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Chapter 1: Introduction 

 

 

 

 

Engineering is a process of decision making for complex and uncertain systems. In 

the past, the unknowns for these systems were handled through rules of thumb, 

observation, safety factors, and intuition. As computational power increases, rules of 

thumb, observations, and intuition are being supplemented by numerical models, 

simulations, engineering analysis, and other computational tools. These numerical models 

are based on the equations that describe physical phenomena (e.g., Navier-Stokes 

equations are used to describe fluid flow, Fourier’s Law for heat transfer, and Hooke’s 

Law for stress/strain relationships in materials). Although these models can provide 

significant insight into the engineering design process, they are not currently used as 

design tools but rather as analysis tools. In fact, the application of computational science in 

engineering has not provided a clear way to deal with ambiguity and uncertainty in 

engineering. There are several reasons for this: 

• Numerical models currently require manual integration of model-to-model 

information 

• Human-accessible quantification of error and uncertainty surrounding models is not 

readily available 

• Semantically rich information frameworks for managing systems of models do not 

exist to enable full-model pedigree information to be exchanged  
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• Individual models and simulations cannot be easily integrated to create complete 

analysis systems that capture the richness and fullness of a complex system 

For these reasons, the engineering models used today result in significant disconnects in 

the engineering process as multiple models are individually created, revised, and manually 

updated. 

 To overcome these issues, new practices and methods must be created that enable 

engineers and analysts to improve the speed of the engineering process and to connect 

engineering analysis with the creative aspects of engineering design. This will require 

changing how information is fundamentally treated in the engineering process. Rather than 

managing information at the human-to-human level, information must be managed at a 

much lower level to remove the human middleware from the process. The human is the 

slow link in the process that is currently used. The traditional engineering process has two 

characteristics that are currently the limiting factors in improving the process efficiency: 

• Manual integration of information 

• Physical prototyping 

One example of this would be an engineer working through an analyst to better understand 

the results of a simulation. Another example is the process of moving data from one 

engineering analysis package to another and integrating the results of multiple analysis 

packages in the engineer’s mind. All of these practices require humans to become 

middleware in a process that ought to be directly accessible by the individual seeking 

information. As humans, we present and filter information based on a particular 

perspective developed through experience and individual bias. The human filtering process 

can remove valuable information that may be important to the downstream user. A 
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computer, when tasked with integrating information, will filter and bias the information 

only as the user directs. 

Another limiting factor within the traditional engineering process is the use of 

physical prototyping and of numerical models, which are exacting. Physical prototypes are 

useful for integrating all the components and physical phenomena together. However, 

physical prototypes do not enable direct information integration from one design option to 

another. In addition, data measurement within a physical prototype can be time-consuming 

and difficult, and the quantity of interest can often not be measured directly. Because of 

this, physical prototyping is best primarily for confirmation and exploration and not 

directly as a design tool.  

In contrast, numerical models are used as a very precise tool providing very 

detailed information about a specific component or phenomenon. However, computational 

models are time consuming, the connection between the model results and the engineering 

question being asked is often not clear, and they cannot be easily connected together to 

create complete systems.  

A new approach is needed that can combine the breadth of physical prototyping 

and the richness of numerical analysis in a timely and easily understood manner. This new 

approach needs to empower the engineer to quickly investigate a wide range of options. It 

must be applicable from initial design, through final design, and then provide an 

engineering platform through the life of the engineered product; and it needs to explicitly 

address error and uncertainty. This approach must provide for model portability and enable 

complete systems of models to be built easily and naturally. 
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This thesis proposes a framework that addresses these issues. Within this 

engineering framework, models of specific phenomena and components are coupled 

together to build engineering objects. These engineering objects are then coupled together 

to create systems and systems of systems. The key aspects of this framework are: 

• An object-oriented approach to information management 

• Incorporation of emergent behavior in the modeled system 

• Support for bottom-up information semantics 

These issues will be implemented by applying the concepts of object-oriented 

programming to engineering simulation and design. Several research areas surrounding 

informatics will be examined (e.g., product life-cycle management, computational systems 

biology, and the Semantic Web). The emergent behavior that is being enabled by tools 

created for the Semantic Web will be utilized to enable emergent behavior in advanced 

engineering software frameworks. Fields in the humanities will be reviewed for insight 

into how humans internalize interactions with objects to provide methods for 

characterizing information in the engineering process (e.g., analysis data, CAD data, 

costing data). Each of these areas will provide a capability that will enable the creation of 

an advanced engineering framework that will enable engineering objects to be created that 

mimic their physical counterparts. 
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Chapter 2: Background 

 

 

 

 

Computers have been used in the engineering design process since the early 1960s. 

An example of this is the use of computers to model manufacturing processes to optimize 

route planning [Dahl et al. 1966]. Originally, computers were used as a faster slide rule, in 

that they were expected to quickly perform analyses that could have been done by hand 

with sufficient time. As solvers improved, the analyses that computers were expected to 

perform became more and more complicated, until computers could analyze in minutes or 

days phenomena that were too time-consuming to ever be computed by hand. Today, this 

type of computing continues as scientific computing or engineering analysis, and involves 

solving equation sets, usually partial differential equations that describe a particular 

physical phenomenon. As solvers improved, computers were also being developed as a 

means to perform other tasks, including: 

• text-based processing (1980s) 

• hypertext information (1990s) 

• user-enhancement applications, e.g., wikis, blogs, and mashups (2000s) 

Engineering has been slow to adopt these newer information technologies. Because 

engineering analysis is very closely related to scientific computing, that connection is easy 

to make. However, the connection between engineering design and a wiki or a mashup is 

not as clear. Nonetheless, engineering is about making a decision, understanding risk and 
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uncertainty, and managing complex information, which are the very concerns that 

information technology and informatics work to address. The definition of information and 

how we manage it is changing, and the process of engineering must change with it. Today, 

engineers act primarily as middleware. Engineers move data from CAD packages or 

spreadsheets to analysis packages such as CFD solvers or FEA solvers. This is so deeply 

ingrained in engineering that many engineers would argue that these middleware functions 

are in fact the most important functions that an engineer performs. Engineering software is 

needed that is based on the fundamentals of informatics and that moves the engineer from 

the middleware process in engineering product realization to the higher-level tasks 

requiring creativity, judgment, and values.  

2.1 Informatics 

Informatics is the science of working with and processing information. Informatics 

… encompasses, and builds on, a number of existing academic disciplines: 

primarily artificial intelligence, cognitive science and computer science. Each 

takes part of informatics as its natural domain: in broad terms, cognitive science 

concerns the study of natural information processing systems; computer science 

concerns the analysis of computation, and the design of computing systems; 

artificial intelligence plays a connecting role, producing systems designed to 

emulate those found in nature. Informatics also informs, and is informed by, 

other disciplines, such as mathematics, electronics, biology, linguistics, 

psychology, and sociology. Thus informatics provides a link between 

disciplines with their own methodologies and perspectives, bringing together a 

common scientific paradigm, common engineering methods and a pervasive 
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stimulus from both technological development and practical application. 

[Fourman, M. 2002, p. 2] 

A general definition of informatics is “the study of the structure, behavior, and interactions 

of natural and artificial systems that store, process, and communicate information” 

[Fourman, M. 2002, p. 2]. In the case of the research discussed in this document, the 

informatics technologies of interest are knowledge storage and discovery, computer-driven 

knowledge creation, and self-describing data encapsulation. 

The issues of knowledge storage and discovery and self-describing data 

encapsulation are currently being addressed with ontologies. The creation of ontologies 

and other knowledge management tools [Rosse et al. 2003, Gehlert et al. 2007, Garcia et 

al. 2004] are a current area of research within the informatics field. An ontology is “an 

explicit and formal specification of a conceptualization” [Gruber 1993, p. 200]. 

Pragmatically, an ontology defines a domain of discourse with a finite list of terms and a 

relationship between those terms. The research surrounding ontologies focuses on the 

creation of ontological languages such as the Web Ontology Language [Herman 2007]. 

This research will be discussed later in this dissertation to provide context for the use of 

ontologies. Another research area is the implementation of these languages in particular 

domains such as engineering, biology, and manufacturing [Kerrigan 2003, Kitamura et al. 

2004, Kriete et al. 2005]. In engineering, researchers are using ontologies to aid in 

distributed design environments. In biology, researchers are using ontologies to classify 

systems within the body to share research results with collaborators. In manufacturing, 

ontologies are being used to enable companies to better understand part usage and 

distribution. These examples will be examined in more detail in later sections. Other 



 

  

8 

interest areas in informatics research include the integration of artificial intelligence 

[Chang et al. 2004], real-time tracking with RFID [Ergen et al. 2007], and learning 

algorithms [Colombo et al. 2007] in a way that enables organizations to gain insight and 

improve the efficiency of business processes. 

Engineering informatics generally encompasses the management of and interaction 

with data, information, and knowledge specific to managing information for manufacturing 

processes and managing information attached to CAD data [Bliznakov 1996, Bliznakov et 

al. 1996, Qureshi 1997, Wang 1993]. One aspect of this work has been the development of 

information management frameworks, which are software tools that process information 

via a given schema. An example of one of these software frameworks is to enable the 

manufacturing process to run more efficiently and to determine bottlenecks in the process 

[Wang 1993]. Other work in creating product information management frameworks has 

focused on attaching information to CAD entities [Bliznakov 1996, Wang 1993, Qureshi 

1997]. Many of the efforts to manage information in engineering have surrounded CAD 

data and have been specifically focused on geometric data. The goal of this work is to 

provide some level of automation to the retrieval of information that is intuitive to the 

engineer. Whole research areas have focused primarily on manufacturing and CAD data; 

little research effort has been focused on time-dependent data and the hierarchy of 

information (e.g., computational fluid dynamics, economics, spreadsheet models, and 

experimental data) for one entity in a system of components. Progress has been made on 

several components of this problem, which are described in the following sections.    
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2.2 Problem Solving Environments 

 Problem solving environments were first conceived in the 1960s [Culler et al. 

1963]. It was suggested that the link between computers and humans could be strengthened 

to allow engineers to more readily and easily solve engineering problems without being 

constrained by the knowledge of the computer code, graphics, or numerical tools necessary 

to solve difficult engineering problems. A PSE is a computer system that provides all the 

computational facilities necessary to solve a specific class of problems [Gallopoulos et al. 

1994]. The PSE encompasses everything that is needed by the engineer to adequately and 

easily design a system. At its core, a PSE can be used to solve a variety of problems, from 

a simple algebraic manipulation in a spreadsheet to a multi-component system 

optimization. Some examples of simple PSEs that were revolutionary when first 

introduced are the spreadsheet, which replaced the calculator and ledger; and three-

dimensional CAD modeling, which replaced prototyping phases in the manufacturing 

process.  

Currently, there are many PSE software packages, such as Refiner, providing a 

graphical user interface to construct mathematical solvers [Hunt et al. 2002]; PYTHIA, 

utilized to aid in the selection of tools for solving a systems of equations [Weerawarana et 

al. 1996]; CARM-PSE for studying reduced chemical kinetic mechanisms [Montgomery et 

al. 2002]; and iSIGHT for performing systems analysis [Engineous Software 2007] for 

scientific research. These software packages enable scientists and engineers to solve 

problems and design systems more rapidly and not be concerned with the underlying 

algorithms or APIs. These scientific PSEs are becoming common within the engineering 

design process. Previously, compute resources were the limiting factor in the usability of 
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PSEs; today, the algorithms and numerical techniques necessary to build a robust PSE are 

the limiting factors.  

One application is coupling a PSE with a Domain Knowledge Based (DKB) Search 

Advisor for use with a Design Exploration Systems (DES) [Ong et al. 2002]. A DKB 

Search Advisor contains information for a specific problem that helps the engineer specify 

the optimal solutions for solving an engineering problem. This feature, coupled with a 

DES, enables engineers to solve problems more efficiently. As Ong et al. note, if both 

positive and negative design results are stored for the respective engineering decisions, 

engineers can avoid using the same design variables in the next design cycle. This type of 

design process would enable problems to be solved in an environment where an engineer 

can positively affect the outcome of a product through the incorporation of past design 

experiences without requiring the presence of past team members.  

There are user-interaction limitations (e.g., interrogating large three-dimensional 

datasets) that can be solved be utilizing virtual reality [Belleman et al. 1998] and other 

human-computer interaction devices [Drashansky et al. 1996]. A PSE coupled to a three-

dimensional immersive environment is more useful to the designer because the designer is 

now in the solution and a part of the solution. This is the primary advantage of 

incorporating virtual reality into engineering because it provides a medium through which 

information can be presented to many audiences in a meaningful and quickly 

understandable manner. When this medium is coupled with an expert in the area of interest 

(e.g., a plant engineer, designer, or construction manager), virtual reality facilitates 

breakthroughs in the engineering process because the large datasets created by analysis 

become readily accessible to the engineer [McCorkle et al. 2003]. 
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 Current PSEs, while excellent tools for solving specific problems, do not address 

all the tools necessary to engineer a large-scale system. These environments aid an 

engineer in solving a problem by handling much of the work that the engineer previously 

completed by hand. The aspect of creating software frameworks to help manage difficult 

tasks for the engineer will be in the research discussed here. 

Shape optimization [Mohammadi et al. 2002, Mohammadi et al. 2001] has become 

a widely accepted design technique in engineering and a key component of PSEs. Shape 

optimization problems deal with geometric shape changes and design variables that are tied 

to the solution of a problem such as airfoils [Makinen et al. 1999, Jang et al. 2000, 

Quagliarella et al. 2001], heat exchangers [Fabbri 1998, Schmidt et al. 1996], two-

dimensional blade profiles [Trigg et al. 1999, Fan 1998], missile nozzle inlets for high-

speed flow [Blaize et al. 1998, Zha et al. 1997], three-dimensional shape optimization 

[Foster et al. 1997], sailing yacht fin keel [Poloni et al. 2000], and stoves [McCorkle et al. 

2003, Bryden et al. 2003]. Many engineering optimization applications can be reduced to 

shape optimization problems because the primary problems confronting engineers are the 

development of physical parts required to meet specific design constraints. The primary 

interface to most engineering problems is through their geometric representations with 

CAD data. The ability to interactively change geometric representations and have that 

information coupled to the underlying physics models is important to the development of 

an engineering PSE so that engineers can improve the product realization process. 

 This research also discusses extending the ability to do shape optimization 

interactively with high-fidelity models that require intricate meshing routines and model 

preparation [Abodeely 2007, Engelbrecht 2007]. The benefit of this is that shape 
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optimization tools provide significant capability to design engineers to solve complex 

problems on their desktop. Others [Kanukolanu et al. 2006] are investigating the use of 

visualization techniques to enable the engineer to better understand how constraints on a 

system under investigation trade-off with performance of the system enabling optimal 

solutions to be identified faster. Shape optimization with finite element analysis as the 

fitness evaluation is being used across a family of products [Torstenfelt et al. 2007]. The 

use of surrogate models to enable shape optimization of two-dimensional airfoils is being 

investigated to improve the overall performance time of the shape optimization algorithms 

[Jouhaud et al. 2007]. These tools continue to provide examples of modules that must be 

accessible from within an advanced engineering framework. 

2.3 Object-oriented programming 

Object-oriented programming is a software engineering paradigm for managing 

large amounts of data through software interfaces in a structured manner. The first 

applications of object-oriented programming were in simulation (i.e., SIMULA) and 

graphical user interfaces (i.e., SmallTalk). Each of these applications focuses on working 

with large amounts of structured data. Supporting the object-oriented programming 

paradigm requires utilizing a language that supports a hierarchical and modular method for 

software development, such as C++ and Python. Typically, an object-oriented language 

will define an object (i.e., class), which is the wrapper for data (i.e., variables) that will be 

utilized and available to other objects. The data and functionality contained within the 

object are then made available to other objects through methods (i.e., functions). These 

methods have explicit interfaces that must be utilized to access the data within the object 

and make the object perform a specific task.  
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The methods with which these objects are implemented become important to the 

reuse and robustness of the software being developed. In the past, a top-down approach 

was taken with software development that resulted in a process-oriented view of an 

application. This type of method does not promote software reuse or enable data to be 

managed hierarchically. In part, this design approach was required due to the programming 

languages available at the time, such as FORTRAN. An object-oriented method overcomes 

these two limitations and is enabled through object-oriented languages. In addition, the 

object-oriented methods utilized in software development focus on low-level object-to-

object interactions, thus resulting in a bottom-up design approach with a high degree of 

modularity [Baldwin et al. 2000, Baldwin et al. 2006] and reuse available from the 

resulting software. An abstract method for managing the development of robust objects is 

through the use of object-oriented design [Booch 1982] and design patterns [Gamma et al. 

1993]. Design patterns (e.g., singletons, null object, factories) are abstract solutions to data 

management problems that have been tested and implemented across a broad range of 

problems.  

In the following sections, a brief overview of some early object-oriented languages 

will be given as well as a brief discussion of the development of objected-oriented design 

(e.g., design patterns). 

2.3.1 Early software implementations of object-oriented programming  

In 1965, Kristen Nygaard and Ole-Johan Dahl developed the first object-oriented 

programming language, SIMULA [Dahl et al. 1966, Dahl et al 1968]. The SIMULA 

language was developed to enable the “concise description of discrete event systems” 

[Dahl et al. 1966, p. 671]. An example of such a system is a job shop where multiple 
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machines and the workflow can be easily modeled through an object-oriented approach 

rather than a process-oriented approach. The use and creation of an object-oriented 

language to model the job shop workflow enabled reuse of code that would have 

previously been repeated over and over again in the process-oriented approach. In addition, 

the object-oriented approach enabled an easier leap from conceptualizing the job shop 

problem to implementing the simulation in code. Without the object-oriented approach, the 

code implementation of the simulation is more complex for the developer. When using an 

object-oriented programming language to create a simulation of a system, it is important to 

enable the programmer to easily construct a map between programmatic entities and the 

real world. Even in the late 1960s and early 1970s, simulations had a significant impact on 

the scientific community as a way to look into the future to see how a system (i.e., disease 

epidemics, traffic flow) might perform under given conditions [Dahl et al. 1966].  

 At the same time that SIMULA was being developed, SmallTalk was being 

developed as another object-oriented language [Goldstein 1980, Kay 1993, Shoch 1979, 

Kay 1977]. The primary purpose of SmallTalk was to create a “tool utilized in the 

construction of an interactive computer system, used by both children and adults for 

problem solving, simulation, drawing and painting, real time generation of music, 

information retrieval, and other tasks” [Shoch 1979, p. 64]. Because Kay’s background 

was in biology, he wanted to create a language in which characteristics of the physical 

world were also characteristics of the computer language. The purpose of this connection, 

much like SIMULA, was to provide a language that the programmer could easily adapt to 

and understand to enable easier implementation. While creating SmallTalk, Kay was also 

approached by companies to create tools that would enable their engineers to access the 
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power of the computer by creating higher-level computer programming languages that 

enabled non-computer experts to harness the power of the computer [Kay 1993]. At this 

point, computers were becoming smaller, faster, and less expensive, and thus more 

accessible to the average company, prompting engineers to speculate about the computer’s 

use in the engineering process. This is another example of the necessity for engineers to 

hide some of the complexity of problems under investigation so they can focus on 

understanding what the information is trying to tell them rather than on the nuances of the 

problem. The use of SmallTalk in the development of graphical user interfaces to 

simulation or text manipulation applications provides an abstraction layer for the developer 

so that he or she can focus on developing the application rather than on the lower-level 

interaction with the computing hardware. 

2.3.2 Object-oriented design/analysis  

In the early 1980s, Grady Booch defined object-oriented design, which specified a 

method by which software developers could analyze a problem to break it down into 

software objects. The resulting programs would then be more portable and more 

understandable from an algorithmic standpoint because the programs would follow key 

design principles [Ross et al. 1975] such as: 

• Modularity  

• Abstraction 

• Localization 

• Information hiding  

• Completeness  

• Confirmability  
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This methodology was developed because the complexity of computer programming 

caused software to be characterized as “late, erroneous, and costly” [Booch 1982, p. 64]. 

Similar descriptors can be used about the current state of our engineering product 

development process: high-end computers, networks, and software are being used, but 

many products are still delivered late and outside current customer design requirements. 

These problems arise because of the complexity of the engineering products being 

developed. The parallels between the software engineering domain and product 

engineering domain can be seen, which leads to the observation that many of the tools 

utilized to solve the software engineering domain can be applied to the product engineering 

domain.  

In addition to the points about object-oriented design, Booch discusses the 

importance of a different approach to design other than top-down. As Booch notes, “In an 

object-oriented design approach, we take a broader view of modules as collections of 

computational resources. Such modules may represent abstract data types in addition to 

abstract operations” (1982, p. 65). Taking this approach, he further elaborates that the 

resulting solution is more robust and results in a modular design for increased software 

reuse. These attributes help overcome the limitations of a top-down approach to software 

development. Similarly, in the engineering design process, many of the processes 

implemented in companies and taught is a top-down approach to product realization. 

Again, the history of software engineering would predict that this is a portion of the cause 

for the deficiencies in the products being engineered today. Software engineering history 

would then predict that the engineering design process must change to a bottom-up 

approach. Currently this is not possible due to the lack of enabling technologies in place to 
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support such an effort. This research will draw on the work of Booch to help begin to 

create some of these enabling technologies. The process of creating software from the 

bottom up can be enabled by the use of design patterns [Gamma et al. 1993]. According to 

Gamma et al., “They [design patterns] preserve design information by capturing the intent 

behind a design” (p. 407). Currently, design patterns are being investigated for use in the 

product life cycle management process [Framling et al. 2007]. The principles outlined by 

Booch and Gamma will be leveraged in the creation of the engineering framework 

presented in this research by providing proven methods for preserving design information, 

creating robust designs, and enabling a bottom-up design approach to product design. 

A byproduct of Booch’s work in object-oriented design is the development of the 

UML. UML enables the user to map out the connections between software objects, which 

is done to show the relationship between objects either for composition or for hierarchy 

purposes (Figure 1). Again, a tool similar to UML or that utilizes UML could be used in 

engineering to help enable some of the qualities that Booch outlined in engineered 

products. The language also enables the relationship of variables between objects and the 

method of access to those variables to be depicted (Figure 2). Some recent researchers 

have proposed the use of the UML language to describe physical systems [Fishwick et al. 

