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ABSTRACT 

 

In recent decades, laser technology has been widely used in manufacturing, non-

destructive measurement processes, and has been extensively implemented in medical 

applications. The detailed knowledge of the laser-target interaction along with accompanied 

effects in background environment is absolutely essential due to the significance of the 

intricate existing occurrences. Therefore, in this discourse, a number of phenomena in laser-

material interaction at nanoscale are studied thorough.  

 

Firstly, the dynamics and internal structure of shock waves in picosecond laser-

material interaction are explored at the atomistic level. The pressure of the shock wave, its 

propagation, and interaction zone thickness between the plume and ambience are evaluated to 

study the effect of the laser absorption depth, ambient pressure, and laser fluence. Sound 

agreement is observed between the molecular dynamics simulation and theoretical prediction 

on shock wave propagation and mass velocity. Due to the strong constraint from the 

compressed ambient gas, it is observed that the ablated plume could stop moving forward and 

mix with the ambient gas, or move backward to the target surface, leading to surface 

redeposition. Under smaller laser absorption depth, lower ambient pressure, or higher laser 

fluence, the shock wave will propagate faster and have a thicker interaction zone between the 

target and ambient gas. 

 

Secondly, the effects of shock driven process of the laser-ablated argon plume in the 

background gas environment are explored via molecular dynamics simulations. The primary



 x 

shock wave propagation and its influence on the backward motion of the target material are 

delineated. It has been observed that the strong pressure gradient inside the main shock wave 

overcomes the forward momentum of the plume and some compressed gas, leading to 

backward movement and re-deposition on the target surface. Reflection of the backward 

moving gas on the target surface results in the secondary shock wave. Detailed investigation 

of the secondary shock wave phenomenon is provided, which gives, for the first time, an 

insight into formation and evolution of the internal gaseous shock at the atomistic level. 

 

Thirdly, the physics of plume splitting in pico-second laser material interaction in 

background gas are studied with MD simulations. The velocity distribution shows a clear 

split into two distinctive components. For the first time, detailed atom trajectory track reveals 

the behavior of atoms within the peaks and uncovers the mechanisms of peak formation. The 

observed plume velocity splitting emerges from two distinguished parts of the plume. The 

front peak of the plume is from the faster moving atoms and smaller particles during laser-

material ablation. This region experiences strong constraint from the ambient gas and has 

substantial velocity attenuation. The second (rear) peak of the plume velocity originates from 

the larger and slower clusters in laser-material ablation. These larger clusters/particles 

experience very little constraint from the background, but are affected by the relaxation 

dynamics of plume and appear almost as a standing wave during the evolution. Density 

splitting only appears at the beginning of laser-material ablation and quickly disappears due 

to spread-out of the slower moving clusters. It is found that higher ambient pressure and 

stronger laser fluence favor earlier plume splitting. 



 xi 

Finally, the conclusions are drawn and author’s contributions from performed work 

are delineated. 
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1. INTRODUCTION 

 

The number of applications of the laser ablation of materials in background gas has 

thrillingly increased in recent years, especially having widely usage in photolithography, 

integrated optics, and last, but not least, the micro/nanofabrication. 

 

Specifically, laser–induced ablation results from the conversion of an initial electronic 

or vibrational photoexcitation into kinetic energy of nuclear motion, leading to ejection of 

atoms, ions molecules, and even clusters from a surface. The formation of an ablation plume 

– a weekly ionized, low-to-moderate density expanding gas cloud – normally is accompanied 

by complex plasma-surface interactions, gas dynamics, and laser-induced photodynamics. 

The kinetics and dynamics of this conversion depend critically on the mechanism of light 

absorption, electron-lattice interactions characteristic of the laser-irradiated solid, such as 

scattering of free electrons by phonos with phonon emission, localized lattice rearrangements 

and configuration changes such as self trapping of holes and exitons, defect formation and 

defect reactions as well as surface decomposition due to the electronic interactions of defects 

with lattice ions (Miller and Haglund, 1998). 

 

Unquestionably, great popularity of this technological genre is owed to the 

contemporarily developed techniques such as laser micromachining (Fogarassy and Lazare, 

1992), laser shock peening (Hill et al., 2003), and pulsed laser deposition (PLD) (Chrisey and 

Hubler, 1994). In these methods, ambient medium is frequently used to improve the desired 

characteristics of the obtained materials as well as qualities of the final surfaces produced. 
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However, presence of background environment significantly affects the formation of intricate 

kinetic and dynamics processes, which among others may incorporate the plume backward 

motion, plume oscillation with plume splitting, and generation of the primary and secondary 

shock wave front. Therefore, the dynamical behavior of the plume, along with accompanied 

effects in such environment (shock waves) are of fundamental significance in obtaining the 

detailed knowledge about these intriguing phenomena. 

 

 A considerable number of techniques have been used to provide information about 

the interaction of laser light with solids so far. The great interest is to measure many 

parameters in laser ablation process. They may include: the shape and velocity of the plume 

at various times after the ablating laser pulse, the spatial distribution of density, and 

temperature at various times after the ablating laser pulse, and the spatial variation of the 

plume composition, in terms of the atoms, molecules, excited states, and clusters presence 

(Phipps, 2007). A very extensive literature describing a wide range of experimental 

techniques to diagnose laser ablation plumes exist. These have been reviewed by various 

authors in particular by Chrisey and Hubler (1994) or Eason (2007). The methods include a 

variety of optical spectroscopies, electron and mass spectrometry, time-of-flight studies, 

optothermal techniques and pressure and momentum transfer measuring techniques, all of 

which have been applied for the study of the event during and immediately following the 

light pulse.  

 

Therefore, in order to establish any optimization of the film deposition process it 

requires then, a comprehensive knowledge of the plume processes during the expansion. 



 3 

Since the breakthrough in preparation of thin films of Y-Ba-Cu-O superconductor using 

pulsed excimer laser evaporation of a single bulk material target in vacuum (Dijkkamp et al., 

1987) the optimization of the film deposition immensely progressed in nineties. Dyer et al. 

(1990) studied plume dynamics for excimer laser ablation of Y-Ba-Cu-O in an O2 

atmosphere using streak photography and spectroscopy. They observed that at pressures 

greater than 1 mbar the expansion resembles a blast wave driven by the ablation products 

with mixing and reaction at the contact surface. Scott et al. (1990) investigated the luminous 

ablation plume formed by laser irradiation of the superconductor YBa2Cu3O7-x by high-speed 

framing photography. They reported the formation of shock waves and instabilities on the 

shock front for pressures above 0.25 mbar and found that changing the pressure of the 

background oxygen gas influences significantly the velocity distribution of ejected products. 

Lichtenwalner et al. (1993) presented the results on how the ablated flux characteristics of 

PZT, LSC, and MgO strongly dependent the ablation time, the laser energy, and the oxygen 

(or noble gas) pressure. 

 

 The knowledge of plume’s behavior has advanced tremendously from the many 

recent spectroscopic studies with fast imaging techniques (Geohegan and Puretzky, 1995; 

Harilal et al., 2002, 2003; Amoruso et al., 2005, 2006), but Langmuir probe studies have also 

contributed to the understanding of plume dynamics (Geohegan and Puretzky, 1995; Wood et 

al., 1997; Hansen et al., 1999; Amoruso, et al., 2005, 2006). Furthermore, the study by 

Ashfold et al. (2004) focused on aspects of the fundamental chemical physics of PLA and 

PLD processes and deposition, and has attempted to track the evolution of material from the 

target through to the deposited film.  
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 The detailed theoretical or computational treatment has been also performed and a 

number of numerically based models have been developed for laser ablation processes. The 

theoretical description of the adiabatic expansion has been considered by Anisimov et al. 

(1996). His original model was extended to describe an expansion into a background gas with 

a low pressure. Arnold et al. (1999) derived an analytical model for the plume dynamics 

during the expansion into a background gas. Their model is based on a spherical expansion in 

forward and backward direction from a fictive target surface without any assumptions of a 

background gas of low pressure. Pathak et al. (2007) developed the method that can capture 

multiple plume roll-up, interaction of plume with shock waves and they claimed that the 

combination of nonlinear Godunov and linearized Roe methods for discretization of plume 

gas dynamic equations is suitable for modeling plume dynamics in laser ablation of carbon. 

 

 Gaining a better understanding of the factors governing thermal and physical 

phenomena under laser irradiation is of special importance for material interaction process. 

Essential knowledge of the dynamics of the shock wave and transient plume’s behavior can 

serve for controlling the laser material interaction process, optimizing the efficiency of laser 

assisted micro-machining, and minimizing the laser induced material damage. These brief 

chapters give separate introductions in number of laser material interaction processes and 

techniques that involve generation of the shock wave. 
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1.1 Shock Wave Phenomena in Laser Material Interaction in Background Gas 

The study of laser ablation processes is absolutely essential since it has been one of 

the key laser technologies of recent years. It constitutes a sequence of particularly convoluted 

and multiplex phenomena inclusive of laser-solid interaction, evaporation of target material 

due to the implemented laser energy, plasma plume formation combined with its intrinsic 

generation of high kinetic energy region of the ejectants, transportation and evolution of the 

intense, very short time scale shock waves associated with intense processes in the ejected 

front cloud, along with plume-solid interaction at the deposited surface. Of special 

importance and intricacy is the dynamics evolution of shock waves in laser-material 

interaction. When a background gas instead of a vacuum environment is present, 

considerable new processes arise such as deceleration, attenuation and thermalization of the 

molten particles, as well as diffusion, recombination and formation of the shock waves (Le et 

al., 2000). Often observables are also generation of multiple fronts, nanoclusters frequently 

combined with plume backward motion occurrence and phenomenon of ‘plume splitting’ all 

resulting in significant impact on the deposition process. 

 

 The nanoscale shock wave phenomenon has long fascinated researchers all around the 

world and has been the subject of intensive investigation in recent years. Shock waves are 

fast mechanical transients generated by violent impacts or explosions associated with the fast 

compression inherently violent increase in pressure and temperature. According to Zel'dovich 

and Raizer (2001) shock wave formation is the result of a growing hydrodynamic interaction 

between the plume and the background gas and becomes important when the mass of the 

displaced gas is comparable to the mass of the plume. The study of the internal structure of 
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shock fronts is of interest for many and recent progress in combining the techniques of time-

resolved molecular spectroscopy with shock compression science gave profound insight in 

studying physical chemical phenomena that involve large-amplitude displacements (Dlott, 

1999). 

 

The accompanying issue of plume splitting in low pressure background gases has 

been reported in the profound experimental (Geohegan and Puretzky, 1995, 1996) and 

numerical work by Leboeuf et al. (1996) and Wood et al. (1997). Work by Voevodin et al. 

