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 Gridded weather data sets are increasingly used in a variety of hydrologic and 

agricultural applications due to their complete spatial and temporal coverage.  One 

application of gridded data sets is the estimation of evapotranspiration (ET).  Several 

operational remote sensing (RS) approaches for estimating ET, such as the SEBAL, 

METRIC and EEFlux models, require estimates of reference ET (ETref), where ETref is 

expected ET from a hypothetical reference crop of clipped grass or alfalfa.  Gridded 

weather data provide for the computation of ETref in all areas of a remote sensing image, 

and therefore potentially remove the need for dense weather station data. 

 Given the increasing use of gridded weather data to estimate ETref, this study 

assessed the quality of gridded weather data estimates of ETref.  To accomplish this 

evaluation, several gridded weather data sets – GLDAS-1, NLDAS-2, CFSv2 operational 

analysis, GRIDMET, RTMA and NDFD – were compared to weather station data that 

were considered to represent ‘ground truth’ across the continental United States.  The 

stations were selected to represent reference conditions when possible.  The four primary 

weather variables – near-surface air temperature, vapor pressure, wind speed and 

shortwave solar radiation - required to compute ETref, plus calculated ETref itself were 

compared.   



 

 

The application of the same analysis to multiple gridded data sets made 

comparisons among the gridded data sets possible.  Generally, the gridded weather data 

sets overestimated ETref.  This was mainly due to overestimation of air temperature, 

shortwave radiation and wind speed, and underestimation of vapor pressure.  RTMA had 

the most accurate weather data and the most accurate estimates of ETref due to its 

assimilation of vast amounts of surface weather data and its continual refinement.  

Surprisingly, the global data sets, GLDAS and CFSv2, generally performed better than 

their North American counterparts – NLDAS and GRIDMET.  All gridded weather data 

sets may be useful for estimating ETref and employment in remote sensing ET models 

provided some procedures for correcting biases are developed. 
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CHAPTER 1. INTRODUCTION 

Gridded weather data sets are increasingly used in a variety of hydrologic, ecologic 

and agricultural modeling applications.  Weather data for modeling have historically been 

gathered from meteorological weather stations.  Weather stations, as a data source, offer 

several challenges: they may not be close enough to the particular area being modeled to 

sufficiently represent the local weather; in models applied over large areas their density 

may not capture the spatial variability of weather within the area; and point data sets 

often contain periods of missing data or have limited periods of record, creating 

challenges for models representing long timespans.  For these reasons, gridded weather 

data can provide a potential substitute for ground-based weather measurements. 

Gridded weather data have begun to be used for modeling of evapotranspiration 

(ET), because they provide the necessary information to estimate reference ET (ETref), 

including solar radiation or sky cover, near-surface air temperature, air humidity and 

wind speed.  ETref is a vital parameter for most remote sensing (RS) approaches to ET 

estimation, and is generally defined as the ET from a particular hypothetical reference 

crop.  Interest in computing ETref from gridded weather data has led to the creation of two 

recent products from NOAA, one estimating ETref using North American Land Data 

Assimilation System version 2 (NLDAS-2) data (Hobbins, 2016) and another product 

forecasting ETref using the National Digital Forecast Database (NDFD) called Forecasted 

Reference Evapotranspiration (FRET) (Palmer, Osborne, & Hobbins, 2017).  Gridded 

ETref is also actively being utilized in the EEFlux remote sensing model (Kilic et al., 

2014). 
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Despite the increasing use of gridded weather data to estimate ETref, there is a 

lack of information regarding the accuracy of ETref estimates that are based on the 

gridded data, and whether they can successfully be used to replace estimates produced 

using ground-based weather station data that represent weather in well-watered 

agricultural settings.  Two previous studies that computed ETref using the ASCE 

standardized Penman-Monteith equation (ETsz) with data from the NLDAS gridded 

weather data set found that ETsz was often overestimated by the gridded data when 

compared to ETsz computed using weather stations in the western continental United 

States (CONUS) (Lewis et al. 2014; Moorhead et al. 2015).  The ETsz overestimation was 

the result of overestimation of near-surface temperature, solar radiation and wind speed 

and underestimation of vapor pressure for weather conditions associated with agricultural 

areas.  Studies investigating the weather variables in other gridded data sets found biases 

like those found in the NLDAS data that should similarly cause overestimation of ETsz.  

For example, Slater (2016) found that NLDAS, the Global Land Data Assimilation 

System (GLDAS) and the Climate Forecast System Reanalysis (CFSR) all overestimate 

incoming shortwave radiation at most locations in the CONUS. 

Motivated by the lack of research regarding ETref estimates made using gridded 

weather data, the first objective of this thesis was to examine and compare estimates of 

ETref made from several gridded data sets to ETref made from agricultural weather station 

data across the CONUS.  Results of this CONUS-wide analysis should be useful when 

utilizing ETref estimated from a gridded data set.  Analyses for this objective focused on 

summer periods because that is when plants are actively growing and ETref values are at 

their highest. 
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The second objective of this study was to compare near-surface air temperature, 

vapor pressure, shortwave solar radiation and wind speed (the data required for 

computing ETref) from gridded data sets to weather station data.  This objective is useful 

not only to professionals estimating ET but to anyone interested in using one of the 

gridded weather data sets.  This objective also helps diagnose the causes of ETref error.  

Special emphasis is placed on bias (systematic error) because random error tends to 

shrink when data are time-averaged. 

Unlike the first objective, there have been a variety of studies that have pursued 

the second objective, comparing gridded weather data parameters to independent weather 

station data.  These studies are discussed in detail in chapter 3.  Each study had varying 

dimensions of scope: extent of study area, study time period, number of weather 

parameters evaluated, number of gridded data sets evaluated, number of weather stations 

used, selection of weather stations, and the type of analyses.  The differences between 

previous studies made integrating the information difficult, and provided further 

motivation to make fresh comparisons. 

The gridded data sets analyzed in this research were the Global Land Data 

Assimilation System (GLDAS), the North American Land Data Assimilation System 

(NLDAS), the Climate Forecast System version 2 (CFSv2) operational analysis, the Real-

Time Mesoscale Analysis (RTMA), the Gridded surface meteorological data set from the 

University of Idaho (GRIDMET) and the National Digital Forecast Database (NDFD). 

This thesis is presented as follows: Chapter 2 – Background, Chapter 3 – Previous 

Work, Chapter 4 – Methods, Chapter 5 – Results & Discussion, and Chapter 6 – 
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Conclusions.  Chapter 2 provides information about how gridded data are produced, 

additional information about ETref and details about each of the gridded weather data sets.  

Chapter 3 reviews previous research comparing gridded data to weather station data.  

Chapter 4 discusses how the data were gathered, processed and analyzed.  Chapter 5 

presents and interprets the results of the data comparisons. 

CHAPTER 2. BACKGROUND 

2.1 Origins of Gridded Weather Data 

Gridded weather data represents estimates of weather parameter values. The 

values are generally presented as averages within each grid cell, with each grid cell 

representing a specific area of the earth’s surface.  Gridded weather data have the 

advantage of representing weather at regular timesteps and at fixed spatial scales, and 

over large areas (sometimes globally). 

Gridded weather data are produced in a variety of ways depending on their 

intended applications, but they all generally originate from some combination of 

observed ground and atmospheric profile data with models.  The combination of 

information from models with observations is called data assimilation (Lahoz, Khattatov, 

& Menard, 2010).  The weights given to the observations and the specific type of 

atmospheric circulation and land surface models (LSMs) that are employed can vary 

widely among data sets.  For example, the Parameter-elevation Regressions on 

Independent Slopes Model (PRISM; Daly et al., 2008) relies heavily on observations that 

are spatially interpolated using empirical models developed on the basis of relationships 

between elevation and the estimated weather parameters. Other gridded weather data rely 
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on atmospheric circulation models and LSMs that are blended with observations.  Such 

data products are typically referred to as analyses. 

Meteorological analyses were originally developed to produce initial conditions 

required by numerical weather prediction (NWP) models.  The initial conditions provide 

what are called “forcings,” which is a term referring to any information driving a model 

that originates from outside of a model (Rood, 2010).  The forcings provide a starting 

point for the simulation models.  Though NWP models are forecasting models, the 

analyses used for the initial conditions also typically employ forecasting models.  The 

analyses may be produced by a making a short forecast using an atmospheric circulation 

model, which serves as a first guess, and then updating the first guess using observed data 

(Houser, Lannoy, & Walker, 2010).  The short initial forecast that is modified using 

observation data is called the analysis; a term that refers both to the process and to the 

product. 

The analyses used for NWP (these can be termed operational analyses) have 

evolved to become extremely useful gridded weather data sets for use in other types of 

applications, and, along with NWP, are under continual improvement.  Unfortunately, 

however, improvements made over time to assimilation and forecast systems, aimed at 

producing the most accurate forecasts possible, can create temporal discontinuities in the 

data.  Discontinuities can be problematic for certain models and investigations that look 

for trends over time.  Reanalyses are analyses that are performed using constant 

assimilation systems, that is, assimilation systems that are not modified over time, to 

overcome the issues of discontinuity (Saha et al., 2010). 
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2.2 Evapotranspiration & Reference Evapotranspiration 

Evapotranspiration (ET) is a major component of the water cycle, accounting for 

as much as two thirds of the precipitation falling on land (Wang & Dickinson, 2012).  

Accurate estimation of ET is crucial to a wide variety of disciplines, but is difficult to 

directly observe. In addition, ET can vary widely with location due to variation in 

weather and water availability and variation in vegetation type, health and density. ET 

has even been shown to vary within a single agricultural field (Irmak et al., 2011).  Eddy 

covariance towers, Bowen ratio systems and lysimeters provide relatively direct estimates 

of evapotranspiration, but, due to high costs and operational requirements, are sparsely 

distributed (Long, Longuevergne, & Scanlon, 2014).  Remote sensing (RS) and Land 

Surface Model (LSM) based approaches can solve the problem of spatially sparse ET 

estimates by estimating spatial variation of ET over large areas. These methods have the 

potential to provide information for nearly all areas of the globe.   

LSMs are models that estimate the transfer of mass, energy and momentum 

between the earth’s surface and the atmosphere (Rodell et al., 2004).  Some LSM models 

are coupled with atmospheric circulation models so that the models can provide feedback 

to each other. For example, diminishing soil moisture can reduce estimated ET in an 

LSM and increase estimated sensible heat flux to the air. That process, in turn, causes the 

atmosphere to warm, which increases the evaporative demand at the surface.  Some 

LSMs are uncoupled from atmospheric models to avoid unrealistic feedback caused by 

known bias in the atmospheric models.  In both cases, LSMs are forced with 
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meteorological analysis data and therefore depend to a large degree on the accuracy of 

the analyses used during the production of ET estimates. 

Remote sensing approaches to estimating ET generally fall into two categories: 

surface energy balance approaches that use surface temperature to compute 

evapotranspiration as a residual of the surface energy balance; and vegetation index based 

approaches that combine ETref estimate with crop coefficients estimated from satellite 

imagery. The vegetation index based approach is essentially a modernized version of the 

crop coefficient approach pioneered in the FAO24 publication (Doorenbos & Pruitt, 

1977).  Examples of the surface temperature-surface energy balance approach include the 

SEBAL (Bastiaanssen, Menenti, Feddes, & Holtslag, 1998), METRIC (Allen, Tasumi, & 

Trezza, 2007) and EEFlux (Kilic et al., 2014) models.  EEFlux is an automated 

implementation of the METRIC model.  ETref is critical to both types of RS methods for 

ET estimation.  ETref is also used in more traditional and localized ET estimates for 

irrigation management. 

ETref is defined in the ASCE-EWRI Task Committee Report (Walter et al., 2005)  

as “… the ET rate for a uniform surface of dense, actively growing vegetation having 

specified height and surface resistance, not short of soil water, and representing an 

expanse of at least 100m of the same or similar vegetation.”  There is a wide variety of 

ETref equations in use.  In this thesis we chose to use the ubiquitous ASCE standardized 

Penman-Monteith equation.  We refer to this equation and its estimates in the text as 

ETsz.  Two reference crops are defined for the ETsz, a tall crop similar to 0.5m tall alfalfa 

and a short crop similar to 0.12m tall cool-season clipped grass (Walter et al., 2005; 
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Jensen & Allen 2016).  In this thesis we computed ETsz using the tall crop which is 

usually abbreviated as ETr.  The short reference crop ET is usually abbreviated as ETo. 

  The equation and details for its correct application are available in Walter et al. 

(2005). The equation is defined as: 

𝐸𝑇𝑠𝑧 =
0.408∆(𝑅𝑛−𝐺)+ 𝛾

𝐶𝑛
𝑇+273

𝑢2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+𝐶𝑑𝑢2)
                                  (2.1) 

Definitions for the parameters are provided in Table 2.1. 

Table 2.1: ETsz parameter definitions 

Parameter Definition 

ETsz standardized reference crop evapotranspiration (mm d-1) 

Rn calculated net radiation at the crop surface (MJ m-2 d-1) 

G soil heat flux density at soil surface (MJ m-2 d-1) 

T mean daily air temperature at 1.5 to 2.5-m (°C) 

u2 mean daily wind speed at 2-m (m s-1) 

es saturation vapor pressure at 1.5 to 2.5-m (kPa) 

ea mean actual vapor pressure at 1.5 to 2.5-m (kPa) 

Δ slope of saturation vapor pressure-temperature curve (kPa °C-1) 

γ psychrometric constant (kPa °C-1) 

Cn 
numerator constant that changes with reference type and calculation timestep (K mm s3 

Mg-1 d-1) 

Cd denominator constant that changes with reference type and calculation timestep (s m-1) 

 

Computation of ETsz using data collected outside of reference conditions violates 

certain assumptions underlying the Penman-Monteith equation and can result in an 

inflated ETsz.  Reasonable representation of reference conditions for a weather station are 

defined in Allen (1996) as a “…well-watered … surface below and surrounding the 

weather equipment for a distance of 100 times the height of the wind, air temperature and 
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relative humidity sensors in all directions.”  Those constraints helped guide our selection 

of weather data. 

2.3 Reasons for Differences Between Gridded and Weather Station Data 

This section provides some information about the potential causes of differences 

between weather station measurements and gridded data estimates.  The causes of 

differences are either due to differences in what the data sets represent or due to error in 

one or both data sets.   

We first discuss differences between the data sets arising from differences in what 

they represent.  Even if gridded data perfectly represent each weather parameter for the 

time and space they are supposed to represent, there can still be potential problems 

stemming from using the gridded data to estimate ETref.  One problem arises from the 

fact that ETref should be computed using weather data collected over a reference surface.  

A reference surface is defined by ASCE-EWRI (Walter et al., 2005) as an extensive 

surface of managed vegetation, such as clipped grass, that is well-watered and actively 

growing and transpiring. In arid areas with irrigated agriculture, the grid cell size in some 

gridded data sets might be so large as to extend beyond an irrigated area and include 

surrounding dry area.  The grid cell weather properties would thereby blend the 

microclimatic conditions of the irrigated area (representing reasonable reference 

conditions) with non-reference conditions found in the unirrigated environment, 

potentially diminishing the validity of the ETref estimate.  This is a problem in spatial 

representivity; the gridded data does not have a small enough spatial resolution to best 

serve ETref estimation. 
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The problem of spatial representivity can also arise in heterogeneous, complex 

terrain.  The gridded weather data sets generally represent the weather conditions at the 

average elevation of the grid cell. Air properties can change rapidly with elevation, 

especially air temperature, so if the elevation within the grid cell where ETref is needed is 

substantially different from the average grid cell elevation, the data will not represent 

what is desired. 

