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Abstract

Virtual reality (VR) display systems have undergone significant research and 

development since their introduction.  Early systems used a head mounted display 

to provide users with a means of viewing a virtual environment.  With the 

development of the CAVE Automatic Virtual Environment (CAVE™) that used 

multiple projectors and display surfaces, users gained a three-dimensional (3D) 

sense of the virtual environment and a sense of depth and immersion in the 

synthetic environment without bulky headwear.

One of the key challenges with creating VR environments is the creation and 

manipulation of 3D models to generate immersive scenes.  Traditionally these 

models and scenes have been created on a desktop computer, using a two-

dimensional display system.  Although these systems have seen widespread 

adoption throughout academia and industry, they have significant drawbacks.  When 

creating 3D models, the need to understand model size and spatial relationships 

between models is critical.  This can be difficult to perceive on a 2D display system.

Another important challenge is controlling applications running in an immersive 

environment.  Devices such as gamepads and wands are small and lightweight, 

making them easily carried inside an immersive environment.  However, these 

devices require users to remember what behavior is tied to each physical button on 

the device.  Other devices, such as Tablet PCs, overcome this limitation by offering a 

rich user interface, at the expense of being larger and usually requiring two hands to 

operate.  Early handheld devices, such as PDAs, were investigated for use in 
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immersive environments and provided users with a graphical interface in a small 

device, but were limited by low resolution screens and poor hardware capabilities.

This thesis presents a two part solution to these issues, in the form of a VR 

application, known as iSceneBuilder, and a controlling iPhone application.  Built 

using VR Juggler and OpenSceneGraph, iSceneBuilder allows users to create and 

manipulate a scenegraph — a common data structure for managing a 3D scene.  By  

using a custom animation engine, iSceneBuilder smoothly animates changes to the 

scene, helping users understand how changes are being applied.  iSceneBuilder 

was designed to run effectively on a large computer cluster and can take advantage 

of multiple processing cores by being designed for concurrency.

The iPhone application, which communicates with iSceneBuilder via a TCP/IP 

socket, provides users with a means of controlling the immersive environment.  Built 

using Cocoa Touch, the application offers a rich user interface on a small, handheld 

device that, because of iPhoneʼs capacitive touch screen, can be controlled with no 

additional hardware.  This application allows users to browse the remote filesystem 

to load models into the immersive application.  It also displays the scenegraph, 

allowing users to select a node to manipulate.  Available manipulations include 

translation, rotation and scaling, as well as changing the transparency of a node.  

Additionally, users can navigate inside the immersive environment by using iPhoneʼs 

built-in accelerometer.
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Several uses for this system were demonstrated by creating new scenes, with 

varying levels of complexity.  Both scenes were constructed inside an immersive 

environment, which allowed users to immediately perceive the size of models and 

their spatial relationships to other models.  The first use case involved loading 

several models, then moving and rotating them into their final locations.  The 

completed scene was saved as a single file that can be used in other applications.  

The second use involved creating several smaller scenes, then combining those 

smaller scenes into a larger scene.  This use took advantage of iSceneBuilderʼs 

ability to manipulate components inside a larger scenegraph.  Finally, this system 

shows promise for future development into an application that can support 

engineering design work.

viii



Chapter 1: Introduction

To understand the motivation behind using an iPhone as the controller for building a 

3D scene, it is necessary to understand the display systems used, the software 

powering those systems and existing techniques for generating and manipulating 3D 

geometry.  A tremendous amount of research has been done to create the wide 

variety of state-of-the-art virtual reality (VR) systems currently available.

VR Display Systems

VR technology has gone through tremendous growth and change as it has evolved 

over time.  Early VR systems were built around a head mounted display [1] that 

offered users a sense of immersion, but had limited display capabilities.  These early 

systems had very limited fields of view (about 40°) and were very bulky, which 

drastically limited the userʼs movements.  Since their introduction, head mounted 

displays have advanced in their abilities, offering higher resolutions and lighter 

weight models [2].  However, there are significant drawbacks to head mounted 

displays, despite recent advancements.  One of the primary drawbacks of a head 

mounted display is that only a single user can use it.  Additionally, the resolution of 

modern head mounted displays is still far lower than a typical desktop computer 

monitor.  Typical head mounted displays run at 800x600px or 1024x768px, while a 

typical desktop LCD runs at 1680x1050px or higher.

To address some of the problems with head mounted displays, projection based VR 

display systems were created, which have seen significant growth in the last 15 

years.    Starting with the development of the CAVE Automatic Virtual Environment 
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(CAVE™) [3], a multi-sided immersive display system, more and more VR systems 

are built around one or more projectors.  These systems typically use either active 

stereo [4] or passive stereo [5] glasses and hardware to provide a unique image to 

each eye.  Both types of stereo glasses are able to block out images meant for the 

other eye.  Passive stereo glasses are much less expensive than active stereo 

glasses, but can experience ghosting — seeing a faint double image in each eye.  

The difference between these two images, known as stereoscopy, allows users to 

perceive simulated images as three dimensional.  

Projection-based VR systems are ideal when a group of people need to experience 

the same virtual environment at the same time.  Although projection-based systems 

can range from a single screen to a fully immersive six wall CAVE™, they all require 

specialized software to generate three-dimensional (3D) content and run VR 

applications.  Software such as CAVELib [6] and VR Juggler [7] exist to abstract the 

display system and input devices for software developers, simplifying the process of 

developing VR software for complex display systems, such as a CAVE™.  By 

abstracting the display and input devices, developers donʼt need to write software 

specifically for a single system.  Instead, developers can create VR applications that 

run with VR Juggler, then run their application on any VR system that supports VR 

Juggler.

Scenegraphs

As personal computer became capable of running 3D applications, a new market for 

graphics cards emerged.  To ensure that software could be written to take advantage 
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of any graphics card, the OpenGL [8] standard was created.  OpenGL is designed to 

provide a standardized means of describing graphical information to a graphics card, 

so it can render it to the display device.  OpenGL, along with its competitor DirectX 

[9], is supported by nearly every operating system in widespread use today. While 

OpenGL excels at providing a low-level interface for creating graphics, it doesnʼt 

offer any capabilities for managing a complex scene or large amounts of geometry.

To make up for this shortcoming in OpenGL, a number of toolkits for managing a 3D 

sceneʼs content, known as scenegraphs, have been created.  Typically, a 

scenegraph will provide developers with a means of loading existing 3D geometry 

files, sorting the content within the 3D scene 

and manipulating the scene.  Two popular 

open source scenegraphs today are 

OpenSceneGraph [10] and OpenSG [11].  

Both OpenSceneGraph (OSG) and OpenSG 

offer similar features to developers, including a 

tree-based object hierarchy (see Figure 1), 

scene modification and extensive tools to 

manipulate content that is a part of the scene.  

However, while scenegraphs excel at 

managing existing content, they provide limited 

tools for creating new geometry from scratch.  

These tools primarily comprise of creating 
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basic geometric primitive shapes (e.g., cubes, spheres, and cones).  More advanced 

tools are required to create and assemble a 3D scene.

One of the most commonly used scenegraphs is OpenSceneGraph (OSG). OSG 

has plugins to load a wide variety of 3D file formats into its native .osg file format.  It 

also offers a large set of libraries that simplify the process of creating and using 

popular graphics techniques, such as on screen text, particle systems, volume 

rendering and terrain information.  While OSG is capable of running on a cluster, it 

doesnʼt have any built-in provisions for sharing its scenegraph across multiple 

computers.

