci, vortex structures were identified.

In the rectangular jet case, experimental data from simultaneous PIV/PLIF experiments

and high speed PIV experiments were used. Instantaneous swirling strength field data indicate

that positively (counterclockwise) rotating vortices are dominant on the left side of the jet and

negatively (clockwise) rotating vortices are dominant on the right side. The population density,

average size and strength, deviation velocity of vortices were calculated and analyzed, in both

the cross-stream direction and the streamwise direction. In the regions close to the channel

inlet, the population density, average size and strength all show high values on both sides of

the center stream. There are some counter-rotating vortices next to the dominant direction

vortices, that are indicative of a wake regions formed downstream of the splitter plate tips by

the boundary layers that form on both sides of the splitter plates. At the further downstream

location, the wake disappears, as do most of the counter-rotating vortices. As the flow develops

towards channel flow at the farthest downstream locations, the distribution of the vortices
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spreads throughout the entire reactor. The mean size and strength of the vortices decrease

continuously downstream from the channel inlet. The mean vortex deviation velocity in both

the X and Y directions are zero at the location of the population density peak. The signs of

vortex deviation velocity V indicate the vortices move from the high vortex population region

to the low vortex population region. The signs of mean deviation velocity U are negative

on the side near the jet center, and positive on the side of near center of the outer stream,

which indicates vortices transfer low momentum fluid to high velocity region and transfer high

momentum fluid to the low velocity region. The development trends of vortex size and strength

were also identified by tracking vortices using high speed PIV experimental data. Both the

average tracked vortex strength and size decrease with increasing downstream distance overall.

However the average tracked vortex size increases before it starts to decrease in the area close

to the jet inlet.

Two point spatial cross-correlations of swirling strength with velocity fluctuations and

concentration fluctuations were calculated at the location of the left peak of turbulent kinetic

energy in the jet case. The cross correlation fields of swirling strength and fluctuations of the

two velocity components exhibit a “butterfly” like shape. The right wing of Rλu′ contains

positive values and the left wing contains negative values. The axis of Rλu′ , the contour line

of Rλu′ = 0, is oriented vertically in the streamwise direction, slightly tilted toward the outer

stream. With increasing downstream distance, the angle of orientation of the Rλu′ axis becomes

smaller. Also at the X/d =1.0 downstream locations for both Reynolds number cases, there

are a weak negatively correlated regions upstream of the strong positively correlated region

close to the basis point and a weak positively correlated region downstream of the strong

negatively correlated region in Rλv′ . This indicates that a vortex at the basis point is usually

accompanied by at least one counter-rotating vortex. The axis of Rλv′ is aligned with the

cross-stream direction with negative values downstream of the basis point and positive values

upstream of the basis point. There are also two correlated areas in the Rλφ′ correlation field;

one positively correlated region downstream of the basis point and one negative upstream of

the basis point, indicating that the positively rotating vortices bring high concentration field
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from the center stream to the side stream downstream of the vortex core and bring the low

concentration field from the side stream to the center stream upstream of the core. Finally,

linear stochastic estimation was used to calculate conditional structures. The estimation was

based on the swirling strength values at chosen locations in the flow. The large-scale structures

in the velocity field revealed by linear stochastic estimation are spindle-shaped with a titling

stream-wise major axis.

In the study of rectangular wake, experimental data from simultaneous PIV/PLIF experi-

ments were used. In the wake flow, positively (counterclockwise) rotating vortices are dominant

on the right side of the wake and negatively (clockwise) rotating vortices are dominant on the

left side. In both the cross-stream direction and the streamwise direction, the population den-

sity, average size and strength, deviation velocity of vortices were calculated and analyzed.

The population density, average size and strength of vortex cores all show high peak values

both sides of the wakes, while these peaks decrease quickly and the profiles broaden as the flow

progresses downstream. The change of vortex core maximum strength is seen relatively faster

than the change of the core size. The results of mean cross-stream wise deviation velocity of

vortex core shows the vortices in the wake spread from the neighborhood of wake to the centers

of the free stream, and the mean streamwise deviation velocity indicates that vortices bring

high momentum fluid of the free stream into the the wake.

