
Retrospective Theses and Dissertations

2008

Modeling and direct numerical simulation of
particle-laden turbulent flows
Ying Xu
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/rtd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in
Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

Recommended Citation
Xu, Ying, "Modeling and direct numerical simulation of particle-laden turbulent flows" (2008). Retrospective Theses and Dissertations.
15712.
http://lib.dr.iastate.edu/rtd/15712

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F15712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd/15712?utm_source=lib.dr.iastate.edu%2Frtd%2F15712&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


Modeling and direct numerical simulation of particle–laden turbulent flows

by

Ying Xu

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Co-majors: Mechanical Engineering

Applied Mathematics

Program of Study Committee:
Glenn R. Luecke, Co-major Professor

Shankar Subramaniam, Co-major Professor
Theodore J. Heindel

James C. Hill
Richard H. Pletcher

Jue Yan

Iowa State University

Ames, Iowa

2008

Copyright c© Ying Xu, 2008. All rights reserved.



3316237 
     

3316237 
 2008



ii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . 9

2.1 Eulerian–Eulerian Formulation for Two–phase Flows . . . . . . . . . . . . . . . 9

2.2 Eulerian-Eulerian Multiphase Turbulence Models . . . . . . . . . . . . . . . . . 13

2.3 Direct Numerical Simulation for Particle–laden Turbulence . . . . . . . . . . . 14

CHAPTER 3. IMPROVED MULTISCALE TURBULENCE MODEL FOR

PARTICLE–LADEN TURBULENT FLOW . . . . . . . . . . . . . . . . . 17

3.1 Comparative Assessment of Simonin and Ahmadi’s Multiphase Turbulence Models 18

3.1.1 Model I — Simonin’s Model: Model Description and Results . . . . . . 20

3.1.2 Model II — Ahmadi’s Model: Model Description and Results . . . . . . 23

3.1.3 Summary of Model Results . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Multiscale Interaction Model for Interphase TKE Transfer . . . . . . . . . . . . 27

3.3 The Equilibration of Energy Model . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Description of EEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



iii

3.3.2 Transport Equation for Reynolds Stress . . . . . . . . . . . . . . . . . . 34

3.3.3 The k–ε Equations for Particle-laden Turbulent Flow . . . . . . . . . . . 37

3.3.4 Model Results for Decaying Homogeneous Turbulence . . . . . . . . . . 38

3.4 Particle-laden Turbulent Homogeneous Shear Flow . . . . . . . . . . . . . . . . 40

3.4.1 Description of Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Comparative Assessment of Model Results . . . . . . . . . . . . . . . . . 42

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

CHAPTER 4. CONSISTENT MODELING OF INTERPHASE TURBU-

LENT KINETIC ENERGY TRANSFER IN PARTICLE-LADEN TUR-

BULENT FLOWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 The Principle of Conservative Interphase TKE Transfer . . . . . . . . . . . . . 60

4.2.1 Detailed Derivation of the Conservation Principle . . . . . . . . . . . . . 61

4.3 Implications for Multiphase Turbulence Models . . . . . . . . . . . . . . . . . . 65

4.4 Comparison of Models to DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Measures for Two–phase Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.1 Phase–volume Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.2 Phase–surface Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

CHAPTER 5. DIRECT NUMERICAL SIMULATION OF GAS-SOLID FLOW

USING THE IMMERSED BOUNDARY METHOD . . . . . . . . . . . . 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Discrete-time Immersed Boundary Method . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.2 Fractional Stepping Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



iv

CHAPTER 6. PARALLELIZATION OF THE IMMERSED BOUNDARY

METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Serial Algorithm for the Immersed Boundary Method . . . . . . . . . . . . . . 88

6.3 Parallelization of the Immersed Boundary Method . . . . . . . . . . . . . . . . 90

6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Validation Study of the Parallel Immersed Boundary Method . . . . . . . . . . 93

CHAPTER 7. DIRECT NUMERICAL SIMULATION OF TURBULENT

FLOW PAST A FIXED BED OF SPHERES . . . . . . . . . . . . . . . . . 96

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 Estimation of Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Parameters of the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4.1 The Estimation of TKE and Reynolds Stress . . . . . . . . . . . . . . . 105

7.4.2 The 2D Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4.3 The Redistribution of Reynolds Stress R
(f)
ij . . . . . . . . . . . . . . . . 111

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

CHAPTER 8. FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 144

APPENDIX A. THE SERIAL ALGORITHM FOR THE IMMERSED BOUND-

ARY METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.1 Serial Algorithm for Step 1: the Nonlinear Term Calculation . . . . . . . . . . 147

A.2 Serial Algorithm for Step 2: the Forcing Function Calculation . . . . . . . . . . 148

APPENDIX B. PARALLELIZATION OF STEP 1: THE NONLINEAR

TERM CALCULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

APPENDIX C. ESTIMATIONS OF MEMORY REQUIREMENTS FOR

THE IMMERSED BOUNDARY METHOD . . . . . . . . . . . . . . . . . 153



v

APPENDIX D. TRANSPORT EQUATION FOR THE INSTANTANEOUS

KINETIC ENERGY Ef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

D.1 The Budget Study for Laminar Flow Past a Stationary particle . . . . . . . . . 157

D.2 The Budget Study for Upstream Turbulence Past the Fixed Bed of Spheres . . 159

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



vi

LIST OF TABLES

Table 3.1 The coefficients for EEM. . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 5.1 Comparison of the drag coefficient from present simulations with the

standard drag curve from Schiller and Nauman [Clift et al. (1978)] . . 85

Table 5.2 Comparison of the non-dimensional wake length from present simula-

tions with correlation from Pruppacher et al. (1970). . . . . . . . . . . 86

Table 6.1 The list for the serial execution time for Step 1, 2 and 3 as percentages

of the total serial execution time T for one iteration in the flow chart

Figure 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Table 6.2 Parallel execution time (seconds) for a tri-diagonal matrix with N=511. 92

Table 6.3 Parallel execution time (seconds) for the example in Section 6.4. . . . . 93

Table 6.4 Physical parameters in the DNS study of Bagchi and Balachandar (2003). 94

Table 6.5 Physical parameters studied using the immersed boundary method in

this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table 6.6 Time averaged CD from the immersed boundary method compared with

the drag coefficient by Bagchi and Balachandar (2003). . . . . . . . . . 95

Table 7.1 The estimate of N for Rep = 50, u′/U = 40%, δ/∆x = 3. . . . . . . . . 102

Table 7.2 The important parameters for upstream turbulence past fixed bed of

spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table 7.3 The radius of gyration of the four MIS from MHC and GCG. . . . . . 110



vii

Table 7.4 The volume integral of the terms in Eq. 7.15. The integral is normalized

by
∫
V

(V V/d) dv, where the control volume V is over the entire fixed

bed and V = 0.2029 is the inlet velocity. . . . . . . . . . . . . . . . . . 113

Table 7.5 The volume integrals of Θ, Π, production and interphase TKE transfer

term in Eq. 7.20. The integral is normalized by
∫
V

(krefV/dp) dV , and

the control volume is over the entire fixed bed. . . . . . . . . . . . . . 115

Table 7.6 The independent invariants ξ and η for Θij and the interphase TKE

transfer terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table C.1 The maximum η/d ratio for L/d = 10 with variation of Rep and u′/U . 155

Table C.2 The estimate of N for Rep = 50, u′/U = 40%, δ/∆x = 3. . . . . . . . . 156

Table D.1 The integrals of the energy flux and the dissipation from the instan-

taneous velocity and pressure fields of upstream turbulence past the

single stationary sphere. The percentages in (·) indicate the value of

the integrals normalized by the volume integral of the dissipation. . . . 158

Table D.2 The integrals of the energy flux and the dissipation from the instan-

taneous velocity and pressure fields for one MIS of GCG and MHC

respectively. The percentages in (·) indicate the value of the integrals

normalized by the volume integral of the dissipation. . . . . . . . . . . 161



viii

LIST OF FIGURES

Figure 3.1 Evolution of TKE in fluid phase from Model I for decaying homoge-

neous particle–laden turbulent flow. Arrows in the figure indicate the

direction of increasing particle Stokes number. . . . . . . . . . . . . . . 19

Figure 3.2 Evolution of TKE in particle phase from Model I for decaying homoge-

neous particle–laden turbulent flow. . . . . . . . . . . . . . . . . . . . . 20

Figure 3.3 Evolution of TKE in fluid phase from Model II for decaying homoge-

neous particle–laden turbulent flow. . . . . . . . . . . . . . . . . . . . . 26

Figure 3.4 Evolution of TKE in particle phase from Model II for decaying homo-

geneous particle–laden turbulent flow. . . . . . . . . . . . . . . . . . . 27

Figure 3.5 Sketch of the probability density function Z = |u′g|. . . . . . . . . . . . 29

Figure 3.6 Evolution of TKE in fluid phase from Model I with the multiscale in-

teraction time scale 〈τi〉. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.7 Evolution of TKE in particle phase from Model II with the multiscale

interaction time scale 〈τi〉. . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.8 Evolution of TKE in fluid phase for EEM compared with DNS data. . 40

Figure 3.9 Evolution of TKE in particle phase for EEM compared with DNS data. 41

Figure 3.10 Schematic of the flow configuration in the particle-laden homogeneous

shear flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.11 Evolution of TKE in fluid phase for Model I, Model I with multiscale

interaction time scale 〈τi〉, and EEM model for homogeneous particle-

laden shear flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



ix

Figure 3.12 Budget plot for fluid–phase TKE equation from Model I for φ = 1.0

and τp = 1.0 in homogeneous particle–laden shear flow. Note that the

production term equals −
〈
u′f,1u

′
f,3

〉
since the mean velocity gradient

S is one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.13 Budget plot for fluid TKE equation in EEM model for φ = 1.0 and τp =

1.0 in homogeneous particle–laden shear flow. Note that the production

term equals −
〈
u′f,1u

′
f,3

〉
since the mean velocity gradient S is one. . . 46

Figure 3.14 Evolution of TKE in fluid phase for EEM model with dissipation rate

specified from DNS results for the particle-laden homogeneous shear

flow with φ = 1.0 and τp = 1.0. Fluid–phase TKE evolution from DNS

is also shown for comparison. . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 3.15 Evolution of the velocity correlation ρf13 for Model I, Model I imple-

mented with multiscale interaction time scale 〈τi〉, and EEM model in

homogeneous particle-laden shear flow. DNS result is shown for com-

parison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.16 Evolution of TKE in fluid phase with increasing particle inertia (con-

stant mass loading) for particle–laden homogeneous shear flow. Solid

line represents DNS results; dashline represents the predictions from

Model I; dashdot line represents the results from Model I improved with

multiscale interaction timescale 〈τi〉. The symbol � represents τp = 0.1;

4 represents τp = 0.25; O represents τp = 0.5; and � represents τp = 1.0. 49

Figure 3.17 Evolution of TKE in fluid phase for increasing particle response time

τp (constant mass loading φ = 0.1) from EEM. DNS data is shown for

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



x

Figure 4.1 Sketch showing a realization of random processes corresponding to the

1–component of fluid velocity U , and the 1–component of particle ve-

locity V in a one–dimensional parameter space x. There are five solid

particles in this realization, whose boundaries define the ten fluid-solid

interface locations. These interfaces induce the surface processes Uσ

and Vσ. The interphase momentum transfer term is a pure surface

process denoted Zσ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.2 The ensemble of realizations is defined by the event space Ω. Each

realization of the two–phase flow corresponds to a the mapping of an

element ω in the sample space Ω to the phase indicator function Iβ(x, t)

and flow property Q(x, t), which are defined in the flow domain D. . . 71

Figure 5.1 Variation of drag coefficient CD with particle Reynolds number. The

standard drag in square symbols is from Table 5.2 in Clift et al. (1978). 86

Figure 6.1 Flow chart of the serial immersed boundary method. . . . . . . . . . . 88

Figure 6.2 Data distribution in 3D array for number of processors p = 4. . . . . . 91

Figure 7.1 The sketch of the flow domain with multiple stationary spheres. . . . . 120

Figure 7.2 The pair correlation for MHC and GCG. The solid line represents the

analytical form of the pair correlation for the Matérn hard-core dis-

tribution [Stoyan et al. (1986)]. The filled squares represent the pair

correlation for the clustering state of inelastic granular cooling gas ob-

tained by calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 7.3 The velocity isosurface of the instantaneous velocity field from GCG.

The contour plot at the end of the fixed bed is the magnitude of fluc-

tuating velocity |u′|. The scale of the contour is the magnitude of

fluctuating velocity |u′| normalized by |uref | =
√

2
3kf where kf is TKE

in the isotropic turbulence. . . . . . . . . . . . . . . . . . . . . . . . . 122



xi

Figure 7.4 The velocity isosurface of the instantaneous velocity field from MHC.

The contour plot at the end of the fixed bed is the magnitude of fluc-

tuating velocity |u′|. The scale of the contour is the magnitude of

fluctuating velocity |u′| normalized by |uref | =
√

2
3kf where kf is TKE

in the isotropic turbulence. . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 7.5 The ensemble averaged mean velocity
{〈

U (f)(xi)
〉}

for Matérn hardcore

and GCG with variation in x direction. The mean velocity is normalized

by the mean slip velocity V = 0.2029. . . . . . . . . . . . . . . . . . . . 124

Figure 7.6 The comparison of normalized kf (xi) between Matérn hard-core and

granular cooling gas. The error bars in the plot indicate the standard

deviation of kf (xi). kf is normalized by the TKE in the box turbulence

kref = 0.002359. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 7.7 The comparison of normalized
{

R
(f)
11 (xi)

}
between Matérn hardcore

and granular cooling gas. The error bars in left-hand-side panel indicate

the standard deviation of
{

R
(f)
11 (xi)

}
, while the error bars on the right-

hand-side panel indicates the standard error for 95% confidence interval.

The reference value is the TKE in the box turbulence kref = 0.002359. 126

Figure 7.8 The comparison of normalized
{

R
(f)
22 (xi)

}
1

between Matérn hard-core

and granular cooling gas. The error bars in the plot indicate the stan-

dard deviation of
{

R
(f)
22 (xi)

}
1

for 4 MIS. The reference value is the

TKE in the box turbulence kref = 0.002359. . . . . . . . . . . . . . . . 127

Figure 7.9 The comparison of normalized
{

R
(f)
33 (xi)

}
between Matérn hard-core

and granular cooling gas. The error bars in the plot indicate the stan-

dard deviation of
{

R
(f)
33 (xi)

}
for 4 MIS. The reference value is the TKE

in the box turbulence kref = 0.002359. . . . . . . . . . . . . . . . . . . 128



xii

Figure 7.10 The Lumley triangle on the plane of the invariants of ξ and η of the

Reynolds stress anisotropy tensor. The color of the symbols from blue

to red in the figure indicates the location of the state of anisotropy

moving from x = 0 to x = 12.8dp. . . . . . . . . . . . . . . . . . . . . . 129

Figure 7.11 The two-dimensional energy spectrum for MHC and GCG and x =

0.5dp, 6.4dp, 12.8dp. κyz is the magnitude of wavenumber vector in the

y-z plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Figure 7.12 The two-dimensional velocity spectrum of R
(f)
11 for MHC and GCG and

x = 0.5dp, 6.4dp, 12.8dp. κyz is the magnitude of wavenumber vector

in the y-z plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 7.13 The two-dimensional velocity spectrum of R
(f)
22 for MHC and GCG and

x = 0.5dp, 6.4dp, 12.8dp. κyz is the magnitude of wavenumber vector

in the y-z plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 7.14 The two-dimensional velocity spectrum of R
(f)
33 for MHC and GCG and

x = 0.5dp, 6.4dp, 12.8dp. κyz is the magnitude of wavenumber vector

in the y-z plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 7.15 The two-dimensional energy spectrum for MHC and GCG and x =

12.8dp at lower wavenumbers κyz < 30. κyz is the magnitude of wavenum-

ber vector in the y-z plane. . . . . . . . . . . . . . . . . . . . . . . . . 134

Figure 7.16 The two-dimensional velocity spectrum of R
(f)
22 and R

(f)
33 for MHC and

GCG and x = 12.8dp. κyz is the magnitude of wavenumber vector in

the y-z plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Figure 7.17 The two-dimensional velocity spectrum of the scalar field f(x) multi-

plying the random point fields If (x) from MHC and GCG. . . . . . . . 136

Figure 7.18 The expected mean
〈
U

(f)
1 (x)

〉
field from Matérn hard-core distribution

used in runs for upstream turbulence past random arrangement of spheres.137

Figure 7.19 The mean pressure inside the fixed bed of spheres for MHC and GCG. 138



xiii

Figure 7.20 The normalized half trace of the second order tensor corresponding to

Θ = 1
2Θii and Π = 1

2Πii inside the fixed bed for MHC and GCG. These

terms are normalized by
V kref

dp
, where kref is the TKE in the upstream

homogeneous turbulence, dp is the particle diameter and V is the mean

slip velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure 7.21 The surface area measure σ(x) for MHC where the contour field is σ(x)

and the red line represents the surface area from one run of MHC. . . 140

Figure 7.22 The expected mean αf (x) field from Matérn hard-core distribution used

in runs for upstream turbulence past random arrangement of spheres. . 141

Figure 7.23 The expected mean Ip(x) field from 5 MIS. . . . . . . . . . . . . . . . 142

Figure 7.24 The expected mean Ip(x) field from 50 MIS. . . . . . . . . . . . . . . . 143

Figure 7.25 The variance of αp(x) field for Matérn hardcore distribution. . . . . . . 143

Figure A.1 2-D neighboring point calculation. . . . . . . . . . . . . . . . . . . . . . 149

Figure D.1 The evolution of total kinetic energy E for one realization of homoge-

neous upstream turbulence past a fixed bed of spheres. The reference

time T is the one flow through time T =
Lx

V
. . . . . . . . . . . . . . . 159

Figure D.2 The control volume used in the budget study of the integral equation

of the instantaneous energy Ef . . . . . . . . . . . . . . . . . . . . . . . 160



xiv

ACKNOWLEDGMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. My sincere gratitude goes

to Dr. Shankar Subramaniam for his guidance, patience and support through this research. I

would like to express my thanks to Dr. Glenn Luecke for exposing the parallel computing to

me. My warmest regards goes to Profs. Richard Pletcher, Theodore Heindel, James Hill and

Jue Yan for their invaluable time.

Many thanks to to Madhu Pai, Rahul Garg, Sergiy Markutsya, Sudheer Tenneti and Vidya-

pati for collaborations and interesting discussions on research, course work. I would also like

to express my gratitude to all the graduate students in the Computational Fluid Dynamics

center, especially Kunlun Liu, Zhaohui Qin, Jin Sun, Wen Wang, Nan Xie and Xiaofeng Xu.

I am indebted to my husband and my parents for their invaluable support during my Ph.D

study. Without their loving care, support and encouragement I will not be able to finish my

degree here at Iowa State University.



xv

ABSTRACT

The objective of this study is to improve Eulerian–Eulerian models of particle–laden tur-

bulent flow, especially the interphase TKE transfer term and the dissipation rate in Eulerian–

Eulerian models. We begin by understanding the behavior of two existing models—one pro-

posed by Simonin (1996b), and the other by Ahmadi (1989)—in the limiting case of statistically

homogeneous particle–laden turbulent flow. The decay of particle-phase and fluid-phase tur-

bulent kinetic energy (TKE) is compared with point-particle direct numerical simulation data.

Even this simple flow poses a significant challenge to current models, which have difficulty in

reproducing important physical phenomena such as the variation of turbulent kinetic energy

decay with increasing particle Stokes number. The model for the interphase TKE transfer

timescale is identified as one source of this difficulty. A new model for the interphase trans-

fer timescale is proposed that accounts for the interaction of particles with a range of fluid

turbulence scales. A new multiphase turbulence model—the Equilibration of Energy Model

(EEM)—is proposed, which incorporates this multiscale interphase transfer timescale. The

model for Reynolds stress in both fluid and particle phases is derived in this work. The new

EEM model is validated in decaying homogeneous particle–laden turbulence, and in particle–

laden homogeneous shear flow. The particle and fluid TKE evolution predicted by the EEM

model correctly reproduce the trends with important non-dimensional parameters, such as

particle Stokes number.

The interphase transfer of turbulent kinetic energy (TKE) is an important term that affects

the evolution of TKE in fluid and particle phases in particle–laden turbulent flow. In this

work, we show that the interphase TKE transfer terms must obey a mathematical constraint,

which in the limiting case of statistically homogeneous flow with zero mean velocity in both
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phases, requires these terms be equal and opposite. In the single–point statistical approach

called the two–fluid theory, the interphase TKE transfer terms are unclosed and need to be

modeled. Multiphase turbulence models that satisfy this constraint of conservative interphase

TKE transfer admit a term-by-term comparison with true direct numerical simulations (DNS)

that enforce the exact velocity boundary condition on each particle’s surface. Analysis of three

models reveals that not all models satisfy the requirement of conservative interphase TKE

transfer. DNS that invoke the point–particle assumption also do not obey this principle of

conservative interphase TKE transfer, and this precludes comparison of model predictions of

TKE budgets in each phase with point–particle DNS. This study motivates the development

of multiphase turbulence models based on the insights revealed by this analysis, leading to a

meaningful comparison of TKE budgets with true DNS.

The immersed boundary method has the ability to simulate the irregular shape objects

on the uniform Cartesian grids. In this work, the true DNS using the immersed boundary

method is developed, and the drag force coefficient obtained from DNS is verified with laminar

flow past a stationary sphere and a single sphere in the homogeneous turbulence. However

the memory requirement of the immersed boundary method is found to be quite high and

the parallelization of the immersed boundary method is necessary. The idea of the domain

decomposition is used to parallelize the numerical solver for the immersed boundary method

in this work, and the performance is studied for the resolution of 512× 256× 256.

The parallel immersed boundary method is used to study the effects of particle clusters

on fluid phase turbulence. This study is inspired by the experiments of Moran and Glicks-

man Moran and Glicksman (2003a), where the fluid phase fluctuations are found to be enhanced

at the high particle concentration, where particle clusters usually form in the CFB. In the DNS

study, we use two types of random particle configurations and study the fluid phase TKE in the

fixed bed of spheres. The uniform random particle configuration is denoted as MHC and the

one with clusters is denoted as GCG in this study. The DNS study shows that the fluid phase

TKE is enhanced with GCG along the streamwise direction in the fixed bed. For both MHC

and GCG, the fluid phase Reynolds stress is found to be anisotropic. The 2D energy spectra
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studies show that the energy of GCG at lower wavenumber κ < 10 is higher than that of MHC.

The cutoff wavenumber corresponds to the cluster size estimated using the radius of gyration.

After examining the dissipation, and interphase TKE transfer term in the transport equation

for Reynolds stress, it is noted that the dissipation is reduced in the second half of the fixed

bed for GCG. Both the dissipation and the interphase TKE transfer term become anisotropic

in the fixed bed, and the state of anisotropy described by the invariants of anisotropic tensor

bij shows that the degree of anisotropy is higher for the interphase TKE transfer tensor com-

pared to that of the dissipation tensor. This study suggests that the length scale based on

the particle cluster should be used to estimate the level of gas fluctuations caused by the solid

phase, and should be accounted for in multiphase turbulence models.
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CHAPTER 1. INTRODUCTION

1.1 Background

Particle–laden flows are abundant in nature and can be found in various industrial systems.

Pneumatic conveying systems in chemical, food and pharmaceutical industries, and the trans-

port of pollutants in the atmosphere are typical examples. Energy production systems such

as droplets in internal combustion engines, fluidized bed combustions and gasification for coal

and biomass involve efforts to find a combustion process conducive to controlling pollutant

emissions and efficient energy generation.

It is helpful, before discussing the modeling and simulation methods for particle–laden flows,

to classify the regimes of particle–laden flows from the perspective of the interaction between

particles and fluid phase motions. Elghobashi (1991) classifies dilute and dense suspensions

of particle–laden flow based on the mean distance S between the centers of two neighboring

particles and particle diameter d. If S/d > 10, the particle–laden flow is considered to be a

dilute suspension; if S/d < 10, it is considered to be a dense suspension. The mean distance S

between the centers of two neighboring particles S, is a second-order statistic from a stochastic

point process view point. For the special case of a statistically homogeneous system, S can

be related to the particle volume fraction αp of the system, but in general S is not completely

determined by αp. The particle volume fraction is the ratio of total volume of particle to the

system volume.

Crowe el al. (1998) defines dilute dispersed flows as those in which the particle motion is

controlled by the hydrodynamic forces (drag and lift). A dense flow is one in which the particle

motion is controlled by collisions. A qualitative estimate of the dilute or dense mixture is made

by comparing the ratio of particle momentum response time τp to the time between particle
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collisions τC . The time between collisions can be estimated from the collision frequency, and

τV /τC is related to the Reynolds number ReT and the volume fraction αp, where ReT is

the particle Reynolds number based on the particle granular temperature. A simple way of

classifying the dense and dilute particle–laden flows is based on the particle volume fraction

αp. In industrial processes like fluidized beds, a particulate flow with αp < 0.15 is considered

to be dilute. For dilute gas-solid flows, the particle Reynolds number Rep is usually defined as

Rep ≡
ρfdp

µ
|v − u| (1.1)

where ρf is the fluid thermodynamic density, dp is the particle diameter, µ is the fluid dynamic

viscosity and |v − u| is the mean slip velocity between fluid and particle phase.

Dilute particle–laden flows can be further classified according to the mass loading of the

mixture, as suggested by Elghobashi (1991). The mass loading is defined as the ratio of total

mass of particles to the mass of carrier fluid. In general, for dilute gas–solid flows with volume

fraction αp of order 10−6 and mass loading φ � 1, one-way coupling is valid, which means that

the particle phase has a negligible effect on the fluid-phase motions. The drag force is usually

a function of the particle Reynolds number Rep. The smaller the particle size dp and particle

density ρf , the less influence the particles exert on fluid phase motions.

Turbulence in the fluidized bed, for example in the free board of the bed, promotes effective

mixing and efficient heat transfer, and it also entrains more particulates into the product gas

exiting from the bed. A better understanding of turbulent gas–solid flows helps to improve the

efficiency of the industrial applications. Turbulence is generally considered to be suppressed in

dense phase gas–particle flows with αp > 0.1, since particle–particle interactions are dominant.

For dilute particle–laden turbulence, which is low in volume fraction (αp of order 10−3 or

higher), but with relatively high mass loading ratio (φ ≥ 1 due to high thermodynamic density

of the particle phase), the influence of particles on the carrier phase mass conservation equation

is often neglected, and so are inter–particle collisions. However, the interphase momentum

transfer is significant, and hence the carrier phase turbulence is altered by the dispersed phase,

and “two-way” coupling needs to be taken into consideration.

Dilute particle–laden turbulent flows with significant mass loading ratio φ can be found
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in various industrial systems. Several parameters become important in these systems. One is

the ratio between the Kolmogorov length scale η and the mean particle diameter dp, which is

usually found to be around one. The other physical parameter is the particle Stokes number

St > 1 [Moran and Glicksman (2003a)], which is defined as

St ≡ τp

τf
(1.2)

where τp is the particle momentum response time and τf is a characteristic fluid time scale 1.

According to practical interests and the classification described above, this research focuses on

the particle–laden turbulent flows that are low in volume concentration, but with significant

mass loading ratio, hence two–way coupling should be taken into account.

There are several key effects and phenomena of particle–laden turbulent flows that are

found in the industrial processes like fluidized beds and it is necessary to capture and pre-

dict these key effects in modeling and simulation studies. Interactions between particles and

fluid phase turbulence lead to the changes in the fluid phase turbulence intensity and the fluid

phase dissipation rate. Many direct numerical simulations (DNS) [Squires and Eaton (1990);

Elghobashi and Truesdell (1993); Boivin et al. (1998); Sundaram and Collins (1999)] and ex-

perimental studies [Tsuji et al. (1984); Bolio et al. (1995); Bolio and Sinclair (1995); Hwang and

Eaton (2006a)] report the modulation of turbulence with variation of particle Stokes number

St, mass loading φ. In the experimental studies of particle–laden homogeneous turbulence by

Hwang and Eaton (2006a), the fluid phase turbulent kinetic energy (TKE) is found to decrease

with increasing mass loading, which is also reported in DNS studies [Squires and Eaton (1990);

Elghobashi and Truesdell (1993); Boivin et al. (1998); Sundaram and Collins (1999)]. The fluid

phase TKE modulates differently with particle Stokes number St, that is the decay rate of fluid

phase TKE increases with increasing particle Stokes number (for fixed mass loading ratio) in

homogeneous turbulence [Sundaram and Collins (1999); Boivin et al. (1998)].

For dilute particle–laden turbulence, the addition of particle phase to a turbulent flow
1The particle momentum response time is defined as the time required for a particle relaxed from rest to

achieve 63% ((e− 1)/e) of the free stream velocity [Crowe el al. (1998)], which is a measure of the particle
inertia. Particles with St� 1 correspond to tracer particles and ideally will follow the flow; while particles with
St > 1 correspond to particles with large inertia, and will not respond to the small fluctuations in the carrier
fluid field.
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introduces not only new time and length scales, but many other parameters, such as the

particle mass loading φ, volume fraction αp, Stokes number St and Reynolds number Rep.

The interaction of turbulence length and time scales with those in the particle phase make

this a multiscale interaction problem. Turbulence modulation with variation in particle Stokes

number and mass loading discussed earlier is such a multiscale phenomenon that manifests

itself over a wide range of length and time scales. True DNS can resolve all the time and

length scales in the problem, which makes it a useful tool to study the multiscale interaction

problem. The efficient design of transport systems and the control of combustion process

rely on the reliable and efficient simulation tools, which can provide valuable insights into

particle–laden flows and improve the efficiency of industrial processes. It is not fruitful to use

direct numerical simulations in this situation. Instead Computational fluid dynamics (CFD)

calculations can facilitate such improvements. CFD calculations require models for particle–

laden flow. Models describing particle–laden turbulent flows can be roughly divided into two

groups, the two–fluid (or Eulerian–Eulerian approach) [Drew (1983)], and the number–density

based Lagrangian–Eulerian approach [Williams (1958); Subramaniam (2002, 2003)]. Both

approaches are a statistical description for particle–laden turbulent flows.

In the Eulerian–Eulerian (EE) approach, both phases are treated as continua and flow

quantities such as the velocity in each phase are averaged, and these averaged quantities are

used to describe the characteristics of the carrier and dispersed–phase flow fields. This approach

leads to unclosed terms representing the interaction between the phases. Once these terms are

modeled to close the equation system, the EE approach can be used in computational fluid

dynamics (CFD) calculations of multiphase flow.

In the Lagrangian–Eulerian (LE) approach, although the continuum description of the fluid

phase is generally assumed to be identical to that in the EE representation, the particle phase

is treated as composed of discrete objects in the system. The fundamental description of the

dispersed phase by means of the droplet–distribution function (ddf) was introduced by Williams

(1958) which forms the basis for the LE approach. Subramaniam (2000, 2001) established a

firm mathematical base for the LE approach by using the theory of stochastic point processes.
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The advantage of using the LE approach is the ability to easily vary the physical properties

associated with individual particles (e.g., size or density). Moreover, insight into the unclosed

terms in the governing equations for mean mass, momentum and TKE in the EE approach can

be gained from the corresponding unclosed terms in the LE approach. The primary drawback

is the computational effort required to track a large number of particles in the Lagrangian–

Eulerian approach. Therefore, the EE approach is the more practical approach for simulating

large-scale particle–laden flow processes.

The EE approach requires sophisticated modeling in order to describe the variation of

turbulence modulation with particle Stokes number and mass loading. The goal of this research

is to carefully examine the unclosed terms, in particular, the interphase TKE transfer and the

dissipation rate, in Eulerian–Eulerian models for particle–laden turbulent flows, and improve

the understanding and models for the these unclosed terms.

1.2 Research Approach

For particle–laden turbulent flows, the unclosed terms that are related to the interphase

transfer of physical quantities, such as the interphase momentum and TKE transfer, put chal-

lenges on the mathematical modeling of gas–solid turbulent flows. To close these terms and

obtain a useful model for engineering applications, one has to resort to results from experiments

or a numerical simulation database where the unclosed terms are quantified. Experiments can

give a “realistic” observation of particle–laden turbulent flows. Simple experiments without

influence of gravity and flow inhomogeneities can usually give more insight into the behavior of

unclosed terms in the governing equations for particle–laden turbulent flows. However, quan-

titative information on the unclosed terms is usually difficult to obtain from the experiments.

