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ABSTRACT  

TURBULENT CIRCULAR CULVERT FLOW: IMPLICATIONS TO FISH PASSAGE DESIGN 

Amin Mohebbi, Ph.D. 

University of Nebraska, 2014 

 

Advisor: Junke Guo 

Culverts are popular conveyance structures in America and Canada to be used as a fish passage 

or in sewage collection and disposal systems. Fish passage design criteria is based on biological 

capabilities of fish whereas it should satisfy hydraulic and hydrological constraints as well. Failing 

to provide enough low velocity regions for aquatic organisms may result in their mass extinctions. 

Currently, proper road crossing design depends on either model studies or numerical simulations 

via Computational Fluid Dynamic (CFD) packages, both of which are expensive and time 

consuming. Further, although the design procedures released by FHWA recently ensures safe fish 

migration from downstream toward upstream, it results in an unnecessarily large cross-sections 

increasing the overall project cost. In addition, the extensively used Manning model is not capable 

of providing local velocities or modeling the maximum velocity position (dip phenomenon).  

This study describes an attempt to solve Reynolds-Averaged Navier-Stokes Equations (RANS) for 

a steady state and uniform circular open channel flow at mild slopes, resulting in an analytical 

solution for a partially-filled pipe velocity distribution. Moreover, an empirical model based on 

the modified log-wake (MLW) law from previous knowledge of rectangular open channel flow was 

developed to further shed light on the topic. Both models were verified with experimental data 



 
 

  

collected with Stereoscopic Particle Image Velocimetry (S-PIV) through the work of the writer in 

the Turner-Fairbank Highway Research Center of the Federal Highway Administration and various 

other benchmark data from the literature. These models can be used as a novel and powerful 

design tool resulting in an optimum cross-section along with an enough low velocity region to 

facilitate safe fish passage.  
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CHAPTER 1:  INTRODUCTION 

1.1 Introduction 

A closed conduit with a span of less than 20 feet that is used as a passage for flood, sewage and/or 

an aquatic organism from one side of the road to the other side is called a culvert (Schall, 

Thompson, Zerges, & Kilgore, 2012). Varying in shape, size and material (Gardner, 2006; Norman, 

Houghtalen, & Johnston, 2001), culverts are commonplace in countries like the United States and 

Canada. Previously, they were designed based on the condition of the inlet control depending on 

whether it was submerged or unsubmerged (Tuncok & Mays, 1999; Norman, Houghtalen, & 

Johnston, 2001). Their most recent design procedure (Kilgore, Bergendahl, & Hotchkiss, 2010; 

Hotchkiss & Frei, 2007; Schall, Thompson, Zerges, & Kilgore, 2012) results in unnecessarily large 

sizes to reduce the cross-sectional average velocity, facilitating fish and other aquatic organisms 

migration from downstream toward upstream. A new robust method is needed satisfying both 

hydraulic and environmental constraints while optimizing the design cross-section that will 

eventually reduce the project cost. Further, cross-sectional local velocities should be investigated 

more thoroughly to make sure they will not exceed fish swimming capabilities.  

1.2 Motivation 

1.2.1 Environmental 

Fish passage downstream design criteria are based on biological capabilities of fish whereas the 

upstream design criteria should satisfy hydraulic and hydrological constraints. Juvenile fish, due 

to their nature, tend to migrate from downstream toward upstream habitat in spawning seasons. 
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Restrictions (e.g., high velocity, high turbulence intensity, low water depth, debris, and sediment 

deposition) to their free movement impair their reproduction and diminish their population. Fish 

deaths are reported all over the nation because of poor fish passage performance as well as 

inadequate operation and maintenance. For example, in Washington State, an estimated 2400 to 

4000 fish barrier structures existed in the early 20th century (Rowland, Hotchkiss, & Barber, 2002). 

These suggest that although culvert design is well understood and developed for hydraulic and 

hydrologic criteria, they continue to be fish barriers. The long term effect of such a malfunction 

can lead to extinction of a specific aquatic organism in the region of interest. A design model or a 

procedure which accounts for all the effective parameters incorporating biological characteristics 

of organisms is a necessary addition to the current design manuals.    

1.2.2 Physics 

Osborne Reynolds, in his 1883 publication, introduced properties of the transition of laminar to 

turbulent pipe flow condition by defining a dimensionless number later named after him, in 

recognition (Reynolds, 1883). Careful measurements (Reynolds, 1883) show that flow particles 

having a Reynolds (Re) number below 2000 move in parallel layers (Figure 1.1) without any 

momentum and energy exchange between two layers (laminar flow) whereas flow particles 

having a Re number over 4000 in pipes traverse irregular trajectories (Figure 1.1) making the flow 

unpredictable (turbulent flow).  

Pipe flow is a fundamental topic in physics which dates back to the early stages of fluid mechanics 

development. Early efforts were to predict a fully-filled pipe flow (F-FPF) ignoring the partially-

filled pipe flow (P-FPF) due to the complications imposed by the free surface. Poiseuille (1838)  
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Figure 1.1 Laminar and Turbulent Flow (Pipingdesign, 2014) 

and Hagen (1839), following experimental approaches, arrived at the same equation for a fully-

filled laminar pipe flow (Sutera & Skalak, 1993). Their successors spent a great deal of time and 

energy to develop a model to predict a fully-filled turbulent pipe flow. However, due to the 

unpredictable nature of the turbulence, it was not until recent that a generally accepted model 

was adopted for a fully-filled turbulent pipe flow (Guo & Julien, 2003; Guo, Julien, & Meroney, 

2005).  

Still there was a huge gap in this field, and that was a model for a P-FPF which is of great 

importance in storm sewer, fish passage and hydro tunnels design. Recently, some attempts were 

made to solve the Navier-Stokes equations1 for a laminar P-FPF to shed more light on the culvert 

flow problem (Guo & Meroney, 2013). Their Fourier Transform based solution can also be 

considered as an extreme case for the turbulent P-FPF. Unfortunately, most of the real-world 

problems are turbulent leaving the turbulent P-FPF flow still an unsolved problem. The non-

linearity of the NS equations, existence of a free surface, not having enough information about 

the eddy viscosity and turbulence imposed complications are the reasons why there are not many 

scientists investing on the subject.  

                                                           
1 Governing equations for Newtonian fluids. The reader is referred to Chapter 4 for more information.  
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1.3 Objectives 

This dissertation aims at finding a method to design turbulent partially-filled circular culverts 

resulting in fish passage design with adjusted low velocity region according to fish swimming 

capabilities accounting for both hydraulic and biological constraints ii) An analytical solution of 

the NS equations together with an empirical model based on the modified log-wake (MLW) law 

will be tested with cross-sectional velocity distribution data acquired with the state-of-the-art 

Stereoscopic-Particle Image Velocimetry (S-PIV). The final model can benefit both industry and 

academia in design of new fish passages and storm sewers as well as reassessment of the existing 

culverts after severe weather events.  

In particular, this dissertation will:  

 Utilize the state-of-the-art S-PIV for the first time to acquire the whole flow field velocity 

distribution in a turbulent partially-filled circular culvert. This data can be used as 

benchmark data for future mathematical and CFD model calibrations.  

 Solve the NS equations with simplifying assumptions as well as develop a mathematical 

model based on the MLW law, resulting accordingly in an analytical solution and an 

empirical model for partially-filled turbulent culvert flow. 

 Offer a step-by-step fish passage design procedure.   

1.4 Outline of Dissertation 

In the following contribution, initially, the theoretical background of Stereoscopic Particle Image 

Velocimetry (S-PIV) is discussed. In addition, the experimental setup and facilities used are 

presented. Later, two mathematical models one based on the direct solution of the Reynolds-

Averaged Navier-Stokes (RANS) equations (analytical solution) and the other one based on the 
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modified log-wake (MLW) law (empirical solution) are developed. The benchmark data from 

(Yoon, Sung, & Lee, 2012; Clark & Kehler, 2011; Sterling & Knight, 2000) and also the data acquired 

by the writer (Mohebbi, Zhai, & Kerenyi, 2010) will be used to verify the proposed models. Chapter 

7 is completely dedicated to the applications of the introduced models in sewer and fish passage 

design. Consequently, the conclusions and future scope of this research will be presented.  

Appendix A and B provide useful information regarding the validation data and the sample images 

used in the camera calibration process, accordingly. 
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CHAPTER 2:  LITERATURE REVIEW 

In this chapter, early works on partially filled pipe flows are reported and summarized. The 

investigations in this field can be divided into two groups: i) those that are only related to the 

culvert and hydraulics; and ii) those that study the culverts in terms of fish passage.  

2.1 Culvert 

The first work in partially-filled pipe flow (P-FPF) is traced back to July 1950 of the St. Antony Falls 

Hydraulic Laboratory of the University of the Minnesota where friction and pipe loss coeeficients 

for concrete and Corrugated Metal Pipes (CMP) were measure for the first time (Straub & Morris, 

1950a; Straub & Morris, 1950b). Replogle and Chow (1966) were among the first pioneers who 

measured the cross-sectional velocity distribution of a circular culvert. They performed many 

experiments and provided insight on the circular culvert flow for the first time. Funamizu, 

Yamashita, and Takakuwa (1991) proposed a new uniform flow formula which had some 

advantages over the Manning formula by providing a better expression of the flow properties for 

a circular P-FPF as well as a wider applicable range of pipe roughness. Moreover, they used the 

Replogle and Chow (1966) experiments  to validate their proposed model. Knight and Sterling 

(2000) measured cross-sectional velocity distribution to account for boundary shear stress in 

circular pipes running partially full (Knight & Sterling, 2000; Sterling & Knight, 2000). However, 

they did not provide any model for velocity distribution but rather used their data to calibrate 

their empirical prismatic channel shear stress equation. The same year, Ead, Rajaratnam, 

Katopodis, and Ade (2000) measured extensive vertical velocity distribution profiles at the 

centerline and different streamwise stations along the centerline in circular corrugated pipes, 
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explaining that the maximum velocity occurs below the free surface (dip phenomenon). 

Moreover, they devised an empirical equation to predict the position of the dip. They compared 

their data with the universal log-law and found good agreement in the inner region. Berlamont, 

Trouw, and Luyckx (2003) and Azevedo, Morales, Franco, Junqueira, and Erthal (2008) modeled 

the partially filled turbulent pipe flow with the aid of a CFD package, showing that the 𝑘 − 𝜖 model 

yields results in agreement with that of the Knight and Sterling (2000). Abbs, Kells, and Katopodis, 

(2007) measured velocity distributions at several stations along a length of a corrugated steel 

culvert employing Acoustic Doppler Velocimetry (ADV) and confirmed that approximately one-

third of the flow area had a velocity that was less than mean velocity. Magura (2007) also, 

performed ADV tests on a corrugated structural plate and compared isovels with HEC-RAS 

simulations (Magura C. R., 2007a; Magura C. R., 2007b). Spiral corrugated pipe velocities were 

measured by Richmond, Deng, Guensch, Tritico, and Pearson (2007), investigating the centerline 

velocity profiles and the secondary flow induced by the spiral corrugations. They used ADV for 

their measurements and investigated the lateral and axial turbulence intensity and its effect in 

terms of fish migration. Laboratory experiments were conducted on helical and annular 

corrugated metal pipes to determine the Manning coefficient and its dependency on the flow 

depth. Tests ranging from 30% to 90% filling ratios (depth to pipe diameter) were conducted, and 

it was decided that the Manning coefficient for P-FPF is generally higher than that of F-FPF 

(McEnroe & Malone, 2008). Kehler (2009) performed ADV tests on a CMP to investigate the low 

velocity regions close to the bed. He confirmed that there is a significant cross-sectional area 

below average velocity postulating that roughness on the bed (embedment) further increases this 

area. Also, a technique similar to that of a log-wake law was devised and validated with his 

experimental data (Kehler, 2009).  
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Some of the culverts are retrofitted with baffles to dissipate the Turbulent Kinetic Energy (TKE) 

induced by turbulence. A CMP fitted with sloped and slotted-weir baffles was studied 

experimentally using ADV. Lateral and vertical velocity distributions and TKE measurements 

revealed only minor differences in the turbulent heterogeneity between two setups (Morrison, 

Hotchkiss, Stone, Thurman, & Horner-Devine, 2009).  

Recently, Clark and Kehler (2011) and Yoon, Sung, and Lee (2012) shed some more light on the 

problem. While the former publication provides an empirical equation for the velocity distribution 

in corrugated culverts at mild slopes, the latter one mostly focuses on the friction coefficient as 

well as shear stress distribution through fitting Chiu’s empirical equation (Chiu, 1989) in a 

curvilinear coordinate system to the experimental data. Clark and Kehler (2011) extended the law 

of the wall to the entire cross-section and was left with a singularity in the center.  

2.2 Fish Passage 

Researchers first started to investigate culverts which are being used as fish passage in depth in 

the 1970s. Most of the fish passage culverts were found to be fish barriers because of either high 

velocity or turbulence intensity. Many scientists proposed to install baffles simulating natural 

channel conditions giving the fish enough time to rest while using their burst velocity. Literature 

is overwhelming with the studies about the baffle design, effect on velocity, flow pattern, and 

turbulence intensity (Katopodis, Robinson, & Sutherland, 1978; Morrison, Hotchkiss, Stone, 

Thurman, & Horner-Devine, 2009; Katopodis, Introduction to fishway design, 1992; Schall, 

Thompson, Zerges, & Kilgore, 2012).  

Fish passage design considerations mostly come in the form of state manuals rather than journal 

publications. Federal Highway Administration (FHWA) jointly with the state of Alaska department 
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of transportation published guidelines to design culverts according to the weak-swimming fish 

dating back to 1991 (Behlke, Kane, McLean, & Travis, 1991; Katopodis, 1992). They studied Arctic 

Grayling fish in detail and recommended that their design criteria work for the Class-I fish so called 

low performance swimmers.  

In 1996, Montana Department of Transportation, Research, Development and Technology 

transfer program in cooperation with the US FHWA released a fish passage design manual. In this 

publication, the fish passages in Montana, US were investigated in terms of biological (fish species, 

size of the fish, jumping ability, and seasonal feeding and spawning migrations) and hydraulic 

criteria (flow rate, type, roughness, length, and slope of the culvert) influencing fish. Further, they 

also confirmed that the fish passage design should be based on non-salmonids due to the reason 

that they are weaker swimmers compared to the salmonids in case both species coexist (Stein & 

Tillinger , 1996).  

Washington Department of Fish and Wildlife released road culvert designs with fish 

considerations in 1999. Migration barriers were identified whenever culverts experience at least 

one of the five characteristics: i) drop at outlet, ii) high velocity within barrel, iii) inadequate depth 

in barrel, iv) high turbulence within culvert, or v) debris accumulation at inlet. They assessed fish 

passage culverts from hydraulic, design, siting, and maintenance perspectives (Bates, 1999).  

In 2002, a new approach was developed for fish passage design considering stream simulation 

and hydraulic criteria. The stream simulation criterion was defined as designing culverts wider 

than natural channels whereas hydraulic criterion was defined as designing culverts with 

minimum depth as well as maximum hydraulic drop. Permissible depths and velocities were found 
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to be 0.8 to 1 foot and 2.0 to 6.0 feet per second, accordingly (Rowland, Hotchkiss, & Barber, 

2002).  

Velocity distributions in embedded and non-embedded CMPs were studied by Garner (2011). She 

compared embeded and equlvalent non-embeded culverts, and confirmed that embeded culverts 

provide more reduced velocity zones for fish, specially for cross-sections one diameter 

downstream of the inlet. Embeding resulted in no turbulence change or a slight change near the 

inlet (Garner, 2011).   

