
Retrospective Theses and Dissertations

2008

Establishing an advanced engineering framework
for engineering decision making
Douglas Stinson McCorkle
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/rtd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in
Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

Recommended Citation
McCorkle, Douglas Stinson, "Establishing an advanced engineering framework for engineering decision making" (2008). Retrospective
Theses and Dissertations. 15780.
http://lib.dr.iastate.edu/rtd/15780

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F15780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd/15780?utm_source=lib.dr.iastate.edu%2Frtd%2F15780&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Establishing an advanced engineering framework for engineering decision making

by

Douglas Stinson McCorkle

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Mechanical Engineering

Program of Study Committee:
Kenneth Bryden, Major Professor

Daniel Ashlock
Tom Shih

Eliot Winer
Carolyn Heising

Iowa State University

Ames, Iowa

2008

Copyright © Douglas Stinson McCorkle, 2008. All rights reserved.

UMI Number: 3383366

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

 __

UMI Microform 3383366
Copyright 2009 by ProQuest LLC

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

ii

To my wife for her support, encouragement, patience, and love throughout this endeavor.

To my family for their sacrifice.

iii

Nomenclature ..v

Acknowledgements..vi

Chapter 1: Introduction...1

Chapter 2: Background...5
2.1 Informatics...6
2.2 Problem Solving Environments..9
2.3 Object-oriented programming ..12

2.3.1 Early software implementations of object-oriented programming13

2.3.2 Object-oriented design/analysis ...15

2.4 Current Uses of Object-Oriented Methodologies ..21
2.5 Frameworks ...27
2.6 Meta Data and Semantics...31

2.6.1 Engineering Information Storage...32

2.7 Virtual Worlds ...38
2.8 Object Definitions..39
2.9 Characteristics that objects must inherently have..42

Chapter 3: Towards an advanced engineering framework...45
3.1 Advanced Engineering Software Frameworks..48
3.2 Objects...52
3.3 Object Interactions...55

3.3.1 Emergent Behavior..60

3.3.3 Object-Oriented Principles ..61

3.5 Summary ...66
Chapter 4: Implementation of the proposed advanced engineering framework..........68

4.1 Transparent Interfaces..69
4.1.1 Implementation of Transparent Interfaces..70

4.1.2 Summary...74

4.2 Object-Oriented Principles...75
4.2.1 Modularity, Hierarchy, and Abstraction...75

4.2.2 Ontologies...77

iv

4.2.3 XML Schema..79
4.3 Emergent Behavior ..86

4.3.1 VE-Conductor ...91
4.3.2 VE-CE ..91
4.3.3 Computational Unit ...92
4.3.4 VE-Xplorer ...96

4.4 Structure for VE-Suite Application Directory... 109
4.5 Summary ... 111

Chapter 5: Large and Ultra-Large System Integration .. 112
5.1 APECS .. 114
5.2 Aspen Plus... 117
5.3 CASI.. 117

5.3.1 Object-oriented architecture .. 120

5.4 VE-AspenUnit ... 120

Chapter 6: Engineering Mass Products ... 131
6.1 Cotton picker models ... 136
6.3 VE-Suite software plugins.. 140

6.3.1 Graphical plugins .. 140

6.3.2 UI plugins ... 143

6.3.3 Units ... 143

6.4 Engineer’s Experience ... 145

Chapter 7: Results & Conclusions ... 147

Appendix A: VE-Suite Description ... 152
Model integration and communication: VE-Open .. 155

Graphical user interface: VE-Conductor... 158

Computational Engine: VE-CE .. 160

Graphical Engine: VE-Xplorer... 162

Appendix B: Example DOMDocument ... 164

Bibliography .. 170

v

Nomenclature

APECS – Advanced Process Engineering Co-Simulator

API – Application Programming Interface

CAD – Computer Aided Drafting

CFD – Computational Fluid Dynamics

CORBA – Common Object Request Broker Architecture

FEA – Finite Element Analysis

GUID – Global Unique Identifier

IDL – Interface Definition Language

IGES – Initial Graphics Exchange Specification

NURBS – Non-Uniform Rational B-Spline

OCC – OpenCASCADE

OWL – Web Ontology Language

PSE – Problem Solving Environment

STEP – Standard for the Exchange of Product Model Data

UI – User Interface

UML – Unified Markup Language

URI – Uniform Resource Identifier

VE-Suite – Virtual Engineering Suite

XML – Extensible Markup Language

XSL – Extensible Stylesheet Language

XSLT – Extensible Stylesheet Language Transform

vi

Acknowledgements

I would like to thank Mark Bryden for helping mold and shape my academic and

professional career. As my advisor, I would specifically like to thank him for allowing me

to forge my own research path to reach this stage of my career. This opportunity can be

difficult to provide to a graduate student, but is invaluable to developing as a researcher. In

addition, his editing of this work enabled clear presentation of my research that would not

have been possible otherwise. As my friend, I would like to thank him for his support and

encouragement over the past seven years.

I would also like to thank my committee members for their participation in my

research. I would like to thank the many collaborators and researchers who provided

feedback and comments throughout this research, specifically the Simulation, Modeling,

and Decision Sciences Program, and Professor Dan Ashlock. I would also like to thank my

parents, Allen and Gayle, for their support and sacrifice in my educational journey. I would

like to thank Nick and Kathleen for their encouragement and care of my family during the

long hours of studying, research, and travel.

This work was funded in part by the U. S. Department of Energy National Energy

Technology Laboratory and John Deere.

1

Chapter 1: Introduction

Engineering is a process of decision making for complex and uncertain systems. In

the past, the unknowns for these systems were handled through rules of thumb,

observation, safety factors, and intuition. As computational power increases, rules of

thumb, observations, and intuition are being supplemented by numerical models,

simulations, engineering analysis, and other computational tools. These numerical models

are based on the equations that describe physical phenomena (e.g., Navier-Stokes

equations are used to describe fluid flow, Fourier’s Law for heat transfer, and Hooke’s

Law for stress/strain relationships in materials). Although these models can provide

significant insight into the engineering design process, they are not currently used as

design tools but rather as analysis tools. In fact, the application of computational science in

engineering has not provided a clear way to deal with ambiguity and uncertainty in

engineering. There are several reasons for this:

• Numerical models currently require manual integration of model-to-model

information

• Human-accessible quantification of error and uncertainty surrounding models is not

readily available

• Semantically rich information frameworks for managing systems of models do not

exist to enable full-model pedigree information to be exchanged

2

• Individual models and simulations cannot be easily integrated to create complete

analysis systems that capture the richness and fullness of a complex system

For these reasons, the engineering models used today result in significant disconnects in

the engineering process as multiple models are individually created, revised, and manually

updated.

 To overcome these issues, new practices and methods must be created that enable

engineers and analysts to improve the speed of the engineering process and to connect

engineering analysis with the creative aspects of engineering design. This will require

changing how information is fundamentally treated in the engineering process. Rather than

managing information at the human-to-human level, information must be managed at a

much lower level to remove the human middleware from the process. The human is the

slow link in the process that is currently used. The traditional engineering process has two

characteristics that are currently the limiting factors in improving the process efficiency:

• Manual integration of information

• Physical prototyping

One example of this would be an engineer working through an analyst to better understand

the results of a simulation. Another example is the process of moving data from one

engineering analysis package to another and integrating the results of multiple analysis

packages in the engineer’s mind. All of these practices require humans to become

middleware in a process that ought to be directly accessible by the individual seeking

information. As humans, we present and filter information based on a particular

perspective developed through experience and individual bias. The human filtering process

can remove valuable information that may be important to the downstream user. A

3

computer, when tasked with integrating information, will filter and bias the information

only as the user directs.

Another limiting factor within the traditional engineering process is the use of

physical prototyping and of numerical models, which are exacting. Physical prototypes are

useful for integrating all the components and physical phenomena together. However,

physical prototypes do not enable direct information integration from one design option to

another. In addition, data measurement within a physical prototype can be time-consuming

and difficult, and the quantity of interest can often not be measured directly. Because of

this, physical prototyping is best primarily for confirmation and exploration and not

directly as a design tool.

In contrast, numerical models are used as a very precise tool providing very

detailed information about a specific component or phenomenon. However, computational

models are time consuming, the connection between the model results and the engineering

question being asked is often not clear, and they cannot be easily connected together to

create complete systems.

A new approach is needed that can combine the breadth of physical prototyping

and the richness of numerical analysis in a timely and easily understood manner. This new

approach needs to empower the engineer to quickly investigate a wide range of options. It

must be applicable from initial design, through final design, and then provide an

engineering platform through the life of the engineered product; and it needs to explicitly

address error and uncertainty. This approach must provide for model portability and enable

complete systems of models to be built easily and naturally.

4

This thesis proposes a framework that addresses these issues. Within this

engineering framework, models of specific phenomena and components are coupled

together to build engineering objects. These engineering objects are then coupled together

to create systems and systems of systems. The key aspects of this framework are:

• An object-oriented approach to information management

• Incorporation of emergent behavior in the modeled system

• Support for bottom-up information semantics

These issues will be implemented by applying the concepts of object-oriented

programming to engineering simulation and design. Several research areas surrounding

informatics will be examined (e.g., product life-cycle management, computational systems

biology, and the Semantic Web). The emergent behavior that is being enabled by tools

created for the Semantic Web will be utilized to enable emergent behavior in advanced

engineering software frameworks. Fields in the humanities will be reviewed for insight

into how humans internalize interactions with objects to provide methods for

characterizing information in the engineering process (e.g., analysis data, CAD data,

costing data). Each of these areas will provide a capability that will enable the creation of

an advanced engineering framework that will enable engineering objects to be created that

mimic their physical counterparts.

5

Chapter 2: Background

Computers have been used in the engineering design process since the early 1960s.

An example of this is the use of computers to model manufacturing processes to optimize

route planning [Dahl et al. 1966]. Originally, computers were used as a faster slide rule, in

that they were expected to quickly perform analyses that could have been done by hand

with sufficient time. As solvers improved, the analyses that computers were expected to

perform became more and more complicated, until computers could analyze in minutes or

days phenomena that were too time-consuming to ever be computed by hand. Today, this

type of computing continues as scientific computing or engineering analysis, and involves

solving equation sets, usually partial differential equations that describe a particular

physical phenomenon. As solvers improved, computers were also being developed as a

means to perform other tasks, including:

• text-based processing (1980s)

• hypertext information (1990s)

• user-enhancement applications, e.g., wikis, blogs, and mashups (2000s)

Engineering has been slow to adopt these newer information technologies. Because

engineering analysis is very closely related to scientific computing, that connection is easy

to make. However, the connection between engineering design and a wiki or a mashup is

not as clear. Nonetheless, engineering is about making a decision, understanding risk and

6

uncertainty, and managing complex information, which are the very concerns that

information technology and informatics work to address. The definition of information and

how we manage it is changing, and the process of engineering must change with it. Today,

engineers act primarily as middleware. Engineers move data from CAD packages or

spreadsheets to analysis packages such as CFD solvers or FEA solvers. This is so deeply

ingrained in engineering that many engineers would argue that these middleware functions

are in fact the most important functions that an engineer performs. Engineering software is

needed that is based on the fundamentals of informatics and that moves the engineer from

the middleware process in engineering product realization to the higher-level tasks

requiring creativity, judgment, and values.

2.1 Informatics

Informatics is the science of working with and processing information. Informatics

… encompasses, and builds on, a number of existing academic disciplines:

primarily artificial intelligence, cognitive science and computer science. Each

takes part of informatics as its natural domain: in broad terms, cognitive science

concerns the study of natural information processing systems; computer science

concerns the analysis of computation, and the design of computing systems;

artificial intelligence plays a connecting role, producing systems designed to

emulate those found in nature. Informatics also informs, and is informed by,

other disciplines, such as mathematics, electronics, biology, linguistics,

psychology, and sociology. Thus informatics provides a link between

disciplines with their own methodologies and perspectives, bringing together a

common scientific paradigm, common engineering methods and a pervasive

7

stimulus from both technological development and practical application.

[Fourman, M. 2002, p. 2]

A general definition of informatics is “the study of the structure, behavior, and interactions

of natural and artificial systems that store, process, and communicate information”

[Fourman, M. 2002, p. 2]. In the case of the research discussed in this document, the

informatics technologies of interest are knowledge storage and discovery, computer-driven

knowledge creation, and self-describing data encapsulation.

The issues of knowledge storage and discovery and self-describing data

encapsulation are currently being addressed with ontologies. The creation of ontologies

and other knowledge management tools [Rosse et al. 2003, Gehlert et al. 2007, Garcia et

al. 2004] are a current area of research within the informatics field. An ontology is “an

explicit and formal specification of a conceptualization” [Gruber 1993, p. 200].

Pragmatically, an ontology defines a domain of discourse with a finite list of terms and a

relationship between those terms. The research surrounding ontologies focuses on the

creation of ontological languages such as the Web Ontology Language [Herman 2007].

This research will be discussed later in this dissertation to provide context for the use of

ontologies. Another research area is the implementation of these languages in particular

domains such as engineering, biology, and manufacturing [Kerrigan 2003, Kitamura et al.

2004, Kriete et al. 2005]. In engineering, researchers are using ontologies to aid in

distributed design environments. In biology, researchers are using ontologies to classify

systems within the body to share research results with collaborators. In manufacturing,

ontologies are being used to enable companies to better understand part usage and

distribution. These examples will be examined in more detail in later sections. Other

8

interest areas in informatics research include the integration of artificial intelligence

[Chang et al. 2004], real-time tracking with RFID [Ergen et al. 2007], and learning

algorithms [Colombo et al. 2007] in a way that enables organizations to gain insight and

improve the efficiency of business processes.

Engineering informatics generally encompasses the management of and interaction

with data, information, and knowledge specific to managing information for manufacturing

processes and managing information attached to CAD data [Bliznakov 1996, Bliznakov et

al. 1996, Qureshi 1997, Wang 1993]. One aspect of this work has been the development of

information management frameworks, which are software tools that process information

via a given schema. An example of one of these software frameworks is to enable the

manufacturing process to run more efficiently and to determine bottlenecks in the process

[Wang 1993]. Other work in creating product information management frameworks has

focused on attaching information to CAD entities [Bliznakov 1996, Wang 1993, Qureshi

1997]. Many of the efforts to manage information in engineering have surrounded CAD

data and have been specifically focused on geometric data. The goal of this work is to

provide some level of automation to the retrieval of information that is intuitive to the

engineer. Whole research areas have focused primarily on manufacturing and CAD data;

little research effort has been focused on time-dependent data and the hierarchy of

information (e.g., computational fluid dynamics, economics, spreadsheet models, and

experimental data) for one entity in a system of components. Progress has been made on

several components of this problem, which are described in the following sections.

9

2.2 Problem Solving Environments

 Problem solving environments were first conceived in the 1960s [Culler et al.

1963]. It was suggested that the link between computers and humans could be strengthened

to allow engineers to more readily and easily solve engineering problems without being

constrained by the knowledge of the computer code, graphics, or numerical tools necessary

to solve difficult engineering problems. A PSE is a computer system that provides all the

computational facilities necessary to solve a specific class of problems [Gallopoulos et al.

1994]. The PSE encompasses everything that is needed by the engineer to adequately and

easily design a system. At its core, a PSE can be used to solve a variety of problems, from

a simple algebraic manipulation in a spreadsheet to a multi-component system

optimization. Some examples of simple PSEs that were revolutionary when first

introduced are the spreadsheet, which replaced the calculator and ledger; and three-

dimensional CAD modeling, which replaced prototyping phases in the manufacturing

process.

Currently, there are many PSE software packages, such as Refiner, providing a

graphical user interface to construct mathematical solvers [Hunt et al. 2002]; PYTHIA,

utilized to aid in the selection of tools for solving a systems of equations [Weerawarana et

al. 1996]; CARM-PSE for studying reduced chemical kinetic mechanisms [Montgomery et

al. 2002]; and iSIGHT for performing systems analysis [Engineous Software 2007] for

scientific research. These software packages enable scientists and engineers to solve

problems and design systems more rapidly and not be concerned with the underlying

algorithms or APIs. These scientific PSEs are becoming common within the engineering

design process. Previously, compute resources were the limiting factor in the usability of

10

PSEs; today, the algorithms and numerical techniques necessary to build a robust PSE are

the limiting factors.

One application is coupling a PSE with a Domain Knowledge Based (DKB) Search

Advisor for use with a Design Exploration Systems (DES) [Ong et al. 2002]. A DKB

Search Advisor contains information for a specific problem that helps the engineer specify

the optimal solutions for solving an engineering problem. This feature, coupled with a

DES, enables engineers to solve problems more efficiently. As Ong et al. note, if both

positive and negative design results are stored for the respective engineering decisions,

engineers can avoid using the same design variables in the next design cycle. This type of

design process would enable problems to be solved in an environment where an engineer

can positively affect the outcome of a product through the incorporation of past design

experiences without requiring the presence of past team members.

There are user-interaction limitations (e.g., interrogating large three-dimensional

datasets) that can be solved be utilizing virtual reality [Belleman et al. 1998] and other

human-computer interaction devices [Drashansky et al. 1996]. A PSE coupled to a three-

dimensional immersive environment is more useful to the designer because the designer is

now in the solution and a part of the solution. This is the primary advantage of

incorporating virtual reality into engineering because it provides a medium through which

information can be presented to many audiences in a meaningful and quickly

understandable manner. When this medium is coupled with an expert in the area of interest

(e.g., a plant engineer, designer, or construction manager), virtual reality facilitates

breakthroughs in the engineering process because the large datasets created by analysis

become readily accessible to the engineer [McCorkle et al. 2003].

11

 Current PSEs, while excellent tools for solving specific problems, do not address

all the tools necessary to engineer a large-scale system. These environments aid an

engineer in solving a problem by handling much of the work that the engineer previously

completed by hand. The aspect of creating software frameworks to help manage difficult

tasks for the engineer will be in the research discussed here.

Shape optimization [Mohammadi et al. 2002, Mohammadi et al. 2001] has become

a widely accepted design technique in engineering and a key component of PSEs. Shape

optimization problems deal with geometric shape changes and design variables that are tied

to the solution of a problem such as airfoils [Makinen et al. 1999, Jang et al. 2000,

Quagliarella et al. 2001], heat exchangers [Fabbri 1998, Schmidt et al. 1996], two-

dimensional blade profiles [Trigg et al. 1999, Fan 1998], missile nozzle inlets for high-

speed flow [Blaize et al. 1998, Zha et al. 1997], three-dimensional shape optimization

[Foster et al. 1997], sailing yacht fin keel [Poloni et al. 2000], and stoves [McCorkle et al.

2003, Bryden et al. 2003]. Many engineering optimization applications can be reduced to

shape optimization problems because the primary problems confronting engineers are the

development of physical parts required to meet specific design constraints. The primary

interface to most engineering problems is through their geometric representations with

CAD data. The ability to interactively change geometric representations and have that

information coupled to the underlying physics models is important to the development of

an engineering PSE so that engineers can improve the product realization process.

 This research also discusses extending the ability to do shape optimization

interactively with high-fidelity models that require intricate meshing routines and model

preparation [Abodeely 2007, Engelbrecht 2007]. The benefit of this is that shape

12

optimization tools provide significant capability to design engineers to solve complex

problems on their desktop. Others [Kanukolanu et al. 2006] are investigating the use of

visualization techniques to enable the engineer to better understand how constraints on a

system under investigation trade-off with performance of the system enabling optimal

solutions to be identified faster. Shape optimization with finite element analysis as the

fitness evaluation is being used across a family of products [Torstenfelt et al. 2007]. The

use of surrogate models to enable shape optimization of two-dimensional airfoils is being

investigated to improve the overall performance time of the shape optimization algorithms

[Jouhaud et al. 2007]. These tools continue to provide examples of modules that must be

accessible from within an advanced engineering framework.

2.3 Object-oriented programming

Object-oriented programming is a software engineering paradigm for managing

large amounts of data through software interfaces in a structured manner. The first

applications of object-oriented programming were in simulation (i.e., SIMULA) and

graphical user interfaces (i.e., SmallTalk). Each of these applications focuses on working

with large amounts of structured data. Supporting the object-oriented programming

paradigm requires utilizing a language that supports a hierarchical and modular method for

software development, such as C++ and Python. Typically, an object-oriented language

will define an object (i.e., class), which is the wrapper for data (i.e., variables) that will be

utilized and available to other objects. The data and functionality contained within the

object are then made available to other objects through methods (i.e., functions). These

methods have explicit interfaces that must be utilized to access the data within the object

and make the object perform a specific task.

13

The methods with which these objects are implemented become important to the

reuse and robustness of the software being developed. In the past, a top-down approach

was taken with software development that resulted in a process-oriented view of an

application. This type of method does not promote software reuse or enable data to be

managed hierarchically. In part, this design approach was required due to the programming

languages available at the time, such as FORTRAN. An object-oriented method overcomes

these two limitations and is enabled through object-oriented languages. In addition, the

object-oriented methods utilized in software development focus on low-level object-to-

object interactions, thus resulting in a bottom-up design approach with a high degree of

modularity [Baldwin et al. 2000, Baldwin et al. 2006] and reuse available from the

resulting software. An abstract method for managing the development of robust objects is

through the use of object-oriented design [Booch 1982] and design patterns [Gamma et al.

1993]. Design patterns (e.g., singletons, null object, factories) are abstract solutions to data

management problems that have been tested and implemented across a broad range of

problems.

In the following sections, a brief overview of some early object-oriented languages

will be given as well as a brief discussion of the development of objected-oriented design

(e.g., design patterns).

2.3.1 Early software implementations of object-oriented programming

In 1965, Kristen Nygaard and Ole-Johan Dahl developed the first object-oriented

programming language, SIMULA [Dahl et al. 1966, Dahl et al 1968]. The SIMULA

language was developed to enable the “concise description of discrete event systems”

[Dahl et al. 1966, p. 671]. An example of such a system is a job shop where multiple

14

machines and the workflow can be easily modeled through an object-oriented approach

rather than a process-oriented approach. The use and creation of an object-oriented

language to model the job shop workflow enabled reuse of code that would have

previously been repeated over and over again in the process-oriented approach. In addition,

the object-oriented approach enabled an easier leap from conceptualizing the job shop

problem to implementing the simulation in code. Without the object-oriented approach, the

code implementation of the simulation is more complex for the developer. When using an

object-oriented programming language to create a simulation of a system, it is important to

enable the programmer to easily construct a map between programmatic entities and the

real world. Even in the late 1960s and early 1970s, simulations had a significant impact on

the scientific community as a way to look into the future to see how a system (i.e., disease

epidemics, traffic flow) might perform under given conditions [Dahl et al. 1966].

 At the same time that SIMULA was being developed, SmallTalk was being

developed as another object-oriented language [Goldstein 1980, Kay 1993, Shoch 1979,

Kay 1977]. The primary purpose of SmallTalk was to create a “tool utilized in the

construction of an interactive computer system, used by both children and adults for

problem solving, simulation, drawing and painting, real time generation of music,

information retrieval, and other tasks” [Shoch 1979, p. 64]. Because Kay’s background

was in biology, he wanted to create a language in which characteristics of the physical

world were also characteristics of the computer language. The purpose of this connection,

much like SIMULA, was to provide a language that the programmer could easily adapt to

and understand to enable easier implementation. While creating SmallTalk, Kay was also

approached by companies to create tools that would enable their engineers to access the

15

power of the computer by creating higher-level computer programming languages that

enabled non-computer experts to harness the power of the computer [Kay 1993]. At this

point, computers were becoming smaller, faster, and less expensive, and thus more

accessible to the average company, prompting engineers to speculate about the computer’s

use in the engineering process. This is another example of the necessity for engineers to

hide some of the complexity of problems under investigation so they can focus on

understanding what the information is trying to tell them rather than on the nuances of the

problem. The use of SmallTalk in the development of graphical user interfaces to

simulation or text manipulation applications provides an abstraction layer for the developer

so that he or she can focus on developing the application rather than on the lower-level

interaction with the computing hardware.

2.3.2 Object-oriented design/analysis

In the early 1980s, Grady Booch defined object-oriented design, which specified a

method by which software developers could analyze a problem to break it down into

software objects. The resulting programs would then be more portable and more

understandable from an algorithmic standpoint because the programs would follow key

design principles [Ross et al. 1975] such as:

• Modularity

• Abstraction

• Localization

• Information hiding

• Completeness

• Confirmability

16

This methodology was developed because the complexity of computer programming

caused software to be characterized as “late, erroneous, and costly” [Booch 1982, p. 64].

Similar descriptors can be used about the current state of our engineering product

development process: high-end computers, networks, and software are being used, but

many products are still delivered late and outside current customer design requirements.

These problems arise because of the complexity of the engineering products being

developed. The parallels between the software engineering domain and product

engineering domain can be seen, which leads to the observation that many of the tools

utilized to solve the software engineering domain can be applied to the product engineering

domain.

In addition to the points about object-oriented design, Booch discusses the

importance of a different approach to design other than top-down. As Booch notes, “In an

object-oriented design approach, we take a broader view of modules as collections of

computational resources. Such modules may represent abstract data types in addition to

abstract operations” (1982, p. 65). Taking this approach, he further elaborates that the

resulting solution is more robust and results in a modular design for increased software

reuse. These attributes help overcome the limitations of a top-down approach to software

development. Similarly, in the engineering design process, many of the processes

implemented in companies and taught is a top-down approach to product realization.

