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Abstract 
 
 
 The focus of this work is a radiatively heated, free-fall, fast pyrolysis reactor.  The 

reactor was designed and constructed for the production of bio-oil from the fast pyrolysis of 

biomass.  A central composite design of experiments was performed to evaluate the novel 

reactor by varying four operating conditions: reactor temperature, biomass particle size, 

carrier gas flow rate and biomass feed rate.  Maximum bio-oil yields of 72 wt % were 

achieved at a heater set point temperature of 600 °C, using particle sizes of 300 micron, 

carrier gas flow rates of 4 sL/min and Red oak biomass feed rates of 1.75 kg/hr.   Optimal 

operating conditions were identified for maximum bio-oil yields at a heater set point 

temperature of 572 ˚C, feeding 240 micron sized Red oak biomass particles at 2 kg/hr.  

Carrier gas flow rates were not found to be significant over the 1 – 5 sL/min range tested.
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CHAPTER 1: Introduction 

The goal of this work is to develop a new biomass fast pyrolysis reactor that improves 

upon inefficiencies in traditional reactors while maintaining high bio-oil yields.  Biomass is 

an abundant organic material composed of cellulose, hemicellulose and lignin.  Biomass may 

be converted into useful products to offset petroleum based products.  Fast pyrolysis of 

biomass is a thermochemical conversion process that produces a liquid bio-oil, a solid char 

and non-condensable gases.  Bio-oil is a complex oxygenated liquid that has applications in 

heat and power, transportation fuels and specialty chemicals [1].   

Many fast pyrolysis reactors exist but the most suitable reactor has not been identified 

[2].  Reactors like the bubbling fluid bed and circulating fluid bed require large amounts of 

carrier gas to mix a heat carrier with biomass while the spinning disk, rotating cone and 

auger reactors have many hot moving parts.  These factors may increase the complexity of 

the reactor and make them expensive to operate or repair.  More work is needed to 

investigate novel reactor types that overcome these disadvantages without compromising 

high bio-oil yield.   

Additional motivation for studying the fast pyrolysis of biomass stems from a number 

of reasons.  First, as stewards of Creation, humankind has the responsibility to effectively 

cultivate, develop and mold the resources at hand into beneficial products for the health and 

betterment of society and in so doing bring honor to the Creator.  Second, advances and 

commercialization of biomass conversion technology producing renewable and sustainable 

bioproducts will ease reliance on imported fossil sources while simultaneously enhancing 

national security.  Third, increased biomass usage will spur rural economic development.  

The thermochemical conversion of biomass can play an important role in making this 

transformation.  Elaboration on the motivation for increased biorenewable resource usage are 

found in Reference [3]. 

A free-fall fast pyrolysis reactor was selected for this work because of its simple 

design and lack of moving parts.   The reactor was optimized and evaluated for the 

production of bio-oil using a central composite design of experiments.  Operating conditions 

including the reactor temperature, biomass particle size, carrier gas flow rate and biomass 

feed rate were varied. 
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CHAPTER 2: Background 

2.1. Thermochemical Conversion of Biomass 

A number of possibilities exist for thermochemical conversion of biomass including 

hydrothermal processing (HTP), combustion, gasification and pyrolysis.  The 

thermochemical pathways are described in Table 1. 

 

Table 1. Thermochemical process, products and applications 

 

 

Hydrothermal processing of biomass occurs at high pressure (5-40 MPa) and 

moderate to high temperature (200-600 °C) in an aqueous environment.  A liquid bio-crude is 

the primary product.  Peterson et al. have written extensively about hydrothermal processing 

[4].  Combustion of biomass occurs predominantly under atmospheric conditions.  Provided 

an ample amount of oxygen is present, the reaction will completely oxidize the carbon source 

and produce water (H2O) and carbon dioxide (CO2) leaving only inorganic ash behind.  

Biomass may be fed into a boiler or other combustor for heat and power generation.  

Gasification of biomass may be performed at atmospheric or pressurized conditions with less 

than stoichiometric amounts of oxygen present.  The primary reaction products are a 

combustible mixture of carbon monoxide (CO) and hydrogen (H2) gas and char.  With 

sufficient cleaning, the gas can be combusted for power generation or process heat.  

Alternatively, synthesis gas combined in the correct CO:H2 ratio may be fed  into a catalytic 

reactor to create Fischer Tropsch fuels or an enzymatic fermentor for ethanol or renewable 
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plastic production.  Of particular interest for this research is pyrolysis.  Pyrolysis occurs at 

atmospheric conditions in the absence of oxygen.  Three main types of pyrolysis exist: fast, 

intermediate and slow pyrolysis.  Table 2 describes the three modes. 

 

Table 2. Pyrolysis mode, conditions and products (dry basis)
a
  

Mode Conditions 
Liquid 

(wt %) 

Solid 

(wt %) 

Gas 

(wt %) 

Fast -fast heating rate (1000 °C/s) 
-short vapor residence time (<2 s) 
-small particle sizes (<2 mm) 
-moderate temperature (450 °C - 500 °C) 

75 12 13 

Intermediate -moderate temperature (500 °C) 
-moderate vapor residence time (10 - 20 s) 

50 20 30 

Slow -slow heating rate 
-long solids residence time (hrs) 
-large particle sizes 
-low temperature (400 °C) 

30 35 35 

a Adapted from Bridgwater [5] 

 

Operating conditions and modes for pyrolysis are selected according to the desired 

product distribution.  Fast pyrolysis primarily produces a liquid product while slow pyrolysis 

will produce nearly equal amounts of liquid, solid and gaseous product. 

 

2.2. Fast Pyrolysis of Biomass 

Pyrolysis is an ancient technology dating back to the time of the Egyptians where tars 

and embalming agents were made.  In the 1980’s major efforts were put forth in the 

development of fast pyrolysis for the production of its liquid product [6-8].  Fast pyrolysis is 

the rapid thermal decomposition of a feedstock at moderate temperatures and atmospheric 

pressures in the absence of oxygen [9].  Products include a dark brown liquid called bio-oil, a 

solid charcoal like material named char or bio-char and a non-condensable gas.  Traditional 

fast pyrolysis requires that a number of parameters be satisfied including: 

• rapid heating rate of the biomass particle on the order of 1000 °C/s 

• vapor temperatures between 450 °C and 500 °C 
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• particle sizes less than 2 mm in critical dimension 

• vapor residence times less than 2 s 

• rapid cooling of the pyrolysis vapors into bio-oil 

• feedstock moisture content less than 10 wt % 

Rapid heating of small particles vaporizes the feedstock into vapors and aerosols as well as 

char.  Quickly removing the vapors from the hot reaction vessel and quenching them 

minimizes secondary reactions producing gas and char (further decomposition of the vapors) 

and optimizes bio-oil liquid yield [10].  Adding a sweep or carrier gas and increasing the feed 

rate will decrease the vapor residence time.  A low feedstock moisture content will minimize 

the amount of water resulting in the bio-oil [9]. 

 Fast pyrolysis product yields are typically reported between 60 –75 wt % bio-oil, 15 – 

25 wt % bio-char and 10 – 20 wt % non-condensable gases[11].  Product yields and 

distribution are strongly determined by process operating conditions but are also influenced 

by biomass feedstock and its inherent ash content as indicated in Table 3 below. 

 

Table 3. Biomass type and product yield
a
 

Feedstock 
Ash 

(mf wt %)
b
 

Liquid 

(mf wt %) 

Char 

(mf wt %) 

Gas 

(mf wt %) 

Closure 

(%) 

Willow 1.34 68.9 20.9 9.3 99.0 

Switch grass 4.3 63.8 24.7 7.9 96.5 

Reed canary grass 5.1 60.2 22.0 11.1 93.4 

Straw 6.3 50.5 31.9 15.6 98.3 
a Adapted from Fahmi [12] 
b Moisture free weight percent 

 

Biomass with low ash content, such as woody biomass increase quantities of bio-oil.  

Ash present in the biomass largely remains within the char during pyrolysis [9, 13] and is 

known to catalyze char forming reactions [14]. Successful removal of the char from the 

product stream will therefore decrease catalytic and secondary reactions which shift towards 

char and non-condensable gas production [2, 15, 16].  Simultaneously, the removal of char 

provides increased bio-oil stability and quality [13].  This is essential for long term storage.  

Although char is generally removed from the bio-oil, in some instances char is mixed back 
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into the bio-oil to increase its heating value and specific gravity for use as a boiler fuel or 

pressurized gasification feedstock [17, 18]. 

Fast pyrolysis is feedstock-flexible and can produce biorenewable products from non-

food sources.  Unlike other biorenewable energy platforms, it does not require expensive 

catalysts or enzymes but rather uses heat to break down lignocellulosic biomass.  An 

advantage of fast pyrolysis over other renewable energy platforms (wind and solar for 

example) is the fact that a liquid energy carrier is produced.   

  

2.3. Bio-oil Characteristics 

Bio-oil produced from fast pyrolysis is a complex mixture which may contain over 

400 organic compounds.  Species including acids, alcohols, aldehydes, esters, ketones, and 

aromatic compounds have been identified [19].  Pyrolysis oils are a direct result of the 

thermal decomposition of biomass and therefore the elemental composition closely resembles 

that of biomass rather than fossil based oils as shown in Table 4 [1]. 

 

Table 4. Typical properties of Pine, wood pyrolysis bio-oil and heavy fuel oil
a
 

Physical Property Ponderosa Pine
b
 Bio-oil Heavy Fuel Oil 

moisture content, wt % - 15 - 30 0.1 
pH - 2.5 - 
specific gravity - 1.2 0.94 
elemental composition, wt % 
          C 49 54 - 58 85 
          H 6 5.5 - 7.0 11 
          O 44 35 - 40 1 
          N 0.06 0 - 0.2 0.3 
          ash 0.3 0 - 0.2 0.1 
Higher heating value, MJ/kg 20 16 - 19 40 
viscosity (at 50 °C), cP - 40 - 100 180 
solids, wt % - 0.2 - 1 1 
distillation residue, wt % - up to 50 1 
a Adapted from Czernik [1] 
b From Brown [3] 
 

It is noteworthy that a number of other differences exist between bio-oil and heavy 

fuel oil specifically the moisture content, pH, oxygen content, higher heating value and 
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distillation residue.  The high moisture and oxygen content within bio-oil contributes to a 

lower energy content compared to petroleum.  On a mass basis, bio-oil contains roughly 42% 

of the energy of fuel oil, but since the density of bio-oil is much greater than fuel oil on a 

volumetric basis it improves to 61% [9].  Additionally, the low pH, high distillation residue 

and oxygen content make bio-oil is immiscible with petroleum derived fuels and prevent it 

from being co-processed with petroleum.  Not shown in Table 4 is the difference in sulfur 

content between bio-oil and heavy fuel oil.  Since very little sulfur is present in biomass, bio-

oil has only trace amounts of sulfur while heavy fuel oil may have up to 3% by weight [6].  

Thus bio-oil combustion releases little to no SOx emissions.  Further exploration of these 

differences are addressed by Czernik and Bridgwater[1]. 

 

2.4. Bio-oil Applications 

The dissimilarity between bio-oil and mineral oils is well known and its properties 

realistically limit the widespread use of bio-oil in standard petroleum based applications.  

Nonetheless, bio-oil is produced from a renewable carbon source and much research and 

demonstration has been performed in an effort to offset and in some cases replace fossil fuel 

usage.  Bio-oil being an energy densified, liquid form of biomass allows for easy 

transportation, storage and handling.  Many applications take advantage of bio-oil for these 

reasons.  

 

2.4.1. Bio-oil Combustion 

Bio-oil combustion for heat and power applications is a predominant and obvious end 

use for bio-oil.  Bio-oil combustion may be considered carbon neutral and emits very low 

sulfur emissions compared to fossil fuels [1].  Direct combustion in boilers, engines and 

turbines has been tested with various results.  Due to its heterogeneity, viscosity and 

corrosive nature, most equipment requires some modification in order to efficiently process 

bio-oil including a preheating section [10].  Red Arrow Products, a company producing 

liquid smoke food flavorings in Wisconsin, is likely the most reliable commercial scale 

facility that uses bio-oil combustion to heat the plant.  A 5 MWth swirl burner combusts a 

bio-oil mixture from a stainless steel, air atomized nozzle to provide heat to the facility [1].  
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Bio-oil combustion emissions are consistently lower than that of fuel oil, but particulate in 

the flue gas is higher. Mullany et al. [6] performed a technical, environmental and economic 

study determining the practicality of substituting bio-oil for home heating oil.  He concludes 

that if home heating oil is sold for $0.90/gal it is not economical to use bio-oil as a substitute.  

At the same time, if taxes are imposed on nitrogen oxides (NOx), sulphur oxides (SOx) and 

CO2 emissions, bio-oil may become feasible.   

 

2.4.2. Bio-oil for Upgrading to Transportation Fuels 

Though bio-oil is immiscible with fossil fuels, efforts have been made to upgrade bio-

oil into transportation fuels [19].  As discussed earlier, the low heating value of bio-oil due to 

its high water and oxygen content as well the low pH prevent bio-oil from being used directly 

as a liquid fuel.  A number of pathways exist for catalytic upgrading of bio-oil.  Two 

approaches are 1) hydrodeoxygenation via hydrotreating catalysts and, 2) Zeolite upgrading.  

Hydrodeoxygenation of bio-oil is similar to hydrotreating of crude oil.  It is a hydrogenation 

process that removes oxygen by combining a hydrogen stream with the bio-oil in the 

presence of a catalyst thereby producing water.  Temperatures between 300 – 600 °C and 

high pressures (14 MPa) of hydrogen are required [19].  A two-staged process may be 

performed, the first to stabilize the bio-oil and preventing further decomposition, followed by 

a second more severe form of hydrotreating.  Elliott et al. report hydrocarbon yields of 0.4 

L/L bio-oil containing less than 1 % oxygen [20].  Typical catalysts include sulphided cobalt-

molybdenum (CoMo) or nickel-molybdenum (NiMo) supported on alumina [9]. 

Upgrading via Zeolite catalysts involves passing the bio-oil through a microporous 

structure at moderate temperatures (450 °C).  The advantage of Zeolite upgrading is that high 

pressure hydrogen is not required and it is often used in the petroleum industry [19].  Catalyst 

deactivation remains a concern and low carbon conversion efficiencies are seen since oxygen 

is rejected as CO2 rather than water [9]. 

Additional non-catalytic methods have been suggested including bio-oil gasification 

to produce liquid fuels.  This approach and others are discussed in more depth elsewhere [1, 

11, 19]. 
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2.4.3. Bio-oil for Chemicals 

The production of renewable chemicals via biomass fast pyrolysis is another 

application of bio-oil.  A number of chemicals that have been produced from fast pyrolysis 

are listed in Table 5 below. 

 

Table 5. Chemicals from fast pyrolysis
a
  

Acetic acid Calcium enriched bio-oil 
Hydrogen Levoglucosan 
Preservatives Slow release fertilizers 
Adhesives Food flavorings 
Hydroxyacealdehyde Levoglucosenone 
Resins Sugars 

a Adapted from Bridgwater [21] 

 

While a large number of naturally occurring compounds have been identified in bio-oil, the 

relative concentration of each is small and separation processes are complex making some 

separation efforts uneconomical.  For this reason, simple fractionation of bio-oil by water 

addition creating a water soluble and a water insoluble fraction is advantageous [1].  The 

water soluble fraction contains low molecular weight aldehydes and phenolic compounds.  

These compounds are being used commercially as meat browning agents and food 

flavorings.  Specifically, Red Arrow Products in Wisconsin produces liquid smoke from bio-

oil.  This aqueous fraction also can be used in the production of calcium salts to be used as 

road de-icers [1].  The water insoluble fraction, often called pyrolytic lignin in literature, may 

best be applied as a resin or adhesive [8, 11, 22].  Other commodity chemicals and specialty 

products are being used and tested including BioLime™ for capturing SOx emissions and a 

bio-binder for use as an asphalt binder.  These and other applications are described in more 

depth elsewhere [1, 6, 22]. 

 

2.5. Reactor Technology 

The reactor is the central component when considering an entire fast pyrolysis 

system.  Since it is the key component many reactors have been developed in order to 

improve upon old methods and create proprietary technology.   
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The oldest and most well-understood is the bubbling fluidized bed or simply the fluid 

bed reactor as shown in Figure 1 [9].  The bed media is often sand supported by a perforated 

distributor plate within a cylinder.  An inert fluidizing gas is forced through the plate causing 

the bed media to fluidize.  The high gas flow rate also shortens the vapor residence time and 

allows for efficient char/vapor separation by means of a cyclone.  The fluid bed has high heat 

transfer rates and is simple to construct and operate [11].  Bio-oil yields between 70 –75 wt 

% are often achieved with woody biomass.  Scaling up the fluidized bed is well understood.  

Heat transfer limitations due to low bed height-to-diameter ratios cause temperature gradients 

and prevent scale-up past a point.  Low thermal efficiencies in the fluid bed reactor are due to 

the cooling and reheating of the re-circulated gas stream [23].  Canadian based Dynamotive, 

Inc. uses this technology on a commercial scale for the production of bio-oil [2].   

 

 

Figure 1. Fluidized bed reactor 

 

The circulating fluidized bed reactor is closely related to the fluidized bed reactor.  

Higher gas flow rates are used to entrain the bed material and char out of the reactor into a 

cyclone separator.  The sand and char mixture is combusted to heat the sand which is then re-

circulated into the reactor as shown in Figure 2.  The vapors exit the cyclone and enter a 

condenser system.  Bio-oil yields comparable to the fluidized bed have been reported [11].  
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The circulating fluid bed though complex is capable of large biomass throughputs and has 

been commercially developed by another Canadian company, Ensyn, Inc. [2, 9]. 

 

 

Figure 2. Circulating fluidized bed reactor 

 

Another method is known as ablative fast pyrolysis.  The premise is based on forcing 

biomass particles against a heated plate or wall to perform pyrolysis as Figure 3 indicates.  A 

few reactors have been developed using this principle.  The National Renewable Energy 

Laboratory’s (NREL) Vortex reactor uses high gas flow rates to force small biomass particles 

into a heated cylindrical wall.  The particles enter tangentially and travel at speeds over 200 

m/s.   Larger particles are re-circulated until completely pyrolyzed [24, 25].  Bio-oil yields up 

to 72 wt % are reported [26].  Another ablative reactor, the cyclone reactor was developed by 

Léde in France.  Like the Vortex reactor, biomass enters the heated cyclone reactor 

tangentially.  Bio-oil yields less than 20 wt % were reported for this bench scale reactor [27].  

Short particle residence times lead to incomplete conversion of the particles and may require 

a re-circulating loop [23].  Aston University has developed an ablative technique whereby 

biomass particles are scraped along a heated plate by rotating blades.  Yields between 70 –75 

wt % have been reported.  PyTec, a German company, hydraulically feeds wood particles 

into a heated spinning disk as shown in Figure 3a providing the advantage of using larger 
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biomass particles [8, 9].  This reactor involves moving parts operating at high temperatures 

[23]. 

 

a) 
 

b) 
Figure 3. Ablative reactor types a) spinning disk and b) vortex reactor 

 

The rotating cone reactor is a relatively new approach to fast pyrolysis.  The concept 

was developed by Prins and Wagenaar at the University of Twente, The Netherlands [8].  

The reactor is being commercialized by the Biomass Technology Group –Biomass to Liquid 

(BTG-BTL) [28].  Biomass and hot sand are fed into the bottom of a rotating cone.  The 

centrifugal force pushes the hot sand and char out over top of the cone as shown in Figure 4.  

The mixture is combusted and the sand is re-circulated.   No carrier gas is needed preventing 

product dilution [11, 29].  Liquid yields between 60 –70 wt % are reported.  A 50 tpd reactor 

was built and operated in Malaysia [9, 30]. 

A continuous screw reactor was developed at the University of Tübingen, Germany 

for the conversion of sewage sludge into chemicals.  Lower temperatures and longer 

residence times than traditional fast pyrolysis yield bio-oil between 18 –27 wt % and char 

from 50 –60 wt %.   The liquid product reportedly has less than 5 wt % oxygen [2].  A twin-

screw auger reactor developed by the Forschungszentrum Karlsruhe GmbH (FZK) research 

institute in Germany was designed for 10 kg/hr of biomass throughput.  The char is mixed 

back into the bio-oil forming a pumpable slurry which is later gasified in a pressurized 

entrained flow reactor.   Up to 50 wt % bio-oil yields have been achieved [31].   
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Figure 4. Rotating cone reactor 

 

 A 1 kg/hr externally heated auger reactor developed at the Mississippi State 

University does not use carrier gas or heat carrier to perform fast pyrolysis.  Bio-oil yields up 

to 56 wt % are reported for oak wood [32].  Renewable Oil International, a company located 

in Alabama seeks to produce small and portable reactors for the localized production of bio-

oil using an auger type reactor [33].  Similarly, Advanced BioRefinery, Inc. (ABRI) out of 

Canada has developed a skid mounted auger reactor.  The reactor unit is self-contained and 

combusts some of the char for feedstock drying and process heat [34]. 

 

 
Figure 5. Auger reactor 
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2.6. Free-fall Reactors 

Free-fall reactors are also referred to as a drop-tube reactors.  Free-fall reactors have 

been used for many applications including gasification of coal [35-38], the pyrolysis of 

polystyrene and polyethelyne [39, 40], kinetic studies [41, 42] as well as various biomass 

pyrolysis studies [43-47].  A few studies performed the fast pyrolysis of biomass in a free-fall 

reactor and report notable bio-oil yields though bio-oil production was not necessarily the 

purpose of study [48, 49].  Typically, very little carrier gas is required for free-fall reactors as 

the feedstock is fed from the top of the reactor.  Heating rates between 500 – 1000 °C/s have 

been reported for free-fall reactors but are still a degree of magnitude lower than some 

reported heating rates of 10,000 °C/s [11, 41, 47, 50].   

A pilot scale entrained flow reactor, known as the Georgia Tech Entrained Flow 

Pyrolysis Process, is the largest free-fall reactor related system to be used for the production 

of bio-oil.  The reactor was a bottom fed with roughly 1.5 ton/day hardwood biomass and 

achieved bio-oil yields up to 60 wt % on a dry basis.  Georgia Tech Research Institute 

operated the reactor from 1982 until 1989 [51].  Even though entrained flow reactors may be 

fed from the bottom which requires large amounts of carrier gas to entrain the feedstock, the 

reactor shares a tubular shape and may be heated in a similar fashion as a free-fall reactor 

[43].  Most of the free-fall, drop-tube or entrained flow reactors reported are constructed for 

lab scale experimentation. 

Zhang et al. used a free-fall reactor to determine if any synergetic relationships 

existed in the pyrolysis of coal and biomass, particularly Dayan lignite coal and legume straw 

biomass.  The reactor, a 0.02 m inner diameter and 1.8 m long heated tube is shown in Figure 

6.  Three electrical heaters were used to heat the process and two screw feeders located on 

top fed each feedstock.  A churn dasher or plunger mechanisim was used to promote uniform 

falling of the biomass.  A nitrogen flow rate of 35 mL/min, particle sizes between 0.3 and 

0.45 mm and temperatures of 500 °C, 600 °C and 700 °C were the parameters tested.  The 

particles were first dried at 105 °C for 2 hours.  Zhang proposed that the temperature of the 

falling particle depends on its adsoptivity.  He suggested that coal and biomass will 

decompose simultaneously thus creating synergetic effects.  Increasing liquid yields and 

decreasing char yields were observed below 600 °C at mixing ratios of 73 wt % legume 
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straw when compared to individually pyrolyzed feedstock’s suggesting a synergetic 

relationship [46]. 

 

Figure 6. Schematic of free-fall reactor; used with permission from Zhang [46] 

 

Li et al. experimented with two types of biomass for the production of hydrogen gas.  

The reactor is the same as described by Zhang et al. except it only one feeder was used.  

Three separately controlled heaters were used to heat the reactor.  Legume straw and apricot 

stone were fed using a screw feeder on top of the reactor.  Nitrogen carrier gas was pulled 

through the system by a vacuum pump downstream.  A char collector was located at the 

bottom of the reactor.  The vapors exited above the char catch and passed through a metallic 

filter or cyclone where solids were separated and then were condensed in ice-cooled 

condensers.  The aerosols were removed with a glass wool filter.  Decreasing the particle size 

from 0.90-2.00 mm to 0.20-0.30 mm lowered bio-oil production from 48.3% to 17.8%, but 

increased gas production at 800 °C.  Using legume straw particles between 0.45-0.90 mm, 

liquid yields decreased above 500 °C.  Liquid yields reached a maximum of 66 wt % at 600 

°C for the same sized apricot stone particles [49]. 
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Lee et al. experimented with coal gasification using a drop tube reactor.  Pulverized 

coal ranging from 11 to 20 µm was fed via screw feeder at a rate between 18 and 60 g/min 

using 1-2 L/min of Argon carrier gas.  A reactor with a diameter of 0.05 m and 1 m long was 

used at the Korea Advanced Institute of Science and Technology.  Four silicon carbide (SiC) 

heaters capable of temperatures up to 1550 °C heated the reactor tube.  The coal particles 

attained terminal velocities of 0.17 m/s in 5-10 ms and the residences time was calculated by 

dividing the reactor length of the average particle velocity.  Hydrogen and carbon monoxide 

production increased with higher reaction temperature [35]. 

Xu et al. performed high pressure hydropyrolysis of coal in a free-fall reactor at 

Tohoku University, Japan.  The 1 cm inner diameter reactor was selectively heated between 

0.3, 0.7 and 1.0 m in length.  Coal was fed with a screw feeder positioned on top of the 

stainless steel reactor a rate of 6 –9 g/hr.  A char collector located at the bottom was 

maintained at 400 °C to prevent premature condensation.  Two dry ice cooled condensers in 

series were used to collect the liquid product.  The gaseous products were analyzed using a 

gas chromatograph.  Higher temperatures and pressures led to increased coal conversion.  For 

a pressure of 1 MPa and temperature of 600 °C, 50, 26 and 15 C% is found in the char, tar 

and gas, respectively [38]. 

Zanzi et al. focused on the production and reactivity of char obtained in pyrolysis of 

biomass using a free-fall reactor.  The authors found the reactivity of char increased when 

higher heating rates and smaller particles are used.  The 0.04 m inner diameter reactor was 

selectively heated up to 2.9 m in length.  Eight independently controlled heaters were used to 

heat the reactor. The carrier gas was preheated.  The reactor can operate at a maximum 

pressure and temperature of 5.0 MPa and 1100 °C, respectively.  Birch wood, white 

quebracho wood, straw pellets, bagasse and sugar cane agricultural residue (SCAR) 

biomasses were tested.  A 1 kg/hr screw feeder metered the biomass into the top of the 

reactor as illustrated in Figure 7.  Particle sizes were pneumatically classified and ranged 

from 0.5 mm to 1.0 mm. The heated length was selected so that the residence time was long 

enough for complete pyrolysis.  The volatiles passed through a heated metallic filter after 

which they were condensed in a water cooled condenser.  The minimum reactor temperature 

reported in the study is 750 °C.  Bio-oil yields less than 5 wt % are reported [45]. 
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Figure 7. Schematic of free-fall reactor; used with permission from Zanzi [50] 

 

Yu et al. performed pyrolysis of birch wood in a free-fall reactor to determine the 

effect of temperature on tar production.  Bio-oil was defined as volatiles, other than water, 

which condense at room temperature.  The reactor used is previously described by Zanzi et 

al. [45].  The wood was sieved and classified between 0.5 –0.75 mm and fed using a 1 kg/hr 

screw feeder.  Experiments were performed at temperatures of 700, 800 and 900 °C.  

Maximum bio-oil yields of 8 wt % were produced at 700 °C.  Temperature was found to 

have a significant effect on bio-oil production [52]. 

Onay and Kockar used a free fall reactor for the production of bio-oil from rapeseed.  