Direct numerical simulations (DNS) offer an alternative means of investigating particle–

laden turbulent flow. The dataset from direct numerical simulations that are useful or pertinent

to the modeling of unclosed terms in Eulerian–Eulerian models can be used to validate the

EE models used in CFD calculations for multiphase turbulent flows. The numerical schemes
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used in DNS can be categorized into those that resolve the flow around each particle 2 and

those that do not. For the DNS studies that do not resolve the flow around each particle,

the point–particle approximation is usually used with assumptions that the particle size is

smaller than the Kolmogorov length scale of the fluid phase turbulence. In this approach, the

velocity and location of particles are evolved through the particle velocity evolution equation

proposed by Maxey and Riley (1983), while the fluid phase is solved using Navier–Stokes

equation with kernel averaging performed to interpolate the interphase momentum transfer

to the fluid momentum equations (two–way coupling). Since particles are modeled as point

force in the flow field and the boundary layer around each particle is not fully solved, the

interphase momentum and energy transfer are usually modeled in most point–particle DNS

[Sundaram and Collins (1999)]. The numerical schemes developed for “true” DNS are discrete

time immersed boundary method [Yusof (1996)], Lattice–Boltzmann method [Ten Cate et al.

(2004)], fictitious domain method [Glowinski et al. (2001)] and arbitrary Lagrangian–Eulerian

technique [Hu et al (2001)]. These methods involve minimum modeling in solving flow past

rigid bodies. Lubrication forces are introduced when particles approach each other or collide.

For “true” DNS, the no-slip and no-penetration boundary conditions are imposed on the

surface of each particle, while the point–particle DNS uses empirical forms of the hydrodynamic

forces for the motions of rigid particles. Recent experimental results of particle–laden homoge-

neous turbulence [Hwang and Eaton (2006a)] suggest that point–particle DNS cannot capture

the increased dissipation rate around particles which is important for the turbulence atten-

uation in particle–laden turbulent flows. These different DNS techniques for particle–laden

turbulence require consistent definitions for the unclosed terms in “true” DNS, point–particle

DNS and Eulerian–Eulerian models, which in turn lead us to the mathematical constraint on

the terms in the governing equations for the evolution of the second-moment of velocity for

particle–laden turbulent flow. In this work, the consistent mathematical modeling of interphase

TKE transfer is derived.

The Eulerian–Eulerian models with unclosed terms modeled can be used in the CFD calcu-
2In the rest of the work, we refer DNS with flow around each particle resolved as “true” DNS.



7

lation for multiphase turbulent flows, which is useful for the design and scale–up of circulating

fluidized combustors and coal gasifiers, etc. These CFD simulations can be further improved

if the turbulence model reproduces important physical phenomena such as turbulence modi-

fication with variation of particle Stokes numbers. Therefore, the model should be validated

in canonical particle–laden turbulent flow problems. In this research model validation is per-

formed by using Direct Numerical Simulation (DNS) data for particle–laden homogeneous tur-

bulence [Sundaram and Collins (1999)] and homogeneous shear flows [Ahmed and Elghobashi

(2000)].

The techniques developed for “true” DNS, such as discrete time immersed boundary method,

combined with the latest parallel algorithm, can be used to simulate gas–solid turbulent flows

with no–slip boundary conditions solved on each particle. One can use the “true” DNS dataset

to validate the model parameters. However the “true” DNS for particle–laden turbulence is

still a difficult problem to solve today. One reason is limited computational power. In this

research, we will focus on homogeneous turbulence past a random array of spheres where the

primary interest is to investigate influence of the particle random configuration on fluid phase

turbulence. The free stream turbulence is found to destabilize the wake structure and enhance

the vortex shedding from stationary particles. In the problem of homogeneous turbulence past

stationary random spheres, one can probe the effects of inter–particle spacing on fluid phase

turbulence attenuation, which will not be obvious in case of spheres moving with the surround-

ing turbulence. Moreover, with this test problem we avoid the modeling of sphere collisions

and the introduction of the lubrication forces into the system when spheres come close.

The contribution of this work is summarized as follows:

i) A multiscale interaction time scale originally proposed by Pai and Subramaniam (2006)

is applied in the Eulerian–Eulerian models and validated in two canonical problems of

particle-laden turbulent flow.

ii) A new multiphase turbulence model (EEM) is proposed in this work, and validated in

decaying homogeneous particle-laden turbulent flow and homogeneous particle-laden shear

flow.
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iii) A mathematical constraint for interphase TKE transfer term in EE models of particle–

laden turbulent is derived for homogeneous particle-laden turbulent flows with zero mean

slip velocity. This principle is then extended to the non-zero mean slip velocity case.

iv) A “true” DNS simulation using the immersed boundary method is built on a legacy code

from Yusof (1996). In this work, upstream homogeneous turbulence is introduced in the

immersed boundary method.

v) The immersed boundary method is parallelized using the domain decomposition, and the

performance of the parallel algorithm is studied. The grid convergence study is enabled

due to the parallel immersed boundary method developed in this work.

vi) The DNS study of turbulent flow past a fixed bed of spheres reveals that the particle clusters

enhance fluid phase turbulence. The spectra of fluid phase TKE and the redistribution of

Reynolds stress are examined in detail.

1.3 Outline of Thesis

In Chapter 2, the Eulerian–Eulerian formulation for two–phase turbulent flow is presented.

Existing multiphase turbulence models are then discussed. A general survey of the direct

numerical simulation methods for particle–laden turbulence is also presented in Chapter 2.

Chapter 3 discusses a new multiscale turbulence model for dilute gas-particle turbulent flows.

A mathematical constraint on the interphase TKE transfer term in EE models of particle–laden

turbulent flows is derived in Chapter 4, and its implication for multiphase turbulence models

and the point–particle DNS is discussed. Chapter 5 describes the numerical scheme of the

discrete-time immersed boundary method. In order to study the modulation of turbulence by

random arrangements of spheres, the discrete-time immersed boundary method is parallelized

using the domain decomposition method and the parallel tri-diagonal matrix solver in Chapter

6. The DNS study of upstream turbulence past fixed beds of spheres is presented in Chapter

7. Suggestions for future work are discussed in Chapter 8.
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CHAPTER 2. LITERATURE REVIEW

In this chapter, the Eulerian–Eulerian formulation for particle–laden turbulent flows is

shown in Section 2.1 and several popular multiphase turbulence models are discussed in Section

2.2. A general survey of direct numerical simulations for particle–laden turbulence is shown in

Section 2.3.

2.1 Eulerian–Eulerian Formulation for Two–phase Flows

The Eulerian–Eulerian (EE), or two-fluid, approach is one of the statistical models for

two-phase flow that is used in CFD calculations of multiphase flows. There are several ways

of defining averaged equations in the Eulerian–Eulerian approach. One may use temporal or

spatial averaging, where time averaging is strictly applicable to only statistically stationary

flows, and volume averaging is strictly applicable only to statistically homogeneous flows.

Drew’s formulation [Drew (1983); Drew and Passman (1999)] of the two–phase flow problem

uses the ensemble-averaging which enables this formulation to describe statistically unsteady,

inhomogeneous problems.

In Drew’s formulation, an indicator function Iβ(x, t) is used to denote the βth phase,

which is unity if the location x in the physical space is occupied by phase β at time t, and zero

otherwise. It is assumed that (i) the density difference between the two phases is sufficiently

large so that the density field can be used to distinguish between the two phases, and (ii) the

characteristic length scale of the interface over which this density change occurs is so small that

in a continuum description the density changes discontinuously at the interface. The second
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assumption implies that in two-phase flows the phase indicator functions satisfy the relation

2∑
β=1

Iβ(x, t) = 1, (2.1)

for all (x, t). The phase index is β and the particle phase is referred to as β = p and the fluid

phase as β = f .

The event associated with the random-field representation is E
(β)
0 = [Iβ(x, t) = 1]. The

probability of this event defines a probability field αβ(x, t):

αβ(x, t) ≡ P [Iβ(x, t) = 1]. (2.2)

For two-phase flow system, αβ satisfies the relation

2∑
β=1

αβ(x, t) = 1. (2.3)

In the Eulerian–Eulerian formulation for two-phase flow field, a phasic average is used to

describe the two–phase flow [Drew (1983); Drew and Passman (1999)]. The phasic average is a

conditional average, which is conditional on the event E
(β)
0 , i.e., on the presence of phase β at

that space–time location (x, t). In particular, the mean density and velocity field conditional

on the presence of phase β is used in the Eulerian–Eulerian formulation.

The mean velocity field for phase β can be defined in terms of conditional density-weighted

average 1:

Ũ
(β)
k ≡

〈ρIβUk〉
〈ρIβ〉

. (2.4)

These density-weighted averages are the most convenient description of the mean velocity in

mean momentum equations. The mean velocity conditioned on phase β without density-

weighting is defined as:

U
(β)
k ≡

〈IβUk〉
〈Iβ〉

. (2.5)

For the constant density two-phase flows (〈ρ|Iβ = 1〉 = ρβ), the conditional density-weighted

mean velocity is identical to the unweighted conditional mean velocity:

Ũ
(β)
k ≡

〈ρIβUk〉
〈ρIβ〉

=
〈IβUk〉
〈Iβ〉

≡ U
(β)
k . (2.6)

1The notation for mean velocity Ũ
(β)
k is denoted as Uβ,i in Chapter 3.
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The mean mass and momentum governing equations are derived by multiplying the stan-

dard Navier-Stokes equations with the indicator function Iβ(x, t) and taking expectations of

the resulting equations.

Mean Mass Conservation

The mean mass conservation in each phase (β = f, p) is:

∂

∂t
[αβρβ] +

∂

∂xk
[αβρβ

〈
Ũ

(β)
k

〉
] =

〈
S(β)

ρ

〉
. (2.7)

where the source term on the RS of Eq. 2.7 is given by

〈
S(β)

ρ

〉
=
〈

ρ
(
Ui − U

(I)
i

) ∂Iβ

∂xi

〉
(2.8)

and U
(I)
i is the velocity of the interface.

Taking the expectations of the instantaneous mass conservation equation, and summing

over both phases gives the constraint

〈
S(f)

ρ

〉
= −

〈
S(p)

ρ

〉
. (2.9)

For zero interphase mass transfer, such as gas-solid flows, the source term
〈
S

(β)
ρ

〉
is zero.

Mean Momentum Equation

The mean momentum conservation in each phase (β = f, p) is:

∂

∂t
[αβρβ

〈
Ũ

(β)
j

〉
] +

∂

∂xk
[αβρβ

〈
Ũ

(β)
j

〉〈
Ũ

(β)
k

〉
]

= − ∂

∂xi
[αβρβR̃

(β)
ij ] +

∂

∂xi
〈Iβτij〉+ 〈Iβρbj〉+

〈
M

(β)
j

〉
(2.10)

where R̃
(β)
ij is the Reynolds stress in phase β, the definition of which is given in Eq. 2.14;

〈Iβτij〉 is the expected stress tensor weighted by the phase indicator function; 〈Iβρbj〉 is the

expected body force weighted by the phase indicator function, and
〈
M

(β)
j

〉
is the interphase

momentum transfer source in β phase,

〈
M

(β)
j

〉
=
〈

ρUj

(
Ui − U

(I)
i

) ∂Iβ

∂xi
− τij

∂Iβ

∂xi

〉
. (2.11)
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The interphase momentum transfer source (Eq. 2.11) has two parts: the first term represents

the contributions from the interphase mass transfer, while the second term is due to the fact

that the interface can support a stress difference. For gas-solid two-phase flows, the first term in〈
M

(f)
j

〉
is zero, and the second term is required for closure through modeling. The interphase

momentum source is subjected to the following constraint〈
M

(f)
j

〉
= −

〈
M

(p)
j

〉
+
〈
M (I)

〉
(2.12)

where
〈
M (I)

〉
is the average momentum associated with the interface. For gas-solid two-phase

flows, the average momentum associated with the interface
〈
M (I)

〉
is zero.

Second Moment Equations

The fluctuating velocity in phase β is defined as

u
′′(β)
i ≡ Ui −

〈
Ũ

(β)
i

〉
(2.13)

where Ui is the instantaneous velocity field, and
〈
Ũ

(β)
i

〉
is the conditional density-weighted

average velocity for phase β. Based on the definition of (density-weighted) fluctuating velocity,

the Reynolds stress R̃
(β)
ij is defined as

R̃
(β)
ij ≡

〈
Iβρu

′′(β)
i u

′′(β)
j

〉
〈Iβρ〉

(2.14)

For gas-solid two-phase flows, without interphase mass transfer, the evolution equation of

the Reynolds stress R̃
(β)
ij in phase β is

〈Iβρ〉
D̃β

D̃βt
R̃

(β)
ij +

∂

∂xk

〈
Iβρu

′′(β)
i u

′′(β)
j u

′′(β)
k

〉
=

−

〈Iβρu
′′(β)
i u

′′(β)
k

〉 ∂
〈
Ũ

(β)
j

〉
∂xk

−

〈Iβρu
′′(β)
j u

′′(β)
k

〉 ∂
〈
Ũ

(β)
i

〉
∂xk


+
〈

u
′′(β)
i

∂(Iβτkj)
∂xk

〉
+
〈

u
′′(β)
j

∂(Iβτki)
∂xk

〉
+
〈
u
′′(β)
i S

(β)
Mj

〉
+
〈
u
′′(β)
j S

(β)
Mi

〉
(2.15)

where the terms on the left hand side are: (i) the material derivative of the Reynolds stress in

phase β with the density-weighted mean velocity in phase β, (ii) the triple velocity correlation
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term. The terms on the right hand side are: (iii)-(iv) production of Reynolds stress due to

the mean velocity gradients, (v)-(vi) fluctuating velocity-stress gradient correlation, (vii)-(viii)

fluctuating velocity-interfacial momentum transfer correlation.

The kinetic energy kf and kp in the fluid and particle (or dispersed) phase respectively,

are the half of the trace of the Reynolds stress tensor. For gas-solid two–phase flows, if the

thermodynamic density is constant in each phase and there is no interphase mass transfer, the

evolution equation for kinetic energy in phase β is

αβρβ
∂kβ

∂t
+ αβρβŨ

(β)
k

∂kβ

∂xk
+

1
2
αβρβ

∂

∂xk

〈
u
′′(β)
i u

′′(β)
i u

′′(β)
k

〉
=

−

〈Iβρu
′′(β)
i u

′′(β)
k

〉 ∂
〈
Ũ

(β)
i

〉
∂xk

+
〈

u
′′(β)
i

∂(Iβτki)
∂xk

〉
+
〈
u
′′(β)
i M

(β)
i

〉
, (2.16)

The third term on the left hand side is the triple velocity correlation term. The terms on the

right hand side are

(i) the production of TKE in phase β due to the mean velocity gradient;

(ii) the fluctuating velocity–stress gradient and fluctuating velocity–pressure correlation,

where the contribution from pressure correlation is neglected, and this term is modeled as

the dissipation in the phase β;

(iii) the fluctuating velocity–interfacial momentum transfer correlation.

The third term is not in the second moment equation for the single phase turbulence. It is this

term that puts the challenge on modeling rather than the other two terms on right side of Eq.

2.16.

2.2 Eulerian-Eulerian Multiphase Turbulence Models

We briefly review several multiphase turbulence models in this section, which are all based

on the Eulerian–Eulerian approach.

Elghobashi and Abou-Arab (1983) developed a two-equation turbulence model, which de-

scribes the conservation of turbulent kinetic energy (TKE) and dissipation rate in the fluid

phase based on the volume averaging method. This two phase k-ε model was validated by
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comparing with results from particle-laden jet flow [Elghobashi et al. (1984)] and jet flows

laden with vaporizing droplets ]Mostafa and Elghobashi (1985)]. The volume averaging ap-

proach is used in this model, and it could cause problems if this model is used in a spatially

inhomogeneous turbulent flow.

Ahmadi and Ma (1990) used the ensemble-averaging method to derive the evolution equa-

tion for TKE in the carrier and dispersed phases. The transport equation for dissipation rate

in fluid phase is the standard k-ε model for single phase turbulence. Ahmadi’s model contains

the specification of model constants for dilute two–phase flows and dense granular flows as

special limiting cases. Validation of this model has been reported for simple shear flow of a

dense mixture [Ma and Ahmadi (1990)] (αp > 0.1).

A four-equation model proposed by Simonin (1996b,a) has been tested by Sofiane (2002)

and compared with experimental results for the turbulent gas-solid flows in a vertical pipe

[Sinclair and Jackson (1989)], and in a vertical riser [Bolio et al. (1995)]. Based on this model,

a single phase k-ε model is added in MFIX (Multiphase Flow with Interphase eXchanges)

kernel and a turbulent pipe flow test case is included in MFIX.

2.3 Direct Numerical Simulation for Particle–laden Turbulence

Many researchers [Elghobashi and Truesdell (1993); Boivin et al. (1998); Sundaram and

Collins (1999); Ahmed and Elghobashi (2000, 2001); Mashayek and Taulbee, (2001); Mashayek

and Taulbee (2002); Ferrante and Elghobashi (2003)] have performed DNS studies for particle–

laden turbulence, and the flow configurations in these studies include homogeneous turbulence

(decaying and stationary), homogeneous shear flow, and plane–strain turbulence.

Elghobashi performed direct numerical simulation of turbulence modulation in particle–

laden decaying homogeneous turbulence [Elghobashi and Truesdell (1993)] and homogeneous

shear [Ahmed and Elghobashi (2000)]. In both of these studies, the particle size is less than

the Kolmogorov length scale η with the Stokes number larger than 1. The modulation of fluid

phase TKE with respect to different particle Stokes numbers and mass loading is reported. In

the DNS of particle–laden decaying homogeneous turbulence [Elghobashi and Truesdell (1993)],
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the rate of energy transfer between phases at wavenumber κ is studied in the Fourier space.

This study shows that particles transfer their momentum to the high wavenumber motion of

the carrier fluid, and hence increase the energy at higher wavenumber. This increase of energy

at higher wavenumber κ is accompanied by an increase of the viscous dissipation rate, and also

the increase of the energy transfer from energy-containing range to dissipation range.

These studies reveal a picture of multiscale interaction in particle–laden turbulent flow.

Even particles are smaller than the Kolmogorov length scale, the fluid–particle interaction

still affects the large scale motions in the carrier phase turbulence through the energy cascade.

Although the spectral distribution of the rate of energy transfer between phases at wavenumber

κ helps to understand the multiscale interaction of particle–laden turbulence, the spectral data

are not easy to use in the model validations.

Boivin et al. (1998) performed point–particle DNS for particle–laden stationary homoge-

neous turbulence. The particle size is also less than the Kolmogorov length scale η and with

St > 1. Reynolds number is up to approximately 1.5 for the largest particle size. In this study,

modulation of TKE, energy spectrum and dissipation rate with different mass loading φ and

particle Stokes number St are compared with the unladen homogeneous turbulence. To study

the modulation of turbulence due to the momentum transfer between phases, the interphase

TKE transfer term Πkf
and Πkp uses kfp the fluid–particle velocity covariance, which is a

pseudo–flow quantity.

DNS study by Sundaram and Collins (1999) studied the particle–laden decaying homoge-

neous turbulence. The particle parameters are of the similar range as those in Boivin et al.

(1998). Different from other DNS studies, dynamical equations for the kinetic energy in fluid

and particle phases, and the total energy of the system are derived. The mechanism for the

dissipation of total energy of the system is described as two aspects:

1. viscous dissipation occurring throughout the continuous fluid phase (φv);

2. and the losses due to the drag at the particle interface(φp). The particle are dissipative

to the total energy of the system.
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The budget of φv and φp is reported in this study, which can be used to validate the multiphase

turbulence models in the canonical problem of particle–laden homogeneous turbulence.

The direct numerical study with point–particle approximation reveals the attenuation of

fluid phase turbulence with variation of particle inertia, mass loading ratio, and provides data

for validation of the multiphase turbulence models. Particle image velocimetry (PIV) experi-

ments by Hwang and Eaton (2006a,b) of homogeneous particle–laden turbulence reveal higher

turbulent kinetic energy reduction than that predicted by DNS [Elghobashi and Truesdell

(1993); Boivin et al. (1998); Squires and Eaton (1990)]. It is noted that computational re-

strictions of DNS make it difficult to simulate the same experimental conditions, hence direct

comparison is difficult. However, the discrepancy in the attenuation of fluid–phase turbulence

indicates the point–particle approximation used in these simulations may not capture all the

physics [Hwang and Eaton (2006a,b)].

Lattice Boltzmann simulation of turbulent solid-liquid suspensions is studied by Ten Cate

et al. (2004), where the exact boundary conditions are imposed on particles. This is quite

different from the physical system focused in this report, where the density ratio between

particle and fluid phase is of order one and the solid volume fraction is around 2%–10% in solid-

liquid suspensions. In this work, authors compare the modulation of TKE with that reported

in point–particle DNS [Elghobashi and Truesdell (1993); Boivin et al. (1998); Sundaram and

Collins (1999)]. It is found that the TKE reduction rates at mass loading ratio 10% in Ten Cate

et al. (2004) are comparable to that reported in point–particle DNS by Boivin et al. (1998).

This implies that although point–particle DNS lacks the details of the small-scale fluid motion

as present in lattice Boltzmann simulation, the large-scale motions captured in both simulation

approaches are consistent [Ten Cate et al. (2004)].
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CHAPTER 3. IMPROVED MULTISCALE TURBULENCE MODEL

FOR PARTICLE–LADEN TURBULENT FLOW

The multiscale interaction mechanism revealed by DNS motivates the development of the

new Eulerian–Eulerian model for particle–laden turbulence proposed in this chapter1. The

DNS data of TKE evolution for particle–laden decaying homogeneous turbulence [Sundaram

and Collins (1999)] and homogeneous shear [Ahmed and Elghobashi (2000)] is used to validate

Eulerian–Eulerian models in this study.

The outline of this chapter is shown as follows:

(1) perform a comparative assessment of model predictions with direct numerical simulation

data for a canonical turbulent particle–laden flow;

(2) identify modeling criteria based on this comparative assessment;

(3) propose a new multiphase turbulence model for dilute particle–laden turbulent flows,

and derive the transport equations for the Reynolds stress tensor in the fluid and particle

phases;

(4) validate this new multiphase turbulence model in canonical turbulent particle–laden

flow problems, and ensure that this model satisfies the modeling criteria identified in the

comparative study.
1This chapter is based on Xu and Subramaniam (2006).
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3.1 Comparative Assessment of Simonin and Ahmadi’s Multiphase

Turbulence Models

An important limiting case of turbulent multiphase flows is statistically homogeneous

particle–laden turbulent flow evolving in a zero–gravity environment [Squires and Eaton (1990)].

The principal findings from direct numerical simulations of this flow by Sundaram and Collins

(1999), and the results from a comparative assessment of two multiphase turbulence models,

are summarized in this section.

If gravity is absent and the mean velocity fields are homogeneous, the mean pressure

gradient is zero and the mean momentum equation system results in the trivial solution of zero

mean velocity in each phase, which implies a zero mean slip velocity [Subramaniam (2002)].

If the flow field is initialized with zero mean velocity in both phases, the mean velocities will

remain zero. In this case, it is easy to study the evolution of second-moments of fluctuating

velocity solely influenced by interphase TKE transfer and viscous dissipation (without effects

of mean velocity gradients).

In this DNS study [Sundaram and Collins (1999)], rigid, spherical solid particles evolve in

freely decaying homogeneous turbulent flow. There is no interphase mass transfer. The flow is

dilute, with particle density much larger than fluid density (ρp/ρf ≈ 103). The particle size is

in the sub-Kolmogorov range (η = 0.035 and d/η < 1, where d is the mean particle diameter),

but the particles are large enough to ignore Brownian motion. Hence, a linear drag law can

be applied to each particle in the momentum equations.

The boundary layer around each particle is neglected, and particles are viewed as point

particles in the flow field2. Particle collisions are assumed to be elastic, so collisions conserve

particle kinetic energy. Since the particle volume fraction is quite low, the influence of the

particles on the fluid phase continuity equation is neglected, but the effects on fluid momentum

are still taken into account.

The predictions from DNS show that the energy in both phases decreases monotonically
2However, kernel averaging is performed to interpolate the interphase momentum transfer to the fluid mo-

mentum equation.
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Figure 3.1 Evolution of TKE in fluid phase from Model I for decaying ho-
mogeneous particle–laden turbulent flow. Arrows in the figure
indicate the direction of increasing particle Stokes number.

and the net effect of particles is to reduce fluid energy. An important non-dimensional quantity

that characterizes the inertia of the solid particles is the Stokes number St = τp/τf , which is

defined as the ratio of the characteristic particle momentum response time τp = (ρp/ρf )d2/18νf

to a characteristic flow timescale τf . In Sundaram and Collins’ DNS study [Sundaram and

Collins (1999)], the characteristic flow timescale is chosen to be the Kolmogorov timescale

τη = (ν/ε)1/2, and therefore the Stokes number in this work is defined as St ≡ τp/τη. DNS

results [Sundaram and Collins (1999)] show that the effect of the particles to reduce fluid energy

grows with increasing particle Stokes number. The particle energy also decays monotonically

in time and the decay rate increases with increasing particle Stokes number (for fixed mass

loading). See the solid lines in Figures 3.1 and 3.2.

We now summarize the two multiphase turbulence models that are used to predict the decay

of kinetic energy in the decaying homogeneous turbulence case described above. Hereafter,

Simonin’s model is referred to as Model I in this work, and Ahmadi’s model is referred to as

Model II.



20

t / Te

k p(t
)/

k p(0
)

0 1 2 30

0.2

0.4

0.6

0.8

1
St=1.6 Model I
St=3.2 Model I
St=6.4 Model I
St=1.6 DNS from Sundaram & Collins
St=3.2 DNS from Sundaram & Collins
St=6.4 DNS from Sundaram & Collins

Evolution of TKE in particle phase for Model I

increasing St number

increasing St number

Figure 3.2 Evolution of TKE in particle phase from Model I for decaying
homogeneous particle–laden turbulent flow.

3.1.1 Model I — Simonin’s Model: Model Description and Results

For decaying homogeneous particle–laden turbulent flow, the simplified model equations

for TKE and dissipation rate in the fluid phase from Model I [Simonin (1996b,a)] are:

αfρf
dkf

dt
= Πkf

− αfρfεf , (3.1)

αfρf
dεf

dt
= Cε,3

εf

kf
Πkf

− αfρfCε,2

ε2
f

kf
, (3.2)

where Cε,2 = 1.92 and Cε,3 = 1.2. The particle phase influences the fluid phase TKE through

the interphase TKE transfer term Πkf
= αpρfFD [kfp − 2kf ], where FD plays the role of an

effective particle response frequency.
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The model transport equation for TKE in particle phase simplifies to

αpρp
dkp

dt
= Πkp = −αpρp

1
τF
12

[2kp − kfp], (3.3)

αpρp
dkfp

dt
= Πkfp

− αpρpεfp, (3.4)

where kfp is the covariance of fluid–particle velocity. The dissipation of particle energy in

Eq. 3.3 is neglected because of the assumption of elastic collisions in the DNS study. The

interphase TKE transfer term Πkp accounts for the influence of fluid phase turbulence on kp.

The time scale τF
12 is the particle response time.

In the equation for fluid–particle covariance kfp, the interphase Πkfp
transfer is modeled as

Πkfp
= −αpρp

1
τF
12

[(1 + φ)kfp − 2kf − 2φkp]

where φ = αpρp/αfρf , is the mass loading. The term εfp accounts for the dissipation of

kfp due to viscous effects in the fluid phase and the loss of correlation by crossing–trajectory

effects. This dissipation rate is modeled as εfp = kfp/τ t
12, where τ t

12 is the time scale of the

fluid turbulent motion viewed by the particles. The model specification for this time scale is

τ t
12 = τ t

1

[
1 + cβξ2

r

]−1/2 where ξr =
|V̄r|√

2
3kf

where cβ varies with the angle between the mean particle velocity and the mean relative

velocity. This angle is taken to be zero in the homogeneous turbulence case, resulting in

cβ = 0.45. The time scale of the energetic turbulent eddies τ t
1 is

τ t
1 =

3
2
Cµ

kf

εf

where Cµ = 0.09.

The effective particle response frequency FD is given in terms of local mean particle

Reynolds number Rep:

FD =
3
4

CD

d
〈|vr|〉2, 〈|vr|〉2 =

√
Vr,iVr,i + 〈v′r,iv′r,i〉2

CD =
24

Rep

[
1 + 0.15Rep

0.687
]
α−1.7

f , for Rep < 1000
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where the particle Reynolds number Rep is defined as

Rep =
αf 〈|vr|〉2d

νf
. (3.5)

The averaging method 〈 · 〉2 is defined as the dispersed phase mass average in Model I. The

average value of the local relative velocity between each particle and the surrounding fluid flow

Vr,i can be expressed as

Vr,i = [Up,i − Uf,i]− Vd,i Vd,i = 〈ũf,i〉2 − Uf,i = 〈u′f,i〉2 (3.6)

where Up,i and Uf,i are the mean velocity of each phase; the drifting velocity Vd,i represents the

correlation between the instantaneous distribution of particles and turbulent fluid motion on

characteristic length scales which are large compared to the particle diameter. To apply Model

I in this simple test case, some quantities need to be specified. One is 〈|v|r〉2, the magnitude

of the averaged value of the local relative velocity between particles and the surrounding fluid

flow. In Model I, 〈|vr|〉2 is defined as

〈|vr|〉2 =
√

Vr,iVr,i + 〈v′r,iv′r,i〉2

where Vr,i is the mean relative or slip velocity, which is zero in the homogeneous particle–

laden decaying turbulent flow, and v′r,i needs to be modeled. In this study, the following

approximation is used

v′r,i ≡ αfαp

(
u′f + u′p

)
where u′f =

√
2
3kf , u′p =

√
2
3kp.

Also in Model I, the fluid–particle velocity covariance kfp needs to be initialized. If the

fluid–particle velocity covariance is expressed as

kfp(t) = ρfp(t) · k
1/2
f (t) · k1/2

p (t) (3.7)

then ρfp(t) is a “fluid–particle” correlation coefficient, which should be bounded by 0 and 1

(based on the Cauchy-Schwarz inequality3). Using this definition, we can determine kfp(0) by

3Implementations of this model [Sofiane (2002)] do not impose the bounds on ρfp, and recommend specifi-
cation of values up to 2 so as to improve the model predictions. In this work also, ρfp(0) = 2.0 is used.
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setting ρfp(0) values. The role of the quantity kfp, which is really a single–point surrogate for

the fluid–particle velocity covariance, is discussed in detail elsewhere [Xu (2004)]. It is argued

that kfp is not an independent flow variable in single–point closures of two-phase turbulent

flows. This conclusion is consistent with the theoretical analysis presented in Sundaram and

Collins (cf. Eq. 29 (c,d) on p. 113 in Sundaram and Collins (1999) ).

The principal time scale in the model is τF
12, the particle response time, which is related to

the inertial effects acting on the particles:

τF
12 = F−1

D

ρp

ρf
(3.8)

However, this time scale is based on the slip velocity 〈|v̄r|〉2, which is defined on the basis of

u′f ∼
√

kf and u′p ∼
√

kp. Since the particle Reynolds number Rep is based on 〈|v̄|〉2, and is

approximately unity in this flow, the time scale τF
12 can be further simplified as

τF
12 =

4
3

d̄

CD 〈|v̄r|〉2
ρp

ρf
=

4
3

d̄

CDRepνf

ρp

ρf
≈

αf d̄2

18νf

ρp

ρf
.

Since Rep ≈ 1, the product of CD and Rep is approximately equal to 24. Hence, in this

homogeneous turbulence, under the condition of all particles having Rep approximately equal

to 1, the particle response time is approximately constant during the TKE evolution.

The prediction from Model I is that TKE in the fluid phase decreases monotonically, but

the net effect of particles to reduce fluid energy is found to decrease with increasing Stokes

numbers, which is opposite to the DNS result (see Figure 3.1 ). The model predictions for fluid

energy evolution also show a much steeper decay at the beginning than the DNS result. The

same steep decay is also observed in the particle energy evolution, which is shown in Figure 3.2.