OpenSG, another popular scenegraph among VR application developers, was 

created specifically for applications designed to run on a computer cluster.  

OpenSGʼs developers focused on optimizing their scenegraph for running and 

rendering in a highly parallelized environment.  The unique ability of OpenSG to 

share its scenegraph via the network enables it to easily run in on a large, multi-

computer display system, such as a CAVE™.

3D Scene Creation Tools

A wide variety of tools exist to create 3D geometry today, including commercial 3D 

modeling programs, detailed engineering design tools, open source modeling tools 

and scenegraph editors.  Two widely used commercial 3D modeling programs are 

Autodesk 3ds Max [12] and Autodesk Maya [13].  Both of these programs are 

designed for creating and modeling 3D objects with a high degree of realism as 
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shown in Figure 2.  Although 3ds Max and Maya can be used to lay out an entire 

sceneʼs content, they are primarily designed to generate a single model at a time.  

Another advantage of these programs is 

that they are able to layer complex 

colors and textures on models.  Textures 

are images mapped onto the surface of 

a geometric shape with the purpose of 

giving it a more detailed and realistic 

appearance.  One limitation of these 

programs is that, when exporting to a separate file, they save all the sceneʼs content 

into a single model file, which doesnʼt preserve any hierarchy or information about 

the content of the scene. 

Detailed computer aided design (CAD) software, such as PTC Pro/ENGINEER [14], 

Autodesk AutoCAD [15] and Dassault Systémesʼ SolidWorks [16] is widely used in 

industry to create detailed 3D models of products and parts such as in Figure 3. 

These programs are designed to allow engineers and 

CAD modelers to create extremely precise models of 

parts. However, they have little provision for 

modifying the color or texture on the models they 

create.  They also are not designed to create or 

manage a large scene of 3D content.  When 

exporting geometry, CAD programs often have 
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SolidWorks. Image courtesy 
3ds.com.

Figure 2: Sample image from Autodesk 3ds 
Max. Image courtesy Autodesk.



options to export a collection, or assembly, of parts that can be put together to form 

a larger model. However, these export formats are typically proprietary and are not 

easily imported into a 3D scenegraph.

Along with 3D modeling tools, there are also programs that are designed to modify 

and convert 3D models from one file format to another, such as Okino PolyTrans [17] 

and Right Hemisphere Deep Exploration [18].  The primary purpose of PolyTrans 

and Deep Exploration is to input a wide variety of 3D file formats, strip out 

extraneous data and export a final model in a format that can be read by popular 

scenegraphs.  In particular, PolyTrans can import and export dozens of file formats.  

Neither of these programs are designed for creating 3D models from scratch — they 

primarily exist to modify and convert existing geometry.  However, both of these 

programs are able to load multiple models and lay them out to create a larger scene.

The underlying problem with all of these programs is that they are only designed to 

run on a desktop computer with a two-dimensional (2D) interface — they are not 

designed for or capable of running in 

a 3D immersive environment.  This is 

one of the central problems with most 

3D modeling tools — they are used to 

create 3D scenes on a 2D display 

system.  This requires the user to 

mentally map out the scene in 3D 

from a collection of 2D views as 
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Figure 4: A typical 2D desktop program for 3D 
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shown in Figure 4.  None of these programs are designed to run with a 3D display 

system that would show their content in its native form.

Desktop software in VR

Since most desktop tools attempt to display 3D content on a 2D display, such as a 

desktop computer, tools have been created to project their content into a 3D 

immersive display system, such as a CAVE™.  One such program is Mechdyneʼs 

Conduit [19].  Tools like Conduit provide users with a better, more realistic 

experience for viewing the output of modeling programs.  However, they offer limited 

interaction in a CAVE™ as the modeling programs were not designed for controlling 

a multi-screen environment.  Because desktop applications are designed to run on a 

2D display with a keyboard and mouse, it is difficult to provide both the desktop 

users and immersive viewers with good views of the virtual environment.  Finally, 

they still suffer from the limitations of their desktop-only counterparts — they are not 

optimized for laying out a 3D scene.

Another approach to taking desktop software and running it in a 3D immersive 

environment is CaveUT [20].  CaveUT is a modified version of the commercial game 

Unreal Tournament 2004 [21].  While not a system for generating 3D content, 

CaveUT takes an interesting approach to running a desktop program in a multi-

computer, large scale display system. CaveUT runs a separate copy of the game for 

each projector, which presents a modified view from the primary controller.  

However, CaveUT offers no provisions for controlling the game from within the 
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immersive environment — users still need to operate the game from a standalone 

computer.

Controlling VR applications

Because the traditional controls for a desktop computer (keyboard and mouse) are 

strictly two dimensional input devices, a number of different input devices have been 

used for 3D immersive environments.  These devices range in complexity from an off 

the shelf gamepad to a Tablet PC.  One very common VR input device is a gamepad 

[22], such as the Logitech Cordless 

Rumblepad 2™ [23] shown in Figure 5.  

These input devices provide users with 

numerous buttons and analog axes to 

configure as needed for a specific 

application.  However, they typically are not 

tracked by the display system, so they are 

not able to provide a 3D input.

One alternative to gamepads is a 3D input device, known as a wand [24], which is 

tracked by the immersive environment.  A 

wand is shown in Figure 6.  Wands typically 

have a few buttons that can be used by 

software developers, but their primary 

advantage is that they offer six degrees of 

freedom within an immersive environment.  
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Figure 5: Logitech Cordless Rumblepad 2.
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These can be used in a variety of ways in a 3D immersive environment, but still are 

limited in what a user can do with them. One limitation, in particular, is that the user 

needs to remember what each button does.

Motivation

Numerous solutions exist to create new 3D geometry and modify existing 3D 

geometry.  Some of these solutions are designed for creating detailed technical 

models, while others are better at creating artistic models.  However, the vast 

majority of these solutions run on a desktop computer with a 2D display.  There is 

room to improve on these systems by taking advantage of a 3D immersive 

environment.  By creating scenes inside a 3D immersive environment, users have a 

better understanding of the models they are working with and how they relate to 

each other in the environment.

Additionally, many desktop tools are designed for creating single models, rather than 

laying out a larger scene.  Although they are capable of laying out a scene, most 

desktop applications donʼt offer users the ability to easily compare objects to each 

other or view the scene in its real size.  These are critical parts of creating a VR 

scene.  Much of this process can be improved by bringing the scene layout into the 

VR environment directly, allowing users to see their scene as itʼs built.

Not only can the user experience of creating and laying out a 3D scene be improved 

by using a VR environment, the tools used inside the VR environment can also 

evolve.  Most existing control systems for VR environments rely on the userʼs 

9



memory to keep track of which buttons on an input device trigger different behaviors.  

Some of these systems lighten the load by using menu systems inside the 

application, where physical buttons control the menus.

However, mobile devices have drastically evolved recently, offering far better user 

experiences.  Current mobile devices have higher resolution displays than their 

predecessors, which allows them to present richer interfaces for users.  Not only 

have displays improved, so has the input system.  While most devices use a stylus 

to interact with the interface, some new devices, such as Appleʼs iPhone, can be 

controlled with just a fingertip.  These features, combined with built-in wireless 

communication, make iPhone an ideal tool for controlling a VR application.

