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ABSTRACT

A non-body conformal grid method for simulation of laminar and turbulent flows within

complex geometries is developed and incoporated into a compressible large eddy simulation

(LES) solver. The underlying finite volume solver for the filtered compressible Navier-Stokes

equations is based on a second-order dual-time step approach with preconditioning for low

Mach number flow simulations. The time marching was done with an implicit lower-upper-

symmetric-Gauss-Seidel (LU-SGS) scheme. The small scale motions were modeled by a dy-

namic subgrid-scale (SGS) model. The code was developed in a multiblock framework and

parallelized using the message passing interface (MPI).

To satisfy the boundary conditions on an arbitrary immersed interface, the velocity field at

the grid points near the interface is reconstructed locally without smearing the sharp interface.

To treat the moving interface situation, a field extension strategy is used which resolved the

velocity and pressure issues when a moving solid grid point becomes a fluid grid point.

A variety of laminar and turbulent flow problems are considered to validate the accuracy

and range of applicability of the method. In particular, flow over a circular cylinder with

different Reynolds numbers and Mach numbers is simulated and an order of accuracy analysis

is conducted. A turbulent pipe flow is also solved with a Cartesian grid and good agreement of

the simulation results with experimental results validates the capability of the current solver

in turbulent flow simulations. Then a rectangular duct containing a cylindrical rod is stud-

ied and the simulation results are compared to those obtained from body-fitted grid methods.

Next, turbulent heated flow simulations with a non-body conformal grid method are discussed.

Laminar flow over a heated cylinder with different Reynolds numbers and temperature ratios

is simulated first. The characteristic flow properties such as drag and lift coefficients, Strouhal
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number and Nusselt number are compared to experimental results. Then the simulation of

heated turbulent pipe flow with an isoflux boundary condition is presented using the non-body

conformal grids. To demonstrate the applicability of the non-body conformal grid method in

compressible flows, transonic and supersonic flow over a cylinder are simulated and qualitative

results are studied. Next flow over an oscillating cylinder is studied to demonstrate the capa-

bility in solving flow over moving objects. Finally, as a representative of complex geometry

flow, subchannel flow surrounding two cylindrical rods in a rectangular duct is studied and the

simulation results are compared to simulation and experimental results by other investigators.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Turbulence is one of the most important unresolved problems in engineering and science,

especially for the complex geometries and fluid property variations occurring in the advanced

reactor systems and their passive safety systems (McEligot et al., 2005). Improved computa-

tional techniques and supporting measurements are needed to assist the designs and system

safety analyses for some operating conditions and hypothesized accident scenarios of these

nuclear reactors. The geometries of the reactor cooling channels of some reactor concepts are

illustrated in Fig. 1.1. Most of these geometries are more complex than those that have been

used to generate the empirical correlations employed in the thermal hydraulic codes. These

complex geometries may augement the heat transfer and pressure drop or they may cause stag-

nation regions with reduced velocities and thereby, increased thermal resistance leading to “hot

spots”. Computational thermal fluid mechanics is a very useful tool to provide detailed flow

field analyses and help to understand the interacting phenomena induced by these geometries.

Figure 1.1 Some supercritical-pressure water reactor (SCWR) designs.

Direct numerical simulation (DNS), large eddy simulation (LES) and differential second
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moment closures (DSM) are advanced computational techniques in turbulence modeling whose

development has been extended to treat complex geometries and severe property variation for

designs and safety analyses of supercritial-pressure water reactors (SCWRs).

• Direct numerical simulation (DNS), in which the Navier-Stokes equations are solved

directly without any models and all scales of motion are resolved. To achieve such a resolution,

the number of grid points in each direction is proportional to the ratio between the largest and

smallest eddy in the flow, i.e., Re
3/4
L (Pope, 2000), where ReL is the Reynolds number based

on the integral length scale of the flow. Thus the total number of points is ∝ Re9/4
L . Therefore,

limited computer resources inhibit the resolution of flow characteristic of most applications by

DNS.

• Reynolds-averaged method based on the Reynolds-averaged Navier-Stokes equations

(RANS). The RANS equations are obtained by time or ensemble averaging of the Navier-

Stokes equations. The effect of all the scales of motion is modeled. Although the RANS

method has been a dominant approach of turbulent flow simulation, it appears that no model

has emerged that gives accurate results in all flows without ad hoc adjustments of the model

constants (Piomelli and Balaras, 2002). This may be due to the fact that, the large, energy-

containing eddies are much affected by the boundary conditions, and universal models that

account for the different dynamics of flow may be impossible to develop.

• Large eddy simulation (LES). The basic idea of this method is that only the large

scale motions are computed explicitly while effects of the small scale motions are modeled.

LES can be more accurate than the RANS approach because the small scales tend to be

more isotropic and homogeneous than the large ones, and thus more ameanable to universal

modeling. Furthermore, the subgrid scale stresses only contribute a small fraction of the

total turbulent stresses. Compared to DNS, the computational cost is much less as the grid

resolution is allowed to be coarser than the smallest scales.

• Combination of LES with wall models and detached eddy simulation (DES). DES employs

the RANS method in the vicinity of solid walls while using LES away from the walls and into

the main stream.
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In the above four types of methods, DNS is regarded as the most accurate, and DNS results

are usually used to verify and validate the other methods. However, since DNS has to use

extremely fine grids to resolve all motion scales, it requires exceptionally large computational

resources, especially for high Reynolds numbers, which severely limits its application. The

RANS method is usually inexpensive, but its accuracy suffers much because of the uncertainty

of the closure models. LES, which costs much less than DNS, but provides almost the same

capability, can be thought of as an ideal compromise of accuracy and economy.

In LES, a spatial filtering (or averaging) operation is applied to the governing equations

and the filtered quantities correspond to the motion of scales larger than the filter size (so

called “large scales” or “large eddies”). Usually, the filter size is the same as the grid size. The

filtered equations are solved in a time accurate manner. Since in turbulent flows, the turbulent

fluctuations and viscous dissipation occur on a range of scales from the geometrical scale down

to the Kolmogorov scale, which is much smaller than the grid size in LES, the information

about the motions smaller than the grid size (so called “subgrid scale” or briefly, SGS) should

be given. In the filtered equations, the effects of these subgrid scale motions are reflected in

the so called subgrid scale stress and subgrid scale heat flux terms, which should be modeled.

More details will be given in later chapters.

The main motivation for this research is to extend the LES capability to simulate complex

geometry flows. It is hoped that the present research will provide certain perspectives in the

application of non-body conformal grid method in engineering applications such as cooling flow

surrounding irregular reactor core geometries or stirred-tank flow problems.

1.2 Objectives

The main objectives of this research are listed below and discussed in more detail subse-

quently.

• Incorporate the non-body conformal grid method into a large eddy simulation (LES)

solver.

• Analyze the order of accuracy of the non-body formal grid method.
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• Discuss the turbulent characteristics of duct sub-channel flows using LES combined with

the non-body conformal grid method.

• Extend the non-body conformal grid method to simulate heat transfer problems.

• Study the capability of the non-body conformal grid method in simulation of compressible

flows.

• Study the capability of the current non-body conformal grid method in simulation of

flow over moving objects.

• Study particle laden turbulent flows.

1.3 Literature reviews

1.3.1 Complex geometry flow simulation

Traditionally, the typical simulation methods for complex flows are either based on body-

fitted grid multi-block methods or unstructured grid methods. In the last decade, another

alternative method, immersed boundary (IB) method, has been introduced and a series of

complex flow computations have been tested with this method. The primary advantage of the

IB method is that the task of grid generation is greatly simplified. Generating body-conformal

structured or unstructured grids is usually very cumbersome. Even for simple geometries,

generating a good-quality body-conformal grid can be an iterative process requiring repeated

adjustment of grid parameters based on solution quality. As the geometry becomes more com-

plicated, the task of generating an acceptable grid becomes increasingly difficult. In the struc-

tured grid method, complex geometries are often decomposed into multiblocks. Apart from

the possible complexity introduced into the solution algorithm, grid smoothness on the inter-

face between different blocks is another concern. The unstructured grid approach is inherently

better suited for complex geometries due to its standardized grid generation process. How-

ever, grid quality can dereriorate with increasing comlexity of the geometry. When compared

with unstructured grid methods, the Cartesian grid based IB method retains the advantage of

powerful line-iterative techniques and geometric multigrid methods.

Another advantage of the Cartesian grid-based IB method is observed in the simulation
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of flows with moving boundaries. Simulating such flows on body- conformal grids requires

regeneration of the grid system at each time step and projection of the solution onto this

new grid. This process inevitably introduces more complexity and computational cost to the

solution procedure. In contrast, the moving boundary problem can be easily handled with the

IB method since there is no need to regenerate the underlying grid system.

1.3.1.1 Turbulent flow simulation with immersed boundary methods

The immersed boundary method has been successfully incorporated into incompressible

flow solvers to solve a series of turbulent flows problems such as flow in an impeller stirred

tank mixer (Verzicco et al., 2004), flow around a road-vehicle (Moin, 2002), flow over a wavy

boundary (Tseng and Ferziger, 2003) and tip-clearance flow of an axial turbomachine (You

et al., 2004). Ovchinnikov et al. (2006) used DNS and LES to simulate the boundary layer

transition behind a circular cylinder for Reynolds numbers ReD = 385, 1155 and 3900. Rapid,

bypass-like transition to turbulence is observed in the two highest Reynolds number cases.

Qualitative similarities between wake-induced transition and bypass transition due to free-

stream turbulence were discussed.

However, the implementation of this approach for compressible, viscous flows is limited.

Ghias et al. (2007) has employed the “ghost cell” approach in a viscous compressible flow solver

to solve a flow over a cylinder and an airfoil problem. Even though no turbulent flow case was

solved, very good results were obtained by incoporating the IB method into a compressible

flow solver. Palma et al. (2006) successfully employed the immersed boundary method and a

k − ω turbulence model to simulate a compressible flow over a cylinder at Reynolds number

Re∞ = 2× 105 and Mach numbers M∞ = 1.3, 1.7. Good agreement with experimental results

for pressure coefficient and drag coefficient was observed.

1.3.2 Non-body conformal grid methods

Since the pioneering work of Peskin (1972), the terminology of “immersed boundary (IB)

method” has been specifically used for the continuous forcing IB method. To compare a series of
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numerical methods based on non-body conformal grids, we use the term “non-body conformal

grid method” in this study to refer to a broader group which includes both continuous forcing

and discrete forcing methods. The non-body conformal grid methods can be categorized into

two major classes: a “sharp interface” approach and a “smooth/diffuse interface” approach

(Gilmanov and Acharya, 2006). Sharp interface methods include: (i) Cartesian cut-cell

method (Yang et al., 1997); (ii) Sharp interface Cartesian grid method (Udaykumar et al.,

2001); (iii) Hybrid Cartesian immersed boundary method (Gilmanov and Acharya, 2006) and

(iv) Embedded boundary method (Fadlun et al., 2000). Diffuse interface methods include:

(i) Immersed boundary method (Peskin, 1972); (ii) Diffusive interface method (Anderson et

al., 1998); (iii) Immersed interface method (Xu and Wang, 2006) and (iv) Smooth interface

method (Yamamoto et al., 2004).

1.3.2.1 Immersed boundary (IB) method

The so-called immersed boundary method pioneered by Peskin (1972) was used to study

fluid-structure interaction problems in cardiovascular circulation. In these computations the

vascular boundary was modeled as a set of elements linked by springs. As a result the forces

required to enforce boundary conditions could be evaluated with Hook’s law. Since the force is

incorporated into the govering equation before discretization, the advantage of this method is

that it can be formulated independently of the underlying spatial discretization. The proposed

IB method employed a mixture of Eulerian and Lagrangian variables, where the immersed

boundary was represented by a set of discrete Lagrangian markers embedding in the Eulerian

fluid domain. Those markers can be treated as force generators to the fluid, and move along

with the fluid. The interaction between the Lagrangian markers and the fluid variables de-

fined on the fixed Eulerian grid was linked by a well-chosen discretized delta function. The

fundamental concept of the immersed boundary method is described next.

Suppose the immersed boundary is represented by a series of points defined by the para-

metric form X(s),X ∈ Γ, the force density acting on the fluid f(x, t) and the boundary force
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density on the immersed interface F(X(s), t) are

f(x, t) =

∫

Γ
F(X(s), t)δ(x−X(s))ds, (1.1)

F(X(s), t) = S(X(s), t), (1.2)

where function S satisfies a generalized Hook’s law if the boundary is elastic. For rigid bound-

aries, S will represent a stiff passive force which tends to keep the boundary very close to the

specified configuration (Lai and Peskin, 2000).

Mathematically, f can be viewed as a distribution function whose action on any test function

w(x, t) is defined by

〈f ,w〉 =

∫

Ω
f(x, t) ·w(x, t)dx

=

∫

Ω

∫

Γ
F(X(s), t)δ(x−X(s))ds ·w(x, t)dx

=

∫

Γ
F(X(s), t) ·

∫

Ω
w(x, t)δ(x−X(s))dxds

=

∫

Γ
F(X(s), t) ·w(X(s), t)ds. (1.3)

Practically, if we choose w(x, t) to be the velocity u(x, t), then the above identity implies

that the total work done by the immersed boundary is equal to the total work done on the

fluid. However, the IB method is developed to handle mostly the fluid problem with elastic

structures. For rigid boundaries or structures, Lai and Peskin (2000) suggested a formation

F(X(s), t) = κ(Xe(s)−X(s)), (1.4)

where κ is a positive constant such that κ >> 1. The basic idea of this formation is to connect

the boundary points X to a fixed equilibrium points Xe with a very stiff spring whose stiffness

constant is κ. So if the boundary points fall away from the desired location, the force on the

spring will pull these boundary points back.

It should be noted that the grid points generally do not coincide with the immersed inter-

face so the force needs to be distributed over a band of cells around each Lagrangian point.

Therefore the sharp Dirac delta function δ should be replaced by a smoother distribution

function and this method belongs to the “diffuse interface” category.
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1.3.2.2 Feedback forcing method

Also adopting the mixture of Eulerian and Lagrangian variables, Goldstein et al. (1993)

proposed the feed-back forcing method to simulate the flow with the solid boundary within the

spectral method framework. The solid boundary was treated as a force generator where the

force field was calculated by a feedback method based on the difference between the predicted

velocity and the actual velocity of the boundary. Supposing a Dirichlet boundary condition

U(xs, t
′) = Us(xs, t

′) is imposed on the boundary, the forcing term, according to Goldstein et

al. (1993) is

f(xs, t) = α

∫ t

0
[U(xs, t

′)−Us(xs, t
′)]dt′ + β[U(xs, t)−Us(xs, t

′)], (1.5)

where xs is the boundary point, α and β are negative constants having dimension ∝ 1/(T 2)

and ∝ 1/(T ), respectively. The first term with integral feedback is to create a force field that

will asymptotically reduce the differece U(xs, t)−Us(xs, t). Since this term decreases in time

as the integrand increases, it tends to enforce U(xs, t) = Us(xs, t
′) on the immersed boundary.

The second term can be interpreted as the resistance opposed by the surface element to assume

a boundary value different from Us. In an unsteady flow, the magnitude of α must be large

enough so that the restoring force can react with a frequency which is bigger than any frequency

in the flow. However, the value of the constants is flow dependent and there is not a general

rule for their determination.

The major drawback of this forcing is that big values of α and β make the Navier-Stokes

equation stiff and its time integration requires very small time steps. Goldstein et al. (1993)

performed a stability analysis and they found that, when all the forcing terms are computed

explicitly, a one or two orders of magnitude decreases in the time step size was required

to ensure stability. This is very challenging for large scale calculations of turbulent flows.

Although it was found that implicit calculation of the second term can alleviate the severe

time step limitation, the determination of constants of α and β are still problem dependent.
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1.3.2.3 Immersed interface method (IIM)

One of the motivations of IIM (LeVeque and Li, 1994) is to improve the accuracy of the IB

method by using a sharp interface method that accurately captures discontinuities of the solu-

tion and its derivatives without smearing. For a simple analytically integrable, one-dimensional

model problem, it is possible to formally derive a forcing term that enforces a specific condition

on a boundary (Beyer and LeVeque, 1992). However, the same is not usually practical for the

Navier-Stokes equations because the equations cannot be integrated analytically to determine

the forcing functions. Therefore, this method will not be discussed in detail in this study.

1.3.2.4 Cut cell method

The primary motivation of the cut cell method is that conservation of mass and momentum

can be guaranteed with a finite-volume approach. This methodology was introduced into the

Cartesian grid methods to solve a series of flow problems such as in Ye et al. (1999), Udaykumar

et al. (2001) and Kirkpatrick et al. (2003). In this method, cells that were cut by the immersed

boundary were identified, and those with centerlines located in the fluid field were reshaped

by discarding the portion lying in the solid. For those cells with centerlines located in the

solid field, the part in the flow field was absorbed by the neighboring cells. Then a polynomial

function was used to evaluate the flux on the irregular surfaces. This method has been used to

simulate various flows with stationary and moving boundaries including flow-induced vibrations

(Mittal et al., 2003), flapping foils (Mittal et al., 2002) and objects in free fall through a fluid

(Mittal et al., 2004). However, extending this approach to three dimensions is not trivial and

an iterative technique may be required due to different shapes of the cutting cells. Also, very

small grid cells near the boundary can cause extra stiffness for the problem.

1.3.2.5 Direct forcing method

Without adopting the Lagrangian markers, Mohd-Yusof (1998) proposed a direct forcing

method within the spectral framework, where direct momentum forcing was applied to a set

of points adjacent to the surface and interior to the body. Therefore, information regarding
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the locations of the Eulerian grids either external or internal to the immersed boundary must

be determined. In this approach, the governing equations are first discretized on a Cartesian

grid without regard to the immersed boundary. Then the discretization in the cells near the

boundary is adjusted to account for its presence. This allows direct control over the numerical

accuracy, stability and conservative properties of the solver. Another advantage of this method

is that since the force field is directly computed from the momentum equations, the time step

can be larger than with the previous methods. However, since the immersed boundary in

general does not coincide with the grid points, the determination of the forcing locations and

their magnitude may not be straightforward on the Eulerian grids.

Due to different means to impose boundary condition on the immersed boundary, direct

forcing methods can be further categorized into methods through indirect means (Mohd-Yusof,

1997; Verzicco et al., 2004; Balaras, 2004) and those that directly impose the boundary con-

ditions on the IB (Ghias et al., 2007). Since the Navier-Stokes equations cannot be integrated

analytically to determine the forcing function, Mohd-Yusof (1997) developed a method that

extracted the forcing directly from the numerical solution for which an a priori estimate can

be determined. Consider the incompressible Navier-Stokes equations for flow past a body,

∂u

∂t
+ u · ∇u +

1

ρ
∇p− µ

ρ
∇2u = 0

∇ · u = 0 in Ωf , (1.6)

with boundary condition

u = uΓ on Γb, (1.7)

where Ωf is the flow domain and Γb is the boundary of the immersed body. An operator L

(Mittal and Iaccarino, 2005) can be used to simplify the the system equation as

L(U) = 0 in Ωf ,

U = UΓ on Γb (1.8)

with U = (u, p). Due to the presence of the immersed body, the discretized equation was

adjusted to take into account the drag force on the fluid and resulted in a modified equation

[L′]U = r, (1.9)
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where [L′] is the modified discrete operator and r represents terms associated with the boundary

condition on Γb. The basic idea of the direct forcing method is to pre-solve the equation

[L]U∗ = 0 at each time step where U∗ represents a prediction of the velocity field. A forcing

f ′ib is then calculated as

f ′ib = r + [L]U∗ − [L′]U∗ = r− [L′]U∗, (1.10)

where r = UΓδ(X− x) and

[L′] = [L] + ([I]− [L])δ(X− x). (1.11)

The major advantage of this method is the absence of user-specified parameters and the elim-

ination of associated stability constraints. For instance, in Fadlun et al. (2000) and Balaras

(2004), the solution was reconstructed at the fluid nodes closest to the immersed boundary

(fluid points with at least one neighbor in the solid phase). In Fadlun et al. (2000), a one-

dimensional interpolation scheme along an arbitrary grid line was used while in Balaras (2004)

the reconstruction was performed along the well-defined line normal to the interface.

For high Reynolds number flows, the local accuracy is assumed to be very important and it

is desired to reduce the spreading effect of the smooth force distribution function. Therefore,

other approaches were also considered to modify the computational stencil near the interface

to directly impose the boundary condition on the IB. The example applications are the “ghost-

cell” approach (Majumdar et al., 2001; Tseng and Ferziger, 2003). In this method, ghost cells

are defined as cells in the solid that have at least one neighbor in the fluid. For each ghost

cell, an interpolation scheme that implicitly incorporated the boundary conditions on the IB

is employed. For laminar flows or low Reynolds flows where the first gird is located within

the viscous sublayer, a linear reconstruction such as φ = C1x1x2 + C2x1 + C3x2 + C4 (two-

dimensional) is acceptable. However, at high Reynolds numbers, linear reconstruction could

lead to erroneous solutions. Majumdar et al. (2001) employed a higher order interpolant that

is linear in the tangential direction and quadratic in the normal direction,

φ = C1n
2 + C2nt+ C3n+ C4t+ C5, (1.12)
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where n and t are normal and tangent unit coordinates, respectively. Then the value of the

flow variable at the ghost cell point φG can be expressed as

φG =
i∑
ωiφi, (1.13)

where the summation extends over all the points in the stencil and ωi are known geometry

dependent coefficients.

1.3.2.6 Other methods

Recently, Su et al. (2007) combined the original immersed boundary method with the direct

forcing method in order to overcome the time step limitation. This method also employs a

mixture of Eulerian and Lagrangian variables, where the solid boundary is represented by

discrete Lagrangian markers and exerts forces on the Eulerian fluid domain.

Finally, there are other categories of numerical methods to handle flow problems with

immersed interfaces, such as the volume of fluid (VOF) approach and the level-set method.

Typically, the former method was developed for the tracking of interfaces between different

fluids (i.e., free surface flows) and the latter was used for the flame propogation problems in

combustion modeling. These techniques might be adapted or combined with the immersed

boundary method to deal with flow problems with immersed solid bodies.

1.3.2.7 Special treatment of boundary treatment for moving boundary prob-

lems

For moving boundary problems, the boundary determination and forcing calculation pro-

cedure introduces further complexity compared to stationary boundary problems. In cut-cell

or direct forcing formulations, complications are encountered due to the fact that the Eulerian

grid points near the interface changes from timestep to timestep, as the body moves through

the fixed grid. As a result, the velocity and pressure for some points in the flow will assume

non-physical values due to their previous association with the solid phase. In the case of “ghost

cell” methods, as the body moves through the fixed grid some of the ghost cells will move into
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the fluid and become fluid cells. Since they were previously in the solid they have no valid his-

tory in the fluid phase and no physically realizable values for the velocity and pressure. In the

case where the solution is reconstructed at the fluid nodes closest to the boundary, the points

that emerge from the solid become the boundary points that are central to the reconstruction

procedure and therefore their history in the fluid phase is irrelevant. One approach suggested

by Udaykumar et al. (1999) is to merge these cells with adjacent fluid cells for the first time

step after a cell emerges from the body. Another one is to determine the flow velocity in this

cell for each time step by interpolating from neighboring cells (Udaykumar et al., 2001). Yang

and Balaras (2006) employed a method similar to the latter one and obtained very promising

results. The issue of cell refreshing is not encountered in the immersed boundary method using

continuous forcing since the force distribution has been spread on both sides of the boundary

This removes the temporal discontinuity for cells merging into the fluid.

1.3.2.8 Other applications of the immersed boundary method

Pan et al. (2002) applied the IB methed to simulate the dynamics of premixed flames. Vit-

turi et al. (2007) used the immersed boundary method to simulate the dynamics of pyroclastic

density currents, where the extension of the IB method to compressible multiphase flows is

achieved through a flux correction term in the mass continuity equations of the immersed cells

that accounts for density variations in the partial volumes.

1.3.3 Particle laden turbulent flow simulation

Transport of small particles in turbulent fluid flow occurs in many industrial processes

such as aerosol transport and deposition, spray combustion and fluidized bed combustion.

The developement of more accurate LES models such as dynamic modeling (Germano et

al., 1991), approximate deconvolution models (Stolz et al., 2001) and variational multiscale

model (Hughes et al., 2001; Vreman, 2003), provides the possibility to simulate particle-laden

turbulent flows accurately with LES. However, due to the interaction between particles and

turbulent eddies, new terms appear in the governing equations of the fluid and particle phases
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that need to be modeled. Basically, the following effects need to be considered: (i) effects

of subgrid scale fluctuations on the particle dispersion; (ii) effects of particles on the subgrid

scales statistical propertities; (iii) effects of particles on the filtered scale fields; (iv) inter-

particle collisions. Since the filtered fluid field can be solved directly, the new terms that need

to be modeled often depend on the interaction of particles and subgrid scale eddies. When

the particle relaxation time is large compared to the Kolmogrov time scale and the smallest

time scale resolved in the LES, the disregard of the subgrid scale effect is justified (Uijttwaal

and Oliemans, 1996; Armenio et al., 1999). In contrast, when the particle relaxation time is

the same order as the Kolmogrov time, a substantial difference between the DNS and LES

results remains (Kuerten, 2006), which indicates the neglect of subgrid scale effects can cause

significant errors. In the literature, the subgrid scale field (Pozorski et al., 2004; Oesterle and

Zaichik, 2004) and the particle dispersion (Pai and Subramaniam, 2007) are often modeled

with a stochastic process governed by Langevin equations. In these models, an appropriate

Lagrangian correlation time scale is necessary to prescribe the parameters of drift and diffusion

coefficients.

Although there are various analytical and numerical methods for predicting turbulent flows

laden with solid particles or liquid droplets, Mashayek and Pandya (2003) separated these

methods into two major categories. The first category is refered to as the Lagrangian approach,

which describes the motion of particles with a Lagrangian coordinates. Depending on the

method used to simulate turbulent flows, it includes direct numerical simulation (DNS), large-

eddy simulation (LES) and stochastic modeling. The second category is the Eulerian approach

that treats the continuous and dispersed phases with an Eulerian approach and it includes

Reynolds averaged Navier-Stokes (RANS) and probability density function (pdf) modeling.

The mean field theory describes each phase with jump conditions formulated across interphase

boundaries (Drew and Passman, 1999). The solution of these equations typically relies on

an averaging procedure of some kind, e.g. time, space or ensemble. In this approach, phase-

filtered equations can be formed based on spatial filtering with LES techniques. However, it

was reported that one disadvantage of a phase-averaged approach is that moment closures
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can not adequately capture the effects of physics at the small scales (Carrara and DesJardin,

2003). Carrara and DesJardin (2003) combined LES with a filtered density function (FDF)

approach and they provided a new definition of the instantaneous interfacial area concentration

to simplify phase-coupling terms. In their work, the full velocity-scalar FDF transport equation

for a separated two-phase flow was derived in the context of LES filtering and they showed that

the instantaneous form of the transport equations in the FDF formulation can be recovered

directly from the phase- filtered field by shrinking the LES filter volume. They also showed that

conditionally surface-filtered quantities arising in the two-phase FDF formulation are equal to

phase-coupling terms in the phase-filtered LES equations. Under Lagrangian descriptions,

since Wang and Squires (1996) performed a one-way couple LES of particle-laden turbulent

channel flow, a significant amount of work was developed to study the two-way coulping effects

and the influence of subgrid scale flutuaions on particles recently. Yuu et al. (2001) studied a

particle-laden jet flow by taking consideration of the effect of particle existence on the subgrid-

scale flow. A drag interaction term was included in the momentum equation and in their model

for subgrid stress terms, the subgrid eddy viscosity νt is assumed to depend on subgrid kinetic

energy ksgs. A transport equation for ksgs is formed and the interphase transfer terms are

modeled through a gradient transport method.

