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ABSTRACT

The primary objective of this study is to improve the predictive capabilities of two–

phase flow simulations that solve for average equations, such as Lagrangian–Eulerian (LE)

and Eulerian–Eulerian simulations. The predictive capabilities of LE and EE simulations de-

pend both on the numerical accuracy and on the accuracy of models for the fluid–particle and

particle–particle interaction terms. In the first part of this study, a high fidelity ‘true’ DNS

approach based on immersed boundary method (IBM) is developed to propose accurate models

for fluid–particle terms, such as interphase momentum transfer, and also interphase heat and

mass transfer, by solving for steady flow and scalar transport past homogeneous assemblies of

fixed particles. IBM is shown to be a robust tool for simulating gas–solids flow and does not

suffer from the limitations of lattice Boltzmann method (LBM): (1) compressibility errors with

increasing Reynolds number; (2) calibration of hydrodynamic radius; (3) non–trivial to extend

to non–isothermal systems. In the Stokes regime, average Nusselt number from scalar IBM

simulations is in reasonable agreement with the frequency response measurements of Gunn and

Desouza (1974) and free surface model of Pfeffer and Happel (1964), but differs by as much

as 300% from the widely used heat and mass transfer correlation of Gunn (1978), which is at-

tributed to the unjustified assumption of negligible axial diffusion in Stokes flow regime made

by Gunn. At higher Reynolds numbers, scalar IBM results are far from Gunn’s correlations

but in reasonable agreement with other experimental data. A correlation is proposed for heat

and mass transfer as function of solid volume fraction and Reynolds for a particular value of

Prandtl/Sherwood number equal to 0.7.

In the second part of this study, the numerical accuracy of LE simulations is investigated

because LE simulations are very frequently used to verify EE simulations, and as a bench-
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mark in the development of new simulation techniques for two–phase flows, such as the recent

quadrature method of moments QMOM (Fox, 2008). Accurate calculation of the interphase

transfer terms in LE simulations is crucial for quantitatively reliable predictions. Through

a series of static test problems that admit an analytical form for the interphase momentum

transfer term, it is shown that accurate estimation of the mean interphase momentum trans-

fer term using certain interpolation schemes requires very high numerical resolution in terms

of the number of particles and number of multiple independent realizations. Traditional LE

(TLE) simulations, that use real particles or computational particles having constant statisti-

cal weight, fail to yield numerically–converged solutions due to high statistical error in regions

with few particles. We propose an improved LE simulation (ILE) method that remedies the

above limitation of TLE simulations and ensures numerically converged LE simulations.
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CHAPTER 1. INTRODUCTION

1.1 Background

A multiphase flow is a physical system in which several phases such as solid, liquid and

gas can coexist, and these different phases affect each other hydro–dynamically. Multiphase

flows are commonly observed ranging from the most natural occurrences such as rain drops in

air, snowfall, volcanoes, and sandstorms to more practical applications in industries such as

energy production, chemical processing, medicine and pharmaceuticals. Near the surface of the

earth, particles are moved by interacting with air or water, which results in geological features

affecting wide section of the population. Life–saving flu vaccine mists are delivered in the form

of aerosols, or as a fine powder, to the human body. In internal combustion engines, finely–

atomized fuel spray is injected into compressed air for efficient combustion and hence, less

atmospheric pollution. A two–phase flow of a gas and a liquid is observed in oil–gas pipelines

and wells, air–lift pumps, oil refineries, steam boilers. Needless to say, better understanding of

the physical phenomena occurring in multiphase flows will help to make current applications

more efficient and environmentally friendly. The scope of this study is limited to two–phase

flows consisting of either solid particles or drops in a liquid or gas.

Unlike in laminar single–phase flows, one cannot meaningfully characterize a two–phase

flow using only one realization (Drew, 1983; Pai, 2007). Also, for most real design purposes,

engineers do not need the amount or detailed information that is generated from a single

realization and, therefore, statistically averaged equations are mostly used to describe and

solve two–phase flows. The most common statistical descriptions of two–phase flows can be

classified into two broad categories: (i) Eulerian–Eulerian (EE) and (ii) Lagrangian–Eulerian

(LE) representations. Only very recently, a Lagrangian–Lagrangian (LL) description has been
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formulated by Pai (2007). In the EE representation, the two phases are assumed to be in-

terpenetrating continua. A continuum description is adopted for both the carrier phase and

the dispersed phase. Various averaging approaches have been applied to obtain the averaged

conservation equations such as momentum and mass for each phase. The earliest averaging

techniques to appear were time–averaging and space–averaging (and its variants based on the

choice of averaging region) (Frankl, 1953; Teletov, 1958; Anderson and Jackson, 1967a; Drew,

1971) followed by the concept of ensemble averaging 1 (Drew, 1983; Kataoka and Serizawa,

1989; Drew and Passman, 1998).

In the LE statistical description (Williams, 1958; Subramaniam, 2000, 2001), the contin-

uum description of the carrier phase is generally assumed to be identical to that in the EE

representation. However, the dispersed phase is treated as composed of discrete entities in the

system. These discrete particles 2 are statistically represented by a one–particle distribution

function, which is often termed as droplet distribution function (ddf) in spray literature. The

evolution of the ddf results in the famous spray equation (Williams, 1958). The state space

in the spray equation is generally composed of position, velocity and radius co–ordinates, but,

depending upon the physical problem, can have other variables, such as temperature, concen-

tration, etc. Numerically solving the spray equation by traditional approaches such as finite

difference or finite volume will require discretization for each state space, which even with

today’s computing power is impractical. Even though LE statistical description treats the

solid–phase as discrete particles, by taking the moments of the evolution equation for one–

particle distribution function, it is possible to derive continuum equations for the solid–phase

as well. This is the approach taken in the kinetic theory of granular gases (KTGF) (Savage

and Jeffrey, 1981; Garzo et al., 2007a), where the continuum equations for the solid–phase are

derived from the one–particle distribution function and constitutive relations for the trans-

port coefficients (such as the coefficients of viscosity, thermal diffusion coefficients, etc.) are

obtained in terms of hydrodynamic variables (such as particle number density, inelasticity,

granular temperature).
1Ensemble averaging is defined as the process of averaging a quantity over several independent realizations
2By particle we mean any dispersed–phase element, including solid particles, droplets and bubbles.
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Since EE, LE, and LL statistical descriptions use different approaches to represent carrier

and dispersed phases, the information content in each description can also be different. A

detailed study investigating the consistency relationships between the three statistical descrip-

tions is done by Pai (2007). The consistency relationship between the EE and LE statistical

descriptions is investigated by comparing the fundamental quantities in each description: vol-

ume fraction and Eulerian velocity–radius joint pdf in EE description; number density and

Lagrangian velocity–radius joint conditional pdf in LE description. It is concluded that the

statistical information contained in the two descriptions is different and the aforementioned

fundamental quantities are equal under very restrictive conditions, such as, statistically ho-

mogeneous number density and radius pdf. Also, the ddf is not able to capture the internal

circulation effects in drops or bubbles. This poses a restriction on the class of physical problems

that can be modeled by the ddf approach.

From the numerical viewpoint, and statistical descriptions notwithstanding, simulations

that solve governing equations in both phases as continuous fields (i.e., continuum represen-

tation for both phases) will be referred to as EE simulations and those that consider carrier

phase as continuum and dispersed phase as made up of discrete entities will be referred to

as LE simulations. For example, as shown by the schematic in Fig. 1.1, EE simulations are

possible from the averaged equations resulting from volume (Anderson and Jackson, 1967b) or

ensemble averaging (Drew, 1971) approaches, and also from the one–particle distribution func-

tion (KTGF). There are plenty of open source and commercial codes available that are capable

of doing both LE and EE simulations. For example, CFDlib (Kashiwa and Rauenzahn, 1994;

Kashiwa and Gaffney, 2003) and MFIX (Syamlal et al., 1993; Syamlal, 1998) are both capable

of performing EE simulations for chemically reacting multiphase flows. Similarly, examples of

LE simulation codes are KIVA series of codes (A. A. Amsden, and P. J. O’Rourke, and T. D.

Butler, 1989; Amsden, 1993) used widely in the automotive industry, MFIX–CDM code, and

the commercially available Fluent code (discrete particle model). Very recently, yet another

two–phase simulation method, termed as quadrature method of moments (QMOM), has been

proposed by Fox (2008), which is briefly described below.
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Figure 1.1 A schematic showing a realization of two–phase flow and vari-
ous simulation types that can be used to solve for a realization
(‘true’ DNS, discrete element method DEM) or the resulting av-
eraged equations (LE, EE, and QMOM). The simulation types
in bold italics are the ones considered in this work.

In QMOM, the carrier phase, like in LE and EE simulations, is considered as continuum.

The solid–phase, like in LE statistical description, is represented by means of the one–particle

distribution function. However, unlike in KTGF (moments of the one–particle distribution

taken to arrive at continuous governing equations for solid–phase) and traditional LE simula-

tions (one–particle distribution implied by ensemble of discrete particles), the discrete form of

the one–particle distribution evolution equation (also called as kinetic equation) is numerically

solved (see Fig. 1.1). This approach to solve for the kinetic equation directly is in principle a

correct approach than EE simulations for non–equilibrium (i.e., non Maxwellian particle ve-
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locity distribution) two–phase flows having high Knudsen number (Kn) (defined as the ratio of

mean free path to particle diameter). Since QMOM has been developed for two–phase flows, it

inherently takes into account the additional physics (such as preferential concentration (Squires

and Eaton, 1991) and particle trajectory crossing (Desjardins et al., 2008)) occurring due to

fluid–particle interactions, such as the one due to non–conservative drag force acting on parti-

cles. In KTGF, however, only conservative body forces, such as the gravity force, are assumed

to act on the particles. Although the resulting fields are continuous in both fluid–solid phases

in QMOM, due to a very different approach taken to solve for the solid–phase, it is not termed

as either LE or EE simulation in this introduction, and will be referred to as QMOM in the

ensuing discussion.

Figure 1.2 Schematic showing a cloud of gas–phase along with dispersed
phase solid particles (solid–circles). In simulation solving for
averaged equations (such as LE and EE), modeling of gas–solid
interactions, such as interphase momentum transfer Igp, inter-
phase heat and mass transfer γgp, etc., and particle–particle
interaction force Ipp are required.

So far we have discussed the simulations based on statistical representations (or averaged

equations) of two–phase flows. However, one can also perform ‘true’ direct numerical simulation

(‘true’ DNS) of a realization of two–phase flow system shown in Fig. 1.1. In ‘true’ DNS (see

schematic in Fig. 1.1), the flow around each particle is solved with exact boundary conditions.
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From the plethora of ‘true’ DNS methods available in literature, the most popular ones are

the fictitious domain methods (Glowinski et al., 2001), immersed boundary methods (Peskin,

1981; Goldstein et al., 1993; Yusof, 1996), and Lattice–Boltzmann methods (Ladd, 1994b;

Carte et al., 2004; van der Hoef et al., 2005). Although attractive, the downside with ‘true’

DNS techniques is the large computational cost which scales non–linearly with the Reynolds

number. However, with the ever increasing computing power, accurate ‘true’ DNS has been,

and will remain, a useful tool for comparing model accuracy for a wide variety of physical

problems.

Similar to the ‘true’ DNS for gas–solids system, the discrete element method (DEM) is a

widely used tool for numerical studies of granular flows. Some examples of the existing DEM

based codes are LAMMPS code (Plimpton, 1995), MFIX–CDM code (Boylakunta, 2003), and

the commercially available Arena flow code.

Figure 1.3 Schematic showing the modeling requirements (shown inside the
dashed box) for two–phase flow simulations of averaged equa-
tions (LE, EE, and QMOM), and also the sources of models for
fluid–particle and particle–particle interaction terms.
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There are modeling and numerical implementation differences between LE, EE, and QMOM

simulations. From the modeling viewpoint, the key differences between the simulation types

lie in the modeling assumptions made in each approach. The schematic in Fig. 1.2 shows a

realization of a cloud of gas–phase along with the dispersed phase particles (shown by solid–

circles). If average equations are used to solve this fluid–particle system, then the modeling

will be required for fluid–particle interactions, such as the interphase momentum transfer term

Igp, interphase heat and mass transfer term γgp, etc. Similarly, depending on the simulation

type (LE or EE), further modeling may be required to model the particle–particle interaction

force Ipp as well. As shown by the terms enclosed by dashed box in Fig. 1.3, in all simulations,

fluid–particle interaction terms (Igp and γpp) have to be modeled. However, in EE simulations,

additional models are required to describe the particle–particle interactions as well. The models

for particle–particle interaction term needed in EE simulations are obtained from KTGF for

low to moderate solid volume fractions, and numerical studies of granular flows for moderate

to very dense (up to the close–packing limit) solid volume fractions.

Any simulation of averaged equations, LE, EE or QMOM, is only as good as the models

that are used to describe the various interaction terms. One of the objectives of this study is to

improve the accuracy of the existing models for various fluid–particle interaction terms, such

as interphase momentum transfer, interphase heat and mass transfer, etc. In order to achieve

this particular objective, a high fidelity ‘true’ DNS approach, using the immersed boundary

method, is developed to solve for flow and scalar transport past homogeneous assemblies of

fixed particles. IBM is a robust DNS tool as the increase in computational cost is very weakly

dependent on the total number of particles, and one can solve complex geometries on structured

Cartesian grids.

In the comparison of simulation methods for averaged equations, it was seen that relatively

lesser modeling is required in LE simulation approach than in EE simulation approach. This

is because in LE simulations, the particle–particle collisions can be explicitly treated through

direct particle–particle collision models, such as hard–sphere (Allen and Tildesley, 1989) and

soft–sphere (Cundall and Strack, 1978) collision models. It is worth noting that in LE simu-
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lations of dilute systems, often times stochastic collision models, such as the droplet collision

algorithm of O’Rourke (O’Rourke and Amsden, 1987) or the no time counter (NTC) (Bird,

1994; Schmidt and Rutland, 2000) collision algorithm, are used. The use of stochastic colli-

sion models, rather than direct models, essentially implies modeling of the particle–particle

interaction term in LE simulations as well. However, the restriction imposed by the use of

stochastic collision models on the range of validity of LE simulations (in terms of Knudsen

number) is not as severe as the restriction on low Knudsen number imposed by KTGF closures

in EE simulations. Therefore, due to relatively lesser modeling requirements, LE simulations

are frequently used to verify EE simulations, and also used as a benchmark in the development

of new two–phase flow simulations, such as the recent QMOM proposed by Fox (2008).

Although less modeling is required in the LE approach, it has its own limitations due

to the use of discrete particles to represent the dispersed phase. LE simulations suffer from

high statistical error resulting from the use of finite number of particles to compute mean

quantities from particle data, such as the mean interphase momentum transfer term. For

high Stokes number flows, the particle position distributions can become spatially very non–

uniform; which further exacerbates the errors resulting from statistical noise. The problem of

high statistical error is most severe in simulations of two–way coupled particle–laden two–flows

where a poorly estimated interphase momentum transfer term when fed back to the flow field

can lead to numerically non–converged results from LE simulations; thus, resulting in specious

or erroneous conclusions. Since the quantitative comparison of LE simulation with any other

simulation is a meaningful one when the numerical errors in both simulations are of the same

order of magnitude, the need for accurate LE simulations cannot be over emphasized. Also,

modeling error cab only truly be assessed if the numerical error is low. The second part of

this study investigates the numerical accuracy and convergence properties of the current LE

simulations and proposes an improved LE simulation methodology that yields numerically

converged and accurate results.

Having described the various numerical simulation methodologies for both average (LE,

EE, and QMOM) and instantaneous equations (‘pp’ DNS, ‘true’ DNS, and DEM), and also
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the different level of modeling requirements for average equations, we now move to the research

objectives of this work.

1.2 Research Objectives

The principal objective of this study is to improve the predictive capabilities of two–phase

flow simulations that solve for averaged equations, such as LE, EE, and QMOM. Among many

modeling and numerical implementation details that affect the predictive capabilities of such

simulations, we restrict ourselves to investigating the accuracy of fluid–particle interaction

terms, such as interphase momentum transfer, and interphase heat and mass transfer terms.

The objective is achieved by employing a two–pronged strategy. First the accuracy of existing

correlations for fluid–particle interaction terms (such as drag law for interphase momentum

transfer term and Nusselt number law for interphase heat transfer) are examined and new

correlations proposed using ‘true’ DNS. Then the numerical accuracy of estimating fluid–

particle interaction terms in LE simulations from finite number of particles is investigated and

improved numerical schemes are developed. The research objectives are discussed below in

more detail.

1.2.1 Modeling interphase momentum transfer term using ‘true’ DNS

The mean interphase momentum transfer term Igp appears as a model term in all simulation

types (Fig. 1.3) for two–phase flows. Therefore, accurate representation of the momentum

transfer between the particles and fluid is absolutely necessary for predictive LE, EE, and

QMOM simulations of two–phase flow. The dependence of this term on flow quantities such

as the Reynolds number based on mean slip velocity, solid volume fraction, and particle size

distribution must be modeled, and is simply referred to as a drag law.

The earliest attempts to provide drag law for fluid–particle interaction term were made

by performing carefully controlled experiments. For example, Ergun (1952) studied the flow

of gas through packed columns and provided the famous Ergun pressure drop correlation.

With the advent of computers, it has now become possible to perform numerical simulations
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of such complex systems, beginning from first–principles. True DNS of flow past particles is

a first-principles approach to developing accurate models for interphase momentum transfer

in gas-solids flow. The Lattice Boltzmann method (LBM) is an example of ‘true’ DNS. In

LBM Ladd (1994a,b), instead of solving the Navier–Stokes equation, discrete one–particle ve-

locity distribution function whose evolution is described by the lattice Boltzmann equation is

solved. LBM has been successfully used to propose drag force correlations in static homoge-

neous assemblies of monodisperse (Hill et al., 2001a,b) and bidisperse (van der Hoef et al.,

2005; Beetstra et al., 2007; Yin and Sundaresan, 2009) particles.

LBM is a highly efficient and robust solution methodology for gas-solids flow. LBM opera-

tions are local in physical space, it avoids solving the elliptic pressure Poisson equation that is

needed in incompressible continuum flow solvers. This paves way for efficient parallelization of

LBM, which has opened the door to solving realistic flow problems (Chen and Doolen, 1998).

However, LBM simulations are limited by several limitations: (1) fine–tuning of the fluid coef-

ficient of viscosity with increasing Reynolds number in order to keep the compressibility errors

low; (2) calibration of hydrodynamic radius as a function of coefficient of viscosity and input

radius, which results from stair–step of a spherical particle in LBM; (3) non–trivial to extend

to non–isothermal systems.

In view of the above difficulties associated with LBM, we develop an alternative ‘true’ DNS

methodology, termed as immersed boundary method (IBM). The basic notion of the immersed

boundary method is to apply a set of forces on the computational grid to mimic the presence

of an interface. The advantage of IBM is the favorable scaling of computational cost with

the number of particles. IBM can be used to solve for flow around complex geometries on

structured Cartesian grids, and there is no need for costly remeshing in the case of moving

particles. There are many flavors of IBM existing in the literature that differ in the treatment

of immersed boundary forcing. In this study, the discrete time immersed boundary method

of Yusof (1996) has been extended to solve for flow past homogeneous assemblies of particles.

An important improvement to the original IB forcing scheme used in Yusof (1996) has been

proposed that ensures the fluid pressure and velocity fields are not contaminated by IB forcing.
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The quantities computed from ‘true’ DNS using the IBM approach are related to the in-

terphase momentum transfer term arising in theoretical approaches to gas–solids flow. This

correspondence is described at different levels, starting from the one-particle distribution func-

tion and leading naturally to the averaged equation in that approach. An important connection

of IBM quantities with two–fluid theory is also established.

In simulations of homogeneous assemblies, important numerical parameters are identified,

such as grid resolution in terms of number of grid cells used to resolve a sphere diameter

(Dm), computational box length to particle diameter ratio (L/D), number of particles Ns, and

minimum number of multiple independent realizations M required to ensure low statistical

error in the estimate of drag force in random arrays (for ordered arrays, due to deterministic

particle configuration, one realization is enough). The numerical convergence test results show

that the IBM simulations yield grid-independent results, and these results are also independent

of the choice of time step used to advance the solution in pseudo time, provided the stability

criterion is met. A near second–order grid convergence is observed from IBM simulations. To

place the numerical convergence study in context, we note that to our knowledge this is the

most comprehensive study of numerical error and convergence for DNS of gas-solids flow.

The hydrodynamic IBM solver is extensively validated by comparing drag force from IBM

simulations for three different cases: 1) comparison of drag force for flow past single particle in

an unbounded medium with the single sphere drag correlation of Schiller and Naumann (1933),

2) comparison of drag force in Stokes flow regime for flow past SC and FCC arrangements

(ranging from dilute volume fraction to close packed limit) with the boundary–integral method

of Zick and Homsy (1982), and 3) comparison of drag force for moderate to high Reynolds

(Re ≤ 300) in SC and FCC arrangements with the LBM simulations of Hill et al. (2001a). It

is found that, wherever data is available, IBM simulations are in excellent agreement with the

published data.

Extension of IBM to solve for steady flow past random arrays for 0.01 ≤ εs ≤ 0.4 and 0 <

Re ≤ 300 reveals an excellent match with LBM simulations of Hill et al. (2001b) and Beetstra

et al. (2007) for low Reynolds number for both dilute and moderately dense random arrays.
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However, the IBM simulations show a significant departure from these correlations at higher

Re, and for dilute cases. The drag law proposed by Hill et al. (2001b) is stated to be more

reliable for all Reynolds numbers only at higher volume fraction; therefore, the mismatch with

their drag law for low to moderate volume fractions (εs < 0.1) at high Reynolds numbers

(Re > 100) is justified. The mismatch with the drag law of Beetstra et al. (2007) is attributed

to the coarse numerical resolutions used in their LBM simulations.

In order to generate random particle configurations, a three–step “random configurations

initialization” algorithm has been developed. The three–step algorithm can be used to generate

homogeneous random particle configurations up to very dense solid volume fractions (≈ 0.52).

The three–step algorithm has the ability to generate random arrays having the same volume

fraction and number density, but differing in hard–core distance hc (defined as the minimum

distance between the centers of any two particles). It is shown that much higher values for

hard–core distance are accessible through the three–step algorithm than those possible from

stochastic methods, such as the Matèrn point–process (Stoyan and Stoyan, 1995).

IBM is a robust simulation method for ‘true’ DNS of gas–solids flow and does not suffer

from the above identified difficulties in LBM. With the successful extension of discrete time

immersed boundary method of Yusof (1996) to solve for flow past homogeneous assemblies

for arbitrary values of solid volume fraction εs and Reynolds number Re, it has now become

possible to extend the versatile IBM approach to include additional physics. For example,

current efforts are ongoing to include effects of gas-phase turbulence (Xu, 2008), polydispersity

in the size distribution of solid particles, and transport of chemical species and heat due to

fluid flow to the IBM solver. In this study, the hydrodynamic IBM solver is extended to study

passive scalar transport and heat transfer past random and ordered arrays of spheres, which

is our next research objective: development of accurate closures for the mean interphase heat

and mass transfer term γgp through ‘true’ DNS.
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1.2.2 Modeling mean interphase heat and mass transfer term using ‘true’ DNS

The mean interphase heat and mass transfer term γgp, just like the mean interphase mo-

mentum transfer term Igp, also appears as a model term in all simulation types (Fig. 1.3)

for two–phase flows. Therefore, accurate dependence of this term on flow quantities such as

the Reynolds number based on mean slip velocity, solid volume fraction, particle size distri-

bution, and Prandtl (or Sherwood number for mass transfer) number must be modeled for

predictive LE and EE simulations of gas-solids flow in industrial applications. Due to heat and

mass transfer analogy, the discussion below is motivated as a heat transfer problem, but the

conclusions of the study apply equally to mass transfer as well.

In two–phase flow simulations, the interphase heat transfer term is typically closed by

using a correlation for the Nusselt Nu number. There is a plethora of experimental literature

spanning over the last seven decades (see Wakao and Kaguei (1982) for a comprehensive review)

on heat and mass transfer in packed gas–solid and liquid–solid fixed–bed reactors. Various

experimental techniques, such as axial heat conduction in beds (Kunii and Smith, 1961), step

response (Handley and Heggs, 1968), frequency response (Gunn and Desouza, 1974; Littman

et al., 1968), and shot response (Shen et al., 1981; Wakao et al., 1977), have been used to study

heat and mass transfer in fixed–beds. Although, several correlations have been proposed for

heat and mass transfer in gas–solids flow from the experimental studies, the average Stokes

Nusselt number Nu0 (defined as Nusselt number in the Stokes flow regime) has been a issue of

much controversy.

These experimental studies have reported values for the average Stokes Nusselt number

that differ by orders of magnitude. Some studies suggested average Stokes Nusselt number in

packed beds to be less than 2 (which is equal to the Nusselt number for an isolated sphere at

zero Re) and tending to zero (Kunii and Smith, 1961; Littman et al., 1968; Cybulski et al.,

1975), while others reported values greater than 2 and as high as 13 (Pfeffer and Happel, 1964).

In view of so much disagreement over the Stokes Nusselt number value in experimental

studies, we wish to numerically study heat and mass transfer. True DNS is a convenient and

robust tool for numerically studying heat and mass transfer in fixed and fluidized beds. In this
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work, heat transfer is studied in fixed beds by simulating steady Stokes flow past homogeneous

arrays of monodisperse spherical particles. Direct forcing immersed boundary method (IBM)

originally developed by Yusof (1996), and extended in this work to simulate steady flow past

homogeneous assemblies, is further extended to solve for passive scalar transport past homo-

geneous particle assemblies. An isothermal boundary condition is assumed for the particle

surface temperatures. Heat conduction within the particles is not considered. Furthermore,

the feedback of scalar transport on the hydrodynamic fields due to density variation (free con-

vection effects) is not considered in this study. These assumptions limit the gas–solid systems

that our simulations can be applied to. The regime of validity of our simulations for both heat

and mass transfer given the above assumptions is discussed in Sec. 3.2.1.

A novel method of simulating passive scalar transport in homogeneous assemblies is devel-

oped. Due to the periodic boundary conditions used for homogeneous flows and isothermal

boundary condition for the particle surface, the fluid scalar field will eventually equilibrate

to solid surface value, resulting in steady–state with zero scalar flux across the particle–fluid

interface. In order to obtain steady–states with finite scalar flux across the particle–fluid inter-

face, a source/sink term is added to the scalar transport equation. The source/sink term in the

scalar transport is shown to be an analog of the mean pressure gradient term in momentum

transport. As for the hydrodynamic case, an important connection of IBM quantities with

two–fluid theory is established for heat and mass transfer as well.

Numerical convergence tests are performed to demonstrate that the scalar IBM simulations

yield grid-independent results, and that these results are also independent of the choice of

time step used to advance the solution in pseudo time step. The scalar IBM solver is validated

against the Nusselt number law for isolated particle (Ranz and Marshall, 1952) in an unbounded

medium.

Scalar IBM simulations are first performed to obtain the average Stokes Nusselt number

as a function of solid volume fraction for both ordered and random arrays. It is found that for

random arrays, scalar IBM results are in reasonable agreement with the frequency response

measurements of (Gunn and Desouza, 1974) and the free surface model of (Pfeffer and Happel,
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1964), but differs by as much as 300% from the widely used heat and mass transfer correlation

of (Gunn, 1978) for the highest solid volume fraction of 0.5 that is considered in this study.

The large differences between scalar IBM simulations are primarily attributed to the neglect

of axial diffusion in Gunn’s stochastic model (Gunn, 1978). Through a budget study of the

scalar transport equation, it is shown that axial diffusion is one–third of the total diffusion.

The scalar fields from scalar IBM simulations are used to examine local Nusselt number

along the surface of the particle. It is found that in the Stokes flow regime, the peaks of local

Nusselt number (implying locally highest heat transfer) occur in the regions of maximum flow

channel width. As the Reynolds number increases, the peak of local Nusselt number shifts

from the regions of maximum flow channel width in Stokes flow regime toward the regions of

minimum flow channel width. This is attributed to the dominance of convective transport over

the diffusive transport as the Reynolds number increases. Since by mass continuity, the fluid

velocity is highest in narrow regions between particles, therefore, in the convective transport

dominated regime, the maximum heat transfer, and, thus, the maximum local Nusselt number,

shifts toward the regions of narrow flow channel widths.

The extension of scalar IBM simulations to higher Reynolds number reveals that scalar IBM

results are far from Gunn’s correlations but in reasonable agreement with other experimental

data. A correlation is proposed for heat and mass transfer as function of solid volume fraction

and Reynolds for a particular value of Prandtl/Sherwood number equal to 0.7.

The new correlation for heat and mass transfer proposed from IBM simulations finishes

the first principle objective of this study. Next, we turn our attention to the second principle

objective of this study, which is improving the numerical accuracy and convergence properties

of LE simulations.

1.2.3 Numerical Accuracy and Convergence Characteristics of LE simulations

LE simulations are frequently used to verify EE simulations, and also used as a bench-

mark in the development of new simulation methods for two–phase flows. However, compar-

ison between the any two simulation types is meaningful only if the numerical errors in both
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simulations are of the same order of magnitude. In the context of numerical accuracy and

convergence characteristics of LE simulations, we ask the following questions:

1. What is the numerical accuracy of estimating interphase source terms, such as, momen-

tum transfer, energy transfer, etc., from a finite number of discrete particles ?

2. What are the numerical convergence characteristics of LE simulations ?

Many studies have demonstrated the non–convergence of popular numerical implementations

of the LE approach to spray modeling (Subramaniam and O’Rourke, 1998; Iyer and Abraham,

1997; Aneja and Abraham, 1998), and also to gas–solid fluidized beds (Sun et al., 2007). A

systematic investigation of the numerical convergence characteristics of the KIVA implemen-

tation of the LE approach led to the conclusions that even global spray characteristics such as

spray penetration length did not show any trend toward convergence to an asymptotic value as

the numerical parameters such as grid size, time step, and computational particles were varied

toward their limiting values (Subramaniam and O’Rourke, 2001). In LE simulations, the mean

interphase transfer terms, such as momentum, energy, mass, etc., are calculated on an Eule-

rian grid from a finite number of particles. Accurate calculation of interphase transfer terms

is absolutely vital to the overall accuracy of two–way coupled particle–laden flow simulations.

In this context, pertinent questions that this work will attempt to answer are:

1. What is the accuracy of various numerical schemes in calculating interphase transfer

terms?

2. Is is possible to obtain numerically (grid) converged estimates for interphase transfer

terms?

In order to address the first question, a series of static test problems that admit an analytical

solution for the mean interphase momentum transfer term are used to asses the accuracy of

popular estimation schemes. An error model similar to the one proposed in Xu and Pope

(1999) is used to decompose the error in estimating mean interphase momentum transfer term

into various components. The error is characterized as a function of number of particles, grid
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resolution, and number of multiple but independent simulations. It is observed that for the

resolution (in terms of the number of particles) used in typical LE simulations, the error in

estimating mean interphase momentum transfer term is as high as 80%.

In traditional LE (TLE) simulations, either real particles or statistically weighted compu-

tational particles are used to represent the dispersed phase. The statistical weight implies the

expected number of real particles represented by each computational particle. Traditionally,

the particles are weighted equally and their weights do no evolve in time. Additionally, the

number of computational particles do not scale with the grid size. With the help of time–

evolving test problem, this study demonstrates the inability of such TLE simulations to yield

numerically converged estimates for the mean interphase momentum transfer term. An im-

proved LE (ILE) approach wherein the statistical weights of computational particles is evolved

in time in order to ensure their near uniform spatial distribution at all times is proposed in this

study. Numerical estimates of the mean interphase momentum transfer term are compared

from two types of estimators: the conventional estimator (Sundaram and Collins, 1996; Boivin

et al., 1998; Narayanan et al., 2002; Patankar and Joseph, 2001; Snider et al., 1998) and a

slightly modified conventional estimator, referred to as the improved estimator. The improved

estimator results in more accurate and faster converging estimates than the conventional esti-

mator. The ILE simulation method along with the improved estimator is shown to result in

more accurate and, as well as, numerically–converged LE simulations.

It is worth mentioning that the implications of our findings and improvements to LE method

are equally applicable to any particle–based LE simulations, such as DNS and LES of two–phase

flows that represent the dispersed phase as point sources. Accurate LE simulation method,

such as ILE, can be reliably used to test new sub–models for particle–particle interaction

term in EE simulations, and serve as a benchmark tool in the development of new simulation

techniques (such as QMOM).
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1.2.4 Development of an open source DEM code for simulations of granular and

gas–particle systems

For gas–particle flows, there are many codes available, both commercial (Fluent) and open

source (CFDlib, MFIX), that can solve the averaged continuum equations (i.e. both phases

represented as continua). Since the discrete particle model currently available in Fluent con-

siders only the stochastic collisions (O’Rourke and Amsden, 1987), it is therefore limited to

describing dilute systems. Similarly, for granular flows, there are commercial and open source

codes available that one can use to simulate. However, MFIX provides a single source code

having the capability to solve equations both for the continuum and the discrete descriptions

that can be used to simulate gas–particle systems, as well as, granular flows.

In the MFIX code, a basic structure for DEM simulations has now existed for a couple

of years. However, MFIX is not as widely used for DEM simulations as it is for continuum

simulations even though it is an excellent opportunity to be able to run different descriptions

from one platform. The reason behind MFIX–DEM modules lesser usage is its lack of reliability.

Besides, the original MFIX–DEM modules were good only for dense and monodisperse systems.

The MFIX–CDM code over the last one year has been extensively debugged and two

new features have been added: 1) ability to run dilute systems, and 2) ability to run any

particle size/density distribution. In order to make it suitable to run dilute systems, a suite

of interpolation routines has been added in order to calculate the drag force on each particle

and also its reverse projection onto the Eulerian grid (details in chapter 5).

1.3 Thesis outline

In Chapter 2, details of the hydrodynamic IBM solver are presented. The quantities com-

puted from ‘true’ DNS using the IBM approach with the interphase momentum transfer term

arising in theoretical approaches to gas–solids flow. This correspondence is described at dif-

ferent levels, starting from the one-particle distribution function and leading naturally to the

averaged equation in that approach. An important connection of IBM quantities with two–

fluid theory is also established. Numerical convergence and validation of the hydrodynamic
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IBM solver are discussed. Drag force from IBM simulations for flow past ordered and random

arrays is compared with the existing the monodisperse drag correlation from LBM simulations.

In Chapter 3, the hydrodynamic IBM solver is extended to solve for passive scalar transport

past ordered and random arrays. Scalar IBM governing equations are related to the averaged

equations solved in the two–fluid theory. Numerical convergence and validation of the scalar

IBM solver are discussed. Average Stokes Nusselt obtained from scalar IBM simulations for

ordered and random arrays is compared with Gunn’s correlation. Local Nusselt number and

local viscous drag are examined along the particle surface in ordered arrays in order to explain

the asymptote of average Stokes Nusselt in the limit of close–packing.

In Chapter 4, the scalar IBM simulations are extended to high Reynolds number up to

Re = 300 for both ordered and random arrays. Average Nusselt number obtained from scalar

IBM simulations is compared with Gunn’s correlation and a new correlation proposed for heat

and mass transfer in gas–solids flow.

In Chapter 5, the accuracy of popularly used interpolation schemes in estimating the mean

interphase momentum transfer term is examined. A series of static test problems that admit

an analytical solution for mean interphase momentum transfer term are performed to sys-

tematically characterize the effects of varying the particle velocity variance, the distribution

of particle positions, and fluid velocity field spectrum on estimation of the mean interphase

momentum transfer term. Numerical error resulting from backward estimation is decomposed

into statistical and deterministic (bias and discretization) components, and their convergence

with number of particles and grid resolution is characterized.

In Chapter 6, an improved LE simulation (ILE) method for volumetrically dilute flow

particle–laden flows is proposed. In addition, an improved estimator is also proposed for more

accurate estimation of mean interphase momentum transfer term. Starting from the one–

particle density function, consistency relationships are derived for statistical equivalence to

hold between TLE and ILE simulations.

Chapter 7, implementation details of the MFIX–DEM code are provided. This document,

when completed, will serve as a theory guide and user manual to the future users of MFIX–
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CDM code.
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CHAPTER 2. DIRECT NUMERICAL SIMULATION OF GAS-SOLIDS

FLOW BASED ON THE IMMERSED BOUNDARY METHOD

This chapter is a manuscript in review titled “Direct numerical simulation of gas-solids

flow based on the immersed boundary method” due to appear as a chapter in the book titled

“Computational gas–solid flows and reacting systems: theory, methods and practice” edited

by S. Pannala, M. Syamlal and T. J. O’Brien. The authors for this chapter are R. Garg, S.

Tenneti, J. M. Yusof, and S. Subramaniam.

2.1 Introduction

Accurate representation of the momentum transfer between particles and fluid is neces-

sary for predictive simulation of gas-solids flow in industrial applications. Such device-level

simulations (Syamlal et al., 1993) are typically based on averaged equations of mass and mo-

mentum conservation corresponding to the fluid and particle phase(s) in gas-solids flow, and

these constitute the multi-fluid theory. The momentum conservation equation in this theory

contains a term representing the average interphase momentum transfer between particles and

fluid. The dependence of this term on flow quantities such as the Reynolds number based on

mean slip velocity, solid volume fraction, and particle size distribution must be modeled in

order to solve the set of averaged equations, and is simply referred to as a drag law. If higher

levels of statistical representation are adopted – such as for the second moment of particle

velocity, or for the particle distribution function – then the corresponding terms (such as the

interphase transfer of kinetic energy in the second velocity moment equations) appearing in

those equations also need to be modeled.

Direct numerical simulation of flow past particles is a first-principles approach to developing
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accurate models for interphase momentum transfer in gas-solids flow at all levels of statistical

closure. While there are different numerical approaches available to perform DNS of gas-solids

flow - such as the lattice Boltzmann method (LBM) - here we describe a DNS approach that

is based on the immersed boundary method (IBM).

2.1.1 Transport of the particle distribution function

The transport equation for the one-particle distribution function in gas-solids flow for

monodisperse case is (Chapman and Cowling, 1953; Koch, 1990; Jenkins and Savage, 1983;

Subramaniam, 2001; Garzo et al., 2007a)

∂f

∂t
+ ∇x · (vf) + ∇v · (〈A|x,v, t〉 f) = ḟcoll, (2.1)

where ḟcoll is the particle–particle collision term. The principal difference between this equation

for solid particles and its counterpart in molecular gases is the appearance of the conditional

expectation of the acceleration inside the velocity derivative corresponding to transport of the

distribution function in velocity space. The conditional expectation of acceleration cannot

be expressed purely in terms of the distribution function, and is hence denoted an unclosed

term in the above equation. It can depend on higher-order distribution functions (e.g., the

two-particle distribution function) in the hierarchy resulting from a description of the particle

system in terms of the Liouville density. It also depends on statistics of the carrier flow. Since

analytical models are difficult to propose for this term beyond dilute particle flow in the Stokes

flow regime, it must be inferred from direct numerical simulation data. Drag laws for steady

flow through homogeneous suspensions are obtained by integrating the conditional expectation

of the acceleration over velocity space to obtain the average force 〈Fd〉 exerted on the particles

by the fluid

〈Fd〉 =
m

n

∫
〈A|v〉 fdv (2.2)

where m is the mass of a particle, and n is the particle number density.
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2.1.2 Homogeneous suspension flow

In order to calculate Fd from DNS, it is natural to simulate a statistically homogeneous

suspension flow with freely moving particles, and to then compute volume-averaged estimates

of Fd from particle acceleration data. Imposing a mean pressure gradient to balance the

weight of the particles leads to a steady mean momentum balance. In this setup the particle

positions and velocities sample a trajectory in phase space that corresponds to the specified

nonequilibrium steady state, and time averaging can be used to improve the estimate for Fd.

However, such freely moving suspensions are computationally prohibitive especially because in

order to propose drag laws these simulations need to be performed over a range of solid volume

fractions and mean flow Reynolds numbers (based on mean slip velocity). Furthermore, over

a wide range of volume fraction and particle Stokes number, the particle configuration in

individual realizations develops spatial structures due to flow instabilities. Wylie and Koch

(2000) performed simulations of a suspension with particles moving along ballistic trajectories

between elastic hard–sphere collisions, but this assumption that the fluid does not affect the

particle motion is valid only in the limit of high Stokes number.

Koch and Hill (2001) discuss the relevant non-dimensional parameters that arise in the

context of gas-solid suspensions. As noted in their work, direct numerical simulations are

useful in developing drag laws for suspension flows where the effects of fluid inertia and the

particle inertia cannot be neglected. In the simulations described in this work we neglect

gravity, so the relevant nondimensional parameters are the Reynolds number (characterizing

the importance of fluid inertia) and the particle Stokes number (characterizing the importance

of particle inertia). While the Stokes flow regime (negligible fluid inertia) is amenable to

analytical treatment, direct simulation is the only approach for gas-solid suspensions at finite

Reynolds number.

2.1.3 Steady flow past homogeneous assemblies of fixed particles

A convenient simplification for high Stokes number suspensions is to replace the ensemble

of particle positions and velocities sampled by the system in its non–equilibrium steady state,
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by a set of particle configurations and velocities that would result from a granular gas sim-

ulation. Steady flow past fixed assemblies of particles in configurations (and with velocities)

sampled from this set is simulated, and drag laws are obtained by averaging over this ensemble.

The idea of extracting drag laws from steady flow past random and ordered arrays of particles

through particle assemblies has been successfully exploited by several researchers using the

LBM simulation methodology developed by Ladd (1994a,b) for particulate suspensions. For

example, Koch and co-workers (Hill et al. (2001a) and Hill et al. (2001b)), referred to collec-

tively as HKL, studied the steady flow past both ordered and random arrays. Kuiper’s and

co-workers (van der Hoef et al. (2005) and Beetstra et al. (2007)), collectively referred to as

BVK, extended HKL’s LBM simulations to higher Reynolds numbers.

In the simplest case of a monodisperse suspension, the drag law is extracted by computing

steady nonturbulent flow at a specified mean slip Reynolds number past a set of random

particle configurations (microstates) that correspond to a particular value of the solid volume

fraction. The pair-correlation and higher-order statistics of the particle field are determined by

the configurations resulting from the granular gas simulation. The particle velocity distribution

can be initialized either from the granular gas simulation at finite granular temperature or it

is often assumed that all particles move with the same velocity.

2.2 Governing equations

The schematic in Fig. 2.1 corresponds to the physical problem of flow past a single particle.

Volumes occupied by the fluid and solid phases are denoted by Vf and Vs, respectively, such

that the total domain volume V = Vf + Vs. The bounding surfaces of the physical domain,

solid-phase, and fluid-phase are denoted by ∂V, ∂Vs, and ∂Vf , respectively. For incompressible

flows, the mass and momentum conservation equations for the fluid-phase are

∂ui

∂xi
= 0, (2.3)

and

ρf
∂ui

∂t
+ ρf

∂uiuj

∂xj
= −gi + µf

∂2ui

∂xj∂xj
=

∂τji

∂xi
, (2.4)
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Figure 2.1 ]A simple schematic of the physical domain with only one parti-
cle. Hatched lines represent the volume Vf occupied by the flu-
id-phase and solid fill represents the volume Vs of the solid-phase
such that the total volume of physical domain V = Vf +Vs. The
bounding surfaces of the physical domain, solid-phase, and flu-
id-phase are denoted by ∂V, ∂Vs, and ∂Vf , respectively.

respectively, where g is the pressure gradient, and ρf and µf are the thermodynamic density

and dynamic viscosity of the fluid-phase, respectively. At the particle-fluid interface, in order

to ensure zero slip and zero penetration (for impermeable surfaces) boundary conditions, the

relative velocity should be zero. If the solid particles are held stationary, then the above

boundary conditions translate to

uf = 0 on ∂Vs, (2.5)

The averaged equations corresponding to these mass and momentum conservation balances

are useful in simulations of practical gas-solids flow applications. In the earlier section we

described one statistical approach based on the one-particle distribution function. Here we first

describe an alternative approach called the Eulerian two-fluid theory because it is more natural

to derive the averaged equations corresponding to Eq. 2.4 using this approach. The conditional

expectation of acceleration appearing in the one-particle distribution function approach is then

related to the mean interphase momentum transfer term in the Eulerian two-fluid theory.

In the Eulerian two-fluid theory phasic averages are defined as follows. If Q (x, t) is any

field, then its phasic average
〈
Q(f)
〉
(x, t) over the fluid volume Vf , referred to as fluid-phase
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mean, is defined as: 〈
Q(f)
〉

(x, t) =
〈If (x, t)Q (x, t)〉

〈If (x, t)〉 , (2.6)

where If (x, t) is an indicator function which is one if the point x lies on the fluid–phase and

zero otherwise.

The solid-phase mean
〈
Q(s)
〉
(x, t) is similarly defined. The (unconditional) mixture mean

〈Q〉 is related to the phasic means by:

〈Q〉 = εf

〈
Q(f)
〉

+ εs

〈
Q(s)
〉

, (2.7)

where εf = 〈If〉 and εs = 〈Is〉 are the volume fractions of the fluid and solid phases, respectively.

If the flow is statistically homogeneous, there is no dependence on x, and spatial derivatives are

zero. Similarly if the flow is statistically stationary, there is no dependence on t, and temporal

derivatives are zero.

The mean momentum conservation equation in the fluid phase (Drew, 1983; Pai and Sub-

ramaniam, 2008) is obtained by multiplying the momentum conservation equation 2.4 by If ,

resulting in

∂ρfεf

〈
u

(f)
i

〉
∂t

+
∂

∂xj
ρfεf

〈
u

(f)
i

〉〈
u

(f)
j

〉
=

∂

∂xj

〈
Ifu

′′(f)
i u

′′(f)
j

〉
+
〈

If
∂τji

∂xj

〉
, (2.8)

where u
′′(f)
i = ui −

〈
u

(f)
i

〉
is the fluctuating component of the fluid velocity field. For steady

flow with an imposed mean pressure gradient in the fluid phase, it is convenient to decompose

the pressure gradient term that appears in the divergence of the fluid phase stress tensor as

g = 〈g〉 + g′, such that remaining part of the stress tensor τ ′
ji is defined by the expression:

∂τji

∂xj
= −〈gi〉 − g′i + µf

∂2ui

∂xj∂xj
= −〈gi〉 +

∂τ ′
ji

∂xj
. (2.9)

For a statistically homogeneous suspension at steady state (statistically stationary flow),

the average velocity does not depend on x or t, and the unsteady and convective terms on

the left hand side of Eq. 2.4 do not contribute. Writing the remaining terms in an integral

form shows that the mean pressure gradient term balances the sum of fluctuating pressure and

viscous stress on the solid particles:

εf 〈gi〉 = −
〈
τ ′
jin

(s)
j δ
(
x − x(I)

)〉
(2.10)
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In the above equation n
(s)
j is the normal vector pointing outward from the particle surface

into the fluid, and the stress tensor is evaluated on the fluid side of the interface. This term

appears as the drag contribution Fgm(vsm − vg) to the fluid-solids interaction force Igm term,

and it is the equivalent expression for Eq. 2.10 in the two-fluid equations derived from a

volume-averaging approach (Syamlal et al., 1993). For statistically homogeneous flows, the

relationships between the one-particle distribution function approach and the Eulerian two-

fluid theory are established in the context of a comprehensive probability density function

approach to multiphase flows (Pai and Subramaniam, 2008). Using the relationships in Pai

and Subramaniam (2008), it is easy to show that the term on the right hand side of Eq. 2.10

is related to the average force exerted by the fluid on the particles as follows:

〈Fd,i〉 = m 〈Ai〉 =
1
n

{
−εs 〈gi〉 +

〈
τ ′
jin

(s)
j δ
(
x − x(I)

)〉}
(2.11)

2.3 The immersed boundary method

The basic notion of the immersed boundary method is to apply a set of forces on the

computational grid to mimic the presence of an interface. This has several advantages over

conventional boundary-fitted grids, especially for problems involving moving interfaces. First,

there is no overhead for grid generation, which can consume considerable computational effort

even for fixed geometries. Second, the convergence of the solvers is generally improved for

Cartesian meshes. Third, these meshes require much less storage overhead than general un-

structured or curvilinear meshes. The primary disadvantage of IBM is the reduced resolution

near the interface, but this is remedied by adopting adaptive mesh techniques. There are two

basic facets of the IBM, namely the choice of flow field (i.e. what velocity field do we wish to

achieve) and calculation of the force itself (i.e. once we decide on the field we wish to achieve,

how do we specify the force at each time-step). For clarity we will separate these two aspects,

dealing with the force specification first.

The immersed boundary method was originally developed by Peskin (1981) as a way to

incorporate the effect of flexible interfaces into fluid simulations. In that version, the local force

is obtained from some constitutive relation commensurate with the nature of the interface (e.g



28

surface tension in the case of a bubble, Youngs modulus for an elastic membrane) and is, by

necessity, iterative over a timestep since the location of the interface is not known a priori.

This method has been applied to a variety of flows, such as bubbles, blood cells and swimming

fish. The issue with this implementation is that it is not efficient for rigid bodies, since this

requires driving the stiffness of the interface membrane (and effectively the stiffness of the

equations to be solved) to infinity.

Goldstein et al. (1993) proposed what is essentially proportional-integral feedback on the

force term to produce boundary conditions on a rigid body. The problem with this method is

the lack of efficiency; due to the need to numerically integrate the force in (pseudo-continuous)

time over a single time-step, the effective CFL limit was extremely small, O(10−3). Coincident

with Goldsteins work, Yusof (1996) developed what is now termed the Discrete-Time Immersed

Boundary Method (DTIBM). The essential aspect of this formulation is the recognition that

examination of the discretized-in-time equations leads to a straightforward definition of the

force at a given point, once we have decided on the required velocity field (and hence the

velocity required at the point in question).

We now turn our attention to the choice of flow field. The implementations to date can

be broadly divided into two classes; ghost fluid and numerical boundary layers. In the former,

the flow field in the region of interest is extrapolated across the interface in such a way as to

impose the desired boundary condition at the interface. This is the method used in the original

implementations of Goldstein et al. (1993) and Yusof (1996), as well as in this work. Such an

implementation is natural in situations where the fictitious flow produced within the rigid body

does not affect the solution and is easily accounted for. This choice has the advantage that the

force applied in the fluid region can be zero; that is, the governing equations are unmodified

in this region. Additionally, the use of the ghost fluid region allows the effect of, for example,

implicit diffusion operators, to be minimized by forcing linear velocity gradients across the

interface.

In the latter method, force applied at the interface is numerically smoothed over several

grid-points, for numerical stability reasons. As used by Peskin, this is a natural implementation,
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since the flow on both sides of the interface is required for the solution. It is possible to use the

numerical boundary layer formulation for rigid body problems, as was done by Verzicco et al.

(2000), where the discrete-time formulation of Yusof was applied with numerical boundary

layers in the fluid side, with exact rigid body fields imposed in the solid.