Recently, FHWA published two comprehensive design manuals, one from Hydraulic Design Series 

(HDS) and the other one from Hydraulic Engineering Circular (HEC). HDS 5 focuses on general 

purpose culvert design and provides some suggestions regarding aquatic organisms (Schall, 

Thompson, Zerges, & Kilgore, 2012). HEC 26 includes to the date information needed to design 

passages considering aquatic organisms including fish (Kilgore, Bergendahl, & Hotchkiss, 2010). 

Design relies on HEC-RAS software simulations facilitating design discharge and later verifying bed 

stability. Issues of construction and post construction were covered thoroughly. As a velocity 

model, both manuals take advantage of the well-developed Manning approach and, therefore, 

need information regarding the roughness on the bed.   

2.3 Experimental Quantitative Visualization 

Water movement study and visualization was portrayed by Leonardo Da Vinci in about 1506. 

Allegedly, he took advantage of grass seeds to visualize the trajectories of a fluid parcel as it 

moved in a river. Da Vinci’s successors, established basic hydraulic laws and improved the existing 

ones; nevertheless, it was not until the 20th century that the advancement in optical physics (i.e., 

laser optics) as well as electronics (i.e., computers and high-speed cameras) revealed small-scale 
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processes in fluids involving turbulence with further precision. The start of quantitative 

visualization can be traced back to 1917 where Naylor and Frazier investigated the history of 

eddying flow past a model immersed in water by the aid of cinematographic photography (Adrian 

R. J., 2009). After 1917, scientists developed various techniques to visualize and measure the flow 

velocity among which Particle Image Velocimetry (PIV) serves as the most popular one. In 

following paragraphs PIV and its more developed version, Stereoscopic Particle Image 

Velocimetry (S-PIV) will be investigated.  

2.3.1 Particle Image Velocimetry (PIV) 

Particle Image Velocimetry (PIV) is a non-intrusive and whole flow field measuring technique for 

assessment of the mean and instantaneous velocity vectors within a single plane of interest. PIV 

in its simplest form consists of a double-pulsed laser with a synchronized camera equipped with 

a Charge-coupled Device (CCD) employed to capture particle displacements in successive video 

frames (Adrian R. J., 1991; Raffel, Willert, Werely, & Kompenhans, 2007; Adrian & Westerweel, 

2011). Subsequently, image-processing algorithms (Keane & Adrian, 1992) would be utilized to 

arrive at a final velocity distribution with an exceptional spatial resolution. Adoption of a density 

close to that of a testing medium and an appropriate size of particles are of a great importance 

since it ensures that seeding particles are faithfully following the flow as well as scattering enough 

incident laser even in low laser energy (Melling, 1997). 

2.3.2 Stereoscopic Particle Image Velocimetry (S-PIV) 

Sophisticated real-world problems raised the interest among scholars to direct the studies toward 

three-dimensional (3D) PIV with an increased temporal and spatial resolution (Adrian R. J., 1991). 

Reconstructing out-of-plane velocity vector for highly 3D flows and accounting for traditional PIV 
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perspective errors caused by the imbedded velocity component were major dilemmas that 

needed to be addressed. Scientists focused on two technical categories: those in which the 3D 

velocity is calculated from a 3D domain (e.g., Holographic PIV, Tomographic PIV and Scanning PIV); 

or those which the 3D velocity is reconstructed from 2D domain. Having long calculation time and 

costly apparatus, the first category techniques were not applied to the practical cases. For the 

latter one, Stereoscopic Particle Image Velocimetry (S-PIV), dual plane S-PIV and off-axis S-PIV 

have been successfully developed (Adrian & Westerweel, 2011). In S-PIV, two coupled cameras 

capture the same plane at the same time but with different off-axis view angles. Both cameras 

should focus on the same spot in the testing medium and calibrated properly (Bjorkquist, 2002). 

Velocity components that are obtained from cross-correlated (Keane & Adrian, 1992) dewarped 

images are sufficient to retrieve the third out-of-plane velocity component (Willert, 1997; Prasad, 

2000).  

2.3.2.1 Stereovision 

Human 3D perception of 2D views (binocular vision) is achieved with the coordinated use of both 

eyes. From technical point of view, stereovision is the impression of the third spatial dimension 

(i.e., depth) from two dissimilar views of the same scene. Being inspired by this notion, S-PIV was 

developed based on two approaches: translational displacement configuration (Figure 2.1) in 

which the disparity2 is accomplished by having CCD cameras’ optical axes parallel to each other 

and perpendicular to the object plane (Jacquot & Rastogi, 1981; Arroyo & Greated, 1991; Prasad 

& Adrian, 1993; Gauthier & Riethmuller, 1988); and angular displacement configuration  

(Figure 2.2) in which camera lens axis subtends an oblique angle to the laser sheet 

                                                           
2 The difference in image location of an object seen from a right and left camera in S-PIV. 
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Figure 2.1 S-PIV Translational Configuration 

 

 

 

Figure 2.2 S-PIV Angular Configuration 

(Willert, 1997; Prasad, 2000). Having advantages of convenient mapping, easy to apply and well-

focused images, the translational method also benefits from uniform magnification. However, it 

was pointed out that the reduced overlap field of view is one of the shortcomings of the 

aforementioned approach (Gauthier & Riethmuller, 1988). The upper bound to the off-axis angle 

subtended by the center of the lens to the center of the region of interest (owing to the design of 

the lens) urged scientists to develop an alternative approach. To addresses the upper bound off-

axis angle restriction, in the angular displacement system, the cameras’ optical axes are aligned 

neither parallel with each other nor orthogonal to the object plane (Willert, 1997; Prasad, 2000). 

This configuration will significantly reduce the out-of-plane velocity component relative error 
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(Prasad, 2000). However, in the angular configuration, the object plane, lens plane and image 

plane are not parallel anymore which reduces the sharpness of the particles in the image. 

Maintaining the object, lens and image plane collinear (Scheimpflug condition) ensures high 

quality images in sharp focus (Prasad & Jenson, 1995). Alternatively, the depth of the view field 

could be increased with manipulation in camera magnification, lens f-number and/or laser 

wavelength (Prasad & Adrian, 1993).  Nevertheless, the nominal magnification is not uniform 

along the view field which may be compensated by computer based sensitivity analysis so called 

ray-tracing (Zang & Prasad, 1997). In this contribution, the angular system similar to that of the 

(Willert, 1997) has been employed. Therefore, further elaboration will be made on the angular 

configuration theory and related concepts, only.       

2.3.2.2 Dewarping Images  

As was mentioned previously, magnification is not uniform along the image in the angular 

configuration due to the oblique viewing angle of the lens plane and the object plane. In addition, 

associating image pixel coordinates with real-world physical coordinates is required in almost all 

image processing techniques (Willert, 2006). Mathematically speaking, a geometric back 

projection algorithm, transforming the object plane to the image plane based on geometric optics 

and with the knowledge of lens focal length, the angle between various planes, the actual position 

of the lens plane and the nominal magnification factor (magnification along principal optical axis, 

𝑀𝑜) may be employed to achieve the desired result (Willert, 1997). Therefore, we have 

 𝑋 = 𝑓(𝑥, 𝑦, 𝑓𝑙, 𝜑, 𝜓,𝑀𝑜)           𝑌 = 𝑓(𝑥, 𝑦, 𝑓𝑙, 𝜑, 𝜓,𝑀𝑜)  1 

where X and Y are physical coordinates; x and y are the corresponding coordinates of the points 

in images; 𝑓𝑙 is lens focal length; 𝜑 is the angle between the image plane and the lens plane and 
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𝜓 is the angle between the lens plane and the object plane. However, some of the parameters 

above are difficult to determine or even with a high accurate measurement this approach does 

not account for lens imperfections (owing to the lens design) as well as radial distortions (owing 

to the liquid-air interface). A rather pragmatic approach is to place a planar calibration target with 

regularly spaced markers (uniform Cartesian grid or separated objects e.g., dots or crosses) at 

exactly the position of the light sheet (Sollof, Adrian, & Liu, 1997; Willert, 1997; Bjorkquist, 2002). 

Subsequently, the real-world coordinates of the calibration grid are acquired as input for the 

calibration algorithm. Moreover, the position of the markers on the images is readily measured 

using image processing methods in pixels. First order, or in complex distorted geometries, second-

order polynomial mapping function coefficients may be evaluated minimizing a non-linear least 

squares fit to point pairs (∅) as following (Ehrenfried, 2002): 

 
∅ =∑[(𝑋𝑖 −

𝑃𝑥(𝑥𝑖 , 𝑦𝑖)

𝑄(𝑥𝑖 , 𝑦𝑖)
)

2

+(𝑌𝑖 −
𝑃𝑦(𝑥𝑖 , 𝑦𝑖)

𝑄(𝑥𝑖 , 𝑦𝑖)
)

2

]

𝑁

𝑖=1

 
 2 

With 

 𝑄(𝑥, 𝑦) = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑦 + 𝐶3𝑥
2 + 𝐶4𝑦

2 + 𝐶5𝑥𝑦  3 

 𝑃𝑥(𝑥, 𝑦) = 𝐶6 + 𝐶7𝑥 + 𝐶8𝑦 + 𝐶9𝑥
2 + 𝐶10𝑦

2 + 𝐶11𝑥𝑦  4 

 𝑃𝑦(𝑥, 𝑦) = 𝐶12 + 𝐶13𝑥 + 𝐶14𝑦 + 𝐶15𝑥
2 + 𝐶16𝑦

2 + 𝐶17𝑥𝑦  5 

where N is the number of the pair of template points;  𝐶0 through 𝐶17 are polynomial coefficients. 

𝑄, 𝑃𝑥 and 𝑃𝑦 are polynomial functions of a given order. 𝑥, 𝑦 and 𝑋, 𝑌 are already defined. 

2.3.2.3 Reconstruction Geometry 

Following the approach proposed by (Willert, 1997), when the cameras are placed on either side 

of the light sheet symmetrically, the images are warped into the light sheet identically. Further, 

since it is possible to calibrate cameras to capture exactly the same view field, the need for 
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interpolation to one global coordinate is addressed. The relationship between the true particle 

displacements and the apparent displacements measured by cameras are readily derived 

examining Figure 2.2:  

 
𝑑𝑥 =

𝑑𝑥𝑙𝑡𝑎𝑛𝛼𝑟 − 𝑑𝑥𝑟𝑡𝑎𝑛𝛼𝑙
𝑡𝑎𝑛𝛼𝑟 − 𝑡𝑎𝑛𝛼𝑙

  𝑑𝑦 =
𝑑𝑦𝑙𝑡𝑎𝑛𝛽𝑟 − 𝑑𝑦𝑟𝑡𝑎𝑛𝛽𝑙

𝑡𝑎𝑛𝛽𝑟 − 𝑡𝑎𝑛𝛽𝑙
 

 

 
𝑑𝑧 =

𝑑𝑥𝑙 − 𝑑𝑥𝑟
𝑡𝑎𝑛𝛼𝑟 − 𝑡𝑎𝑛𝛼𝑙

 or 𝑑𝑧 =
𝑑𝑦𝑙 − 𝑑𝑦𝑟

𝑡𝑎𝑛𝛽𝑟 − 𝑡𝑎𝑛𝛽𝑙
 

 6 

with 

 tan 𝛼𝑟 =
𝑥𝑝 − 𝑥𝑟

𝑧𝑝 − 𝑧𝑟
  tan 𝛽𝑟 =

𝑦𝑝 − 𝑦𝑟

𝑧𝑝 − 𝑧𝑟
        

 tan 𝛼𝑙 =
𝑥𝑝 − 𝑥𝑙

𝑧𝑝 − 𝑧𝑙
 or tan 𝛽𝑙 =

𝑦𝑝 − 𝑦𝑙

𝑧𝑝 − 𝑧𝑟
       

 7 

where 𝑑𝑥𝑟, 𝑑𝑦𝑟 and 𝑑𝑥𝑙, 𝑑𝑦𝑙  are the projected horizontal and vertical displacements of a particle 

recorded onto the right and left camera, respectively; 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 are the real-world 

displacement of a particle; 𝑥𝑝, 𝑦𝑝 and 𝑧𝑝 are the physical coordinates of an arbitrary particle in 

the light sheet; 𝑥𝑟, 𝑦𝑟 and 𝑥𝑙 , 𝑦𝑙  are the projected coordinates of the particle p recorded on the 

right and left camera, accordingly. 𝛼𝑟 and 𝛼𝑙  are the angle enclosed by the viewing ray and the 

light sheet normal projected onto the xz plane from right and left camera, respectively. 𝛽𝑟 and 𝛽𝑙 

are the angle enclosed by the viewing ray and the light sheet normal projected onto the yz plane 

from right and left camera, respectively. 

The method discussed above was proposed for industrial wind tunnel flow applications.  As a case 

study, unsteady flow field of a vortex ring passing through a laser light sheet was successfully 

measured (Willert, 1997).  

The more severe problems arise when the angular setup is employed in the multiphase flows (i.e., 

flows with liquid-air interface). Due to the difference in the refractive index of the test flow and 
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air, aberrations at the edges of the liquid-air interface may cause radial distortions. One way to 

address this issue is to incorporate a triangular thin-walled glass prism filled with test flow, so the 

lens will continue enjoying orthogonal orientation (Prasad & Jenson, 1995).  

2.4 Comments and Knowledge Gaps 

The majority of the early work depends on the Manning equation which in turn depends on 

Manning roughness coefficient. This coefficient is affected by many parameters such as the free 

surface, boundary shape and the flow depth. Therefore, for an accurate culvert design, 

information regarding roughness is needed to be determined beforehand either through physical 

or numerical modeling. The literature lacks an accurate velocity distribution and shear stress 

model for partially filled circular open channel flows, which are common in many man-made 

crossings. Even if a model exists, it is incapable of retrieving the local velocities due to the 

averaging nature of these types of models.  

Another shortcoming of the available models is that none of them has a closed form solution or 

solidly based analytical equation. They are based on the mathematical intuition rather than 

physically based mathematical modeling. Further, the existing models are case-sensitive and most 

of the time need experimental data to assess the fitting parameters.  
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CHAPTER 3:  EXPERIMENTAL PROCEDURE  

In this chapter, the experimental equipment and their setup as well as the CMP preparation and 

the bed roughness sieve analysis will be presented. All the activities explained in this Chapter, 

lasted for two years and were conducted in the FHWA’s Turner-Fairbank Highway Research 

Center.  

3.1 Experimental Setup 

3.1.1 Flume    

The experiment was carried out in a rectangular cross-section tilting flume at Turner-Fairbank 

Highway Research Center located in Mclean, VA, United States (Figure 3.1). The flume was 9 m 

long, 0.45 m wide (barrel) and 0.28 m deep. A honeycomb was placed in the trumpet-shaped inlet 

to channelize the water with the purpose of ensuring the homogeneity of the flow.  

  

a) b) 

Figure 3.1 Tilting Flume with the Culvert inside                                                                                                                                 

a) Modeled in Solid Works b) Real-World Picture 
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a) b) 

Figure 3.2 S-PIV Setup a) Front View b) Side View  

13 ultrasonic sensors (UNDK 30U6103/S14) from Baumer Electronics were utilized to measure 

water surface profile, simultaneously. Flow condition was controlled both with screw jacks to raise 

the upstream end of the flume while lowering the downstream end and a bottom-hinged flap 

gate in the exit section of the flume to reach uniform flow condition under steady state.  