Two point spatial cross-correlations of swirling strength with velocity fluctuations and

concentration fluctuations were calculated at three different streamwise locations and eight

cross-stream wise locations in the flow field in the wake study. All the cross correlation fields

shown also exhibit a “butterfly” like shape, with one “wing” with positive correlation values

and the other “wing” with negative values, like the results in jet study. The axes of correlation

fields are oriented in the streamwise direction in Rλu′ contours, and they tilt towards the wake

center on the both sides of the wake, except those with basis points already located close

to wake center oriented exact vertically. The axes in Rλv′ are oriented in the cross-stream

direction, and they tile downstream on the both sides of the wake, except those near wake

center. On the left side of the wake, the right wing of Rλu′ contains negative values and the
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left wing contains positive values, while the the upper wing of Rλv′ contains positive values

and lower wing contains negative values, indicating the vortices in this region dominantly

rotate negatively. Since on two sides of the wake vortices rotate in different direction, the cross

correlation fields carry different signs on the two ”wings” on each side of the wake. In the region

close to the center of the wake, the upper wings of the correlation fields of Rλv′ are much larger

than the lower wings, while in the far left and far right figures, the lower wings are larger than

the upper wings, and in between the two wings are more balanced. The Rλciφ′ results show

some similarity to those of Rλv′ , indicating the vortices play a similar role in mass transfer

as in momentum transfer. However, in the near wake, the strong correlation areas of Rλciφ′

are relatively smaller than those of Rλciv′ , while in the further downstream locations these

correlations show nearly the same size as Rλciv′ . The mass transfer from the center stream to

the side streams only starts right after the flow enters test section, while the boundary layers

are already developed on the surfaces of the splitter plates, thus strong momentum transfer

already exist at the inlet. As the flow goes downstream, the mass transfer catches on the

momentum transfer. As the flow progresses downstream, all the correlation areas grow larger,

indicating the large scale coherent motions grow larger. Linear stochastic estimation was used

to visualize the underlining large scale coherent structures. The results of LSE show clear roller

structures at the basis points, and those on the left side of wake rotate negatively and those on

the right side rotate positively. The tilting of the streamwise oriented major axis toward the

wake center can be observed easily. As the flow progresses downstream, the roller structures

grow larger. Also a vortex street pattern can be seen in these LSE results, which becomes more

visible after the length of the vectors were made the same, especially in further downstream

locations. The pattern revealed by LSE, which can be seen in instantaneous flow fields actually

shows the unique characteristics of the current high Reynolds number wake flow. When the

flow enters the test section, there are vortices developed independently on both sides of the

splitter plates, which are incoherent to each other. As the flow develops downstream, these

vortices are reorganized and become more and more coherent, therefore the vortex pattern

becomes visible.
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6.1.2 Large eddy simulation of a confined rectangular jet

Large-eddy simulations were performed for the confined rectangular jet at low flow rate.

Particle image velocimetry experiments were performed in an experimental apparatus of the

same geometry as the simulations in order to both provide inlet conditions for the simulations

and also to provide detailed one- and two-point velocity statistics that could be used to validate

the accuracy of the LES models used in this investigation. It was shown that an in situ

turbulence generation procedure can represent the experimental data at the inflow boundary

quite well once it has been parameterized by the measured inlet turbulence statistics. The effect

of grid resolution, numerical schemes, and subgrid turbulence models on the resolved-scale

statistics were studied in a systematic manner to determine the effect of these parameters on

the simulation results. Four different grid resolutions were tested, the improvement of the two

higher resolutions compared to the resolution chosen for the following simulation is rather small,

thus the grid independence were considered obtained. The performance of second and fourth

order central scheme as interpolation scheme and second order Gaussian integration, second

order and fourth order least square as gradient scheme have been tested, and no noticeable

difference were seen, while the fourth order scheme are more costly in computation. The

constant Smagorinsky and one equation eddy model, using the standard value for the constant

was found to be overly dissipative, as is generally observed in large-eddy simulations. The two

dynamic models, the dynamic Smagorinsky and the dynamic one equation eddy model tested

show similar resolved-scale statistics in the jet region, which suggests that they were able to

resolve most of the turbulent energy and sufficient to model the subgrid scales. Although the

dynamic one equation eddy model costs more computation time than the dynamic Smagorinsky,

it gives better agreements with experimental results in the wall boundary layers, the detailed

simulation results presented here were obtained with the dynamic one equation eddy model.