Experiments were performed to determine the effects of varying temperature, particle size 

and sweep gas flow rate.  Particle sizes between 0.224 mm and 1.8 mm in size and were fed 

at 120 g/hr.  The temperature range tested was between 400 °C to 700 °C and the nitrogen 

purge rate was varied between 50 and 400 cm3/min.   
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The 1.2 cm in diameter, 70 cm long electrically heated reactor is shown in Figure 8.  

To prevent the feedstock from pyrolyzing prior to the reactor entry cool, water was pumped 

through a cooling jacket around the feeder inlet.  Two main experiment groups were carried 

out; the first measuring yields while changing the particle size and temperature, and the 

second examining the sweep gas velocity on oil yields.  The first group revealed that 

maximum bio-oil yields of 75 wt % are possible feeding particles smaller than 0.224 mm 

while operating at 600 °C.  Bio-oil yields between 68-75 wt % were recorded for particles 

greater than 1.8 mm down to 0.224 mm and temperatures from 500 °C and 600 °C.  The first 

group of experiments was performed using a 100 mL/min nitrogen flow rates.  The second 

group used particles between 0.425 mm and 0.6 mm and an operating temperature of 600 °C 

while testing the effects of varying flow rates.  Onay and Kockar showed relatively little gain 

in bio-oil yields for sweep gas flow rates greater than 50 mL/min.  For adequate sweeping to 

occur, the minimum flow rate must be over 100 mL/min. 

Bio-oil with 13 wt % oxygen content compared to the 25 wt % of the feedstock was 

reported.  Bio-oil and diesel are compared as transportation fuels.  Bio-oil was found to have 

a pH of 3.2 due to the high amounts of acetic and formic acids present.  Both bio-oil and 

diesel were said to have less than 0.05 wt % water content.  The higher heating value was 

reported to be 37.9 MJ/kg compared to 45.5 MJ/kg in diesel.   Both the density and viscosity 

of the bio-oil were higher than that of diesel [48]. 

 

 

Figure 8. Schematic of free-fall reactor; used with permission from Onay [48] 
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Karaduman et al. performed flash pyrolysis in a free-fall reactor at Ankara University, 

Turkey.  Interest focused on the pyrolysis of plastics in an effort to reduce plastic waste and 

recover valuable products.  A char collector was located at the bottom of the free-fall reactor.  

Two salt-ice bath condensers collected liquid products further downstream.  A jacketed 

furnace heated the 50 mm diameter, 1.2 m long quartz reactor.  A funnel located at the 

bottom of the feeder prevented the feedstock from sticking to the walls.  The vapors were 

pulled out of the reactor using a vacuum pump.  The temperature along the heated portion of 

the reactor varied as much as 300 °C due to uneven heating.  The solid, liquid and gas yields 

at 750 °C are 47 wt %, 32 wt % and 21 wt % respectively [39]. 

Yorgun et al. performed flash pyrolysis of sun flower oil cake using a tubular reactor 

to determine the effect of temperature, particle size and gas flow rate.  A 60 cm long, 3.5 cm 

diameter reactor was electrically heated.  Two set of experiments were performed.  The first 

varied the reactor temperature between 450, 550 and 700 °C, while keeping gas flow rate at 

100 mL/min and feeding 0.224 –0.425 mm particles at 120 g/hr.  The second set of 

experiments maintained a 550 °C temperature and varied the particle size from <0.224, 0.224 

–0.425 and 0.425 –0.850 mm and gas flow rates from 25, 100, 300 and 600 mL/min.  The 

maximum liquid yield was 45 wt % occurring at 550 °C using 0.425 –0.850 mm particles and 

a nitrogen flow rate of 300 mL/min [53]. 

Shuangning et al. used a plasma heated laminar entrained flow reactor at China 

Agricultural University to study and characterize the volatilization of biomass particles.  The 

reactor employs a plasma torch to heat the biomass providing heating rates on the order of 

104 °C/s.  Particles of cornstalk and wheat straw between 117-173 µm were used for each 

experiment.  Carrier gas flow rates were varied between 0.5 and 1.5 L/min.  Volatile material 

yields for corn stalk and wheat straw are reportedly 69 wt % and 75 wt % respectively.  

Difficulties in providing a consistent feed rate caused the particles feed in clumps resulting in 

a mass too large to undergo complete pyrolysis [43]. 

Bohn and Benham reported on research examining important variables pertaining to 

an entrained-flow reactor.  The reactor was fed at the bottom while a carrier gas lifted the 

feedstock up its 4.9 m length.  Its purpose was to produce charcoal.  Another reactor was 

operated at 500 °C, atmospheric pressure and fed wood waste at 2 kg/hr.  The respective 
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yields for oil, char, gas and water are 40, 20, 27 and 13 wt %.  Another reactor injected 

carrier gas from either top or bottom to control the particle residence time.  Bohn and 

Benham commented that the entrained flow reactor is the optimum reactor configuration for 

maximizing gas yield.   

Two main reactor tube types were used during experimentation, one a straight tube 

either 60 or 120 cm long the other a helical tube 645 cm long.  The tubes were oriented 

horizontally and steam was used as a carrier gas to enable particle entrainment.  Pyrolysis gas 

volumetric flow rate was converted into a mass flow based on the gas composition; any 

purge gas was subtracted off.  Wheat straw was the feedstock of choice because of an interest 

in liquid hydrocarbon production.   

It was observed that gas yields did not vary significantly due to the Reynolds number 

suggesting that the primary method of heat transfer is due to radiation.  For high steam-to-

biomass ratios the view factor is near one but larger feedstock flow rates reduce the view 

factor.  Bohn and Benham go on to say that since particle conversion is independent from 

convection as shown by the Reynolds number, the reaction is not significantly tied to the 

fluid mechanics unlike a fluidized bed. The authors conclude that the primary method to 

increase total conversion is to increase the reactor temperature [54]. 

Matsuoka et al. performed experiments that simulate pyrolysis at the early stages in 

gasification using a drop tube reactor.  The goal was to determine the reliability of the data 

and compare it with similar research particularly examining weight loss data.  Coal particles 

between 75 and 150 µm were fed into the drop tube furnace at a rate of 0.1 g/min.  Helium is 

used as the carrier gas flowing at a rate of 3.5 sL/min.  The operating pressure in the reactor 

was varied between 0.3, 1.0 and 3.0 MPa.  The 0.76 cm inner diameter, 1.83 m long reactor 

was heated using three furnaces.  Experiments were performed at 600, 700, 800 and 850 °C.  

Typical yields for char, tar, gas and liquid are 58, 22, 17 and 5 wt % (daf) respectively [37]. 

 Probstein and Hicks performed occidental flash pyrolysis of coal.  Essentially this is 

the pyrolysis of coal using the hot char produced to provide heat for the reactor.  An 

entrained flow reactor was used through which pulverized coal particles (<250 µm) were fed.  

At the entrance of the reactor, the top, the particles were mixed with preheated and recycled 

char to temperatures between 650 °C and 980 °C.  The hot char heated the coal between 510 
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°C and 730 °C.  One to three second residence times were reported.  The vapors exited the 

reactor to a cyclone.  Up to 35 wt % tar yields were achieved with feed rates of 1.7 ton/day 

and reactor temperatures ranging from 590-650 °C [55]. 

 Though free-fall type reactors have been used for many applications very few have 

been used for the pyrolysis of biomass to produce bio-oil.  Two studies that have reported 

significant bio-oil yields examined the effects of temperature, particle size and carrier gas 

flow rate [48, 49].  Both performed parametric studies using lab scale reactors with small 

biomass feed rates (2 – 6 g/min) to determine conditions favoring maximum product yield; 

not necessarily bio-oil.  There has been little research examining the effect of biomass feed 

rate on bio-oil yields and no research examining interaction effects between parameters or 

optimizing bio-oil yields.   

 The development of a 1 kg/hr (16 g/min) free-fall reactor for the production of bio-oil 

provides an opportunity to examine key areas of research that have not been studied.  

Optimization of the free-fall reactor for the production of bio-oil using a central composite 

design of experiments enables the analysis of interaction effects and generation of quadratic 

models describing the system.  The results of the study will provide new depth to the field of 

fast pyrolysis and specifically the use of free-fall reactors. 
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CHAPTER 3: Reactor Design 

Various configurations and sized free-fall reactors have been used in a wide range of 

applications.  The free-fall reactor has no moving parts and is simple to construct, operate 

and maintain.  Even so, very few free-fall reactors have been constructed for the production 

of bio-oil via fast pyrolysis of biomass.  Designing the free-fall reactor required a 

multidisciplinary approach.  The only restriction on the design was a specified biomass feed 

rate of 1 kg/hr. 

 

3.1. Design Principles 

A number of calculations and assumptions were made during the design phase of this 

project.  Two basic principles were combined in the design of the free-fall reactor.  The first 

principle dealt with the particle heating rate and the second involved the particle’s free-fall 

velocity.  After integrating both of these concepts, one can determine both the required wall 

temperature of the reactor as well as its length for complete conversion. 

 

3.1.1. Particle Heating Rate 

It is often reported that the optimum operating temperature for fast pyrolysis is in the 

range of 475 –525 °C [9, 23, 56].  By assuming that complete pyrolysis has taken place once 

the center of a spherical biomass particle reaches 500 °C, only the time needed to be 

calculated for the particle to reach this temperature.  Ignoring all effects due to shrinking and 

changing particle density, a lumped capacitance method was used to solve for the transient 

heating time.  The lumped capacitance approach assumes a uniform temperature distribution 

throughout the body.  Since this can only be the case if the conductive resistance within a 

solid body is zero, lumped capacitance is assumed accurate for small ratios of convection at 

the surface of the body over conduction within the body. This ratio is non-dimensionalized 

and generally represented by the Biot number, Bi given in Equation 1: 

 

k

hL
Bi c=  Equation 1. 

 



22 
 

where, h is the convective heat transfer coefficient at the surface of the body and k is the 

conductive heat transfer coefficient within the body.  The characteristic length, Lc is defined 

as the ratio of an objects volume, V to its surface area, As as given in Equation 2: 

 

s

c
A

V
L =  Equation 2. 

 

In general, the lumped capacitance method is applicable if Equation 3 is satisfied[57]. 

 
1.0≤Bi  Equation 3. 

  

MathCad 13, a computational software package from Mathsoft was used to perform 

many of the following calculations.  A more detailed version of the calculations may be 

found in the Appendix A.  In order to find the Biot number so that lumped capacitance could 

be assumed, the convective and conductive heat transfer coefficients as well as the particle 

size must be defined.  Since the biomass particles would be free-falling through a heated 

reactor tube, the only heat transfer to the particles is due to convection and radiation.  

According to Cengal, typical free convection heat transfer coefficients for gases range 

between 2 and 25 W/m2K [57].  Likely the convective heat transfer coefficient is greater than 

10 W/m2K but by assuming a low value for free convection one could be assured that the 

system would be over designed.  Bohn and Benham [54] conclude that radiation heat transfer 

is the primary means in which particles are heated within an entrained flow reactor.  To 

account for this, a radiation heat transfer coefficient, hrad was derived as shown in Equation 

4: 
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Equation 4. 

 

where, σ is the Stefan-Boltzmann constant, Tp is the particle temperature, Twall is the reactor 

wall temperature, εp is the emissivity of the particle and Fp_wall is the view factor from the 

particle to the reactor wall.  In Appendix A, the radiative heat transfer coefficient is 
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calculated for various wall temperatures.  Comparing this value to the assumed convective 

heat transfer coefficient reveals that it is about 4 to 10 times greater. 

By defining the biomass particle as a cube the view factor can be estimated.  

Assuming the particle cannot see the reactor wall through the top and bottom faces of the 

cube due to the other particles falling before and after it, the view factor can be approximated 

to be somewhere between 4/6ths (2/3rds) and 1.   By choosing a view factor of 0.7 and 

assuming that the biomass particle enters the reactor at room temperature and that the particle 

is a blackbody, only the wall temperature is undefined.  Details concerning the view factor 

assumptions are in Appendix A. 

 Bailey [58] defines the thermal conductivity of softwood at 500 °C to be 0.09 W/mK.  

Using the thermal conductivity and selecting a range of temperatures between 850 K and 

1250 K and a range of particle sizes between 50 and 1000 microns, one can find a number of 

solutions (wall temperatures and particle sizes) that satisfy the lumped capacitance 

requirements (Bi ≤ 0.1). 

 Again, assuming that complete pyrolysis occurs when the particle reaches 500 °C, the 

next step is to calculate the time required for a particle to reach that temperature.  Using a 

lumped capacitance approach, Equation 5 can be solved for t, the time required to reach a 

specified temperature, T(t): 
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where, T∞ is the fluid temperature, in this case assume the fluid temperature is equal to the 

wall temperature, Ti is the initial particle temperature and b is the time constant given in 

Equation 6. 
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b

ρ
=  Equation 6. [57] 

 

Replacing h in Equation 6 with the radiation heat transfer coefficient in Equation 4 while 

specifying a particle density, ρ a specific heat, Cp and a particle diameter, Equation 5 can be 
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solved for t, the time to reach T(t) or 500 °C.  Note that only the radiation heat transfer 

coefficient is substituted to be conservative.  Kanury and Blackshear [59] report the density 

of a number of wood types.  The densities considered range from 450 kg/m3 for char to 1350 

kg/m3 for coal with typical biomass densities falling somewhere in between.  The results 

from Equation 5 confirm that particles with high densities require more time to reach 500 °C 

then those with lower densities at the same wall temperature.  Similarly, larger particles 

require longer heating times than smaller particles.  Refer to Appendix A for further detail.  

Figure 9 depicts the time required for a 600 kg/m3 particle of various diameters to reach 500 

°C.  Figure 10 depicts the time required for a 1350 kg/m3 particle of various diameters to 

reach 500 °C. 

It is also well reported that the vapor residence time for fast pyrolysis should be less 

than 1–2 s [8, 9, 11, 26].  By limiting the heating time to 2 s, a reasonable particle size of 300 

microns and wall temperatures between 780 °C and 880 °C were selected as the basic 

operating parameters.  The energy required to pyrolyze 1 kg/hr of biomass, was computed 

based on the enthalpy of pyrolysis, 1.53 MJ/kg as reported by Daugaard [60].  Plugging the 

total heat required into a simple, steady state, thermal resistance network, the thermal 

resistance between the heater surface and the center of the reactor pipe was calculated.  The 

temperature drop across the thermal network was found to be around 150 °C if the center of 

the reactor was to be maintained at 500 °C.  As a result of these calculations, a set of Watlow 

ceramic radiative heaters were selected with ample wattage and set-points capable of 

reaching over 1000 °C.  

 

3.1.2. Particle Free-fall Velocity 

Knowing the restrictions on particle size set by rapid heating to 500 °C in 2 s or less 

the length of the reactor was determined.  To be conservative, all effects due to particle 

heating, such as changing density and loss of mass were ignored.  A 300 micron diameter, 

with a 1350 kg/m3 density biomass particle was assumed for the following calculations.  The 

forces on a particle in free-fall yields the force balance shown in Figure 11. 
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Figure 9. Time required for 600 kg/m
3
 particle to reach 500 °C at given wall temperatures 

 

 

Figure 10. Time required for 1350 kg/m
3
 particle to reach 500 °C at given wall temperatures 
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Figure 11. Biomass particle free body diagram 

 

The buoyant force, FB and drag force, FD oppose the force due to gravity, FG.  Summing the 

forces around the particle yields the following in Equation 7: 

 

∑ −+==⋅= GDB FFF
dt

dv
mamF  Equation 7. 

 

or written another way, 
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where dv/dt is the change in the particles velocity, ρf is the fluid density, g is gravity, Vp is the 

particles volume, m is the particles mass, CD is the drag coefficient and Ac is the particles 

cross sectional area.  The drag coefficient is a function of the Reynolds number which is 

defined in Equation 9, 

 

µ

ρ vD pf
=Re  Equation 9. 

 

where Dp is the particle diameter and is µ the fluid viscosity. An iterative approach must be 

used to solve for the velocity since it is a function of the drag coefficient which is a function 

of the Reynolds number, which in turn is a function of the velocity.  Once the velocity has 

been found, the corresponding drag coefficient can be used in Equation 8.   Solving the 

Equation 8 using Euler’s method with the initial condition of dv/dt=0 at t=0, the particle’s 
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velocity at time t can be found.  For a 300 micron particle falling for 1.5 s from rest, it will be 

travelling near 1.32 m/s and will have fallen 1.9 m.  This is the length required for the reactor 

to heat that same particle to 500 °C.   

 The diameter of the reactor was selected based on the volumetric flow rate of 

pyrolysis vapors produced.  Applying the Ideal Gas Law as a rough estimate, the volumetric 

flow rate of the pyrolysis vapors leaving the reactor at 500 °C and 1 atm is approximately 9.3 

sL/min.  To find the velocity of the vapors leaving the reactor, the volumetric flow rate was 

divided by select pipe diameters.  For a standard Schedule 40, stainless steel pipe, the inner 

diameter is 2.1 cm.  At this diameter the vapors will exit the reactor at 0.45 m/s.  

Accordingly, in 2 s, the vapors travel 0.9 m –about half of the reactor length.  This pipe 

diameter was justified for several reasons.  One, it was assumed that most of the vapors 

would be formed in the lower half of the reactor.  Two, moving to a smaller diameter may 

jeopardize the structural integrity of the reactor.  Three, a smaller diameter would increase 

the likelihood of biomass becoming lodged inside.  Four, since the vapors at the exit would 

be travelling less than half as fast as the biomass particles, it is relatively safe to assume that 

addition of nitrogen carrier gas to decrease the vapor residence time would not significantly 

affect the particle velocity.  Addition of 5 sL/min of nitrogen carrier gas would effectively 

double the pyrolysis vapor velocity to 1 m/s which is under that of the particle velocity.  This 

corresponds to a vapor residence time of about 1.9 s.   

For versatility, the reactor was designed to have four sections.  The bottom three 

sections were equipped with vapor ports spaced at 0.3 m intervals from the bottom.  This 

allows for the pyrolysis vapors to be pulled off earlier if the residence time was found to be 

too long.  Additional provisions were made by placing a nitrogen purge line on top of the 

reactor.  The purge line served a dual purpose.  It both removed the oxygen from the system 

and also permitted a degree of control over the flow rate of the vapors.  While increasing the 

nitrogen flow rate increases the vapor flow rate it also can potentially increase the particle 

velocity if set greater than 5 sL/min. 
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3.1.3. Char Removal Technique 

Another important design consideration that was taken into account was removing 

char from the vapor stream.  As the synonym name of the reactor suggests, char is entrained 

in the vapor stream exiting the reactor.  The particulate is entrained when sufficiently high 

fluid velocities creating a low pressure region pick up the fine particulate.  It is important to 

remove char from the vapor stream as it acts as a catalyst for secondary reactions [2]. As 

previously mentioned, this has implications for both bio-oil yield and stability [13].  

Traditional char separation techniques include cyclone particulate filters and more recently 

hot gas filtration.  Hot vapor filtration techniques may remove finer particulate matter, but at 

the cost of bio-oil yield [13, 25, 61].   

Zhang et al. [46], Zanzi et al. [50] and Li et al. [49], all show a char catch located at 

the bottom of the free-fall reactor.  A vapor port located above the char catch leads into a 

cyclone to remove fine char particulate.  Expanding on this idea, a char catch and cyclone 

were incorporated in the free-fall reactor design.  In an effort to remove any entrained char 

exiting the reactor a sudden expansion was designed into the top of the char catch.  The 

expansion is similar to a settling chamber where an abrupt drop in the vapor velocity would 

allow particulate to fall out.  In principle, if the velocity of the fluid is lower than the particles 

terminal velocity, the particle will disengage from the flow.  The diameter changes from 2.1 

cm in the reactor to 15 cm in diameter in the char catch.  The superficial velocity calculated 

by dividing the volumetric flow rate by the cross-sectional area is reduced by a factor of 50.  

This corresponds to removing all particles greater than 40 microns.  The char catch is 15 cm 

in diameter and 0.40 m in length.  Refer to Appendix A for further details. 

High efficiency cyclones may be up to 90 % effective at capturing particles as small 

as 5 microns in diameter[62].  A cyclone is designed in part on volumetric flow rate and 

superficial velocity of the fluid passing through it[63].  As the flow rate increases, generally 

the diameter of the cyclone increases and all other dimensions proportionally.  A fluidized 

bed reactor has a consistently high fluidization velocity and a series of cyclones are often 

used to remove char.  The free-fall reactor on the contrary does not require a high amount of 

carrier gas.  This implies two things.  One, the particulate loading is much greater per unit 

volume of vapor produced and secondly, a much smaller cyclone is needed.  The flow rates 
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of the free-fall reactor are such that a properly sized cyclone would have an inner diameter 

just over 0.8 cm.  Due to the expense and intricacy of fabricating a cyclone, a slightly larger 

cyclone from another system was experimented with and found adequate.  A second cyclone 

similar in size was later designed to take the place of the original and allow the original to be 

returned to its normal use.  On average less than 2 wt % char is collected in the cyclone 

largely depending on the feedstock particle size.  The cyclone is heated to 475 °C using a 2.4 

m (8 ft) Amptec 120 V heat tape to prevent vapor condensation and subsequent blockage. 

 

3.1.4. Bio-oil Collection 

Multiple methods have been tried including spray quenches, water, ice or dry-ice 

cooled condensers or impingers as well as electrostatic precipitators and glass wool or cotton 

filters [15, 23, 47, 49, 64, 65].  The focus of the project was focused on the design of the 

reactor, therefore an iterative approach based on experience and trial and error was followed 

for the development of the bio-oil collection system.  Initially, glass impingers placed in a 

salt-ice mixture condensed the pyrolysis vapors.  Glass wool placed in the final impinger 

served to capture the aerosols.  The sudden temperature shift from a hot reactor to ice-cold 

impingers caused heavy coking at the transition.  Additional difficulties in removing the bio-

oil from the impingers as well as cleaning the glassware led to a change in bio-oil collection 

technique.  A second and improved approach to bio-oil collection involved the transition to 

stainless steel quick clamp fittings.  The fittings are commonly used in the dairy industry for 

transporting milk.  A variety of shapes and diameters are available.  Each section is held 

together by a clamp and sealed with a polytetrafluoroethylene (PTFE) gasket rated at 200 °C.  

The stainless steel fittings were arranged in a capital “H” shape and placed into an ice bath 

followed by an impinger with glass wool.  This evolved into the final set of condensers using 

the “H” shape.  The stainless steel fittings were eventually wrapped in copper tubing and 

cooled with water.  The final impinger and glass wool were replaced with a high voltage 

electrostatic precipitator (ESP) to collect the aerosols.  The bottom of the “H” condenser and 

ESP were fitted with Nalgene® bottles which were replaced after each test and used to store 

the bio-oil collected.  A stainless steel coil and glass wool filter submerged in an ice bath 

serve to remove any vapor and moisture in the product stream.  In all, four bio-oil fractions 
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are collected.  The first two are captured in the “H” style condenser, a third in the ESP and a 

fourth in the ice bath as shown in Figure 12. 

 

 

Figure 12. Bio-oil collection system 

 

3.2. Reactor Description 

The free-fall reactor converts raw, lignocellulosic biomass into bio-oil, char and non-

condensable gas via fast pyrolysis.  The process begins by climbing a ladder and placing 

biomass into the Tecweigh® 5 Series Flex-Feed Volumetric feeder located on top of the 

reactor frame.  The feeder is sealed by clamping an acrylic lid to the rubber hopper 

preventing any oxygen from entering.  The feed rate is set with a 3-digit potentiometer 

ranging from 000 to 999 depending on the calibration curve.  An auger feeds 1 –2 kg/hr of 

biomass directly into the top of the reactor after the on/off button is pulled out to start the 

feeder.  The reactor is a 2.1 cm (0.8 inch) inner diameter, schedule 40 stainless steel pipe.  

The entire height of the reactor is 2.1 m (82 inches).  The pipe is bolted together with four 

flanged sections, the top two sections and bottom two sections are 24 and 12 inches long, 
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respectively.  The total heated length is 1.8 m (72 inches). Each section is radiatively heated 

using two Watlow® Semi-cylindrical ceramic fiber heaters.  The 0.6 and 0.3 m (24 and 12 

inch) heaters can provide 1100 and 550 W, respectively for a total reactor power of 6600 W.  

A panel mounted control box and feedback loop is used to set the heater temperature between 

450 and 650 °C.    

An Alicat Scientific™ mass flow controller regulates a nitrogen purge line feeding 

into the top of the reactor and feeder.  The carrier gas serves to remove all oxygen from the 

system before starting the feeder.  K-type Omega® thermocouples are located in 0.30 m (12 

inch) increments along the reactor.  The seven thermocouples serve to monitor the 

temperature of the biomass particles as they fall through the reactor and are rapidly heated.  

On average, over 98 % of the char is collected in a 0.15 m (6 inch) diameter, 0.40 m (16 

inch) tall stainless steel catch located at the bottom of the reactor.  The char container is 

clamped to the reactor with a 0.15 m (6 inch) quick clamp using ceramic rope as a high 

temperature gasket material.  It is heated by a 0.15 m (6 inch) diameter barrel heater to 

prevent condensation of vapors from occurring inside.   

The vapors and non-condensable gas that are produced from the high-temperature 

reaction exit the reactor and enter a heated cyclone particulate filter to remove any entrained 

char.  Vapors leaving the cyclone enter a four fraction bio-oil collection system.  The first 

two bio-oil fractions are collected in a water cooled condenser.  The water flow rates are 

controlled using rotometers.  There are two water loops.  The first passes through a heater 

and is maintained around 100 °C at the condenser inlet.  The second loop is cooled in a 

chiller.  The inlet temperature is kept near 15 °C.  The third bio-oil fraction is an electrostatic 

precipitator or ESP.  Rather than condensing the vapors, the ESP collects aerosols or tiny 

liquid droplets by inducing a negative charge on them using a Glassman ER series 30 kV DC 

power supply.  The charged aerosols then collect on the ESP wall and flow down the sides.  

The fourth and final fraction condenses any remaining vapors.  A circular stainless steel coil 

is submerged in an ice bath reducing the temperature of the vapors to nearly 0 °C.  Only the 

non-condensable gas exits the bio-oil collection system after passing through a glass wool 

filter. 
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The reactor is maintained at a gage pressure of 12 cm (5 inches) of water by a 

vacuum pump.  The pump pulls the non-condensable gases out of the system and through a 

Drierite® filter before they are analyzed.  A slip stream of gas is characterized online by a 

Varian 4900 Micro Gas Chromatograph every three minutes.  The main constituents are 

carbon monoxide, carbon dioxide, methane and hydrogen.  The gases subsequently pass 

through an Excel diaphragm fuel gas meter to determine the volume produced and are then 

vented into a fume hood. 

National Instruments LabVIEW software and hardware are used to collect and record 

reactor temperatures and pressures as well as control flow rates.  A schematic and 

photograph of the reactor and bio-oil collection system is shown in Figure 13 and Figure 14. 
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Figure 13. Free-fall reactor schematic used in experimentation (not drawn to scale) 
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Figure 14. Actual free-fall reactor and bio-oil collection system 
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CHAPTER 4: Experimental Methodology 

4.1. Shakedown Trials 

The purpose of the shakedown trials was two-fold.  The first was to identify areas in 

need of improvement.  In-depth knowledge of fast pyrolysis and the free-fall reactor were 

gained through this process.  Trial and error, instrumentation and data analysis as well as gut-

level instinct played important roles in solving reoccurring problems and fixing new ones.   