Streamwise three component velocity distribution was measured at the midway section between 

the inlet and outlet for arbitrary discharges according to the test matrix (see Appendix A). 

3.1.2 Stereoscopic Particle Image Velocimetry (S-PIV) Setup 

A double-pulsed Solo 120 PIV New Wave Research Nd: YAG laser along with a pair of Megaplus ES 

1.0 digital cameras from Roper Scientific MASD Inc. were configured in LabView to operate in a 

synchronized manner (Figure 3.2). The spatial resolution was limited to 960 (H) by 960 (V) pixels 

which was implemented in the CCD array. The camera was connected through a 68-pin SCSI cable 

to the frame grabber card and could capture up to 30 images per second. It also featured a built-

in electronic shutter with exposure times as short as 127 microseconds for maximum flexibility 

and performance when imaging fast moving objects. CCD cameras were equipped with two Sigma 



20 
 

  

zoom lenses with a focal length ranging from 28 mm to 70 mm and an 8-level f-number from 2.8 

to 32.  

Silver-coated hollow glass spheres (AGSL150-16TRD from the Potters Industries Inc., Carlstadt, NJ) 

with an average diameter of 69 µm, density of 0.93 g/cm3, and 17.7% weight of silver coated on 

their surfaces were introduced into the flow. 

3.1.3 Acoustic Doppler Velocimetry (ADV) Setup 

Acoustic Doppler Velocimeter (ADV) is an intrusive remote-sensing device originally developed 

for inlets and entrances hydrodynamics investigation at the U.S. Army Engineer Waterways 

Experiment Station (Kraus, Lohrmann, & Cabrera, 1994). The theory is based on the shift in 

received frequency so-called Doppler effect. The device sends out a beam of acoustic waves at a 

fixed frequency from a transmitter probe (e.g., 5 to 10 cm). These waves bounce off of moving 

particulate matter in the water and three acoustic receivers sense the shift in the frequency.  

ADV technical details and shortcomings are out of the scope of this contribution, and for more 

information the reader is referred to (Sontek, 2001; Precht, Janssen, & Huettel, 2006). 

  

a) b) 

Figure 3.3 ADV Setup a) Front View b) Side View  
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In this study, a 16 MHz microADV from SonTek was mounted on a robot (Figure 3.3) and controlled 

with a LabView program to evaluate the accuracy and efficiency of S-PIV results. 1500 sample 

points were adopted for each velocity measurement to precisely average fluctuating wiggly 

streamlines in turbulent scale.   

3.2 Corrugated Metal Pipe (CMP) Specifications  

An annular corrugated pipe was obtained from CONTECH Co. with the following technical 

specifications. Note that 𝑐/𝑘 is the cycle pitch to depth ratio which for this case was 3 (Table 3.1 

and Figure 3.4). Figure 3.5 depict the different views of the corrugated pipe before any change. 

According to the factory suggestion, the Manning roughness coefficient for this pipe was 𝑛 =

0.012. 

3.2.1 CMP Sections 

During a culvert service time, due to flooding and other natural events, culverts can become a 

depository for unwanted materials. To simulate the effect of the bed material on the velocity 

distribution three test scenarios were devised with various sediment depths (ℎ′) of 0%𝐷, 15%𝐷,  

Table 3.1 Handling Weights for CMP Used in the Experiment (3”x1”)  

Weight 

(Pounds/Linear Foot) 

Inside Diameter 

of CMP (inches) 
CMP Gage 

CMP Thickness 

(inches) 

Galvanized and 

Aluminized3 

36 16 0.064 33 

                                                           
3 Weights for TRENCHCOAT® polymer-coated pipe are 1%-4% higher, varying by gage. 
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Figure 3.4 Annular CMP Shape (CONTECH Engineered Solutions , 2014) 

and 30%𝐷. Figure 3.6, Figure 3.7 and Figure 3.8 represent the prototype (scaled down) on the 

left and the symmetrical half of the model on the right. Three flow depths (h=3”, 6” and 9”) were 

chosen to represent the low flow conditions (see Appendix A and Table A.1). 

3.2.2 CMP Preparation 

The real testing starts with preparing the CMP section. For this purpose the original pipe was cut 

with the help of an Oxygen Acetylene torch. In addition, using an angle grinder the pipe edges 

that were supposed to lean on the flume wall were made smoother. Pipe surface was coated with 

a two component special coal tar to eliminate the laser illuminations during S-PIV operation.  

  

a) b) 

Figure 3.5 CMP a) Lateral Cross-section View b) Isometric View 
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Figure 3.6 Bed Elevation at 0% Culvert Diameter and Symmetrical half of the Model 

 

Figure 3.7 Bed Elevation at 15% Culvert Diameter and Symmetrical Half of the Model 

 

Figure 3.8 Bed Elevation at 30% Culvert Diameter and Symmetrical Half of the Model 
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a) b) 

Figure 3.9 Prepared CMP Section a) Coated with Epoxy b) Placed Inside Flume 

The technical specification of the coating was C9578402 high performance coal tar epoxy. This 

base component needs C9502 504 activator both of which meet C-200 specifications. Figure 3.9 

depicts the coated CMP section as well as the CMP placed and sealed inside the flume. The 

technical specification of the coating was C9578402 high performance coal tar epoxy.  

3.3 Sieve Analysis 

Embedded culverts are commonly used to increase the bed roughness which in turn will increase 

the low velocity region for fish (Garner, 2011). Some experiments included roughness on the bed  

  

a) b) 
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c) d) 

 Figure 3.10 Gravel Properties Used in Roughness Test                                                                                                                   

a) Soil Histogram b) Soil Frequency c) Soil Frequency Cumulative d) Soil Cumulative Probability  

 (see Appendix A). Therefore, gravel with a D50 of at least 10 mm was chosen, and basic soil 

mechanics tests (sieve analysis) were conducted on it. Note that the soil type used in the  

 

Figure 3.11 Logarithmic Cumulative Probability 
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Table 3.2 Grain Size for the Proposed Soil  

D5 

(mm) 

D10 

(mm) 

D16 

(mm) 

D30 

(mm) 

D50 

(mm) 

D60 

(mm) 

D75 

(mm) 

D84 

(mm) 

D95 

(mm) 

7.56 8.74 9.55 10.28 10.66 10.78 11.12 11.54 12.40 

experiment according to the USCS classification was SP. Figure 3.10 depicts the soil histogram, 

frequency, cumulative frequency, and cumulative probability curves. Moreover, the cumulative 

probability curve (Figure 3.10d) shows that the soil completely is in the gravel region. Table 3.2 

and Table 3.3 also lists some important information regarding the roughness such as coefficient 

of uniformity and coefficient of the curvature both of which reveals a uniform but poorly graded 

soil.   

Table 3.3 Physical Characteristics of the Proposed Soil 

Standard 

Deviation 
Skewness Kurtosis Coefficient of uniformity Coefficient of curvature 

7.56 8.74 9.55 10.28 10.66 

Very well 

sorted 

Coarse 

skewed 

Very 

leptokurtic 
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CHAPTER 4:  ANALYTICAL SOLUTION TO P-FPF 

4.1 Newton’s Law 

Navier and Stokes formulated the governing differential equations of motion for incompressible, 

Newtonian fluids in the 1840s (Young, Munson, Okiishi, & Huebsch, 2011). Equations (8-10) list 

the Navier-Stokes (NS) equations in cylindrical coordinates: 

𝑟: 
𝜌 (
𝜕𝑢𝑟
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟

+
𝑢𝜃
𝑟

𝜕𝑢𝑟
𝜕𝜃

+ 𝑢𝑧
𝜕𝑢𝑟
𝜕𝑧

−
𝑢𝜃

2

𝑟
)

= −
𝜕𝑝

𝜕𝑟
+ 𝜇 [

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑟
𝜕𝑟
) +

1

𝑟2
𝜕2𝑢𝑟
𝜕𝜃2

+
𝜕2𝑢𝑟
𝜕𝑧2

−
𝑢𝑟
𝑟2
−
2

𝑟2
𝜕𝑢𝜃
𝜕𝜃
] + 𝜌𝑔𝑟  

 8 

𝜃: 
 𝜌 (
𝜕𝑢𝜃
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝜃
𝜕𝑟

+
𝑢𝜃
𝑟

𝜕𝑢𝜃
𝜕𝜃

+ 𝑢𝑧
𝜕𝑢𝜃
𝜕𝑧

+
𝑢𝑟𝑢𝜃
𝑟
)

= −
1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜇 [

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝜃
𝜕𝑟
) +

1

𝑟2
𝜕2𝑢𝜃
𝜕𝜃2

+
𝜕2𝑢𝜃
𝜕𝑧2

−
𝑢𝜃
𝑟2
+
2

𝑟2
𝜕𝑢𝑟
𝜕𝜃
] +  𝜌𝑔𝜃  

 9 

𝑧: 
𝜌 (
𝜕𝑢𝑧
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

+
𝑢𝜃
𝑟

𝜕𝑢𝑧
𝜕𝜃

+ 𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+ 𝜇 [

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑧
𝜕𝑟
) +

1

𝑟2
𝜕2𝑢𝑧
𝜕𝜃2

+
𝜕2𝑢𝑧
𝜕𝑧2

] + 𝜌𝑔𝑧  10 

where 𝑢𝑟, 𝑢𝜃 and 𝑢𝑧 are instantaneous velocity in 𝑟, 𝜃 and 𝑧 directions, accordingly; 𝑔𝑟, 𝑔𝜃 and 

𝑔𝑧 are gravitational acceleration, in respective directions; 𝜇 and 𝜌 are the dynamic viscosity and 

density of the fluid; and 𝑝 is pressure field. 

The NS equations together with the mass conservation law, Eq. 11 govern a full model for motion 

of fluids. Mathematically speaking, four unknowns (𝑢𝑟, 𝑢𝜃, 𝑢𝑧, and 𝑝) and four equations suggest 

that the model is well-posed. However, due to the inherent complexity4, only some simple laminar 

cases have been solved and verified with the experimental data so far (Guo & Meroney, 2013).  

                                                           
4 NS equations are from class of second-order nonlinear elliptic partial differential equations.  
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 𝜕𝜌

𝜕𝑡
+
1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑢𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑢𝜃) +

𝜕

𝜕𝑧
(𝜌𝑢𝑧) = 0 11 

4.2 Reynolds-Averaged Navier-Stokes (RANS) Equations 

NS equations are valid for both laminar and turbulent flow conditions. Experiments on turbulent 

flow show that velocity of the particles varies with respect to both time and space (Young, 

Munson, Okiishi, & Huebsch, 2011). Although turbulence is proved to be random, some aspects 

of it can be investigated through the averaging process like all other random phenomena. 

Statistical averaging of an arbitrary function related with turbulence (𝑓) with respect to time in a 

time period (Τ) longer than that of a typical fluctuation period (Eq. 12) reveals consistent 

characteristics (Kim, Moin, & Moser, 1987).  

 
𝑓̅ =

1

Τ
∫ 𝑓(𝑟, 𝜃, 𝑧, 𝑡)𝑑𝑡
𝑡+Τ

𝑡

 12 

Besides, the instantaneous velocity distribution may not be of interest from practical point of view 

in real-world problems.  

RANS equations are a time-averaged form of the NS equations and are the starting point for 

analytical model development. Based on the Reynolds decomposition concept, velocity and 

pressure can be decomposed into a mean and a fluctuating component (Bonakdari, Larrarte, 

Lassabatere, & Joannis, 2008) which are listed through Eqs. 13-16 

 𝑢𝑟(𝑟, 𝜃, 𝑧, 𝑡) = 𝑢̅𝑟(𝑟, 𝜃, 𝑧, 𝑡) + 𝑢𝑟
′ (𝑟, 𝜃, 𝑧, 𝑡)  13 

 𝑢𝜃(𝑟, 𝜃, 𝑧, 𝑡) = 𝑢̅𝜃(𝑟, 𝜃, 𝑧, 𝑡) + 𝑢𝜃
′ (𝑟, 𝜃, 𝑧, 𝑡)  14 

 𝑢𝑧(𝑟, 𝜃, 𝑧, 𝑡) = 𝑢̅𝑧(𝑟, 𝜃, 𝑧, 𝑡) + 𝑢𝑧
′ (𝑟, 𝜃, 𝑧, 𝑡)  15 



29 
 

  

 𝑝(𝑟, 𝜃, 𝑧, 𝑡) = 𝑝̅(𝑟, 𝜃, 𝑧, 𝑡) + 𝑝′(𝑟, 𝜃, 𝑧, 𝑡) 16 

where 𝑢′𝑟, 𝑢′𝜃 and 𝑢′𝑧 are fluctuating velocity components; 𝑢̅𝑟, 𝑢̅𝜃 and 𝑢̅𝑧 are time averaged 

velocity components; 𝑝′ is the fluctuating pressure and 𝑝̅ is the time averaged pressure. 

Substituting the velocity and pressure from Eqs. (13-16) into Eqs. (8-11) we end up with  

𝑟: 
𝜌 (
𝐷𝑢̅𝑟
𝐷𝑡

−
𝑢̅𝜃

2

𝑟
) = −

𝜕𝑝̅

𝜕𝑟
+ 𝜇 (∇2𝑢̅𝑟 +

𝑢̅𝑟
𝑟2
−
2

𝑟2
𝜕𝑢̅𝜃
𝜕𝜃
)

− 𝜌 [
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟

′ 2̅̅ ̅̅̅) +
1

𝑟

𝜕

𝜕𝜃
(𝑢𝑟

′𝑢𝜃
′̅̅ ̅̅ ̅̅ ) +

𝜕

𝜕𝑧
(𝑢𝑟

′𝑢𝑧
′̅̅ ̅̅ ̅̅ ) −

𝑢𝜃
′ 2̅̅ ̅̅ ̅

𝑟
] + 𝜌𝑔𝑟 

 17 

𝜃: 
𝜌 (
𝐷𝑢̅𝜃
𝐷𝑡

+
2𝑢̅𝑟𝑢̅𝜃
𝑟

) = −
1

𝑟

𝜕𝑝̅

𝜕𝜃
+ 𝜇 (∇2𝑢̅𝜃 −

𝑢̅𝜃
𝑟2
+
2

𝑟2
𝜕𝑢̅𝑟
𝜕𝜃
) 

−𝜌 [
1

𝑟

𝜕

𝜕𝜃
(𝑢𝜃

′ 2̅̅ ̅̅ ̅) +
𝜕

𝜕𝑟
(𝑢𝜃

′ 𝑢𝑟
′̅̅ ̅̅ ̅̅ ) +

𝜕

𝜕𝑧
(𝑢𝜃

′ 𝑢𝑧
′̅̅ ̅̅ ̅̅ ) +

2𝑢𝜃
′ 𝑢𝑟

′̅̅ ̅̅ ̅̅

𝑟
] + 𝜌𝑔𝜃  

 18 

𝑧: 
𝜌
𝐷𝑢̅𝑧
𝐷𝑡

= −
𝜕𝑝̅

𝜕𝑧
+ 𝜇(∇2𝑢̅𝑧) 

−𝜌 [
𝜕

𝜕𝑧
(𝑢𝑧

′ 2̅̅ ̅̅̅) +
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟

′𝑢𝑧
′̅̅ ̅̅ ̅̅ ) +

1

𝑟

𝜕

𝜕𝜃
(𝑢𝜃

′ 𝑢𝑧
′̅̅ ̅̅ ̅̅ )] + 𝜌𝑔𝑧  19 

 𝜕𝑢̅𝑟
𝜕𝑟

+
𝑢̅𝑟
𝑟
+
1

𝑟

𝜕(𝑢̅ ̅𝜃)