Sankaran and Menon (2002) also solved a transport equation for subgrid kinetic energy

ksgs and the subgrid eddy viscosity was formed to be related to ksgs and a model spectrum.

Moreover, they considered the effect of turbulence on the droplet motion using the stochastic

separated flow model, in which the subgrid velocity was modeled with subgrid kinetic energy

and a random number sampled from a uniform distribution. Winkler et al. (2006) applied a

similar approach to simulate the particle wall-deposition in a turbulent square duct flow and

they observed that the deposition rate increased with the consideration of two-way coupling

and collision. Vinkovic et al. (2006) simulated a droplet dispersion for inhomogeneous turbulent

wall flow with LES. In their work, a three-dimensional Langevin equation was used to model

the subgrid velocity and an appropriate Lagrangian correlation timescale was considered in

order to include the influence of gravity and inertia. Yamamoto et al. (2001) simulated a
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turbulent gas-particle flow in a vertical channel by considering inter-particle collisions. They

claimed that the calculated turbulence attenuation by particles agreed well with experimental

measurements for small Stokes number particles, but not for large Stokes number particles.

By considering inter-particle collision the shape and scale of particle clouds observed in the

channel-center region agreed well with experimental observation, unlike the LES results by

Wang and Squires (1996). Nevertheless, in the above LES simulation of particle-laden flows,

the importance of multiscale interaction between particles and turbulent eddies with a series

of time and length scales is not fully addressed.

1.4 Dissertation Organization

The following chapters of this dissertation will be organized in this manner:

Chapter 2 describes the governing equations, the filtering procedure, the sub-grid scale

(SGS) models and the finite volume formulations which were used in the current large eddy

simulations (LES). This chapter highlights the different SGS models and boundary conditions.

The details of the process of incorporating the immersed boundary method into the eddy vis-

cosity type LES solver will be presented in Chapter 3. The validation of the current solver for

laminar flow and turbulent flow simulations with different Reynolds numbers is demostrated in

Chapter 4. The simulation results for a duct containing one cylindrical rod are also reported.

Chapter 5 demonstrates the capability of the current solver in simulating laminar and turbulent

flow with heat transfer. Chapter 6 reports the simulation results of more complex geometry

cases. The transonic and supersonic flows over a circular cylinder are considered. Then turbu-

lent subchannel flow in a duct surrounding two cylindrical rods is discussed. Chapter 7 shows

the DNS simulation results of particle laden isotropic flows and the multi-timescale consider-

ation between the dispersed phase and turbulent eddies. The conclusions of this research, as

well as recommendations for future work can be found in Chapter 8.
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CHAPTER 2. GOVERNING EQUATIONS AND NUMERICAL

SCHEMES

The compressible filtered Navier-Stokes equations and large eddy simulation (LES) forma-

tion are presented in this chapter. The sub-grid scale models required to close the equations

are described. The finite volume formulation and numerical schemes used to solve the equation

are also discussed in this chapter.

2.1 Governing Equations

The compressible Navier-Stokes equations are based on the conservation equations of mass,

momentum and energy.

∂ρ∗

∂t∗
+
∂(ρ∗u∗j )

∂x∗j
= 0 (2.1)

∂(ρ∗u∗i )
∂t∗

+
∂(ρ∗u∗iu

∗
j )

∂x∗j
=

∂σ∗ij
∂x∗j

+ S∗i (2.2)

∂(ρ∗E∗)
∂t∗

+
∂(ρ∗E∗u∗j )

∂x∗j
= −

∂q∗j
∂x∗j

+
∂(σ∗iju

∗
i )

∂x∗j
+ S∗E , (2.3)

where E∗ is the total specific energy, which is the sum of the specific internal energy and the

specific kinetic energy: E∗ = e∗ + 1
2u
∗
ju
∗
j . The stress tensor is given as

σ∗ij = −p∗δij + 2µ∗(S∗ij −
1

3
S∗kkδij), (2.4)

where δ is the Kronecker delta and S∗ij is the strain rate tensor

S∗ij =
1

2
(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

). (2.5)

The heat flux q∗i is determined by Fourier’s law:

q∗i = −k∗∂T
∗

∂x∗i
. (2.6)
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The source term S∗i , S
∗
E is 0 if there is no external force fields, otherwise it will contain the

force terms such as in mixed convection or rotating flow simulations. In LES and DNS, it is

very common to apply periodic boundary conditions to some dimensions of the computational

domain. If such a boundary condition is used in the flow direction, a forcing function equivalent

to the mean pressure force has to be employed in the source term to drive the flow.

The ideal gas model is used to close the above equations since air is the working fluid in

the current study. The equation of state for the ideal gas model is

p∗ = ρ∗R∗T ∗, (2.7)

where R∗ is the gas constant. And for an ideal gas the specific internal energy is e∗ = c∗vT
∗.

The properties µ∗ and k∗ are the molecular dynamic viscosity and thermal conductivity, re-

spectively. Both of them are functions of temperature that can be derived from molecular

dynamics theory. In this study, the Sutherland’s power law (Schlichting, 1979) was used to

evaluate µ∗ and k∗,
µ∗

µref
=

(
T ∗

Tref

)n
,

k∗

kref
=

(
T ∗

Tref

)n
, (2.8)

where n = 0.71.

The governing dimensional equations can be non-dimensionalized with respect to appro-

priate dimensional reference quantities as described below

xi =
x∗i
Lref

p = p∗

ρrefU
2
ref

e = e∗
U2
ref

cv = c∗v
U2
ref

/Tref

t = t∗
Lref/Uref

ρ = ρ∗
ρref

µ = µ∗
µref

cp =
c∗p

U2
ref

/Tref

ui =
u∗i
Uref

T = T ∗
Tref

k = k∗
kref

R = R∗
U2
ref

/Tref
.

(2.9)

In this research, the hydraulic diameter is chosen as the reference length Lref . Uref , Tref , ρref

are the mean or freestream values and µref and kref are the values of corresponding properties

at Tref .

Using the above definitions, the non-dimensional form of the governing equations is

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 (2.10)
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∂ρui
∂t

+
∂(ρuiuj)

∂xj
=

∂σij
∂xj

+ Si (2.11)

∂(ρE)

∂t
+
∂(ρEuj)

∂xj
= − ∂qj

∂xj
+
∂(σijui)

∂xj
+ SE . (2.12)

The non-dimensional stress tensor, strain rate tensor and heat flux vector are

σij = −pδij +
2µ

Re
(Sij −

1

3
Skkδij),

Sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

), (2.13)

qi = − cpµ

PrRe

∂T

∂xi
.

Re is the Reynolds number and Pr is the Prandtl number. Their definitions are

Re =
ρrefUrefLref

µref
, P r =

µ∗c∗p
k∗

. (2.14)

2.2 Filtering

In large eddy simulation, only the large scales are resolved and small scales are modeled.

To separate the effects of the large-scale and small scale motions, a filtering operation should

be applied to the Navier-Stokes equations. The filtering operation is defined as

f̄(x, t) =

∫
G(|r| ; ∆)f(x− r, t)dr, (2.15)

where integration is over the entire flow domain, and the specified filter function G satisfies

the normalization condition
∫
G(|r| ; ∆)dr = 1. (2.16)

In Fourier space, the most commonly used filters for LES are the spectral cut-off filter, Gaussian

filter and top hat filter. The spectral cut-off filter can be easily applied in Fourier space but

is not easily defined in physical space. The Gaussian filter is preferred by some researchers as

it approximates the cut-off filter and has similar performance in both wavenumber space and

physical space (Dailey, 1997). In the present study, the top-hat filter is used, which is defined

as

G(|r|; ∆) =





1/∆ if |r| ≤ ∆/2

0 if |r| > ∆/2,
(2.17)
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where ∆ is the filter width. This filter is a very natural choice when finite-volume or finite-

difference methods are used because by setting ∆ the same as the grid resolution this filtering

process reduces to an average over a control volume. In the present research, an anisotropic

rectangular grid with grid spacings ∆1, ∆2, and ∆3 in the three coordinate directions was used

in most of the cases; then the filter width ∆ was taken to be ∆ = (∆1∆2∆3)1/3 as suggested

by Deardorff (1970).

As a result of the filtering operation, the flow field can be viewed as being decomposed into

two components:

f = f̄ + f ′, (2.18)

where f̄ is the resolved scale and f ′ is the small subgrid scale component. The difference of the

above decompostion from Reynolds decomposition is that LES uses a spatial average rather

than a temporal average in the filtering procedure. As a result, the filtering operation and

differentiating with respect to time commute, i.e.,

∂f̄

∂t
=
∂f

∂t
. (2.19)

However, the filtering operation and differentiation with respect to position do not commute in

general unless the filter width is constant, and the commutation error is second order in filter

width (Ghosal and Moin, 1995). To avoid this difficulty, one can filter only in the homogeneous

directions. If the filtering operation is applied to the nondimensional governing equations Eq.

(2.10), terms like ρui, ρuiuj and ρuiT appear. To simplify the equations, Favre filtering (Favre,

1983) is introduced to give

f̃ =
ρf

ρ̄
. (2.20)

Thus, the variables can be decomposed in another way,

f = f̃ + f ′′, (2.21)

where f̃ is the resolved component and f ′′ is the unresolved component. Using Favre filtering,

we have

ρui = ρ̄ũi; ρuiuj = ρ̄ũiuj ; ρuiT = ρ̄ũiT . (2.22)
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The Favre filtered continuity and momentum equations can be easily derived (assuming

the source term Si, SE = 0):

∂ρ̄

∂t
+
∂(ρ̄ũj)

∂xj
= 0,

∂(ρ̄ũi)

∂t
+
∂(ρ̄ũiũj)

∂xj
=

∂σ̄ij
∂xj

− ∂τij
∂xj

, (2.23)

in which

σ̄ij = −pδij +
2µ

Re
(Sij −

1

3
Skkδij) = −p̄δij +

2µ

Re
(Sij −

1

3
Skkδij)

≈ σ̂ij = −p̄δij +
2µ̄

Re
(S̃ij −

1

3
S̃kkδij), (2.24)

τij = ρ̄(ũiuj − ũiũj).

The approximation made in Eq. (2.24) is due to the weak correlation between µ and derivatives

of velocity (Cebeci and Smith, 1974) Compared with the original momentum equations, the

filtered form has one more term associated with the so-called subgrid scale (SGS) stress tensor

τij which represents the effect of the small-scale motions. The strain rate tensor is

S̃ij =
1

2
(
∂ũi
∂xj

+
∂ũj
∂xi

). (2.25)

The derivation of the filtered equation for conservation of total energy is derived following

the work of Vreman et al. (1995). An alternate form of the energy equation is used by removing

the mechanical energy from the total energy,

∂(ρcvT )

∂t
+
∂(ρcvTuj)

∂xj
= σij

∂ui
∂xj
− ∂qj
∂xj

. (2.26)

Applying the filtering operation to the above equation leads to

∂(ρ̄cvT̃ )

∂t
+
∂(ρ̄cvT̃ ũj)

∂xj
= σij

∂ui
∂xj
− ∂q̄j
∂xj
− ∂Qtj

∂xj
, (2.27)

in which Qtj = ρ̄cv(T̃ uj − T̃ ũj) is the SGS heat flux. Notice the specific heat cv is regarded as

a constant since the ideal gas model is used. The filtered heat flux q̄j can be approximated as

q̄j = − cpµ

PrRe

∂T

∂xj
≈ q̂j = − cpµ̄

P rRe

∂T̃

∂xj
(2.28)
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by assuming the correlation between viscosity and temperature derivative is weak. To obtain

the equation for ρ̄Ê, the Favre filtered momentum equation is expanded as,

ρ̄
∂ũi
∂t

+ ũi

[
∂ρ̄

∂t
+
∂(ρ̄ũj)

∂xj

]
+ ρ̄ũj

∂ũi
∂xj

=
∂σ̄ij
∂xj

− ∂τij
∂xj

, (2.29)

and the term inside the square brackets vanishes due to continuity. Multiplying Eq. (2.29) by

ũi and adding to the filtered internal energy equation, Eq. (2.27), gives

∂(ρ̄cvT̃ )

∂t
+

∂(ρ̄cvT̃ ũj)

∂xj
+ ρ̄

∂(1
2 ũiũi)

∂t
+ ρ̄ũj

∂(1
2 ũiũi)

∂xj

= σij
∂ui
∂xj
− ∂q̄j
∂xj
− ∂Qtj

∂xj
+ ũi

∂σ̄ij
∂xj

− ũi
∂τij
∂xj

. (2.30)

The filtered continuity equation, Eq. (2.23), is then multiplied by 1
2 ũiũi and added to Eq.

(2.30) and results in

∂(ρ̄cvT̃ )

∂t
+ ρ̄

∂(1
2 ũiũi)

∂t
+

1

2
ũiũi

∂ρ̄

∂t
+
∂(ρ̄cvT̃ ũj)

∂xj
+ ρ̄ũj

∂(1
2 ũiũi)

∂xj
+

1

2
ũiũi

∂(ρ̄ũj)

∂xj

= σij
∂ui
∂xj
− ∂q̄j
∂xj
− ∂Qtj

∂xj
+ ũi

∂σ̄ij
∂xj

− ũi
∂τij
∂xj

. (2.31)

The first three terms and last three terms on the left hand side of Eq. (2.31) are combined,

giving

∂(ρ̄Ê)

∂t
+
∂(ρ̄Êũj)

∂xj
= σij

∂ui
∂xj
− ∂q̂j
∂xj
− ∂Qtj

∂xj
+ ũi

∂σ̂ij
∂xj

− ũi
∂τij
∂xj

, (2.32)

where Ê = ẽ+ 1
2 ũiũi and σ̄ij and q̄j are replaced by their approximations σ̂ij and q̂j respectively.

After combining the pressure term into the energy term, this equation can be rewritten as

∂(ρ̄Ê)

∂t
+
∂[(ρ̄Ê + p̄)ũj ]

∂xj
=
∂(ũiσ̂a,ij)

∂xj
− ∂q̂j
∂xj
− ∂Qtj

∂xj
− α− π − ε, (2.33)

where α is the turbulent stress on the scalar level, π is the pressure-dilatation term and ε is

the subgrid scale turbulent dissipation rate. They are given as

α = ũi
∂τij
∂xj

;

π = p
∂uj
∂xj
− p̄∂ũj

∂xj

ε = σa,ij
∂ui
∂xj
− σ̂a,ij

∂ũi
∂xj

,

where σa,ij is the anisotropic component of the stress. For the present work, α, π and ε are

neglected when Mach number is less than 0.2 (Vreman et al., 1995).
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2.3 Subgrid Scale Model

The role of SGS models in LES is analogous to the turbulence models for the Reynolds

averaged Navier-Stokes (RANS) equations. The advantage for LES is that the simulation

should be much less sensitive to the modeling method, because in LES only the small scales

are modeled that are mostly isotropic. While in RANS modeling, a wide range of scales and

anisotropy must be modeled. The commonly used SGS models can be separated into the

eddy viscosity type models and non-eddy viscosity dependent models. The former includes

the Smagorinsky SGS model, the dynamic SGS model, the structure function model and the

one-equation SGS model. The latter includes the scale similarity model.

Generally, the SGS stress tensor τij can be decomposed into two parts, the anisotropic part

and the isotropic part as

τij = ρ̄(ũiuj − ũiũj) = τaij +
1

3
τkkδij . (2.34)

The eddy viscosity based methodology assumes the anisotropic part of the SGS stress tensor

to be proportional to the filtered rate of strain:

τaij = −2µt(S̃ij −
1

3
S̃kkδij). (2.35)

The filtered strain rate tensor is

S̃ij =
1

2
(
∂ũi
∂xj

+
∂ũj
∂xi

), (2.36)

and S̃kk is the isotropic component. The isotropic part τkk is negligible compared to the

thermodynamic pressure as Moin et al. (1991) and Spyropoulos and Blaisdell (1995) indicated.

Vreman et al. (1995) and Dailey (1997) observed that the calculation was unstable if the

isotropic part was not neglected. In the present work, τkk is neglected.

2.3.1 Smagorinsky Model

The Smagorinsky model was derived by imposing equilibrium between the energy transfer

from large-to-small scale structures and energy dissipation by the small scale motion (Dailey,
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1997). By analogy to the Prandtl’s mixing-length hypothesis, the eddy viscosity is modeled as

µt = ρ̄L2
s|S̃| = ρ̄Cs∆

2|S̃|, (2.37)

where Ls is the Smagorinsky length scale and Cs is the Smagorinsky coefficient which is a

positive constant in this model. The magnitude of the filtered strain rate tensor is defined as

S̃ = (2S̃ijS̃ij)
1/2. (2.38)

The major shortcoming of this model is that the Smagorinsky coefficient should in fact depend

on factors like flow regimes, distance to the walls and grid scales rather than being a constant.

For example, in laminar flow or close to a solid wall, this coefficient should be zero. Although

it is possible to modify the Smagorinsky coefficient formula to take these factors into account,

the coefficient is usually problem dependent and it is difficult to generalize to other problems.

Higher order models include solving individual transport equations for subgrid kinetic energy

or each of the subgrid stresses, similar to the one-equation model and Reynolds stress model in

RANS modeling, respectively. These models generally involve a series of empirical constants

which usually work well for specific problems. On the other hand, the dynamic model calculates

Smagorinsky coefficient dynamically without any a priori parameters.

2.3.2 Dynamic Smagorinsky Model

Germano et al. (1991) developed a dynamic model by introducing a dynamically calculated

coefficient Cs as a function of space and time. The coefficient can be negative so as to account

for the backscatter of energy from small scales to large scales. The SGS stresses obtained from

this model vanish in laminar flow and at solid boundaries, and have the correct asymtotic

behavior in the near wall region. The dynamic model proposed by Moin et al. (1991) and Lilly

(1992) not only consider the variable eddy viscosity but allows the eddy thermal diffusivity to

be calculated dynamically. The basic idea of dynamic model is to introduce a test filter with

a larger filter width ∆̂ than the resolved grid filter width. The test filter width ∆̂ is defined in

the same way as the grid filter width.
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The subgrid stresses based on the grid filter and test filter scales are defined, respectively,

as

τij = ρ̄ũiuj − ρ̄ũiũj = ρuiuj −
ρui ρuj
ρ̄

;

Tij = ̂ρuiuj −
ρ̂ui ρ̂uj

ˆ̄ρ
= ̂ρ̄ũiuj −

̂̄ρũî̄ρũj
ˆ̄ρ

. (2.39)

According to the Smagorinsky model, the anisotropic part of the SGS stress is determined by

τaij = τij −
1

3
τkkδij = −2µt(S̃ij −

1

3
S̃kkδij)

= −2ρ̄Cs∆
2S̃(S̃ij −

1

3
S̃kkδij) = Csαij . (2.40)

Similarly, the subgrid stress based on test filter scale is modeled as

T aij = Tij −
1

3
Tkkδij = −2µ̂t(

ˆ̃Sij −
1

3
ˆ̃Skkδij)

= −2ˆ̄ρCs∆̂
2 ˆ̃S(ˆ̃Sij −

1

3
ˆ̃Skkδij) = Csβij , (2.41)

where

ˆ̃Sij =
1

2
(
∂ ˆ̃ui
∂xj

+
∂ ˆ̃uj
∂xi

). (2.42)

An identity introduced by Germano (1992) is obtained by

Lij = Tij − τ̂ij = ̂ρ̄ũiũj −
̂̄ρũî̄ρũj

ˆ̄ρ
. (2.43)

Thus, we have

Laij = Lij −
1

3
Lkkδij = Csβij − Ĉsαij ≈ Cs(βij − α̂ij). (2.44)

As both Laij and βij − α̂ij are known in terms of ũi and ũj , the value of Cs can be determined

from the above equation. Using the least square approach (Lilly, 1992), the sum of the squares

of the error can be minimized by contracting both sides of Eq. (2.44) with βij − α̂ij to yield:

Cs =

〈
Laij(βij − α̂ij)

〉

〈(βmn − α̂mn)(βmn − α̂mn)〉 , (2.45)

where 〈·〉 denotes a spatial averaging procedure along the homogeneous directions of the flow.

Such a procedure is necessary to ensure the stability of LES calculations.
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The SGS heat flux vectors Qtj , Qj based on the grid filter and the test filter scales are

defined following

Qtj = cv(ρ̄T̃ uj − ρ̄T̃ ũj) = cv(ρTuj −
ρT ρuj
ρ̄

);

Qj = cv(
̂ρTuj −

ρ̂T ρ̂uj
ˆ̄ρ

) = ¯̂ρT̃uj −
̂̄
ρT̃ ̂̄ρũj

ˆ̄ρ
. (2.46)

Then the heat fluxes are modeled as

Qtj = −cvµt
Prt

∂T̃

∂xj
=

ζj
Prt

;

Qj = −cvµ̂t
Prt

∂ ˆ̃T

∂xj
=

ηj
Prt

, (2.47)

where Prt is the turbulent Prandtl number to be determined dynamically. µt and µ̂t are the

same as those defined in Eqs. (2.40) and (2.41). The identity relating the two heat fluxes is

Mj = Qj − Q̂tj = cv(¯̂ρT̃ ũj −
̂̄
ρT̃ ̂̄ρũj

ˆ̄ρ
) =

ηj − ζ̂j
Prt

. (2.48)

Thus, we have

Prt =

〈
(ηj − ζ̂j)(ηj − ζ̂j)

〉

〈
Mn(ηn − ζ̂n)

〉 , (2.49)

where 〈·〉 still denotes a spatial averaging along the homogeneous directions of the flow. This

dynamic model was successfully used by Wang and Pletcher (1996), Xu et al. (2004) and many

other authors.

If there is no homogeneous direction in the flow field, the localized dynamic model developed

by Ghosal et al. (1995) or Piomelli and Liu (1995) can be applied. Equation (2.44) is recast

in the form

Laij = Csβij − Ĉ∗sαij , (2.50)

where C∗s is an estimate of the coefficient. In the present research, the value at the previous

time-step is used as C∗s . The initial value of Cs is set to the Smagorinsky constant. Since C∗s

is known, Cs can be obtained by

Cs =

〈
(Laij + Ĉ∗sαij)βij

βmnβmn

〉
, (2.51)
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where 〈·〉 is an averaging performed locally over the test filter volume. The turbulent Prandtl

number is determined similarly:

Prt =

〈
ηnηn

(Mj + ̂ζj/Pr∗t )ηj

〉
. (2.52)

2.3.3 Structure Function Model (SFM)

Instead of modeling the subgrid scale eddy viscosity based on the filtered strain rate tensor,

the eddy viscosity is expressed as a function of the SGS energy q2
SGS ,

νT ∼ ∆(q2
SGS(x))1/2 = C∆(F (∆x))1/2, (2.53)

where F is the second order structure function defined as

F (r) = ||u(x)− u(x + r)||2 (2.54)

and it was hypothesized that the subgrid energy is proportional to the square of the velocity

gradient at the smallest resolved scales,

q2
SGS =

1

2
(ui(x, t)− ũi(x, t))2 ∼ F (r). (2.55)

2.3.4 Scale Similarity Model

In the scale similarity model, it is assumed that the largest subgrid scales and the smallest

resolved scales have a similar structure. Therefore,

τij = ρ̄(ũiuj − ũiũj) ∼ ¯̄ρ ˜̃uiũj − ¯̄ρ˜̃ui ˜̃uj . (2.56)

The advantage of the scale similarity model compared to the Smagorinsky model is that it

accounts for the energy transfer from small resolved scales to large resolved scales. Also the

definition correlates well with a priori analysis. However, this model is not dissipative, i.e., it

does not dissipate energy automatically as the Smagorinsky model.
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2.4 Finite Volume Based Numerical Scheme

2.4.1 Integral Form of Equations

The nondimensional Favre filtered equations (2.23), (2.23) and (2.32) can be written in

terms of primitive variables W = (p̄, ũ1, ũ2, ũ3, T̃ )T

∂U

∂W

∂W

∂t
+
∂Fi

∂xi
= S. (2.57)

The use of primitive variables is advantageous because higher order construction and gradients

are usually based on the primitive variables. By replacing density with pressure and tempera-

ture and then multiplying by the gas constant, the terms in the above equation become

U =




p̄/T̃

p̄ũ1/T̃

p̄ũ2/T̃

p̄ũ3/T̃

p̄Ê/T̃




; Fi =




p̄ũi/T̃

p̄ũiũ1/T̃ −Rσ̂i1 +Rτi1

p̄ũiũ2/T̃ −Rσ̂i2 +Rτi2

p̄ũiũ3/T̃ −Rσ̂i3 +Rτi3

p̄ũiĤ/T̃ −Rũj σ̂a,ij +Rq̂i +RQti




, (2.58)

where

Ê = cvT̃ +
1

2
(ũkũk);

σ̂ij = −p̄δij +
2µ̄

Re
(S̃ij −

1

3
S̃kkδij);

S̃ij =
1

2
(
∂ũi
∂xj

+
∂ũj
∂xi

); (2.59)

τij = −2µt(S̃ij −
1

3
S̃kkδij);

q̂i = − cpµ̄

P rRe

∂T̃

∂xi
;

Qti = −cvµt
Prt

∂T̃

∂xi
.

The flux vector Fi is usually split into into three parts, the inviscid part Fi,inv, the viscous

part Fi,vis and the subgrid-scale part Fi,sgs. They are defined as

Fi = Fi,inv − Fi,vis + Fi,sgs. (2.60)
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Fi,inv =




p̄ũi/T̃

p̄ũiũ1/T̃ +Rp̄δi1

p̄ũiũ2/T̃ +Rp̄δi2

p̄ũiũ3/T̃ +Rp̄δi3

p̄ũiĤ/T̃




; Fi,vis =




0

Rσ̂a,i1

Rσ̂a,i2

Rσ̂a,i3

Rũj σ̂a,ij −Rq̂i




; Fi,sgs =




0

Rτi1

Rτi2

Rτi3

RQti




, (2.61)

in which the stress tensor σ̂ij is decomposed into the isotropic part −p̄δij and the anisotropic

component σ̂a,ij = 2µ̄
Re(S̃ij − 1

3 S̃kkδij). The contribution of pressure is included in the inviscid

flux. And the specific total enthalpy Ĥ is

Ĥ = Ê +RT̃ = cpT̃ +
1

2
(ũkũk). (2.62)

Eq. (2.57) can be integrated within a control volume Ω as

∫

Ω
[T ]

∂W

∂t
dΩ +

∮

∂Ω
Fi~ei · d~S =

∫

Ω
SdΩ, (2.63)

where [T ] = ∂U
∂W is the time derivative Jacobian matrix listed in Appendix A, ∂Ω is the

bounding surface of the control volume Ω, ~ei is the unit vector in the ith direction and ~S is

the surface area vector. In the rest of the current study , the overmarks denoting the filtered

variables such as (·), (̃·), (̂·) will be dropped for simplicity.

2.4.2 Finite Volume Method and Integral Approximation

The integral form of the governing equations are discretized and solved in a finite volume

framework that has the advantage that it can be easily implemented in complex geometries.

With the Cartesian coordinates system, the solution domain can be divided into rectangular

control volumes (Fig. 2.1). The conserved equations and conservation principles are applied

to each control volume and the solution variables are stored at the geometric centers of the

control volumes. Every control volume has six surfaces that are labeled by numbers from one

to six denoting the east, north, west, south, up and down surfaces correspondingly.