(2000) presents results of laser ablation deposition of yttria stabilized zirconia films in a low 

pressure oxygen and argon ambient environment. One significant study by Harilal et al. 

(2003) shows the effect of ambient air pressures on the expansion dynamics of the plasma 

generated by laser ablation of an aluminum target. Mason and Mank (2001) investigated how 

laser parameters, especially laser fluences affect crater size and shape formation. Moreover, 

Russo et al. (2000, 2002) performed sound research on how laser fluence, the induced recoil 

pressure and radiating heating of the substrate influence the amount of ablated material mass. 

 

The subject of laser ablation in background gas and consecutively shock waves 

formation is also extensively treated in prior theoretical and numerical literatures. Analysis of 

multiple shock waves has been well documented in a theoretical study by Bulgakov and 

Bulgakova (1995). In Le et al.’s study (2000) the physical phenomena involved in laser-

induced plasma expansion into a background gas was numerically studied. The authors 

developed a model which considers diffusions, thermal conduction, viscosity, and ionization 

effects. A new theoretical model has been developed by Zhang and Gogos (2004) to explain 
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the influence of ambient gas and laser intensity in laser ablation. Another theoretical study by 

Bulgakov and Bulgakova (1998) paid particular attention to the analogy between an ablation 

plume and a supersonic under expanded gaseous jet. 

 

Nevertheless, none of those fully stated about shock wave formation, propagation and 

attenuation, interaction of the shock wave with the ablation plume, effect of the optical 

absorption depth on the shock wave, or the effect of the laser pulse width, laser fluence, 

background pressure, and species of the background gas. It would be of considerable 

significance to have a compendium of those compelling processes. 

 

In chapter 3 is presented quantitative explanations for a number of gas-dynamics 

effects when the interaction between the picosecond laser ablated argon plume and 

background gas occurs in a very short of time - up to 5 ns. 

 

1.2 Secondary Shock Wave Phenomenon in Laser Material Interaction in Background 

Gas 

In laser-assisted material processing an ambient gas is frequently used to improve the 

desired characteristics of the obtained materials as well as qualities of their final structure. 

The presence of background gas and the induced shock wave significantly affects the 

dynamic behavior of the ablated plume. In prominent research on the dynamics of laser 

ablation plume by Geohegan et al., experimental investigation (Geohegan and Puretzky, 

1995) as well as theoretical study (Leboeuf et al., 1996 and Wood et al., 1997) of the plume 

splitting in low pressure background gases has been performed. Interesting theoretical study 
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on gas dynamics of pulsed laser ablation by Han et al. (2002) was conducted on shock wave 

formation in helium ambient gas and reflection of the shock front on the silicon substrate. 

Recent measurements of the internal structure and expansion dynamics of laser aluminum 

plumes have been reported in work of Harilal et al. (2003). Work by Singh et al. (2005) 

provided study on the effect of ambient pressure on the redeposition of debris and the plume 

backward motion. Furthermore, the issue of pulse characteristic of the plume expansion was 

reported by Bulgakov et al. (1996) Time-of-flight (TOF) signal oscillations according to 

generation of the primary and secondary shock wave in the plume-background gas 

interaction was observed in their experimental work (Bulgakov et al,. 1996), and that 

exceptional feature has been covered also empirically (Bulgakov and Bulgakova, 1995).  

 

Although extensive experimental and theoretical work has been done on the shock 

wave phenomena in laser ablation, the formation of the secondary shock wave has not been 

explained satisfactorily. As a matter of fact, to the author’s knowledge, the internal shock 

wave formation at atomistic level has scarcely been studied in literature so far.  

 

One of the objectives of chapter 4 is to explicate the process of formation, and 

particularly structure with thermodynamic and physical states of the secondary shock wave in 

nanoseconds range at molecular level. 



 9 

1.3 Plume Splitting in Laser Material Interaction under the Influence of Shock Wave 

A wide spectrum of applications for pulsed lasers in material processing, thin film 

growth, and laser-assisted manufacturing has brought overwhelming interest to the field of 

laser-material interaction. The techniques are complicated and the dynamics of expanding 

laser ablation plume in background gas consists of many successive elaborated phenomena 

(Chrisey and Hubler, 1994; Eason, 2007). At a certain distance from the target, the fraction of 

atoms from the plume that penetrate the surrounding gas as a freely expanding plume 

decreases strongly with the increasing gas pressure. This decrease is accompanied by a large 

enhancement of the slow component which leads to the so-called plume splitting. 

 

Over the last decade plume splitting in laser-material interaction has received much 

attention in literature and a preponderance of previous work has studied the phenomena both 

experimentally and theoretically. The most in-depth one that gives very detailed accounts of 

the concerned effect is given by Geohegan and Puretzky (1995) who provided first time 

compelling evidence of the plume splitting for yttrium in argon environment , and compared 

with results in several other systems, including Si/Ar, Si/He, YBCO/O2 (Geohegan and 

Puretzky, 1995) Furthermore, the authors interpreted the experimental results using 

hydrodynamic model that includes multiple scattering to exemplify this occurrence (Leboeuf 

et al., 1996 and Wood et al., 1997). The nature of plume double-peaked arrangement in the 

background gas has been widely investigated by Bulgakov et al. (1995, 1996, 1998, 2000) 

based on superconductor YBCO in oxygen and an endeavor of the respectable gas-dynamical 

modeling has been conducted. In prominent study by Harilal (2001) the plume splitting has 

been observed also in carbon/helium system for different laser fluences, and the plume 
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splitting effect was observed only in a particular pressure range in an Al/air system (Harilal et 

al., 2002). Moreover the twin-peak distribution formation has been studied for different air 

pressures (Harilal et al., 2003). In recent years the work performed by Amoruso et al. (2005, 

2006, 2008) provides remarkable investigation of the clearly observed metallic plume 

splitting in a variety of gases such as helium, oxygen, argon and xenon for UV laser 

irradiation. 

 

Various analytical techniques based on gas dynamics have been developed to study 

the laser ablation regime. These models provide somehow insufficient insight into the 

physical picture. To that subject more suitable appears to be the molecular dynamics or 

Monte Carlo simulation approach. One account of the strength of the atomistic investigation 

is to provide detailed explanation of nanoscale phenomena. Analysis from Itina et al. (2002) 

numerical modeling based on the combined large-particle direct Monte Carlo simulation has 

provided compelling evidence on the existence of the double peaked character in Al/O2 

system. In their work the physics of plume splitting from the atomistic view were attempted 

to explain. 

 

The chapter 5 of this study represents an early attempt to exemplify the fundamentals 

of plume splitting at atomistic level under the influence of shock wave. 
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1.4 Laser Shock Peening 

The rapid progress in laser material interaction regime contributed to development of 

one special, derivative technique – laser shock peening (LSP), which performance is strongly 

influenced by shock wave. The introduction of this technology brought a broad application in 

the material surface manufacturing and consequently recent decade its full 

commercialization. Generally, LSP is a process in which a laser beam is pulsed upon a 

metallic surface, producing a planar shock wave that travels through the workpiece and 

plastically deforms a layer of material (Hill et al., 2003). It uses a strong laser impulse to 

impart high compressive residual stresses in the surface of material components. The laser 

pulse ignites a blast from the specially coated surface of the component. The expansion of the 

shock wave then creates a traveling acoustic wave that is coupled into the component, 

thereby compressing the material’s lattice microstructure. The achievable strengthening 

results are a significant improvement in the high cycle fatigue properties of the component 

and greatly increase its surface mechanical properties. 

 

The method has already found wide range of commercially available applications and 

continuously extends its potential. Not only in military, aerospace (metal shaping of Ti 

airfoils in high-performance aircraft), medical and automotive industries is used, but in 

treatment and forming of components used in healthcare delivery, nuclear power generation, 

and drilling for petroleum products. Overall the laser peening treatment has proven to be 

robust and reliable, meeting severe, high performance industrial requirements. 

 

One of the characteristics of this technique is that target surface is usually coated with 
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protective layer of the dark paint and the process is performed under a thin overlay of 

transparent material, like water in order to generate higher plasma pressure than that in the 

air. When a nanosecond laser pulse passes through the transparent tamping water layer, 

focuses on the top surface and is absorbed by the dark paint. Due to the fact, that the mean 

free path in metals of visible and near infrared laser radiation is less than 1 µm, only a very 

thin surface layer of material is heated when a laser beam of sufficient intensity strikes a 

metal surface. Sudden energy deposition time, limits thermal diffusion of energy away from 

the interaction zone to at most, a few micrometers. The heated material is ejected, vapor 

rapidly achieves extremely high temperatures, and electrons are ionized from the atoms 

which all in result give rise to a rapidly expanding, high pressure plasma cloud. The ablated 

plasma plume is tamped to the surface by the water layer (it acts like a lid on a pot to help 

contain the shock). If the plume is not confined to the metal surface, pressures of only a few 

tenths of GPa are achieved. However, if an overlay transparent to the laser light is pressed 

against the metal surface, the hydrodynamic expansion of the heated plasma in the confined 

region between the metal target and transparent overlay creates the high amplitude-short 

duration pressure pulse required for laser and shock processing (Clauer et al., 1981). 

Therefore, the plasma pressure is enhanced by water. The interaction creates a pressure shock 

wave in the range of few GPa to build up on the workpiece surface over 10 to 100 ns that in 

turn creates a deep compressive stress layer directly underneath the focused pulse and 

exceeds the yield stress of metals. The plasma is spatially contained from spreading across 

the surface area by layer of tamping water and thus transmits a shock wave directly forward 

into the metal. After the passage of the high amplitude shock wave in the material, the 

permanent strain remains and the surrounding metal material constrains the strained region 
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due to elastic strain, and thus forms a compressive residual stress on the metal surface. Each 

laser pulse imparts GPa range pressure pulse at the component surface by generating a 

plasma in a thin layer of protective tape or paint on the metal surface. The high rate of 

deformation during laser peening produces a layer of plastically deformed material and the 

depth of plastic deformation and resulting compressive residual stress are significantly deeper 

than possible with most other surface treatments. LSP does not have the kinetic energy 

limitations of metal or ceramic shot. As a result, it can induce a compressive stress layer 

more than 1 millimeter thick, some four times deeper than that obtainable with traditional 

shot (Hill et al., 2003). The increased depth effectively extends the service lifetime of parts 

some three to five times over that provided by conventional treatments, an increase essential 

for preventing cracking on blades, rotors, and gears. 

 

A unique offered advantage of some techniques of laser shot laser pulse is its square 

profile. A typical laser's round output beam requires overlapping spots on a metal surface in 

an inefficient manner, but the new systems allows full coverage of each square spot directly 

adjacent to the next. Furthermore, the systems are capable to automatically maintain the 

laser-pulse wavefront near the physically allowable limit, enabling higher power without 

worry of laser glass damage or damage to the treated part (Hill et al., 2003). 