2.3.1 Solution Approach

Figure 2.2 Schematic of the computational domain with multiple particles
in IBM simulations. Due to periodic boundary conditions, some
particles can intersect the domain boundaries. The bounding
surfaces of the computational domain, solid–phase, and flu-
id–phase are denoted by ∂V, ∂Vs, and ∂Vf , respectively. The
total bounding surface of the domain ∂V = ∂Vext

s ∪∂Vext
f , where

∂Vext
s = ∂V ∩ ∂Vs (shown by curly braces) is the domain sur-

face cut by the solid particles, and ∂Vext
f = ∂V ∩ ∂Vf (shown

by dotted line) is the remaining domain surface. Therefore, the
total bounding surface of the solid–phase is ∂Vs = ∂Vext

s ∪∂V int,
where ∂V int (shown by solid lines) is along the actual surface
area of the solid particles. Similarly, the total bounding surface
of the fluid–phase is ∂Vf = ∂Vext

f ∪ ∂V int. The hatched lines
represent the fluid–phase volume Vf and the solid fill represents
the solid–phase volume Vs, such that the total volume of the
computational domain V = Vs + Vf .

In the immersed boundary method, the mass and momentum equations are solved in the

entire domain that includes the interior regions of the solid particles as well. The mass and
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momentum conservation equations solved in IBM are

∂ui

∂xi
= 0 , (2.12)

and

ρf
∂ui

∂t
+ ρfSi = −gIBM,i + µf

∂2ui

∂xj∂xj
+ fu,i, (2.13)

respectively, where gIBM is the pressure gradient, S = ∇ · (uu) is the convective term in con-

servative form, and u is the instantaneous velocity field. In the above momentum conservation

equation, fu is the additional immersed boundary force term that accounts for the presence

of solid particles in the fluid-phase by ensuring zero slip and zero penetration boundary con-

ditions (Eq. 2.5) at the particle–fluid interface. The immersed boundary force is computed

only at points lying inside the solid particles. At these points, the fluid velocity field is forced

in a manner similar to the ghost cell approach used in standard finite-difference/finite-volume

based methods. Or more specifically for the case of zero solid particle velocity, the velocity

field inside the solid particle at grid points close to the interface is forced to be exact oppo-

site of the fluid velocity filed outside the particle. The details of this forcing approach are

given in Yusof (1996). In Yusofs original implementation, in addition to the interior points, IB

forcing was also computed on the surface of the solid particles that was then interpolated to

the neighboring grid nodes - that could include even the grid points in the fluid-phase. This

additional forcing leads to contamination of the fluid velocity and pressure fields by the IB

forcing, and, therefore, it is not computed anymore. In addition to the forcing the velocity

field, the IB forcing term also cancels the remaining terms in the momentum conservation and,

at the n + 1th time-step, it is given by

fn+1
u,i = ρf

ud
i − un

i

∆t
− ρfS

n
i + gn

i − µf
∂2

∂xj∂xj
un

i , (2.14)

where ud
i is the desired velocity at that location.

Since the immersed boundary force is a function of both space and time, its effect on the

pressure field is accounted by solving a modified pressure Poisson equation given by

∂gIBM,i

∂xi
=

∂

∂xi
fu,i − ρf

∂

∂xi
Si (2.15)
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which is obtained by taking the divergence of the instantaneous momentum conservation equa-

tion (Eq. 2.13).

For the problem of flow past a statistically homogeneous particle assembly, we solve the

IBM governing equations by imposing periodic boundary conditions on fluctuating variables

that are now defined. The schematic of the computational domain in IBM simulations with

multiple particles is shown in Fig. 2.2. Like in the previous section, the bounding surfaces

of the computational domain, solid–phase, and fluid–phase are denoted by ∂V, ∂Vs, and ∂Vf ,

respectively. Due to periodic boundary conditions, it is possible that some particles intersect

the boundaries of the computational domain. Therefore, the total bounding surface of the

domain is decomposed as ∂V = ∂Vext
s ∪∂Vext

f , where ∂Vext
s = ∂V ∩∂Vs (shown by curly braces)

is the domain surface cut by the solid particles, and ∂Vext
f = ∂V ∩ ∂Vf (shown by dotted line)

is the remaining domain surface. Therefore, the total bounding surface of the solid–phase is

∂Vs = ∂Vext
s ∪ ∂V int, where ∂V int (shown by solid lines) is along the actual surface area of the

solid particles. Similarly, the total bounding surface of the fluid–phase is ∂Vf = ∂Vext
f ∪ ∂V int.

The hatched lines represent the fluid–phase volume Vf and the solid fill represents the solid–

phase volume Vs, such that the total volume of the computational domain V = Vs + Vf .

If Q (x, t) is any field, then its volume average 〈Q〉V over the domain volume V, referred to

as volumetric mean, is defined as:

〈Q〉V (t) =

∫
V

Q (x, t) dV

V , (2.16)

where it is noted that the volumetric mean does not depend on x. The fluid–phase
〈
Q(f)
〉
V

and solid–phase
〈
Q(s)
〉
V volumetric averages are similarly defined. For the statistically homo-

geneous suspensions, the volumetric mean 〈Q〉V is an approximation of the true expectation

〈Q〉. In the limit of infinite box–size (i.e., V → ∞), the volumetric mean tends to the true

expectation.

From the definition of volumetric mean, the velocity field can be decomposed as the sum

of a volumetric mean and a fluctuating component

u (x, t) = 〈u〉V (t) + u′ (x, t) , (2.17)
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and similar decompositions can be written for the non-linear term S, pressure gradient g,

and immersed boundary forcing fu terms. Substituting the above decompositions in the mass

(Eq. 2.12) and momentum (Eq. 2.13) conservation equations, followed by volume averaging,

yields the mean mass and momentum conservation equations. Since the volumetric means

are independent of x, mean mass conservation is trivially satisfied. The mean momentum

conservation equation becomes

ρf
∂ 〈ui〉V

∂t
= −〈gIBM,i〉V + 〈fu,i〉V , (2.18)

where it is noted that due to periodic boundary conditions, the volume integrals of convective

and diffusive terms are zero.

While mean mass conservation is trivially satisfied, the fluctuating velocity field needs to

be divergence free, i.e.,
∂ui

∂xi
= 0. (2.19)

Subtracting the mean momentum conservation equation 2.18 from the instantaneous momen-

tum conservation equation 2.13 yields the following equation for the conservation of fluctuating

momentum:

ρf
∂u′

i

∂t
+ ρfS

′
i = −g′i + µf

∂2ui

∂xj∂xj
+ f ′

u,i (2.20)

Taking the divergence of the above equation and using equation 2.19 results in the following

modified pressure Poisson equation for the fluctuating pressure gradient:

∂g′IBM,i

∂xi
=

∂

∂xi
f ′
u,i − ρf

∂

∂xi
S′

i (2.21)

The above conservation equations (Eqs. 2.14, 2.18-2.21) are numerically solved to yield the

flow around immersed bodies. The evolution of the mean velocity 〈u〉V given by Eq. 2.18 is

a function of both the mean IB forcing 〈fu,i〉V and mean pressure gradient 〈gIBM〉V terms.

The mean IB forcing term 〈fu,i〉V is computed by volume averaging the IB force computed by

Eq. 2.14. The estimation of mean pressure gradient 〈gIBM〉V is given in the next section.
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2.3.2 Estimation of mean pressure gradient 〈gIBM〉V

The mean pressure gradient should evolve in a way that is consistent with the true expec-

tation given by Eq. 2.10. The derivation for 〈gIBM〉V begins by volume averaging the IBM

momentum conservation equation 2.13 over the fluid–phase volume. However, before doing

so, a subtle point that arises on volume averaging any quantity over the fluid–phase volume is

noted.

Consider any vector field Q (x, t) that can be expressed as a gradient of some scalar field,

i.e. Q (x, t) = ∇φ. The volume average of Q (x, t) over the fluid–phase volume can be

decomposed as volume average over the entire domain volume V minus the volume average

over the solid–phase volume Vs or∫
Vf

∇φ (x, t)dx =
∫
V

∇φ (x, t)dx −
∫
Vs

∇φ (x, t)dx + R, (2.22)

where R is the remainder term that accounts for the jump in φ at the particle–fluid interface,

and dx is an infinitesimal volume. For a continuous φ field, there is no jump across the

interface and the remainder term will be zero. However, in multiphase flows the shear and

normal stresses are discontinuous across the interface and, therefore, the jump condition as

implied by R should be accounted for 1. Using the Gauss divergence theorem and noting that

∂Vf = ∂Vext
f ∪ ∂V int (see Fig. 2.2), the above volume integral over the fluid–phase volume can

also be written as∫
Vf

∇φ (x, t)dx =
∮

∂Vf

φn(f)dA =
∮

∂Vext
f

φn(ext)dA +
∮

∂V int

φ(f)n(f)dA, (2.23)

where dA is an infinitesimal area, n(f) is the normal vector pointing outward from the interior

fluid surface into the solid, n(ext) is the normal vector pointing outward from the computational

domain. In the second term of the third expression, φ(f) implies the value of φ field on the

fluid side of the particle–fluid interface. Since the φ field is continuous along the computational
1The forcing approach used in IBM results in continuous stress tensors across the interface and there is no

need to account for the jump condition by R. However, we prefer to use a more general approach here that is
consistent with other methods such as the immersed interface method (Lee and Leveque, 2003; Xu and Wang,
2006)
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domain ∂V (due to periodic boundary conditions), there is no need to specify φ as φ(f) in the

first term.

The volume integral of Q (x, t) over the solid–phase volume can be similarly written as∫
Vs

∇φ (x, t)dx =
∮

∂Vs

φn(s)dA =
∮

∂Vext
s

φn(ext)dA +
∮

∂V int

φ(s)n(s)dA, (2.24)

where n(s) = −n(f) is the normal vector pointing outward from the interior solid surface

into the fluid. Substituting the above Eqs. 2.23 and 2.24 into the Eq. 2.22, and noting that

∂V = Vext
s ∪ Vext

f (Fig. 2.2), the remainder term R becomes

R =
∮

∂V int

(φ(f) − φ(s))n(f)dA. (2.25)

With the above derivation of remainder term, we turn back our attention to the derivation

of 〈gIBM〉V . Decomposing the pressure gradient term as gIBM = 〈gIBM〉V +∇ψ, the right hand

side of the momentum conservation equation 2.13 can be written as

∂τ IBM
ji

∂xj
= −〈gIBM,i〉V − ∂ψ

∂xj
+ µf

∂2u′
i

∂xj∂xj
+ fu,i = −〈gIBM,i〉V +

∂τ ′
ji

∂xj
+ fu,i, (2.26)

where the velocity field has been expanded using Eq. 2.17.

Integrating the momentum conservation equation 2.13 over the fluid–phase volume Vf and

using the above expression results in

ρfVf

d
〈
u

(f)
i

〉
V

dt
= −〈gIBM,i〉 Vf +

∫
Vf

∂τ ′
ji

∂xj
dx, (2.27)

where it is noted that the volume average of convective term is zero due to periodic boundary

condition along ∂Vext
f and zero penetration boundary condition on the fluid–particle interface

∂V int. Since the immersed boundary force is zero in the fluid–phase, its volume average over

Vf is also zero. If the IB forcing is calculated at the particle-fluid interface and spread to the

neighboring grid nodes that could lie in the fluid–phase, then the volume average of IB forcing〈
f (f)
u

〉
V

over Vf will be non–zero. As a result of this contamination of the fluid pressure and

velocity fields by the IB forcing, the IBM simulations will not exactly solve for the physical

system that we wish to simulate.
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Using Eq. 2.22 and the definition of R from Eq. 2.25, Eq. 2.27 becomes

ρfVf

d
〈
u

(f)
i

〉
V

dt
= −〈gIBM,i〉V Vf +

∫
V

∂τ ′
ji

∂xj
dx −
∫
Vs

∂τ ′
ji

∂xj
dx +

∮
∂V int

(τ
′(f)
ji − τ

′(s)
ji )n(f)

j dA. (2.28)

The second term in the above equation is zero because the fluctuating stress tensor τ ′
ji is

periodic along ∂V. Using the decomposition in Eq. 2.24 for the third term in the above

equation results in

ρfVf

d
〈
u

(f)
i

〉
V

dt
= −〈gIBM,i〉V Vf −

∮
∂Vext

s

τ ′
jin

(ext)
j dA−

∮
∂V int

τ
′(s)
ji n

(s)
j dA+

∮
∂V int

(τ
′(s)
ji − τ

′(f)
ji )n(s)

j dA,

(2.29)

where n(f) = −n(s) has been substituted in the jump term. The surface integral of τ ′
ji is zero

along ∂Vext
s due to periodicity. Noting the cancellation of two other terms, the above equation

reduces to

ρfVf

d
〈
u

(f)
i

〉
V

dt
= −〈gIBM,i〉V Vf −

∮
∂V int

τ
′(f)
ji n

(s)
j dA. (2.30)

Although the immersed boundary forcing fu ensures zero relative velocity at the particle-

fluid interfaces, for periodic boundary conditions we need to ensure that the desired fluid-phase

mean velocity will be attained. This is because unlike in inflow/outflow boundary conditions

where the flow enters at a specified mass flow rate, there is no such mechanism for periodic

boundary conditions. Therefore, in order to attain a desired fluid-phase mean velocity
〈
u(f)
〉d
V ,

the mean pressure gradient 〈gIBM〉V is advanced in pseudo-time such that at the nth time step

it is given by

−〈gIBM〉nV = ρf

〈
u(f)
〉d
V −
〈
u(f)
〉n
V

∆t
+

1
(1 − εs)V

−
∮

∂V int

ψnn(s)dA + µf

∮
∂V int

∇u
′n · n(s)dA

 ,

(2.31)

where all quantities in the integrand are evaluated on the fluid side of the fluid-particle interface,

and the superscript n implies the relevant quantities at the time step. This equation for

the volumetrically averaged pressure gradient is obtained by substituting a finite difference

approximation for the unsteady term in Eq. 2.30 and expanding τ ′
ji (Eq. 2.26). The first term
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on right hand side of the above equation drives the volume-averaged mean fluid velocity to

its desired value. The mean pressure gradient 〈gIBM〉V from the above equation and mean

immersed boundary forcing term 〈fu〉V are used to evolve the mean velocity by equation 2.18.

For a statistically stationary flow, the equations are evolved in pseudo time until the average

quantities reach a steady state, at which point the first term on the right hand side of Eq. 2.31

is negligible, and Eq. 2.31 reduces to the numerical counterpart of Eq. 2.10. This establishes

that the resulting numerical solution to the IBM governing equations is a valid numerical

solution to steady flow past homogeneous particle assemblies. It is once again noted that the

above equivalence holds only when the IB forcing is zero at grid points lying inside the fluid–

phase. In IBM implementations where the IB forcing is finite in the fluid–phase (such as the

original implementation of Yusof (1996), Uhlmann (2005), etc.), an extra term in the form

of fluid–phase volume average of the IB forcing
〈
f (f)
u

〉
V

will appear in the above expression

for mean pressure gradient; thereby resulting in non–equivalence between the desired physical

system and the actual simulation.

2.4 Simulation Methodology

We now describe how the physical parameters of the problem-mean flow Reynolds number

and solid volume fraction-are specified in the simulation. For flow past homogeneous particle

assemblies, a Reynolds number based on the magnitude of mean slip velocity between the two

phases is defined as

Re =
Uslip (1 − εs) D

νf
, (2.32)

where Uslip =
∣∣〈u(f)
〉
−
〈
u(s)
〉∣∣ is the magnitude of the mean slip velocity, D is the particle

diameter, and
〈
u(f)
〉

and
〈
u(s)
〉

are the fluid–phase and solid–phase mean velocities, respec-

tively. The objective in direct numerical simulations is to solve the instantaneous mass and

momentum conservation equations (Eqs. 2.3 and 2.4) subject to the boundary conditions de-

scribed earlier, in such a way that the resulting volumetric mean slip velocity corresponds to

a desired Reynolds number. This system can be solved in three different ways, namely:

1. Specified mean pressure gradient 〈g〉: In this method (Hill et al., 2001a,b) mean pressure
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gradient is specified as an input and particle velocities are set to zero. As a result, the

mean fluid velocity evolves by Eq. 2.18 and the steady–state solution implies a Reynolds

number. One drawback of this approach is that the Reynolds number cannot be set a

prioro.

2. Specified solid–phase mean velocity
〈
u(s)
〉
: In this method (van der Hoef et al., 2005;

Beetstra et al., 2007) the simulations are carried out in a laboratory frame of reference

wherein the mean velocity 〈u〉 is zero. Therefore, from Eq. 2.7, the desired fluid–phase

mean velocity
〈
u(f)
〉

= − εs
(1−εs)

〈
u(s)
〉
. Substituting this expression for desired fluid-

phase mean velocity
〈
u(f)
〉

in Eq. 2.32 results in an expression for
∣∣〈u(s)
〉∣∣ in terms

of the Reynolds number and other physical properties. In their simulations, the desired

solid-phase mean velocity
∣∣〈u(s)
〉∣∣ is attained by specifying equal velocities to all particles.

3. Specified fluid–phase mean velocity
〈
u(f)
〉
: In this method, particles are assigned zero

velocity. Therefore, from Eq. 2.32, the desired fluid-phase mean velocity
〈
u(f)
〉

is known

in terms of the input Reynolds number and other physical properties.

The advantage of the second and third methods over the first method is that desired Reynolds

number can be specified as an input to the simulation, whereas it is an output in the first

method. However, there is no relative advantage in choosing between the second and third

methods.

The solid volume fraction εs together with the ratio of computational box length to particle

diameter L/D determines the number of solid particles in the simulation:

Ns =
6εs

π

(
L

D

)3

. (2.33)

2.4.1 Numerical parameters

The ratio of computational box length to particle diameter L/D and the number of solid

particles Ns are numerical parameters of the simulation. Their influence on the numerical

convergence of the IBM simulations is discussed in the following subsections.
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The computational box is discretized using M grid cells in each direction, and this intro-

duces a grid resolution parameter. The number of grid cells is calculated as

M =
L

∆x
=

L

D
Dm (2.34)

where L is the length of the computational box, ∆x is the size of each grid cell, and Dm is the

number of grid cells across the diameter of a solid particle. The solution algorithm is advanced

in pseudo-time from specified initial conditions to steady state using a time step ∆t that is

chosen as the minimum of the convective and viscous time steps by the criteria

∆t = CFL × min
{

∆x

umax
,
∆x2 (1 − εs)

νf

}
. (2.35)

At the beginning of the simulation umax =
∣∣〈u(f)
〉∣∣, and as the flow evolves the time step

adapts itself to satisfy the above criteria.

2.4.2 Estimation of mean drag from simulations

Direct numerical simulation of flow through a particle assembly using the immersed bound-

ary method results in velocity and pressure fields on a regular Cartesian grid. The drag force on

the ith particle, Fi
d = m(i)A(i), is computed by integrating the viscous and pressure forces ex-

erted by the fluid on the particle surface. The average drag force on particles in a homogeneous

suspension for µth realization is computed as

{Fd}µ
V =

1
Ns

Ns∑
i=1

m(i)A(i) =
1

Ns

{
−〈gIBM〉V Vs −

∮
∂Vs

ψdA + µf

∮
∂Vs

∇u · dA
}

, (2.36)

which is obtained by integrating the pressure and viscous fields over the surface of each particle.

In the third expression of the above equation, the first term is the force on all particles in the

volume due to mean pressure gradient, the second term is the drag force due to fluctuating

pressure gradient field, and the third term is the viscous contribution to the drag force. This

expression for the drag force is for one realization, and it is then averaged over independent

realizations in order to average over different particle configurations corresponding to the same

solid volume fraction and pair correlation function. The ensemble-averaged drag is

{Fd}V,M =

M∑
µ=1

{Fd}µ
V

M . (2.37)
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which converges to the true expectation of the drag force (given by Eqs. 2.2 and 2.11) in the

limit NsM → ∞. The ensemble-averaged drag force is later reported as a normalized average

drag force given by

F =
{Fd}V,M
FStokes

, (2.38)

where FStokes = 3πµfDUslip (1 − εs) is the Stokes drag force.

Each numerical parameter must be chosen to ensure numerically converged, accurate, and

physically meaningful results. Spatial and temporal discretization contribute to numerical er-

ror in the force on the ith particle that scales as O(∆xp, ∆tq), where p and q depend on the

order of accuracy of the method and the interpolation schemes at the particle boundary. For

steady flow, the numerical error due to spatio–temporal discretization is determined solely by

the spatial resolution parameter ∆x/D = 1/Dm, which must be sufficiently small to ensure

converged results. For the case where the particle positions are chosen to be randomly dis-

tributed, on each realization of the flow the computational domain should be chosen large

enough so that spatial auto-correlation in the particle force decays to zero. This guarantees

that the periodic boundary condition does not introduce artificial effects due to interaction

between the periodic images. For a given solid volume fraction εs, this determines a minimum

value of Ns = εsV�. The number of multiple independent simulations M is determined by

the requirement that the total number of samples
M∑

µ=1
Nµ in the estimate for the average force

given by Eq. 2.37 is sufficiently large to ensure low statistical error.

Owing to the periodic lattice arrangement of particles in ordered arrays, it is sufficient

to solve the flow for just one unit cell (i.e., one particle for the simple cubic (SC) lattice,

and four particles for the face-centered cubic (FCC) lattice). For the special case of ordered

arrays, since the number of particles is pre-determined, the ratio of computational box length

to particle diameter is not an independent numerical parameter. For the ordered arrays, the

only numerical parameter is Dm, which determines the number of grid cells M required to

resolve the flow.
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Figure 2.3 Convergence characteristics of drag force due to fluctuating
pressure gradient (open symbols) and viscous stresses (filled
symbols) for FCC arrays with grid resolution Dm for two CFL
values of 0.2 (squares) and 0.05 (triangles). Re = 40 and volume
fraction εs is equal to 0.2 in (a) and 0.4 in (b).

2.4.3 Numerical Convergence

Here we establish that the IBM simulations result in numerically converged solutions. The

test case chosen is steady flow past an ordered array of particles in a lattice arrangement,

because for this case the only numerical parameter is the grid resolution Dm. Although we

consider steady flows, we also verify that the time step chosen to evolve the flow in pseudo time

from a uniform flow initial condition does not change the steady values of drag that we compute

using IBM. For an FCC arrangement of particles (εs = 0.2 , Re = 40), Fig. 2.3(a) shows the

convergence characteristics of drag forces due to fluctuating pressure gradient (open symbols)

and viscous stresses (filled symbols) as a function of grid resolution Dm for two different values

of CFL equal to 0.2 (squares) and 0.05 (triangles). Fig. 2.3(b) shows the same convergence

characteristics for a denser FCC arrangement with a solid volume fraction of 0.4 and Re = 40.

In both figures it can be seen that the IBM simulation result does not depend on the time step

(CFL). With regard to spatial convergence, the figures show that the resolution requirements

increase with increasing volume fraction. While a minimum resolution of Dm = 20 is needed
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for converged results at εs = 0.2, the minimum resolution requirement increases to Dm = 30

for εs = 0.4. In addition to the dependence of grid resolution on volume fraction, increasing

the Reynolds number also requires progressively higher grid resolution. Therefore, for the IBM

simulations of ordered arrays that are reported later, higher resolutions are used for the same

volume fractions shown in Figures 2.3(a) and 2.3(b), so that the higher Reynolds number

cases are also adequately resolved.

When studying grid convergence of a numerical scheme it is sometimes useful to calculate

the order of convergence that is implied by the numerical tests. However, the use of a regular

Cartesian grid to solve for flow over spheres necessitates interpolation of pressure and viscous

stresses from the grid to a finite number of particle surface points. For ordered arrays these

interpolation errors cause the steady drag values to exhibit a weak dependence on the location

of the particle in the computational box (drag values can differ up to a maximum of 1%).

Even for a fixed particle location in the computational box, the interpolation error depends

on both the number of particle surface points and the grid resolution. These non-systematic

interpolation errors preclude a reliable estimation of the order of convergence of the numerical

scheme, which is formally at least second-order. Although the non-systematic interpolation

errors prohibit the reliable quantification of spatial order of convergence, if a relative error

is defined based on the solution at the finest grid, then a spatial order of convergence in the

range 1.5-2 is obtained for the above cases. In other IBM studies (Ikeno and Kajishima, 2007),

solution on a highly resolved unstructured grid is taken as a reference to compare the IBM

solutions and convergence rates up to second order have been reported.

For the random arrays, in addition to errors arising from finite resolution, errors arise

due to statistical fluctuations between different realizations and the box length is also an

independent numerical parameter. Ideally, the effect of each numerical parameter on the

numerical error should be investigated by varying that parameter while holding the other

numerical parameters at fixed values. However, the choice of some numerical parameters must

satisfy more than one requirement, and some error contributions are determined by the choice

of more than one numerical parameter. Specifically, the choice of L/D is determined by more
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Figure 2.4 Convergence characteristics for random arrays at Re = 20 of the
normalized force with box length to particle diameter ratio L/D

for four different values of Dm equal to 10 (squares), 20 (upper
triangles), 30 (lower triangles), and 40 (right triangles). Solid
volume fraction is equal to 0.3 in (a) and 0.4 in (b). Drag values
have been averaged over 5 multiple independent simulations.
Not all combinations of Dm and L/D are shown because with a
serial code some combinations exceeded computational memory
requirements.

than one requirement (decay of spatial autocorrelation and the need for minimum number of

samples in the average force estimate), and both L/D and the number of multiple independent

simulations M determine the number of samples in the force estimate. These considerations,

as well as computational limitations, did not permit the independent variation of numerical

parameters. Therefore, a limited investigation of numerical parameter variation is presented

here. To place this in context, we note that to our knowledge this is the most comprehensive

study of numerical error and convergence for DNS of gas-solids flow.

While for ordered arrays the box length and number of particles are determined by the

volume fraction and type of lattice arrangement (SC/FCC), in random arrays these parameters

have to be carefully chosen. If L/D is too small, then the spatial autocorrelations that are

larger than the box size will not be captured and the periodic images will interact. For steady

flow past random arrays (εs = 0.3, Re = 20), Fig. 2.4(a) shows the convergence characteristics
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of the normalized force with box length to particle diameter ratio L/D for four different values

of equal to 10 (squares), 20 (upper triangles), 30 (lower triangles), and 40 (right triangles).

Fig. 2.4(b) is the same comparison for the denser random arrays with a volume fraction equal

to 0.4. These results show that the drag value depends on L/D if the simulation is under-

resolved, and the effect of grid resolution Dm is stronger than L/D for the cases considered

here. Once the drag values are at their grid-converged values, there is no statistically significant

dependence for L > 6D in these cases. The simulations of flow past random arrays that are

reported later in this work use higher resolutions when the Reynolds number exceeds 100%,

as shown in Tab. 2.1.

In summary, these numerical convergence test results show that the IBM simulations yield

grid-independent results, and these results are also independent of the choice of time step

used to advance the solution in pseudo time, provided the stability criterion is met. The

tests for random arrays also show that the grid-converged results do not exhibit a statistically

significant dependence on the computational box length for L > 6D. However, these specific

values for the numerical parameters should be treated as tentative because these limited set of

tests cannot establish sharp limits on the minimum resolution required, and further numerical

testing could refine these limits. A satisfactory number of MIS should ideally be determined

by determining the minimum number of samples for a given level of statistical error in the

force estimate. However, this quantity is a strong function of Re and solid volume fraction. In

the plots shown above, we have used 5 MIS for all the cases. While this results in a statistical

error that is on the order of the other numerical error contributions, further testing is needed

to refine this requirement. Clearly, the requirements of minimum L/D, minimum Dm, and

minimum M, together dictate a trade-off for a fixed level of computational work. Of these

parameters, our tests reveal that the numerical error in IBM exhibits the highest sensitivity to

grid resolution Dm. These numerical convergence tests provide useful guidelines in the choice

of these parameters that approximately balance the error contributions, but further testing is

needed for a complete error analysis.
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2.5 Validation Tests

2.5.1 Isolated Sphere

Re

F

10-3 10-2 10-1 100 1011

1.5

2

Figure 2.5 Normalized drag force F in a simple cubic array
(εs = 4.0 × 10−4) as a function of Reynolds number and
angle θ between the mean flow and the x− axis in the (x, y)
plane. The symbols are from the IBM simulations: θ = 0 (�),
θ = π/16 (�). The solid line is the drag correlation for an
isolated sphere in unbounded medium (Schiller and Naumann,
1933).

The flow over an isolated sphere in an unbounded medium presents itself as the logical

validation test for any direct numerical simulation approach to gas-solid flow. However, es-

pecially for simulations that use periodic boundary conditions, this turns out to be a difficult

validation test. For simulations using periodic boundary conditions, flow through a very dilute

simple cubic arrangement is taken as a close approximation to flow over an isolated sphere

in an unbounded medium. Since the simple cubic lattice arrangement is not isotropic, it is

known (Hill et al., 2001b) that the results for drag can depend on the orientation of the flow

with respect to the unit vectors of the lattice for values of Reynolds number beyond the Stokes

flow regime. In contrast, there is of course no preferred direction for flow over an isolated



45

sphere in an unbounded medium.

Fig. 2.5 shows the comparison of the normalized drag force in a simple cubic array (εs =

4.0×10−4) as a function of the Reynolds number from IBM simulations with a well- established

correlation for an isolated particle in an unbounded medium (Schiller and Naumann, 1933).

The drag computed for mean flow oriented at two different angles (θ = 0 (�), θ = π/16 (�))

with respect to the lattice unit vector is shown to illustrate the dependence on flow angle. For

Re < 1 (in the Stokes regime), the normalized drag force is independent of the mean flow angle.

However, the drag from IBM simulations is about 20% higher than the established correlation.

The drag computed from IBM is within 4% of LBM simulations of dilute SC arrays using

periodic boundary conditions. The interactions between the periodic images of the spheres

result in higher drag values than an isolated sphere. It is expected that as the volume fraction

is further reduced, the numerical predictions will get closer to the drag law in the Stokes limit.

The sphere resolution for the simulation shown is equal to 12.8 grid cells. Even more dilute

simulations will require larger computational grids.

For Re > 1, the IBM results are in good agreement with the existing drag law only when

the mean flow is directed at an angle of π/16 in the (x, y) plane. This observation is consistent

with the earlier LBM (Hill et al., 2001b) simulations where the authors argued that for mean

flow angles close to 0 or π/4, the inertial contributions (or pressure gradient contributions) are

reduced due to relatively larger wake interactions than for the case of θ = π/16. The lower

inertial contributions result in a lower value for total drag for those flow angles. For Re < 1

the normalized drag force value is independent of the mean flow angle because momentum

transport is dominated by viscous diffusion. Since diffusion is symmetric about a sphere, the

mean flow angle has no effect on the total drag force in the Stokes regime.

2.5.2 Stokes Flow

Several correlations have been proposed in the literature for the drag force in Stokes flow

past ordered arrays (SC, FCC, BCC) of spheres. Different analytical and numerical techniques,

such as analytical solution to the Stokes equations (Hasimoto, 1959), Galerkin methods (Snyder
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Figure 2.6 Comparison of the normalized drag force F as a function of
the solid volume fraction εs in in Stokes flow past SC and FCC
arrays from IBM simulations (open symbols) with the results
of Zick and Homsy (filled symbols).

and Stewart, 1966; Sorensen and Stewart, 1974a), and the boundary-integral method (Zick

and Homsy, 1982), have been used to determine the drag force in Stokes flow past ordered

arrays as a function of solid volume fraction. Since Zick and Homsy’s results are within 6%

of all the other studies, and include all three ordered configurations for the entire range of

solid volume fraction, their values are used in Fig. 2.6 as a benchmark to compare with IBM

simulations. Fig. 2.6 shows that the IBM simulations are in excellent agreement with reported

values from dilute to close–packed limits. The grid resolution in the IBM simulations for the

FCC cases is 25.24 and 104 grid points per particle diameter, for the minimum and maximum

volume fractions of 0.01 and 0.698 considered, respectively. In the simple cubic cases, Dm is

equal to 40.08 and 149, for the minimum and maximum volume fractions of 0.01 and 0.514,

respectively. The validation tests described in this section show that the IBM simulations

faithfully reproduce many standard results published in the literature. In cases where there

are differences, these are within acceptable limits, and are mostly due to the higher resolution

used in the IBM simulations. Having established that the IBM simulations are numerically
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convergent and having validated them in standard tests, we now use IBM to study drag in

steady flow past ordered and random arrays.

2.6 Ordered Arrays
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εs=0.408
εs=0.514
εs=0.0

Figure 2.7 Comparison of the normalized drag force F for SC arrangement
obtained from IBM (open symbols) simulations with the LBM
simulations (filled symbols) of HKL. The solid line is the Schiller
and Naumann drag law for a single particle in an unbounded
medium. The flow is directed along the x- axis.

Ladd and Verberg (2001) and Hill et al. (2001b) have studied steady flow past ordered

arrays of particles using LBM simulations. Our purpose in revisiting this problem is two-fold.

IBM simulations of flow past ordered arrays serve to further validate the method for cases

where we can compare with published data of Hill et al. (2001b). Secondly, we have more

comprehensively explored the parameter space defined by (Re, εs), especially the low volume

fraction region, with higher numerical resolution than reported thus far in the literature. The

dilute cases are more computationally demanding, and have therefore not received as much

attention. However, the behavior of the drag force in the dilute limit is important because it

defines a limiting behavior that drag correlations are typically constrained to satisfy. Our IBM

simulations in the dilute regime reveal some new insights into the correct limiting behavior

that should be imposed as a constraint on drag correlations. Fig. 2.7 shows the behavior of
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Figure 2.8 Comparison of the normalized drag force F for FCC arrange-
ment obtained from IBM (open symbols) simulations with the
LBM simulations (filled symbols) of HKL. The solid line is the
Schiller and Naumann drag law for a single particle in an un-
bounded medium. The flow is directed along the x- axis.

the normalized drag force obtained from IBM simulations (open symbols) for steady flow past

a SC arrangement of particles as a function of Reynolds number, for volume fractions ranging

from very dilute to close-packed limits. Also shown in the same figure is the comparison

(wherever the data is available) with the LBM simulations (filled symbols) of HKL. Figure 2.8

shows the same comparison for the FCC arrangement. As both figures show, the IBM and LBM

simulations are in excellent agreement. These results serve to further validate the use of IBM for

simulation of flow past homogeneous particle assemblies. The solid line in Figures 2.7 and 2.8

is the Schiller and Naumann drag on a single particle in an unbounded medium. Comparison

with the single sphere drag law (solid line) reveals that for moderate to high Reynolds numbers,

the dilute volume fractions in ordered arrays experience lesser drag than the drag on a single

particle. As observed earlier for the dilute SC array (see Fig. 2.5 and its discussion), and also

studied comprehensively in HKL, the normalized drag force in ordered arrays is a function

of the flow angle. Therefore, in order to avoid the additional parametrization of the problem

by flow angle, all the simulations have been performed for the case where the mean flow is

directed along the x- axis. However, as shown in HKL, a change in the flow angle can result
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in drag values that differ by as much as 200-300% from the zero flow angle case. The main

conclusion to be drawn from these simulations is that the single sphere drag law is not the

asymptotic limit of the dilute ordered arrays data. As we shall see in the next section, the

same is true for random arrays also, although they do not exhibit the strong dependence on

flow angle characteristic of ordered arrays.

2.7 Random Arrays

Fixed assemblies of randomly distributed particles are closer to the freely evolving suspen-

sion problem that we seek to model than ordered arrays. The random arrays are initialized

using a three step algorithm. The details of this algorithm are given in Appendix A and below

only the salient features of this algorithm are discussed. First the particles are arranged in a

lattice arrangement. For dense volume fractions, this could result in domain length extending

beyond the desired box length. In the event of extended box–length, the lattice configura-

tion is shrinked to fit all the particles in the desired volume. This is achieved by applying

a spatially decaying force which is symmetric along the center of the extended lattice box

length. In order to obtain truly homogeneous particle position distributions (either from after

lattice distribution for low volume fractions or from after shrink procedure for denser cases),

the particles are assigned a Gaussian velocity distribution and allowed to collide elastically

using the soft–sphere collision model (Cundall and Strack, 1978). These final equilibrated and

homogeneous particle position distributions are used as input to the IBM simulations.

We have performed IBM simulations with numerical resolutions comparable or higher than

those used in HKL and BVK, again with an emphasis on characterizing the dilute limit, which

is used to as a limiting case constraint to determine drag law coefficients. Later in this section,

the numerical parameters used in the current IBM simulations are compared with those used

in the LBM simulations of HKL and BVK. In the following the principal results underlying

physical mechanisms and their implications for drag laws are discussed.
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Figure 2.9 Normalized drag force F Vs Reynolds number for random con-
figuration at solid volume fraction equal to 0.01. Symbols are
the IBM simulations, where for squares the flow is directed along
the x− axis, and for triangles the flow is directed at an angle
of π/16 in the x − y plane.

2.7.1 Dilute Arrays

Fig. 2.9 shows the dependence of normalized drag force F on the Reynolds number for a

random configuration at a dilute volume fraction of 0.01. Symbols are the IBM simulations,

with square symbols for the mean flow directed along the x− axis, and triangles for the

mean flow directed at an angle of π/16 in the x − y plane. Solid and dashed-dot lines are

the monodisperse drag laws from LBM simulations of HKL and BVK, respectively, and the

dashed line is the single sphere drag law of Schiller and Naumann. Comparison of the IBM

simulations with existing monodisperse drag laws of HKL and BVK shows an excellent match

in the Stokes regime and at low Re, but differences as high as 100−200% in the moderate and

high Re regime. HKL (Hill et al., 2001a) simulated such dilute volume fractions only for the

Stokes regime, but due to the coarse resolution of less than 2 lattice nodes for particle diameter

they did not simulate higher Reynolds numbers for this volume fraction. BVK, on the other

hand, did not simulate any case for εs ≤ 0.1. In HKL, it is noted that due to the approximate

approach used to obtain the inertial contribution (denoted by F3 in their study) to the total

drag, their drag law is a good estimate of the actual drag force over the entire range of Reynolds

number only for relatively high solid volume fractions. This is a plausible explanation for the

departure of IBM simulations from the HKL drag law. The departure of IBM simulations from
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BVK’s monodisperse drag law is attributed to the incorrect constraint imposed on their drag

law to the single–sphere drag correlation at infinite dilution. The BVK drag law assumes that

the drag in random homogeneous suspensions at infinite dilution (i.e., εs → 0 ) should tend to

the drag on an isolated particle. From both IBM and LBM simulations, it is clear that this

assumption does not hold true even at the moderately dilute volume fraction of 0.01.

At low Re, viscous terms that are local (short range) dominate. Since the viscous forces

are short ranged, it is reasonable to expect that at infinite dilution and low Re, the normalized

drag force will approach that of single-sphere drag (i.e., F → 1 as εs → 0 and Re → 0). As the

Reynolds number increases, the contribution from inertial terms dominates the viscous effects,

and since pressure obeys an elliptic equation these are long range (nonlocal) interactions. For

moderate to high Reynolds numbers flow past random arrays, even for fairly dilute solid volume

fractions the simulation data do not support the assumption of constraining the drag law to

approach that of single-sphere.

Similar to the observations for ordered arrays (Figures 2.7 and 2.8), the drag force on dilute

suspensions for moderate to high Reynolds numbers is less than the drag force experienced

by an isolated particle in an unbounded medium. However, unlike in ordered arrays, the drag

force in random arrays is not dependent on the flow angle due to isotropy of the particle

configuration. For ordered arrays, the strong influence of flow angle on the drag force at

moderate to high Reynolds numbers is attributed by HKL to the different length scales at

which the inertial contributions interact. The distribution of neighbor particles in ordered

arrays is anisotropic, and the pair correlation function is sharply peaked at the lattice points.

However, in the random particle configurations generated by elastic soft–sphere collisions,

the pair correlation is isotropic. Therefore, the drag force is insensitive to flow angle for all

Reynolds numbers in random arrays.

2.7.2 Moderately Dilute to Dense Arrays

Fig. 2.10 shows the comparison of normalized drag force in random arrays for volume

fractions equal to 0.1 and 0.2 obtained from IBM simulations (open symbols) with the existing
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Figure 2.10 Comparison of the normalized drag force F for random arrays
at volume fractions equal to 0.1 and 0.2 from IBM simulations
(open symbols) with the monodisperse drag laws of HKL and
BVK.

monodisperse drag laws of HKL and BVK. Fig. 2.11 shows the same comparison for volume

fractions equal to 0.3 and 0.4. It can be seen that IBM simulations are in excellent agreement

with HKL’s drag law for Re up to 100, which is nearly the upper limit of Reynolds number

simulated by HKL. The extension of their drag law to higher Re does not agree well with IBM

simulations as the solid volume fraction is reduced. This is attributed to the observation made

in HKL that their drag law is a good estimate of the actual drag force over a wide range of

Reynolds number only for relatively high solid volume fractions.
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Figure 2.11 Comparison of the normalized drag force F for random arrays
at volume fractions equal to 0.3 and 0.4 from IBM simulations
(open symbols) with the monodisperse drag laws of HKL and
BVK.
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2.7.3 Numerical Parameters and Resolution

Choosing the numerical resolution for random arrays or a fixed level of computational work

should be based on an optimal combination of box-size and grid resolution. Tab. 2.1 compares

the numerical resolutions for different volume fractions used in our IBM simulations with those

used in LBM simulations of HKL and BVK. It is noted that not all choices of the numerical

parameters for IBM are in the “resolved” range as determined by our limited set of numerical

convergence tests. However, as noted earlier, these tests are themselves not comprehensive,

and so ultimately the choice of numerical parameters reflects an attempt to balance various

contributions to the numerical error. Given the relatively low sensitivity of the mean drag

force to L/D ratio in IBM, we have used values from past LBM simulations as a guideline,

choosing higher grid resolution over larger box size in some of our IBM simulations.

For HKL, the numerical resolutions are those used for the maximum Reynolds numbers

and are taken from Tab. 2.1 in Hill et al. (2001b). For Stokes flow, HKL have used similar

numerical resolution for εs ≥ 0.1. However, for very dilute volume fractions, very coarse

resolutions of less than 2 lattice nodes across a particle diameter have been used. In BVK,

a constant resolution of 17.5 lattice units across a particle diameter was used for εs ≤ 0.2 ,

and for higher volume fractions, their results were obtained by averaging over two resolutions

of 17.5 and 25.5 lattice units. Therefore, in Tab. 2.1, we have used the average value of 21.5

lattice units to report their resolutions for εs≥0.3 . In both the studies, random configurations

for volume fraction less than 0.1 were not simulated for the entire range of Reynolds numbers

and, as a result, there is no numerical resolution comparison for εs = 0.01. The table shows

that the IBM simulations are consistently better resolved in terms of the number of particles,

grid resolution, and the box-size. BVK performed greater number of MIS but the scatter in

IBM data does not point to a need for such high number of MIS. Therefore, normalized drag

values averaged over 5 MIS are reported here.
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εs Ns (M) Dm L/D

0.01 –
–
64 (5), 13 (5)

–
–
10, 20

–
–
15, 9

0.1 16 (5)
54 (20)
80 (5), 41 (5)

9.6
17.5
20,30

4.38
6.6
7.5, 6

0.2 16 (5)
54 (20)
161 (5), 34 (5)

17.6
17.5
20, 40

3.47
5.2
7.5, 4.5

0.3 16 (5)
54 (20)
71 (5), 26 (5)

17.6
21.5
30, 50

3.06
3.07
5, 3.6

0.4 16 (5)
54 (20)
95 (5), 20 (5)

33.6
21.5
30, 60

2.73
4.13
5, 3

Table 2.1 Comparison of the numerical resolutions used for random arrays
in IBM simulations with the past LBM simulations of HKL and
BVK. For each entry, first and second rows correspond, respec-
tively, to the LBM simulations of HKL and BVK, and the third
row corresponds to the current IBM simulations. For the IBM
simulations, the numbers before and after “,” are, respectively,
the resolutions for Re ≤ 100 and Re > 100 .
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2.8 Summary

IBM simulations show an excellent match with the drag correlations proposed by HKL and

BVK for low Reynolds number for both dilute and moderately dense random arrays. However,

the IBM simulations show a significant departure from these correlations at higher Re, and

for dilute cases. The drag law proposed by HKL is stated to be more reliable for all Reynolds

numbers only at higher volume fraction. The BVK drag correlation is proposed based on a fit

to 5 drag values over a wide range of Reynolds number, and their simulations appear to be

susceptible to numerical resolution errors. For a given volume fraction, they used a constant

resolution of the particle diameter to simulate Reynolds numbers ranging from 21 to 1000.

As the volume fraction is increased, the number of grid/lattice nodes in the gaps between the

spheres decrease and a progressively higher grid resolution is required. In the HKL study the

particle resolution was increased from 9.6 lattice units per particle diameter for the lowest

volume fraction of 0.1 to 41.6 lattice units for the highest volume fraction of 0.641, which is

a four–fold increase. However, in the BVK study the particle resolution increased by only a

fraction for a wide volume fraction range of 0.1-0.6. The IBM simulations suggest that a more

complete parametric study at high resolution could significantly revise these existing drag laws.

2.9 Assessment of IBM for drag law formulation

Simulations of steady flow past homogeneous particle assemblies using IBM reveal that

fundamentally differing computational approaches to gas-solids flow are in remarkably good

agreement for a wide variety of test cases. Overall this is strong evidence of the consistency be-

tween different computational approaches to the problem of drag law formulation in gas-solids

flow, which is difficult to study through experiment. However, all computational predictions

of drag in gas-solids flow are subject to uncertainties arising from numerical error, and should

be interpreted as accurate only within 5%. In the following we compare and contrast the IBM

approach with LBM, which is a popular computational approach for gas-solids flow.

While IBM solves the continuum Navier-Stokes equations, LBM solves for the discrete one–

particle velocity distribution function whose evolution is described by the lattice Boltzmann
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equation (He and Luo, 1997). It is useful to think of LBM as a solution to the lattice Boltz-

mann equation, which is obtained by Hermite–Gauss quadrature of the modeled Boltzmann

equation. LBM fundamentally differs from continuum solutions to Navier-Stokes equations like

IBM because it directly solves for a discrete form of the velocity distribution function at the

molecular level. From the LBM solution the hydrodynamic mean fields such as fluid velocity

and pressure can be calculated. Since LBM operations are local in physical space, it avoids

solving the elliptic pressure Poisson equation that is needed in incompressible continuum flow

solvers. This paves way for efficient parallelization of LBM, which has opened door to solving

realistic flow problems (Chen and Doolen, 1998). However there are some issues worth con-

sidering when using LBM for gas-solids suspension. The restriction of molecular velocities to

discrete values on a lattice is now known to be unnecessary, and even undesirable for many flow

problems, especially in multiphase flow (Fox, 2008). Another feature of LBM is that it always

results in a compressible flow solution, and as a result the solution of incompressible flow at

high Reynolds numbers is challenging. In order to reduce the errors due to compressibility ef-

fects at higher Reynolds numbers, the viscosity of the fluid has to be reduced (Ladd, 1994a,b).

In the particular implementation of LBM used for gas-solids flow (Hill et al., 2001a; van der

Hoef et al., 2005), the collision term appearing in the evolution equation is modeled using a

linearized collision operator that allows for multiple relaxation time scales (Ladd, 1994a,b).

When we consider suspension flows, other differences arise between IBM and LBM. In

LBM the spherical particle is represented by a stair-step lattice approximation, that is, the

surface is represented by a set of lattice sites closest to the input diameter D0. Due to this

discrete representation of the particle surface, the exact value of the diameter is not known

a priori. Furthermore, the bounce–back scheme used to implement the no slip boundary

condition at the particle–fluid interface shifts the actual boundary layer. Therefore, the drag

values in LBM simulations are reported in terms of an effective hydrodynamic diameter Dh.

The hydrodynamic diameter depends on the fluid viscosity as well as the particle size. For

every choice of kinematic viscosity and particle diameter D0, the hydrodynamic diameter Dh

is obtained by calibrating the LBM simulations against the analytical solution of Hasimoto
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(1959) for Stokes flow in dilute SC arrangement of spheres. It is important to note that

the volume fractions and drag computations are based on Dh and not on the input diameter

D0. The input diameter D0 is only used to compute distances in the bounce–back scheme to

implement boundary conditions at the particle-fluid interface. The calibration requirement in

LBM simulations in terms of hydrodynamic diameter is not needed in IBM. It is also interesting

to note that the drag on the particle reported using D0 gives first order convergence whereas

drag reported using Dh results in approximately quadratic convergence (Ladd and Verberg,

2001). However, this convergence rate is not independent of the kinematic viscosity of the

fluid. Even though the calibration of hydrodynamic diameter is done for a single sphere, the

same calibration is used for simulating dense ordered suspensions in the Stokes regime (Ladd,

1994a,b) as well as random arrays at higher Reynolds number (Hill et al., 2001a; van der Hoef

et al., 2005).

LBM is a highly efficient and robust solution methodology for gas-solids flow. Overall,

it appears that LBM results for mean drag are relatively insensitive to grid resolution when

compared with IBM. However, this insensitivity of the LBM solution to grid resolution should

be carefully interpreted because LBM yields stable solutions even when the flow is highly

under–resolved. For instance, Beetstra et al. (2007) show that the drag force for a dense

random packing of 0.5 at Reynolds number equal to 1049 is insensitive to the grid resolution

in the range 10 to 50 lattice units per particle diameter. However, for these grid resolutions

it is clear that the boundary layers around the particles cannot be resolved at such a high

Reynolds number. Some studies also report greater sensitivity of LBM to grid resolution. For

example, in the monodisperse simulations of van der Hoef et al. (2005) at a volume fraction of

0.5 in the Stokes flow regime, a strong dependence of the drag force on the grid resolution and

kinematic viscosity is observed. The sensitivity of IBM results to grid resolution has already

been discussed, and we find that the IBM results for the surface viscous stress show the correct

increasing trend with increasing grid resolution as the velocity gradients are better resolved. If

IBM is used to simulate high Reynolds number flows with insufficient resolution (e.g., Re > 500

with grid resolution in Tab. 2.1), the solution becomes unstable because of the non-dissipative
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second-order upwind schemes that have been incorporated for high accuracy. This informs

the IBM user that higher grid resolution should be employed to obtain stable and accurate

solutions.

From the preceding discussion we can see that IBM has some unique advantages in solving

gas-solids flow problems that derive from its solution approach to the continuum Navier-Stokes

equations. By virtue of its implementation into structured Cartesian grid solvers, it incurs

minimal increase in computational cost with increasing number of particles. To give a rough

idea of the order of magnitude of the increase in computational cost, the increase is only about

25% going from 2 particles to 97 particles, but the exact value depends on the Reynolds number

and volume fraction. The results presented in this chapter show that IBM yields numerically

convergent solutions to important hydrodynamic problems in gas-solids flow, which compare

well with many established results in the literature. We also find that this powerful tool is

capable of giving additional insight into the important limiting case of steady flow past dilute

random arrays. Also a more thorough exploration of the volume fraction-Reynolds number

parameter space suggests significant changes to existing drag correlations may be required. In

the next section we outline future directions for IBM as a computational method for solving

gas-solids flow problems.

2.10 Conclusion

IBM is a powerful and efficient computational method for direct numerical simulation of

gas–solids flow. This contribution connects the quantities computed from DNS using the IBM

approach with the interphase momentum transfer term arising in theoretical approaches to

gas–solids flow. This correspondence is described at different levels, starting from the one-

particle distribution function and leading naturally to the averaged equation in that approach.

An important connection of IBM quantities with two-fluid theory is also established. The

numerical convergence of IBM is established and its performance in various validation tests

is described. It is shown that IBM simulations reproduce known results for the average drag

in Stokes flow past ordered arrays. For random arrays, the IBM results reveal interesting
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insights in the dilute limit, and suggest changes to existing drag laws may be required following

comprehensive exploration of the Reynolds number-solid volume fraction parameter space.