𝜕𝜃
+
𝜕(𝑢̅𝑧)

𝜕𝑧
= 0 

20 

 

where operators 
𝐷

𝐷𝑡
 and ∇2 are defined as: 

 𝐷

𝐷𝑡
=
𝜕

𝜕𝑡
+ 𝑢𝑟

𝜕

𝜕𝑟
+
𝑢𝜃
𝑟

𝜕

𝜕𝜃
+ 𝑢𝑧

𝜕

𝜕𝑧
 21 

 
∇2=

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+
1

𝑟2
𝜕2

𝜕𝜃2
+
𝜕2

𝜕𝑧2
 22 

The RANS equations are mathematically analogous with the NS equations except for the 

turbulence fluctuating terms which are treated as additional shear stresses appearing in only 

turbulent flow. Therefore, a general stress tensor in turbulent flow motion can be summarized as 

(Granger, 1995):  
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𝑃𝑟𝑟 = −𝑝̅ + 2𝜇

𝜕𝑢̅𝑟
𝜕𝑟

− 𝜌𝑢𝑟
′ 2̅̅ ̅̅̅  23 

 
𝑃𝜃𝜃 = −𝑝̅ + 2𝜇 (

1

𝑟

𝜕𝑢̅𝜃
𝜕𝜃

+
𝑢𝑟̅̅ ̅

𝑟
) − 𝜌𝑢𝜃

′ 2̅̅ ̅̅ ̅  24 

 
𝑃𝑧𝑧 = −𝑝̅ + 2𝜇

𝜕𝑢̅𝑧
𝜕𝑧

− 𝜌𝑢𝑧
′ 2̅̅ ̅̅̅  25 

 
𝑃𝑟𝜃 = 𝜇 (

𝜕𝑢̅𝜃
𝜕𝑟

+
1

𝑟

𝜕𝑢̅𝑟
𝜕𝜃

−
𝑢𝜃̅̅ ̅

𝑟
) − 𝜌𝑢𝑟

′𝑢𝜃
′̅̅ ̅̅ ̅̅  26 

 
𝑃𝑧𝑟 = 𝜇 (

𝜕𝑢̅𝑟
𝜕𝑧

+
𝜕𝑢̅𝑧
𝜕𝑟
) − 𝜌𝑢𝑟

′𝑢𝑧
′̅̅ ̅̅ ̅̅  27 

 
𝑃𝜃𝑧 = 𝜇 (

1

𝑟

𝜕𝑢̅𝑧
𝜕𝜃

+
𝜕𝑢̅𝜃
𝜕𝑧
) − 𝜌𝑢𝜃

′ 𝑢𝑧
′̅̅ ̅̅ ̅̅  28 

where  𝑃𝑖𝑗  is the stress tensor in 𝑗 direction acting on a surface perpendicular to direction 𝑖.  

4.3 Governing Equations 

Figure 4.1 depicts a circular open channel flow with spanwise (𝑢𝑥), vertical velocity (𝑢𝑦), and 

streamwise (𝑢𝑧) components in 𝑥, 𝑦 and 𝑧 directions, respectively. For the sake of geometry, 

cylindrical coordinates are adopted with 𝑢𝑟, 𝑢𝜃  and 𝑢𝑧  in 𝑟, 𝜃 and 𝑧 directions (Figure 4.2) which 

is related to the Cartesian coordinates through Eqs. 29-33  

  𝑥 = 𝑟 cos 𝜃 −𝑅 < 𝑥 < 𝑅  29 

  𝑦 = 𝑅 − 𝑟 sin 𝜃 0 < 𝑦 < 𝑅  30 

  𝑟 = √𝑥2 + (𝑅 − 𝑦)2 0 < 𝑟 < 𝑅  31 

  𝜃 = tan−1 |
𝑅 − 𝑦

𝑥
| 0 < 𝜃 < 2𝜋  32 

 𝑢̅𝑟 =
−𝑢̅𝑦

sin 𝜃
 𝑢̅𝜃 =

−𝑢̅ ̅𝑥
sin 𝜃

 𝑢̅𝑧(𝑟, 𝜃) = 𝑢̅𝑧(𝑥, 𝑦) 33 

where 𝑅 is the culvert radius. 

Mass conservation law for an incompressible steady state flow in cylindrical coordinates reads:   
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                       Figure 4.1 Circular Open Channel Flow Longitudinal View  

 

Figure 4.2 Circular Open Channel Flow Cross-Sectional View 
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 𝜕𝑢̅𝑟
𝜕𝑟

+
𝑢̅𝑟
𝑟
+
1

𝑟

𝜕(𝑢̅ ̅𝜃)

𝜕𝜃
+
𝜕(𝑢̅𝑧)

𝜕𝑧
= 0 34 

Assuming a fully-developed and unidirectional flow, it follows that: 

 𝜕(𝑢̅𝑧)

𝜕𝑧
= 0 35 

Equation 35 was already developed through the fully-developed flow assumption which states 

that the change along the direction of the flow (𝑧) is negligible (
𝜕

𝜕𝑧
= 0). The 𝑧 component for the 

RANS equation reads:  

 
𝜌
𝐷𝑢̅𝑧
𝐷𝑡

= −
𝜕𝑝̅

𝜕𝑧
+ 𝜇 (

𝜕2𝑢̅𝑧
𝜕𝑟2

+
1

𝑟

𝜕𝑢̅𝑧
𝜕𝑟

+
1

𝑟2
𝜕2𝑢̅𝑧
𝜕𝜃2

+
𝜕2𝑢̅𝑧
𝜕𝑧2

) 

−𝜌 [
𝜕

𝜕𝑧
(𝑢𝑧

′ 2̅̅ ̅̅̅) +
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟

′𝑢𝑧
′̅̅ ̅̅ ̅̅ ) +

1

𝑟

𝜕

𝜕𝜃
(𝑢𝜃

′ 𝑢𝑧
′̅̅ ̅̅ ̅̅ )] + 𝜌𝑔𝑧 
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According to the experimentally determined velocity counters provided by (Clark & Kehler, 2011; 

Yoon, Sung, & Lee, 2012; Kehler, 2009), it can be deduced that the gradient in the azimuthal 

direction (𝜃) is negligible compared to the radial direction (𝑟). It follows that:  

 1

𝑟2
𝜕2𝑢̅𝑧
𝜕𝜃2

≪
𝜕2𝑢̅𝑧
𝜕𝑟2

 37 

 1

𝑟

𝜕

𝜕𝜃
(𝑢𝜃

′ 𝑢𝑧
′̅̅ ̅̅ ̅̅ ) ≪

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟

′𝑢𝑧
′̅̅ ̅̅ ̅̅ ) 38 

The limitation for the above mentioned assumptions is where 𝑟 tends to zero, that is the left hand 

side term in the Eq. 37 and the right hand side term in the Eq. 38 tends to infinity and zero, 

respectively. It follows that the predicted velocity values close to the center of the pipe will not 

be reliable. Moreover, assuming a fully-developed uniform and unidirectional flow in the 𝑧 

direction, Eq. 36 reduces to:  

 
𝜇 [
𝜕2𝑢̅𝑧
𝜕𝑟2

+
1

𝑟

𝜕𝑢̅𝑧
𝜕𝑟
] − 𝜌 [

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟

′𝑢𝑧
′̅̅ ̅̅ ̅̅ )] + 𝜌𝑔𝑧 = 0 39 
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The gravity term5 is adjusted through  

 𝑔𝑧 = 𝑔 sin 𝛼 = 𝑔𝑆0 40 

where 𝛼 is defined in Figure 4.1. Also, 𝑆0, channel bottom slope, can be adopted analogous with 

the Manning model. Equation 39 together with Eq. 40 after simplification result in:  

 
𝑟
𝜕2𝑢̅𝑧
𝜕𝑟2

+
𝜕𝑢̅𝑧
𝜕𝑟

−
𝜌

𝜇
[
𝜕

𝜕𝑟
(𝑟𝑢𝑟

′𝑢𝑧
′̅̅ ̅̅ ̅̅ )] +

𝑟𝜌𝑔𝑆0
𝜇

= 0 41 

Equation 41 is a non-homogeneous6 second-order nonlinear partial differential equation, and 

there is not any unique way to solve this equation. In order to solve Eq. 41, it is integrated between 

𝑟 and 
𝑅−ℎ

sin𝜃
 with respect to 𝑟 where ℎ is the depth of the fluid.  

 
∫ 𝑟

𝜕2𝑢̅𝑧
𝜕𝑟2

𝑑𝑟 +

𝑅−ℎ
sin𝜃

𝑟

∫
𝜕𝑢̅𝑧
𝜕𝑟

𝑑𝑟 −

𝑅−ℎ
sin𝜃

𝑟

∫
𝜌

𝜇
[
𝜕

𝜕𝑟
(𝑟𝑢𝑟

′𝑢𝑧
′̅̅ ̅̅ ̅̅ )] 𝑑𝑟 +

𝑅−ℎ
sin 𝜃

𝑟

∫
𝑟𝜌𝑔𝑆0
𝜇

𝑅−ℎ
sin 𝜃

𝑟

𝑑𝑟 = 0 42 

With the aid of the method of integration by parts, the first term is split into two terms, and we 

have: 

 

(𝑟
𝜕𝑢̅𝑧
𝜕𝑟
|
𝑟

𝑅−ℎ
sin 𝜃

−∫
𝜕𝑢̅𝑧
𝜕𝑟

𝑑𝑟

𝑅−ℎ
sin𝜃

𝑟

) + ∫
𝜕𝑢̅𝑧
𝜕𝑟

𝑑𝑟 −

𝑅−ℎ
sin 𝜃

𝑟

[
𝜌

𝜇
(𝑟𝑢𝑟

′𝑢𝑧
′̅̅ ̅̅ ̅̅ )]

𝑟

𝑅−ℎ
sin𝜃

+
𝑟2𝜌𝑔𝑆0
2𝜇

|
𝑟

𝑅−ℎ
sin 𝜃

= 0 43 

At the water-air interface, the shear stress is negligible. It implies that 𝑃𝑧𝑟 from the stress tensor 

is negligible at the free surface. Recalling Eq. 27 we have:  

 
𝑝𝑧𝑟|𝑟=𝑅−ℎ

sin 𝜃
= 0 → [𝜇 (

𝜕𝑢̅𝑟
𝜕𝑧

+
𝜕𝑢̅𝑧
𝜕𝑟
) − 𝜌(𝑢𝑟

′𝑢𝑧
′̅̅ ̅̅ ̅̅ )]

𝑟=
𝑅−ℎ
sin 𝜃

= 0 

44 

                                                           
5 Last term on the left hand side of Eq. 39 

6 The right hand side is non-zero and a function of the independent variable r. 
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[𝜇
𝜕𝑢̅𝑧
𝜕𝑟

− 𝜌(𝑢𝑟
′𝑢𝑧
′̅̅ ̅̅ ̅̅ )]

𝑟=
𝑅−ℎ
sin 𝜃

= 0 →
𝜕𝑢̅𝑧
𝜕𝑟
|
𝑟=
𝑅−ℎ
sin 𝜃

=
𝜌

𝜇
(𝑢𝑟
′𝑢𝑧
′̅̅ ̅̅ ̅̅ )|

𝑟=
𝑅−ℎ
sin 𝜃

 

where 𝑟 =
𝑅−ℎ

sin𝜃
 in the cylindrical coordinate system corresponds to the free surface 𝑦 = ℎ in the 

Cartesian coordinate system.  

Substituting Eq. 44 into Eq. 43 we have: 

 

(𝑟
𝜕𝑢̅𝑧
𝜕𝑟
|
𝑅−ℎ
sin𝜃

− 𝑟
𝜕𝑢̅𝑧
𝜕𝑟
|
𝑟
) + [− 𝑟

𝜕𝑢̅𝑧
𝜕𝑟
|
𝑅−ℎ
sin𝜃

+ 𝑟
𝜌

𝜇
(𝑢𝑟

′𝑢𝑧
′̅̅ ̅̅ ̅̅ )|

𝑟

] +
𝑟2𝜌𝑔𝑆0
2𝜇

|
𝑟

𝑅−ℎ
sin 𝜃

= 0 45 

and after simplification we arrive at: 

 
−𝑟
𝜕𝑢̅𝑧
𝜕𝑟

+ 𝑟
𝜌

𝜇
(𝑢𝑟

′𝑢𝑧
′̅̅ ̅̅ ̅̅ ) +

𝜌𝑔𝑆0
2𝜇

[(
𝑅 − ℎ

sin 𝜃
)
2

− 𝑟2] = 0 46 

Boussinesq in 1877 (Nezu & Rodi, 1986) introduced the first hypothesis to model the fluctuating 

components of the RANS equation as: 

 
−𝑢𝑦

′ 𝑢𝑧
′̅̅ ̅̅ ̅̅ = 𝜈𝑡

𝜕𝑢𝑧(𝑥, 𝑦)

𝜕𝑦
 47 

where 𝜈𝑡 was named kinematic eddy viscosity. Equation 47 is in Cartesian coordinates and needs 

to be converted to cylindrical coordinates for our purpose. Using the chain rule we have:  

 𝜕

𝜕𝑦
=
𝜕

𝜕𝑟

𝜕𝑟

𝜕𝑦
=
𝜕

𝜕𝑟
[

−2(𝑅 − 𝑦)

2√𝑥2 + (𝑅 − 𝑦)2
] =

𝜕

𝜕𝑟
(
−𝑟 sin 𝜃

𝑟
) = − sin 𝜃

𝜕

𝜕𝑟
  

 𝜕

𝜕𝑦
= −sin 𝜃

𝜕

𝜕𝑟
 48 

Substituting Eq. 33 and Eq. 48 into Eq. 47 we have:  

 
−𝑢𝑦

′ 𝑢𝑧
′̅̅ ̅̅ ̅̅ = 𝜈𝑡

𝜕𝑢̅𝑧(𝑥, 𝑦)

𝜕𝑦
→ sin 𝜃 𝑢𝑧

′𝑢𝑟
′̅̅ ̅̅ ̅̅ = −𝜈𝑡 sin 𝜃

𝜕𝑢̅𝑧(𝑟, 𝜃)

𝜕𝑟
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−𝑢𝑟
′𝑢𝑧
′̅̅ ̅̅ ̅̅ = −𝜈𝑡

𝜕𝑢̅𝑧(𝑟, 𝜃)

𝜕𝑟
 49 

Subsuming Eq. 49 into Eq. 46 we have,  

 
−𝑟
𝜕𝑢̅𝑧
𝜕𝑟

− 𝑟
𝜈𝑡
𝜈

𝜕𝑢̅𝑧
𝜕𝑟

+
𝜌𝑔𝑆0
2𝜇

[(
𝑅 − ℎ

sin 𝜃
)
2

− 𝑟2] = 0 

𝜕𝑢̅𝑧
𝜕𝑟

= (
1

𝑟
) (1 +

𝜈𝑡
𝜈
)
−1 𝜌𝑔𝑆0

2𝜇
[(
𝑅 − ℎ

sin 𝜃
)
2

− 𝑟2] 

50 

and finally we arrive at: 

 
𝑢̅𝑧(𝑟, 𝜃) = ∫

𝑔𝑆0
2𝑟(𝜈 + 𝜈𝑡)

[(
𝑅 − ℎ

sin 𝜃
)
2

− 𝑟2] 𝑑𝑟 51 

4.3.1 Constant Eddy Viscosity Model  

It should be noted that the eddy viscosity is not a function of the fluid but is a function of the flow 

(Granger, 1995). Therefore, it should be a function of both radial and azimuthal coordinates. As 

an extreme case, Eq. 51 is solved assuming a constant eddy viscosity model. It follows that: 

  
𝑢̅𝑧 =

𝑔𝑆0
2(𝜈 + 𝜈𝑡)

[(
𝑅 − ℎ

sin 𝜃
)
2

ln 𝑟 −
𝑟2

2
] + 𝐶 52 

where 𝐶 is the constant of the integration. According to the no-slip boundary condition, 𝑢̅𝑧(𝑟, 𝜃) 

is equal to zero while 𝑟 is equal to the radius of the pipe (𝑅). From here:   

 
𝐶 = −

𝑔𝑆0
2(𝜈 + 𝜈𝑡)

[(
𝑅 − ℎ

sin 𝜃
)
2

ln 𝑅 −
𝑅2

2
] 53 

Equation 52 together with Eq. 53 result in: 

 
𝑢̅𝑧(𝑟, 𝜃) =

𝑔𝑆0
2(𝜈 + 𝜈𝑡)

[(
𝑅 − ℎ

sin 𝜃
)
2

ln
𝑟

𝑅
−
𝑟2 − 𝑅2

2
] 54 
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Assuming a case where there is not any slope in the 𝑥 direction, the maximum velocity should be 

on some point along the centerline (due to symmetry) and below the free surface (due to 

secondary flow7) contrary to the F-FPF where it is on the center of the pipe. Therefore, we have 

  
𝑢𝑚𝑎𝑥 =

𝑔𝑆0
2(𝜈 + 𝜈𝑡)

[(𝑅 − ℎ)2 ln
𝑅 − 𝛿

𝑅
−
(𝑅 − 𝛿)2 − 𝑅2

2
] 55 

where 𝛿(0, 𝑦) is the maximum velocity position as known as the dip position.  