The volume integrals in Eq. (2.63) are then approximated using the mean value theorm as

∫

Ω
[T ]

∂W

∂t
dΩ ≈

(
[T ]

∂W

∂t

)

i,j,k
Ωi,j,k,

∫

Ω
SdΩ ≈ Si,j,kΩi,j,k. (2.64)
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X

Y

Z

C(i,j,k)

N(i,j+1,k)

D(i,j,k-1)

W(i-1,j,k)

S(i,j-1,k)

U(i,j,k+1)

E(i+1,j,k)

Figure 2.1 Main control volume (i,j,k) with its six neighboring control vol-

umes.

The surface integral is approximated as

∮

∂Ω
Fl~el · d~S =

∮

∂Ω
[F1~e1 + F2~e2 + F3~e3] · d~S =

6∑

β=1

[(F1~e1 + F2~e2 + F3~e3)S]β ≈ C(W), (2.65)

where S is the magnitude of the projected area of each surface onto a plane perpendicular to

(~e1, ~e2, ~e3).

The inviscid flux vector on a surface between two control volumes, e.g., the east/west

(E/W) surface between (i, j, k) and (i+ 1, j, k), is evaluated as

Fl1 = Fl

(
Wi+1/2,j,k

)
, (2.66)

where Wi+1/2,j,k is the value of solution variables on the E/W surface which can be obtained

through interpolation between the two center values. To compute the viscous and subgrid-scale

fluxes, the gradients of W at the control volume surfaces have to be calculated. With above
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approximations, Eq. (2.63) becomes

[T ]
dW

dt
Ω + C(W) = SΩ, (2.67)

which is an algebraic equation and every function in it depends solely on W of the main control

volume and its six neighboring volumes.

2.4.3 Gradients

The gradients of a scalar φ are calculated with the Gauss divergence theorem on an auxiliary

control volume Ω′ as
∫

Ω′
∇φdΩ′ =

∫

∂Ω′
φd~S′. (2.68)

For the Cartesian coordinates, ∇φ = φ1~e1+φ2~e2+φ3~e3, then the gradient can be approximated

as

(∇φ)Ω′ ≈
6∑

β′=1

(
φ~S′

)
β′
, (2.69)

where β′ denotes the six surfaces of the auxiliary control volume.

The auxiliary control volume is constructed such that its faces coincide with the volume

centers of the two main control volumes whose interface stores the gradients. For example, the

auxiliary control volume used to calculate the gradients on the east/west (E/W) faces of the

main control volume (i, j, k) and (i+ 1, j, k) is shown in Fig. 2.2. Therefore the volume of the

auxiliary control volume is given by

Ω′ =
1

2
(Ωi,j,k + Ωi+1,j,k). (2.70)

The solution variables on the auxiliary control surface can be evaluated as

φE′ = φi+1,j,k (2.71)

φW ′ = φi,j,k (2.72)

φN ′ =
1

2

[
α+
y φi+1,j+1,k + (1− α+

y )φi+1,j,k

]
+

1

2

[
α+
y φi,j+1,k + (1− α+

y )φi,j,k
]

(2.73)

φS′ =
1

2

[
α−y φi+1,j−1,k + (1− α−y )φi+1,j,k

]
+

1

2

[
α−y φi,j−1,k + (1− α−y )φi,j,k

]
(2.74)

φU ′ =
1

2

[
α+
z φi+1,j,k+1 + (1− α+

z )φi+1,j,k

]
+

1

2

[
α+
z φi,j,k+1 + (1− α+

z )φi,j,k
]

(2.75)

φD′ =
1

2

[
α−z φi+1,j,k−1 + (1− α−z )φi+1,j,k

]
+

1

2

[
α−z φi,j,k−1 + (1− α−z )φi,j,k

]
. (2.76)



32

X

Y

Z

(i+1/2,j,k)

(i,j,k) (i+1,j,k)

Black line: grid control volume
Red line: auxiliary control volume

Figure 2.2 Auxiliary control volume for calculation of gradients on

east/west (E/W) surfaces of main control volumes

where the coefficients are

α+
y =

∆y′/2
yi,j+1,k − yi,j,k

;α−y =
∆y′/2

yi,j,k − yi,j−1,k
; (2.77)

α+
z =

∆z′/2
zi,j,k+1 − zi,j,k

;α−z =
∆z′/2

zi,j,k − zi,j,k−1
, (2.78)

where ∆y′ and ∆z′ are the dimensions of the auxialiary control volume in the y and z direction,

respectively. The surface areas are

S′EW = SEW (2.79)

S′NS =
1

2
(SNS(i, j, k) + SNS(i+ 1, j, k)) (2.80)

S′UD =
1

2
(SUD(i, j, k) + SUD(i+ 1, j, k)). (2.81)

In the same manner, the gradients on the north/south and up/down faces can be evaluated.
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2.4.4 Time Derivative Preconditioning

Eq. (2.67) can be solved by common compressible solvers using time marching. A problem

related with the solving procedure is that the convergence speed of the compressible solvers

becomes very slow at low Mach numbers. This is due to the large differences in the magnitude

of system eigenvalues. For instance, the flux Jacobian matrix in x−direction is

[A] =
∂F1,inv

∂W
(2.82)

and the five eigenvalues of matrix [T ]−1[A] are (u+ c, u− c, u, u, u) where u is the convective

speed and c is the local sound speed. As the Mach number tends to zero, the sound speed goes

to infinity and the system is singular. In the current research, the preconditioning method

developed by Pletcher and Chen (1993) is used to solve above problem when Mach number is

very small. The basic idea is to add a pseudo-time derivative to the governing equation Eq.

(2.67):

[Γ]
∂W

∂τ
Ω + [T ]

dW

dt
Ω + C(W) = SΩ, (2.83)

in which [Γ] is the preconditioning matrix and τ is the pseudo time. [Γ] is obtained by mul-

tiplying the first column of [T ] by the gas constant, as shown in Appendix A. Then the

characteristics of the system are controlled by the eigenvalues of the new flux Jacobian matrix

[Γ]−1[A] and the eigenvalues become much closer to each other so that the condition number

κ =
λmax
λmin

(2.84)

becomes close to 1 and therefore the convergence speed is improved dramatically. The addition

of the pseudo time derivative is the so-called dual time step approach and involves iterating

in pseudo time for each physical time step. The original unsteady governing equations are

satisfied when the iteration is converged in pseudo time.

2.4.5 LU-SGS Scheme

In the current study, time integration was performed using the implicit lower-upper sym-

metric Gauss-Seidel (LU-SGS) scheme. The physical time derivative was discretized with a
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second-order three point backward difference,

[T ]
3Wn+1 − 4Wn + Wn−1

2∆t
Ω + C(Wn+1) = SnΩ, (2.85)

To solve the nonlinear equations, the inviscid flux vectors were linearized about the physical

time step as

Fn+1
1,inv ≈ Fn

1,inv + [A]n∆W; [A] =

(
∂Fn

1,inv

∂W

)n
(2.86)

Fn+1
2,inv ≈ Fn

2,inv + [B]n∆W; [B] =

(
∂Fn

2,inv

∂W

)n
(2.87)

Fn+1
3,inv ≈ Fn

3,inv + [C]n∆W; [C] =

(
∂Fn

3,inv

∂W

)n
. (2.88)

The viscous flux vectors and subgrid scale flux vectors were lagged as the values of the previous

pseudo time step. Therefore the final equation is written in a “delta” form as

[T ]
3Ω

2∆t
∆W +

6∑

β=1

([A]βnβx + [B]βnβy + [C]βnβz)Sβ∆Wβ = −Rn, (2.89)

where

∆W = Wn+1 −Wn;

Rn = SnΩ−C(Wn)− [T ]
−Wn + Wn−1

∆t
Ω. (2.90)

Multiplying the above equation with [T ]−1 results in

3Ω

2∆t
∆W + [T ]−1[([A]∆WS)1 − ([A]∆WS)3

+([B]∆WS)2 − ([B]∆WS)4 + ([C]∆WS)5 − ([C]∆WS)6] = −Rn, (2.91)

where R = [T ]−1R. The Jacobian matrices can be modified as

[A] = [T ][Ã]; [B] = [T ][B̃]; [C] = [T ][C̃]. (2.92)

The terms on the surfaces can be approximated as

([A]∆W)1 = ([T ][Ã]∆W)1 ≈ ([T ][Ã]+∆W)i,j,k + ([T ][Ã]−∆W)i+1,j,k;

([A]∆W)3 = ([T ][Ã]∆W)3 ≈ ([T ][Ã]+∆W)i−1,j,k + ([T ][Ã]−∆W)i,j,k;
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([B]∆W)2 = ([T ][B̃]∆W)2 ≈ ([T ][B̃]+∆W)i,j,k + ([T ][B̃]−∆W)i,j+1,k;

([B]∆W)4 = ([T ][B̃]∆W)4 ≈ ([T ][B̃]+∆W)i,j−1,k + ([T ][B̃]−∆W)i,j,k; (2.93)

([C]∆W)5 = ([T ][C̃]∆W)5 ≈ ([T ][C̃]+∆W)i,j,k + ([T ][C̃]−∆W)i,j,k+1;

([C]∆W)6 = ([T ][C̃]∆W)6 ≈ ([T ][C̃]+∆W)i,j,k−1 + ([T ][C̃]−∆W)i,j,k,

where

[Ã]± =
1

2
([Ã]±

∣∣∣λ[Ã]

∣∣∣ [I]);

[B̃]
±

=
1

2
([B̃]±

∣∣∣λ[B̃]

∣∣∣ [I]); (2.94)

[C̃]
±

=
1

2
([C̃]±

∣∣∣λ[C̃]

∣∣∣ [I]).

λ is the maximum eigenvalues of the corresponding flux Jacobian matrix and [I] is the identity

matrix. From the above equations, it is obvious that

[T ][Ã]
+ − [T ][Ã]− =

∣∣∣λ[Ã]

∣∣∣ [T ];

[T ][B̃]
+ − [T ][B̃]− =

∣∣∣λ[B̃]

∣∣∣ [T ]; (2.95)

[T ][C̃]
+ − [T ][C̃]− =

∣∣∣λ[C̃]

∣∣∣ [T ].

The above equations are substituted into Eq. (2.91) giving

([L] + [D] + [U ])∆W = −R, (2.96)

where

[L] = −[T ]−1
[
([T ][Ã]+)i−1,j,kS3 + ([T ][B̃]+)i,j−1,kS4 + ([T ][C̃]+)i,j,k−1S6

]
;

[D] =
3Ω

2∆t
+ [T ]−1

[
([T ][Ã]+)i,j,kS1 − ([T ][Ã]−)i,j,kS3 (2.97)

+([T ][B̃]+)i,j,kS2 − ([T ][B̃]−)i,j,kS4 + ([T ][C̃]+)i,j,kS5 − ([T ][C̃]−)i,j,kS6

]
;

[U ] = −[T ]−1
[
([T ][Ã]−)i+1,j,kS1 + ([T ][B̃]−)i,j+1,kS2 + ([T ][C̃]−)i,j,k+1S5

]
.

For hexagonal control volumes,

S1 = S3 = S13; S2 = S4 = S24; S5 = S6 = S56, (2.98)
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we have

[D] =

[
3Ω

2∆t
+ (|λ[Ã]|)i,j,kS13 + (|λ[B̃]|)i,j,kS24 + (|λ[C̃]|)i,j,kS56

]
[I]. (2.99)

As shown above, matrix [D] is diagonal.

For preconditioning systems, a pseudo time step was introduced in Eq. (2.85) and the

pseudo time derivative was discretized with a first-order Euler backward difference,

[Γ]
Wm+1 −Wm

∆τ
Ω + [T ]

3Wn+1 − 4Wn + Wn−1

2∆t
Ω + C(Wn+1) = SmΩ (2.100)

where m denotes the pseudo time step and n the physical time step. As mentioned above,

the solution at physical time step n+ 1 can be regarded as being obtained if the pseudo time

iterations converge. Thus, Wn+1 can be substituted by Wm+1 in the iterations. Multiplying

above equation with [Γ]−1 results in

Ω

∆τ
∆W + +[Γ]−1[T ]

3Ω

2∆t
∆W + [Γ]−1

6∑

β=1

([A]βnβx + [B]βnβy + [C]βnβz)Sβ∆Wβ = −Rm,

(2.101)

where

∆W = Wm+1 −Wm; Rm = [Γ]−1Rm;

Rm = SmΩ−C(Wm)− [T ]
3Wm − 4Wn + Wn−1

2∆t
Ω. (2.102)

For hexagonal control volumes used in the current study, the above equation can be simplified

as

[Γ]−1[T ]
3Ω

2∆t
∆W + [Γ]−1[([A]∆WS)1 − ([A]∆WS)3

+([B]∆WS)2 − ([B]∆WS)4 + ([C]∆WS)5 − ([C]∆WS)6] = −Rm. (2.103)

The Jacobian matrices can be modified as

[A] = [Γ][Ã]; [B] = [Γ][B̃]; [C] = [Γ][C̃]. (2.104)

The terms on the surfaces can be approximated as

([A]∆W)1 = ([Γ][Ã]∆W)1 ≈ ([Γ][Ã]+∆W)i,j,k + ([Γ][Ã]−∆W)i+1,j,k;
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([A]∆W)3 = ([Γ][Ã]∆W)3 ≈ ([Γ][Ã]+∆W)i−1,j,k + ([Γ][Ã]−∆W)i,j,k;

([B]∆W)2 = ([Γ][B̃]∆W)2 ≈ ([Γ][B̃]+∆W)i,j,k + ([Γ][B̃]−∆W)i,j+1,k;

([B]∆W)4 = ([Γ][B̃]∆W)4 ≈ ([Γ][B̃]+∆W)i,j−1,k + ([Γ][B̃]−∆W)i,j,k; (2.105)

([C]∆W)5 = ([Γ][C̃]∆W)5 ≈ ([Γ][C̃]+∆W)i,j,k + ([Γ][C̃]−∆W)i,j,k+1;

([C]∆W)6 = ([Γ][C̃]∆W)6 ≈ ([Γ][C̃]+∆W)i,j,k−1 + ([Γ][C̃]−∆W)i,j,k,

where

[Ã]± =
1

2
([Ã]±

∣∣∣λ[Ã]

∣∣∣ [I]);

[B̃]
±

=
1

2
([B̃]±

∣∣∣λ[B̃]

∣∣∣ [I]); (2.106)

[C̃]
±

=
1

2
([C̃]±

∣∣∣λ[C̃]

∣∣∣ [I]).

Substituting the above equation into Eq. 2.103 gives

([L] + [D] + [U ])∆W = −R, (2.107)

where

[L] = −[Γ]−1
i,j,k

[
([Γ][Ã]+)i−1,j,kS3 + ([Γ][B̃]+)i,j−1,kS4 + ([Γ][C̃]+)i,j,k−1S6

]
;

[D] = ([Γ]−1[T ])i,j,k
3Ω

2∆t
+ [Γ]−1

i,j,k

[
([Γ][Ã]+)i,j,kS1 − ([Γ][Ã]−)i,j,kS3 (2.108)

+([Γ][B̃]+)i,j,kS2 − ([Γ][B̃]−)i,j,kS4 + ([Γ][C̃]+)i,j,kS5 − ([Γ][C̃]−)i,j,kS6

]
;

[U ] = −[Γ]−1
i,j,k

[
([Γ][Ã]−)i+1,j,kS1 + ([Γ][B̃]−)i,j+1,kS2 + ([Γ][C̃]−)i,j,k+1S5

]
.

For hexagonal control volumes under Cartesian coordinates,

S1 = S3 = S13; S2 = S4 = S24; S5 = S6 = S56, (2.109)

then we have

[D] = ([Γ]−1[T ])i,j,k
3Ω

2∆t
+
[
(
∣∣∣λ[Ã]

∣∣∣)i,j,kS13 + (
∣∣∣λ[B̃]

∣∣∣)i,j,kS24 + (
∣∣∣λ[C̃]

∣∣∣)i,j,kS56

]
[I]. (2.110)

Due to the nature of the preconditioning matrix we chose, the product [Γ]−1[T ] is a diag-

onal matrix so the matrix [D] is also diagonal. To efficiently solve Eq. (2.107), it can be

approximated as

([L] + [D])[D]−1([D] + [U ])∆W = −R, (2.111)
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and solved in three steps as follows:

Step 1: ([L] + [D])∆W∗ = −R (2.112)

∆W∗ = [D]−1(−R− [L]∆W∗);

Step 2 : ([D] + [U ])∆W = [D]∆W∗, (2.113)

∆W = ∆W∗ − [D]−1[U ]∆W;

Step 3 : Wm+1 = Wm + ∆W.

In step 1, the calculation is carried out on i+ j + k = constant planes from the lower corner,

(i, j, k) = (1, 1, 1), to the upper corner, (i, j, k) = (ni, nj, nk), of the grid, where ni, nj, nk

are the number of control volumes in the x, y, and z directions, respectively. Through this

procedure, [L]W∗ are always known during the process and thus it can be put on the right

hand side of the equation. Similarly, [U ]∆W is also always known during the sweeping from

upper corner to lower corner in step 2 and is moved to the right hand side. Since [D] is

diagonal, the inversion of [D] in the above steps requires only a trivial amount of work.

2.5 Boundary Conditions

In this study, boundary conditions are generally enforced by using “ghost” volumes ex-

cept where immersed boundary treatment is imposed. The ghost volumes are images of the

corresponding near boundary control volumes. For instance,

φb =
1

2
(φnb + φg), (2.114)

where φb is the value of variable φ at the boundary, φnb the value at the near boundary control

volume and φg the value at the ghost volume. Since φnb is updated in each iteration, φg can be

set up at the beginning of the next iteration according to φnb so that a certain boundary value

φb can be enforced. Sometimes it is the normal derivative which is enforced at the boundary.

In such cases, the ghost volume values is determined as

φg = φnb +

(
∂φ

∂n

)

b
∆l, (2.115)
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boundary cell

boundary

ghost cell

Figure 2.3 Ghost volumes for boundary conditions

where ∆l is the distance between the volume centers. Some of the most commonly used

boundary conditions in DNS and LES are described next.

2.5.1 Solid Wall Boundary Conditions

On solid walls, the no slip condition has to be enforced for all velocity components as

ug = −unb; vg = −vnb; wg = −wnb. (2.116)

The pressure condition at a solid wall is set as pg = pnb to fulfill the approximate boundary

condition ∂p/∂n = 0. For cases involving heat transfer, two different temperature conditions

can be applied at a solid wall: fixed wall temperature or fixed wall heat flux. A desired wall

temperature, Tw, is enforced by setting Tg = 2Tw − Tnb. To enforce a fixed non-dimensional

wall heat flux, qw, at the wall, the temperature at the ghost volume is given by

Tg = Tnb +
qwRePr

µw
∆l. (2.117)
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Here the definition of qw is different from that of Eq. (2.13). The non-dimensional wall heat

flux qw is given in terms of the dimensional quantities as

qw =
q∗w

ρrefUrefTrefc∗p
. (2.118)

2.5.2 Periodic Boundary Conditions

Periodic boundary conditions have been extensively used in DNS and LES of incompressible

or constant property flows. This condition is especially suitable for fully developed homoge-

neous flow since the flow fields at inflow and outflow are considered as statistically the same

provided they are apart from each other far enough. For periodic boundary conditions, the

computational domain can be thought of as repeating itself infinitely. With the method of

ghost volumes, this can be done by copying values of the variables of the near outflow/inflow

boundary control volume to the ghost volume at the inflow/outflow boundary. The periodicity

suggests that at inflow

(ρu)g = (ρu)0,j,k = (ρu)ni,j,k;

vg = v0,j,k = vni,j,k; (2.119)

wg = w0,j,k = wni,j,k;

Tg = T0,j,k = Tni,j,k.

However, the pressure is not periodic in the flow direction due to the negative, linear streamwise

pressure gradient which drives the flow. A common practice is to decompose the pressure into

pressure gradient term and periodic pressure term as

p(x, y, z, t) = βx+ pp(x, y, z, t), (2.120)

where β is the streamwise pressure gradient. Since the pressure gradient term is much smaller

than the periodic pressure term for moderate Reynolds numbers, the pressure pmay be replaced

with pp in the governing equations and at the same time the pressure gradient enters the

right hand side of the u-momentum equation as a “forcing function”. This forcing function

is determined by requiring that the mean mass flow rate reach a desired constant
(
ṁ
Ac

)0
.
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Following the approach of Benocci and Pinelli (1990), β is calculated dynamically at each

physical time step as

βn+1 = βn − 1

∆t

[(
ṁ

Ac

)0

− 2

(
ṁ

Ac

)n
+

(
ṁ

Ac

)n−1
]
, (2.121)

where Ac is the cross-flow area. However, periodic boundary conditions cannot be used for

developing flows, heat transfer cases with property variations and very complex geometry flows.

2.5.3 Step-periodic Boundary Conditions

For the heat transfer cases with property variations, the periodicity assumptions were not

valid for pressure, temperature and streamwise velocity. Dailey (1997) proposed a step-periodic

boundary condition to approximate the problem,

(ρu)(0, y) = (ρu)(Lx, y);

v(0, y) = v(Lx, y);

w(0, y) = w(Lx, y); (2.122)

pp(0, y) = pp(Lx, y);

T (0, y) = T (Lx, y)−∆Tx,

where Lx is the length of the channel in the streamwise direction and the temperature difference

∆Tx is given by integrating the energy equation.

2.5.4 N-S Characteristic Boundary Conditions

A large number of direct and large eddy simulations have used periodic boundary conditions

in one or more directions. With the assumption of periodicity, the computational domain is

thought of as being repeated infinitely. However, the periodicity assumption cannot be justified

in a wide range of situations, such as situations include the developing flows, heat transfer cases

with large property variations, non-uniform geometries, free shear or jet flows. Also, it is known

that imposing the pressure on a subsonic compressible outflow gives rise to strong reflections

in the flow which can cause the numerical solution to oscillate or even blow up (Anderson,

1995).
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For compressible flow systems, the classical method of charateristics solution (Hedstrom,

1979) is usually used. It is based on the fact that a hyperbolic system can be decomposed

into wave modes propagating along the characteristic directions, which can be going into or

out of the computational domain. The outgoing waves are completely determined by the

interior solution and no boundary condition can be applied to them. It is waves entering the

domain from outside its boundary, together with the state in the interior, that determines the

time evolution of the system. For the case of one-dimensional flow, it is possible to locally

identify and decouple the outgoing and incoming waves. Then, we can enforce the boundary

condition we wish on the incoming waves. Boundary conditions obtained this way are named

characteristic boundary conditions (CBC). In this study the NSCBC method proposed by

Thompson (1990), Poinsot and Lele (1992) and Kim and Lee (2000) was used for non-periodic

flow cases. For fully developed flows, the regular periodic boundary condition was imposed.

The basic formulation of NSCBC is described in Appendix C and the detailed derivation and

implementation procedure can be found in the work of Qin (2007).
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CHAPTER 3. NON-BODY CONFORMAL GRID TREATMENT

In this chapter, details of the non-body conformal grid method are described. And the

possibility to extend it to moving boundary problems is also discussed.

3.1 Introduction

The conventional approach to simulate flows with complex boundaries is to use either a

curvilinear body-fitted grid that conforms to the boundaries or an unstructured grid which

offers more flexibility in grid generation. For body-fitted grids, the imposition of boundary

conditions is straightforward and the solver can be easily designed to maintain accuracy and

conservation properties. However, grid generation and grid quality can be an issue for very

complex geometries. For unstructured grids, since the powerful line/block iteration techniques

are not easy to implement and due to lack of general orthogonality, the performance of the

simulation is in general slower than with structured grid methods. In this study, a different ap-

proach, the immersed boundary method, is used which retains most of the favorable properties

of structured grids and also provides more flexibility in grid generation. However, the main

challenge of the immersed boundary method is the boundary treatment since the immersed

boundary can cut through the underlying grid lines. It is crucial to maintain the expected

accuracy and conservation property of the solver near the boundary.

Generally, immersed boundary methods can be categorized into two main groups (Mittal

and Iaccarino, 2005): (a) “Continuous forcing”: a forcing term is added to the continuous

Navier-Stokes equations before the discretization. The original method of Peskin (1972), and

the so-called virtual boundary method applied to rigid boundaries by Goldstein et al. (1993)

and Saiki and Biringen (1996) belong to this category. (b) “Discrete forcing”: forcing terms
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are added to the discretized Navier-Stokes equations. These include methods of Ye et al.

(1999), Fadlun et al. (2000), Kim et al. (2001), You et al. (2003), Balaras (2004), Yang and

Balaras (2006), Ghias et al. (2007) and others. The major difference in the two categories

is that the continuous forcing can be added into the governing equation independent of the

grid generation, while the discrete forcing largely depends on the spatial discretiztion scheme.

The feature of discrete forcing method allows the “sharp” representation of the immeresed

boundary, in contrast to the “diffuse” boundary treatment in the first category, where the

boundary condition is not satisfied precisely at its actual location but within a localized region

near the boundary (Ghias et al., 2007). However, a major challenge of the discrete forcing

method is that, with the increase of Reynolds number, the accuracy requirement near the

boundary may cause a rapid increase of grid resolution. Therefore, for very complex geometry

flows, the local grid refinement method may be combined with the immersed boundary method

to achieve a more efficient solution.

3.2 Non-body conformal grid methods

In this dissertation, two non-body conformal grid methods have been studied: direct forcing

method and ghost cell method.

3.2.1 Direct forcing method

The main steps in applying the direct forcing method are discussed in the following sections.

3.2.1.1 Interface description

A two-dimensional immersed interface ψ is represented by a series of interfacial marker

points, which are defined by arc length coordinates X(s, t). The marker points are uniformly

distributed on the interface with a spacing approximately equal to the local grid size. The

direction of the interface boundary is defined such that the fluid is always to the left of the

observer as one moves along the direction of the increasing coordinates. The coordinates of
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marker points can be written as

x(s, t) = axs
2 + bxs+ cx,

y(s, t) = ays
2 + bys+ cy. (3.1)

The coefficients ax(y), bx(y), cx(y) are obtained by fitting the quadratic polynomials to the marker

point and its two neighbors. The normal vector at each marker point is then calculated as

nx =
−ys√
x2
s + y2

s

, ny =
xs√
x2
s + y2

s

, (3.2)

where the derivatives xs, ys are

xs(s, t) = 2axs+ bxs, ys(s, t) = 2ays+ bys. (3.3)

For the three dimensional interfaces a B-spline fitting method can be used.

3.2.1.2 Forcing points identification

Having parameterized the immersed interface with a series of marker points, the forcing

points can be identified by evaluating a signed distance function defined at each grid point.

First a search process is employed to locate a surface marker point closest to each grid point.

Then a signed distance function (Choi et al. (2007)) from each grid point xk ∈ Ω to the nearest

surface point Xl(s) ∈ Γ is defined as

φ(xk, t) = sgn [(xk −Xl) · nl]× ||xk −Xl||. (3.4)

The above function φ(xk, t) returns a positive value for the points that belong to the fluid

phase and a negative value for the points that belong to the solid phase. Then the forcing

points are identified as the grid points in the fluid phase with φ(xk, t) > 0 and having at least

one solid neighbor point. Also, the value of the signed distance function at these points is

reset to zero. Figure 3.1 presents the basic topology of the three categories of grid points in a

two-dimensional case.

For a stationary boundary problem the above tagging process is done only at the beginning

of the computation and remains unchanged thereafter. For moving boundary problems, this



46

p
Solid field

Fluid field

vp

solid point

fp

forcing point

fluid point

Figure 3.1 Schematic diagram of immersed boundary notation.

search and tagging process is repeated at each time step. Also, the projection point (xp, yp)

of the forcing point on the immersed interface will be determined by combining the normal

vector function and the parametric function of the interface.

3.2.1.3 Forcing function calculation

The basic idea of the immersed boundary method is to satisfy the desired boundary con-

dition on the immersed interface through adding forcing terms to the Navier-Stokes equation.

In the current study both Dirichlet and Neumann boundary conditions have been considered.