Again, the history of software engineering would predict that this is a portion of the cause

for the deficiencies in the products being engineered today. Software engineering history

would then predict that the engineering design process must change to a bottom-up

approach. Currently this is not possible due to the lack of enabling technologies in place to

17

support such an effort. This research will draw on the work of Booch to help begin to

create some of these enabling technologies. The process of creating software from the

bottom up can be enabled by the use of design patterns [Gamma et al. 1993]. According to

Gamma et al., “They [design patterns] preserve design information by capturing the intent

behind a design” (p. 407). Currently, design patterns are being investigated for use in the

product life cycle management process [Framling et al. 2007]. The principles outlined by

Booch and Gamma will be leveraged in the creation of the engineering framework

presented in this research by providing proven methods for preserving design information,

creating robust designs, and enabling a bottom-up design approach to product design.

A byproduct of Booch’s work in object-oriented design is the development of the

UML. UML enables the user to map out the connections between software objects, which

is done to show the relationship between objects either for composition or for hierarchy

purposes (Figure 1). Again, a tool similar to UML or that utilizes UML could be used in

engineering to help enable some of the qualities that Booch outlined in engineered

products. The language also enables the relationship of variables between objects and the

method of access to those variables to be depicted (Figure 2). Some recent researchers

have proposed the use of the UML language to describe physical systems [Fishwick et al.

1996a, Fishwick et al. 1996b] to aid in the virtual prototyping of products. This is an

example of applying proven tools to help enable an improved engineering process. While it

is a start, there is much more that needs to be done to enable engineers to create products

through a bottom-up approach, resulting in more modular and robust designs. Specifically,

it is proposed that the UML language enables a macro-view of a system and provides an

object-to-object relationship rather than just a functional relationship as many systems

18

analysis tools provide [Huang et al. 1993]. This is being realized to some extent in the

creation of the SysML [Object Management Group, Inc. 2008] specification, which not

only characterizes the specific attributes of individual components of the system, but also

adds the connectivity of these components to each other. The functional relationship does

not capture a comprehensive representation of a component in a system; it simply provides

its capability to the rest system.

 One object-oriented language that is commonly used today is C++. It was

developed in 1984 by Bjarne Stroustrup to provide a higher-level language by which

object-oriented ideas could be implemented. C++ is based on SIMULA and was

implemented to give users access to the efficiency and flexibility of C while maintaining

the modularity and object-oriented nature of SIMULA [Stroustrup 1993]. During the mid-

to late-1980s, C++ was still being refined and was not readily accessible. It was not until

the early 1990s that C++ became accessible to a broad range of users. The accessibility of

the language was probably due to the increased use of personal computers and the

development of commercially integrated development environments such as Visual

Studio™ from Microsoft™. The combination of software tools and decreased hardware

computing costs enabled researchers to begin utilizing object-oriented software to manage

complex problems.

19

Figure 1. UML class relationship diagram

20

Figure 2. UML variable relationship diagram

21

2.4 Current Uses of Object-Oriented Methodologies

 As object-oriented programming languages have become more prevalent, many

engineering disciplines have begun to adopt the methodologies (e.g., object reuse,

hierarchical data storage, object inheritance and composition) upon which object-oriented

languages are founded as a mechanism by which engineers can more easily solve

engineering problems. These methodologies include PACT, which was created to enable

concurrent engineering systems [Cutkosky 1993]; NetBuilder, which is used to construct

collaborative engineering environments [Dabke et al. 1998]; NODES, which supports the

conceptual engineering design process [Duffy et al. 1996]; STEP, which generalizes

product description [Männistö et al. 1999]; mechanisms that link CAD to disparate

engineering processes [Martino et al. 1998]; SHARED, which is used to construct

graphical collaborative engineering environments [Toye et al. 1994, Wong et al. 1993];

web-based collaborative concurrent design tools [Xue et al. 2003]; and software tools that

integrate design and assembly planning [Zha et al. 2000]. These languages typically enable

developers to use a modular approach to segment information into a format that loosely

couples the modularity to information in the real world. In addition, it permits a structured

approach to querying for information throughout an application, allowing a semi-intuitive

approach to hierarchically present information and accessibility. Some examples that

implement this technology follow.

22

Figure 3. Constrained object description file [Pushpendran 2006, p. 25]

23

 The term “constrained objects” is derived from the fact that an object’s physical

constraints are programmatically encoded into the class that represents the physical object.

Constrained objects were first implemented to extend programming languages and to

enable the user to create a lightweight ASCII text file defining the numerical/physical

constraints of an object (Figure 3). Some examples of these constraints are body forces on

beam trusses [Wilson 2000, Wilson et al. 2001], Ohm’s Law for electrical circuitry

[Tambay 2003], and other physical phenomena-governing equations [Horn 1993, Peak

2002, Pushpendran 2006]. The object in this case, although very similar in form to a

programmatic object, is a copy of the physical object that it is representing. The

representation of the physical object is only as good as the constraints that are

implemented in the object. These constraints then become the limiting factor of the objects.

Enabling a high-fidelity representation of an object would require a sophisticated modeling

language and software framework adhering to the formatting in the ASCII text file

illustrated above. This type of implementation is very similar to the modeling language

Modelica [Modelica Association 2008], which targets control-type problems [Wilson

2000, Wilson et al. 2001].

 Fishwick [Cubbert et al. 1998, Fishwick 1996a, Fishwick 1996b, Fishwick 2006,

Hopkins et al. 2001a, Hopkins et al. 2001b] proposes objects as a method for simplifying

the compilation of numerical models when trying to construct multi-model environments.

The environment directly leverages the tools and design patterns developed for C++, such

as object-oriented programming and UML tools. Through these mechanisms, the object-

oriented physical multimodeling and multimodeling object-oriented simulation

environment (MOOSE) environments enable users to construct a simulation environment

24

through similar hierarchies and inheritance schemes that are available in other object-

oriented languages. The proposed software architecture would then enable users to

construct a wheel from a series of other objects such as a nut, rim, and tire. Each of these

objects would then provide their physical characteristics through numerical simulations to

the other objects in the environment. This work highlights the positive impact that object-

oriented methodologies can have on domains other than computer science [Fishwick

2004]. However, this research does not propose a solution for enabling the overlaying of

disparate sources of information needed to describe an object.

Product-centric objects leverage the benefits and philosophies of object-oriented

programming by creating product agents that provide an interface to individual product

information on a physical object basis. One software toolkit built on these principles is

Dialog [Dialog 2007]. The implementation of these software agents utilizes object-oriented

principles, but more importantly, the agents are what the Dialog framework accesses to

gather object-specific information as requested by the user. This is done through the use of

URIs and a GUID. The URIs and GUID are essentially a unique data tag that enables

information to be queried from anywhere on the web by specifying a location (i.e., the

URI) and the GUID of the object being queried. The motivation behind this research is to

give product manufacturers, product distributors, and original equipment manufacturers

seamless access to per-part information from any location to enable streamlined product

delivery systems. The benefits of the product-centric process are that it is able to scale to

large systems of part databases, is open source, and can be implemented within a company

with very few changes to information technology infrastructure. These attributes make it

accessible to large and small companies and enable the inclusion of a broad range of

25

product database implementations. While the product-centric objects enable access to part-

level information such as dimensions, quantity on hand, time-to-ship, and other

manufacturing level data, these objects do not propose to address issues surrounding

modeling and simulation.

Pattie Maes at the MIT Media Lab has developed a series of applications—

Invisible Media [Merrill et al. 2005], ReachMedia [Feldman 2005, Feldman et al. 2005],

and Galatea [Gatenby 2005]—that provide a software toolkit to enable users to interact

with physical objects and gather meta-information that is not available through traditional

interfaces with physical objects (e.g., touch, sound, sight). These tools provide the user

with a more intuitive interface to and information about an object than is possible through

non-augmented interfaces. Some examples of this type of information are repair history

and part traceability. These objects, which have been used in frameworks developed by

Maes et al., illustrate the improved knowledge and assistance that is available when the

computer can augment the user’s expertise and utilize environmental information to solve

problems. These objects provide an illustration of how overlaying multiple pieces of

information (e.g., working with physical objects and overlaying repair instructions) can aid

the user in gaining better insight into the object under investigation.

 Another current implementation of object-oriented concepts is the Common

Information Model (CIM), which “describes management information and offers a

framework for managing system elements across distributed systems” [Bumpus et al. 2000,

p. 1]. CIM has a specification and schema that allow it to be applied to a wider variety of

problems, to adapt to resources that change within the framework, and to change the

information that the resources provide. Again, the object-oriented methodology was

26

applied to enable developers to map from the real model to a conceptual model that could

then be created programmatically. CIM uses object-oriented methodology as it is used in

the programming world: to define the basic unit from which all other entities within the

framework are created. The CIM framework provides a further example of object-oriented

methods, enabling complex information to be handled through object interfaces.

 Knowledge objects are entities that hold business-related organizational

information but have also been used to hold technical information [Simpson 2004]. A

knowledge object is defined as “a highly structured interrelated set of data, information,

knowledge, and wisdom concerning some organizational, management or leadership

situation, which provides a viable approach for dealing with the situation” [Bellinger

2004]. Knowledge objects provide organizations with tools and guidelines to construct

concise packets of information. The objects contain organizational information so that

future business decision makers can benefit from the past experiences of others and gain

insight into the positive and negative outcomes of previous endeavors. The construction of

these objects is based on a set of rules determined on a per-company basis based on their

experience of what has aided decision makers in gaining insight into past successes. Again,

the goal is to use these objects to encapsulate information and provide an intuitive interface

for users to gain a level of understanding that would previously have been unattainable due

to past information being lost through employee turnover.

Knowledge objects are constructed to implement a higher level of engineering

effort, referred to as “knowledge engineering.” The goal of knowledge engineering is to

encapsulate knowledge that organizations create or obtain so that engineers working on

similar future projects can avoid the shortfalls of the teams before them. Knowledge

27

objects are also simple in that only pertinent information is stored, making the object

extremely compact. Much of the current research in this area is now focused on ontology

development. This is due to the fact that the foundation of knowledge objects is an

assumed comprehensive capture of someone’s knowledge. This is only possible if the data

obtained from someone can be interpreted five or ten years in the future without the person

present. One of the current methods for doing this is through the use of semantically rich

ontologies. Unfortunately, this approach can often require extensive work to provide a

comprehensive schema for small problem domains. Even though these objects may not be

well suited for engineering modeling and simulation information, they do provide an

example of and illustrate the value of capturing information on a per-object basis when

creating a product for a company.

2.5 Frameworks

The definitions of “framework” are varied and can refer to software libraries,

software applications, structural components of a building, and everything in between. A

general definition is “a basic structure underlying a system, concept, or text” [Soanes et al.

2005, p. 368]. Regarding the discussion in this research, framework will refer to a software

application that is the basic structure utilized to understand complex systems. Currently

available frameworks include a host of open-source and commercial packages. Examples

of open-source frameworks include:

• the University of Utah’s SCIRun package used for scientific visualization and

computational steering [SCI Institute 2008]

• dataflow visualization-oriented packages such as OpenDX [OpenDX.org 2006]

28

• the Common Component Architecture (CCA)-capable CCaffeine [Allan et al.

2005] used for the numerical integration of large distributed simulation (e.g.,

nuclear simulation, munitions simulation)

Examples of closed-source packages include:

• Matlab’s Simulink [The MathWorks, Inc. 2008], used to integrate third-party

software such as LMS Virtual.Lab [LMS International 2008] with the Matlab

• Fiper [Engineous Software 2007], used for distributed collaboration of design

teams. This package has been customized primarily for GE.

• Aspen Plus [AspenTech 2008], utilized for chemical process plant simulation

• ModelCenter [Phoenix Integration 2008], used to integrate a wide range of third-

party solvers (e.g., Excel™, user subroutines) with optimization and design space

exploration

• Protrax [Pro-Trax Off-Road Adventures 2008], used to model large plants at a

system level

These packages tend to be targeted to specific applications (e.g., Aspen Plus to chemical

process modeling and CCaffeine to terascale-level high-performance computing) and do

not address the general engineering process. SCIRun has computational steering capability

and visualization support but does not provide an extensible method for integrating generic

simulation and modeling tools. ModelCenter, Fiper, Protrax, and Matlab’s Simulink all

have support for the integration of specific sets of tools or for high-level systems modeling

capability. Each of these packages fills a specific commercial need and provides a desired

set of tools for a specific clientele.

29

Padula et al. [2006] noted that the main issues facing the development of software

frameworks are:

1. the verification and validation of federated simulation environments

2. knowledge capture stemming from these large federated simulation environments

3. easy access to construct large simulations through graphical displays

One of Padula et al.’s key ideas is that many frameworks center around creating data

repositories that tie information to the components they represent. These repositories then

enable the users of the frameworks to seamlessly query information on a per-component

basis. This work highlights the difficulty in creating a software framework to begin to

address the other issues outlined by Padula et al. when the primary work to date has

focused on creating a sufficient software structure to enable the ease of access to

component-level information for large simulations.

 One software engineering toolkit that takes advantage of the object-oriented

methodology is the Distributed Object-based Manufacturing Environment (DOME)

[Abrahamson et al. 1999, Abrahamson et al. 2000, Pahng et al. 1997, Pahng et al 1998,

Senin et al. 1999a, Senin et al. 1999b, Senin et al. 2003a, Senin et al. 2003b, Wallace et al.

2001, Cao et al. 2005]. This software uses CORBA [Object Management Group, Inc.

2008] combined with customizable graphical user interfaces to set up simulations with

multiple models and access variables within the DOME framework. It maps objects, which

are very closely tied to the real world rather than the programmatic or algorithmic world, to

their mechanical characteristics to enable distributed simulation. With the DOME

framework, the developer can wrap and hide unnecessary proprietary information within a

30

module while exposing the necessary information to other collaborators on the distributed

framework.

 Another interesting concept that the DOME framework proposes is the World Wide

Simulation Web (WWSW). The goal of the WWSW is to be the structure by which

numerical simulations can transfer information from one location to another, much like the

World Wide Web does with hypertext.

 The Building Design Advisor (BDA) employs object-oriented techniques to create

a software framework that integrates various numerical models for building construction

[Papmichael et al. 1997, Papmichael et al. 1999, Reichard et al. 2005]. These models are

integrated together on a per-object basis in a building, such as a door, window, or roof, as

objects in the modeling advisor. This approach is taken to help the end-user better identify

the model that is actually being designed with the real world. In this design environment,

the BDA’s goal is to guide the decision maker from a conceptual design to a very detailed

design. This framework provides a good example, albeit to a specific domain, of how

managing models on a per-object basis provides flexibility in the software framework.

 Reed [Reed 1998, Reed et al. 1994, Reed et al. 2000a, Reed et al. 2000b] proposes

the use of object-oriented principles for enabling the integration of turbine engine models

in a distributed manner. The ONYX [Reed 1998] framework treats each of the major

components of the turbine engine as objects in a larger simulation. Each of these objects is

then represented in the framework by a numerical model. Each model can be of varying

fidelity and a particular object can be comprised of multiple numerical models. In this

software framework, the data types and integration interfaces are all predefined to support

the turbine engine design problem. The notion of a general software framework to address

31

large time-dependent simulations or integrated visualization capability is not proposed.

This work provides a concrete example of the use of object-oriented principles to enable

the computer to manage some of the integration tasks for the design engineer.

2.6 Meta Data and Semantics

Common methods in the engineering community to classify and store information

have focused heavily on the graphical representation of systems, often referred to as CAD

data. This has resulted in CAD formats such as STEP model data. This format offers

software package-independent solutions for the storage and representation of information

in the engineering process, but only provides information similar to what was discussed

with product-centric objects. These CAD representations often refer to the surface

geometry representation of a particular object. While this representation is the most visible

to an engineer, it holds relatively little information about an object. The geometry object

only defines an object’s boundaries and the space it occupies.

Before an engineer’s inquiries can be satisfactorily answered in the virtual world,

appropriate representations (e.g., economic, pedigree, experimental, numerical models,

geometric) for the problem at hand must be provided. For example, supplying fluid

properties to a graphics program probably has little benefit for the graphical environment.

A more appropriate representation may be a polygonal mesh that can be rendered and

would display the physical domain within the virtual world, providing the engineer with

the appropriate information given his or her requests. For a purely results-based request, a

single scalar value would be returned to the user. For a “why” or “how” request, the entity

that generated the request would need to provide the foundational information such as the

finite element analysis results or computational fluid dynamics results.

32

These representations that are attached to the virtual object are meta-data providing

more meaning to the object than just the geometric mesh. This approach to building

environments where meaning is being attached to an object is not new. The Semantic

Web’s purpose is to attach meaning to the current World Wide Web of data (i.e., web

pages, intranets, and wikis); hence the term “semantic” in Semantic Web. Some of the

current research in creating meta-data-rich environments will be reviewed below.

2.6.1 Engineering Information Storage

 Horváth proposes that objects serve as the basic data structure for providing

mapping to a CAD representation of a product [Horváth 1997, Horváth et al. 1994,

Horváth et al. 2001, Horváth et al. 2003, Horváth et al. 2004a, Horváth et al. 2004b,

Horváth et al. 2004c, Horváth et al. 2004d]. Horváth also notes that there are multiple

representations for a component beyond just the geometric information being displayed in

a CAD program. In this research, CAD data is brokered between various components, and

file specifications such as STEP and EXPRESS are utilized to store lifetime information

about an object. This work highlights the requirement that lifetime information about an

object is critical to the design and retrieval of design intent after engineers have finished a

project.

 A framework developed by Wang [Wang 1993] addresses the need to provide a

means to map exceptions thrown during the manufacturing process and notify the

engineering team. The development of a method to map information to objects makes this

possible. The information is then tracked through the manufacturing process, giving the

engineering team a clear picture of their product’s quality.

33

 Bliznakov [Bliznakov 1996, Bliznakov et al. 1996] addresses the need to develop a

taxonomy to store information about parts during their lifecycle. This is needed to enable

comprehensive part tracking to improve communication about product development and to

improve the company’s knowledge storage capability. This information is critical to enable

companies to fix or avoid problems that plagued previous products in future products.

 Qureshi [Qureshi 1997] notes that there are two main types of integration: static

and dynamic. Static integration requires explicit definition of objects that belong to the

integrated information. Dynamic integration follows a predefined scheme to dynamically

generate the definition of objects belonging to the integrated information. The research in

this dissertation focuses on using dynamic integration. Qureshi also notates several

integration categories:

1. No integration

2. Direct interfacing (need-based integration)

3. Neutral format-based integration

4. Loosely coupled integration (open architecture)

Qureshi uses this work on integration to generate a specification for integrating

information throughout the design process to not only record explicit information, but also

implicit information about the process to generate a comprehensive record of the product

being designed.

 The trend in engineering informatics over the past few years has been product life

cycle management, which focuses on managing a product’s descriptions and properties

throughout its development and useful life, mainly from a business/engineering point of

view. Product life cycle management tools primarily exist as enterprise-wide software

34

toolkits that span disciplines and provide a common interface for a product. Some

examples of these tools include the Federated Intelligent Product EnviRonment (FIPER)

[Sampath et al. 2002, Wujek et al. 2000], TeamCenter, and Dassault Systems. These tools

primarily present information in a format that requires the engineer to dig for a simple

dimension. For example, if an engineer wants to change a diameter on a component in a

complex CAD assembly, he or she must navigate a deep hierarchical tree to potentially

find the parts and features that need adjustment. Then, to make the same adjustment in

other models associated with the same CAD file, the engineer must repeat the process for

each model because the CAD geometry typically does not automatically update the other

associated models.

Other techniques for managing information in engineering are primarily

constrained to geometric information (e.g., the STEP/IGES specification), which provides

a mechanism to allow disparate software packages to interoperate and exchange

information. This requires an information framework that is open and accessible to all

entities.

 The Semantic Web, which is often referred to as Web 3, has been under

development for the past 5–8 years [Antoniou et al. 2004], and is proposed by the creator

of the first web, Timothy Berners-Lee. The Semantic Web would provide context and

meaning for data (e.g., web pages) on the current web. For example, when visiting a

webpage about a conference, the browser would check the conference dates against a

personal calendar and inform the user of any scheduling conflicts. If no conflicts were

found, then that particular webpage would provide the user with local information such as

nearby hotels, restaurants, and other attractions.

35

The ability of computers to perform intelligent tasks such as checking for schedule

conflicts is accomplished through a series of open interfaces and schemas that are

implemented via open source libraries and standards. The Semantic Web’s core technology

is “the Resource Description Framework (RDF), which integrates a variety of applications

using XML for syntax and URIs for naming” [W3C 2008]. XML provides a format that

allows data structures to self-describe and provides a means to represent the data that it

contains in a format readable by humans. The ideas upon which the Semantic Web is

founded, along with the technology that is used to implement it, provide a platform on

which virtual engineering tools and interfaces can be extended to create a web in which

contextual information is readily accessible to engineers. They also provide a means by

which the product development cycle can be completed in a manner unlike any before.

When the Semantic Web and virtual engineering methods are fully realized, computer

hardware and networking capabilities will work to provide information and tools to access

information meaningfully. In today’s computing age, the following question must be

answered: How will information be integrated so that commercial and proprietary software

tools can remain separate while also being integrated so that the end user can control and

query these tools with little to no knowledge about their implementation or inner-working

details? The answer to this question will depend largely on the ability to harness a large

group of individuals to implement the tools necessary to complete the work, which will

require open interfaces and schemas that can evolve over time as well as open source

toolkits that enable development teams to collaborate at a high level.

36

Figure 4a. Human systems [Kriete et al. 2005, p. 385]

37

Figure 4b. Human systems [Kriete et al. 2005, p. 391]

38

Other domains are utilizing the tools from the Semantic Web to enable a disparate

research team to collaborate across different software tools and research methods. One

such research field is computational systems biology, which aims to model the complete

human body at all scales from genes to cells to tissues to organs [Kriete et al. 2005]

(Figure 4). The modeling of the human body at this level is needed to better understand the

physiological function of the healthy and the diseased body. The level of integration

required to enable the numerical coupling of these systems requires that the data being

shared at each scale provide contextual information to enable the model receiving the

information to understand how to interpret the information. Computational systems

biology is leveraging ontologies to enable collaboration and exchange of experimental and

numerical bioinformatics data to increase the dissemination of results and the longevity of

the data [Kriete et al. 2005].

2.7 Virtual Worlds

 To create the more efficient and inclusive engineering environment discussed in

this paper, the work that has already been done surrounding virtual worlds must be

leveraged. Virtual worlds are becoming a popular medium for learning, training, gaming,

and many other activities. Popular virtual worlds include Second Life, World of Warcraft,

SimNation, and many others. These environments have developed into profitable

businesses and continue to intrigue a broad and diverse audience. Extending these virtual

worlds to help solve problems in business and the defense industry has become a popular

research area. One way the military currently uses these environments, for example, is for

force-on-force distributed training.

39

 Virtual worlds are defined as including “synthetic sensory information that leads to

perceptions of environments and their contents as if they were not synthetic” [Blascovich

et al. 2002, p. 105]. Some current research areas include developing narrative in interactive

worlds [Young et al. 2003] and defining simulation and experiments in virtual worlds

[Winsberg 2003]. This body of work will further the development of a framework that is

capable of handling large amounts information for working with large and ultra-large

systems. In addition, this work will aid in creating an environment where users are “inside

an environment of pure information that [they] can see, hear, and touch” [Bricken 1990, p.

1].

In the software toolkit Croquet, objects are utilized to collaborate across a wide

area network [Smith et al. 2003]. Croquet objects can be viewed on multiple computers

within the same world to collaborate on anything from documents to games. In each of

these instances, the form of the object that the domain being used defines and requires

informs the thinking and discovery process through which the user is drawn, enabling

acquisition of a point in a game, knowledge about a new subject, understanding of a virtual

counterpart in a virtual world, or something else. Engineering objects represent the same

goal for the engineer.

2.8 Object Definitions

In previous discussions surrounding object-oriented programming languages,

object-oriented applications, and object-oriented implementations, the term “object” is

often left undefined. However, there are some instances in which the term is defined as it

pertains to object-oriented languages, applications, and implementations [Eckert et al.

2003, Foucault 1994]. These instances define an object as something that:

40

1. Has form [Foucault 1994]

2. Contains artifacts and is utilized for discourse [Eckert et al. 2003]

3. In the instance of object-oriented programming, includes the interfaces and

methods necessary for interacting with the data it contains

4. In terms of the ONYX, DOME, BDA, is utilized as a data container for the

physical object that it represents and may contain some interfaces for other objects

to interact with it

When software objects were first implemented by Nygaard and Dahl [Dahl et al. 1966],

their purpose was to create a more intuitive connection between the real world and the

program being created. This is the predominant theme in many discussions of objects

[Heim 1997, Horváth et al. 2004, Pidd 1992, Rothenberg 1986]. Objects allow the

individuals interacting with a system to more easily adapt to what the developer is trying to

convey. Also, from a programming standpoint, objects enable the programmer to easily

create a program with characteristics that more generally resemble the problem being

simulated or solved, which is what Kay [Goldstein 1980, Kay 1993, Metz 2001, Shoch

1979] and Nygaard [Dahl et al. 1966] proposed. The definition of the objects used in this

research is derived from [Luch et al. 1996] and [Eckert et al. 2003]:

An entity is just something with a non-empty set of attributes that is typically used

as a template for more sophisticated components. An object is an entity with the

added constraint that it has a non-empty set of capabilities. Similarly, an agent is an

object with a non-empty set of goals, and an autonomous agent is an agent with a

non-empty set of motivations [Luck et al. 1996, p. 52].

41

The definition of agents provides a broad explanation of how computer scientists think

about working with objects in terms of computer simulations that model human activity

and software agents that are constructed to mimic human behavior. The field of social

sciences focuses more on the physical realm of how humans interact with objects:

We use a wide definition of the term “object” to encompass all sorts of

physical and electronic artifacts that can convey meaning in interpersonal

communication, but have an existence beyond a single act of

communication [Eckert et al. 2003, p. 145].