The dimensionless form of Eq. 55 is obtained by dividing Eq. 54 by Eq. 55 as 

 
𝑢̅𝑧(𝑟, 𝜃)

𝑢𝑚𝑎𝑥
=

(
𝑅 − ℎ
sin 𝜃

)
2

ln
𝑟
𝑅
−
𝑟2 − 𝑅2

2

(𝑅 − ℎ)2 ln
𝑅 − 𝛿
𝑅

−
(𝑅 − 𝛿)2 − 𝑅2

2
   

 56 

4.3.2 Variable Eddy Viscosity Model  

Eddy viscosity, in essence, is a function of cross-sectional coordinates and the shear velocity for 

instance it is recommended for rectangular open channel flows to approximate the eddy viscosity 

with a parabolic function (Yang, Tan, & Lim, 2004; Nezu & Rodi, 1986; Steffler, Rajaratnam, & 

Peterson, 1985). So far, there is not any variable eddy viscosity model developed for P-FPF. 

However, it is possible to use an approximation such as the one that Yang et al. 2004 suggested 

but the problem with such an approach is the complications later involved in the model 

integration. Research in this field is still in progress and more data and information is needed to 

develop an analytical variable eddy viscosity which satisfies all related boundary conditions.  

                                                           
7 A minor flow induced by the wall in the non-primary flow direction (Shiono & Knight, 1991).  
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4.4 Summary 

Equation 54 can be used as the final P-FPF analytical model to arrive at the cross-sectional velocity 

distribution. Later, in Chapter 5 the model will be validated with the experimental data from 

various sources. Equation 56 is the dimensionless form of Eq. 54 and removes the need for the 

eddy viscosity. However, in order to use Eq. 56, 𝛿 should be calculated through the models which 

later will be introduced in Chapter 6.  
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CHAPTER 5:  EMPIRICAL SOLUTION TO P-FPF 

5.1 Boundary Shear Flows 

In any fully-developed8 boundary shear flow, examining 𝑢̅𝑧(0, 𝑦)9 reveals four distinct layers 

regardless of the upstream and downstream boundary conditions (Figure 5.1), that is, the viscous 

sublayer, buffer layer, log-law layer and the outer layer (Guo, Julien, & Meroney, 2005). The first 

three regions are categorized as the inner region, while the outer layer alone forms the outer 

region. In the viscous sublayer, because of the low velocity, flow is treated as laminar flow. The 

transition from laminar flow to the turbulent flow happens in the buffer layer. In the log-law and 

the outer layer flow is completely turbulent with an increased wake effect10 in the outer region 

(Coles, 1956). These layers are depicted in Figure 5.1 in dimensionless units of length and velocity 

with 𝑦+ =
𝑢∗𝑦

𝜈
 and 𝑢+ =

𝑢̅𝑧(0,𝑦)

𝑢∗
 (Nezu & Rodi, 1986). Assuming a constant turbulent shear stress, 

𝑢∗ is termed shear velocity which is defined through 

 

𝑢∗ = √−𝑢𝑦
′ 𝑢𝑧

′̅̅ ̅̅ ̅̅ = √
𝑃𝑦𝑧
′

𝜌
 57 

                                                           
8 Fully-developed flow term is used when there is not any change in the velocity profile along the primary 

flow direction. Mathematically, it is equivalent with 
𝜕𝑢𝑧

𝜕𝑧
= 0 where 𝑧 is the primary direction of the flow.  

9 Terminology is based on chapter 4 according to Figure 4.1 and Figure 4.2.  

10 Deviation from the log-law in the outer layer which resembles the separation of flow around blunt 

objects.   
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where 𝑃𝑦𝑧
′  is the turbulent shear stress tensor in 𝑧 direction acting on a surface perpendicular to 

direction 𝑦 (Granger, 1995).  

5.2 Prandtl’s Mixing Length Theory (MLT) 

Empirical vertical velocity profile was first developed by the aid of Prandtl’s Mixing Length Theory 

(MLT) for smooth pipe flow. Later, it was slightly altered to also account for the rough turbulent 

pipe flow. Prandtle introduced mixing length analogues to the concept of mean free path in  

 

 

Figure 5.1 Empirical Centerline Velocity Profile in F-FPF 
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thermodynamics (𝑙𝑚) to model the kinematic eddy viscosity with  

 
𝜈𝑡 = 𝑙𝑚

2 |
𝜕𝑢̅𝑧(0, 𝑦)

𝜕𝑦
| 58 

Recalling Boussinesq hypothesis (Eq. 47) and substituting 𝜈𝑡 from Eq. 58 results in Eq. 59 

(Nikuradse, 1950). 

 
−𝑢𝑦

′ 𝑢𝑧
′̅̅ ̅̅ ̅̅ = 𝑙𝑚

2 |
𝜕𝑢̅𝑧(0, 𝑦)

𝜕𝑦
|
𝜕𝑢̅𝑧(0, 𝑦)

𝜕𝑦
 59 

For boundary shear flows, it is postulated that mixing length could be calculated through Eq. 60 

(Escudier & Nicoll , 1966).  

 𝑙𝑚 = 𝜅𝑦 60 

where 𝑙𝑚 is the mixing length and 𝜅 is the Von Karman constant found to be 0.41 in pipe flow. 

Although, later more accurate models11 were established (Grifoll & Giralt, 2000), Eq. 60 remains 

handy approximation.  

Substituting Eq. 57 and Eq. 60 into Eq. 59 and integrating with respect to 𝑦 results in famous log-

law, or in other terms the law of the wall (Eq. 61).  

 
𝑢+ =

1

𝜅
ln 𝑦+ + 𝐴  61 

Herein, 𝐴 is the constant of the integration; 𝑢+ and 𝑦+ are already defined as dimensionless 

velocity and length, respectively. Following the same procedure, if instead of the Prandtle’s eddy 

viscosity model, Newton’s law of viscosity is used i.e., 𝑃𝑥𝑦 = 𝜇
𝜕𝑢̅𝑧(0,𝑦)

𝜕𝑦
, we will end up with 

 
𝑢+ = 𝑦+  62 

                                                           
11 These models are very complicated and case sensitive.  
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Initial experimental data validation proved that Eq. 62 held for the viscous sublayer, and Eq. 61 

held for the log-law and outer layer (Nezu & Rodi, 1986). However, later it was argued that the 

model had failed to represent the outer layer accurately but was suggested that it had provided 

a good approximation for it (Coles, 1956). To resolve the inconsistency of the proposed model 

and the experimental data in the outer region, Coles (1956) added another term to Eq. 59 naming 

it the wake function due to the similarities between the outer layer and the Karman vortex street 

(Eq. 63 and 64).  

 
𝑢+ =

1

𝜅
ln 𝑦+ + 𝐴 + 𝜔(𝜉)  63 

 
𝜔(𝜉) =

2Π

𝜅
sin2(

𝜋

2
𝜉)  64 

Here, Π is a fitting parameter known as Coles’ wake coefficient and 𝜉 =
𝑦

ℎ
 (Coles, 1956; Nezu & 

Rodi, 1986). Equation 63 is called the log-wake (LW) law and has long been in use as a model to 

predict the velocity in pipe flow, open channel flow and zero pressure gradient flat plates (Guo, 

Julien, & Meroney, 2005).   

5.3 Modified log-wake (MLW) law for a turbulent F-FPF 

Recent developments in experimental techniques such as Laser Doppler Anemometry (LDA), 

Acoustic Doppler Velocimetry (ADV) and Particle Image Velocimetry (PIV) have improved the 

quality of the data acquired in hydraulic labs, enabling scientists to further examine the developed 

theories. Guo and Julien (2003) proposed Eq. 65 for smooth turbulent pipe flow and Guo (2014) 

proposed Eq. 66 for rough turbulent pipe flow. 

  𝑢̅𝑧(0, 𝑦)

𝑢∗
=
1

𝜅
ln
𝑦𝑢∗

𝜈
+ 𝐴

⏟        
Log Law

+ 2 sin2 (
𝜋𝜉

2
)

⏟                
LW Law

 −
1

3𝜅
𝜉3

⏟                      
MLW Law

 

65 
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𝑢̅𝑧(0, 𝑦)

𝑢∗
=
1

𝜅
ln
𝑦

𝑦0⏟  
Log Law

+
2Π

𝜅
sin2 (

𝜋𝑦

2𝛿
)

⏟              
LW Law

 −
1

3𝜅
(
𝑦

𝛿
)
3

⏟                      
MLW Law

  

66 

Herein, 𝑦0 is the bed roughness height; 𝛿 is the position of the maximum velocity (known as the 

dip position) or in mathematical terms we have: 

   
𝑢̅𝑚𝑎𝑥
𝑢∗

=
1

𝜅
ln
𝛿

𝑦0
+
2Π

𝜅
 −

1

3𝜅
 67 

Equations 65 and 66 were termed modified log-wake (MLW) law because of the added terms to 

the original LW law. Sometime, it is convenient to use the defect12 form of Eq. 65 and Eq. 66 as: 

 

Figure 5.2 Circular Open Channel Flow Cross-sectional View in Vector Notation 

                                                           
12 Removing y0 in log-wake law with the help of maximum velocity.  
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 𝑢̅𝑚𝑎𝑥 − 𝑢̅𝑧(0, 𝑦)

𝑢∗
= −

1

𝜅
(ln 𝜉 +

1 − 𝜉3

3
) + 2 cos2 (

𝜋𝜉

2
)  68 

 𝑢̅𝑚𝑎𝑥 − 𝑢̅𝑧(0, 𝑦)

𝑢∗
= −

1

𝜅
{ln
𝑦

𝛿
− [1 −

1

3
(
𝑦

 𝛿
)
3

]} +
2Π

𝜅
cos2 (

𝜋𝑦

2𝛿
) 69 

5.4 Governing Equations  

5.4.1 Centerline Velocity Distribution 

Figure 5.2 depicts a cross-sectional view of a P-FPF with radius 𝑅 and flow depth ℎ. Studying the 

benchmark culvert velocity distribution data (Clark & Kehler, 2011; Yoon, Sung, & Lee, 2012; 

Replogle & Chow, 1966; Ead, Rajaratnam, Katopodis, & Ade, 2000; House, Pyles, & White, 2005) 

qualitatively, it is hypothesized that the solution to the P-FPF should follow that of the F-FPF with  

 

 

Figure 5.3 Comparison of F-FPF with P-FPF 
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the exclusion of the wake function. This assumption is due to the monotonic deduction in velocity 

near the water surface because of the existence of the free surface unlike in F-FPF (Figure 5.3). 

Therefore, the centerline velocity profile is hypothesized to follow Eq. 70  analogous with Eq. 66 

where the pipe wall satisfies Eq. 71 (Figure 5.2). 

   𝑢̅𝑧(0, 𝑦)

𝑢∗
=
1

𝜅
ln
|𝑂𝐶⃗⃗⃗⃗  ⃗|

𝑦0
−
1

3𝜅
(
|𝑂𝐶⃗⃗⃗⃗  ⃗|

|𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  |
)

3

 70 

   𝑥2 + (𝑦 − 𝑅)2 = 𝑅2 71 

Herein, | | is the norm operator which is given by  

   |𝑂𝐶⃗⃗⃗⃗  ⃗| = √(𝑥𝐶 − 𝑥𝑂)
2 + (𝑦𝐶 − 𝑦𝑂)

2   72 

where 𝑂(0,0) is the Cartesian Coordinates origin and 𝐶(0, 𝑦) is an arbitrary point on the pipe 

centerline (Figure 5.2). 

Velocity defect form of Eq. 70 follows   

   𝑢𝑚𝑎𝑥 − 𝑢̅𝑧(0, 𝑦)

𝑢∗
= −

1

𝜅
{ln

|𝑂𝐶⃗⃗⃗⃗  ⃗|

|𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  |
− [1 −

1

3
(
|𝑂𝐶⃗⃗⃗⃗  ⃗|

 |𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  |
)

3

]} 73 

5.4.2 Cross-Sectional Velocity Distribution Model 

The vertical velocity distribution (law of the wall) can be developed for any point in the cross-

section regardless of the position of the point which is proved by the earlier studies (Guo, 2014) 

and also can be validated via the experimental velocity data. In the previous section, the model 

was developed for point C with respect to point 𝑂(0,0). Now, Eq. 70 can be rewritten for an 

arbitrary point 𝐴(𝑥, 𝑦) with respect to point 𝐵(𝑥𝐵, 𝑦𝐵) through  

   𝑢̅𝑧(𝑥, 𝑦)

𝑢∗
=
1

𝜅
ln
|𝐴𝐵⃗⃗⃗⃗  ⃗|

𝑦0
−
1

3𝜅
(
|𝐴𝐵⃗⃗⃗⃗  ⃗|

|𝐶𝐵⃗⃗⃗⃗  ⃗|
)

3

 74 
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where  

   
|𝐴𝐵⃗⃗⃗⃗  ⃗| = √(𝑥𝐵 − 𝑥𝐴)

2 + (𝑦𝐵 − 𝑦𝐴)
2   75 

and 

   
|𝐶𝐵⃗⃗⃗⃗  ⃗| = √(𝑥𝐵 − 𝑥𝐶)

2 + (𝑦𝐵 − 𝑦𝐶)
2   76 

Substituting Eq. 75 and 76 into Eq. 74 results in: 

   𝑢̅𝑧(𝑥, 𝑦)

𝑢∗
=
1

𝜅
ln
√(𝑥𝐵 − 𝑥𝐴)

2 + (𝑦𝐵 − 𝑦𝐴)
2  

𝑦0
−
1

3𝜅
(
√(𝑥𝐵 − 𝑥𝐴)

2 + (𝑦𝐵 − 𝑦𝐴)
2  

√(𝑥𝐵 − 𝑥𝐶)
2 + (𝑦𝐵 − 𝑦𝐶)

2  
)

3

 77 

Since point 𝐵 is on the boundary, 𝑥𝐵 can be solved in terms of 𝑦 with the aid of Eq. 71 as: 

    𝑥𝐵 = √𝑦(2𝑅 − 𝑦) 𝑦𝐵 = 𝑦  78 

Inserting Eq. 78 into Eq. 77 after simplification results in  

   𝑢̅𝑧(𝑥, 𝑦)

𝑢∗
=
1

𝜅
ln
√𝑦(2𝑅 − 𝑦) − 𝑥

𝑦0
−
1

3𝜅
(
√𝑦(2𝑅 − 𝑦) − 𝑥

√𝑦(2𝑅 − 𝑦)
)

3

 79 

For point 𝐶(0, 𝑦), Eq. 79 can be rewritten as 

   𝑢̅𝑧(0, 𝑦)

𝑢∗
=
1

𝜅
ln
√𝑦(2𝑅 − 𝑦)

𝑦0
−
1

3𝜅
 80 

Subtracting Eq. 79 from Eq. 80 finally we arrive at  

   𝑢̅𝑧(0, 𝑦) − 𝑢̅𝑧(𝑥, 𝑦)

𝑢∗
= −

1

𝜅
ln [1 −

𝑥

√𝑦(2𝑅 − 𝑦)
] +

1

3𝜅
[(1 −

𝑥

√𝑦(2𝑅 − 𝑦)
)

3

− 1] 81 

or instead of Eq. 80, the defect form of  

   𝑢𝑚𝑎𝑥 − 𝑢̅𝑧(0, 𝑦)

𝑢∗
= −

1

2𝜅
ln
𝑦(2𝑅 − 𝑦)

𝛿(2𝑅 − 𝛿)
 82 
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may be used to replace 𝑦0 with 𝛿 and 𝑢𝑚𝑎𝑥. Later in chapter 6 the benefit of such a change of 

variable will be discussed.  