Two major difficulties were encountered during the initial shakedown trials.  The first 

was the repeated plugging of the system causing a large pressure buildup.  The plugging 

primarily resulted from bio-oil vapors condensing prematurely on cool surfaces before the 

entering the condensers.  The moment the vapors began to condense, char and more vapors 

would coalesce together and quickly plug the system.  This problem was alleviated only after 

all surfaces were adequately heated to prevent bio-oil vapor condensation.  The second 

problem relates to particulate removal.  The low amounts of carrier gas comparable to the 

fluid bed reactor prohibit the use of traditional filtration devices, specifically a properly sized 

cyclone.  The majority of the heavy particulate settles at the bottom of the reactor in a char 

catch.  After filling a 3-L char catch within a 1 hour experiment, a larger 7-L char catch was 

fabricated.  The larger catch was shown to decrease the bio-oil yield slightly and increase the 

char yield presumably due to a longer vapor residence time.  Fine char entrained in the 

vapors passed through an oversized cyclone.  The cyclone removed the majority of the fine 

particulate but is not entirely effective especially at low biomass feed rates and small particle 

sizes as particulate is visible in the bio-oil.  The cyclone may plug with char at the bottom 

where it would normally enter the cyclone catch.  This is a concern for processing un-sieved 

biomass. 

The second role of the shakedown trials was to determine the extreme operating 

conditions of the reactor.  This knowledge was crucial in setting the levels for each factor in 

the future design of experiments.  Combinations of high and low biomass feed rates, particles 

sizes, carrier gas flow rates, and reactor temperatures were tested. 

The shakedown trials proved that the free-fall reactor was capable of handling particle 

sizes much larger than the 300 microns as well as feed rates double the 1 kg/hr design 

parameters.  In fact, particle sizes as large as 1 mm were tested and feed rates as high as 2 
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kg/hr performed well.  Heater temperatures between 400 °C and 800 °C were also tested.  

Nitrogen flow rates between 1 and 5 standard liters per minute (sL/min) were arbitrarily 

selected –primarily to purge any oxygen in the system. 

Visual observation of the bio-oil and char displayed how well the trial went.  Careful 

attention to the system temperature and pressure through the duration of an experiment also 

provided a gauge to the quality of the experiment.  Only after all multiple trial runs of the 

free-fall reactor at various operating conditions and configuration could a design of 

experiments be performed. 

 

4.2. Design of Experiments 

A statistically designed set of experiments were performed as a means through which 

the free-fall reactor could be evaluated.  The four factor central composite design minimized 

the number of tests to be run with the reactor while simultaneously maximizing the amount 

of data generated.  Central composite designs are efficient in determining main effects, two-

factor interaction effects and the quadratic effects [66].  Figure 15 symbolizes a three factor 

central composite design.  Each dot represents a different set of conditions at which one 

experiment is performed.  The central point, (0,0,0), is repeated to establish the variance 

within the system.  This variance is then applied to each of the other points since they are 

only performed once. 

The purpose of the 30 experiments was to determine the optimal operating conditions 

for maximum production of bio-oil as prescribed by the second order response surface.  The 

four factors tested include biomass feed rate, particle size, heater temperature and carrier gas 

flow rate.  Each factor contains five levels.  Table 6 displays the levels for each factor. 

 

Table 6. Design of experiment factors and levels 

Variable Factor 
Coded level and actual level 

-2 -1 0 1 2 

x1 Reactor temperature (°C) 450 500 550 600 650 

x2 Biomass particle size (µm) 200 300 400 500 600 

x3 Carrier gas flow rate (sL/min) 1 2 3 4 5 

x4 Biomass feed rate (kg/hr) 1 1.25 1.5 1.75 2 
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Figure 15. Three factor central composite design 

 

In all, 30 experiments were run, 6 identical center points, 8 axial experiments and 16 

factorial experiments.  Table 7 lists the conditions for each experiment. 

Using the outcome of the design of experiments, models were created in section 5, to 

show how the operating conditions affect product yield and composition.  SAS Institute’s 

JMP 6.0 statistical software package was used to perform statistical calculations and model 

the central composite design results.  Full quadratic models for the product yield and other 

parameters were fit using all 30 experiments.  Each model can be simplified into the 

following second-order polynomial: 
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where, Yi is the model response, β0 is a constant, βii and βij are model coefficients, xi, xixj and  

xi
2
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JMP 6.0 represents the levels for each factor as coded variables.  These values 

linearly correspond to the actual levels as shown in Table 6.  For example entering -1 into a 

model for x1 would correspond to the temperature 500 °C.   

A good model will have a P-value less than 0.05 and a lack of fit P-value greater than 

0.05.  A model P-value less than 0.05 indicates that the model is significant.  A P-value 

greater than 0.05 for the lack of fit test indicates that the lack of fit is not significant.  A 

significant lack of fit indicates that another model (possibly linear) may fit the data better.  A 

model can be significant and have a significant lack of fit. 

  Some models in section 5 have been reduced.  Reducing the models eliminates many 

of the insignificant terms making the model easier to understand and more manageable.  Not 

all models are reduced leaving only significant terms.  A number of terms that were on the 

borderline of being significant were kept with the reduced models.  Reduced models often 

become more significant than the full models they are based upon.  The Root Mean Square 

Error (RMSE) often decreases with the reduced model making it a better predictive model.  

The R2 value will decrease once the model is reduced.  All models that were produced can be 

found in Appendix D. 

The experiments were performed in random order to minimize and distribute any 

effects due to changes within the reactor setup.  It is important to note that the results of the 

statistically designed set of experiments are specific first of all to the free-fall reactor and 

secondly to the factors tested.  One should not extrapolate the results to other feedstocks, 

reactors and situations, and though the results may correlate, the statistics and models hold 

only for the specific conditions utilized during the set of experiments.  Therefore using the 

resulting models to accurately predicting the outcomes will depend on the similarity of the 

conditions used to create the model. 

 Any models reported herein are created using values either directly from the 

experiments or as a result of the product analysis.  The models report 95% confidence 

intervals which are calculated based upon the data from the six replicate tests or center 

points. 
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Table 7. Central composite design list of experiments 

Factor 

Type Run 
Temperature 

(°C) 
Particle 

size (µm) 
Flow rate 
(sL/min) 

Feed rate 
(kg/hr) 

C
en

te
r 

po
in

t 
1 550 400 3 1.5 
2 550 400 3 1.5 
3 550 400 3 1.5 
4 550 400 3 1.5 
5 550 400 3 1.5 
6 550 400 3 1.5 

A
xi

al
 e

xp
er

im
en

ts
 7 550 400 3 2 

8 550 400 3 1 
9 550 400 5 1.5 

10 550 400 1 1.5 
11 550 600 3 1.5 
12 550 200 3 1.5 
13 650 400 3 1.5 
14 450 400 3 1.5 

F
ac

to
ri

al
 e

xp
er

im
en

ts
 

15 600 500 4 1.75 
16 600 500 4 1.25 
17 600 500 2 1.75 
18 600 500 2 1.25 
19 600 300 4 1.75 
20 600 300 4 1.25 
21 600 300 2 1.75 
22 600 300 2 1.25 
23 500 500 4 1.75 
24 500 500 4 1.25 
25 500 500 2 1.75 
26 500 500 2 1.25 
27 500 300 4 1.75 
28 500 300 4 1.25 
29 500 300 2 1.75 
30 500 300 2 1.25 
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4.3. Feedstock Preparation 

Many biomass types were tested including corn stover, corn fiber and Red oak during 

shakedown trials.  As previously mentioned, the ash content of a biomass influences the 

product distribution.  The shakedown trials confirmed this when biomass with higher ash 

contents such as corn stover resulted in lower bio-oil yields.  Red oak biomass was selected 

as the feedstock of choice for design of experiments.  This decision was made in part because 

of the higher bio-oil yields achieved during shakedown trials but also due to the homogeneity 

and low moisture content of the biomass.  Since the goal of the design of experiments was to 

optimize the reactor operating conditions this ideal feedstock was chosen.  The Red oak 

properties are listed in Table 8. 

 

Table 8. Red oak properties 

Constituent (wt %) Ultimate Analysis (wt %) Proximate Analysis (wt %) 

Hemicellulose 20 Carbon 48.70 ± 3.56 Moisture 3.86 ± 1.25 
Cellulose 29.8 Hydrogen 6.80 ± 0.40 Volatiles 81.90 ± 0.45 
Lignin 43.3 Nitrogen 0.072 ± 0.012 Fixed Carbon 12.56 ± 0.51 

Extractives 3.3 Oxygena 44.03 ± 3.87 Ash 0.39 ± 0.18 
Ash 0.3 Sulfur 0.002 ± 0.001 Other 1.28 - 
Other  3.3 Ash 0.39 ± 0.18       
Total 100   100     100   

a calculated by difference 

 

The Red oak chips are produced by Glen Oak Lumber and Milling out of Montello, 

Wisconsin.  A subsidiary named Wood Residual Solutions distributes the wood chips and 

shavings produced by the mill.  The wood is kiln dried to 8 wt % moisture at the lumber mill 

and passes through a 2 cm grinder screen before packaging.  The Red oak has a higher 

heating value of 18.05 ± 0.98 MJ/kg.   

 The biomass particle size is important for the free-fall reactor.  A particle that is too 

large will not be able to heat up quickly and the bio-oil yields will decrease while char and 

gas production will increase.  For this reason, it was critical to determine the effect of particle 

size on the reactor performance.   



41 
 

Upon arrival, the wood chips were put through an Art’s Way 60 hp hammer mill with 

a 0.6 cm screen.  Further grinding was performed using both a Retsch® SM2000 cutting mill 

and a Schutte Buffalo hammer mill.  The ground material was then classified using a Gilson 

Test Master® TM-3 sieve shaker.  Sieve trays with screens sizes ranging from 200 micron to 

700 microns in 100 micron increments were placed in the shaker.  The Red oak was loaded 

into the top and the shaker was turned on until the sieve trays were full.  The trays were 

emptied into containers according to particle size.  This process was performed until between 

20 and 40 kg of each was collected depending on the number of tests with that particle size.  

The sieved Red oak particles are shown in Figure 16. 

 

 

Figure 16. Sieved Red oak particles 

 

The density of the particles is also an important factor in determining the particle 

heating rate as well as its free-fall velocity as discussed in sections 3.1.1 and 3.1.2.  A 

Pentapycnometer was used to determine the particle density.  The pycnometer uses a series 

of differential volumes and the ideal gas law to calculate the particle density.  The instrument 

  200µm    300µm    400µm     500µm              600µm 
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was purchased after the reactor was constructed and therefore the particle density was 

evaluated as a means to compare the design assumptions.  In both the particle heating rate 

and the particle free-fall velocity calculations a particle density of 1350 kg/m3 was assumed.  

This is slightly under the densities reported in Table 9. 

 

Table 9. Red oak particle density 

Particle size Density Error 

(micron) (kg/m3) (kg/m3) 

200 1427.6 ±1.2 
300 1432.3 ±1.3 

400 1400.4 ±4.3 
500 1387.4 ±5.4 
600 1376.1 ±5.6 

 

A feeder calibration curve was made for each particle size.  About 3 kg of Red oak 

was placed into the feeder.  An acrylic lid was clamped down on top of the feeder to prevent 

oxygen from entering.  A 1 gallon Ziploc® bag was placed on the end of the feeder auger.  

The initial mass was recorded.  The 3-digit potentiometer was set to 100.  After 5 minutes, 

the bag was weighed and the mass recorded.  The potentiometer was increased by 100 and 

the process was repeated until a full calibration was made. 

 The biomass was stored in sealed 5 gallon pails within the laboratory.  Before each 

experiment, the Red oak moisture content was determined by an Omnimark Instrument, Co. 

Mark 2 Standard moisture analyzer.  The Red oak moisture content was consistently 5.2 ± 

0.25 wt % throughout the 30 experiments.  The feeder was filled with nearly 3 kg of Red oak 

before each experiment.  

 

4.4. Product Analyses 

The bio-oil, char and non-condensable gas from each of the 30 experiments were 

analyzed.  The non-condensable gas was analyzed for gas composition throughout the 

duration of the experiments.  The bio-oil and char were stored and analyzed much more 

thoroughly.  To cut down on the number of samples, especially for the analysis that requires 

many hours to be completed, the following approach was taken.  Each bio-oil sample of the 
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six center points was analyzed in triplicate.  From these, an average value was calculated for 

each center point.  Since the center point products were all performed at the same conditions 

the averages values were expected to be quite similar.  Any deviation then can likely be 

attributed to experimental error due to the sample preparation technique or equipment error.  

The error due to the instrumental analysis was assumed to be small enough to be ignored.   

The average error (95% confidence interval) of the six center points was then applied 

to the remaining 24 experimental values whose analysis was performed only once.  This 

methodology was applied for the water insoluble content, solid content, ultimate and 

proximate analysis, and GC/MS analysis for bio-oil analysis as well as the ultimate analysis 

for char.  Only the moisture analysis was performed in triplicate for all bio-oil samples.  The 

remaining bio-oil analysis tests namely, higher heating value, total acid number and viscosity 

were only conducted on the six center point samples.  The confidence intervals are reported 

for tabulated values.  All models use confidence intervals derived from the six centerpoints. 

Since four bio-oil fractions were produced, all resulting analysis was mathematically 

recombined according to the bio-oil fraction mass and reported as a single bio-oil fraction 

value.  The fourth fraction of bio-oil made up 1.9 wt % of the total bio-oil on average.  This 

amount was often not enough to perform a complete analysis on and therefore the sample 

was not analyzed completely in some cases.   The average values of the center points were 

thus adopted in place.  The procedures and types of product analyses are given. 

 

Mass Balance: All unfed biomass was removed from the feeder by a vacuum and weighed 

after each experiment.  The amount of biomass fed was calculated by the difference in initial 

and final biomass weights. 

At the beginning and end of each experiment, the condenser, ESP and ice bath coil 

are weighed individually to determine the bio-oil yield.  The four fractions of bio-oil are 

removed, capped and placed in a refrigerator.  The refrigerator temperature cools the bio-oil 

to prevent polymerization or aging.   

The reactor char catch and cyclone char catch were cooled to room temperature 

before being removed from the system.  The difference between the final and initial char 

catch weights were used to determine the char yield. 
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The total volume of non-condensable gas was calculated by the difference of the final 

and initial volume meter reading.  An average molecular weight was determined over the 

steady state region of the gas chromatogram.  Modeling the non-condensable gases as an 

ideal gas, the mass produced was calculated at the average pressure and temperature of the 

volume meter over steady state. 

 

Bio-oil Sample Preparation: At the time of analysis, the bio-oil containers were taken out of 

the refrigerator and allowed to reach room temperature.  Bio-oil fractions 1, 2 and 3 were 

somewhat viscous and may have undergone some separation while in the refrigerator.  To 

ensure that a representative sample was taken a homogenized mixture was created.  To do so, 

the bottle was shaken by hand for one minute and then stirred with an impeller for another 

minute.  Once this procedure was performed, a sample was ready to be prepared for bio-oil 

analysis. 

 

Moisture Content: Moisture content of the bio-oil fractions was measured by a Karl Fischer 

titrator.  ASTM E203 standard test method was used to determine moisture content.  Before 

use the titrator accuracy was verified using a 100 % water standard.  Hydranal Composite 5K 

was the reagent while Hydranal Working Medium K was used as a solvent. 

 

Water Insolubles Content: Water insolubles found in bio-oil are also known in literature as 

pyrolytic lignin since it traced from the lignin portion of the biomass.  It is the fraction of 

bio-oil that when water is added the insolubles are precipitated [3].  The water insoluble 

method was developed in house and can be found in Appendix B. 

 

Solids Content: The solids found in bio-oil are predominantly fine char particles that pass 

through the cyclone.  The percentage of solids is determined by pouring a bio-oil/methanol 

mixture onto a filter paper and finding the difference in weight before and after.  The solids 

content method was developed in house and can be found in Appendix B. 
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Higher Heating Value: The higher heating value was determined on the center point 

experiment bio-oil samples, the Red oak biomass and a number of char samples.  ASTM 

D240 test methodology was followed to determine the higher heating values using a Parr 

oxygen bomb calorimeter model 1341EB.   

 

Proximate Analysis: The moisture, volatiles, fixed carbon and ash of the bio-oil and char 

were determined by way of a thermogravimetric analyzer.  A Mettler Toledo TGA/DSC1 

STARe system using ASTM D5142 standard test method was followed. 

 

Ultimate Analysis: The carbon, hydrogen, nitrogen and sulfur and contents of the bio-oil and 

char were found using a LECO® TruSpec CHN, and a TruSpec S analyzer.  ASTM D5291 

standard test method was used to determine bio-oil carbon, hydrogen and nitrogen contents.  

ASTM D1552 standard test method was used to determine the bio-oil sulfur content.  ASTM 

D5373 standard test method was used to determine carbon, hydrogen and nitrogen content of 

char, while ASTM D4239 standard test method was used for sulfur.  For both bio-oil and 

char, oxygen was calculated by difference. 

In all analysis, the instrument ranges for carbon, hydrogen and nitrogen and sulfur are 

0.005 %, 0.02 %, 0.008 % and 0.001 %, respectively.  The ash content was determined by 

thermogravimetric analysis. 

 

GC/MS:  A Varian Saturn 2200 gas chromatograph/mass spectrometer (GC/MS) with a CP-

Sil 19CB (CP 8722) column was used to find the chemical composition of the bio-oil.  Over 

32 compounds have been calibrated for and were used to find the concentrations within the 

bio-oil. 

 

Total Acid Number: The total acid number (TAN) is a measure of the acidity of the bio-oil.  

A Metrohm 798 MPT Titrino analyzer was used to determine the bio-oil acid number using 

ASTM D664 standard test methodology.  It is reported on a mg KOH/g bio-oil basis; that is 

the amount of potassium hydroxide required to neutralize the acids within one gram of bio-

oil. 
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Viscosity: The kinematic viscosity of the center point bio-oil fractions was determined with a 

Cannon-Fenske Opaque viscometer.  Standard testing methodology found in ASTM D445 

and ASTM D446 was applied.  The viscosity was measured at 40 °C for all bio-oil fractions.  

The viscosity of the bio-oil is determined by the duration of time it takes for the bio-oil to 

pass through a set of bulbs from a capillary tube.  An appropriate capillary size was chosen 

for each bio-oil viscosity range.  The kinematic viscosity is reported in centi-Stokes (cSt). 

 

Micro-gas Chromatography: The non-condensable gases produced during the fast pyrolysis 

experiment are analyzed on-line using a Varian 4900 Micro Gas Chromatograph.  Two 

columns are used to determine the gas composition.  The Varian Molsieve 5A detects 

hydrogen, oxygen, nitrogen, carbon monoxide and methane gases.  The Varian Pora Plot Q 

detects carbon dioxide, ethylene, acetylene and ethane.  The data is plotted and an average 

molecular weight is computed based on the steady state region. 
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CHAPTER 5: Results and Discussion 

5.1. Mass Balance Distribution 

Product yield is influenced by both feedstock type and operating conditions.  In 

addition, the reactor type may influence the product distribution.  For this reason the products 

were examined.  Figure 17 provides a summary of the product yields for each of the 30 

experiments.  The bio-oil yields are broken down into organic liquid, reaction water and 

carried water.  The sum of these three is the bio-oil yield reported on a wet basis.  The carried 

water is the amount of moisture carried over from the biomass and assumed to be entirely 

retained in the bio-oil.  This amount is on average 5.2 ± 0.25 wt %.  The reaction water is the 

amount of moisture produced during the pyrolysis reaction and retained in the bio-oil.  To 

calculate the amount of reaction water one must subtract the amount of carried water from 

the total bio-oil moisture content.  Knowing the bio-oil moisture content, Equation 11 can be 

used to calculate the bio-oil yield on a dry basis. 

 

wbyieldoilbiomoistureoilbiowbyieldoilbiodbyieldoilbio mmY ,,, % −−−− ×−=  Equation 11. 

 

Bio-oil yields are reported on a wet basis (includes reaction and carried water) unless 

otherwise stated.   A complete list of experimental conditions and product yield may be 

found in Appendix C. The experiments were performed in random order and are therefore 

listed chronologically. 

 Table 10 summarizes the design of experiment product yield and mass balance 

closure for all experiments and the center points.  The mass balance closures were always 

above 97 %.  This can largely be attributed to the size of the system.  Since the char container 

and condensers were small enough to weigh on a scale, it was not necessary to dismantle 

each piece and weigh individually.  By weighing the components as a whole (rather than 

piecewise) prevented compounding of errors.  Since it is more difficult to weigh or calculate 

the mass of the non-condensable gases compared to the solid and liquid products, 

experiments with high gas yields typically have lower mass balance closures.



 
 

 

 

 

 

 

Figure 17. Product yield distribution
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Table 10. Experimental summary of product yield and mass balance closure 

Product 

Yield 

Organic 

liquid           

(wt %)
a
 

Water (wt %) 
Char 

(wt %) 

NCG
b
 

(wt %) 

Closure
c
 

(%) Reaction Carried 

All experiments 

Minimum 47.5 10.3 4.8 10.3 13.0 97.7 

Maximum 55.7 13.6 5.8 20.1 23.3 100.1 
Average 51.8 11.7 5.2 15.6 15.0 99.3 

Center point experiments 

Minimum 51.1 11.1 4.9 15.2 13.5 99.1 
Maximum 53.6 12.6 5.8 17.0 14.7 100.0 
Average 52.3 11.8 5.4 16.0 14.0 99.5 

St Devd 0.9 0.5 0.3 0.8 0.4 0.3 

± 95 % CI 0.7 0.4 0.3 0.62 0.36 0.3 
 a The sum of the organic liquid and reaction water is the bio-oil yield on a dry basis 

b Non-condensable gas 
c Closure is not the sum of each row rather it is for an individual experiment 
d Standard deviation 
 

Though the 6 center points were operated at the same conditions each experiment 

resulted in slightly different product yields.  The differences within these 6 experiments can 

be attributed to experimental error.  This is the natural variation that occurs within any 

system.  The confidence intervals calculated from these 6 points are the basis for the 

experimental error for each other experiment since all other experiments were only 

performed once.  For the organic liquid, the 95 % confidence interval is ± 0.7 wt %. 

The narrow confidence intervals for the center point experiments listen in Table 10 

are an indication that the error inherent within the system (experimental error) is quite small 

for the production of bio-oil, char and non-condensable gas.  Larger confidence intervals are 

indicative of an unreliable system. 

The organic liquid, char and non-condensable gas from Figure 17 are plotted only as 

a function of temperature in Figure 18.  The variation in product yield due to biomass particle 

size, biomass feed rate and carrier gas flow rate can be seen by the multiple data points at the 

different temperatures.  It is evident that the largest variation in product yield is 

predominantly due to the reactor temperature.  The curve in the organic liquid data indicates 
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that a maximum yield exists between the temperature range tested.  The maximum organic 

liquid yield occurs around 600 °C and is 55.7 wt % as shown in Table 10.  No clear 

maximum or minimum is shown for the char and non-condensable gas yield as these 

products decrease and increase with temperature, respectively.  Models of the product yields 

as a function of all variables are presented. 

 

Figure 18. Product yield as a function of temperature on a dry basis 

 

5.2. Bio-oil Yield Model 

Plotting the actual bio-oil yield versus the predicted bio-oil yield from the model 

reveals that the model deviates the most when predicting at extreme low and high operating 

temperatures as outlined in Figure 19.  For low temperatures, the model will under predict 

the yield and for high temperatures, the model will over predict the yield.  Since only one 

experiment was performed at each high and low temperature (and feed rate, flow rate and 

particle size) the model will naturally have a larger confidence interval at these conditions.  

The solid diagonal line is the regression curve.  It intersects the average yield of the six 

center point experiments.  As the slope of the regression line decreases the less significant the 

model becomes.  The horizontal line is the average response of the entire data set, in this case 

bio-oil yield.  The inner most set of dashed lines represent the 95 % confidence interval for a 

set of tests.  That is, if one were to perform multiple experiments at identical conditions, the 

average response of those experiments is expected to fall within the confidence interval 95 % 
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of the time.  The outer most set of dashed lines represents the 95 % prediction interval.  

These lines are wider than the confidence interval as they provide a range in which one might 

see bio-oil yield from a single experiment rather than an average of multiple experiments.  

The models were created on a wet bio-oil basis.  For all models, a P-value equal to or less 

than 0.05 indicates the significance of a term.   

 

 

Figure 19. Actual bio-oil yield versus predicted bio-oil yield 

 

Though the extreme high and low temperatures are outside of the model prediction 

interval, the model is still significant with a P-value of 0.0278 and an R2 value of 0.72.  The 
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a reduced model was created to identify only the significant terms.  Once the bio-oil model is 

reduced only four parameters are significant as shown in Table 12.  Temperature, particles 

size, feed rate and the quadratic temperature term all have P-values less than 0.05. 

 

Table 11. ANOVA results for full bio-oil yield model 

Parameter Variable SS MS F ratio Prob>F Significance 

Model - 60.49 4.32 2.82 0.0278 Significant 

Intercept - - - - <0.0001 Significant 

Temperature x1 7.82 7.82 5.10 0.0393 Significant 

Particle size x2 6.51 6.51 4.25 0.0571 Not significant 

Flow rate x3 0.77 0.77 0.50 0.4893 Not significant 

Feed rate x4 12.47 12.47 8.13 0.0121 Significant 

Temperature*Particle size x1*x2 0.33 0.33 0.22 0.6491 Not significant 

Temperature*Flow rate x1*x3 0.39 0.39 0.25 0.6211 Not significant 

Particle size*Flow rate x2*x3 0.11 0.11 0.07 0.7966 Not significant 

Temperature*Feed rate x1*x4 0.18 0.18 0.12 0.7362 Not significant 

Particle size*Feed rate x2*x4 0.18 0.18 0.12 0.7362 Not significant 

Flow rate*Feed rate x3*x4 1.27 1.27 0.83 0.3780 Not significant 

Temperature*Temperature x1
2 26.35 26.35 17.18 0.0009 Significant 

Particle size*Particle size x2
2 1.79 1.79 1.16 0.2975 Not significant 

Flow rate*Flow rate x3
2 0.19 0.19 0.12 0.7327 Not significant 

Feed rate*Feed rate x4
2 0.58 0.58 0.37 0.5495 Not significant 

Pure error - 3.03 0.61 - - - 

Lack of fit  - 19.98 2.00 3.30 0.1000 Not significant 
  

Table 12. ANOVA results for reduced bio-oil yield model 

Parameter Variable SS MS F ratio Prob>F Significance 

Model - 54.30 13.57 11.62 <0.0001 Significant 

Intercept - - - - <0.0001 Significant 

Temperature x1 7.82 7.82 6.70 0.0159 Significant 

Particle size x2 6.51 6.51 5.57 0.0263 Significant 

Feed rate x4 12.47 12.47 10.68 0.0031 Significant 

Temperature*Temperature x1
2 27.50 27.50 23.54 0.0001 Significant 

Pure error - 8.57 0.57 0.01 - - 

Lack of fit  - 20.62 2.06 3.61 0.0126 Significant 
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For each of the plots in Figure 20, all but one variable is fixed at the center point 

conditions as indicated.  The plots were produced with the full bio-oil, char and non-

condensable gas yield models.  The char and non-condensable gas models may be found in 

section 5.3 and 5.4 respectively and the ANOVA results may be found in Appendix D. 

A maximum bio-oil yield of 72 wt % was achieved at 600 °C, feeding 300 micron 

particle sizes at 1.75 kg/hr with 4 sL/min of nitrogen carrier gas.  This yield is greater than 

the 66 wt % reported by Li et al. [49] at around 600 °C with apricot stone (pit)  particle sizes 

between 450 and 900 microns.   The bio-oil yield falls within than those reported by Onay et 

al. [48] which range between 68 and 75 wt % for rapeseed.   For his maximum reported 

yield, the reactor was operated at 600 °C, feeding particles from 224 to 600 microns with a 

carrier gas flow rate of 0.1 sL/min and a feed rate of 0.12 kg/hr.   Both performed fast 

pyrolysis experiments in free-fall reactors.  Thus the bio-oil yields are quite comparable to 

those achieved in other free-fall reactors and even similar to the 65 – 70 wt % reported for 

wood feedstocks in a fluidized bed by Horne and Meier [8, 64]. 