1996a, Fishwick et al. 1996b] to aid in the virtual prototyping of products. This is an 

example of applying proven tools to help enable an improved engineering process. While it 

is a start, there is much more that needs to be done to enable engineers to create products 

through a bottom-up approach, resulting in more modular and robust designs. Specifically, 

it is proposed that the UML language enables a macro-view of a system and provides an 

object-to-object relationship rather than just a functional relationship as many systems 



 

  

18 

analysis tools provide [Huang et al. 1993]. This is being realized to some extent in the 

creation of the SysML [Object Management Group, Inc. 2008] specification, which not 

only characterizes the specific attributes of individual components of the system, but also 

adds the connectivity of these components to each other. The functional relationship does 

not capture a comprehensive representation of a component in a system; it simply provides 

its capability to the rest system. 

 One object-oriented language that is commonly used today is C++. It was 

developed in 1984 by Bjarne Stroustrup to provide a higher-level language by which 

object-oriented ideas could be implemented. C++ is based on SIMULA and was 

implemented to give users access to the efficiency and flexibility of C while maintaining 

the modularity and object-oriented nature of SIMULA [Stroustrup 1993]. During the mid- 

to late-1980s, C++ was still being refined and was not readily accessible. It was not until 

the early 1990s that C++ became accessible to a broad range of users. The accessibility of 

the language was probably due to the increased use of personal computers and the 

development of commercially integrated development environments such as Visual 

Studio™ from Microsoft™. The combination of software tools and decreased hardware 

computing costs enabled researchers to begin utilizing object-oriented software to manage 

complex problems.  
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Figure 1. UML class relationship diagram 
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Figure 2. UML variable relationship diagram 
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2.4 Current Uses of Object-Oriented Methodologies 

 As object-oriented programming languages have become more prevalent, many 

engineering disciplines have begun to adopt the methodologies (e.g., object reuse, 

hierarchical data storage, object inheritance and composition) upon which object-oriented 

languages are founded as a mechanism by which engineers can more easily solve 

engineering problems. These methodologies include PACT, which was created to enable 

concurrent engineering systems [Cutkosky 1993]; NetBuilder, which is used to construct 

collaborative engineering environments [Dabke et al. 1998]; NODES, which supports the 

conceptual engineering design process [Duffy et al. 1996]; STEP, which generalizes 

product description [Männistö et al. 1999]; mechanisms that link CAD to disparate 

engineering processes [Martino et al. 1998]; SHARED, which is used to construct 

graphical collaborative engineering environments [Toye et al. 1994, Wong et al. 1993]; 

web-based collaborative concurrent design tools [Xue et al. 2003]; and software tools that 

integrate design and assembly planning [Zha et al. 2000]. These languages typically enable 

developers to use a modular approach to segment information into a format that loosely 

couples the modularity to information in the real world. In addition, it permits a structured 

approach to querying for information throughout an application, allowing a semi-intuitive 

approach to hierarchically present information and accessibility. Some examples that 

implement this technology follow. 
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Figure 3. Constrained object description file [Pushpendran 2006, p. 25] 
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 The term “constrained objects” is derived from the fact that an object’s physical 

constraints are programmatically encoded into the class that represents the physical object. 

Constrained objects were first implemented to extend programming languages and to 

enable the user to create a lightweight ASCII text file defining the numerical/physical 

constraints of an object (Figure 3). Some examples of these constraints are body forces on 

beam trusses [Wilson 2000, Wilson et al. 2001], Ohm’s Law for electrical circuitry 

[Tambay 2003], and other physical phenomena-governing equations [Horn 1993, Peak 

2002, Pushpendran 2006]. The object in this case, although very similar in form to a 

programmatic object, is a copy of the physical object that it is representing. The 

representation of the physical object is only as good as the constraints that are 

implemented in the object. These constraints then become the limiting factor of the objects. 

Enabling a high-fidelity representation of an object would require a sophisticated modeling 

language and software framework adhering to the formatting in the ASCII text file 

illustrated above. This type of implementation is very similar to the modeling language 

Modelica [Modelica Association 2008], which targets control-type problems [Wilson 

2000, Wilson et al. 2001]. 

 Fishwick [Cubbert et al. 1998, Fishwick 1996a, Fishwick 1996b, Fishwick 2006, 

Hopkins et al. 2001a, Hopkins et al. 2001b] proposes objects as a method for simplifying 

the compilation of numerical models when trying to construct multi-model environments. 

The environment directly leverages the tools and design patterns developed for C++, such 

as object-oriented programming and UML tools. Through these mechanisms, the object-

oriented physical multimodeling and multimodeling object-oriented simulation 

environment (MOOSE) environments enable users to construct a simulation environment 
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through similar hierarchies and inheritance schemes that are available in other object-

oriented languages. The proposed software architecture would then enable users to 

construct a wheel from a series of other objects such as a nut, rim, and tire. Each of these 

objects would then provide their physical characteristics through numerical simulations to 

the other objects in the environment. This work highlights the positive impact that object-

oriented methodologies can have on domains other than computer science [Fishwick 

2004]. However, this research does not propose a solution for enabling the overlaying of 

disparate sources of information needed to describe an object. 

Product-centric objects leverage the benefits and philosophies of object-oriented 

programming by creating product agents that provide an interface to individual product 

information on a physical object basis. One software toolkit built on these principles is 

Dialog [Dialog 2007]. The implementation of these software agents utilizes object-oriented 

principles, but more importantly, the agents are what the Dialog framework accesses to 

gather object-specific information as requested by the user. This is done through the use of 

URIs and a GUID. The URIs and GUID are essentially a unique data tag that enables 

information to be queried from anywhere on the web by specifying a location (i.e., the 

URI) and the GUID of the object being queried. The motivation behind this research is to 

give product manufacturers, product distributors, and original equipment manufacturers 

seamless access to per-part information from any location to enable streamlined product 

delivery systems. The benefits of the product-centric process are that it is able to scale to 

large systems of part databases, is open source, and can be implemented within a company 

with very few changes to information technology infrastructure. These attributes make it 

accessible to large and small companies and enable the inclusion of a broad range of 
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product database implementations. While the product-centric objects enable access to part-

level information such as dimensions, quantity on hand, time-to-ship, and other 

manufacturing level data, these objects do not propose to address issues surrounding 

modeling and simulation. 

Pattie Maes at the MIT Media Lab has developed a series of applications—

Invisible Media [Merrill et al. 2005], ReachMedia [Feldman 2005, Feldman et al. 2005], 

and Galatea [Gatenby 2005]—that provide a software toolkit to enable users to interact 

with physical objects and gather meta-information that is not available through traditional 

interfaces with physical objects (e.g., touch, sound, sight). These tools provide the user 

with a more intuitive interface to and information about an object than is possible through 

non-augmented interfaces. Some examples of this type of information are repair history 

and part traceability. These objects, which have been used in frameworks developed by 

Maes et al., illustrate the improved knowledge and assistance that is available when the 

computer can augment the user’s expertise and utilize environmental information to solve 

problems. These objects provide an illustration of how overlaying multiple pieces of 

information (e.g., working with physical objects and overlaying repair instructions) can aid 

the user in gaining better insight into the object under investigation. 

 Another current implementation of object-oriented concepts is the Common 

Information Model (CIM), which “describes management information and offers a 

framework for managing system elements across distributed systems” [Bumpus et al. 2000, 

p. 1]. CIM has a specification and schema that allow it to be applied to a wider variety of 

problems, to adapt to resources that change within the framework, and to change the 

information that the resources provide. Again, the object-oriented methodology was 
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applied to enable developers to map from the real model to a conceptual model that could 

then be created programmatically. CIM uses object-oriented methodology as it is used in 

the programming world: to define the basic unit from which all other entities within the 

framework are created. The CIM framework provides a further example of object-oriented 

methods, enabling complex information to be handled through object interfaces. 

 Knowledge objects are entities that hold business-related organizational 

information but have also been used to hold technical information [Simpson 2004]. A 

knowledge object is defined as “a highly structured interrelated set of data, information, 

knowledge, and wisdom concerning some organizational, management or leadership 

situation, which provides a viable approach for dealing with the situation” [Bellinger 

2004]. Knowledge objects provide organizations with tools and guidelines to construct 

concise packets of information. The objects contain organizational information so that 

future business decision makers can benefit from the past experiences of others and gain 

insight into the positive and negative outcomes of previous endeavors. The construction of 

these objects is based on a set of rules determined on a per-company basis based on their 

experience of what has aided decision makers in gaining insight into past successes. Again, 

the goal is to use these objects to encapsulate information and provide an intuitive interface 

for users to gain a level of understanding that would previously have been unattainable due 

to past information being lost through employee turnover.  

Knowledge objects are constructed to implement a higher level of engineering 

effort, referred to as “knowledge engineering.” The goal of knowledge engineering is to 

encapsulate knowledge that organizations create or obtain so that engineers working on 

similar future projects can avoid the shortfalls of the teams before them. Knowledge 
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objects are also simple in that only pertinent information is stored, making the object 

extremely compact. Much of the current research in this area is now focused on ontology 

development. This is due to the fact that the foundation of knowledge objects is an 

assumed comprehensive capture of someone’s knowledge. This is only possible if the data 

obtained from someone can be interpreted five or ten years in the future without the person 

present. One of the current methods for doing this is through the use of semantically rich 

ontologies. Unfortunately, this approach can often require extensive work to provide a 

comprehensive schema for small problem domains. Even though these objects may not be 

well suited for engineering modeling and simulation information, they do provide an 

example of and illustrate the value of capturing information on a per-object basis when 

creating a product for a company. 

2.5 Frameworks 

The definitions of “framework” are varied and can refer to software libraries, 

software applications, structural components of a building, and everything in between. A 

general definition is “a basic structure underlying a system, concept, or text” [Soanes et al. 

2005, p. 368]. Regarding the discussion in this research, framework will refer to a software 

application that is the basic structure utilized to understand complex systems. Currently 

available frameworks include a host of open-source and commercial packages. Examples 

of open-source frameworks include: 

• the University of Utah’s SCIRun package used for scientific visualization and 

computational steering [SCI Institute 2008] 

• dataflow visualization-oriented packages such as OpenDX [OpenDX.org 2006]  
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• the Common Component Architecture (CCA)-capable CCaffeine [Allan et al. 

2005] used for the numerical integration of large distributed simulation (e.g., 

nuclear simulation, munitions simulation) 

Examples of closed-source packages include: 

• Matlab’s Simulink [The MathWorks, Inc. 2008], used to integrate third-party 

software such as LMS Virtual.Lab [LMS International 2008] with the Matlab  

• Fiper [Engineous Software 2007], used for distributed collaboration of design 

teams. This package has been customized primarily for GE. 

• Aspen Plus [AspenTech 2008], utilized for chemical process plant simulation 

• ModelCenter [Phoenix Integration 2008], used to integrate a wide range of third-

party solvers (e.g., Excel™, user subroutines) with optimization and design space 

exploration 

• Protrax [Pro-Trax Off-Road Adventures 2008], used to model large plants at a 

system level  

These packages tend to be targeted to specific applications (e.g., Aspen Plus to chemical 

process modeling and CCaffeine to terascale-level high-performance computing) and do 

not address the general engineering process. SCIRun has computational steering capability 

and visualization support but does not provide an extensible method for integrating generic 

simulation and modeling tools. ModelCenter, Fiper, Protrax, and Matlab’s Simulink all 

have support for the integration of specific sets of tools or for high-level systems modeling 

capability. Each of these packages fills a specific commercial need and provides a desired 

set of tools for a specific clientele.  
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Padula et al. [2006] noted that the main issues facing the development of software 

frameworks are: 

1. the verification and validation of federated simulation environments  

2. knowledge capture stemming from these large federated simulation environments  

3. easy access to construct large simulations through graphical displays 

One of Padula et al.’s key ideas is that many frameworks center around creating data 

repositories that tie information to the components they represent. These repositories then 

enable the users of the frameworks to seamlessly query information on a per-component 

basis. This work highlights the difficulty in creating a software framework to begin to 

address the other issues outlined by Padula et al. when the primary work to date has 

focused on creating a sufficient software structure to enable the ease of access to 

component-level information for large simulations. 

 One software engineering toolkit that takes advantage of the object-oriented 

methodology is the Distributed Object-based Manufacturing Environment (DOME) 

[Abrahamson et al. 1999, Abrahamson et al. 2000, Pahng et al. 1997, Pahng et al 1998, 

Senin et al. 1999a, Senin et al. 1999b, Senin et al. 2003a, Senin et al. 2003b, Wallace et al. 

2001, Cao et al. 2005]. This software uses CORBA [Object Management Group, Inc. 

2008] combined with customizable graphical user interfaces to set up simulations with 

multiple models and access variables within the DOME framework. It maps objects, which 

are very closely tied to the real world rather than the programmatic or algorithmic world, to 

their mechanical characteristics to enable distributed simulation. With the DOME 

framework, the developer can wrap and hide unnecessary proprietary information within a 
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module while exposing the necessary information to other collaborators on the distributed 

framework.  

 Another interesting concept that the DOME framework proposes is the World Wide 

Simulation Web (WWSW). The goal of the WWSW is to be the structure by which 

numerical simulations can transfer information from one location to another, much like the 

World Wide Web does with hypertext. 

 The Building Design Advisor (BDA) employs object-oriented techniques to create 

a software framework that integrates various numerical models for building construction 

[Papmichael et al. 1997, Papmichael et al. 1999, Reichard et al. 2005]. These models are 

integrated together on a per-object basis in a building, such as a door, window, or roof, as 

objects in the modeling advisor. This approach is taken to help the end-user better identify 

the model that is actually being designed with the real world. In this design environment, 

the BDA’s goal is to guide the decision maker from a conceptual design to a very detailed 

design. This framework provides a good example, albeit to a specific domain, of how 

managing models on a per-object basis provides flexibility in the software framework. 

 Reed [Reed 1998, Reed et al. 1994, Reed et al. 2000a, Reed et al. 2000b] proposes 

the use of object-oriented principles for enabling the integration of turbine engine models 

in a distributed manner. The ONYX [Reed 1998] framework treats each of the major 

components of the turbine engine as objects in a larger simulation. Each of these objects is 

then represented in the framework by a numerical model. Each model can be of varying 

fidelity and a particular object can be comprised of multiple numerical models. In this 

software framework, the data types and integration interfaces are all predefined to support 

the turbine engine design problem. The notion of a general software framework to address 
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large time-dependent simulations or integrated visualization capability is not proposed. 

This work provides a concrete example of the use of object-oriented principles to enable 

the computer to manage some of the integration tasks for the design engineer. 

2.6 Meta Data and Semantics 

Common methods in the engineering community to classify and store information 

have focused heavily on the graphical representation of systems, often referred to as CAD 

data. This has resulted in CAD formats such as STEP model data. This format offers 

software package-independent solutions for the storage and representation of information 

in the engineering process, but only provides information similar to what was discussed 

with product-centric objects. These CAD representations often refer to the surface 

geometry representation of a particular object. While this representation is the most visible 

to an engineer, it holds relatively little information about an object. The geometry object 

only defines an object’s boundaries and the space it occupies.  

Before an engineer’s inquiries can be satisfactorily answered in the virtual world, 

appropriate representations (e.g., economic, pedigree, experimental, numerical models, 

geometric) for the problem at hand must be provided. For example, supplying fluid 

properties to a graphics program probably has little benefit for the graphical environment. 

A more appropriate representation may be a polygonal mesh that can be rendered and 

would display the physical domain within the virtual world, providing the engineer with 

the appropriate information given his or her requests. For a purely results-based request, a 

single scalar value would be returned to the user. For a “why” or “how” request, the entity 

that generated the request would need to provide the foundational information such as the 

finite element analysis results or computational fluid dynamics results. 
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These representations that are attached to the virtual object are meta-data providing 

more meaning to the object than just the geometric mesh. This approach to building 

environments where meaning is being attached to an object is not new. The Semantic 

Web’s purpose is to attach meaning to the current World Wide Web of data (i.e., web 

pages, intranets, and wikis); hence the term “semantic” in Semantic Web. Some of the 

current research in creating meta-data-rich environments will be reviewed below.  

2.6.1 Engineering Information Storage 

 Horváth proposes that objects serve as the basic data structure for providing 

mapping to a CAD representation of a product [Horváth 1997, Horváth et al. 1994, 

Horváth et al. 2001, Horváth et al. 2003, Horváth et al. 2004a, Horváth et al. 2004b, 

Horváth et al. 2004c, Horváth et al. 2004d]. Horváth also notes that there are multiple 

representations for a component beyond just the geometric information being displayed in 

a CAD program. In this research, CAD data is brokered between various components, and 

file specifications such as STEP and EXPRESS are utilized to store lifetime information 

about an object. This work highlights the requirement that lifetime information about an 

object is critical to the design and retrieval of design intent after engineers have finished a 

project. 

 A framework developed by Wang [Wang 1993] addresses the need to provide a 

means to map exceptions thrown during the manufacturing process and notify the 

engineering team. The development of a method to map information to objects makes this 

possible. The information is then tracked through the manufacturing process, giving the 

engineering team a clear picture of their product’s quality. 



 

  

33 

 Bliznakov [Bliznakov 1996, Bliznakov et al. 1996] addresses the need to develop a 

taxonomy to store information about parts during their lifecycle. This is needed to enable 

comprehensive part tracking to improve communication about product development and to 

improve the company’s knowledge storage capability. This information is critical to enable 

companies to fix or avoid problems that plagued previous products in future products. 

 Qureshi [Qureshi 1997] notes that there are two main types of integration: static 

and dynamic. Static integration requires explicit definition of objects that belong to the 

integrated information. Dynamic integration follows a predefined scheme to dynamically 

generate the definition of objects belonging to the integrated information. The research in 

this dissertation focuses on using dynamic integration. Qureshi also notates several 

integration categories: 

1. No integration 

2. Direct interfacing (need-based integration) 

3. Neutral format-based integration 

4. Loosely coupled integration (open architecture) 

Qureshi uses this work on integration to generate a specification for integrating 

information throughout the design process to not only record explicit information, but also 

implicit information about the process to generate a comprehensive record of the product 

being designed. 

 The trend in engineering informatics over the past few years has been product life 

cycle management, which focuses on managing a product’s descriptions and properties 

throughout its development and useful life, mainly from a business/engineering point of 

view. Product life cycle management tools primarily exist as enterprise-wide software 
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toolkits that span disciplines and provide a common interface for a product. Some 

examples of these tools include the Federated Intelligent Product EnviRonment (FIPER) 

[Sampath et al. 2002, Wujek et al. 2000], TeamCenter, and Dassault Systems. These tools 

primarily present information in a format that requires the engineer to dig for a simple 

dimension. For example, if an engineer wants to change a diameter on a component in a 

complex CAD assembly, he or she must navigate a deep hierarchical tree to potentially 

find the parts and features that need adjustment. Then, to make the same adjustment in 

other models associated with the same CAD file, the engineer must repeat the process for 

each model because the CAD geometry typically does not automatically update the other 

associated models. 

Other techniques for managing information in engineering are primarily 

constrained to geometric information (e.g., the STEP/IGES specification), which provides 

a mechanism to allow disparate software packages to interoperate and exchange 

information. This requires an information framework that is open and accessible to all 

entities. 

 The Semantic Web, which is often referred to as Web 3, has been under 

development for the past 5–8 years [Antoniou et al. 2004], and is proposed by the creator 

of the first web, Timothy Berners-Lee. The Semantic Web would provide context and 

meaning for data (e.g., web pages) on the current web. For example, when visiting a 

webpage about a conference, the browser would check the conference dates against a 

personal calendar and inform the user of any scheduling conflicts. If no conflicts were 

found, then that particular webpage would provide the user with local information such as 

nearby hotels, restaurants, and other attractions.  
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The ability of computers to perform intelligent tasks such as checking for schedule 

conflicts is accomplished through a series of open interfaces and schemas that are 

implemented via open source libraries and standards. The Semantic Web’s core technology 

is “the Resource Description Framework (RDF), which integrates a variety of applications 

using XML for syntax and URIs for naming” [W3C 2008]. XML provides a format that 

allows data structures to self-describe and provides a means to represent the data that it 

contains in a format readable by humans. The ideas upon which the Semantic Web is 

founded, along with the technology that is used to implement it, provide a platform on 

which virtual engineering tools and interfaces can be extended to create a web in which 

contextual information is readily accessible to engineers. They also provide a means by 

which the product development cycle can be completed in a manner unlike any before. 

When the Semantic Web and virtual engineering methods are fully realized, computer 

hardware and networking capabilities will work to provide information and tools to access 

information meaningfully. In today’s computing age, the following question must be 

answered: How will information be integrated so that commercial and proprietary software 

tools can remain separate while also being integrated so that the end user can control and 

query these tools with little to no knowledge about their implementation or inner-working 

details? The answer to this question will depend largely on the ability to harness a large 

group of individuals to implement the tools necessary to complete the work, which will 

require open interfaces and schemas that can evolve over time as well as open source 

toolkits that enable development teams to collaborate at a high level. 
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Figure 4a. Human systems [Kriete et al. 2005, p. 385] 
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Figure 4b. Human systems [Kriete et al. 2005, p. 391] 
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Other domains are utilizing the tools from the Semantic Web to enable a disparate 

research team to collaborate across different software tools and research methods. One 

such research field is computational systems biology, which aims to model the complete 

human body at all scales from genes to cells to tissues to organs [Kriete et al. 2005] 

(Figure 4). The modeling of the human body at this level is needed to better understand the 

physiological function of the healthy and the diseased body. The level of integration 

required to enable the numerical coupling of these systems requires that the data being 

shared at each scale provide contextual information to enable the model receiving the 

information to understand how to interpret the information. Computational systems 

biology is leveraging ontologies to enable collaboration and exchange of experimental and 

numerical bioinformatics data to increase the dissemination of results and the longevity of 

the data [Kriete et al. 2005]. 