 

 



47 
 

CHAPTER 6:  MODEL VERIFICATION AND DISCUSSION 

6.1 Analytical Solution of P-FPF 

6.1.1 General Remarks  

The cross-sectional velocity distribution (Eq. 54) is valid for fully-developed, uniform, steady state 

and unidirectional flow. Equation 54 satisfies the no-slip i.e., 𝑢̅𝑧(𝑅, 𝜃) = 0 as well as the 

axisymmetric13 flow boundary condition i.e., 𝑢̅𝑧(𝑟, 𝜃) =  𝑢̅𝑧(𝑟, 𝜋 − 𝜃). It also satisfies the zero 

shear stress of the air-water interface (
𝜕𝑢̅𝑧

𝜕𝑟
|
𝑟=

𝑅−ℎ

sin𝜃

= 0) that in physical terms means no 

momentum transfer at the water surface in vertical direction. It has a singularity for 𝜃 = 0 and/or  

𝜃 = 𝜋 when half of the pipe is filled (i.e., ℎ → 𝑅). The singularity can be removed with the 

elimination of the logarithmic term that will lead us to the classic quadratic model of Eq. 83 for a 

half-filled pipe flow 

 
𝑢̅𝑧(𝑟, 𝜃) =

𝑔𝑆0
2(𝜈 + 𝜈𝑡)

[ln
𝑟

𝑅
−
𝑟2 − 𝑅2

2
]  83 

and in dimensionless form:  

 𝑢̅𝑧(𝑟, 𝜃)

𝑢𝑚𝑎𝑥
=
2 ln

𝑟
𝑅
− 𝑟2 + 𝑅2

𝑅2 − (𝑅 − 𝛿)2   
  84 

In fish passage design, almost always submerged flow condition is avoided (ℎ < 𝑅) that is the 

reason why Eq. 54 was governed for the bottom symmetrical half of the pipe. In order to make it 

applicable for the top symmetrical half, Eq. 30 should be replaced with Eq. 85 as: 

                                                           
13 Symmetric about the y axis.  
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a) b) 

  

c) d) 

Figure 6.1 Cross-sectional Velocity Distribution Generated with Eq. 56                                                                                   

a) h/D=20% b) h/D=30% c) h/D=40% d) h/D=50% 

 
𝑦 = 𝑅 + 𝑟 sin 𝜃     𝑅 < 𝑦 < 2𝑅 

 85 

To further investigate the characteristics of the P-FPF analytical solution, some sample plots were 

generated using Eq. 56 with the filling ratio (ℎ/𝐷) of 20, 30, 40 and 50% (Figure 6.1a-d). With a 

rise in water level, the maximum velocity position (dip position) moves from 𝛿 to h free surface 

(Figure 6.1a-d) probably due to the increase in the width to depth ratio (𝑏/𝐷), where 𝑏 is the free 

surface width. This P-FPF behavior is similar to the case of a wide rectangular open channel flow, 
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that is, when 𝑏/ℎ → ∞, the induced secondary flows are negligible, as a result the dip position 

will be at the free surface (Bonakdari, Larrarte, Lassabatere, & Joannis, 2008).   

6.1.2 Cross-sectional Velocity Distribution 

To verify the model, a total of six scenarios with the filing ratios of 30%, 40%, and 50% from Yoon 

et al. (2012) as well as the filing ratios of 44%, 34%, and 50% from Clark and Kehler (2011) were 

compared with the predicted velocity distribution (Figure 6.2a-f). Note that the right side of 

Figure 6.2a-b and Figure 6.2d-e were plotted with Eq. 56 while Figure 6.2c and Figure 6.2f were 

reproduced with Eq. 84. Qualitatively speaking, the velocity distribution agrees well with the 

experimental results (the right side of each figure is the model prediction and the left side is the 

corresponding experimental simulation). From a quantitative point of view, it looks like the overall 

velocity gradients in the model are higher than those of the experimental results. That is, the 

velocity in the experimental data moving from the zero velocity boundary toward the free surface 

grows really fast in the viscous layer (20% of the depth) and then stays close to the maximum 

velocity for the remainder (80% of the depth). Moreover, since there is no turbulence stress effect 

in the viscous layer, the assumption of a constant eddy viscosity model introduces errors in this 

region; therefore, this model is not recommended to be used for the viscous region (20% of the 

depth).  

Another concern with the proposed model is the predicted position of the maximum velocity. 

According to the benchmark experimental results, in a turbulent pipe flow, because of the wall 

effect and secondary flows, the maximum velocity is usually below the free surface (known as the 

dip phenomenon). Equation 54 was able to retrieve the position of the dip fairly well with a 

maximum 21% relative error for the Yoon et al. (2012) data. To improve this further, models that  
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a) d) 

  

b) e) 

  

c) f) 

Figure 6.2 Experimental (left half of cross-section) and Predicted Analytical (right half of cross-section) 

Cross-sectional Velocity Distribution                                                                                                                                                          

a) Yoon et al. (2012) Test 1 b) Test 2 c) Test 3                                                                                                                                       

d) Clark and Kehler (2011) Test 4 e) Test 2 f) Test 5                                                                                                                                        
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are variable with the aspect ratio of the cross-section (free surface width to the water depth) 

should be adopted for the eddy viscosity (Bonakdari, Larrarte, Lassabatere, & Joannis, 2008). 

Investigation of Figure 6.1 in detail indicates that the isovels start to bend close to the water 

surface to model the dip phenomenon below the free surface. The shape is completely in 

agreement with the Yoon et al. (2012) data (Figure 6.2a-c) but diverges from Clark and Kehler 

(2011) data (Figure 6.2d-f). This discrepancy between the two data sets is believed to be due to 

the roughness. While Yoon et al. (2012) used a smooth plastic pipe, Clark and Kehler (2011) took 

advantage of a corrugated metal pipe. Therefore, it is suggested that the analytical model (Eq. 54) 

is better for the design of smooth culverts rather than rough culverts.  

6.2  Empirical Solution of P-FPF 

6.2.1 General Remarks  

Centerline velocity (Eq. 80) is embedded inside the developed empirical model of Eq. 81. It is 

necessary that before investigating the proposed model, the characteristics of the centerline 

velocity be studied since the accuracy of the centerline velocity has a direct impact on the overall  

Table 6.1 Fitted and Calculated Shear Velocity Comparison 

Data Test 

𝒖𝐟𝐢𝐭
∗   

(m/s) 

𝒖∗  

(m/s) 

Relative 

Error 
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𝒖𝐟𝐢𝐭
∗   

(m/s) 

𝒖∗  

(m/s) 
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Error 

C
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r 

(2
0

1
1

) 

 

1 0.039 0.037 1% 
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n
 e

t 
al

. (
2

0
1

2
) 

1 0.022 0.019 1% 

2 0.063 0.061 1% 2 0.033 0.022 2% 

3 0.064 0.075 5% 3 0.027 0.025 1% 

4 0.091 0.085 2% 4 0.030 0.028 1% 

5 0.079 0.0103 30% 5 0.028 0.030 1% 

     6 0.026 0.032 2% 
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velocity distribution. Equation 80 includes two unknown parameters of 𝑢∗ and 𝑦0, or in defect 

form, three unknowns of 𝑢∗, 𝛿 and 𝑢𝑚𝑎𝑥. Using the available data sets, (𝑢fit
∗ , 𝑦0) and 

(𝑢fit
∗ , 𝛿, 𝑢𝑚𝑎𝑥) were calculated through a non-linear curve-fitting process programmed in MATLAB 

R2014a. The aim of the non-linear curve-fitting process is to determine the aforementioned 

unknown parameters in a way that they minimize the residuals of the experimental data from the 

proposed empirical model. 𝑦0 is the hypothetical zero velocity depth which is related to the bed 

roughness. Developing a relationship between 𝑦0 and relative roughness of 𝜖/𝐷 as Nikuradse 

(1950) and Moody (1944) did for the F-FPF needs more data. Since the scope of this material is 

predictive velocity in culverts rather than investigation of the acquired experimental data, it was 

decided to analyze (𝑢fit
∗ , 𝛿, 𝑢𝑚𝑎𝑥).  

Table 6.1 compares the shear velocity from non-linear curve-fitting and the shear velocity 

evaluated via (Nezu, 2005) where all the variables are defined in chapter 4. The relative error 

between the fitted and calculated shear velocity is fairly negligible except for the Clark and Kehler 

(2011) test 5 where it exceeds an acceptable limit. This is attributed to the difficulties of measuring 

the flume channel bed slope (𝑆0) because of its small value (-4 order of magnitude).   

 𝑢∗ = √𝑔ℎ𝑆0  86 

6.2.2 Velocity Dip Model 

Figure 6.3 plots the dimensionless dip position versus the filling ratio. It should be noted that the 

Yoon et al. (2012) test 1 with a filling ratio of 30% is omitted from the fitting process as well as 

from Figure 6.3 because the velocity profile close to the free surface was not measured, and as a 

result the dip position is not accurate. The reason for not measuring the free surface in case 1 was  
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Figure 6.3 Velocity Dip Position Model for Smooth and Rough Pipes 

reported as laser illuminations close to the free surface and low flow depth. Velocity dip position 

for smooth pipes is hypothesized to follow 

 
𝛿

ℎ
= {1 + exp [−

2𝑛

𝜆
(
𝐷

ℎ
− 1)

𝑛
2
]}

−1

  87 

where 𝜆 ≅ 11 and 𝑛 ≅ 3.4 are fitting parameters (Guo, 2014). On the other hand, for a rough  

Table 6.2 Measure of the Goodness of Empirical Centerline Velocity Model (Eq. 70) 
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pipe the dip position is about half of the flow depth confirmed and recommended by various 

sources (Clark & Kehler, 2011; Sterling & Knight, 2000). This shows that the dip position for a 

smooth P-FPF has a rather similar characteristics with that of the rectangular open channel flow 

unlike to a rough P-FPF (Guo, 2014).  

6.2.3 Centerline Velocity Distribution 

Figure 6.4a-b and Figure 6.5a-b compare the centerline velocity model of Eq. 70 with Yoon et al. 

(2012) and Clark and Kehler (2011) data, respectively. The superimposed traditional log law (Eq. 

61) on the diagram reveals that the model represents the log law region similar to the 

conventional open channel flow. The monotonic deduction near the free surface is seen and 

represented well by the cubic term of Eq. 70. The model is in excellent agreement with the 

experimental data with the minimum determination coefficient of 0.96 and maximum relative 

error of 2.75% (Table 6.2).  

Figure 6.4a demonstrates a viscose sublayer and a buffer layer for the smooth P-FPF whereas 

these disappear in the rough P-FPF (Figure 6.5a) because of the roughness effect and increased 

near-bed turbulence. It is worth mentioning that the viscose layer data were used neither in fitting 

process nor in determination coefficient and relative error assessment of Table 6.2. Moreover, 

the viscose layer in Figure 6.4a is diminished with the increase of the flow depth.   

6.2.4 Cross-sectional Velocity Distribution 

Figure 6.6a-f and Figure 6.7a-e depict the comparison between the predicted model (right) and 

the corresponding experimental data (left). As mentioned earlier, the goodness of the centerline 

velocity model has direct impact on the goodness of the cross-sectional velocity model. This is  
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a) 

 

b) 

Figure 6.4 Comparison of Eq. 70 with Yoon et al.  (2012) Centerline Velocity Profile                                                                          
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a) 

 

b) 

Figure 6.5 Comparison of Eq. 70 with Clark and Kehler (2011) Centerline Velocity Profile                                                              
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Table 6.3 Measured Experimental and Fitted Maximum Velocity Comparison 

Data Test 

𝒖𝐦𝐚𝐱 * 

(m/s) 

𝒖𝐦𝐚𝐱 ** 

(m/s) 

Relative 

Error 
Data Test 

𝒖𝐦𝐚𝐱   

(m/s) 

𝒖𝐦𝐚𝐱 

(m/s) 

Relative 

Error 

C
la

rk
 a

n
d

 K
eh

le
r 

(2
0

1
1

) 

 

1 0.36 0.36 0.60% 

Yo
o

n
 e

t 
al

. (
2

0
1

2
) 

1 0.24 0.24 0.91% 

2 0.54 0.55 1.44% 2 0.32 0.32 1.27% 

3 0.64 0.64 0.58% 3 0.36 0.36 0.22% 

4 0.75 0.76 1.44% 4 0.39 0.38 2.55% 

5 0.87 0.86 1.15% 5 0.41 0.40 2.26% 

     6 0.41 0.40 2.84% 

* Measured experimental maximum velocity extracted from data.  

** Fitted maximum velocity. 

 

well visualized in Figure 6.6a-c where due to the limitations of the model in modeling the viscose 

layer (Figure 6.4a), the velocity magnitude close to the bed is slightly overestimated. In addition, 

since the viscose layer disappears with the increase of the flow depth, the overall performance of 

the model is improved (Figure 6.6d-f).  