Besides the problem of spatial representivity, there can be problems associated 

with temporal representivity.  Some gridded data have a temporal resolution (timestep) as 

large as 6-hours.  Given that most gridded weather data sets estimate instantaneous values 

occurring at each timestep, a 6-hour timestep is analogous to using a 6-hour sampling 

rate.  All four parameters used to estimate ETref - air temperature, humidity, wind speed 

and solar radiation - tend to vary substantially during a day, and a 6-hour sampling rate 

might be insufficient for representing those variations.  The coarse temporal resolution 

could reduce the accuracy of ETref.  Hupet & Vanclooster (2001) found that even an 

hourly sampling rate could cause errors in daily grass ETref as large as -27%. 

Spatial and temporal representivity impacts can be problematic regardless of the 

quality of a gridded weather data set, but the quality of a data set itself can also come into 

question due to inaccuracies in models or in assimilated data.  One source of bias 

expected in gridded data appears because irrigation data is not assimilated.  In arid areas, 

where irrigation is prevalent, the microclimate near the irrigated area is affected by the 

additional water input.  Evapotranspiration made possible by the additional water inputs 

absorbs solar energy that in the nearby unirrigated areas heats the air instead.  The 
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microclimate near the irrigated crops is therefore cooler and more humid than 

surrounding unirrigated land, but because the LSMs do not account for water inputs 

besides precipitation, they overestimate the air temperature and underestimate the 

humidity.  

Another suspected source of bias in in gridded data comes from bias in the 

assimilated data.  Many of the ground-based weather stations assimilated by analyses are 

located at airports in the CONUS.  Temperature and humidity might be elevated at 

airports because the prevalence of paved surfaces. On pavement there is little to no 

moisture to vaporize so more solar energy is available to warm the air instead.  This is 

commonly known as the urban heat island effect. 

2.4 Gridded Weather Data Sets 

 This section provides background for each of the gridded weather data sets 

examined in this thesis.  Section 2.1 provides the necessary information to understand 

this section.  The spatial and temporal attributes of the gridded data are shown in Table 

2.2. 
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Table 2.2: Resolutions and coverage of gridded data sets 

Data Set 
Spatial 

Resolution (km) 

Spatial 

Resolution (°) 

Temporal 

Resolution (hr) 

Temporal 

Coverage 

Spatial 

Coverage 

GLDAS 1 ~28 latitude 
1/4 (Noah 

forcings) 
3 2000 - present Global 

CFSv2 ~22 latitude ~0.2 6 1979 - present Global 

NLDAS 2 ~14 latitude 
1/8 (Noah 

forcings) 
1 1979 - present CONUS 

GRIDMET ~4.5 latitude 1/24 24 1979 - present CONUS 

RTMA 2.5 - 1 
08/22/2006 - 

present 

US, Guam, 

Puerto-Rico 

NDFD 1 day 

forecast 
5 * - 3 * 

12/2/2002 - 

present 

US, Guam, 

Puerto-Rico 

NDFD 7 day 

forecast 
5 * - 6 

12/2/2002 - 

present 

US, Guam, 

Puerto-Rico 

* NDFD spatial resolution changes to 2.5 km and the temporal resolution for forecasts out to 3 days changes to 1 

hour after 08/19/2014 

 

2.4.1 GLDAS 

Both NLDAS and GLDAS fall under the Land Data Assimilation Systems 

(LDAS) project of NASA and the National Centers for Environmental Prediction (NCEP) 

(Mitchell et al., 2000).  The goal of the LDAS is to produce LSM’s uncoupled from 

atmospheric models to avoid biases due to coupling.  Inadequate coupling can cause 

feedbacks that create systematic hydrologic error (Houser et al., 2010).  Instead the 

LSM’s are forced with high quality data sets derived from observations.  These 

meteorological forcing data sets were utilized in this study, rather than the output of the 

LSMs. 

GLDAS is developed jointly by the National Aeronautics and Space 

Administration (NASA) Goddard Space Flight Center (GSFC) and the National Oceanic 

and Atmospheric Administration (NOAA) National Center for Environmental Prediction 

(NCEP) (Rodell et al., 2004).  The goal of GLDAS is to generate global high quality 

fields of land surface states and fluxes using LSMs (Rodell et al., 2004). 
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 GLDAS version 1 primarily derives its forcing fields from the Global Data 

Assimilation System (GDAS).  Precipitation comes from disaggregated Merged Analysis 

of Precipitation (CMAP), and incoming radiation is derived from the Air Force Weather 

Agency (AFWA) (Pearce, 2016a).  The forcing data include precipitation, downward 

shortwave radiation, downward longwave radiation, near-surface air temperature, near-

surface specific humidity, near-surface zonal wind, near-surface meridional wind and 

surface pressure (Rodell et al., 2004). 

The GDAS is the assimilation system used in support of the Global Forecast 

System (GFS).  The GFS is an operational weather forecast model, which means that its 

assimilation system (GDAS) is subject to improvements so that the forecasts can be as 

accurate as possible.  This is important because it means that the forcing fields in GLDAS 

improve over time.  The forcing data for GLDAS version 1 drive four different land 

surface models: Mosaic, Noah, the Community Land Model (CLM) and the Variable 

Infiltration Capacity model (VIC).  In this study we use the forcing data that are used in 

for the Noah model.  Near real-time fields are produced at temporal resolutions of 1-

month and 3-hours with a spatial resolution of 1° going back to 1979 and 0.25° 

(approximately 28 km of latitude) going back to 2000 (Pearce, 2016b).  

2.4.2 NLDAS 

NLDAS is produced by NOAA/NCEP’s Environmental Modeling Center, 

Climate Prediction Center, NOAA/NWS Office of Hydrological Development, NASA’s 

GFSC, Princeton University and the University of Washington.  NLDAS, like GLDAS, 
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seeks to produce high quality LSM data sets.  Similar to GLDAS, NLDAS produces 

forcing data by assimilating high quality observation based data.   

NLDAS version 2 derives most of its forcing fields from the North American 

Retrospective Reanalysis gridded data set (NARR; Mesinger et al., 2006).  To create 

NLDAS, NARR  is spatially and temporally disaggregated employing the methods 

presented in Cosgrove et al. (2003).  Precipitation is derived from a gauge-only climate 

prediction center (CPC) analysis of daily precipitation orographically adjusted using the 

PRISM climatology.  The PRISM data set is produced by using methods which were 

briefly outlined in Section 2.1.   

One major difference between NLDAS and GLDAS is the primary source of data.  

For NLDAS, the primary source is a real-time continuation of NARR called the Regional 

Climate Data Assimilation System (R-CDAS), which is a ‘frozen’ assimilation system.  

NARR finished production in 2003, at which time it was transitioned into the R-CDAS 

(Mesinger et al., 2006).  None of the subsequent improvements to data assimilation have 

been incorporated into the R-CDAS, but they have been incorporated into the GDAS. 

NLDAS version 2 produces two different sets of forcing data.  In this study we 

focused on the traditional forcing fields in forcing file A.  The forcing parameters 

produced in forcing file A include precipitation, downward shortwave radiation, 

downward longwave radiation, near-surface air temperature, near-surface specific 

humidity, near-surface zonal and meridional wind, surface pressure, fraction of total 

precipitation that is convective, convective available potential energy and potential 

evapotranspiration. 



15 

 

NLDAS runs the same four LSM’s that GLDAS runs.  The forcings and products 

have a temporal resolution of 1-hour and a spatial resolution of 0.125° (approximately 14 

km of latitude) extending back to 1979. 

2.4.3 GRIDMET 

 GRIDMET is produced at the University of Idaho by combining the spatial 

attributes of PRISM data with temporal attributes of NLDAS version 2 (Abatzoglou, 

2011).  In GRIDMET, NLDAS is spatially downscaled from its native 14-km grid to a 

4.5-km grid and is upscaled from an hourly to a daily timestep. Monthly PRISM data are 

then used to bias correct the NLDAS data.  Only humidity, temperature and precipitation 

are bias corrected.   

The climate data used to debias NLDAS are the PRISM 30-year monthly normals 

from 1981-2010.  In essence, the debiasing procedure aggregates NLDAS data to 

monthly values and compares the results with PRISM monthly values to create scaling 

factors that are then applied to the raw daily NLDAS data.  During our study period, 

PRISM was ingesting data from several of the weather station networks used in this 

study.  This may have led to spuriously good performance in the comparisons because the 

data being verified were determined, in part, by the data they were being verified against.  

However, it should be noted that in GRIDMET, only monthly PRISM climate normals 

were used to bias correct NLDAS.  In fact, GRIDMET was validated against some of the 

PRISM input data in Abatzoglou (2011), GRIDMET’s founding paper. 



16 

 

2.4.4 CFSv2 

 CFSv2 was developed by NCEP to replace the CFSv1 (Saha et al., 2014).  The 

purpose of CFSv2 is to produce global seasonal and subseasonal climate forecasts for the 

globe.  The development of CFSv2 began with the creation of the Climate Forecast 

System Reanalysis (CFSR; Saha et al., 2010).  CFSR was produced using state-of-the-art 

forecast and data assimilation techniques.  CFSv2 used the CFSR analysis as initial 

conditions for retrospective forecasts, forecasts made from points of time in the past 

where the forecasted time has since passed.  The retrospective forecasts were used to 

calibrate the model for real time forecasts.  The CFSR was continued on as the real-time 

operational Climate Data Assimilation System (CDASv2) in order to continue to provide 

initial conditions for the CFSv2 forecasts.   

The assimilation system of CFSv2 is ‘frozen’, much like the R-CDAS behind 

NLDAS.  This might seem odd because assimilation systems serving forecasts are 

usually updated on occasion to improve their accuracy, but because CFSv2 is a climate 

model, temporal consistency is paramount, and updating the system would likely create 

inconsistency.  The CFSR completed production in 2009 so the models and assimilation 

techniques of that time are the ones still being used. 

In this study the data examined come from the Climate Data Assimilation System 

version 2 (CDASv2), which is often referred to as the CFSv2 operational analysis.  We 

use CFSv2 to refer to the analysis.  The spatial resolution of this data set is 0.2 degrees 

(approximately 22 km of latitude) and the temporal resolution is six hours. 
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The Noah LSM (also run by NLDAS and GLDAS) is used in CDASv2 in two 

ways.  First it is used within a fully-coupled land and atmosphere model to make first-

guess forecasts.  Second it is used in a semi-coupled CFSv2 implementation of GLDAS 

to perform a land surface analysis.  The CFSv2-GLDAS is forced with CFSv2 

atmospheric data assimilation output and several combined precipitation analysis data 

sets.  The use of observed precipitation is what makes the model only semi-coupled, and 

is intended to reduce the bias in CFSv2 precipitation and the resulting unrealistic 

feedback to and from the Noah model.  The CFSv2-GLDAS analysis only occurs once a 

day at 0000 Coordinated Universal Time (UTC) because the precipitation data are only 

available at a daily timestep.   
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Exploratory plots of some CDASv2 parameters versus observations show several distinct 

trend lines.  An example is given in Figure 2.1 of air temperature, where air temperature 

data from a station in California (designated CA4) are compared with CFSv2 data at the 

CFSv2 6-hour timestep.   

 

Figure 2.1 6-hr timestep temperature data from 2013 through 2015 from a California 

weather station plotted against CFSv2 data. 
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The plot contains data from the entire study period (roughly three years).  We 

hypothesize that the pattern is related to the once-a-day analysis of GLDAS.  After the 

GLDAS analysis for the day, there are three more timesteps for the day where no 

observed precipitation is assimilated.  The analyses at timesteps after the GLDAS 

analysis rely only on atmospheric model simulated precipitation.  If the model simulated 

precipitation does not correspond well to the GLDAS precipitation analysis (which is 

closer to reality) then the LSM might diverge from reality during the model simulated 

timesteps.  In this thesis the data are aggregated to daily values.  The multiple trends for 

CFSv2 disappear at a daily timestep, which confirms that the effect is diurnal.  

2.4.5 NDFD 

NDFD (Glahn & Ruth, 2003) is a product of the National Weather Service (NWS) 

that began being distributed in 2003 as a means to provide public access to weather 

forecasts from a central digital source.  Weather Forecast Offices (WFOs) produce 

regional forecasted grids of sensible weather elements that are then mosaicked together 

on a central server.  Forecasters have the ability to manually adjust the forecast grids 

produced by the numerical forecast (Myrick & Horel, 2006).  The nominal spatial 

resolution of the gridded elements is 5 km and the temporal resolution is 3 hours for short 

range forecasts with lead times less than 3 days, and 6 hours for longer range forecasts 

with lead times of 3 to 7 days (Glahn & Ruth, 2003).  In late August of 2015 the NDFD 

reduced its spatial resolution to 2.5 km and its short range forecast temporal resolution to 

1 hour.  The forecast is produced for the CONUS, Puerto Rico, Hawaii, Guam and 

Alaska.  RTMA, described in the next section, is often used to initialize and verify NDFD 

forecasts (De Pondeca et al., 2011). 
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2.4.6 RTMA 

  The Real-Time Mesoscale Analysis (RTMA) is produced by NCEP, the Earth 

System Research Laboratory (ESRL) and the National Environmental, Satellite, and Data 

Information Service (NESDIS) (De Pondeca et al., 2011).  The most prominent 

application of RTMA is to help initialize and verify NDFD forecasts.  RTMA has a 

spatial resolution of roughly 2.5 km and the temporal resolution is one hour, matching 

those for NDFD. 

 RTMA is under continual improvement, and periodically assimilates new data 

sources.  RTMA assimilates data from a vast number of ground-based weather stations 

including many of the networks providing ground-based data used in this thesis.  As 

indicated for GRIDMET, using weather stations to verify a gridded product created using 

those same weather stations, can cause overestimation of accuracy due to lack of 

complete independency.  Despite this, stations in networks that are assimilated in RTMA 

were used for our study due to their regional representativeness, data quality and access.   

The lack of independence of data sets may not be as problematic as it appears at 

first glance.  First, it is acknowledged that during creation of analyses the modeled 

weather values are not simply replaced with observed values, but rather a statistical 

algorithm decides how the two information sources are to be blended.  The result is that 

comparison of assimilated stations to the gridded product following their assimilation can 

still help to identify biases that exist between the two data sets.  Secondly, RTMA ingests 

many stations, for example, a single temperature analysis for 1500 UTC 20 November 

2009 used 14,299 stations (De Pondeca et al., 2011).  This means that the analysis would 
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probably change very little if the RTMA assimilated weather stations used as ground-

truth in this thesis were not assimilated in RTMA. 

CHAPTER 3. PREVIOUS WORK 

 The goal of this chapter is to describe findings of previous studies comparing 

gridded data sets and parameters used in this thesis to ground based observations.  

Studies outside of CONUS are not reviewed because the quality of gridded products can 

vary widely by location (Slater, 2016), and the results are not expected to represent 

conditions for our study area.  Some studies included other gridded data sets in addition 

to the ones focused on in this thesis and used methods that make comparison of results 

difficult.  In this chapter the focus is placed on findings for weather parameters explored 

in this thesis, and on results that provide grounds for comparison.  Bias is quantified in 

most studies including this thesis and unlike other performance statistics has a sign.  The 

convention that applies to all biases reported in this thesis is that a positive bias means 

that the gridded data have values that are higher than those of the weather station data. 

3.1 GLDAS 

Decker et al. (2012) evaluated a number of reanalysis data sets, including CFSR 

and GLDAS, by comparing them against data from 33 FLUXNET towers located in 

North America.  Comparisons were made for shortwave radiation, temperature, wind 

speed, precipitation, net surface radiation, latent heat flux and sensible heat flux.  

FLUXNET is a global network of flux towers that measure weather parameters at 

specific locations using eddy covariance methods.  The systems are designed to measure 

fluxes of carbon dioxide and energy exchange between earth’s surface and the 

atmosphere.  The 33 towers selected were located in a variety of different climate 
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regimes.  The timespan of the data used varied among flux towers, but all comparisons 

were made between 1996 and 2006.  GLDAS version 1 data with 1° spatial resolution 

were evaluated.   