Thesis Organization

This thesis discusses the issues of creating and manipulating a scenegraph in an 

immersive virtual environment and how to control applications in an immersive 

environment.  Chapter 2 presents a literature review of past and current research in 

virtual reality applications, systems for controlling immersive applications and 

techniques for creating 3D models.  Chapter 3, Methodology, first discusses how the 

immersive application is designed and built, then presents the iPhone application 

that is used to control the immersive application.  Chapter 4 discusses some 

example uses of the applications. Chapter 5 contains a summary of the work and 

presents future work.
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Chapter 2: Literature Review

Virtual Reality Application Development Systems

In addition to VR Juggler and a scenegraph, such as OpenSceneGraph, to create a 

VR applications, a number of simpler solutions exist to use virtual reality hardware 

without the difficulties involved in writing custom applications.  Although these tools 

are easier for users to take advantage of, they also have a much more limited set of 

capabilities.  These tools are developed with a specific use case in mind, then 

marketed for a specific purpose.  While this provides for a powerful tool in certain 

cases, it is not always easy to adapt them for other purposes.

One of the simplest tools for running VR display systems is to modify the graphical 

output data from a standard desktop application — one that works with 3D data on a 

2D display — and adapts it to a VR display.  These tools, such as the open source 

Chromium [25], work by replacing the OpenGL stack on a computer with their own 

implementation of the OpenGL libraries.  This modified OpenGL library will still 

generate output to the local display as normal, but it also sends the OpenGL calls to 

another computer that modifies them and displays them in a 3D VR display system.  

A key advantage to this approach is that no additional software needs to be written 

to run in a VR display system — standard desktop applications can be run without 

modification.  Because of this, users donʼt need additional training to take advantage 

of a VR environment.  However, desktop applications typically are not designed to 

run in this way.  It can be difficult to control a VR application entirely from a desktop 
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application, and there are not going to be any VR-specific features that take 

advantage of the VR display system.

One such set of tools comes from ICIDO GmbH — the ICIDO Visual Decision 

Platform (VDP) [26].  The VDP is a collection of applications, which run in a virtual 

reality environment, that allow users to perform common actions in the engineering 

design process.  Some of these applications include product reviews, ergonomic 

analysis and simulating flexible parts. Each of these features is a standalone 

application that serves a single purpose.  A key advantage of this approach to virtual 

reality application development is that each tool can be highly optimized for its 

specific task.  However, there is little room for users to customize the application for 

their specific needs.  For example, if users wanted to use VR for city planning, none 

of the standard ICIDO applications would offer an ideal feature set for this use, and 

thereʼs no easy way for users to create their own tools using the VDP system.

Another alternative for creating VR applications is Vizard [27].  Unlike the ICIDO 

system, Vizard allows users to create their own applications using the Vizard 

system.  To create these applications, developers use the Python scripting language 

to create custom behaviors for Vizard objects.  Essentially, Vizard presents a Python 

wrapper on top of standard VR application tools.  By using Python, rather than C or 

C++, to script behaviors, the learning curve for new developers is reduced.  This is 

because Python is a simpler language that doesnʼt have to be compiled like C++.  

However, it comes at a cost — users are limited to using the provided Vizard tools. 

Also, because Python is an interpreted scripting language, scripts written in Python 
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wonʼt run as fast as machine code that is generated from a C++ compiler.  When 

running complex VR applications with detailed models and visual effects, it is 

important to have an application that runs as fast as possible.

Scene Creation Tools

There are a number of tools created specifically for creating and setting up 3D 

scenes that will be used in a VR environment.  Some programs, like OSGEdit [28], 

exist solely to assemble 3D models into a larger scene.  OSGEdit, shown in Figure 

7, can load files that are supported by OpenSceneGraph (OSG) and manipulate 

them as part of a larger scene.  These manipulations include modifying the position, 

orientation and scale of an object, as well as adding new groups of scenegraph 

nodes.  It can also save the complete scene out as a single .osg file, which is OSGʼs 

native file type.  Although these capabilities allow OSGEdit to assemble a new 

scene, OSGEdit canʼt be used to generate new geometry.  OSGEdit is also not 

capable of running on a VR 

display system; it only runs on a 

standard desktop computer.  This 

can make it difficult for users to 

easily understand the 3D scene 

they are creating, especially if 

they intend to display the scene 

on a VR display system.

A number of programs have been 

13
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written to create 3D geometry using simplified 2D design tools, without the 

complexity of CAD.  Zeleznik, et al. created VR Sketchpad [29], a tool that is 

designed to simplify the process of creating 3D geometry for architecture on a 

desktop computer.  VR Sketchpad, however, is designed to simply create new 

geometry; it doesnʼt have provisions for importing or manipulating existing geometry.  

The basic premise of VR Sketchpad is that users can quickly create crude drawings 

on a desktop application, similar to Microsoft Paint [30].  Users quickly sketch out 

shapes and lines with different colors; the application translates these into 3D 

shapes that can be used in a virtual environment.  While this is extremely easy for 

users to work with, this approach has a significant number of limitations.  Because 

geometry is simply generated from 2D lines and shapes, users have no control over 

the height of the geometry.  Additionally, VR Sketchpad offers no capabilities for 

modifying or managing existing scenes — it simply creates new geometry.

Another tool for creating 3D geometry, SKETCH [31], takes the idea of simple 

sketches on a desktop computer and combines it with gestures to create more 

complex models.  In SKETCH, users are able to draw their ideas, as they might with 

pencil and paper, but can use some gestures to help define what kind of object they 

are drawing.  SKETCH also has the ability to perform edits on geometry that has 

already been drawn by drawing the appropriate editing gesture.  For example, users 

draw a set of orthogonal axes on an object to translate it within the scene.  SKETCH 

manages a scene hierarchy based on where objects are drawn with respect to each 
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other.  Despite these abilities, users of SKETCH are still required to mentally map 

the 2D views of their scene into 3D.

Some researches have investigated new hardware techniques for drawing 3D 

geometry using a 3D input system, rather than a keyboard & mouse.  One such 

example, the 3D Tractus [32], uses a Tablet PC mounted 

on a height-adjustable stand with a sensor to monitor the 

height, as shown in Figure 8.  This gives users a 

physical mapping between the height of the drawing 

tablet and where they are drawing in the 3D scene.  By 

providing a 3D input system with an interface users can 

easily understand, this approach makes it easier for 

users to draw simple 3D content. However, the 3D 

Tractus doesnʼt offer users the ability to modify existing 

content, lay out a 3D scene, or take advantage of a VR 

environment.

Little work has been done in the field of creating 3D content from within a 3D virtual 

environment.  Gardner, et al. investigated using a gamepad with multiple joysticks 

and buttons to draw lines in a 3D environment [33].  Their approach was to map 

three of the four axes on the pair of joysticks to cursor motion in the virtual 

environment.  Each axis on a joystick would correspond to moving the cursor along 

a given axis.  Users were able to draw 3D lines using the joysticks on the gamepad 

in an open 3D environment, which they found difficult and imprecise.  Other buttons 
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Figure 8: The 3D Tractus 
drawing system.



on the gamepad were used to change colors of the line being drawn, display a help 

screen and reset the drawing area.  Although drawing within a 3D environment is a 

good starting place for future research, this research doesnʼt address the concerns 

of how to draw more complex geometry in 3D, nor does it handle laying out or 

creating a new scene.

Controlling Virtual Reality Applications

Throughout the history of virtual reality, researchers have tried numerous 

approaches to creating a user-friendly interface for controlling and interacting with 

applications.  These techniques have varied in both the on screen user interface (UI) 

and the physical devices used to interact with VR applications.  While some 

researchers have attempted to convert traditional desktop interfaces, such as 

menus, to a VR environment, others have investigated more unique interaction 

techniques in VR.