The maximum relative error between the maximum cross-sectional velocities measured in the 

experiment with the fitted maximum velocity is 2.84% (Table 6.3). Ideally, the maximum velocity 

should appear on the culvert centerline because of the symmetrical geometry, but this is not the 

case in practical applications. In practice, it is very difficult to install the culvert with no slope in 

the transverse direction. Plus, if the culvert is helically corrugated, the maximum velocity will be 

shifted away from the centerline as a result of the induced flow from the corrugation. The 

proposed model is applicable even when we are dealing with non-axisymmetric cases.  
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a) b) 

  
c) d) 

  
e) f) 

Figure 6.6 Experimental (left half of cross-section) and Predicted Empirical (right half of cross-section) 

Cross-sectional Velocity Isovels                                                                                                                                                                     

a) Yoon et al. (2012) Test 1 b) Test 2 c) Test 3 d) Test 4 e) Test 5 f) Test 6        
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a) b) 

  
c) d) 

 

 

e)  

Figure 6.7 Experimental (left half of cross-section) and Predicted Emperical (right half of cross-section) 

Cross-sectional Velocity Isovels                                                                                                                                                                   

a) Clark and Kehler (2011) Test 1 b) Test 2 c) Test 3 d) Test 4 e) Test 5                                                                                                 
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6.2.5 Roughness Effect  

The empirical model of Eq. 81 is used to simulate the velocity contours for the embedded culverts 

e.g., culverts with flat beds. This feature of the model is of a great importance not only in 

embedded fish passage and culvert design but also in reassessment of old culverts. After severe 

weather conditions such as flooding, the serviceability of the culverts should be investigated. The 

general desire for culvert restoration (an expensive and time consuming operation) is to prevent 

mass fish deaths specially in spawning season. What can be done in the meantime is to reassess 

the clogged culvert with the proposed empirical model taking into account the present obstacles 

to see if the culvert is still able to maintain its initial performance.  

 

 

Figure 6.8 Circular Open Channel Flow Cross-sectional View with Roughness 
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a) b) 

Figure 6.9 Experimental (left half of cross-section) and Predicted Empirical (right half of cross-section) 

Cross-sectional Velocity Isovels                                                                                                                                                               

Knight and Sterling (2000) a) Test 1 b) Test 2 

In order to utilize Eq. 81 for this purpose, a change in the origin of the Cartesian coordinate system 

is required (Figure 6.8) and that is to shift the origin along the pipe centerline by roughness depth 

(ℎ′). All other variables such as ℎ, 𝛿, 𝑂′ and so on should be adjusted according to the new 

coordinate system.  

Figure 6.9a-b compares the experimental data (Knight & Sterling, 2000; Sterling & Knight, 2000) 

and the empirical model of Eq. 81. Visual inspection reveals that the velocity contours in the cases 

with roughness are more flat and resemble the traditional rectangular open channel flow case. 

To predict the dip position, this case should be treated as a rough P-FPF in which the dip is proved 

to be halfway between the bed and the free surface.  
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CHAPTER 7:  APPLICATONS OF P-FPF IN DESIGN 

This chapter discusses applications of the introduced P-FPF models in design. Simplified, yet 

practical and systematic procedures will be offered for sewer and fish passage design and may be 

utilized by consulting firms, state agencies, and/or academic institutes. Sewer design is not as 

sensitive as fish passage design, and therefore, only the easy to use the analytical model will be 

considered. On the other hand, in fish passage design, local velocities play an important role on 

fish biology, and care must be taken in design. Hence, two methods, namely a simplified and a 

comprehensive method will be presented. Wherever the mathematical manipulation of the 

models is complicated, numerical integration with the help of MatLab 2014 integral2.m or Maple 

16 evalf algorithms will be utilized to advance the calculation. In this chapter, some values will be 

presented in the U.S. Customary system of units because they are extracted from U.S. design 

manuals.  

7.1 Sewer Design 

In hydraulics of sewers, it is important to calculate the basic hydraulic parameters of the P-FPF to 

develop a design curve known as a stage-discharge diagram. Non-dimensionalized wetted area, 

wetted perimeter, and hydraulic radius are calculated with the aid of trigonometry as 

 𝐴𝑤
𝐴𝑤50

= 1 −
2𝜃1
𝜋
−
sin 2𝜃1
𝜋

  88 

 𝑃𝑤
𝑃𝑤50

= (1 −
2𝜃1
𝜋
)  89 

, and 
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 𝑅ℎ
𝑅ℎ50

= 1 −
sin2𝜃1
𝜋 − 2𝜃1

  90 

where subscript 50 denotes a filling ratio of 0.5; 𝜃1 is the free surface angle in radians defined as  

 
𝜃1 = arcsin

𝑅 − ℎ

𝑅
  91 

Flow rate is calculated through the integration of the velocity distribution over the wetted cross-

section as  

 

𝑄

𝑄50
=

2∫ ∫ 𝑢𝑧(𝑟, 𝜃)𝑑𝑟𝑑𝜃
𝑅
𝑅−ℎ
sin𝜃

𝜋
2
𝜃1

2∫ ∫ 𝑢𝑧(𝑟, 𝜃)𝑑𝑟𝑑𝜃
𝑅

0

𝜋
2
0

  92 

Here, the analytical velocity model of Eq. 54 is used. 𝑟 and 𝜃 are defined according to Figure 4.2. 

Dimensionless average velocity is obtained with a similar procedure through 

 

𝑈

𝑈50
=

2∫ ∫ 𝑢𝑧(𝑟, 𝜃)𝑑𝑟𝑑𝜃
𝑅
𝑅−ℎ
sin𝜃

𝜋
2
𝜃1

2 (1 −
2𝜃1
𝜋
−
sin2𝜃1
𝜋

)∫ ∫ 𝑢𝑧(𝑟, 𝜃)𝑑𝑟𝑑𝜃
𝑅

0

𝜋
2
0

  93 

Equation 92 and 93 are solved using Maple 16, and the results are presented on Figure 7.1 along 

with plots of Eqs. 88-90. Figure 7.1 is important because it gives all the essential parameters with 

respect to each other.  

7.2 Fish Passage Design 

7.2.1 Simplified Method  

Fish passage (Figure 7.2a) design is similar to the sewer design with some special considerations. 

Fish are sensitive to the flow velocity, flow turbulence intensity, flow depth, and culvert 

inlet/outlet hydraulic condition (Figure 7.2b). Satisfying only hydraulic constraints in fish passage 
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Figure 7.1 P-FPF Hydraulic Elements 

design or in other words treating fish passage as a normal culvert may result in fish migration 

blockage. Investigations should be carried out on the territory where the fish passage will be 

located, on types of the fish, average fish swimming capability, average river/creek discharge and 

other biological and hydraulic elements. The most important biological parameter is the fish 

design velocity (𝑈𝑑) defined as the velocity at which fish can swim for a long period of time 

without exhaustion. All this information is readily available if we have identified the fish species 

Table 7.1 State of Maryland General Design Requirements for Fish Passage (Zhai, 2012) 

Fish Specie Flow Velocity (ft/s) Minimum Flow Depth (in) 

Non-trout  1.5 4-6 

Trout  3 12 
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a) b) 

Figure 7.2 Fish Passage                                                                                                                                                                             

a) Near Crooked Lake (photo courtesy of NRCS) b) Migrating Salmon through culvert on Meadow Creek 

in Matanuska-Susitna Valley (photo courtesy of U.S. Fish and Wildlife Service)  

which reside in the territory of interest. For example, the design manual of Maryland, assumes up 

to 1 foot per second fish design velocity for non-trout and up to 3 feet per second for trout streams 

(Table 7.1). The California Department of Fish and Game assumes up to 1 foot per second for 

juvenile Salmonid streams (Table 7.2).  

Table 7.2 State of California General Design Requirements for Fish Passage (Bates, 2002) 

 Flow Velocity (ft/s) Minimum Flow Depth (ft) 

Adult Anadromous Salmonids 2-6 1.00 

Adult Non-Anadromous Salmonids 2-4 0.67 

Juvenile Salmonids 1 0.50 

Native Non-Salmonids 

Specific Data Needed See (Bates, 2002) 

Non-Native Species 
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The next step is to prepare a local depth-averaged velocity (Zhai, 2012) for arbitrary filling ratios 

recommended not to exceed 60% according to different state agency regulations. The filling ratio 

is the designer’s decision and should be chosen according to yearly rainfall-runoff, design 

discharge, and fish height (defined later). Nevertheless, filling ratios from 30 to 60% for a culvert 

of at least 3 feet diameter are desirable (Kilgore, Bergendahl, & Hotchkiss, 2010).  

Figure 7.3 depicts depth-averaged velocity for an arbitrary culvert of diameter 2.62 feet with filling 

ratios of 34, 44, and 50% and a fish design velocity of 1 foot per second. Comparing the cases with 

filling ratios of 34 and 44% reveals that, for the same design discharge, with the increase of the 

filling ratio the depth-averaged velocity shows reduction in the center of the culvert, and almost 

no change close to the sides (Figure 7.3). These suggest that if specific design discharges are to be 

reached, one of the ways to reduce the velocity to the fish swimming velocity level is to raise the 

flow depth.  

The next step is to plot a vertical line which corresponds to 𝑢/𝑈𝑑 = 1, and that is the boundary 

fish can swim with its regular speed without utilizing the burst velocity. This is termed as the 

maximum velocity boundary and is plotted with a dashed line on Figure 7.4. Left and right bank 

flow depth are shallower compared to the center of the culvert. A sufficient flow depth is needed 

for fish to swim and survive. The horizontal coordinate which corresponds to the minimum depth 

needed for fish to traverse the passage safely is calculated through  

 𝑥𝑑
𝐷
=
√(ℎ − ℎ𝑑)(2𝑅 − ℎ + ℎ𝑑)

𝐷
  94 

where ℎ𝑑 is fish height (Figure 7.5) and 𝑥𝑑 serves as the minimum depth boundary.  

It should be noted that often the minimum flow depth for fish passage design is larger than that 
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Figure 7.3 Depth-Averaged Velocity for Different Flow Depths 

 

Figure 7.4 Design Curve for Fish Passage with Different Fish Design Velocity  
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Figure 7.5 Fish Sizing (courtesy of Australian Government Department of the Environmental) 

of the fish height due to safety. The minimum width is plotted with a solid line on Figure 7.4 which 

represents a lower limit of the area fish will use to pass. Finally, the area encompassed by two red 

lines and the dimensionless depth-averaged velocity curve on both sides of the culvert is the fish 

utilized area to pass the culvert. An optimal design is a design with minimum culvert cross-section 

accommodating the design discharge while supplying the fish enough low velocity region to 

complete its migration successfully. As an example, Figure 7.4 shows a hypothetical design curve 

for a stream with adult non-Anadromous Salmonids with fish design velocity of 2 feet per second 

and minimum 0.67 feet of height for a culvert of 2.62 feet in diameter and design discharge of 

0.176 cubic meter per second. Further, the filling ratio is chosen to be 50% for this case.   

hd 
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Some design curves i.e., 𝑈𝑑 = 2.5 and 3 ft/s on Figure 7.4 are below the line of 𝑢/𝑈𝑑 = 1. This 

means if the fish passage was to be designed for a fish design velocity of 2.5-3 feet per second or 

larger, the whole wetted cross-section of the culvert could be used by fish to pass.  

7.2.2 Comprehensive Method 

Considering the empirical approach discussed in this study, a robust and powerful fish passage 

design method is offered in this section. The empirical Eq. 81 is denoted as  

    𝑢̅𝑧(0, 𝑦) − 𝑢̅𝑧(𝑥, 𝑦)

𝑢∗
= −

1

𝜅
ln [1 −

𝑥

√𝑦(2𝑅 − 𝑦)
] +

1

3𝜅
[(1 −

𝑥

√𝑦(2𝑅 − 𝑦)
)

3

− 1] 95 

where 

   𝑢̅𝑧(0, 𝑦)

𝑢∗
=
1

𝜅
ln
√𝑦(2𝑅 − 𝑦)

𝑦0
−
1

3𝜅
 96 

Equation 95 and 96 come with two unknown variables of 𝑢∗ and 𝑦0. According to chapter 6 model 

verification, 𝑢∗ can be calculated via (Nezu, 2005) 

 𝑢∗ = √𝑔ℎ𝑆0  97 

with maximum 5% of error.  Moreover, 𝑦0 can be calculated by  

 
𝑦0 =

𝜈

9𝑢∗
+
𝑘𝑠
30
[1 − exp (−

𝑘𝑠𝑢
∗

26𝜈
)]  98 

(Guo & Julien, 2007) where 𝑘𝑠 is the uniform sand-grain roughness pattern. For other roughness 

patterns, 𝑘𝑠 is calculated using Manning coefficient with 

 𝑛 ≅ 0.0342𝑘𝑠
1/6

  99 

(Chow, 1959). 
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7.2.2.1 Step-by-Step Design Procedure 

The following procedure is recommended for fish passage design:  

1. The territory of interest for fish passage design should be investigated for hydrologic (𝑄), 

geographic (𝑆0), and biological (𝑈𝑑) information.  

2. The designer should assume an initial culvert size (𝐷), filling ratio (ℎ/𝐷), and roughness 

height (ℎ𝑑) based on his/her own experience and available products in the market.  

3. Shear velocity is calculated using Eq. 97, and subsequently velocity distribution will be 

calculated using Eq. 95 and 96. 

4. The fish design velocity (𝑈𝑑) is superimposed on the velocity contours.  

5. Choose appropriate minimum fish height from design manuals according to the fish 

species living in the river.  

6. Check the velocity distribution contours for fish utilized trajectory which are contours 

with velocity smaller than fish design velocity. If there are not sufficient low velocity 

regions, repeat the procedure from step 2 changing pipe diameter, filling ratio or 

roughness height.  
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CHAPTER 8:  CONCLUSIONS 

8.1 Summary and Conclusions 

The S-PIV method was explained in detail along with the writer’s experimental results. The RANS 

equations were solved to arrive at an analytical approximation of a partially-filled pipe flow in 

both smooth and corrugated pipes. An empirical model based on the modified log-wake law was 

presented based on the previous knowledge of the rectangular open channel flow. The analytical 

and the empirical models were evaluated using data from various sources (Clark & Kehler, 2011; 

Yoon, Sung, & Lee, 2012; Mohebbi, Zhai, & Kerenyi, 2010; Replogle & Chow, 1966). Step-by-step 

sewer and fish passage design methods were presented in terms of depth-averaged velocity and 

local velocities adjusted for fish swimming capability.  

Following conclusions can be drawn:  

 The S-PIV method is proved to be one of the powerful methods which resulted in a whole 

flow field velocity distribution, a significant improvement over previous work. The only 

drawback is the huge amount of time and energy used to calibrate the cameras and the 

laser. Also, working with the laser and CCD cameras needs extra care due to their huge 

cost and taking safety precautions.  

 It was found that the eddy viscosity is a function of the geometry as well as the flow 

condition. The use of a constant eddy viscosity model provided a close approximation of 

the measured velocity distribution in the cross-section. Although, acceptable agreement 

was achieved, the model is recommended to be used in the case of a rough surface such 
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as CMPs rather than smooth pipe. Fortunately, smooth pipes are seldom used as culverts 

or fish passages.  

 The empirical model showed a nearly perfect agreement with the experimental data 

provided that the shear velocity is adjusted with the log-law region data. Subsequently, it 

was shown that the shear velocity, roughness length and dip position could be calculated 

successfully with the proposed models, giving the empirical approach the ability of the 

velocity prediction without any need for fitting parameters.  

 It is recommended to use the analytical model for design of the non-fish passage 

structures such as sewers and road crossings because the proposed model is simple and 

straight forward, and the slight inconsistencies with the experimental data close to the 

bed could be ignored. However, for fish passage design, the empirical model together 

with the dip, shear velocity, and roughness models showed to be used to adjust the cross-

section according to the organism’s biological characteristics.  