The statistics produced included bias, standard deviation of the error, Pearson 

correlation, ratio of the standard deviations and root mean squared error (RMSE).  The 

‘ratio of the standard deviations’ is an expression of error that describes differing 

variability about the mean for the two data sources compared.  Decker et al. (2012) 

observed that MSE (and therefore RSME) can be decomposed to a function of 

correlation, mean of the observed data, mean of the gridded data, standard deviation of 

the observed data and standard deviation of the gridded data.  They used the terms from 

the decomposed MSE to compute relative contributions to the error for different 

timescales.  

The statistics were computed for each FLUXNET station for three different 

timescales of the data produced with different aggregation methods: 6-hour data, which 

was the native timestep for most data sets; the average of each 6-hour timestep for each 

month (monthly mean diurnal cycle); and monthly averages. 

The Decker study presented histograms showing the number of stations falling 

into numerical bins for bias, RMSE, correlation and ratio of standard deviations, and 

generally focused on creating rankings for the reanalysis data sets. No precise numerical 

values for bias or other performance statistics were reported for comparison.   

Decker et al. (2012) concluded that at the 6-hour timestep, GLDAS overestimated 

temperature variability more often than GLDAS underestimated it.  The ratios of standard 
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deviations fell within histogram bins ranging from 0.7 to 1.3, with most stations falling in 

the 0.9 to 1.1 bin.  Almost all correlations fell within the histogram bins ranging from 0.9 

to 1.0.  Most bias fell within bins ranging from -2.5 to 2.5 °C with one station higher than 

that range.  There did not seem to be a generally positive or negative air temperature bias 

in GLDAS. 

For wind speed, the paper only presents the histogram for the monthly average 

wind speed.  They state that the GLDAS 6-hour data yielded similar results to the 

monthly data, but that the correlations were lower for the 6-hour data and the spread in 

the variability histogram was wider.  Variability of the monthly data was better estimated 

by GLDAS than all other gridded data sets.  The ratios of standard deviations fell within 

histogram bins ranging from 0.5 to 5.0 with the relative majority of stations falling within 

the 0.7 to 0.9 bin.  The greatest number of correlations were in the bins ranging from 0.4 

to 0.7.  Some correlations were negative.  The wind speed biases were generally positive 

and fell between histogram bins ranging from -2.5 to 2.5 m s-1, with most stations in the 

0.5 to 1.5 m s-1 range. 

For solar radiation, the paper only presented the histogram for the monthly 

average shortwave solar radiation, so the information is less detailed for the 6-hour 

timesteps.  GLDAS ratios of standard deviations were most often between 0.9 and 1.1 but 

greater than 1.1 at five locations.  Most correlations fell between 0.90 and 0.95. The 6-

hour shortwave radiation in GLDAS had a small positive bias that we can assume was 

similar to the monthly bias.  The monthly bias fell within histogram bins ranging from -

25 W m-2 to 50 W m-2. 
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The comparison of the contributions to MSE of the different components on 

different timescales showed that at the monthly timescale, bias was the main contributor 

to error for solar radiation, air temperature and wind speed.  The tendency for bias to 

dominate was stronger in the case of wind speed.   For wind speed at the 6-hour timestep, 

bias often remained a major source of error, but random error played a larger part as 

indicated by a lower correlation.  Decker et al. (2012) results will be commented on again 

in the CFSv2 Section 3.4, and differences between CFSv2 results and GLDAS results 

will be discussed. 

Slater (2016) compared shortwave radiation from numerous reanalyses, satellite 

and derived products against 4000 weather stations within the CONUS and parts of 

southern Canada.  NLDAS version 2, GLDAS version 1, and CFSR were all evaluated.  

The gridded products were compared against the observations using the bias and 

correlation of the radiation on a daily timestep.  Data from between the years 2000 and 

2010 were used, though the exact period of data available at each station varied. 

Slater calculated what he referred to as a clear sky ratio (CSR) in order to correct 

and rescue biased weather station solar radiation measurements.  CSR was defined as the 

ratio of weather station radiation on a typical clear sky day to the theoretical clear sky 

radiation value as calculated using the Bird and Hulstrom (1981) model.  CSR was 

calculated for overlapping periods of time at each weather station and the value closest to 

1.0 for a particular period was used as an adjustment factor.   

Slater found that the radiation bias during the summer months (June, July and 

August) were positive for NLDAS and GLDAS except for low or negative bias in the 
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Rockies and Northwest.  Maps of bias showed that bias ranged from -45 W m-2 to 45 W 

m-2.  GLDAS reached a positive bias as high as the 35 to 45 W m-2 range, but the 

negative bias only reached the -25 to -35 W m-2 range.  These biases matched up well to 

the biases found in Decker et al. (2012). 

Finally Slater assessed variability in the gridded solar radiation by correlating the 

clear sky index (measured radiation divided by theoretical clear sky radiation on all days, 

including clouded days) of the measured data against the clear sky index of the gridded 

product data.  The clear sky index was used to indicate the ability of the gridded products 

to model impacts of cloudiness.  GLDAS had a correlation between 0.70 and 0.75.  These 

correlations are generally lower than the 6-hour correlations found in Decker et al. 

(2012), but the sub-daily timestep in Decker et al. should increase the correlation relative 

to a daily timestep because the sub-daily timestep will track the diurnal cycle.  

Furthermore, correlating the clear sky index should result in a lower correlation than 

using the radiation data. 

3.2 NLDAS 

 There have been more studies exploring error in NLDAS than for all other 

gridded data sets.  In Slater (2016), NLDAS had a clear sky index correlation between 

0.65 and 0.70.  The summertime radiation bias was positive for NLDAS except for the 

Rockies and the Northwest, a pattern shared with GLDAS.  Also, like GLDAS, NLDAS 

reached a positive bias as high as the 35 to 45 W m-2 range, but the negative bias only 

reached the -25 to -35 W m-2 range. 
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Lewis et al. (2014) validated NLDAS version 2 to specifically assess the viability 

of using NLDAS data for computing ETsz.  The study only evaluated locations in the 

western United States and for weather stations located in agricultural environments, 

where ETsz is typically applied.  They gathered data from 704 stations, from 1979 to 

2012.  The parameters evaluated were shortwave radiation, air temperature, wind speed, 

relative humidity and ETsz.  During their data processing, Lewis et al. used spatial 

bilinear interpolation of NLDAS pixel values to the weather station locations to reduce 

error due to differences in the spatial scale.  They also adjusted temperature and humidity 

to the weather station elevations.  Their analysis was performed at the hourly timestep of 

NLDAS. 

The statistics computed to validate the NLDAS data included the coefficient of 

determination (R2), bias and RSME.  Air temperature and solar radiation had the highest 

R2 values ranging from 0.76 to 0.96 and 0.77 to 0.93 respectively, across locations. R2 for 

relative humidity ranged from 0.27 to 0.72, and for wind speed ranged from 0.14 to 0.61.  

R2 for air temperature tended to be lower in southern Texas, the Rockies, and the Pacific 

coast.  R2 for solar radiation was relatively low in Montana, the Pacific Northwest, 

Southern Texas and the northern Great Plains.  For wind speed, the lowest R2 values 

occurred in the Rockies, the Southwest and the Pacific Northwest.  Relative humidity 

presented a spatial pattern similar to the wind speed, except that the central valley in 

California and most of Arizona had high R2. 

 Solar radiation bias ranged from -7.5 W m-2 to 33.6 W m-2, near-surface air 

temperature from 0.1 °C to 4.0 °C, wind speed at 2 m height from –1.5 m s-1 to 1.7 m s-1 



27 

 

and near-surface relative humidity from -20.8% to 2.5%.  Solar radiation bias was highest 

from California down through Arizona and southern New Mexico, with additional high 

points in central Oregon and in Montana and North Dakota along the Canadian border.  

The radiation biases computed by Slater showed a slightly different spatial pattern, 

perhaps due to restricting the computation of bias to the summer months.  The main 

differences in bias occurred through the eastern parts of Nebraska, Kansas, Oklahoma 

and Texas; Slater et al. showed those areas as having a high bias, contrary to Lewis et al. 

who showed a negative bias. 

It is worth emphasizing that near-surface air temperature bias was positive 

everywhere in the Lewis study.  The highest biases occurred in southern California, 

Nevada, Arizona and the Rockies.  Wind speed biases were highly variable spatially, with 

negative biases in the Great Plains north of Kansas and with higher biases in eastern 

Kansas, Oklahoma and Texas, and additionally on the West Coast, extending from 

Northern California to Canada.  The spatial patterns in relative humidity bias closely 

matched the patterns for air temperature. 

The bias for grass reference ETsz (ETo) was positive for most of the country and 

ranged between -0.007 mm h-1 and 0.052 mm h-1.   California and the areas along the 

Mexican border had the highest positive biases.  The R2 ranged from 0.81 to 0.93. 

Interestingly the R2 was highest along the border with Mexico reflecting precision in 

timing of trends in ETo, but bias in estimation.  R2 was lowest in Montana, the Pacific 

Northwest, southeastern Texas, Nebraska, South Dakota and North Dakota. 
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A study closely related to Lewis et al. (2014) is Moorhead et al. (2015), in which 

the ETsz maps produced by NOAA using NLDAS data were evaluated in the Texas High 

Plains region.  They compared ETsz values, minimum temperature, maximum 

temperature, solar radiation and wind speed between NLDAS/NOAA and 14 Texas High 

Plains ET network weather stations. The comparisons were made using hourly data for 

the time period of 2001-2010.  Linear models fitted between the data sets, RMSE and the 

Nash-Sutcliffe Efficiency (NSE) were used in the comparisons.   

At all weather stations in the Moorhead study, the linear model for ETsz, where 

ETsz from gridded data were regressed against ETsz computed from weather stations, 

produced slopes and intercepts showing that the use of NLDAS data generally 

overestimated ETsz (a slope of 1 and an intercept of 0 would show that NLDAS was 

unbiased).  The slopes and intercepts found for daily minimum and maximum air 

temperature showed that they were typically overestimated by NLDAS.  This result 

agrees with Lewis et al. (2014).  The results from Moorhead et al. (2015) and Lewis et al. 

(2014) also agree on wind speed bias, where there was a negative bias in the Texas 

panhandle.  The regression coefficients found for solar radiation did not show a pattern, 

and no generalizations could be made.  Generally the results confirmed the findings of 

the earlier study by Lewis et al. 

3.3 GRIDMET 

 GRIDMET is a relatively recently created gridded weather data set, so evaluations 

of GRIDMET appear infrequently in the literature.  The principal reference for 

GRIDMET is Abatzoglou (2011), which both described how GRIDMET was produced 
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and how validation was applied for some of the products of GRIDMET over the western 

United States (approximately west of the eastern New Mexico border). 

 The Abatzoglou study compared GRIDMET data to data from 1618 weather 

stations from several different networks including AgriMet. Some of the ground stations 

used in this thesis were part of the AgriMet network.  Abatzoglou compared maximum 

and minimum temperature and relative humidity (RH), precipitation, wind speed, vapor 

pressure deficit, energy release component (ERC) and ETo computed with the 

standardized Penman-Monteith method.  The performance statistics were computed using 

daily data, and included the Pearson correlation coefficient, mean absolute error (MAE) 

and mean bias.  Each statistic was computed for the cool season (Oct-Apr) and warm 

season (May-Sept).  GRIDMET temperature and humidity were not lapse-adjusted for 

station elevation within a GRIDMET grid cell, and this was noted as an additional source 

of error in the paper. 

 Daily maximum and minimum near-surface air temperatures had median 

correlations of 0.94-0.95 and 0.87-0.90, and MAE of 1.7-2.3 °C.  Bias maps of minimum 

and maximum daily temperature show that bias for both temperatures ranged from -2 to 2 

°C.  The Abatzoglou paper stated that stations from the Remote Automated Weather 

Stations (RAWS) weather station network produced a median minimum temperature bias 

of -0.95 °C in contrast to non-RAWS stations which had a bias of -0.12 °C.  They 

hypothesized that the reason the air temperatures in the gridded weather data set tended to 

be cooler than measured air temperature at RAWS stations is due to the tendency of 

RAWS stations to be situated in areas having fire risk that often coincide with areas in the 



30 

 

thermal belt.  Thermal belts appear in mountainous regions where, at night, a band of 

warm air becomes trapped mid-slope by cold-air drainage.  Another interesting 

observation made by Abatzoglou was that many stations that were located less than 10km 

from each other often had very different minimum temperature correlations when the 

surrounding terrain was heterogeneous. He attributed the difference in correlations to the 

inability of gridded data to reasonably account for cold air drainage, perhaps due to the 

terrain homogenization within each grid cell. 

 Minimum and maximum RH had median correlations between 0.77 and 0.81 

among the weather stations and median MAE between 6 and 12%.  In general, daily 

maximum RH had lower correlations than daily minimum RH.  The spatial patterns in the 

error were similar to those for air temperature.   

 Wind speed had median correlation values of 0.54 during the cool season and 

0.52 for the warm season.  Abatzoglou found that wind speed tended to have a high bias 

in forested areas.  He noted that some studies have found topography and surface 

roughness to cause substantial differences between observed and interpolated wind. 

 ETo in Abatzoglou (2011) had a median correlation among weather station 

locations of 0.90 but showed a median bias of positive 0.5 mm d-1.  He attributed the high 

ETo bias to biases in the other variables.  Abatzoglou also noted the possibility of bias 

appearing especially high at AgriMet weather stations due to the irrigation effects 

mentioned in Chapter 2.  A time series plot of ETo averaged across 7 AgriMet stations 

and ETo computed using GRIDMET shows a substantial bias averaging 14% high for the 

period of March to October pooled across the study years. 
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 Another study comparing GRIDMET data to weather station data is McEvoy et 

al. (2014).  The aim of that study was to assess the ability of gridded data to represent 

weather along large elevation gradients.  Weather station data were taken from transects 

in the Snake and Sheep mountain ranges of Nevada from October to September of 2012.  

The variables analyzed included daily minimum and maximum temperature, daily 

average dew point temperature and daily total precipitation.  The evaluation statistics 

used included bias, R2 and MAE. 

 In the Snake range, daily maximum air temperature biases were positive at higher 

elevations and negative in the valleys which they attributed to differences between the 

grid pixel elevations and the station elevations - one of the spatial representivity problems 

addressed in Section 2.3.  An interesting result with daily minimum temperature was that 

stations located in the foothills were warmer than the valley floor stations due to the cold 

air drainage and thermal belt mentioned by Abatzoglou (2011).  GRIDMET was able to 

reproduce the nighttime air temperature inversions that occur in valley areas, but 

underestimated the strengths of the effect.  Dew point bias wasn’t observably affected by 

elevation and tended to be negative in both the cold and warm seasons with a magnitude 

of no more than 3 °C.  The results from the Sheep range were similar.  For R2, maximum 

and minimum temperature and dew point all performed worse during the cold season 

(Oct-Mar) than during the warm season (Apr-Sept).   

3.4 CFSv2 

 Slater (2016), previously mentioned in reference to GLDAS and NLDAS 

comparisons, also evaluated the solar radiation product from the Climate Forecast System 
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Reanalysis (CFSR).  The CFSR data tend to be very close to the operational CFSv2 

analysis data set, so conclusions reached for CFSR are also applicable to the CFSv2 

analysis.  Slater found that CFSR-based solar radiation had a positive bias throughout 

most of CONUS for all seasons, with exceptions in small pockets of West Texas and the 

Pacific Northwest.  The bias spanned the range of -45 W m-2 to 45 W m-2. 