 

The hardening of the some materials is a result of a significant increase in dislocation 

density caused by the shock wave. However, some metals do not respond to a single laser 

shot at the peak pressures achievable by laser. For that reason multiple shots can produce a 

progressive increase in hardness. The increase in hardness is caused by an increase in the 
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dislocation density with increasing laser shock repetitions (Clauer et al., 1981). 

 

Large number of literature has been devoted to the laser shock peening phenomena. A 

number of metals and alloys have been treated by LSP, including steels, aluminum alloys, 

titanium alloys, nickel-base superalloys, cast irons and a powder metallurgy iron alloy. In 

some of these cases, the investigations include both residual stresses and fatigue results, or 

directly compare LSP and shot peening (Everett et al., 2001). The results of tensile testing 

and hardness depth-profiling indicated that the laser treatment significantly improved the 

mechanical properties of cast titanium by improving the surface integrity of the cast surface 

contamination (Watanabe et al., 2009). The thickness of the plastic deformation layer near 

the surface generated by the shockwave in LSP is higher than 2.0 mm. With increasing the 

number of the laser impacts in LSP, the compressive residual stresses and the microhardness 

at the surface of the LY2 aluminum alloy specimen increases (Zhang et al., 2009). 

 

The laser shock peening process has been covered also in theoretical divagations. A 

numerical model for the simulation of LSP of materials which includes coupled elastic–

plastic wave propagation—structural analysis at each time step has been performed. Finite 

difference method has been used for the elasto-plastic wave analysis due to recoil pressure 

loading at the surface; whereas the plastic deformation and the resulting residual stresses 

developed in the laser-treated region of the substrate are computed by using non-linear FE 

method (Arif, 2003). A finite element analysis method adopting dynamic analysis with LS-

DYNA and static analysis performed by ANSYS is described in detail to attain the 

simulation of single and multiple laser shock processing. The method is used to simulate 
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shock wave propagation and predict the distribution of the residual stresses in the metal 

alloys of 35CD4 50HRC steel treated by LSP with square laser spot (Hu et al., 2006). 

 

1.5 Molecular Dynamics of Laser Material Interaction 

Despite a substantial amount of research on laser ablation has been conducted, the 

underlying effects and the mechanism of laser induced plume expansion in an ambient 

environment still remains relatively unclear. Great difficulties exist in the analytical study, as 

well as in experimental investigations such as measurements of the transient surface 

temperature, the velocity of the solid-liquid interface, and the material ablation rate. The 

continuum approach of solving the heat transfer problem becomes questionable under the 

above extreme situations. To gain further insights into these fascinating phenomena, 

molecular dynamics (MD) simulation is necessary, which allows people to directly track the 

movement of molecules/atoms. Additionally, this method is capable of revealing the 

thermally induced processes down to atomistic levels for investigating the ultrashort laser 

material interactions (Wang, 2005). At nanosecond time scale, it can provide more 

appropriate quantitative description of the shock wave behavior. 

 

A vast amount of commitment has been devoted to the usage of MD to study laser-

material interaction and simulation of shock wave–induced phase transitions. In nineties due 

to the growing computer capabilities small systems were investigated. A significant 

development for MD in the last 20 years has been the design of more realistic semi-empirical 

interatomic interactions, not only for monatomic metals, but also for reactive condensed 

molecular systems (Holian, 2004). Shock wave experiments are particularly well suited for 
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molecular dynamic simulations because in such experiments sample sizes are small and time 

scales are short (Belonoshko, 1997). Robertson et al. (1991) performed MD simulations for a 

2D diatomic molecular solid for less than 5000 atoms, and reported that those exhibit a 

shock-induced phase transition and concomitant split shock wave. Hakkinen and Landman 

(1993) investigated dynamics of superheating, melting, and annealing processes at Cu 

surfaces induced by laser-pulse irradiation using molecular dynamics simulation. Belonoshko 

(1997a, b) performed a three-dimensional molecular dynamics simulation of shock wave 

loading to investigate the Hugoniot equation of state at the transition of argon from solid to 

liquid. His calculations with different numbers of atoms showed that the system consisting 

6000 atoms is sufficient to obtain reliable results. Etcheverry and Mesaros (1999) studied 

laser material interaction of crystal argon model and the production of acoustic waves in a 

material irradiated by a pulsed laser, by means of molecular-dynamics simulation for 500000 

atoms. Lorazo et al. (2003) investigated the mechanisms of laser ablation in silicon close to 

the threshold energy for pulse durations of 500 fs and 50 ps which was achieved using a 

unique model coupling carrier and atom dynamics within a unified Monte Carlo and 

molecular-dynamics scheme. Zhigilei (2003) investigated the dynamics of the early stages of 

the ablation plume formation and the mechanisms of cluster ejection in large-scale molecular 

dynamics simulations (more than 1 million molecules). Ivanov et al. (2003) presented the 

first atomistic simulation of a shock propagation including the electronic heat conduction and 

electronphonon coupling. Their computational model was based on the two-temperature 

model that describes the time evolution of the lattice and electron temperatures by two 

coupled non-linear differential equations. Perez and Lewis (2004) studied the variations in 

the thermodynamic paths followed by materials during fs and ps laser ablation using a simple 
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two-dimensional molecular-dynamics model. They investigated the thermodynamic 

evolution of a material after irradiation by femto and ps pulses using a simple 2D Lennard–

Jones model. Lorazo et al. (2006) investigated the thermodynamic pathways involved in laser 

irradiation of absorbing solids in silicon for pulse durations of 500 fs and 100 ps. This was 

achieved by accounting for carrier and atom dynamics within a combined Monte Carlo and 

molecular-dynamics scheme and simultaneously tracking the time evolution of the irradiated 

material in ρ-T-P space. Of special significance is work by Zhigilei et al. (2003) where a 

combined MD-DSMC computational model has been developed for simulation of the long-

term plume expansion of organic systems. Zhigilei’s in-depth study revealed a number of 

physical phenomena, including temperature and pressure evolution, phase change/explosion, 

structural change, and ablation rate change in laser ablation of molecular systems including 

organic materials. Investigations on thermal transport, phase change, thermal stress 

development and propagation, and nanoparticle formation in laser-material interaction can 

also be found in other literatures (Wang and Xu, 2002, 2003a, b; Wang, 2005). It needs to be 

pointed out that in these MD studies of laser-material interaction the emphasis was placed on 

the plume behavior during laser ablation in vacuum (without shock wave). The effect of 

shock wave on plume evolution has not been studied in these works. 

 

In recent years, more emphases have been placed on the exploration of kinetic and 

physical properties of nanodomain shock wave in near-field laser material interaction (Feng 

and Wang, 2007) and its dynamic structure with mass penetration under picosecond laser 

irradiation (Zhang and Wang, 2008). 
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1.6 Problem Statement and Objectives 

The overall objective of this work is to study the thermophysical and dynamical 

phenomena in laser material interaction with ambient environment under single picosecond 

laser pulse by molecular dynamics (MD) simulations. The study has three specific goals. 

 

First goal is to study the shock wave phenomenon in laser material interaction. Since 

blast wave accompanies the physical phenomena in laser ablation in presence of the 

background gas, the study is focused on the formation, propagation and evolution along 

characterization of its thermal, physical and thermodynamical properties/parameters. 

 

Second objective is to study the secondary shock wave in laser material interaction. 

Due to the strong interaction with background gas, plume re-deposits on the target surface 

which causes backward movement of ambient gas and reflection from the target surface 

eventually results in formation of the secondary shock wave. The study is focused on both 

pressure/velocity and temperature/density distribution within process of formation of the 

internal shock wave. 

 

The last goal is to study the phenomenon of plume splitting in laser material 

interaction influenced by the shock wave. When the fraction of atoms from the expanding 

plume that penetrate the surrounding gas decreases with the increasing gas pressure, a large 

enhancement of the slow component is being formed, which leads to the plume splitting. It is 

of special interest to perform atoms track which allows monitoring the behavior of atoms 

within the peaks in order to reveal the mechanisms of peak formation. 
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2. METHODOLOGIES OF MD SIMULATION 

 

Molecular Dynamics simulation is a computational method to investigate the 

behavior of materials by simulating the atomic motion governed by a interatomic potential. 

For the purpose of this study, the computational domain has been designed to resemble a 

free-standing target material placed in a gas environment irradiated by a laser pulse (Fig. 

2.1a). Argon material is selected for the film target in the simulations because it is well 

characterized physically and chemically, and it has been thoroughly studied in the laser-

material interaction using MD. Argon crystal structure as the target has an initial temperature 

of 50 K, and the lattice constant a of the face-centered-cube (fcc) is 5.414 Å. The melting and 

boiling temperatures of argon at one atmosphere are 83.8 K and 87.3 K, respectively, while 

its critical temperature is 150.87 K. The background gas shares similar properties as the 

target, such as the molecular mass, but has a modified interatomic potential which considers 

only repulsive force between atoms. Except this, the model gas is arranged to have the same 

parameters as argon for MD simulation. As a result, this approach significantly simplifies the 

computation and reduces the computational time. The computational domain measures 

32.5×2.7×3627 (nm) (x×y×z) and consists depending of the considered case of 262708, 

375,000, and 630,000 atoms. The solid target material is 108 nm long in the z direction, 

below which there is a gas domain 271 nm long. Periodic boundary conditions are imposed 

to the boundaries in the x and y directions, and free boundary conditions to the boundaries in 

the z direction. 