The particle energy decays monotonically. The decay of particle energy is observed to increase

with increasing particle Stokes numbers after t/Te = 0.8, which is consistent with DNS data,

but there is some cross–over at the beginning of evolution, as seen in Figure 3.2.

3.1.2 Model II — Ahmadi’s Model: Model Description and Results

The evolution equations of TKE in fluid and particle phase from Model II [Ahmadi and Ma

(1990); Ma and Ahmadi (1990)], simplified for decaying homogeneous particle–laden turbulent
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flow are4:

ρfαf
dkf

dt
= 2D0 (kp − ckf )− ρfαfεf (3.9)

ρpαp
dkp

dt
= 2D0 (ckf − kp) . (3.10)

The transport equation for the dissipation rate in the fluid phase is given by Ahmadi (1989),

which is essentially the same as that in the standard k–ε model for single phase turbulence.

For decaying homogeneous turbulence, the evolution equation for εf is:

αfρf
dεf

dt
= −Cε,2

ε2
f

kf
, (3.11)

where Cε,2 = 1.92. Since particle collisions are elastic in the DNS test case, the dissipation

rate of particle energy is taken to be zero in Model II.

The coefficient c is related to the ratio of the particle time scale ρpαp/D0 to the macroscale

Lagrangian turbulence time scale TL,

c =
1

1 +
ρpαp

D0TL

, TL =
0.165kf

εf
.

The drag coefficient D0 is given as

D0 =
18µfαp

d̄2

[
1 + 0.1 (Rep)

0.75
]

(
1− αp

νm

)0.25νm
(3.12)

where d̄ is the mean particle diameter and model coefficient νm = 0.64356. The particle

Reynolds number Rep is defined as

Rep =
ρf d̄|Uf,i − Up,i|

µf
.

where Uf,i and Up,i are the ith components of the mean velocity in the fluid and particle phase

respectively.

In Model II the term D0/(αpρp) represents a particle response frequency. The expression

for this particle response frequency (cf. Eq. 3.12) can be further simplified because the particle
4In Model II [Ahmadi and Ma (1990); Ma and Ahmadi (1990)], the notation used to represent fluid and

particle phase variables, and volume fraction is slightly different.
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Reynolds number Rep based on the mean slip velocity is zero in this case. In the limit of

volumetrically dilute flow (αp � 1), the resulting simplified expression for the particle response

frequency tends to its limiting value of the reciprocal of the particle response time:

D0

αpρp
=

18νf

d2

ρf

ρp

1(
1− αp

νm

)0.25νm
≈

18νf

d2

ρf

ρp
for αp � 1 .

Figure 3.3 shows that the prediction from Model II shows satisfactory agreement with DNS

results for the evolution of fluid energy, except for some quantitative difference after t/Te = 1.5.

The decay of kf is not enough after t/Te = 1.5. This is probably because the single phase

turbulence model is used for the dissipation rate of fluid energy. The incorrect variation of

fluid energy evolution with increasing particle Stokes numbers that was observed in Model I is

not found in Model II. Model II predicts a very steep decay of particle energy at early time,

and the quantitative discrepancy between model predictions and DNS data is quite large, as

seen in Figure 3.4.

3.1.3 Summary of Model Results

It is obvious that the definition of the particle response time in Model I is almost the same

as that in Model II under conditions of particle Reynolds number close to unity, and particle

volume fraction far less than one. The particle response time is used as the timescale for

interphase TKE transfer term in both these models, and the interphase TKE transfer plays

the dominant role in the equation system of both models. We arrived at this conclusion based

on the budget study of the equation systems of the two multiphase turbulence models, and the

detailed budget analysis is shown in Xu (2004). Given the significant discrepancy between the

TKE decay rate predicted by the models and that predicted by the DNS for different Stokes

numbers, it is hypothesized that the particle response time is not the appropriate time scale

for interphase TKE transfer.

The physical reason behind the incorrect behavior of kf evolution with increasing particle

Stokes number in Model I, and the anomalous steep decay of kp at early time lies in the

fact that the particle response time is the appropriate time scale for only a limited range of



26

t / Te

k f(t
)/

k f(0
)

0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

St=1.6 Model II
St=3.2 Model II
St=6.4 Model II
St=1.6 DNS from Sundaram & Collins
St=3.2 DNS from Sundaram & Collins
St=6.4 DNS from Sundaram & Collins

Evolution of TKE in fluid phase for Model II

increasing St number

Figure 3.3 Evolution of TKE in fluid phase from Model II for decaying
homogeneous particle–laden turbulent flow.

particle–eddy interactions. In reality, particle–turbulence interaction is a complex multiscale

process. Even for a monodisperse gas–solid two–phase flow, particles interact with a range of

eddies with different length and time scales. Furthermore, the particle response time and the

Stokes number for each particle is different, since each particle has a different instantaneous

velocity. The particle response time defined here can only represent the characteristic time

scale of particles interacting with the eddies in the dissipation range.

In Eulerian–Eulerian models, all the quantities in the governing equations are averaged.

Since the interphase TKE transfer represents the average interaction of all particles with the

entire range of turbulent scales, the model for this term should somehow account for this

complex multiscale interaction.
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Figure 3.4 Evolution of TKE in particle phase from Model II for decaying
homogeneous particle–laden turbulent flow.

3.2 Multiscale Interaction Model for Interphase TKE Transfer

Based on the discussion in the previous section, a new time scale is proposed to model the

interphase TKE transfer. This new time scale is implemented in Model I and Model II, and it

improves the performance of both models in decaying homogeneous particle–laden turbulent

flow.

From the model testing in the previous section, it was noted that the incorrect variation

of kf with increasing particle Stokes numbers, and the steep decay of kp that are found in

the model results, need to be improved. In Model I and Model II, the complex particle–fluid

interaction represented by the interphase TKE transfer terms is characterized by a single time

scale, the particle response time τp, which needs further improvement. A multiscale interac-

tion model was first proposed by Pai and Subramaniam (2004), to improve the multiphase

turbulence model in KIVA [Amsden et al. (1989)], which is based on the Lagrangian–Eulerian
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approach. An equivalent form of this multiscale interaction model is implemented in the

Eulerian–Eulerian models discussed in this work, and this timescale improves the predictions

from Model I and Model II.

One can define a particle Stokes number based on τl, a characteristic time scale for an eddy

in the inertial sub–range of turbulence, as

Stl =
τp

τl

where

τl =
l

|u′g|
=
|u′g|2

εf
,

such that l is the characteristic length scale of the eddy, and |u′g| is the characteristic eddy

velocity in inertial subrange. Therefore, the particle Stokes number based on τl scales as

Stl ∼
1

|u′g|2
.

For the EE implementation, the distribution of u′g is assumed to be joint–normal for homo-

geneous turbulence. This means that energetic eddies can be associated with a small Stokes

number and small fluctuations can be associated with a large Stokes number. Thus, there are

different particle Stokes numbers Stl that correspond to eddy of different sizes l.

The hypothesis is that for Stl < 1, particles respond immediately to the flow. When par-

ticles are entrained in the eddies with Stl < 1, particles will basically follow the characteristic

time scale of the eddies. As Stl approaches zero, particles follow the eddy turnover time τ .

For Stl > 1, the particle responds slowly to the flow. In this case, the characteristic size of

the eddies is small and |u′g|2 is also very small. Particles will not be entrained in these small

eddies. The inertia of the particle plays an important role when particle interacts with small

size eddies. Since the particle response time is a measure of the particle inertia, which depends

on the density and the size of the particles, the particle follows its response time when Stl > 1.

For the case of zero–gravity homogeneous particle–laden turbulent flow, the fluctuating

velocity in the fluid phase is assumed to be isotropic and joint–normal, and the probability

density function for Z = |u′g| is

fZ(z) =

√
2
π

1
σ3

f

z2e−z2/2σ2
f
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where z is the corresponding sample space variable of random variable Z, and σf is the standard

deviation of u′g, which is
√

2
3kf for isotropic homogeneous turbulent flows. Figure 3.5 is a

sketch of the probability density function of Z. The value of Z where Stl = τp/τl = 1 is of

special significance, and it is denoted |u′g|∗. This transition value of |u′g|∗ divides the z-axis

into two regions: Stl < 1 and Stl > 1.

Z

f Z(Z
)

The distribution function (PDF) of |u‘g|

0
0

Stl < 1Stl >1

|u‘g|*

Figure 3.5 Sketch of the probability density function Z = |u′g|.

The interaction time τi is assumed to be a random variable, which is a prescribed function of

Z = |u′g|. The mean interaction time 〈τi〉 is obtained from the conditional mean
〈
τi|Z = |u′g|

〉
by:

〈τi〉 =
∫ ∞

0
〈τi|z〉 fZ(z)dz.

The conditional mean of τi is assumed to be of the following form:

〈τi|Z〉 = τp 0 < |u′g| < |u′g|∗ (3.13)

〈τi|Z〉 = Stl · (τp − τ) + τ |u′g|∗ < |u′g| < ∞. (3.14)

The conditional mean 〈τi|Z〉 in the range |u′g|∗ < |u′g| < ∞ is simply modeled as a linear

function of Stl. As Stl → 0, 〈τi|Z〉 is equal to the eddy turnover time τ and particles just
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move with the eddies. When Stl ≥ 1, particles respond slowly to the flow, and the particle

response time τp is dominant here.

One can retrieve Model I and Model II from the expression of 〈τi〉 by considering the limit

of |u′g|∗ → ∞ and 〈τi〉|u′
g |∗→∞ = τp, where τp is the particle response time. This means that

particles respond to the flow at the particle response time scale for the entire range of |u′g|.

The mean of τi is defined as

〈τi〉 =
∫ |u′

g |∗

0
τpfZ(z)dz +

∫ ∞

|u′
g |∗

[Stl · (τp − τ) + τ ] · fZ(z)dz (3.15)

where fZ(z) is the probability density function of |u′g|.

This new multiscale interaction time scale is implemented in both multiphase turbulence

models investigated in this study. For Model I, Eqs. (3.1–3.4) are solved with τF
12 replaced

by 〈τi〉. With the implementation of 〈τi〉 in Model I, the steep decay at the beginning of kf

and kp evolution is improved, and the incorrect trend of kf decay with increasing particle

Stokes numbers is also corrected, as seen in Figure 3.6. For Model II, Eqs. (3.9–3.11) are

solved with αpρp/D0 replaced by 〈τi〉. The fast decay of particle energy at the beginning of the

evolution is eliminated after the implementation of 〈τi〉 (see Figure 3.7). The incorporation of

the multiscale interaction time scale improves the performance of both models tested in this

study.

3.3 The Equilibration of Energy Model

Turbulence models for particle–laden flows reviewed in this study use the particle response

time τp as the timescale for interphase TKE transfer, which results in a very steep decay of

particle phase TKE compared with DNS results. In Model I, the decay of kf with increasing

particle Stokes numbers is incorrect. Model I requires an equation for the fluid–particle velocity

covariance kfp, which is a pseudo–flow quantity, and it is unclear how this quantity should be

initialized and how its boundary values should be specified. Model II uses the single-phase

dissipation rate model for turbulent two–phase flows. For all of these reasons, both models are

deemed unsatisfactory for general applications.
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Figure 3.6 Evolution of TKE in fluid phase from Model I with the multi-
scale interaction time scale 〈τi〉.

A new model is proposed in this study that incorporates the mean multiscale interaction

timescale 〈τi〉, and seeks to address some of the difficulties encountered in Model I and Model

II. This model is formulated by considering the behavior of a two–phase flow system in the

limit of stationary turbulence. In this limit, the mixture TKE is kept constant by artificially

forcing the fluid turbulence in a homogeneous particle-laden turbulent flow. The particle phase

TKE kp and fluid energy kf evolve to their respective equilibrium values ke
f and ke

p, over a

TKE transfer time scale τπ, where the superscript e denotes the quantity at the equilibrium

state. At the equilibrium state, the ratio of specific fluid energy ee
f to the specific mixture TKE

em is a constant, which may depend on mass loading φ, particle Stokes number St, particle

Reynolds number Rep and other non-dimensional parameters.

In Section 3.3.2, transport equations for the Reynolds stress tensor in the fluid and particle

phases are derived based on the equilibration of energy concept. For simplicity of exposition,
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Figure 3.7 Evolution of TKE in particle phase from Model II with the
multiscale interaction time scale 〈τi〉.

we first present the EEM model in the simple case of decaying homogeneous turbulence. The

k–ε equation implied by the EEM Reynolds stress model is used to simulate the test case

discussed in Section 3.1.

3.3.1 Description of EEM

The model equations are written in terms of specific energy ef = ρfαfkf and ep = ρpαpkp,

which are the contributions to the total mixture energy em = ρmkm from both phases, where

ρm = ρfαf + ρpαp is the mixture density. For the decaying homogeneous turbulence, the

following equation system holds:

def

dt
= −

(ef − ee
f )

τπ
− ρfαfεf , (3.16)

dep

dt
= −

(ep − ee
p)

τπ
. (3.17)
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For the test case considered in this study, elastic collisions are assumed in the particle phase,

and there is no dissipation of particle energy. However the dissipation of particle energy arising

from inelastic collisions can be easily incorporated in Eq. 3.17 if necessary.

Adding Eq. 3.16 and 3.17, the evolution equation for em is obtained

dem

dt
= −ρfαfεf

where the specific mixture energy em decays by dissipation in the fluid phase. It is assumed that

the interphase TKE transfer term is conservative, in the sense that: Πkf
= −Πkp . In Model II,

the interphase TKE transfer terms are conservative, while the interphase TKE transfer terms

in Model I are not conservative.

The equilibrium values of fluid and particle–phase specific energy, ee
f = ρfαfkf and ee

p =

ρpαpkp, are determined by a model constant C2 which is defined as

ee
p

em
= C2,

ee
f

em
= 1− C2, (3.18)

where C2 must be bounded by 0 and 1. The model parameter C2 is the fraction of the specific

mixture energy present in the particle phase at equilibrium. The definition of C2 can be

rewritten as:

C2 =
ρpαpk

e
p

ρmkm
=

ρpαpk
e
p

ρfαfke
f + ρpαpke

p

=

φ
ke

p

ke
f

1 + φ
ke

p

ke
f

(3.19)

Based on dimensional analysis, C2 can be a function of mass loading φ, particle volume fraction

αp, particle Stokes number Stη = τp/τη, particle Reynolds number Rep, and the initial kf/kp

ratio. Recall that τη is the Kolmogorov timescale and τp is the particle response time, which

is defined as

τp =
ρpd̄

2

ρf18ν

where d̄ is the mean particle diameter. As the particle response time τp increases, it takes

longer for the particles to respond to the instantaneous turbulent fluctuations in the fluid

phase. For two–phase turbulent flows with constant mass loading φ, smaller particle response

time τp will drive the particle phase equilibrium energy ke
p closer to the fluid phase equilibrium
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energy ke
f . In the limit of zero Stokes number, the energy in fluid and particle phases is equal

and C2 = φ/(1 + φ). For a constant particle Stokes number, increasing mass loading would

increase the fraction of specific mixture energy in the particle phase at equilibrium.

A model for the fluid–phase dissipation rate is needed to close the equation system Eqs. 3.16–

3.17. The fluid phase dissipation rate εf in EEM is modeled similar to Simonin’s proposal (cf.

Eq. 3.2), as

αfρf
dεf

dt
= −Cε,3

εf

kf

(ef − ee
f )

τπ
− Cε,2

ε2
f

kf
. (3.20)

where the first term represents the influence from interphase TKE transfer (and is modeled as

Cε,3
εf

kf
Πkf

), and the second term represents the dissipation of dissipation rate. Although the

EEM dissipation equation is similar to Simonin’s proposal, the dissipation rate predicted by

EEM is different from Model I. This is because the interphase TKE transfer term is modeled

differently: EEM has no kfp variable, and the interphase TKE transfer timescale is τπ, whereas

in Model I it is proportional to the particle response time.

The concept of the equilibration of energy, and the multiscale interaction timescale 〈τi〉

discussed in Section 3.2, are easily extended to formulate the corresponding transport equations

for the Reynolds stress in gas–solid two–phase turbulent flows.

3.3.2 Transport Equation for Reynolds Stress

The Reynolds stress in phase β in a two-phase flow is defined as [Drew (1983); Kataoka et

al. (1989); Drew and Passman (1999)] and [Subramaniam (2003)],

Rβ,ij ≡

〈
Iβρu′β,iu

′
β,j

〉
〈Iβρ〉

, (3.21)

where β = f denotes the fluid phase; and β = p represents the particle phase; 〈 · 〉 denotes the

ensemble average; and Iβ is the indicator function for phase β. For constant thermodynamic

density, 〈Iβρ〉 simplifies to αβρβ , where αβ is the volume fraction and ρβ is the density in βth

phase. The fluctuating velocity in phase β is denoted u′β,i.

A general transport equation for two-phase turbulent flows is derived in [Kataoka et al.

(1989); Subramaniam (2003)]. For gas-solid two-phase flows with the constant thermodynamic
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density in both phases and with no interphase mass transfer, the transport equation for the

Reynolds stress in phase β simplifies to

〈Iβρβ〉
[

∂

∂t
+ Uβ,k

∂

∂xk

]
Rβ,ij +

∂

∂xk

〈
Iβρu′β,iu

′
β,ju

′
β,k

〉
=

−
〈
Iβρu′β,iu

′
β,k

〉 ∂Uβ,j

∂xk
−
〈
Iβρu′β,ju

′
β,k

〉 ∂Uβ,i

∂xk

+
〈

u′β,i

∂(Iβτkj)
∂xk

〉
+
〈

u′β,j

∂(Iβτki)
∂xk

〉
+
〈
u′β,iSβ,Mj

〉
+
〈
u′β,jSβ,Mi

〉
(3.22)

The terms on the the first line from left to right are: the material derivative of the Reynolds

stress in phase β following Uβ,k (the mean velocity in phase β); the triple velocity correlation

term. The terms on the second line are the production of Reynolds stress due to the mean

velocity gradients. The terms on the third line from left to right are: fluctuating velocity-stress

gradient correlation (first two terms) and fluctuating velocity-interfacial momentum transfer

correlation (last two terms). In Eq. 3.22, Sβ,Mj is the interphase momentum transfer source

term in phase β. In the above equation, the production terms and the material derivative of

Reynolds stress are in closed form. The triple velocity correlation term, and the fluctuating

velocity-interfacial momentum transfer correlation terms need model closures.

Triple Velocity Correlation term

The triple velocity correlation term in fluid phase is modeled using the gradient-diffusion

concept,
∂

∂xk

〈
Ifρu′f,iu

′
f,ju

′
f,k

〉
=

∂

∂xk

[
αfρfCs

k2
f

εf

∂

∂xk

〈
u′f,iu

′
f,j

〉]
, (3.23)

where Cs is a model constant.

In the particle–phase Reynolds stress equation, the triple velocity correlation term is also

modeled using the gradient-diffusion concept as,

∂

∂xk

〈
Ipρu′p,iu

′
p,ju

′
p,k

〉
=

∂

∂xk

[
αpρpCs,p 〈τi〉 kp

∂

∂xk

〈
u′p,iu

′
p,j

〉]
, (3.24)

where 〈τi〉 is the multiscale interaction timescale discussed in Section 3.2 and Cs,p is a model

constant. The model constants Cs and Cs,p need to be determined based on experimental data

or DNS results.
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Interphase Energy Transfer Terms

The fluctuating velocity-interfacial momentum transfer correlation terms in the last line

of Eq. 3.22 are modeled using the Equilibration of Energy concept. For the fluid phase, the

interphase energy transfer term is modeled as

〈
u′f,iSf,Mj

〉
+
〈
u′f,jSf,Mi

〉
= −αfρf

(〈
u′f,iu

′
f,j

〉
− δij

2
3ke

f

)
τπ

, (3.25)

where ke
f is the fluid phase TKE at the equilibrium state. For the particle phase, the interphase

energy transfer term is modeled as

〈
u′p,iSp,Mj

〉
+
〈
u′p,jSp,Mi

〉
= −αpρp

(〈
u′p,iu

′
p,j

〉
− δij

2
3ke

p

)
τπ

, (3.26)

where ke
p is the particle phase TKE at the equilibrium state. Contracting indices of Eqs. 3.25–3.26

results in twice the interphase TKE transfer terms in Eqs. 3.16–3.17.

Model Equation for Dissipation rate in Fluid Phase εf

The fluctuating velocity-stress gradient correlation terms in the fluid phase include the

dissipation of fluid energy due to the viscous effects in the flow field, and are modeled by

εf,ij = δijεf as a consequence of local isotropy. The modeled evolution equation for εf is

αfρf
∂εf

∂t
+ αfρfUf,i

∂εf

∂xi
= αfρf

∂

∂xi

(
Cε

kf

εf

〈
u′f,iu

′
f,j

〉 ∂εf

∂xi

)
− αfρfCε,1

εf

kf
·
〈
u′f,iu

′
f,j

〉 ∂Uf,i

∂xj

−αfρfCε,2

ε2
f

kf
+ αfρfCε,3

εf

kf
·

(
ke

f − kf

)
τπ

, (3.27)

where τπ is the interphase TKE transfer timescale. The model constants are chosen to be

Cε,1 = 1.44, Cε,2 = 1.92, Cε,3 = 1.2 and Cε = 0.15. The model constants Cε,1, Cε,2 and Cε are

chosen after the dissipation model for single phase turbulence [Launder (1996)]. The value of

Cε,3 is taken to be 1.2 as suggested by Simonin (1996b).

Since elastic collisions are assumed in particle phase in this study, the dissipation rate in

particle energy kp is zero in the particle phase Reynolds stress transport equation. However,

the dissipation of particle Reynolds stress due to inelastic collisions can be easily incorporated

in the modeled evolution equation for the particle Reynolds stress tensor.
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3.3.3 The k–ε Equations for Particle-laden Turbulent Flow

The k–ε equations for gas-solid two-phase turbulent flows can be obtained by contracting

the indices of the transport equation for the Reynolds stress tensor. In the k–ε formulation,

the fluid velocity covariance
〈
u′f,iu

′
f,j

〉
appearing in the production of Reynolds stress (cf.

Eq. 3.22) needs a closure model. It is modeled using a turbulent eddy viscosity νT
f as

〈
u′f,iu

′
f,j

〉
= −νT

f

[
∂Uf,i

∂xj
+

∂Uf,i

∂xj

]
+

2
3
δij

[
kf + νT

f

∂Uf,k

∂xk

]
. (3.28)

The turbulent eddy viscosity νT
f in fluid phase is modeled as

νT
f = Cµ

k2
f

εf
.

The model constant Cµ could be a function of particle Stokes number Stη, and mass loading

φ. Since there is no DNS data to validate the turbulent eddy viscosity hypothesis in turbulent

particle–laden flows, the model constant Cµ is chosen to be 0.09, which is the value in single–

phase turbulence models.

For relatively dense collision-dominated mixtures, the turbulent eddy viscosity in particle

phase is modeled as µT
p = Cµ2αpρpd̄(kp)1/2 in Ahmadi’s work [Ahmadi and Ma (1990); Ma

and Ahmadi (1990)], where Cµ2 is a function of particle volume fraction and d̄ is the mean

diameter of particle phase. For dilute mixtures, fluid turbulence is dominant and particles

are transported by the fluid motion. It is suggested in [Besnard and Harlow (1985); Ahmadi

and Ma (1990)] that the fluid length scale should be the relevant scale in µT
p . The multiscale

interaction time 〈τi〉 is a function of kf , which is the appropriate scale to model the dilute

mixture. So for particle phase, the particle velocity covariance tensor is modeled as

〈
u′p,iu

′
p,j

〉
= −νT

p

[
∂Up,i

∂xj
+

∂Up,j

∂xi

]
+

2
3
δij

[
kp + νT

p

∂Uf,k

∂xk

]
, (3.29)

where

νT
p = Cµ2kp 〈τi〉 ,

and Cµ2 is the model constant that can be obtained by comparing with experimental data or

DNS results. This corresponds to specifying µT
p = Cµ2αpρp 〈τi〉 kp. In this study Cµ2 is chosen

to be 0.001.
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Based on the transport equation for the Reynolds stress tensor, the k–ε model correspond-

ing to the EEM Reynolds stress model for fluid and particle–phase is

αfρf
∂kf

∂t
+ αfρfUf,i

∂kf

∂xi
=

∂

∂xj

(
αfρf

νT
f

σkf

∂kf

∂xj

)
− αfρf

〈
u′f,iu

′
f,j

〉 ∂Uf,i

∂xj
− αfρfεf

−αfρf
(C2kf − (1− C2)φkp)

τπ
, (3.30)

αfρf
∂εf

∂t
+ αfρfUf,i

∂εf

∂xi
=

∂

∂xj

(
αfρf

νT
f

σε

∂εf

∂xj

)
− Cε,1αfρf

εf

kf

〈
u′f,iu

′
f,j

〉 ∂Uf,i

∂xj

−Cε,2αfρf

ε2
f

kf
− αfρfCε,3

εf

kf

(C2kf − (1− C2)φkp)
τπ

, (3.31)

αpρp
∂kp

∂t
+ αpρpUp,i

∂kp

∂xi
=

∂

∂xj

(
αpρpν

T
p

∂kp

∂xj

)
− αpρp

〈
u′p,iu

′
p,j

〉 ∂Up,i

∂xj

−αpρp

(
(1− C2)kp − C2

φ kf

)
τπ

, (3.32)

where σkf
= 1.0 and σε = 1.3.

3.3.4 Model Results for Decaying Homogeneous Turbulence

In this section the simplified equations for decaying homogeneous turbulence are described.

The predictions from EEM for decaying homogeneous particle–laden turbulent flows are com-

pared with DNS results.

The EEM equation system for decaying homogeneous turbulence is

dkf

dt
= − 1

τπ
[C2kf − (1− C2)φkp]− εf , (3.33)

dεf

dt
= −Cε,3

εf

kf

[C2kf − (1− C2)φkp]
τπ

− Cε,2

ε2
f

kf
, (3.34)

dkp

dt
= − 1

τπ

[
(1− C2)kp −

C2

φ
kf

]
. (3.35)

The interphase TKE transfer time scale τπ is related to the multiscale interaction timescale

〈τi〉 (which was introduced in Section 3.2) by the expression,

τπ =
〈τi〉
Cπ

or Cπ =
〈τi〉
τπ

, (3.36)

where Cπ is chosen to be 2.5 in this model.
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As discussed in Section 3.3.1, in general C2 is a function of mass loading φ, particle volume

fraction αp, particle Stokes number Stη, particle Reynolds number Rep, and initial kf/kp ratio.

In the absence of relevant data from DNS of stationary turbulence, it is hypothesized that the

mass loading φ of the system strongly affects C2, whereas it is likely that C2 depends very little

on particle Stokes number Stη. The dependence on the particle volume fraction αp is neglected

for dilute flows. For particle Reynolds number in Stokes regime Rep ∼ 1, the dependence of

C2 on the particle Reynolds number Rep is also neglected. For simplicity, C2 is also assumed

to be independent of initial kf/kp ratio, but this assumption may not be justified for initial

kf/kp ratio far from one. Under these assumptions, C2 is modeled as a linear function of mass

loading φ,

C2 = 0.6φ. (3.37)

This specification is chosen such that the model predictions from EEM match well with DNS

results. It is natural to require the model for C2 to reproduce the correct limiting value

φ/(1+φ) as Stη → 0. With the current specification of C2 = 0.6φ, the value of C2 in the limit

Stη → 0 differs from φ/(1 + φ) by approximately 10%. The model constants used in EEM are

listed in Table 3.1.

Table 3.1 The coefficients for EEM.

Cµ Cε,2 Cε,1 σkf
σε Cε,3 Cµ2 Cπ

0.09 1.92 1.44 1.0 1.3 1.2 0.001 2.5

The predictions from EEM are shown in Figures 3.8 and 3.9. The model results match

the DNS results for fluid–phase TKE evolution quite well at early time (see Figure 3.8), but a

small quantitative discrepancy is observed after t/Te > 1.5. The decay rate in particle energy

shows larger separation with increasing particle Stokes number than the DNS (see Figure 3.9),

but the overall trend is satisfactory.
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Figure 3.8 Evolution of TKE in fluid phase for EEM compared with DNS
data.

3.4 Particle-laden Turbulent Homogeneous Shear Flow

In this section the test case of particle-laden homogeneous shear flow is described, and major

results from the DNS study by Ahmed and Elghobashi (2000) are discussed. The predictions

from Model I and EEM are then compared with DNS data.

3.4.1 Description of Test Case

In the DNS study of particle-laden homogeneous shear flow by Ahmed and Elghobashi

(2000), the flow field has an identical imposed mean velocity for both phases. In the fluid

phase, the x1 component of mean velocity U varies linearly in x3 (U = Sx3), where S is the

mean velocity gradient taken to be S = 1 in the simulation. The x1 component of particle

phase mean velocity is also imposed with unit mean velocity gradient. The mean velocity in x2

and x3 direction is zero in both fluid and particle phase. A schematic of the flow configuration
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Figure 3.9 Evolution of TKE in particle phase for EEM compared with
DNS data.

is shown in Figure 3.10. The solid particles are rigid spheres (ρp is constant), and there is no

interphase mass transfer. The particle volume fraction is small (αp < 10−3), and the effect of

the presence of particles on the fluid mass conservation equation is neglected. The particle size

is in the sub-Kolmogorov range. The point-particle approximation is also used in this DNS

study, so a linear drag law is assumed for each particle.

The major results from the particle–laden homogeneous shear flow DNS are:

(i) The evolution of the fluid velocity covariance
〈
u′f,1u

′
f,3

〉
is reported for τp = 1.0 and

mass loading φ = 1.0. The fluid velocity covariance is important to validate the assumption

of turbulent eddy viscosity in Eq. 3.28.

(ii) The effect of varying the particle inertia (τp = 0.1, 0.25, 0.5, 1.0) on the evolution of

fluid phase TKE is studied. It is found that as the particle inertia increases, the decay rate

of fluid phase TKE increases (for fixed mass loading φ).
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Figure 3.10 Schematic of the flow configuration in the particle-laden ho-
mogeneous shear flow.

3.4.2 Comparative Assessment of Model Results

The simplified governing equations for particle–laden homogeneous shear flow from Model

I can be found in Xu (2004). Model II results are not presented for the homogeneous shear test

case because the volume fraction of particles in this test is well beyond the realm of applicability

of Model II’s closure for the TKE production in particle phase (see Xu (2004)). The particle

phase TKE production term in Model II is modeled using a turbulent eddy viscosity analogy,

and is intended for rapid granular flows where the effect of the fluid phase is negligible (or

secondary), and the transport of momentum is dominated by particle–particle collisions. The

particle TKE production term in the kp equation has a 1/αp dependence (arising from the

model constant Cµ2) that becomes unbounded in the limit αp → 0. (These details of Model

II are given in Xu (2004).) If this closure model is used for volumetrically dilute flows (the

particle–laden homogeneous shear flow studied here is quite dilute, with αp around 10−4),

then the particle TKE production term results in an unphysical growth of kp. Therefore, only

predictions from Model I and EEM are compared with DNS results for this case.
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For EEM the simplified governing equations for homogeneous shear flow are

dkf

dt
= Πkf

− εf −
〈
u′f,1u

′
f,3

〉 ∂Uf,1

∂x3
, (3.38)

dεf

dt
= Πεf

−
εf

kf

[
Cε,1

〈
u′f,1u

′
f,3

〉 ∂Uf,1

∂x3
+ Cε,2εf

]
, (3.39)

dkp

dt
= Πkp −

〈
u′p,1u

′
p,3

〉 ∂Up,1

∂x3
, (3.40)

where Πkf
, Πεf

and Πkp represent the influence of interphase TKE transfer. The velocity

covariance in the fluid phase
〈
u′f,iu

′
f,j

〉
and the velocity covariance in particle phase

〈
u′p,iu

′
p,j

〉
are modeled using the turbulent eddy viscosity concept (cf. Eqs. 3.28 and 3.29).

For τp = 1.0 and φ = 1.0, the evolution of fluid phase energy is compared in Figure 3.11. It

is found that the decay rate of kf from Model I is much steeper than DNS results, which is up

to 70% off at T = 3. With the implementation of 〈τi〉 in Model I by replacing the time scale

τF
12 in Eqs. (3.1–3.4) , the steep decay of fluid phase TKE is improved, and the quantitative

difference is around 30% at T = 3. EEM predicts that the decay rate of kf quite close to

the DNS results at the beginning of evolution T < 1. After T > 1, the fluid energy starts to

increase. In EEM’s results, the relative error is 20% off at T = 3 compared with DNS results.