 Decker et al. (2012), previously mentioned in reference to GLDAS, also evaluated 

CFSR.   The CFSR temperature ratios of standard deviations fell in histogram bins 

ranging from 0.7 to 1.3, with most stations falling in the 0.9 to 1.1 bin.  CFSR 

underestimated variability at more stations than did GLDAS.  The correlations were 

greater than 0.90 for most stations for all gridded products.  Like GLDAS, CFSR 

overestimated 6-hour near-surface air temperature roughly as frequently as it 

underestimated it.  The bias fell in histogram bins ranging from -3.5 to 6.5 °C.     

A 6-hour wind speed histogram was not presented, but they reported that results 

were similar to the monthly wind speed.  Monthly wind speed variability was usually 

overestimated by CFSR.  The ratios of standard deviations fell in histogram bins ranging 

from 0.5 to 5, with most stations in bins greater than 0.9.  The greatest number of 

correlations were in the bin from 0.4 to 0.7.  Some correlations were negative, and a 

couple were above 0.90.  Bias in wind speed was positive for CFSR, as it was for 

GLDAS.  Bias fell into histogram bins ranging from -0.5 to 3.5 m s-1 

 A 6-hour solar radiation histogram was not presented, so the information is less 

detailed.  The ratios of standard deviations were between 0.9 and 1.1 at most stations.  

Correlation was reported to be between 0.9 and 0.95 at most stations.  CFSR had a 
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positive solar radiation bias, similar to GLDAS.  The bias fell in histogram bins ranging 

from -25 to 50 W m-2. 

 Decker et al. (2012) gave each gridded weather product a ranking for bias and the 

standard deviation of the error at each of 33 FLUXNET stations.  Since there were six 

gridded products the rankings were 1-6.  The rankings were then averaged across all 

stations to provide a consolidated comparison among the gridded products.   

The rankings showed GLDAS to be superior to CFSR in terms of bias for 

temperature and wind speed, but worse than CFSR for solar radiation.  The rankings for 

standard deviation of error showed GLDAS to be superior to CFSR for wind speed only, 

with air temperature and solar radiation being better in CFSR. 

3.5 NDFD 

 Myrick & Horel (2006) computed a variety of forecast quality assessments on 

NDFD temperature data from the winter of 2003-2004 in the western CONUS.  The goal 

of their study was to decide what metrics would be useful for verifying NDFD forecasts, 

to examine differences between verification against observations and verification against 

analysis data sets, and to estimate forecast improvement as a function of lead time.  The 

weather station data used for verification came from the MesoWest data repository of the 

University of Utah.  The spatial extent of the comparisons was the eleven states west of 

Nebraska.  Two verifying analysis data sets were used.  One was the Advanced Regional 

Prediction System Data Assimilation System (ADAS) created at the University of Utah 

(Xue et al. 2000, 2001, 2003).  The other analysis was the Rapid Update Cycle (RUC) 

provided by NCEP (Benjamin et al., 2004). 
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Myrick & Horel used many different approaches to explore the validity of the 

NDFD forecasts including some methods used in this study.  Bias and RMSE were 

computed between NDFD and the verification analysis data sets, and between NDFD and 

the observation data for different forecast lead times for forecasts issued at 0000 UTC.  

The performance statistics were very similar for all the verification data sets.  Bias did 

not greatly increase as a function of forecast lead time, but RMSE did.  Bias oscillated 

between being positive and negative for every 12 hour increment of lead time.  A 12-hour 

lead time typically had a bias around -1.5 °C for near-surface air temperature, with bias 

computed using the weather station data.  A 24 hour lead time had a bias around 0.6 °C (a 

36 hour lead time returned to a bias of -1.5 °C).  The RMSE increased with forecast lead 

time, with even multiples of a 12-hour lead time, having relatively smaller RMSE but still 

increased with lead time.   

The authors theorized that the oscillations in bias were due to the method 

employed by forecasters to estimate near-surface air temperature; they first estimate daily 

minimum and maximum air temperature and then interpolate to find all other temperature 

values.  The western states are 7 or 8 hour behind UTC, which places the 12 hour forecast 

lead time near the daily minimum temperature and the 24 hour forecast lead time near the 

daily maximum temperature.  The authors stated that minimum and maximum 

temperatures persist only briefly.  If the interpolation overestimates the duration of the 

minimum and maximum temperatures that could result in the underestimation of air 

temperature in the morning and overestimation in the afternoon shown in the study. 
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 It should be emphasized that the results of Myrick & Horel (2006)  represent only 

one winter season in the western United States, and more importantly, that NWS 

forecasts (and therefore NDFD) have been improving since the time period analyzed by 

Myrick and Horel (winter of 2003-2004).  Furthermore, the temperature field is not used 

in our study, but rather minimum and maximum temperature are averaged to estimate a 

daily average temperature. 

 Another paper comparing NDFD forecasts, Perez et al. (2010), focused on solar 

radiation at seven sites in CONUS.  As will be further discussed in the methods chapter, 

NDFD does not contain shortwave solar radiation forecasts; instead it contains sky cover 

estimates.  In Perez et al. (2010) they estimated solar radiation from sky cover using an 

equation developed in Perez et al. (2007).  The empirical equation from Perez et al. 

(2007) was refitted to data from the seven evaluation sites to improve the equation’s 

performance beyond a 3-day forecast lead time to which the equation was originally fit.  

They reported that there was a tendency for sky-cover under-prediction beyond the 3-day 

forecast.  Although NDFD has a coarser temporal resolution, sky cover was time 

interpolated to create hourly estimates of solar radiation. 

 The comparison of ground station data came from the SURFRAD network 

operated by the NOAA Earth System Research Laboratory (ESRL).  The seven sites were 

located in Desert Rock, Nevada; Fort Peck, Montana; Boulder, Colorado; Sioux Falls, 

South Dakota; Bondville, Illinois; Goodwin Creek, Mississippi; and Penn State, 

Pennsylvania.  The study used data from August 2008 to August 2009.  Performance 
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statistics included bias, RMSE and the Kolmogorov-Smirnov Integral (KSI) goodness of 

fit test. 

 Perez et al. (2010) analyzed the daily RMSE and bias at lead times of one to 

seven days for different time groupings: all year, winter, spring, summer and fall.  The 

comparisons were made on an hourly timestep.  Bias in daily solar radiation was 

generally negative for all stations except the Montana station which only had a negative 

bias in winter.  Bias was also negative for all seasons except fall; only the Mississippi 

station had negative bias in the fall.  There was generally an increase in the magnitude of 

the bias from 1 to 7 day lead times though there were station and seasonal exceptions.  

Averaging the bias across all seasons and stations yielded a bias of -14 W m-2 at a 1-day 

lead time and -22 W m-2 at a 7-day lead time. 

 The RMSE was lowest in Nevada, which the author attributed to there being 

fewer clouds to predict in that climate.  RMSE also increased from the 1-day to 7-day 

lead times.  Averaging the RMSE across all seasons and stations yielded an RMSE of 149 

W m-2 for a 1-day lead time and an RMSE of 191 W m-2 for a 7-day lead time. 

3.6 RTMA 

 Only one study was found that compared RTMA against surface observations 

(Charney, Zhong, Kiefer, & Zhu, 2013).  That study remains unpublished because the 

verifying ground data were taken from the RAWS network; a network assimilated into 

RTMA.  It is difficult to find independent weather observations to compare with RTMA 

because RTMA assimilates data from many weather networks.  The goal of the Charney 

et al. (2013) study was to compare meteorological parameters important in wild fire 
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management between RAWS, a network frequently used for fire management, and 

RTMA in order to better understand how to use RTMA and NDFD in fire management 

and forecasting.  The study used data from August 2008 to July 2010 collected at 237 

RAWS stations in the northeastern CONUS.  They computed a wide variety of statistics 

but did not report most of them.   

The mean bias was positive for wind speed, and was negative for relative 

humidity.  Charney et al. (2013) found that the near-surface air temperature bias varied 

between stations, but that it was usually plus or minus 2 °F (1.1 °C).  Mean bias for wind 

speed fell between -1 and -3 mph (-0.5 and -1.3 m s-1) for most stations, and for relative 

humidity it fell between 2 and 4%.  They reported no significant seasonal or spatial 

patterns in the bias. 

CHAPTER 4. METHODS 

 

The general flow of the data is shown in Figure 4.1.  Gridded and weather station 

data were processed to meet the two objectives of this thesis.  Each objective required 

slightly different processing, which is reflected in Figure 4.1 by the two separate 

terminations to the flowchart.  The details of the steps shown in Figure 4.1 are explained 

in the body of this chapter. 
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Figure 4.1 Data processing flow chart. 

 

4.1 Station Selection 

 The selection of the 103 ground weather stations, used for comparisons to gridded 

data, was guided by a number of considerations.  Efforts were made to select weather 

stations representing reference conditions where possible because those are the conditions 

under which ETsz estimates are the most valid and error may be unique for those 

conditions.  Reference conditions tend to occur in arid regions where there is irrigated 

agriculture, which is where ETsz estimates are often applied for irrigation water 
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management. In addition, in remote sensing applications such as METRIC and EEFlux, it 

is important to use ETsz estimates that originate from well-watered reference settings due 

to the impact of ETsz on the calibration and accuracy of those models.  Section 2.3 

described how dry and warm biases in gridded data are expected in irrigated areas due to 

the lack of assimilated irrigation data.   

Selected weather stations were required to measure all parameters evaluated 

(temperature, humidity, shortwave solar radiation, and wind speed) at a maximum 

timestep of an hourly rate for the evaluation period of 2013 through 2015.  Furthermore, 

station networks with free, open data access were preferred to networks requiring 

payment.  Lastly, stations were selected that represented reference or near-reference 

siting conditions where possible.  Reference conditions, as previously described, are the 

conditions under which the ETsz equation is valid.  In the real world these conditions can 

be difficult to find or verify.  To help identify these conditions, the Normalized 

Difference Vegetation Index (NDVI) was used.  NDVI is a standard vegetation index that 

is a commonly derived product from satellite imagery.  High values for NDVI indicate 

the presence of live green vegetation, which generally indicates the occurrence of high 

soil moisture, potential ET rates and associated cooling of the air.  NDVI is calculated as 

shown in equation 2.1 

𝑁𝐷𝑉𝐼 =  
(𝜌𝑁𝐼𝑅−𝜌𝑉𝐼𝑆)

(𝜌𝑁𝐼𝑅+𝜌𝑉𝐼𝑆)
     (4.1) 

where ρ is reflectance, NIR stands for the near infrared band and VIS is the visible red 

band.  Band widths for NIR and VIS can vary among instruments, so NDVI can vary 

from satellite instrument to satellite instrument.  Plants strongly absorb visible red light 
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but strongly reflect light in the near infrared spectrum, so an NDVI of 1.0 indicates very 

lush vegetation completely covering the entire pixel.  NDVI less than around 0.2 often 

corresponds to nearly bare soil.  NDVI is usually negative for pixels containing clouds, 

water or snow. 

Although NDVI can be high for vegetation suffering water stress, low NDVI 

indicates a lack of green, actively transpiring vegetation.  In other words, a high NDVI is 

a necessary but not completely sufficient indication of reference conditions.  Despite that 

limitation, NDVI was used as the primary tool for identifying stations that were likely to 

be near reference conditions. 

The approach to selecting weather stations was iterative.  First, average NDVI for 

the warm season months of April through September was calculated for each study year 

from MODIS MCD43A4 16-day surface reflectance composites using the Google Earth 

Engine (Google Earth Engine Team, 2015).  MODIS stands for Moderate Resolution 

Imaging Spectroradiometer and is an instrument aboard the NASA Terra and Aqua 

satellites.  Pixel sizes for that product are 500 m by 500 m.  Negative pixels were masked 

out.  Monthly values were extracted from the 500 m pixels over the station locations. 

These single pixel values at the station locations are referred to as local NDVI.  An 

average of all 500 m pixels within 2 km of the stations, termed areal NDVI, was also 

computed.  The means and standard deviations of all monthly NDVI’s (point and areal) 

were then calculated.  Stations having a mean point and areal NDVI’s less than 0.4 were 

discarded.  For stations with coordinates rounded to the hundredths place, only the areal 

NDVI was used as a criteria because of the uncertainty of the actual station location.  
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After removing stations having low NDVI, the best stations, in terms of NDVI, in the 

geographic regions desired were selected.  This procedure also involved some judgement: 

weighing between NDVI, the location, and the variability in the NDVI.  

Once candidate stations were selected, satellite images from Google Earth and 

ground based images from Google Maps (https://www.google.com/maps) or taken by the 

station network, if available, were consulted to judge the station surroundings.  Each 

station was evaluated for reference surroundings, i.e. few obstructions and uniform low 

vegetation extending in all directions for approximately 100 times the height of the 

temperature and humidity sensors.  Stations not meeting those requirements were 

removed from the list of candidates to produce the list of final candidates.  If the removal 

of a station due to insufficient surroundings caused a large region of CONUS to go 

unrepresented, another station was selected from among the available stations even if the 

alternative did not exhibit reference conditions.  Doubling back to replace stations 

constituted the iterative portion of the process.  Poor quality data from a station were also 

grounds for choosing an alternative station.  The final set of weather stations contained 

some stations that are closely surrounded by trees and others that have low NDVI, 

because there were no alternative weather stations in those regions that had better 

represented reference conditions. 

Figures 4.2 and 4.3 show the mean NDVI and standard deviation of the monthly 

NDVI for the study period for both the point and areal NDVI.  Areal NDVI values were 

generally lower in the west because of the incorporation of dry land within the 2 km 

radius. 
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Figure 4.2 Means and standard deviations of monthly NDVI within a 2 km radius of weather 

stations during the warm season (Apr-Sep) pooled across study years. 
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Figure 4.3 Means and standard deviations of monthly point NDVI at station locations during the 

warm season (Apr-Sep) pooled across study years. 

4.2 Data Retrieval & Extraction 

4.2.1 Weather Station Data 

Weather station data were downloaded from fifteen different sources that 

represented thirteen different weather station networks.  Some networks were state-wide 

for single states, for example the FAWN network for Florida, and others were regional, 

for example the AgriMet Cooperative Agricultural Weather Network operated by several 

entities.  Some networks required email requests to obtain data but most provided an 

online data access service.  A total of 103 stations were selected. These stations were 

located in 41 US states and in all US climate regions. 
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Data were typically in comma or whitespace delimited text files.  Python scripts 

were developed to parse data from each source and to manipulate the data into a standard 

format. Basic metadata were retrieved for each station including the heights of the 

anemometer, the heights of the temperature and humidity instruments, and the station 

latitude, longitude and elevation.   Table 4.1 shows the networks and data sources 

accessed. 

Table 4.1: Sources of weather station data 

Weather Networks 
Network 

Abbreviations 
Data Sources 

Number of 

Stations Used 

United States Climate Reference 

Network 
USCRN USCRN 47 

Arizona Meteorological Network AZMET AZMET 2 

California Irrigation Management 

Information System 
CIMIS CIMIS 8 

Florida Automated Weather 

Network 
FAWN FAWN 3 

Colorado Agricultural 

Meteorological Network 
CoAgMET 

High Plains Regional 

Climate Center 
4 

Iowa Environmental Mesonet IAM 
High Plains Regional 

Climate Center 
1 

Kansas State University Kansas State 
High Plains Regional 

Climate Center 
1 

Enviro-weather Automated Weather 

Station Network 
Enviro-weather Enviro-weather 2 

North Dakota Agricultural Weather 

Network 
NDAWN NDAWN 3 

Nebraska Mesonet NEmesonet 
High Plains Regional 

Climate Center 
6 

New Mexico Climate Center NMCC NMCC 2 

AgriMet Cooperative Agricultural 

Weather Network 
AgriMet 

AgriMet Great Plains, 

AgriMet Pacific 

Northwest, Desert 

Research Institute, Utah 

AgWeather Network 

20 

Oklahoma Mesonet OKMesonet OKMesonet 4 
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4.2.2 GLDAS 

GLDAS data were downloaded from the Goddard Earth Sciences Data and 

Information Services Center (https://disc.gsfc.nasa.gov/).  The data are stored in GRIB 

files (GRIB stands for GRIded Binary) which is a standardized file format devised by the 

World Meteorological Organization (WMO) for storing weather data.  GRIB files were 

downloaded for the Noah model with 0.25° spatial resolution and a 3-hour time step.  