In an effort to bring standard UI widgets to a 3D immersive environment, some 

researchers have ported a standard 2D desktop UI toolkit (Qt) to a CAVE™ [34].  

This technique was implemented by displaying the 2D UI elements as textured 

objects within a 3D space.  In order to control the interface, a wand replaced the 

behavior of the mouse on a desktop computer.  An on-screen virtual keyboard was 

provided for text input.  Test results show that the CAVE™ interface was 

considerably slower to users, by as much as 33% compared to a desktop keyboard 

and mouse interface.  Although this interface will be familiar to the vast majority of 

16



computer users, a desktop UI toolkit was designed for a 2D display and input 

system.

Other developers have implemented various types of menu systems in 3D for user 

interaction.  Typically, these have the advantage of having a single degree of control 

at a time — users can only move up/

down or left/right at any given time. 

For example, the Spin Menu [35] uses 

a circular motion for users to select 

between given options.  When users 

select an option, a new circle of 

options is presented to them, as 

shown in Figure 9.  Other text menus 

[36] use linear menus or attach menu options to user-controlled objects in the VR 

scene.  In fact, the concept of a linear menu system has been popularized in many 

consumer devices, such as Appleʼs iPod nano [37].  A key strength of a menu 

system is that actions are described to users — they donʼt need to memorize the 

behavior of a given action.  However, it can be tedious for users to navigate through 

several levels of menus to reach a specific action.  Also, a menu system can only 

present a limited amount of information at a given time without overwhelming the 

user.

Another 3D interface system that is more specific for a 3D immersive environment 

was created by developers at ICIDO [38].  This interface allows users to select from 
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a number of functions at a given time by “pulling” a selector towards the desired 

option.  One advantage of this interface is that it can vary the number of selectable 

items easily.  However, if too many options were presented at once, it could become 

difficult for users to ensure they select the correct option.

A popular topic of research in VR is the use of gestures in a VR environment, which 

are typically performed by tracking the userʼs hand or fingers [39].  With gestures, a 

user can perform various motions for the computer to recognize and interpret as a 

specific command.  For example, a user can rotate their wrist to represent rotating a 

selected object.  The concept of gesture-based controls was widely popularized with 

the film Minority Report [40].  There are a number of reasons that gross body 

gestures havenʼt seen widespread use.  First, it can be tiring for users to move their 

arms around for long amounts of time.  Second, usability studies have found that 

gesture interfaces are typically, but not always, slower than traditional input systems 

such as a keyboard and mouse [41].

Similar to the use of gestures, full body tracking has also been researched to interact 

with VR environments.  Many full body tracking systems use multiple cameras to 

track users, which eliminates the need for restrictive physical markers on the person 

being tracked [42].  One demonstrated use of full body tracking is to control avatars 

within a 3D environment [43].  Full body tracking can lead to intuitive control of a 

virtual environment, especially when compared to a menu system or smaller 

gestures.  A key limitation of full body tracking, at this time, is the accuracy and 

reliability of the tracking systems.  Often cameras are not able to provide very 
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reliable data about the position and pose of a person being tracked.  These systemsʼ 

tracking tends to “drift” away from the true position over time as well.

Hardware Devices

In addition to the numerous techniques investigated for creating a 3D user interface, 

researchers have created a wide variety of hardware devices for interacting with 

virtual reality applications.  Many of these input devices are commonly used for other 

purposes, but are being applied in different ways to controlling a VR application.  

Other devices tend to be developed specifically for use with VR applications.

One approach to controlling an immersive environment is to create an application 

that runs on a standard desktop computer.  These applications would communicate 

over a standard Ethernet network with the immersive environment to send 

commands.  The Advanced Systems Design Suite [44] uses this approach of 

creating a feature-rich desktop 

application that controls a simple 

immersive viewer [45].  Figure 10 

shows a laptop computer being 

used inside an immersive 

environment.  There are several 

benefits to this approach.  Users 

are often comfortable with standard 

desktop UI paradigms, making it 

easy to begin using the software.  
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Also, a desktop computer typically has a significant amount of computing resources 

available, so very complex and powerful software can be created.  However, a 

significant drawback to this technique is that a desktop computer cannot easily be 

used in an immersive environment.  A desktop or laptop computer is bulky and 

usually requires two hands to operate, taking away from the sense of immersion.

An alternative to a desktop computer is the Tablet PC [46].  These devices provide 

users with a large, high resolution screen that offers a rich UI, similar to that of a 

desktop computer. Tablet PCs have been used to run desktop software [47] in 

immersive environment and they can be used entirely as a separate input device.  

One severe limitation of a Tablet PC, however, is that devices are both heavy and 

bulky.  A user typically needs to cradle the Tablet PC in one arm, while using the 

other hand for the mandatory stylus.  This greatly limits the userʼs mobility and 

freedom inside the immersive environment.  Additionally, a Tablet PC usually 

requires the use of a stylus to interact with the screen.  A stylus forces the user to be 

precise with their interactions, as UI designers assume the stylus can accurately 

select a small area on the screen.

One of the more VR-specific areas of research has been in the field of haptics — 

simulating the tactile sense of touch.  While haptics have been popularized in the 

commercial market by incorporating rumble technologies into game controllers, such 

as a the Nintendo Wii [48] or Sony PlayStation 3 [49], more advanced haptics 

devices are being used in research labs [50].  Often these research oriented devices 

offer multiple degrees of freedom and can simulate the weight of virtual objects.  
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Often, haptic devices are used to simulate situations where a trained sense of touch 

is required, such as planning surgeries [51].  Despite these strengths, haptic devices 

are not necessarily a good choice for interaction in an immersive environment.  Due 

to their size and space requirements, they easily can break a userʼs sense of 

immersion in a virtual environment.

Early in the growth of VR systems, researchers investigated the use of handheld 

personal digital assistants (PDAs) with immersive display systems [52].  An example 

of an early PDA-based interface is shown in Figure 11.  Although they canʼt be used 

with a head mounted display, PDAs are certainly usable in a CAVE™. However, 

early PDAs offered significant limitations that hindered their growth as a VR input 

device.  Early PDAs had no capabilities to 

communicate wirelessly with a standalone 

computer and used resistive touchscreens, 

which require the use of a stylus — requiring 

the use of both hands to operate the device 

at all times. Newer PDAs added some 

wireless communications capabilities, but still 

were limited by the screenʼs input system.  

Finally, PDAs typically have low resolution 

screens, which greatly limits what the UI can 

show.  A typical PDA runs at a resolution of 

320x240 or lower.  At this resolution, very little 
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text can be shown on screen at a given time alongside user interface elements.

Motivation for mobile devices

Despite some of the limitations encountered with the earlier use of PDAs in virtual 

environments, recent advances in mobile computing have rekindled interest in their 

use.  Current mobile devices have a number of new technologies that make them 

more suitable for use in virtual environments, including higher resolution screens, 

improved touchscreens, wireless communication and more advanced software 

development kits (SDKs).

The use of mobile computing devices has seen significant growth in recent years, 

with a number of organizations creating custom software for their own purposes.  

For example, iRobot has investigated using mobile devices for controlling their 

PackBot robot [53].  By taking advantage of a device with a built-in screen and 

controls, the amount of hardware required to control the robot is reduced [54].  Other 

researchers created tools to run augmented reality applications on mobile devices 

[55], such as smartphones and PDAs.