The Robin condition can be applied in a similar fashion. For the Dirichlet boundary condi-

tion, the simplest case is the no-slip boundary condition. The idea is that the velocity of the

fluid must be equal to the velocity of the immersed interface. This is achieved by applying a

momentum forcing such that the desired velocity on the boundary is recovered at each time

step. Similarly, an energy forcing term can be applied to achieve the desired temperature

boundary condition. Considering the simplest case that a Cartesian grid point coincides with

the immersed boundary, the forcing function can be obtained by setting Wk+1 = Wfp, and
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solving for fk+1
fp ,

fk+1
fp = [T ]

Wfp −Wk
i

∆t
Ω +

6∑

j=1

Fk
ijnjiSj , (3.5)

where the forcing function is denoted by ffp = (0, fu, fv, fw, fe)
T and Wfp is the desired value

satisfying the boundary condition on the forcing points. It should be pointed out that in

the absence of an immersed body, the sub-iteration of the dual time step procedure serves

to eliminate time linearization errors and preconditioning errors. When an immersed body is

included, the subiteration also serves to adjust the velocity and pressure fields to the desired

solution.

However, generally the solid interface does not coincide with the Cartesian grid nodes and

the desired value Wfb is typically unknown. In this case, an interpolation procedure is needed

to reconstruct the appropriate primitive variables Wfb on the forcing points. In the current

solver, the Navier-Stokes equations are not solved for the forcing and interior points. The flow

properties at these points are determined by the solutions in neighboring cells and the surface

points. For interior points, the forcing velocities are set to that of the nearest surface point,

and the pressure is set to the free stream value. At the forcing points, a linear interpolation

method similar to that of Balaras (2004) was implemented. This method assumes that the

forcing points are very close to the solid interface such that the velocity profile can be considered

to be linear. This assumption is appropriate for some low Reynolds flows. For higher Reynolds

number flows, a higher order interpolation method discussed in the subsequent section can be

used.

To implement the linear interpolation, a line through the forcing point and normal to

the surface was drawn and the projection point on the boundary was determined. Then the

distance between the forcing point fp and the projection point p shown in Fig. 3.1 can be

calculated. Along the direction of the vector xfp − xp, a virtual point vp satisfying condition

xvp − xfp = xfp − xp can be identified. The desired value of any scalar φ at the forcing point

can be calculated as

φfp =
1

2
(φvp + φp), (3.6)

where φvp is calculated with a bilinear(2D) or trilinear(3D) interpolation method by employing
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Figure 3.2 Schematic diagram of ghost cell method (case 1).

a stencil composed of all of the neighbor fluid field points of vp.

3.2.2 Ghost cell method

Another popular non-body conformal grid method used in immersed boundary problems is

the so called ghost cell method. Applications of Tseng and Ferziger (2003), Ghias et al. (2007)

belong to this category. Instead of the definition of forcing points in the fluid field, a series

of ghost cells located within the solid field are identified. As defined in Tseng and Ferziger

(2003), ghost cells are those cells lying just inside the solid body adjacent to computational

nodes in the flow domain. The boundary condition on the immersed interface is satisfied by

constructing a stencil around the interface and evaluating the flow variables or forcing functions

at the ghost cell. Similar to the direct forcing method, a virtual point along the outward normal

direction is defined such that ||xvp − xp|| = ||xp − xgp||. After the flow variables at the virtual

node are obtained from construction, the flow variable at ghost node gp is obtained by linear

interpolation between surface point p and virtual point vp.

As shown in Fig. 3.2, a stencil surrounding the immersed interface was constructed to

evaluated the flow variables at the ghost points.
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The boundary condition on the immersed boundary can be either the Dirichlet type,

φp = ψ, (3.7)

or the Neumann type

(n · ∇φ)p = ψ. (3.8)

In the two-dimensional case, the value of any scalar variable at the virtual point can be ex-

pressed in terms of a bi-linear interpolant of the form,

φ = C1xy + C2x+ C3y + C4, (3.9)

where the coefficients Ci, i = 1, ..., 4 can be expressed in terms of the value of the variable at

the four surrounding nodes. Based on the location of the ghost node, three different situations

can be encountered and these have to be handled in a well-posed and consistent manner.

The simplest situation is that all surrounding nodes of the virtual point are in the fluid. To

determine the coefficients, the above approximate equation can be expanded within the stencil

surrounding the virtual point as:

Φ = [Y ]C, (3.10)

where

Φ =





φ1

φ2

φ3

φ4





(3.11)

are the values of the variable at the four surrounding points and

[Y ] =




x1y1 x1 y1 1

x2y2 x2 y2 1

x3y3 x3 y3 1

x4y4 x4 y4 1




(3.12)



50

is the coordinates matrix and

C =





C1

C2

C3

C4





(3.13)

are the coefficients to be determined. Since these four coefficients depend upon the coordinates

and the values of scalar variables at the surrounding points, the value φ at the virtual point

can be finally written as

φvp =
4∑

i=1

aiφi, (3.14)

where ais are functions of the coordinates of the virtual point and the surrounding points.

The second situation occurs when one of the surrounding points is the forcing point itself

(Fig. 3.3). The use of the forcing point value in the interpolation scheme is not well-posed.

In this case, the boundary condition at the projection point can be used along with the other

three surrounding points to close the interpolation. When a Dirichlet boundary condition is

specified, it is straightforward to use the coordinates and value at the projection point directly

in Eq. (3.10). On the other hand, if a Neumann boundary condition is imposed, e.g.

(n · ∇φ)p = ψ, (3.15)

the interpolation formulation needs to be changed. The gradient ∇φ can be evaluated through

the assumed interpolation formulation so the above equation can be rewritten as

nx(C1y + C2)p + ny(C1x+ C3)p = ψ. (3.16)

The the corresponding coordinate matrix can be written as

[Y ] =




x1y1 x1 y1 1

x2y2 x2 y2 1

x3y3 x3 y3 1

nxyp + nyxp nx ny 0




(3.17)
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Figure 3.3 Schematic diagram of ghost cell method (case 2).

and the vector Φ is written as

φ =





φ1

φ2

φ3

ψ





. (3.18)

The third case is when the interpolation stencil of the current forcing point contains a

forcing point other than itself (Fig. 3.4). In the current context, since the dual time step

approach is utilized, the inner iteration would update the value of all forcing points iteratively

until convergence. It was found that the use of the value at other forcing points is well-posed

and therefore no special treatment is needed for this situation.

With the value at the virtual points expressed in terms of the surrounding points and

boundary values, the value at ghost node can be obtained as

φgp = αφvp + β, (3.19)

where α = −1 and β = 2φp for a Dirichlet boundary condition, α = 1 and β = ψ · (xgp − xvp)

for a Neumann boundary condition. By combining Eqs. (3.14) and (3.19), the final expression
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Figure 3.4 Schematic diagram of ghost cell method (case 3).

for the forcing point can be written as

φgp = α
4∑

i=1

aiφi + β. (3.20)

For the pressure boundary condition near the interface, consider the projection of the momen-

tum equation in the direction normal to the interface:

Du

Dt
· n = −∇p · n +

1

Re
∇2u · n, (3.21)

If the velocities are linearized at the immersed interface the above equation reduces to:

∂p

∂n
= −Du

Dt
· n. (3.22)

For a stationary boundary, due to the no-slip boundary condition, the right-hand side also

disappears. Therefore the pressure satisfies a Neumann boundary condition ∂p
∂n = 0. To satisfy

this pressure boundary condition, the pressure at the forcing points are determined based on

the method described above.

For large eddy simulation, the subgrid scale turbulent viscosity νt is required in the com-

putation of diffusion fluxes near the interface and is determined by a dynamic procedure that

involves filtering at two different length scales. The first filtering operation is implicit and
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corresponds to a filter width that is equal to the local grid spacing. The second filter (test

filter) corresponds to a filter width of twice the local grid spacing, which may involve points

from the interior of the solid body. To avoid the contamination of non-physical calculation

with these solid points, a linear reconstruction procedure similar to the primitive variables can

be applied, where the value of νt on the boundary is set to be (νt)p = 0.

3.2.3 Other interpolation methods

For higher Reynolds number flows, if the grid resolution is not fine enough such that

the forcing points are not located within the viscous sublayer, the velocity distribution at

the forcing points can not be assumed to be linear. Choi et al. (2007) suggested another

interpoloation method to obtain the appropriate value for velocity and pressure.

In this method, the velocity distribution along the outward normal to the solid interface is

defined in terms of three components,

Ufp(n) = ufp,t(n) + ufp,n(n) + up, (3.23)

where ufp,t(n) and ufp,n(n) the tangential and normal component of ufp(n), respectively. up

is the velocity at the immersed surface. To conserve momentum, the second derivative of the

wall normal velocity should vanish at the surface. Also ufp,n(n) = 0 at n = 0. Therefore, a

cubic function can be assumed for ufp,n as

ufp,n = (a+ bn2)

(
n

dvp

)
, (3.24)

where vp is the virtual point along the normal direction. The distance from point vp to the

immersed interface can be determined either the same as in the linear interpolation method

or through another procedure described in the next section. The boundary condition for the

above equation is

ufp,n|n=dvp
= a+ bd2

vp = uvp,n (3.25)

dufp,n
dn

|n=dvp
=

[
2bn2

dvp
+ (a+ bn2)

1

dvp

]

n=dvp

=
[
2bd2

vp + uvp,n
] 1

dvp
. (3.26)
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The coefficients a and b can be determined in terms of uvp,n and
dufp,n
dn |n=dvp

. Then ufp,n can

be expressed as

ufp,n =

[
uvp,n +

1

2

(
dvp

dufp,n
dn

|n=dvp
− uvp,n

)(
(
n

dvp
)2 − 1

)](
n

dvp

)
, (3.27)

where the velocity is evaluated as uvp,n = (Uvp−up) ·n. The tangential component is written

in terms of a general power law ≈ nk with k = 1/7 or k = 1/9 to approximate the logarithmic

distribution near the wall. Also, since ufp,t(n) = 0 at n = 0, ufp,t(n) is assumed to be

ufp,t = (a+ bn)

(
n

dvp

)k
, (3.28)

and the boundary condition is

ufp,t|n=dvp
= a+ bdvp = uvp,t (3.29)

dufp,t
dn
|n=dvp

=

[
b(

n

dvp
)k +

k(a+ bn)

n
(
n

dvp
)k
]

n=dvp

=

[
b+

kuvp,t
dvp

]
. (3.30)

After solving for the coefficients a and b in terms of uvp,t and dufp,t/dn|n=dvp , the final expres-

sion for ufp,t is

ufp,t =

[
uvp,t +

(
dvp

dufp,t
dn
|n=dvp

− kuvp,t
)(

(
n

dvp
)− 1

)](
n

dvp

)k
, (3.31)

with uvp,t = (Uvp − up) · t.

Furthermore, a general procedure for pressure interpolation can be expressed in terms of a

second order polynomial as

p(n)− p∞ = (a+ bn+ cn2), (3.32)

with boundary condition

(p(n)− p∞)|n=0 = a,

dp

dn
|n=0 = b (3.33)

and

(p(n)− p∞)|n=dvp = a+ bdvp + cd2
vp = p(dvp),

dp

dn
|n=dvp

= b+ 2cdvp. (3.34)
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By assuming the pressure gradient at the wall b = dp
dn |n=0 = 0, the pressure distribution along

the normal direction can be expressed in terms of p(n)|n=dvp and dp
dn |n=dvp

as

p(n) = p(dvp) +
1

2
dvp(

dp

dn
|n=dvp

)

(
(
n

dvp
)2 − 1

)
. (3.35)

Therefore, the pressure at the immersed interface is

p(n) = p(dvp)−
1

2
dvp(

dp

dn
|n=dvp

). (3.36)

3.2.3.1 Virtual point determination

To obtain the values at forcing points, the flow variables at virtual points need to be

determined first. In the linear interpolation method, the virtual point is obtained by extend-

ing the outward normal from the forcing point an equal distance d = ||xfp − xp|| such that

d = ||xvp − xfp||. In the higher order interpolation method, it is well known that high order

polynomial interpolations are prone to introduce wiggles and spurious extrema (Iaccarino and

Verzicco, 2003). Therefore, an inverse distance weighted method used by Choi et al. (2007)

can be employed for the purpose of preserving local maxima and producing a smooth recon-

struction. Given the location of a forcing point and a list of its nearest neighbors as shown in

Fig. 3.5, a weighting function wl can be calculated as

wl = ξl/
∑

i

ξi, (3.37)

where the merit function ξl is calculated as

ξl =





1√
||xl−xfp||2−[(xl−xfp)·n]2+ε

, if (xl − xfp) · n > 0

0 otherwise.

(3.38)

In above equation, (xl − xfp) · n is the projection of the distance dvp from xfp to xl in the

direction of the outward normal and ||xl − xfp|| is the distance magnitude. ε is taken to be a

very small number (e.g. 10−10) such that ξl is very large when point xl is located along the

normal line. Then the distance dvp is calculated as

dvp =
∑

l

wldl =
∑

l

wl(xl − xfp) · n. (3.39)
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Figure 3.5 Higher order interpolation scheme.

With the location of the virtual point is determined, the flow properties at this point are

calculated as

φvp =
∑

l

wlφl,

(
dφvp
dn

)

n=dl

=
∑

l

wl

(
∂φvp
∂xj

)

l

nj . (3.40)

3.3 Treatment of moving immersed boundaries

As discussed in Yang and Balaras (2006), the boundary treatment in the moving bound-

ary problem can become more complicated since the role of the grid points near the interface

changes with the moving direction of the body. The evaluation of the terms in the governing

equation requires physical values of the velocity, pressure and their derivatives from the previ-

ous time step at all fluid grid points. Due to the location change of the interface, it is possible

that some of the values of the points near the interface are not physical.

Generally, there are two scenarios in terms of the relation between the moving interface and

the underlying grid points in the close-up view. In the first case, the solid interface approaches

the flow field such that flow grid points become solid grid points. Due to the CFL number

restriction, the interface cannot move by more than one grid cell in each time step. Therefore

there are two possibilities associated with this scenario, either flow points become forcing points

or forcing points turn into solid points. In either situation, the solution for forcing points or
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solid points at time t + 1 will be reconstructed from the flow field and does not depend on

their history. In the second case, the solid interface withdraws from the flow field such that

solid grid points become flow grid points. Similarly, two possibilities exist where either solid

points become forcing points or forcing points turn into flow points. In the former situation,

the solution of the newly defined forcing points will be reconstructed and does not depend on

the history value from the solid field. However, in the latter situation, the solution of new

flow grid points will be solved with the Navier-Stokes equations and the terms associated with

the value from previous time steps may not be correct. The reason is that these points were

forcing points at time step t and the spatial derivatives were not physical since they evolved

with the value from the solid field even though the velocity or pressure value was correct. To

avoid contamination of the solution at these points, the field extension procedure suggested

by Yang and Balaras (2006) is used. The basic idea is to extend the velocity and pressure

fields to the solid field at the end of each substep. Practically, a series of pseudo fluid points

in the solid field are defined to store the extended velocity and pressure field values. Similar

to the procedure used to reconstruct the solution at the forcing points, the solution at the

pseudo points is obtained through interpolation with surface points and virtual points along

the outward normal (Fig. 3.6).

3.4 Surface force calculation

The accurate calculation of forces on the solid surface with non-body conformal grids is

challenging since the lift and drag forces on the boundary depend strongly on the boundary

conditions. However, the method discussed in Lai and Peskin (2000) and Balaras (2004) solves

this problem in an alternative way and was shown to give very good results for the surface force.

Therefore, this method was used in this study. The drag force on the immersed body arises

from two components, the shear stress and pressure force. The dimensionless drag coefficient

is defined as

Cd =
FD

1/2ρu2∞D
, (3.41)
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Figure 3.6 Schematic diagram of immersed boundary notation in two di-

mensions.

and the lift coefficient is

CL =
FL

1/2ρu2∞D
, (3.42)

where FD and FL are the drag and lift forces, respectively. D is the characteristic length of

the immersed object. The drag force can be calculated by integrating the x−component of the

force density f and the lift force is the result of integrating the y−component. As shown in

Fig. 3.7, the integral form of the momentum equation on any arbitrary flow domain Ω0 can

be described by

∫

Ω0

∂(ρui)

∂t
dx +

∫

S
ρuiu · nds = −

∫

Ω0

pnidx +

∫

S
µ

(
∂ui
∂xj

+
∂uj
∂xj

)
njds (3.43)

The corresponding surface is bounded by S = ∂Ω0 ∪Γ, where ∂Ω0 is the outward boundary of

the control volume and Γ is the surface of the immersed body. Then the force can be calculated

as

Fi =

∫

Ω0

∂(ρui)

∂t
dx +

∫

∂Ω0

[
ρuiuj + pδij − µ

(
∂ui
∂xj

+
∂uj
∂xj

)]
njds. (3.44)
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Figure 3.7 Schematic diagram of force calculation.

3.5 Parallelization

In the current code, the implicit LU-SGS scheme was implemented in each block inde-

pendently. The code was parallelized by incorporating the message passing interface (MPI)

libraries. The parallelization was achieved with domain decomposition utilizing the multiblock

features of the code. One processor starts up initially and becomes the parent task. The parent

then spawns the desired number of child tasks. Two approaches can be employed for message

passing between blocks at the end of each iteration. For method A, or neighbor-to-host-neighbor

message passing, each child sends data to the parent processor. Then after receiving the data,

the parent processor does postprocessing of the data and sends appropriate data to each child

processor. This method minimizes the number of calls to MPI routines. For method B, or

neighbor-to-neighbor message passing, each child processor sends the appropriate data directly

to other child processors that need the data. This method requires more calls to the MPI

routines but minimizes the data being transmitted. For this study, the boundary data for each

domain were exchanged between child processors directly with method B. The statistical data

were collected in the parent processor and then scattered to each child processor.
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CHAPTER 4. LARGE EDDY SIMULATION OF DUCT

SUB-CHANNEL FLOWS WITH NON-BODY CONFORMAL GRIDS

4.1 Introduction

Turbulent mixing studies of complex geometry flows are critical to many engineering ap-

plications such as heat exchanger design, rod bundle flows in nuclear reactors or even turbine

blade cooling. Application of large eddy simulation to industrial problems aims to capture the

large turbulent structures, which often requires sufficient near wall grid resolution and good

subgrid scale models (Moin, 2002). The conventional body-fitted curvilinear and unstruc-

tured grid LES solvers have been successfully applied to various flow cases such as gas-turbine

combustors and asymmetric diffusers. However, the increasing geometrical complexity makes

the body-fitted grid generation more challenging and proper domain decompositon is often

required. The non-body conformal grid methods have been gaining popularity recently and

are combined with LES solvers to solve a variety of complex turbulent flows (Balaras, 2004;

Ghias et al., 2007; Tyagi and Acharya, 2005; Ikeno and Kajishima, 2006). The most prevalent

approaches include the Cartesian grid method (Ye et al., 1999) and the immersed boundary

method (Mohd-Yusof, 1998). Although various succssessful results have been achieved, most

of them are based on incompressible flow assumptions and very few results for compressible

turbulent flows have been reported.

High Reynolds number and high heat transfer rate turbulent flow in narrow gap regions can

often be found in rod bundle sub-channel coolant flows of nuclear reactors. Accurate prediction

of flow distribution and turbulent stresses in the coolant flow is critical for the design of safe

and reliable nuclear reactors. In the literature, the general numerical simulations of turbulent

flow in rod-bundle geometries often utilized Reynolds-averaged Navier-Stokes (RANS) equa-
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tions and the results are observed to have limited agreement with experiments. For example,

Wu (1994) performed a simulation of flow in a rod bundle contained in a trapezoidal channel

with an algebraic stress model along with the k − ε model and found that the model was lim-

ited in predicting anisotropic turbulent structures. Lee and Jang (1997) performed numerical

simulations of rod bundle flows using a nonlinear k− ε model and found that the model could

not predict large-scale flow pulsations across the gap, in contrast with the experimental results

of Hooper (1980).

Due to the limitations of RANS type simulations, large eddy simulation, which employs lo-

cally spatial averages rather than time averaging, is expected to capture the coherent turbulent

structures and provide better agreement with experimental data. Biemuller et al. (1996) con-

ducted a large eddy simulation of flow in a channel consisting of two rectangular subchannels

connected by a narrow passage and their predictions of turbulent intensities were in qualitative

agreement with their experiment. In a recent study (Ikeno and Kajishima, 2007), an immersed

boundary method was combined with an incompressible flow solver, using a modified pressure

equation based on the interpolated pressure to achieve better mass conservation near the im-

mersed boundary. The example simulation of flow in the sub-channel with six rods equipped

with spacers was conducted and the instantaneous velocity field showed that the swirling flow

patterns produced by the mixing-vane arragement were reasonably captured. Although this

study demonstrated the capability of the immersed boundary method in the simulation of rod

bundle flows, no detailed comparisons with experimental data or other simulations were shown.

In this study, we combine a non-body conformal grid method with a compressible large

eddy simulation solver (denoted as LES-IB) and simulate a rod-bundle-like flow in a duct

subchannel. The ultimate goal is to simulate more complex rod bundle flows at high Reynolds

numbers and high heating rates and predict the complex turbulent structures in the irregular

subchannels. The computational domain is the same as that employed in Chang and Tavoularis

(2005) and Guellouz and Tavoularis (2000), except that the computational domain is reduced

to L/D = 12. To validate the code, flow over a circular cylinder is simulated for different

Reynolds numbers and the results are compared with the results obtained by experiments and
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simulations by body-fitted grid methods. The detailed accuracy analysis will show that the

current scheme is capable of capturing the steady and unsteady features of flow over a cylinder

with second-order accuracy. Then results from an LES study of a turbulent pipe flow with

a moderate Reynolds number are presented and show good agreement with DNS and body-

fitted grid LES data. Finally, simulation results for a high Reynolds number turbulent duct

flow containing one cylindrical rod are presented. The current LES-IB simulation data provide

quantitatively good agreement with experimental data especially for streamwise mean velocity

and turbulent intensities.

4.1.1 Immersed boundary treatment

The basic procedure of the immersed boundary treatment is based on that stated in Chapter

3.

4.2 Results

To demonstrate the accuracy of the current non-body conformal grid method, a grid con-

vergence study will be presented for a steady flow over a circular cylinder with ReD = 40. Then

the simulated results for steady and unsteady flow over cylinder with ReD ranging from 20 to

200 will be presented and compared with experimental and simulation results obtained with

body-fitted grids. To demonstrate the applicability of the current method in turbulent flow

simulations, a turbulent pipe flow was simulated and the statistical results will be compared to

experimental data and body-fitted grid results. Finally, the turbulent duct flow containing a

cylindrical rod was simulated with the current LES-IB method. The instantaneous and statis-

tical data will be presented and compared with experimental results (Guellouz and Tavoularis,

2000) and unsteady RANS simulation (URANS) results (Chang and Tavoularis, 2005).
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4.2.1 Laminar flow over circular cylinder

4.2.1.1 Grid convergence study

To validate the overall accuracy of the current non-body conformal grid method, a grid

convergence study for a steady flow over a circular cylinder with ReD = 40 was carried out with

different grid resolutions. It is well known that steady flow over a circular cylinder can persist

up to ReD ≈ 47 and typically two-dimensional grids were used to simulate the steady flows.

To compare with the results in the literature, a three-dimensional mesh was generated with a

very thin layer in the spanwise z direction which contains only two cells. The computational

domain was [−20D, 40D] in the x direction and [−20D, 20D] in the y direction. The center of

the cylinder was located at (x, y) = (0, 0). The mesh size in the z direction was set to be the

same as the smallest grid size in y direction. To compare the characteristic flow parameters

with those from incompressible flow solvers in the literature, the Mach number was set to be

a small value, Ma = 0.03.

The Navier-Stokes characteristic boundary condition proposed by Thompson (1990) and

Poinsot and Lele (1992) was employed at the inlet and outlet, while adiabatic free-shear wall

boundary conditions were imposed at the vertical boundaries. Periodic boundary conditions

were enforced in the spanwise direction. Computations were carried out on the following grids:

115× 75× 2, 143× 96× 2, 184× 120× 2 and 345× 225× 2. A hyperbolic tangent stretching

function was employed in both streamwise and transverse directions to ensure that the grids

were clustered toward the cylinder boundary. Figure 4.1 shows the local grid distribution near

the cylinder boundary. The solutions on the coarse grids were compared with those from

the finest grid and the L2 and L∞ norm of the error were computed in the following manner:

L2 =


 1

NxNy

Nx∑

i=1

Ny∑

j=1

(φ
Nx×Ny
i,j − φ345×225

i,j )2




1/2

,

L∞ = max|φNx×Nyi,j − φ345×225
i,j |, (4.1)

where Nx and Ny are the total number of grid cells in x and y directions, respectively. For

our analysis the error norms were computed for the x and y component of the velocity and
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Figure 4.1 Grid distribution close to the cylinder.

Table 4.1 Drag Coefficient Comparison with Different Grid Resolutions

Grid resolution Cd
345× 225× 2 (D resolved 46 points) 1.515

184× 120× 2 (D resolved 26 points) 1.489

143× 96× 2 (D resolved 20 points) 1.480

115× 75× 2 (D resolved 15 points) 1.463

Kim et al. (2001) 1.51

Dennis and Chang (1970) 1.52

Fornberg (1980) 1.498

Tritton (1959)(exp.) 1.49

the results are plotted with log scales in Fig. 4.2. As shown in the figure, the current scheme

exhibits almost second-order convergence globally and locally.

The drag coefficient Cd = Fd/(1/2ρU
2
∞A) calculated from each grid resolution is compared

with experimental and simulation data with body-fitted grids, as shown in Table 4.1. It is clear

that as the grid is refined the drag coefficient becomes closer to the body-fitted grid results.

Therefore, the convergence of the current numerical method is verified.
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Figure 4.2 L2 and L∞ norm of the error for u and v velocity components

(Re=40).

Table 4.2 Drag coefficient at different Reynolds numbers

Cd Re=20 Re=40 Re=100 Re=150 Re=200

Fornberg (1980) 2.00 1.50 - - -

Dennis and Chang (1970) 2.05 1.52 - - -

Linnick and Fasel (2003) 2.06 1.54 1.34±0.009 - 1.34± 0.044

Belov et al. (1995) - - - - 1.19 ± 0.042

Rogers and Kwak, reported - - - - 1.23 ± 0.050

in (Belov et al., 1995)

Palma et al. (2006) 2.05 1.55 1.32±0.01 - 1.34± 0.045

Current 2.00 1.51 1.305± 0.01 1.27± 0.02 1.25± 0.04

4.2.1.2 Steady and unsteady flows over a circular cylinder

To further validate the consistency and applicability of the current method for steady and

unsteady flows, a series of cases with Reynolds number ranging from 20 to 200 were studied. All

of the current computations were performed on the grid resolution 230×150×2. The simulated

results of drag coefficient Cd with different Re are shown in Table 4.2 and good agreement with

the values reported in the literature is achieved. Figure 4.3 presents the streamline and vorticity

contours for Re = 40. As expected from the literature, the flow is symmetric with respect to

the axis of the cylinder and two shedding vortices appear downstream of the cylinder.
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Figure 4.3 Streamlines and vorticity contours for Re=40.

Table 4.3 Geometric properties of the wake behind the cylinder(Re = 40)

Case L a b θ CD
Fornberg (1980) 2.24 - - 55.6◦ 1.50

Palma et al. (2006) 2.28 0.72 0.60 53.8◦ 1.55

Present 2.25 0.73 0.59 53.8◦ 1.51

The geometrical properties of the vortices behind the cylinder (Fig. 4.3) for Re = 40 are

shown in Table 4.3, together with those obtained from body-fitted grid methods and other

simulations. The current simulation results for wake length, vortex core locations and flow

separation angle agree very well with other simulation results.