These definitions provide a low-level illustration of what we, as humans, interact with and

how we interact on a daily basis. The objects in these instances are broadly defined and

provide a starting place for the discussion surrounding what the term “object” means and

how engineering objects build on work from other domains that utilize that term.

In this thesis, objects have a physical counterpart and a correlation from the

physical world to the virtual world. The objects encompass a number of physical and

digital artifacts that can convey meaning. This ability to convey meaning provides a basis

for the ability to construct virtual systems. The object will be able to:

• define their own status

• define their method of operation

• define their method of interaction with other objects

• sense and act on the environment in which the object is situated

Users constructing a simulation should be able to seamlessly assemble parts as in real life,

enabling a narrative to be constructed and ending with the production of a detailed part

[Dörner 2002], [Skov 2002]. Engineering objects should primarily be able to manage

42

complexity [Sharpe et al. 2000] and enable the dynamic creation and addition of

information in the decision-making environment. The objects that will be used to manage

complexity are different from programmatic objects in object-oriented programming and

are derived from objects as described by the French philosopher Michel Foucault, who

says that objects are “the extension of which all natural beings are constituted – an

extension that may be affected by four variables. And by four variables only: the form of

the elements, the quantity of those elements, the manner in which they are distributed in

space in relation to each other, and the relative magnitude of each element” [Foucault

1994, p. 134].

2.9 Characteristics that objects must inherently have

In this research, objects must have inherent abilities that allow them to adapt to

surroundings and distinguish themselves from other objects coexisting in the same

environment. In discussing this requirement and the methods used to achieve it, many

current research areas will be drawn on. The discussion of objects will begin with the work

of French philosopher Michel Foucault.

 Foucault examined our methods of interacting with our surroundings to gain an

understanding of how our surroundings inform us. To handle this level of complexity in

information and systems, a method is needed that enables parallels to be drawn between

how information and interaction are handled in the physical world and how they are

handled in the virtual world. Gaining information about an object in the physical world is

typically straightforward. Information about the weight, for example, does not need to be

acquired through a third-party interface. This information is easily gained by picking the

object up or attempting to pick it up. Holding an object also allows a human to investigate

43

the material or materials from which the object is constructed. The object can also be

dropped, which provides information about its mechanical characteristics. Two objects can

be picked up to understand how they might interact with each other, although interaction

that is not human-driven can also occur between two objects. For example, two objects can

attach to each other without direct human interaction.

There are many ways to test an object’s properties to gain information about it. In

each of these simple interactions, information about an object’s temperature, material

mechanics, and weight are easily acquired. That is, the information that can be obtained

from an object is dictated by the method of the direct interaction with the object. If this

simple means of gaining information about objects in the physical world is compared to

current methods to gain information about virtual objects, a much different result is

experienced. An engineer may work for days to acquire information about a pump’s

material mechanics properties, fluid performance parameters, spatial information, or many

other properties that are easily obtained in the physical world. To overcome these

restrictions, virtual objects are proposed that have the same characteristics as physical

objects in the sense that any information that can be gained from interacting with a

physical object is also available through a single interface—the virtual object—in the

virtual world. These objects will have the ability to self-recognize, adapt, and exchange

information without user input. One disadvantage of objects in the physical world is that it

is often impossible to make a temporary change and then return the object to its original

state. This limitation is not present in the virtual world. Many current computational

intelligence technologies will be used to allow objects to operate in a self-organizing and

44

self-describing manner so their interactions are enhanced. These functionalities permit

virtual objects to behave very similarly to their physical counterparts.

45

Chapter 3: Towards an advanced engineering framework

Virtual engineering is the act of using technology and information in such a way

that all stakeholders can actively participate and understand what the issues are in a system

under design. The types of problems that need to be addressed include multi-scale

problems, complex systems problems, and ultra-large systems problems. As our abilities to

measure, build, and bring arguments together at many scales increase, tools are needed that

enable us to design and understand the outcomes of these systems. For example, the tools

we develop should enable us to model from molecule to cell to organism or from part to

subcomponent to machine. An engineer should be able to approach an engineering

problem much like an artist approaches a painting. The painter focuses on how the paint is

applied to the canvas in concert with the other colors and shades on the canvas, but not on

how the paint is created, contained, or transported. The painter focuses on the multi-scale

problem of how individual microscale strokes of the paint work together to create the

whole mesoscale painting. This is the same process that design engineers need to go

through in creating a complex system. A design engineer similarly needs to be able to

focus on how the components of a system work together optimally to solve a problem and

not be concerned with the manufacturing process of the part or how it is modeled. A design

engineer should be focused on the multi-scale problem of how individual components

work together to create a system greater than the sum of its parts.

46

What is needed is a computational framework that enables the design engineer to

creatively address problems related to existing complex systems and to create more

complex engineered systems. Specifically, these software frameworks should enable

design engineers to take a higher-level approach to interacting with information because

the way computers are currently used does not enable problems to be addressed any

differently than they were 50-60 years ago. This can be seen in the way the physics of

engineering problems are examined. Today, the Navier-Stokes equations (CFD) are still

used for analysis, but more grid can be used and more detailed solutions can be addressed

because computers have more memory and processing power. While more computational

problems can be addressed because of this increased processing power, the manner in

which design engineers interact with all of these analysis tools and analysis data has not

evolved over this same time period. To enhance the way computers are used, software

must be created that applies an improved method of processing and interacting with

information.

The virtual engineering process embodies activities that other disciplines assume

are present in daily activities. To further the artist analogy, it is not the artist’s job to

develop the tools for painting (e.g., manufacturing the paintbrush). Information about

manufacturing paintbrushes is assumed to be easily accessible as well as inherently

available, not to mention unnecessary for the actual process of painting. Although an artist

does need to worry at some point about choosing the appropriate paint brush, during the

process of painting, the painter need only think about how the paint is applied to the

canvas. Similarly, an engineer should be able to work with objects in a virtual space

without thinking about detailed development of the analysis and modeling tools, even

47

though at some level in the engineering process that information is important. S/he should

be able, for instance, to grasp a virtual part in a pump and alter it and only have to think

about the consequences of such a move to the rest of the system in which the pump resides.

Much like the artist, engineers must also be able to move across scales within a system and

understand how the parts within the system will interact with each other without being

concerned with the underlying tools (e.g., process simulation, CFD, FEA, CAD) being

utilized to create the virtual systems.

One area that focuses on many of the same aspects of virtual engineering is called

Think, Play, Do. A description of its components follows:

• Think – Innovation Technology (IvT) (e.g., modeling, simulation, virtual reality)

liberates creative people from mundane tasks, enabling them to experiment more

freely and widely, producing a variety of options

• Play – IvT enables people to design, prototype, and test more cheaply and

effectively and to delay choices about investment until market and technology

patterns become clear

• Do – The extent of digital integration with other kinds of technology gives

innovators confidence in their ability to successfully transform new ideas and

designs into products and services

Taken from “Think, Play, Do” Doddgson et al. 2005, p. 4-5

Think, Play, Do is based on the idea that the tools needed in today’s business environment

demand access to a broad range of data from many project stakeholders. This level of

access is necessary to create a decision-making environment. Doddgson et al. also note the

demand that engineers place on numerical models at all levels of product detail. Design

48

engineers and project stakeholders demand complete virtual access to product acceptance

models all the way to product maintenance. This access is needed in trying to improve

product reliability and reduce product cost. Often, design engineers have a wealth of

experiential information that enables them to see patterns and places for improvement

without having to see a physical prototype. In this work environment, the more information

that is available virtually and accessible through familiar product representations, the more

the design engineers can improve the overall product without a physical prototype. These

observations will be utilized as requirements in the development of the advanced

engineering software framework described in this research.

3.1 Advanced Engineering Software Frameworks

As discussed in Chapter 2, current software frameworks succeed in solving many

different engineering problems and questions in regards to meeting today’s product

development and delivery schedules. These frameworks and algorithms enable engineers

to more efficiently answer questions, make decisions about specific problems, and address

specific areas within engineering disciplines. Over the past few decades, a significant

amount of work has been completed on the construction of software frameworks to solve

engineering problems and on interfaces to connect disparate software packages. These

tools have played important roles in creating environments where engineers are better

enabled to solve problems and create solutions that would have otherwise remain hidden.

These frameworks have three main limitations:

• They are monolithic; that is, they provide limited capability within their own

interfaces and modules. They are not extensible to new applications.

49

• They can only integrate a limited number of models, based on strong typed data

interfaces requiring extensive conversion of external data formats.

• They only provide limited data access by external software tools and limited

interfaces for external execution control.

These limitations must be overcome by creating a new framework based on the new way

of handling engineering models and information. Specifically, the computer needs to

handle the middleware tasks of information integration, extension of existing models to

new applications, and detail development. Today, these middleware tasks are handled by

the engineer.

To enable computers to perform this middleware task, a software framework must

support:

• An object-oriented approach to information management

• Incorporation of emergent behavior methods

• A bottom-up information semantic dataflow

This requires the creation of a “wiring layer” that provides the interface by which other

software platforms can coexist to share information, which becomes important in the

development of engineering informatics tools to address the limitations described above.

Just like in the physical sense with airplane avionics boxes, the “wiring layer” enables a

diverse set of software tools to connect to each other and transfer information without user

input (Figure 5). A popular discussion topic is:

50

Figure 5. Avionics wiring layer in a plane [Evektor 2008]

51

… the role of metadata and semantic technologies to help integrate the various

information sources with each other and with applications. I think that one of

the key reasons that large commercial applications are so inflexible and difficult

to modify is that the data access of the applications is “wired in” - connected to

a specific data base. While the applications and databases have been separated

since the advent of relational databases more than twenty years ago, modifying

the application to access a different data source requires serious application

changes and testing.

 The answer to this dilemma is to provide a sophisticated layer of metadata

between the applications and information sources to act essentially as a shared

integration or “wiring” layer. Moreover, the richer you make the semantic

model embedded in the metadata layer, the more this shared integration layer

becomes a kind of “common understanding” among all the various components

being integrated, which makes the overall system more adaptable and dynamic.

That is, different integration decisions will be made in real time, depending on

the overall environment. [Wladawsky-Berger 2006]

The “wiring layer” is possible for engineering tools as long as the software

connected to the wiring layer adheres to an agreed-upon communication protocol. Each

software framework is able to use any data structures for communication but must have an

interface that is able to communicate with the wiring layer. Within a software framework,

this wiring layer becomes the exposed software interface that enables the metadata for

domain-specific software tools to be shared. The interface for this wiring layer is important

to the development of solutions for engineering informatics, but frameworks that can

52

exploit this interface become increasingly powerful in the tools and experiences the

engineer is given access to.

 In this research, an advanced engineering framework will be developed that

utilizes engineering objects and VE-Suite to create a wiring layer for engineering

information. The key components of an advanced engineering framework are:

• Transparent interfaces

• Object-oriented characteristics (i.e. modularity, hierarchy, and abstraction)

• Enabling emergent behavior

One of the key components of this development will be implementing an object-oriented

approach to information management to enable the investigation and utilization of the

subsequent engineering objects that are created. This implementation will result in

engineering objects that will enable the engineer to focus on engineering rather than on

information integration. The engineering objects, when implemented with each component

in a product being developed, will create environments where virtualized systems and parts

can be analyzed and produced with fewer costs being devoted to the design and

development phase of the realization process.

3.2 Objects

The main difference between the objects described in this work and those that have

been defined and implemented previously is that the objects described here provide a

mechanism for relationships with other objects through multi-scale numerical relationships

that describe physical phenomena that are not possible in other object-oriented approaches

or engineering frameworks. The importance of this difference will emerge over the next

few chapters.

53

One of the key characteristics required by engineering objects is the ability to

encapsulate the information for a specific component in a simulation. This encapsulation

provides the framework for moving a decision about a particular object forward. The

encapsulation in an engineering object enables a user to drill down into the object,

determining what information is needed and what can be discarded. This is different from

many presently used engineering processes, in which this information is often hidden or

disconnected and the user must dig for each piece of information across different software

packages, resulting in time being spent on non-problem-solving tasks.

These objects carry with them context and meaning and the ability to be modified

by the user. The context and meaning that they carry is the meta-data they contain and the

information about any sub-objects that they contain. These characteristics build on the

functionality of programmatic object-oriented principles in that virtual objects are modular,

easily reused, extensible, polymorphic, able to support complex objects (i.e., objects can

make up other objects), and can be loosely or tightly coupled to other objects. One key

difference is the ability to change representations of itself at run time through the

manipulation of the information that the object contains. Most of all, an engineering object

must have the ability to self-discover and adapt to other objects that may need to exchange

information with that particular instance of the object. The information that is exchanged

with other objects must be able to be managed internal to an engineering object without

outside assistance from the user.

 Engineering objects will help manage complexity because they manage information

in an object-oriented method in that information is grouped based on its physical

counterpart. This design is different from other engineering frameworks where information

54

for one component may be stored in disparate software packages, requiring the user to

gather the information. Within engineering objects, even if information is stored within

disparate software packages, the user interface into the object is through a single

engineering object interface. In addition, the user can decide at what level of immersion he

or she wishes to interact with the engineering object.

 Part of the inherent nature of engineering objects is that they can be comprised of

other objects, much like physical objects can be comprised of multiple sub-objects.

Foucault notes that objects in nature are described as follows: “Each visibly distinct part of

a plant or an animal is thus describable in so far as four series of values are applicable to it.

These four values affecting, and determining, any given element or organ are what

botanists term structure.” [Foucault 1994, p. 134] The structure that is derived from the

description of objects enables humans to understand complex systems. The structure, as

Foucault notes, enables us “to describe certain fairly complex forms on the basis of their

very visible resemblance to the human body, which serves as a sort of reservoir for models

of visibility, and acts as a spontaneous link between what one can see and what one can

say” (p. 135). While engineering objects may not be used to describe the human body, the

human body can be used as a parallel system to demonstrate how engineering objects are

constructed and illustrate what is necessary for software to enable users to communicate

and understand complex systems such as the body.

 The interfaces to engineering objects are constructed to enable the structure of the

information that the engineering object contains to not be degraded when passing through

the interface. Foucault notes, “By limiting and filtering the visible, structure enables it to

be transcribed into language. It permits the visibility of the animal or plant to pass over in

55

its entirety into the discourse that receives it” [Foucault 1994, p. 135]. If the structure of an

object is degraded beyond what the user is asking for, the description of the object

necessary for discourse is unavailable. The comprehensive structure of an engineering

object must be available if necessary to enable understanding to be gained from the object.

In object-oriented programming languages, fixed interfaces (i.e., functions) are created to

access an object’s specific variables, but in the case of engineering objects, the interfaces

will be constructed to be flexible to adapt to the information describing the physical entity

so that the structure of the information is not degraded.

3.3 Object Interactions

To create connections between objects, tools must be utilized that enable objects to

self-describe themselves to the world and to understand information presented to them.

Information interactions include human-to-human, human-to-object, human-to-model,

model-to-model, and model-to-object. Some types of information interaction (e.g., human-

to-human) have been well defined in the literature, providing a foundation on which to

base engineering informatics. Literature about some interaction types has been available

for as long as 40 years [Foucault 1994]. These interactions have a significant place in

engineering in that they help provide not only a basis for how engineers should interact

with information, but also indicate what information must be automatically made available

to enable appropriate interactions to occur without direct user interaction. When creating a

virtual component, the user should not need to consider the solver or solvers that are

employed, but should be able to construct the part as if in real life.

When objects are constructed and connected into a network that enables the end

author to interact with and explore various options for connectivity and interrelationships,

56

the resulting network resembles the web. These particular networks are called scale-free

networks [Barabasi 2003]. A typical characteristic of these networks is that there are a few

major hubs or master objects that have sub-objects and information sources feeding into

the master objects. With an understanding of the resulting network created by multiple

objects, characterizing classes of engineering objects becomes possible.

The classes of objects used in engineering range from humans within the design

process to sensors that feed information in one direction. Classes of objects are then

grouped into five basic subcategories that are binned by object characteristics based on an

object’s interaction or lack of interaction with its surroundings. Each bin holds a

group/class of information that will enable other models to detect how to interpret and use

the information provided by the other objects. These bins (Figure 6) are classified as

follows:

• Class 1 – One-way information objects

• Class 2 – Two-way information objects

• Class 3 – Two-way interactive objects

• Class 4 – Instructive objects

• Class 5 – Knowledgeable objects

57

Figure 6. Class of engineering objects

58

The bins also dictate what information will be published about each class of objects

so that other objects can understand where and how they fit into the engineering process.

These bins are related by two main factors. The first factor is related to how an object

interior to an environment can affect the environment. These objects can be broken into

three sub-classes of objects: models that provide input, models that can provide input but

also can receive some input from the user, and two-way interactive models. The second

class of objects is agent-type objects, which can be broken into two subclasses: cleanup

agents, or dumb agents that are told what to do; and super agents, which rank close to or

the same as humans. We assume that humans are the top knowledge form in the hierarchy

of these objects.

With these categories in place, the grouping and handling of information can be

automated because assumptions can be made about how each object interacts with the

world, the type of information it contains, and the manner in which the object can

manipulate the world and the information that is provided to it. These classes enable the

objects, as described by Foucault, to adapt as the underlying objects change. However, the

core interfaces do not need to change.

The objects in the research described here are being developed to provide a

mechanism that enables relationships with other objects through numerical relationships of

physical phenomena that are not possible in other object-oriented approaches. As stated

earlier, this research defines an object as encompassing all sorts of physical and digital

artifacts that can convey meaning in interpersonal communication, providing the ability to

construct virtual systems, and possessing these characteristics:

59

• defining its own status, method of operation, and method of interaction with other

objects

• sensing and acting on the environment in which it is situated over time

• responding directly to the environment

Engineering problems are often defined by a series of constraints that are dictated by the

environment, management, marketing, or a whole host of intents and expectations. These

constraints imply the level of information fidelity required within the engineering process

and are often either lost or overemphasized. Each domain has a set of rules (e.g., gravity)

that dictate these constraints as well as what may or may not exist in products within that

domain. The rules also define the characteristics of the world in which the product will be

developed.

Object integration in the engineering environment will occur through the exchange

of information at similar fidelities, enabling objects to interact with each other and humans

to interact with objects. The level of interaction needed to move a specific decision

forward drives the level of fidelity required for the engineering object. Objects’

characteristics are determined primarily by the decisions that must be made.

The objects can be classified based on the information they contain and the raw

sources for this information, which will dictate the capabilities the object has in the VE-

Suite environment. These information sources can range from sensors, radio frequency

identification (RFID) tags, high-fidelity numerical models, spreadsheets, and many other

sources. Each of these is capable at some level of interacting with its environment. Each

entity may only provide one-way information, but some may be two-way coupled to

understand their surroundings and act independently of the user investigating the product.

60

3.3.1 Emergent Behavior

In the real world, many phenomena occur without external intervention (e.g., ants

building an ant hill, flocks of birds, termite hill construction, the growth of a coral reef,

traffic patterns, the stock market). These events occur through the use of communication

through the environment in which the entity resides. For example, in traffic, cues that a

driver receives from signs and other cars’ signals influence how he or she drives. These

signals and signs provide the driver with information about what to expect and how to

operate their car.

 For this discussion, self-organizing will be defined as a process that an open system

returns to an organized state spontaneously after surroundings change. [Bak 1996]. Open

systems in this case refer to the fact that the software tools can accept input from external

programs and users. Characteristics of self-organizing objects are:

• ability to tell what they need to connect to

• ability to tell what type of information they can accept

• ability to tell where they need to run from within the hierarchy of information

available to the object

Self-describing is defined here as the ability for a virtual object to provide

information about itself through its own interfaces, revealing the representations that allow

the user to understand the object in every context as in the physical world, as in nature

when ants use the environment to communicate indirectly with each other, enabling the

colony to accomplish a task as a whole. Similarly, constructing large systems of

engineering objects without user intervention requires that many of the tasks regarding

identification about the engineering object and its capabilities must be handled without

61

external intervention. Characteristics of a self-describing object that can be derived from

this definition are:

• ability to tell other objects about its internal characteristics

• ability to define input/output variables that are accessible for a given request

• ability to define fidelity and other vendor and meta-data, which comes primarily

from the ontology

 Self-operation is an object’s ability to know what model to run to provide the

appropriate information to a requesting object and when to run that model. Self-operating

also implies the ability to connect the appropriate models and fidelities of models given the

question being asked of the object. If a lower-fidelity model is run, the higher-fidelity

model may not have to be run because a change to a lower-fidelity model may not have an

impact on higher-fidelity models. Conversely, if a higher-fidelity model is run, the lower-

fidelity models will likely have to be rerun. Self-operation enables self-organization and

self-description.

Characteristics of a self-operating object include:

• ability to optimize itself

• ability to inverse engineer itself

• ability to tell the virtual environment what needs to be run

3.3.3 Object-Oriented Principles

One of the areas of weakness in current engineering software frameworks is the

inability to generically construct interfaces to adequately enable the structure and

representation of an engineering object to be shared with the rest of the software

framework. In this research, representation is the data structure for a particular aspect of an

62

engineering object. Specifically, representation is a formalization of point of view or

perspective. For example, in a graphical perspective, the representation of an engineering

object will primarily be its CAD data. The CAD data has a specific data structure, is

different from the numerical results, and also has a different graphical representation from

the CAD data. As in object-oriented programming, methods must be available to interact

with the underlying information. These methods, in a practical manner, are functions.

From a higher level, these functions are variation operators. The variation operators in

engineering objects are used to drive exploration of a problem space. These operators are

the exposed tools that will enable users to modify CAD data and numerical simulation

parameters, enable optimization algorithms to automatically search the problem design

space, and change the underlying inputs of a particular object.

Much like our brains hierarchically represent our experiences [George et al. 2004,

George et al. 2005, Hawkins et al. 2006, Hawkins 2004], engineers should also create a

hierarchy of information. The brain operates on information farther away from the sensor

(the neuron in this case) (Figure 7), enabling it to accomplish incredibly complex tasks as

information is broken up into manageable pieces. In addition, the brain uses invariant

representations to store information about the world, permitting it to store an incredible

amount of information in a very small space. In the case of the brain, invariant means that

the information that the brain stores, whether from seeing, hearing, or touch, is stored in

the same format to enable different sections of the brain to operate on the same

information. More significantly, the brain can perform tasks using general information

because it remembers patterns rather than explicit information. These patterns dictate how

we interact with the world and permit us to apply patterns to a broad range of problems.

63

This storage mechanism permits the same portions of the brain to share the load of

problem solving independent of the problem domain. For example, if the eyes need help

solving a problem, the portion of the brain that handles information from the hands can be

used and vice-versa. By the time information from the eyes and hands reaches their

respective portions of the brain, the information has been translated to an invariant format

and has been relegated to the portion of the brain trained to handle the information.

Creating software frameworks that have the ability to exchange information from

diverse problem domains with the same level of abstraction as the brain requires the use of

ontologies and other tools created for the semantic web (i.e., XML and XSL). The

ontologies created from these implications are very general and highly pattern-oriented, not

detail-oriented. The engineer needs to work at a high level of abstraction with the

information much like is done with CAD packages today. The engineer provides

dimensions and key geometric features but does not generate any of the curve equations

for the computer. While the objects discussed in this research will contain the ability to

perform specific tasks much like our brains are able to perform tasks on specific sets of

information, the ability to share information across modules within an object will be

possible in much the same way that programming languages enable data share.

64

Figure 7. Hierarchical representation of the brain [Hawkins et al. 2006, p. 6]

65

Figure 8. Map directions from Iowa State University to Hickory Park Restaurant, Ames,
IA [Google 2008]

66

The end result of these implementations will be software that enables the engineer

to see the engineering domain much like online maps provide (Figure 8) driving routes:

basic maps show what direction to drive and which turns to take. Maps are available that

have various layers showing elevation changes (e.g., relief maps), previous roads, previous

building locations, zoning information, or any other geographical information about the

city. These maps can show changes that were not visible with basic, non-layered maps. In

the same way, engineering software must enable engineers to see whatever layer of

information they desire at any fidelity. For example, if warranty information is being

viewed for a product and a specific component is frequently breaking, the underlying

physics models for this component must be accessible with a simple action from the user.

The engineer in this case must be able to drill down from warranty information (e.g., the

number of times this component broke), to the CAD representation, to the FEA analysis

that was performed by the original design team to better determine the problem behind the

warranty recalls.

3.5 Summary

Once implemented, engineering objects as described here will enable the user to

more easily traverse from a simplified information state to a complex information state,

which is necessary to gain a true understanding of the information [Davis 1999]. The

environment created by objects provides a mechanism for engineers, artists, and

individuals of many backgrounds to enter a mode of discourse that enables participants to

interact with other participants and to understand what they are trying to communicate. In

addition, these objects typically contain artifacts that enable participants to recall events or

meaningful points of interest surrounding the objects. This is the same level of realism that

67

must be present for the engineering objects being described and implemented in this

research. In order for these engineering objects to be utilized, a software framework must

be implemented that enables objects to communicate without intervention or direction by

the user, just like objects interact in the physical world.

68

Chapter 4: Implementation of the proposed advanced engineering
framework

Creating an advanced engineering framework based on engineering objects requires

the following three tasks to be implemented:

• Transparent interfaces a transparent interface results in data independent methods

being exposed to the user to enable data from any domain to be passed through the

interface. The goal of the interfaces developed here is to avoid strong typed

methods that are attached to a specific problem domain.

• Implementation of object-oriented principles to enable virtualized systems to be

created that avoid the problems that Booch and Ross et al. outlined, the methods

that enable the objects to be created for this engineering framework will include

modularity, hierarchy, abstraction, and design patterns to be utilized with

engineering objects. These qualities will be exhibited in the engineering objects

constructed here and will be supported by the engineering framework. Through the

use of transparent interfaces, modularity, hierarchy, abstraction, and design patterns

can be implicit in terms of the capability that the framework can support.