Until recently, touchscreen technology almost exclusively required the use of a stylus 

when fine, detailed actions were required.  In particular, PDA and Tablet PC 

touchscreens were designed for operators to use a stylus.  Although a stylus can 

ensure that users have precise control over the device, they tend to slow down user 

inputs and frustrate users [56].  One issue that users tend to encounter is parallax 

error — the difference in mapping user touch events to the actual displayed content.  
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If the touchscreen inputs are not perfectly aligned with the display, users have a 

difficult time accurately controlling the device.  Users also need more time to 

precisely select an on-screen element with a stylus [57].  These issues have been 

mitigated through capacitive touchscreen technology.

The resolution of the screen on a mobile device is another key factor in the usability 

of mobile devices.  A higher resolution screen is able to present more data to the 

user at a single time, and can display more detailed information.  A popular area of 

research is using mobile devices to teleoperate robotic vehicles [58].  Many robotic 

vehicles include onboard cameras, which help remote operators see the world 

around the robot.  Many interfaces will show these camera views on a mobile 

device, using the entire screen [59].  By being able to present more layers of 

information to users at a given time, users can have a better understanding of the 

remote environment.  It is important, however, to not overload the user with too 

much information at once.

Despite the fact that mobile devices have higher resolution screens than their 

predecessors, it is still important to only present relevant information to the end user 

at a given time.  In The Design of Everyday Things, Don Norman discusses a good 

user interface that provides good feedback to the user about their actions and only 

shows relevant parts of the interface at a time [60].  Although in his example, 

Norman is discussing a complex stereo control system, these design principles are 

just as applicable to software design, especially on a mobile device.
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Overall, a number of solutions have been presented for interacting with virtual reality 

applications.  Some of these solutions offer rich user interfaces at the cost of a large 

and bulky device, such as a Tablet PC.  Other solutions use existing virtual reality 

hardware, like a wand or gamepad, but are more complex for users and can only 

show limited information on screen at once.  Old PDA-based solutions started to 

address these problems but were still limited by the hardware capabilities at the 

time.

Research Issues

Based on the literature review of current research in scenegraph manipulation in 

virtual reality and systems for controlling virtual reality applications in immersive 

environments, two research questions have been identified.  They are:

1. Can 3D immersive display environments be used for creating and 

manipulating scenegraphs?

As described above, most scenegraphs and 3D models are created on two-

dimensional displays, typically on a desktop computer.  While this technique is 

widely used in industry, there is room for improvement.  Rather than require 

users to mentally map 2D images of a 3D environment together, why not use a 

3D display system to layout a 3D scene?  This would allow users to intuitively 

create a scene, immediately understanding where objects are relative to each 

other.
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2. Can an iPhone be a usable interface device for scenegraph manipulation in 

an immersive VR environment?

Numerous solutions have been presented for controlling applications in an 

immersive environment.  However, all the presented solutions have their 

drawbacks, including large, bulky devices or relying on the userʼs memory to 

function properly.  Recent mobile devices, such as Appleʼs iPhone, have a richer 

feature set that can improve on existing attempts at controlling immersive 

applications.
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Chapter 3: Methodology

To address the research issues identified above, a two-part system was developed.  

The first part of this system is an immersive application that presents a 3D virtual 

environment to users.  This application allows users to design, create and 

manipulate a scenegraph from inside the virtual environment.  To interact with the 

scenegraph, a controller application was created to run on an iPhone.  This chapter 

details how both of these applications were created.

Immersive Application

As described in the research questions section, one of the key issues that needs to 

be addressed is how to create and manipulate a scene in 3D.  To this end, an 

immersive application was created to run in C6 at Iowa State University [61], a six 

wall fully-immersive environment.  This section will detail the immersive application, 

known as iSceneBuilder, and how it was designed.

VR Juggler

The underlying foundation of iSceneBuilder is built on the VR Juggler framework.  By  

utilizing VR Juggler, iSceneBuilder can easily run on a wide variety of VR display 

systems, including C6, single wall displays and standalone computers.  Although the 

VR Juggler suite includes numerous software tools to assist application developers, 

only a few features of VR Juggler were used in iSceneBuilder.

At the lowest level, iSceneBuilder launches from the VR Juggler kernel.  The kernel 

is responsible for loading VR Juggler configuration files — these are used to 
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describe the environment the application is running in.  For example, the C6 

configuration file describes the computer cluster, the graphics output from each node 

in the cluster and the tracking system.  Although they are not used in iSceneBuilder, 

VR Juggler configuration files are often used to describe input devices as well.  

When the application kernel launches, it determines from command line argument 

whether it is running as a cluster master node or a cluster slave node.  If itʼs running 

as a master node, the application kernel sends a copy of pertinent configuration data 

to all of the slave nodes.

It is important to understand how VR Juggler runs applications on a cluster.  Each 

node in a cluster runs a unique instance of the application.  The application running 

on each node is responsible for maintaining its own memory contents and updating 

its graphics output.  VR Juggler has provisions for sharing and distributing 

information across the cluster, which are described in the Cluster Networking 

section of this chapter.

Once the VR Juggler kernel is initialized, the application begins its own initialization 

process. The first step of the initialization is to initialize the VR Juggler input devices 

— in this case, the head tracker.  After that, iSceneBuilder creates the base of the 

scenegraph tree.  The scenegraph structure is described in the OpenSceneGraph 

Integration section of this chapter.  Once the scenegraph has been created, the 

application initializes the networking system, which is responsible for communication 

with the controller application.
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Additionally, there is some important configuration data that needs to be used as 

part of the application setup.  This data can change based on the computer 

iSceneBuilder is running on — it includes the location of the applicationʼs data and a 

globally unique identifier (GUID) for the VR Juggler shared data.  iSceneBuilder 

stores this data in a XML file, which provides for a human readable file.  When the 

application launches, the data is read from the XML file and stored in variables for 

later use.

Master Node

Get 
commands 

from network

VR Juggler 
UserData 

synchronization

All Nodes

Act on 
commands 

from network

All Nodes

AnimationEngine 
updates

All Nodes

VR Juggler 
renders frame

Figure 12: Steps taken to render a frame in iSceneBuilder.

Beyond the initialization of the application, VR Juggler is responsible for managing 

the main run loop of the application.  There are a number of steps taken to draw 

each frame; these steps are controlled by VR Juggler.  The first step in each frame is 

to clear the render buffer, then allow the application to update data before rendering 

the frame.  There are two stages to updating data — the preFrame and the 

latePreFrame.  In the preFrame, the master node receives an updated set of 
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commands from the controller application.  Between the preFrame and 

latePreFrame, VR Juggler synchronizes this set of commands so that every node in 

the cluster has identical copies of the data.  During the latePreFrame, each node 

responds to the incoming commands.  The rendering pipeline for iSceneBuilder is 

shown in Figure 12.

Cluster Networking

As described in the VR Juggler section, VR Juggler runs a unique instance of the 

application on each node of the computer cluster.  It is critical that each application 

have the same set of data to act on, so that each node runs the application 

identically to the other nodes.  If any single node falls out of sync with the remainder 

of the cluster, the application will no longer operate normally and needs to be 

restarted.  To address this critical issue, VR Juggler provides a UserData object that 

is shared and synchronized across the entire cluster.  

iSceneBuilder extends the VR Juggler UserData object to maintain a list of 

commands that have been sent by the controller application and synchronize them 

with all the nodes.  The first step in this process is to receive commands on the 

master node — the computer that is responsible for controlling the cluster.  This 

computer stores the commands in a queue.  Once VR Juggler is ready to 

synchronize data, the commands stored in the queue are serialized and sent to the 

other nodes.  Other nodes de-serialize the commands and store them in another 

queue to be interpreted later.  This process occurs as part of drawing every frame.
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Networking & Concurrency

In addition to sharing commands between cluster nodes, iSceneBuilder also 

supports two-way communication with the controller application over a network.  