A comparison of one-point velocity statistics, including mean stream-wise velocity, rms

velocity fluctuations, Reynolds shear stress, and the correlation coefficient showed excellent

agreement between the LES and PIV data. Third- and fourth-order one-point resolved-scale

velocity statistics corresponded well with the experimental values, further verifying the ac-
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curacy of the LES model used in the present study. In addition to the one-point statistical

comparisons, the capability of LES to model large-scale turbulent structure was evaluated by

comparing two-point spatial correlations of velocity fluctuations as derived from the LES data

with the corresponding results calculated from the PIV data. Both spatial auto- and cross-

correlations were compared. The spatial correlations from the LES data compared very well

with the spatial correlations from the experimental data, demonstrating that the LES correctly

predicts the length scales and orientation of the large-scale turbulent structures and also cor-

rectly models their growth rate. The excellent agreement observed between both the one-point

statistics and two-point spatial correlations of velocity fluctuations demonstrates that the LES

model is able to accurately capture the important characteristics of all the turbulent length

scales present in the flow, from the fully resolved energy-containing eddies to the subgrid-scale

dissipative eddies.

6.1.3 Turbulent statistics in the mixing region of confined jet and wake flows

The procedure of Prasad and Sreenivasan (1989) was used to detect the the inner and outer

boundaries of the center stream in PLIF images. Simultaneous PIV and PLIF experimental

data from the turbulent confined jet and wake flow were used in this study. The mean locations

of the inner and outer boundaries are moving away the center faster in the jet case than in

the wake case. The mean distance between these two boundaries are almost the same in both

cases, and the rms of the distance shows there are more large scale motions in the wake case

than in the jet case at the same downstream locations.

After the outer and inner boundaries of the center stream are identified, various turbulent

properties are calculated conditionally across these two boundaries. Both the jet and the

wake case show sharp jumps at the boundaries in the mean passive scalar profiles, and the

curvatures between the two boundaries show the different characteristics of the flows. For the

jet case, the positive passive scalar fluctuations show a sharp jump at the outer boundary

and high values on the right side of it, and the negative fluctuations show high values at the

same locations, while sharp jumps at the inner boundary. The stream wise velocity profiles
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show no sharp jumps at the boundaries, and the velocity values continue to change beyond

the boundaries, which shows the effect of co-flowing motion of the jet. Both positive and

negative velocity fluctuations are relatively high on the left side of the inner boundary of the

jet. Although passive scalar properties in the wake case still show sharp responses to the inner

and outer boundaries, the velocity properties show no response to the scalar interfaces. The

jet case shows a higher mean strain than the wake case between the two boundaries, and the

peak value of the jet profile is located close to the inner boundary of the center stream. The

mean vorticity profile of the jet case also shows the highest values on the left side of the inner

boundary, indicating the entrainment of the surrounding fluids of the jet are the results of the

large scale vortices. The wake vorticity profiles show the typical two opposite sign rotations

on the two side of the wake.

6.2 Future directions

First, to better observe the behavior of the vortices, high speed PIV experiments are needed

for the confined wake flow. Also, since the swirling strength is calculated using velocity gradient

tensor, the small development in the velocity fields brings high variance in swirling strength

fields. Thus, the experience gained from the vortex tracking study in the jet flow case shows

that just resolving down to Kolmogorov time scale seems to not be enough to capture the detail

development and dynamics of the vortices. Therefore the high speed PIV experiments with

higher frame rates are needed also for the jet flow case. Also, the coherent structure study here

can be used to validate the large eddy simulation result, to see if it can correctly produce the

vortices fields with similar properties and dynamics. However, a proper procedure to compare

the vortex field measured by PIV and simulated by LES is needed to be investigated, since

spatial resolution vortex identification is crucial to vortex identification, and this resolution

is typically very different in PIV measurement and LES computation. This kind of the LES

validation on coherent structures is still very rare in the published literatures, which makes it

of great potential interest.