For Model I, the budget plot is shown in Figure 3.12, which shows that the interphase

TKE transfer term is dominant and contributes most to the fast decay at early time. The

budget of the interphase TKE transfer term, dissipation rate and the production in Eq. 3.38

for EEM is plotted in Figure 3.13. It shows that the growth of fluid phase TKE is mainly

due to the almost linear increase in the production as time evolves. The budget plot in Figure

3.13 also shows that production and dissipation rate are the two major terms in the fluid

energy evolution equation (interphase TKE transfer is very small). The evolution of fluid–

phase dissipation rate εf is also reported in the DNS study. If the fluid–phase dissipation rate

in the EEM model is specified from DNS data, the growth of fluid energy is eliminated, as seen

in Figure 3.14. This shows that if the fluid dissipation can be modeled with more accuracy,

the predictions from EEM can be further improved.
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Figure 3.11 Evolution of TKE in fluid phase for Model I, Model I with
multiscale interaction time scale 〈τi〉, and EEM model for ho-
mogeneous particle-laden shear flow.
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Figure 3.12 Budget plot for fluid–phase TKE equation from Model I for
φ = 1.0 and τp = 1.0 in homogeneous particle–laden shear

flow. Note that the production term equals −
〈
u′f,1u

′
f,3

〉
since

the mean velocity gradient S is one.

The velocity covariance
〈
u′f,1u

′
f,3

〉
is reported for τp = 1.0, φ = 1.0 in the DNS re-

sults. Since this term determines the production term in the k–ε equations for fluid phase (cf.

Eq. 3.30, 3.31), it is important to model this quantity accurately. In this test case, the ve-

locity covariance −
〈
u′f,1u

′
f,3

〉
equals to the shear production since the mean velocity gradient

S is one. In Figures 3.12 and 3.13 the comparison of
〈
u′f,1u

′
f,3

〉
shows a large discrepancy

between the DNS and model results. However, it is perhaps more appropriate to compare the

correlation coefficient ρf13, which is defined as

ρf13 =

〈
u′f,1u

′
f,3

〉
√〈

u′f,1u
′
f,1

〉〈
u′f,3u

′
f,3

〉 , (3.41)

and this comparison is shown in Fig. 3.15. There is a large difference at early time, but

after T = 4 the difference is small. The discrepancy could be due to the influence of initial
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Figure 3.13 Budget plot for fluid TKE equation in EEM model for φ = 1.0
and τp = 1.0 in homogeneous particle–laden shear flow. Note

that the production term equals −
〈
u′f,1u

′
f,3

〉
since the mean

velocity gradient S is one.

conditions or the interphase TKE transfer term.

The particle inertia study is performed for τp = 0.1, 0.25, 0.5, 1.0 with the same mass loading

φ = 0.1. DNS data show that with the increasing particle response time, the decay rate of kf

increases. The predictions of Model I is shown in Figure 3.16, where Model I gives the opposite

trend with increasing particle response time τp (or particle inertia). After implementing the

multiscale interaction timescale 〈τi〉 in place of τF
12 in Model I, the incorrect trend of fluid

phase TKE decay rate is corrected and the evolution of fluid energy becomes closer to the

DNS results, as seen in Figure 3.16.

The model results from EEM for particle inertia study are shown in Figure 3.17. These

results are very close to DNS data, and the trend of TKE evolution with increasing particle

inertia is correct. However, the difference in the decay rate of fluid energy with increasing
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Figure 3.14 Evolution of TKE in fluid phase for EEM model with dissipa-
tion rate specified from DNS results for the particle-laden ho-
mogeneous shear flow with φ = 1.0 and τp = 1.0. Fluid–phase
TKE evolution from DNS is also shown for comparison.

particle inertia is too small. A possible reason for this deficiency is that there is no information

of particle inertia in the fluid phase production term. One improvement is to use 〈τi〉 to

substitute eddy turnover time in νT
f . However, without detailed DNS data for variation of shear

production with different particle inertia, the model for fluid and particle shear production

terms in EEM cannot be validated.

3.5 Discussion

With the Equilibration of Energy Concept, the evolution of TKE in fluid and particle

phase is shown to be improved when compared with the DNS results of decaying homogeneous

particle–laden turbulence and homogeneous particle–laden shear flow. Incorporation of the

multiscale interaction timescale 〈τi〉 in Model I and Model II corrects the incorrect trend of
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Figure 3.15 Evolution of the velocity correlation ρf13 for Model I, Model
I implemented with multiscale interaction time scale 〈τi〉, and
EEM model in homogeneous particle-laden shear flow. DNS
result is shown for comparison.

kf decay rate with increasing particle inertia, and the evolution of TKE in fluid and particle

phase is shown to match with DNS results satisfactorily. Implicit in the above statement is

the assumption that the DNS is itself an accurate representation of the physics of the particle–

laden turbulent flows. The point particle assumption for the particle drag in such DNS studies

is justified in a limited flow regime where particle Reynolds numbers Rep are of order one,

the density ratio ρp/ρf ∼ O(1000) and particles are sub-Kolmogorov size with negligible wake

effects. Also volume displacement effects are neglected in such DNS studies, and the fluid

velocity field is assumed to be solenoidal.

The homogeneous problem that forms the basis of this study, and for which the DNS

database exists, corresponds to a flow regime where the aforementioned assumptions are valid.

However, a good approximation to the particle drag in the DNS does not necessarily guaran-

tee accurate calculation of the fluid-phase dissipation rate in the presence of particles. Also
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Figure 3.16 Evolution of TKE in fluid phase with increasing particle in-
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shear flow. Solid line represents DNS results; dashline rep-
resents the predictions from Model I; dashdot line represents
the results from Model I improved with multiscale interaction
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particle–particle interaction effects are not accounted for in the point-particle approximation,

and the effect of the point-particle approximation on the pressure field is not quantified either.

The only way to test these approximations is by performing true DNS, where flow field

around each particle is fully resolved and exact boundary conditions are imposed on particle

surface. Using such true DNS calculations the consequence of the point-particle approximation

on the solenoidality of the fluid velocity field (which will in turn affect the fluid pressure field),

and the neglect of particle–particle interaction effects can be evaluated. Recent studies by

Moses and Edwards (2005) seek to assess the consequences of the point-particle approximation.

However, their study is in 2–D for considerably large cylinders (particle Reynolds number based

on diameter of cylinder Rep = 26), with an emphasis on evaluating the effects of filtering the
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Figure 3.17 Evolution of TKE in fluid phase for increasing particle re-
sponse time τp (constant mass loading φ = 0.1) from EEM.
DNS data is shown for comparison.

velocity field. Their study is relevant to the examination of the validity of LES based on the

point-particle approximation. Similar studies are necessary for DNS, but such calculations are

still limited by computational cost. Therefore, the DNS datasets performed with point-particle

approximation that are used in this study are the best data available for model testing and

validation.

It appears likely that the existing DNS database does capture the major trends of the

TKE variation with important non-dimensional parameters like Stokes numbers and mass

loading. It is possible that the true DNS might revise the exact quantitative predictions.

Since the principal conclusions in this study concern qualitative trends rather than an exact

quantitative match between model predictions and DNS results, it is reasonable to assert that

incorporation of the new multiscale interaction timescale leads to a better representation of

the problem physics.
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It is worthwhile to examine whether any experimental data can be used for model validation.

Experimental study of nearly isotropic particle–laden turbulence includes work by Fallon and

Rogers (2002). This work reports the preferential concentration of particles in microgravity

conditions with variation of particle Stokes number, but the turbulence kinetic energy in either

phase that is required for model validation is not reported. While this experimental result is

useful for models that predict preferential concentration, information of the second moments

of fluid and particle fluctuating velocity that is useful for model validation is not reported.

Experimental investigation of homogeneous dilute particle–laden flows includes studies by

Parthasarathy and Faeth (1990). This work investigates the settling of uniform flux of monodis-

perse spherical particles in a stagnant water bath. This study reports the second moments of

fluctuating velocity in fluid phase varying with particle volume fraction and particle sizes, but

there is no systematic study of TKE evolution with variation of important non-dimensional

parameters, such as particle Stokes number. The results of these experiments will be useful for

further evaluation of model performance, now that the model constants have been determined

based on comparison with DNS of particle–laden turbulence.

3.6 Summary

Two multiphase turbulence models (Model I due to Simonin (1996b,a) and Model II from

[Ahmadi and Ma (1990); Ma and Ahmadi (1990); Ahmadi (1989)]) are compared with direct

numerical simulations (DNS) of two canonical flows: decaying homogeneous particle-laden

turbulence [Sundaram and Collins (1999)], and homogeneous particle-laden shear flow [Ahmed

and Elghobashi (2000)]. The principal findings from this comparative assessment of the two

models are:

(1) For homogeneous particle–laden turbulent flow, both models predict a faster decay rate of

fluctuating energy (in both phases) than found in the DNS. The reason for the faster decay

is that the particle response time (τp = d2ρp/18µf ) is used as the time scale for interphase

TKE transfer in both models. For monodisperse particles there is a single particle response

time scale. The results indicate that a single particle response time does not adequately
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characterize the interaction between the particles and the range of turbulent eddy sizes,

which is responsible for interphase TKE transfer.

(2) Anomalous variation of TKE with different particle Stokes numbers is found in the Model

I results. The interphase TKE transfer is the dominant term in Model I that causes this

anomalous model behavior. A pseudo-flow quantity kfp is introduced in the interphase

TKE transfer terms in Model I, and the particle response time is used as the relevant time

scale for interphase TKE transfer.

The following areas for model improvement are identified: (i) model for interphase TKE

transfer, especially the time scale of interphase TKE transfer, and (ii) correct prediction of TKE

evolution with variation of particle Stokes number. In Model I the fluid-particle covariance kfp

is introduced, which is not an independent flow variable in single–point closure of two-phase

turbulent flows, and it is unclear how the initial and boundary conditions for this term should

be specified. These deficiencies in Model I and Model II limit the application of these two

models.

A new multiphase turbulence model, Equilibration of Energy Model (EEM), is proposed

in this report. A noteworthy feature of EEM is that a multiscale interaction time scale 〈τi〉 is

proposed to account for the interaction of a particle with a range of eddy sizes. As the particle

Stokes number approaches zero, 〈τi〉 approaches the eddy turnover time; and 〈τi〉 approaches

particle response time τp in the limit of St →∞.

This new multiscale interaction timescale 〈τi〉 is incorporated in the interphase TKE trans-

fer terms of Models I and II. It is found that for particle-laden isotropic turbulence, the pre-

dicted steep decay of TKE at the beginning of simulation is improved. The incorrect variation

of TKE decay with increasing particle Stokes numbers in Model I is also eliminated by using

the time scale 〈τi〉. The predictions from EEM shows satisfactory agreement with the DNS

results for particle-laden isotropic turbulence.

For more complicated flow cases like the homogeneous particle-laden shear flow, the model

predictions can be further improved if the dissipation rate in fluid phase is modeled with more

accuracy. A difficulty that is encountered in shear flows is that the detailed budget of terms
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in the TKE equation is not available from existing DNS studies.

EEM is a simple model, but it has a clear physical interpretation, and it gives reasonable

trends with the important non-dimensional parameters of particle–laden turbulent flow such as

particle Stokes number. Although many fundamental issues need to be addressed for this class

of two–phase turbulence models—including realizability [Schumann (1977)] and the assumption

of local isotropy of small scale motions—the EEM model can still be a useful engineering tool

for CFD simulation of particle–laden turbulent flows.
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CHAPTER 4. CONSISTENT MODELING OF INTERPHASE

TURBULENT KINETIC ENERGY TRANSFER IN PARTICLE-LADEN

TURBULENT FLOWS

This chapter describes a mathematical constraint that models of particle–laden turbulent

flow must obey, so that they can be meaningfully compared with emerging high-fidelity numer-

ical simulation [Yusof (1996); Bagchi and Balachandar (2004, 2003); Ten Cate et al. (2004);

Legendre et al. (2006)] and experiments [Hwang and Eaton (2006a,b)] 1. The constraint as-

sociated with the mean momentum equation for a multiphase flow system is that the mean

interphase momentum transfer is conservative. This constraint is nothing but Newton’s third

law reflected in the mean momentum equation. The constraint on mean momentum equation

also should be reflected in the second-moment equation for particle–laden turbulence. This

chapter derives a constraint on terms in the equation governing the evolution for the second-

moments of velocity for particle–laden turbulent flow in the Eulerian–Eulerian approach.

4.1 Introduction

Particle–laden turbulent flows are ubiquitous in nature and industrial processes. The con-

servation of mass, momentum and energy in the two phases can be described in an average

sense using a statistical approach called the two–fluid theory [Drew and Passman (1999)].

Since the resulting equations describe both phases in an Eulerian frame, the approach is also

referred to as the Eulerian–Eulerian approach. Transport equations for the second moments of

the velocity in both phases have also been derived to describe the fluctuations in the particle

and fluid velocities. As in statistical models of single-phase turbulence, these equations contain
1This chapter is adapted from Phys. Fluids 19, 085101 (2007).
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unclosed terms that need to be modeled. Two important unclosed terms are the interphase

transfer of turbulent kinetic energy, and the dissipation rate of turbulent kinetic energy in the

fluid phase. This chapter describes a mathematical constraint that models for these terms must

obey, so that they can be meaningfully compared with emerging high-fidelity direct numerical

simulations [Ten Cate et al. (2004); Bagchi and Balachandar (2003, 2004)] and experiments

[Hwang and Eaton (2004, 2006a,b)].

For particle–laden flows with non-negligible mass loading, the interphase transfer of mo-

mentum must be accounted for, and it manifests itself as the mean interphase momentum

transfer term in the averaged equations of the two–fluid theory. A constraint associated with

mean momentum equation for particle–laden flows is that the mean interphase momentum

transfer is conservative, i.e., equal and opposite in both phases. This constraint is nothing

but Newton’s third law reflected in the mean momentum equation. It turns out that a similar

constraint appears in the velocity second-moment equations for particle–laden turbulence. In

this chapter we derive this constraint and explore its implications for some existing models.

An important limiting case of turbulent multiphase flows is statistically homogeneous

isothermal particle–laden turbulent flow evolving in a zero–gravity environment. If gravity

is absent and the mean velocity fields are homogeneous, the mean pressure gradient is zero

and the mean momentum equation system results in the trivial solution of zero mean velocity

in each phase, which implies a zero mean slip velocity [Drew and Passman (1999); Subrama-

niam (2002); Xu and Subramaniam (2006)]. Collisions are assumed to be elastic and therefore

there is no energy loss through collisions. In this case, the evolution of second–moments of

fluctuating velocity is solely influenced by interphase turbulent kinetic energy (TKE) transfer

and viscous dissipation in the fluid phase (without the additional terms arising from mean

velocity gradients). The governing equations for this limiting case in the Eulerian–Eulerian

approach are [Subramaniam (2003); Xu and Subramaniam (2006)]:

αfρf
dkf

dt
=

〈
u
′′(f)
i M

(f)
i

〉
+
〈

u
′′(f)
i

∂ (Ifτki)
∂xk

〉
, (4.1)

αpρp
dkp

dt
=

〈
u
′′(p)
i M

(p)
i

〉
(4.2)

where the turbulent kinetic energy (TKE) in the fluid and particle phase are denoted kf and
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kp, respectively. The volume fraction of the fluid phase and particle phase are denoted αf and

αp, respectively, with αp = 1 − αf . The thermodynamic density in each phase is constant,

with ρf denoting the fluid phase density, and ρp denoting the particle phase density.

The first term on the right hand side of Eq. 4.1,
〈
u
′′(f)
i M

(f)
i

〉
is the interphase TKE transfer

term and the second term
〈

u
′′(f)
i

∂ (Ifτki)
∂xk

〉
is the covariance of fluctuating velocity in the fluid

phase u
′′(f)
i with the gradient of the stress in the fluid phase (where If (x, t) is the indicator

function of fluid phase at (x, t) ).

The fluctuating velocity in phase β (β = f, p) is defined as the difference between the

velocity field at that point and the mass-averaged mean velocity in the βth phase:

u
′′(β)
i ≡ Ui −

〈
Ũ

(β)
i

〉
, (4.3)

where the mass-averaged mean velocity in the βth phase is defined as〈
Ũ

(β)
i

〉
≡
〈ρIβUi〉
〈ρIβ〉

. (4.4)

The term
〈

u
′′(f)
i

∂ (Ifτki)
∂xk

〉
is usually modeled as the dissipation rate of TKE in the fluid phase.

The corresponding term in the solid phase is neglected since collisions between particles are

assumed to be elastic.

The interphase momentum transfer terms are denoted as M
(f)
i and M

(p)
i in the fluid and

particle phase, respectively. For flows with no interphase mass transfer, the interphase mo-

mentum transfer term M
(β)
j in phase β is given by

M
(β)
i ≡ −τji

∂Iβ

∂xj
. (4.5)

The interphase momentum transfer term can be simplified by using the following expression

for the gradient of the particle indicator function [Drew and Passman (1999)]

∂Iβ

∂xj
= −n

(β)
j δ(x− xI), (4.6)

where n(β) is the unit normal at the interface that points outward with respect to phase β,

and δ(x − xI) is the Dirac delta function located at the interface. Substituting Eq. 4.6 into

Eq. 4.5 results in the following expression for the interphase momentum transfer term

M
(β)
i = τjin

(β)
j δ (x− xI) , (4.7)
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which shows that it represents the contribution to momentum transfer arising from the fact

that the interface located at xI can support a stress difference. It is clear from Eq. 4.7 that

the interphase momentum transfer term is non-zero only at the interface. Now using Eq. 4.7

the interphase TKE transfer term can be represented as

〈u′′(β)
i M

(β)
i 〉 = 〈u′′(β)

i τjin
(β)
j δ (x− xI)〉, (4.8)

which reveals that the interphase TKE transfer term is also non-zero only at the interface.

In this report, we show that in the limiting case of zero mean velocity, the interphase

TKE transfer between fluid and particle phase is conservative, i.e., equal in magnitude and

opposite in sign. This constraint arises because of the interface boundary condition requiring

the velocities in both phases to be the same at the interface, and because the instantaneous

momentum transfer between the phases is equal and opposite in sign. It follows from this

constraint that the mixture turbulent kinetic energy is solely determined by the dissipation

rate of fluid phase under the condition of zero mean velocity and elastic (non-dissipative)

particle collisions.

For the limiting case of homogeneous particle–laden turbulent flow, models of particle–laden

turbulent flows have the following general form:

αfρf
dkf

dt
= Πkf

− εf (4.9)

αpρp
dkp

dt
= Πkp (4.10)

where Πkf
is the model for the interphase TKE transfer in fluid phase

〈
u
′′(f)
i M

(f)
i

〉
, and Πkp

is the model for
〈
u
′′(p)
i M

(p)
i

〉
. Typically multiphase turbulence models are validated by com-

paring model predictions with experimental results or direct numerical simulation (DNS) data.

The advantage in using DNS data for model validation is that a term–by–term comparison is

possible by examining the budgets of the TKE equations. A meaningful term–by–term com-

parison of multiphase model predictions with DNS data requires a consistent definition of the

interphase TKE transfer terms and the dissipation rate, in the model and DNS. This becomes

even more important in light of the fact that there is more than one approach to performing

DNS of particle–laden turbulent flows.
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Most DNS of particle–laden turbulent flow [Elghobashi and Truesdell (1993); Boivin et

al. (1998); Sundaram and Collins (1999); Ahmed and Elghobashi (2000, 2001); Mashayek and

Taulbee, (2001); Mashayek and Taulbee (2002); Ferrante and Elghobashi (2003)] use the point–

particle approximation on the basis that the size of particles simulated is usually smaller than

the Kolmogorov scale of turbulence. This approximation is convenient is because a true direct

simulation of particle–laden turbulent flow that imposes the exact boundary conditions at each

particle’s surface, and resolves the boundary layer around each particle, is computationally

expensive. In the point–particle approximation the momentum transfer between the fluid and

particle is modeled as a point source. In a two-way coupled DNS of particle-laden turbulent flow

using the point–particle approximation, the force exerted by a particle on surrounding flow field

needs to be interpolated as the interphase momentum transfer to the fluid momentum equation

using kernel averaging. This instantaneous interphase momentum transfer term results in

an implied interphase TKE transfer that appears in the evolution equations for the second

moments of fluctuating velocity (cf. Eqs. 4.1–4.2). The dissipation rate in the fluid is calculated

in these DNS based on the gradients of the fluid velocity field that solves the fluid momentum

equation augmented by the interphase momentum transfer term [Sundaram and Collins (1999)].

We denote the fluid phase dissipation rate in DNS studies that employ the point particle

approximation as εpp
f . This dissipation rate differs from the single–phase turbulence dissipation

rate ε1
f due to the modification of the turbulent flow field arising from the momentum transfer

from the point–particles. When validating particle–laden turbulent flow models with point–

particle DNS data, it is important to interpret the comparison of model to DNS keeping in

mind the definition of the interphase TKE transfer and dissipation terms in both approaches.

The choice of initial dissipation rate can dramatically affect model predictions [Xu (2004)], so

it is important to compare the appropriate dissipation.

Direct numerical simulations of particle–laden turbulent flow with no-penetration and no-

slip boundary conditions imposed at the surface of each particle are emerging [Ten Cate et al.

(2004); Bagchi and Balachandar (2003, 2004)], With increasing computational power, using

these DNS the boundary layer around each particle can be resolved. We denote these sim-
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ulations “true” DNS. Clearly it is desirable that definition of interphase TKE transfer and

dissipation rate in the models be consistent with true DNS. The dissipation rate in true DNS

will be different from that obtained from point-particle DNS, since the high velocity gradients

found in the boundary layer around each particle can be fully resolved in true DNS. In this

study, the dissipation rate from true DNS is denoted εt
f .

Recent highly–resolved particle image velocimetry (PIV) measurements of homogeneous

turbulence [Hwang and Eaton (2004, 2006a,b)] laden with small particles dp ∼ η (Kolmogorov

length scale), reveal higher turbulent kinetic energy reduction (up to 40%) at the mass loading

of 0.3. The earlier experiments [Parthasarathy and Faeth (1990); Mizukami et al. (1992); Chen

et al. (2000)] investigating the stationary homogeneous turbulence self–induced by settling

particles in stagnant water and air, reported small dissipation rate and relative lower turbulence

generation in term of turbulence intensities. These studies reveal that resolving the boundary

layers around the particles has a significant impact on the dissipation rate, which in turn

directly affects the TKE evolution in both phases. The earlier direct numerical simulations with

point–particle approximation [Boivin et al. (1998); Sundaram and Collins (1999); Elghobashi

and Truesdell (1993)] had considerably underestimated the reduction rate in turbulent kinetic

energy for homogeneous turbulence comparing with the PIV measurements results [Hwang

and Eaton (2006b)]. These PIV results suggest that the quantitative prediction of true DNS

could be different from DNS with point-particle approximations, although it appears likely

that the trends of the dissipation rate and TKE with non-dimensional parameters such as

Stokes number and mass loading are still reasonably predicted using point-particle DNS.

As true DNS becomes commonplace due to rapid increase in computational power, and with

more high-resolution PIV results for particle–laden turbulence, detailed budgets for particle–

laden turbulence will soon be readily available. Hence, multiphase turbulence models will be

required to satisfy more stringent tests arising from comparison of budgets with true DNS

and high-resolution PIV. Those models that obey the inherent mathematical constraints aris-

ing from the exact equations will compare more favorably with true DNS or high–resolution

experimental data.
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This chapter derives one such mathematical constraint, the conservation of interphase TKE

transfer in homogeneous particle–laden turbulence. In the following section, the conservation

principle is derived using the Eulerian–Eulerian approach. In Section III the implications of

this principle for multiphase turbulence models are examined. Section IV addresses the issue

of comparing the interphase TKE transfer and dissipation rate terms in models to DNS. The

principal conclusions of the study are summarized in the final section.

4.2 The Principle of Conservative Interphase TKE Transfer

The evolution of TKE in the fluid and particle phase for the limiting case of statistically

homogeneous, particle–laden turbulent flow in zero gravity is given by Eqs. 4.1–4.2 in Sec-

tion 4.1. The terms representing interphase TKE transfer in the evolution equation for kβ

in Eqs. 4.1– 4.2 are
〈
u
′′(β)
i M

(β)
i

〉
, which are unclosed and must be modeled. The interphase

TKE transfer term is the expectation of u
′′(β)
i , the fluctuating velocity in phase β, times the

interphase momentum transfer term M
(β)
i (cf. Eq. 4.5). Since M

(β)
i is non-zero only at the

interface, so is Πkβ
.

The TKE of the two-phase mixture em is defined as

em ≡ αfρfkf + αpρpkp. (4.11)

For constant–density homogeneous particle–laden turbulence, the mixture TKE em evolution

is obtained by adding Eqs. 4.1 and 4.2 to obtain:

dem

dt
=
〈

u
′′(f)
i

∂ (Ifτki)
∂xk

〉
+
〈(

u
′′(p)
i − u

′′(f)
i

)
M

(p)
i

〉
(4.12)

where the fact that the instantaneous interphase momentum source in each phase is equal and

opposite M
(f)
i = −M

(p)
i has been used. At the fluid-solid interface the instantaneous velocity

in each phase is equal because of the boundary conditions of no-slip and zero normal relative

velocity.

For the zero mean slip velocity case considered here, the difference in the fluctuating velocity

in each phase is the same as the difference in the instantaneous velocity U,

u
′′(p)
i − u

′′(f)
i =

(
Ui −

〈
Ũ

(p)
i

〉)
−
(
Ui −

〈
Ũ

(f)
i

〉)
= 0 (4.13)
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which is zero at the interface. Hence, it follows that the interphase TKE transfer terms should

be conservative:

〈
u
′′(p)
i M

(p)
i

〉
+
〈
u
′′(f)
i M

(f)
i

〉
=
〈(

u
′′(p)
i − u

′′(f)
i

)
M

(p)
i

〉
=
〈
(Ui − Ui) M

(p)
i

〉
= 0. (4.14)

From this principle of conservative interphase TKE transfer it follows that if there is zero

dissipation in the particle phase, then the evolution of the mixture TKE is determined by the

fluid phase dissipation rate only:

dem

dt
=
〈

u
′′(f)
i

∂ (Ifτki)
∂xk

〉
. (4.15)

Although Eq. 4.13 is intuitive and essentially correct, the simple derivation presented above

does not reveal certain assumptions that are needed to establish the conservation principle in

Eq. 4.14. A detailed derivation is presented in the following subsection for completeness, but

the reader may proceed to the following section without loss of continuity.

4.2.1 Detailed Derivation of the Conservation Principle

There are two important aspects of this problem that the simple derivation in Eqs. 4.13-

4.14 does not explicitly account for. The first is that the instantaneous velocity Ui and the

fluctuating velocities in each phase u
′′(f)
i and u

′′(p)
i are random fields that are parametrized in

space x and time t. Yet the equality in Eq. 4.13 holds only at the boundary surfaces of the fluid-

solid interface. Secondly, the expectation symbol 〈·〉 needs to be interpreted properly depending

on whether the quantity within the angle brackets is surface–measurable or volume–measurable.

As noted earlier, the interphase TKE transfer terms
〈
u
′′(β)
i M

(β)
i

〉
=
〈
u
′′(β)
i τjinjδ (x− xI)

〉
are nonzero only at the fluid-solid interface. As we shall see, such terms are only surface–

measurable, and they have zero volume measure.

We now present a more rigorous derivation of the conservation principle that fully accounts

for these important aspects of the problem. This derivation reveals the assumptions inherent

in the simple derivation presented earlier in the section. Since dimensionality of the parameter

space is not important, we consider random fields indexed by only one variable x, i.e., we
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consider random processes for simplicity. Also we consider only one component of the vector

velocity field for simplicity.

Let U(x) be a random process that represents the 1-component of the instantaneous velocity

field Ui in the fluid phase, as depicted in Fig. 4.1. Solid particles are located randomly in space

x, with their indicator function Ip(x) as shown in Fig. 4.1. The presence of the particles defines

the interface locations δ (x− xI) that induce a surface process Uσ(xI), which is a new random

process defined by the values the U(x) takes at the interface locations x = xI .

x

U
,V

U
V
Z

σ

σ

σ

0

1

I p

V
U

Figure 4.1 Sketch showing a realization of random processes corresponding
to the 1–component of fluid velocity U , and the 1–component
of particle velocity V in a one–dimensional parameter space x.
There are five solid particles in this realization, whose bound-
aries define the ten fluid-solid interface locations. These inter-
faces induce the surface processes Uσ and Vσ. The interphase
momentum transfer term is a pure surface process denoted Zσ.

Similarly the instantaneous velocity field in the particle phase is denoted V (x). Again the

interface locations induce a surface process Vσ(xI), which is defined by the values V (x) takes

at the interface locations x = xI . Because the particles are rigid, it follows that V and Vσ are
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identical, and so are their probability distributions, which we write as:

V
D= Vσ. (4.16)

Note that in general U and Uσ will not be identically distributed. The interphase momentum

transfer term M
(p)
i is a pure surface process (i.e., it is not defined anywhere else on x other

than xI), and its 1-component is denoted Zσ(xI).

We distinguish between the two types of expectation that appear in the Eulerian–Eulerian

averaged equations for two–phase flow. Details concerning the definitions of these measures

and expectations are given in Section 4.6. For any volume–measurable flow quantity Q in

phase β, we define its phase–volume mean as

〈Qβ〉v (x) ≡

〈
Qv

β(x)
〉

αβ(x)
. (4.17)

Similarly for any surface–measurable flow quantity Q in phase β we define its phase–surface

mean as

〈Qβ〉s (x) ≡

〈
Qs

β(x)
〉

σβ(x)
. (4.18)

Clearly Uσ, Vσ and Zσ are not volume–measurable. We first consider statistically homogeneous

flows where both phase–volume means, as well as phase–surface means are independent of x.

Note that this is a stronger requirement than simply requiring αp to be independent of x.

Specifically, this stronger homogeneity requires both the particle number density, as well as

the particle size distribution to be homogeneous in physical space.

The interphase TKE transfer term is the covariance of fluctuating velocity with the in-

terphase momentum transfer term, and the latter is nonzero only at the fluid-solid interface.

We define the velocity fluctuation in fluid phase U ′ with respect to the phase–volume mean

velocity as

U ′(x) ≡ U(x)− 〈U〉v (x). (4.19)

For the limiting case of zero mean velocity in both phases considered in this study, we have

〈U〉v = 0, and hence U ′(x) = U(x). We now evaluate the term corresponding to Πkf
as

−〈U ′Zσ〉s = −〈UZσ〉s = −〈UσZσ〉s, (4.20)
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where we have used M
(f)
1 = −M

(p)
1 = −Zσ, and the definition that at U = Uσ at x = xI .

The fluctuating particle velocity at the interface V ′
σ is identical to the instantaneous particle

velocity at the interface Vσ, if the mean particle velocity 〈V 〉v = 0 is zero. In order to establish

Πkf
= −Πkp

we evaluate the term corresponding to Πkp as

〈V ′Zσ〉s = 〈V Zσ〉s = 〈VσZσ〉s. (4.21)

Since at the interface the velocity boundary condition requires instantaneous velocities to be

equal, we have

Uσ = Vσ, (4.22)

which establishes

Πkf
= −〈UσZσ〉s = −〈VσZσ〉s = −Πkp . (4.23)

The interphase TKE terms for this limiting case are equal in magnitude, and opposite in sign.

Thus, the principle of conservative interphase TKE transfer in Eq. 4.14 is rigorously established

here.