Specifically, iSceneBuilder uses a single TCP/IP socket.  When the application is 

initialized, a TCP server socket is created, which listens on a designated port for 

incoming connection requests.  Once it has accepted a connection, it begins a 

perpetual loop where it receives a block of data into a buffer, then sends any 

messages that have been queued to be sent.  After iSceneBuilder receives a block 

of data, the buffer is parsed to find individual commands, which are then handled by 

the VR Juggler cluster shared data system.  The message syntax used in  

iSceneBuilder is described in the iPhone Networking section.

A general trend in computing is to offering systems with multiple processors and/or 

multiple cores.  In order to take advantage of these capabilities, developers need to 

consider concurrency when designing their applications.  A typical desktop 

application only runs in a single thread, meaning it can only perform one task at any 

given time.  By designing applications with concurrency, developers can enable their 

applications to perform multiple tasks simultaneously, taking advantage of more 

resources on the computer.  One approach to concurrency is multithreading — using 

more than one thread within an application. 

Because the TCP/IP socket is a blocking socket — meaning it will halt execution 

until it receives data — the socket cannot exist in the applicationʼs main run loop.  If 

it was to exist in the main run loop, iSceneBuilder would stop rendering frames until 
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it received data over the network.  Due to the sporadic nature of incoming data, this 

is an unacceptable behavior.  To address this problem, iSceneBuilder runs all 

network traffic in a separate thread, utilizing a standard POSIX thread (pthread) [62].  

A pthread offers an additional run loop, which iSceneBuilder dedicates to network 

traffic.  This enables the main run loop to continue rendering frames without having 

to wait for network traffic.  When the application is told to terminate, the TCP/IP 

socket is released from memory and the pthread is destroyed.  By properly closing 

the socket, the port is immediately made available again for other applications to 

use.  

Filesystem Integration

Because the controller application, which is running on a separate device, doesnʼt 

necessarily have access to the filesystem, iSceneBuilder is responsible for 

navigating its local filesystem.  Specifically, iSceneBuilder needs to move to a 

specified directory and get a file listing from that directory.  All of this information is 

sent to the controller application via the TCP/IP socket described in the Networking 

& Concurrency section. To manage these responsibilities, iSceneBuilder includes a 

class known as FileSystem.  

Internally, FileSystem maintains a string that is iSceneBuilderʼs current directory.  

This is updated when the controller application tells iSceneBuilder to change to a 

new directory.  The bulk of the work in FileSystem is to print the current directoryʼs 

contents.  This method opens the current directory and reads all of the directoryʼs 

contents into a buffer.  Then, it removes irrelevant data from the buffer — hidden 
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files and anything that isnʼt another directory or file.  The final buffer of the directory 

listing is given to the networking system to transmit to the controller application.

OpenSceneGraph Integration

iSceneBuilder, as a scenegraph creation and manipulation tool, relies heavily on its 

internal scenegraph.  As described in the Introduction, OpenSceneGraph offers a 

robust and powerful set of tools, which is why it was selected for iSceneBuilder.  As 

iSceneBuilder initializes, the base scenegraph is constructed.  This starts with a root 

node, which is an OSG Group — a node that can contain connections to other 

nodes.  Attached to the root node are two other groups.  One of these groups, called 

mNoNav, is maintained for objects that need to remain in a static position at all 

times, while the other group, known as mNavTrans, is where all user navigation 

commands are applied.  All other geometry is attached to mNavTrans, so that any 

user navigation commands recursively affect the rest of the scene.  This hierarchy is 

represented in Figure 13.

Figure 13: Diagram of the iSceneBuilder scenegraph.
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Because the primary goal of iSceneBuilder is to manage and manipulate the 

scenegraph, a number of scenegraph tools were necessary.  An internal class, 

known as ScenegraphControls, is a toolkit of scenegraph manipulation methods that 

are used for all of iSceneBuilderʼs functionality.  One of these tools is used to change 

a nodeʼs internal name.  A nodeʼs name has no impact on how the node is rendered; 

it simply exists for the userʼs sake.  Another tool will generate a string containing key 

information about every node within the scenegraph.  This tool is described in further 

detail in the OpenSceneGraph NodeVisitors section.  A third tool in 

ScenegraphControls gets the detailed information about a node, including its name, 

unique identifier and current rotation values, and formats them into a string that can 

be sent to the controller application.

ScenegraphControls is also used for translating nodes, rotating nodes, scaling 

nodes and changing the transparency of a node.  To implement these features, 

ScenegraphControls first needs to prepare the instructions.  For example, the user 

sets a nodeʼs rotation using degrees, because degrees are easier for a user to 

understand.  However, OSG internally uses radians for rotation data, so 

ScenegraphControls has to perform conversions to the appropriate data types.  

Once the data is prepared, ScenegraphControls creates a new AnimationCommand 

and adds the newly created command to the AnimationEngine.  Both 

AnimationEngine and AnimationCommand are detailed in the AnimationEngine 

section.
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In addition to manipulating the scenegraph, iSceneBuilder has intelligence built into 

how it loads geometry.  Rather than simply loading a file when instructed to, 

iSceneBuilder maintains an internal list of every file itʼs loaded, how many copies 

need to be in the scene and how many copies of that model have been loaded 

already.  When itʼs instructed to load a model, iSceneBuilder simply increments the 

counter for the number of needed copies.  Every frame, iSceneBuilder checks if any 

new models need to be loaded, then adds them to the scenegraph if necessary.  

This intelligent model loading system ensures that every model has a unique name, 

helping the user keep track of what they have in the scene.

AnimationEngine

AnimationEngine is a state-based scenegraph animation system that can easily be 

incorporated into any application that uses OSG, such as iSceneBuilder.  The goal of 

AnimationEngine is to make it easy for developers to add animations to their 

applications.  By animating changes to the scenegraph, rather than snapping to a 

new setting instantly, users have better understanding of what is happening in the 

environment around them.  iSceneBuilder uses AnimationEngine to power all of its 

object manipulation commands.

There are two key components to AnimationEngine: AnimationCommand and 

AnimationEngine.  AnimationEngine is fairly simple — it maintains an internal list of 

active AnimationCommands and tells each active command to update itself every 

frame.  When the developer adds a new AnimationCommand to the engine, it 

replaces any existing commands for that node with the new command.  By ensuring 
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that only the latest command for an object exists in the AnimationEngine, there canʼt 

be a backlog of commands waiting to execute.  The other advantage to this behavior 

is made apparent when a new command is given to an animation that is already in 

progress.  For example, a command is halfway completed that moves an object from 

0,0,0 to 100,0,0, meaning the object is currently at 50,0,0.  A new command is given 

to the AnimationEngine that instructs the object to move to 50,50,0.  Rather than first 

moving to 100,0,0, then proceeding to 50,50,0, the object will smoothly begin moving 

to its new goal of 50,50,0.

The bulk of the capabilities of AnimationEngine are implemented in 

AnimationCommand.  There are four types of AnimationCommand: translate, rotate, 

scale and adjust transparency.  All of these command types have several things in 

common, including how many frames the command should take to complete its goal, 

the goal state and the node to modify.  Each command is capable of updating itself 

every frame by linearly interpolating between the original state and the goal state.  