Actual bio-oil, char and non-condensable gas yields are plotted in Figure 20 with the 

error bars listed in Table 10.  Temperature has the greatest influence on the product yields in 

all cases as the slope and curvature are the most defined compared to particle size, flow rate 

and feed rate.  The reduced bio-oil yield model can be written as shown in Equation 12: 

 

2
1421)( 98.072.052.057.046.69 xxxxY wbyieldoilbio −+−+=−  Equation 12. 

 

The trends in Figure 20a are similar to those reported by Bridgwater et al [16] for a 

fluidized bed reactor.  As temperature is increase from 450 °C to about 550 °C the bio-oil 

yield increases about 5 wt % while the char yield decreases by the same amount from 20 wt 

%.  The non-condensable gas yield is relatively static just under 15 wt %.  Increasing the 

temperature to 650 °C yields an increase in non-condensable gas yield to 22 wt % at the 

expense of both bio-oil and char yield.  As noted in Table 12 only temperature, feed rate and 

particle size are significant in modeling bio-oil yield.  To provide a better understanding of 

these three conditions a series of surface contour plots were produced based on the full bio-

oil yield model. The plots in Figure 21 were produced using Sigma Plot v.10.0 software from 
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Systat Software, Inc.  The plots show how the parameters interact with each other.   In all 

cases, the two variables not shown were held fixed at the center point conditions as noted.   

The plots on the left are surface plots and the plots on the right are the equivalent contour 

plots. 

The bio-oil yield model does not have a single optimum operating condition for the 

production of maximum bio-oil over the conditions tested.  Critical values of the model do 

exist however and are located on a saddle point.  Some of the critical values exist outside of 

the range of the conditions tested and may be impossible to physically achieve as indicated in 

Table 13.  These conditions represent the point at which the first derivative of the model is 

equal to zero.  Examining Figure 21, one can see that the critical point is a maximum for 

temperature, particle size and feed rate while the carrier gas flow rate is a minimum.  The 

predicted maximum occurring within the operating range as well as the center point 

conditions are also shown.  Over the ranges tested, the full model predicts that maximum bio-

oil yield will occur at conditions using small particle sizes, high carrier gas flow rates and 

high biomass feed rates as well as reactor temperatures around 575 °C. 

 

Table 13. Predicted bio-oil yield occurring at the critical point, predicted maximum and center point 

Parameter Critical point Maximum point Center point 

Temperature (°C) 548 572 550 
Particle size (micron) 330 240 400 
Flow rate (sL/min) -1.95 5 3 
Feed rate (kg/hr) 2.02 2 1.5 
Predicted value (wt %) 69.96 ± 14.55 74.29 ± 5.24 69.48 ± 1.08 
 

Temperature is a significant factor in the bio-oil yield model as indicated by the P-

value in Table 12.  It is also the only factor whose quadratic term is significant.  Figure 20a 

confirms the significance of temperature as the bio-oil yield clearly varies with temperature.  

A clear optimum temperature condition is evident between 550 °C and 575 °C.  These values 

appear larger than those reported in Table 2 (450 °C – 500 °C).  Note that the temperatures 

reported are the heater set point values.  



 

 

 
a) PS: 400 µm, FLR: 3 sL/min, FDR: 1.5 kg/hr 

 
b) Temp: 550 °C, FLR: 3 sL/min, FDR: 1.5 kg/hr 

 
c) Temp: 550 °C, PS: 400 µm, FDR: 1.5 kg/hr 

 
d) Temp: 550 °C, PS: 400 µm, FLR: 3 sL/min 

Figure 20. Bio-oil, char and non-condensable gas yield models (solid line) and actual yield (symbol) versus a) temperature b) particle size c) flow 

rate and d) feed rate.  Temp, PS, FLR and FDR indicate temperature, particle size, flow rate and feed rate, respectively.
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a) Feed rate: 1.5 kg/hr, Flow rate: 3 sL/min 

 
b) Feed rate: 1.5 kg/hr, Flow rate: 3 sL/min 

 
c) Particle size: 400 µm, Flow rate: 3 sL/min 

 
d) Particle size: 400 µm, Flow rate: 3 sL/min 

 
e) Temperature: 550 °C, Flow rate: 3 sL/min 

 
f) Temperature: 550 °C, Flow rate: 3 sL/min 

Figure 21. Bio-oil yield model on surface and contour plots 
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The actual vapor temperature within the reactor varies along its length as shown in 

Figure 22.  For the center point conditions the maximum temperature within the reactor was 

nearly 75 °C below the heater set point during steady state conditions.  This corresponds to a 

maximum vapor temperature between 475 – 500 °C which is slightly lower than 500 – 520 

°C temperatures for maximizing bio-oil yield from wood reported by Bridgwater [10].  The 

four reactor heating zones are outlined in Figure 22.  The top zones are 60 cm long while the 

bottom two are 30 cm in length. 

 

 

Figure 22. Internal free-fall reactor temperature distribution at steady state, center point conditions 

 

Fitting a model to the maximum vapor temperature in the reactor confirms that the 

temperature is much lower than the set point.  Figure 23 suggests that the temperature is 

about 75 °C lower than the 550 °C heater set point at the center point conditions.  At the 

lowest set point, the vapor temperature is 35 °C lower meaning that bio-oil yields around 65 

wt % were achieved at 415 °C.  The model suggests that temperature is the primary 

significant factor in determining the actual vapor temperature.  The reduced maximum vapor 
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temperature model in Equation 13 shows that both flow rate and feed rate are significant 

factors but each has a negative effect when increased.   

 

2
1431max 58.568.389.404.4207.477 xxxxY etemperaturvapor +−−+=  Equation 13. 

 

As flow rate and feed rate are increased, one would expect that the maximum vapor 

temperature would decrease as the amount of time to heat the material is being reduced.  

Interestingly, particle size has little or no effect on the vapor temperature.  This may imply 

that particles even larger than 600 microns may be successfully employed in the reactor. 

 

 
Figure 23. Model summarizing the maximum vapor temperature in reactor over steady 

 

The product yield models with respect to temperature can be explained by examining 

the literature.  The high temperatures cause secondary reactions cracking the bio-oil vapors 

into gas [10].  This decreases the overall bio-oil yield while the non-condensable gases 

increase.  At temperatures below 550 °C bio-oil yields also drop off and char yields increase.   

The low temperatures do not quickly or fully decompose the biomass particles and thus fewer 

vapors are produced resulting in decreased bio-oil yields.  The remaining biomass particle is 

then left to turn into char. 

Particle size also affects the bio-oil yield as indicated in Equation 12.  With a P-value 

of 0.0263 as shown in Table 12, its effect on bio-oil yield is significant.  Unlike temperature, 
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no clear maxima or minima exist with changing particle size hence the quadratic particle size 

term is not significant.  As the biomass particle size increases the bio-oil and non-

condensable gas yields drop off slightly.  Increasing the particle size slows down the rate at 

which vapors are released providing more time for secondary reactions to take place.  This 

cracks the vapors and builds upon the layers of char [67].  Thus the continual increase in char 

production with increasing particle size can be explained.  Decreasing the particle size from 

300 microns however, also results in slightly lower bio-oil yields.  The smaller particles 

allow for increased biomass conversion, but this also increases the surface area.  As the 

particles turn to char the increased surface area provides additional opportunity for the vapors 

to be cracked into gas decreasing the bio-oil yield slightly as noted in Figure 21a and 21b. 

Since all tests were performed with biomass that had been sieved, very few particles 

less than 200 microns were pyrolyzed.  It was noted that in experiments using particles less 

than 400 microns the appearance of the bio-oil visibly changed.  It was determined that this 

change was due to the presence of char in the bio-oil.  Smaller particle sizes are much more 

easily entrained and pass through the cyclone.  When using bulk, un-sieved biomass the fine 

particles may end up in the bio-oil.  There is a need to improve the particulate filtration of the 

system.  Operating the reactor with un-sieved biomass will likely affect the performance of 

the reactor.  In fact, the optimum conditions for maximum bio-oil yield may shift as the 

radiative method of heat transfer within the reactor will be changed as many small particles 

are introduced. 

Nitrogen flow rates between 1 and 5 sL/min through the reactor did not significantly 

impact bio-oil yield as Table 12 shows.  This result is unexpected as it is well documented 

that increased gas velocity corresponds to increased bio-oil yield.  Higher flow rates decrease 

the vapor residence time and thus minimize secondary reactions and cracking due to the hot 

environment and presence of char so that the liquid yield is maximized[48, 67]. 

Since the 1 – 5 sL/min corresponds to 2.6 and 13.2 L/min of gas at 500°C it is 

difficult to justify that the nitrogen flow rates did not affect the vapor residence time.  Rather, 

one might suggest that the pyrolysis vapors dominated the flow through the reactor and this 

had a much greater affect than the nitrogen flow.  Thus, using carrier gas in the free-fall 

reactor may be only warranted to purge oxygen at start-up or flow rates greater than 5 sL/min 
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are needed to have a significant affect.  This finding may imply an economical advantage 

over other reactors that require carrier gas for fluidization.   

Biomass feed rate has a positive impact on bio-oil yield over the 1 – 2 kg/hr range 

tested.  The 0.0031 P-value in Table 12 confirms the significance of the biomass feed rate as 

also indicated in Figure 20d and Figure 21c and 21d.  In fact, the single feed rate term is 

more significant than the single temperature term.  Bio-oil yields increase from 68.6 wt % to 

71.5 wt % in the model while actual bio-oil yields increased from 69.0 wt % to 71.1 wt % 

over the 1 to 2 kg/hr range.  Unlike temperature, particle size and carrier gas flow rate, the 

biomass feed rate is the most difficult to maintain at the set point.  On average, the biomass 

feed rate was about 4 % higher than the set point, but as much as 16 % greater in one 

instance. 

Since the reactor was designed around a 1 kg/hr biomass feed rate, it is unexpected to 

find that the bio-oil yield continues to increase with feed rates twice the magnitude.  One 

might imagine that at higher feed rates it would be increasingly difficult to heat the biomass 

particles due to radiation blocking and increased mass flow rates, resulting in lower 

conversion to bio-oil, but this was not observed.  The increased bio-oil yield with increased 

feed rate has a number of possible explanations.  One, with increased biomass feed rates, the 

mass of volatiles increases.  Although the nitrogen flow rates did not significantly affect bio-

oil yield over the 1 – 5 sL/min tested, the volume of pyrolysis vapors generated from the 

decomposition of biomass is larger than that of the carrier gas flow.  That is, the pyrolytic 

vapors dominate the flow and reduce the vapor residence time resulting in higher bio-oil 

yield.  Since 1 kg/hr of biomass equates to a vapor flow rate of about 9.3 L/min as suggested 

in section 3.2.1. doubling the feed rate to 2 kg/hr will effectively double the vapor flow rate 

to over 18 L/min.  The flow rate due to the decomposition of biomass may be even greater 

than 9.3 L/min at a 1 kg/hr feed rate if the molecular weight of the vapors is less than the 88 

kg/kmol assumed in Appendix A.  Additional evidence of the pyrolytic vapors dominating 

the carrier gas flow may be supported by the observation that the condenser inlet temperature 

was often much higher for experiments with high biomass feed rates.  The higher feed rates 

resulted in an increased thermal mass and thermal load on the condenser.  This was not 

noticed with the nitrogen carrier gas flow rates as the 1 – 5 sL/min flow rates correspond to 
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0.076 – 0.378 kg/hr.  The 1 – 2 kg/hr increase of the biomass feed rate however was much 

more noticeable.  Secondly, if in fact the primary means of heat transfer is due to radiation as 

Bohn and Benham [54] suggest, the increased number of particles may act as a shield to the 

vapors and prevent further cracking into char and non-condensable gas.  Thus, increased 

carrier gas flow rate will affect residence time but will not influence the heat transfer 

mechanism as increased biomass feed rates do. 

Temperature, particle size and feed rate are all significant factors in predicting the 

bio-oil yield.  Over the ranges tested, the full model predicts that the maximum bio-oil yield 

will occur at a heater set point temperature of 572 ˚C, feeding 240 micron sized particles at 2 

kg/hr.  Carrier gas flow rates are not significant over the 1 – 5 sL/min range tested implying 

that inert carrier gas is only necessary to purge oxygen. 

 

5.3. Char Yield Model 

The reduced char yield model has an R2 value of 0.95 and the P-value is less than 

0.0001 indicating the model is a very significant fit.  The char yield model is shown in 

Equation 14 where x1, x2 and x3 are the coded temperature, particle size and flow rate terms, 

respectively.  Increasing particle size demonstrates a significant positive effect on char yield 

while increasing temperature reduces the yield as shown in Figure 20a and 20b and Figure 

24.  Over the temperature range tested, the char yield decreased from nearly 20 wt % to 10 wt 

% as indicated by the 400 micron particle size line in Figure 24.  The increasing temperature 

corresponds to increased particle heating rate.  As a particle is heated more quickly it more 

quickly decomposes into vapors and char.  The higher temperatures also decompose difficult 

to break down biomass components such as lignin, that may otherwise be turned into char 

[68].  Thus the char yield decreases with increasing temperature.  The quadratic temperature 

term in the model is evident by the slight curvature in the same figure.  Operating at optimal 

temperature conditions for maximum bio-oil yield would result in char yields around 15 wt 

%.   

 

2
1321 30.028.023.165.282.15 xxxxY yieldChar −++−=  Equation 14. 
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Figure 24 shows the char yield increasing by approximately 5 wt % as the particle 

size increases from 200 microns to 600 microns.  Reasons for increasing char yield with 

increasing particle size are discussed in section 5.2.  Flow rate, though not statistically 

significant is included in the char yield model since it has a P-value of 0.06.  The char yield 

increases about 1 wt % from 15 wt % with nitrogen flow rates ranging from 1 – 5 sL/min.  

Feed rate is also not a significant factor. 

 

 

Figure 24. Char yield with respect to temperature and particle size 

 
 

5.4. Non-condensable Gas Yield Model 

The reduced non-condensable gas model has an R2 value of 0.95 and the P-value is 

also less than 0.0001 indicating the model is a very significant fit.  The non-condensable gas 

yield model is shown in Equation 15 where x1, x2, x3 and x4 are the coded temperature, 

particle size, flow rate and feed rate terms, respectively.  The two temperature terms are the 

only positive terms in the model indicating that increasing temperature will yield increased 

non-condensable gas.  
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2
1214321 09.132.045.032.055.078.113.14 xxxxxxxY yieldNCG +−−−−+=  Equation 15. 

 

The temperature and particle interaction term has a P-value of 0.054 and is included 

as a significant interaction affect.  The temperature and particle size interaction is 

demonstrated in Figure 25.  While increasing temperature has a positive contribution to the 

non-condensable gas yield, increasing particle size, flow rate and feed rate negatively affect 

the yield as Figure 25 and Figure 26 suggest.  The solid parallel lines in Figure 26 show that 

no interaction exists between flow rate and feed rate. 

Non-condensable gas yield is minimized around 525 °C but increases with 

temperature thereafter.  A P-value less than 0.0001 indicates that the single temperature term 

and the quadratic term affect non-condensable gas yield with convincing significance.  At 

high temperatures the pyrolysis vapors are cracked into lower molecular weight species 

leading to an increase in non-condensable gas production [69]. 

The non-condensable gas yield is also significantly impacted by particle size with 

larger reducing the amount of non-condensable gases produced.  Non-condensable gases 

decrease from 15 wt % to around 13 wt % with particle sizes ranging from 200 – 600 micron 

in Figure 20b.   

While the carrier gas flow rate is not significant for bio-oil or char production, it is 

significant for non-condensable gas yield.  The yield decreases about 1.5 wt % over the 1 –5 

sL/min increase in nitrogen flow rate.  Feed rates increasing from 1 –2 kg/hr significantly (P-

value of 0.002) decrease non-condensable gas yield by about 1.5 wt %.   

The bio-oil, char and non-condensable gas product yield models all contain 

significant single temperature and particle size terms as well as a significant quadratic 

temperature term.  With temperatures increasing from 450 – 650 °C, bio-oil yield is 

maximized around 70 wt % at a reactor set point temperature near 575 °C corresponding to a 

vapor temperature around 500 °C.  Over the same temperature range, char yields will 

continue to decrease the entire range and non-condensable gas will generally increase.  For 

particle sizes increasing from 200 – 600 microns, bio-oil yields will peak using particles 

below 300 microns, char yields will increase about 5 wt % and non-condensable gas yields 

will decrease by about 5 wt %.   
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Figure 25. Non-condensable gas yield with respect to temperature and particle size 

 
 

 
Figure 26. Non-condensable gas yield with respect to feed rate and flow rate 
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5.5. Fast Pyrolysis Product Characterization 

The bio-oil, char and non-condensable gas from the free-fall reactor were analyzed.  

The analysis allows for comparison of between reactors and is another means through which 

the free-fall reactor can be evaluated aside from product yield.  Figure 27 provides the 

average mass balance composition for the 6 center point experiments as produced from 100 

wt % Red oak biomass.  The bio-oil yield is comparable to the yields reported by Fahmi et al. 

[12] for various biomasses from a fluidized bed reactor.  The char values are lower than the 

roughly 20 wt % reported and the non-condensable gas yield higher that the 10 wt % reported 

in the same paper.  The 17.2 wt % combined water content corresponds to an average bio-oil 

moisture content of 24.7 wt %.  As discussed in section 5.1, the carried water is the portion 

that is carried over from the biomass.  It is assumed that all of the water in the biomass 

remains in the bio-oil since the bio-oil vapors are passed through an ice bath to trap the 

moisture before leaving the condensers.  The reaction water refers to the water that is 

produced during the thermochemical production of bio-oil.  Czernik et al. [26] suggest that 

long vapor residence times (>2 s) at high temperatures cause vapor cracking and produce 

more undesired reaction water. 

 

 
Figure 27. Average center point product and bio-oil composition 
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Each of the four bio-oil fractions shown in Figure 28 was analyzed individually and 

the results combined and reported on a whole bio-oil basis.  As noted in section 4.4 all center 

point products (besides the non-condensable gas) were analyzed in triplicate.  From these 

values a 95 % confidence interval was calculated and applied to the remaining product 

analysis which was performed only once. 

As shown in Figure 20 temperature plays a primary role in product distribution.  

Similarly, many product characteristics are predominantly influenced by temperature.  

Subsequently, only those portions of a model demonstrating a high degree of significance 

will be discussed.  The parameter estimates for the models can be found in Appendix D. 

 

5.5.1. Bio-oil Characterization 

Complete results summarizing a comprehensive center point bio-oil analysis may be 

found in Table 14.  For the most part, the whole bio-oil matches quite well with that of 

typical bio-oil.  The carbon content appears somewhat low while the oxygen content is high 

in comparison to typical bio-oils.   

 
Figure 28. Bio-oil stage fraction distribution 
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Stage fractions 1 and 3 are quite similar except for water insolubles.  The higher 

water insolubles content in stage fraction 3 is due to the bio-oil collection method.  The third 

fraction is collected using an electrostatic precipitator and is designed to trap liquid aerosols.  

The understanding is that the aerosols are formed from the decomposition of lignin and thus 

water insolubles are often referred to as pyrolytic lignin [70, 71].  The similar carbon content 

for stage fractions 1 and 3 are also due to the bio-oil collection system and the amount of 

moisture in the bio-oil.  The second stage fraction collected far more moisture than either the 

first or third fractions since it was operating at a cooler temperature.  The cool temperature 

condensed the water before entering the third fraction and this decreased its relative carbon 

content. 

As noted in section 2.3, the high moisture content of bio-oil negatively affects the 

heating value.  The opposite effect can be seen in stage fraction 1 (SF1) and stage fraction 3 

(SF3) both having low moisture contents at 9.9 and 12.7 wt % respectively, compared to 

typical bio-oil.  This corresponds to a heating value of 20.4 MJ/kg compared to 12.3 MJ/kg 

for stage fraction 2 having an average moisture content of 42.1 wt %.  Figure 30 shows a 

sample of stage fraction 1 being poured into a beaker. 

The bio-oil can further be characterized according to its chemical composition.  

Figure 29 depicts the bio-oil chemical composition from GC/MS analysis (water soluble 

identified) as well as solids, moisture and water insoluble contents as indicated in Table 14.   

 

 
Figure 29. Average center point bio-oil composition 
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Figure 30. Bio-oil stage fraction 1 from experiment number 12 



 
 

 

 

 

 

Table 14. Center point bio-oil characteristics compared to typical wood derived bio-oil 

  SF1
a
 SF2 SF3 SF4 Whole St Dev 95 % CI   Bio-oil

b
 

Yield (wt %) 38.4 41.4 18.5 1.6 100 - - 
 

- 

Moisture content (wt %) 9.9 42.1 12.7 64.2 24.7 0.6 0.5 
 

15-30 

Water Insolubles (wt %) 20.2 9.8 31.1 1.07 18.0 0.9 0.7 
 

16.2, 20.6c 

Solids (wt %) 1.3 1.1 0.9 0.8 1.1 0.3 0.2 
 

1 

Total Acid Number (mg KOH/g) 93 114 90 74 101 2 1 
 

94d 

HHV (MJ/kg) 20.4 12.3 20.4 7.0 16.8 0.1 0.1 
 

16-19 

Ultimate Analysis (wt %) 
    

  
   

 

Carbon 49.118 28.138 48.036 12.238 39.558 0.598 0.478 
 

55-58 

Hydrogen 6.74 8.28 6.92 7.62 7.42 0.13 0.11 
 

5.5-7 

Nitrogen 0.037 0.011 0.025 0.029 0.021 0.018 0.015 
 

0-0.2 

Oxygene 44.05 63.47 44.97 80.03 52.93 0.69 0.55 
 

35-40 

Sulfur 0.001 0.008 0.001 0.006 0.003 0.004 0.004 
 

- 
Ash 0.054 0.093 0.052 0.077 0.066 0.033 0.027   0-0.2 

a SF denotes stage fraction 
b Values from wood derived bio-oil unless otherwise stated, Bridgwater [21]  
c Values from poplar and white spruce respectively, Piskorz [72] 
d TAN value from mixed hardwoods, Moens [73] 
e Oxygen calculated by difference for all fractions 
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Figure 31 provides the moisture content, water insoluble content and Total Acid 

Number (TAN) for whole bio-oil produced at low, middle and high temperatures tested in the 

design of experiments.  As the temperature increases from 450 ˚C to 650 ˚C, the bio-oil 

moisture content decreases by about 4 wt %.  Bio-oil water insoluble content on the other 

hand, increases nearly 7 wt %.  The Total Acid Number decreases by nearly 20 mg KOH/mg 

bio-oil over the same temperature increase.  While low moisture content and TAN values are 

good properties in bio-oil these characteristics come at the expense of bio-oil yield.  

Operating temperatures 450 ˚C, 550 ˚C and 650 ˚C correspond to bio-oil yields of 66.7, 69.5 

and 64.4 wt %, respectively.  Thus operating conditions that correspond to optimal bio-oil 

properties do not necessarily equate to conditions producing maximum bio-oil yields. 

 

 
Figure 31. Bio-oil moisture and insolubles content, and Total Acid Number trends for low, mid-point and 

high temperatures 

 

5.5.1.1 Bio-oil Moisture Content 
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particle size are significant with P-values less than 0.05 as noted in Appendix D.  Figure 32 

below displays the changing moisture content with respect to temperature and particle size. 

For operating temperatures above 585˚C it is best to use larger particles to minimize the 

moisture in the bio-oil.  For temperatures below 585˚C it is best to use smaller particle sizes 

even though the moisture content will generally be greater in the bio-oil compared to those 

produced at higher temperatures.  As noted earlier, high temperature conditions may be 

favorable for low moisture content bio-oil but also results in lower bio-oil yields.  

Fortunately, the bio-oil yield model predicts that the maximum yield will occur at 

temperatures around 575 ˚C as shown in Table 13.  At this temperature the particle size 

chosen makes little difference in the bio-oil moisture content.  The bio-oil moisture content 

model is in Equation 16 where x1 is temperature and x2 is particle size. 

 

2
1 2 1 2 123.34 1.46 0.32 0.43 0.38bio oil moisture contentY x x x x x− = − + − +  Equation 16. 

 

 

Figure 32. Bio-oil moisture content 
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water insoluble content for the fourth fraction of the bio-oil center points was 1.1 wt % on 

average.  Since the mass of the fourth stage fraction was small this amount often contributes 

less than 0.05 wt % to the whole bio-oil water insolubles.  For this reason the average center 

point water insoluble content of the fourth fraction was applied to all remaining experiments.   

A model was fit to relate water insoluble content to the operating conditions as given 

in Equation 17.  The reduced model can be found in Appendix D.  With an R-squared value 

of 0.86 and a P-value less than 0.0001, the model is significant. 

 

- lub 1 2 1 218.01 2.01 0.90 0.50
bio oil water inso le

Y x x x x= − − +  Equation 17. 

 

Figure 33 indicates how water insolubles are affected by the processing conditions.  

Temperature and particle size play a significant role each with P-values less than 0.05. 

Figure 33 can be understood when comparing it to the char yield model in Figure 24.  Water 

insolubles are the large, lignin derived molecules within the bio-oil.  These large molecules 

are difficult to break down and require high temperatures to do so.  Yang et al. [68] showed 

that over 47 wt % of the original lignin mass remained and formed a solid residue after 

heating the sample to 900 °C.  Looking at the effect of temperature on water insolubles and 

char yield it appears that at low temperatures fewer water insolubles are present in the bio-oil 

while the char yields remain high.  With increasing temperature however, more water 

insolubles are present in the bio-oil and the char yield drops.  At low temperatures the 

biomass particle is not quickly broken down or vaporized trapping the lignin that is converted 

to char.  At high temperatures, the biomass particle is quickly vaporized and may even 

explode due to steam vaporization [19].  The cellulose and hemicellulose have fully degraded 

after 400 °C leaving primarily lignin [68, 74].  Thus more lignin derived insolubles are found 

in the bio-oil at high temperatures corresponding to low char yields.   

A similar affect is noticed with particle size.  Smaller particles allow for the heat to 

rapidly penetrate and decompose the biomass particle leaving little char.  Larger particle 

sizes are not heated as quickly and therefore lock in the lignin component and increase the 

char yield as indicated in Figure 24 and Figure 33. 
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Figure 33. Bio-oil water insoluble content 
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Looking at the 400 micron particle size in Figure 32, it is evident that the moisture content 
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range, the water insoluble content increases about 8 wt % in Figure 33.  These observations 

suggest that as moisture content decreases with temperature, the water insoluble content 

increases by nearly the same amount.  Apart from the decrease in moisture content, the 

apparent increase in bio-oil water insoluble content may also be attributed to a decrease in 

bio-oil water soluble content. 

To truly see if the water insoluble content is increasing with temperature at the 

expense of char yield it is helpful to plot the bio-oil water insoluble content on a moisture 

free basis as a fraction of the biomass input along with the char and non-condensable gas 

yield. 
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Figure 34. Water insoluble content, char and non-condensable gas yield as a function of temperature 

 

Figure 34 clearly indicates that bio-oil water insoluble content expressed as a fraction 

of the biomass input increases with temperature along with non-condensable gas yield while 

char yield decreases.  The magnitude of the slope for the char yield model is slightly greater 

than the slope of the water insoluble content model indicating that the decrease in char yield 

is greater than the increase in water insoluble content over a given temperature range.  The 

increasing yield of non-condensable gas with temperature likely makes up for this difference. 

Presented a different way, one can see that bio-oil water insoluble content not only 
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high water insoluble contents.  
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char. 
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Figure 35. Bio-oil water insolubles and char yield with respect to organic liquid 

 

5.5.1.3 Bio-oil Solids Content 

The solids content was determined using the procedure in Appendix B.  The solids 
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for bio-oils as noted in Table 14.   
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Figure 36. Bio-oil solids content with respect to particle size 

 

5.5.1.4 Bio-oil Viscosity 

Bio-oil fractions 1, 2 and 3 of the center point experiments were analyzed.  The small 

quantity of stage fraction 4 did not permit any analysis yet it appeared water like in all cases.  