 

The basic problem of MD simulation involves solving the Newtonian equation for 
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each atomic pair interaction with the usage of the Lennard-Jones potential 
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where ε  is the LJ well depth parameter, σ is referred to as the equilibrium separation 

parameter, and r ij = r i – rj. . Therefore, the force Fij can be expressed as 
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 A finite difference approach is a standard method for solving ordinary differential 

equations. The general idea behind MD is to obtain the atomic positions, velocities, etc. at 

time t+δt based on the positions, velocities, and other dynamic information at time t. The 

equations are solved on a step-by-step basis, and the time interval δt is dependent on the 

method applied. However, δt is usually much smaller than the typical time taken for an atom 

to travel its own length. Many different algorithms have been developed to solve Eqs (2.1) 

and (2.2). In this calculation they are solved by applying the modified Verlet algorithm to the 

velocity, which is commonly identified as the half-step leap-frog scheme with a time step of 

25 fs. Verlet algorithm is widely used due to its numerical stability, convenience, and 
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Figure 2.1 (a) Schematic of the domain construction for shock wave simulation; 

 (b) temporal distribution of the laser intensity. 
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simplicity (Allen and Tildesley, 1987). The velocity Verlet algoritm is expressed as 
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 During computations, most time is spent on calculating forces. When atoms are far 

away enough from each other, the force between them is negligible. The interaction between 

atoms is neglected when their distance is beyond the cutoff distance, rc = 2.5σ  meaning the 

distance between atoms is first compared with rc and only when the distance is less than rc 

the force is calculated. The comparison of the atomic distance with rc is organized by of the 

cell structure and linked list method (Allen and Tildesley, 1987). In this method the 

computational domain is divided into regular cells with a size a little greater than the cutoff 

distance. The cell structure and the linked list method are demonstrated in Fig. 2.2, which 

shows cells and atoms into their appropriate cells based on their positions. The method 

involves sorting all atoms into their appropriate cells based on their positions (Wang, 2001). 
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 During the first 200 ps (8000 steps), the velocity of molecules is being scaled up to 

100 ps. Initial velocities of atoms are specified randomly from a Gaussian distribution based 

on the specified temperature of 50 K using the following formula 
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where kB is the Boltzmann’s constant. During the equilibrium calculation, due to the variation 

of the atomic positions, the temperature of the target may change because of the energy 

transform between the kinetic and potential energies. In order to allow the target to reach 

thermal equilibrium at the expected temperature, velocity scaling is necessary to adjust the 

temperature of the target at the early stage of equilibration. The velocity scaling approach 

proposed by Berendsen et al. (1984) is applied in this work. At each time step, velocities are 

scaled by a factor 
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Figure 2.2 Cell structure and linked list in a 2-D space. 
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where ζ is the current kinetic temperature, and tt is a preset time constant, which is taken as 

0.4 ps in the simulation. This technique forces the system towards the desired temperature at 

a rate determined by tt, while only slightly perturbing the forces on each atom. After scaling 

the velocities, the calculation is continued to reach thermal equilibrium and to make sure that 

the disturbance caused by the velocity scaling is eliminated. Towards the end of the 

equilibration, the ambient gas reaches a pressure of 0.22 MPa, close to the ideal gas condition 

(0.27 MPa). In this work, different ambient pressures ranging from 0.051 MPa to 0.87 MPa 

are used for studying shock waves. These pressures are higher than those used in PLD, and 

are close to open-air laser-assisted surface nanostructuring, and pulsed laser-assisted material 

machining (polishing, welding, and drilling). 

 

The target top surface is uniformly irradiated with a single laser pulse which has a 

temporal Gaussian distribution (Fig. 2.1b) and a fluence of 3, 5 and 7 J/m2, depending on 

considered case. The laser pulse has 11.5 ps the full width at half maximum (FWHM) and is 

peaked at 10 ps. The laser beam heating is applied on the top target surface after 200 ps 

equilibrium calculation, and the irradiation is volumetrically absorbed in the material. This 

incident laser beam within each time step (δt) is assumed to be absorbed exponentially with 

an artificial optical absorption depth (τ) and is expressed in the following formula (Wang, 

2005) 

τ
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The incident laser energy within a time step (δt) is 1E t I Aδ= ⋅ ⋅  where A is the area of the 
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target surface. The laser energy absorbed inside the material is  
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where δz is the layer thickness, and E0 is the energy incident on one single layer in the z 

direction. The domain is divided into such layers whose thickness is a little larger than the 

cutoff distance used in force calculation. τ0 = τ·ρ0/ρ is the adjusted real optical absorption 

depth, where ρ0 and ρ are the bulk density and true density of the target, respectively. 

Finally, laser beam absorption in the target is achieved by exciting the kinetic energy of 

atoms, and is accomplished by scaling the velocities of atoms by a factor which is expressed 

by (Wang, 2005) 
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where vi,j and jv  (j = 1, 2, 3) are velocities of atom i and the average velocity in the x, y, and 

z directions for atoms in a layer normal to the laser beam. The new velocity, jiv ,'  of atom i is 

calculated as follows 

( ) jjjiji vvvv +⋅−= χ,,' ,                 j = 1, 2, 3. (2.9) 

 

 In order to make computations more approachable the non-dimensionalized 

parameters are used which are listed in Table 2.1 (Wang, 2001). 
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Table 2.1 Non-dimensionalized parameters 

Quantity   Equation 

Time  ( )σε4// mtt =∗  

Length  σ/rr =∗  
Mass  1/ ==∗ mmm  
Velocity   mvv /4/ ε=∗  

Potential  εφφ 4/=∗  

Force  ( )σε /4/ijij FF =∗  

Temperature     ε4/TkT B=∗  

 

On the other hand, the parameters used in the calculation are listed in Table 2.2 (Lukes et al., 

2000). 

 

Table 2.2 Values of the parameters used in the calculation 

Parameter   Value 

ε, LJ well depth parameter (J)  1.653 x 10-21 

σ, LJ equilibrium separation (nm)  0.3406 

m, Argon atomic mass (kg)  6.63 x 10-26 

kB, Boltzmann constant (J/K)  1.38 x 10-23 

a, Lattice constant (nm)  0.5414 

rc, Cut off distance (nm)  0.8515 

x-direction domain size (nm)  32.484 

z-direction domain size (nm)  3627.38 

z-direction target size (nm)  108.28 

δt,Time step (fs)  25 

τ, Laser beam absorption depth (nm)  5, 10, 15 

E, Laser energy fluence (J/m2)  3, 5, 7 

Number of atoms   262708, 337500, 630000  
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Moreover, in the simulations conducted in this work a force elimination procedure 

needs to be considered as follows. In laser interaction with the target material, a strong stress 

wave will form and propagate throughout the target in the laser incident direction. When this 

laser-induced stress wave reaches the opposite side of the target, it can tear off the material 

and induce unrealistic damage, or the stress wave can be reflected and may induce 

unexpected artifacts in the liquid-vapor zone, causing changes in the generation and behavior 

of the shock wave. In our approach, a special boundary treatment is used at the back side of 

the target to eliminate the above phenomena. A terminating force is applied to the atoms in 

the affected boundary region, and it can be expressed following the work by Zhigilei and 

Garison (1999) as 

 
N

Acv
Ft

⋅⋅⋅
−=

ρ
 (2.10) 

where ρ is the density of the target in the selected region, v is instantaneous average velocity 

of the atoms within the boundary, and c is the speed of propagating stress wave. N is the 

number of molecules/atoms confined by the affected region. Wang’s previous simulations 

(Zhang and Wang, 2008) proved that the above stress boundary treatment works well in 

terms of eliminating stress wave reflection and avoiding undesired material damage in the 

boundary region. 
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3. DYNAMICS EVOLUTION OF SHOCK WAVES IN LASER MATERIAL 

INTERACTION 

 

3.1 Shock Wave Formation and Evolution: a General Picture 

Consideration of the shock wave formation and evolution is presented on the basis of 

the situation when the laser energy is 3 J/m2, the absorption depth is 5 nm, and ambient gas 

pressure is slightly above 2 atm. A series of snapshots of atomic positions in the simulated 

domain (x-z plane) at different times are shown in Fig. 3.1a. At 0.5 ns a denser region in red 

color is already visible, which represents the expansion front of the shock wave (marked with 

arrows). The applied laser beam forces the target material to evaporate because its energy 

intensity exceeds the material ablation threshold, leading to generation of an evidently strong 

shock wave composed of compressed adjacent gas above the target. In the initial stages, the 

ejected plume immediately exerts forward, being induced by the high pressure mainly from 

intense phase explosion (Wang and Xu, 2003) and expands into the background gas until the 

end of laser pulse. As can be noticed in later stages, nanoparticle-like clusters are formed, 

mainly due to phase explosion and condensation (Harilal et al., 2003). When the high energy 

plume propagates through the background gas, the interrelation between solid and gas 

becomes more significant. More mass of the ambient gas is being entrained in the shock 

wave front. Meanwhile, the ejected plume is being restrained due to increasing repulsive 

effect from the ambient gas. This restraint prevents the plume from developing freely in 

space. Consequently, thermalization of the plume occurs because slowing of the plume 

velocity converts its kinetic energy into thermal energy. With the time evolving, the co-

existing length between the plume and the background gas increases because of the relative 
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Figure 3.1 Comparison of snapshots for the dynamics of shock wave formation and evolution for E=3 J/m2, at P = 0.22 MPa, and 

three different absorption depths: (a) ττττ=5 nm, (b) ττττ=10 nm, and (c) ττττ=15 nm. Black color: target material, red color: background 

gas. 



 
30 

 

 

 

 

 

Figure 3.1 Continued. 
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Figure 3.1 Continued. 



  32 

movement between the plume and the ambient gas. A very interesting phenomenon observed 

in Fig. 3.1a is that starting from 3 ns, the expansion of the plume in space is significantly 

slowed down. Moreover, some of the particles/clusters in the plume start to move down 

toward the target surface although the shock wave front continues to propagate out. This type 

of backward movement of the plume is being studied in our group by further processing the 

MD data of a wide spectrum of calculations. From 3 to 5 ns, it is also observed that some 

clusters/particles stop moving out. Instead, they float and mix with the ambient gas. 

 

3.2 Atomic Velocity inside the Shock Wave 

For shock waves generated in laser-material interaction, very little knowledge has 

been obtained in the past about the average atomic velocity distribution inside the shock 

wave. This is probably due to the large experimental difficulty in internal velocity probing. 

Figure 3.2 shows the average velocity distribution of the target materials and the gas for the 

computational case discussed above. Several interesting phenomena are noticed in the 

internal velocity distribution, and are discussed below. 

 

In the figures at 0.025, 0.05, and 0.1 ns, a negative velocity wave is observed in the 

solid target. This velocity wave moves to the backside of the target. It is induced by the local 

stress wave. This negative velocity is not the local stress wave propagation velocity, but is 

related to the dislocation of the local atoms under the influence of the stress. When this 

velocity wave reaches the backside of the target, it just disappears and is not reflected back. 

This is because in the simulation a stress-absorbing boundary condition is applied on the left 

boundary. When the stress wave is absorbed by this special boundary condition, the net  
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Figure 3.2 Snapshots of atomic positions combined with the evolution of target and gas 

velocity distribution along the z direction (E=3 J/m2, ττττ=5 nm, P = 0.22 MPa). Green color: 

target material velocity; blue color: background gas velocity; black dots: target atoms; 

red dots: ambient gas atoms. 
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Figure 3.2 Continued. 
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Figure 3.2 Continued. 
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Figure 3.2 Continued. 
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Figure 3.2 Continued. 
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velocity of atoms disappears. This proves that the applied stress-absorbing boundary 

condition works well to eliminate stress wave reflection. 