2.7 Virtual Worlds 

 To create the more efficient and inclusive engineering environment discussed in 

this paper, the work that has already been done surrounding virtual worlds must be 

leveraged. Virtual worlds are becoming a popular medium for learning, training, gaming, 

and many other activities. Popular virtual worlds include Second Life, World of Warcraft, 

SimNation, and many others. These environments have developed into profitable 

businesses and continue to intrigue a broad and diverse audience. Extending these virtual 

worlds to help solve problems in business and the defense industry has become a popular 

research area. One way the military currently uses these environments, for example, is for 

force-on-force distributed training. 
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 Virtual worlds are defined as including “synthetic sensory information that leads to 

perceptions of environments and their contents as if they were not synthetic” [Blascovich 

et al. 2002, p. 105]. Some current research areas include developing narrative in interactive 

worlds [Young et al. 2003] and defining simulation and experiments in virtual worlds 

[Winsberg 2003]. This body of work will further the development of a framework that is 

capable of handling large amounts information for working with large and ultra-large 

systems. In addition, this work will aid in creating an environment where users are “inside 

an environment of pure information that [they] can see, hear, and touch” [Bricken 1990, p. 

1]. 

In the software toolkit Croquet, objects are utilized to collaborate across a wide 

area network [Smith et al. 2003]. Croquet objects can be viewed on multiple computers 

within the same world to collaborate on anything from documents to games. In each of 

these instances, the form of the object that the domain being used defines and requires 

informs the thinking and discovery process through which the user is drawn, enabling 

acquisition of a point in a game, knowledge about a new subject, understanding of a virtual 

counterpart in a virtual world, or something else. Engineering objects represent the same 

goal for the engineer. 

2.8 Object Definitions 

In previous discussions surrounding object-oriented programming languages, 

object-oriented applications, and object-oriented implementations, the term “object” is 

often left undefined. However, there are some instances in which the term is defined as it 

pertains to object-oriented languages, applications, and implementations [Eckert et al. 

2003, Foucault 1994]. These instances define an object as something that: 
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1. Has form [Foucault 1994] 

2. Contains artifacts and is utilized for discourse [Eckert et al. 2003] 

3. In the instance of object-oriented programming, includes the interfaces and 

methods necessary for interacting with the data it contains 

4. In terms of the ONYX, DOME, BDA, is utilized as a data container for the 

physical object that it represents and may contain some interfaces for other objects 

to interact with it 

When software objects were first implemented by Nygaard and Dahl [Dahl et al. 1966], 

their purpose was to create a more intuitive connection between the real world and the 

program being created. This is the predominant theme in many discussions of objects 

[Heim 1997, Horváth et al. 2004, Pidd 1992, Rothenberg 1986]. Objects allow the 

individuals interacting with a system to more easily adapt to what the developer is trying to 

convey. Also, from a programming standpoint, objects enable the programmer to easily 

create a program with characteristics that more generally resemble the problem being 

simulated or solved, which is what Kay [Goldstein 1980, Kay 1993, Metz 2001, Shoch 

1979] and Nygaard [Dahl et al. 1966] proposed. The definition of the objects used in this 

research is derived from [Luch et al. 1996] and [Eckert et al. 2003]: 

An entity is just something with a non-empty set of attributes that is typically used 

as a template for more sophisticated components. An object is an entity with the 

added constraint that it has a non-empty set of capabilities. Similarly, an agent is an 

object with a non-empty set of goals, and an autonomous agent is an agent with a 

non-empty set of motivations [Luck et al. 1996, p. 52]. 
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The definition of agents provides a broad explanation of how computer scientists think 

about working with objects in terms of computer simulations that model human activity 

and software agents that are constructed to mimic human behavior.  The field of social 

sciences focuses more on the physical realm of how humans interact with objects: 

We use a wide definition of the term “object” to encompass all sorts of 

physical and electronic artifacts that can convey meaning in interpersonal 

communication, but have an existence beyond a single act of 

communication [Eckert et al. 2003, p. 145]. 

These definitions provide a low-level illustration of what we, as humans, interact with and 

how we interact on a daily basis. The objects in these instances are broadly defined and 

provide a starting place for the discussion surrounding what the term “object” means and 

how engineering objects build on work from other domains that utilize that term.  

In this thesis, objects have a physical counterpart and a correlation from the 

physical world to the virtual world. The objects encompass a number of physical and 

digital artifacts that can convey meaning. This ability to convey meaning provides a basis 

for the ability to construct virtual systems. The object will be able to: 

• define their own status 

• define their method of operation 

• define their method of interaction with other objects 

• sense and act on the environment in which the object is situated 

Users constructing a simulation should be able to seamlessly assemble parts as in real life, 

enabling a narrative to be constructed and ending with the production of a detailed part 

[Dörner 2002], [Skov 2002]. Engineering objects should primarily be able to manage 
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complexity [Sharpe et al. 2000] and enable the dynamic creation and addition of 

information in the decision-making environment. The objects that will be used to manage 

complexity are different from programmatic objects in object-oriented programming and 

are derived from objects as described by the French philosopher Michel Foucault, who 

says that objects are “the extension of which all natural beings are constituted – an 

extension that may be affected by four variables. And by four variables only: the form of 

the elements, the quantity of those elements, the manner in which they are distributed in 

space in relation to each other, and the relative magnitude of each element” [Foucault 

1994, p. 134].  

2.9 Characteristics that objects must inherently have 

In this research, objects must have inherent abilities that allow them to adapt to 

surroundings and distinguish themselves from other objects coexisting in the same 

environment. In discussing this requirement and the methods used to achieve it, many 

current research areas will be drawn on. The discussion of objects will begin with the work 

of French philosopher Michel Foucault. 

 Foucault examined our methods of interacting with our surroundings to gain an 

understanding of how our surroundings inform us. To handle this level of complexity in 

information and systems, a method is needed that enables parallels to be drawn between 

how information and interaction are handled in the physical world and how they are 

handled in the virtual world. Gaining information about an object in the physical world is 

typically straightforward. Information about the weight, for example, does not need to be 

acquired through a third-party interface. This information is easily gained by picking the 

object up or attempting to pick it up. Holding an object also allows a human to investigate 
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the material or materials from which the object is constructed. The object can also be 

dropped, which provides information about its mechanical characteristics. Two objects can 

be picked up to understand how they might interact with each other, although interaction 

that is not human-driven can also occur between two objects. For example, two objects can 

attach to each other without direct human interaction.  

There are many ways to test an object’s properties to gain information about it. In 

each of these simple interactions, information about an object’s temperature, material 

mechanics, and weight are easily acquired. That is, the information that can be obtained 

from an object is dictated by the method of the direct interaction with the object. If this 

simple means of gaining information about objects in the physical world is compared to 

current methods to gain information about virtual objects, a much different result is 

experienced. An engineer may work for days to acquire information about a pump’s 

material mechanics properties, fluid performance parameters, spatial information, or many 

other properties that are easily obtained in the physical world. To overcome these 

restrictions, virtual objects are proposed that have the same characteristics as physical 

objects in the sense that any information that can be gained from interacting with a 

physical object is also available through a single interface—the virtual object—in the 

virtual world. These objects will have the ability to self-recognize, adapt, and exchange 

information without user input. One disadvantage of objects in the physical world is that it 

is often impossible to make a temporary change and then return the object to its original 

state. This limitation is not present in the virtual world. Many current computational 

intelligence technologies will be used to allow objects to operate in a self-organizing and 
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self-describing manner so their interactions are enhanced. These functionalities permit 

virtual objects to behave very similarly to their physical counterparts. 
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Chapter 3: Towards an advanced engineering framework 

 

 

 

 

Virtual engineering is the act of using technology and information in such a way 

that all stakeholders can actively participate and understand what the issues are in a system 

under design. The types of problems that need to be addressed include multi-scale 

problems, complex systems problems, and ultra-large systems problems. As our abilities to 

measure, build, and bring arguments together at many scales increase, tools are needed that 

enable us to design and understand the outcomes of these systems. For example, the tools 

we develop should enable us to model from molecule to cell to organism or from part to 

subcomponent to machine. An engineer should be able to approach an engineering 

problem much like an artist approaches a painting. The painter focuses on how the paint is 

applied to the canvas in concert with the other colors and shades on the canvas, but not on 

how the paint is created, contained, or transported. The painter focuses on the multi-scale 

problem of how individual microscale strokes of the paint work together to create the 

whole mesoscale painting. This is the same process that design engineers need to go 

through in creating a complex system. A design engineer similarly needs to be able to 

focus on how the components of a system work together optimally to solve a problem and 

not be concerned with the manufacturing process of the part or how it is modeled. A design 

engineer should be focused on the multi-scale problem of how individual components 

work together to create a system greater than the sum of its parts. 
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What is needed is a computational framework that enables the design engineer to 

creatively address problems related to existing complex systems and to create more 

complex engineered systems. Specifically, these software frameworks should enable 

design engineers to take a higher-level approach to interacting with information because 

the way computers are currently used does not enable problems to be addressed any 

differently than they were 50-60 years ago. This can be seen in the way the physics of 

engineering problems are examined. Today, the Navier-Stokes equations (CFD) are still 

used for analysis, but more grid can be used and more detailed solutions can be addressed 

because computers have more memory and processing power. While more computational 

problems can be addressed because of this increased processing power, the manner in 

which design engineers interact with all of these analysis tools and analysis data has not 

evolved over this same time period. To enhance the way computers are used, software 

must be created that applies an improved method of processing and interacting with 

information.  

The virtual engineering process embodies activities that other disciplines assume 

are present in daily activities. To further the artist analogy, it is not the artist’s job to 

develop the tools for painting (e.g., manufacturing the paintbrush). Information about 

manufacturing paintbrushes is assumed to be easily accessible as well as inherently 

available, not to mention unnecessary for the actual process of painting. Although an artist 

does need to worry at some point about choosing the appropriate paint brush, during the 

process of painting, the painter need only think about how the paint is applied to the 

canvas. Similarly, an engineer should be able to work with objects in a virtual space 

without thinking about detailed development of the analysis and modeling tools, even 
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though at some level in the engineering process that information is important. S/he should 

be able, for instance, to grasp a virtual part in a pump and alter it and only have to think 

about the consequences of such a move to the rest of the system in which the pump resides. 

Much like the artist, engineers must also be able to move across scales within a system and 

understand how the parts within the system will interact with each other without being 

concerned with the underlying tools (e.g., process simulation, CFD, FEA, CAD) being 

utilized to create the virtual systems.  

One area that focuses on many of the same aspects of virtual engineering is called 

Think, Play, Do. A description of its components follows: 

• Think – Innovation Technology (IvT) (e.g., modeling, simulation, virtual reality) 

liberates creative people from mundane tasks, enabling them to experiment more 

freely and widely, producing a variety of options 

• Play – IvT enables people to design, prototype, and test more cheaply and 

effectively and to delay choices about investment until market and technology 

patterns become clear 

• Do – The extent of digital integration with other kinds of technology gives 

innovators confidence in their ability to successfully transform new ideas and 

designs into products and services 

Taken from “Think, Play, Do” Doddgson et al. 2005, p. 4-5 

Think, Play, Do is based on the idea that the tools needed in today’s business environment 

demand access to a broad range of data from many project stakeholders. This level of 

access is necessary to create a decision-making environment. Doddgson et al. also note the 

demand that engineers place on numerical models at all levels of product detail. Design 
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engineers and project stakeholders demand complete virtual access to product acceptance 

models all the way to product maintenance. This access is needed in trying to improve 

product reliability and reduce product cost. Often, design engineers have a wealth of 

experiential information that enables them to see patterns and places for improvement 

without having to see a physical prototype. In this work environment, the more information 

that is available virtually and accessible through familiar product representations, the more 

the design engineers can improve the overall product without a physical prototype. These 

observations will be utilized as requirements in the development of the advanced 

engineering software framework described in this research. 

3.1 Advanced Engineering Software Frameworks 

As discussed in Chapter 2, current software frameworks succeed in solving many 

different engineering problems and questions in regards to meeting today’s product 

development and delivery schedules. These frameworks and algorithms enable engineers 

to more efficiently answer questions, make decisions about specific problems, and address 

specific areas within engineering disciplines. Over the past few decades, a significant 

amount of work has been completed on the construction of software frameworks to solve 

engineering problems and on interfaces to connect disparate software packages. These 

tools have played important roles in creating environments where engineers are better 

enabled to solve problems and create solutions that would have otherwise remain hidden. 

These frameworks have three main limitations: 

• They are monolithic; that is, they provide limited capability within their own 

interfaces and modules. They are not extensible to new applications. 
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• They can only integrate a limited number of models, based on strong typed data 

interfaces requiring extensive conversion of external data formats.  

• They only provide limited data access by external software tools and limited 

interfaces for external execution control. 

These limitations must be overcome by creating a new framework based on the new way 

of handling engineering models and information. Specifically, the computer needs to 

handle the middleware tasks of information integration, extension of existing models to 

new applications, and detail development. Today, these middleware tasks are handled by 

the engineer.   

To enable computers to perform this middleware task, a software framework must 

support: 

• An object-oriented approach to information management 

• Incorporation of emergent behavior methods 

• A bottom-up information semantic dataflow 

This requires the creation of a “wiring layer” that provides the interface by which other 

software platforms can coexist to share information, which becomes important in the 

development of engineering informatics tools to address the limitations described above. 

Just like in the physical sense with airplane avionics boxes, the “wiring layer” enables a 

diverse set of software tools to connect to each other and transfer information without user 

input (Figure 5). A popular discussion topic is: 
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Figure 5. Avionics wiring layer in a plane [Evektor 2008] 
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… the role of metadata and semantic technologies to help integrate the various 

information sources with each other and with applications. I think that one of 

the key reasons that large commercial applications are so inflexible and difficult 

to modify is that the data access of the applications is “wired in” - connected to 

a specific data base. While the applications and databases have been separated 

since the advent of relational databases more than twenty years ago, modifying 

the application to access a different data source requires serious application 

changes and testing.  

 The answer to this dilemma is to provide a sophisticated layer of metadata 

between the applications and information sources to act essentially as a shared 

integration or “wiring” layer. Moreover, the richer you make the semantic 

model embedded in the metadata layer, the more this shared integration layer 

becomes a kind of “common understanding” among all the various components 

being integrated, which makes the overall system more adaptable and dynamic. 

That is, different integration decisions will be made in real time, depending on 

the overall environment. [Wladawsky-Berger 2006] 

The “wiring layer” is possible for engineering tools as long as the software 

connected to the wiring layer adheres to an agreed-upon communication protocol. Each 

software framework is able to use any data structures for communication but must have an 

interface that is able to communicate with the wiring layer. Within a software framework, 

this wiring layer becomes the exposed software interface that enables the metadata for 

domain-specific software tools to be shared. The interface for this wiring layer is important 

to the development of solutions for engineering informatics, but frameworks that can 
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exploit this interface become increasingly powerful in the tools and experiences the 

engineer is given access to.  

 In this research, an advanced engineering framework will be developed that 

utilizes engineering objects and VE-Suite to create a wiring layer for engineering 

information. The key components of an advanced engineering framework are: 

• Transparent interfaces 

• Object-oriented characteristics (i.e. modularity, hierarchy, and abstraction) 

• Enabling emergent behavior 

One of the key components of this development will be implementing an object-oriented 

approach to information management to enable the investigation and utilization of the 

subsequent engineering objects that are created. This implementation will result in 

engineering objects that will enable the engineer to focus on engineering rather than on 

information integration. The engineering objects, when implemented with each component 

in a product being developed, will create environments where virtualized systems and parts 

can be analyzed and produced with fewer costs being devoted to the design and 

development phase of the realization process. 

3.2 Objects 

The main difference between the objects described in this work and those that have 

been defined and implemented previously is that the objects described here provide a 

mechanism for relationships with other objects through multi-scale numerical relationships 

that describe physical phenomena that are not possible in other object-oriented approaches 

or engineering frameworks. The importance of this difference will emerge over the next 

few chapters.  



 

  

53 

One of the key characteristics required by engineering objects is the ability to 

encapsulate the information for a specific component in a simulation. This encapsulation 

provides the framework for moving a decision about a particular object forward. The 

encapsulation in an engineering object enables a user to drill down into the object, 

determining what information is needed and what can be discarded. This is different from 

many presently used engineering processes, in which this information is often hidden or 

disconnected and the user must dig for each piece of information across different software 

packages, resulting in time being spent on non-problem-solving tasks. 

These objects carry with them context and meaning and the ability to be modified 

by the user. The context and meaning that they carry is the meta-data they contain and the 

information about any sub-objects that they contain. These characteristics build on the 

functionality of programmatic object-oriented principles in that virtual objects are modular, 

easily reused, extensible, polymorphic, able to support complex objects (i.e., objects can 

make up other objects), and can be loosely or tightly coupled to other objects. One key 

difference is the ability to change representations of itself at run time through the 

manipulation of the information that the object contains. Most of all, an engineering object 

must have the ability to self-discover and adapt to other objects that may need to exchange 

information with that particular instance of the object. The information that is exchanged 

with other objects must be able to be managed internal to an engineering object without 

outside assistance from the user. 

 Engineering objects will help manage complexity because they manage information 

in an object-oriented method in that information is grouped based on its physical 

counterpart. This design is different from other engineering frameworks where information 
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for one component may be stored in disparate software packages, requiring the user to 

gather the information. Within engineering objects, even if information is stored within 

disparate software packages, the user interface into the object is through a single 

engineering object interface. In addition, the user can decide at what level of immersion he 

or she wishes to interact with the engineering object. 

 Part of the inherent nature of engineering objects is that they can be comprised of 

other objects, much like physical objects can be comprised of multiple sub-objects.  

Foucault notes that objects in nature are described as follows: “Each visibly distinct part of 

a plant or an animal is thus describable in so far as four series of values are applicable to it. 

These four values affecting, and determining, any given element or organ are what 

botanists term structure.” [Foucault 1994, p. 134] The structure that is derived from the 

description of objects enables humans to understand complex systems. The structure, as 

Foucault notes, enables us “to describe certain fairly complex forms on the basis of their 

very visible resemblance to the human body, which serves as a sort of reservoir for models 

of visibility, and acts as a spontaneous link between what one can see and what one can 

say” (p. 135). While engineering objects may not be used to describe the human body, the 

human body can be used as a parallel system to demonstrate how engineering objects are 

constructed and illustrate what is necessary for software to enable users to communicate 

and understand complex systems such as the body.  

 The interfaces to engineering objects are constructed to enable the structure of the 

information that the engineering object contains to not be degraded when passing through 

the interface. Foucault notes, “By limiting and filtering the visible, structure enables it to 

be transcribed into language. It permits the visibility of the animal or plant to pass over in 
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its entirety into the discourse that receives it” [Foucault 1994, p. 135]. If the structure of an 

object is degraded beyond what the user is asking for, the description of the object 

necessary for discourse is unavailable. The comprehensive structure of an engineering 

object must be available if necessary to enable understanding to be gained from the object. 

In object-oriented programming languages, fixed interfaces (i.e., functions) are created to 

access an object’s specific variables, but in the case of engineering objects, the interfaces 

will be constructed to be flexible to adapt to the information describing the physical entity 

so that the structure of the information is not degraded. 

3.3 Object Interactions 

To create connections between objects, tools must be utilized that enable objects to 

self-describe themselves to the world and to understand information presented to them. 

Information interactions include human-to-human, human-to-object, human-to-model, 

model-to-model, and model-to-object. Some types of information interaction (e.g., human-

to-human) have been well defined in the literature, providing a foundation on which to 

base engineering informatics. Literature about some interaction types has been available 

for as long as 40 years [Foucault 1994]. These interactions have a significant place in 

engineering in that they help provide not only a basis for how engineers should interact 

with information, but also indicate what information must be automatically made available 

to enable appropriate interactions to occur without direct user interaction. When creating a 

virtual component, the user should not need to consider the solver or solvers that are 

employed, but should be able to construct the part as if in real life.  

When objects are constructed and connected into a network that enables the end 

author to interact with and explore various options for connectivity and interrelationships, 
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the resulting network resembles the web. These particular networks are called scale-free 

networks [Barabasi 2003]. A typical characteristic of these networks is that there are a few 

major hubs or master objects that have sub-objects and information sources feeding into 

the master objects. With an understanding of the resulting network created by multiple 

objects, characterizing classes of engineering objects becomes possible.  

The classes of objects used in engineering range from humans within the design 

process to sensors that feed information in one direction. Classes of objects are then 

grouped into five basic subcategories that are binned by object characteristics based on an 

object’s interaction or lack of interaction with its surroundings. Each bin holds a 

group/class of information that will enable other models to detect how to interpret and use 

the information provided by the other objects. These bins (Figure 6) are classified as 

follows: 

• Class 1 – One-way information objects  

• Class 2 – Two-way information objects 

• Class 3 – Two-way interactive objects 

• Class 4 – Instructive objects 

• Class 5 – Knowledgeable objects 
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Figure 6. Class of engineering objects 
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The bins also dictate what information will be published about each class of objects 

so that other objects can understand where and how they fit into the engineering process. 

These bins are related by two main factors. The first factor is related to how an object 

interior to an environment can affect the environment. These objects can be broken into 

three sub-classes of objects: models that provide input, models that can provide input but 

also can receive some input from the user, and two-way interactive models. The second 

class of objects is agent-type objects, which can be broken into two subclasses: cleanup 

agents, or dumb agents that are told what to do; and super agents, which rank close to or 

the same as humans. We assume that humans are the top knowledge form in the hierarchy 

of these objects. 

With these categories in place, the grouping and handling of information can be 

automated because assumptions can be made about how each object interacts with the 

world, the type of information it contains, and the manner in which the object can 

manipulate the world and the information that is provided to it. These classes enable the 

objects, as described by Foucault, to adapt as the underlying objects change. However, the 

core interfaces do not need to change.  