The pressure coefficient distribution along the cylinder surface from the finest grid reso-

lution is presented in Fig. 4.4, together with the numerical results obtained by a body-fitted

grid method. Since the grid lines do not coincide with the cylinder surface, the pressure at

the surface is approximated with the cell center value of the fluid cell closest to the body. The

comparison is satisfactory, within five percent difference.

For unsteady cases, Re = 100, 150, 200, the flow field becomes asymmetric behind the

cylinder and the vortex shedding causes periodic fluctuating behavior of the drag coefficient

Cd and lift coefficient CL. Figure 4.5 presents the drag coefficients history for different Reynolds

numbers. As expected from the literature, the drag coefficient decreases with respect to the

increase of Reynolds number. When Reynolds number is larger than 40, the periodic fluctuating

behavior of the drag coefficient is observed for all of the unsteady cases.
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Figure 4.4 Pressure coefficient for Re=40.

Figure 4.6 shows the lift coefficient history for these different Reynolds numbers. As shown

in the figure, the amplitude of the fluctuating lift coefficient and the fluctuation frequency

increase with increasing Re. The Strouhal numbers St = fd/U∞ are shown in Table 4.4 and

it is clear that the results of the current simulation agree with those reported in the literature

very well for the several Reynolds numbers.

Table 4.4 Strouhal number comparison

Re Silva et al. (2003) Williamson (1996) Current

100 0.16 0.166 0.166

150 0.18 0.183 0.182

200 - 0.193 0.196

Finally, Fig. 4.7 presents the normalized pressure contours 2(p − p∞)/(ρ∞U2
∞) for differ-

ent Reynolds numbers. As expected, the pressure reaches maximum values at the stagnation

point on the cylinder and minimum values in the wake region. The periodic behaviors of the

pressure contours for the unsteady cases are consistent with those observed in the drag and lift

coefficients history. Therefore, the major characteristics of steady and unsteady flow over a

circular cylinder are well captured with the current numerical method.
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Figure 4.5 Drag coefficient history for Re = 40, 100, 150, 200.

4.2.2 Turbulent pipe flow

The simulation of turbulent pipe flow was designed to validate the performance of the

current numerical method for turbulent flow computations. The results of the current LES-IB

simulations are compared with DNS data (Eggles et al., 1994) and an LES simulation (Xu and

Pletcher, 2005) with body-fitted grids.

4.2.2.1 Simulation details

A fully developed turbulent pipe flow was simulated and the computational domain was set

as L = 5D, same as that in Eggles et al. (1994) and Xu and Pletcher (2005). The target bulk

Reynolds number Reb = ρbubD
µb

was 5300. The boundary condition along the immersed pipe

wall was no-slip, isothermal. Step periodic boundary condition were used in the streamwise

direction. The initial flow field was constructed by superimposing random velocity fluctuations

on a parabolic velocity profile. The magnitude of the fluctuation was around 10% of the mean

velocity. The Mach number was 0.001 and the non-dimensional physical time step was set as
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Figure 4.6 Lift coefficient for Re = 40, 100, 150, 200.

0.01 to satisfy the CFL stability condition. Two smaller time steps, 0.005 and 0.001, were also

tested, in which the time-averaged statistical results were essentially the same as those with

time step 0.01.

Grid independent studies were conducted on grid resolutions 60× 80× 80 (case 1), 100×

108×108 (case 2), 128×136×136 (case 3) and 160×170×170 (case 4). A hyperbolic stretching

function was employed for all cases so that the grids were clustered towards the wall boundary.

It was shown that the velocity profile in wall units predicted by the 128×136×136 grid was in

good agreement with the universal law of the wall within the viscous sublayer and logarithmic

layer. Also the mean friction coefficient predicted with the 128 × 136 × 136 grid agreed well

with DNS and experimental data, while the results from coarser grids were underpredicted.

Therefore, the 128× 136× 136 grid was adopted for the computations and compared with the

DNS and experimental data.

The computational domain and grid topology are shown in Fig. 4.8. As shown in the

figure, grids were uniform in the streamwise direction and stretched in the y and z directions.

The grid resolution in terms of wall units is listed in Table 4.5, where the definition of wall
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Figure 4.7 Pressure contours for Re = 40, 100, 150, 200, where flow direc-

tion is from bottom to top.

coordinates is: x+ = uτx/νw and y+ = uτy/νw. Mean flow properties of the current LES-IB

simulation are compared with those from LES of body-fitted grids (denoted as “LES”), DNS

and PIV in Table 4.6.

As shown in the table, the friction velocity, uτ , from two coarse grids is underpredicted,

while the agreement between the result of the fine grid LES-IB and that from LES, DNS and

PIV is within a few percent.
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Figure 4.8 (a) computational domain; (b) cross section grid distribution

with 128× 136× 136.

Table 4.5 Pipe flow: grid resolution in wall units

Grid Streamwise Normal to the wall θ = 0◦ or θ = 90◦

∆x ∆x+ ∆ymin ∆y+
min ∆ymax ∆y+

max

case 1 0.125 24.20 0.0055 1.065 0.0335 6.487

case 2 0.1 21.61 0.0033 0.713 0.0268 5.790

case 3 0.075 14.79 0.00323 0.637 0.0234 4.618

4.2.2.2 Mean flow and velocity statistics

To validate the turbulent statistical results obtained with the current LES-IB method, the

simulation results are compared with those from LES, DNS and PIV experiments. The mean

quantities 〈·〉 were obtained by averaging in the homogeneous directions (streamwise direction

here) and in time for 4t∗ = 4D/uτ after the flow was fully developed. Figure 4.9 shows the mean

streamwise velocity normalized by the friction velocity along the directions with θ = 0◦, 90◦,

45◦ and 135◦. The mean velocity profile was normalized by the friction velocity as U+ = U/uτ .

In all four directions, the velocity profiles show good agreement with the DNS data (Eggles et

al., 1994) as well as the universal law of the wall in both viscous sublayer and log-law layer.

The slight difference between the profile in the direction perpendicular to the grid with that
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Table 4.6 Pipe mean flow properties

LES-IB LES-IB LES-IB LES DNS PIV

(case 1) (case 2) (case 3)

Reτ = uτD
ν 345 353 365 356 360 366

ub
uτ

16.3 15.56 14.50 14.86 14.73 14.88
uc
uτ

20.02 19.58 18.98 19.14 19.31 19.38

in the diagonal direction indicates the effect of the current grid. In the directions θ = 0◦ and

θ = 90◦, the grids are aligned with the wall normal direction and the smallest grid element near

the wall has the property y+
(1) < 1. Therefore, there are around eight points located within

the region with y+ < 10. On the other hand, in the directions θ = 45◦ and θ = 135◦, since

the grids are not aligned with wall normal direction, the grid stretching function has a less

significant effect. As shown in Fig. 4.9, the first grid away from the wall is y+
(1) ≈ 2.2 and there

are only around three grid points within the region with y+ < 10.

The turbulent intensity plots in each direction are shown in Fig. 4.10, together with

the DNS results. The root mean square(rms) values were obtained by operations such as

urms =
√
〈u′u′〉, where u′ = u− 〈u〉 and 〈·〉 denotes the ensemble average in the homogeneous

x−direction and in time. Then the rms values were normalized with uτ . As the figure shows,

the three components of turbulent intensities urms, urrms and uθrms reach a maximum at a

location near the pipe wall and a minimum in the central region of the pipe. Although the

urrms and uθrms components of the turbulent intensities are slightly different from the DNS

value, the streamwise component agrees well with the DNS data. Specifically, by taking the

circumferential average for each component, the magnitude and location of these maximum

and minimum values for each component are well captured as shown in Fig. 4.11.

4.2.2.3 Friction coefficient

In Table 4.7, the average friction coefficients calculated from the three grid resolutions are

compared to DNS results, experimental data and empirical correlations. The friction coefficient

is defined as

Cf = f =
τw

1/2ρbU
2
b

. (4.2)
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In the table, the difference between LES-IB simulation results and DNS, experimental data or

correlations, Diff , is defined as

Diff =
DNS simulation result− Comparison data

DNS simulation result
. (4.3)

It can be observed that both coarse grids resulted in underprediction of the friction coefficient.

Excellent agreement with DNS and experimental data is obtained for the fine grid case, and

also good agreement is observed when compared with the correlation.

Table 4.7 Pipe flow: friction factor comparison

Correlation Cf Diff.(%)

Present simulation 60× 80× 80 0.0084 -8.89

Present simulation 100× 108× 108 0.0089 -3.47

Present simulation 128× 136× 136 0.00925 +0.33

DNS (Eggles et al., 1994) 0.00922 -

Blasius Law Cf = 0.079Re
−1/4
D 0.00926 +0.43

PIV 0.00903 -2.06

4.2.3 Turbulent duct flow containing a cylindrical rod

To evaluate the performance of the current LES-IB method in the simulation of turbulent

flows in complex geometries, flow through the subchannel of a rectangular duct containing a

cylindrical rod was simulated and compared with existing experimental and unsteady RANS

data. As shown by Guellouz and Tavoularis (2000), with the pitch to diameter ratio W/D = 1.1

used in the current study, the two-point velocity fluctuation correlations for streamwise and

spanwise component are close to zero for x/D ≈ 6. Therefore, it is reasonable to use L = 12D

as the computational domain. Similar to Guellouz and Tavoularis (2000), the diameter of the

rodD is chosen to be the reference length scale, and the computational domain is 12D×2D×3D

in the streamwise, transverse and spanwise directions, respectively. As shown in Fig. 4.12, the

rod is placed close to the bottom wall with the gap region δ = 0.1D.

The bulk Reynolds number, based on the hydraulic diameter Dh is 108,000, where Dh ≈

1.59D. Grid independence studies were carried out with four meshes, 110 × 126 × 170 (case

1), 135 × 150 × 220 (case 2), 165 × 186 × 272 (case 3) and 165 × 220 × 324 (case 4) in the
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streamwise, transverse and spanwise directions, respectively. Similar to the turbulent pipe flow

simulations, all grids were uniformly spaced in the x direction and stretched towards the duct

wall boundaries with a hyperbolic tangent stretching function. It was shown that the average

friction coefficient predicted with the 165 × 186 × 272 grid was essentially very close to that

calculated with the 165× 220× 324 grid. Therefore the 165× 186× 272 grid was adopted for

the further computations. The grid properties in wall units are shown in Table 4.8.

Table 4.8 Duct flow with one rod: grid resolution in wall units

Grid Streamwise Transverse Spanwise

∆x ∆x+ ∆ymin ∆y+
min ∆ymax ∆y+

max ∆zmin ∆z+
min ∆zmax ∆z+

max

case 1 0.1 241.06 0.000962 2.319 0.0186 44.99 0.00067 1.624 0.0177 42.755

case 2 0.081 205.45 0.000343 0.870 0.0143 36.45 0.00049 1.262 0.0142 36.158

case 3 0.067 174.00 0.00034 0.883 0.0126 32.49 0.00029 0.758 0.0125 32.289

The wall unit is defined as x+ = xuτ
νw

, where the friction velocity is uτ =
√
τw/ρw. The

initial flow field was constructed with a laminar Poiseuille profile sheared along the y− and

z− directions respectively. A white noise of amplitude A ∼ 5%Ub was superimposed on the

mean velocity. A uniform pressure and temperature distribution was applied. The boundary

conditions at the duct walls were no-slip, isothermal. Step periodic boundary conditions were

used in the streamwise direction. The statistics was collected when a fully developed turbulent

flow was obtained.

4.2.3.1 Velocity statistics

The velocity statistics are compared to unsteady RANS (URANS) results (Chang and

Tavoularis, 2005) and the experimental results (Guellouz and Tavoularis, 2000). In the current

LES-IB simulation, the flow statistics were collected over 30 time units t∗ (t∗ = Dh/Ub). Figure

4.13 presents axial mean velocities at the middle plane of the duct z/D = 0 near the top and

bottom walls. In Fig. 4.13(a) the mean velocity is normalized by the average friction velocity

along all duct walls, while in Fig. 4.13(b) it is normalized by the local friction velocity ulocτ .

The dashed line represents the empirical viscous linear sublayer U+ = y+ and the solid line is

the log-law profile U+ = 1
κ lny+ + 5.5 with von Kármán constant κ = 0.4. As shown in Fig.
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4.13(a), the resulting value normalized by average friction velocity is underpredicted for the

velocity near the bottom wall, while overpredicted for the velocity near the top wall. With the

normalization factor changed to the local friction velocity, the mean profile near both the top

and bottom walls becomes much closer to the log-law line. The significantly different mean

profiles between (a) and (b) demonstrate that for the current geometry, where the flow near

the bottom duct wall has been significantly modified by the rod, the local wall unit should be

used for normalization. In Fig. 4.13(b), the different velocity distribution near the bottom and

top walls indicates that the friction velocity at the center of the bottom wall is significantly

smaller than that at the top wall. This is reasonable since at the narrow gap between the rod

and the bottom wall, the mean velocity becomes significantly smaller than that in the open

channel center and the flow tends to be laminarized in the gap region.

Figure 4.14 shows the time-averaged streamwise velocity contours in a cross section of the

duct, together with the results obtained from experiment (Guellouz and Tavoularis, 2000). It

can be observed from both experiment and the current LES-IB simulation that two maxima

are located in the two open subchannels, half way between the symmetry plane and the side

walls. While in the URANS simulation the maximum velocity is located on the symmetry

plane above the rod (Chang and Tavoularis, 2005). It was also observed from the current

simulation that, before a fully developed flow was achieved, the maximum velocity appeared

on the symmetry plane above the rod, similar to the the patterns in the URANS simulation.

4.2.3.2 Turbulent intensities and Reynolds stresses

The LES-IB results of the turbulent intensity and turbulent kinetic energy contour plots are

presented in Figs. 4.15, 4.16, 4.17 and Fig. 4.18, respectively, and compared with experiments.

The root mean square (rms) values were obtained by operations such as urms =
√
〈u′u′〉, where

u′ = u− 〈u〉 and 〈·〉 denotes the ensemble average in the homogeneous direction and in time.

Then the rms values were normalized with Ub and turbulent kinetic energy was normzlized

with U2
b .

As shown in the figure, the increasing magnitudes towards the corners of the isocontours
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of the three rms velocity fluctuations and turbulent kinetic energy was quite pronounced and

consistent with the formation of secondary flows near the corners such as those in the duct

flows. However, the intensities and kinetic energy isocontour shapes in the lower section of

the duct are significantly different from those observed in duct flows due to the existence of a

narrow gap region.

Figure 4.19 presents isocontours of the axial u′ and azimuthal u′ϕ turbulent intensities in the

gap region together with the experimental results. It can be observed that the axial turbulent

intensity reaches high levels near both duct and rod walls. However, the local maxima of axial

turbulent intensity between the bottom wall and the rod, shown in the experimental results, is

not observed in the current LES-IB simulation. The possible reason for this difference is that

the grid resolution near the rod wall is too coarse. On the other hand, the local distribution of

azimuthal turbulent intensity u′ϕ in the gap region shows good agreement with the experimental

result. As shown in Fig. 4.19, u′ϕ reaches the maxima on the plane of symmetry, approximately

the center of the gap region.

The turbulent shear stresses, isocontours and the corresponding correlation coefficients

are presented in Fig. 4.20, together with the experimental results (Guellouz and Tavoularis,

2000). All stresses are normalized by U 2
b . Near the plane walls and away from the gap, the

three turbulent shear stresses have variations that are compatible with wall turbulence. In

particular, the magnitudes of uv and uw increase towards the wall and their contours become

nearly parallel to, respectively, the top and side walls of the channel, following the direction

of the mean velocity gradient in the corresponding wall regions. The signs of these stresses

are opposite to the sign of the local mean velocity gradient, consistent with the “gradient

transport” concept.

Midway in the region between the duct wall and rod wall, the magnitude of the stresses

uv and uw become significantly small and switch signs as they pass the midway region and

move towards the walls. Near the gap region, both the stresses uv and uw show local maxima

but the local maxima are slightly less than those at the location near the top and side wall,

respectively. The contour plot of vw is slightly different from the experimental results but
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has good agreement with the URANS simulation results (Chang and Tavoularis, 2005). In

both LES-IB and URANS simulations, the vw contours have an approximately antisymmetric

behavior with respect to the horizontal axis of the rod with opposite signs. The contours of

the three shear stress correlation coefficients are similar to the contours of the corresponding

turbulent shear stresses.

4.2.3.3 Wall shear stresses and friction factor

The variations of the mean skin friction coefficient, Cf = τw/(1/2ρU
2
b ) is not easy to

evaluate for the current complex geometry flow. Based on the author’s knowledge, there are

no universal correlations for the calculation of friction coefficients in rod sub-channel flows. In

the current study, the averaged friction coefficient along the four duct walls was computed and

compared with an empirical correlation for duct flows obtained by Jones (1976):

1

C
1/2
f

= 4log10(2.25RebCf
1
2 )− 1.6. (4.4)

The Cf value calculated from the correlation is 0.00432, which is close to the LES-IB simulated

result 0.00429.

The local wall shear stress is normalized by the averaged wall shear stress τa and it exhibits

local maxima around z/Dh = 0.2 and z/Dh = 0.5. The maximum located at the wall midpoint

can be easily understood since the velocity gradient is large there. The other local maximum

appears at the position of the secondary flow impingment, which can be explained by the fact

that the impingement brings high-speed fluid from the duct center to the wall which results

in a higher velocity gradient. The local minima located between these two maxima can be

explained as due to the secondary flow ejection, which brings fluid away from the wall. It can

be observed that the results are very sensitive to the Reynolds number. For the low Reynolds

number case, the difference between the local maximum and the local minimum in between is

larger than that observed for the high Reynolds number case.
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4.2.3.4 Comparison with turbulence in pipes or ducts

Away from the rod, the mean isocontours follow patterns comparable to those in square duct

flows (Qin, 2007). This was also the case for the rms axial turbulent velocity. In the present

case, the values of the transverse rms velocity close to the top duct wall are comparable to the

values of the spanwise rms velocity close to the side wall, and vice versa. Away from the top

corner, the shapes of the contours are measurably different. These differences can be attributed

to the asymmetry of the rectangular duct with respect to the corner bisector, and also to the

presence of the rod, which introduces additional geometrical asymmetry. This effect is more

significant near the gap region, which was influenced more by the presence of the rod.

Prefect symmetry requires that the uv and uw turbulent shear stresses should be equal

in magnitude and opposite in sign at points symmetrically located with respect to the corner

bisector. Close to the top and side walls of the duct, isocontours of the three turbulent shear

stresses are similar to those in square ducts. The effects of secondary flows are clearly noticable

in the contour plots with increasing values toward the corners of the duct. Similar to the

experimental results, the corresponding correlation coefficients have magnitudes comparable to

those in circular pipe flows, i.e., near 0.4 for uv/u′v′ and uw/u′w′ in the vicinity of, respectively,

the top and side walls. The third correlation coefficient, vw/v′w′ is essentially zero close to

the duct walls. However, towards the rod wall, the magnitude of vw/v ′w′ reaches a maxima,

around 0.55 near the bottom half wall and −0.3 near the top half wall. A similar distribution

was also observed in the experimental results (Guellouz and Tavoularis, 2000).

In the vicinity of the rod-wall gap, the local maximum of the turbulent intensity isocontours

near the rod wall was also observed in the experiments of subchannels of rod bundles (Rehme,

1989). Away from the gap, the rather open aspect of the present duct results in a distribution

similar to those found in duct flows. In the gap region, in contrast to the remainder of the

duct, the partition of the turbulent kinetic energy to its components u2, v2, w2 is significantly

different from that in duct flows. For the normal duct or pipe flows away from the walls,

the axial normal stress contains approximately half of the total energy, while the other two

components account for approximately one quarter each. With the presence of the rod, the u2
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and w2 stresses at the gap center have comparable contributions, while v2 almost vanished. The

time averaged values at z/D = 0 is u2/2k = 0.447, v2/2k = 0.055 and w2/2k = 0.498. These

values match those measured by Guellouz and Tavoularis (2000): u2/2k = 0.44, v2/2k = 0.07

and w2/2k = 0.49.

4.3 Conclusions

A non-body conformal grid method was incorporated into a large eddy simulation solver

to simulate geometrically complex turbulent flows. The scheme was developed based on the

fixed Cartesian grids which significantly simplifies the grid generation procedure. Flow over a

cylinder with different Reynolds numbers was simulated using the methodology developed to

validate the numerical scheme. The accuracy study showed that the current scheme is second

order accurate. The drag coefficient study with Re = 40 showed the convergence of the current

scheme and the drag and lift coefficients study with different Reynolds numbers showed the

consistency of the current scheme in simulating unsteady flow. Also, the pressure contours and

pressure coefficients show good agreement with the results in the literature.

The turbulent pipe flow simulation with the current LES-IB method demonstrated its

capability for simulating turbulent flows with non-body conformal grids. The mean axial

velocity profiles along θ = 0◦, 90◦, 45◦, 135◦ directions agree very well with the DNS data and

empirical laws of the wall. The turbulent intensites along each direction display a reasonably

good agreement with the DNS profiles. Specifically, after further averaging in the azimuthal

direction, the turbulent intensities show a better agreement with the DNS data. It is expected

that the turbulent intensity simulation results can be improved by refining the mesh and

decreasing the skewness of the grids.

For the first time, a turbulent duct flow containing a cylindrical rod was simulated with

the current non-body conformal grid method. The turbulent statistical results show good

agreement with the experimental data. It was shown that the current LES-IB simulation

provides better axial mean velocity and turbulent intensity distributions, compared to URANS

simulation results. The possible reason is that the LES simulation is able to capture the
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turbulent structures better than RANS type simulations. Also, the other turbulent statistics

such as Reynolds stresses and stress correlation coefficients displayed a qualitatively good

agreement with experimental data. Since the current simulation represents a simplified rod-

bundle-like flow, the outlook is very promising for the extension of the LES-IB method to

simulate more complex rod-bundles flows. Also, the current simulation can be extended to

cases with significant heat transfer as in practical nuclear reactor cooling flows around rod

bundles.
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Figure 4.9 Streamwise mean velocity at each direction: comparison with

DNS.
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Figure 4.10 Turbulent intensities in each directions: comparison with DNS.
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Figure 4.12 (a) Computational domain and grids, flow direction is towards

the paper; (b) Local grid resolution within the gap region.
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Figure 4.14 Streamwise mean velocity contours: (a) Experimental results

(Guellouz and Tavoularis, 2000); (b) Current simulation re-

sults.
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Figure 4.15 Turbulent intensities: (a) Experimental (Guellouz and

Tavoularis, 2000): urms/Ub; (b) LES-IB: urms/Ub.

Figure 4.16 Turbulent intensities: (c) Experimental (Guellouz and

Tavoularis, 2000): vrms/Ub; (d) LES-IB: vrms/Ub.
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Figure 4.17 Turbulent intensities: (e) Experimental (Guellouz and

Tavoularis, 2000): wrms/Ub; (f) LES-IB: wrms/Ub.

Figure 4.18 Turbulent kinetic energy: (a) Experimental (Guellouz and

Tavoularis, 2000): k/U 2
b ; (b) LES-IB: k/U2

b .
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Figure 4.19 Turbulent intensities near the gap region (Experimen-

tal(Guellouz and Tavoularis, 2000)): (a) LES-IB: streamwise

turbulent intensity; (b) Experimental: Streamwise turbulent

intensity; (c) LES-IB: Azimuthal turbulent intensity; (d) Ex-

perimental: Azimuthal turbulent intensity.
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Figure 4.20 Turbulent shear stress contours (Experimental (Guellouz and

Tavoularis, 2000)): (a) Experimental: 〈uv〉/U 2
b ; (b) LES-IB:

〈uv〉/U2
b ; (c) Experimental: 〈uw〉/U 2

b ; (d) LES-IB: 〈uw〉/U2
b ;

(e) Experimental: 〈vw〉/U 2
b ; (f) LES-IB: 〈vw〉/U2

b .
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Figure 4.21 Turbulent shear stress correlations (Experimental

(Guellouz and Tavoularis, 2000)): (a) Experimental:

〈uv〉/urmsvrms; (b) LES-IB: 〈uv〉/urmsvrms; (c) Experi-

mental: 〈uw〉/urmswrms; (d) LES-IB: 〈uw〉/urmswrms; (e)

Experimental: 〈vw〉/vrmswrms; (f) LES-IB: 〈vw〉/vrmswrms.
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CHAPTER 5. LARGE EDDY SIMULATION OF FLOWS WITH HEAT

TRANSFER USING NON-BODY CONFORMAL GRIDS

5.1 Introduction

Turbulent heat transfer in complex geometries is important for many engineering appli-

cations such as heat exchanger designs, rod bundle flows in nuclear reactors or even turbine

blade cooling. Application of large eddy simulation to industrial problems aims to capture

the large turbulent structures, which often requires sufficient near wall grid resolution and

good subgrid scale models (Moin, 2002). The conventional body-fitted curvilinear (Jordan,

1999) and unstructured grid LES (Mahesh et al., 2000) solvers have been successfully applied

to various flow cases such as gas-turbine combustors and asymmetric diffusers. However, the

increasing geometrical complexity makes the body-fitted grid generation more challenging and

proper domain decompositon is often required. The non-body conformal grid methods are

gaining popularity and have been combined with LES solvers to solve a variety of complex

turbulent flow problems (Balaras, 2004; Ghias et al., 2004; Tyagi and Acharya, 2005; Ikeno

and Kajishima, 2007). The general approaches include the Cartesian grid method (Ye et al.,

1999) and the immersed boundary method (Mohd-Yusof, 1998). Although various succssessful

results have been achieved, most of them have been applied to incompressible flow problems

and very few results for compressible turbulent flows have been discussed.

Based on the author’s knowledge, Kim and Lee (2004) first implemented the immersed

boundary method to simulate forced and mixed convection around a circular cylinder with

both isothermal and isoflux thermal boundary conditions. It was observed that the averaged

and local Nusselt number along the cylinder surface agreed with the experimental results very

well. Pacheco et al. (2007) developed a scheme which accounted for Dirichlet, Neumann and
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Robin boundary conditions on complex geometries with immersed boundary methods. In their

scheme, a bilinear interpolation similar to that of Kim and Lee (2004) was also utilized and

flow over a cylinder and sphere with forced and natural convection was simulated. Palma

et al. (2006) combined the immersed boundary method with a compressible RANS solver to

simulate a supersonic flow past an airfoil and a turbulent flow past a circular cylinder. The

pressure coefficient and Mach number contours agreed with body fitted grid results very well.

Therefore, it was demonstrated that the immersed boundary method is an appropriate ap-

proach to simulate heat transfer and turbulent flow problems. However, based on the author’s

knowledge, there are no reported data of turbulent heat transfer parameters such as Nusselt

number and heat transfer coefficient using immersed boundary method yet.

In this study, we combine the immersed boundary method with a compressible large eddy

simulation solver (denoted as LES-IB) and simulate a pipe flow with constant heat flux. Using

two different methods of imposing the isoflux thermal boundary condition, the thermal prop-

erties obtained from the simulation are reported and compared with the body-fitted DNS and

LES results. To verify the code, flow over a heated circular cylinder was simulated at different

Reynolds numbers and the results were compared with the results obtained by experiments

and body-fitted grid simulations.

5.1.1 Immersed boundary treatment

The basic procedure of the immersed boundary treatment is based on that stated in Chapter

3. Specifically, in the current work where the isoflux thermal boundary condition is imposed,

the wall heat transfer is taken into consideration. The forcing calculation procedure includes an

extra step to evaluate the temperature of the solid point s closest to the interface as shown in

Fig. 5.1. The temperature at the virtual point vp is evaluated based on a bilinear interpolation

using its neighbor fluid points. Then the target value for the solid points s is calculated as

Ts = Tvp −
∂T

∂n
· (xvp − xs). (5.1)
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Figure 5.1 Schematic diagram of grid notation close to the immersed in-

terface for isoflux heating case.