Only the Noah model files contain parameters at a spatial resolution of 0.25 degrees.   

Each file contains raster grids for all the forcing fields and LSM fields valid for one 

timestep. 

 Once all files for the study period were downloaded to a local directory, the 

values of pixels overlying the station locations were programmatically extracted.  Data 

for all parameters at each station location were written to a comma separated value (csv) 

file, with one csv per station location. 

4.2.3 NLDAS 

The NLDAS data were also gathered from the Goddard Earth Sciences Data and 

Information Services Center.  GRIB files of forcing data set A (described in section 

2.4.2) were programmatically downloaded with 0.125° spatial resolution and a 1-hour 

timestep.  Like GLDAS, each file contains data for all fields for one timestep.  The data 

were extracted at the weather station locations using the same methods described for 

GLDAS. 

https://disc.gsfc.nasa.gov/
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4.2.4 GRIDMET 

 GRIDMET data were downloaded from the Google Earth Engine, which serves as 

a repository for GRIDMET data.  The ImageCollection ID was 

IDAHO_EPSCOR/GRIDMET.  Data were accessed February 7th, 2017.  A script, similar 

to the one used to extract the NDVI values used for station selection, was created to 

extract the values of GRIDMET pixels at station locations for our study period. 

4.2.5 CFSv2 

 CFSv2 data were also extracted from the Google Earth Engine.  Earth Engine 

ingests a number of surface meteorological parameters from the NOAA CFSv2 

operational analysis 6-hourly surface and radiative flux GRIB files.  The ImageCollection 

ID was NOAA/CFSV2/FOR6H.  Data were accessed February 7th, 2017. 

The files ingested by Earth Engine are not analysis files, but forecast files; the 

analysis files contain only eight parameters and are missing several of the parameters 

investigated in this study so they were not used.  The forecast files ingested in Earth 

Engine show what has been estimated by the model before being updated with 

observational data.  Each forecast file was produced by forecasting 6 hours ahead of the 

previous analysis. 

4.2.6 NDFD 

 NDFD data span the entire study period but have significant gaps, especially in 

2015.  The historical NDFD data were gathered from the NOAA National Operational 

Model Archive and Distribution System (NOMADS) (https://www.ncdc.noaa.gov/data-

access/model-data).  NOMADS provides an ftp server to download archived NDFD 



47 

 

forecasts.  The data are stored in GRIB files.  For NDFD, each GRIB file represents a 

forecast from either one to three or four to seven days for one weather parameter.  The 

files contain bands of data; each band is a raster representing the weather parameter for a 

single forecast “valid time”.  NDFD forecasts are published roughly every hour.  

Therefore, the last forecast and second-to last-forecast of each day were downloaded 

programmatically from the ftp server in order to obtain the most accurate forecast for the 

following days.  These forecasts were the most accurate because they were initialized as 

near as possible to the beginning of our forecasted days of interest.  The second-to-last of 

the day forecast was only downloaded for parameters whose 3-day lead time forecasts 

use 3-hr timesteps, because the last forecast of the day does not forecast the first hour of 

the following day. 

Forecast accuracy decreases with the lead time of the forecast.  A homogenous 

forecast data set therefore requires not only that forecasts represent the same time in the 

future but that the forecasts are made for the same lead time.  The data were filtered to 

meet these requirements. 

The files were filtered according to metadata stored within the GRIB files.  For 

files forecasting 1-3 day lead times the criteria for filtering were that the first forecast 

should be for 0000 UTC on day 1, and the first forecast duration should be one hour, that 

is, the forecasted values were predicted from one hour prior.  For files forecasting the 4-7 

day lead times, the criteria for filtering were that the first forecast should be for 0600 

UTC on day four, and the first forecast duration should be three days and six hours.  Only 

files meeting these criteria were used in order to preserve temporal consistency. 
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Once the all the files for the study period were filtered, the values of pixels 

overlying the station locations were extracted.  Data for all parameters at each station 

location were combined and written to a csv file, i.e. one csv file per station location and 

forecast lead time (1-day and 7-day). 

4.2.7 RTMA 

 RTMA data do not cover the entire study period of 2013 through 2015.  The data 

including a sky cover variable (equivalent to what is present in NDFD) began to be 

produced in mid-April of 2015, so that date is used as the start of the RTMA data 

analyzed in this thesis. 

 RTMA data came from two sources.  One source was an NCEP ftp server that 

provides recently produced RTMA data 

(ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/rtma/prod/).  RTMA GRIB files were 

downloaded from this server by staff at UNL in near-real-time before they disappeared 

from the NCEP server.  The other data source was Google Earth Engine, which only has 

historical RTMA data back to June 18 of 2015.  The ImageCollection ID was 

NOAA/NWS/RTMA.  The download date was February 7, 2017.  Data produced before 

June 18, 2015 are from the GRIB files, data after that date come from Earth Engine.  The 

values of pixels overlying the weather station locations in both data sets were extracted.  

Afterward, the two time series were joined. 

4.3 Data Processing 

 In order to meet the objective of comparing gridded weather data to weather 

station data, data processing was required to manipulate the time-averaged weather 
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station data to match the temporal representation of the gridded data, which usually 

represented instantaneous values.  The manipulations and resampling of data were 

necessary so that consistent and fair comparisons could be made.  Data processing was 

also needed to meet the second objective of evaluating the accuracy of gridded weather 

ETsz estimates, because the raw gridded data are not in a form necessary for input into the 

ETsz equation. 

The weather variables compared were vapor pressure, near-surface air 

temperature, shortwave solar radiation and wind speed.  All data were converted to units 

required by the ETsz equation (see Table 2.1).  Wind speed data were standardized to a 2 

meter height.  An equation assuming a logarithmic wind profile was employed to perform 

the wind conversions.  That equation was taken from Walter et al. (2005). 

Both the weather data comparisons and the ETsz evaluations were performed on a 

daily timestep for all variables.  A daily timestep was chosen because aggregating to a 

day helps to remove bias caused by any temporal misalignments of data.  A day is a 

typical time period over which ETsz is computed, since it is generally the shortest period 

in which water management decisions are made.  Lastly, a day is the smallest common 

timestep among all data.  The data processing performed aggregation to daily timesteps 

for both the weather data comparison and ETsz evaluation. 

Selecting the time zone on which to perform the analysis was challenging because 

Coordinated Universal Time (UTC) and local time both have advantages.  Weather 

station data are typically recorded on local time, and gridded data, except for GRIDMET, 

are all reported on UTC.  Using UTC allows all data to be in the same time zone, 
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simplifying some programming tasks.  Local time allows ETsz to be calculated as it 

would be in practice.  Ultimately, local time was selected for the analysis. 

 Aggregation and analysis were performed on local standard time for all gridded 

data except NDFD and GRIDMET.  The smallest GRIDMET timestep available for 

download is one day and the data are on Central Standard Time (CST) so weather station 

data were all aggregated on CST to align with GRIDMET.  NDFD analysis was 

performed on Universal Coordinated Time (UTC), and the weather station data with 

which NDFD were paired were aggregated on the same.  The reasons for this are 

presented in Section 4.3.6. 

Minimum and maximum air temperature are required by the daily ETsz equation.  

Many of the gridded data have maximum and minimum daily temperature determined on 

UTC.  Despite the transition to local time the UTC minimum and maximum temperatures 

were used because it was judged that, most of the time, UTC minimum and maximum 

temperature would correspond to the minimum and maximum temperatures found on an 

arbitrary local time across CONUS.   

Pacific Standard Time (PST) is 8 hours behind UTC, Mountain Standard Time 

(MST) is 7 hours behind UTC, Central Standard Time (CST) is 6 hours behind UTC and 

Eastern Standard Time (EST) is 5 hours behind UTC.  The daily minimum air 

temperature typically occurs around dawn and the daily maximum air temperature 

typically occurs in the mid-afternoon.  A UTC day completely covers all morning hours 

across CONUS so that the reported daily minimum temperatures are consistent.  The 
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UTC day ends anywhere from 1600 hours on PST to 1900 hours on EST which should, 

the majority of the time, include the mid-afternoon high temperature. 

For the objective of comparing weather data, before aggregating weather station 

data to a daily timestep, a linear temporal interpolation was performed to simulate the 

instantaneous hourly data reported by the gridded data sets.  Then the data was 

temporally resampled to match each gridded data set with which it was paired.  This was 

done so that the weather station data would contain the same amount and type of 

information as the gridded data.  Attempting to match the temporal representivity of the 

gridded data allowed error to be attributed more directly to the gridded data. 

Aggregation of gridded data to a daily timestep for estimating ETsz used 

instantaneous data, except for solar radiation; no temporal interpolations were made to 

simulate the average values present in the weather station data.  Performing an 

interpolation of gridded data possessing native timesteps greater than one hour would 

have resulted in data from neighboring days being blended into the final daily value.  

This is because the gridded data, when converted to local time, do not evenly subdivide a 

day (except on CST).  The exception is solar radiation, for which interpolations were 

made.  On local time, blending in solar radiation information from a neighboring day 

isn’t a problem because the blending occurs during nighttime when there zero solar 

radiation. 

When evaluating the ETsz based on gridded data, ETsz was compared to ETsz calculated 

from the time-averaged weather station data, that is, not from the weather data 

manipulated to match the gridded temporal representation.  This is because the aim of the 
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ETsz evaluation was to determine how well the gridded data perform in estimating the 

ETsz relative to the best estimates produced from weather stations.  This is the reason for 

the two separate terminations in the data processing flow chart, Figure 4.1. 

The differences in spatial representivity between gridded and weather station data 

have been identified as a problem in the literature and in this thesis.  An effort was made 

to reduce some of these differences by reconciling the vertical spatial representivity.  In 

areas that have complex terrain, the average elevation of a gridded data cell can differ 

substantially from the elevation of a weather station contained within that grid cell.  

Temperature generally changes with elevation at a lapse rate of -6.5 °C per 1000 m 

gained (Cosgrove et al., 2003).  We adjusted gridded weather temperatures to the weather 

station elevations using this lapse rate and the mean elevations of the grid cells.  Vapor 

pressure was converted to relative humidity and then converted back to vapor pressure 

using the lapsed temperature.  Mean grid cell elevations were obtained from the websites 

for GLDAS, NLDAS and GRIDMET.  NDFD, CFSv2 and RTMA elevations were 

computed by taking the mean of the National Elevation Dataset (NED) within the grid 

cells. 

The last step in data processing was to compute standardized alfalfa ETref (ETr).  

The daily ETr equation was coded in python and verified by comparing calculations with 

the REF-ET software of the University of Idaho (Allen, 2016).  Processing details 

specific to each data set are provided in the subsections below. 
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4.3.1 Weather Stations 

 The first processing step was to make the weather station data as homogenous 

among stations as possible.  One hour was the smallest common timestep, so all data with 

smaller timesteps were aggregated to one hour.  Precipitation was summed and other 

parameters were averaged.  The desired parameters at this first juncture were temperature 

[°C], vapor pressure [kPa], solar radiation [W m-2], wind speed [m s-1], hourly maximum 

temperature [°C], and hourly minimum temperature [°C].  Minimum and maximum air 

temperature required special treatment as did humidity. 

 The type of humidity data downloaded followed the preferences in Walter et al. 

(2005).  Vapor pressure, the form of humidity ultimately desired, if not available for 

download, was computed at the smallest timestep possible so that all subsequent 

aggregations would be performed using the ideal form for expressing humidity.  The 

form of humidity available varied by weather network. 

For some weather networks, separate daily data files were downloaded because 

they provided the most accurate estimates of daily minimum and maximum air 

temperature.  To get minimum and maximum temperature when the raw data had 

timesteps smaller than one hour, the min/max temperatures for each hour were computed.  

Other weather networks included hourly minimum and maximum temperatures.  At a 

later step, when aggregating to a daily value, the daily min/max values were found as the 

minimum of the hourly minimum temperatures and maximum of the hourly maximum 

temperatures. 
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 Homogenized, the weather station data were then subjected to quality assurance 

and quality control (QAQC), where weather station data were plotted for visual QAQC.  

The visual inspection of the data followed the guidelines suggested in Allen (1996) and 

Walter et al. (2005).  Data that were suspected of being in error were set to a null value.   

 Solar radiation has the benefit of being extremely predictable during clear sky 

conditions.  This allows data generated from miscalibrated instruments to be relatively 

evident because they do not fall near the clear sky solar radiation curve even on clear 

days.  The REF-ET software that is distributed by the University of Idaho Kimberly 

Research and Extension Center comes packaged with a QAQC executable which contains 

an algorithm to estimate adjustment factors to solar radiation data.  We encoded the 

algorithm in python in order to be able to make custom modifications to it. 

 The algorithm finds solar radiation measurements that are likely to have occurred 

during clear-sky conditions and computes the adjustment factor as the mean of the ratio 

of the measured radiation to the theoretical clear-sky radiation (Rs/Rso).  Measured 

radiation is then adjusted by dividing by the adjustment factor. 

 The algorithm, as we have implemented it, breaks the solar radiation time series 

into adjustment periods.  We matched the REF-ET software and set the adjustment period 

to 30 days, except for the stations in the Pacific Northwest, which were processed using a 

60 day adjustment period to compensate for less frequent clear-sky days.  If the last 

adjustment period is less than the defined length it is combined with the previous 

adjustment period. 
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 Three other parameters besides the adjustment period length are required during 

the QAQC of solar radiation and its adjustment.  One is the maximum final Rs/Rso 

allowed for any timestep, which we set to 1.2, the REF-ET software default.  When 

Rs/Rso exceeds the maximum, the Rs value is set equal to Rso.  This procedure eliminates 

high outliers.  The second parameter is the number of high values, representing clear sky 

conditions, to use to calculate the solar radiation adjustment factor.  This was set to REF-

ET software default of 10 for all stations.  The last parameter to set was the proportion of 

highest Rs/Rso values to skip before computing the adjustment factor.  This parameter 

helps account for occurrences high Rs/Rso values due to clouds reflecting additional 

radiation back to the sensor.  Using such values could result in adjusted Rs values being 

too high.  Again we used the REF-ET software default value of 0.02 percent.  Using 

those parameters the algorithm averages together the Rs/Rso values to determine the 

adjustment factor.  

 When an adjustment factor was less than 1% away from 1.0, we deemed that no 

adjustment was needed, and the adjustment factor was set equal to 1.0.  This was done in 

order to leave data unmodified when possible.  The adjusted solar radiation were plotted 

for visual inspection to ensure that the adjustments were reasonable, and to reverse any 

poor adjustments.  If the radiation data, before adjustment, were very far away from the 

clear sky solar radiation, then other nearby stations were examined for suitability as 

replacements. 

 The second-to-last step in the processing of the weather station data was to 

resample and aggregate the data in order to temporally match the gridded data.  During 
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aggregation, null values were allowed to propagate, i.e. if a single null value was present 

within an aggregation period, the aggregated value was set to null.  This was done to 

ensure high quality daily values.  It was also at this step that wind speeds measured at 

heights other than 2 meters were converted to equivalent wind speeds at a height of 2 

meters, and daily minimum and maximum air temperatures were finally computed.  

Lastly ETr was computed for various aggregated versions of the weather station data. 