8.2 Future Work 

Arising from this work, several lines of research should be followed in the future, which either will 

improve this work or lead to new findings, and they are discussed below:  

 Due to the complications involved in the integration of the analytical model, eddy 

viscosity was assumed to be constant. Previous measurements of the eddy viscosity in 

open channel flow propose a parabolic distribution of the eddy viscosity (Nezu & Rodi, 

1986; Steffler, Rajaratnam, & Peterson, 1985; Yang, Tan, & Lim, 2004) for the center line 

velocity. Adopting a previously developed or developing a new eddy viscosity model may 

improve the quality of the proposed analytical model especially close to the wall.  
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 Preliminary tests on the empirical approach showed that this model may be used for 

other conic sections such as parabola, hyperbola, and ellipse. Unfortunately, there is not 

any benchmark data related to any conic sections except circle, and that is why they were 

not given further considerations in this research. PIV or ADV experiments should be 

conducted on other conic sections to verify the proposed empirical models. Especially, 

these tests should be conducted on parabola which is a close approximation of a 

trapezoidal channel after sediment deposition and/or on ellipse which is the deformed 

shape of a circular channel under soil pressure.  

 The design method discussed needs three types of data namely hydrologic, geologic, and 

biological data. Hydrologic and geologic data should be collected locally or Geographic 

Information System (GIS) may be used. For the biological data, there are design manuals 

customized for each state in the US. A comprehensive encyclopedia of biological 

information related to all fish species could be a good addition to this research.   
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APPENDIX A: DATA 

Experimental data used for the model verification as well as the method for their acquisition are 

discussed in Appendix A.1 through A.4. Moreover, they are followed by test matrices which list 

some of their important hydraulic parameters namely the channel bed slope (𝑆0), bed roughness 

height (ℎ′), flow depth (ℎ), cross-sectional average velocity (𝑈̅), maximum cross-sectional velocity 

(𝑈𝑚𝑎𝑥), Froude number (𝐹𝑟), and Reynolds number (𝑅𝑒). Froude and Reynolds numbers were 

calculated according to  

 
𝐹𝑟 =

𝑈

√𝑔
𝐴𝑤
𝑏

 
 100 

and 

 
𝑅𝑒 =

4𝑈̅𝑅ℎ
𝜈

  101 

respectively. Herein, 𝐴𝑤 and 𝑅ℎ are wetted area and hydraulic radius, accordingly.  

A.1 Mohebbi et al. (2010) Data  

A.1.1 Experimental Method  

Mohebbi et al. (2010) performed S-PIV and ADV tests on a 0.9144 m diameter CMP comprising 

different slopes, flow rates, flow depths, and roughness heights (Mohebbi, Zhai, & Kerenyi, 2010). 

The purpose of ADV tests were just to validate the S-PIV data and, therefore, their discussion is 

out of the scope of this research (the reader is referred to (Zhai, 2012) for further information 

regarding ADV data plots and discussion). Table A.1 lists the important hydraulic characteristics 

of their tests. These data originally were used to calibrate the CFD model and were expected to  
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Table A.1 Laboratory Test Matrix (Mohebbi, Zhai, & Kerenyi, 2010) 

Test S0 (-) h’ (m) h (m) 𝑼̅ (m/s) Umax  (m/s) Fr (-) Re (-) 

1_1 0.00401 0.000 0.114 0.216 0.440 0.247 4.57E+04 

1_2 0.00209 0.000 0.152 0.216 0.417 0.213 5.75E+04 

1_3 0.00122 0.000 0.228 0.216 0.356 0.172 7.79E+04 

1.4 0.01745 0.000 0.114 0.335 0.622 0.383 7.09E+04 

1_5 0.00436 0.000 0.152 0.335 0.633 0.330 8.92E+04 

1_6 0.00209 0.000 0.228 0.335 0.555 0.266 1.21E+05 

2_1 0.00122 0.137 0.114 0.216 0.350 0.214 6.27E+04 

2_2 0.00122 0.137 0.152 0.216 0.367 0.186 7.58E+04 

2_3 0.00122 0.137 0.228 0.216 0.342 0.153 9.64E+04 

2.4 0.00192 0.137 0.114 0.335 0.524 0.332 9.73E+04 

2_5 0.00157 0.137 0.152 0.335 0.510 0.289 1.18E+05 

2_6 0.00157 0.137 0.228 0.335 0.492 0.237 1.50E+05 

3_1 0.00157 0.274 0.114 0.216 0.371 0.207 6.59E+04 

3_2 0.00157 0.274 0.152 0.216 0.354 0.180 7.94E+04 

3_3 0.00140 0.274 0.228 0.216 0.316 0.146 9.96E+04 

3.4 0.00279 0.274 0.114 0.335 0.583 0.322 1.02E+05 

3_5 0.00157 0.274 0.152 0.335 0.534 0.279 1.23E+05 

3_6 0.00227 0.274 0.228 0.335 0.485 0.293 1.02E+05 

be used to validate the analytical and empirical mathematical models. However, because of the 

flume wall effect on the velocity pattern, it was decided to use other alternatives. Nevertheless, 

they remain as benchmark data for future CFD model calibrations, roughness effect studies, and 

qualitative investigations of the flow pattern in CMPs. The flow condition was subcritical with 
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a) b) 

  

c) d) 

  

e) f) 

 

Figure A.1 Cross-sectional Velocity Distribution (Mohebbi, Zhai, & Kerenyi, 2010)                                                                                             

a) Test 1_1 b) Test 1_4 c) Test 1_2 d) Test 1_5 e) Test 1_3 f) Test 1_6 
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a) b) 

  

c) d) 

  

e) f) 

 

Figure A.2 Cross-sectional Velocity Distribution (Mohebbi, Zhai, & Kerenyi, 2010)                                                               

a) Test 2_1 b) Test 2_4 c) Test 2_2 d) Test 2_5 e) Test 2_3 f) Test 2_6 
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a) b) 

  

c) d) 

  

e) f) 

 

Figure A.3 Cross-sectional Velocity Distribution (Mohebbi, Zhai, & Kerenyi, 2010)                                                                

a) Test 3_1 b) Test 3_4 c) Test 3_2 d) Test 3_5 e) Test 3_3 f) Test 3_6 
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Table A.2 Laboratory Test Matrix (Clark & Kehler, 2011) 

Test S0 (-) h’ (m) h (m) 𝑼̅ (m/s) Umax  (m/s) Fr (-) Re (-) 

1 0.00028 0 0.49 0.265 0.362 0.13 2.38E+05 

2 0.00110 0 0.35 0.402 0.550 0.25 2.95E+05 

3 0.00110 0 0.52 0.506 0.643 0.24 4.68E+05 

4 0.00270 0 0.27 0.557 0.760 0.40 3.39E+05 

5 0.00270 0 0.40 0.693 0.861 0.32 5.57E+05 

Froude number ranging from 0.146 to 0.383 and fully turbulent with Reynolds number ranging 

from 4.57E+04 to 1.50E+05 for all the experiments.  

A.1.2 Velocity Contour Plots 

Figure A.1a-f, Figure A.2a-f, and Figure A.3 plot Mohebbi et al. (2010) data in terms of 

dimensionless velocity of 𝑢𝑧(𝑥, 𝑦)/𝑈𝑚𝑎𝑥 according to the test matrix (Table A.1). The camera was 

not able to capture the area close to the pipe centerline (50 mm from right) because of the 

blockage from the flume supports. Therefore, those areas were left blank in the figures.  

A.2 Clark and Kehler (2011) Data  

A.2.1 Experimental Method  

Clark and Kehler (2011) performed Acoustic Doppler Velocimetry (ADV) tests on a 0.8 m diameter 

CMP comprising different slopes, flow rates, flow depths, and no roughness on the bed (Clark & 

Kehler, 2011). Table A.2 lists the important hydraulic characteristics of their tests. They resolved 

the ADV near-bed shortcomings by using different types of ADV probes including face up, down, 

and side looking and later combined their data to have a whole flow velocity field. The flow  
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a) b) 

  

c) d) 

 

 

e)  

Figure A.4  Cross-sectional Velocity Distribution (Clark & Kehler, 2011)                                                                                            

a) Test 1 b) Test 2 c) Test 3 d) Test 4 e) Test 5 
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Table A.3 Laboratory Test Matrix (Yoon, Sung, & Lee, 2012)  

Test S0 (-) h’ (m) h (m) 𝑼̅ (m/s) Umax  (m/s) Fr (-) Re (-) 

1 0.00258 0 0.015 0.152 0.235 0.467 5.69E+03 

2 0.00258 0 0.020 0.208 0.313 0.543 9.76E+03 

3 0.00258 0 0.025 0.247 0.357 0.563 1.35E+04 

4 0.00258 0 0.030 0.264 0.378 0.532 1.60E+04 

5 0.00258 0 0.035 0.282 0.402 0.503 1.83E+04 

6 0.00258 0 0.040 0.284 0.400 0.442 1.89E+04 

condition was subcritical with Froude number ranging from 0.13 to 0.40 and fully turbulent with 

Reynolds number ranging from 2.38E+05 to 5.57E+05 for all the experiments.   

A.2.2 Velocity Contour Plots 

Figure A.4a-e plot Clark and Kehler (2011) data in terms of dimensionless velocity of 

𝑢𝑧(𝑥, 𝑦)/𝑈𝑚𝑎𝑥 according to the test matrix (Table A.2). In some cases, they were not able to 

capture isovels close to the water surface due to the fluctuations at the free surface.  

A.3 Yoon et al. (2012) Data   

A.3.1 Experimental Method  

Yoon et al. (2012) performed S-PIV tests on a 0.05 m diameter smooth plastic pipe with different 

slopes, flow rates, and flow depths (Yoon, Sung, & Lee, 2012). Table A.3 lists the important 

hydraulic characteristics of their tests. The flow condition was subcritical with Froude number 

ranging from 0.442 to 0.563 and transient to fully turbulent with Reynolds number ranging from 

5.69E+03 to 1.89E+04 for all the experiments (Table A.3). Yoon et al. (2012) data were found to  
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a) b) 

  

c) d) 

  

e) f) 

 

Figure A.5 Cross-sectional Velocity Distribution (Yoon, Sung, & Lee, 2012)                                                                                                          

a) Test 1 b) Test 2 c) Test 3 d) Test 4 e) Test 5 f) Test 6 
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be the most comprehensive data for a smooth P-FPF with filling ratios ranging from 30% to 80%. 

However, the low Reynolds number in the first two experiments suggests that these data cannot 

be treated as a fully turbulent flow. Further, since the test pipe is small in diameter (only 50 mm), 

the data may not be a good representative of a real-world culvert of at least a foot of length.  

Figure A.5a-f plot Yoon et al. (2012) data in terms of dimensionless velocity of 𝑢𝑧(𝑥, 𝑦)/𝑈𝑚𝑎𝑥 

according to the test matrix (Table A.3). Except the first test that they were not able to measure 

the free surface velocity due to the laser illuminations and low flow depth, the rest of the data 

were in a good shape.  

A.4 Knight and Sterling (2000) Data 

A.4.1 Experimental Method  

Knight and Sterling (2000) and Sterling and Knight (2000) performed velocimetry tests with the 

aid of a pitot-static tube connected to an air-water manometer on a 0.244 m diameter smooth 

clear acrylic pipe comprising of different slopes, flow rates, flow depths, and roughness heights 

(Knight & Sterling, 2000; Sterling & Knight, 2000). Table A.4 lists the important hydraulic 

characteristics of their tests. The flow condition was both subcritical and supercritical with Froude 

number ranging from 0.375 to 1.960 and fully turbulent with Reynolds number ranging from 

4.06E+04 to 134.2E+04 for all the experiments (Table A.4). 

A.4.1 Velocity Contour Plots 

Figure A.6a-c plot Knight and Sterling (2000) data in terms of dimensionless velocity of 

𝑢𝑧(𝑥, 𝑦)/𝑈𝑚𝑎𝑥 according to the test matrix (Table A.4). The data were acquired through    
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Table A.4 Laboratory Test Matrix (Knight & Sterling, 2000; Sterling & Knight, 2000) 

Test S0 (-) h’ (m) h (m) 𝑼̅ (m/s) Umax  (m/s) Fr (-) Re (-) 

1_1 0.00100 0.000 0.0813 0.394 - 0.516 6.49E+04 

1_2 0.00100 0.000 0.1235 0.493 0.669 0.505 11.0E+04 

1_3 0.00100 0.000 0.1626 0.524 - 0.441 13.5E+04 

1_4 0.00100 0.000 0.2015 0.554 - 0.375 15.0E+04 

2_1 0.00196 0.061 0.0203 0.294 - 0.671 1.91E+04 

2_2 0.00196 0.061 0.0361 0.403 - 0.696 4.23E+04 

2_3 0.00196 0.061 0.0608 0.565 0.677 0.748 8.75E+04 

2_4 0.00196 0.061 0.1015 0.688 0.884 0.680 14.5E+04 

2_5 0.00196 0.061 0.1232 0.769 - 0.663 18.5E+04 

2_6 0.00196 0.061 0.1330 0.775 - 0.626 18.9E+04 

2_7 0.00862 0.061 0.0203 0.750 - 1.710 4.90E+04 

2_8 0.00862 0.061 0.0608 1.283 - 1.700 19.9E+04 

2_9 0.00862 0.061 0.1015 1.625 - 1.590 34.2E+04 

3_1 0.00200 0.081 0.0407 0.449 - 0.718 5.50E+04 

3_2 0.00200 0.081 0.0815 0.625 - 0.685 11.4E+04 

3_3 0.00200 0.081 0.1020 0.707 - 0.670 15.1E+04 

3_4 0.00200 0.081 0.1142 0.833 - 0.721 18.4E+04 

3_5 0.00900 0.081 0.0407 1.229 - 1.960 15.0E+04 

4_1 0.00900 0.122 0.0395 0.886 - 1.400 9.41E+04 

4_2 0.00900 0.122 0.0600 1.143 - 1.420 15.7E+04 

4_3 0.00900 0.122 0.0722 1.214 - 1.330 18.2E+04 

5_1 0.00880 0.162 0.0210 0.666 - 1.440 4.06E+04 

5_2 0.00880 0.162 0.0332 0.691 - 1.150 5.86E+04 
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a) b) 

 

 

c)  

Figure A.6 Cross-sectional Velocity Distribution (Knight & Sterling, 2000; Sterling & Knight, 2000)                                                                                                 

a) Test 1_2 b) Test 2_3 c) Test 2_4 

digitization of the plotted cross-sectional velocity distribution (test 1_2, test 2_3 and test 2_4) and 

as a result, they have a lower resolution compared to the recent data. Nevertheless, being the 

only dataset with roughness being present on the bed, they play a major role in the empirical 

model validation.  
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APPENDIX B: S-PIV IMAGES 

B.1 Camera Calibration Images  

Figure B.7 depicts the images taken and processed in the camera calibration procedure. 

Figure B.7a is the image taken with the CCD camera without any change. Figure B.7b is the same 

image after masking everything except the calibration grid. This process is time consuming and 

should be done manually. Figure B.7c is the output of the image processing software and by the 

end of this step the dots on the calibration grid are defined digitally. Figure B.7d is the final  

  
a) e) 

  
b) f) 
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c) g) 

  
d) h) 

 
 

 Figure B.7 Camera Calibration Images                                                                                                                          

Camera Calibration Left View Image a) Normal b) Masked c) Processed d) Dewarped                                               

Camera Calibration Right View Image e) Normal f) Masked g) Processed h) Dewarped  

dewarped image used in all the calculations. Figure B.7e-h are the counterparts of the Figure B.7a-

d captured from the right camera. 
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