5.2 Results

The non-body conformal grid method was applied to flow over a heated cylinder to test the

performance of the current solver for laminar flow heat transfer simulations. The simulated

drag coefficients, lift coefficients and Strouhal numbers are compared with body-fitted grid

simulation results and experimental values in the literature. To demonstrate the capability

of the current method in turbulent flow heat transfer simulations, a turbulent pipe flow with

ReD = 5300 was simulated and the statistical results are compared to experimental data and

body-fitted grid results.

5.2.1 Laminar flow over a heated circular cylinder

In the current work, a three-dimensional mesh was generated with a very thin layer in

the spanwise z direction which contains only two cells. The computational domain was

[−20D, 40D] in the x direction and [−20D, 20D] in the y direction. A hyperbolic tangent

stretching function was employed in both streamwise and transverse directions to ensure that

the grids cluster toward the cylinder boundary. The mesh size in the z direction was set to

be the same as the smallest grid size in the y direction. To compare the characteristic flow

parameters with those calculated from incompressible flow solvers in the literature, the Mach

number was set to a small value Ma = 0.03. The Navier-Stokes characteristic boundary con-
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Table 5.1 Nusselt number comparison for flow over a heated cylinder

Nu ReD = 40 ReD = 80 ReD = 100 ReD = 120 ReD = 150

Pacheco et al. (2007) 3.62 4.7 - 5.5 6.13

Kim and Lee (2004) 3.23 - 5.13 5.62 -

Eckert and Soehngen (1952) 3.48 - 5.23 5.69 -

Current LES-IB 3.30 4.37 4.95 5.45 6.13

dition proposed by Thompson (1990) and Poinsot and Lele (1992) was employed at the inlet

and outlet, while adiabatic free-shear wall boundary conditions were imposed at the vertical

boundaries. Periodic boundary conditions were imposed in the spanwise direction.

The grid convergence study for laminar flow over a cylinder has been demonstrated in Wang

and Pletcher (2008), where the current solver was applied for non-heating flow simulations.

It was demonstrated that the current solver can achieve second order accuracy globally and

locally. Computations were carried out on five sets of grids 115 × 75 × 2, 143 × 96 × 2,

184× 120× 2, 230× 150× 2 and 345× 225× 2. It was shown that the 230× 150× 2 grid is fine

enough for the current solver to achieve a good agreement with the experimental and body-

fitted grid simulation results. A similar grid independence study was also performed for the

heating case and it was shown that the grid utilized in the non-heating case is also applicable

in the current study. The simulated results for Reynolds number ReD = 80, 100, 120, 140 and

T ∗ = Tw/T∞ = 1.1, 1.5, 1.8 are presented and compared with experimental and simulation

results. All of these computations were performed on the grid resolution 230 × 150 × 2, the

same as that used in the non-heating cases. The non-dimensional time step was set equal to

0.01, which corresponds to about 600 steps per shedding cycle. The solution at each time step

was considered converged if the residual was reduced to 10−7. The computed time-averaged

Nusselt numbers Nu = hd/k are listed in Table 5.1.

As shown in the table, Nu increases with Reynolds number and the simulated results with

the current LES-IB solver show a consistently good agreement with the reported values in the

literature. Figure 5.2 shows the local distribution of the Nusselt number along the cylinder

surface, together with the experimental (Eckert and Soehngen, 1952) and the simulation results

(Kim and Lee, 2004) for ReD = 120. It can be observed that the current simulation results
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show a good agreement with the reported experimental and simulation data.
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Figure 5.2 Local distribution of Nusselt number along the cylinder surface

(ReD = 120).

Figure 5.3 presents the Strouhal number variation for increasing values of T ∗, together with

the experimental (Wang et al., 2000) and simulation results (Palma et al., 2006). Although the

results from the current simulation are slightly higher than those obtained from the experiment

and simulation in the literature, the overall tendency of variations with respect to the change

of Reynolds numbers and temperature ratios agrees with that reported in the literature. Gen-

erally, for a fixed temperature ratio, the Strouhal number increases with Reynolds number.

As the temperature ratio increases, the flow tends to be laminarized so the Strouhal number

decreases.

Eventually, an effective Reynolds number can be defined based on the effective temperature

Teff = T∞ + 0.28(Tw − T∞)(Wang et al., 2000). The relationship between Strouhal number

and the effective Reynolds number Reeff for 1 ≤ T ∗ ≤ 2 collapses into a universal curve, which

is demonstrated in Fig. 5.4 together with the data obtained from the experiment (Wang et

al., 2000) and simulation by Palma et al. (2006). The current simulation results capture the
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Figure 5.3 Strouhal number variation with Reynolds number and temper-

ature ratio.

trend of variation very well compared to the reference data.

Figure 5.5 shows the Nusselt number variations with temperature ratio for different Reynolds

numbers. As the temperature ratio increases, the gas density decreases and viscosity increases

and therefore the local Reynolds number goes down. As shown in Incropera et al. (2005),

the empirical correlations between Nusselt number and Reynolds number generally satisfy

Nu ∝ RemD . Therefore, the overall trend of Nusselt number variations with respect to the

change of temperature ratios is correctly captured. Moreover, the evolution of mean drag co-

efficients Cd and lift coefficients CL for different Reynolds number and temperature ratio cases

are shown in Fig. 5.6 and Fig. 5.7, respectively. As shown in the figure, the drag coefficient

increases with the temperature ratio T ∗ for all Reynolds number cases, while the magnitude

and frequency of lift coefficients decrease. This observation is consistent with the behavior of

flow laminarization.

Finally, Fig. 5.8 presents snapshots of temperature contours for different Reynolds number

cases. It was shown that the temperature at the center of the first shedding vortex is very
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Figure 5.4 Strouhal number variation with effective Reynolds number.

close to the effective temperature calculated with equation Teff = T∞+ 0.28(Tw −T∞), which

was also observed in the numerical simulation by Palma et al. (2006).

5.2.2 Turbulent pipe flow with heating

The simulation of turbulent pipe flow with heat transfer was designed to validate the

performance of the current LES-IB solver for turbulent flow simulations. The simulation

results of the turbulent statistics are compared with DNS data (Satake and Kunugi, 1999) and

an LES simulation (Xu and Pletcher, 2005) using body-fitted grids.

5.2.2.1 Simulation details

A fully developed turbulent pipe flow with bulk Reynolds number Reb = ubD/ν = 5300

was simulated. Similar to the non-heating case (Wang and Pletcher, 2008), the computational

domain is L = 5D. The grid independence study was performed with grid resolutions: 60×80×

80 (case 1), 100×108×108 (case 2), 128×136×136 (case 3) and 160×170×170 (case 4). The

simulation results of turbulent heat flux and temperature contours with 128× 136× 136 grid
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Figure 5.5 Nusselt number evolution at different temperature ratios: (a)

ReD = 80; (b) ReD = 100; (c) ReD = 120; (d) ReD = 150
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resolution show good agreement with DNS and LES simulations, and exhibit no significant

difference from those obtained with a 160 × 170 × 170 grid. Therefore, further simulation

results with the 128 × 136 × 136 grid were collected and turbulent statistics for temperature

distribution were calculated. To keep the effects of property variations small enough to allow

comparison with passive scalar DNS simulation results, the heat flux was kept as low as the

one used in the LES simulation (Xu and Pletcher, 2005). The Mach number was 0.001 and the

non-dimensional physical time step was set as 0.01 to satisty the CFL number requirement.

The computational domain and grid topology are shown in Fig. 5.9. As shown in the figure,

grids are uniform in the streamwise direction and clustered toward the pipe wall in the y and

z directions. The grid resolutions in terms of wall units are listed in Table 5.2, where the

definition of wall coordinates is x+ = uτx/νw and y+ = uτy/νw.

Table 5.2 Pipe flow grid resolution in wall coordinates

Grid Streamwise Normal to the wall (θ = 0◦ or 90◦)
∆x ∆x+ ∆ymin ∆y+

min ∆ymax ∆y+
max

case 1 0.125 24.20 0.0055 1.065 0.0335 6.487

case 2 0.10 21.61 0.0033 0.713 0.0268 5.790

case 3 0.075 14.79 0.00323 0.637 0.0234 4.618

The immersed boundary conditions were implemented at the pipe wall to achieve a no-slip

velocity condition and zero normal pressure gradient boundary condition. In the streamwise

direction, periodic boundary conditions were enforced except for the treatment of pressure and

temperature. The pressure actually decreases in the streamwise direction so it was assumed

to be step-periodic and decomposed into periodic and aperiodic components as

p̄(x, y, z, t) = βx+ p̄p(x, y, z, t), (5.2)

where β is the average streamwise pressure gradient. The equation of state becomes

ρ̄(x, y, z, t) =
p̄

RT̃
=

βx

RT̃
+
p̄p(x, y, z, t)

RT̃
. (5.3)

In the current study, the pressure gradient part was implemented as a body force on the

right hand side of the streamwise velocity momentum equation and the periodic pressure
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component was determined by requiring that the mean mass flow rate be constant. Following

the approach investigated by Benocci and Pinelli (1990), the average streamwise pressure

gradient was calculated dynamically at each physical time step to provide the desired mass

flow rate as

βn+1 = βn − 1

∆t

[(
ṁ

Ac

)0

− 2

(
ṁ

Ac

)n
+

(
ṁ

Ac

)n−1
]
, (5.4)

where Ac is the cross-section area of the flow domain and ∆t is the physical time step. The

average mass flow rate ṁ/Ac is defined as

ṁ

Ac
=

1

Ac

∫
〈ρu〉sdA (5.5)

where 〈·〉s represents an ensemble average along the streamwise and circumferential directions.

(ṁ/Ac)
0 is the desired mass flow rate and its non-dimensional value is 1.0. Similarly, the

temperature was treated in a step periodic manner as

T̃p(0, y, z, t) = T̃p(Lx, y, z, t)−∆T̃x,

T̃p(Lx, y, z, t) = T̃p(0, y, z, t) + ∆T̃x. (5.6)

Assuming that the axial conduction and viscous dissipation are negligible, the bulk streamwise

temperature difference ∆T̃b, was obtained by the energy balance of the computational domain

∆T̃b =
4qwLx

(ṁ/Ac)D
, (5.7)

where the bulk temperature is defined as

Tb(x) =
1

ρbUbAc

∫
ρUTdA. (5.8)

The constant nondimensional heat flux desired at the wall, qw, is defined as

qw =
q∗w

ρrefUrefc∗pTref
, (5.9)

where q∗w is the dimensional wall heat flux q∗w = −k∗ ∂T ∗∂y∗ . In the current study, qw was set to

the same value, 4.0 × 10−4, as that used in the DNS and LES simulations. For constant wall

heat flux, the averaged streamwise gradients for local, wall and bulk temperatures are all equal

to a constant and only depend on the amount of heat added to the flow, i.e.,

∂T

∂x
=
∂Tw
∂x

=
∂Tb
∂x

. (5.10)
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Therefore, the local temperature difference ∆T̃x is

∆T̃x = ∆T̃b =
4qwLx

(ṁ/Ac)D
. (5.11)

It was shown by Kasagi et al. (1989) and Xu and Pletcher (2005) that the implementation of a

Neumann boundary condition by directly imposing wall normal temperature gradients would

lead to larger wall temperature fluctuations than those observed experimentally because the

simulations do not take into account the heat capacity of the wall. Therefore, an alternative

procedure to represent the isoflux boundary condition was established by setting a specified

wall temperature which varied linearly in the streamwise direction

Tw(x) = Tw(0) +

(
∂Tw
∂x

)
x, (5.12)

where Tw(0) is the wall temperature at the inlet of the simulating domain and the temperature

gradient ∂Tw/∂x is evaluated based on Eqn. (5.11). In this study, both implementations

with specified linearly varying wall temperature and traditional heat flux conditions were

implemented and compared with DNS and LES results. These two conditions will be hereafter

referred to as specified linear wall temperature and specified heat flux conditions, respectively.

5.2.2.2 Temperature Statistics

The turbulent statistics of temperature distributions are compared to the passive scalar

DNS (Satake and Kunugi, 1999) and LES results (Xu and Pletcher, 2005).

The non-dimensional temperature θ+ is defined as

θ+(x, y, z, t) =
〈T ∗w〉(x)− T ∗(x, y, z, t)

T ∗τ
, (5.13)

where 〈T ∗w〉 is the averaged wall temperature and T ∗τ is the friction temperature T ∗τ = q∗w
ρ∗wc∗pu∗τ

.

Since the variation of the temperature θ+ in the streamwise direction was negligibly small due

to very low heat transfer, the ensemble averages of the temperature statistics were performed

in the streamwise and circumferential directions and in time. Figure 5.10 shows the mean

temperature profiles normalized by friction temperature Tτ . It can be observed that the linear

velocity distribution θ+ = Pry+ for y+ < 5 has been well resolved with both specified linear wall
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temperature and specified heat flux thermal boundary conditions. As y+ > 5, the simulated

results also agree well with DNS and the empirical log-law profile θ+ = 2.853lny+ + 2.347 in

the logrithmic region.

The temperature fluctuations in the near wall region are shown in Fig. 5.11, together

with the DNS and LES results. It can be observed that the LES-IB simulation with either

specified linear wall temperature or specified heat flux boundary condition resulted in similar

temperature fluctuation profiles and they agree well with the DNS results close to the pipe

wall. Specifically, at the location very close to the wall, the specified linear wall temperature

condition resulted in better agreement with the DNS data while a slightly larger difference

from DNS data was observed for the specified heat flux condition. Similar behavior was

also observed by the LES simulations. As shown in Fig. 5.11, the LES simulation with the

specified heat flux condition led to large overprediction of temperature fluctuations near the

wall while a good agreement with DNS was obtained with the specified linear wall temperature

condition. However, at the positions away from the wall, the LES-IB simulation shows slightly

overprediction compared to DNS and LES. For the specified heat flux case, the magnitude of

the overprediction is similar to that in the LES simulation.

The streamwise and wall-normal turbulent heat fluxes normalized by friction velocity and

temperature are shown in Fig. 5.12 and Fig. 5.13, respectively. Unlike the LES simulation

results, in which a significant overprediction of streamwise turbulent heat flux is observed for

the specified heat flux thermal boundary condition, very good agreement with DNS results

can be observed for both boundary conditions in the LES-IB simulations. Similarly, the wall-

normal turbulent heat flux obtained from both thermal boundary conditions agree with the

DNS satisfactorily in both LES and LES-IB simulations.

The uθ and urθ cross-correlation coefficients defined as

R(uθ) =
〈u′θ′〉

u′rmsθ′rms
(5.14)

R(uθ) =
〈u′rθ′〉

u′rrmsθ′rms
(5.15)

are shown in Fig. 5.12 and Fig. 5.13. Good agreement with DNS results was observed in the
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near wall region; however, a large overprediction was observed in the core region. This is most

likely because of the large over prediction of the temperature fluctuations in the core region at

a low heating level.

5.2.2.3 Nusselt number comparison

The average friction coefficients and Nusselt numbers calculated from the specified linear

wall temperature and specified heat flux conditions are compared to LES results and the

constant property correlations proposed by Gnielinski (1976), which are valid for 2300 <

ReD < 5 × 106. The friction coefficient correlation is Cf = (1.58lnReD − 3.28)−2 and the

Nusselt number correlation is defined as

NuD =
(Cf/2)(ReD − 1000)Pr

1 + 12.7(Cf/2)1/2(Pr2/3 − 1)
, (5.16)

where ReD is the bulk Reynolds number based on the hydraulic diameter. The average friction

factor and Nusselt number for both cases are compared with LES and correlation values in

Table 5.3. In the table, the difference between the LES-IB, LES simulation results and the

correlation, is defined as

diff =
Comparison data− Correlation value

Correlation value
. (5.17)

It is observed from Table 5.3 that the friction coefficients are slightly underpredicted and

the Nusselt numbers are overpredicted in the current LES-IB simulation compared to the

correlation. But the difference is generally less than 10%, which is within the uncertainty

band usually ascribed to the correlations for turbulent flows with heat transfer. Compared to

the LES simulations, the Nusselt numbers obtained from LES-IB simulations are closer to the

correlations for both thermal boundary conditions.

5.3 Conclusions

A non-body conformal grid method was incorporated into a large eddy simulation solver

to simulate laminar and turbulent heat transfer problems. The scheme was developed based

on fixed Cartesian grids which significantly simplifies the grid generation procedure. Flow
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Table 5.3 Pipe flow: Friction factor and Nusselt number comparison

Comparison Cf Diff.(%) Nu Diff.(%)

Specified wall heat flux qw
LES-IB 0.0091 -4.21 17.90 3.89

LES (Xu and Pletcher, 2005) 0.01 5.26 16.3 -5.4

Correlation (Gnielinski, 1976) 0.0095 - 17.23 -

Specified linear wall temperature Tw
LES-IB 0.0088 -5.38 18.21 1.17

LES (Xu and Pletcher, 2005) 0.0085 -8.6 17.0 -5.5

Correlation (Gnielinski, 1976) 0.0093 - 18.0 -

over a heated cylinder at different Reynolds number and temperature ratio conditions was

simulated using the methodology developed to validate the numerical scheme. The Nusselt

number study with ReD = 40, 80, 100, 120, 150 demonstrated the accuracy and consistency of

the current method. The local distribution of Nusselt number along the cylinder surface agreed

with the experimental and reference numerical simulation satisfactorily. As the temperature

ratio increased, the drag coefficients increased and the magnitude and frequency of lift coeffi-

cients decreased, which reflects the laminarization tendency of the flow. Also, the temperature

contours showed that the temperature at the center of the first vortex was very close to the

effective temperature defined in the literature.

The turbulent pipe flow simulation obtained with the current LES-IB method demonstrated

the capability of this solver to simulate turbulent heat transfer with non-body conformal grids.

Two ways of imposing the uniform heat flux wall boundary condition was investigated. The

nondimensional temperature statistics show good agreement with DNS and LES data, where

the mesh is aligned with the wall normal direction. In the near wall region, the temperature

fluctuations compared well with DNS results, while it was slightly overpredicted with the

specified wall heat flux boundary condition. Good agreement with DNS was obtained for both

the streamwise and wall-normal turbulent heat fluxes. The friction coefficients and Nusselt

numbers agreed with the constant property empirical correlations within the uncertainty level

usually ascribed to the correlations for turbulent flows with heat transfer.
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Figure 5.6 Drag coefficient evolution at different temperature ratios: (a)

ReD = 80; (b) ReD = 100; (c) ReD = 120; (d) ReD = 150
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Figure 5.7 Lift coefficient evolution at different temperature ratios: (a)

ReD = 80; (b) ReD = 100; (c) ReD = 120; (d) ReD = 150.
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Figure 5.11 Temperature fluctuation normalized by friction temperature.
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CHAPTER 6. LARGE EDDY SIMULATION OF COMPLEX FLOW

PROBLEMS

In this chapter, transonic and supersonic flow over a cylinder, flow over an oscillating

cylinder and an internal flow through a subchannel around two cylindrical rods are studied.

The results are compared with experimental data and show the capability of the current

immersed boundary method in simulating high Mach number and high Reynolds number flows

in complex geometries.

6.1 Simulation of compressible flow over cylinder

In the literature, a series of immersed boundary method based Navier-Stokes solvers have

been developed for incompressible flows. However, a compressible flow solver with the IB

method is relatively rare. Palma et al. (2006) implemented the immersed boundary method

in a finite-volume based compressible flow solver with a k − ω model and simulated both

incompressible and compressible flows. Ghias et al. (2007) combined the immersed boundary

method with a finite difference compressible flow solver and simulated a series of low and high

Reynolds number flows. To the auther’s knowledge, no implementation of this approach for

a compressible, finite-volume based large eddy simulation solver exists in the literature yet.

The differences in the grid resolution and boundary conditions between incompressible and

compressible flows requires some additional considerations when developing an IB method.

It should also be pointed out that a finite-volume based Cartesian grid method for inviscid

compressible flows has been developed by Colella et al. (2006) and Miller and Colella (2002).

However, the inclusion of viscosity changes the character of the governing equations and the

requirements on temporal and spatial discretization. The existence of a boundary layer has
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a dominant consequence on the features of the IB method since it requires very fine grid

resolution near the immersed boundary.

6.1.1 Problem description

In order to demonstrate the performance of the current solver in handling compressibility

effects, a transonic flow condition (Ma∞ = 0.75, Re = 100) and a supersonic flow condition

(Ma∞ = 1.3, Re = 300) were tested. The grid resolution is similar to that in the cylinder

case in Chapter 4. In compressible flows, the imposition of boundary conditions needs special

care. For hyperbolic systems, the number of boundary conditions needed must be equal to the

number of characteristics that are directed from the exterior of the region toward the bound-

ary. For subsonic flows, the characteristics carry information toward the flow domain both

from the interior and exterior. The boundary conditions are used to replace the information

carried to the boundary by the characteristics from the exterior. At the outflow boundaries,

some of the characteristics have a negative sign and the corresponding boundary conditions

must be specified from the exterior. The others then can be determined from the interior.

The specification of the outflow boundary condition must be selected to ensure the numerical

problem is well posed (Tannehill et al., 1997). For supersonic flows, the signals are carried

into the domain from the upstream region by both the streamline characteristics as well as

the characteristics involving the acoustic speeds. Therefore, all the information at the inflow

boundary must be specified using the free stream conditions. There are no characteristics that

carry information from the interior of the domain to the boundary. At the outflow boundaries,

the characteristics all carry the same sign for the supersonic case and the solution must be de-

termined entirely from conditions based on the interior. In this study, the boundary condition

was specified following the method proposed by Poinsot and Lele (1992). At the transverse

boundaries the free stream velocity, pressure and temperature are determined by assuming

adiabatic conditions. The periodic boundary condition is specified in the spanwise direction.
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Figure 6.1 Mach number contours at Re = 100 and Ma∞ = 0.75, where

flow direction is from left to right.

6.1.2 Results analysis

The results of the transonic flow case are show in Figs. 6.1, 6.2 and 6.3. As the flow goes

over the cylinder, it accelerates and consequently the local Mach number goes over 1.07 which

is clearly in the compressible regime. For the supersonic flow case, the instantaneous pressure

and temperature contours are shown in Figs. 6.4 and 6.5. As shown in the figures, a bow shock

forms as the flow approaches the stationary object. After the shock, pressure, temperature

and density have a rapid rise.

The simulation Mach number contours (Fig. 6.6) are compared to those obtained by Palma

et al. (2006) (Fig. 6.7), while the density contours (Fig. 6.8) are compared to the simulation

by Boiron et al. (2009) (Fig. 6.9). Although the Reynolds number simulated in the current

study is smaller than that in both the studies by Palma et al. (2006) and Boiron et al. (2009)

(Re∞ = 2× 105 and Re∞ = 5× 104, respectively), the effect on the flow behavior by the bow

shock was captured in the present simulation. However, as shown in Fig. 6.8 and 6.9, the

distances between the bow shock and the cylinder are different due to different Mach numbers.
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Figure 6.2 Temperature contours at Re = 100 and Ma∞ = 0.75.

Figure 6.3 Pressure contours at Re = 100 and Ma∞ = 0.75.
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Figure 6.4 Temperature contours at Re = 300 and Ma∞ = 1.3.

Figure 6.5 Pressure contours at Re = 300 and Ma∞ = 1.3.
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Figure 6.6 Mach number contours at Re = 300 and Ma∞ = 1.3.

From theoretical and experimental results, Billig (1967) proposed a formula to estimate the

distance ∆ between the shock and the obstacle along the stagnation line as

∆

r
= 0.386exp(

4.67

M2∞
), (6.1)

where r is the radius of the cylinder. The distance ∆ from current simulation is ∆ ≈ 5.7r,

which is close to the estimated value from above equation, 6r. Also based on this formula, it

can be expected that the distance is larger for lower Mach number flows. Therefore, it can

be observed from Fig. 6.8 that the distance between the bow shock and the cylinder along

the stagnation line is larger that observed in Fig. 6.9. At last, it should be pointed out

that the current simulation for supersonic flow case only serves as a demonstrative study to

show the possibility of applying immersed boundary method in compressible flow simulations.

To obtain quantitative comparisons with experiments or body-fitted grid simulations, further

detailed study is required.
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Figure 6.7 Palma et al. (2006): Mach number contours for Ma∞ = 1.3.

Figure 6.8 Density contours at Re = 300 and Ma∞ = 1.3.
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Figure 6.9 Boiron et al. (2009): Density contours for Ma∞ = 2.

6.2 Simulation of flow over an oscillating cylinder

Flow over an oscillating cylinder was simulated to test the capability of the current solver

in solving flow problems with immersed moving objects. The parameters were chosen based

on the simulation of Guilmineau and Queutey (2002). The prescribed motion of the cylinder

in the cross-stream direction is assumed to be y(t) = Asin(2πfet), where A = 0.2D and fe

is the excitation frequency. In the simulation of Guilmineau and Queutey (2002), five sets

of frequency values were tested with F = fe/f0 = 0.8, 0.9, 1.0, 1.1, 1.12, 1.2 with f0 being the

vortex shedding frequency for a fixed cyilnder at Re = 185. In the current study, three sets

of frequency values were studied as F = 0.8, 0.975, 1.2. The reason for choosing F = 0.975 is

that a half cycle motion comparison can be made between the present simulation with that by

Blackburn and Henderson (1999). The computational domain was 60D × 40D × 0.06D and

the boundary conditions were specified similar to those for fixed cylinder simulations. The

instantaneous vorticity contours for the cylinder at the extreme upper position were plotted

out and compared with those from Guilmineau and Queutey (2002), as shown in Fig. 6.10. It
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can be observed that, as the frequency ratio F increases, the length of the vortex attached to

the upper side of the cylinder decreases. As was discussed in Guilmineau and Queutey (2002),

for F > 1.10, the upper vortex was diminished in strength to the extent that the lower vortex

became the dominant vortex and the upper vortex rolled up tightly behind the cylinder. The

same trend was well captured in the current simulation when F = 1.2. To compare the vorticity

contours within a half cycle, the current simulation results for F = 0.975 are compared to those

of Blackburn and Henderson (1999) in Fig. 6.11. As shown in the figure, the vorticity patterns

within half of a cycle are quite similar in both simulations. However, it should be pointed out

that the Reynolds number is Re = 500 in the simulation of Blackburn and Henderson (1999)

and they assumed the flow behavior was still two-dimensional.

6.3 Large eddy simulation of subchannel flows surrounding two cylindrical

rods in a rectangular duct

6.3.1 Introduction

Idealized flow geometries are often not found in the reactor cores of light water reactors

which include closely-packed fuel rods, grid spacers and a variety of deflectors. The flow

geometry is generally more complex than the geometries that have been used to generate

the empirical correlations used in the thermal hydraulic safety codes. As a powerful tool

to help the design and operation of reactors, computational thermal fluid mechanics has been

applied for flow simulations in and around complex geometries in advanced light water reactors

(ALWRs) and supercritical fluid reactors (SCRs). However, most of these applications depend

on turbulence models such as the k − ε model or eddy viscosity model (EVM). Predictions

of mean velocity profiles which appear reasonable can be misleading, particularly when wall

heat transfer and friction are important (McEligot, 1986). One of the major deficiencies of

turbulence models based on the dissipation ε equation is that they are known to predict the

onset of separation too late and to underprecidt the amount of separation (Menter and Esch,

2001). Direct numerical simulation solves the the N-S equations without modeling but its high

computational cost inhibits the resolution of the flow characteristics. On the other hand, large
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Figure 6.10 Instantaneous vorticity contours for Re=185 and A/D=0.2.