Second, wavelet analysis has been proved to be a powerful tool to study turbulence, since
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it is capable of dealing with multi-scale signal locally, and turbulence is certainly a multi-

scale phenomenon. With all the experiment and simulation data collected during this study,

wavelet definitely can be used to analyze these data and can be very promising. However, the

wavelet was primarily to designed to deal with one-dimensional signal, which is able to analyze

one-dimensional events at different resolutions locally, and the two-dimensional and three-

dimensional extensions of wavelet are problematic when dealing with anisotropy turbulent

flow, such as jet and wake, since they can not distinguish the orientation or the shape of

multi-dimensional object. As newly developments of wavelet, contourlet and surfacelet are

well equipped with these capabilities wavelet lacking (Do and Vetterli, 2005), thus they can be

very promising to analyze turbulent mixing problem, especially in locally separating turbulent

fields by different length scales and at the same time capturing the geometry characteristics of

the flow fields at different spatial resolutions. However, since these new techniques have only

used in the digital image and video processing area, the proper implement of these techniques

with turbulence fields and interpolation of the results will be the key issues.

Third, turbulent mixing problem is Schmidt number environment is the main topic of

this study, and the reactive PLIF experiment is the most important part of the research

designed to study the subgrid mixing and has been shown to be a very useful tool (Lehwald,

A. and Thévenin, D. and Zähringer, K., 2010). However, due to unexpected difficulties, the

experiments were not successful and not included in this thesis, but the experiences learned

can certainly help us in the future experiment studies. Also, a multi-inlet vortex reactor has

been built and ready to set up in the laboratory, as a continuation of the confined rectangular

reactor. The PIV and passive, reactive PLIF experimental studies will be carried out with this

new reactor.

Finally, the large eddy simulation with OpenFoam on the confined rectangular has been

shown to agree with PIV measurement very well. And the simulation studies on high flow

rate jet case and wake flow case are also going to be carried out. The performance of some of

the currently available numerical schemes and subgrid models have been shown satisfactory.

However, when implementing LES in some real engineering applications, there are still some
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issues needed to be solved. Choosing a proper inflow generator is one of them, since the

inflow is not always uniform or fully developed. The results with the generator used in the

current study has been proved to be quite satisfactory. But more detailed study of the inflow

generator is waiting to be done, especially with the knowledge obtained from the vortex study

in the jet and wake. Base on the good agreement of velocity simulation, simulations of passive

and reactive scalar will be the next. With the regular and reactive PLIF experiments, these

simulations will also be validated with experiments. A lot more interesting modeling studies

like listed here on turbulent mixing will be carried out in the near future.
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Holzner, M., Liberzon, A., Nikitin, N., Lüthi, B., Kinzelbach, W., and Tsinober, A. (2008). A

Lagrangian investigation of the small-scale features of turbulent entrainment through particle

tracking and direct numerical simulation. Journal of Fluid Mechanics, 598(-1):465–475.

Huang, J., Zhou, Y., and Zhou, T. (2006). Three-dimensional wake structure measurement

using a modified PIV technique. Experiments in Fluids, 40(6):884–896.

Issa, R. (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting.

Journal of Computational Physics, 62:40–65.

Kim, W. and Menon, S. (1995). A new dynamic one-equation subgrid-scale model for large

eddy simulations. AIAA Paper, 356:1995.

Kim, W. and Menon, S. (1999). An unsteady incompressible Navier-Stokes solver for large

eddy simulation of turbulent flows. International Journal for Numerical Methods in Fluids,

31:983–1017.

Kim, W., Sung, J., Yoo, J., and Lee, M. (2004). High-definition PIV analysis on vortex

shedding in the cylinder wake. Journal of Visualization, 7(1):17–24.

Klein, M., Sadiki, A., and Janicka, A. (2003). A digital filter based generation of inflow data for

spatially developing direct numerical or large eddy simulations. Journal of Computational

Physics, 186:652–665.

Kong, B., Olsen, M., Fox, R., and Hill, J. (2010). Population, characteristics and kinematics

of vortices in a confined rectangular jet with a co-flow. Experiments in Fluids, pages 1–21.

Kothnur, P. S. and Clemens, N. T. (2005). Effects of unsteady strain rate on scalar dissipation

structures in turbulent planar jets. Physics of Fluids, 17(12):125104.



168
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