• Emergent behavior the engineering framework will enable emergent behavior in

two ways. First, the structure of the information that is received by the

computational units and by the core engines will provide key reference data so that

UIs can be constructed, three-dimensional graphical representations can be

69

constructed, and computational units can gain information about what is upstream

or downstream of them without user intervention. Second, any computational unit

will be able to query the rest of the virtual environment for data if the respective

unit requires other inputs to perform its tasks. This querying capability also occurs

without user input and enables the computational unit to exhibit some autonomous

behavior.

The core components of VE-Suite require several changes to support these tasks. These

needs will be met through the extension of the current VE-Open CORBA interface,

implementation of an XML Schema and respective API, and extension of VE-Xplorer to

support the display of engineering objects in a virtual world. Other changes will be made

to VE-Conductor and VE-CE. All of the changes outlined in this chapter are a result of the

research performed for this thesis. The implementation of each component was shared with

other organizations such as NETL, REI, and other graduate students in the Simulation,

Modeling, and Decision Sciences Program.

4.1 Transparent Interfaces

To enable information to be accessible to the core VE-Suite engines and the

engineering objects contained within the virtual world, transparent interfaces are needed

that are independent of the problem domain to which the interfaces are being applied.

These interfaces must enable data from any domain to be accessible throughout the

engineering framework and allow the full fidelity of the data to be accessible wherever the

user requests it. Rather than pushing data to the user, a query-based model will be used for

these interfaces. A query-based transparent interface puts all of the control of the

information in the hands of the user, the computational units, and the plugins in the

70

engineering framework. A query-based system is how we interact with the objects around

us. To find out how much an object weighs, we must pick it up; we cannot tell by simply

looking at it. Implementing this query-based model requires changing the CORBA IDL

interface (VE-Open) for back-end computational units to support a query-style interface,

enabling a command-driven unit interface engine that receives commands through a user-

constructed query interface based on user requests. The unit parses the command,

compares it to a set of available commands that are supported in the unit, and carries out

the required tasks. Each of these steps is completed without user intervention, resulting in

autonomous and emergent behavior by the computational units. In addition, only the

information requested by the user will be transferred, resulting in several smaller data

structures being transmitted and reducing the network burden.

4.1.1 Implementation of Transparent Interfaces

To implement transparent interfaces, VE-Conductor will be updated to run in two

editing modes: offline and online. In the offline mode, the user is responsible for more of

the manipulation of the VE-Suite software engines. In the online mode, the VE-Suite

engineering framework manages much of the background work for querying and changing

input parameters. The only programmatic difference in VE-Conductor between the online

and offline modes is the point at which the SetNetwork and SetParam calls are made.

In the online mode, the user connects to the computational engine once VE-Suite is

started. This tightly couples the VE-Conductor, VE-CE, and the computational unit. In the

online mode, the user can query the VE-CE and the computational unit to bring the

embedded network in a computational unit to VE-Conductor. When a VE-Conductor

plugin on the design canvas is double-clicked, VE-Conductor queries the module for

71

parameters and specific parameter properties. When a new module is included on the

design canvas, a subsequent SetID call is made immediately through the VE-CE to the

computational unit to make a new instance of the object in the computational unit. This

enhancement is an important step in the construction of the engineering framework. This

feature is a key component in being able to scale the engineering framework to support

hundreds of sources of information by supporting modularity. By enabling a single

computational instance to manage multiple instances of an object in the virtual world, a

smaller memory and management load is put on the engineering framework. In this

implementation, only the inputs and results are stored for each instance of the object in the

computational unit. Also, when a module is removed from the VE-Conductor design

canvas, a CORBA call immediately removes the respective instance from the

computational unit. The computational unit is still available if the engineer decides the

object is necessary in the virtual world. When the engineer decides that inputs need to be

changed for a specific object, the SetParam CORBA call is made to set the input

parameters on that unit. Again, only the object that is being modified by the engineer is

affected. Modularity in this case does not require that all the object’s inputs be set again,

just the object’s inputs that are being requested by the engineer.

To implement this new functionality within VE-Conductor, the following functions

are modified in the current VE-Open IDL:

 string Query(in string commands)

This query method takes the command’s parameters requested by the

engineer. VE-CE passes this call directly to the respective computational unit

72

and responds directly to VE-Conductor, through VE-CE with the response

from the computational unit (Figure 9).

 void SetNetwork(in string network)

This function’s action depends on VE-Conductor’s mode (i.e., online or

offline). If VE-Conductor is operating in the offline mode, the network string

contains the whole network’s information, including all the modules’ input

parameters. The computational engine, however, does not store these

parameters; it only parses the network portion of the DOMDocument to

extract the module list and link information. This is done to enable scaling

within VE-Suite to support ultra-large systems. By only requiring the

network information to be stored in the VE-CE, the memory footprint of VE-

CE remains small even with ultra-large systems. VE-CE then calls the

individual module’s SetID and SetParams to pass on the respective part of

the network string for the specific computational unit to parse and store the

information.

73

<?xml version="1.0" encoding="UTF-16" standalone="no" ?>

<commands name="Commands" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="veshader.xsd">

 <vecommand commandName="getInputModuleParamList">

 <parameter dataName="ModuleName" id="932658b0-40ff-df48-8732-a7a423958ff2">
 <dataValue type="xs:string">Data.Blocks.CVAP</dataValue>

 </parameter>

 </vecommand>

</commands>

Figure 9. VE-Open query command from VE-Conductor

74

In addition to the functions modified above, these three new calls in the VE-Open IDL

support the VE-Conductor online editing mode;

 void SetID(in string moduleName, in long id)

void DeleteModuleInstance(in string moduleName, in long module_id)

void SetParams(in string moduleName, in long module_id, in string param)

In the online mode, SetNetwork only passes the top-level system information needed to

describe the virtual world. Each module’s inputs are passed separately through VE-CE into

the unit using the SetParams call. SetID and DeleteModuleInstance calls are used for the

computational unit to manage its instance list when the user adds or deletes multiple

instances of the same module on the VE-Conductor design canvas.

4.1.2 Summary

Transparent data interfaces are the first component in the process of enabling

object-oriented methods and emergent behavior in the engineering framework. The

interfaces described above enable the engineering framework to be domain-independent

through the use of string data types that are shared throughout VE-Suite. While the string

data types have a processing overhead cost, this is weighed against the domain

independence that is gained by using strings. In this research, the processing overhead was

not found to be an inhibiting factor when working with these interfaces. The main

performance lag is due to a serial threading model for CORBA ORBs in each of the core

VE-Suite engines. In the future, this will be changed to a different threading model to

improve the overall performance of the VE-Suite engineering framework.

75

4.2 Object-Oriented Principles

Three of the main tools created for the Semantic Web are used to create a

contextualized engineering environment. These tools include XML (the primary tool used

by VE-Suite) and XML Schema [W3C 2007], XSL [W3C 2008], and OWL [Herman

2007]. Integrating these tools into an application that drives a virtual environment changes

the environment from being purely picture-based to being information-rich, with many

avenues for the engineer to explore. The XML schema implemented in VE-Suite provides

the primary mechanism for data transfer within the VE-Suite framework. XSLT [W3C

1999] is used to process the XML documents generated by VE-Suite to create web pages

that are W3C compliant, enabling future software clients using VE-Open to easily access

information pertaining to a component by querying a web page, rather than querying

multiple sources for a complete description of the component. The information available

through such a portal will include high-fidelity information such as CFD data and text-

based information describing virtual components (e.g., a pump or a turbine). These

software clients will implement libraries that are capable of interpreting the XML data

being streamed so that engineers can easily interact with the information, rather than

having to build custom code for every engineering problem examined.

4.2.1 Modularity, Hierarchy, and Abstraction

As discussed in Chapter 3, the engineering objects described in this research must

satisfy many requirements, including the ability to handle multiple representations and the

ability to handle data stored in a format that enables broad use of the information among

many objects. The source of this information must come through an invariant

representation, such as an XML schema. The invariant representation in this case is a

76

formal definition that does not change and is indifferent to the problem domain it is

applied. A schema provides the foundation for creating the necessary data structures so that

the virtual objects discussed here can exchange information, present queries, and

understand responses to the rest of the environment, as well as interact with agents that

may explore the environment or interact with the objects. The objects must have the

capability to store any information in data structures that adhere to the schema defined here

to enable modular and abstract objects to be constructed. This schema is much like the

invariant matrix used in proper orthogonal decomposition [Kirby 2001, Meer 1998]. In this

case, the input is the data from the objects. The solution, after having passed through the

invariant representation, is the DOMDocument (Appendix B). This transform takes place

through the VE-Open libraries. These documents represent a finite number of snapshots

from the source invariant representation and provide the basis on which the objects are

constructed and manipulated. The VE-Open schema developed here is a broad schema

developed to handle a diverse set of problem domains. This schema must also address the

three main representations that the proposed objects require to provide the engineer with

the full context of the physical object: graphical, numerical, and the user control. These

representations (i.e., graphical, numerical, and the user control) provide the user with a

complete set of interfaces with which to interact with the virtual object The power of this

schema, as well as the challenge surrounding it, is that it does not limit the user in the

development of objects. Rather, new objects can be introduced in a natural manner by

supporting hierarchical objects (e.g., objects constructed of other objects). As noted earlier,

the schema remains constant across all problems while each DOMDocument is the specific

representation for a particular problem under investigation. This implementation feature is

77

important as it enables VE-Suite to be constructed around the same transparent data

interfaces no matter what problem domain is being investigated.

4.2.2 Ontologies

Ontologies are used to provide the mechanism by which sources of information can

be classified as well as show the connection, hierarchy, and pedigree of information

sources. The classification enables VE-Suite plugins and computational units to understand

the full context of information that is received from queries. For example, when a

computational unit queries an upstream or downstream component, it does not know any

contextual information about the data it is receiving. The computational unit does not

know the order accuracy of the solver, the convergence criteria of the solver, or the

methods used to generate the information from the neighboring computational unit. This

information is necessary to provide error approximation on the information being

presented and to provide other uncertainty merits to the user. The ontology results in

formal definition so that each of the VE-Suite plugins can provide contextual information

to the rest of the virtual world. An initial ontology implementation within VE-Suite

follows:

<rdfs:Class rdf:about="&rdf_;objects"

 rdfs:comment="most generic term for an entity in the ves world"

 rdfs:label="objects">

 <rdfs:subClassOf rdf:resource="&rdfs;Resource"/>
</rdfs:Class>

This element becomes the basis for other types of objects within the VE-Suite domain.

Creating a subclass from which to derive other objects enables the software interpreting

these streams to easily derive structure from the implied nature of the XML syntax. This

structural information would not have been as easily accessible with other languages and

78

other markup implementations. An example of objects that extends the base object class

follows:

<rdfs:Class rdf:about="&rdf_;info_provider"

 rdfs:comment="one way information out"
 rdfs:label="info_provider">

 <rdfs:subClassOf rdf:resource="&rdf_;objects"/>

</rdfs:Class>

This element describes an object such as a sensor.

<rdfs:Class rdf:about="&rdf_;overseer"

 rdfs:label="overseer">
 <rdfs:comment>can affect change on any portion of the world as well as

investigate any other object in the world</rdfs:comment>

 <rdfs:subClassOf rdf:resource="&rdf_;objects"/>

</rdfs:Class>

In addition to the implied structure and relation to other objects that the ontology provides,

embedding contextual notes into each respective object through an rdfs:comment is

relatively easy. This element describes objects such as software agents that may work on

the engineer’s behalf.

<rdfs:Class rdf:about="&rdf_;humans"
 rdfs:label="humans">

 <rdfs:comment>humans are completely able to change and observe large

scale environments</rdfs:comment>
 <rdfs:subClassOf rdf:resource="&rdf_;overseer"/>

</rdfs:Class>

The human object would describe an engineer and may provide information about what

position they hold within an organization to determine what security privileges should be

granted to the user or how to display information. This user information can also be used to

configure a virtual environment based on stored preferences about particular classes of

individuals.

Each of these elements provides an initial framework by which information can be

classified within VE-Suite’s virtual engineering environment. These elements are a broad

79

description that must be distilled in such a manner that the software can transfer

information. To enable this, an XML schema has been created.

4.2.3 XML Schema

XML schemas provide the basic structure by which information can be transferred

within the VE-Suite engineering framework. While the ontology provides the broad

framework that computers use to classify information sources without human input, the

schema provides the means by which the data can be packaged to hold the information

provided by a particular source. For example, the ontology defines an object that can be a

human or an information provider. These objects, when broken down into an XML

document, would be composed of veDataValuePairs and other veXMLObjects described

below. An example of such a document will be illustrated below, but first the basic XML

elements that compose the description of an object will be described.

The schema is composed of a few key XML element types. The first type is the

veXMLObject element:

<xs:complexType name="veXMLObject">

 <xs:attribute name="objectType" type="xs:string" use="optional" />

 <xs:attribute name="id" type="xs:ID" use="optional" />

</xs:complexType>

This element type is the basis for all other elements within the VE-Open schema, enabling

any other element type within the schema to be embedded or referenced in a generalized

manner. This enables abstraction, hierarchy, and modularity to be embedded in the schema

and is the enabling factor for these qualities to be present in the objects that the XML

schema describes. Although a formality, this element type enables the logic to be complete

when embedding and referencing derived veXMLObjects in other element types. The

80

functionality that veXMLObject enables will be illustrated below in veCommand. The

veCommand is the element type that is passed in the Query functions described earlier.

The second element type is the veDataValuePair:

 <xs:complexType name="veDataValuePair">

 <xs:complexContent>

 <xs:extension base="veXMLObject">

 <xs:sequence>

 <xs:element name="dataName" type="xs:string" maxOccurs="1" minOccurs="1" />

 <xs:choice maxOccurs="1" minOccurs="1">
 <xs:element name="dataValue" type="xs:anyType" />

 <xs:element name="genericObject" type="veXMLObject" />

 </xs:choice>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

The veDataValuePair type holds a descriptive name about the data it contains as well as a

veXMLObject or raw xs:anyType. This flexibility enables veDataValuePair to be a generic

container element that holds any form of data being processed by a particular object. Note

that a veDataValuePair is a complete extension of a veXMLObject. This extension permits

a veDataValuePair to be embedded within another veDataValuePair.

 The third element type is veCommand:

 <xs:complexType name="vecommand">

 <xs:complexContent>

 <xs:extension base="veXMLObject">

 <xs:sequence>
 <xs:element name="command" type="xs:string" />

 <xs:element name="parameter" type="veDataValuePair" minOccurs="0" maxOccurs="unbounded"

/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

This element type contains a descriptive name for the command in addition to an

xs:sequence of veDataValuePairs. The command is constructed to enable any object to

81

request or send a series of veDataValuePairs with information about the potential

application of the data contained within. Because a veDataValuePair can contain any

veXMLObject that is derived for the VE-Open XML schema, a veCommand can be used

as the overall container to transmit information about objects and the attributes used to

describe them. This information is transferred in the Query methods and the SetNetwork

functions.

 The previous three elements described (i.e., veXMLObject, veDataValuePair,

veCommand) are the core building blocks of the VE-Open XML schema. Each of the

following elements described will use the key elements in the construction of the

descriptors for an object. veParameterBlock is a general component that contains

information about general information sources within VE-Suite:

<xs:complexType name="veParameterBlock">

 <xs:complexContent>

 <xs:extension base="veXMLObject">

 <xs:sequence>

 <xs:element name="blockID" type="xs:unsignedInt" maxOccurs="1" minOccurs="1" />
 <xs:element name="blockName" type="xs:string" />

 <xs:element name="transform" type="veTransform" minOccurs="0" maxOccurs="1" />

 <xs:element name="properties" type="veDataValuePair" minOccurs="0" maxOccurs="unbounded"

/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

An example of a parameter block would be a reference to a VTK dataset. The property

element is configured to maintain a list of custom elements for describing a particular

information source. This list of elements may also contain a list of hardware specifications

for a sensor array or for a CFD solver configuration.

 CADNode describes the geometrical representations that are stored for a particular

object.

82

<xs:complexType name="CADNode">

 <xs:complexContent>

 <xs:extension base="veXMLObject">

 <xs:sequence>

 <xs:element name="parent" type="CADAssembly" maxOccurs="1" minOccurs="0" />

 <xs:element name="transform" type="veTransform" minOccurs="1" maxOccurs="1" />
 <xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1" default="Assembly" />

 <xs:element name="type" type="xs:string" />

 <xs:element name="attribute" type="CADAttribute" maxOccurs="unbounded" minOccurs="0" />

 <xs:element name="activeAttributeName" type="xs:string" />

 <xs:element name="animation" type="CADNodeAnimation" />

 </xs:sequence>

 <xs:attribute name="visiblility" type="xs:boolean" />

 <xs:attribute name="physics" type="xs:boolean" />

 <xs:attribute name="opacity" type="xs:double" use="optional" default="1.0" />

 <xs:attribute name="makeTransparentOnVis" type="xs:boolean" default="true" />

 </xs:extension>

 </xs:complexContent>
 </xs:complexType>

The CADNode contains two unique features. First, the CADNode does not maintain its

own geometrical information, but references a file that contains this information. Second,

the element can contain information about how to apply high-fidelity lighting capabilities.

These are stored in the attribute element. This element contains a CADAttribute, which

maintains a GLSL program embedded in the CADAttribute.

The following veXMLObjects will be described to provide context for the XSLT

example that follows. These elements are used to construct the connectivity between

virtual objects that are modeled in a system. The first element examined is a vePoint:

<xs:complexType name="vePoint">

 <xs:complexContent>

 <xs:extension base="veXMLObject">

 <xs:attribute name="xLocation" type="xs:unsignedInt" use="required"/>

 <xs:attribute name="yLocation" type="xs:unsignedInt" use="required"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

A vePoint is primarily used by the software within VE-Suite that renders graphical

representations of the network schematic for the system under review. vePoint is composed

of two unsigned integers representing the X and Y locations of the point. Data types for a

83

point are unsigned integers so that graphical widgets libraries can easily render the point

location. Graphical widgets libraries typically work in whole numbers rather than decimal

values. The second element utilizes vePoint and is a veLink:

<xs:complexType name="veLink">

 <xs:complexContent>

 <xs:extension base="veXMLObject">

 <xs:sequence>

 <xs:element name="fromModule" type="veDataValuePair"/>

 <xs:element name="toModule" type="veDataValuePair"/>
 <xs:element name="fromPort" type="xs:unsignedInt"/>

 <xs:element name="toPort" type="xs:unsignedInt"/>

 <xs:element maxOccurs="unbounded" minOccurs="2" name="linkPoints" type="vePoint"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute use="optional" type="xs:string" name="type"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

A veLink is composed of the necessary components to link one system component to

another. The descriptors for the two modules that the link couples are fully described in

addition to the necessary information to draw the link. This choice was made so that, upon

obtaining the link, the software would not only be able to describe the information in the

link, but would also be able to draw it.

The third element for a network description in VE-Suite is the veNetwork:

<xs:complexType name="veNetwork">

 <xs:complexContent>
 <xs:extension base="veXMLObject">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="link" type="veLink"/>

 <xs:element maxOccurs="6" minOccurs="6" name="conductorState" type="veDataValuePair"/>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="tag" type="veTag"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

It should be noted that the veNetwork element is relatively simple, but builds on the

previous two elements for full description. A series of links composes veNetwork and

84

provides information about how the network should be rendered by VE-Suite’s rendering

software. veNetwork is essentially a graph composed of edges (e.g., veLinks) and vertices

(e.g., veModels). The representation of veNetwork follows closely on that defined by the

DOT [Graphviz 2008(b)] language utilized by GraphViz [Graphviz 2008]. While the DOT

language is not utilized internally by VE-Suite, this task remains as future work to leverage

the DOT language in addition to the use of the Boost Graph Language [Seik et al. 2001].

These tools enable VE-Suite to use graph decomposition algorithms and detection

algorithms to determine disconnected and feedback sections of graphs.

As noted previously, the veModel represents the nodes on the graph. The veModel

builds on all of the previous elements and has the main responsibility for containing the

inputs, outputs, CAD, and raw stream data for a particular model representation. The

veModel is the data container for an object (Appendix B). In reference to the classification

of objects, the veModel contains the raw data that would tell other objects about itself. In

addition to containing the object’s raw representational data, the veModel can also contain

a veSystem, which will be described later. The purpose of this embedded element is to

provide the user with the ability to:

• Create a hierarchical assembly of complex objects

• Embed a third-party solver into a broader simulation

This capability provides one of the main components that enable the core VE-Suite

software framework to support a broad range of problem domains.

 <xs:complexType name="veModel">

 <xs:complexContent>

 <xs:extension base="veXMLObject">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="ports" type="vePort"/>

85

 <xs:element maxOccurs="1" minOccurs="1" name="iconLocation" type="vePoint"/>

 <xs:element maxOccurs="1" minOccurs="0" name="icon" type="xs:string"/>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="results" type="vecommand"/>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="inputs" type="vecommand"/>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="informationPackets"

 type="veParameterBlock"/>
 <xs:element name="geometry" type="CADNode"/>

 <xs:element maxOccurs="1" minOccurs="0" name="modelAttributes" type="vecommand"/>

 <xs:element maxOccurs="1" minOccurs="0" name="modelSubSytem" type="veSystem"/>

 </xs:sequence>

 <xs:attribute name="vendorID" type="xs:string" use="required"/>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

The key components in the veModel element are the veParameterBlock, CADNode,

vecommand, and veSystem elements. These elements provide the necessary information

for each core software engine in VE-Suite to produce the proper representation for the

object. For example:

• If an object does not have CAD data, then nothing is rendered for the object.

• If the object does not have outputs, then other objects will not be able to gather data

from it.

The attribute element within the veModel contains the classification data for other objects

to determine how to handle data from a particular object. Currently, the classification data

is limited and further implementation is left for future research.

The veSystem element is the overall element that links the disparate veModel and

veNetwork elements. It is also the main element that is saved when writing out a ves file

(i.e., the DOMDocument storing all of the objects) from VE-Suite. In addition to

establishing a relationship between veNetwork and veModel, it also enables systems to be

embedded within models. This element provides the capability to construct complex

engineering objects within VE-Suite.

86

<xs:complexType name="veSystem">

 <xs:complexContent>

 <xs:extension base="veXMLObject">

 <xs:sequence>

 <xs:element type="veModel" maxOccurs="unbounded" minOccurs="1" name="model">

</xs:element>
 <xs:element type="veNetwork" minOccurs="1" maxOccurs="1" name="network"> </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

The veSystem element also provides the foundation to link multiple third-party solvers

together. For example, when integrating an Aspen Plus flowsheet with another solver, the

Aspen Plus solver and the other solver each looks like a single system to the VE-CE.

Within each of the systems may reside complex subsystems (Figure 10), which are handled

by their respective solvers. Any subsystem corresponds to a single computational unit

connected to the VE-CE, which does not mean that subsystems cannot be broken in terms

of information transfer across subsystem boundaries.

4.3 Emergent Behavior

With the transparent interfaces and object-oriented principles within the VE-Open

XML Schema and IDL, the core VE-Suite software engines can be changed to utilize this

capability. The changes implemented enable the software engines to manage more of the

middleware tasks that were previously handled by humans. Some of these tasks are:

querying model inputs, providing modeling results, executing model simulations,

performing post-processing tasks such as meshing, and transforming data for post-

processing or model import. These tools enable the software engines to facilitate emergent

behavior in the computational units and graphical environment.

87

Figure 10. VE-Open subsystem example

88

With a system and network schematic fully realized in XML, it is possible to

distribute this schematic information to many other platforms including web browsers,

which will be illustrated with XSLT. XSLT is a broad-based general tool that can be used

to transform XML data into a multitude of different formats, such as a web page. Below is

a small snippet of the XSLT script that takes the VE-Open XML document and transforms

the network diagram, which is described by a veNetwork, into a webpage that allows the

user to see model-specific information from any location in the world. The model-specific

data in this case is a series of veDataValuePairs that are populated with information that

describes a particular engineering system under investigation.

<xsl:template match="linkPoints">

<xsl:variable name="x1">

 <xsl:value-of select="xLocation"/>

</xsl:variable>

<xsl:variable name="x2">

 <xsl:choose>

 <xsl:when test="boolean(following-sibling::linkPoints/xLocation)">
 <xsl:value-of select="following-sibling::linkPoints/xLocation"/>

 </xsl:when>

 <xsl:when test="not(following-sibling::linkPoints/xLocation)">
 <xsl:value-of select="xLocation"/>

 </xsl:when>

 </xsl:choose>
</xsl:variable>

…

<xsl:variable name="xPos">

 <xsl:choose>

 <xsl:when test="$xValue = 0">1</xsl:when>
 <xsl:when test="$xValue < 0"><xsl:value-of select="$xValue * -1"/></xsl:when>

 <xsl:when test="not(($xValue = 0)and($xValue < 0))">

 <xsl:value-of select="$xValue"/>
 </xsl:when>

 </xsl:choose>

89

</xsl:variable>

<xsl:variable name="yPos">

 <xsl:choose>

 <xsl:when test="$yValue = 0">1</xsl:when>

 <xsl:when test="$yValue < 0"><xsl:value-of select="$yValue * -1"/></xsl:when>
 <xsl:when test="not(($yValue = 0)and($yValue < 0))">

 <xsl:value-of select="$yValue"/>

 </xsl:when>
 </xsl:choose>

</xsl:variable>

Note that the script above traverses into the veNetwork element to find the raw vePoint

data needed to render the network schematic. This script provides an avenue to present

high-fidelity information that enables the user to interact with a complex system’s data

rather than with a multitude of different tools to gather the necessary information about a

specific component. In other, more complex portions of the script, XSLT is used to

traverse into the veNetwork element to provide basic information about the system’s

components. The Semantic Web tools implemented here enable VE-Suite to leverage

current technology to provide unique capability in the engineering framework without

creating new tools to disseminate and display information. If the transparent interfaces and

object-oriented principles were not implemented with industry standard tools (i.e.,

Semantic Web tools), new tools would have to be created to parse and interrogate the data

within VE-Suite.