4.2.1.1 Extensions

This derivation shows that the result holds for statistically homogeneous flows (where both

phase–volume means and phase–surface means are homogeneous) with zero mean velocity in

both phases. The result holds for both monodisperse as well as polydispersed particle–laden

turbulent flows, provided they satisfy the statistical homogeneity requirement on the number

density and size distribution. If there is nonzero mean slip, then the conservation principle is

modified to read 〈
u
′′(f)
i M

(f)
i

〉
+
〈
u
′′(p)
i M

(p)
i

〉
= (〈U〉v − 〈V 〉v) 〈Zσ〉s, (4.24)

which holds provided

〈〈U〉v〉s = 〈U〉v , (4.25)

〈〈V 〉v〉s = 〈V 〉v . (4.26)
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These relationships hold if the phase–volume means 〈U〉v (x) and 〈V 〉v (x) are statistically

homogeneous in x, and if the phase–surface measure σβ(x) is also statistically homogeneous in

x. The result can be extended to general inhomogeneous flows provided the velocity statistics

are locally homogeneous on the scale of the particle size.

4.3 Implications for Multiphase Turbulence Models

The implications of conservative interphase TKE transfer for some multiphase turbulence

models are now examined. The multiphase turbulence models considered are: (i) Ahmadi

and Ma (1990); Ma and Ahmadi (1990), (ii) Equilibration of Energy Model (EEM) [Xu and

Subramaniam (2006)], and (iii) Simonin (1996b).

In Ahmadi’s model, the governing equations for kf and kp in homogeneous particle–laden

turbulent flows simplify to

αfρf
dkf

dt
= 2D0 (kp − ckf )− αfρfεf , (4.27)

αpρp
dkp

dt
= 2D0 (ckf − kp) . (4.28)

The evolution equation for mixture energy results from adding Eqs. 4.27 and 4.28

dem

dt
= 2D0 (ckf − kp) + 2D0 (kp − ckf )− αfρfεf = −αfρfεf (4.29)

This shows that Ahmadi’s model satisfies the principle of conservative interphase TKE transfer.

For the Equilibration of Energy Model (EEM) [Xu and Subramaniam (2006)], the simplified

equations for homogeneous particle–laden turbulent flow are:

dkf

dt
= − 1

τπ
[C2kf − (1− C2)φkp]− εf , (4.30)

dkp

dt
= − 1

τπ

[
(1− C2)kp −

C2

φ
kf

]
. (4.31)

The time scale τπ is the interphase TKE transfer time scale and C2 is a model constant. Adding

Eqs. 4.30 and 4.31, the governing equation for the specific mixture energy em is obtained:

dem

dt
= −αfρfεf . (4.32)
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The model for interphase TKE transfer in EEM also obeys the principle of conservative inter-

phase TKE transfer.

Simonin’s model for kf and kp evolution in homogeneous particle–laden turbulence is

αfρf
dkf

dt
= αpρp

1
τF
12

(kfp − 2kf )− αfρfεf (4.33)

αpρp
dkp

dt
= −αpρp

1
τF
12

(2kp − kfp) (4.34)

The resulting evolution equation for the specific mixture energy em is

dem

dt
= 2αpρp

1
τF
12

(kfp − kf − kp)− αfρfεf . (4.35)

Here the interphase TKE transfer terms in fluid and particle phase are not conservative. Of

the three multiphase turbulence models considered here, Ahmadi’s model and EEM respect

the principle of conservative interphase TKE transfer, whereas Simonin’s model does not. We

now examine the consequence of this observation in terms of meaningful comparison of these

models to DNS.

4.4 Comparison of Models to DNS

Since Ahmadi’s model and EEM satisfy the principle of conservative interphase TKE trans-

fer, their model expressions for Πkβ
can be directly compared with true DNS data for inter-

phase TKE transfer. It is also consistent to then compare the Ahmadi and EEM models for

αfρfεf , as they appear in Eqs. 4.29 and 4.32, with true DNS data for the exact evolution of

em (Eq. 4.15). Since Simonin’s model does not satisfy the principle of conservative interphase

TKE transfer, its model expression for Πkβ
cannot legitimately be compared with true DNS

data for interphase TKE transfer. It is also not clear what true DNS quantity is modeled by

Simonin’s expression for εf , as it appears in Eq. 4.35.

Most of the DNS data available for particle–laden turbulent flow is based on simulations

that use the point-particle approximation, and these are widely used for model validation.

Since the exact velocity boundary condition at each particle surface is not imposed in the

point–particle approximation, it is useful to check if the implied DNS model for interphase
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TKE transfer satisfies the conservation principle. Note that true DNS satisfies the princi-

ple of conservative interphase TKE transfer automatically, since the exact velocity boundary

condition is imposed at each particle surface.

Here we use the governing equations from Sundaram and Collins (1999) for homogeneous

particle–laden turbulence (with zero mean velocity in both phases) as an example of a DNS

that uses the point particle approximation. The governing equations for total TKE in fluid

phase Tf , particle phase Tp and mixture energy Tt are:

dTf

dt
= −

Np∑
n=1

mpu(xn) · [u(xn)− vn]
τp

− φv, (4.36)

dTp

dt
=

Np∑
n=1

mpvn · [u(xn)− vn]
τp

, (4.37)

dTt

dt
= −φv − φp, (4.38)

where φv and φp are defined as

φv =
∫
V

ρfεfdV, (4.39)

φp =
Np∑
n=1

mp [u(xn)− vn]2

τp
. (4.40)

In the above equations the total energy (Tp, Tf , Tt) is an extensive property since it is integrated

over the entire flow domain V. Here xn and vn denote the instantaneous position and velocity

of the nth particle center, and u(xn) represents the fluid velocity at position xn. The total

number of particles is Np, and τp is the particle momentum response time.

The first terms on right-hand-side of Eqs. 4.36 and 4.37, which represent the interphase

TKE transfer between fluid and particle phase, do not sum to zero. Therefore, the interphase

TKE transfer terms in point particle DNS are not conservative. The two terms that contribute

to the evolution of the mixture energy Tt are: (i) the fluid phase dissipation rate φv, where

εf = 2ν 〈sijsji〉 is obtained from the gradients of the fluid velocity field, and (ii) the energy

losses due to drag at the particle interfaces, φp. The dissipation rate εf in φv is the same

as εpp
f introduced in Section I. The dissipation rate in true DNS εt

f , which determines the

evolution of mixture energy, is different from εpp
f , and this difference is presumably accounted
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for in point–particle DNS by the quantity φp, which scales as the square of the instantaneous

relative velocity between the two phases.in Eq. 4.40. Therefore, comparing Eq. 4.38 with

Eq. 4.15 reveals that −(φv + φp) is a model for the right hand side of Eq. 4.15 integrated over

the flow domain. Whether the point particle DNS model for evolution of mixture energy that

is described by Eq. 4.38 is accurate has yet to be verified by true DNS.

Clearly it is not meaningful to compare conservative models of interphase TKE transfer,

such as Ahmadi’s or EEM, with point–particle DNS data for the interphase TKE transfer

term. Also in light of Eqs. 4.29 and 4.32, the Ahmadi and EEM models for εf should not be

compared directly with the point–particle DNS dissipation rate εpp
f . Instead, the integrated

modeled mixture energy evolution equations (Eqs. 4.29 and 4.32) should be directly compared

to Eq. 4.38. In other words, the EEM and Ahmadi εf are models for the sum of εpp
f and the

dissipation due to the relative velocity difference at the location of each particle (that appears

in φp, which is defined in Eq. 4.40). One plausible identification of the terms in Simonin’s

model for comparison with point–particle DNS is εf should be compared with εpp
f , and the

Simonin model for Πkf
−Πkp corresponds to the term in Eq. 4.39 that scales as the square of

the instantaneous relative velocity difference.

4.5 Summary and Conclusion

This study shows that for the limiting case of statistically homogeneous particle–laden

turbulent flow with zero mean velocity in both phases, the interphase TKE transfer terms in

the evolution of TKE in fluid and particle phases are equal and opposite in sign. The result

holds under the following conditions:

1. the particle phase consists of rigid particles with constant thermodynamic density,

2. the flow is statistically homogeneous and the phase–volume mean and phase–surface

mean of all flow quantities are statistically homogeneous,

3. the mean velocity in both phases is zero.
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This conservative nature of the interphase TKE transfer term implies that the exact evolution

equation for the mixture TKE does not depend on the interphase TKE transfer terms (cf.

Eq. 4.15). The result can be extended in a slightly modified form to flows with nonzero mean

slip velocity if the additional conditions expressed in Eqs. 4.25 and 4.26 hold. The result can

also be extended to general inhomogeneous flows provided the velocity statistics are locally

homogeneous on the scale of particle size.

This principle of conservative interphase TKE transfer has implications for single-point

Eulerian second–moment closure models of particle–laden turbulent flow. Three models—

Simonin (1996b), Ahmadi and Ma (1990), and the Equilibrium of Energy model [Xu and

Subramaniam (2006)]—are examined to see if they obey this principle. Ahmadi’s model and

EEM satisfy the principle of conservative interphase TKE transfer, but Simonin’s model does

not.

The significance of the constraint expressed by the principle of conservative interphase TKE

transfer manifests itself when performing term–by–term comparison of models with DNS data.

We distinguish between true DNS, where the exact boundary conditions on velocity are im-

posed at each particle’s surface, and point–particle DNS where the particles are point sources

of momentum. Models for the interphase TKE transfer term that obey the conservation prin-

ciple can be legitimately compared with data from true DNS. For these models, the modeled

fluid dissipation rate solely determines the mixture TKE evolution (cf. Eqs. 4.29, 4.32), and

it can be consistently compared with true DNS data for the exact mixture TKE evolution

equation (Eq. 4.15). It is found that point–particle DNS do not satisfy the principle of con-

servative interphase TKE transfer. Therefore, it is not meaningful to compare conservative

models for the interphase TKE transfer term with point–particle DNS data. Rather, when

comparing predictions of a multiphase turbulence model that satisfies conservative interphase

TKE transfer with point–particle DNS data, the mixture TKE equations should be matched.

In other words, the term αfρfεf in Eqs. 4.29 and 4.32 that contains the modeled dissipation

rate should be compared (after integration over the flow domain) with −(φv + φp) in Eq. 4.38,

which represents the sum of εpp
f and the additional dissipation which is assumed to scale as
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the square of the relative velocity between fluid and particle phases.

4.6 Measures for Two–phase Flows

As discussed in Section 4.2, there are two types of expectations that arise when deriv-

ing averaged equations in the Eulerian–Eulerian approach: the phase–volume mean and the

phase–surface mean. This is because quantities like the interphase momentum transfer are

not volume–measurable because they are defined only on the particle surface and have zero

volume measure. In other words, because these interface quantities have zero volume measure

one cannot construct their expectation with respect to Lebesgue measure in R3. On the other

hand it is clear that the mean interphase momentum transfer is not zero. The resolution lies

in the fact that the measure and expected value of interface quantities is different from those

flow quantities defined in each phase, and this phase–surface measure and expectation needs

to be unambiguously defined. Having identified the need to clearly define and distinguish

between the phase–volume and phase–surface measure and expectation, we now describe the

mathematical foundations needed to define these quantities.

We define a probability triple (Ω,F , P ) [Billingsley (1995)] where Ω is the set of all events,

F is a σ–field and P is a probability measure that is defined on this σ–field. Define a mapping

from Ω space to a flow domain D in Euclidean space–time D ⊂ R4 which takes every event

ω ∈ Ω to a realization of a two–phase flow in space–time that is described by the phase

indicator function Iβ(x, t) and any flow property Q(x, t) (for example Q could be the velocity

field). This unambiguously defines the ensemble of realizations.

4.6.1 Phase–volume Measure

Consider a set A in the flow domain D. The phase volume measure of phase β denoted as

µβ(A;ω), is defined as

µβ(A;ω) ≡
∫

A
Iβ(x, t;ω) dA. (4.41)
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flow domain

ω

xp x{I  (  ,t), Q(  ,t)}

Ω

Figure 4.2 The ensemble of realizations is defined by the event space Ω.
Each realization of the two–phase flow corresponds to a the
mapping of an element ω in the sample space Ω to the phase
indicator function Iβ(x, t) and flow property Q(x, t), which are
defined in the flow domain D.

Note that this is a random measure because it depends on the realization of the two-phase

flow corresponding to ω. The expected value of this random measure is

〈µβ(A)〉 =
∫

Ω
µβ(A;ω) dPω =

∫
Ω

∫
A

Iβ(x, t;ω) dA dPω, (4.42)

which is obtained by integrating with respect to the probability measure defined on Ω.

Because the integrations commute:

〈µβ(A)〉 =
∫

A

∫
Ω

Iβ(x, t;ω) dPω dA

=
∫

A
〈Iβ〉 dA, (4.43)

where 〈Iβ〉 is the expected value of the indicator function that is defined as

〈Iβ〉 (x, t) ≡
∫

Ω
Iβ(x, t) dPω. (4.44)

If 〈Iβ〉 (x, t) exists then 〈µβ(A)〉 is absolutely continuous with respect to Lebesgue measure2,

and it can be written as the integral of a density over the set A. This density is nothing but

the volume fraction αβ(x, t) of phase β. If the volume occupied by the phase β is denoted by

Vβ , and is given by

Vβ ≡
∫
D

Iβ(x, t) dx,

then it follows that its expected value is

〈Vβ(t)〉 =
∫
D
〈Iβ〉 (x, t)dx =

∫
D

αβ(x, t) dx,

2This is reasonable for particle two–phase flows where this measure is non-atomic except in pathological
cases.
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where αβ(x, t) is the volume fraction occupied by phase β at location x and time t.

The phase–volume measure of flow quantity Q in phase β is denoted as

Qv
β(A;ω) ≡

∫
A

IβQdA. (4.45)

Just as µβ is a random measure, so is Qv
β(A;ω). Its expectation is simply:

〈
Qv

β(A)
〉

=
∫

Ω
Qv

β(A;ω) dPω =
∫

Ω

∫
A

IβQdAdPω. (4.46)

Again, because the integrations commute we have

〈
Qv

β(A)
〉

=
∫

A

∫
Ω

IβQdPω dA

=
∫

A
〈IβQ〉 dA. (4.47)

If we assume that
〈
Qv

β(A)
〉

is absolutely continuous with respect to Lebesgue measure then it

can be written as the integral of a density function over the set A as:

〈
Qv

β(A)
〉

=
∫

A

〈
Qv

β

〉
(x, t) dx dt. (4.48)

Rewriting this density of the phase–volume measure of Q as a conditional density with respect

to the density of expected phase–volume measure leads to the usual “phase average” in two–

fluid theory:

〈Qβ〉v (x, t) =

〈
Qv

β(x, t)
〉

αβ(x, t)
. (4.49)

4.6.2 Phase–surface Measure

Consider a set A in the flow domain D and let Sβ be the phase–surface indicator function

Sβ(x, t) = δ(x− xI),

such that Sβ(A) selects the boundary of all Iβ surfaces contained within set A. The phase–

surface measure of phase β is denoted Σβ(A;ω), and is defined as:

Σβ(A;ω) ≡
∫

A
Sβ(x, t) dA. (4.50)
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This quantity also is a random measure since it depends on the realization of the two–phase

flow corresponding to ω. The expected value of this random measure is

〈Σβ(A)〉 =
∫

Ω
Σβ(A;ω) dPω =

∫
Ω

∫
A

Sβ(x, t) dA dPω, (4.51)

which is obtained by integrating with respect to the probability measure defined on Ω.

Since the integrations commute,

〈Σβ(A)〉 =
∫

A

∫
Ω

Sβ dPω dA

=
∫

A
〈Sβ〉 dA,

where 〈Sβ〉 is the expected value of the phase–surface indicator that is defined as

〈Sβ〉 (x, t) ≡
∫

Ω
Sβ(x, t) dPω. (4.52)

If 〈Sβ〉 (x, t) exists then 〈Σβ(A)〉 is absolutely continuous with respect to Lebesgue measure

and it can be written as the integral of a density over the set A. This density is nothing but the

interfacial area density of phase β introduced in Drew and Passman (1999), which is denoted

as σβ(x, t) in this work.

The phase–surface measure of flow quantity Q in phase β is denoted Qs
β(A), and is defined

as:

Qs
β(A;ω) ≡

∫
A

SβQdA. (4.53)

Note that this random measure picks out the value of Q on the β side of the interface. For

example, a flow variable Q that are discontinuous on the surface, will have different values of

Qs
β(A;ω) for either phase on the different sides of the interface. Its expectation is simply:

〈
Qs

β(A)
〉

=
∫

Ω
Qs

β(A;ω)dPω =
∫

Ω

∫
A

SβQdAdPω. (4.54)

Again, because the integrations commute we have

〈
Qs

β(A)
〉

=
∫

A

∫
Ω

SβQdPω dA

=
∫

A
〈SβQ〉 dA. (4.55)
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If
〈
Qs

β(A)
〉

is absolutely continuous with respect to Lebesgue measure, then it can be written

as the integral of a density which can be defined over the set A as:

〈
Qs

β(A)
〉

=
∫

A

〈
Qs

β

〉
(x, t)dx dt. (4.56)

Rewriting this density of the phase–surface measure of Q as a conditional density with respect

to the density of expected phase–surface measure leads to the correct definition of the phase–

surface mean:

〈Qβ〉s (x, t) =

〈
Qs

β(x, t)
〉

σβ(x, t)
(4.57)



75

CHAPTER 5. DIRECT NUMERICAL SIMULATION OF GAS-SOLID

FLOW USING THE IMMERSED BOUNDARY METHOD

In this chapter, the formulation of the discrete-time immersed boundary method is intro-

duced. The immersed boundary method has the advantage of simulating many spheres with

low computational cost, and the pseudo-spectral scheme used here can provide high accuracy

which is suitable to simulate turbulence. The ultimate goal of the direct numerical simulation

using the immersed boundary method is to simulate gas-solid turbulent flows.

Even non-turbulent gas-solid suspensions that are initially homogeneous distributed, be-

come unstable after evolving in time. The instability happens even at very low particle

Reynolds number Rep and low particle Stokes number St [Tsao and Koch (1995); Sangani

et al. (1996)]. The instability associated with gas-solid suspensions makes it difficult to ex-

tract statistics from the numerical simulation results. Furthermore, the computational cost of

the DNS with the immersed boundary method is prohibitively expensive. Hill et al. (2001a,b),

Wylie et al. (2003), Van der Hoef et al. (2005) and other researchers studied the finite-Reynolds-

number flows in a fixed bed of spheres. The drag force on the spheres and the permeability of

arrays are studied.

Following these researchers, we investigate a fixed bed of spheres interacting with homo-

geneous turbulence. The objective of this DNS work is to develop the immersed boundary

method to simulate the upstream turbulence past a fixed bed of spheres, where the effects of

the sphere random configuration on the turbulence can be studied. In this work, Chapter 5

and 6 describe the development and the validation of the immersed boundary method. The

results of the turbulence past a fixed bed of spheres and the implication on gas-solid turbulence

models are discussed in Chapter 7.
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The discrete-time immersed boundary method developed by Yusof (1996) was applied for

upstream turbulence past a single stationary sphere. The numerical resolution is 132×32×32;

the diameter of the sphere is 10 grid points and κmaxη > 1.5. In this work, several other

restrictions are considered. For example, at least one grid point should be used to resolve

the boundary layer around the sphere; the fluid domain L should be large enough to contain

the spatial correlation of fluid phase turbulence. This DNS work satisfies all the numerical

requirements mentioned above, but the computational cost of this DNS work becomes much

more expensive. Even for the simulation of upstream turbulence past a single sphere with

the same parameters, Reλ = 20, Rep = 100 and u′/U = 20%, as that reported in Yusof’s

work, the grid points required are at least 200 × 200 × 400. With 8 bytes representation of

floating point variables, the minimum memory requirement is 6.4 GB. The cluster computers

generally have 4GB or 8GB memory on one computer node, therefore the parallelization of

the immersed boundary solver is a necessity, and the parallelization is not for the purpose of

speed-up, but to solve a problem size with the reasonable physical parameter range and also

satisfy the resolution requirements. The detail of the parallelization is presented in Chapter 6.

In Chapter 5, the DNS works of gas-solid turbulent flows in the literature are reviewed

in Section 5.1. The equations from Yusof (1996) are first recapitulated in Section 5.2. The

numerical results from our implementation of Yusof’s numerical scheme is validated with the

standard drag correlation [Clift et al. (1978)] in Section 5.3. Furthermore, the grid convergence

study for the steady flow past a single stationary sphere is presented to gain confidence of our

implementation.

5.1 Introduction

Turbulence modulation in the particle–laden turbulent flows has been studied extensively

in both numerical simulations [Elghobashi and Truesdell (1993); Sundaram and Collins (1999);

Ahmed and Elghobashi (2000); Boivin et al. (2000)] and experiments [Parthasarathy and Faeth

(1990); Mizukami et al. (1992); Chen et al. (2000); Yang and Shy (2005); Hwang and Eaton

(2006a,b)]. It is well established that the presence of particles can increase or decrease the level
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of fluid phase turbulence. In the dilute particle–laden turbulence, there are several mechanisms

that contribute to the turbulence modulation, for example, the enhanced dissipation due to

the presence of particles, and interphase TKE transfer between fluid and particle phases, the

formation of wakes and vortices shedding behind particles [Bagchi and Balachandar (2004)].

The understanding and implication to multiphase turbulence modeling of first two effects have

been discussed in details in Chapter 4. The relative importance of the these mechanisms

depends on the parameter ranges of the problem, such as the particle Stokes number, particle

Reynolds number, solid volume fraction, mass loading ratio and particle size dp to turbulence

length scale ratio. When the particle size is smaller than Kolmogorov length scale η, and the

Reynolds number less than unity, the effects of interphase TKE transfer and the enhanced

fluid dissipation rate due to presence of particles are important. For particle with moderate

particle Reynolds number, the third mechanism becomes important.

Yusof (1996) used the discrete-time immersed boundary method to simulate the effects

of free stream homogeneous turbulence on the drag force, wake structure, the modulation of

TKE, Reynolds stress, and other fluid phase turbulence statistics. This study shows a clear

picture of wake structure destabilization as upstream turbulent intensity increases, and the

vorticity shedding from the particle results in a substantial increase in the turbulence level in

the wake. This is also one of the first steps toward examining the hydrodynamic interaction of

finite-size particles in turbulent velocity field [Koch and Hill (2001)], which is also a true DNS

with the exact no-slip, no-penetration boundary conditions imposed on the surface of particle.

There are several true direct numerical studies [Bagchi and Balachandar (2004, 2003);

Ten Cate et al. (2004); Legendre et al. (2006)] emerging recently. The direct numerical sim-

ulations by Bagchi and Balachandar (2003, 2004) study the effect of a free stream isotropic

turbulence on a single particle with moderate Reynolds number using body–fitted grids. The

effects of upstream turbulence and the variation of turbulence intensity on the structure of

wake vortices, the wake oscillation and vortex shedding are reported with the range of particle

Reynolds numbers up to 400 [Bagchi and Balachandar (2004)]. Lattice Boltzmann simulation

of turbulent solid-liquid suspensions is studied by Ten Cate et al. (2004). To the author’s
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knowledge, this is the first true DNS with multiple particles laden in a homogeneous turbulent

flow field.

The interactions between particles in a turbulent flow field, and the attenuation to fluid

turbulence can be studied in a fixed bed of spheres. The effects of fluid inertia at moderate-

Reynolds numbers on flows in ordered and random arrays of spheres are studied by Hill et

al. (2001b), which are designed to understand the effects of fluid inertia on the sediment

suspensions and fluidized beds. The study of the fixed beds of spheres with the solid volume

fraction smaller than the packed bed limit is motivated by an analogy between fixed beds and

high-Stokes-number suspensions. If the particle Stokes number is large, then particles will not

follow small fluctuations in the surround flow field, and only have small changes to its velocity

in response to the drag caused by the slip velocity. Under these conditions, the hydrodynamic

interactions between particles are similar to the fixed bed of spheres [Koch and Hill (2001)].

The case of upstream homogeneous turbulence past fixed beds of spheres provides a situation in

which one can study the combined effects of upstream turbulence on wake structures and vortex

shedding of particles, interactions between particles and the modulation to fluid turbulence

without complications of the temporal evolution of particle configuration and particle-particle

collisions.

Immersed boundary method has the ability to handle moving or deforming bodies with

complex surface geometry without body fitted meshes. Peskin (1977, 2002) first introduced

the method to simulate blood flow inside a heart with flexible valves, where the forcing was

computed by Hooke’s law. Goldstein et al. (1993) applied the concept of feedback control

to compute the force on the rigid immersed surface. One drawback with the method from

Goldstein et al. (1993) is that spring constants in the feedback scheme need to be determined

empirically. Moreover, the time step restriction imposed by the derivation of forcing severely

limits the applicability of the method. The discrete-time immersed boundary method first

proposed by Yusof (1996) removed the time step restriction by the use of a discrete-time

derivation of forcing without any feedback control process. In this work, we use the discrete-

time immersed boundary method to study the upstream turbulence past a stationary sphere.
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5.2 Discrete-time Immersed Boundary Method

In this section, the governing equations and numerical scheme employed in the DNS with

the discrete-time immersed boundary method are described in Yusof (1996).

5.2.1 Governing Equations

The incompressible Navier-Stokes equations in the vector form are solved in this problem,

∂u
∂t

+ (u · ∇)u = −1
ρ
∇P + ν∇2u, (5.1)

and the pressure Poisson equation is

1
ρ
∇2P = −∇ · ((u · ∇)u), (5.2)

where u is the instantaneous velocity vector. A primitive variable, pseudo-spectral method,

using Fourier transform in the y-z directions and the central finite difference in the stream-

wise direction, is applied to solve this problem. This also implies that periodic boundary

conditions are applied in y and z directions. Either periodic boundary conditions or inflow

and outflow boundary conditions can be applied in x direction. The nonlinear terms ((u ·∇)u)

are calculated by transforming the velocities to real space, and then transforming the products

to Fourier space. This avoids the expensive convolution operation in Fourier space that would

result if the nonlinear terms are calculated in Fourier space. De-aliasing is performed by phase

shifting method to avoid the aliasing error in the nonlinear terms.

After performing Fourier transforms in the y-z directions, the Navier-Stokes equations

become:

∂ũ

∂t
+ S̃x = −1

ρ

∂P̃

∂x
+ ν

∂2ũ

∂x2
− ν(κ2

y + κ2
z)ũ, (5.3)

∂ṽ

∂t
+ S̃y = −1

ρ
ικyP̃ + ν

∂2ṽ

∂x2
− ν(κ2

y + κ2
z)ṽ, (5.4)

∂w̃

∂t
+ S̃z = −1

ρ
ικzP̃ + ν

∂2w̃

∂x2
− ν(κ2

y + κ2
z)w̃, (5.5)
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where ũ, ṽ, w̃ and P̃ are the Fourier transform of the physical space velocity and pressure.

The pressure Poisson equation becomes (ι =
√
−1):

−1
ρ

(
∂2P̃

∂x2
− (κ2

y + κ2
z)P̃

)
=

∂S̃x

∂x
+ ικyS̃y + ικzS̃z. (5.6)

In Eq. 5.3—5.6, S̃x, S̃y and S̃z,

S̃x = F
(

∂uu

∂x
+

∂uv

∂y
+

∂uw

∂z

)
, (5.7)

S̃y = F
(

∂vu

∂x
+

∂vv

∂y
+

∂vw

∂z

)
, (5.8)

S̃z = F
(

∂wu

∂x
+

∂wv

∂y
+

∂ww

∂z

)
, (5.9)

are the Fourier transformed convective terms which are evaluated in the physical space. Here

F denotes the forward Fourier transform.

Since the Fourier transform is performed on the y-z directions, the discretization in the y-z

directions is to use the discrete Fourier transformed variables replacing the continuous Fourier

transformed variables. For the x direction, the second-order central finite difference is used:

∂f

∂x

)
i

=
fi+1 − fi−1

2∆x
, (5.10)

∂2f

∂x2

)
i

=
fi+1 − 2fi + fi−1

(∆x)2
, (5.11)

where f = ũ, ṽ, w̃. The discretization of pressure is formed on a staggered grid:

∂P̃

∂x

)
i

=
P̃i+1/2 − P̃i−1/2

∆x
. (5.12)

In the momentum equations for the y-z directions, the pressure gradient terms are evaluated

with the average of their values at the adjacent pressure grid points (ι =
√
−1),

ικyP̃i = ικy

P̃i+1/2 + P̃i−1/2

2
, (5.13)

ικzP̃i = ικz

P̃i+1/2 + P̃i−1/2

2
. (5.14)
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Hence the discretized momentum equations are:

∂ũ

∂t
+ S̃x,i = −1

ρ

P̃i+1/2 − P̃i−1/2

∆x
+ ν

(
ũi+1 − 2ũi + ũi−1

(∆x)2
− (κ2

y + κ2
x)ũi

)
, (5.15)

∂ṽ

∂t
+ S̃y,i = −1

ρ
ικy

P̃i+1/2 + P̃i−1/2

2
+ ν

(
ṽi+1 − 2ṽi + ṽi−1

(∆x)2
− (κ2

y + κ2
x)ṽi

)
, (5.16)

∂w̃

∂t
+ S̃z,i = −1

ρ
ικz

P̃i+1/2 + P̃i−1/2

2
+ ν

(
w̃i+1 − 2w̃i + w̃i−1

(∆x)2
− (κ2

y + κ2
x)w̃i

)
. (5.17)

The pressure Poisson equation is discretized at (i + 1/2, j, k), and the discretized pressure

Poisson equation is given as follows:

S̃x,i+1 − S̃x,i

∆x
+ ικy

S̃y,i+1 + S̃y,i

2
+ ικz

S̃z,i+1 + S̃z,i

2
=

−
P̃i−1/2 − 2P̃i+1/2 + P̃i+3/2

(∆x)2
+ (κ2

y + κ2
z)

P̃i−1/2 + 2P̃i+1/2 + P̃i+3/2

4
. (5.18)

The nonlinear term S̃y and S̃z are evaluated at the grid point by taking the mean of adjacent

grid points.

5.2.2 Fractional Stepping Scheme

The fractional stepping scheme proposed by Kim and Moin (1985) is used to advance the

velocity in time. The Adams-Bashforth scheme is used for the nonlinear terms in Navier–

Stokes equations and Crank–Nicolson scheme is used for the diffusion terms. This scheme has

a predictor step, which calculates an intermediate velocity field on the convective and diffusion

terms, and a corrector step to satisfy the continuity. Since we only consider the incompressible

flow in this study, the absolute pressure is not important since only the pressure gradients are

important in the governing equations. There is slight difference in the fractional step scheme

used here compared with the scheme proposed by Kim and Moin (1985), which does not include

pressure gradient in the evaluation of the intermediate velocity.

Pressure estimation step

At time level n, the velocity and pressure field at the current level n, and the convective

terms from the level n, n − 1 are known. An estimation of the pressure (with superscript ∗)
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at level n + 1 is given as:

−1
ρ
∇2P ∗ = ∇ ·

(
2Sn − Sn−1

)
(5.19)

with zero pressure gradient as boundary conditions. With the discretization for pressure

Poisson equation in Eq. 5.18, a tri-diagonal matrix is formed:

1
ρ

[
P̃ ∗

i−1/2

(
− 1

(∆x)2
+

κ2
y + κ2

z

4

)
+ P̃ ∗

i+1/2

(
2

(∆x)2
+

κ2
y + κ2

z

4

)
+ P̃ ∗

i+3/2

(
− 1

(∆x)2
+

κ2
y + κ2

z

4

)]

= 2

(
S̃x,i+1 − S̃x,i

∆x
+ ικy

S̃y,i+1 + S̃y,i

2
+ ικz

S̃z,i+1 + S̃z,i

2

)n

−

(
S̃x,i+1 − S̃x,i

∆x
+ ικy

S̃y,i+1 + S̃y,i

2
+ ικz

S̃z,i+1 + S̃z,i

2

)n−1

. (5.20)

With zero pressure gradients imposed at i = 1 and i = N , the tri-diagonal form for the matrix

still holds.

Predictor step

Using the estimated pressure P̃ ∗, an intermediate velocity field is evaluated as,

u∗ − un

∆t
=
[
−
(

3
2
Sn − 1

2
Sn−1

)
− 1

ρ
∇P ∗ +

ν

2
∇2 (un + u∗)

]
. (5.21)

Using a second order accurate central difference stencil for the x direction diffusion terms,

Fourier derivatives for the y and z direction diffusion terms, and a second order accurate

central difference for the pressure gradients, results in,

ũ∗i − ũn
i = −∆t

[
3
2
Sn

x,i −
1
2
Sn−1

x,i

]
− ∆t

ρ

(
P̃ ∗

i+1/2 − P̃ ∗
i−1/2

∆x

)

+
ν∆t

2(∆x)2
[
ũ∗i+1 − 2ũ∗i + ũ∗i−1

]
− ν∆t

2
(κ2

y + κ2
z)ũ

∗
i

+
ν∆t

2(∆x)2
[
ũn

i+1 − 2ũn
i + ũn

i−1

]
− ν∆t

2
(κ2

y + κ2
z)ũ

n
i . (5.22)

rearranging the unknown u∗ to the left hand side, a tri-diagonal system of equations can be

obtained. For the velocity field, the Dirichlet boundary conditions are imposed at the inlet

and outlet, with values uin and uout.