The IBM approach is versatile, and can be extended to include effects of gas-phase turbulence,

polydispersity in the size distribution of solid particles, and transport of chemical species and

heat due to fluid flow.
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CHAPTER 3. SCALAR TRANSPORT AND HEAT TRANSFER PAST

ORDERED AND RANDOM ARRAYS OF MONODISPERSE SPHERES

IN STOKES FLOW

This chapter is a manuscript in preparation titled “Scalar transport and heat transfer past

ordered and random arrays of monodisperse spheres in Stokes flow regime” authored by R.

Garg, M. G. Pai, S. Tenneti, and S. Subramaniam.

The average Stokes Nusselt number Nu0 in random arrays (defined as the Nusselt number in

the limit of creeping flow) has been a subject of much controversy in the past, and correlations

differing by orders of magnitude have been proposed. Some correlations predict a Stokes

Nusselt number Nu0 value of less than 2 (which is the Stokes Nusselt number value for an

isolated particle) and tending to zero (Kunii and Smith, 1961; Littman et al., 1968; Cybulski

et al., 1975), while others predicted values as high as 10 (Gunn and Desouza, 1974) and

13 (Pfeffer and Happel, 1964). In this work, we perform direct numerical simulation (DNS) of

passive scalar transport in flow past stationary simple cubic (SC), face–centered cubic (FCC),

and random arrays of spheres in the Stokes flow regime. The direct forcing immersed boundary

method (IBM) of Yusof (1996), which has been successfully used in the last chapter to simulate

the flow past particle configurations up to the close packing limit, is extended to solve for

passive scalar transport. The ensemble average scalar transport equations are derived, and

the resulting unclosed interphase heat transfer term is related to the average Nusselt number.

From the scalar IBM simulation, the average Stokes Nusselt number Nu0 is obtained as a

function of solid volume fraction εs for SC, FCC, and random arrays. Comparison of Nu0 from

our simulations with the widely used heat and mass transfer correlation of Gunn (1978) for

fixed and fluidized beds shows that Gunn’s correlation always underpredicts Nu0 for all values
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of solid volume fractions and differs by as much as 300% for the highest solid volume fraction

of 0.5 that is considered in this study. A correlation for Nu0 in random arrays corresponding

to the gas–solid systems (Prandtl number Pr = 0.7) as a function of the solid volume fraction

up to εs = 0.5 is proposed as

Nu0(εs) = 2 +
1

(1 − εs)
3

(
10.35εs + 5.51ε2

s − 18.16ε3/2
s + 1.63ε1/3

s

)
.

From investigation of the local Nusselt number along particle surfaces in ordered arrays, it

is found that (in the Stokes flow regime) the maxima and minima of local Nusselt number occur

in the regions of widest and narrowest flow channels, respectively. This observation motivates

the study of second–order effects due to inter–particle distance on the average Stokes Nusselt

number in random arrays. Average inter–particle distance can be quantified by hard–core

distance hc, which is defined as the minimum distance between the centers of any two particles.

In order to generate random arrays having the same volume fraction and number density

but differing in hard–core distance, a three–step random particle configuration generation

algorithm is developed that can be used up to εs = 0.5. Scalar IBM simulations of such

random configurations differing in hard–core distance reveal that the Stokes Nusselt number

increases as a result of increasing hard–core distance. The dependence on hard–core distance

increases with solid volume fraction εs and vanishes in the limit of infinite dilution.

3.1 Introduction

Gas–solid flows are ubiquitous in nature and are encountered in many industrial appli-

cations. For example, gas–solid fluidized beds are used in a variety of industries, such as

food, power–generation, metallurgical, and pharmaceutical. There is also a renewed interest

in studying these flows in the context of biomass energy generation and chemical looping com-

bustion (Shen et al., 2009), which are examples of emerging technologies for environmentally

friendly energy generation. One of the challenges in the development of these technologies is

the design and scale-up of the components involving particle-laden flow. Fluidized beds and

pneumatic transport lines where particle–laden flows are usually encountered are notoriously

hard to design and scale up. CFD (Syamlal et al., 1993; Kashiwa and Gaffney, 2003; Sun



62

et al., 2007) simulations of such systems provide an efficient means to optimize design as the

experiments are often costly and also time consuming. Since the averaged equations governing

mass, momentum, and energy that are solved in CFD simulations are obtained by statistical

averaging procedure (Anderson and Jackson, 1967a; Drew and Passman, 1998) the average

interaction terms corresponding to mass, momentum, and energy exchange between different

phases are modeled through empirical correlations from experimental, theoretical, and numer-

ical studies. Therefore, the accuracy of such CFD simulations is only as good as that of the

correlations.

This study focuses on heat and mass transfer in fluidized and fixed beds which are generally

quantified by correlations for average Nusselt Nu number and average Sherwood number,

respectively. The average Nusselt number in fluidized and fixed beds is a function of mean

flow Reynolds number Re, solid volume fraction εs, and Prandtl Pr number. Similarly, the

average Sherwood number by heat and mass transfer is analog is dependent on mean flow

Reynolds number, solid volume fraction, and Schimdt number. In this study, the attention is

restricted to the special case of gas-solid flows for which the typical value of Prandtl number

is equal to 0.7. Also, the study is restricted to Stokes/creeping flow regime, i.e., Re → 0.

A review of the literature reveals wide disparity in the values for average Stokes Nusselt

number Nu0 – defined as the average Nusselt number in the Stokes flow regime. Most correla-

tions are developed by combining a few point–wise measurements with a model for heat transfer

in gas–solid flow. Experimental measurement of heat transfer in gas–solid flow is challenging

because of limited optical access. It is also difficult to isolate the errors arising from modeling

assumptions from the experimental measurement errors. Therefore, we employ a ‘true’ direct

numerical simulation (DNS) where we solve the extended Navier–Stokes equations with exact

boundary condition’s imposed on each particle’s surface. The ‘true’ DNS approach is different

from point–particle DNS that have been widely reported in the literature. Since point–particle

DNS itself uses a model for the interphase interactions, it cannot be used to develop models.

However, in ‘true’ DNS, the volume occupied by each particle is represented by finite number

of grid points and exact boundary conditions (no slip, and also no penetration for imperme-
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able surfaces) are satisfied at the fluid–particle interface. True DNS is needed if one desires

model free simulations from which flow physics can be referred, such as Lattice Boltzmann

simulations which have recently been used to propose correlations for drag force on monodis-

perse (Hill et al., 2001b) and bidisperse (Beetstra et al., 2007) assemblies of homogeneously

distributed stationary particles.

Figure 3.1 Schematic of various heat transfer mechanisms in suspensions.

The drag force on particles in a suspension is the sum of forces resulting from viscous and

pressure stress tensors. Besides, the mean drag force acting on a suspension can easily be

related to mean pressure gradient across the column (in experiments), or the computational

box (in numerical simulations). However, unlike the momentum transfer, heat transfer in

suspensions is a complicated process as the heat can be transferred due to multiple mechanisms.

The schematic in Fig. 3.1 shows through resistances various mechanisms of inter and intra

phase heat transfer in a suspension. As the schematic shows, heat can be transferred through

radiative exchanges (σ) between particles, free (hfree) and forced (hforced) convection at the

fluid–solid interphases, and simple conduction in fluid (kf) and solid (ks) phases. Also shown

is the heat transfer as a result of conduction (kcp) between two touching particles.

The large discrepancies in existing heat transfer correlations is now discussed in some de-

tail. There is a plethora of experimental literature spanning over the last 7 decades (see Wakao
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and Kaguei (1982) for a comprehensive review) on heat and mass transfer in packed gas–solid

and liquid–solid fixed–bed reactors. Various experimental techniques, such as axial heat con-

duction in beds (Kunii and Smith, 1961), step response (Handley and Heggs, 1968), frequency

response (Gunn and Desouza, 1974; Littman et al., 1968), and shot response (Shen et al., 1981;

Wakao et al., 1977), have been used to study heat and mass transfer in fixed–beds. These ex-

perimental studies have reported values for the average Stokes Nusselt number in packed beds

(εs ≈ 0.6) that differ by orders of magnitude. For an isolated particle (εs → 0) in an unbounded

medium, average Stokes Nusselt number value of 2 is theoretically known. However, exper-

imental studies on packed beds have reported values for average Stokes Nusselt number on

both sides of isolated particle Nusselt number value. For example, some experimental studies

on packed beds suggested anomalous average Stokes Nusselt number values less than 2 and

tending to zero (Kunii and Smith, 1961; Littman et al., 1968; Cybulski et al., 1975), whiles

others reported values greater than 2 and as high as 13 (Pfeffer and Happel, 1964). In some

cases, studies using the same experimental technique have drawn divergent conclusions. For

example, although both Gunn and Desouza (1974) and Littman et al. (1968) used the fre-

quency response technique, while Gunn and Desouza (1974) reported average Stokes Nusselt

number greater than 2 and tending to 10 1, Littman et al. (1968) reported average Stokes

Nusselt number approaching zero.

These large differences in the average Stokes Nusselt number could be due to the different

models used in these studies to infer the gas–particle heat transfer coefficient. A very detailed

analysis of the three primary models used in various experimental studies is given in Wakao

and Kaguei (1982), and only the key points and fundamental equations of each model are given

below:

1. Schumann Model (Schumann, 1929): It is the simplest of the three models. Ideal plug

flow is assumed for the fluid–phase and no diffusion is considered in both the fluid and

solid phases, i.e., zero temperature gradient within the particle. Under these assumptions,
1Due to the low sensitivity to frequency response measurement technique for Re < 1, Gunn and Desouza

(1974) measurements were limited to Re = 1, based on which they predicted a limiting average Nusselt number
value of 10 for packed beds.
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the fundamental equations used to model heat transfer in the fluid and solid phases,

respectively, are
∂Tf

∂t
= −U

∂Tf

∂x
− hPσA

(1 − εs)Cpfρf
(Tf − Ts), (3.1)

and

εs
∂Ts

∂t
=

hPσA

Cpsρs
(Tf − Ts). (3.2)

In the above equations, the subscripts F and S are, respectively, for the fluid and solid

phases. T is the temperature, C is the specific heat, k is the thermal conductivity, εs is

the solid volume fraction, σA is the particle surface area per unit volume or the interfacial

area density, and hP is the particle-to-fluid heat transfer coefficient.

2. Continuous–Solid (C–S) phase model : In this model, proposed by Littman et al. (1968),

in addition to assuming an ideal plug flow in the fluid–phase, the solid–phase is also

assumed to be continuous. Additionally, axial conduction is also considered in both

phases. Therefore, the fundamental equations used to model heat transfer in the fluid

and solid phases, respectively, are

∂Tf

∂t
=

kef

(1 − εs)Cpfρf

∂2Tf

∂x2
− U

∂Tf

∂x
− hPσA

(1 − εs)Cpfρf
(Tf − Ts), (3.3)

and

εs
∂Ts

∂t
=

kes

Cpsρs

∂2Ts

∂x2
+

hPσA

Cpsρs
(Tf − Ts). (3.4)

In the above equations, kef and kes are the effective thermal conductivities of the fluid

and solid phases, respectively.

3. Dispersion–Concentric (D–C) model : In this method, the fluid is assumed to be in the

dispersed plug flow mode and a radially symmetric or concentric temperature profile is

assumed inside each particle. For this model, the fundamental equations for heat transfer

in the fluid and solid phases, respectively, are

∂Tf

∂t
= αax

∂2Tf

∂x2
− U

∂Tf

∂x
− σA

(1 − εs)Cpfρf
ks

(
∂Ts

∂r

)
R

, (3.5)

and
∂Ts

∂t
=

ks

Cpsρs

1
r2

∂

∂r

(
r2 ∂Ts

∂r

)
R

, (3.6)
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with

ks
∂Ts

∂r
= hP (Tf − Ts) at r = R. (3.7)

In the above equations, αax is the axial fluid thermal diffusion coefficient. In the original

D–C model, by analogy with mass diffusion, the following function form for αax is chosen:

αorig
ax = (0.6 ∼ 0.8)αf for Re < 1,

= (0.6 ∼ 0.8)αf + 0.5DPU for Re < 5, (3.8)

where αf = kf/ρfCpf is the thermal diffusion coefficient of the fluid–phase.

Even though the three models differ in their treatment of heat transport in each phase,

all of them lead to anomalous values of less than 2 for the average Stokes Nusselt number in

packed beds. Each study proposed a different mechanism to explain this anomaly (see Wakao

et al. (1978) and Wakao and Kaguei (1982) for various proposed mechanisms). However, Gunn

and Desouza (1974) obtained a limiting average Nusselt number value of 10 at Re = 1 for

packed–bed from frequency response experiments, which contradicts findings from earlier ex-

perimental studies. In their experiments they observed that at low Re (Re < 10), heat transfer

was dominated by axial diffusion, where axial diffusion is defined as the component of the

conductive flux aligned with the mean flow direction. Based on findings of Gunn and Desouza

(1974), Wakao et al. (1978) re–evaluated the data from all the experiments that had considered

axial diffusion by using the D-C model. Based on analogy with mass transfer, Wakao et al.

(1978) suggested the following form for the average Nusselt number in packed beds:

Nu = 2 + 1.1 Pr1/3Re0.6. (3.9)

It can be seen that this correlation yields an average Stokes Nusselt number of exactly 2 for

a packed bed. Wakao et al. (1978) proposed this correlation because of the lack of confidence

in experimental data at low Re even though enough experimental studies suggested higher

values for the average Stokes Nusselt number. For example, the frequency response experiment

of Gunn and Desouza (1974) predicted an average Stokes Nusselt number value of 10. Sorensen

and Stewart (1974b) studied the creeping flow through simple cubic arrangement of spheres and
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obtained an average Stokes Nusselt number of about 4. Using the free surface model, Pfeffer and

Happel (1964) obtained an average Stokes Nusselt number value of about 13 as the Reynolds

number dropped to zero in a bed with a solid volume fraction εs of 0.6.

In a subsequent study, (Gunn, 1978) used a stochastic model to describe flow sections in

random–packed beds in terms of well–defined geometries under well–defined flow conditions.

Using analytically known results for convective and diffusive heat transport for such well–

defined geometries under well–defined conditions, he related the convective and diffusive heat

transport in random–packed beds to these geometries through a simple stochastic model. Us-

ing this statistical representation, Gunn argued that the inclusion of axial diffusion does not

alter the asymptotic value of the average Stokes Nusselt number. However, this conclusion con-

tradicts his earlier observation concerning the importance of axial diffusion in low Reynolds

number regime in (Gunn and Desouza, 1974). Based on this stochastic model for low Re,

and using the experimental data for higher Reynolds numbers, Gunn (1978) proposed a single

correlation for particle-to-fluid heat and mass transfer in both fixed and fluidized beds of the

form

Nu =
(
7 − 10εb + 5ε2

b

) (
1 + 0.7Re0.2Pr1/3

)
+
(
1.33 − 2.4εb + 1.2ε2

b

)
Re0.7Pr1/3, (3.10)

where εb = 1 − εs is the bed porosity. This expression is valid in the bed porosity range

0.35 ≤ εb ≤ 1.0 and for Re ≤ 105. For the case of mass transfer, the average Sherwood number

is to substituted for the average Nusselt number Nu, and the Schmidt number for Prandtl

number in this correlation. This correlation has been widely used in the CFD simulations of

two–phase flows (Syamlal et al., 1993) to simulate heat and mass transfer in both gas–solid

and liquid–solid flows.

It is clear from this brief review of experimental studies that there is no consensus on what

the average Stokes Nusselt number behavior is a function of solid volume fraction εs. In this

work, heat transfer is studied in fixed beds by simulating steady Stokes flow past homogeneous

arrays of spherical particles. The direct–forcing immersed boundary method (IBM) originally

developed by Yusof (1996) for simulating flow past assembly of particles, and successfully

extended to solve steady flow past homogeneous arrays of spherical particles in the previous
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chapter, is extended to solve for passive scalar transport past homogeneous particle assemblies.

The Nusselt number in fixed and fluidized beds is a function of solid volume fraction εs,

Reynolds number Re, and Prandtl number Pr. In this study, we restrict ourselves to gas–

solid systems where the typical value of Prandtl number is equal to 0.7. For the same volume

fraction and number density, it is possible to have random configurations with different hard–

core distances hc, which is defined as the minimum distance between the centers of any two

particles. The second–order effect of hard–core distance on the average Stokes Nusselt number

is studied by simulating random arrays, having same solid volume fraction and number density,

for different values of hard–core distance.

3.2 Governing Equations

The governing equations for mass and momentum conservation in the fluid–phase are given

by Eqs. 2.3 and 2.4. The zero slip and zero penetration boundary conditions at the fluid–

particle interface is given by Eq. 2.5. For scalar transport, the discussion below is motivated

as a heat transfer problem. However, due to the heat–mass transfer analogy, the governing

equations below hold for the mass transfer as well. The conservation equation for the scalar

field φ in the fluid–phase is

ρfCpf
∂φ

∂t
+ ρfCpf

∂ujφ

∂xj
= − ∂qj

∂xj
+ Sφ, (3.11)

where q = −kf∇φ is the conductive heat flux in the fluid–phase, ρf , Cpf , and kf are the

thermodynamic density, specific heat, and thermal conductivity of the fluid–phase, respectively.

Since we are interested in homogeneous suspensions, an additional sink/source term Sφ has

been added to the above equation that adds or removes heat from the fluid–phase at a rate

at which it is being drawn or added by the solid particles. Later in this section it is shown

that the source/sink term can be used to generate steady–state solution to scalar transport in

statistically homogeneous particle assemblies with periodic boundary conditions.

For scalar transport, the discussion below is motivated as a heat transfer problem. However,

due to the heat–mass transfer analogy, the governing equations below hold for mass transfer
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as well. The conservation equation for a scalar field φ in the fluid–phase is

ρfCpf
∂φ

∂t
+ ρfCpf

∂ujφ

∂xj
= − ∂qj

∂xj
+ Sφ, (3.12)

where q = −kf∇φ is the conductive heat flux in the fluid–phase, ρf , Cpf , and kf are the

thermodynamic density, specific heat, and thermal conductivity of the fluid–phase, respec-

tively. A volumetric sink/source is represented by the term Sφ. Later it is shown that this

sink/source term can be used to generate a nontrivial steady–state solution to scalar transport

in statistically homogeneous particle assemblies.

The scalar field in the solid phase also evolves by a similar equation (except for zero

convection term inside the solid). However, in this study we neglect scalar gradients inside

the solid particles and assume that all particle surfaces are held at a constant surface value

of φs (i.e., isothermal boundary condition). Furthermore, the feedback of scalar transport on

the hydrodynamic fields due to density variation (free convection effects) is not considered

in this study. These assumptions limit the gas–solid systems to which our simulation results

apply. The parameter ranges for both heat and mass transfer in which these results apply are

discussed in Sec. 3.2.1. Under the assumption of isothermal boundary condition for particle

surface temperature, the following boundary condition must be satisfied by the scalar field at

the fluid–particle interface

φf = φs on ∂V int. (3.13)

These are the equations that are solved in a ‘true’ DNS approach to gas–solid flow. Since

the objective of this study is to provide better closure models for the interphase transfer of

heat/mass between the phases, we now present the ensemble averaged equations for gas–solid

flow. In this way we identify the unclosed terms in the averaged equations and also verify

the correspondence between the volume averaged quantities computed from our scalar IBM

simulations in Sec. 3.3 and their counterparts in the ensemble averaged equations. A similar

comparison for momentum conservation is derived in previous chapter using the Eulerian

two–fluid theory (Drew, 1983; Pai and Subramaniam, 2008). Here the averaged equation

corresponding to the scalar transport equation 3.12 is derived. Using the definitions of phasic

and mixture means (Eq. 2.6 and 2.7), the mean scalar transport equation (Drew, 1983) in
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the fluid–phase obtained by multiplying the scalar transport equation 3.12 by the fluid–phase

indicator function If is

∂

∂t

{
ρfεfCpf

〈
φ(f)
〉}

+
∂

∂xj

{
ρfεfCpf

〈
u

(f)
j

〉〈
φ(f)
〉}

=
∂

∂xj

{
ρfCpf

〈
Ifu

′′(f)
j φ′′(f)

〉}
−
〈

If
∂qj

∂xj

〉
+
〈
S

(f)
φ

〉
εf , (3.14)

where u
′′(f)
j = uj −

〈
u

(f)
j

〉
and φ′′(f) = φ −

〈
φ(f)
〉

are the fluctuating components of the fluid

velocity and scalar fields. The terms on the right hand side are the scalar flux transport,

divergence of the conductive flux, and source term (all in the fluid–phase). Using the product

rule and commuting the derivative and averaging operators, the second term on the right hand

side can be expanded as
∂

∂xj
〈Ifqj〉−

〈
∂If

∂xj
qj

〉
, where

〈
∂If

∂xj
qj

〉
is the interphase heat transfer

term. The gradient of the indicator function ∇If in this interphase heat transfer term can

be expressed as -n(f)
j δ
(
x − x(I)

)
(Drew, 1983), where n

(f)
j is the unit normal vector pointing

outward from the fluid surface into the particle, and δ
(
x − x(I)

)
is a Dirac-delta function

concentrated at the fluid–particle interface x(I).

For a statistically homogeneous suspension at steady state (statistically stationary flow),

the average quantities do not depend on x or t, and the unsteady and convective terms on

the left hand side of Eq. 3.12 do not contribute. Writing the remaining terms shows that the

fluid–phase mean of sink/source term balances the average heat flux on the solid particles:

εf

〈
S

(f)
φ

〉
= −
〈
qjn

(s)
j δ
(
x − x(I)

)〉
, (3.15)

where n
(s)
j = −n

(f)
j is the unit normal vector pointing outward from the particle surface into

the fluid, and the flux q is evaluated on the fluid side of the interface. The other unclosed

transport term due to scalar flux (first term on the right hand side of Eq. 3.14) vanishes in the

statistical homogeneous case, and is therefore not part of this study. If the sink/source term

Sφ term was not added to the scalar transport equation 3.12, then a statistically homogeneous

suspension would result in zero heat transfer at steady–state. This is because in the absence

of sink/source term, the fluid phase temperature field at long time will eventually equilibrate

to the solid surface temperature, resulting in zero heat flux at the fluid–particle interfaces.
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Similar to the interphase momentum transfer term that appears as an unclosed term on

averaging the momentum conservation equation,
〈
qjn

(s)
j δ
(
x − x(I)

)〉
is an unclosed term de-

scribing the interphase heat transfer. In averaged equation solvers, such as MFIX (Syamlal

et al., 1993), it is usually modeled as〈
qjn

(s)
j δ
(
x − x(I)

)〉
=

6εshfs

D

(〈
φ(s)
〉
−
〈
φ(f)
〉)

, (3.16)

where hfs is the average interphase heat transfer coefficient. The factor
6εs

D
is the interfacial

area density defined as the ratio of the total solid surface area ∂Vs to the domain volume V.

If the expectation of average Nusselt number Nu is defined as

〈Nu〉 =
hfsD

kf
, (3.17)

then from Eqs. 3.15 and 3.16, 〈Nu〉 becomes

〈Nu〉 = −

〈
S

(f)
φ

〉
kf

(〈
φ(s)
〉
−
〈
φ(f)
〉) 1 − εs

εs

D2

6
, (3.18)

The expression for 〈Nu〉 tells us that the average interphase heat transfer can be inferred

indirectly from the volumetric source term statistically homogeneous and stationary problem.

In the next section we compare the assumptions made in the experimental studies with the

assumptions made in our scalar IBM simulations and identify the physical systems that the

current simulations represent.

3.2.1 Implications of simulation assumptions

All the unsteady models (Schumann, C–S, and D–C models) used in the experimental stud-

ies make the following assumptions: (1) neglect of radiative heat exchange between particles;

(2) neglect of free convection effects; (3) same surface temperature for all the particles. The

first two assumptions can be justified in certain parameter ranges based on simple scaling

arguments that are presented below. The assumption that the particles equilibrate to the

same surface temperature is based on the proximity of particles in packed beds. Only the

more advanced experimental techniques that are able to measure surface temperature of each

individual particle can prove or disprove this assumption.
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The restrictions posed by the neglect of free convection and radiation heat transfer are now

discussed in detail. Free convection is quantified by the Grashof number which is defined as

Gr =
gβ (Tf − Ts)D3

ν2
f

(3.19)

where Tf is the free stream temperature, Ts is the temperature of the solid surface, and β (=

1/Tf for gases) is the volumetric thermal expansion coefficient. Free convection effects can be

neglected if Gr/Re2 < 1 which implies

D̂ <
Re2/3

(1 − Ts/Tf)
1/3

, (3.20)

where D̂ = Dg1/3/ν
2/3
f is a non–dimensional diameter. This constraint imposes an upper limit

on the particle diameter for each Reynolds number where free convection can be neglected.

If an extreme value of 10 is taken for the fluid to solid temperatures ratio (i.e., Tf/Ts = 10),

and air is assumed to be the fluid under terrestrial conditions (g = 9.81 m/s2), then for the

lowest Re = 0.001 considered in this study the particle diameter has to be less than 3.5µm for

negligible free convection. This restriction on the particle diameter becomes less severe as the

Reynolds number increases. For example, for the highest Reynolds number of 300 considered in

the accompanying paper (Garg et al., 2009a), free convection effects are negligible for particle

diameter smaller than 16mm. Since the analog of free convection is absent in mass transfer,

the above limit (Eq. 3.20) on the regime of validity of scalar IBM simulations due to the neglect

of free convection effects does not hold in the context of mass transfer.

For an isolated particle at Ts having emissivity equal to one, and surrounded by fluid at

Tf , the ratio of radiation to forced convection heat transfer can be expressed as

qrc =
σ(Ts + Tf)(T 2

s + T 2
f )

hfs
=

σD(Ts + Tf)(T 2
s + T 2

f )
Nu kf

, (3.21)

where σ = 5.67 × 10−8 W/m2.K4 is the Stefan–Boltzmann constant. Assuming Air to be the

surrounding fluid at Ts = 1000K (kf = 0.060 W/m.K) and the particle is held at 300K, and fur-

ther assuming Stokes flow (i.e., Nu ≈ 2), then the ratio of radiation to forced convection heat

transfer qrc is equal to 0.66 for millimeter sized particles. For particles smaller than millimeter,

the ratio becomes even lesser (for example, qrc = 6.60× 10−4 for micron sized particles). This
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analysis has been performed in the Stokes flow regime. However, with increasing Reynolds

number, the higher value of average Nusselt number further reduces the ratio of radiation to

forced convection heat transfer; thus lessening the restriction on particle diameter. Therefore,

from the analysis of both free convection and radiation heat transfer it is observed that restric-

tion on particle diameter is most severe in the Stokes flow regime and eases with increasing

Reynolds number.

Consistent with earlier work, we also assume that all the particles are maintained at the

same temperature. This assumption, especially for dilute volume fractions, might not hold

true in real flows. We also do not assume any conduction inside the particles, i.e., we assume

infinite thermal conductance for particles. This is not an unreasonable assumption for many

air–solid systems where the thermal conductivity of the particle is greater than that of air by

more than an order of magnitude, e.g., air–coal, air–bismuth, air–gold, etc.

3.3 Solution Approach

The details of the hydrodynamic IBM solver have already been discussed in Chapter 2. In

this section, the discussion is limited to implementation of the scalar solver for statistically

homogeneous suspensions using the IBM. Similar to the approach taken for mass and momen-

tum conservation equations, in IBM the scalar field is also solved in the entire domain that

includes the interior regions of the solid particles as well. The scalar transport equation solved

in IBM is

ρfCpf

{
∂φ

∂t
+ Cφ

}
= − ∂qj

∂xj
+ Sφ,IBMIf + fφ, (3.22)

where Sφ,IBM is the sink/source term, Cφ = ∇ ·uφ is the convective term in conservative form,

and fφ is the additional immersed boundary force term that accounts for the presence of solid

particles in the fluid–phase by ensuring desired isothermal boundary condition (Eq. 3.13) on

the surface of the solid particles. Since the sink/source term needs to balance the interphase

heat transfer between the two–phases (Eq. 3.15), it is applied only in the fluid–phase as a

uniform volumetric term (i.e., the sink/source term does not depend on x).

The IB forcing fφ is computed only at points lying inside the solid particles which is
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similar to the computation of fu for the hydrodynamic case. This ensures that, similar to

the hydrodynamic forcing, the fluid–phase scalar field is not contaminated by the IB forcing.

At the forcing points inside the solid, the fluid scalar field is forced in a manner similar to

the ghost–cell approach used in standard finite–difference/finite–volume based methods. In

addition to forcing the scalar field, the IB forcing term also cancels the remaining terms in the

scalar transport equation and, at the n + 1th time–step, it is calculated as

fn+1
φ = ρfCpf

φd − φn

∆t
− ρfCpfC

n
φ +

∂qn
j

∂xj
. (3.23)

where φdis the desired scalar value at that location. Since the sink/source term Sφ,IBM acts

only in the fluid–phase, it does not appear in the above expression for IB forcing fφ which is

computed only at points lying inside the solid particles.

For the problem of flow past a statistically homogeneous particle assembly, we solve the IBM

governing equations by imposing periodic boundary conditions on fluctuating variables that

are now defined. The schematic of this periodic computational domain in IBM simulations

with multiple particles is shown in Fig. 2.2. The bounding surfaces of the computational

domain, solid–phase, and fluid–phase are denoted by ∂V, ∂Vs, and ∂Vf , respectively. Due to

periodic boundary conditions, it is possible that some particles intersect the boundaries of the

computational domain. Therefore, the total bounding surface of the domain is decomposed as

∂V = ∂Vext
s ∪∂Vext

f , where ∂Vext
s = ∂V ∩∂Vs (shown by curly braces) is the domain surface cut

by the solid particles, and ∂Vext
f = ∂V ∩ ∂Vf (shown by dotted line) is the remaining domain

surface. Therefore, the total bounding surface of the solid–phase is ∂Vs = ∂Vext
s ∪∂V int, where

∂V int (shown by solid lines) is along the actual surface area of the solid particles. Similarly, the

total bounding surface of the fluid–phase is ∂Vf = ∂Vext
f ∪ ∂V int. The hatched lines represent

the fluid–phase volume Vf and the solid fill represents the solid–phase volume Vs, such that

the total volume of the computational domain V = Vs + Vf .

From the definition of volumetric mean (Eq. 2.16), the scalar field can be decomposed as

the sum of a volumetric mean and a fluctuating component

φ (x, t) = 〈φ〉V (t) + φ′ (x, t) , (3.24)



75

and similar decompositions can be written for the convective Cφ, diffusive q, and immersed

boundary forcing fφ terms. The sink/source term is not decomposed because it is a spatially

uniform volumetric term. Substituting the above decompositions in the scalar transport equa-

tion (Eq. 3.22), followed by volume averaging, yields the mean scalar transport equation, which

is

ρfCpf
∂ 〈φ〉V

∂t
= εfSφ,IBM + 〈fφ〉V , (3.25)

where it is noted that due to periodic boundary conditions, the volume averages of the con-

vective and diffusive terms are zero.

Subtracting the above mean scalar transport conservation equation (Eqs. 3.25) from the

instantaneous scalar transport equation (Eqs. 3.22), yields the following conservation equation

for the fluctuating scalar component:

ρfCpf

{
∂φ′

∂t
+ C ′

φ

}
= −

∂q′j
∂xj

+ f ′
φ(x, t) + Sφ,IBMIf − εfSφ,IBM. (3.26)

The conservation equations (Eqs. 3.23–3.26) are numerically solved to obtain the scalar field

around immersed bodies that satisfies isothermal boundary condition (Eq. 3.13). The evolution

of the mean scalar 〈φ〉V given by Eq. 3.25 is a function of both the mean IB forcing 〈fφ〉V and

sink/source term Sφ,IBM. The mean IB forcing term 〈fφ〉V is computed by volume averaging

the IB force computed by Eq. 3.23. The specification of sink/source term Sφ,IBM is given in

the next section.

3.3.1 Specification of the sink/source term Sφ,IBM

In the previous section on governing equations (Sec. 3.2), it was shown that a volumetric

sink/source term is necessary to obtain nontrivial steady–state solution to scalar transport in

statistically homogeneous assemblies. The specification of sink/source term is analogous to

specification of mean pressure gradient for the hydrodynamic case. In the hydrodynamic case

(see Chap. 2 for details), the mean pressure gradient evolves in order to sustain the specified

mean flow rate and prevents the fluid from coming to rest due to the friction posed by suspended

particles. In a similar manner, the sink/source term evolves in order to maintain the desired
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fluid–phase mean scalar value
〈
φ(f)
〉d
V and prevents the fluid scalar field from equilibrating to

the surface scalar value of solid particles. The expression for true expectation of the sink/source

term (Eq. 3.15) was derived earlier in Sec. 3.2 by ensemble averaging the scalar conservation

equation 3.12 in the fluid–phase. The expression for sink/source Sφ,IBM term in the IBM scalar

conservation equation 3.22 can be derived by volume averaging this equation over the fluid–

phase volume. However, during volume averaging over the fluid–phase volume one has to pay

close attention to possible jump discontinuities. Following the steps take in previous chapter 2

for the fluid–phase volume averaging of the IBM momentum conservation equation 2.13, the

fluid–phase volume average of the scalar transport equation 3.22 is

ρfCpfVf

d
〈
u

(f)
i

〉
V

dt
=
∮

∂V int

q
(f)
j n

(s)
j dA + Sφ,IBMVf . (3.27)

From Eq. 3.27, the sink/source term Sφ,IBM that ensures the desired value for fluid–phase

mean scalar
〈
φ(f)
〉d
V at the nth time step is given by

Sn
φ,IBM = ρfCpf

〈
φ(f)
〉d
V −
〈
φ(f)
〉n
V

∆t
− 1

(1 − εs)V


∮

∂V int

qn · n(s)dA

 , (3.28)

where the superscript (f) in front of q has been dropped for the sake of notation and it

is assumed that scalar flux q is evaluated on the fluid side of the fluid–particle interface,

and the superscript n implies the relevant quantities at the time step. This equation for

sink/source term at nth time step is obtained by substituting a finite difference approximation

for the unsteady term on left hand side of Eq. 3.27. This sink/source term Sφ,IBM and the

mean immersed boundary forcing term 〈fφ〉V (Eq. 3.23) are used to evolve the mean scalar

by equation 3.25. For a statistically stationary flow, the equations are evolved in pseudo–time

until the average quantities reach a steady state, at which point the first term on the right hand

side of Eq. 3.28 is negligible, and Eq. 3.28 reduces to the numerical counterpart of Eq. 3.15.

This establishes that the resulting numerical solution to the scalar IBM governing equations

is a valid numerical solution to steady scalar transport past homogeneous particle assemblies.
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3.4 Simulation Methodology

The setup of the hydrodynamic solver is the same as discussed in Chap. 2. For all the

scalar transport simulations,
〈
φ(s)
〉d
V is set to zero by specifying zero scalar value at all particle

surfaces. The desired fluid–phase mean scalar value
〈
φ(f)
〉d
V is equal to one.

In Sec. 2.4.1, the numerical parameters in scalar IBM simulations of homogeneous particle

assemblies were identified as the box size to particle diameter ration L/D, grid resolution in

terms of grid cells across a particle diameter Dm, number of particles Ns, and the time step ∆t.

Other than the choice of time step ∆t, the other three numerical parameters do not change

from the ones discussed in Sec. 2.4.1. In order to resolve the additional scalar diffusion time

scale, the solution algorithm is advanced in pseudo–time from specified initial conditions to

steady state using a time step ∆t that is chosen as the minimum of the convective, viscous

and diffusive time steps by the criteria

∆t = CFL × min
{

∆x

umax
,
∆x2 (1 − εs)

νf
,
∆x2 (1 − εs)

αf

}
, (3.29)

where αf = kf/ρfCpf is the scalar diffusivity. At the beginning of the simulation umax =∣∣〈u(f)
〉∣∣, and as the flow evolves the time step adapts itself to satisfy the above criteria.

3.4.1 Estimation of Nusselt number from simulations

DNS of flow through a particle using the IBM results in velocity, pressure, and scalar fields

on a uniform Cartesian grid. Owing to deterministic particle position configuration in ordered

arrays, one realization of the flow is adequate to ascertain drag force and Nusselt number.

However, due to random particle position configurations in the random arrays, one has to

perform multiple independent simulations in order to obtain faithful estimates of the same

quantities. The average Nusselt number for the µth realization is computed as

{Nu}µ
V = −

Sµ
φ,IBM

kf

(〈
φ(s)
〉
V −
〈
φ(f)
〉
V
) 1 − εs

εs

D2

6
, (3.30)

which is similar to the expectation of average Nusselt number (Eq. 3.17) derived earlier from

averaged equations. The normalized average drag force F is similarly computed by integrat-

ing the viscous and pressure forces exerted by fluid on the particle surface (Chap. 2). The
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statistical error resulting from using finite number of particles for random arrays is reduced

by averaging this Nusselt number over M multiple independent realizations that yields the

ensemble–averaged “average Nusselt number”

{Nu}V,M =

M∑
µ=1

{Nu}µ
V

M . (3.31)

This ensemble–averaged “average Nusselt number” converges to the true expectation of the

average Nusselt number 〈Nu〉 (given by Eq. 3.18) in the limit NsM → ∞.

In section 2.4.1 it is noted that each numerical parameter must be chosen to ensure numer-

ically converged, accurate, and physically meaningful results. In the next section, we examine

the numerical convergence of the IBM scalar solver with variation of numerical parameters.

Similar to the steps taken in section 2.4.3 for the hydrodynamic solver, first the numerical

convergence of Nusselt number with Dm is shown for ordered arrays. This is because for or-

dered arrays, L/D and the number of particles Ns are deterministic and the only remaining

numerical parameter is the grid resolution Dm. Then attention is directed to random arrays

where numerical convergence with respect all three parameters has to be considered in order

to achieve a trade off between accuracy and computational effort.

3.5 Numerical convergence

Here we establish that scalar IBM simulations result in numerically converged solutions.

The test case chosen is steady flow past an ordered array of particles in a lattice arrangement,

because for this case the only numerical parameter is the grid resolution Dm. Although we

consider steady flows, we also verify that the time step chosen to evolve the flow in pseudo–time

from a uniform flow initial condition does not change the steady values of Nusselt number that

we compute using IBM. For an FCC arrangement of particles, Fig. 3.2(a) shows the conver-

gence characteristics of Nusselt number as a function of grid resolution Dm for two different

solid volume fractions equal to 0.2 (triangles) and 0.4 (squares) at Re = 0.01. Fig. 3.2(b) shows

the same comparison for FCC arrays at higher Reynolds number equal to 40. In both figures,

open and filled symbols are for CFL values of 0.2 and 0.05, respectively. From both figures it
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Figure 3.2 Convergence characteristics of Nusselt number with grid resolu-
tion Dm for FCC arrays for two different solid volume fractions
equal to 0.2 (triangles) and 0.4 (squares) at (a) Re = 0.01 and
(b) Re = 40. Open and filled symbols are for CFL values of 0.2
and 0.05, respectively.

can be seen that the scalar IBM simulation result does not depend on the time step (CFL).

With regard to spatial convergence, the figures show that the resolution requirements increase

with increasing Reynolds number and volume fraction. For example, comparison of the spatial

convergence of Nusselt number for εs = 0.4 shows that while a minimum resolution of Dm = 20

is needed for converged results at Re = 0.01 (Fig. 3.2(a)), the minimum resolution requirement

increases to Dm = 30 at Re = 40 (Fig. 3.2(a)). For the dependence of minimum resolution on

solid volume fraction, Fig. 3.2(b) shows, for Re = 40, that the minimum resolution require-

ment increases from Dm = 20 to Dm = 30 as the solid volume fraction increases from 0.2 to

0.4, respectively. Due to the dependence of minimum numerical resolution on Reynolds num-

ber, for the scalar IBM simulations of ordered arrays that are reported later, grid resolutions

higher than those shown in Fig. 3.5 are used for the same volume fractions so that the higher

Reynolds number cases are also adequately resolved. It is noted here that the above resolution

requirements have been established for a specific case of Pr = 0.7. As the Prandtl number

increases, the thinning of thermal boundary layer with respect to the viscous boundary layer
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will necessitate the use of higher numerical resolutions than those deemed sufficiently resolved

for the current case.
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Figure 3.3 Convergence characteristics for random arrays at Re = 20 of
the Nusselt number with box length to particle diameter ra-
tio L/D for four different values of Dm equal to 10 (squares),
20 (upper triangles), 30 (lower triangles), and 40 (right trian-
gles). Solid volume fraction is equal to 0.3 in (a) and 0.4 in (b).
Nusselt number values have been averaged over 5 multiple inde-
pendent simulations. Not all combinations of Dm and L/D are
shown because with a serial code some combinations exceeded
computational memory requirements.

For the random arrays, in addition to errors arising from finite resolution, errors arise

due to statistical fluctuations between different realizations and the box length is also an

independent numerical parameter. Ideally, the effect of each numerical parameter on the

numerical error should be investigated by varying that parameter while holding the other

numerical parameters at fixed values. However, the choice of some numerical parameters must

satisfy more than one requirement, and some error contributions are determined by the choice

of more than one numerical parameter. Specifically, the choice of L/D is determined by more

than one requirement (decay of spatial autocorrelation and the need for minimum number of

samples in the average force estimate), and both L/D and the number of multiple independent

simulations M determine the number of samples in the force estimate. These considerations,
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as well as computational limitations, did not permit the independent variation of numerical

parameters. Therefore, a limited investigation of numerical parameter variation is presented

here. To place this in context, we note that to our knowledge this is the most comprehensive

study of numerical error and convergence for DNS of gas-solids flow.

While for ordered arrays the box length and number of particles are determined by the

volume fraction and type of lattice arrangement (SC/FCC), in random arrays these parameters

have to be carefully chosen. If L/D is too small, then the spatial autocorrelations that are

larger than the box size will not be captured and the periodic images will interact. For steady

flow past random arrays (εs = 0.3, Re = 20), Fig. 3.3(a) shows the convergence characteristics

of the Nusselt number with box length to particle diameter ratio for four different values

L/D equal to 10 (squares), 20 (upper triangles), 30 (lower triangles), and 40 (right triangles).

Fig. 3.3(b) is the same comparison for a denser random array with volume fraction equal to

0.4. These results show that the Nusselt number value does not depend on L/D, and the effect

of grid resolution Dm is stronger than L/D for the cases considered here. The simulations of

flow past random arrays that are reported later in this work use higher resolutions when the

Reynolds number exceeds 100%, as shown in Tab. 2.1.

In summary, these numerical convergence test results show that the scalar IBM simulations

yield grid-independent results, and these results are also independent of the choice of time step

used to advance the solution in pseudo–time, provided the stability criterion is met. The

tests for random arrays also show that the grid-converged results do not exhibit a statistically

significant dependence on the computational box length. However, these specific values for

the numerical parameters should be treated as tentative because these limited set of tests

cannot establish sharp limits on the minimum resolution required, and further numerical testing

could refine these limits. A satisfactory number of MIS should ideally be determined by the

determining the minimum number of samples for a given level of statistical error in the force

estimate. However, this quantity is a strong function of Re and solid volume fraction. In the

plots shown above, we have used 5 MIS for all the cases. While this results in a statistical

error that is on the order of the other numerical error contributions, further testing is needed
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to refine this requirement. Clearly, the requirements of minimum L/D, minimum Dm, and

minimum M, together dictate a trade-off for a fixed level of computational work. Of these

parameters, our tests reveal that the numerical error in IBM exhibits the highest sensitivity to

grid resolution Dm. These numerical convergence tests provide useful guidelines in the choice

of these parameters that approximately balance the error contributions, but further testing is

needed for a complete error analysis.

3.5.1 Numerical method validation

The hydrodynamic IBM solver was extensively validated in the last chapter by comparing

drag force from IBM simulations for three different cases: (1) comparison of drag force for

flow past single particle in an unbounded medium with the single sphere drag correlation

of Schiller and Naumann (1933), (2) comparison of drag force in Stokes flow regime for flow

past SC and FCC arrangements (ranging from dilute volume fraction to close packed limit)

with the boundary–integral method of Zick and Homsy (1982), and (3) comparison of drag

force for moderate to high Reynolds (Re ≤ 300) in SC and FCC arrangements with the LBM

simulations of Hill et al. (2001a). For all these cases, the drag force from IBM simulations

was found to be in excellent agreement with the existing literature. The lack of agreement

in experimental literature about the average Stokes Nusselt number values and the lack of

numerical studies preclude an extensive validation of the scalar solver.

In the light of the above facts, the flow over an isolated sphere in an unbounded medium

presents itself as the logical validation test for any direct numerical simulation approach to

gas-solid flow. However, especially for simulations that use periodic boundary conditions, this

turns out to be a difficult validation test. For simulations using periodic boundary conditions,

flow through a very dilute simple cubic arrangement is taken as a close approximation to flow

over an isolated sphere in an unbounded medium. Since the simple cubic lattice arrangement

is not isotropic, it is known (Hill et al., 2001a) that the results for drag can depend on the

orientation of the flow with respect to the unit vectors of the lattice for values of Reynolds

number beyond the Stokes flow regime. In contrast, there is of course no preferred direction for
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Figure 3.4 (a) Normalized drag force F and (b) Nusselt number in a simple
cubic array (εs = 4.0E − 04) as a function of Reynolds number
and angle θ between the mean flow and the x− axis in the
(x, y) plane. The symbols are from the IBM simulations: θ = 0
(�), θ = π/16 (�). Lines are a simple fit to the data. In
(a) and (b), the solids lines are the single–sphere correlations
for normalized drag force (Schiller and Naumann (1933)) and
Nusselt number (Eq. 3.32), respectively. Also in (b), the dashed
line is the Nusselt number from Gunn’s correlation at infinite
dilution (εs = 0).

flow over an isolated sphere in an unbounded medium. For this simple problem, the normalized

drag force is well approximated by the Schiller and Naumann (1933) correlation. For the heat

transfer, the following Nusselt number correlation (Clift et al., 1978) is used to compare IBM

results

Nu =


2.0 + 0.6Re1/2Pr1/3 if Re < 1 (Ranz and Marshall, 1952),

1 + [1 + (1/RePr)]1/3 Re0.41Pr1/3 if 1 ≤ Re ≤ 400.
(3.32)

Since Gunn’s correlation (cf. Eq. 3.10) is valid at infinite dilution, it is also compared with the

scalar IBM results.

Fig. 3.4(a) shows the comparison of normalized drag force F in a simple cubic array as

a function of the Reynolds number from IBM simulations (hollow symbols) with the Schiller

and Naumann drag correlation (solid line). Similarly, Fig. 3.4(b) shows the comparison of
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average Nusselt number Nu from scalar IBM simulations (hollow symbols) with the correlation

for average Nusselt number (solid line) for isolated particle (Eq. 3.32). In Fig. 3.4(b), the

comparison is also made with average Nusselt number from Gunn’s correlation (dashed line)

at infinite dilution (εs = 0). The drag and average Nusselt number computed for mean flow

oriented at two different angles (θ = 0 (�), θ = π/16 (�)) with respect to the lattice unit

vector is shown to illustrate the dependence on flow angle. The sphere resolution (Dm) for the

simulation shown is equal to 12.8 grid cells. Fig. 3.4(a) is the same as Fig. 2.5 shown in the

last chapter (Sec.2.5.1) and it has been reproduced here for the sake of comparison.

Comparison of Figs. 3.4(a) and 3.4(b) reveal that both the average Nusselt number and

normalized drag force exhibit the same behavior with the mean flow angle and Reynolds number

and two main conclusions can be drawn: (1) for Re > 1, the average Nusselt number and

normalized drag force from IBM simulations are in good agreement with the existing average

Nusselt number and drag laws for isolated particle only when the mean flow is directed at

an angle of π/16 in the (x, y) plane; (2) for Re < 1, the normalized drag force and average

Nusselt number values are independent of the mean flow angle because the momentum and

scalar transport are diffusion dominated, and diffusion is insensitive to the mean flow angle.

This simple test case is used to validate IBM’s extension to scalar transport. We now move

to the scalar IBM results for average Stokes Nusselt number Nu0. The average Stokes Nusselt

number is obtained for different solid volume fractions for ordered and random arrays, and

compared with the existing heat and mass transfer correlation of Gunn (1978).

3.6 Results

3.6.1 Stokes flow

For the random arrays, the numerical resolutions given in Tab. 2.1 are used in scalar IBM

simulations. For the ordered arrays, a constant grid size of 1503 (i.e., M = 150 in Eq. 2.34)

is used. Since the number of particles are known for ordered arrays (1 in SC, 4 in FCC), box

length to particle diameter L/D ratio is deterministic for a given solid volume fraction εs from

Eq. 2.33. Given the grid size M and box length to particle diameter ratio for a given solid
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volume fraction, the grid resolution Dm can be computed from Eq. 2.34.
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Figure 3.5 Comparison of (a) the average Stokes Nusselt number Nu0 and
(b) the scaled (by Stokes drag) Stokes viscous drag force Fvis,0

versus the solid volume fraction εs between SC, FCC, and ran-
dom arrangements in the Stokes flow regime.

Comparison of figures 3.5(a) and 3.5(b) shows two similarities: 1) the FCC arrangement

results in the highest drag force and average Stokes Nusselt number for the entire range of

solid volume fraction, 2) random arrays give lower average Stokes Nusselt number and drag

force than the SC arrays for solid volume fraction up to approximately 0.41, beyond which

they overtake the SC arrays for both the Nusselt number and viscous drag force.

For the average Stokes Nusselt number dependence on volume fraction, Fig. 3.5(a) shows

that both FCC and SC arrays asymptote as the volume fraction approaches the respective

close–packing limits (0.521 for SC and 0.744 for FCC). Although the maximum volume fraction

simulated for random arrays is equal to 0.5 and far from the close–packing limit of 0.64,

the dependence of average Stokes Nusselt number on εs up to εs = 0.5 does not suggest an

asysmptotic limit as observed for ordered arrays. In section (3.6.4), the effect of particle–

particle interactions on the average Stokes Nusselt number in ordered arrays is investigated by

examining the local Nusselt number along the surface of the particles. In addition to the local

Nusselt number, the local viscous drag along the surface of the particles is also examined. It
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is shown that as the volume fraction approaches the close–packing limit in ordered arrays, the

relative (relative to lower solid volume fractions) increase in local Nusselt number at the local

maxima is compensated by a corresponding decrease at the local minima; thus, resulting in an

asymptote for the average Nusselt number. For the Stokes viscous drag Fvis,0, however, the

local viscous drag increases monotonically with increasing solid volume fraction. Therefore,

the Stokes viscous drag (Fig. 3.5(b)), unlike the average Stokes Nusselt number, does not

asymptote in the limit of close–packing.

For the random arrays, apart from the number density and solid volume fraction, another

important parameter in the particle configuration is the hard–core distance hc, which is the

minimum distance between the centers of any two particles. For the ordered arrays, for a given

solid volume fraction, the hard–core distance is fixed and cannot be varied independently. How-

ever, for fixed volume fraction and number density it is possible to have random configurations

that can correspond to different hard–core distances. From the study of local Nusselt number

for ordered arrays in Sec. 3.6.4, it is shown that the local Nusselt number attains its maxima

and minima in the regions of maximum and minimum flow channel widths. This motivates

an investigation of the dependence of average Stokes Nusselt number Nu0 on the hard–core

distance in random arrays. In Sec. 3.6.5, the dependence of average Stokes Nusselt number on

hard–core distance is investigated.