The resulting viscosity along with the bio-oil moisture content is reported in Table 15.  Stage 

fraction 1and 3 clearly show a wide range of viscosities though the reactor operating 

conditions were consistent.  None of the bio-oil viscosities fall within reported whole bio-oil 

viscosities ranging from 13-153 cSt when measured at 40 °C [75].   

 

Table 15. Center point bio-oil viscosity, moisture and insoluble content 

Stage Fraction SF1 SF2 SF3 SF4 

Center point 
experiment 

Va Mb V M V M Ic V M 

(cSt) (wt %) (cSt) (wt %) (cSt) (wt %) (wt %) - (wt %) 

7-20090115A 223 12 4 43 703 13 37 water like 62 

7-20090311A 937 6 5 41 470 13 29 water like 62 

7-20090401A 177 13 4 42 632 12 31 water like 72 

7-20090420A 910 8 5 42 735 12 34 water like 61 

7-20090522A 285 11 4 43 469 13 30 water like 63 

7-20090529A 538 8 4 42 417 13 31 water like 65 
a Viscosity measured at 40 °C 
b Moisture content 
c Insoluble content 
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The wide range in viscosity can in part be explained by the corresponding moisture 

content of the bio-oil.  As the moisture content increases, the viscosity decreases as shown in 

Figure 37 for stage fraction 1 center points.  Stage fraction 3 is not as obviously linked to 

moisture content as this remained quite similar for all experiments.  Instead, the range of 

viscosities may be depend on the quantity of water insolubles as this fraction is collected 

using an electrostatic precipitator. 

The amount of water within the bio-oil is strongly linked to the temperature of the 

reactor as indicated in section 5.5.1.1 as well as the condenser temperature.  Since the four 

bio-oil fractions are all collected at different temperatures each fraction condenses differing 

amounts of moisture and thus has a different viscosity.  In order to collect uniform bio-oil 

fractions, the temperature of the condenser should be monitored and maintained at fixed 

conditions regardless of the reactor operating conditions.   

 

 
Figure 37. Center point stage fraction 1 viscosity and moisture content 

 

5.5.1.5 Bio-oil Chemical Compounds 

Chemical compounds within each bio-oil fraction were analyzed using GC/MS.  The 
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quantifiable portion of bio-oil.  The 32 compounds identified and quantified are organized 

into seven groups as shown in Table 16. 

Models generated from the chemical groups in Table 16 were insignificant and thus 

are not shown.  Figure 38 shows the chemical groups quantified in bio-oil produced at 

temperatures 450 ˚C, 550 ˚C and 650 ˚C.  The 95% confidence intervals in indicate that 

temperature though significant in many other bio-oil characteristics does not significantly 

affect the quantity of each chemical grouping within bio-oil. 

The average quantity of each chemical group over all bio-oils is shown in Table 17.  

It is worth mentioning that between 35 – 40 wt % of typical bio-oils can be characterized and 

quantified using a GC/MS as noted by Oasmaa and Scholze [76, 77].  In this case, about 15 

wt % of the bio-oils produced were quantified using GC/MS; though more chemicals were 

identified. 

 

Table 16. GC/MS quantified compounds and groups within all bio-oil fractions 

Acids Guiacols 
Acetic acid Phenol, 2-methoxy- 

Sugars Phenol, 2-methoxy-4-methyl- 
Levoglucosan Phenol, 4-ethyl-2-methoxy- 

Furans Eugenol 
2-Furancarboxaldehyde, 5-methyl- Phenol, 2-methoxy-4-(1-propenyl)-, (E)- 
Furfural Vanillin 
2-Furanmethanol Syringols 
2(5H)-Furanone, 3-methyl- Phenol, 2,6-dimethoxy- 

Phenols 4 methyl 2,6 dimethoxy phenol 
Phenol Ethanone, 1-(4-hydroxy-3,5-dimethoxyphen 
Phenol, 2-methyl- Other GC/MS quantified compounds 
Phenol, 3-methyl- 2-Propanone, 1-hydroxy- 
Phenol, 4-methyl- 2-Butanone, 3-hydroxy- 
Phenol, 2-ethyl- 2-Cyclopenten-1-one, 2-methyl- 
Phenol, 2,5-dimethyl- 2H-Pyran-2-one 
2,4-Dimethylphenol 1,2-Cyclopentanedione, 3-methyl- 
Phenol, 3-ethyl- 2-Furancarboxaldehyde, 5-(hydroxymethyl) 
Phenol, 3,4-dimethyl- Glycerin 
Hydroquinone 
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Table 17. Results from GC/MS analysis of whole bio-oils for all experiments 

Group (wt %) Average St Dev 95% CI Typical
a
 

Acetic acid 3.27 1.18 0.42 0.1 - 1.8  

Levoglucosan 2.13 1.11 0.40 0.4 - 1.4 

Furans 0.76 0.10 0.04 0.3 - 0.58b 

Phenols 0.65 0.07 0.03 2 – 5c 

Guiacols 1.67 0.24 0.09 - 

Syringols 2.80 0.46 0.17 - 

Other 4.09 0.71 0.26 - 

Total 15.37 - - ~ 35 
a Values reported by Girard and Diez unless otherwise stated [78] 
b Recalculated from dry basis assuming 25 wt % moisture 
c Values reported by Bridgwater et al [16] 

  

 

Figure 38. Chemical groupings within bio-oil produced at low, mid-point and high temperatures 

  

Table 18 indicates the average amount of each chemical group present within the 

stage fraction for all 30 experiments.  The weight distribution of chemical compounds among 

the stage fractions appears to be shifted towards the first condenser and trails off at the later.  

Since no apparent trends exist with respect to the reactor temperature, the distribution of 

chemical groups may be dependent upon the condenser temperature. 
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Table 18. Average GC/MS results for each stage fraction over all experiments 

Group (wt %) SF1 SF2 SF3 SF4 

Acetic acid 1.31 1.33 0.57 0.06 
Levoglucosan 1.18 0.46 0.50 - 

Furans 0.41 0.20 0.13 0.01 
Phenols 0.33 0.20 0.12 - 
Guiacols 0.92 0.43 0.31 - 
Syringols 1.61 0.64 0.54 0.01 
Other 1.99 1.41 0.67 0.03 
Total 7.76 4.66 2.85 0.10 

 

5.5.1.6 Bio-oil Carbon Content 

The carbon content of the bio-oil was determined using ASTM D5373 standard test 

method.  The bio-oil carbon content reduced model is significant with a P-value less than 

0.0001 and has an R2 value of 0.67.   Temperature and particle size are the only significant 

single terms with P-values less than 0.05.  The only other significant term is interaction effect 

of temperature x particle size with a P-value of 0.034 as indicated in bio-oil carbon content 

model in Appendix D.  The carbon content in the bio-oil increases with temperature shown in 

Figure 39.   

 

 

Figure 39. Bio-oil carbon content with respect to the operating conditions 
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At approximately 600 ˚C the bio-oil carbon content will be nearly the same no matter 

what particle size is chose.  Below 600 ˚C, the bio-oil carbon content decreases as the 

biomass particle size increases from 200 – 600 micron.  Above 600 ˚C the opposite occurs.  

As temperatures become greater than 570 ˚C bio-oil yields begin to decline.  An overall 

carbon balance is discussed in section 5.5.3.1.   

When the bio-oil carbon content is plotted on a dry bio-oil basis as in Figure 40, the 

effect of temperature is not nearly as profound.  Again, since the relative carbon content is 

increasing with respect to temperature in Figure 39 another compound must be decreasing.  

As indicated in Figure 32, the moisture content of the bio-oil decreases with temperature and 

thus the oxygen content within the bio-oil is presumably decreasing.  Therefore, when the 

bio-oil carbon content is plotted on a moisture free basis (ie. the carbon content is not relative 

to moisture) the increase in carbon content with temperature it is not nearly as pronounced. 

 

 

Figure 40. Bio-oil carbon content on a dry bio-oil basis 

 
 

5.5.2 Char Characterization 

Char samples were characterized by ultimate and proximate analysis and higher 

heating value.  The results of the center point char samples are listed in Table 19 and 

compared with other oak wood char from an auger reactor operating at 450 °C.   
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Table 19. Center point char characteristics 

  Char Oak wood chara 

HHV (MJ/kg) 30.68 31.06 
Ultimate analysis (wt %) 

Carbon 78.17 82.83 
Hydrogen 3.56 2.7 
Nitrogen 0.13 0.31 

Oxygenb 16.72 11.22 
Sulfur 0.01 0.02 

Proximate analysis (wt %) 
Ash 1.40 2.92 
Moisture 3.51 3.17 
Volatiles 26.91 15.58 
Fixed Carbon 68.55 78.33 

a Values from an auger reactor operating at 450 °C, Mohan [79]  
b by difference 

 
Proximate analysis of the char was determined using a Thermogravimetric Analyzer 

(TGA).  The volatiles are determined by the difference in weight as the sample is heated 

from 100 ˚C to around 880 ˚C.  Depending on the length of time at the various temperatures 

in the TGA, the fixed carbon and volatiles may change slightly.  This may account for the 

difference in volatiles and fixed carbon. 

 

5.5.2.1 Char Carbon Content 

Temperature, particle size, flow rate and feed rate are all significant in the char 

carbon content model.  Interactions between temperature and particle size as well as particle 

size and flow rate are also significant in the model.  The reduced char carbon content model 

is listed in Equation 18 where x1, x2, x3 and x4 represent the coded temperature, particle size, 

flow rate and biomass feed rate, respectively. 

 

1 2 3 4 1 2 2 377.04 0.65 0.37 0.28 0.42 0.46 0.55
biochar CC

Y x x x x x x x x= + + + + + +  Equation 18. 

 

The interaction between temperature and particle size can be visualized in Figure 41.  

The char carbon content model is similar to the bio-oil model in that as the temperature is 

increased, the carbon content of the char also increases; with the exception of the 200 micron 
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particles.  The same trend in the bio-oil carbon content model for increasing particle size is 

also evident in the char carbon content model; though the critical temperature is shifted down 

from around 600 ˚C to around 510 ˚C.   

 

 

Figure 41. Char carbon content with respect to temperature and particle size 

 

5.5.3 Non-condensable Gas Characterization 

The non-condensable gas is primarily composed of carbon dioxide, carbon monoxide 

and methane as shown in Figure 42.  Other gases include ethylene, ethane, hydrogen and 

oxygen.  Trace amounts of acetylene and propane were occasionally detected though not 

shown.  The system was purged with nitrogen before each experiment to remove oxygen and 

create an inert atmosphere.  A vacuum pump regulated the pressure within the reactor and 

was maintained at 12 cm (5 inches) of water.  The slightly positive pressure prevented 

oxygen from entering and in most experiments no oxygen was detected.  Occasionally the 

vacuum pump would shift below atmospheric conditions and some oxygen would leak in as 

was the case in one of the center point experiments. The non-condensable gas yield model is 

given in section 5.4 in Equation 15.   

 The carbon monoxide content closely resembles the entire non-condensable gas yield 

as shown in Figure 20a and Figure 25.  As temperatures comparable to low temperature 

gasification conditions are approached the carbon monoxide content becomes much greater.  
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The error on the carbon monoxide, carbon dioxide, methane and hydrogen yield is ± 0.35, 

0.23, 0.05 and 0.01 wt %, respectively. 

 

 
Figure 42. Average non-condensable gas composition from center points on a nitrogen free basis 

 

 
Figure 43. Gas yield of selected non-condensable gas constituents 
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the most dominating factor, but particle size and feed rate are also significant.  The 

interaction between temperature and particle size as well as that of particle size and flow rate 

is also significant.  One might note that for bio-oil, char and non-condensable gas the carbon 

content increases with temperatures above 500 °C in all cases.   

 

 
Figure 44. Non-condensable gas carbon content 

 
Though the carbon content may increase the product the yield may decrease with 

increasing temperature.  Thus a constant carbon balance can be maintained.  Table 20 shows 

how the carbon content of each product can increase while maintaining a constant, total 

carbon yield.  The table was produced using the product yield and carbon content models to 

calculate the carbon balance.  The carbon out is the sum of the weighted average of the 

carbon within the respective products.  The carbon content of the Red oak biomass is listed in 

Table 8 as 48.7± 3.56 wt %.  This suggests that the overall carbon balance was roughly 92 wt 

% but may have been up to 100 wt %.  The mass balance closure for the bio-oil, char and 

non-condensable gas models over the temperature range is always greater than 97 wt %.  

This is evidence that the product yield models account for temperature quite well.   

It is noteworthy to mention that the maximum weighted bio-oil carbon content 

corresponds to the temperature (600 °C) where the maximum bio-oil yield was produced.  

Thus, conditions that favor maximum bio-oil yields correspond to conditions where bio-oil 

carbon content and bio-oil water insoluble content are at or near a maximum.
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Table 20. Model mass balance and carbon closure
a
 

Tempb Yield (wt%) Carbon content (wt%/wt%) Weighted content (wt%) Carbon Out 

(°C) Bio-oil Char NCGc Total Bio-oil Char NCG Bio-oil Char NCG (wt%) 

450 64.42 20.03 14.89 99.34 37.14 75.90 37.08 23.92 15.20 5.52 44.65 
500 67.93 18.35 13.36 99.64 38.43 76.67 37.17 26.11 14.07 4.97 45.14 
550 69.48 16.02 14.03 99.53 39.56 77.37 37.58 27.49 12.39 5.27 45.15 
600 69.07 13.05 16.92 99.04 40.51 77.97 38.31 27.98 10.17 6.48 44.64 
650 66.70 9.43 22.00 98.14 41.30 78.49 39.35 27.55 7.40 8.66 43.61 

a Fixed conditions: particle size at 400 µm, flow rate at 3 sL/min and feed rate at 1.5 kg/hr 
b Temperature 
c Non-condensable gas 
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CHAPTER 6: Conclusion 

The free-fall fast pyrolysis reactor is a novel reactor type that employs radiant heat 

supplied by electrical heaters to convert raw, lignocellulosic biomass into bio-oil, char and 

non-condensable gases.  The reactor is simple in design and operation yet the process of 

optimization is not trivial.  

 

6.1. Experimental Conclusions 

This work has successfully produced bio-oil from a novel free-fall reactor.  Maximum 

bio-oil yields of 72 wt % were produced using small amounts of carrier gas and no heat 

carrier.  The yield is comparable to traditional fast pyrolysis yields from a fluid bed reactor. 

Temperature and particle size were found to be the key factors in determining product yield 

and product characteristics.  Though increasing flow rate would conceivably increase bio-oil 

yields by shortening the vapor residence time, its affect was determined not to be statistically 

significant. 

Maximum bio-oil yields between 70 – 75 wt % will likely occur at temperatures 

around 575 °C, particle sizes just below 300 microns, nitrogen flow rates at 5 sL/min and 

feed rates at 2 kg/hr of sieved Red oak biomass. 

A central composite design of experiments enabled the discovery of interaction 

affects between factors, specifically that of temperature and particle size.  In general, higher 

operating temperatures lead to higher heating rates.  The high heating rates are essential to 

fast pyrolysis in that secondary reactions are minimized because the particle is quickly 

vaporized.  These parameters lend themselves to low moisture content and high carbon and 

water insoluble content bio-oils.  Very high temperatures hinder bio-oil yields as the 

pyrolysis vapors are cracked into non-condensable gases.  Char yield decreases at high 

temperatures but non-condensable gas yield increases.  Smaller particle sizes are generally 

decomposed more quickly than larger particle sizes.  Small particles allow for fast 

decomposition which minimizes opportunity for secondary reactions to occur within the 

particle creating secondary char.  Using smaller biomass particle sizes results in higher bio-

oil yield, lower char yield and higher non-condensable gas yield.  Smaller particle sizes 

generally lower the bio-oil moisture content.  Since both reactor temperature and biomass 
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particle size influence the same results, the interaction between the two should be considered 

when seeking to maximize or minimize product characteristics.  The interaction between 

reactor temperature and particle size can be observed most clearly in the bio-oil moisture 

content, water insoluble content and carbon content models. 

 

6.2. Validation of Free-fall Reactor 

Evaluating the free-fall fast pyrolysis reactor by experimental operation, response 

surface methodology and product analysis provides a number of insights.  Most notably, the 

free-fall reactor can in fact be utilized for the production of bio-oil and in so doing achieve 

competitive yields to that of the traditional fluidized bed.  In addition, maximum bio-oil 

yields were found to be in agreement with bio-oil yields from other free-fall reactors 

operating at similar conditions as reported in literature.  The reactor product characteristics 

were for the most part comparable to those cited elsewhere.  Differences in the moisture 

content, higher heating value and viscosity may be due to the unique bio-oil collection 

system. 

 

6.3. Future Opportunities 

A few suggestions come to mind for the continued use of the free-fall reactor.  First, 

alternatives to cyclone particulate removal may need to be used in conjunction with the free-

fall reactor.  One such possibility is the use of a swirl tube.  Since the reactor was optimized 

using sieved Red oak biomass the use of un-sieved biomasses will negatively impact bio-oil 

yields and greatly increase the solids content within the bio-oil.  It is necessary then to 

replace the current cyclone with a new heated particulate filtration device to achieve the same 

bio-oil characteristics as noted earlier.  Second, a temperature controlled bio-oil collection 

system may improve and amplify some of the bio-oil characteristics that were found.  Third, 

careful control of the biomass feed rate may improve the results of future experimental 

designs.  And finally, a larger feeder or hopper along with a self unloading char catch will 

allow for increased operational time. 

 Performing fast pyrolysis with the reactor heating zones set to different temperatures 

or removing sections of the reactor to vary particle residence time may be interesting to 
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study.  Completing fast pyrolysis experiments without any nitrogen carrier gas may prove 

that no carrier gas is needed.  Additionally, running the system at the predicted optimum 

conditions would add validation to the design of experiments.  Long term studies may 

include fast pyrolysis of pretreated and torrefied biomass as well as investigating the reactor 

as a fast torrefaction reactor. 
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Appendix A: Reactor design calculations 

 
 

Heating rate for biomass particle as a function of wall temperature and particle density

Calculate the time required to heat a small particle from 25C to 450C:

Assume that biomass particles are solid spheres:

D 50µm 60µm, 1000µm..:= diameter of particle

Biot number for biomass:

Lc
V

As

Characteristic length where V is the volume and A    s is the surface area.

V D( )
1

6
π D

3
⋅:= where D is the diameter of the particle

As D( ) πD
2

:=

Lc D( )
V D( )

As D( )
:=

Lc D( )

0

0

1

2

3

4

8.33

10

11.67

13.33

15

µm

=

Biot number where h is the convection coefficient and k is the conduction

coefficient.Bi
h Lc⋅

k

Calculate h_rad:

Tp 25K 273K+:=

Twall 850 950 1050 1150 1250( )K:= (assume a wall temperature minimum)

ε 1:= (assume emmisivity of one)

σ 5.67 10
8−

⋅
W

m
2

K
4

⋅

:= (Stephan Boltzmann constant)

εp 1:= (assume blackbody radiation assumes veiw factor of 1)

Fp_wall 0.7:= (view factor -see veiw factor calculations)

(radiation heat transfer between 2 surfaces: from 1 the      particle to 2 the surroundings  )

Qdot12

σ T1
4

T2
4

−



⋅

1 ε1−

A1 ε1⋅

1

A1 F12⋅
+

1 ε2−

A2 ε2⋅
+

σ T2
2

T1
2

+



⋅ T2 T1+( ) T1 T2−( )

1 ε1−

A1 ε1⋅

1

A1 F12⋅
+

1 ε2−

A2 ε2⋅
+

W
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qdot12

σ T2
2

T1
2

+



⋅ T2 T1+( ) T1 T2−( )

A1

1 ε1−

A1 ε1⋅

1

A1 F12⋅
+

1 ε2−

A2 ε2⋅
+







⋅

σ T2
2

T1
2

+



⋅ T2 T1+( ) T1 T2−( )

1 ε1−

ε1

1

F12
+

1 ε2−

ε2

A1

A2









⋅+

W

m
2

For a small object in a large cavity, we assume the following (p.628 Cengel):

A1

A2
0 F12 1:=

Since F 12  is not likely to equal 1 we leave it in the following equations.

qdot12

σ T2
2

T1
2

+



⋅ T2 T1+( ) T1 T2−( )

1

ε1
1−

1

F12
+

1 ε2−

ε2
0( )+

σ T2
2

T1
2

+



⋅ T2 T1+( ) T1 T2−( )

1

ε1
1−

1

F12
+

hrad

Qdot12

As Ts Tsurr−( )⋅

Therefore:

hrad

σ T2
2

T1
2

+



⋅ T2 T1+( )

1

ε1
1−

1

F12
+

(Cengel p. 628 -derived radiation due

to convection without assuming view

factor of 1.)
hrad Twall( )

σ Tp
2

Twall
2

+



⋅ Tp Twall+( )

1

εp
1−

1

Fp_wall
+

:=

hrad Twall( ) ε σ⋅ Tp
2

Twall
2

+



⋅ Tp Twall+( ) (Cengel, pg. 130)

hrad Twall0 0,






36.97
W

m
2

K⋅

= which is greater than the assumed: hconv 10
W

m
2

K⋅

Therefore use h_rad and neglect  hconv  to be conservative.
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Calculate the radiation heat transfer coefficient for each wall temperature.

Wall temp: 850K Wall temp: 1050K Wall temp: 1250K

hrad Twall0 0,






36.97
W

m
2

K⋅

= hrad Twall0 2,






63.74
W

m
2

K⋅

= hrad Twall0 4,






101.46
W

m
2

K⋅

=

Wall temp: 950K Wall temp: 1150K

hrad Twall0 1,






49.1
W

m
2

K⋅

= hrad Twall0 3,






81.11
W

m
2

K⋅

=

kbiomass 0.10
W

m K⋅
:= (thermal condutivity of softwood)

(Biot number)
Bi D Twall,( )

hrad Twall( ) Lc D( )⋅

kbiomass
:=

Conduction coefficient of softwood at about 500C.

http://www.mace.manchester.ac.uk/project/resear

ch/structures/strucfire/materialInFire/Timber/therm

alProperties.htm

Calculate the Biot number for different wall temperatures:

Bi D Twall0 0,
,





0

0

1

2

3

4

5

6

7

8

9

-33.081·10

-33.697·10

-34.313·10

-34.929·10

-35.545·10

-36.161·10

-36.777·10

-37.393·10

-38.009·10

-38.625·10

= Bi D Twall0 1,
,





0

0

1

2

3

4

5

6

7

8

9

-34.092·10

-34.91·10

-35.729·10

-36.547·10

-37.365·10

-38.184·10

-39.002·10

-39.82·10

0.011

0.011

= Bi D Twall0 2,
,





0

0

1

2

3

4

5

6

7

8

9

-35.311·10

-36.374·10

-37.436·10

-38.498·10

-39.561·10

0.011

0.012

0.013

0.014

0.015

=

Bi<0.1 for entire range Bi<0.1 @ <850micron Bi<0.1 @ <650micron
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Bi D Twall0 3,
,





0

0

1

2

3

4

5

6

7

8

9

-36.759·10

-38.111·10

-39.463·10

0.011

0.012

0.014

0.015

0.016

0.018

0.019

= Bi D Twall0 4,
,





0

0

1

2

3

4

5

6

7

8

9

-38.455·10

0.01

0.012

0.014

0.015

0.017

0.019

0.02

0.022

0.024

=

Bi<0.1 @ <510micron Bi<0.1 @ <410micron

To assume lumped capacitance analysis: Bi 0.1≤

Therefore lumped capacitance can be assumed at the

conditions given for the respective particle sizes.

Calculate the time required to heat a particle to 500C using the lumped system analysis:

To 500K 273.15K+:= final temp of particle

Twall Twall:= temp of surroundings

Ti 25K 273.15K+:= initial temp of particle

ρ 450 525 600 880 1350( )
kg

m
3

:= (density of various biomasses)

Some considerations Pertaining to the Problem of Wood

Burning, Kanury and Blackshear, 1970 p. 346

Cp 2.273
kJ

kg K⋅
:= (specific heat capacity of biomass)

Computational calorimetric investigation of the reactions during 

thermal conversion of wood biomass, Strezov et al. Biomass

and Bioenergy 27 (2004) p. 5

b D Twall, ρ,( )
hrad Twall( ) As D( )⋅

ρ V D( )⋅ Cp⋅
:= (inverse time constant Cengel, p. 210)

To Twall−

Ti Twall−
e

b D( )− t⋅ (derivation from energy balance of a solid over a finite time

interval, Cengel, p. 211)
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(rearanging and solving for t provides the equation on the left)
t D Twall, ρ,( )

ln
To Twall−

Ti Twall−









b D Twall, ρ,( )−
:=

Solve for the time, t, required to heat a particle to 500C as a function of the wall temperature:

Particle Diameter Wall temp: 850K(576C) Wall temp: 950K(676C)

Bi<0.1 for entire range Bi<0.1 @ <850micron

t D Twall0 0,
, ρ 0 4,,





0

0

1

2

3

4

5

1.364

1.636

1.909

2.182

2.455

2.727

s

= t D Twall0 1,
, ρ 0 4,,





0

0

1

2

3

4

5

0.679

0.815

0.951

1.087

1.223

1.359

s

=
D

0

0

1

2

3

4

5

50

60

70

80

90

100

µm

=

Wall temp: 1050K(776C) Wall temp: 1150K(876C) Wall temp: 1250K(976C)

Bi<0.1 @ <650micron Bi<0.1 @ <510micron Bi<0.1 @ <410micron

t D Twall0 2,
, ρ 0 4,,





0

0

1

2

3

4

5

0.401

0.481

0.561

0.641

0.721

0.802

s

= t D Twall0 3,
, ρ 0 4,,





0

0

1

2

3

4

5

0.257

0.309

0.36

0.411

0.463

0.514

s

= t D Twall0 4,
, ρ 0 4,,





0

0

1

2

3

4

5

0.174

0.209

0.244

0.279

0.314

0.348

s

=
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Plot the results for various wall temperatures and biomass densities.
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Determine the terminal velocity of a range of particle sizes

Calculate the terminal/settling velocity of a small particle using Stokes' Law:

See Perry's Chemical Engineers' Handbook, 7th

ed. 1997. (terminal and settling velocity p. 6-50)ut

4 g⋅ 2⋅ ro⋅ ρ p ρ f−( )⋅

3 ρ f⋅ CD⋅
(0.1 < Re < 1000) 

where:

ut is the particle settling velocity

r is the Stokes radius

g is gravity

ρp is density of the particle

ρ f is the density of the fluid

η is the fluid viscosity and

CD is the drag coefficient

(Reynolds number, function of particle diameter

and terminal velocity)Re ro( )
ρ f 2 ro⋅( )⋅ vt ro( )⋅

µ

CD ro( )
24

Re ro( )








1 0.14 Re ro( )0.70
⋅+





(Coefficient of drag, function of Reynolds number)

(terminal velocity; insert Reynolds number into

coefficient of drag and insert coefficient of drag into

terminal velocity equation - see below) (0.1 < Re <

1000) 

ut

4 g⋅ 2⋅ ro⋅ ρ p ρ f−( )⋅

3 ρ f⋅ CD⋅

ro 100micron 200micron, 1000micron..:= (outer radius of particle)

Range of densities used to determine terminal velocity:

ρ char 450
kg

m
3

:= (bulk density of char)

(density of wood at 300K; assumed constant as heated:

Cengel, Table A-8, pg. 867)ρ wood 525
kg

m
3

:=

ρ p 600
kg

m
3

:= (density of wood, Kanury and Blackshear, 1970 pg. 346)

ρ pelletizedconrnstover 880
kg

m
3

:= (density of cornstover, Kaliyan and Morey, 2005  pg. 6)

ρ coal 1350
kg

m
3

:= (density of coal at 300K, Cengel, Table A-8, pg. 867)
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Fluid properties:

(density of fluid (air) at 450C -less dense than pyrolysis

vapors therefore particle will have a higher ut)
ρ f 0.4880

kg

m
3

:=

µ 3.415 10
5−

⋅
kg

m s⋅
:= (dynamic viscosity of air at 450C)

Use a solve block to iterate the value of the terminal velocity:

Guess ut 3
m

s
⋅:= (enter a guess value for the terminal velocity)

Given

ro
300

2
micron:= (enter radius of particle)

ut

4 g⋅ 2⋅ ro⋅ ρ coal ρ f−( )⋅

3 ρ f⋅
24

ρ f 2 ro⋅( )⋅ ut⋅

µ











1 0.14
ρ f 2 ro⋅( )⋅ ut⋅

µ









0.70

⋅+





















⋅

Tvpart Find ut( ):=

Tvpart 1.3177
m

s
= Tvpart 4.3233

ft

s
= (calculate terminal velocity)

Coefficient of Drag:

(used to find velocity and free-fall distance as a function of time)

vt ro( ) Tvpart:=

Re ro( )
ρ f 2 ro⋅( )⋅ vt ro( )⋅

µ
:=

CD ro( )
24

Re ro( )








1 0.14 Re ro( )0.70
⋅+



:=

CD ro( ) 6.247=
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Terminal velocities of particles ranging from 100 to 1000 um in diameter for various densities:

Density of char:

450 kg/m3

Density of wood:

525 kg/m3

Density of wood:

600 kg/m3

Tv450

0.0698

0.1517

0.2577

0.3818

0.5185

0.6634

0.8135

0.9663

1.1202

1.2743

1.4277

1.5799

1.7307

1.8799

2.0274

2.1732

2.3171

2.4593

2.5998























































m

s
:= Tv525

0.0812

0.1758

0.2975

0.4388

0.5934

0.7563

0.9241

1.0942

1.265

1.4354

1.6047

1.7724

1.9383

2.1022

2.2641

2.4239

2.5817

2.7375

2.8913























































m

s
:= Tv600

0.0925

0.1998

0.3367

0.4946

0.6663

0.8463

1.0308

1.2173

1.4039

1.5897

1.7739

1.9561

2.1362

2.3139

2.4893

2.6623

2.8330

3.0015

3.1678























































m

s
:=
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Density of cornstover:

880 kg/m3

Density of charcoal:

1350 kg/m3
Diameter of particle:

Tv880

0.1344

0.2871

0.478

0.6937

0.9239

1.1616

1.4023

1.6431

1.8824

2.1192

2.3529

2.5833

2.8102

3.0337

3.2538

3.4706

3.6843

3.895

4.1028























































m

s
:= Tv1350

0.2033

0.428

0.7014

1.0027

1.3177

1.6379

1.9581

2.2755

2.5887

2.8969

3.1999

3.4975

3.79

4.0775

4.3603

4.6385

4.9125

5.1824

5.4485























































m

s
:= Dp

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

























































micron:=

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

450 kg/m^3 
525 kg/m^3
600 kg/m^3
880 kg/m^3
1350 kg/m^3

450 kg/m^3 
525 kg/m^3
600 kg/m^3
880 kg/m^3
1350 kg/m^3

Terminal velocity of biomass particles

Diameter of particle (micron)

T
er

m
in

al
 V

el
oc

it
y 

(m
/s

)

1

2
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Calculation of veloctiy and free-fall length with respect to time using Euler's method

Define the differential equation:

F m a⋅ m
t
v

d

d









⋅ FB FD+ Fg− (force balance on particle)

FB ρ f g⋅ Vp⋅ (bouyant force)

FD
1

2
CD ρ f⋅ Ac⋅ v

2
⋅ (drag force)

Fg M g⋅ (gravitational force)

M
t
v

d

d









⋅ ρ f g⋅ Vp⋅
1

2
CD ρ f⋅ Ac⋅ v

2
⋅+ M g⋅−

(differential equation)∆v

∆t

ρ f g⋅ Vp⋅

M
g−

CD ρ f⋅ Ac⋅

2 M⋅
v

2
⋅+

Define particle and fluid properties:

∆t .005:= (delta t is the step size "s")

ρ f 0.4880:= (density of air at 450C "kg/m 3")

µ 3.415 10
5−

⋅:= (dynamic viscosity of air at 450C "kg/m*s)

Dp 300:= (particle diameter "micron")

(radius of particle "m")
ro

Dp 10
6−

⋅

2
:= ro 1.5 10

4−
×=

(density of particle "kg/m 3" )
ρ p 1350:=

Ac π ro
2

⋅:= Ac 7.069 10
8−

×= (cross sectional area of particle "m 2")

Vp
4

3
π⋅ ro

3
⋅:= Vp 1.414 10

11−
×= (volume of particle "m 3")

Mass ρ p Vp⋅:= Mass 1.909 10
8−

×= (mass of particle "kg")

(gravity "m/s 2")
grav 9.81:=
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(define terminal velocity from previous

calculations based on particle size and

density "m/s")

vt 1.3177:=

Re ro( )
ρ f 2 ro⋅( )⋅ vt⋅

µ
:= (Reynolds number)

CD ro( )
24

Re ro( )








1 0.14 Re ro( )0.70
⋅+



:= (Coefficient of drag on particle)

CD ro( ) 6.247= (calculate the drag coefficient)

h ∆t( ) ∆t:= (elapsed time in seconds)

vel v( ) 1−
ρ f grav⋅ Vp⋅

Mass
grav−

CD ro( ) ρ f⋅ Ac⋅

2 Mass⋅
v

2
⋅+









:= (velocity at elepsed time)

t
0

0s:= (initial conditions for time)

v
0

0
m

s
:= (initial conditions for velocity)

x
0

0m:= (initial conditions for distance)

num 500:= (number of iterations desired)

Calculate the velocity and free-fall distance using Euler's method:

Mat iter( ) k 1←

M
0 0,

t
0

←

M
0 1,

v
0

←

M
0 2,

x
0

←

M
k 0,

M
k 1− 0,

h ∆t( )+←

M
k 1,

M
k 1− 1,

vel M
k 1− 1,( ) ∆t+←

M
k 2,

M
k 1− 2,

M
k 1,

∆t⋅+←

k k 1+←

i 1 2, iter..∈for

M

:=

time

velocity

length
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Table of values using Euler's method:

time (s) velocity (m/s) length (m)

Mat num( )

0 1 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0 0

-35·10 0.049032269 -42.451613467·10

0.01 0.097996673 -47.351447103·10

0.015 0.146757854 -31.46893398·10

0.02 0.195182141 -32.444844687·10

0.025 0.243139016 -33.660539765·10

0.03 0.290502512 -35.113052325·10

0.035 0.33715253 -36.798814973·10

0.04 0.382976013 -38.713695037·10

0.045 0.427867989 0.010853035

0.05 0.471732437 0.013211697

0.055 0.514482975 0.015784112

0.06 0.556043364 0.018564329

0.065 0.596347824 0.021546068

0.07 0.635341169 0.024722774

0.075 0.672978765 0.028087668

=

Plot the velocity and the free-fall distance over time:

j 0 1, num..:=

t
j

0 j ∆ t⋅+:= vel
j

Mat num( )
j 1,

:= dist
j

Mat num( )
j 2,

:=

0 0.5 1 1.5 2

1

2

1

2

velocity

free-fall distance

velocity

free-fall distance

Velocity and free-fall distance of particle at time t

time (s)

ve
lo

ci
ty

 (
m

/s
)

fr
ee

-f
al

l d
is

ta
nc

e 
(m

)

1.32

1.92

0.365 1.54
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Heat required to vaporize biomass and heat carrier gas to 500C:

Reactor dimensions:
kmol 1000mol:=

Did 0.824in:=
kJ 1000J:=

Lpipe 6ft:=
MJ 10

6
J:=

Asid π Did⋅ Lpipe⋅:=

Operating temperature: 500C

Tin 25K 273.15K+:=

Tout 500K 273.15K+:=

Tave

Tin Tout+

2
:= Tave 262.5°C= (Find properties at this temp.)

Properties of biomass: Properties of N2:

MWbiomass 23.02
gm

mol
:=

ρ N2 0.5956
kg

m
3

:= (specific heat at 300C)

MWbiooil 88
kg

kmol
:=

CpN2 1070
J

kg K⋅
:= (specific heat at 300C)

Cpbiomass 2.273
kJ

kg K⋅
:=

hpcornstover 1.53
MJ

kg
:= (Daugaard and Brown 2003: heat of pyrolysis)

Set biomass flowrate:

mdotbio 1
kg

hr
:=

mdotbio mdotchar mdotvap+ mdotncg+

mdotchar 0.15 mdotbio⋅:= mdotchar 0.15
kg

hr
=(estimated char mass flowrate)

Set carrier gas flowrate:

Ligang, Characteristics of fast pyrolysis of biomass

in a free fall reactor, Fuel Proc. Tech. 87, (2006)Vdotcg 30
cm

3

min
:=

mdotcg Vdotcg ρ N2⋅:= (carrier gas massflow rate) mdotcg 1.072 10
3−

×
kg

hr
=

Mass flowrate into reactor:

mdotin mdotbio mdotcg+:= (input flowrate: biomass + c.g.) mdotin 1.001
kg

hr
=
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Mass flowrate out of reactor:

mdotgas 0.85mdotbio⋅ mdotcg+:= (vapor exiting reactor) mdotgas 0.851
kg

hr
=

mdotout mdotchar mdotgas+:= (char + vapor combined) mdotout 1.001
kg

hr
=

Heat required to vaporize biomass and bring N2 to temperature(500C):

Qbiomass mdotbio hpcornstover⋅:= (heat needed to pyrolize biomass) Qbiomass 425W=

QN2 mdotcg CpN2⋅ Tout Tin−( )⋅:= (heat needed to heat c.g.) QN2 0.151W=

Qdottot Qbiomass QN2+:= (total heat required) Qdottot 425.151W=
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Heat Transfer calculations from surface of the ceramic heater to the center of the drop tube

see pages 130, 466, 475, 874

in Heat Transfer, Cengal.

Dh 2in:= (diameter of heater)

rh

Dh

2
:= (radius of heater wall)

R1 Rconv
1

h1 As⋅
(neglect) Dod 1.05in:= (outside diameter of pipe)

rodw

Dod

2
:= (outside radius of pipe)

R2 Rrad
1

hrad As⋅

Did 0.824in:= (inside diameter of

pipe -Sched. 40)

R3 Rcondcyl

ln
rodw

ridw









2 π⋅ L⋅ k⋅
ridw

Did

2
:= (inside radius of pipe)

Lpipe 6ft:= (length of heated pipe)

R4 Rrad
1

hrad2 As⋅ Asod π Dod( )⋅ Lpipe⋅:= (surface area of pipe ouside)

Asid π Did( )⋅ Lpipe⋅:= (surface area of pipe inside)

Find R.1 (convection) between surfaces T.s and T.a:

Th 650.26 273.15+( )K:= (Set heater temp)

Tod 592.31 273.15+( )K:= (assume outside wall temp)

Tave

Th Tod+

2
:= (temp at which properties are evaluated) Tave 621.285°C=

(volume expansion coefficient of an ideal gas p. 462)
β

1

Tave
:=

Tinf Tave:= (temp of fluid)

Lc 6ft:= (characteristic length)

ν 9.51510
5−

⋅
m

2

s
:= (kinematic viscosity of air at 1 atm and 600C. Cengal, p. 874)
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(Grashof number, dimensionless number representing 

natural convection effects). Cengal, p. 465GrL

g β⋅ Th Tinf−( )⋅ Lc
3

⋅

ν
2

:=

35 6⋅ ft

GrL
.25

21in= (which is greater than Dod (1in) therefore vertical cylinder cannot be

modeled as a vertical plate where curvature effects are negligable.

Cengel, p. 467)

Properties of air at 900C: Properties of air at 600C:

Pr 0.7206 Pr 0.7037:=

k 0.07465
W

m K⋅
k 0.06093

W

m K⋅
:=

Lc

Dh Dod−

2
:=

Lc 0.012m=

(Rayleigh number: product of the Grashof and Prandtl numbers)
RaL

g β⋅ Th Tod−( )⋅ Lc
3

⋅

ν
2

Pr⋅:=

For two long and concentric cylinders maintained at uniform but different temperature, the rate of heat

transfer between them through the annular space between the natural convection unit is (Cengal, p.

481):

Qdot

2 π⋅ keff⋅

ln
Dh

Dod









Th Tod−( )⋅

(geometric factor for concentric cylinders p. 481)
Fcyl

ln
Dh

Dod









4

Lc
3

Dod

3−

5
Dh

3−

5
+









5

⋅

:=

keff k 0.386⋅
Pr

0.861 Pr+









0.25

⋅ Fcyl RaL⋅( )0.25
⋅:= (effective thermal conductivity p. 481)

valid for 0.70<Pr<6000 and

100<FcylRaL<107

Fcyl RaL⋅ 12.091= (For FcylRaL<100, natural convection currents are

negligable and thus k_eff = k. Cengal, p. 481)
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Qdot

2 π⋅ keff⋅

ln
Dh

Dod









Th Tod−( )⋅:= Qdot 20.295
W

m
= (For interests sake)

Neglect R.1 due to convection and find R.2 due to radiation:

(from the heaters to the reactor)

εh 0.9:= (emmisivity of heater)

εodw 0.3:= (emmisivity of reactor wall) Assume value of 0.3 that of 

unpolished metal pg. 581 Cengel

σ 5.67 10
8−

⋅
W

m
2

K
4

⋅

:= (Stefan Boltzmann constant)

hrad

σ Th
2

Tod
2

+



⋅ Th Tod+( )

1

εodw

1 εh−

εh

rodw

rh









⋅+

:= (Emsick thesis appendix section 17)

radiative heat transfer between heater

and tube

hrad 47.9
W

m
2

K⋅

=

Rrad
1

hrad Asod⋅
:= Rrad 0.136

K

W
=(Thermal resistance due to radiation)

Calculate R.3 due to conduction:

t
Dod Did−

2
:= t 0.113in= (thickness of the reactor wall)

(conductivity of 316 stainless steel p. 859 Cengel)
kcond 13.4

W

m K⋅
:=

Rcondcyl

ln
rodw

ridw









2 π⋅ Lpipe⋅ kcond⋅
:= (thermal resistance due to conduction

in a cylinder p. 147 Cengel) Rcondcyl 1.574 10
3−

×
K

W
=

Calculate R.4 due to Radiation:

Tpin 25K 273K+:= (temperature of biomass and carrier gas coming in)

Tid 591.64K 273K+:= (assume a 900C wall temperature)

εp 1:= (assume blackbody radiation)

Fp_wall 0.7:= (view factor -see veiw factor calculations)
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(Cengel p. 628 -derived radiation due

to convection without assuming view

factor of 1.)
hrad2

σ Tpin
2

Tid
2

+



⋅ Tpin Tid+( )

1

εp

1−
1

Fp_wall
+

:=
hrad2 38.596

W

m
2

K⋅

=

view factor of 0.7:

Rrad2
1

hrad2 Asid⋅
:= Rrad2 0.215

K

W
=

Rrad2 0.163

Rtot Rrad Rcondcyl+ Rrad2+:= Rtot 0.313 Rtot 0.353
K

W
=

Knowing the energy required to vaporize biomass is equal to Q.tot we can calculate the temperature of

the unknowns by setting T.p=500C.  

Tp 500K 273.15K+:= (temperature of vapor and gas leaving reactor) Sched 40

Pipe ID=0.824"
Qdottot 425.151W:= (From "Heat required to vaporize biomass and heat

carrier gas" calculations) Tp 500°C=

Tid Tp Qdottot Rrad2⋅+:=
Tid 591.61°C=

Tod Tid Qdottot Rcondcyl⋅+:=
Tod 592.27°C=

Th Tod Qdottot Rrad⋅+:=
Th 650.2°C=

The minimum temperature that is needed to maintain the inner temperature of the tube at 500C is about

650C not accounting for heat losses which may be significant considering the size of the reactor.

View factor considerations

Mass flow rate:

mdotbiomass 1
kg

hr
:= (mass flow for biomass)

Particle size:

Dp 400micron:= (diameter of particle)

Volp
4

3
π⋅

Dp

2









3

:= (volume of particle)
Volp 3.351 10

5−
× cm

3
=

Volume of reactor:

rtube
0.824in

2
:= (droptube radius)

Ltube 1cm:= (length of tube)

Voltube π rtube
2

⋅ Ltube⋅:= (volume of tube) Voltube 1.215 10
4−

× ft
3

=
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If we feed biomass at 1kg/hr how much biomass is in the tube at any given second?

utbiomass 1.95
m

s
:= (terminal velocity for 1350Kg/m^3 biomass particle: 400micron)

partdensity utbiomass( )
mdotbiomass

utbiomass
:= (bulk density of particles in reactor)

partdensity utbiomass( ) 1.425 10
3−

×
gm

cm
=

w 1350
kg

m
3

⋅ Volp⋅:= (weight of particles)
w 4.524 10

5−
× gm=

(number of particles per unit length)
#P

partdensity utbiomass( )
w

:= #P 3.149
1

mm
=

Consider the 1 mm length to the left. If there are

3.1 particles in this cross section, one can see

that the view factor between the particle and the

reactor wall is not 1.  Other particles will

interfere with the radiation  from the wall.  

If we look at the particle as a cube it is

reasonable to assume that much of the radiation

is blocked form above and below it due to the

other particles in the tube.  On the other hand,

the particle can "see" most of the tube wall in the

horizontal direction. It is fair to say that the view

factor lies between 4/6ths or 2/3rds and 1.

Assume a value of 0.7.
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Vapors produced and exiting at the bottom of the reactor

kmol 1000mol:=Set biomass flowrate:

mdotbio 1
kg

hr
:=

mdotbio mdotchar mdotvap+ mdotncg+

mdotchar 0.15 mdotbio⋅:=
mdotchar 0.15

kg

hr
=

mdotncg 0.15 mdotbio⋅:=

Combine the mass flow rates of the vapors and non condensible gases.

mdotcomb mdotvap mdotncg+

mdotcomb 0.85 mdotbio⋅:= mdotcomb 2.4 10
4−

×
kg

s
=

Calculate the length of the reactor by setting the vapor residence time equal to a maximum of 2s.

tvap
L

vvap

L ρ vap⋅ Across⋅

mdotcomb

where: tvap 2s:= (vapor residence time)

(radius of the reactor tube

Schedule 40 3/4" pipe)r
0.824in

2
:=

Across π r
2

⋅:= (cross sectional area of the tube) Across 3.44 10
4−

× m
2

=

Use the Ideal Gas Law to calculate the volumetric flowrate of the vapor:

P Vdot⋅ ndot R⋅ T⋅
mdotvap

MWvap
R⋅ T⋅ Vdot

mdotvap R⋅ T⋅

P MWvap⋅

Set the following:

P 1.1atm:=

M
m

n
ndot

mdotvap

MWvap

MWcomb 88
kg

kmol
:= (Molecular weight of everything leaving the reactor

-weighted average of MW of bio-oil and NCG)

MWbiooil 100
kg

kmol
:= (Molecular weight of bio-oil.)
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MWbiooil 100
kg

kmol
:= (Molecular weight of bio-oil.)

MWncgas 33
kg

kmol
:= (Molecular weight of non-condensable gas)

Rbar 8.314
J

mol K⋅
:= (Ideal gas constant) R

Rbar

MW

T 500°C:= (Temperature of vapors exiting the reactor)

(volume of vapor produced in one minute)
Vdot

mdotcomb Rbar⋅ T⋅

P MWcomb⋅
:= Vdot 9.284

L

min
=

Tamb 293K:= (Temperature of vapors exiting the condensers)

Vdotncgas

mdotncg Rbar⋅ Tamb⋅

P MWncgas⋅
:= (volumetric flowrate of non condensible

gases  PRODUCED leaving

condensers -does not include carrier gas)

Vdotncgas 3.508
ft

3

hr
=

vvap

Vdot

Across
:= (velocity of vapor at exit of reactor) vvap 0.45

m

s
=

ρ vap

P MWcomb⋅

Rbar T⋅
:= (density of vapors) ρ vap 1.526

kg

m
3

=

L tvap vvap⋅:= (distance vapors travel in 2 sec.) L 0.9m=

Dexit
3

16
in

1

4
in,

3

4
in..:=

rexit Dexit( )
Dexit

2
:=

Aexit Dexit( ) π rexit Dexit( )2
⋅:=
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Calculate the velocity of the vapors as a function of tube diameter:

vvap Dexit( )
Vdot

Aexit Dexit( )
:=

D Dexit( ) vvap Dexit( ) 1⋅ s:=

vvap Dexit( )
8.686

4.886

3.127

2.172

1.595

1.222

0.965

0.782

0.646

0.543

m

s

= Dexit
0.187

0.25

0.313

0.375

0.438

0.5

0.563

0.625

0.688

0.75

in

= D Dexit( )
8.686

4.886

3.127

2.172

1.595

1.222

0.965

0.782

0.646

0.543

m

= Distance the vapours

travel in 1 second

based on the

diameter of the tube.

Velocity of vapors

exiting the reactor

for a given pipe size.

Select 1/2in (OD) tubing

with 7/16in (ID). 

Compare the velocity of the carrier gas to that of the particle:

Vcargas 5
l

min

500K 273K+

25K 273K+









⋅:=

Vcargas 2.162 10
4−

×
m

3

s
=

vcg

Vcargas

Across
:= vcg 0.628

m

s
= (velocity of the carrier gas through the reactor) 

How long will it take the vapors to travel through the reactor? 

Lreactor 2.13m:=

t
Lreactor

0.45
m

s

:=
t 4.733s=

If we add 5 SLPM of carrier gas, how long will it take?

t
Lreactor

0.45
m

s
vcg+

:= t 1.975s=

How fast will the vapors be travelling?

v
Lreactor

t
:= v 1.078

m

s
=

The terminal velocity of a 1350 kg/m^3, 300 um particle is 1.3 m/s.  Therefore, the carrier gas flow

rates will need to be greater than 5 SLPM before they affect the velocity of the particle.
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Char collector size:

Assume roughly 20% of biomass feed rate will become char (conservative):

ρ char 400
kg

m
3

:= Bulk density of char (400kg/m3), pg 48, Joe Ritzert thesis

charproduced

0.20mdotbiomass

ρ char
t⋅:= (char produced)

charproduced 1L=

charproduced 0.035ft
3

=

t 2hr= (test time)

mdotbiomass 1
kg

hr
= (mass flow/feed rate)

After 2 hours, the volume of char that will be produced when operating at 1 kg/hr is 1L.

Dimensions of container:

Assume that 1/3rd of the container is filled after 2 hours to prevent the container from filling up

so full that the particles are re-entrained.

r 3in:= (radius of char container)

Across π r
2

⋅:= (cross sectional area of container) Across 28in
2

=

h
3 charproduced⋅

Across
:= (height of char catch) h 6in=

V Across h⋅:= (volume of char catch)
V 3 L=

Determine the velocity in the char container as a function of diameter:

kPa 1000Pa:=
mdot ρ A⋅ v⋅ (continuity principle)

mdottube mdotchar

Dchar 4 5 6( )in:= (char container diameter)

rexit Dchar( )
Dchar

2
:= (radius char container)

rtube 0.412in:= (radius of the reactor)

Atube π rtube
2

⋅:= (cross sectional area of tube)

Achar Dchar( ) π rexit Dchar( )2
⋅:= (cross sectional area char container)
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mdottube 1
kg

hr
:= (mass flow through reactor tube)

mdotchar 1
kg

hr
:= (mass flow into char container)

ρ 1 1.526
kg

m
3

:= (density of vapors exiting)
ρ 2 ρ 1:=

p1 1atm:= (atmospheric pressure after cyclone)

vtube

mdottube

ρ 1 Atube⋅
:= (Velocity of vapors through reactor tube) vtube 0.529

m

s
=

mdottube ρ 1 Atube⋅ vtube⋅:= mdotchar ρ 2 Achar⋅ vchar⋅

ρ 1 Atube⋅ vtube⋅ ρ 2 Achar⋅ vchar⋅

vchar Dchar( )
ρ 1 Atube⋅ vtube⋅

ρ 2 Achar Dchar( )⋅
:= (Velocity of vapors through char container)

vchar Dchar0 0,






0.022
m

s
= (4in diameter char container)

vchar Dchar0 1,






0.014
m

s
= (5in diameter char container)

vchar Dchar0 2,






0.01
m

s
= (6in diameter char container)

Determine the char particles terminal velocity to find char catch size:

Fluid properties:

(density of fluid (air) at 450C -less dense than pyrolysis

vapors therefore particle will have a higher u      t )
ρ f 0.4880

kg

m
3

:=

µ 3.41510
5−

⋅
kg

m s⋅
:= (dynamic viscosity of air at 450C)

Char properties:

ρ char 450
kg

m
3

:= (Bulk density of char)

ρ p ρ char:= (density of particle is equal to the density of char)
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ro 5micron 10micron, 50micron..:= (outer radius of particle)

Dp ro( ) 2 ro⋅:= (particle diameter)

(Reynolds number, function of particle diameter

and the velocity in the char container)Rep ro Dchar,( )
ρ f 2 ro⋅( )⋅ vchar Dchar( )⋅

µ
:=

Choose drag coefficient based on Reynolds number, since all values are below 0.4 use 24/Re         p.

Rep ro Dchar0 0,
,





-33.208·10

-36.417·10

-39.625·10

0.013

0.016

0.019

0.022

0.026

0.029

0.032

= Rep ro Dchar0 1,
,





-32.053·10

-34.107·10

-36.16·10

-38.214·10

0.01

0.012

0.014

0.016

0.018

0.021

= Rep ro Dchar0 2,
,





-31.426·10

-32.852·10

-34.278·10

-35.704·10

-37.13·10

-38.556·10

-39.982·10

0.011

0.013

0.014

=

Cd
24

Rep

for Rep <0.4

Cd
10

Rep

for 0.4< Rep < 500

Cd 0.43 for 500 < Rep < 200,000

ut

4 g⋅ 2⋅ ro⋅ ρ p ρ f−( )⋅

3 ρ f⋅ Cd⋅

ut ro Dchar,( )
4 g⋅ 2⋅ ro⋅ ρ p ρ f−( )⋅

3 ρ f⋅
24

Rep ro Dchar,( )
⋅

:= (Particle terminal velocity) 
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Particle terminal velocities:

Char container 

diameter = 4in

Char container 

diameter = 5in

Char container 

diameter = 6in

Char diameter:

ut ro Dchar0 0,
,





0

0

1

2

3

4

5

6

7

8

9

-34.013·10

-38.025·10

0.012

0.016

0.02

0.024

0.028

0.032

0.036

0.04

m

s

= ut ro Dchar0 1,
,





0

0

1

2

3

4

5

6

7

8

9

-33.21·10

-36.42·10

-39.63·10

0.013

0.016

0.019

0.022

0.026

0.029

0.032

m

s

= ut ro Dchar0 2,
,





0

0

1

2

3

4

5

6

7

8

9

-32.675·10

-35.35·10

-38.025·10

0.011

0.013

0.016

0.019

0.021

0.024

0.027

m

s

=
Dp ro( )

0

0

1

2

3

4

5

6

7

8

9

10

20

30

40

50

60

70

80

90

100

micron

=

Fluid velocity in char container for respective cross-sectional areas:

vchar Dchar0 0,






0.022
m

s
= vchar Dchar0 1,







0.014
m

s
= vchar Dchar0 2,







0.01
m

s
=

(4in diameter char container) (5in diameter char container) (6in diameter char container)

If the velocity in the char container is lower than the terminal velocity, the particle will

disengage from the flow (ie. the terminal velocity of the particle is higher than that of the

fluid flow):

Four inch diameter: catches particles 60micons and larger.

Five inch diameter: catches particles 50 microns and larger.