90

Figure 11. VE-Conductor input UI

91

4.3.1 VE-Conductor

The changes in VE-Conductor enable real-time information retrieval and queries

from the computational units connected to VE-CE as noted in Section 4.1. Because of

these changes, the user can query a unit for subsystem information from a third-party

embedded network solver. The user can query for input and result parameters from any

computational unit attached to VE-CE. The results and input data are provided in a

browser-like user interface (Figure 11) to handle display and editing for query-enabled

units. A developer can override this base functionality with a specific plugin to handle the

respective query-enabled unit. This capability will be illustrated later in this document. As

noted previously, the unit-specific data is all accessed in real time by the user. This enables

the user to edit and interact with the system under investigation in the three-dimensional

environment created through VE-Suite while simultaneously interacting with a

computational unit to make low-level changes to the flowsheet. This workflow is possible

through the implementation of the query interfaces in VE-Suite.

4.3.2 VE-CE

The changes to VE-CE have turned it into a data proxy that is responsible for

scheduling the execution of various units and the transfer of information and queries

between units. This enables VE-CE to be run on a low-powered gateway computer, even

when the network data is large and must be passed through the VE-CE interfaces. This

design is beneficial because it enables the computational units and VE-Conductor to be run

anywhere on the Internet and to interact transparently through a firewall. In addition, it

enables VE-CE to promote emergent behavior within the computational units by proxying

the data without encumbering the user with those requests. When operating with a process

92

simulator as one of the units in the VE-Suite framework, VE-CE passes commands from

the user through to the respective unit. The unit is then responsible for sending the

information on to the respective software package.

As revised, VE-CE will not store unit input parameters as it did before; rather, VE-

CE only parses the top-level system. Subsystem elements are assumed to be subsystems

that will be managed by their respective units. This design enables VE-CE to scale as the

subnetworks within a simulation expand. However, there is still not a direct link between

VE-Conductor and the computational unit. VE-CE is the proxy for all calls.

4.3.3 Computational Unit

The changes to the computational unit support a command-driven software

interface through the implementation of unit wrappers to accept an XML-formatted

command through the query interface:

string Query(in string commands)

The computational unit parses the XML command sent from the VE-CE and extracts the

command element to determine what is needed by the engineer. For each predefined

command, a command handler is implemented to perform the specified action. Following

is a list of current predefined commands supported by computational units. This list will

expand as needed in the future.

• “getNetwork” retrieves the flowsheet information from a third-party solver so VE-

Suite can draw the network (Figure 12) and enable the user to query individual unit

operations for results information

• “getModuleParamList” returns the list of available parameters for a given unit

operation

93

• Once the user has chosen a specific parameter, the properties for that variable are

queried via the “getParamProperties” command and displayed to the engineer

These commands and methods for accessing data within computational units have shown

to scale from flowsheets with anywhere from 10 to 200+ unit operations (Figure 12). The

following is a list of the detailed commands described above.

Command: getNetwork

Parameter: none

Return String: the XML network, including module name, identification,

and interconnection links.

Note: This command is only applicable to a unit that actually embeds a

network in itself.

Sample Command XML:

<Command>

<vecommand>

<command> getNetwork </command>

</vecommand>

</Command>

Command: getModuleParamList

Parameter: moduleName

Return String: a list of parameter names for that module

Sample Command XML:

<Command>
<vecommand>
<command> getModuleParamList </command>
<parameter>

 <dataName>moduleName</dataName>

94

 <dataValueString>Gasifier</dataValueString>
 </parameter>
 </vecommand>
</Command>

Command: getParamProperties

Parameter: moduleName

Parameter: moduleId

Parameter: paramName

Return String: a list of the names and values of the parameter’s properties

Note: It is possible to have multiple instance of the same unit in a single

flowsheet network. Those modules are identified with module IDs. With

IDs, the handler would know which instance’s properties to query.

Sample Command XML:

<Command>
<vecommand>
<command> getParamProperties </command>
<parameter>

 <dataName>moduleName</dataName>
 <dataValueString>Gasifier</dataValueString>
 </parameter>

<parameter>
 <dataName>moduleId</dataName>
 <dataValueInt>102</dataValueInt>
 </parameter>

<parameter>
 <dataName>paramName</dataName>
 <dataValueString>Temperature</dataValueString>

95

 </parameter>
 </vecommand>
</Command>

 Because a single unit’s data (e.g., the Aspen Unit) can be large and VE-CE should

be lightweight, the state information such as input variables’ values are held in the unit

itself. Each unit needs to maintain a list of its instances along with its parameters and

values and add or remove instances as needed. So one new IDL would be added:

void DeleteModuleInstance(in long module_id)

Calling this function will delete the instance along with the data structure that has the ID

that is passed into the function.

The SetParams function needs to be modified so the unit knows which instance the

input parameters belong to:

void SetParams(in long module_id, in string param)

The SetId function would have new actions in addition to setting the unit’s ID. Because

each ID would identify a certain instance of a certain module, the action would include

searching the list of existing instances and allocating memory for the instance’s parameters

if it is not already on the list. A new SetCurID will be introduced to make a certain

instance active as the current instance:

 void SetID(in long id)

 void SetCurID(in long id)

The GetId function would also change to return this unit’s list of module IDs. GetCurId

would be added to return the current running instance’s ID. Because multiple instance data

would now be stored in the unit and the Calc function can run on only one instance at a

96

time, the GetCurId would return the ID of the instance that holds the set of parameters that

the current or next StartCalc function would operate on.

ArrayLong GetID()

Long GetCurID()

An abstraction layer between the raw CORBA interface and code and the user’s code will

be added to the units. The new abstract layer will handle some of the query work and

implement basic default functionality so that the user only has to override needed

functions. Essentially, this is similar to the utility classes for the other core engines that

enable the VE-Open code to be hidden. This abstraction layer will be described in the

examples following this chapter.

Like the inputs, the result and stream was previously stored in VE-CE. In this new

design, the results will also be stored in the unit itself. A GetResult Call will be added to

the unit so VE-CE can gather results data. Similarly, the stream result will also be saved in

the unit itself. In addition to the GetResult call, a GetStream call will also be added. The

downstream unit will call GetStream(import) on VE-CE. Because VE-CE will have the

network information, it will know which upstream module connected on which port. It will

subsequently call that module’s GetStream(modId, PortId) and return the result.

4.3.4 VE-Xplorer

The final set of changes required within the core components of VE-Suite are

related to VE-Xplorer. Generic and schematic networks [Huang et al. 1993] are commonly

utilized within today’s engineering environments to enable engineers to understand

connectivity in systems and to provide ways to show complex networks. These networks

97

serve a specific need within the engineering process in the development of a product from

birth to death (Figure 13).

As shown in Figure 13, the generic network provides a place for the engineer to

begin thinking about the problem. This network purely illustrates global components and

basic relationships and is not intended at this point to provide high-fidelity information to

the user. As the design process moves forward, this network morphs into the schematic

network, which provides more detailed information but, at this point, still does not

necessarily provide geometrical or production- or manufacturing-level information. This is

where tools such as Aspen Plus can improve the engineering process. Aspen Plus, for

example, can add chemical processing information such as mass flow rates, operating

temperatures, and other stream information associated with a chemical processing plant to

the plant network diagrams. These development tools are critical in interacting with large

systems no matter what domain or discipline they address. In VE-Suite, the generic

network can be constructed within VE-Conductor. There are multiple ways to look at the

network under investigation in VE-Suite, including:

• A two-dimensional schematic in Conductor (Figure 12)

• A three-dimensional schematic in Xplorer (Figure 14)

• A three-dimensional geometric view in VE-Xplorer (Figure 15)

98

Figure 12. VE-Conductor network diagram

99

Figure 13a. Network schematic examples [Huang et al. 1993, p. 64]

100

Figure 13b. Network schematic examples [Huang et al. 1993, p. 65]

101

Figure 14. VE-Xplorer schematic view

102

Figure 15. VE-Xplorer geometric view

103

In each of these views, the user should be able to move objects and select menu

items. Lines are used to show objects as being connected and as having some relationship,

but the type of relationship is not shown unless the user wants it to be. If the user wants to

specify the information flow, arrowheads appear on the line ends. This information is then

used by the computational engine to determine where and when data is needed. Again, the

network shows the basic relationship of components to each other. Aspen Plus queries this

network itself. This network can then be used in VE-Conductor to add further information

such as CAD models, three-dimensional graphics representation, or other information the

user wishes to store with the network. Additionally, if there are more external information

sources for the network under investigation, the information can be added to a particular

node of the network. This is possible through each engine of VE-Suite, utilizing VE-Open

in terms of its internal data format.

The functionality added is a two-dimensional network diagram rendered with three-

dimensional objects, enabling users to view the two-dimensional network displayed in VE-

Conductor within the three-dimensional VE-Xplorer environment. This addition is the first

step toward being able to interact with the network within the same user environment. For

example, the user will be able to right-click on the three-dimensional objects and bring up

menus within the three-dimensional environment, whether on the desktop or in a three-

dimensional virtual reality device. Again, this functionality will be added in the future and

will implement the ability to parse the XML representation of a network:

<network>

 <link id="8c176b27-8cf8-1541-a7c4-9752ab8b666e" name="1" type="0">

 <fromModule dataName="B2" id="8176f0ec-88b6-0246-ba4c-038a98f27c3f">

 <dataValue type="xs:integer">454</dataValue>
 </fromModule>

 <toModule dataName="B1" id="f3ebd3d5-477c-3542-a9fa-45626e576f64">

104

 <dataValue type="xs:integer">252</dataValue>

 </toModule>

 <fromPort type="xs:integer">1</fromPort>

 <toPort type="xs:integer">0</toPort>

 <linkPoints xLocation="41" yLocation="90"/>

 </link>
 <link id="da3a13c7-75de-f848-854a-09805fbef47e" name="2" type="0">

 <fromModule dataName="B1" id="e2504a80-37e8-8647-ab93-abd6162826a9">

 <dataValue type="xs:integer">252</dataValue>

 </fromModule>

 <toModule dataName="B3" id="094d6ec9-9f8e-f549-8ff6-c8b17c72a50a">

 <dataValue type="xs:integer">527</dataValue>

 </toModule>

 <fromPort type="xs:integer">3</fromPort>

 <toPort type="xs:integer">2</toPort>

 <linkPoints xLocation="351" yLocation="47"/>

 </link>

 <conductorState dataName="m_xUserScale" id="88650542-6f71-6d44-8358-1b6684a4112a">
 <dataValue type="xs:double">1</dataValue>

 </conductorState>

 <conductorState dataName="m_yUserScale" id="4a5c290f-76f8-cb48-8e6c-455dd3ab86b3">

 <dataValue type="xs:double">1</dataValue>

 </conductorState>

 <conductorState dataName="nPixX" id="8c94fa3d-42d6-3544-b04b-6da0e70304a4">

 <dataValue type="xs:integer">20</dataValue>

 </conductorState>

 <conductorState dataName="nPixY" id="6c3c55f8-422a-d743-a278-b8fd0f6c46f8">

 <dataValue type="xs:integer">20</dataValue>

 </conductorState>
 <conductorState dataName="nUnitX" id="b12778d3-58a9-ac46-a0b0-a4cc81f0aa8d">

 <dataValue type="xs:integer">200</dataValue>

 </conductorState>

 <conductorState dataName="nUnitY" id="3142e447-7125-c142-8b6d-1fa4dd79d7e0">

 <dataValue type="xs:integer">200</dataValue>

 </conductorState>

 </network>

and render the three-dimensional graphics equivalent (Figure 14). With this capability in

place, the user will have the ability to use the default box three-dimensional icon to render

in the network or to render custom CAD representations. This representation can be placed

with the proper directory location for the application being completed by the user. For

example, the user can create a custom three-dimensional icon of a gasifier and have it be

rendered in place of the default box. The benefit of this functionality to the end user is the

ability to move from a two-dimensional schematic to a comprehensive three-dimensional

105

physical representative model with a step between the two extremes to provide the user

with a conceptual layout, enabling him or her to make the jump from the network view to

the three-dimensional model view. In addition, coupling between components enables the

user to understand the connectivity between subsystems in a large system analysis such as

a power plant (Figure 16).

Integrating CAD tools is also a key research effort that will be undertaken in the

near future. Integrating these types of tools (e.g., OpenCASCADE [Open CASCADE

2008]) will allow engineers to change details in the component’s current graphical

representation and then send the new geometrical data to the respective numerical model

and see the updated results in the visual environment. This roundtrip design process will

allow the design loop to be closed and permit the engineer to focus on system design

instead of transferring data from one engineering package to another.

A feature is currently being developed that will allow VE-Suite to interact with

initial graphics exchange system (IGES) files and render the associated geometry. This will

allow VE-Suite to address a number of current engineering operations, including:

• Easy computer-aided design (CAD) loading capabilities

• Interactive CAD changes

• Interactive analysis with finite element analysis (FEA), computational fluid

dynamics (CFD), and any other numerical tools requiring grid generation

106

Figure 16. Investigating a virtual power plant

107

 First, many CAD converter tools use IGES as an intermediate format for

translation. For CAD software packages, IGES is one of the most well-supported

export/import methods. For example, Pro/E uses IGES as its main export format because

of its capability to store raw NURBS data in file. Other software tools, such as PolyTrans,

suggest translating IGES files from Pro/E rather than using the raw Pro/E files, due to the

unchanging nature of IGES files and the universal support of IGES. In VE-Suite, IGES

files can now be imported via a library called OCC. Once the files are imported, the

NURBS data must be extracted and rendered. With the IGES data in OCC, the NURBS

data is easily extracted and passed to the rendering library. The rendering library, which is

referred to as VE-NURBS, is contained within VE-Xplorer in VE-Suite. VE-NURBS

currently only supports OpenSceneGraph for rendering but can be extended to other scene

graphs such as OpenSG or raw OpenGL. The VE-NURBS library currently only supports

B-spline types of NURBS data but is being extended to support NURBS data more

robustly.

 Once the ability to support reading and rendering geometric data through the IGES

file format is accomplished, the next step of functionality within VE-Suite is the ability to

interact with the geometric data that is imported into the library. The VE-NURBS library

contains the capability to render the control points for a specific surface. The user is then

able to interact with the control points through a wand or mouse and to move the points in

space. The VE-NURBS library then redefines the surface without having to regenerate it,

allowing for a more interactive exercise. Once the user has finished modifying the surface,

the surface data can be saved in the IGES file format through the OCC library. The new

IGES file can then be loaded back into Pro/E and utilized for other engineering operations.

108

 Next, with the functionality to read IGES files and the ability to interact with the

surfaces described by the IGES file, it becomes feasible to interact with other numerical

computer aided engineering (CAE) tools and grid-dependent tools such as CFD and FEA

software packages. CFD tools such as StarCD can import IGES files and mesh the

resulting surface without user input. These pro-surface tools also have the ability to repair

the surface to make it easier for StarCD to mesh. Once the surface has been repaired and

meshed in pro-surface, StarCD .cel and .vrt files can be exported, and those files can then

be imported into StarCD pro-am. Pro-am has the ability to take a surface mesh and

generate a polyhedral volume mesh without user input. With the volume mesh complete,

the model parameters can be defined and the model can be run.

With these three new capabilities, VE-Suite can complete the engineering loop

from conceptual surface modeling to high-fidelity analysis to surface modeling. Certainly,

as with any new software features, these features will need to be thoroughly tested and

utilized in everyday cases, but the foundation has been laid to provide an environment in

which all tools utilized by an engineer can be integrated into one environment for use

throughout the engineering process.

VES files with all the current state information about a design can be saved,

enabling the system to evolve over time. Just as an engineer would save various revisions

to a CAD/CAE model, he or she can save various revisions to the virtual simulation

constructed in the VE-Suite common user environment. This also enables the design to be

tracked as it evolves through the design process.

109

4.4 Structure for VE-Suite Application Directory

The final component implemented for this research is a formalization of the

directory structure utilized by VE-Suite applications. This structure enables a compact

process for storing the data necessary for opening and looking at applications in VE-Suite

and is comparable to application bundles in Mac OS 10.X [Apple Computers, Inc. 2005].

The directory structure enables future versioning enhancements to be explored, but also

simplifies the data access within VE-Suite to enable data access without user intervention.

With the proposed directory structure (Figure 17), each of the core VE-Suite engines can

implicitly access any piece of information requested by the user.

110

Figure 17. Sample VE-Suite application directory structure

111

4.5 Summary

Two case studies will be examined to illustrate the new capabilities described

above within VE-Suite. Each case uses a different set of functionality within the VE-Suite

toolkit and will provide a means to better understand the object-centered method. The

following chapter will discuss the use of these implementations with two applications that

build on the new work discussed in the implementation chapter:

• The integration of VE-Suite and Aspen Plus, which will highlight the capabilities

of the online mode in VE-Conductor and the new systems support

• The construction of tools that have the potential to reduce the complexity that the

product engineer must manage when leveraging the new predictive modeling tools

in the product development process

112

Chapter 5: Large and Ultra-Large System Integration

In power plant design, access to a broad range of information is necessary to make

informed decisions that impact plant performance, cost, and risk. Many information

sources are available in today’s engineering environment, from spreadsheet-based models

to process models to CFD models. Each of these models provides valuable information for

the decision-making process as well as a different and unique perspective on the power

plant’s design characteristics (Figure 16). Providing stakeholders with accurate, reliable,

and complete information is an important characteristic of today’s engineering tools.

Coupling process simulation modeling with an information framework, which will provide

stakeholders with process simulation modeling information in conjunction with three-

dimensional CAD geometry, will be examined in this chapter. Presenting process

simulation information in this format will help the engineer contextualize abstract

simulation information.

The integration of two software frameworks, APECS (with Aspen Plus) and VE-

Suite, will be examined in this chapter. In addition, this research highlights the capability

to work with flowsheets containing hundreds of unit operations. This coupling will support

automatic and manual mapping of pre-configured flowsheet interconnectivity to VE-Suite,

automatic and manual configuration of Aspen Plus parameters for access in VE-Suite, and

basic runtime control of APECS co-simulations from VE-Suite, all via VE-Conductor.

113

This is a collaborative effort between Fluent, Ames Lab, Reaction Engineering International

(REI), and the National Energy Technology Laboratory (NETL). The specific components

completed for this research are the participation in the design of the CASI library, design

and implementation of the VE-AspenUnit, and the modification of the CASI library to

support some on-demand feature requirements to support real-time interaction with large

systems of models.

One of the key elements of functionality required to couple VE-Suite and Aspen

Plus is a wrapper, or abstraction, library for Aspen Plus. The function of the library is to

provide a high-level C++ interface to the Aspen Plus software. In addition to a simplified

interface, the library encapsulates the details of Aspen Plus interfacing in the library itself.

While doing this, the library also maintains an external interface to keep from breaking the

existing library client codes as well as to provide additional robustness enhancements. Key

features of the library include:

• Implementation of C++ as a class library

• Hidden details of AspenTech’s automation interface implementation (AspenTech’s

automation interface is undergoing rapid changes)

• Ease of use from non-managed C++

• Portability to other platforms (wrapper code)

• Simplified development of automation code for Aspen Plus

Both APECS/Aspen Plus and VE-Suite will be utilized to produce an immersive

and interactive environment where these advanced power generation facilities can be

114

created. These two toolsets bring unique capabilities to the engineering environment that

enable more efficient power plants to be constructed.

5.1 APECS

NETL and its R&D collaboration partners are developing APECS [Zitney] as a

commercial software tool that combines process simulation with high-fidelity equipment

models based on CFD. APECS enables engineers to better understand and optimize power

plant performance with respect to coupled fluid flow, heat and mass transfer, and chemical

reactions.

The APECS integration framework (Figure 18) uses the process industry-standard

CAPE-OPEN [Pons 2003] software interfaces to provide plug-and-play interoperability

between process simulation and equipment models. The hierarchy of equipment models

ranges from high-fidelity CFD models to custom engineering models to fast reduced-order

models (ROMs). At NETL, system analysts typically use APECS to run power plant co-

simulations coupling the CAPE-OPEN-compliant steady-state process simulator, Aspen

Plus, with CAPE-OPEN-compliant CFD models based on Fluent.

The APECS system reduces the time and effort required to couple CFD-based

equipment models into plant-wide Aspen Plus simulations. Today, design engineers can

use APECS to integrate CFD models into a process simulation in a matter of an hour or

two by using the CAPE-OPEN software interfaces and a number of systematic and

timesaving features, including easy-to-use configuration wizards and an equipment model

database.

115

Figure 18. APECS software architecture

116

To improve co-simulation turnaround time, APECS provides options on both ends

of the performance spectrum, including the use of fast ROMs and parallel execution of the

CFD models on high-performance computers. ROMs are a class of equipment models that

are based on pre-computed CFD solutions over a range of parameter values, but are much

faster than CFD models. For example, the APECS system currently provides for

automatically generating and using a ROM based on multiple linear regressions to

demonstrate the concept.

The APECS system also provides a wide variety of analysis tools for optimizing

overall power plant performance. Design specifications are used to calculate operating

conditions or equipment parameters to meet specified performance targets. Case studies are

used to run multiple simulations with different input for comparison and study. Sensitivity

analysis shows how process performance varies with changes to selected equipment

specifications and operating conditions. Optimization is used to maximize an objective

function, including plant efficiency, energy production, and process economics. For

process optimization in the face of multiple and sometimes conflicting objectives, APECS

offers stochastic modeling and multi-objective optimization capabilities developed to

comply with the CO software standard.

In terms of this research, APECS represents an example of being able to integrate a

closed source solver through the transparent interfaces. It provides unique capability that

would otherwise be inaccessible to other components that are connected in the VE-Suite

engineering framework.

117

5.2 Aspen Plus

Aspen Plus [AspenTech 2008] from Aspen Technology is a commercial, steady-

state process modeling tool for steady-state simulation, design, performance monitoring,

and optimization. The process simulation capabilities of Aspen Plus enable engineers to

predict the behavior of a process using basic engineering relationships such as mass and

energy balances, phase and chemical equilibrium, and reaction kinetics. Aspen Plus

contains data, physical properties, unit operation models, built-in defaults, reports, and a

wide variety of analysis tools including equation-oriented modeling, case studies,

sensitivity analysis, and optimization.

For modeling coal-fired power generation systems, Aspen Plus offers solids

handling capabilities important for combustion and gasification modeling; comprehensive

physical properties, thermodynamics, phase and chemical equilibrium relations, and

reaction kinetics for gas cleanup modeling; and an extensive library of heat exchange and

rotating equipment models for simulating combined cycles.

Aspen Plus also offers an open environment to easily incorporate proprietary in-

house or third-party technology. These may be created using Microsoft Excel®,

FORTRAN, or Aspen Custom Modeler®. In addition, Aspen Plus supports the process

industry standard, CAPE-OPEN.

5.3 CASI

The key motivation for creating the C/C++ Aspen Simulator Interface (CASI)

library is to encapsulate the details of communicating with Aspen Plus (Figure 19). In this

work, the Aspen Plus automation server is used to provide access to simulation data and

control the execution of the simulator from VE-Suite. The Aspen Plus API is an ActiveX

118

Automation Server. The ActiveX technology enables an external Windows application

to interact with Aspen Plus through a programming interface using a language such as

Microsoft’s Visual Basic . The server exposes objects through the COM object model.

AspenTech is planning to implement a number of changes to the automation

interface that fundamentally alter how software must be written to utilize the interface.

CASI limits the software modifications required to support future AspenTech changes to

the CASI library. Thus, user code (including VE-Suite) does not require modification.

119

Figure 19. CASI software abstraction

VE-Suite

CASI Library

Aspen Plus

120

5.3.1 Object-oriented architecture

As noted previously, the CASI library has been implemented in object-oriented

C++. This object orientation fits naturally with the Aspen Plus model of documents, unit

operation blocks, process streams, and variables. The following sections provide additional

details about the library.

The CASI library consists of three main C++ classes:

• class Variable – This is an abstraction for an Aspen Plus variable and has member

functions for obtaining data associated with the variable. This class is derived from

the CASIObj class because of the functional overlap between block, streams, and

variables.

• class CASIObj : public Variable – This is an abstraction for both blocks and

streams. From the standpoint of the class interface, both blocks and streams can be

effectively represented by the same abstraction. Member functions include methods

to obtain port information, chemical component information, and block inputs and

outputs.

• class CASIDocument – This is an abstraction for the entire Aspen Plus flowsheet.

Methods of this class allow the developer to load flowsheets, connect to the Aspen

Plus automation engine, and obtain detailed information about the current active

flowsheet.

5.4 VE-AspenUnit

The main component of the Aspen Plus integration with VE-Suite is the unit

application referred to as the VE-AspenUnit. The VE-AspenUnit does the majority of the

work required to access Aspen Plus functionality within VE-Suite. The rest of the VE-

121

Suite framework utilizes core functionalities present within each of its core engines in

conjunction with the additions described in the implementation chapter. This design is

chosen to enable the end user to utilize Aspen Plus and VE-Suite with minimal work

required to integrate other software unit operations. The overall goal of this work is to

show the capability to integrate an external third party closed software package and have it

self-describe itself to the rest of the VE-Suite framework.