4.3.2 GLDAS 

Table 4.2: GLDAS data downloaded 

GLDAS 

Parameter Units Parameter Representation Timestamp Location 

Air Temperature °C instantaneous - 

Specific Humidity kg kg-1 instantaneous - 

Shortwave Radiation W m-2 instantaneous - 

U-Component Wind Speed m s-1 instantaneous - 

V-Component Wind Speed m s-1 instantaneous - 

 

 When data were processed for creating the ETr estimates, average 3-hour solar 

radiation was produced for GLDAS.  First, 3-hour average clear-sky radiation for the 

GLDAS time series was computed.  Then instantaneous clear-sky radiation was 

computed for the time series.  Finally, the hourly average clear-sky radiation was 

multiplied by the ratio of GLDAS radiation to the instantaneous clear-sky radiation.  This 

ratio represents the impact of clouds during the 3-hour period.  The morning and evening 

hours can produce ratios of GLDAS radiation to clear-sky radiation much larger than 1; 

these ratios were set to 1 before computing the hourly averaged solar radiation. 
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GLDAS data were then aggregated to daily values on local time.  Daily minimum 

and maximum air temperatures were selected from among the 3-hr instantaneous 

temperature estimates.  Daily time series were produced for the weather data comparison 

and the ETr evaluation. 

4.3.3 NLDAS 

Table 4.3: NLDAS data downloaded 

NLDAS 

Parameter Units Parameter Representation Timestamp Location 

Air Temperature °C instantaneous - 

Specific Humidity kg kg-1 instantaneous - 

Shortwave Radiation W m-2 instantaneous - 

U-Component Wind Speed m s-1 instantaneous - 

V-Component Wind Speed m s-1 instantaneous - 

 

 Daily minimum and maximum air temperature were selected from among the 

hourly instantaneous temperature estimates.  For calculation of ETr, the hourly average 

solar radiation was estimated using the same procedure described for GLDAS in Section 

4.3.2.  NLDAS data were then aggregated to daily values on local time.  Daily time series 

were produced for the weather data comparison and the ETr evaluation. 

4.3.4 GRIDMET 

Table 4.4: GRIDMET data downloaded 

GRIDMET 

Parameter Units Parameter Representation Timestamp Location 

Daily Minimum Air Temperature K - start 

Daily Maximum Air Temperature K - start 

Specific Humidity kg kg-1 average start 

Shortwave Radiation W m-2 average start 

Wind Speed m s-1 average start 
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 GRIDMET processing was relatively simple compared to the other gridded data 

sets.  Since it is a daily data set, no aggregations were necessary.  Due to the nature of the 

data, only one time series was produced for both ETr evaluation and weather data 

comparison. 

4.3.5 CFSv2 

 

Table 4.5: CFSv2 data downloaded 

CFSv2 

Parameter Units Parameter Representation Timestamp Location 

Minimum Air Temperature K - start 

Maximum Air Temperature K - start 

Specific Humidity kg kg-1 instantaneous - 

Shortwave Radiation W m-2 average start 

U-Component Wind Speed m s-1 instantaneous - 

V-Component Wind Speed m s-1 instantaneous - 

 

 CFSv2 processing was also relatively straightforward.  CFSv2 data already 

contain average solar radiation values so they did not need to be computed.  Daily 

minimum and maximum air temperatures were selected from the 6-hour minimum and 

maximum temperatures for the day. 

4.3.6 NDFD 

Table 4.6: NDFD data downloaded 

NDFD 

Parameter Units Parameter Representation Timestamp Location 

Daily Minimum Air Temperature °C - end 

Daily Maximum Air Temperature °C - end 

Dew Point °C instantaneous - 

Sky Cover % instantaneous - 

Wind Speed m s-1 instantaneous - 
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 The NDFD data were aggregated to daily values on UTC time.  Recall that the 

data downloaded for NDFD were the last and second to last forecasts made each UTC 

day.  Aggregating the NDFD data on the different CONUS time zones would have mixed 

data from different NDFD forecasts together, with the effect of having some time zones 

with more long lead time forecasts than others.  Time zones with more values from 

longer forecasts would produce larger apparent error.  Therefore, it was necessary to 

aggregate NDFD only on UTC. 

NDFD, despite having timestamps on UTC, determines daily minimum and 

maximum temperature on local time.  But as previously discussed, daily minimum and 

maximum temperature should usually be the same whether found on local time or UTC 

time, so the NDFD minimum and maximum temperatures were used. 

For each day of NDFD data, the values at the start of the day (timestamped 0000) 

and at the very end of the day (timestamped 0000 on the next day) were included in the 

aggregated daily averages, but those values were given half weight because they were on 

the edges of the averaging bin.  This was a valid approach because NDFD timestamps 

evenly subdivide a UTC day. 

NDFD does not contain shortwave solar radiation values but it does contain sky 

cover.  Two of equations were found in the literature that map sky cover to solar 

radiation.  Those equations were used to estimate average radiation for NDFD so that ETr 

could be calculated.  The quality of the derived solar radiation data was also evaluated. 



60 

 

The NDFD FRET uses an equation developed from the FAO24 publication by 

Doorenbos and Pruitt (1977) to compute solar radiation from sky cover (C. Palmer, 

personal communication, November 9, 2016).  The equation is below: 

𝑅𝑠 = (0.25 + (0.50 ∗ ((−0.0083 ∗ 𝑆𝑘𝑦 𝐶𝑜𝑣𝑒𝑟) + 0.9659))) ∗ 𝑅𝑎 

Where Rs is the estimated solar radiation, and Ra is the computed extra-terrestrial 

solar radiation.  We compared the results using the Doorenbos & Pruitt equation to the 

results using an empirical equation developed in Perez et al. (2007) specifically for 

NDFD.  That equation is: 

𝑅𝑠 = 𝑅𝑎 ∗  (1 − 0.87 ∗ ((𝑆𝑘𝑦 𝐶𝑜𝑣𝑒𝑟/100)1.9)) 

Sky cover was temporally linearly interpolated to simulate the average sky cover 

for each timestep before being used in the equations.  The Perez et al. equation is 

expected to be worse for the 7-day forecast than for the 3-day forecast because the 

equation was fit to 1-3 day forecasts only (Perez et al., 2010). 

One detail discovered late in our research was that NDFD changed to a finer 

spatial scale (from 5km to the RTMA grid of 2.5km) on August 19, 2014.  At that same 

time, for forecasts out to the 3-day lead time, wind speed, dew point and sky cover 

become available at a 1-hour timestep.  Ideally, the finer NDFD should be analyzed 

separately from the coarser resolution NDFD, but to simplify the study, the 1-hour data 

were sampled at a 3-hour increment in order to match the older data. 

2.3.7 RTMA 
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Table 4.7: RTMA data downloaded 

RTMA 

Parameter Units Parameter Representation Timestamp Location 

Air Temperature °C instantaneous - 

Dew Point °C instantaneous - 

Total Cloud Cover % instantaneous - 

U-Component Wind Speed m s-1 instantaneous - 

V-Component Wind Speed m s-1 instantaneous - 

 

RTMA was processed in a manner similar to NLDAS, the other hourly 

instantaneous data set, except that RTMA contains a total cloud cover (sky cover) 

variable and no solar radiation.  RTMA solar radiation, like NDFD radiation, was 

estimated using Doorenbos & Pruitt (1977) and Perez et al. (2007).  

4.4 Performance Statistics 

The mean squared error and its variations (e.g. Nash-Sutcliffe efficiency) are 

commonly used to evaluate the performance of hydrological models by comparison to 

observed data.  Gutpa, Kling, Yilmaz and Martinez (2009) presented a decomposition of 

MSE into a function of variance, bias, and correlation.  A more elegant combination of 

those components is presented as the Kling-Gupta efficiency (KGE).  The model 

perfectly matches the observations when KGE is equal to 1.  KGE is defined in the 

following equations: 

𝐾𝐺𝐸 = 1 − 𝐸𝐷    (4.2) 

𝐸𝐷 =  √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2   (4.3) 

𝛼 = 𝜎𝑀/𝜎𝑂     (4.4) 
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𝛽 =  𝜇𝑀/𝜇𝑂     (4.5) 

𝑟 =  
∑ 𝑦𝑂𝑦𝑀− 
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   (4.6) 

The superscript M refers to modeled data (gridded data) and the superscript O 

refers to the weather station (observed) data.  ED stands for the Euclidean distance from 

the ideal point in the scaled space (see Gupta et al. 2009 for details), α is the ratio of the 

modeled data standard deviation to the observed data standard deviation, β is the ratio of 

the modeled data mean to the observed data mean and r is the Pearson correlation 

coefficient. 

We also computed more traditional model performance statistics.  The statistics 

computed included mean bias error (MBE), standard deviation of error (SDE) and the 

correlation (which is also in the KGE and is defined in equation 2.5).  The statistics are 

defined in the following equations.  

𝑀𝐵𝐸 =  
1

𝑛
∑ (𝑦𝑖

𝑀𝑛
𝑖=1 − 𝑦𝑖

𝑂) (2.7) 

𝑆𝐷𝐸 = √1

𝑛
∑ ((𝑦𝑖

𝑀 − 𝑦𝑖
𝑂) −  𝑀𝐵𝐸)

2
𝑛
𝑖=1      (2.8) 

 

Where n is the total number of observations and yi is the i-th observation.  These 

statistics were computed for the weather data comparisons and for the ETr evaluations for 

each gridded data set. 

The statistics were not only computed for all available data but were computed for 

a number of additional groupings: month by year; month pooled across years; 
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meteorological seasons pooled across years with spring defined as March, April, May, 

summer as June, July, August, fall as September, October, November and winter as 

December, January, February; meteorological seasons by year; the warm season, defined 

as April through September, pooled across years; and the warm season by year.  The 

different groupings of data provide insight about how the error changes seasonally.  

Groups were required to have at least 50% of their complete data in order to ensure the 

statistics were computed with enough data to reasonably represent the time period.  The 

numerous groupings resulted in a tremendous amount of results to sift through and 

necessitated focusing on particular groupings for presentation. 

CHAPTER 5. RESULTS & DISCUSSION 

 

5.1 Weather Parameter Comparisons 

This results sections focuses on the summer season because summer is the 

primary growing season for most of CONUS and is the period when ET rates are largest.  

Results are primarily explored in this section via plots and maps.  Plots and maps either 

show statistics computed for the summer season pooled across all study years or statistics 

computed for summer 2015 only, so that RTMA, which does not have summer data for 

2013 or 2014, can be compared to the other data sets.  Maps of bias mark station from 

networks that are assimilated into the gridded data sets with a box symbol instead of a 

circle.  Boxplots are in the style of Tukey, which shows the median as the center line, the 

first quartile as the bottom of the box, the third quartile as the top of the box, and the 

whiskers as extending to the last observation within 1.5 times the interquartile range.  The 

points on boxplots above and below the whiskers are outliers. 
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Though other model performance criteria (error statistics) were calculated, KGE 

is most prominent in the discussion because it can be conveniently broken into 

components, each of which show a different characteristic of the error.  Each of those 

components is equally weighted in KGE which allowed us to make easily interpretable 

rankings of the gridded data sets. 

Depending on the intended use of the gridded data, different error statistics may 

be more important or useful than others.  If one needs an average of ETr over the entire 

growing season, then bias (β in KGE) might be most important to minimize because it 

reflects systematic error.  If one is using NDFD to schedule irrigations for the next week, 

the correlation (r in KGE) and variability error (α in KGE) would be important to 

consider because they reflect how much error one might expect day to day.  Correlation is 

indicative of random error.  Variability error is a systematic error that can be considered 

similar to the slope of a linear regression line; a slope of 1 means that the gridded and 

observed data have the same standard deviation. 

5.1.1 Near-surface Air Temperature 

 The temperature bias was positive for all gridded data sets for the bulk of the 

weather stations, confirming what was found in previous studies.  Median biases ranged 

from positive 0.54 °C for GRIDMET to positive 2.3 °C for NLDAS.  Median correlations 

ranged from 0.87 for GRIMDET (or 0.65 for NDFD day 7 if considering forecasts) to 

0.97 for RTMA.  One point to note about temperature is that, unlike other weather 

variables, 0 is not a lower boundary to the possible values temperature can have.  This 

creates an issue for the use KGE β because β cannot be interpreted as a percent bias.  The 
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possibility of negative temperature β creates ambiguity about which mean is actually 

greater.  Fortunately, within CONUS, summertime mean temperatures are typically 

above 0 °C. 

The bias tended to be more strongly positive in the western states (see Figures 5.6 

through 5.12).  There are a variety of explanations for this spatial trend, many of which 

were mentioned in the background and previous work chapters but are reiterated here.  

The spatial heterogeneity of land use, soil water availability and topography is greater in 

the western US than in the eastern US, which can produce error in multiple ways.  

Gridded data don’t take irrigation into account, which can cause gridded temperatures to 

be higher than real temperatures.  In a related manner, air masses in western states tend to 

be drier than in eastern states due to lower rainfall, so the evaporative demand and 

therefore potential for cooling of an air mass is greater than it is in the eastern states when 

the air mass is in contact with a relatively wet surface.   Stations in valleys can experience 

cold air drainage thereby lowering the average daily temperature, an effect that is difficult 

for gridded data to replicate (McEvoy et al. 2014).   

GRIDMET median bias was smallest among the analysis data sets, excluding 

RTMA.  GRIDMET also had the smallest variability error.  The improved performance 

over NLDAS, one of GRIDMET’s parent products, is clear for each KGE component 

except correlation.  The median correlation for GRIDMET temperature was slightly 

below the correlation for NLDAS.  The lower correlation may be related to the debiasing 

procedure applied to NLDAS to produce GRIDMET.  In some cases bias and variability 

error may have been traded for correlation. 
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Referring to Figure 5.3, GLDAS and GRIDMET dominated the overall KGE 

rankings across the country, with CFSv2 taking the lead at a hand full of stations.  The 

good performance by GLDAS can be attributed to its use of the operational GDAS data. 

Figure 5.5 shows the stability of the KGE performance across the study years.  The 

relative performance of each data set seems constant except for GRIDMET, which 

performed relatively poorly in 2013.  This anomaly allowed GLDAS to take the lead for 

that year. 

When we restrict our view to only 2015 data, so that RTMA can be included in 

the comparison, we find that RTMA and GRIDMET dominated the top KGE ranking 

map for temperature (Figure 5.4).  We also notice that GRIDMET correlation was better 

than NLDAS correlation in Figure 5.2 suggesting that the low GRIDMET KGE in 2013 

might be primarily due to a low correlation that year.  The success of RTMA was not 

surprising given that the assimilation system is continually improved and assimilates a 

greater amount of weather station data than the other data sets. 

NDFD forecasts performed well relative to the analysis data sets.  The 1-day lead 

time forecasts had generally better performance than NLDAS in all three KGE 

components.  One of the main differences in the pattern of error for NDFD relative to the 

analysis data sets was that the forecasts tended to underestimate variability while the 

analysis data sets typically overestimated it.  There was a modest increase in bias from 

the 1-day to 7-day lead times but the increase in error was mostly correlation and 

variability error reflecting greater uncertainty about the more distant future. 
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Figure 5.1 Near-surface air temperature KGE components computed using summertime daily data 

at each station pooled across all study years. 
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Figure 5.2 Near-surface air temperature KGE components computed using daily data at each 

station for the summer of 2015. 
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Figure 5.3 Top analysis near-surface air temperature data sets ranked by KGE computed using 

summertime daily data pooled across all study years. 
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Figure 5.4 Top analysis near-surface air temperature data sets ranked by KGE computed using 

daily data from summer 2015. 
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Figure 5.5 Near-surface air temperature KGE computed for the summer of each study year. 
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Figure 5.6 CFSv2 near-surface air temperature mean bias and standard deviation of error 

computed using summertime daily data pooled across all study years. 
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Figure 5.7 GLDAS near-surface air temperature mean bias and standard deviation of error 

computed using summertime daily data pooled across all study years. 
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Figure 5.8 GRIDMET near-surface air temperature mean bias and standard deviation of error 

computed using summertime daily data pooled across all study years. 
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Figure 5.9 NLDAS near-surface air temperature mean bias and standard deviation of error 

computed using summertime daily data pooled across all study years. 
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Figure 5.10 RTMA near-surface air temperature mean bias and standard deviation of error 

computed using summertime daily data for 2015. 
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Figure 5.11 NDFD day 7 near-surface air temperature mean bias and standard deviation of error 

computed using summertime daily data pooled across all study years. 
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Figure 5.12 NDFD day 1 near-surface air temperature mean bias and standard deviation of error 

computed using summertime daily data pooled across all study years. 