Corrector step
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In the corrector step, the intermediate velocity u∗ obtained by the predictor step is cor-

rected, so the velocity and pressure field satisfy the continuity equation. The velocity correction

step can be written as,

ũn+1 − ũ∗ = −∆t

ρ
∇φ̃, (5.23)

where φ̃ is the correction to pressure, and φ̃ will have to satisfy the Poisson equation,

∆t

ρ
∇2φ̃ = ∇ · u∗ . (5.24)

Following a similar scheme developed for the pressure estimate equations, a second order finite

difference approximation for the x-direction derivatives and the Fourier approximation for the

y and z direction derivatives, the following discretized equation is obtained

∆t

ρ

[
φ̃i−1/2 − 2φ̃i+1/2 + φ̃i+3/2

(∆x)2
− (κ2

x + κ2
y)

(
φ̃i−1/2 + 2φ̃i+1/2 + φ̃i+3/2

4

)]

=
(

ũ∗i+1 − ũ∗i
∆x

+
1
2
ι(κy + κz)(ũ∗i+1 + ũ∗i )

)
. (5.25)

The pressure correction φ̃ has the same boundary conditions as those in the pressure estimate

equation described earlier.

The velocity at the step n + 1 is evaluated as

ũn+1
i = ũ∗i −∆t

φ̃i − φ̃i−1

∆x
, (5.26)

ṽn+1
i = ṽ∗i −

∆t

ρ
ικy

1
2
(φ̃i−1/2 + φ̃i+1/2), (5.27)

w̃n+1
i = w̃∗

i −
∆t

ρ
ικz

1
2
(φ̃i−1/2 + φ̃i+1/2). (5.28)

The pressure is updated as follows,

P̃n+1
i = P̃ ∗

i + φ̃i. (5.29)

Formulation of the force

The full Navier-Stokes equations admit the inclusion of an external body force, denoted as f ,

which is allowed to be a function of both time and space. The divergence of the force may be
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non-zero and must be included in the Poisson equation for pressure.

∂u
∂t

+ (u · ∇)u = −1
ρ
∇P + ν∇2u + f , (5.30)

and the pressure Poisson equation is modified as

−1
ρ
∇2P = ∇ · ((u · ∇)u− f). (5.31)

In the immersed boundary method, the forcing term is specified in a way to simulate the

presence of a solid boundary within the computational domain, with no additional computa-

tional grid restructuring, which is an obvious advantage of this method. Furthermore, multiple

objects can be simulated easily, and the relative motion of the immersed bodies may be ac-

complished at some reasonable computational cost.

The form of the forcing function can be derived from the discrete-time Navier-Stokes equa-

tions,
v − un

∆t
= −(u · ∇)u− 1

ρ
∇P + ν∇2u + f . (5.32)

If on some surface Ω, a desired velocity v(Ω) is needed, then Eq. 5.32 becomes,

f =
v − un

∆t
+ (u · ∇)u +

1
ρ
∇P − ν∇2u. (5.33)

The fractional step method including evaluation of the forcing is given as follows:

fn =
v − un

∆t
+
(

3
2
Sn − 1

2
Sn−1

)
+∇Pn − ν∇2un, (5.34a)

−1
ρ
∇2P ∗ = ∇ ·

(
3
2
Sn − 1

2
Sn−1 − fn

)
, (5.34b)

u∗ = un + ∆t

[
−
(

3
2
Sn − 1

2
Sn−1

)
− 1

ρ
∇P ∗ +

ν

2
∇2 (un + u∗) + fn

]
, (5.34c)

∆t

ρ
∇2φ̃ = ∇ · u∗, (5.34d)

ũn+1 = ũ∗ − ∆t

ρ
∇φ̃, (5.34e)

P̃n+1 = P̃ ∗ + φ̃. (5.34f)

The forcing formed in Eq. 5.34a is forcing the intermediate velocity v∗. Since v∗ is corrected

by φ to satisfy continuity, the forcing fn may have some errors and hence the no-slip boundary

condition is not satisfied exactly at the boundary points.
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5.3 Results

In this section, the numerical results from the immersed boundary method is validated with

the laminar flow past a single sphere. In this validation study, 128×64×64, 256×128×128 and

512× 256× 256 uniform Cartesian grid points are used to study the laminar flow past a single

sphere, with Ly = Lz = 2π and Lx = 4π. Let the number of the grid points used to represent

the sphere as D, and the ratio between D and NY is fixed to be 6.4. For Rep = 20, 50, 100, the

drag coefficient is compared with the standard drag curve from Schiller and Nauman [Clift et

al. (1978)]. When compared with standard drag curve, the drag coefficient from the immersed

Table 5.1 Comparison of the drag coefficient from present simulations with the standard
drag curve from Schiller and Nauman [Clift et al. (1978)]

Rep CD CD CD CD from
128× 64× 64 256× 128× 128 512× 256× 256 Schiller and Nauman

20 2.07 2.36 2.62 2.52
50 1.28 1.41 1.60 1.54
100 0.94 0.98 1.13 1.09

boundary method is quite close to the correlation from Schiller and Nauman [Clift et al. (1978)].

As the resolution of the flow field and the sphere increases, the drag coefficient becomes closer

to the standard drag. For the highest resolution tested, the relative error is less than 3% for

all the three particle Reynolds number Rep = 20, 50, 100. The drag coefficient in Table 5.1 is

also plotted in Figure 5.1 .

For particle Reynolds number range 20 < Re < 130, the separation ring moves forward, so

that the attached recirculation wake widens and lengthens. The correlation for the recirculation

bubble length is given in Pruppacher et al. (1970)

Lw/d = 1.50 log(Re)− 2.07, (5.35)

and the numerical results from the immersed boundary method are compared with this corre-

lation.
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Figure 5.1 Variation of drag coefficient CD with particle Reynolds number.
The standard drag in square symbols is from Table 5.2 in Clift
et al. (1978).

Table 5.2 Comparison of the non-dimensional wake length from present simulations with
correlation from Pruppacher et al. (1970).

Rep numerical results Lw/d Lw/d from Pruppacher et al. (1970)
50 0.45 0.478
100 0.91 0.93
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CHAPTER 6. PARALLELIZATION OF THE IMMERSED BOUNDARY

METHOD

6.1 Introduction

This chapter presents the parallelization of the immersed boundary method for the particle-

laden flows described in chapter 5. Parallelization is necessary for this application because

of the very large CPU and memory requirements. This parallelization is accomplished by

parallelizing the basic three steps in the serial algorithm using domain decomposition [Snir et

al. (1998)] and a parallel tri-diagonal linear equation solver [Povitsky (1998); Badia and Vidal

(1993)]. The performance of the parallel algorithm is evaluated for turbulent flow with 200

stationary particles. The parallel algorithm is then validated for a single stationary sphere in

a homogeneous turbulent flow using published data from Bagchi and Balachandar (2003).

We were not able to find any published papers that discuss the parallelization of the im-

mersed boundary method for structured grids. However, the following gives references for

the parallel DNS studies on structured grids for single phase turbulence. For homogeneous

turbulence on structured grids, many researchers use pseudo-spectral methods [Orszag and

Patterson (1972); Rogallo (1981); Pope (1999)]. For these methods, typically more than 90%

of the CPU time is spent in the serial execution of the three-dimensional FFT (3D FFT).

Therefore, recent parallel DNS studies focus on the efficiency of the parallel 3D FFT [Kaneda

and Yakokawa (2005)]. Turbulent flows which are statistically inhomogeneous in one direction

are studied by Garg et al. (1997). He used the hybrid spectral finite difference method to study

stratified turbulent flows for distributed memory parallel computers. Parallelization was done

using domain decomposition and parallel 2D FFTs.
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6.2 Serial Algorithm for the Immersed Boundary Method

The following flow chart gives an overview of the serial algorithm. As one can see from the

START

Resume old
simulation?

Read in restart files

NO

initialize U and P, xc

Step 1: calculate nonlinear term ∇(UU)

Step 2: calculate the forcing f on boundary Ω

Step3: fractional stepping scheme:

solve the pressure Poisson equation Eq. 6.4b
solve the momentum equation Eq. 6.4 c
solve the divergence equation Eq. 6.4.d
update velocity and pressure Eq. 6.4e,f,g

YESTime marching
finished?

END

YES

NO

Figure 6.1 Flow chart of the serial immersed boundary method.

flow chart, there are three major steps for the serial algorithm for each time step:

Step 1: the calculation of nonlinear terms ∇ (uu) on the flow domain;

Step 2: the calculation of the external forcing function on particle surfaces;

Step 3: solving Navier-Stokes equation on the flow domain using the fractional stepping scheme.

An examination of these steps shows that there are data dependencies between these steps:

step 2 cannot be calculated until step 1 has completed and step 3 cannot be calculated until

step 2 has completed. The serial algorithm for the immersed boundary method is presented
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in Appendix A.

The memory requirement of the serial algorithm can be estimated as follows: the memory

occupied by one 3D array with the size NX · NY · NZ is 8 · NX · NY · NZ bytes assuming that

each array element requires 8 bytes of storage. NX represents the number of grid points in the

x direction. NY is the number of grid points in the y direction and NZ is the number of grid

points in the z direction. NX, NY and NZ can be any positive integers. There are 33 such

arrays used in the serial immersed boundary method. Hence, the total memory requirement

for problem size is at least 264 · NX · NY · NZ bytes. For example, if NY = NZ = 256 and

NZ = 512, the memory required is at least 8.25GB.

The CPU time required can be estimated by counting the number of floating point oper-

ations. In step 1 there are 9 · NX two dimensional FFTs performed. Each 2D FFT requires

O(N · log(N)) operations where N = NY · NZ. Therefore, the floating point operation count

for step 1 is of order

9 ·NX · O (NY ·NZ · log (NY ·NZ)) .

In Step 2, let Np be the number of particles in the flow and let Ns be the number of surface

points on each sphere. Since there are Ns operations for each particle, the floating point

operation count for step 2 is of order

O (Np ·Ns) .

In Step 3, there are 5 ·NY ·NZ tri-diagonal linear systems of size NX. The Thomas algorithm

is used to solve each tri-diagonal linear system, and this requires (4 ·NX− 3) floating point

operations. Therefore, the floating point operation count for step 3 is

5 ·NY ·NZ · (4 ·NX− 3) .

From the above analysis, the time to execute step 1 will dominate for large NX, NY and

NZ. For example, suppose NX = 384, NY = NZ = 192, Np = 100, and Ns = 1800, Table 6.1

shows the percentage of time for each step.
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Table 6.1 The list for the serial execution time for Step 1, 2 and 3 as percentages of the
total serial execution time T for one iteration in the flow chart Figure 6.1.

Step 1 Step 2 Step 3
80% 5% 15%

6.3 Parallelization of the Immersed Boundary Method

Parallelization is accomplished by first decomposing the computational domain into p sub-

domains where p is the number of MPI processes. This decomposition will be used for all three

steps in the serial algorithm.

There are many ways to decompose the computational domain. In this study, the domain

decomposition was chosen to be along the x direction, and this is because the 2D-FFT is

performed along y and z directions for each x value in the flow domain. If the number of MPI

processes, p, is 4 then the decomposed flow domain is sketched in Figure 6.2. In this study,

the number of MPI processes p can be any positive integer, and p is not necessary to evenly

divide NX.

Parallelization of step 1. The parallelization of Step 1 uses the standard domain decom-

position method with ghost cell of depth one on both sides of each subdomain. The nonblocking

MPI sends and receives are used for communication between subdomains. The details can be

found in Appendix B.

Parallelization of step 2. The first step is to determine which subdomain the center

of each particle is in. If particles move, the subdomain that each particle center is associated

with changes in time. For the simplified case of multiple stationary particles, this step only

needs to run once at the beginning of the simulation. There are two cases to consider:

i) if a particle lies entirely within a subdomain, then the calculation of the forcing function

can be done independently of the calculation for all the other particles;

ii) if a particle lies on two or more subdomains, then the portions of particle surfaces can be

independently calculated in the subdomain where the surface resides.

The load balancing for step 2 depends upon the distribution of particles among the subdo-
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Figure 6.2 Data distribution in 3D array for number of processors p = 4.

mains. The worst case occurs when all the particles are entirely contained in one subdomain.

In this case, the performance of parallel algorithm for Step 2 would be the same as the serial

performance for Step 2. If the particles are evenly distributed on all MPI processes, the load

balancing will be good.

If the surface points are at the boundary of one subdomain, then the value of neighboring

grid points are required for Step 2 at these surface points. Ghost cells with depth two are

used at the both sides of each domain since we approximate second order partial derivatives.

To update the values for the ghost cell points, communication between subdomains uses the

MPI send-receive routine, which was chosen for ease of programming. Using nonblocking MPI

routines may give better performance and this may be investigated in future work.
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Parallelization of step 3. The discretization of the serial algorithm for step 3 produces

5 ·NY ·NZ tri-diagonal linear systems of size NX by NX to solve. Each system is then solved

using a parallel tri-diagonal linear equation solver. Each of these tri-diagonal linear systems

can be solved independently of the other. Thus an easy parallelization would be to distribute

these equations among the p processes. However, each process would not have enough memory

to do this. The two parallel tri-diagonal solvers published in Badia and Vidal (1993) and

Povitsky (1998) were implemented and their performance compared. One is the parallel cyclic

reduction [Badia and Vidal (1993)], and the other is the parallel Thomas algorithm [Povitsky

(1998)]. Table 6.2 shows that for both algorithms, the parallel execution time increases as p

increases from 8 to 16 and from 16 to 32. The parallel execution time could not be obtained

for p = 2 and 4 because of memory limitations. The parallel Thomas algorithm was used for

the parallelization of step 3, since it is faster than the parallel cyclic reduction.

Table 6.2 Parallel execution time (seconds) for a tri-diagonal matrix with N=511.

number of processes (p) p = 8 p = 16 p = 32
Parallel Thomas algorithm 1.780E-4 2.658E-4 4.139E-4
Parallel cyclic reduction 5.052E-4 5.810E-4 6.305E-4

6.4 Example

In this section we study the performance of the parallel code developed for 200 fixed spheres

in a turbulent flow using the “lightning” cluster at Iowa State University. Lightning is a 592-

processor core (148 node) 2.4 GHz, dual-processor, dual core AMD 280 Opteron cluster with

8 GB of memory per node and uses the InfiniPath HTX interconnect technology. For this

example, NX, NY, NZ, Ns and Np have been chosen to be appropriate for the exposition in

chapter 7 for p = 8, 16 and 32. NX = 512, NY = NZ = 256. The number of spheres is Np = 200

and the number of surface points is Ns = 3190. The locations of the 200 spheres are generated

using the Matérn hard-core distribution described in Section 7.3. We do not assume the 200

spheres are entirely within any single subdomain. For this problem, the parallel execution time
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for one iteration is listed in Table 6.3. This problem cannot be run on lightning with p = 2

and 4 due to insufficient memory.

Table 6.3 Parallel execution time (seconds) for the example in Section 6.4.

number of processes (p) p = 8 p = 16 p = 32
time for step 1, 2 and 3 35.6 25.9 25.1

Notice that there is a good speedup from p = 8 to p = 16, but the CPU time for 32 processes

was about the same as for 16 processes. The time for step 1 will decrease as p increases because

step 1 has good load balancing. The time for step 2 will decrease as the number of processors p

increases because we assumed the 200 spheres are uniformly distributed among the subdomains.

However, from Table 6.2, we see that the time for step 3 increases as p increases. The poor

scalability for this example is caused by the poor scalability of the parallel Thomas algorithm

in step 3 for tri-diagonal linear systems of size 512 by 512. Future research should investigate

alternative methods for the parallelization of step 3.

6.5 Validation Study of the Parallel Immersed Boundary Method

The accuracy of the parallel program is validated using the data by Bagchi and Balachandar

(2003) for a single stationary sphere in a homogeneous turbulent flow. The validation is not

dependent on the number of processors used so 16 processors were used since 16 processors

gave the best performance in the example in Section 6.4 and there was sufficient memory for

each processors to run the validation.

Description of the example in the published paper. In the numerical study by Bagchi

and Balachandar (2003), the direct numerical simulation is performed with homogeneous tur-

bulence past a spherical particle. The effects of turbulence on the mean drag are reported for

different mean particle Reynolds numbers and turbulence intensity. The isotropic turbulence

field is a precomputed frozen isotropic box turbulence which provides a turbulent ambient flow

and is characterized by a single parameter, the micro-scale Reynolds number [Pope (1999)].

The box turbulence uses DNS date on a uniform Cartesian grid of size 256× 256× 256. The
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effect of the turbulent field is as if the isotropic turbulent field sweeps past the stationary

sphere at velocity V. Body-fitted grids are used to compute the flow field around the sphere.

The numerical results from Bagchi and Balachandar (2003) should be more accurate than the

numerical results produced by the authors immersed boundary method since the immersed

boundary method does not use body-fitted grids. The parameters in the DNS by Bagchi and

Balachandar (2003) are listed in Table 6.4, where η is the Kolmogorov length scale; λ is Taylor

Table 6.4 Physical parameters in the DNS study of Bagchi and Balachandar (2003).

Case d/η d/λ d/Λ I = urms/|V| 〈Rer〉
1 1.53 0.061 0.003 0.1 107
2 1.53 0.061 0.003 0.2 58
3 3.84 0.152 0.008 0.1 261
4 3.84 0.152 0.008 0.25 114
5 9.59 0.381 0.019 0.1 609
6 9.59 0.381 0.019 0.25 241

micro-scale and Λ is the integral scale. The parameters are the ratio of the particle diameter

d to the Kolmogorov length scale η; the turbulent intensity I = urms/|V|; the mean particle

Reynolds number 〈Rer〉 = |Vr|d/ν, where urms is the rms of the fluctuations of the free-stream

turbulence; Vr is the instantaneous relative velocity between the particle and the undisturbed

ambient flow measured at the center of the particle; and 〈Vr〉 is the mean relative velocity

obtained by time averaging over time T .

Set-up for the immersed boundary method. Upstream turbulence is introduced

from the inlet velocity boundary condition using a uniform Cartesian grid of size NX = 512,

NY = NZ = 256. The isotropic homogeneous box turbulence is generated using the model

spectrum [Pope (1999)] in a 256×256×256 cubic box instead of using DNS data. The velocity

and pressure fields are initialized to zero. The turbulence disturbance is introduced into the

flow domain instead of introducing the turbulence in the body-fitted grid. Since the turbulence

flow field is a (statistically) stationary process, the mean drag coefficient is calculated using

time averaging as was done by Bagchi and Balachandar (2003).

In this study, the mean particle Reynolds number Rep and turbulent intensity, I, match

the parameters in Table 6.5. The ratio between particle diameter and free-stream turbulence
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length-scale d/η, d/λ, and d/Λ cannot be matched because the immersed boundary method

does not use body-fitted grids. The parameters in the immersed boundary simulation for

upstream turbulence past a single stationary particle is listed in Table 6.5.

Table 6.5 Physical parameters studied using the immersed boundary method in this work.

Case 〈Rep〉 I = urms/|Vr| d/η λ/d Reλ

1 107 10% 5 1.65 18
2 114 25% 10 1.10 31
3 58 20% 5 1.78 21

Comparison of results. Table 6.6 compares the time averaged drag coefficient, CD, of

the immersed boundary (IB) method with the results from Bagchi and Balachandar (2003).

Table 6.6 shows that the mean drag coefficient from the immersed boundary method is quite

Table 6.6 Time averaged CD from the immersed boundary method compared with the
drag coefficient by Bagchi and Balachandar (2003).

Case 〈Rep〉 I = urms/|Vr| CD (IB method) CD Bagchi and Balachandar (2003)
1 107 10% 1.02 1.07
2 114 25% 1.025 1.03
3 58 20% 1.52 1.53

close to the numerical results from Bagchi and Balachandar (2003) with maximum deviation

for case 1 being 4.6%, for case 2 being 0.5%, and for case 3 it is 0.6%.
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CHAPTER 7. DIRECT NUMERICAL SIMULATION OF TURBULENT

FLOW PAST A FIXED BED OF SPHERES

7.1 Introduction

In this chapter, the immersed boundary method discussed in Chapter 5 is used as a true di-

rect numerical simulation tool to study the effects of particle clusters on fluid phase turbulence.

This is motivated by the experimental observations of Moran and Glicksman (2003a). In this

experiment, gas phase fluctuations are measured inside a circulating fluidized bed (CFB) with

dilute particle concentrations (∼ 1%–5%). The measurements indicate that at larger particle

concentrations where clusters usually are formed, gas phase fluctuations increase dramatically.

Moran and Glicksman (2003a) suggested that a length scale based on the cluster size, as op-

posed to the particle size, should be used to estimate the increased levels of gas fluctuations

caused by the particle phase.

It is worth noting that this conclusion is made by comparing the results from Glicksman’s

experiments with the criterion suggested by Gore and Crowe (1989), rather than the direct

analysis of experimental data. The principal conclusion from Gore and Crowe (1989) is that

the fluid phase turbulence intensity increases dramatically if dp/le > 0.1, where dp is the

size of particle and le is characteristic length scale of the most energetic eddy in the flow.

For dp/le below this critical value 0.1, the turbulence intensity is not found to increase with

the addition of particles. The ratio dp/le = 0.01 in Glicksman’s experiments is an order of

magnitude below the cutoff value 0.1 suggested by Gore and Crowe (1989). Therefore, the

Gore and Crowe criterion indicates the addition of small particles (164µm) would decrease

the turbulence intensity for Glicksman’s experiments. However, the experimental data show

158% increase of turbulence intensity inside the CFB. Moran and Glicksman attribute this
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discrepancy to the continuous formation and breakage of particle clusters in CFB. A plausible

explanation to describe the apparent increase in gas phase fluctuations is that the dominant

structures are particle clusters, with the dominant particle length scale being the cluster size

dc, instead of the particle diameter dp. If the length scale of the particle cluster dc is chosen

as the particle phase length scale in Gore and Crowe’s criterion, then dc/le = 1.25, which is

an order of magnitude greater than the cutoff value of 0.1. Now Gore and Crowe’s criterion

applied using dc instead of dp, indicates that the fluid phase TKE increases with the addition

of small particles in Moran and Glicksman’s experiments.

Moran and Glicksman (2003b) also tried to measure the effect a single particle cluster has

on the surrounding gas flow. That experimental work focuses on a small riser with the ability

to release a single cluster at a time. The single cluster is introduced in the riser by a thimble

located at the riser centerline, which is attached to a spring at the top of the riser via a Kevlar

line. By extending the Kavler line and then releasing, the thimble halts abruptly and launches

the clusters into the riser. There is no direct measurement of gas velocity around particle

clusters, and it is difficult to quantitatively characterize the length scale of particle clusters in

this experiment.

These experimental studies by Moran and Glicksman (2003a,b) suggest that particle cluster

size should also be considered as one of the model parameters in gas-solid turbulence models,

but it is difficult to extract data from these experiments for modeling purposes. DNS offers

an alternative means of investigating gas-solid turbulent flows. In principle, the dataset from

DNS can be used to quantify unclosed terms in the Eulerian–Eulerian models. Using DNS to

study the effects of particle clusters on the unclosed terms in EE models can provide valuable

insight into fluid-phase TKE modulation by the addition of particle clusters.

The numerical schemes in DNS can be categorized into those that resolve the flow around

each particle, or “true” DNS, and those that do not. For the DNS studies that do not resolve

the flow around each particle, the point-particle approximation is usually invoked, based on

the assumption that the particle size is smaller than the Kolmogorov length scale of fluid-

phase turbulence. In this approach, the velocity and location of particles are evolved through
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the particle velocity evolution equation proposed by Maxey and Riley (1983), while the fluid

phase is solved using Navier–Stokes equations, augmented by addition term, the interphase

momentum transfer. The drag force on the particle is usually modeled as the linear drag law

under the condition that dp∆u/ν < 1 and ρp/ρf � 1, where ∆u is the characteristic veloc-

ity difference between the particle and the local flow field. Kernel averaging is performed to

interpolate the interphase momentum transfer to the fluid momentum equation (also called

two–way coupling), provided the velocity statistics are locally homogeneous on the scale of the

particle size dp. Since particles are modeled as point force in the flow field and the boundary

layer around each particle is not fully resolved, the interphase momentum and energy transfer

are effectively modeled in point–particle DNS [Sundaram and Collins (1999)]. With the nu-

merical scheme such as the immersed boundary method, the exact no-slip and no-penetration

boundary conditions are imposed on the surface of each particle. Since all the length and time

scales are fully resolved in true DNS, the unclosed terms in Eulerian–Eulerian models can be

evaluated directly.

The transport equation for fluid phase TKE in the Eulerian–Eulerian approach is given in

Eq. 2.16 (Chapter 2):
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The terms on the right hand side are

(i) the production of TKE in the fluid phase due to mean velocity gradients;

(ii) the correlation between the fluctuating velocity–stress gradient (this term is usually

modeled as the dissipation in the fluid phase);

(iii) the fluctuating velocity–interfacial momentum transfer correlation.

In Eq. 2.16, the Reynolds stress in the production, the dissipation, and the interphase TKE

transfer terms are unclosed terms and need modeling. Usually it is difficult to quantify the

these unclosed terms from experimental data. For example, in the recent experiments of
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particle-laden homogeneous turbulent flows done by Hwang and Eaton (2006a), the viscous

dissipation ε is not measured directly from the fluctuating velocity. Instead the measurement

of the viscous dissipation is based on LES analogy technique described by Sheng et al. (2000).

With DNS datasets, the interphase TKE transfer term and the viscous dissipation can both

be quantified directly. We use the parallel immersed boundary method developed in Chapter

5 and Chapter 6 to study the particle clustering effects on fluid phase TKE.

In this study, the upstream turbulence past a fixed bed of spheres is chosen as the test case.

The spheres with the same radius are used to model the particles in the riser and CFB. With the

positions of spheres fixed, different random point distributions can be applied. Hence particle

clusters can be easily generated and the level of clustering can be measured quantitatively

using second order statistics. With stationary spheres, we also avoid the modeling of sphere

collisions and the lubrication forces when spheres come close to each other. Moreover, once

these spheres start moving around, the level of particles clustering cannot be controlled.

The case of laminar flows past fixed bed of spheres is studied by Hill et al. (2001a,b). The

periodic boundary conditions are imposed in all three directions in order to study the drag

force on the homogeneous suspensions. In this DNS, the zero gradient boundary conditions are

applied in the streamwise direction (the x direction), while the periodic boundary conditions are

applied in the span-wise directions (the y- and z- directions). We choose to use the inlet/outlet

boundary conditions in this study. It is because with the inlet/outlet boundary conditions,

the turbulence intensity, the upstream fluid phase correlation length and time scales can be

maintained, while these important parameters in fluid phase turbulence are expected to evolve

with the periodic boundary conditions.

In this Chapter, the estimation of memory requirements is studied in Section 7.2. The

important parameters in the DNS are described in Section 7.3. The numerical results are

presented in Section 7.4. The discussions of these results and the summary are shown in

Section 7.5 and Section 7.6.
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7.2 Estimation of Memory Requirements

Gas–solid turbulent flows are commonly encountered in the industrial environment, such as

the free board of circulating fluidized bed (CFB), fluid catalytic cracking (FCC) riser, etc. For

an industrial system like CFB and FCC riser, the particle size is mostly around 20 ∼ 80 µm.

With this range of particle size dp, the minimum fluidized velocity umf corresponds to particle

Reynolds number less than 20 [Kunii and Levenspiel (1969)], where the Reynolds number is

defined based on the minimum fluidized velocity

Rep =
dpumfρf

µf
. (7.1)

The solid volume fraction at the free board of CFB and FCC will be quite small (1% ∼ 5%),

and the particle Reynolds number is usually around 20 ∼ 501. In the experimental study by

Moran and Glicksman (2003a), the ratio between the fluctuating velocity and the mean gas

phase velocity is up to 40%2. Hence for an industrial system like CFB and FCC riser, the

ranges for the important non-dimensional parameters are:

1. particle Reynolds number Rep = 20 ∼ 50,

2. solid volume fraction αp = 1% ∼ 5%,

3. the turbulent intensity u′/U is up to 40%.

With these physical parameters keeping in mind, we now focus on the numerical require-

ments for resolving the important length and time scales in the particle–laden turbulent flow.

To resolve the single phase isotropic turbulence, the box size L should be large enough to

represent the energy-containing motions; and the grid spacing ∆x must be small enough to

resolve the dissipative scales. The time step ∆t used to advance the solution is limited by the

consideration of numerical accuracy.

The resolution of the smallest motions, characterized by the Kolmogorov scale η, de-

mands sufficiently small grid spacing ∆x/η, or correspondingly, a sufficiently large maximum
1In the experiment study by Moran and Glicksman (2003a) the average Reynolds number is estimated to be

around 23.
2In that experiment, mean velocity of gas is 2.1m/s, while the fluctuating gas velocity is 0.8m/s.
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wavenumber κmax when solving the Navier-Stokes equations in Fourier space. Experience

shows that κmaxη ≥ 1.5 is the criterion for good resolution of the dissipative length scales.

The other spatial resolution requirement that the box size L is large enough to hold the

energy–containing motions, can be represented by the relation between L and the integral

length scale L11. This requirement is not easy to use, since L11 can be obtained accurately by

integrating the two–point correlation function fr(x). The approximation that L11/L (where

L = k
3/2
f /εf ) has asymptotic value 0.43 is only valid at very high turbulent Reynolds number.

An alternative constraint for resolving large scale motions in turbulence is that the length scale

characterizing the large eddies should be smaller than the box size L. One good candidate for

the length scale characterizing the large eddies is L = k
3/2
f /εf .

The true DNS with the exact no-slip, no-penetration boundary conditions imposed on each

particle, puts more constraints on the resolution requirements. One is that there should be

sufficient number of grids to resolve the boundary layer around each particle. The scaling for

boundary layer states that δ/dp ∼ 1/
√

Rep, where δ is length scale for boundary layer and

dp is the diameter for particles. For the uniform grid size, if 5 grid points are used to resolve

the boundary layer around each particle, for Rep = 50, then the scaling requires at least 35

grid points for the particle diameter. The resolution requirements for particle–laden turbulent

flows can be summarized as:

1. κmaxη > 1.5,

2. L > L = k2/3/ε,

3. ∆x/δ < 1
2 .

The important non-dimensional parameters for particle–laden turbulence are Rep, u′/U and

Reλ, where Reλ =
u′λg

ν
is the Taylor micro-scale Reynolds number. If the CFB, or FCC riser

is the corresponding physical system for the DNS study, then the particle Reynolds number

Rep, and upstream turbulent intensity should be specified according to these physical systems.

From the physical parameter range and the resolution requirements for particle-laden tur-

bulent flows, the minimum number of grid points N required for the fixed physical parameters
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can be found out3. For example, Table 7.1 gives the required resolution N for Rep = 50,

u′/U = 40%, and δ/∆x = 3 with increasing turbulent Reynolds number Reλ. The last column

Table 7.1 The estimate of N for Rep = 50, u′/U = 40%, δ/∆x = 3.

Reλ 20 50 80
d/η 5.1 2.0 1.3
N 400 16,140 105,800

in Table 7.1 corresponds to the particle-laden turbulent flows in CFB or FCC. Clearly the 3D

dimensional simulation with N = 105, 800 cannot be achieved at this moment. It is worth not-

ing that the estimation of the memory consumption in this study, is based on the assumption

that the underlying numerical grids are uniform Cartesian grids. In this work, the resolution

with N = 256 is used and the physical and numerical parameters is discussed in Section 7.3.