 

The initial velocity of the plume in the surface region is positive due to ablation. If the 

plume is able to induce a shock wave, its velocity must be much higher than the sound speed 

of the background gas. The study depicts that initially (0.025 ns) the ejected plume 

propagates with a supersonic front velocity slightly above 400 m/s which is about 3 times the 

sound speed in the ambient gas (132 m/s at 50 K). In the initial snapshots it is clearly 

discernible that solid atoms fly out from the target with high speed accompanying intense 

phase explosion. The adjacent gas region is eminently compressed because the plume front 

pushes with great impact on the surroundings, resulting in the formation of the highly 

energetic shock wave. The shock wave front is already visible at 0.1 ns when the plume 

transfers a large portion of its kinetic energy to the shock wave, and both travel with an 

enormous velocity around 350 m/s. It is important to notice that a velocity discontinuity 

exists at the plume/compressed gas interface. This is physically reasonable because 

momentum and energy transfer occurs from the ejected plume to the generated shock wave at 

the initial instant of time. A lot of gas atoms have been pushed out quickly with analogy to a 

supersonic piston. So the not-pushed or slightly-pushed gas atoms stay behind the shock 

wave front. This also gives rise to the non-uniform velocity distribution in the compressed 

ambient gas, where the shock wave front features the maximum speed. 

 

At 0.2 ns the shock wave already gains the momentum to expand, whereas the plume 

begins to decelerate. At this moment, the peak velocity of atoms in the compressed ambient 
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gas is even higher than that of the plume. Deceleration of the plume is induced by the 

accumulated mass of the compressed ambient gas, which becomes comparable to the plume 

mass. The slowdown effect by the ambient gas reduces the velocity of the expansion plume. 

It is interesting to notice that at the later steps it happens that the velocity of the plume 

becomes negative (2 to 5 ns). This means the plume starts to move back to the target surface 

and could re-combine with it. The accelerated denser shock wave front propagates with a 

sharp velocity peak, while the rarefied ‘tail’ undergoes increasing scattering/diffusion with 

the plume constituents. It is clearly visible that deceleration and ‘quenching’ of the shock 

wave front occurs due to the momentum loss to the stationary background gas. At 5 ns, the 

atomic velocity inside the shock wave front is very close to the sound velocity in the ambient 

gas (132 m/s). 

 

3.3 Effect of Laser Beam Absorption on Shock Wave 

In this work, the volumetric laser energy absorption model is incorporated into the 

simulations. It de-emphasizes the details of laser material interaction in which quantum 

mechanical effects need to be taken into account. The time scale of laser energy absorption 

(< 1 ps) is much smaller than the time scale associated with the laser pulse. Therefore, 

without knowing the details of laser material interaction, the thermal and mechanical effects, 

as well as shock wave formation can be investigated using this absorption model (Wang and 

Xu, 2002, 2003a,b; Wang, 2005). Here the results of simulation for optical absorption depth 

of  5, 10, and 15 nm are presented, which reflects the fact of different volumetric absorption 

of the laser beam. 
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Figures 3.1a-c show the snapshots of the dynamics and evolution of the propagating 

shock wave for the same laser fluence of 3 J/m2 , and the same ambient pressure of 0.22 

MPa, but with different absorption depths. It is clearly visible that the absorption depth 

significantly affects the characteristics and generation of the shock wave. The amount of 

ablated material is an important parameter in laser material interaction. The specific rate of 

the ablation is dependent on several factors including laser wavelength, laser fluence, and 

moreover on the properties of the target material (Mason and Mank, 2001; Russo et al., 2000, 

2002). In the first case τ = 5 nm (Fig. 3.1a) which has more shallow absorption depth, the 

shock wave forms and propagates predictably in the way as has been already described in the 

previous sections. Interesting and startling things occur when we increase the absorption 

depth. Due to the longer absorption depth the laser beam penetrates deeper inside the sample, 

resulting in thicker material removal for that more mass is ablated from a larger volume but 

with lower velocity. As it can be seen in Fig. 3.1b (τ = 10 nm case), a thin layer of target 

material is ejected out and stays mainly on the plume front. As previously stated, the 

background gas is extruded and pushed forward by the much higher-density plume, leading 

to a strong shock wave. Nanoclusters are also visible in the “tail” region of the expanding 

plume. Starting from 3 ns, it is very obvious that the ablated thin layer starts to move back 

toward the target surface. This motion is caused by the high pressure in the compressed 

ambient gas, which prevents the nanoclusters/plume from moving out. Such phenomenon is 

also observed in the case of E=3 J/m2, τ=5 nm as discussed above. 

 

Of special attention is the third case shown in Fig. 3.1c. When the laser absorption 

depth is too large (15 nm), the formation of the plume is hardly visible. At the initial stages it 
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is observed that a thin layer of film is ejected out a little bit (0.5 and 1 ns), and quite a large 

bubble forms beneath the surface. But it seems that the ejected material has not gained 

sufficient energy to overcome two forces: the attraction force from the molten material, and 

the restraint force from the ambient gas. Therefore, at 1 ns it is being pushed back and at later 

steps there are only a discernible minority of particles flying out. Although a shock wave has 

formed, it has very low energy of propagation and it is quickly diffusing in the ambient gas, 

which can be noticed at 5 ns when the shock wave front becomes very difficult to distinguish. 

 

In order to establish a further understanding of the kinetics in the nanoscale shock 

waves, their dynamic parameters are studied in great detail. Figure 3.3 is a juxtaposition of 

the shock wave propagation velocity, the shock wave front position (Fig. 3.3a), as well as 

mass velocity of atoms in the shock wave front (Fig. 3.3b), for three absorption depths. For 

comparison and demonstration purposes, different Mach number lines have been marked 

(Fig. 3.3a), which are multiplications of the sound speed of the ambient gas (132 m/s). The 

shock wave thickness is the largest (1.6 µm at 5 ns) for the τ = 5 nm case. The mass velocity 

of atoms in the shock wave front is determined by calculating the average velocity of atoms 

in a thin layer (about 2 nm thick) close to the shock wave front. The propagation velocity of 

the shock wave front is totally different from the mass velocity and is specified by using the 

time derivative of shock wave front position. From Fig. 3.3 it is seen that at 5 ns, the shock 

wave front still propagates with a Mach number larger than 1. When the absorption depth is 

smaller, the shock wave front propagates faster. This is because a shorter absorption depth 

will result in a smaller amount of ablation, but with higher velocity, leading to a faster 

movement of the shock wave front. For comparison with literatures, front propagation 
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Figure 3.3 Comparison of the shock wave velocities by MD vs. Eqs. (3.1) and (3.2) for 

three absorption depths: 5 nm, 10 nm, and 15 nm, (E=3 J/m2, P = 0.22 MPa): (a) shock 

wave front position and shock wave propagation velocity; (b) mass velocity of atoms in 

the shock wave front. Solid symbols: MD velocities; hollow symbols: velocities from Eqs. 

(3.1) and (3.2); solid lines: shock wave front position. 
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velocity (Fig. 3.3a) and the mass velocity of the shock wave (Fig. 3.3b) are provided. The 

theoretical velocity distributions in that plot are based on the theoretical equations taken from 

(Zhang and Gogos, 2004) as 
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where uf and uav are shock wave propagation and mass velocity, respectively, M is the Mach 

number, a is the speed of sound in the ambient gas, p1 is the ambient pressure, and γ = 5/3 is 

the ratio of specific heats for the ambient gas. Those equations use the pressure p2 which is 

the pressure of the shock wave front and its distribution is shown in Fig. 3.4. This pressure is 

calculated based on our MD data using the following equation (Wang, 2005) 
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where V∆ is the volume of a small domain of interest, kb the Boltzmann constant, and TNkb  

the pressure induced by the movement of atoms. The characteristic of velocity evolution is in 

good agreement, despite some slight difference between velocity profiles obtained from 

literature equations and those obtained from MD simulations. These deviations probably are 

due to the statistical uncertainty in determining the shock wave front pressure and the 

position of the shock wave front. Comparing Fig. 3.3a and b concludes that the average mass 

velocity of atoms in the shock wave front is always less than the propagation speed of the 

shock wave front. This is because the shock wave front propagation consists of two 
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processes: one is the movement of atoms in the shock wave front, and the other one is the 

process to entrain the stationary adjacent ambient gas into the shock wave front to make it 

thicker. Therefore, the shock wave front propagation is always faster than the local mass 

velocity of atoms. 

 

Another great interesting kinetic parameter which is difficult to obtain 

experimentally, but relatively easy to determine with MD, is the thickness of the interaction 

zone between the plume and background gas. The inside of the shock wave is comprised of 

strongly compressed background gas and fast moving plume. These two species initially will 

have very little mixing, and will penetrate into each other because of mass diffusion and 

Figure 3.4 Shock wave front average pressure distribution versus time for three 

absorption depths: 5 nm, 10 nm, and 15 nm (E=3 J/m2, P = 0.22 MPa). 
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relative movement. It is expected strong mixing will lead to appreciable interaction between 

them. Figure 3.5 illustrates how the thickness of the interaction zone changes with time for 

three different absorption depths.  

The definition of the interaction zone thickness was detailed in Wang’s previous paper 

(Zhang and Wang, 2008) where it was designed in the following form 
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nn
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+

⋅
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 (3.4) 

where nt=Ntarget/(Ntarget+Ngas) and ng=Ngas/(Ntarget+Ngas). Symbols nt and ng denote the fraction 

of the target and gas atoms in a small layer δz. Ntarget and Ngas are the number of target and 

gas atoms in a thin layer, respectively. 

 

Figure 3.5 Interaction zone thickness between the target and the ambient gas for three 

absorption depths: 5 nm, 10 nm, and 15 nm (E=3 J/m2, P = 0.22 MPa). 
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Generally speaking, when the optical absorption depth is smaller, the shock wave 

features a much larger interaction zone between the plume and the ambient gas. This is due to 

the faster movement of the plume, which makes it possible for the plume atoms to penetrate 

more into the ambient gas. In our past work, it has been proven that the increase of the 

interaction zone thickness is largely due to the relative movement between the plume and gas 

atoms (Zhang and Wang, 2008). For τ = 5 nm and τ = 10 nm the thickness changes almost 

linearly with time. In the situation when a thin layer film is ejected, the density of the plume 

front is large, but it does not allow penetration by scattered background gas constituents (τ = 

10 nm case). Therefore, only the small clusters/particles in front of this layer mix with the 

ambient gas molecules. This results in a relative small interaction zone between the plume 

and background gas. For the case τ = 15 nm it is predictable that the interaction zone is close 

to saturation at very early stages owing to the weakness of the plume and the shock wave. 