In all frames, the location of the cylinder is at its extreme up-

per position. left - simulation by Guilmineau and Queutey

(2002)(F=0.8, 1.0, 1.2); right - LES-IB simulation (F=0.8,

0.975, 1.2).



119

x

y

0 2 4 6 8
-3

-2

-1

0

1

2

3

x

y

0 2 4 6 8
-3

-2

-1

0

1

2

3

x

y

0 2 4 6 8
-3

-2

-1

0

1

2

3

x

y

0 2 4 6 8
-3

-2

-1

0

1

2

3

x

y

0 2 4 6 8
-3

-2

-1

0

1

2

3

Figure 6.11 Instantaneous vorticity contours over a half cycle: left - Black-

burn and Henderson (1999)(A=0.25, F=0.975); right - LES-IB

simulation (A=0.2, F=0.975).
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eddy simulation (LES) solves most energetic eddies directly in the flow and models the smallest

scales which require very fine grid resolutions. Therefore, this approach requires less computer

power than DNS and quite realistic results can be obtained since modeling generally plays a

fairly minor role in LES.

6.3.2 Problem description

This section demonstrates a practical application of the immersed boundary method in

a complex geomtry flow simulation. As shown by Smith (2005), the safe, reliable and effi-

cient operation of nuclear reactors depends on the ability to accurately predict velocity and

temperature distributions in the flow inside coolant channels. Significant differences and uncer-

tainties have been found between thermal hydraulic correlations for various types of reactors.

To predict the the flow behavior through rod bundles, Smith (2005) carried out an experiment

with two parallel rods which represented a small section of a reactor core. The data provided

benchmark velocity and turbulent measurements for the portion of the study dwelling on forced

convection in complex reactor geometries. In this study, we simulated the same geometry as

that in their experiment but excluded the spacers. As shown in the experiment, the thickness

of the spacer was small and the measurement domain was chosen to lie between two spacers.

Although the existence of spacers would affect the flow distribution, it is still a reasonable step

to simulate bare rods inside a duct similar to the experiment of Rehme (1989). Also, it was

shown that the simulation results with bare rods are similar to the experimental results.

In the experiment of Smith (2005), the geometry was scaled to be six to seven times larger

than typical fuel pins. The rod diameter was 63.5mm and the axial pitch of the ring-cell

spacers was 444.5mm. The nominal dimensions of the rectangular flow channel containing the

simulated fuel rods were 76.8mm× 153.7mm. Therefore, the pitch-to-diameter ratio P/D ≈

1.21. In the experiment, the streamwise x origin was at the downstream end of the upstream

spacer and the domain extended slightly upstream of that point. The measurement domain

extended to upstream of the second spacer at x = 400mm. The spanwise origin z was centered

on the lower rod and the cross stream y axis origin was centered in the channel.
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Figure 6.12 Simulation geometry setup for the two rod case.

The simulation configuration was a scaled model of the experimental setup, as shown in Fig.

6.12. The computational domain was L = 13.32D with pitch-to-diameter ratio P/D = 1.21,

as shown in Fig. 6.13.

A Cartesian grid was generated with 165×180×120 grid points in the streamwise, vertical

and spanwise directions, respectively. To resolve the turbulent structures near the wall, a

hyperbolic stretching function was implemented in both vertical and spanwise directions. A

bulk Reynolds number, based on the hydraulic diameter Dh ≈ 0.401D is Re = 7648, was the

same as that used in the experiment of Smith (2005). The first grid point away from the

wall was 0.51 in terms of wall units y+ = yu∗/ν. In the streamwise direction the grid was

uniformly distributed with ∆x+ = 39.93 in terms of wall units. No slip boundary conditions

were enforced at the four duct walls and a step-periodic boundary condition was assigned at

the inflow and outflow boundaries by assuming fully developed flow.
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(a) Experimental results (Smith, 2005).

1.44
1.33
1.22
1.11
1.00
0.89
0.78
0.66
0.55
0.44
0.33
0.22
0.11
0.00

U/Ub

(b) Present simulation results.

Figure 6.14 Mean axial velocity comparison for the two rod case.
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Figure 6.15 Secondary flow patterns between two rods and upper wall.

6.3.3 Results analysis

Figure 6.14 shows the comparison of mean streamwise velocity contours normalized by

bulk velocity between experimental and the present simulation results. It is observed from

both contour plots that the peak value appears at two locations along the channel bisector

between the two rods and is symmetric with respect to the horizontal axis of the duct, as

shown in Fig. 6.13. At the four duct corners, the secondary flow features are captured by the

current simulation, as shown in Fig. 6.15. Axial velocity distributions along the cross stream

y−axis obtained in the simulation and experiment are compared in Fig. 6.16, in which the

experimental data are extracted from the data file of Smith (2000). The simulation results

agree well with experimental data.

Figures 6.17 and 6.18 show the comparison of the simulated axial and cross stream turbu-

lence intensity contours with the experimental results of Smith (2005), in which the contour

levels were normalized by the bulk velocity. It was observed from Fig. 6.17 that axial intensities

are high near the rod walls and the duct walls, low at the inner subchannels where the mean

axial velocities obtain the maximum. In both simulation and experimental results, the axial
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Figure 6.16 Mean axial velocity comparison at the duct center plane.
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(a) Experimental results at plane x/L = 0.5 (Smith, 2005).

(b) Present simulation results.

Figure 6.17 Axial turbulent intensity comparison for the two rod case.
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intensities obtain high values along 45◦ axes of both rods. The cross stream intensities reach

high values along both z = constant walls, while reaching low values at both y = constant

walls. However, the relative high value patterns between the two rods observed in the sim-

ulation results are not significant in the experimental data. The possible reason is that the

cross stream intensity quantities are much smaller compared to the axial ones so that it is not

easy to measure. It should be noted that, from both figures, the experimental data are not

symmetric with respect to z = 0 axis, which makes it almost impossible to obtain an exact

match between experimental and simulation results. However, the overall distribution patterns

and magnitudes between them are quite good.

Figures 6.19 and 6.20 show the comparison of the Reynolds stress and turbulent kinetic

energy contours, in which the contour levels were normalized by the square of bulk velocity.

Along the y−axis direction, the u′v′−component of Reynolds stress contours show alternating

signs between the opposite walls in Fig. 6.19, which agree with the general secondary flow

patterns. In both experimental and simulation results, the turbulent kinetic energy reached

high values at the locations very close to the rod walls and two z = constant walls. The overall

agreement of the distribution and magnitude is quite good, although the experimental data

are not symmetric with respect to z = 0 axis.

6.4 Conclusions

Non-body conformal grids have been successfully employed to simulate compressible flow

and complex geometry flow. In the former case, the simulated Mach number shows the com-

pressiblility of the flow and the results compare well with those obtained by Ghias et al.

(2007). In the subchannel flow surrounding a rectangular duct and two cylindrical rods, the

simulated turbulent statistics show reasonably good agreement with the results from the ex-

periment(Smith, 2005).
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(a) Smith (2005) experimental results at plane x/L = 0.5.

(b) Present simulation results.

Figure 6.18 Cross stream turbulent intensity comparison for the two rod

case.
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(a) Smith (2005) experimental results at plane x/L = 0.5.

(b) Present simulation results.

Figure 6.19 Reynolds stress comparison for the two rod case.
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(a) Smith (2005) experimental results at plane x/L = 0.5.

(b) Present simulation results.

Figure 6.20 Turbulent kinetic energy comparison for the two rod case.
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CHAPTER 7. MULTISCALE INTERACTION TIME MODEL STUDY

OF PARTICLE-LADEN FLOWS WITH DNS

7.1 Introduction

Under the Lagrangian-Eulerian description of turbulent particle flows, the evolution equa-

tion for the particle velocity implies a modeled evolution for the droplet distribution function

(DDF) of particle fluctuating velocity (Pai and Subramaniam, 2006). The particle velocity

evolution equation

dVp

dt
= f(Red)

Uf −Vp

τp
+ Fadd (7.1)

represents a class of Lagrangian models widely used in the literature, in which τp is the par-

ticle response time and Fadd represents extra forces such as virtual mass force, Basset force

and buoyancy force (Crowe et al., 1997). The instantaneous fluid phase velocity Uf can be

decomposed into a mean 〈Uf 〉 and fluctuation u′f ,

Uf = 〈Uf 〉+ u′f . (7.2)

The flutuating fluid phase velocity u′f is usually sampled from a joint-normal probability

density function with zero mean and covariance (2kf/3)δij by assuming isotropic turbulence. It

was observed by Pai and Subramaniam (2007) that the timescale for interphase TKE transfer

is different from that associated with particle dispersion and the trends of these time scales

are also different for varying Stokes numbers. Since u′f represents a model for the fluctuating

fluid-phase velocity that does not represent all the velocity scales that are captured in the DNS

velocity field, the drag model based on the particle response time is not capable of capturing

the observed trends in the decay of TKE with Stokes number Stη = τp/τη. Therefore, in

Pai and Subramaniam (2006) and Xu and Subramaniam (2006), a multiscale interaction time
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model (MIM) was proposed based on the equilibration of energy model (EEM) concept and the

particle and fluid TKE evolution predicted by the EEM model correctly reproduced the trends

with Stokes numbers. In this work, we will study the possibility of applying the MIM model

concept to DNS and LES of particle-laden turbulent flows. The basic assumptions include free

decaying turbulence, volume fraction O(10−3) and mass loading O(1). Due to the low volume

fraction, two way coupling was considered but collision was neglected.

7.2 Problem description

In this section, a multiscale interaction time model based on model spectrum is formed and

the RANS-MIM model proposed by Xu and Subramaniam (2006) is applied to an isotropic

homogeneous flow field. The model timescale is compared to the characteristic fluid timescale

and partical response time. It will be shown that the modeled MIM timescale has better

capability to capture the multiscale interaction between the particles and flow eddies. In

the literature, there are different spectra such as one-dimensional spectra, power-law spectra,

Kolmogrov spectra and von Karman spectrum which could be used to initialize the isotropic

turbulent field. In this study, we selected the von Karman spectrum for the initialization. The

initial parameters include wave number modes, phase shifting coefficients and RK coefficients.

Initialization of wave number mode depends on κmaxη and the initial integral length scale,

which were specified before the simulation. Based on the description of Pope (2000), the two

spatial-resolution requirements L/L11 = 8 and κmaxη = 1.5 determine the necessary number

of Fourier modes (or grid nodes), where L is the box side length and L11 is longitudinal

integral length scale. In this study we chose the box side length L = 2π and grid resolution

N3 = 64 × 64 × 64. Based on the the chosen resolution, other simulation parameters can be

determined and they are listed in Table 7.1.
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Table 7.1 Simulation parameters

Parameter Current simulation DNS (Sundaram and Collins, 1999)

(643) (1283)

ν 7.854× 10−3 7.854× 10−3

le(0) 1.3812 1.6223

η(0) 0.0362 0.0384

ε(0) 0.282 0.22282

kmaxη(0) 2.1845 2.1845

Rλ(0) 37.45 81.145

u′(0) 0.8262 0.9363

τη(0) 0.16688 0.18774

∆t 0.002 0.0031

Notation: ν is the fluid kinematic viscosity; le(0) is the initial large eddy length scale; η(0) is

the initial Kolmogrov length scale; ε(0) is the initial dissipation rate; kmaxη(0) is the initial

resolution of the calculation; Rλ(0) is the initial Taylor Reynolds number; u′(0) is the initial

turbulent intensity; τη(0) is the initial Kolmogrov time scale and ∆t is the time step.

7.3 Governing equation and numerical scheme

Starting from the incompressible Navier-Stokes equation in physical space,

∂uj
∂t

+
∂(ujuk)

∂xk
= −1

ρ

∂p

∂xj
+ ν

∂2uj
∂xkxk

+ fj , (7.3)

a Fourier transform Fκ() function was applied to both sides:

dûj
dt

+ νκ2ûj = −iκj p̂− Ĝj + Fκ(fj), (7.4)

where p̂ is the Fourier transform of the dynamic pressre p/ρ and Ĝj is the Fourier transform

of the nonlinear (convective) term:

Ĝj(κ, t) = Fκ{
∂(ujuk)

∂xk
}

= iκkFκ{ujuk}

= iκkFκ{(
∑

κ′
ûj(κ

′)eiκ
′·x)(

∑

κ′′
ûk(κ

′′)eiκ
′′·x)}

= iκk
∑

κ′
ûj(κ

′)ûk(κ− κ′). (7.5)

A fractional step scheme is used to discretize the governing equation, where the Adams-

Bashforth adaptive scheme was used for convective terms and the Crank-Nicholson adaptive
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scheme was used for the viscous terms,

û∗j − ûnj
∆t

= −νκ2(c1û
∗
j + c2û

n
j )− (a1Ĝ

n
j + a2Ĝ

n−1
j )− iκj p̂n + f̂n+1

j , (7.6)

where the Adams-Bashforth coefficients cj and Crank-Nicholson coefficients aj are specified

as c1 = 0.5; c2 = 0.5; a1 = 1.5; a2 = −0.5. The calculation of the nonlinear convective term

considered the dealiasing effect. Further details on the numerical scheme can be found in Mohd-

Yusof (1996). In Fourier space, the pressure Poisson equation was obtained by multiplying

both sides of Navier-Stokes equation, Eq. 7.4, by κj . Since the flow was assumed to be

incompressible, the equation then becomes

κ2p̂ = κjĜj − κj f̂j . (7.7)

In the discretized form, the pressure field at timestep n was calculated as

κ2p̂n = κj(a1Ĝ
n
j + a2Ĝ

n−1
j )− κj f̂nj . (7.8)

Then the gradient of pressure κj p̂
n was calculated and used to update velocity field. With the

intermediate velocity û∗j solved from Eq. 7.6, the new velocity ûn+1
j , which satisfies continuity

equation, is calculated as,

ûn+1
j = û∗j −∆t∇φ̂. (7.9)

Then the pressure field is updated with the calculated pressure correction φ̂. The pressure

correction was calculated by taking the divergence on both sides of above equation,

∆tκ2φ̂ = κj û
∗
j . (7.10)

The pressure field is updated as

p̂n+1 = p̂n + φ̂. (7.11)

The particle motion follows

dxnp
dt

= vnp

mn
p

dvnp
dt

= mn
p

u(xnp )− vnp
τnp

+
N3∑

j=1

wjfj . (7.12)
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Figure 7.1 Flow energy spectrum comparison: “SC” represents Sundaram

and Collins (1999).

7.3.1 Validation of present DNS simulation of turbulent particle-laden flows

Before introducing the MIM model, the current DNS flow solver was validated using the

simulation data of Sundaram and Collins (1999). The overall trends of fluid kinetic energy

decay and dissipation rate, flow energy spectrum change with respect Stokes number, particle

kinetic energy decay and dissipation rate agree well with those from Sundaram and Collins

(1999). Fig. 7.1 and 7.2 show the flow energy spectrum and kinetic energy decay comparison,

respectively.

7.4 DNS simulation results with MIM model

The basic idea of the multiscale interaction time model proposed by Pai and Subramaniam

(2006) and Xu and Subramaniam (2006) is to construct a mean time scale to replace the

particle response time in the drag model. First a Stokes number valid in the inertial range was
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Figure 7.2 Particle energy comparison: “SC” represents Sundaram and

Collins (1999).

defined as:

Stl =
τp
τl
, (7.13)

where τl is defined as

τl =
|u′f |2
εf

. (7.14)

The velocity fluctuation u′f was assumed to obey a joint normal distribution with zero mean

and covariance (2kf/3)δij . With this assumption, the probability density function of |u′f | is

f(z) =

√
2

π

1

σ3
f

z2e−z
2/2σ2

f , (7.15)

where σ2
f = 2kf/3 and z is the sample space variable corresponding to |u′f |. A mean time scale

of interaction τMIM was derived as

〈τMIM 〉 =

∫ ∞

zc
τMIMf(z)dz +

∫ zc

0
τpf(z)dz (7.16)

where zc = |u′∗f | and

τMIM = Stl(τp − τ) + τ. (7.17)
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|u′∗f | represents a threshold value of |u′f | where a transition of regime happens. τ is the large

eddy turnover time scale τ = kf/εf . The basic idea of this model is to separate the eddies

with different scales into two regimes based on Stl. For Stl > 1, it can be argued that particle

responds slowly to the eddies and the time scale of energy transfer is dominated by the particle

response time τp. If Stl < 1, the particle responds immediately to the flow and the time scale of

energy transfer is affected more by the eddy turnover time τ . In Eq. 7.16, the region z ∈ (0, zc)

corresponds to the regime Stl > 1 and z ∈ (zc,∞) corresponds to Stl < 1, as shown in Fig.

7.3. In this figure, the critical quantity zc corresponds to the transition of these two regimes

with Stl = 1 and then |u′∗f | can be uniquely determined by the relation

|u′∗f |2 = τpεf . (7.18)

It should be noted that in the limit conditions the above model leads to correct physical

behavior of the system. In the limit of |u′∗f | → 0, all particles have Stl < 1 and they are simply

convected by the flow with dominant time scale τ . However, in the limit of |u′∗f | → ∞, all

particles have Stl > 1 and it means no eddies are energetic enough to convect the particle so

the dominant time scale of energy transfer is τp.

The basic idea of above MIM model is applied to the model spectrum of simulation for

isotropic homogeneous turbulence below. In this case, the mean time scale based on wave

numbers is defined as

〈τ〉κ =

∫ ∞

0
〈τ |κ〉f(κ)dκ, (7.19)

with the conditional average 〈τ |κ〉 defined as

〈τ |κ〉 =





τp, κc ≤ κ <∞,

Stκ(τp − τ), 0 ≤ κ < κc.
(7.20)

In the above equation τ = kf/εf and the wavenumber based Stokes number is defined as

Stκ = τp/τ(κ) with

τ(κ) =

∫ κ+dκ
κ E(κ)dκ

2ν
∫∞

0 κ2E(κ)dκ
=

∫ κ+dκ
κ E(κ)dκ

εf
. (7.21)

In Eq. 7.20, κc is determined from Fig. 7.4 with the separation of regimes concept. κc

corresponds to St∗κ = τp/τ(κ) = 1 therefore κc can be determined from Eq. 7.21.
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Figure 7.5 Time scales comparison: 〈τ〉MIM : mean time scale based on

assumed pdf of u′f ; 〈τ〉MIM : mean time scale based on energy

spectrum; τ : eddy turnover time; τp: particle response time.

The results of both mean time scales τMIM and 〈τ〉κ are shown in Fig. 7.5, compared with

particle response time and large eddy turnover time scales. It can be observed that both mean

time scales increase with fluid time scale, which corresponds to the trend of limit of κc →∞.

It means that all particles have Stκ < 1 and they are convected by the eddies. Therefore the

trend of mean time scales matches with the eddy turnover time scale. The evolution trends

for both mean time scales agree well with each other.

7.5 MIM model consideration for large eddy simulation of particle laden

flows

In this section, the extension of the MIM model to large eddy simulation is discussed. The

particle velocity evolution model can be written as

dV

dt
= Ωp(U−V) + F. (7.22)
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where Ωp is a characteristic particle response frequency. The particle response frequency

depends on the drag coefficient, CD, which is a function of particle Reynolds number Rep =

ρfd|U−V|
µf

. For the widely used drag models in the literature, Ω can be written as

Ω =
f(Rep)

τp
, (7.23)

where f(Rep) represents a functional dependence on Rep. Particle response time τp is given

by (ρpd
2)/(18νfρf ). In LES, the instantaneous fluid-phase velocity U is decomposed into a

filtered quantity, U, and a subgrid quantity usgs through

U = U + usgs.

Also, the particle velocity V can be decomposed into a filtered quantity and a pseudo-subgrid

quantity as

V = V + vsgs.

Instead of solving the above equation, we approximately solve the following equations

dV

dt
=

f(Re)

〈τ〉 (U−V) + F (7.24)

dvsgs
dt

=
f(Re)

〈τ〉sgs
(usgs − vsgs), (7.25)

where 〈τ〉 is the mean time scale based on the filtered field and 〈τ〉sgs is the subgrid mean time

scale. 〈τ〉 can be calculated with a procedure similar to the way 〈τ〉MIM was calculated in

the previous section based on the sampled PDF distribution of filtered flow field U. Typically,

we can assume a Beta-distribution based on the literature about turbulent shear flows. And

the subgrid mean time scale 〈τ〉sgs can be approximated with a procedure similar to the

way 〈τ〉MIM was calculated in the previous section based on a Gaussian PDF distribution

assumption. The detailed model procedure and results analysis will be the future work.

7.6 Conclusion

The DNS-LE solver has been tested and the simulated results compared reasonably well

with the results of Sundaram and Collins (1999). The proposed mean time scale based on model
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spectrum showed the similar trend to that calculated from an assumed PDF model. Generally,

as turbulence decays, the characteristic fluid time scale increases. Therefore, the particles

initially having large response time will change their interaction modes with the fluid time

scale. If at the beginning the particle response time is significantly larger than the Kolmogrov

time scale, the particles generally don’t follow the fluid particle path. As turbulence decays,

those particles will tend to be more easily convected by the fluid eddies.



142

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

The objective of the present study is the development of a non-body conformal grid method

and its implementation in a compressible flow solver. Brief conclusions and recommendations

for future related work are given in this chapter.

8.1 Summary

A non-body conformal grid method was incorporated into the large eddy simulations solver

to simulate geometrically complex turbulent flows. The scheme was developed based on the

fixed Cartesian grids which significantly simplifies the grid generation procedure.

In terms of the validation and application of the solver, a variety of flow problems including

low to high Reynolds numbers, external and internal flows, incompressible and compressible

flow were considered. First, the formal accuracy of the current solver was established for the

problem of flow over a cylinder. Then flow over a cylinder with different Reynolds numbers

was simulated and characteristic parameters were compared to those from the literature (ex-

periments and simulation). The method developed was found to reproduce all features of the

flow, compared to the referenced body-conformal grid simulations and experiments. Turbulent

isothermal pipe flow was simulated with non-body conformed grids to validate the capabil-

ity of the current solver for turbulent flow simulations. The turbulent statistical results were

compared with body-fitted grid method data and good agreement was observed. By using

this method, a rectangular duct flow containing a cylindrical rod was simulated and the tur-

bulent statistics were compared with the results from other investigators. The comparison

with experiments of Guellouz and Tavoularis (2000) shows better agreement for mean stream-

wise velocity distribution than the URANS simulation of Chang and Tavoularis (2005). The
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axial turbulent intensities and turbulent kinetic energy show reasonable agreement with the

experimental results of Guellouz and Tavoularis (2000).

Flow over a heated cylinder at different Reynolds numbers and temperature ratio conditions

was simulated using the developed methodology. The Nusselt number study with ReD =

40, 80, 100, 120, 150 demonstrated the accuracy and consistency of the current method. The

local distribution of Nusselt number along the cylindrical surface agreed with the experimental

and reference numerical simulation satisfactorily. As the temperature ratio increased, the drag

coefficients increased and the magnitude and frequency of lift coefficients decreased, which

reflects the laminarization tendency of the flow. Also, the temperature contours showed that

the temperature at the center of the first vortex was very close to the effective temperature

defined in the literature.

The turbulent pipe flow simulation obtained with the current non-body conformal grid

method demonstrated the capability of this solver to simulate turbulent heat transfer prob-

lems. Two ways of imposing the uniform heat flux wall boundary condition was investigated.

The nondimensional temperature statistics show a good agreement with DNS and LES data,

where the mesh is aligned with the wall normal direction. In the near wall region, the temper-

ature fluctuations compared well with DNS results, while it was slightly overpredicted with the

specified wall heat flux boundary condition. Good agreement with DNS results was obtained

for both the streamwise and wall-normal turbulent heat fluxes. The friction coefficients and

Nusselt numbers agreed with the constant property empirical correlations within the uncer-

tainty level usually ascribed to the correlations for turbulent flows with heat transfer.

Finally, non-body conformal grids have been successfully employed to simulate compress-

ible flow and complex geometry flow. In the former case, the simulated Mach number shows the

compressiblility of the flow and the results compare well with that by Ghias et al. (2007). In the

subchannel flow surrounding a rectangular duct and two cylindrical rods, the simulated tur-

bulent statistics show reasonably good agreement with the results from the experiment(Smith,

2005).
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8.2 Contributions

• Developed a non-body conformal grid method within the framework of a compressible

large eddy simulation solver.

• Validated the capability and order of accuracy of the non-body conformal grid method

for the simulation of laminar and transition flows.

• Investigated the turbulent characteristics of duct sub-channel flows with the non-body

conformal grid method.

• Extended the developed solver to simulate heat transfer problems for both external and

internal flows.

• Studied the flow properties with Mach number with the developed non-body conformal

grid method.

• Studied the MIM model based on wave spectrum for homogeneous isotropic turbulence.

8.3 Recommendations for Future Work

It was shown in the present study that the non-body conformal grid method helped simpli-

fying the grid generation procedure for complex flows. A limiting factor in all these methods

is the inflexibility in clustering grid points near a complex body. As the Reynolds number

increases, more grid points are required to resolve the thinner boundary layer near the body.

To investigate if they are still cost efficient compared to a body-fitted grid forulations, one

needs to look at the rate of increase of the total number of grid points for both categories of

methods as a function of Reynolds number. In general, for a single body simulation, the use of

body-fitted grid method often only requires grid refinement in the the wall-normal direction,

while two or three direction grid refinment is often required for the a non-body conformal grid

method. As a result the required number of grid points increases faster for non-body conformal

grid method. A possible remedy for this problem is to add grid adaptivity into the non-body

conformal solver. A similar implementation has been carried out by the classical immersed

boundary method (Lai and Peskin, 2002) and the Cartesian grid method. In the near future,

the major development of the current work can be summarized as follows:
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• Implement the grid adaptation capability into the current solver.

• Combine the non-body conformal grid method with wall models to tackle very high

Reynolds number flows in complex geometries.

• Develop a general fluid-structure interaction solver for moving boundary problems.
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APPENDIX A. JACOBIAN MATRICES

The transformation matrix between the conservative and the primitive variables (see Eq.

2.63) is

[T ] =




1/T̃ 0 0 0 −p̃/T̃ 2

ũ/T̃ p̃/T̃ 0 0 −p̃ũ/T̃ 2

ṽ/T̃ 0 p̃/T̃ 0 −p̃ṽ/T̃ 2

w̃/T̃ 0 0 p̃/T̃ −p̃w̃/T̃ 2

cv + K̃/T̃ p̃ũ/T̃ p̃ũ/T̃ p̃w̃/T̃ −(p̃K̃)/T̃ 2




, (A.1)

where K̃ = 1
2(ũ2 + ṽ2 + w̃2).