Although not shown in this chapter but discussed in detail in the next chapter, the average

Nusselt number from scalar IBM simulations remains nearly constant in the Stokes flow regime

(Re < 1). However, Gunn’s correlation depends strongly on Reynolds number even in the

Stokes flow regime, and decreases monotonically with decreasing Reynolds number. Therefore,

in Fig. 3.5(a) the average Stokes Nusselt number from Gunn’s correlation has been computed

at Re = 0.01. Comparison of the average Stokes Nusselt number for random arrays from

scalar IBM simulations with Gunn’s correlation in Fig. 3.5(a) reveals a maximum difference

of about 300% at the highest simulated solid volume fraction of 0.5. While proposing his

correlation, Gunn (1978) argued through a stochastic model that inclusion of axial diffusion

does not alter the asymptotic value of average Stokes Nusselt number. However, the earlier
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frequency response measurements of Gunn and Desouza (1974) pointed to the importance of

axial diffusion at low Reynolds numbers (Re < 10). In order to verify the importance of axial

diffusion in Stokes flow regime, in the next section we consider the budget of heat transport

equation (Eq. 3.22) in fluid–phase along the mean flow direction, and show that the axial

diffusion is one–third of the total diffusion.

3.6.2 Budget of the scalar transport equation

The diffusion term ∇2φ in the scalar transport equation 3.22 can be decomposed as the

sum of axial
∂2φ

∂η2
and perpendicular diffusion

∂2φ

∂ξ2
, where η =

u
|u| is a unit vector along

the mean flow direction, and ξ is a unit vector perpendicular to η such that η · ξ = 0, and

q = −kf∇φ has been substituted for scalar flux term in the scalar transport equation 3.22.

Using this decomposition for the diffusion term, the steady–state heat transport equation in

the fluid–phase becomes

Ĉφ = D̂φ,‖ + D̂φ,⊥ + 1, (3.33)

where Ĉφ = ρfCpf
∇ · (uφ)

Sφ
is the normalized convection term, and D̂φ,‖ =

kf

Sφ

∂2φ

∂η2
and D̂φ,⊥ =

kf

Sφ

∂2φ

∂ξ2
are the normalized axial and perpendicular diffusion terms. Since this balance equation

has been written for the fluid–phase only, the additional immersed boundary force term fφ in

the original heat transport equation 3.22 drops out.

Since we are interested in evaluating the relative importance of the three terms in the above

equation, the local fluid–phase volumetric average of each term can be defined along x in the

y − z plane for the purpose of comparison. For ordered arrays, owing to the deterministic

particle configurations, one realization will be sufficient. However, for random arrays, each

term is a random process at any fixed location. Therefore, for the random arrays, the local

fluid–phase volumetric average of the normalized axial diffusion term on the µth realization〈
D̂

(f)
φ,‖

〉µ
V

in the yz plane at any location x is defined as

〈
D̂

(f)
φ,‖

〉µ
V

(x) =

∫
Ly

∫
Lz

D̂µ
φ,‖ (x, y, z) Iµ

f (x, y, z) dV∫
Ly

∫
Lz

Iµ
f (x, y, z) dV , (3.34)
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where dV = dx dy dz is the infinitesimal volume at (x, y, z), and Iµ
f (x, y, z) is the fluid–phase

indicator function at (x, y, z) on the µth realization. Local fluid–phase volumetric averages

for the normalized convection
〈
Ĉ

(f)
φ

〉µ
V

(x) and perpendicular diffusion
〈
D̂

(f)
φ,⊥

〉µ
V

(x) terms

can be similarly defined. For random arrays, the local volumetric averages on each realiza-

tion
(〈

Ĉ
(f)
φ

〉µ
V

,
〈
D̂

(f)
φ,‖

〉µ
V

, and
〈
D̂

(f)
φ,⊥

〉µ
V

)
are further averaged over M independent realiza-

tions to obtain the “ensemble averaged” local fluid–phase volumetric averages as
〈
Ĉ

(f)
φ

〉
V

(x),〈
D̂

(f)
φ,‖

〉
V

(x), and
〈
D̂

(f)
φ,⊥

〉
V

(x). For statistical homogeneous case the average statistics, strictly

speaking, do no depend on position x, and a global average over the fluid–phase volume will

be sufficient. However, if the above quantities are further averaged along x−, then the average

convective term
〈
Ĉ

(f)
φ

〉µ
V

due to the use of periodic boundary conditions will be zero, i.e.,∫
Lx

〈
Ĉ

(f)
φ

〉µ
V

(x)dx = 0. Since we are interested in finding out the relative importance of con-

vection, axial and perpendicular diffusion terms in the scalar transport equation, the budget

is studied along the mean flow direction x-, even for the statistically homogeneous case.

Fig. 3.6(a) shows the comparison of relative magnitudes of the “ensemble averaged” local

fluid–phase volumetric averages
〈
Ĉ

(f)
φ

〉
V

(solid line),
〈
D̂

(f)
φ,‖

〉
V

(dashed line), and
〈
D̂

(f)
φ,⊥

〉
V

(dash–dot line) along the x- axis for εs = 0.1 and Re = 0.01. Fig. 3.6(b) shows the same

comparison for a denser solid volume fraction of εs = 0.4 at Re = 0.01. Comparison of the

figures reveal a negligible contribution from the convection term, which is expected in the

Stokes flow regime. Gunn (1978) also neglected the convection term in the Stokes flow regime

in his analysis.

If the ratio of axial diffusion to total diffusion is computed as
〈
D̂

(f)
φ,‖

〉
V

/
(〈

D̂
(f)
φ,‖

〉
V

+
〈
D̂

(f)
φ,⊥

〉
V

)
in Figs. 3.6(a) and 3.6(b), then an average value of one–third is obtained for both cases. Al-

though not shown here, the above observation (that axial diffusion is one–third of the total

diffusion) holds true for all the solid volume fractions cases considered for both random and

ordered arrays in Fig. 3.5(a). In his Stochastic model, Gunn (1978) had argued that the axial

diffusion has no bearing on the average Stokes Nusselt number. However, the above analysis

reveals that the axial diffusion is always one–third of the total diffusion for all values of εs in

the Stokes flow regime. Therefore, the neglect of this term is not justified and, among vari-
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Figure 3.6 Comparison of relative magnitudes of the “ensemble averaged”
local fluid–phase volumetric averages
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(dash–dot line) along the

x- axis obtained for the normalized convection Ĉφ, axial diffu-
sion D̂φ,‖ and perpendicular diffusion terms D̂φ,⊥, respectively,
in the normalized fluid–phase scalar transport equation 3.33.
Ensemble average has been performed over 5 independent real-
izations, and the scatter between the realizations is shown by
the one–sided error bars.
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ous other assumptions made in Gunn’s analysis, it is one of the primary reasons for the large

differences in average Stokes Nusselt number between the scalar IBM simulations and Gunn’s

correlation.

3.6.3 A correlation for average Stokes Nusselt number Nu0

From the average Stokes Nusselt number Nu0 versus solid volume fraction εs data in Fig. 3.5,

we can now propose a correlation for the average Stokes Nusselt number as a function of εs in

random arrays. In the limit of infinite dilution, Nu0 should tend to the Nusselt number value of

2, which is the average Stokes Nusselt number for an isolated particle in unbounded medium.

For the random arrays, Nu0 as a function of εs, shown in Fig. 3.5(a), can be approximated

within less than 1% error by the following expression:

Nu0(εs) = 2 +
1

(1 − εs)
3

(
10.35εs + 5.51ε2

s − 18.16ε3/2
s + 1.63ε1/3

s

)
, (3.35)

which satisfies the above constraint of Nu0 = 2 for εs = 0. Although the above correlation has

been obtained for scalar IBM simulation performed up to εs = 0.5, based on the dependence

of Nu0 on εs in Fig. 3.5, its extension up to the close–packing limit in random arrays will not

be very erroneous.

It was earlier observed in Fig. 3.5(a) that the average Stokes Nusselt number in ordered

arrays tends to an asymptote in the limit of close–packing. The Stokes viscous drag, however,

does not show a similar trend and increases monotonically with increasing solid volume fraction.

In the next section, we examine the local Nusselt number and viscous drag along the surface

of the particles in ordered arrays in order to explain the different trends for average Nusselt

number and Stokes viscous drag as the solid volume fraction approaches the close–packing

limit.

3.6.4 Effects of inter–particle distance on the local Nusselt number and local

viscous drag

Although for ordered arrays the hard–core distance is fixed for a given volume fraction,

due to the deterministic particle configuration in ordered arrays, they serve as a useful tool to
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visualize the effect of particle–particle interactions. Figs. 3.8(a) and 3.8(b) show the contour

plots of non–dimensional scalar flux |∇φ|D/
∣∣∣〈φ(s)
〉
−
〈
φ(f)
〉∣∣∣ along with the flow stream

lines for SC arrays having solid volume fractions equal to 0.1 and 0.3, respectively. Figs. 3.8(c)

and 3.8(d) show the same comparison for FCC arrays having solid volume fractions equal to

0.1 and 0.3, respectively. The contour plots are shown on a x-y that lies half way along the

z-axis, as shown by the schematic in Fig. 3.7.

Figure 3.7 Schematic of the computational box along with solid particles.
The contour plots of the non–dimensional scalar flux magnitude
in the next few figures are shown in x-y plane which lies midway
along the z- axis.

For dilute volume fraction of 0.1, it can be seen from Figs. 3.8(a) and 3.8(c) that the flux

is nearly constant along the particle surfaces. However, for a dense volume fraction of 0.3,

Figs. 3.8(b) and 3.8(d) show that the flux peaks at points on the surface which are further-

most from another particle surface. If a clockwise angle φ is defined in the x-y plane with

respect to the negative x- axis, then for SC the peaks in the scalar flux occur at 45◦ + i90◦,

i = 0, 1, 2, and 3. Figure 3.8(b) clearly shows that these are the points where the particle–

particle distance is the highest. Similarly, for FCC arrays the peaks in the scalar flux occur
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at i90◦, i = 0, 1, 2, and 3, which from Fig. 3.8(d) are the points of maximum particle–particle

distance in FCC arrays. Comparison of the streamlines in the above figures reveals an inter-

esting phenomena. Even in the Stokes flow regime, flow recirculation is observed in the SC

arrangement (Fig. 3.8(b)). In contrast, for an isolated particle in an unbounded medium, flow

recirculation is observed for Re > 20. However, the strong particle–particle interaction at finite

volume fractions induces a recirculation even in the Stokes flow regime.
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Figure 3.8 Contour plots of the non–dimensional scalar flux magnitude

|∇φ|D/
∣∣〈φ(s)
〉
−
〈
φ(f)
〉∣∣ along with flow stream lines (shown

by solid lines) for SC and FCC arrays at different volume frac-

tions in the Stokes flow regime. The flow is directed along the

x- (from left to right in the figures) axis and the contour plots

are shown in the x-y plane lying midway along the z- axis as

shown by the schematic in Fig. 3.7.

This comparison of the contour plots for scalar flux shows that the inter–particle distance
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can very strongly affect the local scalar flux along the particle surfaces. For Stokes flow (with

isothermal boundary condition on surfaces), maximum fluxes (or scalar gradients) occur in

regions with maximum fluid volume or wide flow channels. In regions with relatively less

fluid volume between particle surfaces or narrow fluid channels, the scalar field equilibrates

to the scalar surface value resulting in lower values for the scalar flux. In the presence of

stronger convective transport (i.e., for higher Reynolds numbers), the resulting higher fluid

velocity in narrow flow channels due to mass continuity will actually lead to higher fluxes

(this is discussed in Sec. 4.1.1.1) in such regions than the wider flow channels. However, in

the absence of strong convective transport in the diffusion dominated Stokes flow regime, the

relatively higher equilibration of scalar fields in narrow fluid channels results in low local scalar

fluxes along the particle surfaces bounding them.

Figure 3.9 Schematic of the spherical coordinate system used to define lo-
cal Nusselt number and local viscous drag. φ (0 ≤ φ ≤ π) is
the polar angle and θ (0 ≤ θ ≤ 2π) is the azimuthal angle.

In the spherical coordinate system shown in Fig. 3.9, the local Nusselt number Nuloc (θ, φ) =

− ∇φ · n(s)|r=R〈
φ(s)
〉
−
〈
φ(f)
〉D along the particle surface is a function of both the azimuthal angle θ(0 <

θ < 2π) and polar angle φ(0 < φ < π). The local Nusselt number along the polar angle φ is
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obtained by integrating the local Nusselt number along θ for each value of φ as

Nuloc (φ) =

2π∫
θ=0

Nuloc (θ, φ) dθ

2π
, (3.36)

such that the average Nusselt number Nu =

π
R

φ=0

Nuloc
(φ)dφ

π . Similarly, the local Nusselt number

along the azimuthal angle θ is obtained by integrating the local Nusselt number along the polar

angle φ for each value of θ as

Nuloc (θ) =

π∫
φ=0

Nuloc (θ, φ) dφ

π
, (3.37)

such that the average Nusselt number Nu =

2π
R

θ=0

Nuloc
(θ)dθ

2π . For ordered arrays, the local Nusselt

number profile on each particle is identical, and therefore it suffices to show local Nusselt

number along θ or φ for one particle only. However, for random arrays, all the particles in

a realization are not identical. Therefore, in random arrays, the local Nusselt numbers are

computed for each particle and then averaged over all the particles to yield a local average

Nusselt number.



96

φ

N
u

lo
c (φ

)

0 50 100 150

2

4

6

8

10

12

14

16

εs=0.01
εs=0.1
εs=0.2
εs=0.3
εs=0.408
εs=0.514

(a) SC: Nuloc(φ)

θ

N
ulo

c (θ
)

0 100 200 3000

2

4

6

8

10

12

14

16

(b) SC: Nuloc(θ)

φ

N
u

lo
c (φ

)

0 50 100 1500

10

20

30

40

50

εs=0.01
εs=0.1
εs=0.3
εs=0.48
εs=0.633
εs=0.698

(c) FCC: Nuloc(φ)

θ
N

ulo
c (θ

)
0 100 200 3000

5

10

15

20

25

(d) FCC: Nuloc(θ)

φ

N
u

lo
c (φ

)

0 50 100 1500

2

4

6

8

10

12

14

εs=0.01
εs=0.1
εs=0.2
εs=0.3
εs=0.4
εs=0.5

(e) Random: Nuloc(φ)

θ

N
ulo

c (θ
)

0 100 200 3000

2

4

6

8

10

12

14

(f) Random: Nuloc(θ)

Figure 3.10 (a), (c), and (e): Comparison of the local Nusselt number

Nuloc(φ) (Eq. 3.36) along the polar angle φ for SC, FCC, and

random arrays (local Nusselt number averaged over all bodies),

respectively. (b), (d), and (f): Comparison of the local Nusselt

number Nuloc(θ) (Eq. 3.37) along the azimuthal angle θ for SC,

FCC, and random arrays, respectively.
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Figures. 3.10(a), 3.10(c), and 3.10(e) show the comparison of local Nusselt number Nuloc (φ)

along the polar angle φ for SC, FCC, and random arrays, respectively. For the random arrays,

the local average Nusselt number obtained by averaging over all bodies is shown along with 95%

confidence intervals. As observed earlier from the contour plots of scalar flux, the local Nusselt

number does not depend on the polar angle φ for dilute volume fractions. However, for dense

volume fractions, the local Nusselt number peaks at 45◦ and 135◦ for the SC arrays, which

correspond to the regions of maximum flow channel width in Figs. 3.8(a) and 3.8(b). For the

FCC arrays, the local Nusselt number peaks at 0◦ and plateaus at 90◦ which also correspond

to the regions of maximum flow channel width in Figs. 3.8(c) and 3.8(d). For the highest

volume fractions of 0.514 and 0.698 considered for SC and FCC arrays, respectively, it can be

seen that although the local Nusselt number increases relative to the lower voume fractions

at the respective local maxima (45◦ and 135◦ for SC, 0◦ and 90◦ for FCC), the local Nusselt

number also decreases relative to the lower volume fractions at the local minima (0◦ and 90◦

for SC, 45◦ and 135◦ for FCC). As a result, the Nusselt number Nu for SC and FCC arrays

shows an asymptotic trend seen earlier in Fig. 3.5(a) as the solid volume fraction approaches

the close–packed limit. However, for the random arrays the local average Nusselt number

increases monotonically and the average Nusselt number Nu does not exhibit an asymptotic

limit till the maximum solid volume fraction of 0.5 that is considered in this study.

Since the flow is directed along x- direction, the fore (at φ = 0◦) and aft (at φ = 180◦)

symmetry of the flow is evident from the above plots of local Nusselt number Nuloc (φ) ver-

sus the polar angle φ. The azimuthal angle θ, however, varies in the plane perpendicular

to the flow direction and, therefore, the local Nusselt number should be symmetric along θ.

Figures. 3.10(b), 3.10(d), and 3.10(f) show the comparison of local Nusselt number Nuloc (θ)

(obtained from Eq. 3.37) along the azimuthal angle θ for SC, FCC, and random arrays, respec-

tively. Four main observations can be made from these figures: 1) the local Nusselt number

Nuloc (θ) as expected is completely symmetric in all quadrants for SC and FCC arrays; 2)

the local maxima of Nuloc (θ) occurs at 45◦ + i90◦, i = 0, 1, 2 and 3 for SC arrays and at

i90◦, i = 0, 1, 2 and 3 for FCC arrays, which correspond to the regions of maximum flow chan-
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nel width; 3) the increase in Nuloc (θ) at local maxima is offsetted by a decrease at the local

minima, resulting in an asymptotic limit for average Nusselt number (Fig. 3.5(a)) as the solid

volume fraction approaches the close–packed limit in SC and FCC arrays; 4) the local Nusselt

number increases continuously for random arrays and, therefore, the average Nusselt number

in Fig. 3.5(a) does not exhibit an asymptotic limit till the maximum solid volume fraction of

0.5 considered in this study. Comparison of the crests and troughs for the local Nusselt number

for SC and FCC arrays reveals a relatively stronger polar and azimuthal variation in SC than

in the FCC arrays.

Like the local Nusselt number Nuloc
vis (θ, φ), a local viscous drag can be defined as Floc

vis (θ, φ) =

µf

(
∇u · n(s)|r=R

)
A, where A = πD2 is the solid particle surface area. Therefore, analogous

to local Nusselt number, one can define a local viscous drag along polar angle φ as

F loc
vis (φ) =

2π∫
θ=0

Floc
vis (θ, φ) · ηdθ

2πFStokes
, (3.38)

where FStokes = 3πµfDUslip (1 − εs) is the Stokes drag force and η is the unit vector along

flow direction (which is along x- direction for the current cases). The total viscous drag

Fvis =

π∫
φ=0

F loc
vis (φ) dφ

π
. Local viscous drag along the azimuthal angle θ can be similarly defined.
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Figure 3.11 (a) and (c): Comparison of the local viscous drag F loc
vis (φ)

(Eq. 3.38) along the polar angle φ for SC and random arrays,

respectively. (b) and (d): Comparison of the local viscous drag

F loc
vis (θ) along the azimuthal angle θ for SC and random arrays,

respectively.

Figures. 3.11(a) and 3.11(c) show the comparison of local viscous drag F loc
vis (φ) along the

polar angle φ for SC and random arrays, respectively. It can be seen that the local viscous

drag peaks at φ = 90◦ for all solid volume fractions for SC arrays. For the random arrays, just

like in SC arrays, the local viscous drag (Fig. 3.11(c)) obtained by averaging over all particles

in a realization peaks close to φ = 90◦. However, unlike in SC arrays, the local viscous drag is

finite over a wider range of polar angle in random arrays. This is because the local viscous drag

on each particle in a single realization of random arrays exhibits significant scatter in terms of

the maximum value of local viscous drag and its location. For example, Fig. 3.12 shows the
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dependence of local viscous drag for 10 randomly chosen particles out of a total of 95 particles

from a realization of random array with solid volume fraction εs = 0.4. It can be seen from

the figure that there is a significant scatter both in terms of maximum local viscous drag and

its location. The averaging over all the particles in a realization results in a bell shaped profile

for local viscous drag in Fig. 3.11(c) for random arrays which is very similar to SC arrays in

terms of location of the maximum but (due to particle scatter) is non–zero over a wider range

of polar angle than in SC arrays.

In the local Nusselt number versus polar angle plots (Fig. 3.10), it was seen that as the

volume fraction approached the close–packing limit in ordered arrays, the increase in local

Nusselt number at the maxima was offsetted by the corresponding decrease at the minima;

thus, resulting in an asymptote for the average Stokes Nusselt number Nu0 (Fig. 3.5(a)) in the

limit of close–packing. However, in contrast, as seen in Fig. 3.11 the local viscous drag along

the polar angle increases monotonically with solid volume fraction for both ordered and random

arrays. As a result, the average Stokes viscous drag Fvis,0, unlike the average Stokes Nusselt

number Nu0, increases monotonically with solid volume fraction εs up to the close–packing

limit in Fig. 3.5(b).

The peaking of viscous drag at 90◦ is reasonable and can be shown to hold true with an

example of Stokes flow over an isolated sphere using the Oseen’s (Oseen, 1910) approximation.

If, as in the schematic shown in Fig. 3.9, the flow is directed along the negative x- axis, then

the velocity field uStokes
isol for Stokes flow over an isolated sphere from Oseen’s approximation is

uStokes
isol = −U cos φ

[
1 − 3R

2r
+

R3

2r3

]
êr + U sinφ

[
1 − 3R

4r
− R3

4r3

]
êφ, (3.39)

where R = D/2 is the radius of the particle, U is the free stream velocity, and êr and êφ are

the unit vectors along the radial and polar coordinates, respectively. The local viscous drag

force F loc
Stokes,vis on an isolated particle in Stokes flow along the polar angle φ can be defined as

F loc
vis,isol (φ) = µf(∇uStokes

isol · n(s)|r=R) · ηA. (3.40)

In the spherical coordinate system, the surface normal vector is along the radial unit vector

(i.e., n(s) = êr), and η = −ηx = − cos φêr + sinφêφ. From the definition of surface normal
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Figure 3.12 Comparison of the local viscous drag F loc
vis (φ) (Eq. 3.38) for 10

randomly chosen particles out of a total of 95 particles from a
realization of random array with solid volume fraction εs = 0.4.

vector and velocity field (Eq. 3.39), ∇uStokes
isol · n(s)|r=R =

3U

2R
sinφêφ. Therefore, the above

local viscous drag force F loc
vis,isol on an isolated particle becomes

F loc
vis,isol = (

3µfUA

2R
sinφêφ) · û = (

3µfUA

2R
sin φêφ) · (− cos φêr + sinφêφ) =

3µfUA

2R
sin2 φ.

(3.41)

The maxima of the above expression for F loc
vis,isol lies at φ = 90◦, and the minima lie at φ = 0◦

(fore) and φ = 180◦ (aft).

Figures. 3.11(b) and 3.11(d) show the comparison of local viscous drag F loc
vis (θ) along the

azimuthal angle θ for SC and random arrays, respectively. Since the azimuthal angle varies in

the plane perpendicular to the flow direction, the local viscous drag profiles are symmetric in

the four quadrants. For the SC arrays, similar to the observations for local Nusselt number

Nuloc (θ), the maxima of the local viscous drag lie at θ = 45◦ + i90◦, i = 0, 1, 2 and 3, which

correspond to the regions of maximum flow channel width (see Figs. 3.8(a) and 3.8(b) for SC

arrays). For local viscous drag force F loc
vis (φ) versus polar angle φ, very similar bell shaped pro-

files peaking at φ = 90◦ were observed for SC (Fig. 3.11(b)) and random arrays (Fig. 3.11(d)).
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However, the local average viscous drag F loc
vis (θ) in random arrays, unlike in the SC arrays, is

only weakly dependent on the azimuthal angle.

The above dependence of local Nusselt number on the flow channel width in ordered arrays

motivates the study of dependence of average Stokes Nusselt number Nu0 on hard–core hc

distance in random arrays. Random arrays having same volume fraction and number density

but with different hard–core distances can be generated using the Matèrn point–process or the

three–step random configuration initialization algorithm outlined in Appendix A. Since with

the three–step algorithm, higher values of maximum hard–core distance can be achieved than

those possible by Matèrn point–process (about 1.5 times more, see Appendix A for details),

the three–step algorithm is used here.
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3.6.5 Effects of hard–core distance hc on average Stokes Nusselt number Nu0 in

random arrays
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Figure 3.13 (a) and (b): Comparison of the contour plots of non–dimen-

sional scalar flux magnitude |∇φ|D/
∣∣〈φ(s)
〉
−
〈
φ(f)
〉∣∣ along

with flow stream lines (shown by solid lines) for random arrays

with solid volume fraction εs = 0.2 for hard–core distance hc

values equal to D and 1.35D, respectively. (c) and (d): Com-

parison of the local Nusselt number Nuloc(φ) along the polar

angle φ on 20 randomly chosen particles for the same solid

volume fraction and hard–core distances. Since the contour

plots have been shown on a x-y plane lying midway along the

z- axis (see schematic in Fig. 3.7), only the projected area of

particles is visible in this plane.



104

Figs. 3.13(a) and 3.13(b) show the contour plots of non–dimensional scalar flux magnitude

|∇φ|D/
∣∣〈φ(s)
〉
−
〈
φ(f)
〉∣∣ for random arrays (with solid volume fraction εs = 0.2) for hard–core

distance hc equal to D and 1.35D, respectively. Comparing the two figures, it can be seen

that whenever two particles are in close proximity the scalar flux decreases at those surface

points, i.e, the scalar flux reduces in the regions of narrow flow channels. This reduction in

scalar flux is more severe for the case of hc = D then hc = 1.35D since the particles are

allowed to be much closer (and hence narrower flow channels) in the former case. Due to the

strong particle–particle interactions for hc = D, and the resulting decrease of scalar flux in

these regions, the local average Nusselt number (Nuloc (φ) from Eq. 3.36) for each body can

drastically vary along φ. Figs. 3.13(c) and 3.13(d) show the local average Nusselt number along

polar angle φ for 20 randomly chosen particles out of a total 161 particles from a realization

of the random arrays (εs = 0.2) for the same hard–core distances as above. Comparing the

figures, it can be seen that the stronger particle–particle interactions for hc = D result in

strong dependence of local average Nusselt number on φ for some particles. Furthermore, with

increasing hard–core distance or weakening particle–particle interactions, the overall scatter

in the local average Nusselt number also reduces. On an average, the local average Nusselt

number is higher for particles for hc = 1.35D than for hc = D.

Figs. 3.14(a), 3.14(b), 3.14(c), and 3.14(d) show for εs = 0.01, 0.1, 0.2, and 0.3, respec-

tively, the local average Nusselt number Nuloc (φ) along φ obtained by averaging over all bod-

ies for different values of hard–core distance hc. For each volume fraction, it can be seen that

the local average Nusselt number increases with increasing hard–core distance or weakening

particle–particle interactions. Also the error bars on local average Nusselt number shrink as the

hard–core distance is increased. This is due to the reduction in scatter of local Nusselt number

with increasing hard–core distance as seen and discussed above for εs = 0.2 (Figs. 3.13(c)

and 3.13(d)). By comparing the peaks of the local average Nusselt number, it can be seen that

the effect of increased hard–core distance becomes stronger with increasing volume fraction.

While for εs = 0.01 the maximum local average Nusselt number increases by approximately

29% from 2.23 at hc = D to 2.88 at hc = 3.6D, for εs = 0.3 it increases by approximately 41%
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from 7.0 at hc = D to 9.87 at hc = 1.2D.
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Figure 3.14 Comparison of the local average Nusselt number Nuloc(φ)

(Eq. 3.36) along φ obtained by averaging over all particles for

different values of hard–core distance hc in random arrays for

(a) εs = 0.01, (b) εs = 0.1, (c) εs = 0.2, and (d) εs = 0.3.

Fig. 3.15(a) shows for εs = 0.01 the comparison of average Stokes Nusselt number Nu0 as a

function of hard–core distance by particle diameter ratio hc/D for random arrays with the SC

and FCC arrangements. It can be seen that the Stokes Nusselt number scales linearly (with a

slope of 0.28) with the hard–core distance and increases by approximately 24% from hc/D = 1

to hc/D = 3. As the hard–core distance is increased, Stokes Nusselt number for random arrays

approaches the SC and FCC values. The same comparison at higher solid volume fractions of

0.1 (Fig. 3.15(b)), 0.2 (Fig. 3.15(c)), and 0.3 (Fig. 3.15(d)) once again reveal the linear scaling

(with slopes equal to 2.8, 7.56, and 14.3, respectively) of Stokes Nusselt number with the

hard–core distance. As observed earlier in local average Nusselt number versus the polar angle

(Fig. 3.14), the effect of increasing hard–core distance becomes stronger with increasing solid
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volume fraction which is evident from increasing slope magnitudes in Figs. 3.15(a)–3.15(d). For

example, a ten fold increase in solid volume fraction from 0.01 to 0.1 results in a similar order

of magnitude increase in slope from 0.28 to 2.8, respectively. The different pair–correlation

functions g(r) corresponding to different hard–core distances for εs = 0.01, 0.1, 0.2, and 0.3 are

shown in Figs. A.2(a), A.2(b), A.2(c), and A.2(d), respectively.
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Figure 3.15 Comparison of the average Stokes Nusselt number versus
hard–core distance hc in random arrays with SC and FCC
arrays for solid volume fraction εs equal to 0.01 in (a) and
0.1 in (b). The slopes of the solid lines obtained by linear
least–squares fit is indicated next to them.

Based on the above observations, a modified average Stokes Nusselt number Nu′
0 that, in

addition to the first–order solid volume fraction effects, also accounts for the second–order
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inter–particle distance effects can be decomposed as

Nu′
0

(
εs,ĥc

)
= Nu

bhc=1
0 (εs) + αhc

Nu

(
ĥc − 1
)

, (3.42)

where ĥc = hc/D is the ratio of hard–core distance and particle diameter, Nu
bhc=1
0 is the average

Stokes Nusselt number when hard–core distance equals the particle diameter (i.e., ĥc = 1),

and αhc

Nu is the coefficient of the correction term to Nu
bhc=1
0 for finite hard–core distance. Since

Nu
bhc=1
0 is the average Stokes Nusselt number for hc = D, its functional dependence on solid

volume fraction εs is already known from the earlier proposed correlation for Nu0 (Eq. 3.35).

The coefficient αhc

Nu in the above equation corresponds to the slopes of linear fits (solid lines)

in Fig. 3.15. Based on the above discussion for Figs. 3.14 and 3.15, the hard–core distance

correction reduces with decreasing solid volume fraction and logically it should vanish in the

limit of infinite dilution, i.e., αhc

Nu → 0 as εs → 0. Therefore, in the limit of infinite dilution,

the above modified average Stokes Nusselt number Nu′
0, like Nu0 in Eq. 3.35, also tends to the

isolated sphere limit of 2.
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Figure 3.16 The correction term due to finite hard–core distance αhc

Nu
(Eq. 3.42) in the Stokes flow versus solid volume fraction εs.
The solid line obtained as a quadratic fit is 17.7εs + 99.39ε2

s .

The hard–core distance hc correction term αhc

Nu, which corresponds to the slopes in Figs. 3.15(a)–
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3.15(d), is shown as a function solid volume fraction εs in Fig. 3.16. In the figure, the hard–core

distance correction term satisfies the earlier identified constraint that αhc

Nu → 0 in the limit

of infinite dilution. By fitting a quadratic polynomial to the data, the following functional

dependence of αhc

Nu on εs is obtained

αhc

Nu(εs) = 17.77εs + 99.39ε2
s , (3.43)

which vanishes at εs = 0. With the above approximate fits for Nu
bhc=1
0 (Eq. 3.35) and αhc

Nu

(Eq. 3.43), the modified average Stokes Nusselt number Nu′
0 (Eq. 3.42) is now completely

known as a function of both the solid volume fraction εs and hard–core distance hc by particle

diameter D ratio for Pr = 0.7.

3.7 Discussion and Conclusions

A novel computational strategy based on direct–forcing immersed boundary method is

devised to simulate heat/mass transfer in steady flow past homogeneous assemblies using pe-

riodic boundary conditions. DNS results are used to provide accurate closure for interphase

heat/mass transfer term in averaged heat/mass conservation equations. The numerical conver-

gence of scalar IBM solver in terms of grid resolution Dm and box length to particle diameter

ratio L/D is established, and the solver is validated by comparing the average Nusselt number

in a very dilute SC array (εs = 4.0E − 04) with the average Nusselt number correlation for an

isolated particle .

The dependence of the average Stokes Nusselt number Nu0 on solid volume fraction is

compared for both the ordered (SC and FCC) and random arrays for a fixed Prandtl number

of 0.7. For the random arrays, in addition to the solid volume fraction, dependence of average

Stokes Nusselt number on the inter–particle spacing, quantified by the hard–core distance hc,

is also investigated.

For the ordered arrays, the average Stokes Nusselt number increases with solid fraction

from a minimum value of 2.0 (corresponding to the isolated sphere limit) to a maximum value

of Nu0,max (approximately 11 for SC and 23 for FCC). As the volume fraction approaches
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the close–packing limit, the average Stokes Nusselt number approaches an asymptotic limit in

ordered arrays. This is because as the solid volume fraction increases, the increase in local

Nusselt number at the local maxima is compensated by the corresponding decrease at the local

minima.

While the ordered arrays show a sharper increase in average Stokes Nusselt number in the

0.01− 0.4 solid volume fraction range and then level off, the random configuration for hc = D

shows a more gradual increase in the same range and no levelling off for the range of volume

fractions considered. For the highest solid volume fraction of 0.5 simulated for random arrays,

the average Stokes Nusselt number from scalar IBM simulations and Gunn’s correlation differ

by more than 300%. Through a comprehensive budget study of the convection and diffusion

terms (which is further decomposed into axial and perpendicular diffusion terms) in the scalar

transport equation, it is shown that axial diffusion is one–third of the total diffusion for all

values of solid volume fractions. The assumption of negligible axial diffusion, among many

other assumptions made in the stochastic model used by Gunn, is attributed to be the primary

incorrect assumption that has resulted in differences as high as 300% for the average Stokes

Nusselt number between the scalar IBM simulations and Gunn’s correlation.

With the aid of ordered arrays, the effect of inter–particle distance on the local Nusselt

is demonstrated. In ordered arrays, the local Nusselt number peaks in regions of maximum

flow channel widths. Therefore as the average inter–particle distance is increased in random

arrays by varying the hard–core distance hc, the average Stokes Nusselt number increases.

The dependence of average Stokes Nusselt number on hc becomes stronger as the solid volume

fraction increases and vanishes in the limit of infinite dilution. A modified average Stokes

Nusselt number Nu′
0 (Eq. 3.42) that accounts for the dependence of average Stokes Nusselt

number on both the solid volume fraction εs and hard–core distance by particle diameter ratio

ĥc is defined and a correlation proposed.
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CHAPTER 4. SCALAR TRANSPORT AND HEAT TRANSFER PAST

ORDERED AND RANDOM ARRAYS OF MONODISPERSE SPHERES

IN FLOWS WITH FINITE FLUID INERTIA

This chapter is a manuscript in preparation titled “Scalar transport and heat transfer

past ordered and random arrays of monodisperse spheres for low to high Reynolds numbers”

authored by R. Garg, S. Tenneti, and S. Subramaniam.

Direct numerical simulations of steady passive scalar transport in flow past stationary

simple cubic (SC), face–centered cubic (FCC), and random arrays of monodisperse spheres

are performed for Reynolds numbers from 1 to 300. The scalar DNS is performed using a

computational approach that extends the immersed boundary method to solve for steady scalar

transport past homogeneous particle assemblies. The average Nusselt number is compared with

the widely–used heat and mass transfer correlation of Gunn (1978). It is found that for low solid

volume fractions (εs < 0.1), average Nusselt number from scalar IBM simulations and Gunn’s

correlation agree well in random arrays. For higher solid volume fractions of random arrays,

there is large difference between scalar IBM simulations and Gunn’s correlation, reaching as

much as 300% for εs = 0.5. However, for random arrays the scalar IBM simulations and

Gunn’s correlation converge nearly to the same values for higher solid volume fractions as the

Reynolds number increases. This is attributed to the incorrect asymptote for average Stokes

Nusselt number in Gunn’s correlation, which is addressed in the previous chapter 3 on average

Stokes Nusselt number. Based on the scalar IBM simulations, a correlation for average Nusselt

number as function of solid volume fraction and Reynolds number is proposed.
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4.1 Results

Since the results for scalar transport/heat transfer in the Stokes flow regime show significant

qualitative and quantitative differences (Chap. 3), we expect similar trends for the convection

dominated finite Reynolds number regime. In the first subsection the average Nusselt number

in ordered arrays is analyzed as a function of solid volume fraction and Reynolds number,

and compared with Gunn’s correlation. In order to explain the dependence of average Nusselt

number on solid volume fraction and Reynolds number, we examine the local Nusselt number

on the particle surface for selected cases. Contour plots of the scalar and velocity fields also

provide insight into the underlying physical mechanisms of scalar transport/heat transfer, In

the second subsection, the scalar transport/heat transfer in random arrays is examined. For

the random arrays, a budget study of the scalar transport equation reveals that axial diffusion

is always one–third of the total diffusion for all combinations of (εs, Re).

4.1.1 Ordered arrays

4.1.1.1 Simple cubic arrays

For SC arrays, Fig. 4.1(a) shows for SC arrays the comparison of average Nusselt number

versus Reynolds number for different values of solid volume fraction εs. The comparison is

also made with average Nusselt number from Gunn’s correlation for random arrays for two

extreme values of solid volume fraction equal to 0.01 (solid line) and 0.5 (dashed line) that

encompass the solid volume fractions considered for SC arrays. Also shown in the same plot is

the comparison with Nusselt number correlation for isolated particle (dash–dotted line, given

by Eq. 3.32) from Clift et al. (1978). It can be seen that the maximum difference between

IBM simulations (up to 300% for εs = 0.5 and Re = 0.01) and Gunn’s correlation occurs in the

Re range 0 < Re < 10. While the IBM simulations predict an asymptote for average Nusselt

number group in the Stokes flow limit (Re < 1), the average Nusselt number from Gunn’s

correlation shows a significant dependence on Re in this range. For example, for εs = 0.5,

while the average Nusselt number from Gunn’s correlation increases by approximately 39%

from 4.07 at Re = 0.01 to 5.75 at Re = 1.0, IBM simulations predict a near constant value of
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approximately 11.66 for the same range of Reynolds number.

From Fig. 4.1(a) it is observed that as the Reynolds number increases, differences between

Gunn’s correlation and scalar IBM simulations reduce and then increase again. This is due

to the different slopes for average Nusselt number from scalar IBM simulations and Gunn’s

correlation. Since Gunn’s correlation is primarily for random arrays, and the current com-

parison is made with ordered arrays, different slopes can be attributed to the configurational

dependence. For the ordered arrays, the drag force for Re > 5, as shown in Hill et al. (2001b)

and Garg et al. (2009c), is strongly dependent on the orientation of the mean flow. Since the

scalar gets convected along the flow streamlines, the average Nusselt number is affected by

orientation of the mean flow. This is shown by a limited comparison for two mean flow angles

for very dilute SC array in scalar IBM validation in the previous chapter 3. Therefore, this

comparison for ordered arrays is only limited due to the strong dependence of average Nusselt

number on the mean flow angle for Re > 5.
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Figure 4.1 Comparison of the average Nusselt number in SC arrays (a) ver-
sus the Reynolds number Re for different values of solid volume
fraction, and (b) versus the solid volume fraction εs for different
values of Reynolds number with Gunn’s correlation (solid and
dashed lines in both (a) and (b)) and Nusselt number correla-
tion (dash–dotted line) for isolated particle (Eq. 3.32) in (a).
The flow is directed along x-axis for all the above cases.

Comparison with the isolated particle Nusselt number correlation (Eq. 3.32 from Clift
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et al. (1978)) in Fig. 4.1(a) reveals that over a certain range of Reynolds number for εs = 0.01

(Re > 15) and 0.1 (Re > 200), the average Nusselt number is less than that for an isolated

particle. Similar observations are made for the drag force in Hill et al. (2001b) and in Fig. 2.7

(chapter 2) for F versus Re in SC arrays. In Fig. 2.7, it can be seen that the normalized drag

force F over a range of Reynolds number for solid volume fractions 0.01 (Re > 10) and 0.1

(Re > 100) is less than that on an isolated particle. It is a well known fact that a particle

shielded along the flow direction by an upstream particle experiences a lesser drag force. The

drag force on a particle is the sum of forces resulting from the “short range” viscous and the

“long range” pressure gradient forces. Due to the additional “long range” pressure gradient

forces, the affect of shielding is more pronounced for the drag force than for the average Nusselt

number which is clearly evident on comparing the slope of F versus Re in Fig. 2.7 against the

slope of Nu number versus Re in Fig. 4.1(a).
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Figure 4.2 Comparison for different solid volume fractions in SC arrays of

the local Nusselt number Nuloc(φ) (Eq. 3.36) along the polar

angle φ for Re equal to (a) 1, (b) 10, (c) 100, and (d) 300.

Figure 4.1(b) shows the comparison of average Nusselt number versus the solid volume
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fraction εs for different Reynolds numbers. The comparison is also made with the average

Nusselt number predicted by Gunn’s correlation for two extreme values of Reynolds number

equal to 1 (solid line) and 300 (dashed line) that encompass the Reynolds number range

considered for SC arrays. It can be seen that for all values of Reynolds number the average

Nusselt number from DNS approaches a asymptotic limit as the volume fraction approaches

the close–packing limit. For Stokes flow at high volume fractions, it is observed in chapter 3

that the relative increase in local Nusselt number at the local maxima is offset by the relative

decrease at the local minima, resulting in an asymptote for average Nusselt number in the

limit of close–packing. For SC arrays, Figs. 4.2(a), 4.2(b), 4.2(c), and 4.2(d) show the local

Nusselt number Nuloc(φ) (see Eq. 3.36 for the definition of Nuloc(φ)) for different solid volume

fractions as a function of the polar angle φ for Re equal to 1, 10, 100, and 300, respectively.

It can be seen that for all Reynolds numbers considered, the relative increase in local Nusselt

number at the local maxima is compensated by the relative decrease at local minima. This

results in an asymptotic limit for the average Nusselt for all Reynolds numbers in the limit of

close–packing.

For Re = 1 (Fig. 4.2(a)), the local Nusselt number dependence on φ is similar to that

observed for Stokes flow in chapter 3 with maxima occurring approximately at φ = 45◦ and 135◦

for εs ≥ 0.2 – which correspond to the regions of maximum flow channel width. As the Reynolds

number increases to 10 (Fig. 4.2(b)), the maxima of the local Nusselt number still occur at

approximately the same values of φ equal 45◦ and 135◦. However, unlike for Stokes flow and

Re = 1 cases, the second peak at φ = 135◦ is smaller in magnitude than the first peak at

φ = 45◦. Comparison at higher Reynolds numbers of 100 (Fig. 4.2(c)) and 300 (Fig. 4.2(d))

reveals an even greater drop in magnitude of the second peak relative to magnitude of the first

peak. Comparison of the figures also show that the location of the first peak shifts from the

regions of maximum flow channel width (φ = 45◦ and 135◦) in Stokes flow regime (Fig. 4.2(a))

toward the region of minimum flow channel width (φ = 90◦) as the Reynolds number increases.
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Figure 4.3 Contour plots of the non–dimensional scalar flux magnitude

|∇φ|D/
∣∣〈φ(s)
〉
−
〈
φ(f)
〉∣∣ along with flow stream lines (shown

by solid lines) for SC arrays with εs = 0.3 at (a) Re = 1, (b)

Re = 10, (c) Re = 100, and (d) Re = 300. The flow is directed

along x- axis and the contour plots are shown in the x-y plane

lying midway along the z- axis as shown by the schematic in

Fig. 3.7. Few streamlines in (a) seem to be penetrating the

particle surface. This is an artifact of the visualization soft-

ware that draws streamlines based on interpolated values from

the Eulerian grid, resulting in finite but negligible fluid velocity

even at fluid–particle interface.
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The shifting of the first peak toward φ = 90◦ is due to the dominance of convective transport

over diffusive transport as the Reynolds number increases. In the Stokes flow regime which

is dominated by diffusive transport, maximum scalar gradients or heat transfer occur where

there is maximum fluid volume between the particle surfaces. However, as the Reynolds

number increases the high fluid velocity in thin regions between particles results in increased

convective transport which eventually dominates over the diffusive transport as the Reynolds

number increases.

The drop in magnitude of the second peak relative to the first peak with increasing Reynolds

number is due to the widening of flow recirculation bubble at the rear as shown by the com-

parison of contour plots of non–dimensional scalar flux magnitude |∇φ|D/
∣∣〈φ(s)
〉
−
〈
φ(f)
〉∣∣

along with the flow streamlines for εs = 0.3 at different values of Reynolds number in Fig. 4.3.

Comparison of the streamlines shows that the span of recirculation bubble widens along φ

as the Reynolds number increases, thus causing lesser heat transfer along the portion of the

particle surface exposed to the recirculation bubble.

Having studied at the average Nusselt number dependence on Reynolds number and solid

volume fraction for SC arrays, we now move to the second type of ordered arrays considered

in this work: FCC arrays.

4.1.1.2 Face–centered cubic arrays

Figure 4.4 shows for FCC arrays the dependence of average Nusselt number Nu on Reynolds

number for different solid volume fractions εs. Since Gunn’s correlation is valid up to the close–

packing limit in random arrays (≈ 0.65), comparison of the scalar IBM simulations with his

correlation is limited to a maximum solid volume fraction of 0.65. As observed earlier in the

case SC arrays, the maximum difference between IBM simulations and Gunn’s correlation

occur in the range 0 < Re < 0. For example, for εs = 0.633 at Re = 10, Gunn’s correlation

and scalar IBM simulation differ by more than 100%.

Only a limited comparison can be made for the case of ordered arrays due to the additional

dependence of average Nusselt number on the mean flow angle. It can be seen that, similar to
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Figure 4.4 Comparison of the average Nusselt number in FCC arrays ver-
sus the Reynolds number Re for different values of solid volume
fraction with Gunn’s correlation (solid and dashed lines) and
Nusselt number correlation (dash–dotted line) for isolated par-
ticle (Eq. 3.32). The flow is directed along x-axis for all the
above cases.

observations made for SC arrays, the difference between IBM simulations and Gunn’s corre-

lation first reduces with increasing Reynolds number and then increases again. This is due to

the different slopes for average Nusselt number for FCC arrays from scalar IBM simulations

and Gunn’s correlation. Similar to SC arrays, the average Nusselt number in FCC arrays

also remains nearly constant in the Stokes flow regime, i.e, Re ≤ 1. Gunn’s correlation, on the

other hand, is strongly dependent on Re in the Stokes flow regime and decreases monotonically.

Also, similar to SC arrays, average Nusselt number asymptotes as the solid volume fraction

approaches the close–packing limit of 0.732 in the FCC arrays for all values of Reynolds num-

ber considered. Comparison with the isolated Nusselt number correlation (dash–dotted line)

shows that for εs = 0.01 and Re > 50, the average Nusselt number is less than that for an

isolated particle due to the shielding effects. This completes the discussion of ordered arrays.

The remaining part of this section is devoted to random particle configurations in gas–solid

flows.
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4.1.2 Random arrays
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Figure 4.5 Comparison of the average Nusselt number in random arrays
versus the Reynolds number Re for solid volume fractions equal
to 0.1 and 0.2 from IBM simulations with Gunn’s correlation.

Figure 4.5 shows the comparison of functional dependence of average Nusselt number Nu on

Reynolds number for εs = 0.1 and 0.2 obtained from IBM simulations with Gunn’s correlation.

For both solid volume fractions the maximum difference between IBM simulations and Gunn’s

correlation occurs in the Stokes flow regime. For example, at Re = 0.1, IBM simulations and

Gunn’s correlation differ by about 25% and 66% for εs = 0.1 and 0.2, respectively. As the

Reynolds number increases, the difference between IBM simulations and Gunn’s correlation

also reduces. For εs = 0.1, Gunn’s correlation and IBM simulations are in excellent agreement

for Re > 1, while for εs = 0.2, reasonable agreement (within 20% difference) is observed for

Re > 50. One principle difference between the IBM simulations and Gunn’s correlation is the

dependence of average Nusselt number on Re in the Stokes flow regime (Re < 1). While the

IBM simulations suggest an asymptotic value for the average Nusselt number in the Stokes

flow regime, Gunn’s correlation predicts a monotonic decrease in average Nusselt number with

decreasing Reynolds number.

As shown in the previous chapter, the average Stokes Nusselt number Nu0 from scalar IBM

simulations and Gunn’s correlation differs by as much as 300% for the highest solid volume
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fraction of 0.5 that is considered for random arrays in this study. Due to the increased difference

in average Stokes Nusselt number with increasing solid volume fraction, it is natural to expect

that range of Reynolds number for which the IBM simulations and Gunn’s correlation will be

in reasonable agreement (defined as the Reynolds number range for which difference is less than

20%) will also shrink with increasing solid volume fraction. For example, in Fig. 4.5 it is already

observed that the range of reasonable agreement shrinks from Re > 1 for εs = 0.1 to Re > 50

for εs = 0.2. Comparison of the dependence of average Nusselt number on Reynolds number

from scalar IBM simulations with Gunn’s correlation at even higher solid volume fractions of

0.3, 0.4, and 0.5 in Fig. 4.6 clearly reveals the shrinking of Re range with increasing solid volume

fraction. For εs = 0.3 and 0.4, scalar IBM simulations and Gunn’s correlation are in reasonable

agreement for Re > 100 and Re > 225, respectively. Since the maximum Reynolds number

considered for εs = 0.5 in random arrays is equal to 100, the range of reasonable agreement

is not apparent within this range of Reynolds number for εs = 0.5. But, nevertheless, in the

range of reasonable agreement for all other volume fractions, it can be seen that the scalar

IBM results and Gunn’s correlation show a near identical trend with Reynolds number.

In the previous chapter 3, through a budget study of the scalar transport equation it was

shown that the axial diffusion is one–third of the total diffusion over the entire range of solid

volume fraction considered in the Stokes flow regime. The same budget study is extended to

higher Reynolds numbers in the next section and it is shown that the axial diffusion remains

one–third of the total diffusion, irrespective of the Reynolds number.

4.1.3 Budget of the scalar transport equation

Decomposing the diffusion term ∇2φ (see Chap. 3 for details) in the scalar transport equa-

tion as the sum of axial D̂φ,‖ and perpendicular diffusion terms D̂φ,ξ, followed by defining local

fluid–phase volumetric averages in the y−z plane along the mean flow direction x−, and taking

the ensemble average results in three “ensemble averaged” local fluid–phase volumetric aver-

age terms for convection
〈
Ĉ

(f)
φ

〉
V

(x), axial diffusion
〈
D̂

(f)
φ,‖

〉
V

(x), and perpendicular diffusion〈
D̂

(f)
φ,⊥

〉
V

(x). The budget analysis of the scalar transport equation in the previous chapter
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Figure 4.6 Comparison of the average Nusselt number in random arrays
versus the Reynolds number Re for solid volume fractions equal
to 0.3, 0.4, and 0.5 from IBM simulations with Gunn’s corre-
lation. Due to the restriction posed by the serial solver, high
numerical resolutions required for εs = 0.5 and Re > 100 are
not simulated.

revealed that axial diffusion was always one–third of the total diffusion for all solid volume

fractions considered for both random and ordered arrays in the Stokes flow regime. Extending

the budget study of scalar transport equation to finite Reynolds numbers is Fig. 4.7(a) which

shows the comparison of relative magnitudes of the “ensemble averaged” local fluid–phase vol-

umetric averages
〈
Ĉ

(f)
φ

〉
V

(solid line),
〈
D̂

(f)
φ,‖

〉
V

(dashed line), and
〈
D̂

(f)
φ,⊥

〉
V

(dash–dot line)

along the x- axis for εs = 0.1 and Re = 50. Figs. 4.7(b) shows the same comparison for a dif-

ferent (εs, Re) combination of (0.4, 50). Two important observations can be made from these

figures, which are discussed below in detail.