Six inch diameter: catches particles 40 microns and larger.
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Appendix B: Bio-oil sample preparation procedure and analysis for water insolubles and 
solids content methods 

 

Bio-oil Sample Preparation Procedure 
This is procedure is intended to create a homogenized mixture of bio-oil in preparation for 

bio-oil sampling for further analyses. 

 
This procedure must be performed to prepare the bio-oil before the following analyses: 

• Karl-Fischer moisture content • CHNSO (Ultimate analysis) 
• Total Acid Number (TAN) • GC/MS 
• Water Insolubles content • Higher Heating Value (HHV) 
• Solids content • Viscosity 
• Thermogravimetric analysis (TGA)  

 

For bio-oil samples that are SOLID at room temperature: 

1. Obtain large (250, 500 or 1000 ml) bio-oil storage containers from fridge. 
2. Place bio-oil storage container in beaker of water.  Heat beaker of water and bio-oil 

sample to 80°C on a hot plate.  Monitor with a thermometer. 
3. Maintain bio-oil temperature at 80°C for about 1 minute. 
4. Stir bio-oil storage container for 1 minute using the electric stirrer. Stir both top and 

bottom to create a homogenous mixture.  Clean impeller when completed. 
5. Place container back into 80°C water. 
6. If using a 1000 ml bio-oil container and the bio-oil is difficult to reach with a syringe, 

create a new storage container by pouring the bio-oil into a smaller, labeled container. 
7. Proceed with prescribed bio-oil analysis procedure while bio-oil is maintained at 80°C.  
8. Once all samples are prepared or analysis is complete, return storage container and lid to 

refrigerator. 

For bio-oil samples that are LIQUID (flow) at room temperature: 

1. Obtain large (250, 500 or 1000 ml) bio-oil storage containers from fridge. 
2. Let containers sit out and approach room temperature.  Shake containers intermittently to 

speed process. 
3. Stir bio-oil storage containers for 1 minute using the electric stirrer.  Stir both top and 

bottom to create a homogenous mixture.  Clean impeller when completed. 
4. Proceed with prescribed bio-oil analysis procedure.  
5. Once all samples are prepared or analysis is complete, return storage container and lid to 

refrigerator. 
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Water Insolubles 
SOP for Water Extraction of Insolubles in bio-oil. 

 
1. Shake large bio-oil containers well.  Place about 20 mL of the bio-oil sample into a 

centrifuge tube. 
2. Sonicate centrifuge tube for 30 minutes.  Then place tube on shaker table for 30 minutes. 
3. Complete the following in triplicate.  For example, use the bio-oil from the above 

centrifuge tube to prepare three of the following water/bio-oil samples. 
4. Obtain a new centrifuge tube.  Weigh and record mass of centrifuge tube. 
5. Using a syringe, place about 10g of room temperature DI water into tube. Tare balance. 
6. Add 2g of bio-oil. Record mass of bio-oil added by weighing syringe before and after.  

Mix on vortex mixer for 1 minute.   
7. Add an additional 10g of DI water. Mix for 1 minute. 
8. Repeat 2 more times.  Total water added 40g.  Total bio-oil added 2g.  Ratio 20:1 
9. Place centrifuge tube in sonicator for 30 minutes.  Place tube on shaker table for 1 hour at 

maximum speed. 
10. Place centrifuge tube in centrifuge for 20 minutes at 2500 rpm.  Ensure that it is 

balanced; equal # of samples on each side. 
11. Place size 42 filter paper in the oven at 105°C for 15 minutes to remove any moisture. 
12. Remove filter paper from the oven and place in the desiccant to cool for 15 minutes.  
13. Remove filter paper from the desiccant record the 1st mass that appears stable (little “g” 

shows up) of the filter paper. 
14. Obtain flask and funnel.  Place filter paper in funnel and pour centrifuge tube into funnel. 
15. Turn on vacuum pump. 
16. Pour centrifuge tube with water/bio-oil mixture onto filter paper.  Ensure that the mixture 

does not touch the sides of the funnel. 
17. Take filter paper, centrifuge tube and lid and place in oven at 50C for 20 hours. Keep lid 

off of tube. 
18. Remove filter paper, centrifuge tube and lid from oven and place in desiccant to cool for 

15 minutes. 
19. Remove filter paper from the desiccant record the 1st mass that appears stable (little “g” 

shows up) of the filter paper. 
20. Record mass of tube and lid. 
21. Calculate the percentage of insolubles: 
 

wt-% insolubles = 
final mass: filter paper, tube & lid – initial mass: filter paper, tube & lid 

(x 100) 
mass of bio-oil sample 

 
22. Record weight percentage of insolubles beside sample name and weight of bio-oil added 

within Insoluble record manual. 
 
Note: Insolubles includes ash content.  To calculate only insoluble wt %, subtract ash 
content. 
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Solids 
(everything not soluble in methanol) 

 
1. Place size 42 filter paper (2.5 micron retention) in the oven at 105°C for 15 minutes. 
2. Cool the filter to room temperature in the desiccant containers for 15 minutes. 
3. Using a 5 ml syringe (without the needle), obtain 3 ml of well-mixed bio-oil.  Cap bio-oil 

container.  
4. Place about 1 gram of bio-oil into centrifuge tube.  Record mass of bio-oil added by 

weighing syringe before and after.   
5. Pour about 12 grams of methanol (ACS grade) in centrifuge tube. 
6. Mix bio-oil and methanol in centrifuge tube on vortex mixer for about a minute. 
7. Weigh filter paper that has been sitting in the desiccant containers.  (Do so quickly so that 

a significant amount of moisture does not adhere to filter).  Record initial mass of filter 
paper. 

8. Place filter paper on a funnel and wet with methanol. 
9. Turn on vacuum pump. 
10. Pour centrifuge tube with solution into the center of the filter paper.  Do not allow 

solution to touch funnel sides. 
11. Rinse lid and centrifuge tube with methanol into filter paper. 
12. Remove filter paper and let air dry under the fume hood for 15 minutes. 
13. Place the filter paper in the oven for ½ hour at 105°C. 
14. Cool the filter to room temperature in the desiccant containers for 15 minutes.  
15. Remove filter paper and record mass. (Do so quickly so that a significant amount of 

moisture does not adhere to filter).  
16. Dispose of filter in bio-oil waste container. 
17. Pour filtrate into bio-oil and methanol waste container. 
18. Clean glassware if not being used again. 
19. Calculate the percentage of solids using the calculation below: 

wt-% solids = 
final filter paper mass – initial filter paper mass 

(x 100%) 
mass of bio-oil sample 

 
20. Record calculation and result in appropriate Solids laboratory notebook. 



 
 

 

Appendix C: Experimental operating conditions, mass distribution and product analysis  

 
*Shaded lines indicate center point experiments 

Temperature 

(°C)

Particle 

size (µm)

N2 flow rate 

(SLPM)

Feed rate 

(kg/hr)
Bio-oil Bio-char NCG Total Unaccounted

1 30 7-20090112A 500 300 2 1.25 67.3 15.8 14.6 97.7 2.3

2 10 7-20090113A 550 400 1 1.5 70.4 14.8 14.9 100.1 -0.1

3 1 7-20090115A 550 400 3 1.5 70.2 15.3 13.6 99.1 0.9

4 17 7-20090219A 600 500 2 1.75 69.1 13.2 15.6 97.9 2.1

5 23 7-20090225A 500 500 4 1.75 68.0 18.8 13.0 99.8 0.2

6 7 7-20090228A 550 400 3 2 71.1 15.2 13.4 99.7 0.3

7 19 7-20090604B 600 300 4 1.75 72.0 11.4 16.1 99.5 0.5

8 20 7-20090309A 600 300 4 1.25 69.1 11.7 17.8 98.6 1.4

9 2 7-20090311A 550 400 3 1.5 68.9 16.9 13.5 99.3 0.7

10 16 7-20090313A 600 500 4 1.25 69.0 14.9 15.3 99.2 0.8

11 12 7-20090316A 550 200 3 1.5 69.7 14.4 15.0 99.1 0.9

12 25 7-20090317A 500 500 2 1.75 67.1 19.5 13.1 99.7 0.3

13 28 7-20090319A 500 300 4 1.25 67.4 17.8 14.0 99.2 0.8

14 3 7-20090401A 550 400 3 1.5 68.2 17.0 14.3 99.5 0.5

15 18 7-20090403A 600 500 2 1.25 68.4 13.2 17.2 98.8 1.2

16 9 7-20090414A 550 400 5 1.5 69.2 16.1 13.9 99.2 0.8

17 5 7-20090420A 550 400 3 1.5 69.7 15.9 14.1 99.7 0.3

18 13 7-20090423A 650 400 3 1.5 64.4 10.3 23.3 98.0 2.0

19 11 7-20090407A 550 600 3 1.5 67.2 18.9 13.1 99.2 0.8

20 22 7-20090425A 600 300 2 1.25 68.3 11.1 19.1 98.5 1.5

21 8 7-20090512A 550 400 3 1 69 15.6 14.8 99.4 0.6

22 4 7-20090522A 550 400 3 1.5 69.8 15.8 14 99.6 0.4

23 15 7-20090430A 600 500 4 1.75 70.7 13.8 15.1 99.6 0.4

24 27 7-20090505A 500 300 4 1.75 69.3 16.8 13.7 99.8 0.2

25 24 7-20090508A 500 500 4 1.25 65.7 20.1 14.1 99.9 0.1

26 29 7-20090513A 500 300 2 1.75 67.8 17.2 13.9 98.9 1.1

27 6 7-20090529A 550 400 3 1.5 70.1 15.2 14.7 100 0

28 21 7-20090514A 600 300 2 1.75 70.4 11.3 17.4 99.1 0.9

29 26 7-20090525A 500 500 2 1.25 66.1 20.0 13.9 100 0

30 14 7-20090526A 450 400 3 1.5 66.7 19.4 13.6 99.7 0.3

Run ID
Sorted 

order

Chrono 

order

Operating conditions Yield w.b. (wt-%)

125 



 
 

 

 

Biomass 

fed
Bio-oil Bio-char NCG SF1 SF2 SF3 SF4

1 1312.1 883.1 207.3 191.3 56.2 28.2 14.7 0.9 65.4 51.10 14.30 1.9 5.44 1.28 0.03

2 1595.1 1122.9 236.0 238.0 48.1 38.6 12.6 0.7 68.9 53.17 15.73 1.5 4.92 1.59 0.09

3 1597.6 1121.0 244.1 217.7 45.7 34.9 17.8 1.6 68.4 53.56 14.84 1.8 5.50 1.59 0.09

4 1891.8 1306.4 249.2 294.6 38.4 41.7 18.0 1.9 67.3 53.29 14.01 1.8 5.45 1.88 0.13

5 1806.6 1228.1 339.2 235.2 44.5 35.7 17.4 2.3 66.2 49.29 16.91 1.8 5.18 1.79 0.04

6 2250.6 1599.3 342.5 302.7 35.6 44.1 17.7 2.6 69.5 54.07 15.43 1.6 5.05 2.20 0.20

7 1871.1 1347.4 213.9 301.9 38.1 37.8 21.0 3.1 70.3 55.74 14.56 1.7 5.63 1.86 0.11

8 1344.0 929.0 156.9 239.8 34.6 39.0 23.7 2.7 67.4 53.37 14.03 1.7 5.29 1.32 0.07

9 1668.1 1149.1 281.2 224.4 32.9 46.3 19.0 1.8 67.2 51.69 15.51 1.7 5.20 1.66 0.16

10 1287.1 888.7 191.6 197.1 37.1 38.7 22.2 2.1 67.3 53.12 14.18 1.7 5.38 1.28 0.03

11 1649.9 1150.1 238.1 248.0 32.1 45.4 20.4 2.1 68.1 52.98 15.12 1.6 5.04 1.63 0.13

12 1860.1 1248.2 362.6 243.5 41.2 43.1 14.2 1.4 65.3 48.40 16.90 1.8 5.19 1.82 0.07

13 1409.6 950.0 250.3 197.0 41.7 35.5 20.4 2.4 65.6 49.65 15.95 1.8 5.12 1.36 0.11

14 1532.0 1045.5 259.8 218.4 41.6 39.1 18.0 1.4 66.6 51.13 15.47 1.6 4.89 1.51 0.01

15 1300.0 888.9 172.2 224.0 39.5 42.4 17.2 1.0 66.8 53.22 13.58 1.6 4.88 1.27 0.02

16 1452.9 1005.2 233.8 202.0 32.9 41.2 23.0 2.8 67.5 52.95 14.55 1.7 5.04 1.44 -0.06

17 1678.8 1170.0 267.6 236.0 33.8 46.7 17.8 1.7 68.1 52.03 16.07 1.6 5.1 1.67 0.17

18 1519.0 979.0 156.8 354.3 35.9 36.2 24.4 3.6 62.6 48.92 13.68 1.8 5.02 1.51 0.01

19 1523.8 1024.5 287.3 199.2 35.6 45.8 17.3 1.3 65.6 49.97 15.63 1.6 4.82 1.51 0.01

20 1342.22 917.1 148.6 255.92 43.9 34.9 19.0 2.2 66.6 52.27 14.33 1.7 5.29 1.34 0.09

21 1158.2 798.9 180.34 171.09 41.2 39.3 18.5 1.0 67.3 51.26 16.04 1.7 5.05 1.16 0.16

22 1563.59 1091.1 247.7 219.42 40.0 39.7 18.8 1.6 67.9 52.42 15.48 1.9 5.79 1.55 0.05

23 1735.7 1227.6 239.35 262.66 40.6 35.8 20.9 2.8 69.1 54.71 14.39 1.6 5.21 1.71 -0.04

24 1789.32 1240.3 300.4 245.88 33.2 42.0 21.4 3.4 67.7 52.14 15.56 1.6 5.08 1.78 0.03

25 1263.19 829.8 254.39 177.9 40.6 38.0 19.6 1.8 63.9 49.16 14.74 1.8 5.01 1.21 -0.04

26 1710.36 1160.1 294.11 238.21 40.9 42.1 15.7 1.4 66.1 50.09 16.01 1.7 5.16 1.70 -0.05

27 1501.64 1053.1 227.8 220.36 36.6 41.8 19.8 1.8 68.4 53.13 15.27 1.7 5.62 1.5 0.00

28 1669.73 1175.7 188.8 290 43.0 36.4 18.6 2.1 68.9 54.08 14.82 1.5 4.99 1.66 -0.09

29 1310.76 866 261.7 182.11 46.6 37.7 14.7 1.1 64.2 48.66 15.54 1.9 5.09 1.28 0.03

30 1569.71 1047.1 304.3 213.43 41.6 39.6 17.0 1.8 64.7 47.50 17.20 2.0 5.62 1.56 0.06

Chrono 

order

Mass yield w.b. (g) Yield (wt-%) Carried 

water     

(wt %)

Bio-oil 

yield d.b.      

(wt %)

Biomass 

moisture 

(wt %)

Actual 

feedrate 

(kg/hr)

Difference in 

feed rate 

(kg/hr)

Organic 

liquid      

(wt %)

Reaction 

water      

(wt %)
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*R1 indicates reactor temperature beginning at the top of the reactor.  Temperatures measured every 30 cm from one another. 

R1 R2 R3 R4 R5 R6 R7
Char catch 

inlet

Condenser 

inlet

1 68.76 251.00 395.22 411.69 440.33 451.00 452.05 444.04 457.39 452.05

2 81.04 295.19 449.59 456.48 480.32 490.45 491.71 451.93 459.52 491.71

3 70.34 280.22 430.95 444.16 469.72 483.98 488.05 450.93 457.08 488.05

4 85.53 332.69 485.88 495.87 510.31 521.06 531.47 462.93 458.50 531.47

5 62.98 262.24 390.17 399.64 414.83 429.25 435.95 433.79 456.19 435.95

6 71.98 280.57 415.17 431.32 455.25 468.73 477.60 448.60 458.43 477.60

7 78.47 345.54 384.24 450.79 489.87 512.57 511.18 465.25 462.89 512.57

8 68.19 308.28 454.30 483.34 514.10 524.88 539.98 464.07 457.83 539.98

9 68.79 282.35 400.48 429.52 452.30 466.88 2398.72 440.73 456.90 466.88

10 85.28 379.79 416.11 488.28 505.86 519.67 518.93 461.99 456.79 519.67

11 68.97 292.37 351.66 414.30 461.34 472.05 472.93 447.72 458.93 472.93

12 80.56 316.41 335.04 394.58 415.46 424.83 421.94 425.20 454.96 425.20

13 67.40 287.11 312.55 375.14 416.89 428.22 427.78 428.80 457.92 428.80

14 85.60 321.99 360.52 430.26 458.83 469.48 471.39 446.31 457.94 471.39

15 102.50 401.60 433.32 502.73 519.30 526.88 531.23 461.52 456.81 531.23

16 76.14 317.79 358.51 425.75 425.75 457.41 452.09 453.92 458.69 457.41

17 83.73 322.03 360.52 428.77 457.02 453.34 475.87 453.74 459.45 475.87

18 95.31 400.78 467.05 521.78 546.33 563.76 573.58 482.37 459.56 573.58

19 87.17 364.37 375.92 445.39 453.79 465.08 479.18 443.88 459.06 479.18

20 90.13 373.90 428.77 484.16 521.73 535.33 535.29 467.27 457.62 535.33

21 82.12 343.35 386.74 442.68 468.79 488.68 485.29 457.77 459.00 488.68

22 81.17 321.43 364.67 422.08 451.86 480.21 480.42 455.45 459.77 480.42

23 84.22 371.03 407.99 470.18 494.85 520.40 520.36 468.28 457.51 520.40

24 66.94 267.24 314.25 367.13 405.98 425.66 430.63 436.42 458.64 436.42

25 72.63 317.08 340.51 392.11 413.19 435.00 434.27 437.42 458.12 437.42

26 72.94 282.51 325.79 374.64 411.16 430.01 433.15 436.79 458.93 436.79

27 81.09 321.80 370.28 426.23 455.38 482.93 473.47 459.39 460.49 482.93

28 88.20 353.80 414.78 469.33 506.37 519.88 523.78 467.09 462.33 523.78

29 83.76 319.96 343.94 396.31 414.35 444.22 440.22 440.00 459.93 444.22

30 71.90 247.51 291.45 338.60 365.35 388.83 390.86 427.92 459.37 427.92

Chrono 

order

Max reactor 

temp

Average steady state temperature (°C)
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 Hydrogen
 Carbon 

monoxide
 Methane  Oxygen  Propane Ethane  Ethylene

 Carbon 

dioxide
Acetylene

1 34.1 5.6 2.038 42.334 7.109 0.093 0.014 0.922 1.102 46.388 0.000

2 33.2 7.2 2.730 44.492 7.808 0.122 0.000 1.034 1.433 42.380 0.000

3 33.8 6.4 1.703 42.683 7.946 0.181 0.020 1.107 1.430 44.929 0.000

4 32.0 9.2 3.461 47.346 9.166 0.038 0.038 0.905 1.867 37.179 0.000

5 34.6 6.8 1.036 41.838 7.417 0.000 0.000 0.820 0.644 48.245 0.000

6 33.6 9.0 1.691 44.530 8.104 0.009 0.000 0.924 0.904 43.838 0.000

7 31.5 9.6 3.441 51.922 8.259 0.000 0.000 0.909 1.770 33.654 0.045

8 30.6 7.8 5.138 50.709 9.419 0.307 0.000 0.904 2.029 31.493 0.000

9 33.8 6.6 1.902 43.851 7.418 0.000 0.000 0.845 0.968 45.015 0.000

10 32.1 6.1 3.552 48.525 8.330 0.000 0.000 0.840 1.607 37.145 0.000

11 32.8 7.6 2.488 47.086 8.087 0.000 0.000 0.953 1.288 40.098 0.000

12 34.7 7.0 0.960 40.981 7.679 0.000 0.000 0.835 0.657 48.889 0.000

13 34.2 5.8 1.014 43.489 7.618 0.000 0.000 0.928 0.801 46.150 0.000

14 33.6 6.5 1.805 44.962 7.602 0.000 0.000 0.872 1.043 43.715 0.000

15 30.9 7.2 4.619 50.475 9.376 0.000 0.000 0.906 1.956 32.634 0.033

16 33.9 6.0 1.203 45.063 7.546 0.000 0.000 0.859 0.983 44.322 0.024

17 33.7 7.0 1.322 43.175 7.391 3.863 0.000 0.838 0.945 42.450 0.016

18 28.5 12.4 8.500 51.936 10.941 0.003 0.000 1.017 2.406 25.129 0.069

19 34.6 5.8 1.050 42.555 6.939 0.000 0.000 0.722 0.809 47.907 0.018

20 30.3 8.4 5.242 51.747 9.821 0.006 0.000 0.923 2.203 30.017 0.041

21 33.3 5.1 1.586 47.395 7.530 0.000 0.000 0.822 1.246 41.395 0.025

22 33.5 6.5 1.358 46.779 7.659 0.000 0.000 0.883 1.106 42.194 0.021

23 32.3 8.1 2.354 49.049 8.724 0.000 0.000 0.892 1.608 37.341 0.031

24 34.2 7.2 0.929 43.888 7.617 0.000 0.000 0.923 0.809 45.834 0.000

25 34.9 5.1 0.666 42.420 6.662 0.000 0.000 0.748 0.757 48.749 0.000

26 34.0 7.0 1.081 44.538 7.616 0.000 0.000 0.918 0.858 44.988 0.000

27 33.3 6.6 1.451 47.944 7.669 0.000 0.000 0.909 1.178 40.828 0.021

28 31.0 9.4 4.094 51.416 9.468 0.000 0.000 0.960 1.980 32.049 0.033

29 34.5 5.3 0.892 43.496 6.749 0.000 0.000 0.776 0.817 47.270 0.000

30 34.7 6.2 0.688 42.634 7.153 0.000 0.000 0.846 0.710 47.969 0.000

mol 

(NCG)

Chrono 

order

MW 

(NCG)

Non-condensable gas composition vol-% (nitrogen free)
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 Hydrogen
 Carbon 

monoxide
 Methane  Oxygen  Propane Ethane  Ethylene

 Carbon 

dioxide
Acetylene

1 0.02 5.07 0.49 0.01 0.00 0.12 0.13 8.73 0.00

2 0.02 5.60 0.56 0.02 0.00 0.14 0.18 8.39 0.00

3 0.01 4.82 0.51 0.02 0.00 0.13 0.16 7.96 0.00

4 0.03 6.46 0.72 0.01 0.01 0.13 0.25 7.97 0.00

5 0.01 4.41 0.45 0.00 0.00 0.09 0.07 7.99 0.00

6 0.01 4.99 0.52 0.00 0.00 0.11 0.10 7.71 0.00

7 0.04 7.44 0.68 0.00 0.00 0.14 0.25 7.58 0.01

8 0.06 8.28 0.88 0.06 0.00 0.16 0.33 8.08 0.00

9 0.02 4.88 0.47 0.00 0.00 0.10 0.11 7.87 0.00

10 0.03 6.49 0.64 0.00 0.00 0.12 0.22 7.81 0.00

11 0.02 6.04 0.59 0.00 0.00 0.13 0.17 8.08 0.00

12 0.01 4.33 0.46 0.00 0.00 0.09 0.07 8.12 0.00

13 0.01 4.97 0.50 0.00 0.00 0.11 0.09 8.29 0.00

14 0.02 5.34 0.52 0.00 0.00 0.11 0.12 8.15 0.00

15 0.05 7.88 0.84 0.00 0.00 0.15 0.31 8.00 0.00

16 0.01 5.18 0.50 0.00 0.00 0.11 0.11 8.00 0.00

17 0.01 5.04 0.49 0.52 0.00 0.10 0.11 7.78 0.00

18 0.14 11.89 1.43 0.00 0.00 0.25 0.55 9.04 0.01

19 0.01 4.50 0.42 0.00 0.00 0.08 0.09 7.97 0.00

20 0.07 9.12 0.99 0.00 0.00 0.17 0.39 8.31 0.01

21 0.01 5.88 0.54 0.00 0.00 0.11 0.15 8.07 0.00

22 0.01 5.49 0.51 0.00 0.00 0.11 0.13 7.78 0.00

23 0.02 6.43 0.65 0.00 0.00 0.13 0.21 7.69 0.00

24 0.01 4.94 0.49 0.00 0.00 0.11 0.09 8.10 0.00

25 0.01 4.80 0.43 0.00 0.00 0.09 0.09 8.67 0.00

26 0.01 5.10 0.50 0.00 0.00 0.11 0.10 8.10 0.00

27 0.01 5.92 0.54 0.00 0.00 0.12 0.15 7.93 0.00

28 0.05 8.08 0.85 0.00 0.00 0.16 0.31 7.91 0.00

29 0.01 4.90 0.44 0.00 0.00 0.09 0.09 8.37 0.00

30 0.01 4.68 0.45 0.00 0.00 0.10 0.08 8.28 0.00

Chrono 

order

Non-condensable gas yield (wt %) (nitrogen free)
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*Oxygen content found by difference

Water 

insoluble 

(wt %)

Solids 

content 

(wt %)

Carbon 

(wt %)

Hydrogen 

(wt %)

Nitrogen 

(wt %)

Oxygen 

(wt %)

Sulpher 

(wt %)

Ash     

(wt %)

TAN              

(mg KOH/g)

HHV     

(MJ/kg)

SF1 SF2 SF3 SF4 Whole Whole Whole Whole Whole Whole Whole Whole Whole Whole Whole

1 16.1 45.3 10.9 71.7 24.1 16.28 0.42 41.604 7.56 0.039 50.58 0.011 0.202

2 11.4 44.7 10.1 64.2 24.5 17.52 0.76 40.764 7.42 0.039 51.68 0.009 0.081

3 12.3 42.5 12.7 61.9 23.7 19.05 1.24 40.749 7.59 0.050 51.58 0.001 0.030 102.1 17.0

4 7.8 39.4 11.8 70.2 22.9 19.13 0.71 41.311 7.55 0.054 51.01 0.011 0.070

5 15.2 46.2 15.2 69.5 27.5 13.93 0.38 38.971 7.70 0.048 53.17 0.007 0.105

6 7.3 39.7 12.2 64.8 24.0 19.70 0.81 40.344 7.44 0.011 52.19 0.010 0.007

7 8.0 40.7 11.2 59.0 22.6 19.73 0.42 40.831 7.42 0.028 51.15 0.016 0.557

8 6.1 42.2 10.6 62.6 22.8 19.79 0.94 41.559 7.38 0.010 49.53 0.011 1.515

9 6.4 41.4 13.5 62.2 25.0 17.30 0.98 39.269 7.34 0.031 53.29 0.005 0.064 102.2 16.8

10 10.3 40.2 9.9 70.3 23.0 20.64 0.58 40.033 7.49 0.008 52.34 0.009 0.111

11 6.2 40.2 11.4 66.5 24.0 21.20 0.40 40.165 7.46 0.008 52.13 0.012 0.225

12 11.5 46.8 14.3 62.6 27.9 15.24 0.91 36.960 7.45 0.008 55.39 0.012 0.185

13 12.8 47.6 11.8 69.0 26.3 17.31 0.08 38.935 7.55 0.008 52.59 0.013 0.905

14 12.8 42.4 12.0 72.4 25.0 17.59 0.67 39.405 7.41 0.027 53.04 0.014 0.107 102.9 16.8

15 7.5 40.0 9.4 69.6 22.2 19.99 0.56 42.266 7.71 0.008 49.60 0.013 0.407

16 6.7 40.7 11.4 65.7 23.5 18.14 1.03 39.884 7.49 0.008 51.98 0.014 0.618

17 8.3 41.6 11.7 61.0 25.3 19.09 1.40 39.169 7.22 0.015 53.53 0.001 0.072 99.6 16.8