5.1.2 Vapor Pressure 

 Vapor pressure bias was negative for more stations than it was positive for all 

gridded data sets, again confirming what was expected based on the literature.  Maps of 

bias show that bias was more negative in western states.  This was expected since the 

lower boundary layer of the atmosphere tends to gain humidity when it is contact with 

wetter surfaces which, in this study, existed for many of the weather station locations due 

to their irrigated surroundings.  The gridded data sets, do not account for the irrigation 

and its effect on humidity and therefore underestimate it.  For NLDAS, bias tended to be 

slightly positive in the eastern states (see Appendix D).  Median biases ranged from 
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negative 6.2% for GRIDMET to 0.0% for RTMA.  Median correlations ranged from 0.82 

for GRIDMET (or 0.61 for NDFD day 7 if considering forecasts) to 0.98 for RTMA. 

Vapor pressure did not show clear winners among the analysis data sets (if we 

exclude RTMA) (Figure 5.13).  GLDAS performed best for 2013 and 2014, with its 

median above or near the top of the other data sets’ third quartile (Figure 5.17).  In 2015 

the distributions overlapped more significantly.   KGE rank maps show that GLDAS had 

the best KGE for a relative majority of stations, followed by NLDAS.  It is interesting to 

observe that the procedure used to debias NLDAS humidity in GRIDMET does not seem 

to have improved GRIDMET’s performance over NLDAS. 

RTMA generally had the best performance among all gridded data sets for all 

KGE components in the summer of 2015.  The rank maps show that RTMA had the best 

KGE for the majority of the stations.  Despite RTMA’s accuracy, the bias map (Figure 

8.22 in Appendix D) shows that RTMA had a slight positive bias in the East and a 

negative bias in the West, the same spatial pattern present in the other data sets. 

NDFD, likely benefiting from its relationship to RTMA, performed better than the 

analysis data sets at the 1-day lead time.  The spatial pattern in the bias was also present 

in NDFD. 
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Figure 5.13 Vapor Pressure KGE components computed using summertime daily data at each 

station pooled across all study years. 
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Figure 5.14 Vapor Pressure KGE components computed using daily data at each station for the 

summer of 2015. 
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Figure 5.15 Top analysis vapor pressure data sets ranked by KGE computed using summertime 

daily data pooled across all study years. 
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Figure 5.16 Top analysis vapor pressure data sets ranked by KGE computed using daily data from 

summer 2015. 
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Figure 5.17 Vapor Pressure KGE computed for the summer of each study year. 

 

5.1.3 Wind Speed 

 The wind speed bias was generally positive for all gridded data, and ranged from 

a median bias of positive 13.0% for CFSv2 to positive 41.1% for GRIDMET.  CFSv2, 

NLDAS and GRIDMET all showed higher positive wind speed biases in the eastern 

states (see Appendix C).  The boxplots for NLDAS and GRIDMET are extremely similar 

because GRIDMET only modified NLDAS by resampling it to a smaller spatial scale.  

The positive bias in the East is probably due to extensive forested areas that tend to shield 

wind speed at local weather stations.  Selecting weather stations in the eastern states was 
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difficult because of the proximity of trees.  Many stations still had trees closer than 

desired.  Median correlations ranged from 0.68 for GRIDMET (or 0.31 for NDFD day 7 

if considering forecasts) to 0.83 for RTMA.  Wind speed had the lowest correlations of 

all the weather variables, which shows that gridded data struggle to represent wind speed 

on a daily timescale.   

 The outliers in the boxplot show some stations with very low correlations, even 

some negative correlations, indicating that the gridded data had little ability to represent 

day to day wind speeds at some locations.  Among the outliers for β is a station where 

NLDAS and GRIDMET estimated the wind speed, translated to 2 m, to be 6 times the 

measured average.  That outlier is a station located in northeastern Washington. That 

station is sited reasonably far from obstructions, so the bias may be due to a faulty 

anemometer.  The bizarrely low wind speeds at that location (averaging around 0.5 m s-1) 

were missed during QAQC partly because they exhibited a normal diurnal cycle. 

 The rankings map excluding RTMA shows a mix of best data sets, underscoring 

how similarly they performed.  NLDAS was the best data set at more stations than 

expected, given the boxplot.  GRIDMET appears least often on the map.  Figure 5.22, 

showing the changes in KGE by year, shows very little variation in KGE over the study 

years. 

 The boxplot for summer 2015 (Figure 5.19) shows that RTMA had smaller 

distributions for β and α than the other data sets.  The rank map for 2015 (Figure 5.21) 

shows RTMA as the best performing data set at a relative majority of stations.  GLDAS 
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was best at the next highest proportion of stations followed by CFSv2 and NLDAS.  

GRIDMET did not appear as the best data set at any station location in summer 2015. 

 NDFD bias and variability error improved from the 1-day lead time to the 7-day 

lead time but are balanced out by a lower correlation.  The reduction in bias is an 

unexpected result for which we have no explanation. 
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Figure 5.18 Wind speed KGE components computed using summertime daily data at each station 

pooled across all study years. 
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Figure 5.19 Wind speed KGE components computed using daily data at each station for the 

summer of 2015. 
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Figure 5.20 Top analysis wind speed data sets ranked by KGE computed using summertime daily 

data pooled across all study years. 
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Figure 5.21 Top analysis wind speed data sets ranked by KGE computed using daily data from 

summer 2015. 
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Figure 5.22 Wind speed KGE computed for the summer of each study year. 

5.1.4 Solar Radiation 

 Solar radiation was positively biased for all analysis data sets at most stations.  

The median bias ranged from positive 9.9% in RTMA (or positive 0.3% including 

NDFD) to positive 12.1% in GLDAS.  For NLDAS and GRIDMET, Utah, Nevada, 

western Colorado and northern Arizona had slightly negative biases (Figures 6.3 and 6.4 

in Appendix B).  GLDAS had smaller but still positive bias in that same area.  The spatial 

pattern in bias matched up well with the patterns shown in Slater (2015) for NLDAS, 

GLDAS and CFSv2.  One point of the departure in the spatial patterns is visible in 

GLDAS, where the Northwest had a small negative bias in Slater contrasting with the 
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strongly positive bias visible in our map.  Another difference between the results of Slater 

and our results is the scale of the bias; we have generally higher positive biases than they 

report.  This may be due to differing methods of correcting station data. 

Slater corrected daily solar radiation data but we corrected the hourly data.  

Correcting hourly data let reductions in radiation at dawn and dusk due to topography or 

vegetation shading persist.  Letting those reductions remain reduced our average daily 

solar radiation estimates relative to Slater’s estimates, hence the larger biases present in 

our study.  Slater’s study may therefore be a better account of the gridded data’s true 

error, that is, its difference from what it attempts to represent.  Nevertheless, our study 

better represents the radiation actually impacting each site, and therefore, the error 

relative to that reality. 

 The boxplot for all study years (Figure 5.23) shows that GRIDMET and NLDAS 

underestimated the variability at nearly every station.  Like wind speed, GRIDMET 

merely resamples NLDAS to a finer grid; thus the results for the two data sets are very 

similar.  GLDAS underestimated variability at more stations than it overestimated it.  

CFSv2 was more evenly split between overestimation and underestimation of variability 

but overestimates at more stations.  The results from Decker et al. (2012) suggest that 

both CFSv2 and GLDAS should over estimate variability more often than they under 

estimate it.  This conflicts with our findings for GLDAS, but it could be explained by 

station selections that differing between our studies.   

As expected, given the high variability error for GRIDMET and NLDAS, the 

rankings map for all study years mainly shows a blend of GLDAS and CFSv2.  
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Examining the boxplot for the summer of 2015 (Figure 5.24), we see RTMA had positive 

bias that was close to the other gridded data but a better correlation.  The ranking map for 

2015 shows that RTMA, and in particular RTMA computed with the Perez et al. 

equation, was best at the majority of stations.  RTMA tends to be better relative to the 

other gridded data in the East and less so in the West.  Refitting the Perez et al. equation 

to data gathered in an arid western state might produce better results in that region. 

The main difference between the solar radiation derived from Perez et al. (2007) 

and the radiation derived from Doorenbos & Pruitt (1977) was the variability error.  The 

Perez et al. (2007) method exhibited a substantial improvement in the variability error 

when estimating solar radiation for RTMA or NDFD.  This is visible in both box plots 

(Figure 5.23 and Figure 5.24).  The linearity of the Doorenbos & Pruitt function caused it 

to underestimate in the western states where cloud cover is less (see Appendix B).  In 

Doorenbos & Pruitt, they explained that the relationship between sky cover and radiation 

should ideally be determined with local data because “…scatter in conversion factors 

from location to location has been noted.”  Figure 5.27, a ranking map of the 1-day lead 

time NDFD solar radiation predicted with Doorenbos & Pruitt and Perez et al. methods, 

shows that the improvement in the variability error was enough to give the Perez et al. 

method a significant edge at most stations.   

The KGE stability plot (Figure 5.28) shows that GLDAS generally performed best 

for all three study years (excluding RTMA).  Solar radiation correlation in NLDAS was 

lower than shown in Lewis et al. 2011 because they did their analysis on an hourly 

timestep.  Hourly data produce a better correlation because of the regularity of the solar 
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diurnal cycle; averaging solar radiation to daily values removes the diurnal cycle and 

makes correlations more dependent on representing cloudiness.  Median correlations for 

solar radiation ranged from 0.76 for GRIDMET (or 0.37 for NDFD day 7 if including 

forecasts) to 0.91 for RTMA. 

NDFD generally had less bias than the other gridded data sets including RTMA.  

If the use of the sky cover to solar radiation conversion equations were the cause of the 

small bias one would expect RTMA to mirror the bias in NDFD.  This unexpected result 

deserves more consideration and analysis. 
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Figure 5.23 Solar radiation KGE components computed using summertime daily data at each 

station pooled across all study years. 
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Figure 5.24 Solar radiation KGE components computed using daily data at each station for the 

summer of 2015. 



97 

 

 

Figure 5.25 Top analysis solar radiation data sets ranked by KGE computed using summertime 

daily data pooled across all study years. 
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Figure 5.26 Top analysis solar radiation data sets ranked by KGE computed using daily data from 

summer 2015. 
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Figure 5.27 Top sky cover to solar radiation conversion equation for NDFD ranked by KGE 

computed using summertime daily data pooled across all study years. 



100 

 

 

Figure 5.28 Solar radiation KGE computed for the summer of each study year. 

5.2 Reference Evapotranspiration 

 Computed ETr had a positive bias for all gridded data at most weather stations.  

Spatial patterns in the bias are difficult to discern because of the complex interplay of the 

error in each of the input variables.  Bias does seem more volatile in the western states, 

with the magnitude of the bias varying widely.  The standard deviation of the error in the 

west also seems to be more volatile, with some stations having very high standard 

deviations and others very small (see Figures 5.35 through 5.44).  The eastern states show 

more uniformity in bias and the standard deviation of error.  GRIDMET and NLDAS 

both had high positive bias in the Plains region, parts of California and the states 
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bordering Mexico.  They have low bias in the East and in the Great Basin area.  NDFD 

had noticeably higher positive biases in the Southwest.  Median bias ranged from positive 

12.5% for RTMA computed with Doorenbos & Pruitt (or 12.0% for NDFD day 1 if 

considering forecasts) to positive 31.2% for NLDAS.  Median correlation ranges from 

0.70 for NLDAS (or 0.37 for NDFD day 7 if considering forecasts) to 0.92 for RTMA 

computed with the Perez et al. method.   

The relatively large overestimation of ETr is a concern for use of these estimates 

for irrigation and water resources management. Essentially, all four weather components 

had biases that tend to cause ETr to be overestimated.  These include positive biases in 

solar radiation, air temperature and wind speed and a negative bias in vapor pressure all 

of which increase the computed ETr. 

 According to Figure 5.29 ETr variability was overestimated at a majority of 

stations for all gridded data except NDFD with a 7-day lead time and NDFD where solar 

radiation comes from Doorenbos & Pruitt with a 1-day lead time.  Figure 5.30 shows that 

NLDAS and RTMA computed with Doorenbos & Pruitt equally overestimated and 

underestimated variability and that RTMA computed with Perez et al. overestimated the 

variability.  This is an interesting result because it shows that using solar radiation 

computed using Perez et al. results in higher variability error in ETr.  The underestimation 

of variability by the Doorenbos & Pruitt equation might balance out an overestimation of 

variability in another variable (e.g. wind speed).  This highlights the complex interplay 

between the input error when computing ETr.  A more accurate estimation of a weather 

variable does not necessary result in a better estimate of ETr. 
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 The boxplot of all study years (Figure 5.29) shows that GLDAS generally had the 

highest correlation and lowest variability error among the analysis data sets, but all the 

distributions substantially overlap.  The boxplot of summer 2015 (Figure 5.30) shows that 

RTMA had the best performance in each KGE component for most stations. 

 The rank map for all study years (Figure 5.31) shows that GLDAS performed 

better in the eastern states.  GRIDMET and CFSv2 had the best KGE at many stations in 

the West.  GLDAS’s success in the East is because of its excellent relative performance 

in that region estimating solar radiation and air temperature.  GRIDMET’s more accurate 

temperature allowed it to be the best data set at a surprisingly large number of stations. 

 Figure 5.34 shows that GLDAS ETr performed better for 2013 and 2014 than it 

did for 2015.  That temporal pattern aligns with the pattern in Figure 5.5 and Figure 5.17, 

where temperature and vapor pressure KGE for GLDAS was worse for 2015.  

GRIDMET’s ETr performance for 2013 was much worse than for 2014 and 2015 which 

aligns with its poor temperature performance for 2013. 