 

3.4 Effect of Ambient Pressure on Shock Wave 

Changing of the ambient pressure distinctly affects the controlling parameters of the 

plume characteristics such as spatial distribution, deposition rate, and kinetic energy 

distribution of the depositing species, which greatly vary due to plume scattering, attenuation, 

and thermalization (Chrisey and Hubler, 1994). Figure 3.6 displays snapshots of the spatial 

plume and shock wave evolution under three different ambient pressures. It is evident that 

raising the background gas pressure results in denser shock wave formation, greater strength, 

and considerable sharpening of its front. In fact, increase in the ambient pressure strengthens 

interpenetration collisions on the plume expansion front with the background gas. When the 

pressure is 0.87 MPa, it is obvious that the plume does not expand much to the space. 
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Figure 3.6 Comparison of snapshots for the dynamics of shock wave formation and evolution for E=5 J/m2, ττττ=5 nm, and three 

different ambient pressures: (a) P = 0.87 MPa, (b) P = 0.22 MPa, and (c) P = 0.051 MPa. 
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Figure 3.6 Continued. 
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Figure 3.6 Continued. 
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Starting from 1 ns, the plume moves back to the liquid surface. At 5 ns, only very little plume 

is observed in space. Such back movement of the plume is also observed for 0.22 MPa, but 

happens much later (starting from 3.5 ns). Much more plume is ejected when the ambient 

pressure is 0.22 MPa. Stronger forward movement of the plume in lower pressure is more 

obvious when it is reduced to 0.051 MPa, under which the plume flies to the space as much 

as 1.6 µm at 5 ns. 

 

In order to extract more valuable information about the ambient pressure effect on the 

shock wave dynamics, Fig. 3.7 is provided to illustrate the shock wave propagation velocity, 

the mass velocity of atoms in the shock wave front, the shock wave front position for three 

background gas pressures (Fig. 3.7a), and shock wave front average pressure distribution in 

time (Fig. 3.7b). It can be inferred that the shock wave forward-directed length is much larger 

(around 3 µm at 5 ns) when the ambient pressure is lower (0.051 MPa), which is visible both 

in Fig. 3.7a and in Fig. 3.6c. It is justifiable that the shock wave expands further when the 

pressure drops because the ambient gas constrains its expansion less. Furthermore, the shock 

wave propagation velocity becomes higher when the ambient pressure declines and it can 

reach an immense initial Mach number of 7 for 0.051 MPa pressure (Fig. 3.7b). The reason is 

that the shock wave expands more freely under low ambient pressure, and gains higher 

velocity in lower background pressure due to the less collisional interaction between the gas 

atoms trapped in the shock front and the ambient gas. 

 

It can also be observed that the shock wave slowing down effect is stronger when 

raising the ambient pressure. As the background pressure increases the shock wave front 
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Figure 3.7 (a) Position, shock wave propagation velocity and the mass velocity of atoms in 

the shock wave front for three ambient pressures: 0.87 MPa, 0.22 MPa, 0.051 MPa (E=5 

J/m2, ττττ=5 nm). (Solid symbols: shock wave front propagation velocity; hollow symbols: 

mass velocity in the shock wave front; solid lines: shock wave front position); (b) Shock 

wave front average pressure distribution in time for three ambient pressures: 0.87 MPa, 

0.22 MPa, 0.051 MPa (E=5 J/m2, ττττ=5 nm). 
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undergoes larger scattering and is more attenuated by background gas collisions. When the 

ambient pressure is higher, the formed shock wave front features a much higher pressure, 

initially close to 30 MPa under the ambient pressure of 0.87 MPa. As the expansion 

progresses, the velocity in the shock wave front continues to decrease, the shock pressure is 

reduced noticeably, and the shielded slower components propagate to coalesce with the 

slowed material on the contact plume front (Chrisey and Hubler, 1994). This results in 

increase of the interaction zone thickness which is presented in Fig. 3.8. 

  

In general, the mixing length (interaction zone thickness) is larger when the ambient 

pressure declines. This is because of the higher plume propagation velocity and consequently 

higher recombination process of the plume constituents with shielded slower components of 

the shock wave. Despite almost linear increasing character of the mixing length at lower 

Figure 3.8 Interaction zone thickness between the target and the ambient gas for three 

ambient pressures: 0.87 MPa, 0.22 MPa, 0.051 MPa (E=5 J/m2, ττττ=5 nm). 
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pressures (0.051 MPa and 0.22 MPa), very surprising things occur for the higher pressure 

0.87 MPa. It looks like that the process of mixing is somehow interrupted at 1.5 ns. A closer 

look at Fig. 3.6a reveals that at 1.5 ns, a large amount of plume is pushed back to recombine 

with the liquid surface. Therefore, this reduces the interaction zone thickness between the 

plume and the ambient gas. The increase of the interaction zone thickness after 1.5 ns is 

mainly attributed to the slow diffusion of the plume species into the ambient gas. The 

experimental work of the pressure influence on the laser ablation process has been widely 

covered in literatures (Chrisey and Hubler, 1994; Harilal et al., 2003: Eason, 2007). This 

work shows sound agreement with the experiments in terms of the shock wave and plume 

characteristics and behavior.  

 

3.5 Comparison with Laser Material Interaction in Vacuum 

For the purpose of comparison, the situation resembling the plume expansion in a 

vacuum is presented. This represents the extreme situation of the pressure effect (zero 

ambient pressure). The material plume expands freely in the vacuum since there is no 

medium to constrain its propagation. Figure 3.9 illustrates the spatial plume development in a 

vacuum combined with evolution of the target velocity along the z direction for similar laser 

ablation process parameters as previously applied: laser fluence of 5 J/m2 and optical 

absorption depth of 5 nm. It can be noticed that the furthest flying out material particles can 

reach a length range of 16 µm at 5 ns from the target surface. To be able to attain so far 

distance within an ultrashort period of time, they must have very high velocity. As it can be 

seen in Fig. 3.9, the fastest traveling plume components can achieve extremely high 

expansion velocities near 3200 m/s, which approaches closely the experimental velocity  
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Figure 3.9 Snapshots of atomic positions combined with the evolution of target velocity 

distribution along the z direction in vacuum (E=5 J/m2, ττττ=5 nm). Green color: target 

material velocity; black dots: target atoms. 
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Figure 3.9 Continued. 
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Figure 3.9 Continued. 
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range for instance in Voevodin et al. (2000). 

 

Having shown knowledge of shock wave expansion and evolution it would be of 

considerable significance to also gain an insight into plume dynamics. Figure 3.10 displays 

the position of the plume front at three background pressures and under vacuum conditions. 

In this work, the plume front has been determined on the basis of plume density. 

 

 When scanning layer by layer from the top of the whole domain it will encounter the 

increasing number of ejectants from the target material. By selecting the criterion (dependent 

on the specific case since the number of atoms in plume front will vary when the ambient 

condition changes) the position of the plume front can be determined. It is visible that 

Figure 3.10 Position of the plume front (E=5 J/m2, ττττ=5 nm) for three ambient pressures: 

0.87 MPa, 0.22 MPa, 0.051 MPa and comparison with vacuum conditions. The inset in 

the figure shows position-time plots of the luminous front of the aluminum plume 

produced at different background air pressures taken from Harilal et al. (2003). 
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apparent difference arises between plume expansion in vacuum and in the presence of 

ambient gas. The plume front in vacuum rises very fast in comparison to the cases of ambient 

pressure, indicating linear free expansion in vacuum. On the other hand, as the pressure of 

the ambient gas increases, the plume becomes more constrained which results in reduction of 

the effective length of the plume. These results show a perceivable analogy to the 

experimental outcomes described by Harilal et al. (2003) for nanosecond laser-material 

interaction (Nd:YAG laser, 8 ns pulse width). The inset in Fig. 3.10 may serve for 

comparison purpose. Although this work’s simulation conditions differ from those of Harilal 

et al. (2003) in time scale and material, close agreement is observed between them in plume’s 

propagation trend considering the effect of ambient pressure. Evidently, the plume 

development using MD simulations is not complete due to the high computational cost and 

can be tracked only up to a few nanoseconds. However, similarity at the early stage of 

evolution can be attributed, when comparing the P=0.051 MPa curve with the experimental 

curve at 100 Torr (0.015 MPa), the closest pressure condition, where one can quickly notice 

the apparent, and expected for later times, analogous behavior. Moreover, even though the 

timescale in MD simulation is three-order smaller than that in experiment using nanosecond 

laser, the reported dynamic evolution of shock waves reveals the early stage physics for 

shock wave formation and evolution in picosecond laser-material interaction. 

 

For pressure 0.051 MPa the plume expands invariably forward from the surface 

within the computational time, which can be observed in Fig. 3.10 or in Fig. 3.6c. When the 

background gas pressure increases the strong shock wave stops the movement of plume and 

makes it move toward the target surface. As the plume expands, the counteraction of the 



 59 

higher pressure ambient gas increases and the contact surface slows down, resulting in 

backward motion. This is observed for the background gas pressure of 0.87 MPa and 0.22 

MPa in Fig. 3.10. For the ambient gas pressure of 0.22 MPa the plume starts being pushed to 

the surface at 3.5 ns. Very perceivable backward movement is observed for the case with the 

highest ambient pressure (0.87 MPa). Just after 1.5 ns the plume is mercilessly knocked back 

and recombines with the target surface. The plume backward motion can lead to 

intensification of the surface redeposition process. As observed in experiments (Singh, 2005), 

the mass of the redeposited debris goes up with increase in the background pressure. This is 

because for a higher pressure, the entrapment of the particles is stronger due to the higher gas 

density, consequently dragging more ablated mass back to the target surface. As long as the 

backward movement of plume makes it to redeposit on the target surface, a series of 

thermodynamic processes will occur (e.g., condensation and solidification). The local 

temperature and pressure play important roles in these processes. Further study is underway 

to investigate the phase change after plume redeposition. 

 

3.6 Effect of Laser Fluence on Shock Wave 

In laser ablation process it is important to efficiently ablate material without excessive 

overheating and melting of the sample. The fact is that for different materials there exists a 

certain level of laser energy often called as a threshold fluence of ablation, above which the 

material is expelled from the target surface. With increased irradiance above the ablation 

threshold, the ejected plume becomes more intense and the generated shock wave becomes 

stronger. In this work, dependence of the ablation process on the laser fluence is shown on 

the basis of three laser energy levels: 3, 5, and 7 J/m2 when τ=5 nm, and P=0.22 MPa. The  
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Figure 3.11 Comparison of snapshots for the dynamics of shock wave formation and evolution for P = 0.22 MPa, ττττ=5 nm, and 

three different laser fluences: (a) E=3 J/m2, (b) E=5 J/m2, and (c) E=7 J/m2. 
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Figure 3.11 Continued. 
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Figure 3.11 Continued. 
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Figure 3.12 (a) Position, shock wave propagation velocity and the mass velocity of atoms 

in the shock wave front for three laser fluences: 3 J/m2, 5 J/m2, 7 J/m2 (P = 0.22 MPa, ττττ=5 

nm). (Solid symbols: shock wave front propagation velocity; hollow symbols: mass 

velocity in the shock wave front; solid lines: shock wave front position); (b) Shock wave 

front average pressure distribution in time for three laser fluences: 3 J/m2, 5 J/m2, 7 J/m2 

(P = 0.22 MPa, ττττ=5 nm). 
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atomic positions and dynamics of plume and shock wave evolution are presented in Fig. 3.11. 