18 8.0 43.5 13.3 60.7 24.0 21.62 0.88 40.853 7.53 0.008 51.25 0.014 0.336 88.3

19 7.9 43.0 13.1 67.9 25.6 15.07 1.03 38.527 7.60 0.008 53.28 0.015 0.565

20 10.7 44.0 11.3 57.2 23.5 20.24 0.99 40.541 7.51 0.008 51.23 0.014 0.690

21 9.8 49.1 9.5 61.4 25.7 17.48 0.64 39.763 7.51 0.008 52.35 0.015 0.350

22 11.0 42.8 13.3 63.0 24.9 17.22 1.36 39.228 7.49 0.005 53.17 0.001 0.106 101.0 16.7

23 9.6 40.3 12.7 58.8 22.6 20.41 0.41 40.597 7.44 0.008 50.92 0.013 1.028

24 10.6 38.9 13.7 59.1 24.8 16.85 0.45 39.041 7.50 0.008 52.89 0.017 0.537

25 14.2 41.5 12.3 69.5 25.2 13.97 0.92 37.942 7.70 0.008 54.12 0.009 0.221

26 11.5 44.0 12.7 66.4 26.1 16.43 0.31 38.718 7.57 0.008 52.95 0.011 0.750

27 8.5 41.7 12.9 64.7 24.2 17.77 1.14 39.528 7.49 0.010 52.94 0.001 0.026 99.1 16.6

28 10.3 41.8 13.0 54.2 23.2 21.13 0.92 40.841 7.46 0.008 51.29 0.012 0.385

29 14.4 45.2 12.8 70.6 26.4 15.08 0.67 37.838 7.58 0.029 53.93 0.017 0.606

30 12.9 50.0 14.2 67.9 28.8 15.42 0.66 37.355 7.66 0.021 54.33 0.017 0.608 107.6

Chrono 

order

Moisture Content (wt %)
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Acetic 

acid

Levo-

glucosan
Furans Phenols Guiacols Syringols Other Total

1 3.247 1.852 0.731 0.623 1.595 2.684 3.012 13.744

2 3.304 4.379 0.693 0.630 1.598 2.598 3.710 16.913

3 7.018 7.306 0.822 0.825 2.412 4.086 5.648 28.118

4 3.944 1.931 0.576 0.619 1.517 2.463 3.307 14.357

5 3.378 1.912 0.718 0.618 1.649 2.917 3.466 14.659

6 1.572 2.404 0.737 0.759 2.133 3.633 4.642 15.880

7 1.543 1.885 0.688 0.643 1.582 2.576 3.653 12.570

8 3.698 2.110 0.529 0.676 1.539 2.345 4.684 15.581

9 3.811 1.732 0.651 0.633 1.662 2.793 3.559 14.841

10 3.610 2.949 1.033 0.863 2.407 4.092 5.626 20.580

11 2.699 1.710 0.720 0.664 1.661 2.641 4.017 14.112

12 2.316 1.696 0.770 0.613 1.659 3.015 3.586 13.656

13 2.456 1.558 0.780 0.616 1.688 2.863 3.967 13.928

14 3.345 1.755 0.776 0.618 1.679 2.837 3.985 14.994

15 2.995 1.949 0.728 0.677 1.535 2.516 3.387 13.788

16 2.390 1.699 0.758 0.601 1.608 2.697 3.805 13.559

17 4.252 1.769 0.720 0.597 1.568 2.623 3.219 14.748

18 4.157 1.955 0.708 0.789 1.299 2.012 4.974 15.894

19 2.001 1.831 0.803 0.583 1.649 2.952 4.260 14.079

20 3.500 1.971 0.635 0.716 1.448 2.263 5.030 15.563

21 2.958 1.854 0.782 0.610 1.656 2.717 4.011 14.587

22 2.742 1.751 0.749 0.586 1.621 2.340 2.915 12.704

23 3.382 1.708 0.714 0.610 1.541 2.566 4.146 14.667

24 1.389 1.683 0.873 0.614 1.666 2.833 4.532 13.591

25 2.566 1.714 0.942 0.602 1.626 2.897 4.713 15.060

26 4.613 1.701 0.855 0.626 1.662 2.782 4.657 16.895

27 5.174 1.703 0.724 0.622 1.619 2.655 3.779 16.276

28 4.635 1.954 0.730 0.631 1.479 2.392 4.779 16.600

29 3.475 1.792 0.864 0.603 1.778 3.147 3.521 15.179

30 1.938 1.785 0.877 0.599 1.671 2.961 4.258 14.089

Bio-oil chemical group (wt %)
Chrono 

order
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*Oxygen content found by difference 

Carbon Hydrogen Nitrogen Oxygen Sulfur Ash

1 76.34 3.82 0.2404 19.58 0.0157

2 76.97 3.62 0.1912 17.42 0.0170 1.7756

3 77.71 3.43 0.0614 17.69 0.0079 1.0980 31.74

4 77.22 3.59 0.2182 17.14 0.0164 1.8146

5 77.18 3.70 0.2293 18.14 0.0130 0.7364

6 77.06 3.66 0.3466 17.47 0.0161 1.4389

7 76.74 4.03 0.3164 18.90 0.0168

8 76.80 3.68 0.2919 16.90 0.0170 2.3097

9 76.74 3.65 0.2631 18.22 0.0127 1.1158 29.65

10 79.36 3.50 0.2844 14.87 0.0151 1.9710

11 75.39 4.05 0.2320 18.50 0.0161 1.8134

12 77.21 3.74 0.3241 17.46 0.0131 1.2539

13 75.51 3.95 0.3079 20.22 0.0167

14 77.39 3.65 0.0040 17.58 0.0101 1.3671 29.81

15 77.13 3.69 0.2859 16.92 0.0174 1.9544

16 76.88 3.91 0.2895 17.90 0.0162 1.0024

17 77.95 3.53 0.2600 16.70 0.0075 1.5546 32.36

18 78.42 3.56 0.3332 15.20 0.0198 2.4735

19 77.40 3.79 0.3762 16.49 0.0160 1.9262

20 75.86 3.84 0.2715 17.99 0.0190 2.0187

21 76.68 3.94 0.2527 19.11 0.0149

22 77.26 3.82 0.2328 17.14 0.0088 1.5479 30.75

23 80.02 3.59 0.3032 14.29 0.0200 1.7791

24 77.43 3.92 0.3052 16.98 0.0149 1.3475

25 76.76 3.97 0.3097 17.87 0.0100 1.0825

26 76.99 3.89 0.1570 17.40 0.0166 1.5457

27 77.14 3.87 0.1322 17.13 0.0130 1.7136 29.78

28 78.22 3.69 0.2873 15.46 0.0162 2.3239

29 73.86 4.39 0.2784 19.78 0.0138 1.6798

30 75.66 4.25 0.2900 18.30 0.0144 1.4908

Char Ultimate Analysis (wt %)Chrono 

order
HHV 

(MJ/kg)

Char analysis: 
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Appendix D: Models and ANOVA tables 

 

Bio-oil yield Model (full model)

Summary of Fit Hypothesis

RSquare 0.72 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.47 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 1.24 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 68.68 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 14 60.5 4.321 2.817 F ratio (Fo) 2.424 YES

Error 15 23.0 1.534 0.028 Prob > F

C. Total 29 83.5 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 10 20.0 1.998 3.298 F ratio (Fo) 4.735 NO

Pure Error 5 3.0 0.606 0.100 Prob > F

Total Error 15 23.0 . 0.964 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) 0.57083 1 7.820 5.099 0.039 4.543 YES

Particle size (x2) -0.52083 1 6.510 4.245 0.057 4.543 NO

Flow rate (x3) 0.17917 1 0.770 0.502 0.489 4.543 NO

Feed rate (x4) 0.72083 1 12.470 8.131 0.012 4.543 YES

Temperature*Particle size (x1x2) 0.14375 1 0.331 0.216 0.649 4.543 NO

Temperature*Flow rate (x1x3) 0.15625 1 0.391 0.255 0.621 4.543 NO

Particle size*Flow rate (x2x3) -0.08125 1 0.106 0.069 0.797 4.543 NO

Temperature*Feed rate (x1x4) 0.10625 1 0.181 0.118 0.736 4.543 NO

Particle size*Feed rate (x2x4) -0.10625 1 0.181 0.118 0.736 4.543 NO

Flow rate*Feed rate (x3x4) 0.28125 1 1.266 0.825 0.378 4.543 NO

Temperature*Temperature (x1x1) -0.98021 1 26.354 17.184 0.001 4.543 YES

Particle size*Particle size (x2x2) -0.25521 1 1.786 1.165 0.298 4.543 NO

Flow rate*Flow rate (x3x3) 0.08229 1 0.186 0.121 0.733 4.543 NO

Feed rate*Feed rate (x4x4) 0.14479 1 0.575 0.375 0.549 4.543 NO

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 69.4833 137.435 1.13E-24 2.131 YES

Model

Lack of Fit

Term

Intercept
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Bio-oil yield Model (reduced)

Summary of Fit Hypothesis

RSquare 0.65 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.59 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 1.08 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 68.68 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 4 54.3 13.574 11.623 F ratio (Fo) 2.759 YES

Error 25 29.2 1.168 1.8E-05 Prob > F

C. Total 29 83.5 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 10 20.6 2.062 3.608 F ratio (Fo) 2.544 YES

Pure Error 15 8.6 0.572 0.013 Prob > F

Total Error 25 29.2 . 0.897 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) 0.57083 1 7.820 6.696 0.016 4.183 YES

Particle size (x2) -0.52083 1 6.510 5.575 0.026 4.183 YES

Flow rate (x3)

Feed rate (x4) 0.72083 1 12.470 10.678 0.003 4.183 YES

Temperature*Particle size (x1x2)

Temperature*Flow rate (x1x3)

Particle size*Flow rate (x2x3)

Temperature*Feed rate (x1x4)

Particle size*Feed rate (x2x4)

Flow rate*Feed rate (x3x4)

Temperature*Temperature (x1x1) -0.97708 1 27.495 23.543 0.000 4.183 YES

Particle size*Particle size (x2x2)

Flow rate*Flow rate (x3x3)

Feed rate*Feed rate (x4x4)

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 69.4833 272.684 6.02E-45 2.060 YES

Model

Lack of Fit

Term

Intercept
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Bio-char yield reduced model

Summary of Fit Hypothesis

RSquare 0.95 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.94 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 0.69 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 15.58 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 4 208.9 52.22 110.477 F ratio (Fo) 2.759 YES

Error 25 11.8 0.47 1.6E-15 Prob > F

C. Total 29 220.7 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 10 5.1 0.506 1.123 F ratio (Fo) 2.544 NO

Pure Error 15 6.8 0.451 0.407 Prob > F

Total Error 25 11.8 . 0.969 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) -2.65 1 168.540 356.547 2.61E-16 4.242 YES

Particle size (x2) 1.225 1 36.015 76.190 4.63E-09 4.242 YES

Flow rate (x3) 0.275 1 1.815 3.840 0.061 4.242 NO

Feed rate (x4)

Temperature*Particle size (x1x2)

Temperature*Flow rate (x1x3)

Particle size*Flow rate (x2x3)

Temperature*Feed rate (x1x4)

Particle size*Feed rate (x2x4)

Flow rate*Feed rate (x3x4)

Temperature*Temperature (x1x1) -0.29583 1 2.521 5.332 0.029 4.242 YES

Particle size*Particle size (x2x2)

Flow rate*Flow rate (x3x3)

Feed rate*Feed rate (x4x4)

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 15.8167 97.602 8.37E-34 2.060 YES

Model

Lack of Fit

Term

Intercept
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Non-condensable gas yield reduced model

Summary of Fit Hypothesis

RSquare 0.94 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.92 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 0.60 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 15.00 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 7 127.6 18.229 50.838 F ratio (Fo) 2.464 YES

Error 22 7.9 0.359 4.0E-12 Prob > F

C. Total 29 135.5 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 17 6.9 0.406 2.042 F ratio (Fo) 4.590 NO

Pure Error 5 1.0 0.199 0.221 Prob > F

Total Error 22 7.9 . 0.993 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) 1.77917 1 75.970 193.201 1.12E-12 4.301 YES

Particle size (x2) -0.54583 1 7.150 18.184 2.91E-04 4.301 YES

Flow rate (x3) -0.32083 1 2.470 6.283 0.020 4.301 YES

Feed rate (x4) -0.45417 1 4.950 12.589 0.002 4.301 YES

Temperature*Particle size (x1x2) -0.31875 1 1.626 4.134 0.054 4.301 NO

Temperature*Flow rate (x1x3)

Particle size*Flow rate (x2x3)

Temperature*Feed rate (x1x4)

Particle size*Feed rate (x2x4)

Flow rate*Feed rate (x3x4)

Temperature*Temperature (x1x1) 1.09097 1 34.278 87.174 2.75E-09 4.301 YES

Particle size*Particle size (x2x2)

Flow rate*Flow rate (x3x3)

Feed rate*Feed rate (x4x4)

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 14.1306 95.605 2.06E-31 2.074 YES

Model

Lack of Fit

Term

Intercept
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Bio-oil moisture content reduced model

Summary of Fit Hypothesis

RSquare 0.78 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.74 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 0.84 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 24.64 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 4 60.7 15.185 21.532 F ratio (Fo) 2.759 YES

Error 25 17.6 0.705 8.5E-08 Prob > F

C. Total 29 78.4 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 4 3.9 0.983 1.507 F ratio (Fo) 2.840 NO

Pure Error 21 13.7 0.652 0.236 Prob > F

Total Error 25 17.6 . 0.825 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) -1.46 1 51.158 72.543 7.4E-09 4.242 YES

Particle size (x2) 0.31992 1 2.456 3.483 0.074 4.242 NO

Flow rate (x3)

Feed rate (x4)

Temperature*Particle size (x1x2) -0.43388 1 3.012 4.271 0.049 4.242 YES

Temperature*Flow rate (x1x3)

Particle size*Flow rate (x2x3)

Temperature*Feed rate (x1x4)

Particle size*Feed rate (x2x4)

Flow rate*Feed rate (x3x4)

Temperature*Temperature (x1x1) 0.3779 1 4.113 5.832 0.023 4.242 YES

Particle size*Particle size (x2x2)

Flow rate*Flow rate (x3x3)

Feed rate*Feed rate (x4x4)

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 24.3368 122.953 2.64E-36 2.060 YES

Model

Lack of Fit

Term

Intercept
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Bio-oil water insolubles reduced model

Summary of Fit Hypothesis

RSquare 0.86 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.84 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 0.88 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 18.01 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 3 120.9 40.29 52.585 F ratio (Fo) 2.975 YES

Error 26 19.9 0.77 3.6E-11 Prob > F

C. Total 29 140.8 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 10 5.0 8.234 1.647 2.96 4.735 NO

Pure Error 5 21.0 11.687 0.557 0.04

Total Error 15 26.0 19.921 . 0.92

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) 2.01495 1 97.441 127.177 1.6E-11 4.225 YES

Particle size (x2) -0.90135 1 19.498 25.449 3.0E-05 4.225 YES

Flow rate (x3)

Feed rate (x4)

Temperature*Particle size (x1x2) 0.49569 1 3.931 5.131 0.032 4.225 YES

Temperature*Flow rate (x1x3)

Particle size*Flow rate (x2x3)

Temperature*Feed rate (x1x4)

Particle size*Feed rate (x2x4)

Flow rate*Feed rate (x3x4)

Temperature*Temperature (x1x1)

Particle size*Particle size (x2x2)

Flow rate*Flow rate (x3x3)

Feed rate*Feed rate (x4x4)

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 18.0098 112.694 1.68E-36 2.056 YES

Model

Lack of Fit

Term

Intercept
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Bio-oil carbon content reduced model

Summary of Fit Hypothesis

RSquare 0.67 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.63 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 0.79 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 39.77 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 3 32.7 10.912 17.673 F ratio (Fo) 2.975 YES

Error 26 16.1 0.617 1.8E-06 Prob > F

C. Total 29 48.8 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 5 1.8 0.353 0.519 F ratio (Fo) 2.685 NO

Pure Error 21 14.3 0.680 0.759 Prob > F

Total Error 26 16.1 . 0.707 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) 1.04 1 25.958 42.043 7.1E-07 4.225 YES

Particle size (x2) -0.3925 1 3.697 5.988 0.021 4.225 YES

Flow rate (x3)

Feed rate (x4)

Temperature*Particle size (x1x2) 0.43875 1 3.080 4.989 0.034 4.225 YES

Temperature*Flow rate (x1x3)

Particle size*Flow rate (x2x3)

Temperature*Feed rate (x1x4)

Particle size*Feed rate (x2x4)

Flow rate*Feed rate (x3x4)

Temperature*Temperature (x1x1)

Particle size*Particle size (x2x2)

Flow rate*Flow rate (x3x3)

Feed rate*Feed rate (x4x4)

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 39.766 277.193 1.18E-46 2.056 YES

Model

Lack of Fit

Term

Intercept
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Bio-char carbon content reduced model

Summary of Fit Hypothesis

RSquare 0.72 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.64 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 0.69 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 77.04 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 6 27.9 4.648 9.769 F ratio (Fo) 2.528 YES

Error 23 10.9 0.476 2.2E-05 Prob > F

C. Total 29 38.8 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 18 10.0 0.557 3.047 F ratio (Fo) 4.579 NO

Pure Error 5 0.9 0.183 0.111 Prob > F

Total Error 23 10.9 . 0.976 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) 0.64958 1 10.127 21.285 0.000 4.279 YES

Particle size (x2) 0.36958 1 3.278 6.890 0.015 4.279 YES

Flow rate (x3) 0.28292 1 1.921 4.038 0.056 4.279 NO

Feed rate (x4) 0.42292 1 4.293 9.022 0.006 4.279 YES

Temperature*Particle size (x1x2) 0.46063 1 3.395 7.135 0.014 4.279 YES

Temperature*Flow rate (x1x3)

Particle size*Flow rate (x2x3) 0.55188 1 4.873 10.242 0.004 4.279 YES

Temperature*Feed rate (x1x4)

Particle size*Feed rate (x2x4)

Flow rate*Feed rate (x3x4)

Temperature*Temperature (x1x1)

Particle size*Particle size (x2x2)

Flow rate*Flow rate (x3x3)

Feed rate*Feed rate (x4x4)

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 77.0427 611.772 6.09E-50 2.069 YES

Model

Lack of Fit

Term

Intercept
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Non-condesnable gas carbon content reduced model

Summary of Fit Hypothesis

RSquare 0.94 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.93 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 0.28 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 5.47 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 6 29.0 4.832 63.455 F ratio (Fo) 2.528 YES

Error 23 1.8 0.076 3.71E-13 Prob > F

C. Total 29 30.7 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 18 1.5 0.085 1.945 F ratio (Fo) 4.579 NO

Pure Error 5 0.2 0.044 0.238 Prob > F

Total Error 23 1.8 . 0.993 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) 0.87833 1 18.515 243.164 1.0E-13 4.279 YES

Particle size (x2) -0.25833 1 1.602 21.035 0.000 4.279 YES

Flow rate (x3) -0.13833 1 0.459 6.032 0.022 4.279 YES

Feed rate (x4) -0.1775 1 0.756 9.931 0.004 4.279 YES

Temperature*Particle size (x1x2) -0.1425 1 0.325 4.267 0.050 4.279 NO

Temperature*Flow rate (x1x3)

Particle size*Flow rate (x2x3)

Temperature*Feed rate (x1x4)

Particle size*Feed rate (x2x4)

Flow rate*Feed rate (x3x4)

Temperature*Temperature (x1x1) 0.50458 1 7.333 96.300 1.1E-09 4.279 YES

Particle size*Particle size (x2x2)

Flow rate*Flow rate (x3x3)

Feed rate*Feed rate (x4x4)

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 5.06167 77.824 2.30E-29 2.069 YES

Model

Lack of Fit

Term

Intercept



142 
 

 

 

Hydrogen gas yield reduced model

Summary of Fit Hypothesis

RSquare 0.87 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.85 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 0.01 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 0.03 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 4 0.019 0.005 42.983 F ratio (Fo) 2.759 YES

Error 25 0.003 1.1E-04 7.44E-11 Prob > F

C. Total 29 0.022 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 4 0.002 4E-04 6.255 F ratio (Fo) 2.840 YES

Pure Error 21 1E-03 6E-05 0.002 Prob > F

Total Error 25 0.003 . 0.942 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) 0.02167 1 0.011 102.012 2.6E-10 4.242 YES

Particle size (x2) -0.005 1 0.001 5.433 0.028 4.242 YES

Flow rate (x3)

Feed rate (x4)

Temperature*Particle size (x1x2) -0.005 1 4.0E-04 3.622 0.069 4.242 NO

Temperature*Flow rate (x1x3)

Particle size*Flow rate (x2x3)

Temperature*Feed rate (x1x4)

Particle size*Feed rate (x2x4)

Flow rate*Feed rate (x3x4)

Temperature*Temperature (x1x1) 0.01528 1 0.007 60.865 3.7E-08 4.242 YES

Particle size*Particle size (x2x2)

Flow rate*Flow rate (x3x3)

Feed rate*Feed rate (x4x4)

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 0.01278 5.158 2.47E-05 2.060 YES

Model

Lack of Fit

Term

Intercept



143 
 

 

 

Carbon monoxide gas yield reduced model

Summary of Fit Hypothesis

RSquare 0.96 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.94 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 0.40 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 5.97 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 6 78.5 13.083 83.078 F ratio (Fo) 2.528 YES

Error 23 3.6 0.157 2.0E-14 Prob > F

C. Total 29 82.1 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 18 2.7 0.152 0.865 F ratio (Fo) 4.579 NO

Pure Error 5 0.9 0.176 0.632 Prob > F

Total Error 23 3.6 . 0.989 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) 1.50333 1 54.240 344.443 2.5E-15 4.279 YES

Particle size (x2) -0.4325 1 4.489 28.509 2.0E-05 4.279 YES

Flow rate (x3) -0.1675 1 0.673 4.276 0.050 4.279 NO

Feed rate (x4) -0.25417 1 1.550 9.846 0.005 4.279 YES

Temperature*Particle size (x1x2) -0.25125 1 1.010 6.414 0.019 4.279 YES

Temperature*Flow rate (x1x3)

Particle size*Flow rate (x2x3)

Temperature*Feed rate (x1x4)

Particle size*Feed rate (x2x4)

Flow rate*Feed rate (x3x4)

Temperature*Temperature (x1x1) 0.75764 1 16.532 104.982 4.8E-10 4.279 YES

Particle size*Particle size (x2x2)

Flow rate*Flow rate (x3x3)

Feed rate*Feed rate (x4x4)

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 5.35889 57.294 2.55E-26 2.069 YES

Model

Lack of Fit

Term

Intercept
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Methane gas yield reduced model

Summary of Fit Hypothesis

RSquare 0.93 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.91 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 0.06 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 0.60 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 5 1.24 0.248 62.704 F ratio (Fo) 2.621 YES

Error 24 0.10 0.004 5.5E-13 Prob > F

C. Total 29 1.34 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 9 0.05 0.006 2.151 F ratio (Fo) 2.588 NO

Pure Error 15 0.04 0.003 0.091 Prob > F

Total Error 24 0.10 . 0.969 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) 0.18542 1 0.825 208.313 2.5E-13 4.260 YES

Particle size (x2) -0.04542 1 0.050 12.498 0.002 4.260 YES

Flow rate (x3) -0.02875 1 0.020 5.008 0.035 4.260 YES

Feed rate (x4)

Temperature*Particle size (x1x2)

Temperature*Flow rate (x1x3) -0.03313 1 0.018 4.432 0.046 4.260 YES

Particle size*Flow rate (x2x3)

Temperature*Feed rate (x1x4)

Particle size*Feed rate (x2x4)

Flow rate*Feed rate (x3x4)

Temperature*Temperature (x1x1) 0.10701 1 0.330 83.269 2.8E-09 4.260 YES

Particle size*Particle size (x2x2)

Flow rate*Flow rate (x3x3)

Feed rate*Feed rate (x4x4)

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 0.51639 34.811 4.68E-22 2.064 YES

Model

Lack of Fit

Term

Intercept
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Carbon dioxide gas yield reduced model

Summary of Fit Hypothesis

RSquare 0.45 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.41 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 0.25 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 8.09 Intercept:Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 2 1.3 0.661 10.889 F ratio (Fo) 3.354 YES

Error 27 1.6 0.061 3.4E-04 Prob > F

C. Total 29 3.0 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 6 1.0 0.159 4.894 F ratio (Fo) 2.573 YES

Pure Error 21 0.7 0.033 0.003 Prob > F

Total Error 27 1.6 . 0.769 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1)

Particle size (x2)

Flow rate (x3)

Feed rate (x4) -0.14667 1 0.516 8.507 7.0E-03 4.210 YES

Temperature*Particle size (x1x2)

Temperature*Flow rate (x1x3)

Particle size*Flow rate (x2x3)

Temperature*Feed rate (x1x4)

Particle size*Feed rate (x2x4)

Flow rate*Feed rate (x3x4)

Temperature*Temperature (x1x1) 0.16722 1 0.805 13.271 0.001 4.210 YES

Particle size*Particle size (x2x2)

Flow rate*Flow rate (x3x3)

Feed rate*Feed rate (x4x4)

Intercept `

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 7.95722 137.044 6.34E-40 2.052 YES

Model

Lack of Fit

Term

Intercept
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Maximum vapor temperature within the reactor full model

Summary of Fit Hypothesis

RSquare 0.97 Model: Ho: βi=βj=βii=βjj=βij=0 Reject Ho if Fo > F0.05,14,15

RSquare Adj 0.94 LOF: Ho: LOF is significant Reject Ho if Fo < F0.05,10,5

Root Mean Square Error 9.78 Term: Ho: βi is insignificant Reject Ho if Fo > F0.05,1,15

Mean of Response 481.53 Intercept: Ho: β is insignificant Reject Ho if |to| > t0.05,15

Observations (or Sum Wgts) 30 Alternatively, if p < 0.05 the parameter is significant

Analysis of Variance

Source DF SS MS F test Significance

Model 14 44401 3172 33.130 F ratio (Fo) 2.424 YES

Error 15 1436 95.731 1.0E-08 Prob > F

C. Total 29 45837 . .

Lack Of Fit

Source DF SS MS F test Significance

Lack Of Fit 10 1134 113.392 1.877 F ratio (Fo) 4.735 NO

Pure Error 5 302 60.408 0.252 Prob > F

Total Error 15 1436 . 0.993 Max RSq

Term

Source Estimate DF SS F ratio (Fo) Prob > F F test Significance

Temperature (x1) 42.0375 1 42411.6 443.030 1.5E-12 4.543 YES

Particle size (x2) -0.31917 1 2.445 0.026 0.875 4.543 NO

Flow rate (x3) -4.89417 1 574.869 6.005 0.027 4.543 YES

Feed rate (x4) -3.67833 1 324.723 3.392 0.085 4.543 NO

Temperature*Particle size (x1x2) 0.14875 1 0.354 0.004 0.952 4.543 NO

Temperature*Flow rate (x1x3) -0.595 1 5.664 0.059 0.811 4.543 NO

Particle size*Flow rate (x2x3) 0.71875 1 8.266 0.086 0.773 4.543 NO

Temperature*Feed rate (x1x4) -0.61625 1 6.076 0.063 0.805 4.543 NO

Particle size*Feed rate (x2x4) 1.6925 1 45.833 0.479 0.500 4.543 NO

Flow rate*Feed rate (x3x4) 1.56625 1 39.250 0.410 0.532 4.543 NO

Temperature*Temperature (x1x1) 5.51146 1 833.175 8.703 0.010 4.543 YES

Particle size*Particle size (x2x2) -0.66229 1 12.031 0.126 0.728 4.543 NO

Flow rate*Flow rate (x3x3) -1.03604 1 29.441 0.308 0.587 4.543 NO

Feed rate*Feed rate (x4x4) 1.10896 1 33.731 0.352 0.562 4.543 NO

Intercept

Source Estimate t Ratio Prob > |t| t test Significance

Intercept (β) 477.59 119.565 9.12E-24 2.131 YES

Model

Lack of Fit

Term

Intercept
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