7.3 Parameters of the Simulation

This study is concerned with the particle clustering effects on fluid phase turbulence. Since

the immersed boundary method has the ability to handle moving or deforming bodies with

complex surface geometry without body fitted meshes, the discrete-time immersed boundary

method discussed in Chapter 5 is used to perform the “true” DNS by imposing exact boundary

conditions on each particle surface. The sketch in Figure 7.1 shows the setup of this numerical

simulation.

The physical parameters that characterize the laminar flow past the fixed bed of mono-

dispersed particles are particle diameter dp, particle number density np, the mean slip velocity

|U |, particle density ρp, fluid density ρf and fluid phase viscosity νf . Using Buckingham

Π theorem, the important non-dimensional parameters are: particle volume fraction αp =

πd3np/6, density ratio ρp/ρf and particle Reynolds number Rep = |U |dp/ν. After introducing

fluid phase turbulence, the fluid turbulence length scale λg (Taylor micro-scale length scale)

and TKE kf are added in the dimensional parameters. Additional non-dimensional parameters

are the turbulent Reynolds number Reλ =
√

2kf/3λg/ν and dp/λg. From the experiments by

3The details can be found in Appendix C.
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Moran and Glicksman (2003a), it is suggested that the particle configuration should be also

considered in the parameters, and the particle cluster size dc should be introduced into this

already very broad parameter spectrum.

For laminar flow past fixed a bed of spheres, the numerical simulation by Hill et al. (2001a,b)

studied the drag force coefficient on particles as a function of Rep and αp. Van der Hoef et al.

(2005) studied the mono- and disperse spheres in the fixed bed , and numerical simulation with

the Lattice Boltzmann method is performed to close the drag force relation for polydispersed

systems. The particle clustering effects on the drag force coefficient is also studied by Wylie and

Koch (1999). Therefore, the wide parameter spectrum for laminar flow past the fixed bed of

particles is already studied by these researchers. With upstream turbulence, it is hypothesized

that the fluid phase TKE modulates with different particle random configurations, which can

be described by the particle cluster size dc. This is also suggested by Moran and Glicksman

(2003a). In this study we focus on the particle clustering effects on the fluid phase TKE.

The position of multiple spheres in the fixed bed is generated using two different random

point distributions. One random point distribution has particle homogeneously distributed

in a cubic box, and there is minimum particle clustering effects; while the other random

arrangement has strong particle clustering effects. We choose the Matérn hard-core point

process [Stoyan et al. (1986)] as the candidate for a spatially homogeneous random point field.

Matérn hard-core process is a dependent thinning applied to a stationary Poisson process with

intensity λ to eliminate the overlapping spheres.

For a random point process with particle clusters, we choose the sphere center locations from

the inelastic granular gas. Inelastic particles interact through collisions from a specified initial

state, and in the absence of the external forcing, the energy in the system decays according to

Haff’s cooling law. Beyond the homogeneous cooling state, the system spontaneously develops

clusters. The particle positions of the clustering state are used as random arrangements of

sphere positions in the fixed bed.

Both of these methods define an underling random point process, but the sphere positions

are different from one realization to another. Four multiple independent simulations (MIS)
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are performed for Matérn hard-core and the inelastic granular cooling gas respectively. In the

following studies, we denote the DNS simulation with the sphere random arrangement from

Matérn hard-core distribution as MHC, and the sphere positions from the clustering state of

inelastic granular cooling gas are denoted as GCG. The level of the particle clustering can

be characterized by the pair correlation function g(r), where r is the spatial separation. The

pair correlation functions g(r) from Matérn hard-core and the clustering state from inelastic

granular gas are shown in Figure 7.2. The largest value of g(r) in Figure 7.2 is 1.05 for Matérn

hard-core, and 2.4 for the clustering state from inelastic granular gas.

The physical parameters that characterize the spheres in the fixed bed are the diameter

dp, and solid volume fraction αp. Based on the validation study for laminar flow past single

sphere, DTIBM has the resolution requirement for spheres, where at least 20 grid points are

used to represent the particle diameter dp. The important parameters in the DNS are listed

in Table. 7.2. The turbulence intensity defined as u′/|V|, where V is the mean slip velocity

Table 7.2 The important parameters for upstream turbulence past fixed
bed of spheres.

αp
u′

|V|
ν Rep κmaxη d/η Reλ

5% 20% 0.002 50 14 4.8 23

and u′ =
√

2kf/3. kf is the turbulent kinetic energy in the frozen isotropic turbulence field,

which is generated using Rogallo’s algorithm [Rogallo (1981)]. The particle Reynolds number

Rep = |V|dp/ν is defined based on particle diameter dp and the mean slip velocity V. For solid

volume fraction αp = 5%, the total number of spheres is around 200 in the fixed bed. The cubic

box that contains the spheres is of size 2π. Noted that the turbulence Reynolds number is small

Reλ = 23 which is well below the turbulence Reynolds number found in experiments. This is

because the problem size as 256×256×512. With the fixed resolution, the turbulent Reynolds

number Reλ is determined by Rep and u′/|U | using Eq. C.4 Appendix C. All the DNS in this

chapter is done using the parallel immersed boundary method developed in Chapter 6.

The velocity isosurfaces from one realization of GCG and MHC are plotted in Figures 7.3

and 7.4 respectively. The fluctuating velocity u′1 is obtained by subtracting the mean slip
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velocity V from the instantaneous velocity U, and the reference fluctuating velocity is the rms

velocity in the box turbulence. Evidently, the magnitude of the fluctuating velocity |u′1| in

GCG is higher than that in MHC, which indicates that the fluctuating velocity is enhanced for

particle random arrangements with GCG. The numerical results are discussed in Section 7.4

7.4 Results

The numerical results from the immersed boundary method are discussed in this section.

Using the ensemble averaging method, the fluid phase turbulent kinetic energy kf is discussed

in Section 7.4.1. It is observed that kf increases along the streamwise direction inside the fixed

bed. The energy spectrum of the fluid phase fluctuating energy is discussed in Section 7.4.2.

The redistribution of the Reynolds-stress observed in Section 7.4.1 is discussed in Section 7.4.3.

7.4.1 The Estimation of TKE and Reynolds Stress

Since the upstream homogeneous turbulence sweeps through a fixed bed of spheres, it is

reasonable to assume that the flow field is spatially homogeneous in the y-z directions, as the

mean slip velocity V is imposed on the x direction. Multiple independent simulations (MIS)

are performed for the two random arrangements, MHC and GCG. In this section, the ensemble

averaging method is used to analyze fluid phase turbulence from these MIS.

The ensemble averaging of a multiphase turbulence field is defined using the indicator

function Iβ for phase β, where β = f represents the fluid phase, and β = p denotes the particle

phase. The density-weighted averaged mean for physical quantity Q of phase β is defined as

〈
Q̃(β)

〉
≡
〈IβρQ〉
〈Iβρ〉

(7.2)

If Q = 1, then the volume fraction of phase β is obtained. For the incompressible flow with

the constant thermodynamic density, the mean velocity without density weighting is defined

as 〈
U

(β)
i

〉
≡
〈IβUi〉
〈Iβ〉

(7.3)

in this study.
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The velocity field inside a fixed bed can be obtained from DNS, and MIS are also performed;

thus, the estimation of the mean velocity field
〈
U

(f)
i

〉
can be formed as follows:

〈
U

(f)
i (x)

〉
=

1
M

M∑
µ=1

U
(µ)
i (x)I(µ)

f (x)

αf (x)
(7.4)

where αf (x) is the fluid phase volume fraction and is estimated as

αf (x) =
1
M

M∑
µ=1

I
(µ)
f (x). (7.5)

The mean velocity field estimated using Eq. 7.4 is a function of location x. The indicator

function field I
(µ)
f for a µth simulation is formed on regular Cartesian grids, and if the grid

node (xi, yj , zk) is occupied by fluid field, then I
(µ)
f (x) = 1, otherwise I

(µ)
f (x) = 0.

The fluid phase fluctuating velocity for µth MIS u′′(f) is{(
u
′′(f)
i

)(µ)
}

= U
(µ)
i (x)−

〈
U

(f)
i (x)

〉
(7.6)

Then the fluid phase Reynolds stress can be calculated as

{
R

(f)
ij (x)

}
=

1
M

M∑
µ=1

I
(µ)
f

[(
u
′′(f)
i (x)

)(µ) (
u
′′(f)
j (x)

)(µ)
]

αf (x)
. (7.7)

U
(µ)
i (x) is the ith component of the instantaneous velocity field for a µth simulation. The TKE

kf is simply the half of the trace of
{

R
(β)
ij (x)

}
.

All the estimators in Eqs. 7.4 – 7.7 are functions of location x, and if using the assumption

that the flow field is homogeneous in y-z directions, we take the integration of the y-z plane

and plot the mean velocity
〈
U (f)

〉
, R

(f)
ij as functions of x. For example, the mean velocity can

be estimated as follows:

{〈
U(f)(xi)

〉}
=

Ny ,Nz∑
j,k=1

〈
U(f)(xi, yj , zk)

〉
Ny ·Nz

. (7.8)

The mean velocity
〈
U

(f)
1 (xi)

〉
, TKE kf (xi), Reynolds stress

〈
u
′′(f)
1 u

′′(f)
1

〉
,
〈
u
′′(f)
2 u

′′(f)
2

〉
and

〈
u
′′(f)
3 u

′′(f)
3

〉
are plotted in Figures 7.5—7.9. In Figures 7.5, 7.6, 7.8 and 7.9, the mean
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quantities are plotted with error bars representing the standard deviation of the estimated

quantities. In Figure 7.7, the standard deviation is plotted on the left-hand-side panel and the

95% confidence interval is plotted on the right-hand-side panel.

The 95% confidence interval is estimated use the student t distribution with the degree of

freedom M − 1 to estimate the statistical errors of these means, with M being the number

of independent multiple runs. The student t distribution is chosen here since the variance is

unknown and is estimated from the sample data. For a very large sample size (M > 100), t

distribution is very close to the standard normal distribution. With a small sample size, the t

distribution has relatively more weight in its tail than the normal distribution. With a normal

distribution, 95% of the distribution is within −1.96 and 1.96 standard deviations of the mean.

Using the t distribution, if the sample size is four, 95% of the area is within −3.18 and 3.18

standard deviations of its sample mean.

From these figures, it shows that there is relative small difference between MHC and GCG

for the mean velocity 〈U(xi)〉,
{

R
(f)
22 (xi)

}
and

{
R

(f)
33 (xi)

}
. The Reynolds stress is anisotropic.

The two independent invariants ξ and η of the normalized anisotropy tensor bij at different x

location are found to be non-zero. The Lumley triangle [Pope (1999)] for the Reynolds stress

anisotropy tensor bij is plotted in Figure 7.10. Significant redistribution of Reynolds stress is

found for both MHC and GCG. On the ξ-η plane, most of the symbols follow on the η = ξ line

which indicates an axisymmetric Reynolds stress. The color of the symbols from blue to red in

Figure 7.10 indicates the location of the state of anisotropy moving from x = 0 to x = 12.8dp.

Therefore, the Reynolds-stress becomes more anisotropic along the x direction inside the fixed

bed.

The fluid phase TKE and Reynolds stress
{

R
(f)
11 (xi)

}
in Figure 7.6 and 7.7 increase along

the x direction inside the fixed bed for GCG, while
{

R
(f)
11 (xi)

}
and kf remain flat inside the

fixed beds of MHC. The standard deviations are plotted in the left-hand-side panel of Figure

7.7 for the two sphere random arrangements (GCG and MHC). The standard deviation of

fluid phase energy from GCG is considerably higher than that from Matérm hard-core, and

this implies that the fixed bed with clusters introduces more statistical errors in the fluid phase
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turbulence from GCG. The error bars with a 95% confidence interval are plotted in the right-

hand-side panel of Figure 7.7. For just four MIS, 95% confidence intervals of
{

R
(f)
11 (xi)

}
1

for

GCG and MHC overlap. This indicates that more MIS is required for the convergence of fluid

phase Reynolds stress and TKE.

As mentioned in Section 7.1, the experiments performed by Moran and Glicksman (2003a)

reported the gas phase fluctuating velocity with particle concentrations (∼ 1%–5%) in a cir-

culating fluidized bed (CFB). The results indicate that at larger particle concentrations where

clusters are formed, the gas phase fluctuations increase dramatically. This experimental result

is implied from the fact that higher gas phase fluctuations are found at the larger particle

concentration. However, the level of particle clustering cannot be measured directly in the ex-

periment. The numerical results in our study reveal increasing fluid phase fluctuations inside

GCG with g(r) reported in Figure 7.2. These proves that the presence of particle clusters does

enhance the fluid phase fluctuations from the aspect of numerical simulations.

It is also worth noting that the parameter range in the numerical and experimental studies

can only be compared in a limited sense. First of all, the Kolmogorov length scale η = 146µm in

the CFB experiment is comparable to the particle length scale dp = 164µm. The production

length scale l = 0.06m that represents the largest eddy size of the gas phase turbulence is

around 400 times of Kolmogorov length scale η = 146µm. The turbulent intensity is around

40%, and the turbulent Reynolds number Reλ ≈ 136. In the direct numerical study, the

particle diameter dp is around four times of the Kolmogorov length scale η (seen Table 7.2),

and the turbulent Reynolds number Reλ = 23 is much smaller compared to the experiments.

Hence, the dissipation range of the energy spectrum is resolved in this DNS, but the largest

length and time scales in the experiments cannot be solved since the resolution requirement is

too high and the computational cost is prohibitive.

To understand the physical mechanism that drive the enhancement of fluid phase fluctua-

tions by particle clusters, the budget of the transport equation of kf and 2D energy spectrum

for kf and R
(f)
ii are examined in the following section.
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7.4.2 The 2D Energy Spectrum

In order to understand the physical mechanism behind the enhancement of fluid phase

turbulence for GCG, the energy-spectrum of the Reynolds stress R
(f)
ii is studied in this section.

The energy spectrum E(κ) is defined as

E(κ) =
∮

1
2
Φii(κ)dS(κ′) (7.9)

where κ′ = |κ| is the magnitude of the wavenumber vector κ, and Φii is the Fourier-transform of

Reynolds stress R
(f)
ii (x). For homogeneous single phase turbulence, the integration is performed

overall the wavenumbers κ = {κx, κy, κz} with magnitude as κ′. In this study, the fluid phase

turbulence is homogeneous only in y-z planes, where the wavenumber vector is κ = {κy, κz}.

The energy spectra E(κyz) and the velocity spectra for Reynolds stress R
(f)
11 , R

(f)
22 and R

(f)
33

at x = 0.5dp, 6.4dp and 12.8dp are plotted in Figure 7.11—7.14. The maximum wave number

number κmax = 120 corresponds to the Kolmogorov length scale η, and dp/η = 4.16, hence

the corresponding wavenumber for dp is κdp = 28.8. From these figures, it is observed that the

magnitude of E11(κyz) is significantly higher than E22 and E33. For both MHC and GCG, the

energy spectra E22 and E33 at x = 12.8dp are almost the same for κyz > 10, as seen in Figure

7.16. The wiggles are observed at higher wavenumbers |κyz| > 30 in Figure 7.11—7.14, which

is different from the energy spectrum of the homogeneous single phase turbulence.

To understand the wiggles at the high wavenumbers in the energy spectra, a simple

numerical experiment is performed here. The random point fields If (x) from MHC and

GCG are used to multiple a scalar field f(x), where the scalar field in the Fourier space is

f̃(κx, κy, κz) = δ(κy − 1)δ(κz − 2). Therefore, each y-z plane of this scalar field only has one

wavenumber excited in the Fourier space. The scalar field affected by the random point field

of MHC and GCG is

f1(xi, yj , zk) = f(xi, yj , zk) · If (xi, yj , zk).

In Figure 7.17, the black diamond symbol represents the energy spectrum of the undisturbed

scalar field. The spectra of the scalar field multiplied by the random point fields from MHC

and GCG show the similar wiggles at higher wavenumber |κyz| > 30. All the wavenumbers
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are all affected by the presence of particles and there is no significant difference between MHC

and GCG at low wavenumbers.

The energy spectrum from GCG at the lower wavenumbers |κyz| < 10 are higher than that

from MHC (seen Figure 7.15). It is hypothesized to be related to the clustering effect of the

particle phase. The wavenumber corresponding to the particle size dp is 28.8. It is useful to

quantify the size of the particle cluster dc and obtain the corresponding wavenumber κdc . In

polymer physics, the radius of gyration is used to describe the dimensions of a polymer chain.

The radius of gyration of a particular molecule at a given time is defined as:

R2
g ≡

1
N

N∑
k=1

|rk − rmean|2, (7.10)

where rmean =
1
N

N∑
k=1

rk is the mean position of the N monomers, and rk is the location of kth

monomer. Particle clusters can be found for one MIS of MHC and GCG, where each monomers

in a cluster has a neighboring monomer with the distance less than some cutoff distance. In

this work, the cluster size is chosen to be the radius of gyration of the particle cluster with the

largest number of particles.

The cluster sizes from the four MIS of MHC and GCG are listed in Table 7.3. Since only

Table 7.3 The radius of gyration of the four MIS from MHC and GCG.

MHC GCG
MIS 1 1.484dp 6.273dp

MIS 2 1.551dp 1.686dp

MIS 3 1.739dp 2.071dp

MIS 4 1.534dp 1.650dp

four MIS are performed in this study, cluster sizes show large variation. With more MIS (more

than 20), the cluster size of MHC converges to 1.55d, while the cluster size of GCG converges

to 2.49d and the wavenumber κdc is estimated to be 11. The energy at wavenumber κyz < 10

from GCG is higher than that of MHC, where the cutoff wavenumber is close to GCG’s κdc .

Therefore, the presence of particle clusters in GCG enhances the wavenumber less than κdc .
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7.4.3 The Redistribution of Reynolds Stress R
(f)
ij

The turbulence upstream is homogeneous and isotropic. The significant redistribution of

Reynolds stress is observed inside the fixed for both MHC and GCG, where R
(f)
11 is much higher

than R
(f)
22 and R

(f)
33 (seen in Figure 7.10). The redistribution of Reynolds stress is studied by

examining the important terms in the transport equation of the Reynolds stress R
(f)
ij ,

〈Ifρf 〉
[

∂

∂t
+
〈
U

(f)
k

〉 ∂

∂xk

]
R

(f)
ij +

∂

∂xk

〈
Ifρu

′′(f)
i u

′′(f)
j u

′′(f)
k

〉
=

−
〈
Ifρu

′′(f)
i ρu

′′(f)
k

〉 ∂
〈
U

(f)
j

〉
∂xk

−
〈
Ifρu

′′(f)
j ρu

′′(f)
k

〉 ∂
〈
U

(f)
i

〉
∂xk

+
〈

u
′′(f)
i

∂(Ifτkj)
∂xk

〉
+
〈

u
′′(f)
j

∂(Ifτki)
∂xk

〉
+
〈
u
′′(f)
i M

(f)
j

〉
+
〈
u
′′(f)
j M

(f)
i

〉
(7.11)

The two terms on the second line are the production Pij due to the mean velocity gradients.

The terms on the third line are the correlation between the fluctuating velocity and the gradient

of stress. The last line is the interphase TKE transfer term. The fluctuating velocity-stress

gradient correlation in gas solid turbulent flows has two parts:〈
u
′′(f)
j

∂(Ifτki)
∂xk

〉
=

〈
u
′′(f)
j

∂
(
If

(
−p′′(f)δik + 2µSki

))
∂xk

〉

= −

〈
u
′′(f)
j

∂
(
Ifp′′(f)

)
∂xi

〉
+
〈

u
′′(f)
j

∂ (If2µSki)
∂xk

〉
.

The first part is the correlation between fluctuating velocity and fluctuating pressure gradient

in the fluid phase, while the second part is the correlation between fluctuating velocity and

the gradient of viscous stress (or rate-of-strain). The rate-of-strain Ski involved here is from

the instantaneous velocity field Skj =
1
2

(
∂Uj

∂xk
+

∂Uk

∂xj

)
, where U is the instantaneous velocity

field. The second term is usually modeled as dissipations in multiphase turbulence models.

However, the correlation between fluctuating velocity and the gradient of viscous stress (or rate-

of-strain) in multiphase turbulence is different from the dissipation ε defined in the single phase

turbulence theory. The dissipation ε in the statistically homogeneous single phase turbulence

can be shown to be
〈

u′j
∂2νski

∂xk

〉
= ε = 2ν 〈sijsij〉, which is a square term, and it reduces the

transport equation for kf to
dkf

dt
= −ε for the isotropic homogeneous turbulence.
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We define

Θij ≡
〈

u
′′(f)
i

∂ (If2µSkj)
∂xk

〉
+
〈

u
′′(f)
j

∂ (If2µSki)
∂xk

〉
, (7.12)

and

Πij ≡ −

〈
u
′′(f)
i

∂
(
Ifp′′(f)

)
∂xj

〉
−

〈
u
′′(f)
j

∂
(
Ifp′′(f)

)
∂xi

〉
. (7.13)

In single phase turbulence, the transport equation for Reynolds stress Rij is as follows:

∂ 〈uiuj〉
∂t

+〈Uk〉
∂ 〈uiuj〉

∂xk
+

∂ 〈uiujuk〉
∂xk

= ν∇2 〈uiuj〉+Pij−
1
ρ

〈
ui

∂p′

∂xj
+ uj

∂p′

∂xi

〉
−2ν

〈
∂ui

∂xk

∂uj

∂xk

〉
.

(7.14)

The dissipation εij = 2ν

〈
∂ui

∂xk

∂uj

∂xk

〉
acts as an energy sink in the transport equation for Rij .

The difference between
〈

u
′′(f)
j

∂(If2µSki)
∂xk

〉
and the dissipation εij can be understood from the

derivation of εij in Eq. 7.14, which arises from 2ν

〈
ui

∂skj

∂xk
+ uj

∂ski

∂xk

〉

2ν

〈
ui

∂skj

∂xk
+ uj

∂ski

∂xk

〉
= ν

〈
ui∇2uj + uj∇2ui

〉
= −εij + ν∇2 〈uiuj〉 .

The correlation between fluctuating velocity and the gradient of viscous stress
〈

u
′′(f)
i

∂ (If2µSkj)
∂xk

〉
in the two-phase turbulence cannot be further decomposed as −εij + ν∇2 〈uiuj〉 in the sin-

gle phase turbulence theory due to the presence of the indicator function If in the derivative

∂(·)/∂xk.

To understand the redistribution of Reynolds stress Rij , the second order tensors Pij , Θij ,

Πij and the interphase TKE transfer term are examined. Any second order tensor can be

characterized by the trace of the tensor and the anisotropy tensor bij . The trace of the terms

on the right-hand-side is examined first and to obtain the relative magnitude of these terms.

In this study, the half of the trace of Θij is denoted as Θ = 1
2Θii and Π = 1

2Πii.

The production term Pij arises from mean velocity gradients and P = 1
2Pii calculated from

the velocity field is less than the magnitude of Θ but is not zero. It is noted from calculation

that the mean velocity gradient ∂
〈
U

(f)
1

〉
/∂x contributes most to the production P. From the

mean velocity
〈
U

(f)
1

〉
contour in Figure 7.18, it is observed that the mean velocity field is not

smooth. The following analysis shows that the mean velocity field is homogeneous, and hence



113

the gradients of mean velocity should be zero and the production is expected to be zero with

very large sample size.

Since the flow field is statistically homogeneous in the y-z directions, the mean velocity

gradients along the y-z directions are expected to be zero. It is hypothesized that the mean

velocity
〈
U

(f)
1

〉
varies very little inside the fixed bed along the streamwise direction as the

number of sample size increases, and therefore the mean velocity gradient ∂
〈
U

(f)
1

〉
/∂x is

expected to be zero. This can be implied from the mean momentum equation for the streamwise

direction x.

αfρf

∂
〈
U

(f)
1

〉
∂t

+ αfρf

〈
U

(f)
j

〉 ∂
〈
U

(f)
1

〉
∂xj

+ αfρf

〈
U

(f)
j

〉 ∂R
(f)
ij

∂xj
= −

∂ 〈IfP 〉
∂x1

+
∂ 〈If2µS1j〉

∂xj
+ M1

(7.15)

From the budget study of Eq. 7.15 in Table 7.4, it is observed that the mean pressure gradient

balances the interphase momentum transfer term. The mean pressure is found to be a linear

Table 7.4 The volume integral of the terms in Eq. 7.15. The integral is normalized

by
∫
V

(V V/d) dv, where the control volume V is over the entire fixed bed and

V = 0.2029 is the inlet velocity.

Volume integral of the terms GCG MHC∮
S

〈
U

(f)
j

〉〈
U

(f)
1

〉
dS 0.0128 0.111∮

S

〈
U

(f)
j

〉
RijdS 0.0106 0.006

sum of left hand side terms 0.0235 0.0175∫
V
−

∂ 〈IfP 〉
∂x1

dv 0.0964 0.0947∮
S
〈If2µS1j〉 dS -0.0002 0.0001∫
V

M1dv -0.0713 -0.0767

sum of right hand side terms 0.0249 0.0181

function inside the fixed bed (as seen in Figure 7.19). If infinite number of realizations are

performed, the interphase momentum transfer term is expected to be uniformly distributed

inside the fixed bed, and the mean pressure gradient is expected to be a constant. Therefore,

the velocity
〈
U

(f)
1

〉
is expected to be a constant along the streamwise direction, since the
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right-hand-side of Eq. 7.15 is expected to be zero with the infinite sample size. From the

above analysis, the production in Eq. 7.11 due to the mean velocity gradient will be zero

with the large sample size M . In the following study, the relative magnitude of Θ and Π are

examined as a function of the fixed bed depth x/dp. However, the interphase TKE transfer

term is not studied as a function of x/dp, and only the volume integral of this term is reported

and compared with the volume integral of Θ and Π.

Assuming homogeneity in the y and z directions, the estimate of the three dimensional

field Θ(x) in the transport equation for kf is formed as follows

{Θ(xi)}1 =

Ny ,Nz∑
j,k=1

Θ(xi, yj , zk)

Ny ·Nz
. (7.16)

The Π(xi) and Θ(xi) are plotted in Figure 7.20 as a function of x/dp. These terms are

normalized by V kref/dp, where kref is the TKE in the upstream homogeneous turbulence, dp

is the particle diameter and V is the mean slip velocity. This normalization is for the convective

terms in Eq. 7.11. The fluctuating velocity and viscous stress correlation Θ(x) acts like an

energy sink and the magnitude of this term is larger than that of Π. After x > 6dp downstream,

the magnitude of Θ(x) from GCG is smaller than that from MHC, and by integrating Θ(x)

from x = 6dp to x = 11dp, the volume integral of GCG is 34% less than that of MHC.

Therefore, Θ(x) of MHC dissipates more energy compared to Θ(x) of GCG, and Θ(x) directly

contributes to the increasing TKE in the second half of the fixed bed (6 < x/dp < 12) with

the GCG random particle configuration (as seen in Figure 7.6).

The interphase TKE transfer is not plotted as a function of x/dp in Figure 7.20. The

evaluation of this term can be done using the ensemble averaging method as follows:

〈Q(x)〉 =

1
M

M∑
µ=1

Q(x)Σµ
f (x)

1
M

M∑
µ=1

Σµ
f (x)

(7.17)

where Σµ
f (x) is the surface measure defined in Chapter 4, Eq. 4.50. Let Q = u

′′(f)
i M

(f)
i in

Eq. 7.17, then one can obtain a three dimensional field for
〈
u
′′(f)
i M

(f)
i

〉
. The sample space
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for surface measurable quantities is much smaller compared to that of the volume measurable

quantities, and the surface measurable space of 4 MIS from MHC is shown in Figure 7.21. From

this figure, it is obvious that the statistical error is expected to be quite high for interphase

energy transfer terms due to the small sample size. Therefore, the variation of the interphase

TKE transfer term along the x direction is not studied here, but the volume integral of the

trace of the interphase TKE transfer term is calculated and is compared with the volume

integral of Θ in Table 7.5.

Table 7.5 The volume integrals of Θ, Π, production and interphase TKE transfer term

in Eq. 7.20. The integral is normalized by
∫
V

(krefV/dp) dV , and the control

volume is over the entire fixed bed.

Volume integral of terms MHC GCG∫
V

Θ(x)dV -1.625459 -1.464937∫
V

〈
u
′′(f)
i M

(f)
i

〉
dV 1.9282 1.7777∫

V
Π(x)dV -0.0154 0.007∫

V
P(x)dV 0.6635 0.6726

From Table 7.54, it is noted that Θ, the fluctuating velocity and strain-rate gradient corre-

lation, and the interphase TKE transfer term are the dominant terms on the right-hand-side

of the transport equation for R
(f)
ii . The volume integral of the convective term is of order 10−2,

and the triple velocity correlation term is of order 10−3. Therefore, the anisotropic state of the

second order tensor Θij and the interphase TKE transfer term is studied here, which is char-

acterized by two independent invariants ξ and η of the anisotropy tensor bij . Here 6η2 = bijbij

and 6ξ3 = bijbjkbki.

Since these two tensors are functions of x, the independent invariants ξ and η can be formed

for every x location. We choose to compute the independent invariants for the volume integrals

of Θij and the interphase TKE transfer term, where the integration is over the entire fixed

bed. The independent invariants ξ and η for these two second order tensors are listed in Table
4From the analysis of the mean velocity, the volume integral of the production term is expected to be zero

if the sample size is large enough.
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7.6, and it is noted that these two tensors are highly anisotropic. Hence, from the study of

Table 7.6 The independent invariants ξ and η for Θij and the interphase TKE transfer
terms.

ξ η

Θij (GCG) 0.2120 0.2120
Interphase TKE (GCG) 0.3549 0.3562
Θij (MHC) 0.2219 0.2219
Interphase TKE (MHC) 0.3616 0.3630

the relative magnitude and the anisotropy state of the terms in Eq. 7.11, we can draw the

following conclusions:

i) The correlation between the fluctuating velocity and the gradient of viscous stress Θij and

the interphase TKE transfer term are the dominant terms on the right-hand-side of Eq.

7.11, where Θij acts as energy sink and the interphase TKE transfer term is the energy

source.

ii) The anisotropic state of the tensor Θij and the interphase TKE transfer tensor is char-

acterized by the independent invariants ξ and η. According to the interpretation of the

values of (ξ, η) on the Lumley triangle [Pope (1999)], the values of (ξ, η) suggest the degree

of anisotropy is higher for the interphase TKE transfer tensor compared to that of Θij

tensor.

7.5 Discussion

The numerical results discussed in Section 7.4 show increasing fluid phase fluctuations in

the fixed bed of spheres with clusters (GCG random particle configuration). The analysis

of 2D energy spectrum of GCG and MHC shows that the energy at lower wavenumbers for

GCG is higher than that for MHC. The cut-off wavenumber κdp ≈ 10. Using the concept

of the radius of gyration, the size of particle cluster can be estimated. The particle cluster

size of GCG is found to be 2.49dp, while the particle size of MHC is found to be 1.55dp.

The wavenumbers that correspond to MHC and GCG’s particle cluster size are 18.5 and 11.5

respectively. The presence of particle clusters in GCG enhances the energy at wavenumbers
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smaller than κdc = 11. However the energy spectrum studied is two dimensional, the correlation

along the streamwise direction x is not studied. Since the velocity field is not homogeneous

along the x direction, other numerical techniques should be used to study the correlation.

The relative magnitudes of Θ and the interphase TKE transfer term in Table 7.5 show

that Θ for MHC dissipates more energy compared to that of GCG. It is also observed that

GCG’s Θ in the second half of the fixed bed is smaller than that of MHC. The increasing

TKE along the x direction can be attributed to the term Θij in the transport equation of Rij .

The gradient of rate-of-strain in the definition of Θij is expected to be higher at the front of

the sphere, since the flow is blocked at this location. For the fixed bed with the higher level

of particle clustering, more spheres are located in the wake region of other spheres. Hence

∂Skj/∂xk around these spheres is expected to be smaller, and the magnitude of Θ is smaller

for the fixed bed with GCG. Therefore, Θij(x), which is usually modeled as dissipation in the

multiphase turbulence models, should consider the particle clustering effect, which is generally

left out in the gas-solid turbulence models available in the literature.

Second-order statistics of the particle phase, which is a common way to describe the particle

clustering effects, was considered in the modeling of interphase TKE terms in Amhadi’s model.

The particle clustering effects are not considered in the models for dissipation terms in the

existing multiphase turbulence models. The above analysis reveals that the particle clustering

effects should be included in the dissipation models.