The first observation pertains to the contribution of axial diffusion term relative to the total

diffusion. If the ratio of axial diffusion to total diffusion is computed as
〈
D̂

(f)
φ,‖

〉
V

/
(〈

D̂
(f)
φ,‖

〉
V

+
〈
D̂

(f)
φ,⊥

〉
V

)
,

then an average value of one–third is obtained for both for both cases shown in Fig. 4.7. Al-

though not shown here, the above analysis when extended to even higher Reynolds numbers

(up to Re = 300) reveals a similar trend: axial diffusion remains approximately one–third of

the total diffusion. Based on the current budget study and the one discussed in Chap. 3 for
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Figure 4.7 Comparison of relative magnitudes of the “ensemble aver-
aged” local fluid–phase volumetric averages
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along the x- axis obtained for the normalized convection Ĉφ,
axial diffusion D̂φ,‖ and perpendicular diffusion terms D̂φ,⊥, re-
spectively. Ensemble average has been performed over 5 inde-
pendent realizations, and the scatter between the realizations
is shown by the one–sided error bars.
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the Stokes flow regime, it is concluded that axial diffusion is always one–third of the total

diffusion, and that the axial diffusion should not be neglected in order to model fluid–phase

heat transfer for any combination of εs and Re.

The second observation is related to the contribution of the convection term in the scalar

transport equation. For the Stokes flow case, the convection term was found to be negligible

in the previous chapter. However, for Re = 50 in Figs. 4.7(a) and 4.7(b), it can be seen that

the convection term becomes significant. Since the volume average of the convection term

over the entire volume should be zero due to periodic boundary conditions, the local fluid–

phase volumetric average
〈
Ĉ

(f)
φ

〉µ
V

(x) of the convection term fluctuates around zero such that∫
Lx

〈
Ĉ

(f)
φ

〉µ
V

(x)dx = 0.

4.2 A correlation for average Nusselt number Nu

From the scalar IBM simulation data for average Nusselt number for random arrays (Figs. 4.5

and 4.6), the correlation for average Nusselt number is extended to finite Reynolds numbers

from the average Stokes Nusselt number Nu0 correlation proposed in Chap. 3. The new average

Nusselt number correlation for Pr = 0.7 is

Nu =


2 + 1

(1−εs)
3

(
10.35εs + 5.51ε2

s − 18.16ε
3/2
s + 1.63ε

1/3
s

)
Re < 1

2 exp
(
0.82 ε0.5

s + 4.45 ε1.5
s + 0.29 Re0.3 − 1.52 ε1.5

s Re0.1
)

Re ≥ 1.

(4.1)

4.3 Discussion and conclusions

Scalar IBM simulations have been extended from the Stokes flow regime in 3 to high

Reynolds numbers up to Re = 300. Average Nusselt number as a function of Reynolds number

and solid volume fraction is found from scalar IBM simulations for ordered and random arrays,

and compared with the widely used heat and mass transfer correlation of Gunn.

For ordered arrays, the maximum difference for the average Nusselt number between scalar

IBM simulations and Gunn’s correlation is found in low (Stokes flow) to moderate Reynolds

(Re < 50) number range. As the Reynolds number increases, the difference between scalar
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IBM results and Gunn’s correlation first decrease and then increases again. This is due to the

difference slopes for average Nusselt number in ordered arrays from scalar IBM simulations

and Gunn’s correlation, which is primarily for random arrays. Besides, due to the dependence

of average Nusselt number on the mean flow angle for Re > 5, the comparison of scalar IBM

results and Gunn’s correlation for ordered arrays is only limited for Re > 5.

Comparison of local Nusselt number along the particle surface in SC arrays reveals that

the maximum of local Nusselt number shifts from the regions of maximum flow channel width

in Stokes flow regime toward the regions of minimum flow channel width. This is attributed

to the dominance of convective transport over the diffusive transport as the Reynolds number

increases. Since by mass continuity, the fluid velocity is highest in narrow regions between

particles, in the convective transport dominated regime the maximum heat transfer, and the

maximum local Nusselt number shift toward the regions of narrow flow channel widths.

For the lowest solid volume fraction of 0.1 for random arrays, scalar IBM simulations

and Gunn’s correlation are in excellent agreement for Re > 1. As the solid volume fraction

increases in random arrays, the range of reasonable agreement (defined as the Reynolds range

in which scalar IBM simulations and Gunn’s correlation differ by less than 20%) also shrinks.

For εs = 0.2, 0.3, and 0.4, scalar IBM simulations and Gunn’s correlation are in reasonable

agreement for Re > 50, Re > 100, and Re > 225, respectively. In the reasonable agreement

range of Reynolds number for each solid volume fraction, the average Nusselt number from

scalar IBM simulations and Gunn’s correlation show a near identical trend with the Reynolds

number. For both ordered and random arrays ,the average Nusselt number from scalar IBM

simulations remains nearly constant in the Stokes flow regime (Re ≤ 1). However, the average

Nusselt number from Gunn’s correlations shows a strong dependence on Reynolds number and

decreases monotonically in the Stokes flow regime.

In the Stokes flow regime, Gunn’s correlation was based on the conclusion drawn from

his stochastic model that axial diffusion does not effect the Stokes Nusselt number. However,

the budget study in chapter 3 revealed that axial diffusion is one–third of the total diffusion

and its neglect will lead to under predictions for the average Stokes Nusselt number. For
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higher Reynolds numbers, Gunn’s correlation was based on data from the experiments (limited

to only those experiments that considered axial diffusion at low Re) of Gunn and Desouza

(1974), Turner and Otten (1973), and Denton (1951). For any solid volume fraction in random

arrays, the maximum difference for average Nusselt number between the scalar IBM simulations

and Gunn’s correlation occur in the Stokes flow regime. As the solid volume fraction increases,

the above difference also increases with the highest difference of 300% observed for εs = 0.5.

As a result, the onset of range of reasonable agreement shrinks toward higher value of Reynolds

number with increasing solid volume fraction.

The budget study of the scalar transport equation is extended from Stokes flow regime to

high Reynolds numbers. It is found that axial diffusion term is one–third of the total diffusion

for any combination of εs and Re. This is an important observation for researchers aiming to

model heat transfer in the fluid–phase. A correlation for the average Nusselt number Nu as

function of solid volume fraction εs and Reynolds number is proposed and recommended for

use in simulations of gas–solid flows solving for average equations.
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CHAPTER 5. ACCURATE NUMERICAL ESTIMATION OF

INTERPHASE MOMENTUM TRANSFER IN

LAGRANGIAN–EULERIAN SIMULATIONS OF DISPERSED

TWO–PHASE FLOWS

This chapter is a printed manuscript (Garg et al., 2007) titled “Accurate numerical es-

timation of interphase momentum transfer in Lagrangian–Eulerian simulations of dispersed

two–phase flows” in “Intl. J. Multiphase Flow” authored by R. Garg, C. Narayanan, D. Lake-

hal, and S. Subramaniam.

The Lagrangian–Eulerian (LE) approach is used in many computational methods to simu-

late two–way coupled dispersed two–phase flows. These include averaged equation solvers, as

well as direct numerical simulations (DNS) and large–eddy simulations (LES) that approximate

the dispersed–phase particles (or droplets or bubbles) as point sources. Accurate calculation of

the interphase momentum transfer term in LE simulations is crucial for predicting qualitatively

correct physical behavior, as well as for quantitative comparison with experiments. Numerical

error in the interphase momentum transfer calculation arises from both forward interpola-

tion/approximation of fluid velocity at grid nodes to particle locations, and from backward

estimation of the interphase momentum transfer term at particle locations to grid nodes. A

novel test that admits an analytical form for the interphase momentum transfer term is devised

to test the accuracy of the following numerical schemes: (1) fourth–order Lagrange Polynomial

Interpolation (LPI-4), (3) Piecewise Cubic Approximation (PCA), (3) second–order Lagrange

Polynomial Interpolation (LPI-2) which is basically linear interpolation, and (4) a Two–Stage

Estimation algorithm (TSE). A number of tests are performed to systematically characterize

the effects of varying the particle velocity variance, the distribution of particle positions, and
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fluid velocity field spectrum on estimation of the mean interphase momentum transfer term.

Numerical error resulting from backward estimation is decomposed into statistical and deter-

ministic (bias and discretization) components, and their convergence with number of particles

and grid resolution is characterized. It is found that when the interphase momentum transfer

is computed using values for these numerical parameters typically encountered in the litera-

ture, it can incur errors as high as 80% for the LPI-4 scheme, whereas TSE incurs a maximum

error of 20%. The tests reveal that using multiple independent simulations and higher number

of particles per cell are required for accurate estimation using current algorithms. The study

motivates further testing of LE numerical methods, and the development of better algorithms

for computing interphase transfer terms.

5.1 Introduction

The Lagrangian–Eulerian(LE) approach is widely used to simulate dispersed two-phase

flows. This work focuses on the development of accurate numerical methods for computing

the interphase momentum exchange term in LE simulations of two–phase flows with non-

negligible mass loading. Therefore, the findings of this study are relevant to two–phase flows

that must account for two–way coupling. Numerical error incurred in estimating the interphase

momentum transfer term directly affects the fluid velocity solution, and feeds back to the

particle trajectories. These errors can drastically affect the physical picture that emerges from

an LE simulation. The conclusions of this study can also be easily generalized to the mass and

energy interphase exchange terms.

5.1.1 Physical system

In the LE approach the dispersed–phase consisting of Np physical particles 1 is represented

in a Lagrangian frame at time t by {X(i)(t),V(i)(t), i = 1, . . . , Np(t)}, where X(i)(t) denotes the

ith particle’s position and V(i)(t) represents its velocity. For the sake of simplicity we consider

monodisperse particles here, although the conclusions of this work hold for polydisperse systems
1By particle we mean any dispersed–phase element, including solid particles, droplets and bubbles.
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also. For monodisperse particles with diameter Dp, the particle mass is the same for each

particle m(i) = mp = ρpVp, where ρp and Vp = πD3
p/6 are the individual particle density and

volume respectively. The position and velocity of the physical particles evolve by

dX(i)

dt
= V(i) (5.1)

mp
dV(i)

dt
= f (i), i = 1, . . . , Np(t) (5.2)

where f (i) is the instantaneous force acting on the ith physical particle.

For the case of volumetrically dilute flows 2 with finite mass loading, the momentum conser-

vation in the fluid phase is the single–phase momentum conservation equation augmented by

an interphase momentum transfer term Ffp, which accounts for the coupling of the dispersed–

phase momentum with the fluid phase:

ρf

(
∂Uf

∂t
+ Uf · ∇Uf

)
= ∇ · τ − Ffp. (5.3)

This general formulation of the LE approach subsumes the application of the LE method

to dispersed two–phase flows in three different simulation contexts: (1) direct numerical sim-

ulation (DNS) using a point-particle approximation for the dispersed phase, (2) large eddy

simulation (LES), and (3) computational fluid dynamics (CFD) using averaged equations for

the carrier flow. The specific equations appropriate to each of these simulation methods can be

recovered by appropriate interpretation (realization, filtered realization or statistical average)

of the fluid velocity field, stress tensor and interphase momentum transfer term. Table 5.1

lists the representation of the carrier flow field and dispersed phase for these three simulation

methods. This paper focuses primarily on accurate estimation of the interphase momentum

transfer term Ffp(x, t) in the context of CFD, where both fluid and particle phases are rep-

resented in a statistically averaged sense. However, the conclusions of this paper are equally

applicable and relevant to the hybrid simulations DNS(b) and LES(b) in Table 5.1.

The equation for conservation of mean momentum in the fluid phase is obtained by ensemble
2This assumption does not pose an inherent limitation on our investigation, but we choose this case to

simplify the equations. The conclusions of this work will also hold for non-dilute cases but volume displacement
effects will need to be accounted for.
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Simulation Method Carrier flow fields: Dispersed phase:
Uf (x, t),p(x, t)

{
X(i)(t),V(i)(t), i = 1, . . . , Np(t)

}
DNS(a) with physical par-
ticles

Realization Realization: point field

DNS(b) with stochastic
particles

Realization Statistically averaged density

LES(a) with physical par-
ticles

Filtered field of a
realization

Spatially filtered point field

LES(b) with stochastic
particles

Filtered field of a
realization

Spatially filtered density

CFD Mean fields Statistically averaged density

Table 5.1 Representation of carrier flow and dispersed phase in different LE
simulations: DNS(b) and LES(b) are denoted hybrid simulations.

averaging (Drew and Passman, 1998)

ρfαf

(
∂〈Uf 〉

∂t
+ 〈Uf 〉 · ∇〈Uf 〉

)
= ∇ · 〈τ 〉 − 〈Ffp〉 + τRS , (5.4)

where αf is the average fluid volume fraction, ρf is the thermodynamic density of the fluid

phase (assumed constant), τRS is the residual stress resulting from ensemble averaging, and

the angle brackets represent phasic averages of the terms.

Based on a statistical representation of the dispersed phase as a point process (Subra-

maniam, 2000, 2001) one can associate a density f(x,v, t) with the ensemble of realizations{
X(i)(t),V(i)(t), i = 1, . . . , Np(t)

}
. The density f(x,v, t) admits a decomposition

f(x,v, t) = n(x, t)f c
V(v|x; t), (5.5)

where f c
V(v|x; t) is the pdf of particle velocity conditional on physical space and n(x, t) is the

density of expected number of particles in physical space. In this notation v is the sample

space variable corresponding to particle velocity V. The expected value of the interphase

momentum transfer term (or fluid-particle interaction force) Ffp(x, t) can be written as an

integral over velocity space:

〈Ffp〉(x, t) =
∫

[v]
〈f | x,v; t〉n(x, t)f c

V(v|x; t) dv , (5.6)
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where 〈f | x,v; t〉 is the conditional average of the force acting on the physical particles. It is

this quantity that we seek to calculate accurately in our study. Since we only refer to average

fluid velocity and average interphase momentum transfer from here on, to improve readability

the angle bracket notation is omitted from these quantities in the rest of the paper.

5.1.2 Computational representation

In LE simulations the dispersed–phase density f(x,v, t) is indirectly represented by Nc

computational particles at time t in a Lagrangian frame by {X∗(i)(t),V∗(i)(t), i = 1, . . . , Nc(t)},

with X∗(i)(t) denoting the ith computational particle’s position and V∗(i)(t) its velocity. The

number of computational particles Nc does not necessarily have to equal the number of physical

particles Np, which in our point process model is a random number. Typically Nc is chosen to

be smaller than Np by even orders of magnitude sometimes, and the correspondence between

the computational representation and the physical system is enforced in the following statistical

sense.

The number of physical particles represented by the ith computational particle is denoted

by n
(i)
p , such that the sum over all the computational particles is equal to the expected number

of physical particles
Nc∑
i=1

n(i)
p = 〈Np〉. (5.7)

Therefore, the statistical weight assigned to each computational particle is

µ(i) =
n

(i)
p

Nc∑
i=1

n
(i)
p

=
n

(i)
p

〈Np〉
, (5.8)

which satisfies the normalization property
Nc∑
i=1

µ(i) = 1.

The position and velocity of each computational particle evolve by the equations

dX∗(i)

dt
= V∗(i) (5.9)

mp
dV∗(i)

dt
= f∗(i), i = 1, . . . , Nc(t), (5.10)

where f∗(i) is the modeled force acting on the ith computational particle. The computational

particle position X∗(i) and velocity V∗(i) are evolved in time from initial conditions at time t0



130

that correspond to a specified initial number density n(x, t0) and velocity probability density

function f c
V(v|x; t0) of the physical particles.

A general form of the particle force model that subsumes different drag force correlations

is:

f∗(i)(t) = f
(
Uf
(
X∗(i)(t), t

)
,V∗(i), ρf , νf , ρp, Dp

)
, (5.11)

where ρf and νf is the fluid phase density and kinematic viscosity, respectively. A more general

force model could include additional terms such as the added mass term, Basset history term,

or Saffman lift, as dictated by the problem physics. Even though we only model the drag

in our study, our conclusions regarding the accurate numerical calculation of the interphase

momentum transfer term will apply to this wider class of flows, with minor modifications to

account for the changes in the functional form f that will be necessitated by the additional

physics.

5.1.3 Problem Statement

Proper representation of the flow physics in an LE simulation is contingent upon accurate

calculation of the mean interphase momentum transfer term Ffp(x, t) from the LE solution,

i.e., the mean fluid velocity field Uf (x, t), and the position and velocity of the computational

particles {X∗(i)(t),V∗(i)(t), i = 1, . . . , Nc}. The mean interphase momentum transfer term

Ffp(x, t) at Eulerian grid nodes is estimated from this solution data in two steps:

1. Calculation of particle forces f∗(i):

This requires calculation of the fluid velocity at the particle location Uf (X∗(i), t) in 5.11

from the fluid velocity at Eulerian grid nodes. The numerical estimate of the fluid velocity

field Uf (x, t) at the particle location X∗(i) using a representation of Uf at M grid nodes is

denoted
{
Uf (X∗(i), t)

}
M

, and is obtained through forward interpolation/approximation

as: {
Uf (X∗(i), t)

}
M

= F
{
Uf

m, m = 1, . . . , M ;X∗(i)
}

, (5.12)

where the fluid velocity at the mth Eulerian grid node is denoted Uf
m, and F is a generic
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interpolation/approximation operation. The particle force f∗(i) is then obtained by sub-

stituting
{
Uf (X∗(i), t)

}
M

for Uf (X∗(i), t) in 5.11.

2. Mean interphase momentum transfer Ffp(x, t) from particle forces f∗(i):

The numerical procedure to calculate the Eulerian mean field Ffp(x, t) from particle data

{X∗(i)(t), f∗(i)(t), i = 1, . . . , Nc} is describe variously as mean estimation from particle

data, projection of fluid–particle interaction forces onto the Eulerian grid, or backward

estimation. The numerical estimate for the mean interphase momentum transfer Ffp(x, t)

at the mth Eulerian grid node is denoted {Ffp
m }, and the general form of its estimate from

the particle data is:

{Ffp
m } = E

{
X∗(i), f∗(i), n(i)

p , i = 1, . . . , Nc(t)
}

, (5.13)

where E like F is another generic interpolation/approximation operator.

5.1.4 Review of existing schemes

Both forward interpolation and the estimation of mean fields from particle data have been

studied by other researchers, and a selective review that motivates this study follows.

5.1.4.1 Forward Interpolation

Yueng and Pope (1988) investigated many numerical approaches for interpolation of fluid

velocity at a Lagrangian particle location in homogeneous turbulence. Among the schemes they

considered are a trilinear scheme, a 13-point third-order scheme based on Taylor series (TS–

13), and a fourth-order cubic spline. Their study shows that the fourth-order spline is most

accurate for forward interpolation, followed by the TS–13 scheme. The trilinear interpolation

scheme was found to be unacceptably poor. Balachandar and Maxey (1989) also analyzed

various numerical schemes to calculate the fluid velocity at a particle location in one-way

coupled spectral simulations of decaying homogeneous turbulence by comparing them with the

most accurate, and also the most computationally expensive, direct summation (DS) scheme.

They studied the TS–13 scheme, sixth-order Lagrangian interpolation (LPI-6), partial Hermite
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interpolation (PHI), shape function method (SFM), and linear interpolation (LPI-2). They find

that the estimation of statistical quantities such as Lagrangian velocity correlation, effective

eddy diffusivity, and mean square particle dispersion are not sensitive to the approximation

scheme used. They show that on a 323 grid size at low Reynolds number (Reλ = 17) the

LPI-6 scheme is sufficient to accurately extract quantities such as absolute velocity of single

particle and also the relative velocity of two particles. However, at higher Reynolds number

(Reλ = 26.5) the more accurate PHI scheme is needed, at additional computational expense. It

should be noted that the TS–13 scheme is best suited to simulations of homogeneous turbulence

that incorporate a de-aliasing procedure and make use of staggered grid. The PHI and SFM

schemes have been developed specifically for spectral simulation. While these studies provide

useful guidelines to choose appropriate schemes for forward interpolation, they only address

the first step in accurate estimation of the mean interphase momentum transfer term.

5.1.4.2 Estimation of mean field from particle data

Various approaches have been proposed for the second step that involves estimation of

the mean interphase momentum transfer term Ffp
m from particle data {X∗(i)(t), f∗(i)(t), i =

1, . . . , Nc}. We review three principal approaches here: (1) the particle–in–cell (PIC) method,

(2) the projection onto neighboring nodes (PNN) method, and (3) the projection onto identical

stencil (PIS) method.

PIC: Crowe (1982) extended the particle–in–cell (PIC) method (Evans and Harlow, 1957;

Harlow, 1988) to calculate the mean interphase momentum transfer term. In this method,

the mean interphase momentum transfer term is calculated as the summation of forces f∗(i)

exerted on the fluid by each particle in the control volume surrounding a grid node as shown

in Figure 5.1(a) and also expressed by Eq. B.1. This is effectively a box kernel, which has the

disadvantage that its estimate is piecewise-constant in physical space (Pope, 2000). Therefore

this method cannot be used to calculate gradients of the mean interphase momentum transfer

field, if they are needed.
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PNN: This is a so–called projection method wherein rather than summing all the particle

forces around a grid node, each particle force is projected onto the neighboring grid points

(eight in 3-D, four in 2-D) based on a weighting scheme (see Fig. 5.1(b)). The weights can

be based on the cell volumes as in Squires and Eaton (1990), or on the distance between

the particle and the node as used by Elghobashi and Truesdell (1993). The expression for

estimation by PNN method based on the distance between particle and the node is given by

Eq. B.3.

Boivin et al. (1998) compared PIC and PNN methods by first forward interpolating a

turbulent velocity field specified at Eulerian grid nodes to randomly generated off-grid particle

locations using a third–order LPI scheme. These interpolated fluid velocities at the particle

locations are then used as particle data to estimate the fluid velocity field at the Eulerian

grid nodes using PIC and PNN. Their test results show that the PNN scheme results in a

fluid velocity spectrum that is closer to the original velocity field spectrum field than that

obtained using the PIC method. However, the conclusions of the Boivin study need to be

interpreted carefully because their test is significantly different from our problem of mean

interphase momentum transfer estimation in many respects. Since the Boivin et al. (1998)

study only tries to recover the fluid velocity field instead of the interphase momentum transfer

term (cf. Eq. 5.11), it is not affected by the particle velocity V∗(i) or its pdf f c
V(v|x; t). Boivin

et al. randomly assign only one particle location to each cell. As is shown later in this paper,

this results in an unacceptably high level of statistical error.

PIS: Sundaram and Collins (1996) show that in order to ensure overall energy balance,

the order of the interpolation scheme used in the forward interpolation should be the same

as that used in the backward estimation. We noted earlier in this paper that the studies

on forward interpolation reveal that at least for turbulent velocity fields in DNS, high–order

schemes like TS–13 or LPI–6 are needed for accuracy. These high–order schemes have broad

stencils in physical space that extend well beyond the cell where the particle is present. A PIS

scheme will then require a weighting kernel with identically broad support to compute the mean

interphase momentum transfer from particle forces. Each particle exerts a non–local influence
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Figure 5.1 Sketch showing the PIC and PNN mean estimation schemes: (a)
Mean estimation by PIC method in 2–D. Grid node 1 receives
the full contribution from particles (shown as black spheres)
located in cell area (shown by dotted lines) around it. (b) Mean
estimation by PNN method in 2–D. For a particle (shown as a
black sphere) in a two-dimensional cell, grid node 1 receives a
fraction of the particle force which is proportional to the area
of region 1 divided by the entire cell area.

on the estimate of the interphase momentum transfer, and this raises a concern whether the

numerics is consistent with the flow physics. Using a fourth–order LPI scheme for both forward

interpolation and backward estimation (in Eqs. B.2 and B.3, respectively) on coarse and fine

grid resolution, they note that the result of spreading particle influence over a large volume

does not significantly affect the dynamics of the mean energy in a particle–laden turbulent

flow. On this basis, Sundaram and Collins (1996) assert that the PIS symmetry in the order

of the scheme used for both forward interpolation and backward estimation is required, even

if it increases the domain of influence of each particle due to a broad interpolation stencil.

Narayanan et al. (2002) assess the relative merits of the PNN and PIS methods by com-

paring the growth rates of mixing layers obtained using LE simulations with these schemes, to

those obtained from a linear stability analysis. However, the results obtained for growth rates

are too close to draw any conclusions about the relative merits of the two methods.
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In all LE numerical implementations, including those cited above, there are two numerical

parameters: the number of Eulerian grid cells and the number of computational particles. The

estimate for the mean interphase momentum transfer term Ffp on an Eulerian grid is obtained

from a finite number of particle forces f∗. This leads to statistical error, which can only be

eliminated in the limit of infinite particles (also called the dense data limit). This limit is

only asymptotically approached by simulations with a very large number of particles, and such

calculations are expensive. Typical LE simulations must be reasonably accurate in a range

of finite number of particles. A finite number of grid cells also leads to spatial discretization

error as in CFD of single–phase flow. Numerical schemes in the LE context need to balance

statistical and spatial discretization error.

In spite of the considerable work on forward interpolation as well as projection methods

(PIC, PNN, PIS), there is no comprehensive study that quantifies the spatial and statistical

error resulting from numerical estimation of mean interphase momentum transfer. The conclu-

sions of Boivin et al. (1998) are based on a single test with 963 particles that does not quantify

the statistical error, or its scaling with the number of particles. The Sundaram and Collins

(1996) study tests only the fourth–order LPI scheme and does not quantify spatial and statis-

tical error. Narayanan et al. (2002) consider LPI schemes of different orders but they do not

characterize the behavior of spatial or statistical error. Lakehal and Narayanan (2003) quantify

the effect of varying the total number of particles in an LE simulation on calculation of the

average interfacial force. They find that increasing the number of particles shows a reduction

in statistical noise, and the estimated interfacial force tends to an asymptotic value. However,

this study also does not decompose the error into deterministic and statistical components.

Also while numerical convergence with number of particles is empirically demonstrated, the

accuracy of the scheme is not quantified. Are et al. (2005) investigate only spatial discretization

error by considering the limit of dense data (1 billion particles).

In this work we construct a test problem for which the interphase momentum transfer term

can be calculated analytically. We then compare the numerical error incurred by four different

schemes in estimation of the mean interphase momentum transfer term. The total numerical
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error is decomposed into statistical and deterministic components. Statistical error is defined

as the fluctuations in interphase force estimation that arise as a result of finite particles. De-

terministic error, which is futher decomposed into bias and discretization components, results

from finite number of particles and grid size, respectively. The individual contributions to

the total numerical error from finite number of particles (statistical error and bias error) and

finite grid size (spatial discretization error) are identified. The behavior of statistical error,

bias error, and spatial discretization error is characterized over a range of grid sizes and total

number of particles.

The four numerical schemes for calculation of the mean interphase momentum transfer

term that are considered in this work are:

(1) LPI-4: This is a fourth–order Lagrange polynomial interpolation (LPI) which has been

widely used for both forward and reverse interpolation (Sundaram and Collins, 1996;

Narayanan et al., 2002; Sundaram and Collins, 1999). It is a true interpolation scheme

because it recovers the specified values of fluid velocity at grid nodes. The LPI-4 basis

functions are shown in Fig. 5.2(a). Since this scheme is fourth–order accurate (Conte

and Boor, 1980), in forward interpolation the error incurred using LPI-4 should exhibit

fourth–order convergence with respect to grid spacing for a uniform grid. The LPI-4

stencil is four grid cells wide, as shown in Fig. 5.2(a). In backward estimation also its

kernel bandwidth is four grid cells wide. The kernel bandwidth determines the extent

to which Lagrangian particle data is smeared on the Eulerian flow grid in backward

estimation.

(2) PCA: This scheme has piecewise continuous cubic polynomial basis functions that are

similar to the kernel derived by Monaghan and Lattanzio (1985) based on B-spline func-

tions. See Fig. 5.2(b) for the PCA basis functions. It is important to note that this

is not standard cubic spline interpolation that involves a matrix solution for the spline

coefficients. In fact, this is only a piecewise cubic approximation that does not exactly

recover specified values of the velocity field at the grid nodes. To distinguish it from the

standard cubic spline interpolation, this scheme is referred to as piecewise cubic approx-
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Figure 5.2 (a) Basis functions for LPI-4. (b) Basis functions for PCA. In
both figures, squares represent the fluid velocity at that grid
node, X(k) is the location of particle (shown by black sphere)
located between nodes m and m + 1. The intersections of the
vertical dashed line with the curves (shown by crosses) indicates
the value of the basis function at X(k) that multiplies the nodal
fluid velocity in Eq. B.2 to compute the fluid velocity at X(k).

imation (PCA). Monaghan (1992) notes that this scheme is only second–order accurate,

in contrast to cubic spline interpolation which is fourth–order accurate. In backward

estimation its kernel bandwidth is four grid cells wide.

(2) LPI-2: This is a second–order Lagrange polynomial interpolation scheme, which is es-

sentially a trilinear interpolation scheme that is identical to the PNN method (Squires

and Eaton, 1990; Elghobashi and Truesdell, 1993; Boivin et al., 1998). It is a true in-

terpolation scheme that is formally second–order accurate for forward interpolation. In

backward estimation its kernel bandwidth is two grid cells wide.

(4) TSE: This two–stage estimation algorithm is developed by Dreeben and Pope (1992). It

is useful in simulations that involve unstructured meshes (Subramaniam and Haworth,

2000). For forward interpolation it is identical to LPI-2, and is formally second–order

accurate. For backward estimation it employs a grid-free two–stage algorithm. In the

first stage, it estimates weighted values of the particle property using a linear kernel of
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user–specified bandwidth (e.g., interphase force) at knot locations that depend on where

the particles are located. The second stage involves least–squares fitting of locally linear

or quadratic functions to these knot values. The advantage of this method is that its

convergence characteristics are not tied to the Eulerian grid (in fact it does not need an

Eulerian grid at all!), but by adjusting the bandwidth of the kernel the user can balance

the contribution from truncation and statistical errors.

For complete details of the interpolation schemes, the reader is referred to Appendix B.

5.2 Test Problem

We consider a simple physical problem to examine the numerical convergence and accuracy

of the four schemes in calculating the mean interphase momentum transfer term. The physical

system is a volumetrically dilute particle–laden flow with large particle to fluid density ratio

(ρp � ρf ). The solid particles are monodisperse and small compared to the smallest flow length

scale, but large enough so Brownian motion of the particles can be neglected. The Reynolds

number for relative motion between the particle and the fluid is O(1). Under these conditions

the interphase momentum transfer is due to drag and buoyancy forces. If we neglect buoyancy

and assume a linear drag model (which is valid for Reynolds number O(1)), the modeled

particle force f∗(i) is given by

f∗(i) = mp
Uf
(
X∗(i))− V∗(i)

τp
, (5.14)

where τp = ρpD
2
p/(18νfρf ) is the particle momentum response time. In this test we do not

consider time evolution, but simply evaluate the mean interphase momentum transfer term

at some fixed time instant t. Therefore the time dependence is omitted in the rest of the

description of this static test.

We consider a statistically homogeneous problem where the particle velocity distribution is

independent of physical location x, so that f c
V(v|x) = fV(v). If the particle density in physical

space fX(x) = n(x)/〈Np〉 is known, then Eq. 5.6 simplifies to

〈Ffp〉(x) = 〈Np〉
∫

[v]
〈f | x,v〉fX(x)fV(v) dv . (5.15)



139

If the mean fluid velocity field Uf (x) is specified, along with the particle position and velocity

distributions, the final analytical expression for 〈Ffp〉 from Eq. 5.15 is:

〈Ffp〉(x) =
mp〈Np〉

τp

[
Uf (x) fX(x) − 〈V〉fX(x)

]
. (5.16)

It is interesting to note that although in the above equation 〈Ffp〉 is independent of the

variance in particle velocity, numerical estimates for this quantity suffer from statistical noise

which increases with particle velocity variance.

The estimate of mean interphase momentum transfer term depends on (i) the mean fluid

velocity field, (ii) the particle position distribution, and (iii) the particle velocity distribution 3.

The following specification of the mean fluid velocity field, and the particle position and velocity

distribution define the baseline test case, which we denote Test 1. The fluid velocity field

Uf = {Uf
1 , 0, 0} is chosen to be of a simple transcendental form

Uf
1 (x, y) = cos

(
2πx

Lx

)
cos
(

2πy

Ly

)
, (5.17)

in a domain D = [0,Lx]× [0,Ly]× [0,Lz].The particle positions are randomly chosen according

to a uniform distribution in the domain D. The particle velocity V = {V1, 0, 0} is specified

by the distribution of V1, which is chosen to be a Gaussian with unit mean and variance

σ2. For the baseline test the variance is chosen to be zero, which corresponds to a delta-

function specification of the particle velocity distribution. Figure 5.3 shows the contour plot of

scaled analytical mean interphase momentum transfer term in the x–direction obtained from

Eq. 5.16 for the baseline test case. This baseline test case is used to completely characterize

the statistical error, bias error, and spatial discretization error for the four numerical schemes

over a wide range of numerical parameter values.

We consider three variants of the baseline case in our tests to specifically probe certain other

convergence characteristics of the numerical schemes used to estimate the mean interphase

momentum transfer term. Unless noted otherwise, the problem parameters are retained at their

baseline values. In the first variant (Test 2), a nonzero particle velocity variance is introduced
3Although the analytical value depends only on the mean particle velocity, the numerical estimate depends

on the variance of the particle velocity distribution.
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Figure 5.3 Contour plot of scaled analytical mean interphase momentum
transfer term 〈F fp

x 〉/〈F fp
x 〉max for the fluid velocity field given

by Eq. 5.17 and mean particle velocity 〈V1〉 = 1.0.

to represent nonzero particle velocity fluctuations that can be expected in most practical two–

phase flows. For the linear drag law considered here, this nonzero particle velocity variance

manifests itself as statistical noise in the estimate of the mean interphase momentum transfer.

This test assesses the capability of the various schemes to yield accurate estimates of the mean

interphase momentum transfer term with finite computational particles for noisy data.

Tests 3 and 4 are variants of Test 2 that consider the effect of changing the particle posi-

tion distribution and spectrum of the fluid velocity field, respectively. In these tests we only

characterize the total error, but we do not identify individual contributions. In the Test 3

we investigate the effect of a nonuniform distribution of physical particles while retaining the

nonzero particle velocity variance in Test 2. If we do not introduce any computational particle

number density control, the distribution of computational particles mimics that of the phys-

ical particles and we essentially generate nonuniform sampling. This test is representative of

the spatial inhomogeneity in number density that is encountered in LE computations of real

two–phase flows.

In Test 4, the effect of changing the spectrum of the fluid velocity field is investigated by
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changing the wavelength of the cosine waves in Eq. 5.17 (the nonzero particle velocity variance

of Test 2 is retained). Our intent in performing this test is to characterize the applicability

of the four schemes to CFD, LES(b) and DNS(b), each of which has progressively more high-

wavenumber content in the velocity field. By changing the wavelength of the cosine waves

on a fixed grid, we effectively vary the resolution of the velocity field, and investigate the

consequences on the computed interphase momentum transfer term.

5.3 Numerical Analysis

In order to calculate a numerical estimate of 〈Ffp〉(x), the physical domain D is discretized

using a structured grid with Mx × My × Mz cells. In all our tests the domain is a unit cube

with 10 ≤ Mx = My ≤ 60, and Mz = 3. Since the mean velocity field is only a function

of (x, y), we use more grid cells in the x-y plane. The expected total number of physical

particles 〈Np〉 is represented by Nc computational particles, with each computational particle

representing np = 〈Np〉/Nc physical particles, resulting in equal statistical weight µ = 1/Nc for

each computational particle. The average number of computational particles in a grid cell is

denoted Npc = Nc/M , where M = MxMyMz is the total number of grid cells. The numerical

parameters affecting the accuracy of mean interphase momentum transfer term estimation are

(i) the number of computational particles per cell Npc, and (ii) grid size, which we represent

by total number of nodes M .

The numerical estimate for Ffp(x) at the mth grid node obtained from the above discretiza-

tion (M cells and Npc particles per cell) is written as

{Ffp
m }Npc,M =

1
Vm

Nc∑
i=1

f∗(i)n(i)
p W (X∗(i),xm), (5.18)

where W is a kernel having compact support that determines the influence of the particle force

at a grid node located at xm, and Vm is the geometric volume of the mth grid cell. The reader

is referred to Appendix B for complete details on the estimation procedure.

The error involved in the above estimate is composed of forward interpolation error and

backward estimation error corresponding to steps 1 and 2 in Section 5.1.3, respectively. The



142

forward interpolation error is a result of interpolating the fluid velocity that is known at M

nodes to an arbitrary particle location X∗(i) using Eq. B.2. This interpolated value is denoted{
Uf (X∗(i))

}
M

(subscript M represents the number of grid nodes). A global rms forward

interpolation error in estimating Uf (X∗(i)) is defined as

εU =

√√√√√ Nc∑
i=1

({
Uf (X∗(i))

}
M

− Uf (X∗(i))
)2

Nc
∝ 1

Mp
, (5.19)

which scales as M−p with grid size, where the exponent p depends on the order of convergence

of the numerical scheme. Although we use data from Nc particles to compute this error, the

forward interpolation error scales purely with grid size (independent of number of particles).

The error from forward interpolation is reported in section 5.4.1.1.

In this study we are interested in characterizing the individual contributions to total nu-

merical error in the estimate {Ffp
m }Npc,M from forward interpolation (step 1) and backward

estimation (step 2). In order to isolate and quantify the backward estimation error incurred by

the four different schemes, we need the forward interpolation error to remain the same when

forming the estimate {Ffp
m }Npc,M . This is achieved by exploiting the fact that the fluid velocity

field is analytically specified by Eq. 5.17 in the entire domain. In the rest of the error analysis

that follows for the numerical estimation of Ffp(x, t), it is assumed that the fluid velocity is

obtained from the analytical expression and therefore, the error in the estimate arises only

from backward estimation. In all the tests that report backward estimation errors (Sec. 5.4.1.2

through end of Sec. 5.4.2), the exact analytical expression for Uf (X∗) is used in Eq. 5.14 to

calculate f∗.

The numerical estimate {Ffp
m }Npc,M is a random variable, and its difference from Ffp(x)

measured in p-norm defines the total numerical error:

εF ≡
∥∥∥{Ffp

m }Npc,M − 〈Ffp
m 〉
∥∥∥

p
. (5.20)

This total numerical error contains contributions from finite grid resolution and finite number

of computational particles. Whereas in standard CFD finite-difference/finite-volume codes it is

sufficient to reduce the grid size and time step to empirically establish numerical convergence,
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this difference in the dependence of the numerical error requires a new approach to establishing

numerical convergence of LE calculations.

Many LE numerical studies employ the conventional CFD approach to establish numerical

convergence. However, simply increasing the grid resolution by increasing M while keeping

the total number of computational particles Nc fixed does not result in a monotonic decrease

of the total error. This is because as M is increased for fixed Nc, the number of computational

particles per cell Npc = Nc/M decreases. Decreasing Npc means fewer samples per cell, and this

results in higher statistical error (which characterizes the level of fluctuations in the random

estimate {Ffp
m }Npc,M ) for grid–based estimation methods. On the other hand, while decreasing

the total number of cells M with fixed total number of computational particles does decrease

the statistical error, it is at the cost of increasing spatial discretization error.

Most numerical studies seek to establish convergence of LE simulations by increasing the

total number of particles Nc. For a fixed total number of particles there exists an optimal choice

of grid size that minimizes the total numerical error. Clearly, a complete characterization of

the individual contributions to total error from finite number of particles and finite grid size

is essential to determine the optimal choice of numerical parameters for any scheme. This

motivates an error decomposition that is described below.

5.3.1 Error Decomposition

We decompose the numerical error using an approach similar to that employed by Xu and

Pope (1999). For our test problem, only the x-component of the force contributes to the error

in Eq. 5.20 which is decomposed as

εF ≡ {F fp
x, m}Npc,M − 〈F fp

x, m〉 = ΣF + DF = ΣF + BF + SF , (5.21)

where ΣF is the statistical error, and DF is the deterministic error. The deterministic error

DF is further decomposed into bias BF and discretization SF error components.

The finite number of particles used in Eq.5.18 to generate a random estimate of the mean

interphase momentum transfer term {Ffp
m }Npc,M results in statistical fluctuations of the esti-

mate about its expected value. The statistical error ΣF , arising from these fluctuations, is
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defined as

ΣF ≡ {Ffp
m }Npc,M − 〈{Ffp

m }Npc,M 〉. (5.22)

The statistical error is assumed to follow a normal distribution, and is modeled as

ΣF =
cF θ√
Npc

, (5.23)

where cF is the statistical error coefficient and θ is a standardized normal random variable. Xu

and Pope (1999) note in their calculations that the statistical error ΣF converges as N
−1/2
pc

and an identical behavior has been seen in other PDF/Monte Carlo simulations (Pope, 1995;

Welton and Pope, 1997). Clearly the statistical error decreases as the number of computational

particles per cell Npc increases, and for sufficiently high Npc we expect cF to be a constant

independent of Npc. As we shall see later, statistical error can also be decreased by performing

multiple independent simulations (MIS) with the same nominal Npc per simulation, and then

averaging over the MIS.

The bias error BF is defined as the deterministic error resulting from finite number of

particles and is written as:

BF ≡ 〈{Ffp
m }Npc,M 〉 − {Ffp

m }∞,M . (5.24)

Numerical experiments and analysis (Pope, 1995; Xu and Pope, 1999) validate the following

model for the bias error:

BF =
bF (M)

Npc
, (5.25)

where the bias coefficient bF indicates the magnitude of bias for a given Npc. Note that the

bias coefficient bF is assumed to be a function of the grid size through M . It is important to

note that MIS can reduce statistical error, but not the bias error. The only way to reduce bias

error is to increase Npc.

Finally, the discretization error is identified as the remaining deterministic error in εF , such

that

SF ≡ {Ffp
m }∞,M − 〈Ffp

m 〉. (5.26)
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The discretization error for most finite-difference/finite-volume CFD schemes with power-law

truncation error dependence can be modeled as

SF =
aF

Mp
, (5.27)

where aF is the discretization error coefficient and the exponent p depends on the order of con-

vergence of the numerical scheme. In a time–dependent problem, the discretization error will

also include a contribution from the temporal discretization error, and all the aforementioned

error definitions will be parametrized by the time step ∆t, in addition to Npc and M .

5.4 Results

5.4.1 Test 1: Baseline test case

The baseline test case with transcendental mean fluid velocity field, and uniformly dis-

tributed particles with delta-function particle velocity distribution was defined in Sec. 5.2.

This test is simulated with periodic boundary conditions on the unit cube for each numerical

scheme. In all the results presented, the estimate and as well as analytical values for the in-

terphase momentum transfer term are normalized by the maximum analytical value 〈Ffp〉max

in the domain. Therefore, all the individual error contributions are also normalized.

5.4.1.1 Forward Interpolation Error

Figure 5.4 shows the forward interpolation error defined by Eq. 5.19 as a function of cell

size h = (∆x∆y)1/2. In the results shown, the number of particles per cell Npc = 100, and the

grid varies from 21 × 21 × 4 nodes to 61 × 61 × 4 nodes. The figure shows that the fourth–

order LPI-4 scheme is the most accurate of all the schemes, and it also has the highest rate of

convergence. The least accurate scheme is PCA, and the reason is because this approximation

scheme does not exactly recover nodal values, unlike the other three schemes that are true

interpolation schemes. The PCA results converge with second–order accuracy, as expected.

Since TSE uses linear basis functions for forward interpolation (see Appendix B), its accuracy

and convergence are identical to that of LPI-2. The data show that the numerical schemes
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follow their theoretical rates of convergence, which is four for LPI-4, and two for LPI-2, TSE,

and PCA (Monaghan, 1992).

h

ε U
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Figure 5.4 Convergence of forward interpolation error εU with grid spacing
h. �, LPI-4; �, LPI-2; ◦, PCA, �, TSE. The values in the
legend are the slope of linear least-squares fit to the data. These
are close to the order of the schemes.

5.4.1.2 Statistical Error

Although Eq. 5.22 provides a formal definition of the statistical error, actually computing

the statistical error requires a numerical estimate of 〈{Ffp
m }Npc,M 〉. We estimate 〈{Ffp

m }Npc,M 〉

by performing M multiple independent realizations, each with the same Npc and on the same

grid M but initialized with different random seeds, and taking the arithmetic mean of the

MIS. An estimate of the statistical error Σ̂F can now be obtained by replacing 〈{Ffp
m }Npc,M 〉

in Eq. 5.22 with its MIS estimate 〈{Ffp
m }Npc,M 〉M, to get

Σ̂F ≡ {Ffp
m }Npc,M − 〈{Ffp

m }Npc,M 〉M. (5.28)
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The scaling of this estimate for the statistical error with M is revealed by defining ΣF,M ≡

〈{Ffp
m }Npc,M 〉M − 〈{Ffp

m }Npc,M 〉, and rewriting Σ̂F as

Σ̂F = ΣF − ΣF,M =
cF θ√
Npc

− cF ξ√
(MNpc)

, (5.29)

where θ and ξ are independent standardized normal random variables. (See Appendix C for

details.) The scaling shows that 〈{Ffp
m }Npc,M 〉M → 〈{Ffp

m }Npc,M 〉 as M−1/2 for sufficiently

large M, and this is true for any Npc > 1. This M−1/2 scaling is verified by the plot in

Fig. 5.5(a) of rms(Σ̂F ) as a function of M at (x = 0.5, y = 0.5) for a fixed number of particles

Npc = 100 and a 21× 21× 4 grid. The slopes of the least–squares line fits to the data from all

schemes are close to −0.5. This plot also tells us that using MIS we can reduce the statistical

error ΣF,M, which scales as (MNpc)−1/2, to negligible levels compared to the other error

contributions.

We now verify the dependence of ΣF,M on Npc that is predicted by Eq. 5.29. Fig. 5.5(b)

shows the variation of rms(Σ̂F ) with Npc for a fixed number of realizations M = 100 on a

21 × 21 × 4 grid at a representative location (x = 0.5, y = 0.5). The slopes of the least–

squares line fits to the data are all close to −0.5, thus verifying the expected convergence of

the statistical error as N
−1/2
pc that is predicted by Eq. 5.29. For the baseline case of zero particle

velocity variance there is little difference in the statistical error incurred by various schemes.

Even with just 10 particles per cell the statistical error is O(10−4).

When computing the contributions from bias error and deterministic error to the total

error using Eq. 5.21, the statistical error will need to be negligibly small in comparison. From

Eq. 5.28 we can infer that if the product NpcM is sufficiently large, then the statistical error

can be made arbitrarily small. In this case the estimate for average interphase momentum

transfer term 〈{Ffp
m }Npc,M 〉M will have a very small and spatially uniform statistical error for

different values of Npc. The results for deterministic and bias error presented in the following

subsections correspond to NpcM = 60, 000, which ensures very low statistical error.
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Figure 5.5 Convergence of statistical error rms(Σ̂F ) with (a) number of
multiple independent simulations M, and (b) number of par-
ticles per cell Npc, at (x = 0.5, y = 0.5) for Test 1 with zero

particle velocity variance (V ∗
1

D= N [1.0, 0.0]). �, LPI-4; �,
LPI-2; ◦, PCA, �, TSE. The values in the legend are the slope
of linear least-squares fit to the data.



149

5.4.1.3 Deterministic Error

The total deterministic error DF is estimated by D̂F using an ensemble–averaged estimator

at finite Npc and the analytical solution:

D̂F =
∣∣∣〈{Ffp

m }Npc,M 〉M − 〈Ffp
m 〉
∣∣∣ . (5.30)

The contour plot of deterministic error estimated by Eq. 5.30 is shown in Fig. 5.6 for a 21×21×4

grid with Npc = 400 using M = 150 independent realizations (NpcM = 60, 000). Of the four
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Figure 5.6 Contour plot of total deterministic error for Test 1 on a
21 × 21 × 4 grid with Npc = 400 and NpcM = 60, 000. The
fourth-order LPI-4 scheme exhibits least error. All schemes
show considerable spatial variation with an order of magnitude
difference in the total deterministic error across the domain.
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schemes, LPI-4 incurs the least total deterministic error and the magnitude of error incurred by

the other three schemes is comparable. The figure also shows that the location of the maximum

deterministic error is not the same for all schemes. Therefore, a comparison of deterministic

error incurred by the different schemes at a fixed location can be misleading.

5.4.1.4 Bias Error

Bias error, which is defined by Eq. 5.24 in Section 5.3.1, is that part of the deterministic

error resulting from a finite number of particles. Similar to the estimation of expected values

that arise in the statistical error, the quantity 〈{Ffp
m }Npc,M 〉 in the bias error is approximated

by an ensembled–averaged estimate 〈{Ffp
m }Npc,M 〉M. Therefore, the approximate expression

for bias error B̂F is

B̂F = 〈{Ffp
m }Npc,M 〉M − {Ffp

m }∞,M =
bF (M)

Npc
. (5.31)

In order to calculate the bias error based on this definition, it is necessary to compute

{Ffp
m }Npc,M at Npc = ∞ which is impractical and computationally prohibitive. However,

noting that the magnitude of the bias coefficient bF is a function of only the grid size M , we

can use two evaluations of 〈{Ffp
m }Npc,M 〉M at Npc = N

(1)
pc and N

(2)
pc to calculate bF as follows:

bF (M) =
N

(1)
pc N

(2)
pc

N
(2)
pc − N

(1)
pc

(
〈{Ffp

m }
N

(1)
pc ,M

〉M − 〈{Ffp
m }

N
(2)
pc ,M

〉M
)

. (5.32)

If more than two values of Npc are used, the slope obtained from a linear least squares fit to

the data yields the bias coefficient bF .

Although there is considerable spatial variation of the bias error, the variation of 〈{Ffp
m }Npc,M 〉M

with N−1
pc is shown in Fig. 5.7 at the same representative location (x = 0.5, y = 0, 5) where

the statistical error scaling was shown. From the figure, the linear behavior of bias with N−1
pc

is apparent. Since the total deterministic error exhibits different spatial distribution for each

scheme, a contour plot of the bias coefficient bF is more informative. The bias coefficient is

calculated using Eq. 5.32, and Fig. 5.8 shows that TSE is the least biased estimator (by two

orders of magnitude compared to the other schemes considered) followed by PCA, LPI-2, and

LPI-4.
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Figure 5.7 Estimation of bias coefficient bF from plot of 〈{Ffp
m }Npc,M 〉M as

a function of N−1
pc for NpcM = 60, 000 at (x = 0.5, y = 0, 5). �,

LPI-4; �, LPI-2; ◦, PCA, �, TSE. The slope of the linear least
squares fit which is also equal to bias coefficient is indicated in
the legend.