The objects in the research described here are being developed to provide a 

mechanism that enables relationships with other objects through numerical relationships of 

physical phenomena that are not possible in other object-oriented approaches. As stated 

earlier, this research defines an object as encompassing all sorts of physical and digital 

artifacts that can convey meaning in interpersonal communication, providing the ability to 

construct virtual systems, and possessing these characteristics: 
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• defining its own status, method of operation, and method of interaction with other 

objects 

• sensing and acting on the environment in which it is situated over time 

• responding directly to the environment 

Engineering problems are often defined by a series of constraints that are dictated by the 

environment, management, marketing, or a whole host of intents and expectations. These 

constraints imply the level of information fidelity required within the engineering process 

and are often either lost or overemphasized. Each domain has a set of rules (e.g., gravity) 

that dictate these constraints as well as what may or may not exist in products within that 

domain. The rules also define the characteristics of the world in which the product will be 

developed. 

Object integration in the engineering environment will occur through the exchange 

of information at similar fidelities, enabling objects to interact with each other and humans 

to interact with objects. The level of interaction needed to move a specific decision 

forward drives the level of fidelity required for the engineering object. Objects’ 

characteristics are determined primarily by the decisions that must be made.  

The objects can be classified based on the information they contain and the raw 

sources for this information, which will dictate the capabilities the object has in the VE-

Suite environment. These information sources can range from sensors, radio frequency 

identification (RFID) tags, high-fidelity numerical models, spreadsheets, and many other 

sources. Each of these is capable at some level of interacting with its environment. Each 

entity may only provide one-way information, but some may be two-way coupled to 

understand their surroundings and act independently of the user investigating the product.  
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3.3.1 Emergent Behavior  

In the real world, many phenomena occur without external intervention (e.g., ants 

building an ant hill, flocks of birds, termite hill construction, the growth of a coral reef, 

traffic patterns, the stock market). These events occur through the use of communication 

through the environment in which the entity resides. For example, in traffic, cues that a 

driver receives from signs and other cars’ signals influence how he or she drives. These 

signals and signs provide the driver with information about what to expect and how to 

operate their car.  

 For this discussion, self-organizing will be defined as a process that an open system 

returns to an organized state spontaneously after surroundings change. [Bak 1996]. Open 

systems in this case refer to the fact that the software tools can accept input from external 

programs and users. Characteristics of self-organizing objects are: 

• ability to tell what they need to connect to 

• ability to tell what type of information they can accept 

• ability to tell where they need to run from within the hierarchy of information 

available to the object 

Self-describing is defined here as the ability for a virtual object to provide 

information about itself through its own interfaces, revealing the representations that allow 

the user to understand the object in every context as in the physical world, as in nature 

when ants use the environment to communicate indirectly with each other, enabling the 

colony to accomplish a task as a whole. Similarly, constructing large systems of 

engineering objects without user intervention requires that many of the tasks regarding 

identification about the engineering object and its capabilities must be handled without 
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external intervention. Characteristics of a self-describing object that can be derived from 

this definition are: 

• ability to tell other objects about its internal characteristics 

• ability to define input/output variables that are accessible for a given request 

• ability to define fidelity and other vendor and meta-data, which comes primarily 

from the ontology 

 Self-operation is an object’s ability to know what model to run to provide the 

appropriate information to a requesting object and when to run that model. Self-operating 

also implies the ability to connect the appropriate models and fidelities of models given the 

question being asked of the object. If a lower-fidelity model is run, the higher-fidelity 

model may not have to be run because a change to a lower-fidelity model may not have an 

impact on higher-fidelity models. Conversely, if a higher-fidelity model is run, the lower-

fidelity models will likely have to be rerun. Self-operation enables self-organization and 

self-description. 

Characteristics of a self-operating object include: 

• ability to optimize itself 

• ability to inverse engineer itself 

• ability to tell the virtual environment what needs to be run 

3.3.3 Object-Oriented Principles 

One of the areas of weakness in current engineering software frameworks is the 

inability to generically construct interfaces to adequately enable the structure and 

representation of an engineering object to be shared with the rest of the software 

framework. In this research, representation is the data structure for a particular aspect of an 
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engineering object. Specifically, representation is a formalization of point of view or 

perspective. For example, in a graphical perspective, the representation of an engineering 

object will primarily be its CAD data. The CAD data has a specific data structure, is 

different from the numerical results, and also has a different graphical representation from 

the CAD data. As in object-oriented programming, methods must be available to interact 

with the underlying information. These methods, in a practical manner, are functions. 

From a higher level, these functions are variation operators. The variation operators in 

engineering objects are used to drive exploration of a problem space. These operators are 

the exposed tools that will enable users to modify CAD data and numerical simulation 

parameters, enable optimization algorithms to automatically search the problem design 

space, and change the underlying inputs of a particular object.  

Much like our brains hierarchically represent our experiences [George et al. 2004, 

George et al. 2005, Hawkins et al. 2006, Hawkins 2004], engineers should also create a 

hierarchy of information. The brain operates on information farther away from the sensor 

(the neuron in this case) (Figure 7), enabling it to accomplish incredibly complex tasks as 

information is broken up into manageable pieces. In addition, the brain uses invariant 

representations to store information about the world, permitting it to store an incredible 

amount of information in a very small space. In the case of the brain, invariant means that 

the information that the brain stores, whether from seeing, hearing, or touch, is stored in 

the same format to enable different sections of the brain to operate on the same 

information. More significantly, the brain can perform tasks using general information 

because it remembers patterns rather than explicit information. These patterns dictate how 

we interact with the world and permit us to apply patterns to a broad range of problems. 
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This storage mechanism permits the same portions of the brain to share the load of 

problem solving independent of the problem domain. For example, if the eyes need help 

solving a problem, the portion of the brain that handles information from the hands can be 

used and vice-versa. By the time information from the eyes and hands reaches their 

respective portions of the brain, the information has been translated to an invariant format 

and has been relegated to the portion of the brain trained to handle the information. 

Creating software frameworks that have the ability to exchange information from 

diverse problem domains with the same level of abstraction as the brain requires the use of 

ontologies and other tools created for the semantic web (i.e., XML and XSL). The 

ontologies created from these implications are very general and highly pattern-oriented, not 

detail-oriented. The engineer needs to work at a high level of abstraction with the 

information much like is done with CAD packages today. The engineer provides 

dimensions and key geometric features but does not generate any of the curve equations 

for the computer. While the objects discussed in this research will contain the ability to 

perform specific tasks much like our brains are able to perform tasks on specific sets of 

information, the ability to share information across modules within an object will be 

possible in much the same way that programming languages enable data share.  
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Figure 7. Hierarchical representation of the brain [Hawkins et al. 2006, p. 6] 
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Figure 8. Map directions from Iowa State University to Hickory Park Restaurant, Ames, 
IA [Google 2008] 
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The end result of these implementations will be software that enables the engineer 

to see the engineering domain much like online maps provide (Figure 8) driving routes: 

basic maps show what direction to drive and which turns to take. Maps are available that 

have various layers showing elevation changes (e.g., relief maps), previous roads, previous 

building locations, zoning information, or any other geographical information about the 

city. These maps can show changes that were not visible with basic, non-layered maps. In 

the same way, engineering software must enable engineers to see whatever layer of 

information they desire at any fidelity. For example, if warranty information is being 

viewed for a product and a specific component is frequently breaking, the underlying 

physics models for this component must be accessible with a simple action from the user. 

The engineer in this case must be able to drill down from warranty information (e.g., the 

number of times this component broke), to the CAD representation, to the FEA analysis 

that was performed by the original design team to better determine the problem behind the 

warranty recalls.   

3.5 Summary 

Once implemented, engineering objects as described here will enable the user to 

more easily traverse from a simplified information state to a complex information state, 

which is necessary to gain a true understanding of the information [Davis 1999]. The 

environment created by objects provides a mechanism for engineers, artists, and 

individuals of many backgrounds to enter a mode of discourse that enables participants to 

interact with other participants and to understand what they are trying to communicate. In 

addition, these objects typically contain artifacts that enable participants to recall events or 

meaningful points of interest surrounding the objects. This is the same level of realism that 
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must be present for the engineering objects being described and implemented in this 

research. In order for these engineering objects to be utilized, a software framework must 

be implemented that enables objects to communicate without intervention or direction by 

the user, just like objects interact in the physical world.  
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Chapter 4: Implementation of the proposed advanced engineering 
framework 

 

 

 

Creating an advanced engineering framework based on engineering objects requires 

the following three tasks to be implemented: 

• Transparent interfaces a transparent interface results in data independent methods 

being exposed to the user to enable data from any domain to be passed through the 

interface. The goal of the interfaces developed here is to avoid strong typed 

methods that are attached to a specific problem domain. 

• Implementation of object-oriented principles to enable virtualized systems to be 

created that avoid the problems that Booch and Ross et al. outlined, the methods 

that enable the objects to be created for this engineering framework will include 

modularity, hierarchy, abstraction, and design patterns to be utilized with 

engineering objects. These qualities will be exhibited in the engineering objects 

constructed here and will be supported by the engineering framework. Through the 

use of transparent interfaces, modularity, hierarchy, abstraction, and design patterns 

can be implicit in terms of the capability that the framework can support. 

• Emergent behavior the engineering framework will enable emergent behavior in 

two ways. First, the structure of the information that is received by the 

computational units and by the core engines will provide key reference data so that 

UIs can be constructed, three-dimensional graphical representations can be 
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constructed, and computational units can gain information about what is upstream 

or downstream of them without user intervention. Second, any computational unit 

will be able to query the rest of the virtual environment for data if the respective 

unit requires other inputs to perform its tasks. This querying capability also occurs 

without user input and enables the computational unit to exhibit some autonomous 

behavior. 

The core components of VE-Suite require several changes to support these tasks. These 

needs will be met through the extension of the current VE-Open CORBA interface, 

implementation of an XML Schema and respective API, and extension of VE-Xplorer to 

support the display of engineering objects in a virtual world. Other changes will be made 

to VE-Conductor and VE-CE. All of the changes outlined in this chapter are a result of the 

research performed for this thesis. The implementation of each component was shared with 

other organizations such as NETL, REI, and other graduate students in the Simulation, 

Modeling, and Decision Sciences Program. 

4.1 Transparent Interfaces 

To enable information to be accessible to the core VE-Suite engines and the 

engineering objects contained within the virtual world, transparent interfaces are needed 

that are independent of the problem domain to which the interfaces are being applied. 

These interfaces must enable data from any domain to be accessible throughout the 

engineering framework and allow the full fidelity of the data to be accessible wherever the 

user requests it. Rather than pushing data to the user, a query-based model will be used for 

these interfaces. A query-based transparent interface puts all of the control of the 

information in the hands of the user, the computational units, and the plugins in the 
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engineering framework. A query-based system is how we interact with the objects around 

us. To find out how much an object weighs, we must pick it up; we cannot tell by simply 

looking at it. Implementing this query-based model requires changing the CORBA IDL 

interface (VE-Open) for back-end computational units to support a query-style interface, 

enabling a command-driven unit interface engine that receives commands through a user-

constructed query interface based on user requests. The unit parses the command, 

compares it to a set of available commands that are supported in the unit, and carries out 

the required tasks. Each of these steps is completed without user intervention, resulting in 

autonomous and emergent behavior by the computational units. In addition, only the 

information requested by the user will be transferred, resulting in several smaller data 

structures being transmitted and reducing the network burden.  

4.1.1 Implementation of Transparent Interfaces 

To implement transparent interfaces, VE-Conductor will be updated to run in two 

editing modes: offline and online.  In the offline mode, the user is responsible for more of 

the manipulation of the VE-Suite software engines. In the online mode, the VE-Suite 

engineering framework manages much of the background work for querying and changing 

input parameters. The only programmatic difference in VE-Conductor between the online 

and offline modes is the point at which the SetNetwork and SetParam calls are made. 

In the online mode, the user connects to the computational engine once VE-Suite is 

started. This tightly couples the VE-Conductor, VE-CE, and the computational unit. In the 

online mode, the user can query the VE-CE and the computational unit to bring the 

embedded network in a computational unit to VE-Conductor. When a VE-Conductor 

plugin on the design canvas is double-clicked, VE-Conductor queries the module for 
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parameters and specific parameter properties. When a new module is included on the 

design canvas, a subsequent SetID call is made immediately through the VE-CE to the 

computational unit to make a new instance of the object in the computational unit. This 

enhancement is an important step in the construction of the engineering framework. This 

feature is a key component in being able to scale the engineering framework to support 

hundreds of sources of information by supporting modularity. By enabling a single 

computational instance to manage multiple instances of an object in the virtual world, a 

smaller memory and management load is put on the engineering framework. In this 

implementation, only the inputs and results are stored for each instance of the object in the 

computational unit. Also, when a module is removed from the VE-Conductor design 

canvas, a CORBA call immediately removes the respective instance from the 

computational unit. The computational unit is still available if the engineer decides the 

object is necessary in the virtual world. When the engineer decides that inputs need to be 

changed for a specific object, the SetParam CORBA call is made to set the input 

parameters on that unit. Again, only the object that is being modified by the engineer is 

affected. Modularity in this case does not require that all the object’s inputs be set again, 

just the object’s inputs that are being requested by the engineer. 

To implement this new functionality within VE-Conductor, the following functions 

are modified in the current VE-Open IDL: 

 string Query(in string commands)  

This query method takes the command’s parameters requested by the 

engineer. VE-CE passes this call directly to the respective computational unit 
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and responds directly to VE-Conductor, through VE-CE with the response 

from the computational unit (Figure 9). 

 void SetNetwork(in string network)  

This function’s action depends on VE-Conductor’s mode (i.e., online or 

offline). If VE-Conductor is operating in the offline mode, the network string 

contains the whole network’s information, including all the modules’ input 

parameters. The computational engine, however, does not store these 

parameters; it only parses the network portion of the DOMDocument to 

extract the module list and link information. This is done to enable scaling 

within VE-Suite to support ultra-large systems. By only requiring the 

network information to be stored in the VE-CE, the memory footprint of VE-

CE remains small even with ultra-large systems. VE-CE then calls the 

individual module’s SetID and SetParams to pass on the respective part of 

the network string for the specific computational unit to parse and store the 

information.  
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<?xml version="1.0" encoding="UTF-16" standalone="no" ?> 

<commands name="Commands" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="veshader.xsd"> 

     

    <vecommand commandName="getInputModuleParamList"> 

        <parameter dataName="ModuleName" id="932658b0-40ff-df48-8732-a7a423958ff2"> 
            <dataValue type="xs:string">Data.Blocks.CVAP</dataValue> 

        </parameter> 

    </vecommand> 

     

</commands> 

 
Figure 9. VE-Open query command from VE-Conductor 
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In addition to the functions modified above, these three new calls in the VE-Open IDL 

support the VE-Conductor online editing mode;  

 void SetID(in string moduleName, in long id)  

void DeleteModuleInstance(in string moduleName, in long module_id)  

void SetParams(in string moduleName, in long module_id, in string param)  

In the online mode, SetNetwork only passes the top-level system information needed to 

describe the virtual world. Each module’s inputs are passed separately through VE-CE into 

the unit using the SetParams call. SetID and DeleteModuleInstance calls are used for the 

computational unit to manage its instance list when the user adds or deletes multiple 

instances of the same module on the VE-Conductor design canvas.  

4.1.2 Summary 

Transparent data interfaces are the first component in the process of enabling 

object-oriented methods and emergent behavior in the engineering framework. The 

interfaces described above enable the engineering framework to be domain-independent 

through the use of string data types that are shared throughout VE-Suite. While the string 

data types have a processing overhead cost, this is weighed against the domain 

independence that is gained by using strings. In this research, the processing overhead was 

not found to be an inhibiting factor when working with these interfaces. The main 

performance lag is due to a serial threading model for CORBA ORBs in each of the core 

VE-Suite engines. In the future, this will be changed to a different threading model to 

improve the overall performance of the VE-Suite engineering framework. 
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4.2 Object-Oriented Principles 

Three of the main tools created for the Semantic Web are used to create a 

contextualized engineering environment. These tools include XML (the primary tool used 

by VE-Suite) and XML Schema [W3C 2007], XSL [W3C 2008], and OWL [Herman 

2007]. Integrating these tools into an application that drives a virtual environment changes 

the environment from being purely picture-based to being information-rich, with many 

avenues for the engineer to explore. The XML schema implemented in VE-Suite provides 

the primary mechanism for data transfer within the VE-Suite framework. XSLT [W3C 

1999] is used to process the XML documents generated by VE-Suite to create web pages 

that are W3C compliant, enabling future software clients using VE-Open to easily access 

information pertaining to a component by querying a web page, rather than querying 

multiple sources for a complete description of the component. The information available 

through such a portal will include high-fidelity information such as CFD data and text-

based information describing virtual components (e.g., a pump or a turbine). These 

software clients will implement libraries that are capable of interpreting the XML data 

being streamed so that engineers can easily interact with the information, rather than 

having to build custom code for every engineering problem examined. 

4.2.1 Modularity, Hierarchy, and Abstraction 

As discussed in Chapter 3, the engineering objects described in this research must 

satisfy many requirements, including the ability to handle multiple representations and the 

ability to handle data stored in a format that enables broad use of the information among 

many objects. The source of this information must come through an invariant 

representation, such as an XML schema. The invariant representation in this case is a 
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formal definition that does not change and is indifferent to the problem domain it is 

applied. A schema provides the foundation for creating the necessary data structures so that 

the virtual objects discussed here can exchange information, present queries, and 

understand responses to the rest of the environment, as well as interact with agents that 

may explore the environment or interact with the objects. The objects must have the 

capability to store any information in data structures that adhere to the schema defined here 

to enable modular and abstract objects to be constructed. This schema is much like the 

invariant matrix used in proper orthogonal decomposition [Kirby 2001, Meer 1998]. In this 

case, the input is the data from the objects. The solution, after having passed through the 

invariant representation, is the DOMDocument (Appendix B). This transform takes place 

through the VE-Open libraries. These documents represent a finite number of snapshots 

from the source invariant representation and provide the basis on which the objects are 

constructed and manipulated. The VE-Open schema developed here is a broad schema 

developed to handle a diverse set of problem domains. This schema must also address the 

three main representations that the proposed objects require to provide the engineer with 

the full context of the physical object: graphical, numerical, and the user control. These 

representations (i.e., graphical, numerical, and the user control) provide the user with a 

complete set of interfaces with which to interact with the virtual object The power of this 

schema, as well as the challenge surrounding it, is that it does not limit the user in the 

development of objects. Rather, new objects can be introduced in a natural manner by 

supporting hierarchical objects (e.g., objects constructed of other objects). As noted earlier, 

the schema remains constant across all problems while each DOMDocument is the specific 

representation for a particular problem under investigation. This implementation feature is 
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important as it enables VE-Suite to be constructed around the same transparent data 

interfaces no matter what problem domain is being investigated. 

4.2.2 Ontologies 

Ontologies are used to provide the mechanism by which sources of information can 

be classified as well as show the connection, hierarchy, and pedigree of information 

sources. The classification enables VE-Suite plugins and computational units to understand 

the full context of information that is received from queries. For example, when a 

computational unit queries an upstream or downstream component, it does not know any 

contextual information about the data it is receiving. The computational unit does not 

know the order accuracy of the solver, the convergence criteria of the solver, or the 

methods used to generate the information from the neighboring computational unit. This 

information is necessary to provide error approximation on the information being 

presented and to provide other uncertainty merits to the user. The ontology results in 

formal definition so that each of the VE-Suite plugins can provide contextual information 

to the rest of the virtual world. An initial ontology implementation within VE-Suite 

follows: 

<rdfs:Class rdf:about="&rdf_;objects" 

  rdfs:comment="most generic term for an entity in the ves world" 

  rdfs:label="objects"> 

 <rdfs:subClassOf rdf:resource="&rdfs;Resource"/> 
</rdfs:Class> 
 
This element becomes the basis for other types of objects within the VE-Suite domain. 

Creating a subclass from which to derive other objects enables the software interpreting 

these streams to easily derive structure from the implied nature of the XML syntax. This 

structural information would not have been as easily accessible with other languages and 
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other markup implementations. An example of objects that extends the base object class 

follows:  

<rdfs:Class rdf:about="&rdf_;info_provider" 

  rdfs:comment="one way information out" 
  rdfs:label="info_provider"> 

 <rdfs:subClassOf rdf:resource="&rdf_;objects"/> 

</rdfs:Class> 
 
This element describes an object such as a sensor. 

<rdfs:Class rdf:about="&rdf_;overseer" 

  rdfs:label="overseer"> 
 <rdfs:comment>can affect change on any portion of the world as well as  

investigate any other object in the world</rdfs:comment> 

 <rdfs:subClassOf rdf:resource="&rdf_;objects"/> 

</rdfs:Class> 

 
In addition to the implied structure and relation to other objects that the ontology provides, 

embedding contextual notes into each respective object through an rdfs:comment is 

relatively easy. This element describes objects such as software agents that may work on 

the engineer’s behalf. 

<rdfs:Class rdf:about="&rdf_;humans" 
  rdfs:label="humans"> 

 <rdfs:comment>humans are completely able to change and observe large  

scale environments</rdfs:comment> 
 <rdfs:subClassOf rdf:resource="&rdf_;overseer"/> 

</rdfs:Class> 

 
The human object would describe an engineer and may provide information about what 

position they hold within an organization to determine what security privileges should be 

granted to the user or how to display information. This user information can also be used to 

configure a virtual environment based on stored preferences about particular classes of 

individuals. 

Each of these elements provides an initial framework by which information can be 

classified within VE-Suite’s virtual engineering environment. These elements are a broad 
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description that must be distilled in such a manner that the software can transfer 

information. To enable this, an XML schema has been created.  

4.2.3 XML Schema 

XML schemas provide the basic structure by which information can be transferred 

within the VE-Suite engineering framework. While the ontology provides the broad 

framework that computers use to classify information sources without human input, the 

schema provides the means by which the data can be packaged to hold the information 

provided by a particular source. For example, the ontology defines an object that can be a 

human or an information provider. These objects, when broken down into an XML 

document, would be composed of veDataValuePairs and other veXMLObjects described 

below. An example of such a document will be illustrated below, but first the basic XML 

elements that compose the description of an object will be described. 