The discussion of the particle clustering effect on multiphase turbulence models is based

on the estimation of the mean quantities in Section 7.4, where the ensemble averaging is used.

It is worthwhile to discuss the sample size M on the estimation of the mean quantities. With

only 4 MIS, the αβ = 〈Iβ〉 field is not a smooth field. The central plane of αp(x) past y = L/2

for 4 MIS of Matérn hard-core is plotted in Figure 7.22, and αf (x) is just 1−αp(x). The fluid

phase mean velocity
〈
U

(f)
1

〉
is not smooth either, as seen in Figure 7.18, which imposes extra

difficulty as the mean velocity gradient is required in the quantification of the production Pij .

Since the volume fraction field is not smooth, it is hypothesized that the number of inde-

pendent runs, or in other words, the sample size of the ensemble averaging is not enough such
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that the statistical error is very high and contaminate the estimation of αf (x). To determine

the number of MIS required to reduce the uncertainty in the estimated mean, the following

numerical experiment is conducted:

(i) the random point field with Matérn hard-core distribution is generated M times with a

certain solid volume fraction;

(ii) the mean αp(x) is formed using the formulation similar to Eq. 7.5;

(iii) since the random point field with a Matérn hard-core distribution is homogeneous in

all directions, the variance of αp(x) can be calculated and compared with an analytical

solution.

One can verify the number of independent simulations required such that the estimated vari-

ance of αp is close to the theoretical value αp − α2
p.

A Matérn hard-core point field is generated in a cubic box with the solid volume fraction

αp = 5% and the ratio between the box size and the particle diameter dp is 12.8. All the

parameters of this simulation are exactly the same as those used in the upstream turbulence

past a fixed bed of spheres. The middle plane of αp(x) is plotted with M = 5, 50, as seen in

Figures 7.23 and 7.24. With the scale of αp(x) to be 0 and 1, it is observed from these two plots

that the central planes of αp(x) become smooth. Under the condition that the random point

process follows the Matérn hard-core distribution, the variance of αp(x) is plotted in Figure

7.25. The estimated variance of αp is within 10% of the theoretical value αp − α2
p for M ≈ 8,

and 5% of the theoretical value for M > 20. Hence, to obtain a better statistical estimation

of αf and αp at least 8 MIS are needed.

7.6 Summary

In this study, the upstream homogeneous turbulence past a fixed bed of spheres with two

particle random arrangements is studied using the immersed boundary method. One of the

particle random arrangements is with Matérn hard-core distribution (MHC), where particles

distribute uniformly in the space. The other is the clustering state of inelastic granular cooling
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gas (GCG). The principal findings from this numerical study are:

i) the fluid phase TKE is enhanced along the streamwise direction inside the fixed bed for

GCG. The Reynolds-stress R
(f)
ij inside the fixed bed becomes anisotropic, and R

(f)
11 is

significantly larger than R
(f)
22 and R

(f)
33 .

ii) The 2D energy spectra study shows that for GCG the energy at lower wavenumber κ < 10

is higher than the energy spectra of MHC. The cutoff wavenumber corresponds to the

cluster size estimated by the radius of gyration.

iii) The correlation between the fluctuating velocity and the gradient of viscous stress Θij and

the interphase TKE transfer term are the dominant terms on the right-hand-side of the

transport equation for R
(f)
ij , where Θij acts as energy sink and the interphase TKE transfer

term is the energy source. The analysis of the anisotropic state shows that the degree of

anisotropy is higher for the interphase TKE transfer tensor compared to that of Θij tensor.

This study suggests that length scales based on cluster size, as opposed to particle size,

should be used to estimate the increased levels of gas fluctuations caused by the solid phase.

This study also suggests that models that do not consider the effect of the clusters on the gas

phase turbulence will not predict the flow dynamics inside the fluidized bed correctly.

The effects of the sample size M are examined Section 7.5. It is noted that with a sample

size M ≈ 8, the sample variance of the volume fraction αp(x) deviates 10% from the theoretical

value of the variance for Matérn hardcore distributions. Since only four samples are used for

GCG and MHC respectively in this study, more samples are required to obtained smooth αp

with less statistical errors, and to reduce the uncertainty in the estimation of the ensemble

averaged mean velocity field, Reynolds stresses and pressure field.
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Figure 7.1 The sketch of the flow domain with multiple stationary spheres.
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Figure 7.2 The pair correlation for MHC and GCG. The solid line repre-
sents the analytical form of the pair correlation for the Matérn
hard-core distribution [Stoyan et al. (1986)]. The filled squares
represent the pair correlation for the clustering state of inelastic
granular cooling gas obtained by calculations.
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Figure 7.3 The velocity isosurface of the instantaneous velocity field from
GCG. The contour plot at the end of the fixed bed is the
magnitude of fluctuating velocity |u′|. The scale of the con-
tour is the magnitude of fluctuating velocity |u′| normalized by

|uref | =
√

2
3kf where kf is TKE in the isotropic turbulence.
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Figure 7.4 The velocity isosurface of the instantaneous velocity field from
MHC. The contour plot at the end of the fixed bed is the
magnitude of fluctuating velocity |u′|. The scale of the con-
tour is the magnitude of fluctuating velocity |u′| normalized by

|uref | =
√

2
3kf where kf is TKE in the isotropic turbulence.
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Figure 7.5 The ensemble averaged mean velocity
{〈

U (f)(xi)
〉}

for Matérn
hardcore and GCG with variation in x direction. The mean
velocity is normalized by the mean slip velocity V = 0.2029.
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Figure 7.6 The comparison of normalized kf (xi) between Matérn hard-core
and granular cooling gas. The error bars in the plot indicate
the standard deviation of kf (xi). kf is normalized by the TKE
in the box turbulence kref = 0.002359.
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Figure 7.7 The comparison of normalized
{

R
(f)
11 (xi)

}
between Matérn

hardcore and granular cooling gas. The error bars
in left-hand-side panel indicate the standard deviation of{

R
(f)
11 (xi)

}
, while the error bars on the right-hand-side panel in-

dicates the standard error for 95% confidence interval. The ref-
erence value is the TKE in the box turbulence kref = 0.002359.
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Figure 7.8 The comparison of normalized
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R
(f)
22 (xi)
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1

between Matérn
hard-core and granular cooling gas. The error bars in the
plot indicate the standard deviation of

{
R

(f)
22 (xi)

}
1

for 4
MIS. The reference value is the TKE in the box turbulence
kref = 0.002359.
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Figure 7.9 The comparison of normalized
{

R
(f)
33 (xi)

}
between Matérn

hard-core and granular cooling gas. The error bars in the
plot indicate the standard deviation of

{
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(f)
33 (xi)

}
for 4

MIS. The reference value is the TKE in the box turbulence
kref = 0.002359.
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Figure 7.10 The Lumley triangle on the plane of the invariants of ξ and
η of the Reynolds stress anisotropy tensor. The color of the
symbols from blue to red in the figure indicates the location
of the state of anisotropy moving from x = 0 to x = 12.8dp.
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Figure 7.11 The two-dimensional energy spectrum for MHC and GCG and
x = 0.5dp, 6.4dp, 12.8dp. κyz is the magnitude of wavenumber
vector in the y-z plane.
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Figure 7.12 The two-dimensional velocity spectrum of R
(f)
11 for MHC and

GCG and x = 0.5dp, 6.4dp, 12.8dp. κyz is the magnitude of
wavenumber vector in the y-z plane.
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Figure 7.13 The two-dimensional velocity spectrum of R
(f)
22 for MHC and

GCG and x = 0.5dp, 6.4dp, 12.8dp. κyz is the magnitude of
wavenumber vector in the y-z plane.
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Figure 7.14 The two-dimensional velocity spectrum of R
(f)
33 for MHC and

GCG and x = 0.5dp, 6.4dp, 12.8dp. κyz is the magnitude of
wavenumber vector in the y-z plane.
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Figure 7.15 The two-dimensional energy spectrum for MHC and GCG and
x = 12.8dp at lower wavenumbers κyz < 30. κyz is the magni-
tude of wavenumber vector in the y-z plane.
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Figure 7.16 The two-dimensional velocity spectrum of R
(f)
22 and R

(f)
33 for

MHC and GCG and x = 12.8dp. κyz is the magnitude of
wavenumber vector in the y-z plane.
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Figure 7.17 The two-dimensional velocity spectrum of the scalar field f(x)
multiplying the random point fields If (x) from MHC and
GCG.
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Figure 7.18 The expected mean
〈
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(f)
1 (x)

〉
field from Matérn hard-core

distribution used in runs for upstream turbulence past random
arrangement of spheres.
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Figure 7.19 The mean pressure inside the fixed bed of spheres for MHC
and GCG.
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Figure 7.20 The normalized half trace of the second order tensor corre-
sponding to Θ = 1

2Θii and Π = 1
2Πii inside the fixed bed for

MHC and GCG. These terms are normalized by
V kref

dp
, where

kref is the TKE in the upstream homogeneous turbulence, dp

is the particle diameter and V is the mean slip velocity.
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Figure 7.21 The surface area measure σ(x) for MHC where the contour
field is σ(x) and the red line represents the surface area from
one run of MHC.
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Figure 7.22 The expected mean αf (x) field from Matérn hard-core dis-
tribution used in runs for upstream turbulence past random
arrangement of spheres.
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Figure 7.23 The expected mean Ip(x) field from 5 MIS.



143

X

Y

2 4 6 8 10 12 14

2

4

6

8

10

12

1
0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

αp

Figure 7.24 The expected mean Ip(x) field from 50 MIS.
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Figure 7.25 The variance of αp(x) field for Matérn hardcore distribution.
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CHAPTER 8. FUTURE WORK

In this chapter, possible future work is discussed. In this research, a new multiphase

turbulence model EEM is proposed in Chapter 3, where this model is validated for the canonical

problems for particle-laden turbulent flows. However some general modeling issues pertinent

to EEM need further study.

The equilibration of energy model (EEM) is validated for dilute particle-laden homoge-

neous turbulent flows. The validity of EEM for the entire range of parameters, such as the

solid volume fraction, the mass loading ratio and the particle Reynolds number needs further

investigation. For the dense gas-solid flows, collisions in the particle phase become important

and hence the particle energy dissipation through collision should be included in the transport

equations for particle phase TKE. The validity of EEM for the inhomogeneous flow cases needs

further improvement, even though EEM is validated for the homogeneous shear particle-laden

flows by comparing the model predictions with DNS results. EEM should be validated for

other inhomogeneous flow cases, such as the particle-laden turbulent pipe flows, for which

experimental dataset is available. This brings up the wall boundary conditions required in

multiphase turbulence models, which is not studied in this work. Another important physical

phenomena found in the gas-solid turbulent flows is the generation of fluid phase TKE due to

the large particles. If the particle Reynolds number is considerably larger than one, then wake

structures appear behind particles, and fluid phase fluctuation is expected to be generated in

these wake regions. This physical phenomena should also be modeled in EEM.

EEM is formulated by considering the behavior of a two–phase flow system in the limit of

stationary turbulence. In this limit, the mixture TKE is kept constant by artificially forcing

the fluid turbulence in a homogeneous particle–laden turbulent flow. The model parameter C2
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is defined as the ratio of the equilibrium values of particle–phase specific energy ee
f = ρfαfkf

to the total mixture energy em,

C2 =
ep
f

em
,

ee
f

em
= 1− C2,

and C2 is bounded between 0 and 1. It is hypothesized that C2 is a strong function of mass

loading, and could be a function of the particle Stokes number St , particle Reynolds number

Rep, particle volume fraction and the initial kf/kp ratio. Due to the lack of “true” DNS dataset,

C2 is currently modeled as a function of mass loading. The ideal test case for validating C2

is to perform a “true” DNS for particle–laden turbulence while keeping the mixture energy

constant. By varying the particle Stokes number St, particle Reynolds number Rep, and the

initial kf/kp ratio, the hypothesis for C2 could be validated directly, which is referred as test

case A in this Chapter. The model constant Cπ in the interphase TKE transfer terms can also

be determined using the dataset from the test case A. Since the mixture TKE is kept constant

by artificially forcing the fluid turbulence, the fluid phase viscous dissipation is compensated

by the artificial forcing in the fluid turbulence,
dem

dt
= 0 and εf = 0. The temporal evolution

of interphase TKE transfer terms can be used to determine Cπ once C2 is determined.

Besides using “true” DNS to determine the model coefficient of EEM, other test case can

be designed to improve the multiphase turbulence model. EEM is validated with DNS dataset

using the point-particle approximation. As it is discussed earlier, the dissipation rate reported

in point–particle DNS is not the “true” dissipation rate, since particles are modeled as point

force in the flow field and the boundary layer around each particle is not fully resolved. The

results from the experimental study for particle–laden homogeneous turbulence [Hwang and

Eaton (2006a)] indicate that the point–particle DNS is not able to obtain the amount of TKE

attenuation observed in experiments. In another words, the fluid dissipation rate captured in

point–particle DNS is smaller than those observed in experiments. If a “true” DNS for particle–

laden decaying homogeneous turbulence is performed where the parameters are similar to those

in Collin’s DNS study, we can obtain the dissipation rate εt
f . The dissipation model of EEM

is currently the model for the single phase εf with addition of interphase exchanges. With εt
f

calculated from “true” DNS, a better dissipation model can be built for EEM.
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As it is discussed in Chapter 5 and 6, “true” DNS using the immersed boundary method

is computationally expensive. The idea using “true” DNS dataset to determine the model

coefficients C2 and Cπ in EEM cannot be achieved right now. With the limited computational

resource, the modulation of fluid phase TKE with particle clustering effects is studied in

Chapter 7, where the particle clustering effect is a second-order statistics of particle phase and

is not directly connected to the study of determining the model parameters in EEM. If the

spheres in the fixed bed start to move and respond to the surrounding flow field, the additional

numerical issues need to be addressed with the immersed boundary method are:

(i) when particles come close and the inter–particle distance becomes less than several grid

points, the lubrication force need to be incorporated;

(ii) when particles collide, the hard-sphere model or soft-sphere collision needs to be considered.

Once these numerical issues are addressed and the simulator is validated with experimental and

numerical benchmarks for moving particles in the turbulent flow field, the model coefficients

for EEM can be determined. To simulate test case A, we also need a forcing scheme that

can compensate the energy loss in the mixture energy. From the 2D energy spectra studied

in Chapter 7, it is noted that the fluid phase energy spectrum from the immersed boundary

method has wiggles, which imposed extra difficulties in developing the forcing scheme that

keeps the mixture energy constant.
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APPENDIX A. THE SERIAL ALGORITHM FOR THE IMMERSED

BOUNDARY METHOD

A.1 Serial Algorithm for Step 1: the Nonlinear Term Calculation

The nonlinear term has three components:

Sx =
∂uu

∂x
+

∂uv

∂y
+

∂uw

∂z
, (A.1)

Sy =
∂uv

∂x
+

∂vv

∂y
+

∂vw

∂z
, (A.2)

Sz =
∂wu

∂x
+

∂wv

∂y
+

∂ww

∂z
. (A.3)

Since all the velocity components are in Fourier space, the calculation of ũũ in Fourier space

should be evaluated using convolution representation. To avoid the expensive convolution, the

velocity components ũ ṽ, and w̃ are all transformed into real space. The velocity calculations

are performed in real space and then transformed back to Fourier space. Partial derivatives

in y and z are all evaluated using wave numbers. The second order central difference stencil

is used to approximate the partial derivatives in x. Hence, the nonlinear terms are eventually

evaluated as follows:

S̃x =
(ũu)i+1 − (ũu)i−1

2∆x
+ ικy (ũv)i + ικz (ũw)i ,

S̃y =
(ũv)i+1 − (ũv)i−1

2∆x
+ ικy (ṽv)i + ικz (ṽw)i ,

S̃z =
(ũw)i+1 − (ũw)i−1

2∆x
+ ικy (ṽw)i + ικz (w̃w)i ,

where the subscript i represents the grid index for the x direction.

The nonlinear term Sx is evaluated as follows:

for i = 1 to NX do
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a) backward 2D Fourier transform velocity ũ ṽ, w̃ at ith plane to real space

b) form uu, uv, and uw in the real space

c) forward 2D Fourier transform uu, uv and uw to Fourier space

d) S̃xi = ικy (ũv)i + ικz (ũw)i

e)
(
S̃x

)
i−1

=
(
S̃x

)
i−1

+
(ũv)i

2∆x

f)
(
S̃x

)
i+1

=
(
S̃x

)
i+1

−
(ũv)i

2∆x

end for

A.2 Serial Algorithm for Step 2: the Forcing Function Calculation

The calculation of the forcing function for Np particles is performed as follows.

for j = 1 to Np do

for i1 to Ns do

a) Find the neighboring points’ location;

b) obtain un, 1
ρ∇P , S and ∇2un at the neighboring points;

c) interpolate un, 1
ρ∇P , S and ∇2un to the interface point xp;

d) use forcing function Eq. 5.33 to evaluate forcing f at the surface point;

e) interpolate f on the surface point xp back to the neighboring grid points.

end for

end for

The forcing f is calculated in real space; therefore, the velocity un, pressure gradient
1
ρ
∇P ,

and nonlinear terms S and ∇2un are in real space. Details of the above steps are explained

below.

Step a. We explain the finding neighboring points using the two dimensional case, since

the three dimensional case will be similar.
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hx

hy

41

2 3

interface Ω

xp

Figure A.1 2-D neighboring point calculation.

x1 =
⌊ xp

∆x

⌋
y1 =

⌊ yp

∆x

⌋
x2 =

⌊ xp

∆x

⌋
y2 =

⌈ yp

∆x

⌉
x3 =

⌈ xp

∆x

⌉
y3 =

⌊ yp

∆x

⌋
x4 =

⌈ xp

∆x

⌉
y4 =

⌈ yp

∆x

⌉
where b·c is the floor function for a real number and d·e is the ceiling function. ∆x is the

grid spacing for the uniform Cartesian grids. Hence, hx =
( xp

∆x
−
⌊ xp

∆x

⌋)
∆x, and hy =( yp

∆x
−
⌊ yp

∆x

⌋)
∆x.

Step b. From the results in step a, now calculate un, 1
ρ∇P , S and ∇2un at the neighboring

points.

Step c. The interpolation of un, 1
ρ∇P , S and ∇2un to the interface point xp can now be

performed as follows. The following two-dimensional linear interpolation scheme is used

u(xp) = [(∆x− hx)(∆x− hy)u1 + hxhyu3 + (∆x− hx)hyu2 + hx(∆x− hy)u4]
1

∆x2
(A.4)

where the subscript of u denotes the velocity value at the corresponding point in Figure A.1,

and up represents the velocity at surface point xp. Using this interpolation scheme, the point
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1 in Figure A.1 which is closest to xp will have the largest weight

(∆x− hx)(∆x− hy)/
(
∆x2

)
(A.5)

Point 3 which is furthest from the surface point xp has the smallest weight

hxhy/
(
∆x2

)
(A.6)

Step d. Using the results of step c and using Eq. 5.33, calculate the forcing function f at

the surface point.

Step e. Using the results of step d, interpolate f on the surface point xp back to the

neighboring grid points as follows.

f1 = f(xp)(∆x− hx)(∆x− hy)/(∆x)2,

f2 = f(xp)(∆x− hx)hy/(∆x)2,

f3 = f(xp)hxhy/(∆x)2,

f4 = f(xp)hx(∆x− hy)/(∆x)2.
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APPENDIX B. PARALLELIZATION OF STEP 1: THE NONLINEAR

TERM CALCULATION

Since the domain decomposition along the x direction is used, the nonlinear term Sx is

evaluated on the rank k process as follows:

call mpi irecv to receive data from rank k − 1

call mpi irecv to receive data from rank k + 1

for i = 1 to loc NX do

backward 2D Fourier transform velocity ũ ṽ, w̃ at ith plane to real space

form (uu), (uv) and (uw) in the real space

forward 2D Fourier transform uu, uv and uw to Fourier space ũu, ũv and ũw.

S̃xi = ικy (ũv)i + ικz (ũw)i

if i 6= loc NX then(
S̃x

)
i+1

=
(
S̃x

)
i+1

−
(ũu)i

2∆x

end if

if i 6= 1 then(
S̃x

)
i−1

=
(
S̃x

)
i−1

+
(ũu)i

2∆x

end if

if i = 1 then

use MPI ISEND to send ũu to rank k-1

end if

if i = loc NX then

use MPI ISEND to send ũu to rank k+1

end if
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end for

call mpi waitall

for ũu received from rank k + 1,
(
S̃x

)
loc NX

=
(
S̃x

)
loc NX

+
(ũu)
2∆x

for ũu received from rank k − 1,
(
S̃x

)
1

=
(
S̃x

)
1
+

(ũu)
2∆x



153

APPENDIX C. ESTIMATIONS OF MEMORY REQUIREMENTS FOR

THE IMMERSED BOUNDARY METHOD

The resolution of the smallest motions, characterized by the Kolmogorov scale η, de-

mands sufficiently small grid spacing ∆x/η, or correspondingly, a sufficiently large maximum

wavenumber κmax when solving the Navier-Stokes equations in Fourier space. Experience

shows that κmaxη ≥ 1.5 is the criterion for good resolution of the dissipative length scales.

The other spatial resolution requirement that the box size L large enough to hold the energy–

containing motions, can be represented by the relation between L and the integral length scale

L11, and L = 8L11. This requirement is not easy to use in the study of the numerical resolu-

tion requirement, since L11 can be obtained accurately by integrating the two–point correlation

function fr(x). The approximation that L11/L ( where L = k
3/2
f /εf ) has asymptotic value 0.43

is only valid at very high Reynolds number. An alternative constraint for resolving large scale

motions in turbulence is that the length scale characterizing the large eddies should be smaller

than box size L. One good candidate for the length scale characterizing the large eddies is

L = k
3/2
f /εf .

The true DNS with exact no-slip, no-penetration boundary conditions imposed on each

particle, put more constraints on the resolution requirements. One is that there are sufficient

number of grids to resolve the boundary layer around each particle. The scaling for boundary

layer states that δ/d ∼ 1/
√

Rep, where δ is length scale for boundary layer and d is the

diameter for particles. For the uniform grid size, if 5 grid points are used to resolve the

boundary layer around each particle, for Rep = 50, then the scaling requires at least 35 grid

points for the particle diameter. The resolution requirements for particle–laden turbulent flows

can be summarized as:
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1. κmaxη > 1.5,

2. L > L = k2/3/ε,

3. ∆x/δ < 1
2 .

The important non-dimensional parameters for particle–laden turbulence are Rep, u′/U

and Reλ, where Reλ =
u′λg

ν
is the Taylor micro-scale Reynolds number. If the CFB, or

FCC riser is the corresponding physical system for the DNS study, then the particle Reynolds

number Rep, and upstream turbulent intensity are specified. Since

Reλ =
u′λg

ν
= Rep

u′

U

λg

d
= Rep

u′

U

λg

η

η

d
,

the free parameter left is the ratio between particle size d and some length scale from isotropic

turbulence, for example,
λg

d
or

η

d
. For isotropic turbulence, the relations between micro-scales

in homogeneous turbulence are given by

λg/L =
√

10Re
−1/2
L , (C.1)

η/L = Re
−3/4
L . (C.2)

Then for some
η

d
,

Reλ =
(

Rep
u′

U

η

d

)2√
15. (C.3)

To satisfy the third requirement, L < L, substitute Eq. C.3 in Eq. C.1 and use the fact

that Reλ =

√
20
3

ReL, the following relation can be obtained:

L = ηRe
3/4
L = η

(
3
20

)3/4

Re
3/2
λ < L,(

Rep
u′

U

)3 (η

d

)4
(

3
2

)3/2

< L/d (C.4)

η

d
Re

3/2
λ

(
3
20

)3/4

< L/d (C.5)

One can understand the inequalities from two perspectives:

1. for fixed grid resolution for particle diameter and total number of grid points N for the

domain (L/d known), one can choose η/d to satisfy the resolution requirement in Eq.
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C.4. The following table lists the maximum η/d ratio for L/d = 10 with variation of Rep

and u′/U , where L/d = 10 means that if N=200, 20 grid points are used to represent the

particle in the flow field.

Table C.1 The maximum η/d ratio for L/d = 10 with variation of Rep and u′/U .

Rep 20 20 20 50 50 50
u′/U 10% 20% 30% 10% 20% 30%
η/d 1/1.5 1/1.85 1/2.5 1/3 1/5 1/6.19
Reλ 15.5 18.0 22.0 24.7 35.0 40.4
λg/d 5.2 4.5 3.6 3.3 2.3 2.0

2. This inequality can also be used to estimate L/d ratio for specified Rep, u′/U , Reλ. First

substitute Rep, u′/U , Reλ in Eq. C.3 to obtain η/d,

η

d
∼

Re
1/2
λ

Rep
u′

U

then Eq. C.5 gives the lower bound for L/d ratio.

In the single phase DNS, N is scaled as

N ∼ 1.6
(

L

η

)
= 1.6Re

3/4
L ≈ Re

3/2
λ .

The similar scaling can be obtained for N = L/∆x in particle–laden turbulence DNS

N =
L

∆x
=
L
d

d

δ

δ

∆x
∼
(η

d

)
Re

3/2
λ

√
Rep

δ

∆x
∼

Re2
λ

Re
1/2
p

u′

U

. (C.6)

The additional Re
1/2
λ in the estimation for N is due to η/d ratio. κmaxη in this case is

much larger than the lower bound 1.5 . In another words, the dissipative scale is over-

resolved. The requirement of κmaxη ≥ 1.5 corresponds to the grid spacing in physical

space as
∆x

η
=

2π

1.5
≈ 2.1

If d/η = 4 and using 20 grid points to represent the particle, then ∆x/η = 0.2 and

κmaxη = 5π if the domain length is 2π. The following table gives the estimation for N

for Rep = 50, u′/U = 40%, and δ/∆x = 3.
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Table C.2 The estimate of N for Rep = 50, u′/U = 40%, δ/∆x = 3.

Reλ 20 50 80
d/η 5.1 2.0 1.3
N 400 16,140 105,800

The last column is close to the particle–laden turbulent flows found in CFB or FCC riser;

if 20 grids are used to represent particles, N is roughly 105 and N3 needs memory storage

space up to petabytes, which is impossible to achieve at this moment.

From the above analysis, one can choose a suitable parameter range for particle–laden

turbulent flows if using the pseudo-spectral and the immersed boundary methods to simulate

the particle-laden turbulent flows. It is worth noting that the estimation of the memory

consumption in this study, is based on the assumption that the underlying numerical grids are

uniform Cartesian grids. If other numerical methods are used to approximate the embedded

irregular objects in the flow field, the estimation of memory requirement discussed in this

section cannot be applied. However the resolution requirements for particle-laden turbulent

flows discussed in this Appendix is still useful.
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APPENDIX D. TRANSPORT EQUATION FOR THE

INSTANTANEOUS KINETIC ENERGY Ef

In this section, the instantaneous kinetic energy Ef is first studied for the laminar flow

past a stationary particle, then one MIS run of GCG and MHC is examined respectively.

D.1 The Budget Study for Laminar Flow Past a Stationary particle

Consider the transport equation for the instantaneous kinetic energy of fluid phase E ≡
1
2
Uf (x, t) ·Uf (x, t),

DE

Dt
+∇ ·T = −2νSijSij (D.1)

where Sij ≡
1
2

(∂Uj/∂xi + ∂Ui/∂xj) is the rate-of-strain tensor, and

Ti ≡
Uip

ρ
− 2νUjSij (D.2)

is the flux of energy. Integrating the transport equation for E over the control volume V, we

obtain the following equation:

d

dt

∫∫∫
V

EdV +
∫∫

A
(UE + T) · ndA = −

∫
V

2νSijSijdV. (D.3)

For laminar flow past a stationary particle, the time derivative in Eq. D.3 can be neglected

since the flow field can be considered to be a stationary process. The second term is the surface

integral that accounts for the inflow, outflow and the work done on the control surface, which

represents the transfer of E from one region to another. It is also noted that the interface S

includes the interface Ωp between solid particles and the fluid phase. However on the interface

Ωp, Uj is zero (around machine accuracy), hence the magnitude of Ti is around zero. The value

of
∫∫

Ωp

T · ndS calculated from DNS database confirms the observation that the the energy
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flux at the particle surface Ωp is far less than the energy flux at the surface of control volume

A.

The flux of energy and the dissipation in the integral equation Eq. D.3 is listed in Table D.1

for the laminar flow past a stationary particle with Rep = 50. The control volume V contains

the sphere, and in x direction the controlled volume starts upstream the 3 particle diameters

from the center of the sphere and ends downstream the 5 particle diameters from the center of

the sphere. The surface Ωp is the interface between particle and the fluid, while A is the outer

Table D.1 The integrals of the energy flux and the dissipation from the instantaneous
velocity and pressure fields of upstream turbulence past the single stationary
sphere. The percentages in (·) indicate the value of the integrals normalized by
the volume integral of the dissipation.

The terms in Eq. D.3 value of the integrals∫
A

(UE) · ndA 0.568× 10−4 (−9.3%)∫
A

T · ndA −0.693× 10−3 (114% )

−
∫
V

2νSijSijdV −0.608× 10−3 ( 100%)∫
Ωp

(UE + T) · ndA 1.826× 10−6 (0.3%)

difference 0.286× 10−6 ( 4.7%)

surface of the controlled volume V. The sum of energy flux and the dissipation should be zero.

From the value in Table D.1 the difference is 4.7% of the dissipation
∫
V

2νSijSijdV . This could

be due to the methods used to calculate the rate-of-strain Sij . In the calculation of Sij terms,

the derivatives in y and z are calculated in Fourier space and transformed back to real space,

and this method is know to have very high accuracy. The first order finite difference schemes

are used to calculate ∂(·)/∂x, which are expected to be less accurate and will introduce some

numerical errors.

From this study, we can observe that the integral of the energy flux along the interface

Ωp is almost zero and the energy flux at the outer surfaces of the control volume V balances

the total dissipation, and the contribution from UE is small, compared to the flux of energy∫
A

T · ndA.
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D.2 The Budget Study for Upstream Turbulence Past the Fixed Bed of

Spheres

After evaluating the method used to calculate the transport equation for instantaneous

kinetic energy E, we will use this method to study the instantaneous kinetic energy balance

for upstream turbulence past a fixed bed of spheres with the particle random arrangements as

Matérn hardcore and granular cooling gas.

In the integral equation, the time derivative can be neglected since the upstream turbulence

past the fixed bed of sphere can be considered to be a statistically stationary process. The

instantaneous energy inside the fixed settles down after half flow through time, and after that

the fluid phase instantaneous kinetic energy shows less than 1% variation around the time

averaged total energy E, as seen in Figure D.1.

t/T

E f

1.6 1.8 2 2.2 2.40.04

0.042

0.044

0.046

0.048

0.05

Figure D.1 The evolution of total kinetic energy E for one realization of
homogeneous upstream turbulence past a fixed bed of spheres.

The reference time T is the one flow through time T =
Lx

V
.
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Y
X

Z

Figure D.2 The control volume used in the budget study of the integral
equation of the instantaneous energy Ef .

Table D.2 shows the value of the flux of energy and the dissipation computed for upstream

turbulence past a fixed bed of spheres for MHC and GCG. Only one realization from MHC

and GCG is studied respectively. The control volume V is chosen to contain all the particles.

For example, in Figure D.2 the control volume starts from yellow plane upstream and ends at

the blue plane downstream.

From the data in Table D.2, it is observed that the dissipation from one realization of

MHC is 19% more than that from MHC. However the budget study of Eq. D.3 is from the

perspective of the single phase turbulence, and the instantaneous kinetic energy E =
1
2
UiUi

instead of turbulence kinetic energy kf is studied.
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Table D.2 The integrals of the energy flux and the dissipation from the instantaneous
velocity and pressure fields for one MIS of GCG and MHC respectively. The
percentages in (·) indicate the value of the integrals normalized by the volume
integral of the dissipation.

The term in Eq. D.3 MHC GCG∫∫
A

UE · ndS 0.031 (−10.5%) 0.105 (−41.9%)∫∫
A

T · ndS −0.312 (105.9%) −0.337 (136.4%)

−
∫∫∫

V
2νSijSijdV −0.294 (100%) −0.247 (100%)

the magnitude of difference 0.0135 (4.6%) 0.015 (5.5%)
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