The research component here is to demonstrate that the VE-Open implementation

discussed in the previous chapter is a viable solution to support mapping a power plant

object described by Aspen Plus into VE-Suite. This example illustrates the capability to

interact with hundreds of unit operations in real time within VE-Suite. For any block or

stream, the respective results, inputs, and stream data is available to the engineer in real

time. This is facilitated through the query-based interfaces described in Section 4.1. The

VE-AspenUnit processes the VE-Open data generated from the CASI library. This design

enables the VE-AspenUnit to broker requests between VE-Suite and Aspen Plus. In

addition, graphics components can be overlaid on the unit operations that are queried from

Aspen Plus. When VE-Suite is running with Aspen Plus, there is a one-to-one mapping of

unit operations to graphics entities. This enables the engineer to associate CAD on a per-

object basis in the environment. This is possible through the use of the Aspen Plus

hierarchy blocks. Typically, there are unit operations on an Aspen Plus flow sheet that do

not necessarily correspond to a physical object. These unit operations are utilized in Aspen

Plus for the purpose of creating the best possible fidelity simulation of the physical system

under review. The hierarchy blocks typically then represent a physical object. This enables

122

the user to drill down from the power plant object level in VE-Suite, to the systems level in

the plant, to the sub-systems level, and then down to the part level (Figure 20).

The implementation changes discussed in the previous chapter enable the VE-

AspenUnit to provide the user with easy access to any Aspen Plus flowsheet without

having to edit code. Utilizing this functionality in VE-Suite requires the user to go through

seven steps:

1. Launch VE-Suite (Figure 21)

2. Launch the VE-AspenUnit (Figure 22)

3. Open the flowsheet of interest (Figure 23)

4. Review input parameters (Figure 24)

5. Review results (Figure 25)

6. Review stream data (Figure 26)

Modifications to the core VE-Suite engines make these steps possible, but they can also be

utilized by any third-party solver, enabling self-description of solvers to exist within the

VE-Suite framework. In addition, this application highlights the capability to work with

systems of systems within the VE-Suite framework (Figures 20, 14, 15).

123

Figure 20. VE-Conductor hierarchy view

124

Figure 21. Launching VE-Suite

125

Figure 22. Launch the VE-AspenUnit

126

Figure 23. Opening the flowsheet of interest

127

Figure 24. Review input parameters

128

Figure 25. Review results parameters

129

Figure 26. Review stream parameters

130

This research shows the integration of Aspen Plus and VE-Suite through the

development of the CASI library and the VE-AspenUnit. The engineer’s ability to interact

with large systems of unit operations within VE-Suite has also been illustrated. The

method of integrating VE-Suite and Aspen Plus also illustrates the use of objects in

configuring the decision-making environment by the engineer. This is possible by enabling

the engineer to overlay CAD, CFD, or FEA data on any Aspen Plus unit operation within

VE-Conductor and have the data available within VE-Xplorer. This integration example

also shows that VE-Open is capable of supporting large amounts of information from

third-party solvers and simulators. VE-Open provides mechanisms for data to be stored in

a modular manner and referenced hierarchically. These characteristics enable the real-time

performance seen in this integration. The integration of Aspen Plus and VE-Suite enables

more information to be accessible to stakeholders in creating advanced power generation

facilities in the next decade. This toolset enables process simulation data to be presented in

a format that is accessible to a broad audience.

131

Chapter 6: Engineering Mass Products

The second application created with VE-Suite in this research is focused on a

cotton picker (Figure 27). The cotton picker [Arndt 2007] picks cotton without breaking

the cottonseed in a cotton boll. This is accomplished through a sophisticated mechanical

picking system, which will not be discussed here, and a pneumatic cotton conveying

system. In this case, the air system is the subsystem that will be investigated on the picker

platform. The cotton conveying system has three main components (Figure 28):

• The squirrel cage fan supplies air to the system.

• The manifold redirects air from the fan to three transport duct systems. The

important characteristic of the manifold is to efficiently redirect the high-speed air

from the fan to the transports ducts in a small space envelope.

• The transport duct system is composed of three sub-components: the lower duct,

the nozzle, and the upper duct.

132

Figure 27. A cotton picker in the field

133

Figure 28. Cotton picker air system

134

The goal of the design changes is to reduce the amount of energy required to drive

the air system. To do this, each component, with the exception of the fan, will be modeled

with CFD to better understand the airflow characteristics. The models are constructed to

enable answering specific questions regarding power consumption. This case will illustrate

the ability to design a subsystem of a complex product within the revised VE-Suite toolkit

as well as the initial ability to pass high-fidelity boundary information from one discrete

model to another. There are several steps in the engineering design process that benefit

from the functionality that virtual engineering provides. During each phase of the six-step

engineering life-cycle process [Blanchard et al. 1998], it is necessary to not only have

seamless access to the necessary decision-making information created in each step, but to

also have access to the information used in the previous steps of the design process. This

enables each stakeholder during the life-cycle process to know immediately how decisions

impact previous decisions and outcomes.

Currently, when a product such as the cotton picker is designed, each engineer on

the picker design team stakes a claim on a part of the cotton picker platform to work on

new components. For example, the air system will have certain space claims throughout

the picker that may or may not contain the end solution or desired solution for the picker

air system because the engineer has no idea where to begin looking for good designs

within the space constraints.

Design suggestions are based primarily on past knowledge of the air system and not

necessarily on a complete understanding of how the air system works. Once each team of

engineers for various parts of the picker has staked their claim (e.g., frame, air system,

engine, cab, etc.), more detailed work is done to try to understand how these system-of-

135

systems can coexist and interact on the same farm implement. It should also be

remembered that engineers on the picker design team are not necessarily experts in the

field for which they are required to design components. For example, an engineer may

understand the basics of an engine and have the technical ability to find the necessary

information to understand how an engine works, but he or she may struggle with how best

to integrate the engine into the picker platform and how best to describe to the vendor the

constraints on the type of engine he or she needs to place on the picker platform.

 Designing the cotton picker platform should be a seamless process that enables

engineers, marketers, and senior leadership to interact to make joint decisions to produce a

product that will meet economic goals as well as performance and mechanical

specifications. The process that the team goes through from proposal, to funding, to

preliminary design, to production should be integrated and retrievable at any point in time.

The current roadblock to the seamless occurrence of this process is primarily a lack of

readily available information for the engineer and design team regarding specialized

information such as the air system characteristics. This is mostly because the current

design paradigm does not easily permit engineers and managers to ask questions without

having to deal with the complex models and software packages (e.g., CFD) needed to

answer those questions. In most cases, this interface is controlled by a human analyst who

filters out the information they think is unnecessary. Much in the same way that computer

numerical control machines took the place of humans running lathes, tools are needed that

enable computers to control some of the analysis process during the design process.

As defined above, information must be exchanged between models and the

engineer at multiple levels. The top level of this exchange would be the pure boundary

136

condition information being shared between models, which would be noted as the explicit

information. The implicit information would be the CFD information that can be gained if

required by the engineer. For the most part, the engineer does not need to know the type of

CFD package being used within the object, or the details of the CFD model. The engineer

needs the errors and uncertainty associated with the model, and needs to understand the

model results. Because the object has been preconfigured to answer specific questions, the

engineer does not have to worry about asking a question that is answered with an invalid

response, but can explore to find areas of interest.

The work described below is a product of this research except for the creation of

the VE-NURBS library. The VE-NURBS library was completed as part of this research

with the additional help of another graduate student in the Simulation, Modeling, and

Decision Sciences Program.

6.1 Cotton picker models

The models that will be utilized in this problem will span the fluids modeling

fidelities from algebraic expression-for-loss models to Navier-Stokes models. An inviscid

flow model, which will span the previously mentioned models, will be run through a

commercial solver. In each component of the cotton picker, these three models will be

utilized as source of information (Figure 29). At some stages of the design process, the

engineer only requires a low level of fidelity to make a decision, in which case the loss

model or inviscid flow model would be useful. At other points in the design process, the

higher-fidelity models would be required to adequately make a decision. The models will

provide the necessary information to enable engineers to better understand the picker’s

physical characteristics. Each model will also have a specific error or uncertainty

137

associated with it to enable the engineer to choose what level of information is needed

given the time allowed for a decision.

In addition, each of these models will be linked through a base object. In the future,

the base object will enable the three sub-models discussed above to run the appropriate

model based on the current area of investigation, in addition to the level of fidelity desired

by the engineer. This process hides much of the redundancy in running and using models

in the engineering process from the engineer. In the future, the models will be able to

detect required updates. For example, if the Navier-Stokes model changes, all the lower-

fidelity models should update accordingly so that they have the most recent data on which

to base their calculations.

138

Figure 29. Numerical models for the cotton picker air system

139

6.2 Utilizing the VE-NURBS tools for interactive CFD

The new VE-Suite tools discussed in the implementation section make it possible

to take a volume mesh in a commercial CFD mesher and create a NURBS surface for

importing into VE-Suite’s NURBS tools. These tools enable manipulation of the NURBS

surface from within the VE-Xplorer environment and to the ability to export the changed

surface in IGES format. The basic steps to take advantage of hiding model interface

complexity are:

• Create a surface in a CFD package using splines and patches, keeping track of the

cell numbers for each batch. For example, if a patch is 60 cells by 20 cells and

starts with cell 1, that patch contains cells 1 through 1200. This information is

necessary in the next step.

• Once the surface is created in the CFD package, make sure that each of the patches

is defined properly. Once the surface and patches have been checked, export the

.cel and .vrt files for the resulting surface and create a NURBS file. A utility

included with VE-Suite will take a .cel and .vrt file as input to create the NURBS

surface.

• A utility in VE-Suite translates the file created above into an IGES file. Once the

data created in the CFD package is in IGES format, all the functionality described

in the implementation chapter is accessible to the engineer on the desktop.

• Create local coordinate systems on all of the boundary surfaces in the CFD package

so that the boundary conditions at runtime can be defined without user input. In

addition, all the model parameters need to be noted so that models created in the

140

interactive design phase can be run properly. This information should be stored in a

formatted file for access by a VE-Suite unit.

• With the above files and data in place, the loop utilized within VE-Suite looks like

this:

o Preprocess the CFD model to generate the initial IGES file

o Store boundary and model information for access by a VE-Suite unit

o Load the initial IGES file into VE-Suite

o Change the IGES file and save

o Read the IGES file into the unit, remesh, and run

o Send the data back to VE-Xplorer for review

o Repeat until finished

With the above process in place (Figure 30), any numerical solver can be plugged into VE-

Suite and utilized in an interactive design manner.

6.3 VE-Suite software plugins

Each of the plugins utilized for the cotton picker application is built on the standard

plugins contained within VE-Suite. Utilizing these plugins eliminates the need for coding

in the cotton picker application above and beyond the extensions described in the

implementation chapter and the units that will be described below.

6.3.1 Graphical plugins

The graphical plugin is composed of the default capability within VE-Suite in

addition to the capability to interactively transform the surface to enable an engineer to

continuously design a component rather than using the discrete and linear engineering

141

process described previously. Each graphical plugin for each component in the air system

within the cotton picker will have a respective graphical plugin.

142

Figure 30. Interactive CAD process diagram for VE-Suite

143

6.3.2 UI plugins

The UI plugins in VE-Conductor utilize the standard plugin distributed with VE-

Suite. The goal in developing this plugin is to enable the user to query the unit for the

inputs that it provides the user to manipulate. This functionality is the first step toward a

self-describing engineering object. In the case of the cotton picker, the only code that needs

to be written by the user is the unit, which means that less of a burden is placed on the

engineer in developing a virtual engineering environment. The unit will provide the inputs

for the plugin.

6.3.3 Units

The software utilized to encapsulate these models requires an extension to the

current VE-Suite software architecture. These software tools enable the initial

implementation of models that will adapt to their surrounding models and enable the

software tools to manage the information transfer for the user. This software extension

primarily occurs in the computational unit interface of VE-Suite, which is located within

the VE-CE software engine. To enable an object to be complex (i.e., composed of other

sub-models), two new interfaces were added to VE-Open: VEObject and the InfoSource.

The InfoSource represents a raw source of information such as the loss model, Navier-

Stokes model, or inviscid flow model, in the case of the cotton picker. An InfoSource is

not restricted to the implementation of a numerical model but can be extended to sensors,

experimental data, or any other source of information that must be integrated into a product

design environment. The VEObject is an extension to the base unit interface, but allows

the registration of InfoSources to the VEObject, thus enabling a hierarchy of InfoSources

to be constructed and a web of information created for that particular VEObject. The Web

144

can then be locally managed by the VEObject and can manage the operation of the various

sub-InfoSources for the user so that information can be run and queried without user

interaction or direction.

The interfaces for InfoSource and VEObject are implemented as follows:

///
 interface InfoSource
 { // This is the interface for working with a hierarchy of models under one
 // unit operation. This is a beta interface.

 //This is for querying the status of the module
 string GetStatusMessage() raises(Error::EUnknown);

 //This is to Set the Module up
 void SetParams(in string param) raises(Error::EUnknown);

 //This is to get info source results - can be and sort of data
 string GetResults() raises(Error::EUnknown);

 //This is to Set the ID
 void SetID(in long id) raises(Error::EUnknown);

 //This is to Get the ID
 long GetID() raises(Error::EUnknown);

 //This is to Set the name
 void SetName(in string name) raises(Error::EUnknown);

 //This is to Get the name
 string GetName() raises(Error::EUnknown);
 };
 ///
 interface VEObject : Unit
 { // This is the interface for working with a VEObject. It inherits from Unit.

 //This is to disconnect the Unit to the Executive
 void UnRegisterInfoSource(in string InfoSourceName) raises(Error::EUnknown);

 //This is to Register a Unit to the Executive, flag=0 is normal module, flag=1 will be the global module
 void RegisterInfoSource(in string InfoSourceName,
 in Body::InfoSource infoSourceIn, in long flag) raises(Error::EUnknown);
 };

The additions to VEObject are necessary so that the VEObject knows what sub-

InfoSources are connected to it and should be considered when accessing information

about that object. This new function addition to the unit interface allows the InfoSources to

be executed as follows:

run the nozzle 1
export TAO_MACHINE=ids7
export TAO_PORT=1239

145

NozzleUnitApp -ORBInitRef NameService=corbaloc:iiop:$TAO_MACHINE:$TAO_PORT/NameService -VESUnitName
NozzleObjectRow1 &
sleep 3
LossModelApp -ORBInitRef NameService=corbaloc:iiop:$TAO_MACHINE:$TAO_PORT/NameService -VESObjectName
NozzleObjectRow1 -VESInfoUnitName NozzleLossModelRow1 &

TAO_MACHINE and TAO_PORT are the port numbers and machine where the naming

server runs for The ACE ORB (TAO). The command line flag VESUnitName enables the

unit wrapper code to be the same for multiple objects. For example, the code that is written

for the nozzle object can be utilized for the upper and lower ducts because the generic

object code only has to broker the information flow from each InfoSource to the user and

the computational engine. This brokering of information operates on the same command

structure that is discussed with the Aspen Plus integration. As with the changes

implemented in the computational engine to enable self-description of large simulation

software such as Aspen Plus, the same techniques can be implemented in individual

objects to enable the code to be extensible. When each nozzle registers with the TAO

naming service, it registers a name that enables the InfoSources to look up the respective

object that it is associated with. In the future, this lookup and connection with a VEObject

may occur without having to specify a particular VEObject to connect to as the networks

grow to include hundreds or thousands of InfoSources and objects. When this occurs, the

users running these virtual simulations will probably be unable to know all the names of

the VEObjects to connect to.

6.4 Engineer’s Experience

With the tools implemented above, the engineer has the capability to construct a

complex system from a bottom up approach. As the engineer drags the components of the

air system onto the VE-Conductor design canvas, he or she is also constructing the

146

network used by VE-CE to determine the execution without user input. All the engineer is

doing is connecting the components of the air system together just like he or she would do

with the physical components. This information can then be saved out in the

DOMDocument format. This data can be saved at various intervals to enable model state

information to be retrieved at later dates to gain insight into why various engineering

decisions were made.

147

Chapter 7: Results & Conclusions

The goal of this research is to outline the necessary requirements and components

for an advanced engineering framework to enable a bottom-up design approach in the

engineering process through the use object-oriented methods. These requirements and

components enable the construction of engineering objects that change the engineering

design experience. As noted in previous chapters, the engineer does not have to be

concerned with the underlying numerical models or the details of the implementation of

the models. The engineer just has to construct the system and decide what modifications

must be considered.

The implementation and example applications in this paper illustrate that

engineering objects can be used to characterize information management in the

engineering design process. This enables engineers to work with large systems generated

from secondary applications. In addition, the ideas and software implemented here change

how models may be segregated to improve the engineering workflow by providing a new

way to characterize information. The changes implemented within VE-Suite have enabled

it to become another tool within the engineering design process.

This dissertation has laid out the initial requirements for methods to address the

demands of the large amounts of information available in today’s engineering decision-

making process. Many potential areas of research must still be explored to understand

148

engineering informatics requirements, including the use of engineering objects. Objects

must enable computers to augment the human capabilities of integrating information,

understanding relationships between different sets of information, and providing

contextual information that may aid in providing further insight into a problem.

In this initial research, there were no signs that the VE-Open implementation would

not support interacting with ultra-large systems. The example problems illustrated the

benefits of enabling query and on-demand interface specification and data structures. This

type of method enables the user to query as much information as necessary and to provide

real-time control of a complex simulator such as Aspen Plus. In addition, this interface is

not limited to integrating VE-Suite with Aspen Plus. The thin-layered CASI library

provides an example of how to convert data from a closed-source solver to the broader VE-

Suite framework. In addition, it illustrates the capability to interface with systems-of-

systems from within VE-Suite. These two example applications provide a brief look at

how new tools utilizing semantic and meta-data-based tools can benefit the engineering

process by providing intelligent applications to the engineer’s desktop. These tools are not

developed and researched to stay in the scientific academic community, but will be

delivered to the desktop of the engineer so that a new engineering workflow can be

created.

Utilizing the model of the scale-free networks has been shown to enable the VE-

Suite unit operations that connect to VE-CE to grow without restriction. These scale-free

networks provide the capability to handle information queries and lookups within

subcomponents of systems. For example, in the cotton picker example, the specific solvers

(i.e., loss model, inviscid flow model, or Navier-Stokes model) can all update and

149

communicate simultaneously without having to contact the VE-CE because the InfoSource

does not have to contact the VE-CE to obtain the necessary information for the respective

models. This model has been shown to provide a localized control schema that enables the

VEObject to handle appropriate requests as needed by the local VEObject unit operation.

This research proposes applications of Semantic Web technologies to software

packages used by the engineering community. The same tools that enable information

integration and contextualization on the Internet could also enable integration of

engineering tools and specifications, allowing the product development cycle to be

completed in an unprecedented manner. Semantic Web tools that will be used to

contextualize the engineering environment are XML and XML Schema, XSL, and OWL.

Engineering information will be disseminated via web pages that will allow users from

around the world to see model-specific information. Ontologies will also be used to

classify information and to show the connection and hierarchy of information sources so

that connections between entities in VE-Suite are clear.

The object-centered method aims to address many of the issues facing the current

engineering design process by enabling the engineer to focus on engineering and not on

information integration. To illustrate the proposed capability of the object-centered

method, an initial implementation of the XML schema has been described. The schema is

currently in active use within VE-Suite as the core communication and data transfer

mechanism. VE-Suite proposes to enable a broad range of problems to be addressed across

many disciplines for the complete lifecycle of a product or system. This will enable

engineers to focus on using the information provided by engineering models and other

diverse information models to make decisions in the product realization process. The initial

150

interface specification, VE-Open, will enable engineers to address these multi-disciplinary

issues and to collaborate at a level that enables information to flow from one design team

to another. Implementing the object-centered method will enable the problems experienced

when collaborating within large design teams to become less intrusive in the engineering

decision-making process. The object-centered method, when implemented across each step

of the product realization process, will create environments where virtualized systems and

parts can be analyzed and produced with far fewer costs devoted to the design and

development phase of the realization process.

This work has presented a foundation on which to build efforts to change the

engineering process. This foundation has included:

• Development of engineering objects

• Development of an initial advanced engineering framework

• Implementation of the VE-Open XML schema and CORBA IDL interface

• Support of third-party numerical solvers containing large systems of unit operations

• Support of segregated numerical models for product sub-systems

• Implementation of methods to construct systems at run-time within VE-Suite

• A self-describing interface specification for third-party solvers

These additions will enable future work to be completed in the areas of drag-and-drop

numerical integration, creation of narrative environments, and agent-based engineering

support algorithms. In addition, different approaches to the problem of integration of large

systems of models and solvers can be investigated. One new approach to be explored is a

bottom-up method of handling the integration and distribution of solver information. This

will enable the user to be unrestricted in the number of models that can be integrated, as

151

illustrated with the cotton picker example for running models. These new research areas

show promise in being able to investigate problems across modeling scales, fidelities, and

in investigating as-built problems that exist for large systems.

152

Appendix A: VE-Suite Description

VE-Suite [Bryden et al. 2004] is intended to be used in the engineering process,

whether for business model investigation or training. It is used in a diverse set of

engineering applications to allow engineers and other project stakeholders to gain insight

into complex engineering problems. VE-Suite’s extensible software design enables users to

incorporate component models and corresponding two-dimensional and three-dimensional

graphical representations to create new plug-and-play framework components. By design,

the framework components can be distributed across computational resources to make the

most efficient use of resources.

In nearly all aspects of the engineering process—design, manufacturing, and

maintenance—the tools employed at each phase rely on virtual models (e.g., software

tools) to reduce cost and shorten development time. This results in a wider variety of

software tools being used across a wide range of vendors and engineering firms. In this

environment, engineers are required to manually move information from one software

package to another. Thus, the process does not support real-time, collaborative design in

which the engineer establishes the dynamic thinking process needed to obtain an intuitive

feel for the performance of a product. It also does not permit the real-time exploration of

questions raised by other engineers, designers, or managers. This working arrangement

significantly lessens the number of alternatives that can be investigated, limits the essential

153

creative design process, and discourages “what if” questions that can lead to breakthroughs

in design. As a result, the engineer has to shift his or her focus from engineering to manual

information integration. To allow engineers to focus on engineering, a new workflow and

paradigm is needed. This workflow is described within a new enabling technology called

virtual engineering and is implemented via VE-Suite. Using VE-Suite to implement virtual

engineering reduces the design cycle time to allow new technologies to reach production

and operation more quickly than previously possible. Engineering tools and information

need to be integrated throughout each engineering project. That is, information from the

design phase needs to be available to design and manufacturing contractors without

manual reentry or other hassles. Currently, for a variety of reasons (e.g., budgetary

constraints and inter-company politics), no commercial software package can integrate

information from the complete product design team, from economists and numerical

modelers to design and manufacturing firms. VE-Suite addresses this constraint by

creating a tool that has open interfaces and allows other commercial and open-source

packages to exchange data in a comprehensive design environment. In this environment,

all the data and tools necessary to make a particular engineering decision are available to

the stakeholder trying to move the engineering process forward.

When creating tools to enable engineers to use engineering analysis to make more

informed decisions, it is necessary to take into account the broad range of analysis that

may be used in the engineering product realization process. This review process reveals a

broad range of problems. Some current products will require the following types of

models:

154

• Graphical

• Requirements

• Budgets

• Physics

• Simulation results

• Input/output data and data structures

• Finite element

• Numerical

These models highlight the breadth of the information that must be handled by an

engineering decision-making framework. The framework should enable engineers to

access the proper fidelity of information when needed throughout the engineering process.

The engineer’s ability to plug any model and source of information into this virtual

engineering framework is its primary design goal. Without the ability to plug and play with

models, the engineer becomes bogged down in coupling software rather than creating or

solving complex engineering problems. The software framework must promote changing

the way complex systems are engineered rather than trying to integrate the tools that are

already in the mix. The framework described here will leverage the areas of research

described previously to create a framework that will allow a modular development process

to occur in addition to being flexible enough to fit into many different design processes. By

allowing information to be extracted and added whenever the user desires, the framework

can be adapted to many different design methodologies. Modularity must be supported to

create fundamental modules that the engineer can work with. These modules, by definition,

also carry with them a set of rules that dictate the construction and operation of the

155

modules. Modularity permits the engineer using VE-Suite to connect specific components

and representations of components together to create the desired system. This enables the

engineer to focus on the outcome of the system rather than the components of the system,

allowing him or her to add more capability to the system under design and preventing

problems as the system grows and evolves over time.

This section provides an overview of VE-Suite’s software design and

implementation. VE-Suite contains four software engines: VE-Open, VE-Conductor, VE-

CE, and VE-Xplorer. The first VE-Suite engine described, VE-Open, is the proposed

communication standard that will allow VE-Suite’s software engines and objects to be

integrated. The key elements of the VE-Suite framework design are the user interface,

computational engine, visualization engine, and component models. Note that the various

software elements all exist as independent CORBA [Object Management Group, Inc.

2008] components with standardized Interface Definition Language (IDL)

implementations defined within the proposed standard, VE-Open. The use of component

architecture design techniques has numerous advantages for this application, including

platform independence, location transparency, and reuse of component models [Verbaeck

2004].

Model integration and communication: VE-Open

 The VE-Open design builds on an open architecture approach to integrating

information as well as on the neutral format described earlier. VE-Open utilizes both

integration formats by specifying a schema for information to adhere to and leveraging

other schemas such as COLLADA [Arnaud et al. 2006], which has taken a useful approach

156

to creating an extensible specification built on XML and XML Schema. COLLADA

focuses heavily on games and on the physics and polygonal data representation issues

surrounding games. Therefore, it ignores many CAD-related issues, which benefits

COLLADA significantly because many side issues fall outside the project scope or need to

be left for other projects. In addition, this tight focus can benefit other tools such as VE-

Open by providing a solid method to reference schema data within VE-Open. This

approach enables VE-Open to remain lightweight while still utilizing work from other

projects and specifications. The component models described below have access to this

information, which enables more physical attributes to be accessed by the engineering

objects.