5.4.1.5 Discretization error

Discretization error defined by Eq. 5.26 depends only on the spatial resolution, or grid size,

h. A smaller value of h (more grid points) for a given Npc will yield a more resolved mean

field, and hence a lower discretization error.

Similar to observations made for bias error, if the discretization error is estimated based

on its definition (cf. Eq. 5.26), then one needs to calculate {Ffp
m }∞,M which is impractical.

Therefore, we calculate SF by forming an approximate estimate for {Ffp
m }∞,M denoted by

{Ffp
m }e. For a fixed grid size M with known bias coefficient bf (see Eq. 5.31), the estimate of

{Ffp
m }Npc,M in the limit of Npc going to infinity is obtained by Richardson extrapolation (Xu

and Pope, 1999) of 〈{Ffp
m }Npc,M 〉M at two or more values of Npc. The expression for {Ffp

m }e is

{Ffp
m }e =

N∑
i=1

〈{Ffp
m }

N
(i)
pc ,M

〉M − bF

N∑
i=1

(
N

(i)
pc

)−1

N
∼= {Ffp

m }∞,M , (5.33)

where N is the number of Npc values for which the ensemble–averaged estimates are formed
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Figure 5.8 Contour plot of the bias coefficient bF for Test 1 on a 21×21×4
grid (NpcM = 60, 000). TSE incurs the least bias error with a
bias coefficient that is two orders of magnitude lower than the
other schemes.

for each grid size M . In the estimation of bias coefficient, the effect of statistical fluctuations is

minimized by choosing NpcM = 60, 000. Furthermore, in the above expression for estimating

{Ffp
m }e, the effect of bias is also removed from the numerical estimate. The effects of both

statistical fluctuations and bias error are minimized in the estimate of {Ffp
m }e; thus, {Ffp

m }e is

a good approximate estimate for {Ffp
m }∞,M .

Figures 5.9(a) and 5.9(b) show the convergence of spatial discretization error SF =∣∣∣{Ffp
m }e − 〈Ffp

m 〉
∣∣∣ with cell size h = (∆x∆y)1/2 at two representative (x, y) locations (0.5, 0.5)

and (0.6, 0.2), respectively. Figure 5.9(a) shows that at the (0.5, 0.5) location, LPI-4 incurs
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Figure 5.9 Convergence of spatial discretization error
SF =

∣∣∣{Ffp
m }e − 〈Ffp

m 〉
∣∣∣ with grid spacing h at different

spatial locations to illustrate the strong spatial nonuniformity
in convergence characteristics of the schemes: (a) convergence
of SF with h at (x = 0.5, y = 0.5) for Test 1, (b) convergence
of SF with h at (x = 0.6, y = 0.2) for Test 1. �, LPI-4; �,
LPI-2; ◦, PCA, �, TSE. The slope of the linear least squares
fit is indicated in the legend.
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the least discretization error and has the highest rate of convergence; followed by LPI-2, PCA,

and TSE. The convergence rates are once again very close to the theoretical values and show

trends similar to those observed for forward interpolation error in Sec. 5.4.1.1. At the (0.6, 0.2)

location, however, Fig. 5.9(b) shows that the convergence rate of all schemes have changed

considerably. LPI-4 now has the lowest rate of convergence. PCA, on the other hand, is the

fastest converging scheme followed by TSE and LPI-2.

Since the rate of convergence of spatial discretization error (Fig. 5.9) exhibits strong spatial

nonuniformity for each scheme, a global discretization error

ŜF =
1
M

√√√√ M∑
m=1

(
{Ffp

m }e − 〈Ffp
m 〉
)2

, (5.34)

is defined using the standard rms technique given by Eq. 5.34, with M = Mx ×My ×Mz being

the total number of grid nodes. Figure 5.10 shows the convergence of global discretization
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Figure 5.10 Convergence of global discretization error ŜF with grid spac-
ing h for Test 1. �, LPI-4; �, LPI-2; ◦, PCA, �, TSE. The
slope of the linear least squares fit is indicated in the legend.
Note the dramatic difference in convergence rates that devi-
ate considerably from the order of the schemes, in contrast to
Fig. 5.4.

error ŜF with grid spacing h. The figure reveals a deficiency in LPI-4, which is no longer
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the fastest converging scheme. This sharp fall in the convergence rate of global discretization

error incurred by LPI-4 can be explained as a result of strong spatial nonuniformity of local

convergence rates observed in Fig. 5.9. On a coarse grid (high value of h), LPI-4 is the most

accurate estimator but it is least accurate on fine grids (at lower h) due to the slow rate of

convergence of its global discretization error. PCA exhibits the highest rate of convergence of

global discretization error, followed by TSE, LPI-2, and LPI-4.

Our results for this test case of zero particle velocity variance show that the statistical error

for all schemes is of the same order of magnitude. However, based on the magnitude of bias

error, and the rate of convergence of global discretization error, TSE and PCA stand out as

the preferred methods for estimating the mean interphase momentum transfer term.

5.4.2 Test 2: Effect of nonzero particle velocity variance

In this test we investigate the effect of nonzero particle velocity variance that is representa-

tive of many practical particle–laden flows. Nonzero particle velocity variance may arise as a

result of turbulence. The only change from the baseline test is the particle velocity distribution,

which is now specified to be a normal with nonzero variance:

V ∗
1

D= N [〈V1〉, σ2
V1

] ≡ [1.0, 0.3]. (5.35)

Since the particle velocity distribution now has a finite variance, it is expected that the sta-

tistical error in estimating the mean interphase momentum transfer term will be larger than

that incurred in the baseline test case with zero variance (cf. Fig 5.5).

Figure 5.11 shows the statistical error incurred by the various schemes for finite particle

velocity variance, but with all other test conditions identical to those in Fig. 5.5. As expected,

the statistical error shows an increase for all the schemes (by at least one order of magnitude),

but the increase is not the same for all schemes. While in the baseline test with zero particle

velocity variance the statistical error is O(10−4) even with just 10 particles per cell for all the

schemes (cf. Fig. 5.5(b)), Fig. 5.11(b) shows that for σ2
V1

= 0.3 with 10 particles per cell the

statistical error is at least an order of magnitude higher O(10−3−10−2). If the particle velocity

variance is not zero, Fig. 5.11(b) also shows that the LPI-4 and LPI-2 schemes incur statistical
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(a) Convergence with M (Npc = 100).
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(b) Convergence with Npc (M = 100).

Figure 5.11 Convergence of statistical error rms(Σ̂F ) with (a) number of
multiple independent simulations M, and (b) number of parti-
cles per cell Npc, at (x = 0.5, y = 0.5) for Test 2 with nonzero

particle velocity variance (V ∗
1

D= N [1.0, 0.3]). �, LPI-4; �,
LPI-2; ◦, PCA, �, TSE. The slope of the linear least squares
fit is indicated in the legend.

error that is an order of magnitude larger than that incurred by TSE or PCA. The difference

in the statistical error incurred by the schemes persists even with increasing MIS, as shown in

Fig. 5.11(a).

The bias coefficient bF contours for Test 2 exhibit similar spatial variation for all the schemes

as seen in Test 1 (see Fig. 5.8), and are hence not presented here. However, an important effect

of nonzero particle velocity variance is to significantly increase the bias coefficient values for

TSE (min/max: −2/0.5), whereas those of LPI-4 (min/max: −10/6), LPI-2 (min/max: −8/4),

and PCA (min/max: −3/3) remain at levels similar to that seen in Test 1. Nevertheless, even

for this test TSE incurs the least bias error of all the schemes considered.

Fig. 5.12 shows the variation of global discretization error ŜF with h, which when compared

to the previous case of zero variance (Fig. 5.10) shows that the magnitude of global discretiza-

tion error and as well as its rate of convergence remain nearly the same. This observation is

not surprising because the only difference between the two test cases is in the particle velocity

distribution, which should not affect the discretization error.
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Figure 5.12 Convergence of global discretization error ŜF with grid spac-
ing h for Test 2. �, LPI-4; �, LPI-2; ◦, PCA, �, TSE. The
slope of the linear least–squares fit is indicated in the legend.
Comparison with Fig. 5.10 reveals that the effect of nonzero
particle velocity variance on the magnitude and convergence
rate of the global discretization error is minimal.

Both TSE and PCA outperform LPI-4 and LPI-2 in terms of statistical error and incur

relatively low bias error. Also, the rate of convergence of global discretization error for TSE

and PCA is nearly twice that of LPI-4. The results of this test reaffirm the conclusions of Test

1 that both TSE and PCA are the best schemes to estimate the mean interphase momentum

transfer term.

5.4.3 Test 3: Variation of particle position distribution

In our numerical tests thus far we have chosen the particles to be uniformly distributed in

physical space. However, in realistic particle–laden flows the particles will not be uniformly

distributed in general. In this test, the fluid velocity field and particle velocity distribution are

retained as in test 2 (finite variance). In order to ascertain the effect of non–uniform particle
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Figure 5.13 Test 3 with nonuniform particle position distribution: (a) Con-
tour plot of the scaled number density n(x, y)/no. (b) Con-
tour plot of the scaled analytical mean interphase momentum
transfer term 〈F fp

x 〉/〈F fp
x 〉max.

distribution, the particle number density field is specified to be

n(x, y) = noexp
(
−(x − Lx/2)2 + (y − Ly/2)2

L2
x/16 + L2

y/16

)
, (5.36)

where no is a constant so chosen such that there are a finite number of particles near the

boundary cells. Fig. 5.13(a) shows the contour plot for n(x, y)/no. Using the particle position

pdf fX = n(x)/ 〈Np〉 implied by the number density in Eq. 5.36, the analytical expression for

normalized mean interphase momentum transfer term is obtained from Eq. 5.16. Fig. 5.13(b)

shows the resulting normalized mean interphase momentum transfer term. In this inhomoge-

neous test case no attempt is made to decompose the various numerical errors, but only the

error resulting from the averaged estimate obtained from multiple realizations along with the

95% confidence intervals are presented. The 95% confidence interval (Xu and Pope, 1999) for

the estimation of interphase momentum transfer term is estimated as

δ = 1.69

[
1

M− 1

M∑
i=1

(
{Ffp

m }(i)
Npc,M − 〈{Ffp

m }Npc,M 〉M
)2]1/2

. (5.37)
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Figure 5.14 Ensemble–averaged mean interphase momentum transfer term
for Test 3 with confidence intervals, and its error with re-
spect to analytical value. In both panels the symbols indicate
〈{Ffp

m }Npc,M 〉M (scale on left vertical axis) as a function of x at
y = z = 0.5. Error bars denote 95% confidence intervals above
and below the mean value, but are shown only above for clarity.
The error bars for the two schemes in each panel are distin-
guished by the length of the cross-bars, with (a) LPI-4 (long),
LPI-2 (short), and (b) PCA (long), TSE (short). Lines in both
panels indicate the error

∣∣∣〈Ffp
m 〉 − 〈{Ffp

m }Npc,M 〉M
∣∣∣ whose scale

is given on the right vertical axis.
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The test is carried out on a 61× 61× 4 grid and 200 independent but identical simulations

are performed in order to calculate the 95% confidence intervals. In Fig. 5.14(a), the symbols

indicate the ensemble–averaged mean interphase momentum transfer term 〈{Ffp
m }Npc,M 〉M

obtained using LPI-4 and LPI-2. The scale for the symbols is on the left vertical axis. The

height of the error bars indicate the 95% confidence intervals on the ensemble average, and in

order to distinguish between the two cases the error bars with the longer cross-bar indicate

LPI-4. In the same figure, the lines represent
∣∣∣〈Ffp

m 〉 − 〈{Ffp
m }Npc,M 〉M

∣∣∣, the error between the

ensemble–averaged and analytical mean interphase momentum transfer term. The scale for the

error is on the right vertical axis. Since the number density variation in x and y is identical,

the ensemble–averaged mean interphase momentum transfer term and error are reported along

x, for y = z = 0.5. Figure 5.14(b) shows results for the same test as Fig. 5.14(a), but for the

PCA and TSE schemes. The longer cross-bars on the 95% confidence intervals correspond to

PCA.

For all the schemes considered, the size of the confidence interval shows an increase in the

regions of low number density. This increase is maximum for LPI-4 followed by LPI-2, PCA,

and TSE. The error shows the same trend in the regions of low number density. This test

shows the advantage of using TSE and PCA over LPI-4 and LPI-2 for particle–laden systems

with non–uniform number density.

5.4.4 Test 4: Variation of fluid velocity field

Depending on the type of simulation (CFD, LES or DNS), the spectral content of the fluid

velocity field will be different. In this test, the fluid velocity field is chosen to be a sinusoidal

field given by Eq. 5.38 and its wavelength is varied by increasing fo from a minimum value of

1 to a maximum value of 25. This test reveals the accuracy of mean interphase momentum

transfer term estimation with variation in the fluid velocity spectrum

Uf
1 (x, y) = cos

(
2πfox

Lx

)
cos
(

2πfoy

Ly

)
. (5.38)

The ensemble–averaged summed mean square of the total error, denoted by ε̂F , and given
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by the following expression

ε̂F =
1
M

M∑
i=1

∑M3

m=1

(
{Ffp

m }i − 〈Ffp
m 〉
)2

M3
(5.39)

is calculated for different values of fo.
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〈

Figure 5.15 Ensemble–averaged summed mean square error ε̂F as a func-
tion of fo, the frequency of the transcendental velocity field.

Particles are uniformly distributed in physical space and the particle velocity field of Test

2 (finite variance) is retained here. The number of computational particles per cell Npc is 100

and number of realizations M = 150 The test is performed on a 51 × 51 × 4 grid.

Fig. 5.15 shows the variation of ε̂F versus fo and it can be observed that at low wave num-

bers TSE and PCA outperform LPI-4 and LPI-2 by an order of magnitude, at intermediate

wave numbers LPI-4 and LPI-2 become more accurate than PCA and TSE, and at the highest

wavenumber, all the schemes are rather inaccurate and have approximately the same error

magnitude. The reduction in accuracy for PCA and TSE from low to intermediate wavenum-

bers compared to LPI-4 and LPI-2 is attributed to the smoothing property of cubic splines

and linear least–squares, respectively. Therefore, for LES and DNS simulations, PCA and TSE

will require higher grid resolution to yield the same accuracy as LPI-4 or LPI-2.



162

5.5 Comparison with representative LE numerical parameters

In this study we have performed calculations with very high numerical resolution. The

number of particles per cell in our tests typically ranges from 100 to 400. In addition, the

number of independent realizations simulated for each test also varies from 100 to 400. How-

ever, in most particle–laden simulations of two–way coupled dispersed two–phase flows using

LE approach, the number of particles per cell is usually one or even two orders of magnitude

lower than the values we have used for our tests, and typically only one realization is simu-

lated. Typical values for the nominal number of particles per cell 4 in 3–D LE simulations

range from 0.0156 to 0.125 in Sundaram and Collins (1999) to exactly 1 in Boivin et al. (1998).

In 2–D calculations higher Nn
pc values have been used: 3 to 30 in Narayanan et al. (2002)

and 16 to 500 in Lakehal and Narayanan (2003). In all but one of these studies (Lakehal

and Narayanan, 2003), only one realization is simulated. The contour plot of absolute total

error εF =
∣∣∣{F fp

x, m}Npc,M −
〈
F fp

x, m

〉∣∣∣ incurred in the calculation of mean interphase momentum

transfer term for Test 2 on a 61 × 61 × 4 grid with Npc = 5 and M = 1 is shown by Fig. 5.16.

The figure clearly reveals that while all the schemes are unable to provide estimates within 10%

error using 5 particles per cell with only one realization, TSE comes closest with a maximum

error of only 20%. LPI-4 gives errors as high as 80%. As noted in the introduction, these

large numerical errors directly impact the physical insight that is provided by LE simulations.

However, it is important to bear in mind that there are other numerical approximations in the

fluid flow solver (artificial viscosity and pressure correction) that can mitigate these errors.

5.6 Conclusions

Comprehensive testing of four numerical schemes used to estimate mean interphase transfer

terms in LE simulations for a novel test problem that admits an analytical solution enables

characterization of numerical convergence, as well as accuracy. For estimation of the mean

interphase momentum transfer term, all our four tests suggest the use of TSE and PCA, or
4The nominal number of particles per cell Nn

pc is defined as the ratio of total number of particles to total
number of grid cells
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even LPI-2, over LPI-4. TSE and PCA consistently give low statistical and bias errors and

yield good estimates even in the regions of low number density. The only exception is when

there is high spectral content in the fluid velocity field, where due to the smoothing nature of

TSE and PCA, their estimates are less accurate than LPI-4 and LPI-2.

Testing with representative values for the numerical parameters found in typical LE sim-

ulations reveals that LPI-4 and LPI-2 incur unacceptably high error, whereas TSE yields the

most accurate estimate of all the schemes. The tests validate an error model (cf. Eq. 5.21) of

the form

εF =
cF θ√
Npc

+
bF (M)

Npc
+

aF

Mp

that decomposes the error into statistical, bias and discretization components, and explicitly

characterizes the error in terms of numerical parameters (grid size M and number of particles

per cell Npc). An approach to quantifying the values of the coefficients aF , bF , and cF in the

error model is demonstrated for the test problem. If efficient ways to quantify these coefficients

are developed for general LE problems, then estimates for the numerical error can be obtained

from this model. This can provide the required values of numerical parameters for a given

error tolerance.

Our study reveals the need to carefully choose the appropriate numerical scheme for forward

interpolation and backward estimation. Although LPI-4 is found to be the preferred scheme for

forward interpolation, it results in relatively poor estimates for the mean interphase momentum

transfer term. None of the schemes considered is optimal for both forward interpolation and

backward estimation. This conclusion also implies that, for the schemes considered, the PIS

requirement of Sundaram and Collins (1996)—which states that in order to ensure overall

energy balance, the order of the interpolation scheme used in the forward interpolation should

be the same as that used in the backward estimation—is at odds with numerical accuracy and

convergence requirements.

Spatially nonuniform particle distribution results in poor estimates of mean interphase

momentum transfer term in regions where there are fewer particles. If the number density

of physical particles becomes zero locally, then TSE will encounter difficulties due to ill–
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conditioned matrices. One way to obtain good estimates even in regions of low physical particle

number density is by introducing more computational particles in that region. In other words,

if the number density of computational particles is maintained relatively uniform during the

entire course of simulation, then the statistical error remains uniformly low over the entire

domain. This needs to be addressed by computational particle number density control.

In order to obtain numerically converged results, it is imperative to simultaneously reduce

the statistical and deterministic error components that result from backward estimation. The

bias and statistical error components depend on the number of particles per cell. Therefore,

numerical convergence cannot be achieved by grid refinement with a fixed total number of

computational particles because the number of particles per cell keeps decreasing. This is

because the bandwidth of most numerical schemes scales with the grid spacing 5. Therefore,

it is necessary to keep Npc fixed in grid resolution studies of LE simulations so that statistical

and bias error remain at the same level. While statistical error can be effectively reduced by

multiple independent simulations, the same is not true for bias error, which scales as N−1
pc .

Time–evolving tests could show higher bias error due to feedback in the particle evolution

equations. The only way to reduce bias error is to increase the number of computational

particles per cell.

Another important consideration when choosing a numerical scheme for LE calculations

is the computational cost involved, and the estimation of additional quantities that may be

required. LPI-2 being a second order scheme is the least expensive. PCA and LPI-4 involve

the same number of operations while TSE is the computationally most expensive estimation

scheme. However, if in addition to the mean interphase momentum transfer term, the estima-

tion of its gradient is also required, then TSE becomes the favored scheme. This is because

in TSE, once the interphase momentum transfer term has been calculated, no additional op-

erations are required to compute the gradients. For LPI-4, LPI-2, and PCA, the estimation

of gradient amounts to approximately doubling the computational cost that is required for

calculating the mean interphase momentum transfer term.

5An exception is TSE, which is a truly grid–free estimation method.
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Figure 5.16 Contour plot of absolute total error
εF =

∣∣∣{F fp
x, m}Npc,M −

〈
F fp

x, m

〉∣∣∣ for Test 2 with represen-
tative LE numerical parameters—a single realization M = 1
with Npc = 5 particles per cell on a 61 × 61 × 4 grid—to
demonstrate the unacceptably large errors incurred by
schemes such as LPI-4 and LPI-2.
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CHAPTER 6. A NUMERICALLY CONVERGENT

LAGRANGIAN–EULERIAN SIMULATION METHOD FOR DISPERSED

TWO–PHASE FLOWS

This chapter is a printed manuscript (Garg et al., 2009b) titled “A numerically convergent

Lagrangian–Eulerian simulation method for dispersed two–phase flows” in “Intl. J. Multiphase

Flow” authored by R. Garg, C. Narayanan, and S. Subramaniam.

In Lagrangian–Eulerian (LE) simulations of two–way coupled particle–laden flows, the dis-

persed phase is represented either by real particles or by computational particles. In traditional

LE (TLE) simulations, each computational particle is assigned a constant statistical weight,

which is defined as the expected number of real particles represented by a computational par-

ticle. If the spatial distribution of particles becomes highly non–uniform due to particle-fluid

or particle-particle interactions, then TLE simulations fail to yield numerically–converged so-

lutions due to high statistical error in regions with few particles. In this work, a particle–laden

lid–driven cavity flow is solved on progressively refined grids to demonstrate the inability of

TLE simulations to yield numerically–converged estimates for the mean interphase momentum

transfer term. We propose an improved LE simulation (ILE) method that remedies the above

limitation of TLE simulations. In the ILE method, the statistical weights are evolved such

that the same physical problem is simulated, but the number density of computational parti-

cles is maintained near–uniform throughout the simulation, resulting in statistical error that

remains nearly constant with grid refinement. The evolution of statistical weights is rigorously

justified by deriving the consistency conditions arising from the requirement that the resulting

computational ensemble correspond to a statistical description of the same physical problem

with real particles. The same particle–laden lid–driven cavity flow is solved on progressively
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refined grids to demonstrate the ability of ILE simulation to achieve numerically–converged

estimates for the mean interphase momentum transfer term. The accuracy of the ILE method

is quantified using a test problem that admits an analytical solution for the mean interphase

momentum transfer term. In order to improve the accuracy of numerical estimates of the

mean interphase momentum transfer term, an improved estimator is proposed to replace the

conventional estimator (Sundaram and Collins, 1996; Boivin et al., 1998; Narayanan et al.,

2002; Patankar and Joseph, 2001; Snider et al., 1998). The improved estimator results in more

accurate estimates that converge faster than those obtained using the conventional estimator.

The ILE simulation method along with the improved estimator is recommended for accurate

and numerically–convergent LE simulations.

6.1 Introduction

The Lagrangian–Eulerian approach is widely used to simulate dispersed two–phase flows.

In this approach the carrier phase is represented by continuous fields in an Eulerian frame

of reference, while the dispersed phase is represented by discrete particles 1 in a Lagrangian

frame. In two–phase flows with non–negligible mass loading, the mean interphase momentum

transfer term cannot be neglected, and two–way coupling effects must be accounted for. The

mean interphase momentum transfer term, which is the average force exerted by the particles

on the fluid, accounts for the presence of the dispersed phase on the fluid phase. Generally

speaking, in two-phase flows there can also be interphase mass and energy transfer, but we

consider the simplest case of isothermal particle-laden flow where these are absent. This simple

case is used to illustrate the numerical convergence and accuracy of LE simulation methods,

but the conclusions are easily generalized to all two–phase flows.

In numerical implementations of the LE method, the numerical estimate 2 of the mean

interphase momentum transfer term (or any other mean quantity) at Eulerian grid nodes is

obtained using a finite number of particles, leading to statistical and bias errors (Garg et al.,
1By particle we mean any dispersed–phase element, including solid particles, droplets and bubbles.
2We use the term ‘estimate’ in the statistical sense, just as the sample mean (1/N)

PN
i=1 X(i) of a random

variable X is an estimate of 〈X〉. The term estimate is used to only denote the numerical approximation arising
from a finite number of samples without implying approximation in any other sense.
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2007). Statistical error can be reduced either by increasing the number of particles, or by

averaging over multiple independent realizations. Bias error is insensitive to the number of

independent realizations and becomes zero only in the limit of infinite particles (also called

the dense data limit). In addition to these errors, a finite number of grid cells and a finite

time step leads to the usual spatial and temporal discretization errors that are encountered in

numerical simulations of single–phase flow. The scaling of each of these error contributions—

statistical, bias, and discretization error—with variation of numerical parameters determines

the numerical convergence characteristics of any LE numerical implementation. Although LE

simulations are frequently used to simulate multiphase flows, their numerical convergence and

accuracy properties have not been critically examined until recently (Abraham, 1997; Are et al.,

2005; Garg et al., 2007).

LE simulation methods such as point–particle DNS—and to a lesser extent, LES—are

intended to be used as predictive simulation tools. LE CFD simulations are used to benchmark

other simulation approaches, such as Eulerian-Eulerian (EE) two-fluid models (Moreau et al.,

2003; Fan et al., 2004; Fan and Fox, 2008). Therefore, establishing numerical convergence of LE

simulations is crucial not only for meaningful validation with experimental data, but also for

a proper comparison of the modeling error incurred by different choices for sub-models of the

interphase mass, momentum or energy transfer terms. A meaningful comparative assessment

of sub–models is possible only if the numerical error is negligible compared to the modeling

error. It is important to note that numerical convergence is by itself not sufficient to establish

the predictive capability of any simulation method. Clearly, establishing numerical convergence

along with the accuracy of LE simulations are necessary before point–particle DNS or LES can

be used as predictive tools.

In traditional LE (TLE) simulations (Sundaram and Collins, 1996; Squires and Eaton,

1990; Elghobashi and Truesdell, 1993; Boivin et al., 1998), the dispersed phase is represented

either by real particles or by computational particles. If a fixed number of real particles Np

is used to represent the dispersed phase on a grid with total number of grid cells M , then

the statistical error in a grid–based estimate of any mean field quantity increases with grid
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Figure 6.1 Snapshot of a one–way coupled lid–driven cavity flow simu-
lation at non–dimensional time tU/L equal to 10. Details
are provided in Sec. 6.5. The important flow parameters are
Re = UL/ν = 100, St = τp/τF = 0.8. The solid lines repre-
sent the fluid phase stream function contours and black dots
represent the dispersed–phase particles.

refinement, resulting in a non–convergent LE simulation. This is because as the grid is refined,

fewer and fewer particles are available in each grid cell to form the grid–based mean field

estimate. Note that for fixed Np, the nominal number of particles per grid cell Npc = Np/M

decreases as the grid is refined. Therefore the statistical error, which is inversely proportional

to the square root of number of particles per cell, increases. This increase in statistical error

eventually overwhelms the reduction in spatial discretization error that is achieved by grid

refinement. As a result, the total numerical error increases with grid refinement leading to

non–converged TLE solutions.

If rather than using real particles, Nc computational particles (with constant statistical

weight), such that their total number scales linearly with the number of grid cells (Nc = NpcM),

are used, then the nominal number of particles per grid cell can be maintained constant in
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a grid–refinement study. For low Stokes number flows where the particle distribution does

not develop strong spatial inhomogeneity, it is possible to obtain numerically converged LE

solutions using this approach. However, the spatial distribution of particles can be quite non–

uniform in particle–laden systems with finite Stokes number. Figure 6.1 shows the spatial

distribution of particles in lid–driven cavity flow simulation for a Stokes number equal to 0.8.

It can be seen that the particles have preferentially concentrated in regions of the flow field

with high rate of strain. Therefore, for finite Stokes number, the computational particles

also preferentially concentrate just like the real particles. As a result, in regions with few

computational particles, the mean field estimates will once again suffer from high statistical

error, resulting in non–uniform spatial distribution of statistical error. Based on the above

discussion, we identify two major limitations of the TLE simulations: (i) increase in statistical

error with grid refinement, and (ii) non–uniform spatial distribution of statistical error.

The non–convergence of TLE simulations motivates the present work, which aims at devel-

oping a numerically–convergent and accurate LE simulation method that works robustly for

spatially non–uniform particle distributions that arise naturally from the flow physics in time–

evolving simulations. In order to overcome the aforementioned limitations of TLE simulations,

we propose an improved LE (ILE) simulation technique that uses a computational particle

number density control algorithm which is similar to those used in various other particle–

based simulations (Pope, 1985; Haworth and Tahry, 1991; Subramaniam and Haworth, 2000;

Jaberi et al., 1999; Raman et al., 2005). The computational particle number density control

algorithm ensures a near–uniform distribution of computational particles during the entire

course of simulation. However, as a result of ensuring near–uniform distribution of computa-

tional particles, the statistical weights now need to be evolved in time in order to solve the

same physical system. The computational particle number density control procedure relies

on the principle of statistical equivalence between the TLE (equal and non–evolving statistical

weights) and ILE (unequal and time–evolving statistical weights) simulations. It is achieved by

annihilating (in case of excess) and cloning (in case of deficient) computational particles in each

cell, resulting in nominally equal number of computational particles per cell at all times (Fox,
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2003). Thus, the ILE method ensures that the statistical error remains nearly spatially uni-

form. Therefore, even in the worst case, with increasing grid refinement the statistical error in

ILE is guaranteed to remain constant. Note that the total error will decrease with grid refine-

ment at a rate that depends on the order of the spatial discretization scheme, and also on the

order of the interpolation scheme used to transfer data between fluid and particle fields. These

properties of the ILE method permit a numerically converged LE simulation. It is worthwhile

to note that with an efficient parallelization strategy based on domain decomposition, the ILE

simulations will be better load–balanced than the TLE simulations.

In earlier work (Garg et al., 2007), we characterized the numerical convergence properties of

four interpolation schemes for mean interphase momentum transfer term used in LE simulations

in a series of static test problems. The estimation of the mean interphase momentum transfer

involves the use of an interpolation scheme in conjunction with an estimator formula. Since

those static test problems were designed such that the mean interphase momentum transfer

term could be solved analytically, we were also able to quantify the accuracy of the interpolation

schemes. We observe that accurate estimation of the mean interphase momentum transfer term

using certain interpolation schemes requires very high numerical resolution: on the order of 100

particles per Eulerian grid cell and 100 independent realizations. This observation motivates

the development of more accurate estimators. In this article we evaluate the numerical accuracy

of two types of estimators: the conventional estimator (Sundaram and Collins, 1996; Boivin

et al., 1998; Narayanan et al., 2002; Patankar and Joseph, 2001; Snider et al., 1998), and an

improved estimator. We show that the improved estimator results in more accurate estimates

of the mean interphase momentum transfer term than the conventional estimator, and these

estimates also converge at a faster rate.

In order to test the numerical convergence and accuracy of the ILE method we consider

two problems. The first problem is the particle–laden lid–driven cavity flow shown in Fig. 6.1,

which is representative of a practical two–phase flow system. We solve the particle–laden lid–

driven cavity flow on progressively refined grids using the ILE method. We demonstrate that

ILE, unlike TLE, yields numerically–converged estimates for the mean interphase momentum
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transfer term.

While numerical convergence of an LE simulation can be characterized for the particle–

laden lid–driven cavity problem, we cannot quantify the accuracy of the LE solution because

we do not know the exact solution. Therefore, for testing accuracy we extend the static particle

test of Garg et al. (2007) to a time–evolving test problem where the particles naturally assume

a non–uniform spatial distribution due to the flow physics. Our time–evolving test problem

mimics the conditions of real particle–laden flows, and yet is simple enough to permit analytical

solution for mean fields like the number density and the interphase momentum transfer term.

In order to quantify the accuracy of both TLE and ILE simulation methods, we then solve

the test problem on progressively refined grids. Since the mean interphase momentum transfer

term is analytically known for the test problem, the accuracy of both the simulations can be

easily quantified. We show that by using the ILE simulation with the improved estimator it is

possible to obtain numerically–converged LE simulations with demonstrable accuracy.

6.2 Governing Equations

In the LE approach, the dispersed–phase consisting of Np real particles is represented in a

Lagrangian frame at time t by {X(i)(t),V(i)(t) i = 1, . . . , Np(t)}, where X(i)(t) denotes the ith

particle’s position, and V(i)(t) represents its velocity. For simplicity we consider monodisperse

particles here, although the conclusions of this work hold for polydisperse cases as well. The

position and velocity of the physical particles evolve by

dX(i)

dt
= V(i), (6.1)

dV(i)

dt
=

f (i)
p

m
(i)
p

= A(i), , i = 1, . . . , Np(t), (6.2)

where f (i)
p and A(i) are, respectively, the instantaneous force and acceleration experienced by

the ith physical particle having mass m
(i)
p .

In order to compute the mean momentum transferred from the particles to the fluid, a

statistical description of the particle ensemble is needed to average over all possible particle

configurations and velocities. At the single particle level, this statistical description is given by
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the one–particle distribution function f(x,v, t) of kinetic theory, also referred to as the droplet

distribution function (ddf) in the context of sprays (Williams, 1958). The density f(x,v, t) is

related to the position and velocity of the physical particles by

f(x,v, t) ≡
〈
f

′
(x,v, t)

〉
=

〈Np(t)∑
i=1

f
′
i (x,v, t)

〉
=

〈Np(t)∑
i=1

δX(i)δV(i)

〉
, (6.3)

where f
′
is the fine–grained density function, f

′
i is the fine–grained density function for the ith

particle, δX(i) = δ(x − X(i)(t)), δV(i) = δ(v − V(i)(t)), and the expectation is over all possible

particle configurations and velocities of the multiparticle system. The unnormalized density

f(x,v, t) is not a probability density function (Subramaniam, 2000) because it integrates to

the expected total number of particles 〈Np〉.

The evolution of the particle system by Eqs. 6.1 and 6.2 implies an evolution equation for

f(x,v, t) (Subramaniam, 2001), which is

∂f

∂t
+

∂

∂xk
[vkf ] +

∂

∂vk
[〈Ak|x,v; t〉 f ] = 0. (6.4)

In the above equation 〈Ak|x,v; t〉 is the expected acceleration conditional on the location [x,v]

in the position–velocity space, which is defined as

〈Ak|x,v; t〉 =
1

f (x,v, t)


〈Np(t)∑

i=1

A
(i)
k f

′
i (x,v, t)

〉 , if f > 0, (6.5)

and zero otherwise. The closure for this conditional acceleration term is obtained by assuming

an acceleration model that includes all the relevant forces arising from particle–particle inter-

actions (e.g., collisional, electrostatic), and particle–fluid interactions (e.g., drag, Saffman lift,

added mass, Basset history term). In this work we choose a physical setup where only the

drag force is needed to model this term, and a general form that subsumes different drag force

correlations is

A∗(i)(t) = A
(
Uf
(
X(i)(t), t

)
,V(i), ρf , νf , ρp, Dp

)
, (6.6)

where Uf
(
X(i)(t), t

)
is the fluid velocity at the particle location, ρf and νf are the fluid

thermodynamic density and kinematic viscosity, respectively, and ρp and Dp are the particle

density and diameter, respectively. Even though only drag force is considered in this study, the
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conclusions will hold equally well for all particle–fluid interactions, with minor modifications

to the above functional form of A� in order to account for the changes necessitated by the

additional physics.

The mean momentum conservation equation in the fluid phase obtained by ensemble–

averaging (Drew and Passman, 1998) is

ρfαf

(
∂〈Uf 〉

∂t
+ 〈Uf 〉 · ∇〈Uf 〉

)
= ∇ · 〈τ 〉 − 〈Ffp〉 + ∇ · τRS , (6.7)

where αf is the average fluid volume fraction, τRS is the residual stress resulting from ensemble

averaging, and the angle brackets represent phasic averages of the terms. The mean interphase

momentum transfer term, 〈Ffp〉, that appears in the fluid–phase mean momentum conservation

equation is obtained from 〈f | x,v; t〉, the conditional expectation of the force acting on the

physical particles, as follows:

〈Ffp〉(x, t) =
∫

[v]
〈f | x,v; t〉f(x,v, t) dv , (6.8)

where the integration is performed over v, the sample space variable corresponding to the

particle velocity V.

The dependence of the mean interphase momentum transfer on configuration of the parti-

cles, and on the particle velocity distribution, is revealed by decomposing the density f(x,v, t)

as a product of the particle number density, np(x, t), and the particle conditional velocity pdf,

f c
V(v|x; t) (Subramaniam, 2001):

f(x,v, t) = np(x, t)f c
V(v|x; t). (6.9)

Spatial nonuniformity in the particle position distribution manifests itself in the particle

number density np(x, t), which for non–aggregating particles evolves by (Subramaniam, 2001)

∂np(x, t)
∂t

+ ∇ · {〈V(x, t)〉np(x, t)} = 0, (6.10)

where 〈V(x, t)〉 is the mean particle velocity field. If there is no inflow and outflow, such

as in the particle–laden lid–driven cavity flow, then the evolution equation for expected total

number of particles (〈Np(t)〉 =
∫
x np(x, t)dx) becomes

∂ 〈Np(t)〉
∂t

= 0. (6.11)



175

In fact, in this special case the total number of particles Np (not just the mean 〈Np〉) is always

constant. From Eqs. 6.4 and 6.10, the evolution equation for f c
V(v|x; t) (Subramaniam, 2001)

is

∂f c
V(v|x; t)

∂t
+

∂

∂xk
[vkf

c
V(v|x; t)] +

∂

∂vk
{〈Ak|x,v; t〉 f c

V(v|x; t)} =

f c
V(v|x; t)

∂ lnnp(x, t)
∂xk

{〈V(x, t)〉 − vk} + f c
V(v|x; t)

∂ 〈Vk(x, t)〉
∂xk

. (6.12)

As noted earlier, in LE simulations the physical system described by Eqs. 6.1 and 6.2 can

be simulated with Np real particles, or with Nc computational particles. Both simulations

constitute an indirect solution of Eq. 6.4, or equivalently, of Eqs. 6.10 and 6.12. In the latter

case, the computational ensemble is statistically equivalent to the physical system. However,

even simulations with real particles can be conveniently interpreted as a special case of sta-

tistical equivalence between the computational ensemble and the physical system. Statistical

equivalence is ensured by enforcing consistency at all times between

(i) the number density implied by the computational ensemble and the number density

corresponding to the physical system, which evolves by Eq. 6.10, and

(ii) the particle velocity distribution implied by the computational ensemble and the particle

velocity distribution corresponding to the physical system, which evolves by Eq. 6.12.

Any changes to the computational ensemble, such as allowing the statistical weights to evolve in

time, must preserve this statistical equivalence with the physical system. Therefore, we describe

the statistical equivalence between the computational ensemble and the physical system in some

detail in the following section.

6.3 Statistical Description of Dispersed Phase: Computational Particles

In this section, the number density and particle velocity distribution implied by the ensem-

ble of statistically–weighted computational particles are established. The section is sub–divided

based on the type of statistical weights used: constant (TLE simulations) or time–evolving (ILE

simulation). The consistency requirements for statistical equivalence are derived by equating
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the number density and particle velocity distribution implied by the computational ensemble

to their counterparts in the physical system.

6.3.1 Traditional LE Simulation (TLE): Equally– weighted particles

In LE simulations, the dispersed–phase consisting of Np real particles is indirectly repre-

sented by Nc computational particles. These Nc computational particles are represented in a

Lagrangian frame at time t by {X(i)
c (t),V(i)

c (t), W (i), i = 1, . . . , Nc(t)}, here X(i)
c (t) denotes the

ith computational particle’s position, V(i)
c (t) its velocity, and W (i) its statistical weight. The

statistical weight is defined as the average number of real particles represented by a computa-

tional particle. The summation of statistical weights, over all computational particles, equals

the expected total number of real particles

Nc(t)∑
i=1

W (i) = 〈Np(t)〉 . (6.13)

The position and velocity of the computational particles evolve by

dX(i)
c

dt
= V(i)

c (6.14)

dV(i)
c

dt
= A(i)

c , , i = 1, . . . , Nc (6.15)

where A(i)
c is the instantaneous acceleration experienced by the ith computational particle.

Using a condensed notation δ
X

(i)
c

= δ(x−X(i)
c (t)) and δ

V
(i)
c

= δ(v−V(i)
c (t)), it is convenient to

define the fine–grained density for the i–th computational particle h
′
i (x,v, t) = W (i)δ

X
(i)
c

δ
V

(i)
c

.

The fine–grained density for the ensemble of Nc computational particles is then written as

h
′
(x,v, t) =

Nc(t)∑
i=1

h
′
i (x,v, t). Analogous to the density function f(x,v, t), which was defined

earlier for the real particles, a weighted density function h(x,v, t) for the computational par-

ticles is defined in terms of h
′
as

h(x,v, t) ≡
〈
h

′
(x,v, t)

〉
=

〈
Nc(t)∑
i=1

h
′
i (x,v, t)

〉
=

〈
Nc(t)∑
i=1

W (i)δ
X

(i)
c

δ
V

(i)
c

〉
. (6.16)

The validity of using computational particles in place of real particles rests on the equivalence

between h and f at all time. For the present case, the statistical weight W (i) = 〈Np〉/Nc
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is equal for each computational particle, and does not evolve. As a result h = f at initial

time, and if the acceleration models for real and computational particles are identical (i.e.,

A(i)
c ≡ A∗(i)), then this equivalence holds between the two statistical descriptions (i.e., h = f)

for all time.

6.3.2 Improved LE Simulation (ILE): Unequal and Evolving weights

The improved LE simulation employs Nc computational particles that are also represented

in a Lagrangian frame at time t by {X(i)
c (t),V(i)

c (t), W (i)(t), i = 1, . . . , Nc(t)}. The principal

difference between ILE and TLE is that the statistical weight W (i)(t) is now a function of time

in ILE. The position and velocity of the computational particles evolve by Eqs. 6.14 and 6.15,

respectively. The statistical weights evolve by

dW (i)(t)
dt

= −Ω(i)(t)W (i)(t) , , i = 1, . . . , Nc(t), (6.17)

where Ω(i) represents the fractional rate of change of statistical weight.

The weighted density function h(x,v, t) =

〈
Nc(t)∑
i=1

W (i)(t)δ
X

(i)
c

δ
V

(i)
c

〉
, which is similar to

the definition in Eq. 6.16, except that here the statistical weights W (i)(t) are not constant but

evolve in time. Similar to the decomposition of f in Eq. 6.9, h is decomposed as

h(x,v, t) = ñp(x, t)h̃c
Vc

(v|x; t), (6.18)

where h̃c
Vc

is the conditional velocity pdf of computational particles (the counterpart of f c
V)

and ñp(x, t) is the physical number density implied by the present statistical description. The

implied physical number density ñp(x, t), which is obtained by integrating the density function

h over velocity space, can be expressed as the product of the computational particle number

density nc(x, t) and the conditional expectation of statistical weights 〈W |x; t〉:

ñp(x, t) =
∫

[v]
hdv =

〈
Nc(t)∑
i=1

W (i)(t)δ
(
X(i)

c (t) − x
)〉

= nc(x, t) 〈W |x; t〉 , (6.19)

where the conditional expectation of the statistical weights is defined as

〈W |x; t〉 =

〈
W (i)(t)δ

(
X(i)

c (t) − x
)〉

nc(x, t)
, if nc > 0, (6.20)
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and is equal to zero otherwise, and nc(x, t) =

〈
Nc(t)∑
i=1

δ
(
X(i)

c (t) − x
)〉

.

We seek to guarantee the equivalence between h and f at all time by comparing evolution

equations for h, and also the fundamental quantities (ñp, 〈Np(t)〉 , hc
Vc

) with their counter-

parts in the physical system. The evolution equation for h (for a detailed derivation, see

Appendix D.1) is

∂h

∂t
+ 〈Ω|x,v; t〉h︸ ︷︷ ︸+ ∂

∂xk
[vkh] +

∂

∂vk
{〈Ac,k|x,v; t〉h} = 0, (6.21)

where 〈Ω|x,v; t〉 is the conditional expectation of fractional rate of change of statistical weight,

which is given by

〈Ω|x,v; t〉 =
1

h(x,v, t)

〈
Nc∑
i=1

{
Ω(i)h

′
i (x,v, t)

}〉
, if h > 0 (6.22)

and equal to zero otherwise. The conditional expectation of the acceleration term 〈Ac,k|x,v; t〉

is similarly defined.

The evolution equation for the number density ñp, obtained by integrating Eq. 6.21 over v

space is (for a detailed derivaton, see Appendix D.3)

∂ñp(x, t)
∂t

+ ∇ · {〈Vc(x, t)〉 ñp(x, t)} = 〈Ω|x; t〉 ñp(x, t)︸ ︷︷ ︸, (6.23)

where the conditional expectation 〈Ω|x; t〉 is defined as

〈Ω|x; t〉 =

〈
Nc∑
i=1

Ω(i)W (i)(t)δ
X

(i)
c

〉
ñp(x, t)

, if ñp > 0 (6.24)

and equal to zero otherwise. The evolution equation for the total number of particles 〈Np(t)〉,

obtained by integrating Eq. 6.23 over x space is (for a detailed derivation, see Appendix D.2)

∂ 〈Np(t)〉
∂t

= −〈Np(t)〉 〈Ω(t)〉︸ ︷︷ ︸, (6.25)

where 〈Ω(t)〉 is the unconditional expectation of Ω, which is given as

〈Ω(t)〉 =

〈
Nc∑
i=1

Ω(i)W (i)(t)
〉

〈Np(t)〉
. (6.26)
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From the evolution equations for h (Eq. 6.21) and number density ñp (Eq. 6.23), the evolution

equation for h̃c
Vc

can be obtained as (for a detailed derivation, see Appendix D.4)

∂h̃c
Vc

(v|x; t)
∂t

+
∂

∂xk

[
vkh̃

c
Vc

(v|x; t)
]

+
∂

∂vk

{
〈Ac,k|x,v; t〉 h̃c

Vc
(v|x; t)

}
=

−〈Ω|x,v; t〉 h̃c
Vc

(v|x; t) + 〈Ω|x; t〉h̃c
Vc

(v|x; t)︸ ︷︷ ︸+h̃c
Vc

(v|x; t)
∂ 〈Vc,k(x, t)〉

∂xk

+ h̃c
Vc

(v|x; t)
∂ ln ñp(x, t)

∂xk
{〈Vc(x, t)〉 − vk} . (6.27)

6.3.2.1 Consistency requirements

In the above evolution equations (Eqs 6.21, 6.23, 6.25, and 6.27) for h, ñp, 〈Np(t)〉, and hc
Vc

,

the underbraced quantities are the extra terms that appear when compared with the corre-

sponding evolution equations (Eqs. 6.4, 6.10, 6.11, and 6.12) for the real particles. Comparing

the evolution equations for h in TLE, the computational particles have constant statistical

weights, and the equivalence of the computational ensemble with the statistical description

based on the real particles is trivially verified. For ILE with time–evolving weights, the same

equivalence is guaranteed only if the extra term 〈Ω|x,v; t〉 that appears in the evolution equa-

tion for h (Eq. 6.21 as compared to Eq. 6.4 for f) is zero. This automatically then guarantees

equivalence of the corresponding number density ( ñp ≡ np) and velocity PDF’s (h̃c
Vc

≡ f c
V).

In summary, the computational particles and the real particles are statistically equivalent if

the conditional (Eqs. 6.22 and 6.24), and unconditional (Eq. 6.26) expectations of fractional

rate of change of statistical weight Ω are all zero. These conditions on Ω are consistency re-

quirements, i.e., a prescription of Ω(i)(t) in Eq. 6.17 that satisfies these conditions guarantees

that the evolution of computational particles by Eqs. 6.14, 6.15, and 6.17 corresponds to the

evolution of the physical system as given by Eq. 6.4. A particle number density control al-

gorithm that ensures a near–uniform spatial distribution of computational particles, and also

satisfies all the consistency requirements, is described in the next section.
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6.3.2.2 Computational particle number density control algorithm

To maintain nearly uniform computational particle number density, we use a variant of a

commonly–used approach in other particle–based numerical methods, such as, PDF methods

for turbulent flows (Pope, 1985; Haworth and Tahry, 1991; Subramaniam and Haworth, 2000),

direct simulation Monte Carlo methods (Kannenberg and Boyd, 2000), large eddy simulations

of turbulent flows using filtered density function approach (Jaberi et al., 1999; Raman et al.,

2005). The numerical simulation begins with some initial computational particles that are

uniformly distributed in the flow domain. The same statistical weight is assigned to all particles

in a cell, with the spatial distribution of statistical weights obeying Eq. 6.19 with ñp = np, the

specified physical number density. In the ideal case, one would want to maintain a constant

number of particles (denoted by NT
pc) in each cell throughout the course of simulation. We

find that requiring constant number of particles in each cell is a very stringent requirement,

but allowing the number of particles in each cell to lie within some range centered around the

ideal value of NT
pc is a better alternative. In our simulations the minimum number of particles

in each cell is specified to be 0.5 NT
pc, while the maximum number of particles allowed in each

cell is 2.0 NT
pc. After evolving the position and the velocity of all particles by a time step, the

number of computational particles in each cell is computed. If this number lies outside the

interval [0.5 NT
pc, 2.0 NT

pc], the following actions are taken:

1. Npc > 2.0 NT
pc: In this case, the particle with the lowest statistical weight is annihilated

or deactivated, and its weight is equally re–distributed among the remaining particles

in the same cell. This annihilation procedure continues until the number of particles in

that cell reduce to the desired value of 2NT
pc.

2. Npc < 0.5 NT
pc: In this case, the particle with the highest statistical weight is cloned

or split into two equally weighted new particles that are randomly placed in the same

cell. The new particles retain the properties of the cloned particle 3 such as, velocity,
3There is nothing unique about this prescription, but it is the simplest approach to preserve a minimum

statistical equivalence, at the level of first moments of the density functions f and h, following the splitting
procedure. More sophisticated and complex algorithms would be needed to ensure consistency at the second
(or higher) moments.
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temperature, etc. This cloning procedure continues until the number of particles in that

cell exceeds the minimum desired value of 0.5 NT
pc.

In the following we show that this number density control algorithm satisfies the consis-

tency requirements as described in Sec. 6.3.2.1. Since the algorithm ensures that the sum of

statistical weights of all the computational particles is unchanged, it satisfies the first con-

sistency requirement, 〈Ω(t)〉 = 0. Since both the annihilation and cloning procedures are

performed at the cell level, the second consistency requirement, 〈Ω|x; t〉 = 0, is also satisfied.

Finally, since the number density control algorithm does not depend on the velocities of the

computational particles, the third consistency requirement, 〈Ω|x,v; t〉 = 0, that expectation

of the fractional rate of change of the statistical weights, conditional on the physical and the

velocity spaces, should be zero, is also satisfied. It is important to note that identical evolution

equations, given by Eqs. 6.14 and 6.15, for particle position and velocity are solved in TLE

and ILE. However, in ILE, the particle weights evolve in time as described above. Essentially

this corresponds to a specification of W (i)(t) that evolves according to Eq. 6.17, but we omit

the formal mathematical definition of Ω(i)(t) in favor of the easily understood algorithm.

6.4 Numerical Estimation of Mean Interphase Momentum Transfer Term

The numerical estimate for the mean interphase momentum transfer, {Ffp(x)}, at the mth

grid node is obtained as

{Ffp
m} =

1
Vm

Nc(t)∑
i=1

f (i)
c W (i) K(X(i)

c ,xm), (6.28)

where f (i)
c = mpA

(i)
c is the force acting on the ith computational particle, K(X(i)

c ,xm) is a

generic kernel with compact support that determines the influence of the particle force at X(i)
c

on a grid node located at xm, and Vm is the geometric volume of the mth grid cell. In the

convention followed, {·} represents the numerically estimated mean field, while 〈·〉 represents

the analytical mean field. Four interpolation schemes for calculation of the mean interphase

momentum transfer term are considered in this work: fourth order Lagrange polynomial in-

terpolation (LPI-4), second order Lagrange polynomial interpolation (LPI-2), piecewise cubic
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approximation (PCA), and a two–stage estimation algorithm (TSE). The details of the inter-

polation schemes are provided in Garg et al. (2007).