The schema is composed of a few key XML element types. The first type is the 

veXMLObject element: 

<xs:complexType name="veXMLObject"> 

      <xs:attribute name="objectType" type="xs:string" use="optional" /> 

      <xs:attribute name="id" type="xs:ID" use="optional" /> 

</xs:complexType> 

 
This element type is the basis for all other elements within the VE-Open schema, enabling 

any other element type within the schema to be embedded or referenced in a generalized 

manner. This enables abstraction, hierarchy, and modularity to be embedded in the schema 

and is the enabling factor for these qualities to be present in the objects that the XML 

schema describes. Although a formality, this element type enables the logic to be complete 

when embedding and referencing derived veXMLObjects in other element types. The 
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functionality that veXMLObject enables will be illustrated below in veCommand. The 

veCommand is the element type that is passed in the Query functions described earlier. 

The second element type is the veDataValuePair: 

  <xs:complexType name="veDataValuePair"> 

      <xs:complexContent> 

         <xs:extension base="veXMLObject"> 

            <xs:sequence> 

               <xs:element name="dataName" type="xs:string" maxOccurs="1" minOccurs="1" /> 

               <xs:choice maxOccurs="1" minOccurs="1"> 
                  <xs:element name="dataValue" type="xs:anyType" /> 

                  <xs:element name="genericObject" type="veXMLObject" /> 

               </xs:choice> 

            </xs:sequence> 

         </xs:extension> 

      </xs:complexContent> 

   </xs:complexType> 

 

The veDataValuePair type holds a descriptive name about the data it contains as well as a 

veXMLObject or raw xs:anyType. This flexibility enables veDataValuePair to be a generic 

container element that holds any form of data being processed by a particular object. Note 

that a veDataValuePair is a complete extension of a veXMLObject. This extension permits 

a veDataValuePair to be embedded within another veDataValuePair.  

 The third element type is veCommand: 

  <xs:complexType name="vecommand"> 

      <xs:complexContent> 

         <xs:extension base="veXMLObject"> 

            <xs:sequence> 
               <xs:element name="command" type="xs:string" /> 

               <xs:element name="parameter" type="veDataValuePair" minOccurs="0" maxOccurs="unbounded" 

/> 

            </xs:sequence> 

         </xs:extension> 

      </xs:complexContent> 

   </xs:complexType> 

 

This element type contains a descriptive name for the command in addition to an 

xs:sequence of veDataValuePairs. The command is constructed to enable any object to 
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request or send a series of veDataValuePairs with information about the potential 

application of the data contained within. Because a veDataValuePair can contain any 

veXMLObject that is derived for the VE-Open XML schema, a veCommand can be used 

as the overall container to transmit information about objects and the attributes used to 

describe them. This information is transferred in the Query methods and the SetNetwork 

functions. 

 The previous three elements described (i.e., veXMLObject, veDataValuePair, 

veCommand) are the core building blocks of the VE-Open XML schema. Each of the 

following elements described will use the key elements in the construction of the 

descriptors for an object. veParameterBlock is a general component that contains 

information about general information sources within VE-Suite:  

<xs:complexType name="veParameterBlock"> 

      <xs:complexContent> 

         <xs:extension base="veXMLObject"> 

            <xs:sequence> 

               <xs:element name="blockID" type="xs:unsignedInt" maxOccurs="1" minOccurs="1" /> 
               <xs:element name="blockName" type="xs:string" /> 

               <xs:element name="transform" type="veTransform" minOccurs="0" maxOccurs="1" /> 

               <xs:element name="properties" type="veDataValuePair" minOccurs="0" maxOccurs="unbounded" 

/> 

            </xs:sequence> 

         </xs:extension> 

      </xs:complexContent> 

   </xs:complexType> 

 

An example of a parameter block would be a reference to a VTK dataset. The property 

element is configured to maintain a list of custom elements for describing a particular 

information source. This list of elements may also contain a list of hardware specifications 

for a sensor array or for a CFD solver configuration.  

 CADNode describes the geometrical representations that are stored for a particular 

object.  
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<xs:complexType name="CADNode"> 

    <xs:complexContent> 

      <xs:extension base="veXMLObject"> 

        <xs:sequence> 

          <xs:element name="parent" type="CADAssembly" maxOccurs="1" minOccurs="0" /> 

          <xs:element name="transform" type="veTransform" minOccurs="1" maxOccurs="1" /> 
          <xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1" default="Assembly" /> 

          <xs:element name="type" type="xs:string" /> 

          <xs:element name="attribute" type="CADAttribute" maxOccurs="unbounded" minOccurs="0" /> 

          <xs:element name="activeAttributeName" type="xs:string" /> 

          <xs:element name="animation" type="CADNodeAnimation" /> 

        </xs:sequence> 

        <xs:attribute name="visiblility" type="xs:boolean" /> 

        <xs:attribute name="physics" type="xs:boolean" /> 

        <xs:attribute name="opacity" type="xs:double" use="optional" default="1.0" /> 

        <xs:attribute name="makeTransparentOnVis" type="xs:boolean" default="true" /> 

      </xs:extension> 

    </xs:complexContent> 
  </xs:complexType> 

The CADNode contains two unique features. First, the CADNode does not maintain its 

own geometrical information, but references a file that contains this information. Second, 

the element can contain information about how to apply high-fidelity lighting capabilities. 

These are stored in the attribute element. This element contains a CADAttribute, which 

maintains a GLSL program embedded in the CADAttribute. 

The following veXMLObjects will be described to provide context for the XSLT 

example that follows. These elements are used to construct the connectivity between 

virtual objects that are modeled in a system. The first element examined is a vePoint: 

<xs:complexType name="vePoint"> 

    <xs:complexContent> 

      <xs:extension base="veXMLObject"> 

        <xs:attribute name="xLocation" type="xs:unsignedInt" use="required"/> 

        <xs:attribute name="yLocation" type="xs:unsignedInt" use="required"/>       

      </xs:extension> 

    </xs:complexContent> 

</xs:complexType> 

A vePoint is primarily used by the software within VE-Suite that renders graphical 

representations of the network schematic for the system under review. vePoint is composed 

of two unsigned integers representing the X and Y locations of the point. Data types for a 



 

  

83 

point are unsigned integers so that graphical widgets libraries can easily render the point 

location. Graphical widgets libraries typically work in whole numbers rather than decimal 

values. The second element utilizes vePoint and is a veLink: 

<xs:complexType name="veLink"> 

    <xs:complexContent> 

      <xs:extension base="veXMLObject"> 

        <xs:sequence> 

          <xs:element name="fromModule" type="veDataValuePair"/> 

          <xs:element name="toModule" type="veDataValuePair"/> 
          <xs:element name="fromPort" type="xs:unsignedInt"/> 

          <xs:element name="toPort" type="xs:unsignedInt"/> 

          <xs:element maxOccurs="unbounded" minOccurs="2" name="linkPoints" type="vePoint"/> 

        </xs:sequence> 

        <xs:attribute name="name" type="xs:string" use="required"/> 

        <xs:attribute use="optional" type="xs:string" name="type"/>  

      </xs:extension> 

    </xs:complexContent> 

</xs:complexType> 

A veLink is composed of the necessary components to link one system component to 

another. The descriptors for the two modules that the link couples are fully described in 

addition to the necessary information to draw the link. This choice was made so that, upon 

obtaining the link, the software would not only be able to describe the information in the 

link, but would also be able to draw it.  

The third element for a network description in VE-Suite is the veNetwork: 

<xs:complexType name="veNetwork"> 

    <xs:complexContent> 
      <xs:extension base="veXMLObject"> 

        <xs:sequence> 

          <xs:element maxOccurs="unbounded" minOccurs="0" name="link" type="veLink"/> 

          <xs:element maxOccurs="6" minOccurs="6" name="conductorState" type="veDataValuePair"/> 

          <xs:element maxOccurs="unbounded" minOccurs="0" name="tag" type="veTag"/> 

        </xs:sequence> 

      </xs:extension> 

    </xs:complexContent> 

  </xs:complexType> 

 
It should be noted that the veNetwork element is relatively simple, but builds on the 

previous two elements for full description. A series of links composes veNetwork and 
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provides information about how the network should be rendered by VE-Suite’s rendering 

software. veNetwork is essentially a graph composed of edges (e.g., veLinks) and vertices 

(e.g., veModels). The representation of veNetwork follows closely on that defined by the 

DOT [Graphviz 2008(b)] language utilized by GraphViz [Graphviz 2008]. While the DOT 

language is not utilized internally by VE-Suite, this task remains as future work to leverage 

the DOT language in addition to the use of the Boost Graph Language [Seik et al. 2001]. 

These tools enable VE-Suite to use graph decomposition algorithms and detection 

algorithms to determine disconnected and feedback sections of graphs.  

As noted previously, the veModel represents the nodes on the graph. The veModel 

builds on all of the previous elements and has the main responsibility for containing the 

inputs, outputs, CAD, and raw stream data for a particular model representation. The 

veModel is the data container for an object (Appendix B). In reference to the classification 

of objects, the veModel contains the raw data that would tell other objects about itself. In 

addition to containing the object’s raw representational data, the veModel can also contain 

a veSystem, which will be described later. The purpose of this embedded element is to 

provide the user with the ability to: 

• Create a hierarchical assembly of complex objects 

• Embed a third-party solver into a broader simulation 

This capability provides one of the main components that enable the core VE-Suite 

software framework to support a broad range of problem domains. 

 
  <xs:complexType name="veModel"> 

    <xs:complexContent> 

      <xs:extension base="veXMLObject"> 

        <xs:sequence> 

          <xs:element maxOccurs="unbounded" minOccurs="0" name="ports" type="vePort"/> 
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          <xs:element maxOccurs="1" minOccurs="1" name="iconLocation" type="vePoint"/> 

          <xs:element maxOccurs="1" minOccurs="0" name="icon" type="xs:string"/> 

          <xs:element maxOccurs="unbounded" minOccurs="0" name="results" type="vecommand"/> 

          <xs:element maxOccurs="unbounded" minOccurs="0" name="inputs" type="vecommand"/> 

          <xs:element maxOccurs="unbounded" minOccurs="0" name="informationPackets" 

            type="veParameterBlock"/> 
          <xs:element name="geometry" type="CADNode"/> 

          <xs:element maxOccurs="1" minOccurs="0" name="modelAttributes" type="vecommand"/> 

          <xs:element maxOccurs="1" minOccurs="0" name="modelSubSytem" type="veSystem"/> 

        </xs:sequence> 

        <xs:attribute name="vendorID" type="xs:string" use="required"/> 

        <xs:attribute name="name" type="xs:string" use="required"/> 

      </xs:extension> 

    </xs:complexContent> 

  </xs:complexType> 

 

The key components in the veModel element are the veParameterBlock, CADNode, 

vecommand, and veSystem elements. These elements provide the necessary information 

for each core software engine in VE-Suite to produce the proper representation for the 

object. For example: 

• If an object does not have CAD data, then nothing is rendered for the object. 

• If the object does not have outputs, then other objects will not be able to gather data 

from it. 

The attribute element within the veModel contains the classification data for other objects 

to determine how to handle data from a particular object. Currently, the classification data 

is limited and further implementation is left for future research. 

The veSystem element is the overall element that links the disparate veModel and 

veNetwork elements. It is also the main element that is saved when writing out a ves file  

(i.e., the DOMDocument storing all of the objects) from VE-Suite. In addition to 

establishing a relationship between veNetwork and veModel, it also enables systems to be 

embedded within models. This element provides the capability to construct complex 

engineering objects within VE-Suite.  
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<xs:complexType name="veSystem"> 

    <xs:complexContent> 

      <xs:extension base="veXMLObject"> 

        <xs:sequence> 

          <xs:element type="veModel" maxOccurs="unbounded" minOccurs="1" name="model"> 

</xs:element> 
          <xs:element type="veNetwork" minOccurs="1" maxOccurs="1" name="network"> </xs:element> 

        </xs:sequence> 

      </xs:extension> 

    </xs:complexContent> 

  </xs:complexType> 

The veSystem element also provides the foundation to link multiple third-party solvers 

together. For example, when integrating an Aspen Plus flowsheet with another solver, the 

Aspen Plus solver and the other solver each looks like a single system to the VE-CE. 

Within each of the systems may reside complex subsystems (Figure 10), which are handled 

by their respective solvers. Any subsystem corresponds to a single computational unit 

connected to the VE-CE, which does not mean that subsystems cannot be broken in terms 

of information transfer across subsystem boundaries.  

4.3 Emergent Behavior 

With the transparent interfaces and object-oriented principles within the VE-Open 

XML Schema and IDL, the core VE-Suite software engines can be changed to utilize this 

capability. The changes implemented enable the software engines to manage more of the 

middleware tasks that were previously handled by humans. Some of these tasks are: 

querying model inputs, providing modeling results, executing model simulations, 

performing post-processing tasks such as meshing, and transforming data for post-

processing or model import. These tools enable the software engines to facilitate emergent 

behavior in the computational units and graphical environment. 
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Figure 10. VE-Open subsystem example 



 

  

88 

 

With a system and network schematic fully realized in XML, it is possible to 

distribute this schematic information to many other platforms including web browsers, 

which will be illustrated with XSLT. XSLT is a broad-based general tool that can be used 

to transform XML data into a multitude of different formats, such as a web page. Below is 

a small snippet of the XSLT script that takes the VE-Open XML document and transforms 

the network diagram, which is described by a veNetwork, into a webpage that allows the 

user to see model-specific information from any location in the world. The model-specific 

data in this case is a series of veDataValuePairs that are populated with information that 

describes a particular engineering system under investigation. 

<xsl:template match="linkPoints"> 

 
<xsl:variable name="x1"> 

 <xsl:value-of select="xLocation"/> 

</xsl:variable> 
 

<xsl:variable name="x2"> 

       <xsl:choose> 

  <xsl:when test="boolean(following-sibling::linkPoints/xLocation)"> 
   <xsl:value-of select="following-sibling::linkPoints/xLocation"/> 

  </xsl:when> 

  <xsl:when test="not(following-sibling::linkPoints/xLocation)"> 
   <xsl:value-of select="xLocation"/> 

  </xsl:when> 

       </xsl:choose> 
</xsl:variable> 

 

… 

 
<xsl:variable name="xPos"> 

       <xsl:choose> 

         <xsl:when test="$xValue = 0">1</xsl:when> 
         <xsl:when test="$xValue &lt; 0"><xsl:value-of select="$xValue * -1"/></xsl:when> 

         <xsl:when test="not(($xValue = 0)and($xValue &lt; 0))"> 

    <xsl:value-of select="$xValue"/> 
   </xsl:when> 

       </xsl:choose> 
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</xsl:variable> 

 
<xsl:variable name="yPos"> 

       <xsl:choose> 

         <xsl:when test="$yValue = 0">1</xsl:when> 

         <xsl:when test="$yValue &lt; 0"><xsl:value-of select="$yValue * -1"/></xsl:when> 
         <xsl:when test="not(($yValue = 0)and($yValue &lt; 0))"> 

    <xsl:value-of select="$yValue"/> 

   </xsl:when> 
       </xsl:choose> 

</xsl:variable> 

 

Note that the script above traverses into the veNetwork element to find the raw vePoint 

data needed to render the network schematic. This script provides an avenue to present 

high-fidelity information that enables the user to interact with a complex system’s data 

rather than with a multitude of different tools to gather the necessary information about a 

specific component. In other, more complex portions of the script, XSLT is used to 

traverse into the veNetwork element to provide basic information about the system’s 

components. The Semantic Web tools implemented here enable VE-Suite to leverage 

current technology to provide unique capability in the engineering framework without 

creating new tools to disseminate and display information. If the transparent interfaces and 

object-oriented principles were not implemented with industry standard tools (i.e., 

Semantic Web tools), new tools would have to be created to parse and interrogate the data 

within VE-Suite. 
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Figure 11. VE-Conductor input UI 
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4.3.1 VE-Conductor 

The changes in VE-Conductor enable real-time information retrieval and queries 

from the computational units connected to VE-CE as noted in Section 4.1.  Because of 

these changes, the user can query a unit for subsystem information from a third-party 

embedded network solver. The user can query for input and result parameters from any 

computational unit attached to VE-CE. The results and input data are provided in a 

browser-like user interface (Figure 11) to handle display and editing for query-enabled 

units. A developer can override this base functionality with a specific plugin to handle the 

respective query-enabled unit. This capability will be illustrated later in this document. As 

noted previously, the unit-specific data is all accessed in real time by the user. This enables 

the user to edit and interact with the system under investigation in the three-dimensional 

environment created through VE-Suite while simultaneously interacting with a 

computational unit to make low-level changes to the flowsheet. This workflow is possible 

through the implementation of the query interfaces in VE-Suite. 

4.3.2 VE-CE 

The changes to VE-CE have turned it into a data proxy that is responsible for 

scheduling the execution of various units and the transfer of information and queries 

between units. This enables VE-CE to be run on a low-powered gateway computer, even 

when the network data is large and must be passed through the VE-CE interfaces. This 

design is beneficial because it enables the computational units and VE-Conductor to be run 

anywhere on the Internet and to interact transparently through a firewall. In addition, it 

enables VE-CE to promote emergent behavior within the computational units by proxying 

the data without encumbering the user with those requests. When operating with a process 
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simulator as one of the units in the VE-Suite framework, VE-CE passes commands from 

the user through to the respective unit. The unit is then responsible for sending the 

information on to the respective software package.  

As revised, VE-CE will not store unit input parameters as it did before; rather, VE-

CE only parses the top-level system. Subsystem elements are assumed to be subsystems 

that will be managed by their respective units. This design enables VE-CE to scale as the 

subnetworks within a simulation expand. However, there is still not a direct link between 

VE-Conductor and the computational unit. VE-CE is the proxy for all calls.  

4.3.3 Computational Unit 

The changes to the computational unit support a command-driven software 

interface through the implementation of unit wrappers to accept an XML-formatted 

command through the query interface:  

string Query(in string commands)  

The computational unit parses the XML command sent from the VE-CE and extracts the 

command element to determine what is needed by the engineer. For each predefined 

command, a command handler is implemented to perform the specified action. Following 

is a list of current predefined commands supported by computational units. This list will 

expand as needed in the future.  

•  “getNetwork” retrieves the flowsheet information from a third-party solver so VE-

Suite can draw the network (Figure 12) and enable the user to query individual unit 

operations for results information 

• “getModuleParamList” returns the list of available parameters for a given unit 

operation 
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• Once the user has chosen a specific parameter, the properties for that variable are 

queried via the “getParamProperties” command and displayed to the engineer 

These commands and methods for accessing data within computational units have shown 

to scale from flowsheets with anywhere from 10 to 200+ unit operations (Figure 12). The 

following is a list of the detailed commands described above. 

Command: getNetwork 

Parameter:  none 

Return String: the XML network, including module name, identification, 

and interconnection links. 

Note: This command is only applicable to a unit that actually embeds a 

network in itself. 

Sample Command XML: 

<Command> 

<vecommand> 

<command> getNetwork </command> 

</vecommand> 

</Command> 

 

Command: getModuleParamList 

Parameter:  moduleName 

Return String: a list of parameter names for that module 

 

Sample Command XML: 

<Command> 
<vecommand> 
<command> getModuleParamList </command> 
<parameter> 

   <dataName>moduleName</dataName> 
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   <dataValueString>Gasifier</dataValueString> 
  </parameter> 
 </vecommand> 
</Command> 
 

Command: getParamProperties 

Parameter:  moduleName 

Parameter: moduleId 

Parameter:  paramName 

 

Return String: a list of the names and values of the parameter’s properties 

 

Note: It is possible to have multiple instance of the same unit in a single 

flowsheet network. Those modules are identified with module IDs. With 

IDs, the handler would know which instance’s properties to query.  

 

Sample Command XML: 

<Command> 
<vecommand> 
<command> getParamProperties </command> 
<parameter> 

   <dataName>moduleName</dataName> 
   <dataValueString>Gasifier</dataValueString> 
  </parameter> 

<parameter> 
   <dataName>moduleId</dataName> 
   <dataValueInt>102</dataValueInt> 
  </parameter> 
 

<parameter> 
   <dataName>paramName</dataName> 
   <dataValueString>Temperature</dataValueString> 
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  </parameter> 
 </vecommand> 
</Command> 

 
 Because a single unit’s data (e.g., the Aspen Unit) can be large and VE-CE should 

be lightweight, the state information such as input variables’ values are held in the unit 

itself. Each unit needs to maintain a list of its instances along with its parameters and 

values and add or remove instances as needed. So one new IDL would be added: 

void DeleteModuleInstance(in long module_id)  

Calling this function will delete the instance along with the data structure that has the ID 

that is passed into the function. 

The SetParams function needs to be modified so the unit knows which instance the 

input parameters belong to: 

void SetParams(in long module_id, in string param)  

The SetId function would have new actions in addition to setting the unit’s ID. Because 

each ID would identify a certain instance of a certain module, the action would include 

searching the list of existing instances and allocating memory for the instance’s parameters 

if it is not already on the list. A new SetCurID will be introduced to make a certain 

instance active as the current instance: 

 void SetID(in long id)  

 void SetCurID(in long id)  

The GetId function would also change to return this unit’s list of module IDs. GetCurId 

would be added to return the current running instance’s ID. Because multiple instance data 

would now be stored in the unit and the Calc function can run on only one instance at a 
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time, the GetCurId would return the ID of the instance that holds the set of parameters that 

the current or next StartCalc function would operate on.  

ArrayLong GetID()  

Long GetCurID()  

An abstraction layer between the raw CORBA interface and code and the user’s code will 

be added to the units. The new abstract layer will handle some of the query work and 

implement basic default functionality so that the user only has to override needed 

functions. Essentially, this is similar to the utility classes for the other core engines that 

enable the VE-Open code to be hidden. This abstraction layer will be described in the 

examples following this chapter. 

Like the inputs, the result and stream was previously stored in VE-CE. In this new 

design, the results will also be stored in the unit itself. A GetResult Call will be added to 

the unit so VE-CE can gather results data. Similarly, the stream result will also be saved in 

the unit itself. In addition to the GetResult call, a GetStream call will also be added. The 

downstream unit will call GetStream(import) on VE-CE. Because VE-CE will have the 

network information, it will know which upstream module connected on which port. It will 

subsequently call that module’s GetStream(modId, PortId) and return the result. 