Component models are mathematical representations of individual virtual objects

that are used by the framework to construct an overall simulation. The key to making the

simulation framework extensible is to provide a mechanism by which component models

can easily be integrated without extensive software development. To address this need, the

relatively modern idea of component architecture design has been adopted. CORBA is

used along with a standard model interface definition, which is implemented as an IDL and

referred to as VE-Open [VESuite.org 2008], to create componentized computational

models. These models can be used interchangeably with any framework that supports the

standardized IDL, are location transparent (run on any network accessible machine),

platform independent (Linux, Windows, etc.), and programming language flexible, and can

be distributed in binary form.

The interface to the CORBA-based component models is designed to allow the

models to be autonomous, accepting inputs and stream data from the computational

157

engine, running the encapsulated model, and generating outputs and modified stream data.

It is important to note that the CORBA interface between the computational engine and the

component models is the standardized model interface supported by the framework for

model integration. The interface defined for VE-Suite, VE-Open, is analogous to that of

the CAPE-Open specification used by chemical process simulation tools. VE-Open is also

analogous to the Distributed Interactive Simulation (DIS) [Distributed Interactive

Simulation 1999] specification utilized in military applications to share war game

simulation information across distributed compute resources with multiple clients. The

VE-Open model interface has a number of unique characteristics:

• Simplicity: The functions that are implemented are general and can be adapted to a

wide variety of simulation environments.

• Generalization: The new interface removes the specificity of any discipline and

provides generic structure for data types and software engine structure.

• Enhanced data passing: The new interface provides facilities for passing data

beyond the level of simple scalars to downstream models.

In addition to specifying the communication standard for how core engines and component

models will communicate, the VE-Open specification also includes an XML schema that

defines how commands and data arrays can be constructed and passed to the various parts

of a virtual object.

 The XML schema that is contained within VE-Open defines how simple data

arrays and other key data structures used within VE-Suite should be constructed. This

portion of VE-Open is a key component in enabling the data that is used by the

mathematical representation of the virtual object to be easily understood by the three-

158

dimensional graphical representation of the object. The XML schema does not only allow

the computational engine to gain information about the proposed simulation; any other

component within the VE-Suite framework can also gain information about the system

under design.

Graphical user interface: VE-Conductor

The graphical user interface (UI) is implemented with the following software

design goals: multi-platform support, detachability, location transparency, extensibility,

and unified control. The UI is the controller that allows the engineer to interrogate the

virtual design environment. It also makes use of platform-independent libraries to enable

the software to run on a wide range of computer hardware and operating systems ranging

from Unix workstations to Pocket PCs and PDAs. After reviewing a number of different

UI libraries, WxWidgets [WxWidgets 2008] was chosen for use in VE-Conductor. A list of

available modules is maintained in a tree structure on the left side of the window, while the

main canvas area shows the current simulation network.

The UI exists independently from the computational engine as a separate CORBA

component. This functionality allows the UI to be attached and detached from an active

simulation on any compatible computer on the simulation network. For example, a user

could build and start a simulation, detach from the computational engine or visualization

engine, go to a different location, re-attach to the simulation, and regain monitoring and

control functions. This detachable UI is where the user can create a plant configuration, set

model inputs, start and stop simulation execution, and view simulation results. Once a

client-server connection is made, the engine is able to send results, messages, updates, and

159

communications from other attached UIs in real time. Users can connect or disconnect at

will to configure, modify, or monitor the simulation of a given plant configuration.

To accomplish this functionality, a CORBA IDL interface between the UI and the

computational engine was defined and the UI was designed to communicate via CORBA

to both the computational engine and the graphical engine. The CORBA interface provides

all the necessary communication mechanisms between these components. The

communication link is bidirectional, handling items such as model parameters passed to

the computational engine and receiving items such as execution status and results from the

computational engine. This specification allows the UI to provide unified control for all

user interaction, ensuring that the user is not burdened with moving among different UIs to

perform operations. There is a single UI with the ability to monitor and control the virtual

design environment. The interface specification is open source, so it is possible for other

research groups to implement a proprietary UI that adheres to the specification and

communication protocol.

Another advantage of this design is the ability for multiple UIs to be attached to the

same computational engine, allowing multiple users to monitor a simulation from different

locations. The UI also has the ability to connect to the graphical environment and control

what graphical representations are shown for high-fidelity data (e.g., contour planes, vector

planes, streamlines, iso-surfaces) or for low-fidelity data (e.g., gauges showing scalar

information about plant performance, costing data, or emissions data). The connection

between the UI and the visualization engine is similar to the connection between the UI

and the computational engine. This communication link is also bidirectional and is used to

direct what is shown within the virtual design environment.

160

Another important consideration for the UI design is extensibility. The UI is able to

dynamically discover, identify, and load UI elements for new component models. This

capability keeps the level of difficulty involved in integrating new component models to a

minimum because it eliminates the need for modifications to the core interface when new

models are added. The dynamic discover-and-load capability is accomplished by loading

user-developed module UIs from dynamic link libraries (DLL in Windows) or shared

libraries (shared object library in Linux/Unix). A plugin C++ base class defining this UI-

module interface is provided to all module developers. Developers can inherit from this

class to create their own module UIs and then compile the resulting code into a

DLL/shared library. The UI framework’s plug loader code will recognize the new module

and bring that into its user-module library. By this mechanism, the core UI can plug in the

third-party module-specific UI directly from binaries. This mechanism allows users to

develop custom input and results interfaces. One of the benefits of this design is that it

allows the core VE-Suite engines to focus on handling information flow and not on the

development of UIs.

Computational Engine: VE-CE

The computational engine (VE-CE) constructs, coordinates, schedules, and

monitors simulation runs. It is capable of running a simulation containing a multitude of

different types of models, each accepting and generating a myriad of data types. The

computational engine is also able to analyze a simulation configuration, determine

execution order, marshal system resources to create model instances, and coordinate the

flow of data through the simulation framework. Tasks that require specific knowledge

161

about a data type or model are relegated to either the detachable UI or to a specific model,

thus keeping the computational engine highly generalized and lightweight code-wise.

Important functions that the computational engine controls can be broken down

into several pieces for explanation: configuration, data handling, error handling,

relationship to the detachable UI, scheduling, and relationship to the models. The

configuration of a simulation, provided by a detachable UI, is the primary data structure

used by the computational engine. Nearly all algorithms utilized, such as proper data flow,

scheduling, and resource allocation, depend on this topology. This configuration is

constructed from the XML schema contained within the VE-Open specification that was

discussed previously. The XML data structure contains information about how one virtual

object connects to another and allows multiple virtual objects to share information about

what data types to expect from another object. Through this XML schema, it is possible for

other engines to be developed that can accept the scheduling data structure from the UI.

The scheduler that uses this configuration data is capable of handling single and embedded

feedback loops, iterative solves and, eventually, transient simulation runs.

Because there is an unlimited number of possible models capable of being

integrated into the framework (with each model having a different input/output set), the

computational engine operates with generalized data types. To address this requirement,

the CORBA IDL interfaces between the computational engine and the component models

use mapped string blocks in combination with common dimensions of array data. With the

computational engine as the central intelligence behind a simulation run, all errors that

occur while performing this task, whether originating within the engine’s own structure or

on an attached model, must be properly handled within the context of the overriding

162

structure. Thus, the computational engine has error handling routines and messaging

facilities to alert attached users. The computational engine does not require a connection to

a UI during a simulation run.

The computational engine, with its CORBA interface, is able to connect to the

various component models available for a simulation. Information passed through this

connection includes inputs (user supplied and stream data), outputs, results, and general

messages. The importance of the CORBA interface being used for this purpose is

discussed in detail in the Model Integration section above.

Graphical Engine: VE-Xplorer

The graphical engine (VE-Xplorer) provides the core functionality for the virtual

engineering aspect of the framework, enabling the engineering analysis and design process

to take place in a virtual environment. For maximum graphical performance on multiple

operating systems, it is built upon VRJuggler [VRJuggler 2007], OpenSceneGraph [OSG

Community 2007], and Kitware’s Visualization ToolKit [Kitware 2005]. This visual

interface, controlled by the UI and the computational engine, provides a graphical

representation of the simulation under review.

The graphical engine is generalized to load data not only from comprehensive

models, but also from other engineering sources and other generalized datasets (e.g.,

experimental data from a test rig). The engine is also being modified to make use of the

high-level CORBA interface specifications used throughout the software framework. This

interface allows the visualization engine to communicate directly with the component

models, computational engine, and UI. To communicate with the graphical engine, an

external socket connection is made between individual component models and the

163

respective graphical objects. This connection allows large high-fidelity datasets to be

transferred to the graphical environment without interrupting the overall communication

network.

The graphical engine is also designed to allow graphics objects to be added to the

virtual environment in the same way that objects are added in the UI. This allows the

graphical environment to be a direct representation of the system being designed by the

engineer. In much the same way that the UI auto-discovers the plugins for use by the

engineer, the graphical engine also dynamically discovers plugins. Unlike the UI, the

graphical engine is controlled by the network string that is created by the UI. This

represents a significant capability because the graphical engine has no a priori knowledge

of the system under interrogation.

164

Appendix B: Example DOMDocument

<?xml version="1.0" encoding="ISO-8859-1" standalone="no" ?>

<network name="Network" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="veshader.xsd">

 <veSystem id="4b7b94c1-bf85-4564-84d5-341555e37cc5">
 <network>

 <conductorState dataName="m_xUserScale" id="76568581-a29c-4442-99b7-300a934b8aa2">

 <dataValue type="xs:double">1</dataValue>

 </conductorState>

 <conductorState dataName="m_yUserScale" id="22fc8d04-d28f-734c-bf6c-e3646f058d28">

 <dataValue type="xs:double">1</dataValue>

 </conductorState>

 <conductorState dataName="nPixX" id="32554c86-43c0-dd48-8712-bee05134d2b6">

 <dataValue type="xs:integer">10</dataValue>

 </conductorState>

 <conductorState dataName="nPixY" id="0cb96330-e297-ce4f-9b1e-9b65b3653326">
 <dataValue type="xs:integer">10</dataValue>

 </conductorState>

 <conductorState dataName="nUnitX" id="0dcba897-aba5-fa48-b8ef-ecfb6f8f6cea">

 <dataValue type="xs:integer">240</dataValue>

 </conductorState>

 <conductorState dataName="nUnitY" id="26621844-e51d-894b-8473-968d5f77c23b">

 <dataValue type="xs:integer">240</dataValue>

 </conductorState>

 </network>

 <model ID="102" id="56b3dba4-fa6b-4b34-9226-c181996af2ca" name="DefaultPlugin"

vendorUnit="DefaultPlugin">

 <iconLocation xLocation="10" yLocation="10"/>
 <icon iconMirror="0" iconRotation="0" iconScale="1" type="xs:string">DefaultPlugin</icon>

 <informationPackets id="5e62c92e-8820-4972-be32-a211a7b55fdc">

 <blockID type="xs:unsignedInt">105</blockID>

 <blockName type="xs:string">simple</blockName>

 <transform objectType="Transform">

 <translation>

 <value>0</value>

 <value>0</value>

 <value>0</value>

 </translation>

 <scale>
 <value>1</value>

 <value>1</value>

 <value>1</value>

 </scale>

 <rotation>

165

 <value>0</value>

 <value>0</value>

 <value>0</value>

 </rotation>

 </transform>

 <properties dataName="VTK_DATA_FILE" id="b55e4c6c-2ad8-044e-aa1c-862b7bf8f040"
objectType="DataValuePair">

 <dataValue type="xs:string">3scl2vec.vtu</dataValue>

 </properties>

 <properties dataName="VTK_TEXTURE_DIR_PATH" id="9a96837e-722f-b847-ade6-eccdc9d1619b"

objectType="DataValuePair">

 <dataValue type="xs:string">simpleScalars/scalars/200_to_1000</dataValue>

 </properties>

 <properties dataName="VTK_TEXTURE_DIR_PATH" id="2c3aa880-6cb0-b541-a758-d9cbfb398a2e"

objectType="DataValuePair">

 <dataValue type="xs:string">simpleScalars/scalars/first-scalar</dataValue>

 </properties>

 </informationPackets>
 <informationPackets id="d58ba6c4-b064-49f6-b79c-4386d1fe4191">

 <blockID type="xs:unsignedInt">108</blockID>

 <blockName type="xs:string">Dataset2</blockName>

 <transform objectType="Transform">

 <translation>

 <value>-4</value>

 <value>0</value>

 <value>0</value>

 </translation>

 <scale>

 <value>1</value>
 <value>1</value>

 <value>1</value>

 </scale>

 <rotation>

 <value>40</value>

 <value>40</value>

 <value>0</value>

 </rotation>

 </transform>

 <properties dataName="VTK_DATA_FILE" id="57183100-f39b-4ae4-8d76-d660cc67881b"

objectType="DataValuePair">

 <dataValue type="xs:string">3scl.vtu</dataValue>
 </properties>

 <properties dataName="VTK_PRECOMPUTED_DIR_PATH" id="90cbb734-1030-4480-b9d3-

7b2a3bed49ee" objectType="DataValuePair">

 <dataValue type="xs:string">POST_DATA1</dataValue>

 </properties>

 </informationPackets>

 <informationPackets id="df0dd685-f485-41ff-ad3c-66bb5bc15655">

 <blockID type="xs:unsignedInt">111</blockID>

 <blockName type="xs:string">Dataset3</blockName>

 <transform objectType="Transform">

 <translation>
 <value>0</value>

 <value>0</value>

166

 <value>0</value>

 </translation>

 <scale>

 <value>0.25</value>

 <value>0.25</value>

 <value>0.25</value>
 </scale>

 <rotation>

 <value>-45</value>

 <value>0</value>

 <value>0</value>

 </rotation>

 </transform>

 <properties dataName="VTK_DATA_FILE" id="5c6059ea-db96-4317-9b70-64b366bac7e1"

objectType="DataValuePair">

 <dataValue type="xs:string">mb.vtu</dataValue>

 </properties>

 </informationPackets>
 <geometry associatedDataset="NONE" friction="1" id="5593f230-9f76-3449-acca-41bdeb92bc7a"

mass="1" physics="false" restitution="0" visibility="true">

 <type>Assembly</type>

 <name>Model_Geometry</name>

 <parent type="xs:string"></parent>

 <transform>

 <translation>

 <value>0</value>

 <value>0</value>

 <value>0</value>

 </translation>
 <scale>

 <value>1</value>

 <value>1</value>

 <value>1</value>

 </scale>

 <rotation>

 <value>0</value>

 <value>0</value>

 <value>0</value>

 </rotation>

 </transform>

 <numChildren>3</numChildren>
 <children>

 <child friction="1" id="1cfa8fb2-b11b-0645-8a2e-7ddc3fc7c582" mass="1" physics="false"

restitution="0" visibility="true">

 <type>Part</type>

 <name>eightCorners</name>

 <parent type="xs:string">5593f230-9f76-3449-acca-41bdeb92bc7a</parent>

 <transform>

 <translation>

 <value>0</value>

 <value>0</value>

 <value>0</value>
 </translation>

 <scale>

167

 <value>1</value>

 <value>1</value>

 <value>1</value>

 </scale>

 <rotation>

 <value>0</value>
 <value>0</value>

 <value>0</value>

 </rotation>

 </transform>

 <attribute>

 <type type="xs:string">Material</type>

 <blending type="xs:boolean">true</blending>

 <material>

 <kDiffuse>

 <value>1</value>

 <value>0</value>

 <value>0</value>
 <value>1</value>

 </kDiffuse>

 <kEmissive>

 <value>0</value>

 <value>0</value>

 <value>0</value>

 <value>1</value>

 </kEmissive>

 <kAmbient>

 <value>1</value>

 <value>1</value>
 <value>1</value>

 <value>1</value>

 </kAmbient>

 <specular>

 <value>1</value>

 <value>1</value>

 <value>1</value>

 <value>1</value>

 </specular>

 <opacity>1</opacity>

 <shininess>50</shininess>

 <materialName>red</materialName>
 <face>Front_and_Back</face>

 <colorMode>Ambient_and_Diffuse</colorMode>

 </material>

 </attribute>

 <activeAttributeName type="xs:string">red</activeAttributeName>

 <fileName>eightCorners.stl</fileName>

 </child>

 <child friction="1" id="6382ac8c-ebe1-5543-85b8-2f511424db9d" mass="1" physics="false"

restitution="0" visibility="true">

 <type>Part</type>

 <name>Surface0.75</name>
 <parent type="xs:string">5593f230-9f76-3449-acca-41bdeb92bc7a</parent>

 <transform>

168

 <translation>

 <value>0</value>

 <value>0</value>

 <value>0</value>

 </translation>

 <scale>
 <value>1</value>

 <value>1</value>

 <value>1</value>

 </scale>

 <rotation>

 <value>0</value>

 <value>0</value>

 <value>0</value>

 </rotation>

 </transform>

 <fileName>Surface0.75.stl</fileName>

 </child>
 <child friction="1" id="72bd0eb4-bac9-9f4e-894d-2bb98e5c7bef" mass="1" physics="false"

restitution="0" visibility="true">

 <type>Part</type>

 <name>Surface0.75_cloned</name>

 <parent type="xs:string">5593f230-9f76-3449-acca-41bdeb92bc7a</parent>

 <transform>

 <translation>

 <value>-4</value>

 <value>0</value>

 <value>0</value>

 </translation>
 <scale>

 <value>1</value>

 <value>1</value>

 <value>1</value>

 </scale>

 <rotation>

 <value>40</value>

 <value>40</value>

 <value>0</value>

 </rotation>

 </transform>

 <fileName>Surface0.75.stl</fileName>
 </child>

 </children>

 </geometry>

 </model>

 </veSystem>

 <User id="231bf178-8cad-4174-b8ad-25a1ca28681d" userID="User" veControlStatus="MASTER">

 <stateInfo>

 <Command commandName="CHANGE_BACKGROUND_COLOR">

 <parameter dataName="Background Color" id="9b147e9c-22dc-47b1-90c7-3dd46e7b8081">

 <genericObject objectType="OneDDoubleArray">

 <data>0</data>
 <data>0</data>

 <data>0</data>

169

 <data>1</data>

 </genericObject>

 </parameter>

 </Command>

 </stateInfo>

 </User>
</network>

170

Bibliography

Abodeely, J. (2007). Virtual design for the interactive placement of baffles in air flow. .

Iowa State University.

Abrahamson, S., Wallace, D., Senin, N., & Sferro, P. (2000). Integrated design in a service

marketplace, Computer-Aided Design, 32, 97-107.

Abrahamson, S., Wallace, D., Senin, N., & Borland, N. (1999). Integrated engineering,

geometric, and customer modeling: LCD projector design case study. In DETC/CIE-

9084. Las Vegas, NV: American Society of Mechanical Engineers.

Allan, B., Armostrong, R., Lefantzi, S., Ray, J., Walsh, E., & Wolfe, P. (2005)., Ccaffeine -

a CCA component framework for parallel computing, The Common Component

Architecture Forum. Retrieved March 31, 2008, from http://www.cca-

forum.org/ccafe.

Antoniou, G., & van Harmelen, F. (2004). A Semantic Web Primer. . Cambridge, MA: The

MIT Press.

Apple Computers, Inc. (2005). Bundle Programming Guide. . Apple Computers, Inc.

Retrieved March 24. 2008 from
http://developer.apple.com/documentation/CoreFoundation/Conceptual/CFBundles
/CFBundles.pdf.

Arnaud, R., & Barnes, M. C. (2006). Collada: Sailing the gulf of 3D digital content

creation. Wellesley, Massachusetts: AK Peters, Ltd.

Arndt, M. (2007, July 2). Deere's revolution on wheels, Business Week(4041), 78.

AspenTech (2008), AspenOne, AspenTech. Retrieved March 31, 2008 from

http://www.aspentech.com.

Bak, P. (1996). How Nature Works: The Science of Self-Organized Criticality. New York:

Springer-Verlag.

171

Baldwin, C. Y., & Clark, K. B. (2000). Design Rules, Volume I: The power of modularity.

Cambridge, Massachusetts: MIT Press.

Baldwin, C. Y., & Clark, K. B. (2006). Modularity in the design of complex engineering

systems. In Complex Engineered Systems, ed. D. Braha, AI. A. Minai, Y. Bar-Yam

(1st) (pp. 175-205). New York: Springer.

Barabasi, A. (2003). Linked: How everything is connected to everything else and what it

means. New York: Plume.

Belleman, R. G., Kaandorp, J. A., & Sloot, P. M. A. (1998). A virtual environment for the

exploration of diffusion and flow phenomena in complex geometries, Future

Generation Computer Systems, 14, 209-214.

Bellinger, G. (2004). Creating knowledge objects, Systems Thinking. Retrieved February 19,

2008, from http://www.systems-thinking.org/cko/guide.htm.

Blaize, M., Knight, D., & Rasheed, K. (1998). Automated optimal design of two-

dimensional supersonic missile inlets. Journal of Propulsion and Power, 14(6),
890-898.

Blanchard, B. S., & Fabrycky, W. J. (2005). Systems Engineering and Analysis. , Prentice-

Hall International Series in Industrial and Systems. (4th). Indianapolis, IN: Prentice
Hall.

Blascovich, J., Loomis, J., Beall, A., Swinth, K., Hoyt, C., & Bailenson, J. (2002).

Immersive virtual environment technology as a methodological tool for social
psychology. Psychological Inquiry, 13(2), 103-124.

Bliznakov, P. I. (1996). Design information framework to support engineering design

process. Arizona State University.

Bliznakov, P. I., Shah, J. J., & Urban, S. D. (1996). Integration infrastructure to support

concurrence and collaboration in engineering design. In 96-DETC/EIM-1420. Irvine,

CA: ASME.

Booch, G. (1982). Object-oriented design, ACM SIGAda Ada Letters, 1(3), 64-76.

Bricken, M. (1990). Virtual Worlds: No Interface to Design. . Seattle, WA: Human

Interface Technology Laboratory, Washington Technology Center, University of
Washington.

172

Bryden, K. M., & McCorkle, D. S. (2004). VE-Suite: A foundation for building virtual

engineering models of high performance, low emission power plants. In the 29th

International Technical Conference on Coal Utilization & Fuel Systems. Clearwater,

FL.

Bryden, K. M., Ashlock, D. A., McCorkle, D. S., & Urban, G. L. (2003). Optimization of

heat transfer utilizing graph based evolutionary algorithms, International Journal of

Heat and Fluid, 24, 267-277.

Bumpus, W., Sweitzer, J. W., Thompson, P., Westerinen, A. R., & Williams, R. C. (2000).

Common information model: Implementing the object model for enterprise

management. Hoboken, NJ: John Wiley & Sons.

Cao, Q., Senin, N., & Wallace, D. R. (2005). Functional classification of computational

services in an internet-based distributed modeling environment. In Proceedings of

IDETC/CIE 2005, DETC2005-85276. Long Beach, CA: ASME.

Chang, T. K., Yu, D. L., & Yu, D. W. (2004). Neural network model adaptation and its

application to process control. Advanced Engineering Informatics, 18(1), 1-8.

Colombo, G., Mosca, A., & Sartori, F. (2007). Towards the design of intelligent CAD

systems: An ontological approach. Advanced Engineering Informatics, 21(2), 153-
168.

Cubert, R. M., & Fishwick, P. A. (1998). MOOSE: an object-oriented multimodeling and

simulation application framework, Simulation, 70(6), 379-395.

Culler, G. J., & Fried, B. D. (1963). An on-line computing center for scientific problems. In

Proceedings of the 1963 Pacific Computer Conference (pp. 44-53).

Cutkosky, M. R. et al. (1993). Pact: An experiment in integrating concurrent engineering

systems, Computer Magazine, 26(1), 28-37.

Dabke, P., Cox, A., & Johnson, D. (1998). NetBuilder: An environment for integrating

tools and people, Computer-Aided Design, 30(6), 465-472.

Dahl, O., Myhrhaug, B., & Nygaard, K. (1968). Some features of the SIMULA 67

language. In Proceedings of the Second Conference on Applications of Simulations

(pp. 29-31). New York: Winter Simulation Conference.

Dahl, O., & Nygaard, K. (1966). SIMULA: An ALGOL-based simulation language,

Communications of the ACM, 9(9), 671-678.

173

Davis, J. (1999). Improving intelligence analysis at CIA: Dick Heuer's contribution to

intelligence analysis. Retrieved December 8, 2005, from

http://www.odci.gov/csibooks/19104/art3.html.

Dialog (2007). Distributed information architectures for collaborative logistics, Dialog

Retrieved March 31, 2008, from http://dialog.hut.fi/.

Distributed Interactive Simulation DIS-Java-VRML Working Group. (1999). Frequently

Asked Questions (FAQs), Distributed Interactive Simulation DIS-Java-VRML

Working Group. Retrieved March 31, 2008, from
http://web.nps.navy.mil/~brutzman/vrtp/dis-java-vrml/faq.html.

Dodgson, M., Gann, D., & Salter, A. (2005). Think, Play, Do: Technology, innovation, and

organization (1). New York: Oxford University Press.

Dörner, R., Grimm, P., & Abawi, D. F. (2002). Synergies between interactive training

simulations and digital storytelling: a component-based framework, Computers &

Graphics, 26, 45-55.

Drashansky, T. T., Weerawarana, S., Joshi, A., Weerainghe, R. A., & Houstis, E. N.

(1996). Software architecture of ubiquitous scientific computing environments for
mobile platforms. Mobile Networks and Applications, 1, 421-432.