Figure 3.12 shows the velocity (Fig. 3.12a) and pressure evolution (Fig. 3.12b) at the shock 

wave front for the scenarios shown in Fig. 3.11. From Figure 3.11 it is observed that with 

increasing laser energy input, the plume becomes more uniform with fewer large particles 

ablated out. When the laser fluence is higher, the material is ablated out suddenly in a more 

concentrated time, leading to a more concentrated plume front. More distant shock wave 

propagation is visible when the laser fluence is higher (Figs. 3.11 and 3.12a). Furthermore, a 

higher shock wave propagation velocity and pressure for 7 J/m2 case indicates that the larger 

amount of laser energy generates a much stronger shock wave (Figs. 3.11 and 3.12). The 

interaction zone thickness also increases when the laser fluence is increased. This is due to 

greater relative movement of the plume and gas particles (Fig. 3.13). 

 

Figure 3.13 Interaction zone thickness between the target and the ambient gas for three 

laser fluences: 3 J/m2, 5 J/m2, 7 J/m2 (P = 0.22 MPa, ττττ=5 nm). 
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It can also be inferred that, the higher laser pulse energies cause an increase in the ablated 

mass, additionally resulting in a larger material depth removed. That occurrence is presented 

experimentally in work by Mason and Mank (2001) or Singh et al. (2005) with close 

agreement with our results. Related analysis of the composition and density of the ejected 

plume on the laser fluence dependence has been also recently performed using MD 

simulations (Zhigilei et al., 2003). For applied fluences range the results obtained here and 

observations are correspondingly reasonable. 
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4. SECONDARY SHOCK WAVE IN LASER MATERIAL INTERACTION 

 

The atomic position with evolution and propagation of the primary and secondary 

shock waves in the background gas is presented in Fig. 4.1. Additionally, the velocity and 

pressure distributions are also superimposed in that figure for ease of discussion. At the first 

of displayed pictures, one of the initial stages of the process is shown at 0.2 ns. As it can be 

seen the main/primary shock wave front is already formed and is characterized by the high 

pressure (around 21 MPa) and velocity almost 3 times the speed of sound (around 390 m/s). 

The plume at this stage is propagating forward with supersonic velocity, having been ejected 

from the target surface after application of the laser energy pulse. An important occurrence 

starts to happen at 0.5 ns when the velocity of the plume front has a substantial decrease. 

Because of the ambient gas high pressure, the plume undergoes volumetric confinement, and 

in result is being bounced back. The interpretation of this harsh volumetric constraint is the 

extremely high pressure gradient from the compressed ambient gas front to the target surface. 

While the shock wave front expands further, the plume starts to move backward heading to 

the surface, which is justified by the negative velocity of target material at 1 ns. The same 

trend of the velocity is still visible at 1.5 ns; however with significant difference in the 

behavior of the adjacent gas molecules. Due to the backward motion of the plume material, 

the under-pressure zone created in vicinity of the plume front (right side) results in suction of 

the ambient gas atoms, with analogy to the retracting movement of the ultrafast piston. 

Therefore, the sucked background gas molecules are being dragged to the target surface, 

leading to the change in the velocity direction (1.5 ns). At this moment, a negative velocity at 

the rear of the background gas is observed. At 2 ns the large amount of the plume particle  
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Figure 4.1 Snapshots of atomic positions combined with the evolution of target and gas 

velocity, alongside with pressure distribution in the z direction (E=5 J/m2, ττττ=5 nm, P=0.87 

MPa). Green color: target material velocity; blue color: background gas velocity; violet 

color: pressure; black dots: target atoms; red dots: ambient gas atoms. 



 68 

 

 

Figure 4.1 Continued. 
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cloud is already pushed back where it recombines with the liquid surface, and the velocity of 

the plume becomes almost zero. In contrast, after being dragged toward the target surface, the 

ambient gas is reflected from it and begins to propagate in the direction leaving the material 

surface, ultimately forming the secondary shock wave. At 3 ns, this internal shock wave front 

is fully discernible, and it is marked (as well as at 4 and 5 ns) in order to improve visual 

detection, since it is rather weak due to the strong dissipation. At 5 ns its velocity does not 

exceed the value of 50 m/s, meaning it moves almost 3 times slower in comparison with the 

main shock wave front. Although, in Fig. 4.1 the secondary shock wave is practically hard to 

observe in the atomic configuration due to its weak strength, it is clearly visible in the 

velocity and pressure distribution enclosed, where at the front of the secondary shockwave, a 

peak of the pressure and velocity is very visible. Similar behavior has been observed in TOF 

measurements for various plume species analyzed by mass spectroscopy (Bulgakov et al., 

1996), and successful attempt of modeling has been performed by the gas dynamic model 

(Bulgakov and Bulgakova, 1995). These results show remarkable good agreement with those 

scientific output on the velocity and pressure distribution, despite the difference of the 

inspected materials and slight disparity in the values. 

 

In order to have a better understanding of the secondary shock wave formation and 

evolution, it is necessary to analyze its generation from the bulk mass and thermal point of 

view. For this reason, Fig. 4.2 is provided to present time sequence of the density and 

temperature profile along the z direction. As can be seen the shock wave front density and 

temperature is the highest at the initial stages due to compression. At 0.2 and 0.5 ns, as 
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Figure 4.2 Evolution of density and temperature distribution along the z direction at 

different times (E=5 J/m2, ττττ=5 nm, P=0.87 MPa). Red color: target material density; blue 

color: background gas density; green color: target material temperature; violet color: 

background gas temperature. 
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Figure 4.2 Continued. 
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indicated in the figure, there is a density peak at the front of the plume. Due to the high 

pressure gradient, the plume front is forced to move back toward the target surface. Such 

backward movement of the plume quickly reduces the density peak, which disappears at 1.5 

ns. As we described based on Fig. 4.1, some of the ambient gas is also pushed back toward 

the target surface. Since the ambient gas molecules cannot coalesce with the target surface, 

they are reflected and the gaseous cloud induces the formation of a second shock 

compression. As marked in figures of 3~5 ns, there is a density jump at the front of the 

secondary shock wave, which is a direct consequence of the reflected background gas from 

the target surface. Such density jump justifies the existence of the secondary shock wave. 

During propagation this internal shock front keeps a distribution width of several mean free 

paths (5 ns). Likewise, backward motion of the ablated particles was observed in several 

experiments by TOF spectroscopy or time resolved imaging (Leboeuf et al., 1996; Harilal et 

al., 2003; Singh et al., 2005) providing considerable close agreement with this result. 

 

In Fig. 4.2 it is observed that at the front of the main/primary shock wave, there is a 

significant temperature jump. On the other hand, it is noteworthy that at the front of the 

secondary shock wave, the temperature jump is very weak, almost negligible. For the 

primary shock wave, its front temperature experiences quick dissipation, from 250 K at 0.2 

ns to 80 K at 5 ns. In opposite, the temperature of the ambient gas in the rear region (close to 

the target surface) has very slow dissipation since no stationary low temperature background 

gas is in contact with it. 
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5. PLUME SPLITTING IN LASER MATERIAL INTERACITON UNDER THE 

INFLUENCE OF SHOCK WAVE 

 

In this chapter, work is focused on the physical process during the early stage of laser 

ablated plume propagation (up to 2 ns). In figure 5.1, the spatial evolution of the plume 

through the background gas at different times is presented. The combined pressure 

distribution with generated processes in the ambient gas is imposed to account for the 

interpretation of the splitting effect. As can be noticed the highest pressure in the system is 

generated at the front of the produced shock wave. However, not the compelling shock wave 

characteristics, but primarily the intriguing pressure gradient across the plume material is the 

aspect of concern in here. At initial expansion stages, the ejected material consists of very 

high pressure gradient in the front of the plume (0.2 ns), which later on attenuates 

significantly due to the dissipation with the background gas. On the other hand the pressure 

gradient in the plume’s tail region is not so steep and afterwards becomes rather uniform. 

Although the pressure carries lots of valuable information, the plume splitting explanation 

must be linked simultaneously with the velocity and density profiles. In contrast to Fig. 5.1, 

figure 5.2 shows the target atoms transport in the two peak regions, which corresponds to 

temporal evolution dynamics of the plume up to 2 ns. 

 

The plume splitting effect is perceptible with the formation of clear twin-peak 

behavior in the plume velocity profile (0.5~2 ns). Let us move to the elucidating of the 

reason of plume splitting whose configuration mechanism has to be recognized from the 

early time steps. The question is: Where do the atoms within the two peaks of velocity 
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distribution come from? The track the history of these atoms has been performed, and found 

that the atoms in the front peak (Peak I) (t= 1 ns) come from the front of the plume at 0.2 ns. 

The second peak (Peak II) at 1 ns corresponds to atoms that are ejected having slower initial 

Figure 5.1 Snapshots of atomic positions combined with the pressure distribution in the z 

direction (E=7 J/m2, ττττ=5 nm, P=0.22 MPa). Blue color: pressure; black dots: target 

atoms; red dots: ambient gas atoms. 

Region A Region B 

Region ARegion B 
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velocity at 0.2 ns. In figure 5.2, the black dots represent the atoms flying out slowly at 0.2 ns, 

and the violet dots are the fast atoms in the front of the plume. The atoms in these two 

regions (region A and B) are marked in the inset in the figure at 0.2 ns in figure 5.1. The 

evolution of the velocity in the regions of interest can be explained inclusive of the pressure 

distribution shown in figure 5.1 in order to justify the formation of plume splitting. Upon 

laser irradiation, phase explosion will take place. The faster ejected particles (monomers, 

dimers, and smaller particles) quickly move out and interact with the ambient gas and feel the 

strong constraint from the ambience. These atoms form Region A (marked in figures 5.1 and 

5.2). As shown in figure 5.1, in that zone, there is a very steep pressure gradient due to the 

strong constraint of the ambient gas. This large pressure gradient plays a critical role in 

slowing down the atoms in Region A. This velocity deceleration can be viewed clearly in 

figure 5.2. The velocity of atoms in the front of the plume zone reduces from the level of 500 

m/s at 0.2 ns down to less than 100 m/s at 2 ns. 