4.3.4 VE-Xplorer 

The final set of changes required within the core components of VE-Suite are 

related to VE-Xplorer. Generic and schematic networks [Huang et al. 1993] are commonly 

utilized within today’s engineering environments to enable engineers to understand 

connectivity in systems and to provide ways to show complex networks. These networks 
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serve a specific need within the engineering process in the development of a product from 

birth to death (Figure 13). 

As shown in Figure 13, the generic network provides a place for the engineer to 

begin thinking about the problem. This network purely illustrates global components and 

basic relationships and is not intended at this point to provide high-fidelity information to 

the user. As the design process moves forward, this network morphs into the schematic 

network, which provides more detailed information but, at this point, still does not 

necessarily provide geometrical or production- or manufacturing-level information. This is 

where tools such as Aspen Plus can improve the engineering process. Aspen Plus, for 

example, can add chemical processing information such as mass flow rates, operating 

temperatures, and other stream information associated with a chemical processing plant to 

the plant network diagrams. These development tools are critical in interacting with large 

systems no matter what domain or discipline they address. In VE-Suite, the generic 

network can be constructed within VE-Conductor. There are multiple ways to look at the 

network under investigation in VE-Suite, including: 

• A two-dimensional schematic in Conductor (Figure 12) 

• A three-dimensional schematic in Xplorer (Figure 14) 

• A three-dimensional geometric view in VE-Xplorer (Figure 15) 
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Figure 12. VE-Conductor network diagram 
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Figure 13a. Network schematic examples [Huang et al. 1993, p. 64] 
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Figure 13b. Network schematic examples [Huang et al. 1993, p. 65] 
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Figure 14. VE-Xplorer schematic view 
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Figure 15. VE-Xplorer geometric view 
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In each of these views, the user should be able to move objects and select menu 

items. Lines are used to show objects as being connected and as having some relationship, 

but the type of relationship is not shown unless the user wants it to be. If the user wants to 

specify the information flow, arrowheads appear on the line ends. This information is then 

used by the computational engine to determine where and when data is needed. Again, the 

network shows the basic relationship of components to each other. Aspen Plus queries this 

network itself. This network can then be used in VE-Conductor to add further information 

such as CAD models, three-dimensional graphics representation, or other information the 

user wishes to store with the network. Additionally, if there are more external information 

sources for the network under investigation, the information can be added to a particular 

node of the network. This is possible through each engine of VE-Suite, utilizing VE-Open 

in terms of its internal data format.  

The functionality added is a two-dimensional network diagram rendered with three-

dimensional objects, enabling users to view the two-dimensional network displayed in VE-

Conductor within the three-dimensional VE-Xplorer environment. This addition is the first 

step toward being able to interact with the network within the same user environment. For 

example, the user will be able to right-click on the three-dimensional objects and bring up 

menus within the three-dimensional environment, whether on the desktop or in a three-

dimensional virtual reality device. Again, this functionality will be added in the future and 

will implement the ability to parse the XML representation of a network: 

<network> 

          <link id="8c176b27-8cf8-1541-a7c4-9752ab8b666e" name="1" type="0"> 

            <fromModule dataName="B2" id="8176f0ec-88b6-0246-ba4c-038a98f27c3f"> 

              <dataValue type="xs:integer">454</dataValue> 
            </fromModule> 

            <toModule dataName="B1" id="f3ebd3d5-477c-3542-a9fa-45626e576f64"> 
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              <dataValue type="xs:integer">252</dataValue> 

            </toModule> 

            <fromPort type="xs:integer">1</fromPort> 

            <toPort type="xs:integer">0</toPort> 

            <linkPoints xLocation="41" yLocation="90"/> 

          </link> 
          <link id="da3a13c7-75de-f848-854a-09805fbef47e" name="2" type="0"> 

            <fromModule dataName="B1" id="e2504a80-37e8-8647-ab93-abd6162826a9"> 

              <dataValue type="xs:integer">252</dataValue> 

            </fromModule> 

            <toModule dataName="B3" id="094d6ec9-9f8e-f549-8ff6-c8b17c72a50a"> 

              <dataValue type="xs:integer">527</dataValue> 

            </toModule> 

            <fromPort type="xs:integer">3</fromPort> 

            <toPort type="xs:integer">2</toPort> 

            <linkPoints xLocation="351" yLocation="47"/> 

          </link> 

          <conductorState dataName="m_xUserScale" id="88650542-6f71-6d44-8358-1b6684a4112a"> 
            <dataValue type="xs:double">1</dataValue> 

          </conductorState> 

          <conductorState dataName="m_yUserScale" id="4a5c290f-76f8-cb48-8e6c-455dd3ab86b3"> 

            <dataValue type="xs:double">1</dataValue> 

          </conductorState> 

          <conductorState dataName="nPixX" id="8c94fa3d-42d6-3544-b04b-6da0e70304a4"> 

            <dataValue type="xs:integer">20</dataValue> 

          </conductorState> 

          <conductorState dataName="nPixY" id="6c3c55f8-422a-d743-a278-b8fd0f6c46f8"> 

            <dataValue type="xs:integer">20</dataValue> 

          </conductorState> 
          <conductorState dataName="nUnitX" id="b12778d3-58a9-ac46-a0b0-a4cc81f0aa8d"> 

            <dataValue type="xs:integer">200</dataValue> 

          </conductorState> 

          <conductorState dataName="nUnitY" id="3142e447-7125-c142-8b6d-1fa4dd79d7e0"> 

            <dataValue type="xs:integer">200</dataValue> 

          </conductorState> 

        </network> 

and render the three-dimensional graphics equivalent (Figure 14). With this capability in 

place, the user will have the ability to use the default box three-dimensional icon to render 

in the network or to render custom CAD representations. This representation can be placed 

with the proper directory location for the application being completed by the user. For 

example, the user can create a custom three-dimensional icon of a gasifier and have it be 

rendered in place of the default box. The benefit of this functionality to the end user is the 

ability to move from a two-dimensional schematic to a comprehensive three-dimensional 
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physical representative model with a step between the two extremes to provide the user 

with a conceptual layout, enabling him or her to make the jump from the network view to 

the three-dimensional model view. In addition, coupling between components enables the 

user to understand the connectivity between subsystems in a large system analysis such as 

a power plant (Figure 16). 

Integrating CAD tools is also a key research effort that will be undertaken in the 

near future. Integrating these types of tools (e.g., OpenCASCADE [Open CASCADE 

2008]) will allow engineers to change details in the component’s current graphical 

representation and then send the new geometrical data to the respective numerical model 

and see the updated results in the visual environment. This roundtrip design process will 

allow the design loop to be closed and permit the engineer to focus on system design 

instead of transferring data from one engineering package to another. 

A feature is currently being developed that will allow VE-Suite to interact with 

initial graphics exchange system (IGES) files and render the associated geometry. This will 

allow VE-Suite to address a number of current engineering operations, including: 

• Easy computer-aided design (CAD) loading capabilities 

• Interactive CAD changes 

• Interactive analysis with finite element analysis (FEA), computational fluid 

dynamics (CFD), and any other numerical tools requiring grid generation 
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Figure 16. Investigating a virtual power plant 



 

  

107 

 First, many CAD converter tools use IGES as an intermediate format for 

translation. For CAD software packages, IGES is one of the most well-supported 

export/import methods. For example, Pro/E uses IGES as its main export format because 

of its capability to store raw NURBS data in file. Other software tools, such as PolyTrans, 

suggest translating IGES files from Pro/E rather than using the raw Pro/E files, due to the 

unchanging nature of IGES files and the universal support of IGES. In VE-Suite, IGES 

files can now be imported via a library called OCC. Once the files are imported, the 

NURBS data must be extracted and rendered. With the IGES data in OCC, the NURBS 

data is easily extracted and passed to the rendering library. The rendering library, which is 

referred to as VE-NURBS, is contained within VE-Xplorer in VE-Suite. VE-NURBS 

currently only supports OpenSceneGraph for rendering but can be extended to other scene 

graphs such as OpenSG or raw OpenGL. The VE-NURBS library currently only supports 

B-spline types of NURBS data but is being extended to support NURBS data more 

robustly. 

 Once the ability to support reading and rendering geometric data through the IGES 

file format is accomplished, the next step of functionality within VE-Suite is the ability to 

interact with the geometric data that is imported into the library. The VE-NURBS library 

contains the capability to render the control points for a specific surface. The user is then 

able to interact with the control points through a wand or mouse and to move the points in 

space. The VE-NURBS library then redefines the surface without having to regenerate it, 

allowing for a more interactive exercise. Once the user has finished modifying the surface, 

the surface data can be saved in the IGES file format through the OCC library. The new 

IGES file can then be loaded back into Pro/E and utilized for other engineering operations. 
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 Next, with the functionality to read IGES files and the ability to interact with the 

surfaces described by the IGES file, it becomes feasible to interact with other numerical 

computer aided engineering (CAE) tools and grid-dependent tools such as CFD and FEA 

software packages. CFD tools such as StarCD can import IGES files and mesh the 

resulting surface without user input. These pro-surface tools also have the ability to repair 

the surface to make it easier for StarCD to mesh. Once the surface has been repaired and 

meshed in pro-surface, StarCD .cel and .vrt files can be exported, and those files can then 

be imported into StarCD pro-am. Pro-am has the ability to take a surface mesh and 

generate a polyhedral volume mesh without user input. With the volume mesh complete, 

the model parameters can be defined and the model can be run. 

With these three new capabilities, VE-Suite can complete the engineering loop 

from conceptual surface modeling to high-fidelity analysis to surface modeling. Certainly, 

as with any new software features, these features will need to be thoroughly tested and 

utilized in everyday cases, but the foundation has been laid to provide an environment in 

which all tools utilized by an engineer can be integrated into one environment for use 

throughout the engineering process.  

VES files with all the current state information about a design can be saved, 

enabling the system to evolve over time. Just as an engineer would save various revisions 

to a CAD/CAE model, he or she can save various revisions to the virtual simulation 

constructed in the VE-Suite common user environment. This also enables the design to be 

tracked as it evolves through the design process.  
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4.4 Structure for VE-Suite Application Directory 

The final component implemented for this research is a formalization of the 

directory structure utilized by VE-Suite applications. This structure enables a compact 

process for storing the data necessary for opening and looking at applications in VE-Suite 

and is comparable to application bundles in Mac OS 10.X [Apple Computers, Inc. 2005]. 

The directory structure enables future versioning enhancements to be explored, but also 

simplifies the data access within VE-Suite to enable data access without user intervention. 

With the proposed directory structure (Figure 17), each of the core VE-Suite engines can 

implicitly access any piece of information requested by the user. 
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Figure 17. Sample VE-Suite application directory structure 
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4.5 Summary 

Two case studies will be examined to illustrate the new capabilities described 

above within VE-Suite. Each case uses a different set of functionality within the VE-Suite 

toolkit and will provide a means to better understand the object-centered method. The 

following chapter will discuss the use of these implementations with two applications that 

build on the new work discussed in the implementation chapter: 

• The integration of VE-Suite and Aspen Plus, which will highlight the capabilities 

of the online mode in VE-Conductor and the new systems support  

• The construction of tools that have the potential to reduce the complexity that the 

product engineer must manage when leveraging the new predictive modeling tools 

in the product development process 
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Chapter 5: Large and Ultra-Large System Integration 

 

 

 

 

In power plant design, access to a broad range of information is necessary to make 

informed decisions that impact plant performance, cost, and risk. Many information 

sources are available in today’s engineering environment, from spreadsheet-based models 

to process models to CFD models. Each of these models provides valuable information for 

the decision-making process as well as a different and unique perspective on the power 

plant’s design characteristics (Figure 16). Providing stakeholders with accurate, reliable, 

and complete information is an important characteristic of today’s engineering tools. 

Coupling process simulation modeling with an information framework, which will provide 

stakeholders with process simulation modeling information in conjunction with three-

dimensional CAD geometry, will be examined in this chapter. Presenting process 

simulation information in this format will help the engineer contextualize abstract 

simulation information.  

The integration of two software frameworks, APECS (with Aspen Plus) and VE-

Suite, will be examined in this chapter. In addition, this research highlights the capability 

to work with flowsheets containing hundreds of unit operations. This coupling will support 

automatic and manual mapping of pre-configured flowsheet interconnectivity to VE-Suite, 

automatic and manual configuration of Aspen Plus parameters for access in VE-Suite, and 

basic runtime control of APECS co-simulations from VE-Suite, all via VE-Conductor. 
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This is a collaborative effort between Fluent, Ames Lab, Reaction Engineering International 

(REI), and the National Energy Technology Laboratory (NETL). The specific components 

completed for this research are the participation in the design of the CASI library, design 

and implementation of the VE-AspenUnit, and the modification of the CASI library to 

support some on-demand feature requirements to support real-time interaction with large 

systems of models.  

One of the key elements of functionality required to couple VE-Suite and Aspen 

Plus is a wrapper, or abstraction, library for Aspen Plus. The function of the library is to 

provide a high-level C++ interface to the Aspen Plus software. In addition to a simplified 

interface, the library encapsulates the details of Aspen Plus interfacing in the library itself. 

While doing this, the library also maintains an external interface to keep from breaking the 

existing library client codes as well as to provide additional robustness enhancements. Key 

features of the library include: 

• Implementation of C++ as a class library 

• Hidden details of AspenTech’s automation interface implementation (AspenTech’s 

automation interface is undergoing rapid changes) 

• Ease of use from non-managed C++ 

• Portability to other platforms (wrapper code) 

• Simplified development of automation code for Aspen Plus 

Both APECS/Aspen Plus and VE-Suite will be utilized to produce an immersive 

and interactive environment where these advanced power generation facilities can be 
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created. These two toolsets bring unique capabilities to the engineering environment that 

enable more efficient power plants to be constructed. 

5.1 APECS 

NETL and its R&D collaboration partners are developing APECS [Zitney] as a 

commercial software tool that combines process simulation with high-fidelity equipment 

models based on CFD. APECS enables engineers to better understand and optimize power 

plant performance with respect to coupled fluid flow, heat and mass transfer, and chemical 

reactions.  

The APECS integration framework (Figure 18) uses the process industry-standard 

CAPE-OPEN [Pons 2003] software interfaces to provide plug-and-play interoperability 

between process simulation and equipment models. The hierarchy of equipment models 

ranges from high-fidelity CFD models to custom engineering models to fast reduced-order 

models (ROMs). At NETL, system analysts typically use APECS to run power plant co-

simulations coupling the CAPE-OPEN-compliant steady-state process simulator, Aspen 

Plus, with CAPE-OPEN-compliant CFD models based on Fluent. 

The APECS system reduces the time and effort required to couple CFD-based 

equipment models into plant-wide Aspen Plus simulations. Today, design engineers can 

use APECS to integrate CFD models into a process simulation in a matter of an hour or 

two by using the CAPE-OPEN software interfaces and a number of systematic and 

timesaving features, including easy-to-use configuration wizards and an equipment model 

database. 
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Figure 18. APECS software architecture 
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To improve co-simulation turnaround time, APECS provides options on both ends 

of the performance spectrum, including the use of fast ROMs and parallel execution of the 

CFD models on high-performance computers. ROMs are a class of equipment models that 

are based on pre-computed CFD solutions over a range of parameter values, but are much 

faster than CFD models. For example, the APECS system currently provides for 

automatically generating and using a ROM based on multiple linear regressions to 

demonstrate the concept.  

The APECS system also provides a wide variety of analysis tools for optimizing 

overall power plant performance. Design specifications are used to calculate operating 

conditions or equipment parameters to meet specified performance targets. Case studies are 

used to run multiple simulations with different input for comparison and study. Sensitivity 

analysis shows how process performance varies with changes to selected equipment 

specifications and operating conditions. Optimization is used to maximize an objective 

function, including plant efficiency, energy production, and process economics. For 

process optimization in the face of multiple and sometimes conflicting objectives, APECS 

offers stochastic modeling and multi-objective optimization capabilities developed to 

comply with the CO software standard.   

In terms of this research, APECS represents an example of being able to integrate a 

closed source solver through the transparent interfaces. It provides unique capability that 

would otherwise be inaccessible to other components that are connected in the VE-Suite 

engineering framework.  



 

  

117 

5.2 Aspen Plus 

Aspen Plus [AspenTech 2008] from Aspen Technology is a commercial, steady-

state process modeling tool for steady-state simulation, design, performance monitoring, 

and optimization. The process simulation capabilities of Aspen Plus enable engineers to 

predict the behavior of a process using basic engineering relationships such as mass and 

energy balances, phase and chemical equilibrium, and reaction kinetics. Aspen Plus 

contains data, physical properties, unit operation models, built-in defaults, reports, and a 

wide variety of analysis tools including equation-oriented modeling, case studies, 

sensitivity analysis, and optimization.  

For modeling coal-fired power generation systems, Aspen Plus offers solids 

handling capabilities important for combustion and gasification modeling; comprehensive 

physical properties, thermodynamics, phase and chemical equilibrium relations, and 

reaction kinetics for gas cleanup modeling; and an extensive library of heat exchange and 

rotating equipment models for simulating combined cycles. 

Aspen Plus also offers an open environment to easily incorporate proprietary in-

house or third-party technology. These may be created using Microsoft Excel®, 

FORTRAN, or Aspen Custom Modeler®.  In addition, Aspen Plus supports the process 

industry standard, CAPE-OPEN. 

5.3 CASI 

The key motivation for creating the C/C++ Aspen Simulator Interface (CASI) 

library is to encapsulate the details of communicating with Aspen Plus (Figure 19). In this 

work, the Aspen Plus automation server is used to provide access to simulation data and 

control the execution of the simulator from VE-Suite. The Aspen Plus API is an ActiveX  
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Automation Server. The ActiveX  technology enables an external Windows  application 

to interact with Aspen Plus through a programming interface using a language such as 

Microsoft’s Visual Basic . The server exposes objects through the COM object model. 

AspenTech is planning to implement a number of changes to the automation 

interface that fundamentally alter how software must be written to utilize the interface. 

CASI limits the software modifications required to support future AspenTech changes to 

the CASI library. Thus, user code (including VE-Suite) does not require modification. 
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Figure 19. CASI software abstraction 
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5.3.1 Object-oriented architecture 

As noted previously, the CASI library has been implemented in object-oriented 

C++. This object orientation fits naturally with the Aspen Plus model of documents, unit 

operation blocks, process streams, and variables. The following sections provide additional 

details about the library. 

The CASI library consists of three main C++ classes: 

• class Variable – This is an abstraction for an Aspen Plus variable and has member 

functions for obtaining data associated with the variable. This class is derived from 

the CASIObj class because of the functional overlap between block, streams, and 

variables. 

• class CASIObj : public Variable – This is an abstraction for both blocks and 

streams. From the standpoint of the class interface, both blocks and streams can be 

effectively represented by the same abstraction. Member functions include methods 

to obtain port information, chemical component information, and block inputs and 

outputs. 

• class CASIDocument – This is an abstraction for the entire Aspen Plus flowsheet. 

Methods of this class allow the developer to load flowsheets, connect to the Aspen 

Plus automation engine, and obtain detailed information about the current active 

flowsheet. 

5.4 VE-AspenUnit 

The main component of the Aspen Plus integration with VE-Suite is the unit 

application referred to as the VE-AspenUnit. The VE-AspenUnit does the majority of the 

work required to access Aspen Plus functionality within VE-Suite. The rest of the VE-
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Suite framework utilizes core functionalities present within each of its core engines in 

conjunction with the additions described in the implementation chapter. This design is 

chosen to enable the end user to utilize Aspen Plus and VE-Suite with minimal work 

required to integrate other software unit operations. The overall goal of this work is to 

show the capability to integrate an external third party closed software package and have it 

self-describe itself to the rest of the VE-Suite framework.  

The research component here is to demonstrate that the VE-Open implementation 

discussed in the previous chapter is a viable solution to support mapping a power plant 

object described by Aspen Plus into VE-Suite. This example illustrates the capability to 

interact with hundreds of unit operations in real time within VE-Suite. For any block or 

stream, the respective results, inputs, and stream data is available to the engineer in real 

time. This is facilitated through the query-based interfaces described in Section 4.1. The 

VE-AspenUnit processes the VE-Open data generated from the CASI library. This design 

enables the VE-AspenUnit to broker requests between VE-Suite and Aspen Plus. In 

addition, graphics components can be overlaid on the unit operations that are queried from 

Aspen Plus. When VE-Suite is running with Aspen Plus, there is a one-to-one mapping of 

unit operations to graphics entities. This enables the engineer to associate CAD on a per-

object basis in the environment. This is possible through the use of the Aspen Plus 

hierarchy blocks. Typically, there are unit operations on an Aspen Plus flow sheet that do 

not necessarily correspond to a physical object. These unit operations are utilized in Aspen 

Plus for the purpose of creating the best possible fidelity simulation of the physical system 

under review. The hierarchy blocks typically then represent a physical object. This enables 
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the user to drill down from the power plant object level in VE-Suite, to the systems level in 

the plant, to the sub-systems level, and then down to the part level (Figure 20).  