For a 1-D grid, shown by Fig. 6.2, the numerical estimate for
{

F fp
x,m

}
, from Eq. 6.28, at

the mth grid node for an Oth–order interpolation scheme is

{
F fp

x,m

}CE
=

1
Vm

m+O/2−1∑
v=m−O/2

Nv
c∑

k=1

fk
xW kbx

l (ξk
l ), (6.29)

where l = m − v + O/2, bx
l is the basis function at the elemental coordinate ξk

l , Nv
c is the

number of computational particles in the vth cell, fk
x is the x component of the force f (k)

c

acting on the kth particle, and the superscript ‘CE’ stands for conventional estimator. In

the above equation, the basis functions are numbered from left to right. For example, if a

particle is located in 5th cell (i.e. v = 5), then the fourth order LPI-4 interpolation scheme will

yield four non–zero basis functions, b1 through b4, which correspond to grid nodes 4 through

7, respectively. The conventional estimator has been extensively used in past LE simulations

(Sundaram and Collins, 1996; Boivin et al., 1998; Narayanan et al., 2002; Patankar and Joseph,

2001; Snider et al., 1998).

Here we propose an improved estimator to compute the mean interphase momentum trans-

fer term as

{
F fp

x,m

}IE
=

1
Vm

m+O/2−1∑
v=m−O/2

Nv
c∑

k=1

φk
xbx

l (ξk
l )

m+O/2−1∑
v=m−O/2

Nv
c∑

k=1

bx
l (ξk

l )

, (6.30)

where φk
x is a scaled force acting on the kth particle in cell v, and superscript ‘IE’ stands for

improved estimator. For the kth particle belonging to the vth cell, φk
x is

φk
x = fk

x

Nv
c∑

j=1

W j = fk
xNv

p , (6.31)

where Nv
p is the number of physical particles in the vth cell. On substituting the above

expression for φk
x into the expression for improved estimator (Eq. 6.30), we get

{
F fp

x,m

}IE
=

1
Vm

m+O/2−1∑
v=m−O/2

Nv
c∑

k=1

fk
xW �kbx

l (ξk
l ), (6.32)
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h

Figure 6.2 Schematic of a 1-D grid with dispersed phase particles shown by
black dots. Solid and dashed vertical lines, indexed by m, show
coarse and fine grids, respectively. The angled intersecting lines
on the top represent a typical top hat kernel having bandwidth
equal to h.

where W �k, the effective statistical weight associated with the kth particle is

W �k =

Nv
c∑

j=1
W j

m+O/2−1∑
v=m−O/2

Nv
c∑

k=1

bx
l (ξk

l )

=
Nv

p

{Nc,m} . (6.33)

In the above expression, {Nc,m} is the effective number of computational particles at the mth

grid node. Therefore, W �k can be interpreted as the locally averaged statistical weight. The

expressions for the conventional (Eqs. 6.29) and the improved estimators (6.32) are very similar

except for the difference in the weighting factor. Whereas in the conventional estimator, the

weighting factor is simply the statistical weight of the particle, in the improved estimator, the

weight factor is a locally averaged value given by Eq. 6.33.

This improved estimator is similar to the first stage approximation in the TSE interpolation

scheme used in earlier studies (Dreeben and Pope, 1992; Subramaniam and Haworth, 2000)
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and extensively tested for accuracy in Garg et al. (2007). Therefore, the TSE interpolation

scheme is always implemented with the improved estimator, while the other three interpolation

schemes (LPI-2, LPI-4, and PCA) can be implemented with either the conventional or the

improved estimator. Unless otherwise noted, the improved estimator is used to obtain all the

results that follow. It will be shown later in a test problem that the improved estimator yields

more accurate and faster converging estimates than the conventional estimator for the mean

interphase momentum transfer term.

For the purpose of comparing the two estimators, we compare estimates of the mean in-

terphase momentum transfer for a very simple case. The fluid velocity field Uf = {Uf
1 , 0, 0} is

chosen to be of a simple transcendental form

Uf
1 (x, y) = cos

(
2πx

Lx

)
cos
(

2πy

Ly

)
, (6.34)

in a domain D = [0,Lx]× [0,Ly]× [0,Lz].The particles are uniformly distributed in the domain

D. The particle velocity V = {V1, 0, 0} is specified by the distribution of V1. Two cases are

considered for particle velocity distribution. In the first case, which is identical to the case

described in original MS, a Gaussian velocity distribution with unit mean and zero variance is

chosen, i.e., V1
D= N [1.0, 0.0]. In the second case, again a Gaussian particle velocity distribution

is chosen but with a finite variance, i.e., V1
D= N [1.0, 0.3]. Given these quantities, the mean

interphase momentum transfer term is known analytically.

The ensemble–averaged summed mean square of the total error ε̂F is defined as

ε̂F =
1
M

M∑
i=1

∑M
m=1

(
{Ffp

m }i − 〈Ffp
m 〉
)2

M
, (6.35)

where M is the number of independent realizations, and M = MxMyMz is the total number

of grid cells. The convergence characteristics of ε̂F with number of particles per cell Npc for

the two cases of zero and non–zero variance in particle velocity distribution are shown by

Figs. 6.3(a) and 6.3(b), respectively. The estimates have been obtained by LPI-2 interpola-

tion scheme on a 41 × 41 × 4 and averaged over 100 independent realizations M. It can be

seen from Fig. 6.3(a) that, for the case of zero variance in particle velocity distribution, the

improved estimator is more accurate than the conventional estimator by over two orders of
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= N [1.0, 0.0].

Npc

ε F

100 101 102

10-4

10-3

10-2

CE
IE

〈

(b) V1
D
= N [1.0, 0.3].

Figure 6.3 Convergence of Ensemble–averaged summed mean square error
ε̂F with number of particles per cell Npc for (a) zero variance,
and (b) finite variance in particle velocity distribution. The
estimates have been obtained on a 40× 40× 3 grid using LPI-2
interpolation scheme. Number of independent realizations M
is equal to 100.

magnitude. Even with 1 particle per cell, improved estimator yields better estimates then

those from conventional estimator with 100 particles per cell. However, for the case of finite

variance in particle velocity distribution as shown by Fig. 6.3(b), the difference in accuracies

(with improved estimator performing better than the conventional estimator) between the two

estimators is reduced to approximately one order of magnitude.

The contour plot of root mean square statistical error ΣF , computed for each estimator

by a standard procedure (Xu and Pope, 1999; Garg et al., 2007), for the two cases of zero

and non–zero variance in particle velocity distribution is shown by Figs 6.4(a) and 6.4(b),

respectively. The number of particles per cell Npc and number of independent realizations M

are equal to 5 and 100, respectively. The left and right panels in each subfigure correspond

to the conventional and the improved estimator, respectively. From the two figures, it can

be seen that for the case of non–zero variance in particle velocity distribution, the difference

in the statistical errors between the estimators is the most. Statistical variations in an any

estimate between the two realizations arises from variations in particle positions and as well
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as particle velocities. Improved estimator (due to the nice scaling of terms in the numerator

and denominator) has the ability to reduce statistical variations arising out of the particle

positions. In the event of finite particle velocity variance, the improved estimator, compared

to the conventional estimator, will yield lower total statistical error due to relatively lesser

contribution from the first component (i.e., particle positions) of statistical error. For the

case of zero particle velocity variance, only the uncertainties from particle positions contribute

to the statistical error, and, therefore, we observe improved estimator to be more accurate

than improved estimator by over two orders of magnitude. However, for the case of finite

particle velocity variance, statistical error from the second component (i.e., from variation in

the particle velocities) is the dominant term. Since the improved estimator results in lesser

statistical error from particle position variation, and the second statistical error component is

constant for both the estimators, improved estimator, although not on the same order as in the

first case, still performs better than the conventional estimator. From the above comparison,

the superior performance of the improved estimator is attributed to its ability in incurring

lesser statistical error arising due to particle position variations.

6.5 Lid–Driven Cavity Flow Problem

We first solve the one–way coupled, lid–driven cavity flow problem using both the tradi-

tional and the improved LE simulation methods. The carrier fluid momentum conservation

equation (Eq. 6.7) is solved for primitive variables using the fractional time–stepping proce-

dure of Kim and Moin (1985). Fourth–order accurate Runge Kutta scheme is used to advance

the particle’s position and velocity. Second–order accurate central–differencing scheme is used

for both the convection and the diffusion terms. The LPI-4 interpolation scheme is used to

interpolate the fluid velocity field to the particle location, and the LPI-2 interpolation scheme

is used to form the estimates for the mean interphase momentum transfer term.

The carrier flow Reynolds number Re = LrefUref/νf , based on the cavity length Lref and

lid velocity Uref , is equal to 100. The physical system is a volumetrically dilute particle–laden

flow with large particle to fluid density ratio (ρp � ρf ). The solid particles are monodisperse
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Figure 6.4 Contour plot of the root mean square statistical error ΣF for
the two cases of (a) zero, and (b) non–zero variance in parti-
cle velocity distribution. The number of particles per cell Npc

and number of independent realizations M are equal to 5 and
100, respectively. The left and right panels in each subfigure
correspond to the conventional and the improved estimator, re-
spectively.

and small compared to the smallest flow length scale, but large enough so Brownian motion of

the particles can be neglected. The Reynolds number for relative motion between the particle

and the fluid is O(1). Under these conditions, the interphase momentum transfer is due to the

drag and buoyancy forces. If we neglect buoyancy and assume a linear drag model (which is

valid for Reynolds number O(1)), the modeled particle acceleration A∗(i) is given by

A∗(i) =
Uf
(
X(i), t
)
− V(i)

τp
, (6.36)

where τp = ρpD
2
p/(18µf ) is the particle momentum response time. The particle Stokes number

St = τp/τf , which is based on a flow time scale τf = Lref/Uref , is equal to 0.8. The volume



188

fraction of the dispersed phase αp is equal to 0.005, resulting in approximately 5300 real

particles. The physical problem is solved on progressively refined grids, ranging from the

coarsest resolution of 50 × 50 grid cells to the finest resolution of 100 × 100 grid cells.

For the TLE simulation, two different approaches are used. In the first approach, referred

to as TLE1, real particles (≈ 5300) are used. In the second approach, referred to as TLE2,

computational particles with equal and non–evolving statistical weights are used. In TLE2,

for all the grid sizes a fixed number of computational particles per cell, Npc(t = 0) = 20, are

uniformly seeded at the beginning of the simulation.

For the ILE simulation, the computational particles are initially seeded as in TLE2, i.e.,

Npc(t = 0) = 20. The target number of computational particles in each cell NT
pc is set equal

to 20. Therefore, according to the particle number density control algorithm outlined earlier,

the minimum and the maximum number of computational particles per cell are 10 and 40,

respectively.

The global error in estimating the mean interphase momentum transfer term is defined as

root mean square of the relative error, or

εF =
1
M

√√√√√√ M∑
m=1

{Ffp
m} −
〈
Ffp

m

〉
〈
Ffp

m

〉
2

, (6.37)

where M = MxMyMz is the total number of grid cells. In the absence of an analytical solution

for the mean interphase momentum transfer term in the current problem, the ILE solution on

a highly resolved 150 × 150 grid is taken to be the reference solution for the purpose of error

calculation. The relative root mean square error εF for each grid is calculated by substituting

the interpolated value of reference solution for
〈
Ffp

m

〉
in the above equation.

The particle–laden lid–driven cavity problem is simulated for 10 non–dimensional time units

(t∗ = t/τf ). Figure 6.1 shows a snapshot of the fluid stream function field (represented by

contour lines) and the dispersed–phase particles (represented by black dots) obtained from the

TLE1 simulation. Figure 6.5 compares the convergence characteristics of the root mean square

relative error εF , with grid spacing h =
√

∆x∆y, for different simulations — TLE1, TLE2,

ILE. Lines are a simple fit to the data. It is observed that both the TLE simulations, TLE1
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and TLE2, fail to yield numerically–converged estimates for the mean interphase momentum

transfer term. On the other hand, the root mean square relative error for the ILE simulation

shows a monotonic decrease, indicating numerical convergence. Although the lid–driven cavity

flow results demonstrate the inability of the TLE simulations to yield numerically–converged

solutions, it is not possible to quantify the accuracy of different simulations in the absence of

an analytical solution for the mean interphase momentum transfer term. To address the issue

of accuracy, a simple test problem that admits an analytical solution for the mean interphase

momentum transfer term is proposed in the next section.

h

ε F

0.0120.0140.0160.018

0.002

0.003

0.004

0.005

0.006

TLE1
TLE2
ILE

Figure 6.5 Comparison of the convergence characteristics of the root mean
square relative error εF with grid spacing h for TLE1, TLE2,
and ILE simulations of the lid–driven cavity flow. Lines are a
simple fit to the data points.

6.6 Test Problem

Here we propose a novel test problem that mimics the conditions of real particle laden flows,

and yet is simple enough to permit analytical solution for mean fields like the number density

and the mean interphase momentum transfer term. The physical system implied by the test

problem admits the same assumptions made for the lid–driven cavity flow, i.e., volumetrically

dilute, ρp � ρf , monodisperse particles, and Reynolds number for relative motion between the
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Figure 6.6 Schematic of the test problem. Solid line vectors represent Uf
1 ,

dashed line vectors represent Uf
2 . and particles, injected at

x = 0, are shown as black dots.

particle and the fluid is O(1). Therefore, the linear drag model given by Eq. 6.36 is valid here

also.

As represented by the schematic in Fig. 6.6, a frozen two–dimensional fluid velocity field

Uf
1 (x, y) = U0, (6.38)

Uf
2 (x, y) = U0

(
1 − y

Ly

)
, (6.39)

is chosen in a domain D = [0,Lx] × [0,Ly]. For this fluid velocity field, the flow time scale τf

is defined to be equal to Ly/U0, and the particle Stokes number is St = τp/τf .

Particles are injected at x = 0, with velocity V = (V1, V2) = (U0, 0). The particle position

and velocity equations (Eqs. 6.14 and 6.15) can be reduced to two second–order ordinary

differential equations by substituting the frozen fluid velocity field (Eqs. 6.38 and 6.39) into the

particle acceleration model (Eq. 6.36). These ODE’s for the particle trajectory can be solved

for any Stokes number. However, depending on the nature of the roots (real distinct or complex

conjugate) of the characteristic equation corresponding to ODEs, two different solutions are

possible. Real and distinct roots arise when St < 0.25 and complex conjugate roots arise when
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Stokes number is greater than 0.25. Since preferential concentration is observed at St ∼ 1 and

the resulting spatial distribution of particles will be most demanding of LE simulation methods

(cf. Fig. 6.1 for lid–driven cavity simulation at St = 0.8), we choose to solve for the St > 0.25

case. For complex conjugate roots, the analytical expressions for the particle trajectory and

velocity in y− direction are

X2(t, X2,0) = exp−t/2τp [X2,0 − Ly]
{

cos
(

ζt

2τp

)
+

1
ζ

sin
(

ζt

2τp

)}
+ Ly, (6.40)

and

V2(t, X2,0) =
2U0

[
1 − X2

Ly

]
sin
(

ζt

2τp

)
ζ

{
cos
(

ζt

2τp

)
+

1
ζ

sin
(

ζt

2τp

)} , (6.41)

where X2(t, X2,0) and V2(t, X2,0) denote the position and velocity at time t, respectively, of the

dispersed phase particle that is located at X2,0 at time t = 0. The parameter ζ =
√

4St − 1.

Since the particle moves with a constant velocity (i.e., V1(t, X1,0) = U0) in the x direction, its

x coordinate at any time is given by X1(t, X1,0) = X1,0 + U0t.

The Eulerian mean velocity field for particle phase is denoted Up(x, t), and it can be

deduced from the Lagrangian solution V(t,X0) (Eq. 6.41) by the transformation

Up(X(t,X0), t) = V(t,X0). (6.42)

The particles are injected based on a specified inlet particle volume fraction field. Since we are

interested in a non–uniform number density distribution, we choose a simple transcendental

inflow volume fraction of the form

αp(x = 0, y) =
αp,max + αp,min

2
+

αp,max − αp,min

2
sin
(

2πy

Ly

)
, (6.43)

where αp,min and αp,max ensure bounded volume fraction (0 < αp < 1) for all values of y.

Given the analytical expressions for the particle trajectory (Eq. 6.40), it is straightforward

to write down the volume fraction field at any later time. For our test problem, the steady
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dispersed–phase volume fraction field is

αp(x, y) =


αp(x = 0, Y −1(y))ex̂/g(x̂) :

0 < x ≤ Lx,

Ly

{
1 − ex̂g(x̂)

}
< y ≤ Ly;

0 : otherwise ,

(6.44)

where Y −1(y) is an inverse function obtained by re–expressing X2,0 in Eq. 6.40 in terms of X2,

such that

Y −1(y) ≡ X2,0 =
y − Ly

g(x̂)
exp x̂ + Ly, (6.45)

where x̂ = x/2τpU0, and g(x̂) = cos (ζx̂) + ζ−1 sin (ζx̂).

For monodisperse particles, the number density field corresponding to this particle volume

fraction field is np(x, y) = αp(x,y)
Vp

, where Vp is the particle volume. Fig. 6.7(a) shows the

contour plot of the normalized analytical mean number density field np(x, y)/npmax. From the

contour plot, and from the above expression for volume fraction field (Eq. 6.44), it is noted

that in the region bounded by 0 < x ≤ Lx and 0 ≤ y ≤ Ly

{
1 − ex̂g(x̂)

}
, the number density

is zero, i.e. no physical particles could be present in this region. From hereon, this curve will

be referred to as the bounding streamline.

Similarly, the analytical expression for the mean interphase momentum transfer term ob-

tained from Eq. 6.8 is

〈Ffp〉(x) =
mpnp(x)

τp

[
Uf (x) − Up(x)

]
. (6.46)

Figure 6.7(b) shows the contour plot of the scaled analytical mean interphase momentum

transfer term in y–direction obtained after substituting the fluid velocity field (Eqns. 6.38

and 6.39), number density field, and mean particle velocity field (Eq. 6.42) into Eq. 6.46. Since

the particles are injected with V1 = U0, they experience zero drag in the x direction.

The objective of the test problem is to quantify the accuracy of ILE, TLE1, and TLE2

simulations. Errors in LE simulations arise from: (1) using a finite grid to represent and

evolve the fluid velocity field, (2) forward–interpolating the fluid velocity field represented at

grid nodes to particle location for calculating particle forces (cf. Eq. 6.36), (3) evolution of

particle position and velocity using a finite time step, and (4) estimation of mean fields, like

the number density or the mean interphase momentum transfer term, from a finite number of
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Figure 6.7 Contour plots of scaled analytical mean (a) number den-
sity 〈np〉 / 〈np〉max and (b) interphase momentum transfer term
〈F fp

y 〉/〈F fp
y 〉max for the test problem.

particles. The first three sources of error are common to ILE, TLE1, and TLE2. Since the

principal difference between the simulation methods is in step (4), the goal is to minimize or

eliminate all sources of error, except the backward estimation error (4). Since the fluid velocity

field is analytically specified, error (1) due to finite grid size is zero. Specified fluid velocity

field also eliminates error (2) due to forward interpolation. A highly accurate, fourth–order

Runge Kutta scheme is used to evolve the position and velocity of the particles in all the tests.

Thus, the first two sources of error are totally eliminated, and the third one is minimized.

6.6.1 Computation setup

The physical domain D is discretized using a structured grid into Mx × My × Mz cells. In

all our tests, the domain is a unit cube with 29 ≤ Mx = My ≤ 99, and Mz = 3. Since the

mean fields are only a function of (x, y), more grid cells are used in the x-y plane. The particle

Stokes number is set to 0.8. The maximum inflow volume fraction (cf. Eq. 6.43) αp,max = 0.01,

and the minimum inflow volume fraction αp,min = 0.001, which are typical values encountered

in the LE simulations of dilute particle–laden flows

As in the lid–driven cavity problem, two TLE simulation approaches are investigated. In
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TLE1 real particles are used. Particles are injected at x = 0 by defining an inlet volume

V in = U0∆t∆y∆z, such that the number of real particles introduced at each time step in cth

cell that adjoins the boundary at x = 0 is given by

N in
p (yc) =

⌈
αp(x = 0, yc)V in

Vp

⌉
, (6.47)

where ·� is the nearest greater integer operator, and yc is the cell center coordinate. The

fractional loss in actual injected volume fraction due to the greatest integer operation is saved

and added to the N in
p computation in the next time step. These N in

p (yc) particles are uniformly

distributed in the volume V in.

In TLE2, computational particles with equal and non–evolving statistical weights are used.

The inflow of the real particles is indirectly implemented by a uniform inflow of computational

particles, and the weight distribution of the injected computational particles mimics the inflow

volume fraction. The number of computational particles N in
c in the cth cell is computed as

N in
c (yc) = nin

c V in�, (6.48)

where ·� is the nearest greater integer operator, V in is the inlet volume defined earlier,

nin
c = N in

pc/Vm is the inflow number density of the computational particles, and N in
pc is the

user specified parameter that determines the numerical resolution of TLE2 simulation. The

statistical weight W (i) for each injected computational particle is

W (i) =
N in

p

N in
c

, , i = 1, . . . , N in
c . (6.49)

For the ILE simulation, the computational particles are injected at x = 0 as in the TLE2 case.

However, during the simulation, their weights evolve as a result of the particle number density

control algorithm.

In order to meaningfully compare the accuracy of TLE2 and ILE it is necessary to maintain

the same numerical resolution in both simulations. The number of computational particles per

cell varies throughout the domain in both TLE2 and ILE, as does the total number of compu-

tational particles contained inside the region bounded by the bounding streamline (Eq. 6.44).

Furthermore, because the number of computational particles in each cell is a random variable
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(differs with each realization), it makes sense to only ensure that the average (or other statis-

tics, such as min/max) number of computational particles per cell is the same in TLE2 and

ILE. However, it is difficult to maintain exactly the same numerical resolution, even in terms

of average number of computational particles in each cell, because of the nature of the simu-

lation methods. The parameters that control the computational particle distribution in TLE2

is N in
pc, and for TLE, it is NT

pc. Through trial and error, we have developed empirical rules

that give approximately the same average number of computational particles per cell inside the

bounding streamline for TLE2 and ILE simulations as 24 and 28, respectively. Additionally,

for the finest grid used (100 × 100 × 3), the total number of computational particles inside

the bounding streamline for TLE2 and ILE are equal to 690, 000 and 747, 282, respectively.

These values are obtained with N in
pc = 23 and NT

pc = 20. In this way, a comparable numerical

resolution is maintained between TLE2 and ILE simulations.
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6.7 Results
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Figure 6.8 Contour plots of the scaled mean interphase momentum trans-

fer term {F fp
y }/
〈
F fp

y

〉
max

obtained from TLE1, TLE2, and ILE

simulations of the test problem on 30 × 30 × 3 ((a), (c), and

(e)) and 100×100×3 ((b), (d), and (f)) grids using LPI-2 with

improved estimator.



197

We have calculated the mean interphase momentum transfer term using all the interpolation

schemes (LPI-2, LPI-4, PCA, and TSE). However, only one set of representative contour plots

of {Ffp} and its relative error obtained using LPI-2 are reported here. Figures 6.8(a), 6.8(c),

and 6.8(e) show, respectively, the contour plots of {F fp
y }/
〈
F fp

y

〉
max

from TLE1, TLE2, and

ILE simulations on the coarsest grid (30 × 30 × 3). For this grid resolution, all the three

simulation methods yield nearly identical estimates. However, the contour plots for the finest

grid (100×100×3) for TLE1 (Fig. 6.8(b)), TLE2 (Fig. 6.8(d)) and ILE (Fig. 6.8(f)) simulations,

clearly show the worsening of estimates for the TLE1 although TLE2 and ILE do not give very

different estimates.
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Figure 6.9 Contour plots of relative error
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〈
F fp

y

〉
−
{

F fp
y

}
〈
F fp

y

〉
∣∣∣∣∣∣
 obtained

from TLE1, TLE2, and ILE simulations on 30×30×3 ((a), (c),

and (e)) and 100× 100× 3 ((b), (d), and (f)) grids using LPI-2

with improved estimator.
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Figures 6.9(a), 6.9(c), and 6.9(e) show, respectively, the contour plots of relative error∣∣∣∣∣∣
〈
F fp

y

〉
−
{

F fp
y

}
〈
F fp

y

〉
∣∣∣∣∣∣
 from TLE1, TLE2, and ILE simulations on the coarsest grid. The

relative error for the finest grid resolution is shown in Figs. 6.9(b) (TLE1), 6.9(d) (TLE2),

and 6.9(f) (ILE). For both resolutions, TLE1 gives the maximum error, ILE gives the min-

imum error, while errors incurred by TLE2 lie in the middle. The highest error in TLE1

simulation is due to the fewer number of particles per cell on progressively refined grids. The

lower number of particles per cell on finer grids results in increased statistical error. This error

is highest in the regions of low number density. On the 30 × 30 × 3 grid (Fig. 6.9(a)) the

relative error is nearly uniform over the entire domain. However, on the 100 × 100 × 3 grid

(Fig. 6.9(b)), the relative error becomes more than 100%, with the highest error observed in

regions of low number density (0.5 < y < 1.0 and 0.0 < x < 1.0).

It is interesting to note that for this test problem the TLE2 simulation, although less accu-

rate than ILE simulation, provides reasonable estimates for the mean interphase momentum

transfer term. This is because the fluid velocity field in the test problem has zero vorticity,

and hence the particles do not preferentially concentrate. For this particular test problem,

the computational particles in the TLE2 simulation maintain an acceptable particle number

density even in the regions of low physical volume fraction. Therefore, the test problem does

not result in highly nonuniform spatial distribution of particles that was encountered earlier

in the lid–driven flow. As a result, the estimates from the TLE2 simulation do not worsen as

drastically with grid refinement as in the more realistic lid–driven cavity flow. The test results

show that the particle number density control algorithm yields highly accurate results that

capture the flow physics.

We now use the test problem to investigate effect of the estimator on LPI-2, LPI-4, and

PCA interpolation schemes. Figure 6.10 compares the convergence characteristics of root

mean square relative error for different interpolation schemes (LPI-2, LPI-4, and PCA) using

the conventional estimator. Fig. 6.11 shows the same convergence characteristics but with

estimates obtained from the improved estimator. Since the TSE is always implemented with

improved estimator, its convergence characteristics are shown only for the improved estimator
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Conventional Estimator Improved Estimator
TLE2 ILE TLE2 ILE

LPI-4 1.27 1.27 1.34 1.32
LPI-2 1.18 1.18 1.41 1.40
PCA 1.07 1.09 1.54 1.50
TSE – – 1.42 1.58

Table 6.1 Comparison of relative root mean square error’s convergence rate
between conventional and improved estimator for all the estima-
tion schemes in TLE2 and ILE simulations.

case. In both the figures, lines are simple fit to the data. For the TLE1 simulation method,

the root mean square relative errors for all the interpolation schemes show that neither choice

of estimator yields numerically converged results. Regardless of the choice of estimator in

TLE1, the errors first decrease and then increase with grid refinement. On the other hand,

the rms relative errors from TLE2 (dashed lines) and ILE (dashed dot lines) simulations

show a monotonic decrease for both estimators, with ILE being the more accurate. From

these observations, we conclude that ILE along with the improved estimator will result in

numerically converged and accurate LE simulations.

The rate of convergence of the rms relative errors using the conventional and the improved

estimators is obtained by performing linear least–squares fit to the data in Figs. 6.10 and 6.11.

The convergence rates are summarized in Table 6.1 for all the interpolation schemes. The

convergence rate of the rms relative errors is not reported for TLE1 because it shows no signs

of convergence. From Table 6.1, it is observed that the improved estimator consistently gives

higher rates of convergence for LPI-2, LPI-4 and PCA interpolation schemes as compared to

the conventional estimator. The first step in the TSE algorithm is identical to the improved

estimator (Dreeben and Pope, 1992; Subramaniam and Haworth, 2000; Garg et al., 2007).

Therefore, for TSE, the rate of convergence of the rms relative error is independent of the

estimator used.
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6.8 Discussion

Particle–based methods have been used extensively in many fields other than two–phase

flows. For example, in single–phase turbulent reactive flows, the so called “hybrid particle/finite–

volume PDF method” is nowadays commonly used. In this approach, the flow is solved using

a standard finite volume method. However, in order to avoid the use of closures for chemical

reaction terms, a stochastic differential equation is used to solve for species evolution. The

stochastic differential equations, solved using a Monte–Carlo approach, result in finite number

of stochastic particles that are used for species transport. For constant density flows, these

stochastic particles are always uniformly distributed resulting in spatially uniform distribution

of statistical error. For variable density flows, however, the number density of the stochas-

tic particles, if not corrected, can become highly non–uniform. In order to avoid spatially

non–uniform distribution of statistical error, particle number density control algorithms have

often been employed in the simulations of turbulent reactive flows (Pope, 1985; Haworth and

Tahry, 1991; Subramaniam and Haworth, 2000; Jaberi et al., 1999; Raman et al., 2005). LE

simulations using real particles (or computational particles with constant statistical weight)

also suffer from spatially non–uniform distribution of statistical error as the particle number

density can go to zero in some regions of the flow. Therefore, a particle number density con-

trol algorithm, like the one used in turbulent reactive flows, becomes imperative in order to

ensure accurate LE simulations in multiphase flows. The test cases considered in this study

demonstrate the accuracy and convergence of the particle number density control algorithm

incorporated into the ILE method, but they are relatively simple in that the regions of the

flow devoid of particles does not change drastically in time. While we do not anticipate any

special difficulties with simulating such flows, they may be a suitable test problems for future

study.

Although the particle number control algorithm ensures that the statistical error is uni-

formly distributed over the entire flow domain, the accuracy of numerically estimated mean

interphase momentum transfer term is only as good as the estimator used. A simple modifica-

tion to the conventionally used estimation procedure for mean interphase momentum transfer



202

term gives more accurate estimates along with a higher rate of convergence for all simulation

methods. Although the improved estimator gives a big improvement over the conventional

estimator, some caution should be exercised in choosing the interpolation scheme when using

improved estimator. This is due to the difference in basis function definitions for each scheme.

Interpolation schemes like LPI-2, and PCA have strictly positive basis function values, there-

fore, both the numerator and the denominator in Eq. 6.30 always scale well, even in the limit

of low number of particles per cell. Basis function for LPI-4, on the other hand, can become

both positive and negative. As a result, in the limit of low Npc, the denominator in Eq. 6.30

may acquire a very small value that does not scale well with the numerator, resulting in poor

estimates. Therefore, the use of LPI-4 is not recommended with the improved estimator.

TLE simulations suffer from increased statistical error with grid refinement, resulting in

their failure to yield numerically–converged estimates. The limitations of TLE simulations can

be overcome by ensuring that the statistical error remains constant on progressively refined

grids, and as well as is spatially uniformly distributed. In typical LE simulations, including

ours, estimates for the mean interphase momentum transfer term are formed using a kernel

whose support or bandwidth scales with grid size. These are generally referred to as the grid–

cell based estimators and, as observed in this study, they suffer from increased statistical error

with grid refinement. If estimation kernel’s bandwidth remains constant, then the statistical

error will also remain constant with grid refinement. Such estimators are referred to as the

fixed–bandwidth or grid–free estimators. For example, if the bandwidth of the top hat kernel

in Fig. 6.2 is kept fixed at h, then at any spatial location the number of samples used to form

the mean field estimates is approximately the same for both the coarse (solid vertical lines)

grid and the fine grid (dashed vertical lines). This ensures constant statistical error on both

coarse and fine grids. However, even with fixed–bandwidth estimators, the statistical error

can be spatially non–uniform in flows with preferential concentration. Also fixed–bandwidth

estimators do not show improved accuracy with grid refinement because the discretization

error 4 in the estimate scales as a power of the bandwidth, independent of the grid–size.
4The discretization error for fixed bandwidth kernel (Dreeben and Pope, 1992) scales as O(hp), where p

depends on the estimation scheme.
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Therefore, although fixed–bandwidth estimators are superior to grid–cell based estimators and

aid in overall stability of LE simulations, they do not solve the problem of spatially non–

uniform distribution of particles. In this context, our ILE simulation method fulfills both the

desired objectives: (a) near–constant statistical error and decreasing discretization error with

grid refinement, and (b) spatially near–uniform distribution of statistical error.

6.9 Conclusions

In LE simulations of two–phase flows the spatial distribution of particles can become highly

non–uniform due to preferential concentration, if the Stokes number is in the appropriate range.

Such situations are frequently encountered in two–phase flows. Simulations of a particle–laden

lid–driven cavity flow show that traditional LE simulations are not numerically convergent.

An improved LE simulation approach is developed that maintains near–uniform computational

particle number density, resulting in a numerically convergent solution to the particle–laden

lid–driven cavity problem. In order to establish the accuracy of the ILE method, a novel two–

phase flow test problem that admits an analytical solution for the mean interphase momentum

transfer term is devised. This test reveals that the ILE method yields accurate solutions also.

Numerical tests reveal that an improved estimator yields very accurate estimates compared to

the conventional estimator that is currently used in LE simulations. Therefore, the combination

of ILE with the improved estimator yields numerically convergent and accurate results for two–

phase flows.
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Figure 6.10 Convergence characteristics of the root mean square relative
error with grid spacing h for TLE1 (solid), TLE2 (dash), and
ILE (dash–dot) simulations of the test problem. Conventional
estimator is used. Lines are simple fit to the symbols. �,
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CHAPTER 7. DEVELOPMENT OF AN OPEN SOURCE DEM CODE

FOR SIMULATIONS OF GRANULAR AND GAS–PARTICLE SYSTEMS

This chapter is a manuscript in preparation titled “Development of an open source DEM

code for simulations of granular and gas–particle systems” lead by R. Garg, in collaboraiton

with co–workers at National Energy Technology Laboratory (NETL), Morgantown, WV, and

S. Subramaniam. An extended version of this manuscript will appear as a theory guide and

user manual for the MFIX–CDM code on “www.mfix.org”.

In the MFIX code, a basic structure for DEM (Discrete Element Method) simulations

has existed for few years, termed MFIX–CDM, where CDM stands for continuum-discrete

model. We purposely term it this was as it is easy to confuse DEM for purely granular flows

versus that where DEM is coupled with continuum description for gas. Here the gas-phase

is solved using continuum equations while the solids phase is solved using discrete particles.

However, MFIX is not as widely used for CDM simulations as it is for continuum simulations

even though it is an excellent opportunity to be able to run different descriptions from one

platform. We suspect that the main reason behind MFIX–CDM modules lesser usage is its

lack of reliability partly due to limited verification and validation. This is inspite of the fact

that two thesis (Boylakunta, 2003; Weber, 2004), several publications (Weber and Hrenya,

2006; Sun et al., 2007) and the previous MFIX–DEM document (Boyalakuntla and Pannala,

2006). The main reason has been that the gas-solids flows are extremely complex and for the

systems studied, the inaccuracies in the formulation did not seem to have had an affect on the

qualitative and semi-quantitative validation exercise.

The MFIX–CDM code has recently been extensively debugged and two new features have

been added: 1) the ability to simulate dilute systems, and 2) the ability to accommodate any
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particle size/density distribution. In order to allow it to accurately simulate dilute systems,

a suite of interpolation routines have been added to calculate the drag force on each particle

and also its reverse projection onto the Eulerian grid.

7.1 Theory: Introduction and Background

The simulation technique wherein the solids is represented by discrete particles is referred

to as the discrete element method (DEM). DEM simulations are used frequently for simu-

lating granular flows and also gas–particle systems. In the alternative continuum approach,

constitutive relations are needed to model the stresses in solids phase. Since the collisions are

resolved in DEM approach, no such models are needed in these simulations, although a force

model for the particle interactions must be introduced. Therefore, DEM simulations, although

computationally more expensive than continuum based simulations, serve as a good tool to

verify any continuum constitutive model for solids phase stresses. They also provide insight

that can aid in developing new models.

For gas–particle flows, there are many codes available, both commercial (Fluent) and open

source (CFDlib, MFIX), that can solve the averaged continuum equations (i.e. both phases

represented as continua). Since the discrete particle model currently available in Fluent con-

siders only the stochastic collisions (O’Rourke and Amsden, 1987), it is therefore limited to

describing dilute systems. Similarly, for granular flows, commercial and open-source codes

are available. However, MFIX provides a single source code having the capability to solve

equations both for the continuum and the discrete descriptions that can be used to simulate

gas–particle systems, as well as, granular flows.

In the next section, the details of DEM simulations are provided in a manner that is

consistent with the MFIX–CDM implementation.

7.2 Theory and Numerical Implementation

In the MFIX–CDM approach, the gas–phase governing equations for both continuity and

mass conservation are similar to traditional gas–phase CFD with additional coupling terms due
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to drag from the solids–phase. The solids–phase is modeled using discrete particles. Below we

provide the list of governing equations along with the numerical implementation including the

coupling procedure.

7.2.1 Gas-phase Computations

The governing equations, implemented in MFIX (Syamlal et al., 1993), for the gas–phase

continuity and momentum conservation in the absence of growth, aggregation, and breakage

phenomena are:
∂(εgρg)

∂t
+ ∇ · (εgρgvg) = 0 ; (7.1)

and
D

Dt
(εgρgvg) = ∇ · Sg + εgρgg −

M∑
m=1

Igm . (7.2)

In the above equation, εg is the gas–phase volume fraction, ρg is the thermodynamic density

of the gas phase, vg is the volume–averaged gas–phase velocity, Igm is the momentum transfer

term between the gas and the mth solid phase, and Sg is the gas–phase stress tensor given by

Sg = −PgI + τg, (7.3)

where Pg is the gas–phase pressure. Also, τg is the gas–phase shear stress tensor,

τg = 2εgµgDg + εgλg∇ · tr(Dg)I, (7.4)

where Dg = 1
2

[
∇vg + (∇vg)T

]
is the strain rate tensor, and µg and λg are the dynamic and

second coefficients of viscosity of the gas phase. Solid phases are differentiated based according

to radii and densities. Therefore, the diameter and density of the mth solid–phase is denoted

by Dm and ρsm, respectively.

7.2.2 Discrete Element Method: DEM

In the DEM approach, mth solid–phase is represented by Nm spherical particles with each

particle having diameter Dm and density ρsm. For a total of M solid phases, the total number of

particles is equal to N =
M∑

m=1
Nm. These N particles are represented in a Lagrangian frame of
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reference at time t by {X(i) (t) ,V(i) (t) , ω(i) (t) , D(i), ρ(i) i = 1, . . . , N}, where X(i) (t) denotes

the ith particle’s position, V(i)(t) and ω(i) denote its linear and angular velocities, D(i) denotes

its diameter, and ρ(i) represents its density. It is implicit that if a particle belongs to mth solid–

phase, then its diameter and density are, respectively, equal to Dm and ρsm (i.e., equal to the

diameter and density of the mth solid–phase). The mass m(i) and moment of inertia I(i) of the

ith particle are equal to ρ(i) πD(i)3

6 and m(i)D(i)2

10 , respectively. The position, linear and angular

velocities of the ith particle evolve according to Newton’s laws as:

dX(i) (t)
dt

= V(i) (t) , (7.5)

m(i) dV
(i) (t)
dt

= m(i)g + F(i∈k,m)
d (t) + F(i)

c (t) , (7.6)

I(i) dω(i) (t)
dt

=
1
2
D(i)η × F(i)

c (t) , (7.7)

(7.8)

where g is the acceleration due to gravity, F(i∈k,m)
d is the total drag force (pressure + viscous)

on the ith particle residing in the kth cell and belonging to the mth solid–phase, F(i)
c is the net

contact force acting as a result of contact with other particles, and η is the outward pointing

normal unit vector along the particle radius. The next two subsections discuss in detail the

calculation of the contact and drag forces.

7.2.2.1 Contact Forces

The advantage of the DEM approach over that of solving the continuum equations for the

solid–phase lies in explicit treatment of particle–particle collisions. For two–phase flows, hard–

sphere (based on the event driven algorithm, first proposed by Allen and Tildesley (1989))

and soft–sphere (based on the spring–dashpot model, first proposed by Cundall and Strack

(1978)) models are the two most commonly used approaches. In the hard–sphere approach,

collisions are binary and instantaneous, whereas the soft–sphere approach imposes no such

restriction since it is possible to have enduring, multi–particle contacts. In the event driven

(hard–sphere) approach, the time step is determined by the minimum collision time between

any one pair of particles — which is directly proportional to the mean free path or inversely
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proportional to the particle volume fraction. Therefore, the hard–sphere approach is most

suitable for dilute systems, since in denser systems the minimum collision time becomes much

smaller than other time scales. Also, in dense regions, momentum transfer occurs more through

enduring contacts (the so called quasi–static regime) than through binary collisions. Even in

gas–particle systems that are nominally dilute, the preferential concentration of particles to

the high strain rate regions of gas flow can result in locally dense regions which require very

small time steps to resolve. The time step in the soft–sphere approach, although small and a

function of the spring stiffness, does not vary with the volume fraction. Although the hard–

sphere approach may be a good alternative in some systems, the soft–sphere approach is more

robust due to the independence of time step size on volume fraction.

Figure 7.1 Schematic of two particles i and j having diameters Di and Dj

in contact. Particles have linear and angular velocities equal to
Vi,Vj and ωi, ωj , respectively. Overlap δij = 0.5(Di +Dj)−D.
ηij is the vector along the line of contact pointing from particle
i to particle j.

Below the soft–sphere collision approach implemented in MFIX–CDM code is detailed.

As shown by the schematic in Fig. 7.1, consider two particles i and j in contact that have

diameters equal to D(i) and D(j) and are located at X(i) and X(j). The particle i is moving

with linear and angular velocities equal to V(i) and ω(i), respectively. Similarly, the particle j
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is moving with linear and angular velocities equal to V(j) and ω(j), respectively. The normal

overlap between the particles is calculated as

δij = 0.5
(
D(i) + D(j)

)
−
∣∣∣X(i) − X(j)

∣∣∣ . (7.9)

The unit vector along the line of contact pointing from particle i to particle j is

ηij =
X(j) − X(i)∣∣X(j) − X(i)

∣∣ , (7.10)

and the relative velocity of the point of contact becomes

Vij = V(i) − V(j) +
1
2

(
D(i)ω(i) + D(j)ω(j)

)
× ηij . (7.11)

Therefore, the normal Vnij and tangential Vtij components of contact velocity, respectively,

are

Vnij = Vij · ηij ηij ≡
(
V(i) − V(j)

)
· ηij ηij , (7.12)

and

Vtij = Vij − Vij · ηij ηij . (7.13)

The tangent to the plane of contact tij is

tij =
Vtij

|Vtij |
. (7.14)

Figure 7.2 Schematic of the spring–dashpot system used to model particle
contact forces in soft–sphere approach.
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In the soft–sphere approach, the overlap between the two particles is represented as a

system of springs and dashpots (Fig. 7.2) in both normal and tangential directions. The

spring causes the rebound off the colliding particles and the dashpot mimics the dissipation of

kinetic energy due to inelastic collisions. The spring stiffness coefficients in the tangential and

normal directions are kt and kn, respectively. Similarly, the dashpot damping coefficients in the

tangential and normal directions are ηt and ηn, respectively. The spring stiffness and dashpot

damping coefficients are essentially a function of the solid–phases the colliding particles belong

to. For example, if the ith particle belongs to the mth solid–phase and the jth particle belongs to

the �th solid–phase, then the spring stiffness coefficients are given by knm
 and ktm
. Similarly,

the dashpot damping coefficients are given by ηnm
 and ηtm
. However, in order to keep the

formulation simple, the subscripts (m, �) are dropped and it is noted that the spring stiffness

and dashpot damping coefficients will depend on the solid–phases the colliding particles belong

to.

The normal and tangential components of the contact force Fij , at time t, are decomposed

into the spring (conservative) force FS
ij and the dashpot (dissipative) force FD

ij as

Fnij (t) = FS
nij (t) + FD

nij (t) , (7.15)

and

Ftij (t) = FS
tij (t) + FD

tij (t) . (7.16)

The dashpot force at any time during the contact is calculated as

FD
ij (t) = FD

nij (t) + FD
tij (t) = −ηnVnij (t) − ηtVtij (t) , (7.17)

For the spring force, at the initiation of the contact, the normal spring force FS
nij is equal to

−knmlδij and the tangential component is zero. Unlike for the dashpot forces, a time history

of the spring forces is maintained once the contact initiates. At any time during the contact,

the normal spring force is given by

FS
nij(t + ∆t) = FS

nij (t) − knVnij∆t, (7.18)
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where ∆t is the time–step size. The tangential component of the spring force also evolves by a

similar expression. For the case of finite Coulomb friction between particles 1, if the following

holds at any time during the contact,

|Ftij | > µ |Fnij | , (7.19)

then the sliding is assumed to occur and the tangential contact force is given by

Ftij = −µ |Fnij | tij . (7.20)

It is important to note that the ith particle in the contact i − j pair experiences a contact

force equal to Fij and the jth particle, according to Newton’s third law of motion, experiences

an equal and opposite contact force (i.e. −Fij). Therefore, the total contact force F(i)
c (t) at

any time on the ith particle is given as

F(i)
c (t) =

N∑
j=1
j 	=i

(
FS

ij (t) + FD
ij (t)
)
, (7.21)

7.2.2.2 Relationship between dashpot coefficients and coefficients of restitu-

tion

For collisions between particles belonging to the mth and �th solid–phases, the normal

dashpot damping coefficient ηnm
 is related to the normal coefficient of restitution enm
 (Silbert

et al., 2001) by

enm
 = exp

(
−

ηnm
 tcol
n,m


2meff

)
, (7.22)

where meff = mmm
/(mm + m
) is the effective mass and tcol
n,m
 is the collision time between

m and � solid phases. It is given by

tcol
n,m
 = π

(
knm


meff
− η2

nm


4m2
eff

)−1/2

. (7.23)

From the above two expressions, ηnml is obtained as

ηnm
 =
2
√

meffknm
 |ln enm
|√
π2 + ln2 enm


, (7.24)

1Like for the spring stiffness and dashpot damping coefficients, the friction coefficient µm� will also depend
on the solid–phases the colliding particles belong to. However, for the sake of clarity, the subscripts are omitted
in favor of just µ.



214

and a similar expression can be written for ηtm
.

The time step ∆t is typically taken to be equal to one by fifty of the minimum collision time

(i.e. ∆t = min(tcol,m
/50)). Specification of spring stiffness coefficients in DEM simulations

is problematic. If values close to the real physical values are chosen, then the time step will

become very small, prohibiting any large–scale study. Therefore a value of normal spring

stiffness coefficient∼ 105, is usually specified. The tangential spring stiffness coefficient is set

equal to two–fifths of the normal stiffness coefficient (i.e., ktml = 2/5kn,∀m, l). The tangential

damping coefficient is generally taken to be half of normal damping coefficient (i.e., ηtml =

0.5ηnml,∀m, l). In gas–particle flows, since the drag force also opposes the particle velocity, a

spring stiffness less than that used in pure granular flows can be utilized.

7.2.2.3 Estimation of gas–solid momentum transfer term Igm

In this section since we are interested in calculating the momentum interaction term Igm

between the gas–phase and mth solid–phase, the discussion is limited to particles belonging to

mth solid–phase.

Consider the ith particle, belonging to the mth solid–phase, that resides in the kth compu-

tational cell at time t. The drag force on this particle is represented as

F(i∈k,m)
d = −∇Pg(X(i)) +

β
(i∈k)
m Vm

εsm

(
vg(X(i)) − V(i)

)
, (7.25)

where Pg(X(i)) and vg(X(i)) are the gas–phase mean pressure Pg and velocity vg fields at the

particle location, Vm = πD3
m

6 is the particle volume, and β
(i∈k)
m is the local gas–solid momentum

transfer coefficient for particle i residing in the kth cell. An explicit functional form of β
(i∈k)
m is

not known theoretically and, therefore, different correlations deduced from experimental and

numerical studies are used to model this term. Nevertheless, a general parametrization for

β
(i∈k)
m that subsumes different models can be written as

β(i∈k)
m = β

(
ρm, Dm,

∣∣∣V(i) − vg(X(i))
∣∣∣ , ρg, µg

)
. (7.26)

The gas–solid momentum transfer term Igm, at xk, that enters the gas–phase momentum
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conservation equation (Eq. 7.2) is computed as

Ik
gm =

1
Vk

Nm∑
i=1

F(i∈k,m)
d K(X(i)

m ,xk), (7.27)

where K(X(i)
m ,xk) is a generic kernel with compact support and determines the influence of

the particle force at X(i)
m on a grid node located at xk, and Vm is the geometric volume of the

kth grid cell.

In MFIX–CDM, there are two methods available to calculate the above drag force. In the

first method, for a particle residing in kth cell, rather than computing mean gas–phase velocity

at the particle location vg(X(i)), a cell–centered value of vg is used. Similarly, rather than

using velocity of each particle V(i), a local cell averaged velocity of the mth solid–phase vsm

is used. With this simplification, the momentum transfer coefficient for all particles of mth

solid–phase that reside in cell k is constant and has the following functional form

β(∀i∈k)
m = β(k)

m = (ρm, Dm, |vsm (xk) − vg (xk)| , ρg, µg) , (7.28)

where xk is the center of the kth cell. Therefore, the drag force on the ith particle belonging

to solid–phase m and residing in cell k is

F(i∈k,m)
d = −∇Pg (xk) +

β
(k)
m Vm

εsm
(vg (xk) − vsm (xk)) . (7.29)

Under this approximation of constant drag force on all particles residing in a particular cell,

the gas–solid momentum transfer term Ik
gm is estimated in the kth cell as

Ik
gm = −εsm∇Pg (xk) + β(k)

m (vg (xk) − vsm (xk)) . (7.30)

In the second method to calculate gas–solid momentum transfer term, the mean gas–

phase velocity is interpolated to the particle location. Using Eq. 7.27, the drag force on each

particle is then projected back onto to the Eulerian gas–phase grid. However, in order to avoid

the complexities in numerical algorithm that will arise as a result of forward and backward

interpolation of the gas–phase pressure field, the pressure drag force term is evaluated at the

cell center (resulting in equal pressure drag force on all particles residing in a particular cell).
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Therefore, the gas–solid momentum transfer term Ik
gm is estimated in kth cell as

Ik
gm = −εsm∇Pg (xk) +

1
Vk

Nm∑
i=1

β
(i∈k)
m Vm

εsm

(
vg(X(i)

m ) − V(i)
m

)
K(X(i)

m ,xk). (7.31)

7.3 Neighbour Search Algorithm

Figure 7.3 2-D Schematic for “cell–linked list” neighbor search algorithm.
Hollow and filled circles represent particles of different radii.

One of the most important and time consuming component of any particle–based sim-

ulations is the neighbor search algorithm. In MFIX–CDM code, the user has an option

to choose between four neighbor search algorithms by specifying an appropriate value for

“DES NEIGHBOR SEARCH” variable in the input file. A value of 1 will use the simplest

but the most expensive “N2” search algorithm, where N is the total number of particles in

the domain. Therefore, it should be used either for a small system or for debugging purposes.