Its inverse is

[T ]−1 =




K̃/cv −ũ/cv −ṽ/cv −w̃/cv 1/cv

−ũT̃ /p̃ T̃ /p̃ 0 0 0

−ṽT̃ /p̃ 0 T̃ /p̃ 0 0

−w̃T̃ /p̃ 0 0 T̃ /p̃ 0

(T̃ /p̃)[K̃/cv − T̃ ] −ũT̃ /(p̃cv) −ṽT̃ /(p̃cv) −w̃T̃ /(p̃cv) T̃ /(p̃cv)




(A.2)

The preconditiong matrix (see Eq. 2.83) is

[Γ] =




R/T̃ 0 0 0 −p̃/T̃ 2

Rũ/T̃ p̃/T̃ 0 0 −p̃ũ/T̃ 2

Rṽ/T̃ 0 p̃/T̃ 0 −p̃ṽ/T̃ 2

Rw̃/T̃ 0 0 p̃/T̃ −p̃w̃/T̃ 2

R
[
cv + K̃/T̃

]
p̃ũ/T̃ p̃ṽ/T̃ p̃w̃/T̃ −(p̃K̃/T̃ 2)




(A.3)
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Its inverse is

[Γ]−1 =




K̃/Rcv −ũ/(Rcv) −ṽ/(Rcv) −w̃/(Rcv) 1/(Rcv)

−ũT̃ /p̃ T̃ /p̃ 0 0 0

−ṽT̃ /p̃ 0 T̃ /p̃ 0 0

−w̃T̃ /p̃ 0 0 T̃ /p̃ 0

(T̃ /p̃)[K̃/cv − T̃ ] −ũT̃ /(p̃cv) −ṽT̃ /(p̃cv) −w̃T̃ /(p̃cv) T̃ /(p̃cv)




(A.4)

The flux Jacobian matrices (see Eq. 2.86) are

[A] =




ũ/T̃ p̃/T̃ 0 0 −p̃ũ/T̃ 2

ũ2/T̃ +R 2p̃ũ/T̃ 0 0 −p̃ũ2/T̃ 2

ũṽ/T̃ p̃ṽ/T̃ p̃ũ/T̃ 0 −p̃ũṽ/T̃ 2

ũw̃/T̃ p̃w̃/T̃ 0 p̃ũ/T̃ −p̃ũw̃/T̃ 2

ũĤ/T̃ (p̃/T̃ )(Ĥ + ũ2) p̃ũṽ/T̃ p̃ũw̃/T̃ −(p̃ũK̃)/T̃ 2




(A.5)

[B] =




ṽ/T̃ 0 p̃/T̃ 0 −p̃ṽ/T̃ 2

ṽũ/T̃ p̃ṽ/T̃ p̃ũ/T̃ 0 −p̃ṽũ/T̃ 2

ṽ2/T̃ +R 0 2p̃ṽ/T̃ 0 −p̃ṽ2/T̃ 2

ṽw̃/T̃ 0 p̃w̃/T̃ p̃ṽ/T̃ −p̃ṽw̃/T̃ 2

ṽH̃/T̃ p̃ṽũ/T̃ (p̃/T̃ )(H̃ + ṽ2) p̃ṽw̃/T̃ −(p̃ṽK̃)/T̃ 2




(A.6)

[C] =




w̃/T̃ 0 0 p̃/T̃ −p̃w̃/T̃ 2

w̃ũ/T̃ p̃w̃/T̃ 0 p̃ũ/T̃ −p̃w̃ũ/T̃ 2

w̃ṽ/T̃ 0 p̃w̃/T̃ p̃ṽ/T̃ −p̃w̃ṽ/T̃ 2

w̃2/T̃ +R 0 0 2p̃w̃/T̃ −p̃w̃2/T̃ 2

w̃H̃/T̃ p̃w̃ũ/T̃ p̃w̃ṽ/T̃ (p̃/T̃ )(H̃ + w̃2) −(p̃w̃K̃)/T̃ 2




(A.7)

where

Ĥ = cpT̃ +
1

2
(ũ2 + ṽ2 + w̃2) (A.8)
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APPENDIX B. MATRICES FOR NAVIER-STOKES EQUATION

CHARACTERISTIC BOUNDARY CONDITIONS

Based on the formulas of [T ]−1 and [A] in Appendix A, we have

[T ]−1[A] =




u γp 0 0 0

1/ρ u 0 0 0

0 0 u 0 0

0 0 0 u 0

0 (γ − 1)T 0 0 u




(B.1)

where γ is the specific heat ratio γ = cp/cv = 1 +R/cv.

Let [T ]−1[A] = [S][Λ][S]−1, where [Λ] is a diagonal matrix with elements which are eigen-

values of [T ]−1[A], then the rows of [S]−1 are the corresponding eigenvectors.

[Λ] =




u+ c 0 0 0 0

0 u− c 0 0 0

0 0 u 0 0

0 0 0 u 0

0 0 0 0 u




(B.2)

where c is the local sound speed which is c =
√
γRT .

The eigenvector matrix [S] is

[S] =




p
T

γ
(γ−1) − p

T
γ

(γ−1) 0 0 0

c
(γ−1)T − c

(γ−1)T 0 0 0

0 0 0 1 0

0 0 0 0 1

1 1 1 0 0




(B.3)
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and its inverse is

[S]−1 =




(γ−1)T
(2γp)

(γ−1)T
2c 0 0 0

(γ−1)T
(2γp) − (γ−1)T

2c 0 0 0

− (γ−1)T
(γp) 0 0 0 1

0 0 1 0 0

0 0 0 1 0




(B.4)

My eigenvector matrix [S] is

[S] =




(pγ)/c (pγ)/c 0 0 0

1 −1 0 0 0

0 0 1 0 0

0 0 0 1 0

T (γ − 1)/c T (γ − 1)/c 0 0 1




(B.5)

and its inverse is

[S]−1 =




c/(2γp) 1/2 0 0 0

c/(2γp) −1/2 0 0 0

0 0 1 0 0

0 0 0 1 0

−T (γ − 1)/(γp) 0 0 0 1




(B.6)

The wave vector L is defined by

L = [Λ][S]−1∂W

∂x
(B.7)

. The matrix [Λ][S]−1 is

[Λ][S]−1 =




(u+ c)(γ − 1)T/(2γp) (u+ c)(γ − 1)T/(2c) 0 0 0

(u− c)(γ − 1)T/(2γp) −(u− c)(γ − 1)T/(2c) 0 0 0

−u(γ − 1)T/(γp) 0 0 0 u

0 0 u 0 0

0 0 0 u 0




(B.8)
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and its inverse is

[S][Λ]−1 =




p
(u+c)T

γ
γ−1

p
(u−c)T

γ
γ−1 0 0 0

c
(u+c)(γ−1)T − c

(u−c)(γ−1)T 0 0 0

0 0 0 1/u 0

0 0 0 0 1/u

1/(u+ c) 1/(u− c) 1/u 0 0




(B.9)

In my derivation, the matrix [Λ][S]−1 is

[Λ][S]−1 =




(u+ c)c/(2γp) (u+ c)/2 0 0 0

(u− c)c/(2γp) −(u− c)/2 0 0 0

0 0 u 0 0

0 0 0 u 0

−u(γ − 1)T/(γp) 0 0 0 u




(B.10)

and its inverse is

[S][Λ]−1 =




(pγ)/[(u+ c)c] (pγ)/[(u− c)c] 0 0 0

1/(u+ c) −1/(u− c) 0 0 0

0 0 1/u 0 0

0 0 0 1/u 0

T (γ − 1)/[c(u+ c)] T (γ − 1)/[c(u− c)] 0 0 1/u




(B.11)
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APPENDIX C. NAVIER-STOKES CHARACTERISTIC BOUNDARY

CONDITION

C.1 Transformation to Characteristic Form

The starting point of analysis for the development of boundary conditions is Eq. (C.1).

[T ]
∂W

∂t
+ [A]

∂W

∂x
= C−

[
∂(F1,vis + F1,sgs)

∂x
+
∂F2

∂y
+
∂F3

∂z

]
= C′, (C.1)

where the analysis in the x direction was chosen for convenience. The choice depends on which

direction of wave propagation is of interest. For example, if one wants to impose NSCBC at

the outlet of a duct, the equation should be recast in the streamwise direction. If instead one

hopes to apply NSCBC to the solid wall, then it is the y and/or z directions which should be

modified.

By multiplying by [T ]−1 the above equation becomes

∂W

∂t
+ [T ]−1[A]

∂W

∂x
= [T ]−1C′, (C.2)

Let [T ]−1[A] = [S][Λ][S]−1, where [Λ] is a diagonal matrix with elements that are eigenvalues

of [T ]−1[A], then the rows of [S]−1 are the corresponding left eigenvectors lTi . Similarly, the

columns of matrix [S] are the right eigenvectors rj . Multiplying Eq. (C.2) by [S]−1, we have

[S]−1∂W

∂t
+ [Λ][S]−1∂W

∂x
= [S]−1[T ]−1C′, (C.3)

whose m components are

lTi

(
∂W

∂t
+ λi

∂W

∂x

)
= lTi C∗, i = 1, ...,m, (C.4)

and C∗ = [T ]−1C′. If we define a vector

L = λil
T
i

∂W

∂x
, (C.5)
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and multiplying Eq. C.3 by [S] giving,

∂W

∂t
+ [S]L = C∗, (C.6)

It can be observed that in fact L is another expression for the convection terms, and

each component of L is either an incoming or an outgoing wave, depending on the sign of its

eigenvalue. For an ideal gas, the five eigenvalues are (u + c, u− c, u, u, u) where c is the local

sound speed. In a subsonic flow, |u| < c, then there should exist at least one incoming wave at

the outlet and typically four incoming waves at the inlet. The outgoing waves can be directly

computed from Eq. (C.5) with a one-sided difference that uses grid points on the interior side

of the boundary. As described in Thompson (1990), the number of boundary conditions which

must be specified at a point on the boundary is equal to the number of incoming waves at that

point. We need to specify boundary conditions which determine the value of Li for incoming

waves and compute from definition (C.5) the values of Li for outgoing waves.

C.1.0.1 Local One-Dimensional Inviscid Assumption

The matrices involved in the procedure described in the last section are listed in Appendix

B. Based on the definition of L C.5 With the results shown in Appendix B, we have

L =




L1

L2

L3

L4

L5




=




(u+ c)( c
2γp

∂p
∂x + ∂u

2∂x)

(u− c)( c
2γp

∂p
∂x − ∂u

2∂x)

u ∂v∂x

u∂w∂x

u
[
∂T
∂x −

(γ−1)T
γp

∂p
∂x

]




; [S]L =




pγ
c (L1 + L2)

(L1 − L2)

L3

L4

T (γ−1)
c (L1 + L2) + L5




. (C.7)

And by virtue of Eq. (C.6), [S]L is related to the time derivatives of the primitive variables

which can be subject to physical boundary conditions. One major simplification is reached by

using the so-called local one-dimensional inviscid (LODI) assumption, which argues that the

source term on the right hand side of Eq. (C.6) can be ignored for the current purpose. In

terms of the primitive variables we chose, this LODI system is

∂p

∂t
+

pγ

c
(L1 + L2) = 0; (C.8)
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∂u

∂t
+ (L1 − L2) = 0; (C.9)

∂v

∂t
+ L3 = 0; (C.10)

∂w

∂t
+ L4 = 0; (C.11)

∂T

∂t
+

T (γ − 1)

c
(L1 + L2) + L5 = 0. (C.12)

Based on Eq. (C.7), all gradients normal to the boundary may be expressed as functions of

the Lis:

∂p

∂x
=

pγ

c

[ L1

u+ c
+
L2

u− c

]
; (C.13)

∂u

∂x
=

[ L1

u+ c
− L2

u− c

]
; (C.14)

∂v

∂x
=
L3

u
; (C.15)

∂w

∂x
=
L4

u
; (C.16)

∂T

∂x
=

L1

u+ c
+
L2

u− c +
c

(γ − 1)T

L5

u
. (C.17)

The previous relations may be combined to express the time derivatives of other quantities

of interest. For instance

∂ρ

∂t
+

ρ

c
(L1 + L2)− ρ(γ − 1)

c
L5 = 0; (C.18)

∂(ṁ/Ac)

∂t
+ ρ[(1 +M)L1 + (M− 1)L2 −M(γ − 1)L5] = 0, (C.19)

where ṁ
Ac

= ρu is the local mass flow rate and M = u/c is the local Mach number. Most

physical boundary conditions have a counterpart LODI relation. For example, imposing a

constant inlet pressure should be accomplished (from Eq. (C.8)) by setting L2 = L1 to fix the

amplitude variation of the pressure wave entering the domain.

C.1.0.2 NSCBC Strategy for Euler and Navier-Stokes Equations

From theoretical studies (Strikwerda, 1977; Oliger and Sundström, 1978), we know a certain

number of physical boundary conditions are needed for the well-posedness of these two types

of equations. The results are shown in Table C.1. The main strategy of NSCBC involves

three steps:
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Table C.1 Number of physical boundary conditions needed for

well-posedness of 3-D Euler and Navier-Stokes equations

Poinsot and Lele (1992)

Boundary Conditions Euler Navier-Stokes

Subsonic inflow 4 5

Supersonic inflow 5 5

Subsonic outflow 1 4

Supersonic outflow 0 4

no-slip wall - 4

Step 1: For each inviscid physical boundary condition imposed on the boundary, eliminate the

corresponding conservation equations from the system.

Step 2: For each inviscid boundary condition, use corresponding LODI relation to express the

unknown L′is (corresponding to incoming waves) as a function of the known L′is (corresponding

to outgoing waves).

Step 3: Use the remaining conservation equations of the system combined with the values

of L′is from Step 2 to compute all variables which were not given by the inviscid boundary

conditions.

In this section we simply copy two tables (Table C.2, C.3) from Poinsot and Lele (1992),

which list several choices of physical boundary conditions for the 3-D Euler and Navier-Stokes

equations. The implementation of the above general theory into special physical boundary

conditions will be discussed in the subsequent sections.

For inflow, imposing u1, u2, u3, ρ is well posed for Euler equations and an additional vis-

cous condition is provided for the Navier-Stokes equations. This condition states that the

normal stress is constant along the normal to the boundary. For multidimensional flows, the

implementation of SI 4 is straightforward, but no satisfactory method could be found for SI 3.

For outflow, the spatial derivatives of the tangential viscous stresses τ12, τ13 and normal

heat flux q1 = −λ(∂T/∂x1) were set to be zero. These conditions relax smoothly to the inviscid

conditions when the viscosity and the conductivity go to zero.
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Table C.2 Physical inflow boundary conditions for 3-D Navier-Stokes equa-

tions

Navier-Stokes

Inviscid conditions Viscous conditions Total conditions

4 0 4

SI 1 u1 imposed Special case:

No well-posedness u2 imposed Euler and NS

proof for NS u3 imposed need same

T imposed conditions

4 1 5

SI 2 u1 imposed

Well-posed u2 imposed

for Euler. No u3 imposed ∂τ11
∂x1

= 0

proof for NS ρ imposed

4 1 5

SI 3 u1 − 2c/(γ − 1) imposed

Well-posed u2 imposed

for Euler u3 imposed ∂τ11
∂x1

= 0 Unstable

and NS s imposed

4 1 5

SI 4 L1 = 0

Non-reflecting L3 = 0

No proof for L4 = 0 ∂τ11
∂x1

= 0

Euler and NS L5 = 0
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Table C.3 Physical outflow/wall boundary conditions for 3-D

Navier-Stokes equations

Navier-Stokes

Inviscid conditions Viscous conditions Total conditions

1 3 4

SO 1 ∂τ12
∂x1

= 0

Subsonic p at infinity ∂τ13
∂x1

= 0

non-reflecting is imposed ∂q1
∂x1

= 0

1 3 4

SO 2 ∂τ12
∂x1

= 0

Subsonic p ∂τ13
∂x1

= 0

reflecting is imposed ∂q1
∂x1

= 0

4 0 4

W 1 u1 = 0

Isothermal u2 = 0

no-slip wall u3 = 0

T = cte

3 1 4

W 2 u1 = 0

Adiabatic u2 = 0 q1 = 0

no-slip wall u3 = 0

1 3 4

W 3 τ12 = 0

Adiabatic u1 = 0 τ13 = 0

slip wall q1 = 0
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C.1.0.3 Subsonic Inflow Boundary Conditions

At a subsonic inflow boundary, four characteristic waves, L1, L3, L4, L5 are entering the

domain while L2 is leaving the domain. Four physical boundary conditions are needed and

many different choices exist. For example, we can impose u, v, w and T which is typical when

we wish to control the inlet shear and introduce flow perturbation (Poinsot and Lele, 1992).

Since L2 is an outgoing wave, it can be calculated by interior points and one-sided differences.

The other four unkown incoming waves then are computed from Eqs. (C.9) to (C.12) in terms

of L2 and time derivatives of u, v, w and T , which are known.

u(0, y, z, t) = U(y, z, t) (C.20)

v(0, y, z, t) = V (y, z, t) (C.21)

w(0, y, z, t) = W (y, z, t) (C.22)

T (0, y, z, t) = T (y, z, t) (C.23)

By using LODI system, the expression for Li, (i 6= 2) are

L1 = −dU
dt

+ L2 (C.24)

L3 = −dV
dt

(C.25)

L4 = −dW
dt

(C.26)

L5 = −dT
dt

+
T (γ − 1)

c

[
dU

dt
− 2L2

]
(C.27)

C.1.0.4 Subsonic Outflow Boundary Conditions

For subsonic flow at exit, there is only one incoming wave, namely L2, which needs special

treatment. The conventional method to provide a well-posed problem is to enforce p = p∞

at the outflow boundary. This treatment will however create acoustic wave reflections which

may contaminate the flow solutions. On the other hand, a perfect non-reflecting boundary

condition imposed by setting L2 = 0 is also problematic because there is nothing to prevent

the pressure from drifting. An alternative solution to this dilemma is the partial-reflecting

boundary condition proposed by Rudy and Strikwerda (1980) who modified the LODI relation
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for pressure as

L2 = K(p− p∞)− L1 (C.28)

where K is determined by K = σ(1−M2)c/L. The preferred range for constant σ is 0.2− 0.5.

L is the characteristic length of the domain andM is the maximum Mach number in the flow

field.

C.1.0.5 Adiabatic and Isothermal Wall Boundary Conditions

From Table C.3, it can be seen at an adiabatic wall, all velocity components should vanish

and the heat flux is zero. LODI relations (C.9), (C.10), and (C.11) show that L2 = L1 and

L4 = L5 = 0. L3 also is zero because the normal velocity is zero.

For an isothermal wall, it is of interest to observe that L2 should be equal to L1 according to

Eq. (C.9), however, from Eq. (C.12), L2 should be equal to −L1! This obvious contradiction

is due to the improper LODI assumption in this situation: the source term Rq (see Eq. (2.61))

is typically large and cannot be ignored.

C.1.0.6 Incorporation of NSCBC into LU-SGS Scheme

In the simulations of developing flows, either hydrodynamically or thermally or both, it

is preferred to use characteristic boundary conditions at the outflow to simple extrapolation.

The reason is that simple extrapolation of both velocities and pressure neither satisfies the

physics nor is able to maintain the correct friction velocity level inside the flow. We will use

the partial-reflecting outflow boundary condition. The incoming wave L2 can be expressed as

L2 = K(p− p∞)− L1. (C.29)
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As a result, the matrix [Λ][S]−1 is changed to [ΛS]′ at the outflow boundary. In virtue of Eq.

(B.10), we have

[ΛS]′ =




(u+ c)c/(2γp) (u+ c)/2 0 0 0

−(u+ c)c/(2γp) −(u+ c)/2 0 0 0

0 0 u 0 0

0 0 0 u 0

−u(γ − 1)T/(γp) 0 0 0 u




(C.30)

and the Jacobian matrix [A]′ is therefore

[A]′ = [T ][S][ΛS]′ =




u(γ−1)
γT 0 0 0 − pu

T 2

c(u+c)+u2(γ−1)
γT

p(u+c)
T 0 0 −pu2

T 2

uv(γ−1)
γT 0 pu

T 0 −puv
T 2

uw(γ−1)
γT 0 0 pu

T −puw
T 2

u[2c(u+c)+(u2+v2+w2)(γ−1)]
2γT

pu(u+c)
T

puv
T

puw
T −pu(u2+v2+w2)

2T 2




.

(C.31)

Also a new source term is introduced to the right hand side of Eq. (C.2):

[T ]
∂W

∂t
+ [A]′

∂W

∂x
= C∗α, (C.32)

where [A]′ = [T ][S][ΛS]′ and

C∗α = C∗ −Cα. (C.33)

The added source term Cα is

Cα = [T ][S]




0

K(p− p∞)

0

0

0




=




1

u− c

v

w

H − uc




· pK(p− p∞)

Tc
. (C.34)

In the current study, the modified system is applied to the outflow surface, which is the east

face of control volume (ni, j, k). For the interior control volumes, the original integral governing

equations should be used for all six surfaces. For the near-boundary volume (ni, j, k), however,
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only five faces of the hexahedron use the original equations since its east surface is subject to

the new system. For system without preconditioning, Eq. 2.91 becomes

3Ω

2∆t
∆W + [T ]−1[([A]′∆WS)1 − ([A]∆WS)3

+([B]∆WS)2 − ([B]∆WS)4 + ([C]∆WS)5 − ([C]∆WS)6)] = −Rm. (C.35)

at the east boundary of the computational domain. Modifying the Jacobian matrices

[A] = [T ][Ã]; [B] = [T ][B̃]; [C] = [T ][C̃] (C.36)

and applying LUSGS decomposition results in

[L] = −[T ]−1
[
([T ]ni,j,k[Ã]+)ni−1,j,kS3 + ([T ][B̃]+)ni,j−1,kS4 + ([T ][C̃]+)ni,j,k−1S6

]
;

[D] =
3Ω

2∆t
+ [T ]−1

ni,j,k[([T ][Ã]′+)ni,j,kS1 − ([T ][Ã]−)ni,j,kS3 (C.37)

+([T ][B̃]+)ni,j,kS2 − ([T ][B̃]−)ni,j,kS3 + ([T ][C̃]+)ni,j,kS5 − ([T ][C̃]−)ni,j,kS6];

[U ] = −[T ]−1
ni,j,k

[
([T ][Ã′]−)ni+1,j,kS1 + ([T ][B̃]−)ni,j+1,kS2 + ([T ][C̃]−)ni,j,k+1S5

]
.

Compared with the original matrices, the lower matrix [L] does not change but both the

diagonal matrix [D] and the upper matrix [U ] do change. In the above equations,

[Ã]′ = [T ]−1[A]′;

[Ã]′± =
1

2
([Ã]′ ±

∣∣∣λ[Ã]′

∣∣∣ [I]). (C.38)

In this case, the diagonal matrix [D] is no longer diagonal:

[D] =
3Ω

2∆t
+ ([Ã]′+ − [Ã]−)S13 + (

∣∣∣λ[B̃]

∣∣∣ [I])S24 + (
∣∣∣λ[C̃]

∣∣∣ [I])S56 (C.39)

=
3Ω

2∆t
+

1

2

[
([Ã′]− [Ã]) + (

∣∣∣λ[Ã′]

∣∣∣+
∣∣∣λ[Ã]

∣∣∣)[I]
]
S13 (C.40)

+(
∣∣∣λ[B̃]

∣∣∣ [I])S24 + (
∣∣∣λ[C̃]

∣∣∣ [I])S56, (C.41)

where

[Ã]′ − [Ã] = [T ]−1([A]′ − [A]) =




−u −γp 0 0 0

uc/(γp) c 0 0 0

0 0 0 0 0

0 0 0 0 0

−uT (γ − 1)/(γp) −(γ − 1)T 0 0 0




, (C.42)
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which contains four non-diagonal elements. Since the inversion of a diagonal matrix [D] is

trivial in LU-SGS scheme, we move the non-diagonal elements of [D] to the corresponding

locations of the lower and upper matrices,

[L′] = [L] +




0 0 0 0 0

uc/(γp) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−uT (γ − 1)/(γp) −(γ − 1)T 0 0 0




, (C.43)

and

[U ′] = [U ] +




0 −γp 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




. (C.44)

Then matrix [D] becomes

[D′] =
3Ω

2∆t
+ (
∣∣∣λ[B̃]

∣∣∣ [I])S24 + (
∣∣∣λ[C̃]

∣∣∣ [I])S56 (C.45)

+




−u/2 + λ̄A 0 0 0 0

0 c/2 + λ̄A 0 0 0

0 0 λ̄A 0 0

0 0 0 λ̄A 0

0 0 0 0 λ̄A




S13, (C.46)

where λ̄A = (|λ[Ã′] + |λ[Ã])/2. And the new iteration equation for the near-boundary volume

(ni, j, k) is

([L′] + [D′] + [U ′])∆W = −R′, (C.47)

where −R′ = −R− [T ]−1Cα.

Similarly, for preconditioning system, Eq. 2.101 becomes

[Γ]−1[T ]
3Ω

2∆t
∆W + [Γ]−1[([A]′∆WS)1 − ([A]∆WS)3

+([B]∆WS)2 − ([B]∆WS)4 + ([C]∆WS)5 − ([C]∆WS)6)] = −Rm (C.48)
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for the east boundary control volume. As a result, the matrices in the L−D−U decomposition

become

[L] = −[Γ]−1
ni,j,k

[
([Γ][Ã]+)ni−1,j,kS3 + ([Γ][B̃]+)ni,j−1,kS4 + ([Γ][C̃]+)ni,j,k−1S6

]
;

[D] = ([Γ]−1[T ])ni,j,k
3Ω

2∆t
+ [Γ]−1

ni,j,k[([Γ][Ã]′+)ni,j,kS1 − ([Γ][Ã]−)ni,j,kS3 (C.49)

+([Γ][B̃]+)ni,j,kS2 − ([Γ][B̃]−)ni,j,kS3 + ([Γ][C̃]+)ni,j,kS5 − ([Γ][C̃]−)ni,j,kS6];

[U ] = −[Γ]−1
ni,j,k

[
([Γ][Ã]′−)ni+1,j,kS1 + ([Γ][B̃]−)ni,j+1,kS2 + ([Γ][C̃]−)ni,j,k+1S5

]
.

Compared with the original matrices, the lower matrix [L] does not change but both the

diagonal matrix [D] and the upper matrix [U ] do change. In the above equations,

[Ã]′ = [Γ]−1[A]′;

[Ã]′± =
1

2
([Ã]′ ±

∣∣∣λ[Ã]′

∣∣∣ [I]). (C.50)

The diagonal matrix [D] is simplified as

[D] = ([Γ]−1[T ])
3Ω

2∆t
+ ([Ã]′+ − [Ã]−)S13 + (

∣∣∣λ[B̃]

∣∣∣ [I])S24 + (
∣∣∣λ[C̃]

∣∣∣ [I])S56 (C.51)

= ([Γ]−1[T ])
3Ω

2∆t
+

1

2

[
([Ã]′ − [Ã]) + (

∣∣∣λ[Ã′]

∣∣∣+
∣∣∣λ[Ã]

∣∣∣)[I]
]
S13 (C.52)

+(
∣∣∣λ[B̃]

∣∣∣ [I])S24 + (
∣∣∣λ[C̃]

∣∣∣ [I])S56, (C.53)

and

[Ã]′ − [Ã] = [Γ]−1([A]′ − [A]) =




− u
R −γp

R 0 0 0

uc
γp c 0 0 0

0 0 0 0 0

0 0 0 0 0

uT (1−γ)
γp (1− γ)T 0 0 0




. (C.54)

The non-diagonal elements of [D] were moved to the corresponding locations of the lower and

upper matrices,

[L′] = [L] +




0 0 0 0 0

uc
γp 0 0 0 0

0 0 0 0 0

0 0 0 0 0

uT (1−γ)
γp (1− γ)T 0 0 0




, (C.55)
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and

[U ′] = [U ] +




0 −γp
R 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




. (C.56)

In this way, matrix [D] becomes diagonal again:

[D′] = ([Γ]−1[T ])
3Ω

2∆t
+ (
∣∣∣λ[B̃]

∣∣∣ [I])S24 + (
∣∣∣λ[C̃]

∣∣∣ [I])S56, (C.57)

+
1

2
S13




− u
R + λ̄A 0 0 0 0

0 c+ λ̄A 0 0 0

0 0 λ̄A 0 0

0 0 0 λ̄A 0

0 0 0 0 λ̄A




, (C.58)

where λ̄A =
∣∣∣λ[Ã′]

∣∣∣ +
∣∣∣λ[Ã]

∣∣∣. And the new iteration equation for the near-boundary volume

(ni, j, k) is

([L′] + [D′] + [U ′])∆W = −R′. (C.59)
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