The implementation changes discussed in the previous chapter enable the VE-

AspenUnit to provide the user with easy access to any Aspen Plus flowsheet without 

having to edit code. Utilizing this functionality in VE-Suite requires the user to go through 

seven steps: 

1. Launch VE-Suite (Figure 21) 

2. Launch the VE-AspenUnit (Figure 22) 

3. Open the flowsheet of interest (Figure 23) 

4. Review input parameters (Figure 24) 

5. Review results (Figure 25) 

6. Review stream data (Figure 26) 

Modifications to the core VE-Suite engines make these steps possible, but they can also be 

utilized by any third-party solver, enabling self-description of solvers to exist within the 

VE-Suite framework. In addition, this application highlights the capability to work with 

systems of systems within the VE-Suite framework (Figures 20, 14, 15). 
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Figure 20. VE-Conductor hierarchy view 
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Figure 21. Launching VE-Suite 
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Figure 22. Launch the VE-AspenUnit 
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Figure 23. Opening the flowsheet of interest 
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Figure 24. Review input parameters 
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Figure 25. Review results parameters 



 

  

129 

 
 

Figure 26. Review stream parameters 
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This research shows the integration of Aspen Plus and VE-Suite through the 

development of the CASI library and the VE-AspenUnit. The engineer’s ability to interact 

with large systems of unit operations within VE-Suite has also been illustrated. The 

method of integrating VE-Suite and Aspen Plus also illustrates the use of objects in 

configuring the decision-making environment by the engineer. This is possible by enabling 

the engineer to overlay CAD, CFD, or FEA data on any Aspen Plus unit operation within 

VE-Conductor and have the data available within VE-Xplorer. This integration example 

also shows that VE-Open is capable of supporting large amounts of information from 

third-party solvers and simulators. VE-Open provides mechanisms for data to be stored in 

a modular manner and referenced hierarchically. These characteristics enable the real-time 

performance seen in this integration. The integration of Aspen Plus and VE-Suite enables 

more information to be accessible to stakeholders in creating advanced power generation 

facilities in the next decade. This toolset enables process simulation data to be presented in 

a format that is accessible to a broad audience. 
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Chapter 6: Engineering Mass Products 

 

 

 

 

The second application created with VE-Suite in this research is focused on a 

cotton picker (Figure 27). The cotton picker [Arndt 2007] picks cotton without breaking 

the cottonseed in a cotton boll. This is accomplished through a sophisticated mechanical 

picking system, which will not be discussed here, and a pneumatic cotton conveying 

system. In this case, the air system is the subsystem that will be investigated on the picker 

platform. The cotton conveying system has three main components (Figure 28): 

• The squirrel cage fan supplies air to the system. 

• The manifold redirects air from the fan to three transport duct systems. The 

important characteristic of the manifold is to efficiently redirect the high-speed air 

from the fan to the transports ducts in a small space envelope.  

• The transport duct system is composed of three sub-components: the lower duct, 

the nozzle, and the upper duct.  
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Figure 27. A cotton picker in the field 
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Figure 28. Cotton picker air system 
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The goal of the design changes is to reduce the amount of energy required to drive 

the air system. To do this, each component, with the exception of the fan, will be modeled 

with CFD to better understand the airflow characteristics. The models are constructed to 

enable answering specific questions regarding power consumption. This case will illustrate 

the ability to design a subsystem of a complex product within the revised VE-Suite toolkit 

as well as the initial ability to pass high-fidelity boundary information from one discrete 

model to another. There are several steps in the engineering design process that benefit 

from the functionality that virtual engineering provides. During each phase of the six-step 

engineering life-cycle process [Blanchard et al. 1998], it is necessary to not only have 

seamless access to the necessary decision-making information created in each step, but to 

also have access to the information used in the previous steps of the design process. This 

enables each stakeholder during the life-cycle process to know immediately how decisions 

impact previous decisions and outcomes.  

Currently, when a product such as the cotton picker is designed, each engineer on 

the picker design team stakes a claim on a part of the cotton picker platform to work on 

new components. For example, the air system will have certain space claims throughout 

the picker that may or may not contain the end solution or desired solution for the picker 

air system because the engineer has no idea where to begin looking for good designs 

within the space constraints.  

Design suggestions are based primarily on past knowledge of the air system and not 

necessarily on a complete understanding of how the air system works. Once each team of 

engineers for various parts of the picker has staked their claim (e.g., frame, air system, 

engine, cab, etc.), more detailed work is done to try to understand how these system-of-
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systems can coexist and interact on the same farm implement. It should also be 

remembered that engineers on the picker design team are not necessarily experts in the 

field for which they are required to design components. For example, an engineer may 

understand the basics of an engine and have the technical ability to find the necessary 

information to understand how an engine works, but he or she may struggle with how best 

to integrate the engine into the picker platform and how best to describe to the vendor the 

constraints on the type of engine he or she needs to place on the picker platform. 

 Designing the cotton picker platform should be a seamless process that enables 

engineers, marketers, and senior leadership to interact to make joint decisions to produce a 

product that will meet economic goals as well as performance and mechanical 

specifications. The process that the team goes through from proposal, to funding, to 

preliminary design, to production should be integrated and retrievable at any point in time. 

The current roadblock to the seamless occurrence of this process is primarily a lack of 

readily available information for the engineer and design team regarding specialized 

information such as the air system characteristics. This is mostly because the current 

design paradigm does not easily permit engineers and managers to ask questions without 

having to deal with the complex models and software packages (e.g., CFD) needed to 

answer those questions. In most cases, this interface is controlled by a human analyst who 

filters out the information they think is unnecessary. Much in the same way that computer 

numerical control machines took the place of humans running lathes, tools are needed that 

enable computers to control some of the analysis process during the design process. 

As defined above, information must be exchanged between models and the 

engineer at multiple levels. The top level of this exchange would be the pure boundary 
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condition information being shared between models, which would be noted as the explicit 

information. The implicit information would be the CFD information that can be gained if 

required by the engineer. For the most part, the engineer does not need to know the type of 

CFD package being used within the object, or the details of the CFD model. The engineer 

needs the errors and uncertainty associated with the model, and needs to understand the 

model results. Because the object has been preconfigured to answer specific questions, the 

engineer does not have to worry about asking a question that is answered with an invalid 

response, but can explore to find areas of interest. 

The work described below is a product of this research except for the creation of 

the VE-NURBS library. The VE-NURBS library was completed as part of this research 

with the additional help of another graduate student in the Simulation, Modeling, and 

Decision Sciences Program. 

6.1 Cotton picker models 

The models that will be utilized in this problem will span the fluids modeling 

fidelities from algebraic expression-for-loss models to Navier-Stokes models. An inviscid 

flow model, which will span the previously mentioned models, will be run through a 

commercial solver. In each component of the cotton picker, these three models will be 

utilized as source of information (Figure 29). At some stages of the design process, the 

engineer only requires a low level of fidelity to make a decision, in which case the loss 

model or inviscid flow model would be useful. At other points in the design process, the 

higher-fidelity models would be required to adequately make a decision. The models will 

provide the necessary information to enable engineers to better understand the picker’s 

physical characteristics. Each model will also have a specific error or uncertainty 
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associated with it to enable the engineer to choose what level of information is needed 

given the time allowed for a decision.  

In addition, each of these models will be linked through a base object. In the future, 

the base object will enable the three sub-models discussed above to run the appropriate 

model based on the current area of investigation, in addition to the level of fidelity desired 

by the engineer. This process hides much of the redundancy in running and using models 

in the engineering process from the engineer. In the future, the models will be able to 

detect required updates. For example, if the Navier-Stokes model changes, all the lower-

fidelity models should update accordingly so that they have the most recent data on which 

to base their calculations. 
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Figure 29. Numerical models for the cotton picker air system 
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6.2 Utilizing the VE-NURBS tools for interactive CFD 

The new VE-Suite tools discussed in the implementation section make it possible 

to take a volume mesh in a commercial CFD mesher and create a NURBS surface for 

importing into VE-Suite’s NURBS tools. These tools enable manipulation of the NURBS 

surface from within the VE-Xplorer environment and to the ability to export the changed 

surface in IGES format. The basic steps to take advantage of hiding model interface 

complexity are: 

• Create a surface in a CFD package using splines and patches, keeping track of the 

cell numbers for each batch. For example, if a patch is 60 cells by 20 cells and 

starts with cell 1, that patch contains cells 1 through 1200. This information is 

necessary in the next step. 

• Once the surface is created in the CFD package, make sure that each of the patches 

is defined properly. Once the surface and patches have been checked, export the 

.cel and .vrt files for the resulting surface and create a NURBS file. A utility 

included with VE-Suite will take a .cel and .vrt file as input to create the NURBS 

surface. 

• A utility in VE-Suite translates the file created above into an IGES file. Once the 

data created in the CFD package is in IGES format, all the functionality described 

in the implementation chapter is accessible to the engineer on the desktop. 

• Create local coordinate systems on all of the boundary surfaces in the CFD package 

so that the boundary conditions at runtime can be defined without user input. In 

addition, all the model parameters need to be noted so that models created in the 



 

  

140 

interactive design phase can be run properly. This information should be stored in a 

formatted file for access by a VE-Suite unit. 

• With the above files and data in place, the loop utilized within VE-Suite looks like 

this: 

o Preprocess the CFD model to generate the initial IGES file 

o Store boundary and model information for access by a VE-Suite unit 

o Load the initial IGES file into VE-Suite 

o Change the IGES file and save  

o Read the IGES file into the unit, remesh, and run 

o Send the data back to VE-Xplorer for review 

o Repeat until finished 

With the above process in place (Figure 30), any numerical solver can be plugged into VE-

Suite and utilized in an interactive design manner.  

6.3 VE-Suite software plugins 

Each of the plugins utilized for the cotton picker application is built on the standard 

plugins contained within VE-Suite. Utilizing these plugins eliminates the need for coding 

in the cotton picker application above and beyond the extensions described in the 

implementation chapter and the units that will be described below. 

6.3.1 Graphical plugins 

The graphical plugin is composed of the default capability within VE-Suite in 

addition to the capability to interactively transform the surface to enable an engineer to 

continuously design a component rather than using the discrete and linear engineering 
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process described previously. Each graphical plugin for each component in the air system 

within the cotton picker will have a respective graphical plugin. 
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Figure 30. Interactive CAD process diagram for VE-Suite 
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6.3.2 UI plugins 

The UI plugins in VE-Conductor utilize the standard plugin distributed with VE-

Suite. The goal in developing this plugin is to enable the user to query the unit for the 

inputs that it provides the user to manipulate. This functionality is the first step toward a 

self-describing engineering object. In the case of the cotton picker, the only code that needs 

to be written by the user is the unit, which means that less of a burden is placed on the 

engineer in developing a virtual engineering environment. The unit will provide the inputs 

for the plugin.  

6.3.3 Units 

The software utilized to encapsulate these models requires an extension to the 

current VE-Suite software architecture. These software tools enable the initial 

implementation of models that will adapt to their surrounding models and enable the 

software tools to manage the information transfer for the user. This software extension 

primarily occurs in the computational unit interface of VE-Suite, which is located within 

the VE-CE software engine. To enable an object to be complex (i.e., composed of other 

sub-models), two new interfaces were added to VE-Open: VEObject and the InfoSource. 

The InfoSource represents a raw source of information such as the loss model, Navier-

Stokes model, or inviscid flow model, in the case of the cotton picker. An InfoSource is 

not restricted to the implementation of a numerical model but can be extended to sensors, 

experimental data, or any other source of information that must be integrated into a product 

design environment. The VEObject is an extension to the base unit interface, but allows 

the registration of InfoSources to the VEObject, thus enabling a hierarchy of InfoSources 

to be constructed and a web of information created for that particular VEObject. The Web 
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can then be locally managed by the VEObject and can manage the operation of the various 

sub-InfoSources for the user so that information can be run and queried without user 

interaction or direction.  

The interfaces for InfoSource and VEObject are implemented as follows: 

///////////////////////////////////////////////////////////////////////////// 
   interface InfoSource 
   { // This is the interface for working with a hierarchy of models under one 
     // unit operation. This is a beta interface. 
     
      //This is for querying the status of the module 
      string GetStatusMessage() raises(Error::EUnknown); 
     
      //This is to Set the Module up 
      void SetParams(in string param) raises(Error::EUnknown); 
 
      //This is to get info source results - can be and sort of data 
      string GetResults() raises(Error::EUnknown); 
     
      //This is to Set the ID 
      void SetID(in long id) raises(Error::EUnknown); 
     
      //This is to Get the ID 
      long GetID() raises(Error::EUnknown); 
     
      //This is to Set the name 
      void SetName(in string name) raises(Error::EUnknown); 
     
      //This is to Get the name 
      string GetName() raises(Error::EUnknown); 
   }; 
   ///////////////////////////////////////////////////////////////////////////// 
   interface VEObject : Unit 
   { // This is the interface for working with a VEObject. It inherits from Unit. 
     
      //This is to disconnect the Unit to the Executive 
      void UnRegisterInfoSource(in string InfoSourceName) raises(Error::EUnknown); 
 
      //This is to Register a Unit to the Executive, flag=0 is normal module, flag=1 will be the global module 
      void RegisterInfoSource(in string InfoSourceName,  
       in Body::InfoSource infoSourceIn, in long flag) raises(Error::EUnknown); 
    }; 

 

The additions to VEObject are necessary so that the VEObject knows what sub-

InfoSources are connected to it and should be considered when accessing information 

about that object. This new function addition to the unit interface allows the InfoSources to 

be executed as follows: 

# run the nozzle 1 
export TAO_MACHINE=ids7 
export TAO_PORT=1239 
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NozzleUnitApp -ORBInitRef NameService=corbaloc:iiop:$TAO_MACHINE:$TAO_PORT/NameService -VESUnitName 
NozzleObjectRow1 & 
sleep 3 
LossModelApp -ORBInitRef NameService=corbaloc:iiop:$TAO_MACHINE:$TAO_PORT/NameService -VESObjectName 
NozzleObjectRow1 -VESInfoUnitName NozzleLossModelRow1 & 
 

TAO_MACHINE and TAO_PORT are the port numbers and machine where the naming 

server runs for The ACE ORB (TAO). The command line flag VESUnitName enables the 

unit wrapper code to be the same for multiple objects. For example, the code that is written 

for the nozzle object can be utilized for the upper and lower ducts because the generic 

object code only has to broker the information flow from each InfoSource to the user and 

the computational engine. This brokering of information operates on the same command 

structure that is discussed with the Aspen Plus integration. As with the changes 

implemented in the computational engine to enable self-description of large simulation 

software such as Aspen Plus, the same techniques can be implemented in individual 

objects to enable the code to be extensible. When each nozzle registers with the TAO 

naming service, it registers a name that enables the InfoSources to look up the respective 

object that it is associated with. In the future, this lookup and connection with a VEObject 

may occur without having to specify a particular VEObject to connect to as the networks 

grow to include hundreds or thousands of InfoSources and objects. When this occurs, the 

users running these virtual simulations will probably be unable to know all the names of 

the VEObjects to connect to. 

6.4 Engineer’s Experience 

With the tools implemented above, the engineer has the capability to construct a 

complex system from a bottom up approach. As the engineer drags the components of the 

air system onto the VE-Conductor design canvas, he or she is also constructing the 
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network used by VE-CE to determine the execution without user input. All the engineer is 

doing is connecting the components of the air system together just like he or she would do 

with the physical components. This information can then be saved out in the 

DOMDocument format. This data can be saved at various intervals to enable model state 

information to be retrieved at later dates to gain insight into why various engineering 

decisions were made. 
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Chapter 7: Results & Conclusions 

 

 

 

 

The goal of this research is to outline the necessary requirements and components 

for an advanced engineering framework to enable a bottom-up design approach in the 

engineering process through the use object-oriented methods. These requirements and 

components enable the construction of engineering objects that change the engineering 

design experience. As noted in previous chapters, the engineer does not have to be 

concerned with the underlying numerical models or the details of the implementation of 

the models. The engineer just has to construct the system and decide what modifications 

must be considered. 

The implementation and example applications in this paper illustrate that 

engineering objects can be used to characterize information management in the 

engineering design process. This enables engineers to work with large systems generated 

from secondary applications. In addition, the ideas and software implemented here change 

how models may be segregated to improve the engineering workflow by providing a new 

way to characterize information. The changes implemented within VE-Suite have enabled 

it to become another tool within the engineering design process.  

This dissertation has laid out the initial requirements for methods to address the 

demands of the large amounts of information available in today’s engineering decision-

making process. Many potential areas of research must still be explored to understand 
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engineering informatics requirements, including the use of engineering objects. Objects 

must enable computers to augment the human capabilities of integrating information, 

understanding relationships between different sets of information, and providing 

contextual information that may aid in providing further insight into a problem. 

In this initial research, there were no signs that the VE-Open implementation would 

not support interacting with ultra-large systems. The example problems illustrated the 

benefits of enabling query and on-demand interface specification and data structures. This 

type of method enables the user to query as much information as necessary and to provide 

real-time control of a complex simulator such as Aspen Plus. In addition, this interface is 

not limited to integrating VE-Suite with Aspen Plus. The thin-layered CASI library 

provides an example of how to convert data from a closed-source solver to the broader VE-

Suite framework. In addition, it illustrates the capability to interface with systems-of-

systems from within VE-Suite. These two example applications provide a brief look at 

how new tools utilizing semantic and meta-data-based tools can benefit the engineering 

process by providing intelligent applications to the engineer’s desktop. These tools are not 

developed and researched to stay in the scientific academic community, but will be 

delivered to the desktop of the engineer so that a new engineering workflow can be 

created. 

Utilizing the model of the scale-free networks has been shown to enable the VE-

Suite unit operations that connect to VE-CE to grow without restriction. These scale-free 

networks provide the capability to handle information queries and lookups within 

subcomponents of systems. For example, in the cotton picker example, the specific solvers 

(i.e., loss model, inviscid flow model, or Navier-Stokes model) can all update and 
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communicate simultaneously without having to contact the VE-CE because the InfoSource 

does not have to contact the VE-CE to obtain the necessary information for the respective 

models. This model has been shown to provide a localized control schema that enables the 

VEObject to handle appropriate requests as needed by the local VEObject unit operation. 

This research proposes applications of Semantic Web technologies to software 

packages used by the engineering community. The same tools that enable information 

integration and contextualization on the Internet could also enable integration of 

engineering tools and specifications, allowing the product development cycle to be 

completed in an unprecedented manner. Semantic Web tools that will be used to 

contextualize the engineering environment are XML and XML Schema, XSL, and OWL. 

Engineering information will be disseminated via web pages that will allow users from 

around the world to see model-specific information. Ontologies will also be used to 

classify information and to show the connection and hierarchy of information sources so 

that connections between entities in VE-Suite are clear. 

The object-centered method aims to address many of the issues facing the current 

engineering design process by enabling the engineer to focus on engineering and not on 

information integration. To illustrate the proposed capability of the object-centered 

method, an initial implementation of the XML schema has been described. The schema is 

currently in active use within VE-Suite as the core communication and data transfer 

mechanism. VE-Suite proposes to enable a broad range of problems to be addressed across 

many disciplines for the complete lifecycle of a product or system. This will enable 

engineers to focus on using the information provided by engineering models and other 

diverse information models to make decisions in the product realization process. The initial 



 

  

150 

interface specification, VE-Open, will enable engineers to address these multi-disciplinary 

issues and to collaborate at a level that enables information to flow from one design team 

to another. Implementing the object-centered method will enable the problems experienced 

when collaborating within large design teams to become less intrusive in the engineering 

decision-making process. The object-centered method, when implemented across each step 

of the product realization process, will create environments where virtualized systems and 

parts can be analyzed and produced with far fewer costs devoted to the design and 

development phase of the realization process. 

This work has presented a foundation on which to build efforts to change the 

engineering process. This foundation has included: 

• Development of engineering objects 

• Development of an initial advanced engineering framework 

• Implementation of the VE-Open XML schema and CORBA IDL interface 

• Support of third-party numerical solvers containing large systems of unit operations 

• Support of segregated numerical models for product sub-systems 

• Implementation of methods to construct systems at run-time within VE-Suite 

• A self-describing interface specification for third-party solvers 

These additions will enable future work to be completed in the areas of drag-and-drop 

numerical integration, creation of narrative environments, and agent-based engineering 

support algorithms. In addition, different approaches to the problem of integration of large 

systems of models and solvers can be investigated. One new approach to be explored is a 

bottom-up method of handling the integration and distribution of solver information. This 

will enable the user to be unrestricted in the number of models that can be integrated, as 
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illustrated with the cotton picker example for running models. These new research areas 

show promise in being able to investigate problems across modeling scales, fidelities, and 

in investigating as-built problems that exist for large systems. 
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Appendix A: VE-Suite Description 

 

 

 

 

VE-Suite [Bryden et al. 2004] is intended to be used in the engineering process, 

whether for business model investigation or training. It is used in a diverse set of 

engineering applications to allow engineers and other project stakeholders to gain insight 

into complex engineering problems. VE-Suite’s extensible software design enables users to 

incorporate component models and corresponding two-dimensional and three-dimensional 

graphical representations to create new plug-and-play framework components. By design, 

the framework components can be distributed across computational resources to make the 

most efficient use of resources.  

In nearly all aspects of the engineering process—design, manufacturing, and 

maintenance—the tools employed at each phase rely on virtual models (e.g., software 

tools) to reduce cost and shorten development time. This results in a wider variety of 

software tools being used across a wide range of vendors and engineering firms. In this 

environment, engineers are required to manually move information from one software 

package to another. Thus, the process does not support real-time, collaborative design in 

which the engineer establishes the dynamic thinking process needed to obtain an intuitive 

feel for the performance of a product. It also does not permit the real-time exploration of 

questions raised by other engineers, designers, or managers. This working arrangement 

significantly lessens the number of alternatives that can be investigated, limits the essential 
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creative design process, and discourages “what if” questions that can lead to breakthroughs 

in design. As a result, the engineer has to shift his or her focus from engineering to manual 

information integration. To allow engineers to focus on engineering, a new workflow and 

paradigm is needed. This workflow is described within a new enabling technology called 

virtual engineering and is implemented via VE-Suite. Using VE-Suite to implement virtual 

engineering reduces the design cycle time to allow new technologies to reach production 

and operation more quickly than previously possible. Engineering tools and information 

need to be integrated throughout each engineering project. That is, information from the 

design phase needs to be available to design and manufacturing contractors without 

manual reentry or other hassles. Currently, for a variety of reasons (e.g., budgetary 

constraints and inter-company politics), no commercial software package can integrate 

information from the complete product design team, from economists and numerical 

modelers to design and manufacturing firms. VE-Suite addresses this constraint by 

creating a tool that has open interfaces and allows other commercial and open-source 

packages to exchange data in a comprehensive design environment. In this environment, 

all the data and tools necessary to make a particular engineering decision are available to 

the stakeholder trying to move the engineering process forward. 

When creating tools to enable engineers to use engineering analysis to make more 

informed decisions, it is necessary to take into account the broad range of analysis that 

may be used in the engineering product realization process. This review process reveals a 

broad range of problems. Some current products will require the following types of 

models: 
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• Graphical 

• Requirements 

• Budgets 

• Physics 

• Simulation results 

• Input/output data and data structures 

• Finite element  

• Numerical 

These models highlight the breadth of the information that must be handled by an 

engineering decision-making framework. The framework should enable engineers to 

access the proper fidelity of information when needed throughout the engineering process. 