Rotation commands use quaternions for interpolation, while translate, scale and 

transparency commands are based on three-dimensional vectors.

There are a few key benefits to using AnimationEngine.  The primary benefit is that 

AnimationEngine offers “fire and forget” animations.  Once a developer adds an 

AnimationCommand to the AnimationEngine, they donʼt have to do any additional 

work to support the command — the engine will complete the animation and clean 

up after itself.  Second, by animating changes to the scenegraph, users have a 

better understanding of the virtual environment and how they are impacting it.  
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Finally, in a situation where commands may have high latency (such as receiving 

commands over a slow network), animating changes will provide users with a 

smoother experience, helping minimize the visual impact of the latency.

OpenSceneGraph Node Visitors

There are two situations where iSceneBuilder needs to interact with every node in 

the current scenegraph.  Rather than maintain a separate system for storing a 

pointer to each node, iSceneBuilder uses a pair of OSG NodeVisitors to interact with 

the entire scenegraph when necessary.  A NodeVisitor is an object that is called 

recursively on every node in the scenegraph and can apply an operation to each 

node it finds.  The first of these NodeVisitors simply builds a string with the name 

and unique identifier for each transform node it finds.  This string is designed to be 

sent to the controller application.  The second NodeVisitor adds a unique UserData 

object to every node in the scenegraph.

This unique UserData object has a few important pieces of information that are used 

elsewhere in iSceneBuilder.  The first part of the UserData object stores the current 

rotation values of the node in degrees.  By storing this data separately, less 

calculations are required when the controller application requests the rotation of a 

node in degrees.  The other part of the UserData object is a unique identifier for 

each node, which is an integer.  This is necessary because OpenSceneGraph 

doesnʼt have a unique identifier for each node.  iSceneBuilder maintains an internal 

counter for every node added to the scenegraph, which is incremented for every 
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new UserData object.  The controller application uses this unique identifier to tell 

iSceneBuilder which node it should apply changes to.

iPhone Software Development

Released in 2007, Appleʼs iPhone offers developers with a new hardware device that 

extends the capabilities of a traditional PDA [63].  Like mobile devices, iPhone is a 

small handheld device with a touchscreen. Unlike most mobile devices, iPhone uses 

a capacitive touchscreen.  There are two key differences between resistive and 

capacitive touchscreens. First, a capacitive touchscreen is operated with a userʼs 

finger instead of a stylus.  Second, resistive touchscreens are limited to detecting a 

single point of contact, while capacitive touchscreens can detect multiple 

simultaneous contacts (multi-touch).

Apple offers developers access to several key features of iPhone through their 

Cocoa Touch API [64].  In this chapter, any method calls that begin with the NS or UI 

prefix are part of the Cocoa Touch API.  There are several unique features on iPhone 

that make it an ideal device for controlling virtual reality applications in an immersive 

environment. First, iPhone has built-in WiFi, which developers have access to [65], 

making it easy to connect iPhone applications to another computer or any device on 

a network.  Second, iPhone has an accelerometer [66], which is capable of detecting 

the deviceʼs orientation.  This can provide developers with additional means of 

controlling 3D applications.  Recent models of iPhone also include an electronic 

compass, which can determine which direction the device is facing.  Finally, Apple 

provides Cocoa Touch developers with the ability to draw custom user interfaces 
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with the CoreGraphics system [67].  With CoreGraphics, developers are not limited 

to the default UI objects when creating applications.  iPhone OS is built on 

CoreGraphics, which makes it possible to create applications that are both visually 

appealing to users and consistent with the existing design paradigms on iPhone.

All of these features combine to make a compelling device for controlling 

applications in an immersive environment.  Unlike early generation PDAs, iPhone 

has a high resolution screen that doesnʼt require a stylus for interaction.  Additionally, 

iPhone has built in support for wireless networking, which makes it easy to interact 

with other computers. iPhone is also a small, handheld device that can be operated 

with one hand, leaving the userʼs other hand free.  This contrasts with Tablet PCs, 

which need one arm to cradle the device, while the other hand uses the stylus to 

control the computer.  Because of these reasons, the controller application for 

iSceneBuilder was written for iPhone.  The remainder of this chapter describes how 

the iPhone application was built.

Application Delegate

The base part of the iPhone application is the application delegate.  In Cocoa Touch, 

a delegate is a method that is registered to receive callbacks from other process.  

This class, which is a subclass of UIApplicationDelegate, is primarily responsible for 

responding to notifications from iPhone OS, such as launching, low memory 

warnings and the user terminating the application.  In addition to these functions, the 

application delegate also controls and manages the socket used for communicating 

with iSceneBuilder over the network. Because the application delegate receives all 
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incoming network traffic and sends outgoing messages, it also needs to keep track 

of the view controllers, so that it can pass relevant messages to the appropriate 

receivers.

The application delegate also maintains the UITabBarController — this provides the 

tab buttons at the bottom of the screen, which are used to cycle between modes of 

the application.  The iPhone applicationʼs tab bar is shown in Figure 14.  The first 

button, Network, is used to connect to iSceneBuilder and save the current scene as 

an OSG file on the remote file system.  The second button, File Browser, is used to 

browse the remote file system and add models to the current scene.  File Browser is 

detailed in the FileListingTableViewController Class section.  The third button, 

Scenegraph, provides users with a view of the current scenegraph hierarchy and 

allows them to edit the characteristics of a node.  The capabilities of the Scenegraph 

view are described in the ScenegraphTableViewController Class section.  Finally, 

the fourth button, Navigation, allows users to move around inside the immersive 

environment.  The Navigation button is discussed in the NavigationViewController 

Class section.

Figure 14: The tab bar items in the iPhone 
application.
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iPhone Networking

Because the primary purpose of the iPhone application is to control iSceneBuilder, 

the networking system is of critical importance.  Both applications communicate via a 

TCP/IP socket, which guarantees packets will be delivered to the recipient in the 

order theyʼre sent in.  Unlike iSceneBuilder, the TCP socket in the iPhone application 

doesnʼt need to be run in a separate thread.  This is because NetSocket, the 

networking library used, is configured to use the current NSRunLoop.  By utilizing 

the current run loop, the socket is non-blocking and will only briefly check for 

incoming data before allowing the program execution to continue.  Because the 

application delegate is also the NetSocket delegate, it receives a method call when a 

handled event occurs on the socket: socket connected, socket disconnected and 

socket data is available.

Data must be formatted in a specific way so that both iSceneBuilder and the iPhone 

application can parse the data they receive.  Below is an example message sent by 

the iPhone application to iSceneBuilder.

6:4:8.000000:0.051021:-10.000000;

Every block of the message is separated by a colon, while the message is 

terminated with a semicolon.  The first block of the message is the command type, 

which is an integer.  In this message, 6 instructs iSceneBuilder that this is a translate 

command.  The next block, 4, specifies the unique node identifier of the node that 
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should be modified.  The final three blocks specify the destination location of the 

node as floating point values.

In addition to specific commands, like the one above, other command types have no 

blocks beyond the command type block in the beginning.  The most commonly sent 

message is known as the heartbeat message.  The iPhone application has a 

NSTimer that repeats every 0.25 second.  This timer sends a basic message to 

iSceneBuilder is used to ensure there is still an active network connection.  If a 

certain number of these messages are not sent successfully, the application could 

automatically disconnect itself from iSceneBuilder.