 The final rank plot (Figure 5.33) shows that NDFD had a better KGE at some 

locations than all the analysis data sets.  This is surprising given that NDFD is a forecast, 

and serves as a verification of the progress made in weather forecasting. 
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Figure 5.29 ETr KGE components computed using summertime daily data at each station pooled 

across all study years. 
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Figure 5.30 ETr KGE components computed using daily data at each station for the summer of 

2015. 
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Figure 5.31 Top analysis ETr data sets ranked by KGE computed using summertime daily data 

pooled across all study years. 
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Figure 5.32 Top analysis ETr data sets ranked by KGE computed using daily data from summer 

2015. 
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Figure 5.33 Top gridded ETr data sets ranked by KGE computed using daily data from summer 

2015. 
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Figure 5.34 ETr KGE computed for the summer of each study year. 
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Figure 5.35 CFSv2 ETr mean bias and standard deviation of error computed using summertime 

daily data pooled across all study years. 
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Figure 5.36 GLDAS ETr mean bias and standard deviation of error computed using summertime 

daily data pooled across all study years. 
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Figure 5.37 GRIDMET ETr mean bias and standard deviation of error computed using 

summertime daily data pooled across all study years. 
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Figure 5.38 NLDAS ETr mean bias and standard deviation of error computed using summertime 

daily data pooled across all study years. 
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Figure 5.39 RTMA (with radiation estimated with Doorenbos & Pruitt) ETr mean bias and 

standard deviation of error computed using summertime daily data for 2015. 
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Figure 5.40 RTMA (with radiation estimated with Perez et al.) ETr mean bias and standard 

deviation of error computed using summertime daily data for 2015. 
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Figure 5.41 NDFD day 7 ETr (with radiation estimated by Doorenbos & Pruitt) mean bias and 

standard deviation of error computed using summertime daily data pooled across all study years. 
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Figure 5.42 NDFD day 1 ETr (with radiation estimated by Doorenbos & Pruitt) mean bias and 

standard deviation of error computed using summertime daily data pooled across all study years. 
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Figure 5.43 NDFD day 7 ETr (with radiation estimated by Perez et al.) mean bias and standard 

deviation of error computed using summertime daily data pooled across all study years. 
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Figure 5.44 NDFD day 1 ETr (with radiation estimated by Perez et al.) mean bias and standard 

deviation of error computed using summertime daily data pooled across all study years. 
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CHAPTER 6. CONCLUSIONS 

6.1 Summary 

This research evaluated the abilities of several gridded weather data products to 

estimate ETref by comparing ETref computed with those data sets to ETref computed with 

ground weather station measurements, where the weather stations were selected at 

locations expected to be close to reference conditions.  Daily vapor pressure, near-surface 

air temperature, shortwave solar radiation and wind speed - the variables used to compute 

ETref - were also compared among the gridded and measured data sets.  The results 

focused on the summer season defined as June, July and August, because this is the 

primary season during which ETref is most useful. 

 Every gridded data set had a tendency to overestimate ETr at most weather station 

locations.  This is the result of a tendency to overestimate wind speed, solar radiation and 

temperature and to underestimate vapor pressure as compared to the selected weather 

stations.  RTMA generally had the best KGE - which is a statistic combining mean bias, 

ratio of standard deviations, and the Pearson correlation - for all weather variables and 

ETr.  We attribute this good performance to the large amount of surface weather data 

assimilated into RTMA and the fact that RTMA is an operational analysis and therefore 

subject to continual improvement. 

 RTMA started publishing the variable that we used to derive solar radiation, 

TCDC (total cloud cover %), in April 2015.  Before that time, RTMA published cloud 

cover estimates that were based on the Geostationary Operation Environmental Satellite 

System (GOES).  Deriving solar radiation from those earlier values was not tested in this 
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thesis.  Coupled with the knowledge that the RTMA assimilation system is under 

continual improvement, and we conclude that RTMA is best used for real-time 

applications or for applications not aimed at examining long term trends. 

 NDFD is often initialized and verified using RTMA.  NDFD-based ETr bias was 

similar to the RTMA bias, possibly as a result of their relationship.  The bias of NDFD 

remained steady between the 1 and 7 day lead times for ETr, but the correlations dipped 

from a median of 0.77 (using the Perez et al. 2007 method to convert TCDC to solar 

radiation) at the 1-day lead time to 0.37 at the 7-day lead time.  The variability error 

shifted from underestimating and overestimating variability to predominantly 

underestimating variability for the 7-day lead time.  In short, there was large ETr 

uncertainty at the 7-day lead time. 

 Among the analysis data sets, the accuracy of ETr estimated by GLDAS was 

second best to RTMA.  This is attributed to GLDAS ingesting data from the GDAS 

which, like RTMA, is an operational analysis.  Third place was essentially a tie between 

CFSv2 and GRIDMET.  GRIDMET weather variables performed very similar to NLDAS 

weather variables except for air temperature, which was more accurately estimated due to 

the bias-correction employed in GRIDMET where NLDAS data are adjusted using air 

temperature data from PRISM.  Except for the summer of 2013, GRIDMET had more 

accurate temperature estimates than NLDAS, CFSv2 and GLDAS.  The good 

performance of estimated air temperature is what allowed GRIDMET to be equivalent to 

CFSv2 in the ETr performance.  The CFSv2 is similar to NLDAS because it uses a frozen 

assimilation system, but the assimilation system used in CFSv2 is more modern than the 
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one used in NLDAS which helps explain why it performed better than NLDAS despite 

having greater spatial and temporal resolutions.  NLDAS produced the most biased 

estimates of ETr likely because it derives its data from the continuation of a 2003 

reanalysis (NARR/R-CDAS). 

 NDFD and RTMA solar radiation had reduced variability error when the 

conversion from sky cover to radiation was made using the equation derived in Perez et 

al. (2007) instead of Doorenbos & Pruitt (1977).  No benefits of using the Perez et al. 

equation were seen in the ETr estimates.  To the contrary, the ETr variability error 

increased when using Perez et al. instead of Doorenbos & Pruitt.  The underestimation of 

radiation variability by Doorenbos & Pruitt likely counteracted an overestimation of 

variability in another variable, such as wind speed.  In order for ETr estimates to realize 

any benefit from utilizing the Perez et al. equation the variability error in other variables 

need to be reduced. 

6.2 Conclusions 

There are several potential explanations for the biases observed in the gridded 

data sets.  One is that gridded data sets primarily assimilate ground based weather station 

data from airports which may have hotter and less humid near-surface air properties than 

agricultural areas in the surrounding region.  Another is the inability of gridded data to 

incorporate irrigation into their soil water balances, which results in an underestimation 

of ET from irrigated areas and its cooling and humidifying effects on the near-surface 

boundary layer.  Lastly, there may be biases within the models themselves due to 

incorrect parameterizations, unrepresented physics or inaccurate boundary forcing 
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(Menard, 2010). It is important to note that the gridded weather data sets may show less 

bias when compared to airport and other data sets that may be more representative of the 

overall region and climate. Our study and comparisons with ground-based weather data 

focused on weather data collected from locations that were likely to exhibit the cooling 

and humidifying characteristics associated with well-watered vegetation.  This focus was 

intentional because ETref equations such as the ASCE Penman-Monteith method have 

been developed to 'expect' weather data that reflect conditions above a reference or near-

reference surface. Application of ETref equations to weather data collected over dry 

surfaces causes overstatement of the actual ETref, which by definition, occurs over a 

reference surface (well-watered, full-cover vegetation) (Walter et al., 2005; Jensen & 

Allen, 2015). 

 None of the six gridded weather data sets produced calculations of ETr that were 

equivalent to ETr calculated from observed weather data.  The gridded weather data sets 

all produced median ETr biases ranging from positive 10 to positive 25%.  Some 

locations may have consistently low bias and could be used without any form of bias 

correction, but generally, the gridded data are in need of bias correction to be useful and 

accurate.  

6.3 Recommendations 

Future improvements to data assimilation systems will no doubt reduce the error 

identified in this study.  Evidence of past improvements are manifested in GLDAS’s and 

CFSv2’s superior performance to NLDAS despite having coarser spatial and temporal 

resolutions.  At present, the error in the gridded data analyzed in this study is problematic 
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for the estimation of ETref.  At a minimum, some of the techniques in the methods section 

of this study should be employed to better match the gridded data to the location at which 

ETref needs to be computed.  Namely, adjusting the gridded temperature and humidity 

values from the grid cell elevation to the elevation at the area of interest, carefully 

handling timestamps and time representations, and converting instantaneous solar 

radiation values to time averaged values using theoretical clear-sky radiation. 

 This study adds to the collection of information available regarding gridded 

weather data sets and their error, but there are additional methods to explore for error and 

other gridded data sets to examine.  Lewis et al. used spatial bilinear interpolation of the 

gridded data to the weather station locations to better match the spatial scale of the 

weather station data.  This study may have benefited from this procedure.  Future studies 

could quantify any reductions in the differences between gridded and station data 

resulting from spatial interpolation.   

Along a similar line, Diremeyer et al. (2016) investigated how representative 

point measurements of soil moisture were of a gridded product by locating grid cells 

containing many soil moisture instruments.  They averaged the point measurements 

together one by one, and observed how quickly the mean converged to a stable value.  

Averaging only a small number of point measurements before coming to a stable value 

near the grid cell value indicated wide spatial representivity.  This kind of analysis would 

be beneficial to apply to gridded weather data because it measures the error arising from 

mismatching spatial scales. However, it is relatively rare to find multiple weather stations 

within a single grid cell. 
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Another improvement to comparisons between gridded data and observed weather 

data may be the use of a spline function to do time interpolation between the observed 

data to simulate the instantaneous values in gridded weather data.  Since most weather 

variables studied tend to have an upward convex trend during daytime, and downward 

convex trend during nighttime, the linear interpolation used in this thesis tends to 

underestimate instantaneous values during daytime and overestimate instantaneous values 

during nighttime. A spline function may follow expected change in weather values better, 

especially for near-surface air temperature. 

Other future research could pursue the important task of debiasing gridded 

weather data or debiasing ETref directly.  This might include developing statistical models 

for bias or using more theoretical adjustments based on surface to air profiles for 

temperature, humidity and wind as described by Allen, Kilic, DeBruin and Joros (2013).  

Debiasing gridded data would allow the data to be used to its fullest potential, and aid 

modeling activities that benefit from spatially and temporally complete coverage. 
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CHAPTER 8. APPENDICES 

 

Appendix A. Data Dictionary 

ADAS Advanced Regional Prediction System Data Assimilation System 

AFWA Air Force Weather Agency 

CDASv2 Climate Data Assimilation System version 2 

CFSR Climate Forecast System Reanalysis 

CFSv2 Climate Forecast System version 2 

CLM Community Land Model 

CMAP CPC Merged Analysis of Precipitation 

CONUS Continental United States 

CPC Climate Prediction Center 

CSR Clear Sky Ratio 

CST Central Standard Time 

EEFlux Earth Engine Flux (Implementation of METRIC) 

ERC Energy Release Component 

ESRL Earth System Research Laboratory 

ET Evapotranspiration 

ETo Grass Reference Evapotranspiration 

ETr Alfalfa Reference Evapotranspiration 

ETref Reference Evapotranspiration 

ETsz Standardized Penman-Monteith Reference Evapotranspiration 

FLUXNET A network of regional networks of eddy covariance towers 

GDAS Global Data Assimilation System 

GFS Global Forecast System 

GHCN Global Historical Climate Network 

GLDAS Global Land Data Assimilation System 

GOES Geostationary Operational Environmental Satellite 

GRIB Gridded Binary 

GRIDMET University of Idaho Gridded Surface Meteorological Data Set 

GSFC Goddard Space Flight Center 

KGE Kling-Gupta Efficiency 

KSI Kolmogorov-Smirnov test Integral 

LDAS Land Data Assimilation System 

LSM Land Surface Model 

MAE Mean Absolute Error 

MBE Mean Bias Error 
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METRIC 
Mapping Evapotranspiration at high Resolution with Internalized 

Calibration 

MODIS Moderate Resolution Imaging Spectroradiometer 

MST Mountain Standard Time 

NARR North American Regional Reanalysis 

NASA National Aeronautical and Space Administration 

NCEP National Center for Environmental Prediction 

NDFD National Digital Forecast Database 

NDVI Normalized Difference Vegetation Index 

NED National Elevation Dataset 

NESDIS National Environmental, Satellite, and Data Information Service 

NLDAS North American Land Data Assimilation System 

NOAA National Oceanic and Atmospheric Administration 

NWP Numerical Weather Prediction 

NWS National Weather Service 

PRISM Parameter-elevation Relationships on Independent Slopes Model 

PST Pacific Standard Time 

QAQC Quality Assurance and Quality Control 

Ra Theoretical incoming extraterrestrial shortwave solar radiation 

RAWS Remote Automated Weather Stations 

R-CDAS Regional Climate Data Assimilation System 

RH Relative Humidity 

RMSE Root Mean Squared Error 

Rs Incoming shortwave solar radiation 

RS Remote Sensing 

Rso Theoretical incoming clear sky shortwave solar radiation 

RTMA Real-time Mesoscale Analysis 

RUC Rapid Update Cycle 

SDE Standard Deviation of Error 

SURFRAD Surface Radiation network 

UTC Universal Coordinated Time 

VIC Variable Infiltration Capacity model 

WFO Weather Forecast Office 
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Appendix B. Summer Shortwave Solar Radiation Bias Maps 

 

 

Figure 8.1 CFSv2 shortwave solar radiation mean bias and standard deviation of error computed 

using summertime daily data pooled across all study years. 
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Figure 8.2 GLDAS shortwave solar radiation mean bias and standard deviation of error computed 

using summertime daily data pooled across all study years. 
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Figure 8.3 GRIDMET shortwave solar radiation mean bias and standard deviation of error 

computed using summertime daily data pooled across all study years. 
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Figure 8.4 NLDAS shortwave solar radiation mean bias and standard deviation of error computed 

using summertime daily data pooled across all study years. 
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Figure 8.5 RTMA shortwave solar radiation estimated using the Doorenbos & Pruitt method 

mean bias and standard deviation of error computed using summertime daily data for 2015. 

 

 



140 

 

 

Figure 8.6 RTMA shortwave solar radiation estimated using the Perez et al. method mean bias 

and standard deviation of error computed using summertime daily data for 2015. 
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Figure 8.7 NDFD day 7 shortwave solar radiation estimated using the Perez et al. method mean 

bias and standard deviation of error computed using summertime daily data pooled across all 

study years. 
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Figure 8.8 NDFD day 1 shortwave solar radiation estimated using the Perez et al. method mean 

bias and standard deviation of error computed using summertime daily data pooled across all 

study years. 
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Figure 8.9 NDFD day 7 shortwave solar radiation estimated using the Doorenbos & Pruitt method 

mean bias and standard deviation of error computed using summertime daily data pooled across 

all study years. 
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Figure 8.10 NDFD day 1 shortwave solar radiation estimated using the Doorenbos & Pruitt 

method mean bias and standard deviation of error computed using summertime daily data pooled 

across all study years. 
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Appendix C. Summer Wind Speed Bias Maps 

 

Figure 8.11 CFSv2 wind speed mean bias and standard deviation of error computed using 

summertime daily data pooled across all study years. 
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Figure 8.12 GLDAS wind speed mean bias and standard deviation of error computed using 

summertime daily data pooled across all study years. 
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Figure 8.13 GRIDMET wind speed mean bias and standard deviation of error computed using 

summertime daily data pooled across all study years. 
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Figure 8.14 NLDAS wind speed mean bias and standard deviation of error computed using 

summertime daily data pooled across all study years. 
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Figure 8.15 RTMA wind speed mean bias and standard deviation of error computed using 

summertime daily data for 2015. 
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Figure 8.16 NDFD day 7 wind speed mean bias and standard deviation of error computed using 

summertime daily data pooled across all study years. 
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Figure 8.17 NDFD day 1 wind speed mean bias and standard deviation of error computed using 

summertime daily data pooled across all study years. 
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Appendix D. Summer Vapor Pressure Bias Maps 

 

 

Figure 8.18 CFSv2 vapor pressure mean bias and standard deviation of error computed using 

summertime daily data pooled across all study years. 
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Figure 8.19 GLDAS vapor pressure mean bias and standard deviation of error computed using 

summertime daily data pooled across all study years. 
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Figure 8.20 GRIDMET vapor pressure mean bias and standard deviation of error computed using 

summertime daily data pooled across all study years. 
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Figure 8.21 NLDAS vapor pressure mean bias and standard deviation of error computed using 

summertime daily data pooled across all study years. 
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Figure 8.22 RTMA vapor pressure mean bias and standard deviation of error computed using 

summertime daily data for 2015. 
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Figure 8.23 NDFD day 7 vapor pressure mean bias and standard deviation of error computed 

using summertime daily data pooled across all study years. 
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Figure 8.24 NDFD day 1 vapor pressure mean bias and standard deviation of error computed 

using summertime daily data pooled across all study years. 
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