 

In the phase explosion vicinity section, at the early times (0.2 ns), on the contrary, the 

larger particles have lower velocity and are left behind in the tail of the plume (Region B), as 

shown in figure 5.1. In that zone the pressure gradient is very small (almost flat pressure 

distribution). Therefore, the atoms in Region B experience much less deceleration. In fact, 

since some particles still have phase change (vaporization) and their velocity is picking up 

from less than 100 m/s at 0.2 ns to more than 200 m/s at 0.5 ns. The deceleration of Region A 

and acceleration of Region B give strong contribution to the formation of plume splitting, 

which emerges starting from around 0.5 ns. At 2 ns, it is found most of the atoms in Region 

B have moved quite close to the ambient gas and their velocity reduces to less than 100 m/s. 
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Figure 5.2 Velocity and density distribution of the target material plume and the 

indication of the position of the plume two-peak propagation in the z    direction        

(E=7 J/m2 , τ , τ , τ , τ=5 nm, P=0.22 MPa). Blue color: plume velocity; red color: plume density; 

violet dots: plume’s first peak atoms position; black dots: plume’s second peak atoms 

position. 
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It is pertinent to notice that the double peak density formation of the plume can be observed 

at very early expansion times (0.2 ns in Fig. 5.2). It is believed that this occurrence is not just 

coincidence but it brings significant impact to the mechanism of the plume splitting. The 

leading density peak (Region A) characterizes the highest content of the atoms and is located 

in the front of the plume. During the plume expansion it retains its peak looking shape but 

‘snowplowing’ of the background gas causes to diminish and broaden it. The other density 

peak initially being adjacent to the target surface (Region B), spreads over in the plume’s 

shroud and exhibits sporadically spikes indicating appearance of nanoclusters (for example at 

2 ns in Fig. 5.2).  

 

The plume velocity decay can also be viewed clearly in figure 5.3, where velocities of 

atoms in both peaks are presented against time. These curves represent the average atom 

velocity from regions belonging to each peak. As one can perceive the plume splitting starts 

at 0.5 ns. Both velocity peaks decelerate very quickly from about 280 m/s at 0.5 ns to about 

100 m/s and 50 m/s for peak II and peak I, respectively (2 ns). The moment when the split 

starts to appear can be also discerned from the propagation position of peak location (figure 

5.3). While peak I moves out with time, peak II appears almost as a standing wave, showing 

little change of its location against time. This is clearly shown in Figs. 5.2 and 5.3. Such 

phenomenon holds on for about 1.5 ns during our simulation. Such standing-wave feature of 

Peak II is due to the strong relaxation of large particles/clusters and atoms in the plume. 

Similar velocity behavior has also been observed in the prominent computational study by 

Amoruso et al. (2006) at pressure of 70 Pa. The plume splitting has also been observed 

experimentally in the vacuum (Bulgakov and Bulgakova, 1995; Harilal et al., 2002). It seems 
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that the phenomenon is more general in laser material interaction regime. It may indicate that 

the photomechanical effects with thermal desorption, melting, overheating and explosive 

boiling processes of the irradiated material plays important role in formation of fast atomic 

plume followed by a slower plume of aggregates. 

 

The dependence of plume splitting on background gas pressure and laser fluence has 

been studied as well in this simulation. It is found the plume penetration depth into the 

background gas decreases when the ambient pressure is higher. When the ambient pressure is 

increased, the plume expansion dynamics along with expansion velocities of the peaks are 

strongly affected by the interaction with the background gas and the plume stopping occurs at 

progressively earlier times and shorter distances from the target surface. The plume splitting 

is clearly observable but occurs much earlier and is much closer to the target surface under 

Figure 5.3 Evolution of the position and the average atomic velocity within the two peaks. 
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the ambient pressure 0.87 MPa, whereas for 0.051 MPa the plume with vague splitting occurs 

spatially at a longer distance from the target and generally later in time. 

 

The evolution from single-peaked to double-peaked plume has been investigated for 

two other laser fluences: 3 and 5 J/m2. By increasing the irradiation level we observe that the 

plume propagation under higher fluences becomes more energetic and the plume splitting 

and plume sharpening is more noticeable. For irradiance in value of 3 J/m2 the splitting effect 

is barely distinguishable and it occurs few tens of the picoseconds later than for 5 J/m2 or 7 

J/m2. Under the fluence 5 J/m2 the produced splitting of plume can be clearly noticed. 

Generally speaking, one can observe the apparent trend of the earlier occurrence of plume 

splitting when increasing the laser irradiance. To a large extent, since higher laser fluence 

results in more energetic particle formation, the velocity of those atoms and by that the peaks 

velocities are respectfully higher when increasing the fluence. 
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6. CONCLUSIONS 

 

6.1 Summary and Conclusions 

In this work, thermal and thermophysical phenomena induced by single picosecond 

laser pulse irradiation in the presence of background gas were studied using MD simulations. 

 

For laser material interaction, the dynamics, internal structure, and evolution of shock 

waves were studied while emphasis was placed on the effect of the laser absorption depth, 

ambient pressure, and laser fluence. The study showed that the initial shock wave 

propagation velocity can reach an enormous value close to 7 Mach, and the initial pressure 

can go even over 25 MPa. The MD results on shock wave propagation and mass velocity 

were in sound agreement with the theoretical prediction, demonstrating the validity of MD 

approach for studying shock waves in laser-material interaction. At the interface between the 

plume and the compressed ambient gas, a velocity discontinuity was observed. Owing to the 

strong constraint from the compressed ambient gas, in late stage the ablated plume either 

stopped moving forward and mixed with the ambient gas, or moved backward to the target 

surface, leading to surface debris redeposition. It was found that smaller laser absorption 

depth, lower ambient pressure, or higher laser fluence will lead to stronger shock waves, 

which were featured with faster propagation in space and thicker interaction zone between 

the target and ambient gas. 

 

Furthermore for picosecond laser ablation process, the secondary shock wave 

formation in a relatively high pressure background gas environment was investigated. The 
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primary shock wave evolution and especially reflection phenomenon of the internal shock 

front from the substrate was uniquely explored at nanoscale, giving forerun insight in its 

thermophysical and dynamical properties. It is found the significant pressure gradient inside 

the shock wave pushed the plume and some of the gas atoms in the rarefield to move back 

toward the target surface. The plume clusters re-deposited on the target surface while the 

ambient gas atoms were reflected back, leading to the secondary shock wave. Within the 

secondary shock wave range, the gas has relatively higher pressure, velocity, and density, but 

somewhat less rise of temperature. It is conclusive that the strong pressure gradient inside the 

main shock wave overcomes the forward momentum of the plume and some compressed gas, 

which leads to backward movement and re-deposition on the target surface. In result of 

ambient gas backward movement and reflection from the target surface, the secondary shock 

wave is formed. 

 

Also for laser material interaction up to 2 ns, the physics of plume splitting was 

studied. Detailed atoms track allows to specifically look into the behavior of atoms within the 

peaks and reveals the mechanisms of peak formation. The observed plume velocity splitting 

came from two distinguished parts of the plume. The front peak of the plume came from the 

faster moving atoms and smaller particles during laser-material ablation. This region 

experienced strong constraint from the ambient gas and had strong velocity attenuation. The 

second (rear) peak of the plume velocity originated from the larger clusters in laser-material 

ablation. These larger clusters/particles moved slower and experienced very little constraint, 

eventually picked up their velocity during the early evolution. At the very beginning of laser-

ablation, two density peaks emerged and quickly disappeared due to the spread-out of the 
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slower moving part. While the front peak propagated out against time, the second peak 

behaved as a standing wave and did not propagate but rather had a little trend towards the 

target surface. When the ambient pressure was increased, the plume splitting happened much 

earlier and occurred at a distance closer to the target surface. However when the ambient 

pressure was reduced, the plume splitting became weak and barely visible. Under stronger 

laser fluence irradiation, the plume splitting will happen earlier. 

 

6.2 Contributions and Recommendations for Future Work 

 The fundamental information which consists of this dissertation’s contents is essential 

for achieving a detailed understanding of the physics of shock waves in laser material 

interaction processes. It contributes to better understanding the phenomena occurring in early 

stages of laser ablation up to 5 ns. It needs to be noted this is the first study of shock wave in 

laser-material interaction at the atomic level. This atomic level study reveals very critical 

phenomena of shock waves in laser-material interaction, such as plume-back ground gas 

mass penetration, atomic velocity distribution inside the shock wave front, and the evolution 

of the plume in the background gas. Such information has never been obtained in the past. 

  

 The MD simulations were used to study the subject. The FORTRAN code has been 

developed with application of the parallel computation. I was a successive contributor in 

development and modifications to this code. Many new parameters were derived and had to 

be computed such as atomic velocity inside the shock wave, front propagation velocity, and 

mixing length parameter between expanding plume and shroud of propagating shock wave, 

which are very hard to obtain experimentally. Numerous simulation cases were conducted to 



 83 

show the influence of external factors on the processes during laser material interaction. 

Notably, how ambient gas pressure, laser fluence, and laser absorption depth affects the laser 

material interaction was investigated. The validity of the approach and results has been 

verified previously in theoretical and experimental literature. It is demonstrated that MD 

technique is relatively fast and robust enough to perform accurate laser-material interaction 

simulations, especially for nano shock waves.  

  

 The reported results are designed to study the early stage shock wave dynamic, 

formation of the internal shock wave and plume’s peculiar behavior rather than to recover an 

experimental condition. Laser-argon crystal interaction was studied which is different from 

the commonly used materials such as copper, silicon or carbon. The laser type and 

wavelength has not been specified. However the simulations were framed in the way that 

laser beam can resemble universal situation of the laser material interaction. 

  

 The meritorious significance of this study comes with broad purpose for the 

optimization of the experiments and itself can serve for controlling the laser material 

interaction process, optimizing the efficiency of laser assisted micro-machining, and 

minimizing the laser induced material damage. Moreover, unprecedented results can serve in 

improving our understanding of molecular energy-transfer processes and new presented 

findings successfully resulted in journal publications and conference paper. 

 

 In addition to the research conducted in this work, further investigation in laser 

material interaction and resulting physical phenomena requires to be performed. 
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 Due to the immense progress in development of the ultrafast laser technology, and 

increasing application of this technique in recent years, femtosecond laser pulse duration 

should be investigated. The shorter time of the laser beam creates totally different processes 

when interacting with matter. The electrostatic ablation takes significant portion of the 

conventional thermal evaporation causing additional complexity in ongoing phenomena. 

Alike, the processes for nanosecond laser impulse should be studied for comparison 

purposes. 

 

 For the deposition of thin films it is necessary to control the composition of the laser 

produced plume. Plumes containing macroscopic particles and liquid droplet result in a poor 

quality deposited films. When, the plume cloud is ejected, nanoparticles very often combine 

and form nanoclusters as well as source of the liquid droplets in the plume is condensation of 

vapor during expansion. The process of solidification and condensation of these species 

should be studied and the way how the shock wave influences their creation. 

 

 Another very important occurrence in laser material interaction is melting and 

consecutive stress development in the target structure. It deserves more attention how the 

shock wave affects these processes and it would be of deliberate significance to pursue the 

investigation to that subject. 
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