Duffy, A. H. B., Persidis, A., & MacCallum, K. J. (1996). NODES: A numerical and object

based modelling system for conceptual engineering design, Knowledge-Based

Systems, 9, 183-206.

Eckert, C., & Boujut, J. (2003). The role of objects in design co-operation: Communication

through physical or virtual objects, Computer Supported Cooperative Work, 12,

145-151.

Engelbrecht, J. J. (2007). Optimization of a hydraulic mixing nozzle. Iowa State

University.

Engineous Software (2007). Fiper, Engineous Software. Retrieved March 31, 2008, from

http://www.engineous.com/product_FIPER.htm.

Engineous Software (2007). iSIGHT – Integrate, automate, and optimize your manual

design processes, Engineous Software. Retrieved April 4, 2008 from

http://www.engineous.com/product_iSIGHT.htm.

174

Ergen, E., Akinci, B., & Sacks, R. (2007). Life-cycle data management of engineered-to-
order components using radio frequency identification. Advanced Engineering

Informatics, 21(4), 356-366.

Evektor (2008). Avionics and Electrical System, Evektor – Design & Engineering.

Retrieved April 5, 2008 from

http://www.evektor.cz/evektor/en/aeroElectroSystems.asp.

Fabbri, G. (1998). Optimization of heat transfer through finned dissipators cooled by

laminar flow. International Journal of Heat and Fluid Flow, 19, 644-654.

Fan, H. (1998). An inverse design method of diffuser blade by genetic algorithms.

Proceedings of the I MECH E Part A Journal of Power and Energy, 212(4), 261-
268.

Feldman, A. (2005). ReachMedia: On-the-move interaction with everyday objects.

Massachusetts Institute of Technology.

Feldman, A., Tapia, E. M., Sadi, S., Maes, P., & Schmandt, C. (2005). ReachMedia: On-

the-move interaction with everyday objects. In Proceedings of the Ninth IEEE

International Symposium on Wearable Computers (pp. 52-59). Osaka, Japan: IEEE.

Fishwick, P. A. (1996a). Extending object-oriented design for physical modeling, ACM

Transactions on Modeling and Computer Simulation.

Fishwick, Paul A. (2006) The language of modeling for multidisciplinary design

optimization. In Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis

and Optimization Conference. Portsmouth, VA: AIAA.

Fishwick, P. A. (1996b). Toward a convergence of systems and software engineering.

University of Florida: Department of Computer and Information Science and

Engineering.

Fishwick, P. A. (2004). Toward an integrative multimodeling interface: A human-computer

interface approach to interrelating model structures, SIMULATION, 80(9), 421-432.

Foster, G. F., & Dulikravich, G. S. (1997). Three-dimensional aerodynamic shape

optimization and gradient search algorithms. Journal of Spacecraft and Rockets,
34(1), 36-42.

Foucault, M. (1994). The order of things. New York: Vintage Books.

Fourman, M. (2002). Informatics. Edinburgh, Scotland: Division of Informatics, University

175

of Edinburgh.

Framling, K., Ala-Risku, T., Kärkkäinin, M., & Hölmstrom, J. (2007). Design patterns for

managing product life cycle information, Communications of the ACM, 50(6), 75-79.

Gallopoulos, E., Houstis, E., & Rice, J. R. (1994). Computer as thinker/doer: Problem-

solving environments for computational science, Computational Science &

Engineering, 1(2), 11-23.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns: abstraction and

reuse of object-oriented design. In Lecture Notes in Computer Science, Proceedings

of the 7th European Conference on Object-Oriented Programming, 707 (pp. 406-

431). London: Springer-Verlag.

Garcia, A. C. B., Kunz, J., Ekstrom, M., & Kiviniemi, A. (2004). Building a project

ontology with extreme collaboration and virtual design and construction, Advanced

Engineering Informatics, 18, 71-83.

Gatenby, D. A. G. (2005, September). Galatea: Personalized interaction with augmented

objects. Massachusetts Institute of Technology.

Gehlert, A., & Esswein, W. (2007). Toward a formal research framework for ontological

analyses. Advanced Engineering Informatics, 21(2), 119-131.

George, D., & Hawkins, J. (2004). Invariant pattern recognition using Bayesian inference

on hierarchical sequences. Tempe, AZ: RNI, Inc.

George, D., & Hawkins, J. (2005). A hierarchical Bayesian model of invariant pattern

recognition in the visual cortex. In Proceedings of the 2005 IEEE International Joint

Conference on Neural Networks, 3 (pp. 1812-1817). Montreal, Quebec, Canada:

IEEE.

.

Goldstein, I. P., & Bobrow, D. G. (1980). Extending object oriented programming in

Smalltalk. In Proceedings of the 1980 ACM Conference on LISP and Functional

Programming (pp. 75-81). Stanford University, CA: ACM Press.

Google (2008). Google Maps, Google Maps. Retrieved April 5, 2008 from

http://maps.google.com/.

Graphviz (2008). Graphviz - Graph Visualization Software, Graphviz. Retrieved March

31, 2008, from http://www.graphviz.org/.

176

Graphviz (2008). The DOT Language, Graphviz – Graph Visualization Software,
Graphviz. Retrieved March 31, 2008, from
http://www.graphviz.org/doc/info/lang.html.

Gruber, T. (1993). A translation approach to portable ontology specifications. Knowledge

Acquisition, 5(2), 199-220.

Hawkins, J. (2004). On intelligence. New York: Times Books.

Hawkins, J., & George, D. (2006). Hierarchical temporal memory: concepts, theory, and

terminology. Numenta Inc.

Heim, J. A. (1997). Integrating distributed simulation objects. In Proceedings of the 1997

Winter Simulation Conference (pp. 532-538). Atlanta, GA: ACM.

Herman, Ivan (2007). Web Ontology Language (OWL), W3C Semantic Web. Retrieved

March 31, 2008, from http://www.w3.org/2004/OWL/.

Hopkins, J. F., & Fishwick, P. A. (2001a). The rube framework for personalized 3-d

software visualization, Lecture Notes in Computer Science, Revised Lectures on

Software Visualization, International Seminar., 2269, 368-380.

Hopkins, J. F., & Fishwick, P. A. (2001b). A three-dimensional synthetic human agent

metaphor for modeling and simulation, Proceedings of the IEEE, 89(2), 131-147.

Horn, B. (1993, November 28). Constrained objects. Carnegie Mellon University.

Horváth, L. (1997). Some possibilities for integrated intelligent object based engineering

modeling. In Proceedings of the 5th International Symposium of Hungarian

Researchers on Computational Intelligence (pp. 527-532). Budapest, Hungary:

IEEE.

Horváth, L., & Rudas, I. J. (1994). Human computer interactions at decision making and

knowledge acquisition in computer aided process planning systems. In Proceedings

of the 1994 IEEE International Conference on Systems, Man, and Cybernetics (pp.

1415-1419). San Antonio, TX: IEEE.

Horváth, L., & Rudas, I. J. (2001). Modeling of the background of human activities in

engineering modeling. In Proceedings of the 27th Annual Conference of the IEEE

Industrial Electronics Society, 1 (pp. 273-278). Denver, CO: IEEE.

Horváth, L., & Rudas, I. J. (2003). Integrated environment-adaptive virtual model objects

177

for product modeling. In Proceedings of the IEEE International Conference on

Systems, Man and Cybernetics, 1 (pp. 498-503). Washington DC: IEEE.

Horváth, L., & Rudas, I. J. (2004a). Modeling behavior of engineering objects using design

intent model. In Proceedings of the 29th Annual Conference of the IEEE Industrial

Electronics Society, 1 (pp. 872-876). Roanoke, VA: IEEE.

Horváth, L., & Rudas, I. J. (2004b). Some possibilities for integrated intelligent object

based engineering modeling. In Proceedings of the 5th International Symposium of

Hungarian Researchers on Computational Intelligence. Budapest, Hungary.

Horváth, L., & Rudas, I. J. (2004c). Adaptive objects for behavior based product models.

In Proceedings of the 2004 IEEE International Symposium on Industrial Electronics,

1 (pp. 651-656). Ajaccio, France: IEEE.

Horváth, L., & Rudas, I. J. (2004d). Active description of engineering objects for modeling

in extended companies. In Proceedings of the 2004 IEEE International Conference

on Systems, Man, and Cybernetics, 4 (pp. 3312-3317). The Hague, Netherlands:

IEEE.

Huang, G. Q., & Brandon, J. A. (1993). Cooperating expert systems in mechanical design

(1st). Hoboken, NJ: John Wiley & Sons.

Hunt, K. & Cremer, J. (2002). Refiner: A problem-solving environment for scientific

simulator creation, SIMULATION, 78(11), 655-680.

Jang, M., & Lee, J. (2000). Genetic algorithm based design of transonic airfoils using

Euler equations. InCollection of Technical Papers--AIAA/ASME/ASCE/ASC

Structures, Structural Dynamics and Materials Conference, 1 (pp. 1396-1404).
Atlanta, GA: AIAA.

Jouhaud, J., Sagaut, P., Montagnac, M., & Laurenceau, J. (2007). A surrogate-model based

multidisciplinary shape optimization method with application to a 2D subsonic

airfoil, Computers & Fluids, 36, 520-529.

Kanukolanu, D., Lewis, K. E., & Winer, E. H. (2006). A multidimensional visualization

interface to aid in trade-off decisions during the solution of coupled subsystems

under uncertainty, Transactions of the ASME, 6, 288-299.

Kay, A. C. (1977, September). Microelectronics and the personal computer, Scientific

American, 237(3), 230-244.

178

Kay, A. C. (1993). The early history of SmallTalk, ACM SIGPLAN Notices, 28(3), 69-95.

Kerrigan, S. L. (2003). A software infrastructure for regulatory information management

and compliance assistance. . Stanford University.

Kirby, M. (2000). Geometric Data Analysis: An Empirical Approach to Dimensionality

Reduction and the Study of Patterns. . Hoboken, NJ: Wiley-Interscience.

Kitamura, Y., Kashiwase, M., Fuse, M., & Mizoguchi, R. (2004). Deployment of an

ontological framework of functional design knowledge, Advanced Engineering

Informatics, 18, 115-127.

Kitware (2005). VTK User’s Guide, Kitware. Retrieved March 31, 2008 from

http://www.kitware.com/products/vtkguide.html.

Kriete, A., & Eils, R. (Eds.). (2005). Computational systems biology (1). Burlington, MA:

Academic Press.

LMS International (2008). Solutions overview, 3D virtual prototype simulation, LMS

Virtual Lab, LMS Engineering Innovation. Retrieved March 31, 2008, from
http://www.lmsintl.com/simulation/lmsvirtuallab.

Luck, M., Griffiths, N., & d'Inverno, M. (1996). From agent theory to agent construction:

a case study. In Proceedings of the ECAI’06 Workshop on Agent Theories,

Architectures, and Languages, 1193 (pp. 49-63). Budapest, Hungary: Springer-

Verlag.

Mäkinen, R., Periaux, J., & Toivanen, J. (1999). Multidisciplinary shape optimization in

aerodynamics and electromagnetics using genetic algorithms. International Journal

of Numerical Methods in Fluids, 30(2), 149-159.

Männisto, T., Peltonen, H., & Sulonen, R. (1999). Modelling generic product structures in

step, Computer-Aided Design, 30(14), 1111-1118.

Martino, T. D., Falcidieno, B., & Haßinger, S. (1998). Design and engineering process

integration through a multiple view intermediate modeller in a distributed object-
oriented system environment. Computer-Aided Design, 30(6), 437-452.

McCorkle, D. S., Bryden, K. M., & Kirstukas, S. J. (2003). Building a foundation for

power plant virtual engineering. In The 28th International Technical Conference on

Coal Utilization & Fuel Systems. Clearwater, FL.

Meer, P. (1998). Efficient invariant representations, International Journal of Computer

179

Vision, 26(2), 137-152.

Merrill, D., & Maes, P. (2005). Invisible Media: Attention-sensitive informational

augmentation for physical objects. In Proceedings of the Seventh International

Conference on Ubiquitous Computing. Tokyo, Japan.

Messner, J. I., Sanvido, V. E., & Ikeda, M. (1994). Developing an object based planning

system for precast concrete building structures. In Computing in Civil Engineering,

1 (pp. 1426-1429). Washington DC: ASCE Publications.

Metz, C. (2001, September). The perfect architecture, PC Magazine. Retrieved February

19, 2008, from http://www.pcmag.com/article2/0,2817,32905,00.asp.

Modelica Association (2008). Modelica and the Modelica Association, Modelica.

Retrieved March 31, 2008, from http://www.modelica.org/.

Mohammadi, B., & Pironneau, O. (2002). Applied optimal shape design. Journal of

Computational and Applied Mathematics, 149, 193-205.

Mohammadi, B., & Pironneau, O. (2001). Applied shape optimization for fluids. Oxford,

UK: Oxford University Press.

Montgomery, C. J., Swensen, D. A., Harding, T. V., Cremer, M. A., & Bockelie, M. J.

(2002). A computational problem solving environment for creating and testing

reduced chemical kinetic mechanisms, Advances in Engineering Software, 33, 59-70.

Object Management Group, Inc. (2008). CORBA Basics, Object Management Group.

Retrieved March 31, 2008, from http://www.omg.org/gettingstarted/corbafaq.htm.

Object Management Group, Inc. (2008). OMG Systems Modeling Language: The Official

OMG SysML site, Object Management Group. Retrieved March 31, 2008, from
http://www.omgsysml.org/.

Ong, Y. S., & Keane, A. J. (2002). A domain knowledge based search adviser for design

problem solving environments. Engineering Application of Artificial Intelligence,
15, 105-116.

Open CASCADE (2008). Open CASCADE Technology, 3D modeling & numerical

simulation, Open CASCADE Technology.. Retrieved March 31, 2008, from
http://www.opencascade.org/.

OpenDX.org (2006). OpenDX: The Open Source Software Project Based on IBM’s

Visualization Data Explorer, OpenDX. Retrieved March 31, 2008 from

180

http://www.opendx.org.

OSG Community (2007). Welcome to the OpenSceneGraph website, OpenSceneGraph.

Retrieved March 31, 2008 from http://www.openscenegraph.org/projects/osg.

Padula, S. L., & Gillian, R. E. (2006). Multidisciplinary environments: A history of

engineering framework development. AIAA 2006-7083. Portsmouth, VA: AIAA.

Pahng, F., Senin, N., & Wallace, D. (1997). Modeling and evaluation of product design

problems in a distributed design environment. In Proceedings of the 1997 ASME

Design Engineering Technical Conferences, DETC97/DFM-4356. Sacramento, CA:

ASME.

Pahng, G. F., Bae, S., & Wallace, D. (1998). Web-based collaborative design modeling and

decision support. In Proceedings of DETC ‘98. Atlanta, GA: ASME.

Papamichael, K., Chauvet, H., LaPorta, J., & Dandridge, R. (1999). Product modeling for

computer-aided decision-making, Automation in Construction, 8, 339-350.

Papamichael, K., LaPorta, J., & Chauvet, H. (1997). Building Design Advisor: Automated

integration of multiple simulation tools, Automation in Construction, 6, 341-352.

Peak, R. S. (2002). Part 1: Overview of the constrained object (cob) engineering knowledge

representation. Atlanta, GA: Georgia Institute of Technology, Manufacturing

Research Center.

Phoenix Integration, Inc. (2008). Products, Phoenix Integration. Retrieved March 24,

2008, from http://www.phoenix-int.com/products/modelcenter.php.

Pidd, M. (1992). Object orientation & three phase simulation. In Proceedings of the 1992

Winter Simulation Conference (pp. 689-693). Arlington, VA: ACM.

Poloni, C., Giurgevich, A., Onesti, L., & Pediroda, V. (2000). Hybridization of a multi-

objective genetic algorithm, a neural network and a classical optimizer for a
complex design problem in fluid dynamics. Computer Methods in Applied

Mechanics and Engineering, 186, 403-420.

Pons, M. (2003). Industrial implementations of the cape-open standard, AIDIC Conference

Series, 6, 253-262.

Pro-Trax Off-Road Adventures (2008). Home Page, Pro-Trax Off-Road Adventures.

Retrieved March 31, 2008 from http://www.protrax.co.uk.

181

Pushpendran, M. (2006, September). A constrained object approach to systems biology.

State University of New York at Buffalo.

Quagliarella, D., & Vicini, A. (2001). Viscous single and multicomponent airfoil design

with genetic algorithms. Finite Elements in Analysis and Design, 37, 365-380.

Qureshi, S. M. (1997, May). Integration framework for design information of

electromechanical systems. Arizona State University.

Reed, J. A., & Afjeh, A. A. (1994). Development of an interactive graphical propulsion

system simulator. In Proceedings of the 30th AIAA/ASME/SAE/ASEE Joint

Propulsion Conference, AIAA 94-3216. Indianapolis, IN: AIAA.

Reed, J. A. (1998, December). Onyx: An object-oriented framework for computational

simulation of gas turbine systems. The University of Toledo.

Reed, J. A., & Afjeh, A. A. (2000). Computational simulation of gas turbines, Part 1--

Foundations of component-based models, ASME Journal of Turbomachinery, 122,

366-376.

Reed, J. A., Follen, G. J., & Afjeh, A. A. (2000). Improving the aircraft design process

using web-based modeling and simulation, Modeling and Computer Simulation,

10(1), 58-83.

Reichard, G., & Papamichael, K. (2005). Decision-making through performance simulation

and code compliance from the early schematic phases of building design,

Automation in Construction, 14, 173-180.

Ross, D. T., Goodenough, J. B., & Irvine, C. A. (1975). Software Engineering: Processes,

Principles, and Goals. Computer, 8(5), 17-27.

Rosse, C., & Mejino, J. L. V. (2003). A reference ontology for biomedical informatics:

The foundational model of anatomy. Journal of Biomedical Informatics, 36(6),
478-500.

Rothenberg, J. (1986). Object-oriented simulation: Where do we go from here? In

Proceedings of the 18th Conference on Winter Simulation (pp. 464-469).

Washington DC: ACM Press.

Sampath, R., Kolonay, R. M., & Kuhne, C. (2002). 2D/3D CFD design optimization using

the federated intelligent product environment (FIPER) technology. In Proceedings

182

of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,

AIAA-2002-5479. Atlanta, GA: AIAA.

Schmit, T. S., Dhingra, A. K., Landis, F., & Kojasoy, G. (1996). Genetic algorithm

optimization technique for compact high intensity cooler design. Journal of

Enhanced Heat Transfer, 3, 281-290.

SCI Institute (2008). SCIRun, Scientific Computing and Imaging Institute. Retrieved

March 31, 2008, from http://software.sci.utah.edu/scirun.html.

Senin, N., Wallace, D., Borland, N., & Jakiela, M. J. (1999). Distributed modeling and

optimization of mixed variable design problems. Boston, MA: MIT CADlab.

Senin, N., Wallace, D. R., & Borland, N. (1999). Object-based design modeling and

optimization with genetic algorithms. In Proceedings of the Genetic and

Evolutionary Computation Conference, 12 (pp. 1715-1722). Orlando, FL: Morgan

Kaufmann.

Senin, N., Wallace, D. R., & Borland, N. (2003a). Distributed object-based modeling in

design simulation marketplace, Transactions of the ASME, 125, 2-13.

Senin, N., Wallace, D. R., & Borland, N. (2003b). Distributed object-based modeling in

design simulation marketplace, Journal of Mechanical Design, 125, 2-13.

Sharpe, J. E. E., & Bracewell, R. H. (2000). Handling complexity in object based modeling

and simulation. In IEE Seminar on Tools for Simulation and Modelling, 2000/043

(pp. 1/1-1/4). London, England: IEEE.

Shoch, J. F. (1979). An overview of the programming language Smalltalk, ACM SIGPLAN

Notices, 14(9), 64-73.

Siek, J. G., Lee, L., & Lumsdaine, A. (2001). The Boost Graph Library: User Guide and

Reference Manual. , C++ In-Depth Series. Indianapolis, Indiana: Addison-Wesley
Professional.

Simpson, J. (2004). An introduction to 3D knowledge objects. Vancouver, British Columbia,

Canada: NGRAIN Corporation.

Skov, M. B., & Stage, J. (2002). Designing interactive narrative systems: is object-

orientation useful?, Computers & Graphics, 26, 57-66.

Smith, D. A., Kay, A., Raab, A., & Reed, D. P. (2003). Croquet--a collaboration system

183

architecture. In Proceedings of the First Conference on Creating, Connecting and

Collaborating through Computing (pp. 2-11). Kyoto, Japan: IEEE.

Soanes, C. & Stevenson, A. (2005). Concise Oxford English Dictionary. New York:

Oxford University Press, USA.

Stroustrup, B. (1993). A history of c++: 1979-1991, ACM SIGPLAN Notices, 28(3), 271-

297.

Tambay, P. Y. (2003, October). Constrained objects for modeling complex systems.

University of New York at Buffalo.

The MathWorks, Inc. (2008). Simulink, The MathWorks: Accelerating the pace of

engineering and science. Retrieved March 31, 2008 from

http://www.mathworks.com/products/simulink.

Torstenfelt, B., & Klarbring, A. (2007). Conceptual optimal design of modular car product

families using simultaneous size, shape and topology optimization, Finite Elements

in Analysis and Design, 43, 1050-1061.

Toye, G., Cutkosky, M. R., Leifer, L. J., Tenenbaum, J. M., & Glicksman, J. (1994).

SHARE: A methodology and environment for collaborative product development,

International Journal of Intelligent & Cooperative Information Systems, 3, 129-153.

Trigg, M. A., Tubby, G. R., & Sheard, A. G. (1999). Automatic genetic optimization

approach to two dimensional blade profile design for steam turbines. Transactions

of the ASME: Journal of Turbomachinery, 121, 11-17.

Verbaeck, A. (2004). Component-based distributed simulations: the way forward? In 18th

Workshop on Parallel and Distributed Simulation (pp. 141-148). Kufstein, Austria:

IEEE.

VeSuite.org (2008). VE-Suite, VeSuite.org. Retrieved March 31, 2008 from

http://www.vesuite.org.

VRJuggler (2007). VRJuggler, VRJuggler. Retrieved March 31, 2008 from

http://www.vrjuggler.org.

W3C (2008). W3C Semantic Web Activity, W3C Semantic Web. Retrieved March 31, 2008

from http://www.w3.org/2001/sw/.

W3C (2007). XML Schema, W3C Architecture Domain. Retrieved March 31, 2008, from

184

http://www.w3.org/XML/Schema.

W3C (2008). The extensible stylesheet language family (XSL), W3C Semantic Web.

Retrieved April 5, 2008 from http://www.w3.org/Style/XSL/.

W3C (1999). XSL transformations (XSLT), version 1.0: W3C recommendation 16

November 1999, W3C Semantic Web. Retrieved April 5, 2008 from

http://www.w3.org/TR/xslt.

Wallace, D., Yang, E., & Senin, N. (2001). Integrated simulation and design synthesis, in

distributed object-based modeling environment (DOME), DSpace at MIT. Retrieved

from http://hdl.handle.net/1721.1/3802.

Wang, C. (1993, September). An approach to managing manufacturing exceptions using

object-oriented information integration. Georgia Institute of Technology.

Weerawarana, S., Houstis, E. N., Rice, J. R., Joshi, A., & Houstis, C. E. (1996). PYTHIA:

A knowledge-based system to select scientific algorithms, ACM Transactions on

Mathematical Software, 22(4), 447-468.

Wilson, M. W. (2000). The constrained object (COB) representation for engineering

analysis integration. Georgia Institute of Technology.

Wilson, M. W., Peak, R. S., & Fulton, R. E. (2001). Enhancing engineering design and

analysis interoperability, Part 1: Constrained objects. In Proceedings of the First

MIT Conference Computational Fluid and Structural Mechanics. Boston, MA:

Elsevier

Winsberg, E. (2003). Simulated experiments: Methodology for a virtual world. Philosophy

of Science, 70(1), 105-125.

Wladawsky-Berger, I. (2006, October 23). Information - It's All Around Us. Irving

Wladawsky-Berger. Retrieved March 24, 2008, from
http://blog.irvingwb.com/blog/2006/10/information_its.html.

Wong, A., & Sriram, D. (1993). SHARED: An information model for cooperative product

development, Research in Engineering Design, 5, 21-39.

Wujek, B., Koch, P. N., & Chiang, W. (2000). A workflow paradigm for flexible design

process configuration in FIPER. In Proceedings of the 8th AIAA/USAF/NASA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, AIAA-2000-4868.

Long Beach, CA: AIAA.

185

WxWidgets (2008). What is wxWidgets? wxWidgets: Cross-platform GUI library.

Retrieved March 31, 2008 from http://www/wxwidgets.org.

Xue, D., & Xu, Y. (2003). Web-based distributed system and database modeling for

concurrent design, Computer-Aided Design, 35, 433-452.

Young, R. M., & Riedl, M. (2003). Towards an architecture for intelligent control of

narrative in interactive virtual worlds. InProceedings of the International

Conference on Intelligent User Interfaces. Miami, FL: ACM.

Zha, G., Smith, D., Schwabacher, M., Rasheed, K., & Doyle, A. G. (1997). High

performance supersonic missile inlet design using automated optimization. Journal

of Aircraft, 34(6), 697-705.

Zha, X. F. (2000). An object-oriented knowledge based Petri net approach to intelligent

integration of design and assembly planning, Artificial Intelligence in Engineering,

14, 83-112.

Zitney, S. Onsite Research: Advanced Process Simulation. National Energy Technology

Laboratory. Retrieved March 24, 2008, from
http://www.netl.doe.gov/onsite_research/Facilities/apecs.html.

	2008
	Establishing an advanced engineering framework for engineering decision making
	Douglas Stinson McCorkle
	Recommended Citation

	mccdo_dissertation_final_final(2)