The engineer’s ability to plug any model and source of information into this virtual 

engineering framework is its primary design goal. Without the ability to plug and play with 

models, the engineer becomes bogged down in coupling software rather than creating or 

solving complex engineering problems. The software framework must promote changing 

the way complex systems are engineered rather than trying to integrate the tools that are 

already in the mix. The framework described here will leverage the areas of research 

described previously to create a framework that will allow a modular development process 

to occur in addition to being flexible enough to fit into many different design processes. By 

allowing information to be extracted and added whenever the user desires, the framework 

can be adapted to many different design methodologies. Modularity must be supported to 

create fundamental modules that the engineer can work with. These modules, by definition, 

also carry with them a set of rules that dictate the construction and operation of the 
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modules. Modularity permits the engineer using VE-Suite to connect specific components 

and representations of components together to create the desired system. This enables the 

engineer to focus on the outcome of the system rather than the components of the system, 

allowing him or her to add more capability to the system under design and preventing 

problems as the system grows and evolves over time.  

This section provides an overview of VE-Suite’s software design and 

implementation. VE-Suite contains four software engines: VE-Open, VE-Conductor, VE-

CE, and VE-Xplorer. The first VE-Suite engine described, VE-Open, is the proposed 

communication standard that will allow VE-Suite’s software engines and objects to be 

integrated. The key elements of the VE-Suite framework design are the user interface, 

computational engine, visualization engine, and component models. Note that the various 

software elements all exist as independent CORBA [Object Management Group, Inc. 

2008] components with standardized Interface Definition Language (IDL) 

implementations defined within the proposed standard, VE-Open. The use of component 

architecture design techniques has numerous advantages for this application, including 

platform independence, location transparency, and reuse of component models [Verbaeck 

2004]. 

Model integration and communication: VE-Open 

 The VE-Open design builds on an open architecture approach to integrating 

information as well as on the neutral format described earlier. VE-Open utilizes both 

integration formats by specifying a schema for information to adhere to and leveraging 

other schemas such as COLLADA [Arnaud et al. 2006], which has taken a useful approach 
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to creating an extensible specification built on XML and XML Schema. COLLADA 

focuses heavily on games and on the physics and polygonal data representation issues 

surrounding games. Therefore, it ignores many CAD-related issues, which benefits 

COLLADA significantly because many side issues fall outside the project scope or need to 

be left for other projects. In addition, this tight focus can benefit other tools such as VE-

Open by providing a solid method to reference schema data within VE-Open. This 

approach enables VE-Open to remain lightweight while still utilizing work from other 

projects and specifications. The component models described below have access to this 

information, which enables more physical attributes to be accessed by the engineering 

objects. 

Component models are mathematical representations of individual virtual objects 

that are used by the framework to construct an overall simulation. The key to making the 

simulation framework extensible is to provide a mechanism by which component models 

can easily be integrated without extensive software development. To address this need, the 

relatively modern idea of component architecture design has been adopted. CORBA is 

used along with a standard model interface definition, which is implemented as an IDL and 

referred to as VE-Open [VESuite.org 2008], to create componentized computational 

models. These models can be used interchangeably with any framework that supports the 

standardized IDL, are location transparent (run on any network accessible machine), 

platform independent (Linux, Windows, etc.), and programming language flexible, and can 

be distributed in binary form. 

The interface to the CORBA-based component models is designed to allow the 

models to be autonomous, accepting inputs and stream data from the computational 



 

  

157 

engine, running the encapsulated model, and generating outputs and modified stream data. 

It is important to note that the CORBA interface between the computational engine and the 

component models is the standardized model interface supported by the framework for 

model integration. The interface defined for VE-Suite, VE-Open, is analogous to that of 

the CAPE-Open specification used by chemical process simulation tools. VE-Open is also 

analogous to the Distributed Interactive Simulation (DIS) [Distributed Interactive 

Simulation 1999] specification utilized in military applications to share war game 

simulation information across distributed compute resources with multiple clients. The 

VE-Open model interface has a number of unique characteristics: 

• Simplicity: The functions that are implemented are general and can be adapted to a 

wide variety of simulation environments. 

• Generalization: The new interface removes the specificity of any discipline and 

provides generic structure for data types and software engine structure. 

• Enhanced data passing: The new interface provides facilities for passing data 

beyond the level of simple scalars to downstream models. 

In addition to specifying the communication standard for how core engines and component 

models will communicate, the VE-Open specification also includes an XML schema that 

defines how commands and data arrays can be constructed and passed to the various parts 

of a virtual object.  

 The XML schema that is contained within VE-Open defines how simple data 

arrays and other key data structures used within VE-Suite should be constructed. This 

portion of VE-Open is a key component in enabling the data that is used by the 

mathematical representation of the virtual object to be easily understood by the three-
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dimensional graphical representation of the object. The XML schema does not only allow 

the computational engine to gain information about the proposed simulation; any other 

component within the VE-Suite framework can also gain information about the system 

under design. 

Graphical user interface: VE-Conductor 

The graphical user interface (UI) is implemented with the following software 

design goals: multi-platform support, detachability, location transparency, extensibility, 

and unified control. The UI is the controller that allows the engineer to interrogate the 

virtual design environment. It also makes use of platform-independent libraries to enable 

the software to run on a wide range of computer hardware and operating systems ranging 

from Unix workstations to Pocket PCs and PDAs. After reviewing a number of different 

UI libraries, WxWidgets [WxWidgets 2008] was chosen for use in VE-Conductor. A list of 

available modules is maintained in a tree structure on the left side of the window, while the 

main canvas area shows the current simulation network.  

The UI exists independently from the computational engine as a separate CORBA 

component. This functionality allows the UI to be attached and detached from an active 

simulation on any compatible computer on the simulation network. For example, a user 

could build and start a simulation, detach from the computational engine or visualization 

engine, go to a different location, re-attach to the simulation, and regain monitoring and 

control functions. This detachable UI is where the user can create a plant configuration, set 

model inputs, start and stop simulation execution, and view simulation results. Once a 

client-server connection is made, the engine is able to send results, messages, updates, and 
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communications from other attached UIs in real time. Users can connect or disconnect at 

will to configure, modify, or monitor the simulation of a given plant configuration. 

To accomplish this functionality, a CORBA IDL interface between the UI and the 

computational engine was defined and the UI was designed to communicate via CORBA 

to both the computational engine and the graphical engine. The CORBA interface provides 

all the necessary communication mechanisms between these components. The 

communication link is bidirectional, handling items such as model parameters passed to 

the computational engine and receiving items such as execution status and results from the 

computational engine. This specification allows the UI to provide unified control for all 

user interaction, ensuring that the user is not burdened with moving among different UIs to 

perform operations. There is a single UI with the ability to monitor and control the virtual 

design environment. The interface specification is open source, so it is possible for other 

research groups to implement a proprietary UI that adheres to the specification and 

communication protocol.  

Another advantage of this design is the ability for multiple UIs to be attached to the 

same computational engine, allowing multiple users to monitor a simulation from different 

locations. The UI also has the ability to connect to the graphical environment and control 

what graphical representations are shown for high-fidelity data (e.g., contour planes, vector 

planes, streamlines, iso-surfaces) or for low-fidelity data (e.g., gauges showing scalar 

information about plant performance, costing data, or emissions data). The connection 

between the UI and the visualization engine is similar to the connection between the UI 

and the computational engine. This communication link is also bidirectional and is used to 

direct what is shown within the virtual design environment. 
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Another important consideration for the UI design is extensibility. The UI is able to 

dynamically discover, identify, and load UI elements for new component models. This 

capability keeps the level of difficulty involved in integrating new component models to a 

minimum because it eliminates the need for modifications to the core interface when new 

models are added. The dynamic discover-and-load capability is accomplished by loading 

user-developed module UIs from dynamic link libraries (DLL in Windows) or shared 

libraries (shared object library in Linux/Unix). A plugin C++ base class defining this UI-

module interface is provided to all module developers. Developers can inherit from this 

class to create their own module UIs and then compile the resulting code into a 

DLL/shared library. The UI framework’s plug loader code will recognize the new module 

and bring that into its user-module library. By this mechanism, the core UI can plug in the 

third-party module-specific UI directly from binaries. This mechanism allows users to 

develop custom input and results interfaces. One of the benefits of this design is that it 

allows the core VE-Suite engines to focus on handling information flow and not on the 

development of UIs. 

Computational Engine: VE-CE 

The computational engine (VE-CE) constructs, coordinates, schedules, and 

monitors simulation runs. It is capable of running a simulation containing a multitude of 

different types of models, each accepting and generating a myriad of data types. The 

computational engine is also able to analyze a simulation configuration, determine 

execution order, marshal system resources to create model instances, and coordinate the 

flow of data through the simulation framework. Tasks that require specific knowledge 
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about a data type or model are relegated to either the detachable UI or to a specific model, 

thus keeping the computational engine highly generalized and lightweight code-wise. 

Important functions that the computational engine controls can be broken down 

into several pieces for explanation: configuration, data handling, error handling, 

relationship to the detachable UI, scheduling, and relationship to the models. The 

configuration of a simulation, provided by a detachable UI, is the primary data structure 

used by the computational engine. Nearly all algorithms utilized, such as proper data flow, 

scheduling, and resource allocation, depend on this topology. This configuration is 

constructed from the XML schema contained within the VE-Open specification that was 

discussed previously. The XML data structure contains information about how one virtual 

object connects to another and allows multiple virtual objects to share information about 

what data types to expect from another object. Through this XML schema, it is possible for 

other engines to be developed that can accept the scheduling data structure from the UI. 

The scheduler that uses this configuration data is capable of handling single and embedded 

feedback loops, iterative solves and, eventually, transient simulation runs. 

Because there is an unlimited number of possible models capable of being 

integrated into the framework (with each model having a different input/output set), the 

computational engine operates with generalized data types. To address this requirement, 

the CORBA IDL interfaces between the computational engine and the component models 

use mapped string blocks in combination with common dimensions of array data. With the 

computational engine as the central intelligence behind a simulation run, all errors that 

occur while performing this task, whether originating within the engine’s own structure or 

on an attached model, must be properly handled within the context of the overriding 
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structure. Thus, the computational engine has error handling routines and messaging 

facilities to alert attached users. The computational engine does not require a connection to 

a UI during a simulation run. 

The computational engine, with its CORBA interface, is able to connect to the 

various component models available for a simulation. Information passed through this 

connection includes inputs (user supplied and stream data), outputs, results, and general 

messages. The importance of the CORBA interface being used for this purpose is 

discussed in detail in the Model Integration section above. 

Graphical Engine: VE-Xplorer 

The graphical engine (VE-Xplorer) provides the core functionality for the virtual 

engineering aspect of the framework, enabling the engineering analysis and design process 

to take place in a virtual environment. For maximum graphical performance on multiple 

operating systems, it is built upon VRJuggler [VRJuggler 2007], OpenSceneGraph [OSG 

Community 2007], and Kitware’s Visualization ToolKit [Kitware 2005]. This visual 

interface, controlled by the UI and the computational engine, provides a graphical 

representation of the simulation under review.  

The graphical engine is generalized to load data not only from comprehensive 

models, but also from other engineering sources and other generalized datasets (e.g., 

experimental data from a test rig). The engine is also being modified to make use of the 

high-level CORBA interface specifications used throughout the software framework. This 

interface allows the visualization engine to communicate directly with the component 

models, computational engine, and UI. To communicate with the graphical engine, an 

external socket connection is made between individual component models and the 



 

  

163 

respective graphical objects. This connection allows large high-fidelity datasets to be 

transferred to the graphical environment without interrupting the overall communication 

network. 

The graphical engine is also designed to allow graphics objects to be added to the 

virtual environment in the same way that objects are added in the UI. This allows the 

graphical environment to be a direct representation of the system being designed by the 

engineer. In much the same way that the UI auto-discovers the plugins for use by the 

engineer, the graphical engine also dynamically discovers plugins. Unlike the UI, the 

graphical engine is controlled by the network string that is created by the UI. This 

represents a significant capability because the graphical engine has no a priori knowledge 

of the system under interrogation. 
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Appendix B: Example DOMDocument 
 
 

 

 

 

 

 

 

 

<?xml version="1.0" encoding="ISO-8859-1" standalone="no" ?> 

<network name="Network" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="veshader.xsd"> 

  <veSystem id="4b7b94c1-bf85-4564-84d5-341555e37cc5"> 
    <network> 

      <conductorState dataName="m_xUserScale" id="76568581-a29c-4442-99b7-300a934b8aa2"> 

        <dataValue type="xs:double">1</dataValue> 

      </conductorState> 

      <conductorState dataName="m_yUserScale" id="22fc8d04-d28f-734c-bf6c-e3646f058d28"> 

        <dataValue type="xs:double">1</dataValue> 

      </conductorState> 

      <conductorState dataName="nPixX" id="32554c86-43c0-dd48-8712-bee05134d2b6"> 

        <dataValue type="xs:integer">10</dataValue> 

      </conductorState> 

      <conductorState dataName="nPixY" id="0cb96330-e297-ce4f-9b1e-9b65b3653326"> 
        <dataValue type="xs:integer">10</dataValue> 

      </conductorState> 

      <conductorState dataName="nUnitX" id="0dcba897-aba5-fa48-b8ef-ecfb6f8f6cea"> 

        <dataValue type="xs:integer">240</dataValue> 

      </conductorState> 

      <conductorState dataName="nUnitY" id="26621844-e51d-894b-8473-968d5f77c23b"> 

        <dataValue type="xs:integer">240</dataValue> 

      </conductorState> 

    </network> 

    <model ID="102" id="56b3dba4-fa6b-4b34-9226-c181996af2ca" name="DefaultPlugin" 

vendorUnit="DefaultPlugin"> 

      <iconLocation xLocation="10" yLocation="10"/> 
      <icon iconMirror="0" iconRotation="0" iconScale="1" type="xs:string">DefaultPlugin</icon> 

      <informationPackets id="5e62c92e-8820-4972-be32-a211a7b55fdc"> 

        <blockID type="xs:unsignedInt">105</blockID> 

        <blockName type="xs:string">simple</blockName> 

        <transform objectType="Transform"> 

          <translation> 

            <value>0</value> 

            <value>0</value> 

            <value>0</value> 

          </translation> 

          <scale> 
            <value>1</value> 

            <value>1</value> 

            <value>1</value> 

          </scale> 

          <rotation> 
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            <value>0</value> 

            <value>0</value> 

            <value>0</value> 

          </rotation> 

        </transform> 

        <properties dataName="VTK_DATA_FILE" id="b55e4c6c-2ad8-044e-aa1c-862b7bf8f040" 
objectType="DataValuePair"> 

          <dataValue type="xs:string">3scl2vec.vtu</dataValue> 

        </properties> 

        <properties dataName="VTK_TEXTURE_DIR_PATH" id="9a96837e-722f-b847-ade6-eccdc9d1619b" 

objectType="DataValuePair"> 

          <dataValue type="xs:string">simpleScalars/scalars/200_to_1000</dataValue> 

        </properties> 

        <properties dataName="VTK_TEXTURE_DIR_PATH" id="2c3aa880-6cb0-b541-a758-d9cbfb398a2e" 

objectType="DataValuePair"> 

          <dataValue type="xs:string">simpleScalars/scalars/first-scalar</dataValue> 

        </properties> 

      </informationPackets> 
      <informationPackets id="d58ba6c4-b064-49f6-b79c-4386d1fe4191"> 

        <blockID type="xs:unsignedInt">108</blockID> 

        <blockName type="xs:string">Dataset2</blockName> 

        <transform objectType="Transform"> 

          <translation> 

            <value>-4</value> 

            <value>0</value> 

            <value>0</value> 

          </translation> 

          <scale> 

            <value>1</value> 
            <value>1</value> 

            <value>1</value> 

          </scale> 

          <rotation> 

            <value>40</value> 

            <value>40</value> 

            <value>0</value> 

          </rotation> 

        </transform> 

        <properties dataName="VTK_DATA_FILE" id="57183100-f39b-4ae4-8d76-d660cc67881b" 

objectType="DataValuePair"> 

          <dataValue type="xs:string">3scl.vtu</dataValue> 
        </properties> 

        <properties dataName="VTK_PRECOMPUTED_DIR_PATH" id="90cbb734-1030-4480-b9d3-

7b2a3bed49ee" objectType="DataValuePair"> 

          <dataValue type="xs:string">POST_DATA1</dataValue> 

        </properties> 

      </informationPackets> 

      <informationPackets id="df0dd685-f485-41ff-ad3c-66bb5bc15655"> 

        <blockID type="xs:unsignedInt">111</blockID> 

        <blockName type="xs:string">Dataset3</blockName> 

        <transform objectType="Transform"> 

          <translation> 
            <value>0</value> 

            <value>0</value> 
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            <value>0</value> 

          </translation> 

          <scale> 

            <value>0.25</value> 

            <value>0.25</value> 

            <value>0.25</value> 
          </scale> 

          <rotation> 

            <value>-45</value> 

            <value>0</value> 

            <value>0</value> 

          </rotation> 

        </transform> 

        <properties dataName="VTK_DATA_FILE" id="5c6059ea-db96-4317-9b70-64b366bac7e1" 

objectType="DataValuePair"> 

          <dataValue type="xs:string">mb.vtu</dataValue> 

        </properties> 

      </informationPackets> 
      <geometry associatedDataset="NONE" friction="1" id="5593f230-9f76-3449-acca-41bdeb92bc7a" 

mass="1" physics="false" restitution="0" visibility="true"> 

        <type>Assembly</type> 

        <name>Model_Geometry</name> 

        <parent type="xs:string"></parent> 

        <transform> 

          <translation> 

            <value>0</value> 

            <value>0</value> 

            <value>0</value> 

          </translation> 
          <scale> 

            <value>1</value> 

            <value>1</value> 

            <value>1</value> 

          </scale> 

          <rotation> 

            <value>0</value> 

            <value>0</value> 

            <value>0</value> 

          </rotation> 

        </transform> 

        <numChildren>3</numChildren> 
        <children> 

          <child friction="1" id="1cfa8fb2-b11b-0645-8a2e-7ddc3fc7c582" mass="1" physics="false" 

restitution="0" visibility="true"> 

            <type>Part</type> 

            <name>eightCorners</name> 

            <parent type="xs:string">5593f230-9f76-3449-acca-41bdeb92bc7a</parent> 

            <transform> 

              <translation> 

                <value>0</value> 

                <value>0</value> 

                <value>0</value> 
              </translation> 

              <scale> 
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                <value>1</value> 

                <value>1</value> 

                <value>1</value> 

              </scale> 

              <rotation> 

                <value>0</value> 
                <value>0</value> 

                <value>0</value> 

              </rotation> 

            </transform> 

            <attribute> 

              <type type="xs:string">Material</type> 

              <blending type="xs:boolean">true</blending> 

              <material> 

                <kDiffuse> 

                  <value>1</value> 

                  <value>0</value> 

                  <value>0</value> 
                  <value>1</value> 

                </kDiffuse> 

                <kEmissive> 

                  <value>0</value> 

                  <value>0</value> 

                  <value>0</value> 

                  <value>1</value> 

                </kEmissive> 

                <kAmbient> 

                  <value>1</value> 

                  <value>1</value> 
                  <value>1</value> 

                  <value>1</value> 

                </kAmbient> 

                <specular> 

                  <value>1</value> 

                  <value>1</value> 

                  <value>1</value> 

                  <value>1</value> 

                </specular> 

                <opacity>1</opacity> 

                <shininess>50</shininess> 

                <materialName>red</materialName> 
                <face>Front_and_Back</face> 

                <colorMode>Ambient_and_Diffuse</colorMode> 

              </material> 

            </attribute> 

            <activeAttributeName type="xs:string">red</activeAttributeName> 

            <fileName>eightCorners.stl</fileName> 

          </child> 

          <child friction="1" id="6382ac8c-ebe1-5543-85b8-2f511424db9d" mass="1" physics="false" 

restitution="0" visibility="true"> 

            <type>Part</type> 

            <name>Surface0.75</name> 
            <parent type="xs:string">5593f230-9f76-3449-acca-41bdeb92bc7a</parent> 

            <transform> 
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              <translation> 

                <value>0</value> 

                <value>0</value> 

                <value>0</value> 

              </translation> 

              <scale> 
                <value>1</value> 

                <value>1</value> 

                <value>1</value> 

              </scale> 

              <rotation> 

                <value>0</value> 

                <value>0</value> 

                <value>0</value> 

              </rotation> 

            </transform> 

            <fileName>Surface0.75.stl</fileName> 

          </child> 
          <child friction="1" id="72bd0eb4-bac9-9f4e-894d-2bb98e5c7bef" mass="1" physics="false" 

restitution="0" visibility="true"> 

            <type>Part</type> 

            <name>Surface0.75_cloned</name> 

            <parent type="xs:string">5593f230-9f76-3449-acca-41bdeb92bc7a</parent> 

            <transform> 

              <translation> 

                <value>-4</value> 

                <value>0</value> 

                <value>0</value> 

              </translation> 
              <scale> 

                <value>1</value> 

                <value>1</value> 

                <value>1</value> 

              </scale> 

              <rotation> 

                <value>40</value> 

                <value>40</value> 

                <value>0</value> 

              </rotation> 

            </transform> 

            <fileName>Surface0.75.stl</fileName> 
          </child> 

        </children> 

      </geometry> 

    </model> 

  </veSystem> 

  <User id="231bf178-8cad-4174-b8ad-25a1ca28681d" userID="User" veControlStatus="MASTER"> 

    <stateInfo> 

      <Command commandName="CHANGE_BACKGROUND_COLOR"> 

        <parameter dataName="Background Color" id="9b147e9c-22dc-47b1-90c7-3dd46e7b8081"> 

          <genericObject objectType="OneDDoubleArray"> 

            <data>0</data> 
            <data>0</data> 

            <data>0</data> 
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            <data>1</data> 

          </genericObject> 

        </parameter> 

      </Command> 

    </stateInfo> 

  </User> 
</network> 
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