Input Values of 2 and 3 correspond to the “Quadtree” and “Octree” search algorithms. All the

above three methods are grid–free methods. In MFIX–CDM, since the particles are already

binned or marked according to the cell they belong to, therefore, it is in one’s advantage to ex-

ploit this already existing information. The fourth method, referred to as the “Cell–linked list”
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search algorithm and activated by specifying 4 for “DES NEIGHBOR SEARCH”, is based on

this principle. As shown by the 2−D schematic in Fig. 7.3, if the particle of interest is the one

represented by the filled circle, then only the particles (shown as hollow circles) that belong to

the 9 (27 for the 3-D case) adjacent cells and also to the same cell as the particle of interest

are considered as potential neighbors. Any two particles i and j that are located at X(i) and

X(j), and have radii Ri and Rj , are considered neighbors if they satisfy the following condition

∣∣∣X(i) − X(j)
∣∣∣ < K(Ri + Rj), (7.32)

where K is a user input variable by the name “FACTOR RLM” and its default value is equal

to 1.2. If “FACTOR RLM” is specified as one, then only the particles that are either nearly

touching or overlapping will be considered as neighbors. As a result, in order to ensure that

the simulation does not miss any possible collisions, the neighbor search algorithm will have

to be called at each time step, resulting in high computational expense. A very high value

for “FACTOR RLM” is also not advisable because then a particle might end up with more

neighbors than the array sizes can accommodate, resulting in run–time segmentation errors.

Another important parameter is the frequency at which the neighbor search algorithm is

called. In the MFIX–CDM implementation, the neighbor–search algorithm is called every time

the code enters the DES modules from the Eulerian solver (irrelevant for pure granular flow

simulations). Once in the DES modules, the neighbor search algorithm is called after ev-

ery, user input, “NEIGHBOR SEARCH N” number of DES iterations. The default value for

“NEIGHBOR SEARCH N” is equal to 25. Between “NEIGHBOR SEARCH N” DES itera-

tions, if any particle moves by more than “NEIGHBOR SEARCH RAD RATIO” (user input,

default value = 1.0) times its radius, then the neighbor search algorithm is called and the

counter for comparing with “NEIGHBOR SEARCH N” is reset to 0. This second test ensures

that if a high value for “NEIGHBOR SEARCH N” is input, then the simulation doesn’t blow

up due to large particle overlaps.
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7.4 DEM Verification Tests

We wish to perform a series of verification studies for pure granular flows as well as gas–

particle flows. The MFIX–CDM code is extremely complex with the interaction between the

fluid–solver, particle–solver, collision–algorithms, boundaries etc. In addition, the fluid–solver

is on a staggered–grid with scalar quantities solved on the cell centers while the velocities are

computed on the cell faces. With all the above complexities, one can only perform very limited

verification by visually comparing the code segments to the equations being solved. That is

why we are in the process of solving a series of verification tests to probe for the accuracy of

each of the units of this complex model.

7.4.1 Freely Falling Particle

t*

h m
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Figure 7.4 Comparison of the evolution of hmax,k/h0 (ratio of maximum
height attained by a freely falling particle under gravity after k

collisions with wall to the initial height) with non–dimensional

time, t∗ = t/
(
en

√
2h0
g

)
, obtained from DEM simulation (de-

noted DEM) and analytical expression (denoted A) given by
Eq. 7.33, for different values of coefficient of restitution en.

In this test case a particle falling freely under gravity bounces upon collision with the
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bottom wall. If the particle is dropped from an initial height h0, then the maximum height

it reaches after its first collision with the wall is e2
nh0, where en is the coefficient of normal

restitution between the particle and the wall. A general expression for the maximum height

attained by after k collisions is

hmax,k = h0e
2k
n . (7.33)

Fig. 7.4 shows, for different values of en, the comparison of the evolution of hmax,n/h0 with

non–dimensional time, t∗ = t/
(
en

√
2h0
g

)
, obtained from DEM simulation (denoted DEM) and

the above analytical expression (denoted A). It can be seen that the DEM simulation is able

to accurately predict the maximum heights after repeated collisions with the wall.

For any quantity Q, the relative error εQ between the values predicted by DEM simulation

(denoted by {Q}) and analytically expected values (denoted by QA) can be defined as

εQ =
∣∣∣∣QA − {Q}

QA

∣∣∣∣ . (7.34)

From the above definition, the evolution of the relative error εh in the prediction of hmax,k/h0

by DEM simulations for different values of coefficient of restitution is shown by Fig. 7.5. It can

be seen that the maximum error, which is only about 0.1%, results for purely elastic collisions.

For inelastic collisions, the relative error is an order of magnitude less than that for pure elastic

collisions.

7.4.2 Ball Slipping on a Rough Surface

In this second verification problem, a spherical ball with finite translational velocity but

zero angular velocity is left on a rough surface, also shown by the schematic in Fig. 7.6. As a

result of finite slip at the point of contact between the ball and the rough surface, rolling friction

will act in the direction shown in Fig. 7.6. This rolling friction will reduce the translational

velocity and, at the same time, generate an angular velocity until there is zero slip at the point

of contact, i.e. v = ωR. After the zero slip condition is reached, rolling friction will cease to

act and the solid ball keep on moving with fixed translational and angular velocities.

From the force balance shown in the free body digram, the normal contact force Fn =

W = mg, where W and m are, respectively, the weight and mass of the spherical ball, and
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Figure 7.5 Evolution of the relative error εh (Eq. 7.34) in estimation of
hmax,k/h0 by the DEM simulations for different values of coef-
ficient of restitution.

g is the acceleration due to gravity. The tangential contact force Ft, which is the force due

to rolling friction, is equal to µmg. Therefore, the evolution equations for translational and

angular velocities become
dvx

dt
= −µg, (7.35)

and
dω

dt
=

µmgR

I
, (7.36)

where I = 2/5mR2 is the moment of inertia of the spherical ball. The above equations can be

intergrated with the initial conditions {vx, ω}t=0 = {v0, 0}, where v0 is the initial translational

velocity of the ball. Since the evolution equations for vx and ω are known, the time ts at which

slipping ends (i.e. vx = ωR), or rolling friction ceases to act, can be calculated analytically.

This time ts is

ts =
2v0

7µg
. (7.37)

The non–dimensional translational and angular velocities at ts are

{
v′x, ω

′}
t=ts

=
{

vx

v0
,
ωR

v0

}
t=ts

=
{

5
7
,
5
7

}
(7.38)
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Figure 7.6 Schematic of the second verfication problem. A spherical ball
with finite translational velocity and zero angular velocity is
placed on a rough surface. Forces acting on the ball is shown
by the free body diagram on the right.

Fig. 7.7 shows the comparison of t′ = µgts/v0 (left axis), and {v′x, ω′}t=ts
(right axis) obtained

from DEM simulation with the analytic values for different values of coefficient of friction. The

relative error, not shown, is always less than 0.1%.

7.5 Future Work

In addition to the two verification tests discussed above, a thorough validation of the

MFIX–CDM code is underway. Followig validation and verification tests are planned as the

future work:

• Elastic particle bouncing of the wall centers at 45 ◦ in a square enclosure with no gravity

• Two elastic particles bouncing of each other an the walls in the center of a square enclo-

sure with no gravity

• Inelastic particle bouncing of the bottom wall under gravity

• Frictional particle sliding on bottom wall under gravity with initial velocity

• Particle motion in one dimension with all the DEM forces (Chen et al., 2007).

• Particle motion in vortex flow

• Particle motion in fluid flow at an angle
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Figure 7.7 Comparison of t′ = µgts
v0

(left axis), and {v′x, ω′}t=ts
(right axis)

obtained from DEM simulation with the expected values for
different values of coefficient of friction.

• Particles in sphere stretching/unstretching flow

All the above tests will be subjected to the following computational tests to ensure sanity

• Invariance to coordinate changes

• Grid convergence

A fully verified/validated MFIX–CDM code will then be applied to typical validation cases

such as bubbling bed with a jet, granular discharge of particles with and without gas.
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CHAPTER 8. DISCUSSION AND CONCLUSIONS

The principal objective of improving the predictive capabilities of two–phase simulations

that solve for averaged equations, such as LE, EE, and QMOM, has been achieved by im-

proving the accuracy of the fluid–particle interaction term. The accuracy of the fluid–particle

interaction term has been improved on two fronts. First, the accuracy has been improved

by proposing new correlations for the fluid–particle interaction terms, such as interphase mo-

mentum transfer (in the form of a drag law for monodisperse particles), and interphase heat

and mass transfer (in the form of a Nusselt/Sherwood number law for monodisperse particles)

using the ‘true’ DNS approach. Second, the numerical accuracy of estimating fluid–particle

interaction term is investigated and then improved in LE simulations. Special emphasis has

been laid on LE simulations as they are a useful tool in the verification and development of

other modeling and numerically wise intensive simulation types, such as EE and QMOM. The

contributions, conclusions and implications of each sub–study are discussed below in separate

sections.

8.1 Conclusions from modeling study of fluid–particle interaction term

A ‘true’ DNS approach based on the discrete time immersed boundary method, first pro-

posed by Yusof (1996), is extended to solve for flow and scalar transport past homogeneous

assemblies of fixed particles. Some of the major contributions, conclusions, and implications

of this study are:

1. IBM was successfully extended to solve for flow past homogeneous assemblies of particles.

An important correction to the original immersed boundary scheme proposed by Yusof

(1996) is made to ensure non–contamination of fluid velocity, pressure, and scalar fields
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by IB forcing.

2. A theoretical connection of quantities computed from DNS was made with the unclosed

terms appearing in the averaged equations resulting from both Eulerian and Lagrangian

statistical representations of the solid–phase.

3. A first of its kind comprehensive numerical convergence study was performed for ‘true’

DNS of gas–solids flow that highlights the need for high numerical resolutions with in-

creasing Reynolds number of solid volume fraction.

4. Hydrodynamic IBM solver was extensively validated by comparing with the past analyt-

ical, experimental, and numerical studies. IBM is shown to be a robust tool for ‘true’

DNS of gas–solids flow for arbitrary values of solid volume fraction and Reynolds num-

ber, provided the stability criteria are met. Furthermore, it is shown that IBM does not

suffer from the limitations of LBM, which is a another ‘true’ DNS approach used in the

past for proposing drag laws for homogeneous assemblies of monodisperse and bidisperse

particles.

5. The hydrodynamic solver was successfully extended to solve for scalar and heat transport

past homogeneous assemblies of monodisperse particles. This is the first of its kind DNS

study of scalar and heat transport in gas–solids flow.

6. The average Nusselt number obtained from scalar IBM simulations is found to be in rea-

sonable agreement with the experimental findings of Gunn and Desouza (1974) and Pfef-

fer and Happel (1964) in the Stokes flow regime, and with the experimental findings

of Turner and Otten (1973), and Denton (1951) for low to high Reynolds numbers

(Re < 300).

7. The average Nusselt in the Stokes regime, however, is found to be in major disagreement

with the widely used, semi–analytical, heat and mass transfer correlation of Gunn (Gunn,

1978), with difference as high as 300% for the highest solid volume fraction of 0.5 con-

sidered in this study. Such high differences between scalar IBM results and Gunn’s
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correlation is primarily attributed to the neglect of axial diffusion in the Stokes flow

regime by Gunn.

8. A new heat and mass transfer correlation as function of solid volume fraction and

Reynolds number is proposed for a particular Prandtl/Sherwood number value of 0.7.

The new correlation is recommended to be used in averaged equation solvers (such as

LE, EE, and QMOM) for studies related to heat and mass transfer in fixed and fluidized

gas–solids flows.

9. A three–step “random configurations initialization” algorithm has been developed for

initializing random arrays up to very dense solid volume fractions (≈ 0.52). The three–

step algorithm has the additional ability to generate random arrays having the same

volume fraction and number density, but differing in hard–core distance hc (defined as

the minimum distance between the centers of any two particles). It is shown that much

higher values for hard–core distance are accessible through the three–step algorithm than

those possible from stochastic methods, such as the Matèrn point–process (Stoyan and

Stoyan, 1995). The three–step algorithm is a useful tool to study the effects of inter–

particle distance on mean quantities, such as the drag and average Nusselt number.

It is worthwhile to note that the implications of accurate closures/models for fluid–particle

interaction terms are not limited to just the averaged equation solvers, such LE, EE, and

QMOM. The implications of this study apply to any two–phase flow simulation types that

rely on closures for the fluid–particle interaction terms. These include simulations of averaged

equations (LE, EE, and QMOM) and also the simulations of instantaneous equations (point–

particle DNS, LES).

As a matter of fact, availability of ‘true’ DNS data will greatly aid in the development

of LES simulation method for two–phase flows. This is because the filtering operation for

two–phase flows, just like the averaging procedure, results in additional residual terms for

different source terms, such as, interphase momentum transfer or energy transfer, which are

generally referred to as subgrid source terms (in order to differentiate them from subgrid
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terms, generally used in the context of single–phase flows). In LES of two–phase flows, the

subgrid source terms have traditionally been neglected. For example, Wang and Squires (1996);

Uijtewaal and Oliemans (1996) did not consider the two–way coupling and subgrid effects in

source terms. Boivin et al. (2000); Yamomoto et al. (2001) considered the two–way coupling but

the subgrid effects in source terms were not accounted for. From the fully resolved fields (for

both flow and scalar) obtained from ‘true’ DNS, very accurate models for the subgrid source

terms can now be proposed. This is similar to the approach adopted in development of reliable

LES methods in single–phase flows, where well established models for subgrid terms have been

obtained from accurate DNS of isotropic turbulence (Kraichnan, 1976; Chasnov, 1991) and

fully developed turbulent channel flows (Moin and Kim, 1982; Piomelli, 1993). In the absence

of ‘true’ DNS, point–particle DNS (‘pp’ DNS) has been used in the past to develop models

for the subgrid source terms (Okong’o and Bellan, 2004). However, the assumption of point–

particles in ‘pp’ DNS precludes boundary layer effects, and, as a result, increased dissipation

around particles that is essential for accurately quantifying turbulence attenuation by the

particles (Hwang and Eaton, 2006) is not captured in ‘pp’ DNS. The ‘true’ DNS approach, on

the other hand, being a first–principles approach does not suffer from the same limitations,

and it will greatly contribute to the future development of accurate models for subgrid terms

needed for quantitatively accurate LES of two–phase flows.

8.2 Conclusions from study of numerical accuracy and convergence

characteristics of LE simulations

Among all the simulations types for averaged equations in two–phase flows, LE simulations

are modeling wise the least restrictive on the range of physical regimes that they can legiti-

mately represent. This is because, only fluid–particle interactions, in the form of interphase

momentum transfer and interphase heat and mass transfer terms, need to be modeled in LE

simulations. On the other hand, in EE simulations, in addition to the fluid–particle interaction

term, modeling of particle–particle interaction term is also required. Therefore, LE simulations

are typically used to test the various models for particle–particle interaction term by compar-
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ing results from LE and EE simulations. Furthermore, LE simulations are generally used as a

benchmark tool in the development of new simulation techniques for two–phase flows, such as

the recent quadrature method of moments (QMOM) proposed by Fox (2008). Therefore, the

need for accurate LE simulations that can reliably be used for quantitative comparisons with

other simulation types cannot be over emphasized.

Accurate numerical estimation of the interphase transfer terms from finite number of par-

ticle used to represent the dispersed phase in LE simulations is most crucial for accurate LE

simulations. With regard to the numerical accuracy of LE simulations, some of the major

contributions, conclusions, and implications of this study are:

1. An error model, originally proposed by Xu and Pope (1999), is extended to estimation

of mean interphase momentum transfer term in LE simulations. The error model de-

composes the error in estimating mean momentum transfer term as the sum total of

statistical, bias, and discretization errors. The error model is used to characterize the

convergence properties of four interpolation schemes for mean interphase momentum

transfer term used in LE simulations in a series of static test problems. We observe that

accurate estimation of the mean interphase momentum transfer term using certain inter-

polation schemes requires very high numerical resolution: on the order of 100 particles

per Eulerian grid cell and 100 independent realizations. This motivated the development

of more accurate estimator, termed as improved estimator, that results in more accu-

rate estimates of the mean interphase momentum transfer term than the conventional

estimator, and these estimates also converge at a faster rate.

2. It is shown through a simulation of two–way coupled particle–laden lid–driven cavity flow

that traditional LE simulations, that use real or computational particles with constant

statistical weight, fail to yield numerically converged solutions when solved on progres-

sively refined grids. We propose an improved LE simulation (ILE) method that remedies

the above limitation of TLE simulations. In the ILE method, the statistical weights are

evolved such that the same physical problem is simulated, but the number density of

computational particles is maintained near–uniform throughout the simulation, resulting
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in statistical error that remains nearly constant with grid refinement. The evolution of

statistical weights is rigorously justified by deriving the consistency conditions arising

from the requirement that the resulting computational ensemble correspond to a statisti-

cal description of the same physical problem with real particles. It is concluded that the

combination of ILE with the improved estimator will yield numerically convergent and

accurate results for two–phase flows that can reliably be used for quantitative comparison

with other simulations types and with experiments as well.

It is worth noting that although the above work has been motivated around LE simulations,

but the above conclusions apply equally well to any particle based two–phase simulation tech-

niques. For example, DNS and LES of two–phase flows that employ point source representation

for the dispersed phase. In single–phase flows, Large–Eddy simulations (LES) have proved to

be a useful and reliable alternative to DNS simulations. Since the smallest scales are not re-

solved in LES simulations, the computational cost requirement is significantly reduced. The

filtering operation in LES methodology results in residual terms accounting for the unresolved

small scale terms. These residual terms are accounted in LES simulations through various

subgrid models available in the literature. They find that all the subgrid models overestimate

the corresponding DNS filtered data, and also observe a complex dependence of prospective

models on the filter width. Developing accurate subgrid models for various source terms in

two–phase flows is an active area of research.

In addition to the accurate closures for fluid–particle interactions, accurate closures are

required for particle–particle interactions in EE simulations. In the next section, there is a

brief discussion on the closures for particle–particle interaction term used in EE simulations and

the resulting restrictions on physical systems that the current EE simulations can legitimately

solve for. The recent QMOM simulation technique, being developed by Dr. Rodney Fox and

his students in chemical engineering at Iowa state university, that relaxes the limitations posed

by KTGF closures is also discussed. The numerically converged and accurate ILE simulation

method developed in this work is used as a benchmark in the comparison of EE and QMOM

simulations.
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8.3 Implications of KTGF closures for particle–particle interaction term

in EE simulations

The closures or constitutive relations for the particle–particle interactions required in EE

simulations have been obtained by studying particle dynamics in the absence of gas phase,

resulting in the so called granular flows. For dilute to moderately dense flows, closures for

particle–particle interactions are obtained from the extension of classical kinetic theory for

molecular gases (Chapman and Cowling, 1953) to granular gases (i.e., KTGF). Since its incep-

tion by Savage and Jeffrey (1981), KTGF over the last three decades has undergone tremendous

theoretical improvements that we choose not to dwell on in this brief overview. However, some

inherent assumptions made in KTGF limits it to physical systems that it can correctly describe.

Some of the limitations in the context of two–phase flows are discussed below.

KTGF assumes binary and instantaneous collisions, therefore, it can only describe the

transport in collision dominated or rapid flow regimes. For dense systems, also referred to as

plastic flow regime, the dominant momentum transport between particles is due to enduring

contacts. Therefore, in the plastic regime, the particle–particle interaction term is closed by

adopting theories from the study of soil mechanics (Tuzun et al., 1982; Jackson, 1983), where

the stresses in the particle phase are assumed to arise because of particle friction, and are

described by phenomenological models rather than mechanistic models as in the case of rapid

flow regime described using KTGF.

On the other extreme of the plastic regime is the case of very dilute flows where again

the KTGF closures are not suitable due to the strong assumption of collision–dominated

flows (which are further assumed to be nearly at equilibrium, resulting in the assumption

of Maxwellian particle velocity distribution) made in KTGF. The assumptions of collision–

dominated flows along with small departure from equilibrium limits the applicability of KTGF

closures to low Knudsen (Kn < 0.1) numbers. For high Knudsen number systems (very dilute

systems or high Mach number systems), where rarefaction effects are not negligible, it is now

known that the particle velocity distribution is not Maxwellian (see Campbell (1990) and the

references therein). Although KTGF studies (Garzó and Dufty, 2002; Iddir et al., 2005; Garzo
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et al., 2007b) that assume non–Maxwellian velocity distribution have been completed recently,

the theory is still far from being successfully applied to arbitrary values of Knudsen number.

As a result of the above assumptions, KTGF closures when applied to high Knudsen number

systems will lead to erroneous predictions of the physical phenomena.

Since the KTGF closures are obtained for granular flows, only conservative body forces,

such as the gravity force, are assumed to act on the particles. However, the presence of a

carrier fluid in two–phase flows introduces additional and more complicated physics, the most

important of them being the non–conservative drag force that acts on the particles. In two–

phase flows, the Stokes number St, defined as the ratio of particle response time to fluid–phase

characteristic time scale, is an important parameter. For very low Stokes numbers (St � 1),

particles follow the fluid streamlines very closely. However, for high Stokes number flows,

it is commonly observed that particles preferentially concentrate (Squires and Eaton, 1991)

in high–strain regions of the carrier phase flow field. Recently, using an impinging particle

jets problem, Desjardins et al. (2008) showed that EE models, relying on KTGF closures, are

unable to correctly capture the so called particle trajectory crossing phenomena, wherein a

particle can readily cross the plane without the risk of collisions with other particles. Since

KTGF closures do not include Stokes number effects, any existing particle–particle interaction

model will not be able to capture particle trajectory crossing effects.

Due to severe restrictions posed by using KTGF closures, Fox (2008) proposes solving

the discrete form of the kinetic equation through the use of quadrature method of moments

(QMOM). QMOM is a first–principles approach to solving the kinetic equation for arbitrary

Knudsen number (including the Euler limit), and hence removes the limitation on very small

range of Knudsen number that can be legitimately solved using KTGF closures. In additional

to the relaxation on Knudsen number range, QMOM does not assume any base state (like the

assumption of homogeneous cooling state in KTGF studies, implying a Maxwellian velocity

distribution) and, therefore, in principle, it is capable of capturing any velocity distributions.

Since the method is developed in the context of two–phase flows, non–conservative body forces,

such as the drag force (versus only the conservative gravity force assumed in KTGF), is assumed
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to act on the particles. The effect of the drag force is directly accounted for in the evolution

equation of one particle distribution function (i.e., the kinetic equation) itself. As a result,

opposed to the KTGF based simulations (like EE), QMOM is naturally capable of capturing

the additional physics commonly observed in multi–phase flows due to finite Stokes number

effects (such as particle clustering and particle trajectory crossings). A quadrature–based

third–order moment closure is derived by Fox (2008) which is applicable to gas–particle flows

at any Knudsen number. Currently, the method is limited to Boltzmann like kinetic equation 1,

thus, limiting it to dilute volume fractions. By considering an Enskog like kinetic equation,

although numerically challenging, the method can in principle be extended to moderately dense

volume fractions.

From the one–way coupled test problems, used as proof of concept in Fox (2008), the

method has been successfully extended to two–way coupled particle–laden flows in Passalac-

qua et al. (2009). In Passalacqua et al. (2009), as an example application, simulations of a

two-way coupled particle-laden vertical channel ow are carried out. For particle Stokes number

nearly equal to one, instabilities leading to the formation of structures and initiating particle

segregation process are observed from QMOM simulations. Using the ILE simulation method

developed in this work, LE simulation of the same system also predict the formation of similar

structures. However, EE simulations, relying on KTGF closures, are unable to predict forma-

tion of such structures. This is attributed to the locally high Knudsen numbers observed in

this flow which are well beyond the rather small range of Knudsen number (Kn < 0.1) where

KTGF closures are valid.

The comparison of the modeling requirements and computational cost between LE and

EE simulation approaches results in a paradox wherein the modeling wise less intensive LE

approach is computationally prohibitive to solve device–scale problems, and, on the other

hand, computationally viable EE approach requires extra modeling (which severely limits its

applicability to all values of solid volume fraction, Knudsen and Stokes numbers) to describe

particle–particle interaction term Ipp. QMOM, on successful extension to dense flows, will

1A closed form for the collision term is assumed using the Bhatnagar–Gross–Krook (BGK) approxima-
tion (Bhatnagar et al., 1954).
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prove to be an excellent mean to simulate two–phase flows as it is computationally as viable

as the EE approach to solve device–scale problems, has fewer modeling assumptions for the

particle–particle interaction term than in EE approach, and does not suffer from statistical

errors as does the LE approach.
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APPENDIX A. RANDOM CONFIGURATIONS INITIALIZATION

For low volume fractions, a random configuration can be easily generated by releasing the

particles (originally seeded in a lattice arrangement) with a Gaussian velocity distribution and

letting them collide elastically. For low volume fractions, a hard–sphere (Allen and Tildesley,

1989) can be used to collide the particles. Theoretically, using the FCC lattice arrangement,

close packing limit of the random arrays can be accessed. However, the box length to particle

diameter L/D in our simulations is as small as 4 and the maximum value considered is 10.

Therefore, for such relatively small systems, due to the deletion of particles at the edges, it

is difficult to fit in all the particles inside the box. In order to avoid this difficulty, we use a

three–step procedure to generate random particle configurations in our study.

In our study, for a given volume fraction, we are interested in studying the effect of inter–

particle distance on drag force and Nusselt number. The inter–particle distance is best quan-

tified by the hard–core distance hc which is the minimum distance between the centers of

any two particles in a suspension. For dilute volume fractions, Matèrn point–process (Stoyan

and Stoyan, 1995) is a convenient mean of generating random distributions with a specified

hard–core distance. The maximum hard–core distance possible with Matèrn point–process is

hMat
c,max =

D

2
εs

−1/3. (A.1)

For volume fractions equal to 0.01 and 0.1, the above expression yields maximum hard–core

distances of 2.32 and 1.077, respectively. However, we are interested in even higher values of

hard–core distances than those poissible by Matèrn point–process. The three–step algorithm

is able to generate configurations with even higher hard–core distances as described below.

In order to generate distributions with different hard–core distances, the three–step algo-
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rithm described below starts with an increased diameter D̂ given as

D̂ = D

[
1 +

hm

Dm
+

X

100

]
, (A.2)

where D is the actual desired particle diameter, hm is the minimum number of grid cells

between the surfaces of any two particles, and Dm = D/∆x is the number of grid cells across

a particle diamter. Since we use the soft–sphere collision model, although small but there will

be positive overlaps between the particles. In order to ensure non–overlapping particles for the

case of hm = 0, a safety factor of X% has been added to the above expression for D̂. If the

spring stifness parameters are appropriately chosen in the soft–sphere model, then overlaps are

typically below 1%. Therefore, we have used a safety factor of 1% (i.e., X = 1) for generating

all random distributions in our study. The final particle configuration has a hard–core distance

hc = D̂ and different hard–core distances can be achieved by varying the value of minimum

separation between the particle surfaces hm. In order to ensure that the number of particles

initialized remain the same as those implied by the desired diamter D and volume fraction εs,

the volume fraction corresponding to D̂ is also increased by

ε̂s = εs

(
D̂

D

)3

= εs

(
1 +

hm

Dm
+

X

100

)3

. (A.3)

At the end of step 3 of the below algorithm, diameter of the particles is reverted back to the

desired diamter D by using the above expression (Eq. A.2).

With the help of a representative case of L/D = 8 (such that D=1), εs = 0.4, and hm = 0,

each step of the initialization algorithm is outlined below for:

1. Lattice arrangement : In the first step, the particles are arranged in a simple cubic lattice

arrangement such that they are well inside the box dimensions in the xz− plane. In

the y− direction, however, the particles are allowed to extend beyond the box size Ly.

The minimum and maximum value of the particle centers in the y− direction is calcu-

lated as Ymin and Ymax. Fig. A.1(a) shows the particle configuration obtained for the

representative case.

2. Shrinkage and mapping : If Ymax − Ymin > Ly − D̂ (as is clearly evident from Fig. A.1(a)

for the representative case), that implies an overflow from the above lattice arrangement
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procedure, otherwise the procedure advances to step 3. In order to bring in all the

particles within Ly length, particles are squeezed in from both the top and bottom. This

is achieved by applying a symmetric, exponenetially decaying gravity force as

Fshrink = mgŶ′
p

[
1 − exp

(
−4Y ′

p
2
/L′

y
2
)]

, (A.4)

where Y′
p = Yp − L′

y/2, such that Yp is the y− co-ordinate of the particle center,

Ŷ′
p = Y′

p/Y ′
p is the unit vector, and L′

y = Ymax +0.5 D̂ is the y− length of the extended

box from step 1. Particles are released with a Gaussian velocity distribution and a

soft–sphere (Cundall and Strack, 1978) model is used to model the collisions between

the particles. The above symmetric gravity force pushes the particles in from both

directions. So that the particles at the outer edges along the y− direction do not drift even

further away on colliding with the neighboring particles, a very low value of coefficient of

restitution (such as 0.2) is used in this step. The above procedure is peformed for some

arbitrary stop time tstop1 = 20
√

2L′
y/g. If the condition Ymax−Ymin < Ly−D̂ is achieved

within this time, then the procedure advances to step 3 outlined below. However, if this

condition is not met, then the particles are reinitialized with a new Gaussian velocity

distribution and this step is repeated until all the particles fall within length Ly in the

y− direction . At the end of this step, particle center positions in y− direction are

linearly mapped from (0,L′
y) to (0,Ly). Fig. A.1(b) shows the partice configuration after

shrinking and mapping.

3. Homogeneous particle distributions: We are interested in homogeneous particle position

distributions. For low volume fractions, lattice seeding will suffice and step 2 will not

be needed. For dense systems, step 2 will generate a particle position distribution with

strong spatial behavior in y− direction. Therefore, regardless of step 2 being called or

not, particle position distribution at the beginning of this step is not homegeneous. In

order to generate a homogeneous distribution, the particles are released with a Gaussian

velocity distribution (with variance σ2) such that they collide (using soft–sphere model)

elastically. This procedure is carried out for a stopping time tstop2, based on the mean
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free path and particle velocity variance, equal to

tstop2 = 10
λmfp

σ
, (A.5)

where λmfp = (V/Ns)
1/3 is the mean free path based on the number density. Fig. A.1(c)

shows the particle position configuration for the representative case obtained after elas-

tically colliding the particles for tstop2. At this point, the diameter of the particles is

reverted back to the desired diamter D by using expression (Eq. A.2) so that we get the

desired volume fraction εs and hard–core distance hc.

The above procedure guarantees truly random and homogeneous particle position distribu-

tions. With the above shrinking technique in step 2, we are able to shrink solid volume fractions

in the range 0.5 − 0.55. Therefore if the maximum volume fraction that can be shrinked is

εs,max, then the maximum hard–core distance (from Eq. A.3 and noting that hc = D̂) that we

can generate for a given volume fraction εs is

hc,max = D

(
εs,max

εs

)1/3

. (A.6)

Comparing the above expression with the maximum possible hard–core distance by Matèrn

process hMat
c,max (Eq. A.1), reveals that hc,max = 2ε

1/3
s,maxhMat

c,max. If εs,max = 0.53, then for desired

volume fractions εs equal to 0.01 and 0.1, the maximum possible hard–core distances hc,max are

equal to 3.75D and 1.74D, which are nearly 1.5 times then those possible by the Matèrn point–

process. With the use of more sophisticated shrinking techniques (like the one implemented

in LAMMPS (Plimpton, 1995)), it is possible to shrink volume fractions even upto the close

packing limit; thus, allowing for even higher hard–core distances than those possible by the

current algorithm.

For homogeneous suspensions, partice pair–correlation function g(r) is a good measure of

the suspensions’ micro–state and it should peak at the hard–core distance hc. Fig. A.2(a) shows

the particle pair–correlation function (obtained by averaging over 100 independent realizations)

for different values of minimum grid cells between particle surfaces hm for solid volume fraction

εs equal to 0.01, particle diameter resolution Dm = 10, and box–length to particle diamter ratio

L/D = 15. Fig. A.2(b) shows the same comparison for εs = 0.1, Dm = 20, and L/D = 7.5. In
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both the figures it can be seen that the above three–step algorithm results in pair correlation

functions that are typical of the homogeneous suspensions, i.e., peaking close to the hard–

core (given by Eq. A.2 for different values of hm) distances and then dying off. Therefore, the

above three–step algorithm provides a robust way of generating random particle configurations

and also allows for studying the second–order effects due to different particle pair–correlation

functions over a wider range of hard–core distances than those possible by Matèrn point–

process.

Volume fractions higher than 0.53 can be generated using Zinchenko’s (Zinchenko, 1994)

algorithm. In our study, since the maximum volume fraction considered is 0.5, the above

three–step algorithm is used to generate all the random configurations.
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Figure A.1 Particle position configurations obtained for the representative
case (L/D = 8, D = 1, εs = 0.4) after (a) lattice distribution
(step 1), (b) shrinkage and mapping (step 2), and (c) elastic
collisions (step 3).
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Figure A.2 Pair correlation function g(r) for different values of hm (mini-
mum grid cells between particle surfaces) obtained by averaging
over 100 multiple realizations. In (a) εs = 0.01, Dm = 10, and
L/D = 15, and in (b) εs = 0.1, Dm = 20, and L/D = 7.5. A
safety factor of 1% (i.e., X = 1 in Eq. A.2) has been used.
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APPENDIX B. DETAILS OF INTERPOLATION SCHEMES

For the simplest PIC method Crowe (1982), the estimate for mean interphase momentum

transfer term at grid node m enclosing volume Vm is given by

{
Ffp

m

}
=

1
Vm

Nv∑
k=1

fknk
p, (B.1)

where Nv is the number of particles contained in volume Vm, and nk
p is the number of physical

particles represented by the kth computational particle.

In order to avoid complicated expressions arising form expressing the interpolation schemes

in 3-D, only 1-D formulations are given with the reference to 1-D grid shown in Fig. B.1. These

expressions can be readily extended to three dimensions. In B.1, m is the grid point index and

c is the grid cell index.

m 1 2 3 4 5 6 7 8 9 10

c 1 2 3 4 5 6 7 8 9

Figure B.1 1-D grid showing grid nodes and cells.

LPI-2, LPI-4 and PCA can be expressed in a very general way for both forward interpolation

and backward estimation. The formulation for TSE is slightly different and will be discussed

separately. Fluid velocity
{
Uf (Xk)

}
M

at the kth particle’s location, which belongs to cth
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cell, is given by the summation of product of fluid velocities at grid nodes Uf (xm) and basis

functions bx
l or {

Uf (Xk)
}

M
=

c+O/2∑
m=c−O/2+1

Uf (xm)bx
l (ξk

l ), (B.2)

where O is the order of the scheme which is two for LPI-2 and four for both LPI-4 and

PCA, l = m − c + O/2, and ξk
l is the elemental coordinate that is defined for each scheme in

the following subsections. The convention followed in the above equation numbers the basis

functions from left to right. For example, if a particle is located in 5th cell (i.e. c = 5), then

the fourth order LPI-4 interpolation scheme will yield four non–zero basis functions b1 through

b4, and the fluid velocity at particle location will have contributions from grid nodes 4 through

7 or m = 4, 7 in the above summation. Based on the convention followed, the basis function

that adds the contribution of fluid velocity at 4th grid node is numbered 1 while the one for

7th grid node is numbered 4.

Similarly, a general expression for the mean interphase momentum transfer term
{

F fp
x,m

}
at mth grid node is given by

{
F fp

x,m

}
=

1
Vm

m+O/2−1∑
c=m−O/2

Nc∑
k=1

fk
xnk

pb
x
l (ξk

l ), (B.3)

where N c is the number of computational particles in cth cell, and all the other quantities

have the same meaning as before. To clarify the above equation, consider the case of a fourth

ordered scheme. From B.1, the estimate for
{

F fp
7,x

}
will include the contribution from particles

located in cells 5, 6, 7 and 8. The above method for estimating the mean interphase momentum

transfer has been widely used in simulation of particle–laden flows. For example, Boivin et al.

(1998) uses the second order linear interpolation (LPI-2), and Sundaram and Collins (1996)

uses the fourth order Lagrange polynomial interpolation (LPI-4) scheme.

The next three subsections that follow defines the basis functions for LPI-4, LPI-2, and

PCA. In addition, the last subsection completely describes the two stage estimation (TSE)

algorithm which so far has not been explained.
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B.1 Linear Interpolation (LPI-2)

LPI-2 is a second–order scheme. For a point x that lies in the interval [xm, xm+1], it has

two linear basis functions

bx
1 = 1 − ξ

bx
2 = ξ, (B.4)

where ξ is the elemental coordinate defined as

ξ = ξ1 = ξ2 =
x − xm

xm+1 − xm
. (B.5)

B.2 Lagrange Polynomial Interpolation (LPI)

LPI-4 is a fourth–order scheme and has four cubic polynomials as basis functions. For a

point x lying in the interval [xm, xm+1] on a structured grid with constant grid spacing, the

four basis functions are

bx
1 = −1

6
(ξ)(ξ − 1)(ξ − 2)

bx
2 =

1
2
(ξ − 1)(ξ + 1)(ξ − 2)

bx
3 = −1

2
(ξ)(ξ + 1)(ξ − 2)

bx
4 =

1
6
(ξ)(ξ + 1)(ξ − 1), (B.6)

where ξ is the elemental coordinate defined as

ξ = ξ1 = ξ2 = ξ3 = ξ4 =
x − xm

xm+1 − xm
. (B.7)

These basis functions are nonzero over the entire interpolation stencil that spans the interval

[xm−1, xm+2]. They are shown in Fig. 5.2(a).

B.3 Piecewise Cubic Approximation (PCA)

PCA is a fourth–order scheme and has four piecewise cubic polynomials as basis functions.

For a point x lying in the interval [xm, xm+1] on a structured grid with constant grid spacing,



243

the four basis functions are

bx
1 =

1
6
(2 + ξ1)3 ξ1 =

xm−1 − x

h
for − 2 ≤ ξ1 < −1

bx
2 =

1
6
(−3ξ3

2 − 6ξ2
2 + 4) ξ2 =

xm − x

h
for − 1 ≤ ξ2 < 0

bx
3 =

1
6
(3ξ3

3 − 6ξ2
3 + 4) ξ3 =

xm+1 − x

h
for 0 ≤ ξ3 < 1

bx
4 =

1
6
(2 − ξ4)3 ξ4 =

xm+2 − x

h
for 1 ≤ ξ4 ≤ 2, (B.8)

where ξ1, ξ2, ξ3, ξ4 are the elemental coordinates defined distinctively for each basis function.

It is to be noted that unlike in LPI-4, the basis functions for PCA are defined only piecewiese.

Fig. 5.2(b) shows these basis functions which are nonzero in the interval [xm, xm+1].

B.4 Two Stage Estimation Algorithm

The TSE algorithm constructs a piecewise–polynomial approximation φ̃(x) to a mean field

〈φ(x)〉 from particle data φl given at locations X l. It was originally developed by Dreeben

and Pope (1992) for application to PDF methods, and has the advantage of working with

unstructured grids also. It is being reproduced here for completeness. In this algorithm, the

first stage constructs estimates at knots (center–of–mass locations of the particle data) using

top-hat or linear basis functions (LPI-2). These first–stage estimates are then used as weighted

data for the second stage in which a local least–squares algorithm is implemented to fit a linear

or quadratic polynomial. The details for each stage are given in the next two subsections.

B.4.0.1 Stage 1

The following quantities are defined in the first stage: The weight of the particles which

support the mth grid node,

w(xm) =
m∑

c = m−1

Nc∑
l=1

µlbx
m−c+1; (B.9)

the center of mass of particles which support the mth grid node,

X̄(xm) =

m∑
c = m−1

Nc∑
l=1

X lµlbx
m−c+1

w(xm)
; (B.10)
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and finally the estimate of the particle property at the center of mass,

φ̄(xm) =

m∑
c = m−1

Nc∑
l=1

φlµlbx
m−c+1

w(xm)
, (B.11)

where φl is called the particle property data. For mean interphase momentum transfer term

estimation in x− direction, the expression for φl is

φl = f l
xn(xc, t),

where fx is the particle force, and n(xc, t) is the particle number density at the center of the

cth cell and it is computed as

n(xc, t) =
1
Vc

Nc∑
l=1

nl. (B.12)

B.4.0.2 Stage 2

In stage 2, a local least–squares algorithm is implemented to calculate an approximation

to the mean field that minimizes error with respect to the knot estimates. The output from

the first stage, (X̄(xm), φ̄(xm)) along with the weights wm forms the input for this stage. The

objective of the local least–squares method is to provide an estimate for the mean field at the

Eulerian grid node xm by fitting a polynomial to data which lies within a neighborhood of xm,

the size of which is characterized by bandwidth, W . For each estimate, the data is weighted

with a kernel Q, where

Q(u) ≡(1 − u2)2 |u| ≤ 1

0 otherwise.

If xp is an Eulerian grid node, then φ̃(xp) is a polynomial estimate for the underlying function

in a neighborhood of xm which minimizes the expression

∑
m

Q

(
X̄(xm) − xp

W

)
w(xm)

[
φ̃(xp) − φ̄(xm)

]
. (B.13)

The linear two stage algorithm is implemented by fitting a first order polynomial to the points

(X̄(xm), φ̄(xm)) in a neighborhood within a distance W centered at the grid node xp. We take
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a function of the form

φ̃(x) = ã + b̃(x − xp),

where ã and b̃ are unknown constants to be determined. If

X̂mp = X̄(xm) − xp (B.14)

Q̂mp = w(xm) Q

(
X̂mp

W

)
, (B.15)

then the constants ã and b̃ which minimize Eq. B.13 are determined by solving the matrix

equation  ∑m Q̂mp
∑

m Q̂mpX̂mp∑
m Q̂mpX̂mp

∑
m Q̂mpX̂

2
mp


 ã

b̃

 =

 ∑m Q̂mp φ̄m∑
m Q̂mp φ̄mX̂mp

 . (B.16)

Finally, the estimate for the mean field - which is mean interphase momentum transfer

term in our case - at the Eulerian grid node xm is

φ̃(xm) = ã. (B.17)
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APPENDIX C. DETAILS OF ERROR DECOMPOSITION

C.1 Statistical Error

In the statistical error definition given by Eq. 5.22, {Ffp
m }Npc,M is an unbiased estimator

of 〈{Ffp
m }Npc,M 〉 but owing to finite sample size Npc, it has statistical fluctuations measured

by the variance σ2
F of {Ffp

m }Npc,M , which is given by Eq. C.1. The scaling of statistical error

with number of samples is given by Eq. 5.23, where cF which scales as σF is referred to as the

statistical error coefficient, and θ is a standardized normal variate.

σ2
F = Npcvar({Ffp

m }Npc,M ). (C.1)

In the definition of statistical error given by Eq. 5.22, 〈{Ffp
m }Npc,M 〉 is an unknown and is

approximated by ensemble averaging {Ffp
m }Npc,M over M independent but identical simula-

tions, such that

〈{Ffp
m }Npc,M 〉 ∼= 〈{Ffp

m }Npc,M 〉M =
1
M

M∑
i=1

{
Ffp

m

}(i)
Npc,M

. (C.2)

Note that 〈{Ffp
m }Npc,M 〉M is itself a random variable with mean and variance given by

〈〈{Ffp
m }Npc,M 〉M〉 = 〈{Ffp

m }Npc,M 〉. (C.3)

var(〈{Ffp
m }Npc,M 〉M) =

1
Mvar({Ffp

m }Npc,M ) =
σ2

F

MNpc
. (C.4)

If the statistical error due to finite number of realizations M is defined as

ΣF,M = 〈{Ffp
m }Npc,M 〉M − 〈{Ffp

m }Npc,M 〉, (C.5)

then from the central limit theorem, the scaling of ΣF,M with number of realizations is

ΣF,M = M−1/2σF,Mξ, (C.6)
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where ξ is a standardized normal variate, and σF,M is the standard error which based on

Eq. C.4 can be written as

σ2
F,M = Mvar(〈{Ffp

m }Npc,M 〉M) =
σ2

F

Npc
(C.7)

Therefore, the final form for ΣF,M is

ΣF,M = 〈{Ffp
m }Npc,M 〉M − 〈{Ffp

m }Npc,M 〉 =
cF ξ√

(MNpc)
. (C.8)

The total statistical error ΣF can be rewritten as the summation of approximate statistical

error denoted by Σ̂F and ΣF,M (which is defined by above equation):

ΣF = Σ̂F + ΣF,M, (C.9)

where the definition of approximate statistical error and its scaling with the number of samples

and realizations is given by

Σ̂F = {Ffp
m }Npc,M − 〈{Ffp

m }Npc,M 〉M = ΣF − ΣF,M

=
cF θ√
Npc

− cF ξ√
(MNpc)

. (C.10)
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APPENDIX D. DETAILS OF DDF EQUATION DERIVATION

D.1 Evolution equation for h

In order to derive the evolution equation for h, we start by differentiating it with respect

to time and noting that
∂h

∂t
=

∂

∂t

〈
Nc∑
i=1

h
′
i

〉
=

〈
Nc∑
i=1

∂h
′
i

∂t

〉
. (D.1)

Differentiating h
′
i with respect to time results in

∂h
′
i

∂t
=

dW (i)

dt
δ
X

(i)
c

δ
V

(i)
c

− ∂

∂xk

{
W (i)V

(i)
c,k δ

X
(i)
c

δ
V

(i)
c

}
− ∂

∂vk

{
W (i)A

(i)
c,kδX(i)

c
δ
V

(i)
c

}
. (D.2)

Substituting for dW (i)

dt (Eq. 6.17), the above equation becomes

∂h
′
i

∂t
= −
{

Ω(i)h
′
i

}
− ∂

∂xk

{
V

(i)
c,k h

′
i

}
− ∂

∂vk

{
A

(i)
c,kh

′
i

}
. (D.3)

Substituting the above equation in the evolution equation for h (Eq. D.1) results in

∂h

∂t
= −
〈

Nc∑
i=1

{
Ω(i)h

′
i

}〉
− ∂

∂xk
[vkh] − ∂

∂vk

{〈
Nc∑
i=1

A
(i)
c,kh

′
i

〉}
. (D.4)

We now define the following expressions in phase space

〈Ω|x,v; t〉 =
1

h(x,v, t)

〈
Nc∑
i=1

{
Ω(i)h

′
i (x,v, t)

}〉
, if h > 0 (D.5)

and equal to zero otherwise, and

〈Ac,k|x,v; t〉 =
1

h(x,v, t)

{〈
Nc∑
i=1

A
(i)
c,kh

′
i (x,v, t)

〉}
, if h > 0 (D.6)

and equal to zero otherwise. Substituting these definitions for conditional expectations in

Eq. (D.4), we obtain the final evolution equation for h which is

∂h

∂t
= −〈Ω|x,v; t〉h − ∂

∂xk
[vkh] − ∂

∂vk
{〈Ac,k|x,v; t〉h} . (D.7)
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D.2 Evolution equation for 〈Np(t)〉

The rate of change of total number of physical particles is

∂ 〈Np(t)〉
∂t

=
∂

∂t

∫
[x,v]

h(x,v, t)dxdv =
∫

[x,v]

∂h

∂t
dxdv

= −
∫

[x,v]
〈Ω|x,v; t〉h dxdv −

∫
[x,v]

∂

∂xk
[vkh] dxdv

−
∫

[x,v]

∂

∂vk
{〈Ac,k|x,v; t〉h} dxdv. (D.8)

The second and third terms in the above expression integrate to zero (Pope, 1985). On sub-

stituting the expression for conditional expectation of Omega 〈Ω|x,v; t〉 given by Eq. (D.5) in

the above equation results in

∂ 〈Np(t)〉
∂t

= −
∫

[x,v]

〈
Nc∑
i=1

Ω(i)W (i)(t)δ
X

(i)
c

δ
V

(i)
c

〉
dxdv

= −
〈

Nc∑
i=1

Ω(i)W (i)(t)

〉
= −〈Ω(t)〉

〈
Nc∑
i=1

W (i)(t)

〉

= −〈Np(t)〉 〈Ω(t)〉 , (D.9)

where the unconditional expectation of Ω is defined as

〈Ω(t)〉 =

〈
Nc∑
i=1

Ω(i)W (i)(t)
〉

〈
Nc∑
i=1

W (i)(t)
〉 =

〈
Nc∑
i=1

Ω(i)W (i)(t)
〉

〈Np(t)〉
. (D.10)

D.3 Number density evolution equation

The evolution for number density ñp implied by h is obtained by integrating h over the v

space and then differentiating wrt t or

∂ñp(x, t)
∂t

=
∂

∂t

∫
[v]

h(x,v, t)dv =
∫

[v]

∂h

∂t
dv (D.11)

= −
∫

[v]
〈Ω|x,v; t〉hdv −

∫
[v]

∂

∂xk
[vkh] dv −

∫
[v]

∂

∂vk
{〈Ac,k|x,v; t〉h} dv.
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The first term on the right hand side of the above equation becomes∫
[v]

〈Ω|x,v; t〉hdv =
∫

[v]

〈
Nc∑
i=1

Ω(i)W (i)(t)δ
X

(i)
c

δ
V

(i)
c

〉
dv =

〈
Nc∑
i=1

Ω(i)W (i)(t)δ
X

(i)
c

〉

= 〈Ω|x; t〉
〈

Nc∑
i=1

W (i)(t)δ
X

(i)
c

〉
= 〈Ω|x; t〉 ñp(x, t), (D.12)

where the conditional expectation 〈Ω|x; t〉 is defined as

〈Ω|x; t〉 =

〈
Nc∑
i=1

Ω(i)W (i)(t)δ
X

(i)
c

〉
〈

Nc∑
i=1

W (i)(t)δ
X

(i)
c

〉 =

〈
Nc∑
i=1

Ω(i)W (i)(t)δ
X

(i)
c

〉
ñp(x, t)

, if ñp > 0 (D.13)

and equal to zero otherwise.

The second term can be simplified as∫
[v]

∂

∂xk
[vkh] dv =

∂

∂xk

∫
[v]

vk

〈
Nc∑
i=1

W (i)(t)δ
X

(i)
c

δ
V

(i)
c

〉
dv

= ∇ ·
{∫

[v]

〈
Nc∑
i=1

V(i)
c W (i)(t)δ

X
(i)
c

δ
V

(i)
c

〉
dv

}
(D.14)

= ∇ ·
{〈

Nc∑
i=1

V(i)
c W (i)(t)δ

X
(i)
c

〉}

= ∇ · {〈Vc(x, t)〉 ñp(x, t)} ,

where the conditional expectation 〈Vc(x, t)〉 is defined as

〈Vc(x, t)〉 =

〈
Nc∑
i=1

V(i)
c W (i)(t)δ

X
(i)
c

〉
ñp

, if ñp > 0 (D.15)

and equal to zero otherwise. Finally, the third term is zero (Pope, 1985). From the above

equations, the final expression for the evolution of number density is

∂ñp(x, t)
∂t

+ ∇ · {〈Vc(x, t)〉 ñp(x, t)} = 〈Ω|x; t〉 ñp(x, t) (D.16)

D.4 Evolution of the velocity conditional pdf

The evolution equation for h̃c
Vc

obtained by differentiating Eq. 6.18 with respect to time

∂h̃c
Vc

(v|x; t)
∂t

=
1

ñp(x, t)
∂h(v,x, t)

∂t
− h(x,v, t)

ñ2
p(x, t)

∂ñp(x, t)
∂t

, (D.17)
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followed by substituting the evolution equations for h (Eq. 6.21) and number density ñp

(Eq. D.16), results in Eq. 6.27.
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