The iPhone application also receives data from iSceneBuilder, which it needs to 

parse before it can handle the incoming command.  To do this, the iPhone 

application uses a number of the string parsing capabilities of NSString.  Primarily, 

the componentsSeparatedByString method is used to parse the separate blocks.  

This method returns an array containing the elements of a string that are separated 

by a specified delimiter — in this case, a colon.  Once the blocks have been parsed, 

individual view controllers can enumerate through the array of blocks to interpret the 

command.

FileListingTableViewController Class

To allow the user to navigate through the remote file system and select models to 

load, the iPhone application needs to be able to display this information to users.  

The FileListingTableView, which is a UITableView object, provides this capability.  
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There are several key components to the FileListingTableViewController: receiving 

and parsing incoming data, creating UITableViewCells and handling user 

interactions with the UITableView.  The FileListingTableViewController is shown in 

Figure 15.

When a message is given to the 

FileListingTableViewController, the 

controller needs to parse the 

incoming directory listing so that it 

only displays relevant information to 

the user.  The 

FileListingTableViewController 

creates FileListing objects, which 

contain a fileType and fileName.  

When parsing the incoming data, 

the first step is to determine the file 

type — a folder, a file or the current 

directory.  After this has been 

determined, the 

FileListingTableViewController 

identifies supported 3D model files.  

After the entire message has been 

parsed, the resulting FileListing 
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Figure 15: The FileListingTableViewController for the 
iPhone application.



objects are stored in a NSArray.

The data stored in the NSArray is used by the FileListingTableViewController to 

create UITableViewCells — the on-screen elements the user interacts with.  These 

cells are created on demand, when the OS requests a new one be created and 

made visible to the user.  By only creating cells as necessary, the memory overhead 

of the application is reduced — an important factor on a mobile device such as 

iPhone.  An important property of a UITableViewCell is the accessoryType, which is 

the graphical element on the right side of the cell.  The iPhone application sets 

different accessories based on whether the cell is displaying a folder or a file.  

The final component of FileListingTableViewController is handling user interactions 

with the UITableView.  There are two interactions that need to be accounted for — 

selecting a folder and selecting a file.  If the user selects a folder by tapping 

anywhere on the cell, FileListingTableViewController creates a new network 

message instructing iSceneBuilder to change to the new directory and send back an 

updated directory listing.  When FileListingTableViewController receives the new 

directory listing, it updates its collection of cells that are displayed to the user.  If the 

user loads a model by tapping the accessory icon in the cell, 

FileListingTableViewController sends a network message to iSceneBuilder that 

contains the modelʼs name.  The model will immediately be loaded by iSceneBuilder 

and will become visible to the user in the immersive environment.
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ScenegraphTableViewController Class

The third button on the tab bar, Scenegraph, presents the 

ScenegraphTableViewController, which is shown in Figure 16.  This view displays 

the current scenegraph hierarchy to the user and allows them to select a specific 

node to edit.  Similar to the FileListingTableViewController, the 

ScenegraphTableViewController uses 

an internal NSArray to store its 

contents and creates 

UITableViewCells that are displayed 

to the user.  

When parsing an incoming 

scenegraph list, the 

ScenegraphTableViewController 

creates ScenegraphListing objects.  

Similar to the UserData objects that 

are created for OpenSceneGraph in 

iSceneBuilder, ScenegraphListing 

objects stores the nodeʼs name, 

unique identifier, depth from the root 

node and rotation values.  The 

nodeʼs name is used to generate the 

name of each UITableViewCell, 
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Figure 16: The ScenegraphTableViewController of the 
iPhone application.



while the depth is used to determine the indentation of the cell.  Other data isnʼt 

visible to the user in the ScenegraphTableViewController.

When the user taps on the detail disclosure accessory on a cell (the blue arrow on 

the right side of the cell), the ScenegraphTableViewController determines which cell 

and node was selected, then generates a new command to be sent to 

iSceneBuilder.  This command instructs iSceneBuilder to generate the detailed data 

for that node and send it back to the iPhone application.  When that data is received, 

the NodeDetailViewController is created and made active.  This view is described in 

further detail in the NodeDetailViewController Class section.

NodeDetailViewController Class

Perhaps the most important, or at least most used, view in the iPhone application is 

the NodeDetailViewController, shown in Figure 17.  This view, unlike the previously 

described UIViewControllers, does not present a UITableView to users.  Instead, it 

presents a customized UIView with a number of elements laid out on it.  The 

purpose of the NodeDetailViewController is to allow users to manipulate important 

characteristics of a node in iSceneBuilderʼs scenegraph.

At the top of the NodeDetailViewController is a UITextField, which is used for editing 

the nodeʼs name.  Below the UITextField is a UISegmentedControl, which has four 

segments, used to select a type of manipulation.  Depending on what manipulation 

is currently selected, a set of sliders will be visible to the user.
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These sliders, which are customized 

UISlider objects, are the most 

unique user interface element of 

the iPhone application.  The 

standard UISlider, shown in Figure 

18, is a horizontal slider with blue 

tracks and a plain white thumb.  

This contrasts with the customized 

UISliders in the iPhone application, 

which can be seen in Figure 17, 

that are vertical, have red/green/

blue/orange tracks, thumbs with 

lettering and images on both ends 

of the slider.

In addition to their unique visual 

appearance, the customized 

UISliders have modified behavior, 

based on the selected 

manipulation.  Typically a UISlider is used to select from a discrete range of values.  

In the case of rotation, this behavior is 

appropriate — users select a rotation 

value between 0° and 360° around 
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Figure 17: The NodeDetailViewController in Scale 
mode.

Figure 18: A standard UISlider.



each axis.  Similarly, changing a nodeʼs transparency also is a discrete range of 

values, where users select a transparency value between 0% and 100% 

transparent.  However, translation and scale commands do not operate on a discrete 

range of values.  Instead, the sliders have a custom “spring-loaded” behavior where 

they will reset to zero when the user isnʼt touching them.  This behavior is similar to 

how a physical joystick or gamepad would behave.  Because of this behavior, users 

can move objects precisely in small areas and quickly across large areas with the 

same interface.

Typically a user will manipulate geometry along a single axis at a given time, so 

three sliders are presented to users in translate, rotate and scale modes.  The 

sliders are colored to correspond to the standard colored axes in virtual reality 

applications.  Additionally, the icons at the top and bottom of the sliders represent 

which direction the slider controls.  In the event that the user wants to manipulate an 

object in two or three axes simultaneously, the sliders are multi-touch enabled.  A 

user can drag two or three of the sliders at the same time, in different directions if 

desired.  This is a feature that takes advantage of iPhoneʼs multi-touch display that 

is not found on many other devices.  Scale mode contains a fourth slider that will 

scale the node in all three axes simultaneously, because users will often want to 

make the object larger or smaller, rather than stretching it along one axis.

Finally, the NodeDetailViewController takes advantage of Core Animation [68] to 

provide a smooth, rich interface to users.  Similar to AnimationEngine, used in 

iSceneBuilder, Core Animation is used to give users a better sense of their 
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interactions with the application.  In the case of the iPhone application, the number 

of sliders on screen at any given time can vary between one, three and four.  As 

users select different manipulation modes, the application presents different sets of 

sliders to the user.  Core Animation moves the sliders around on screen and fades 

them in and out, as necessary.  Additionally, Core Animation is used when the value 

of sliders is changed programmatically, rather than immediately moving the thumb 

on the slider to the correct position.

NavigationViewController Class

Rather than forcing users to view the immersive environment from a fixed position, 

users need to be able to freely explore the scene they are creating.  In order to allow 

the user to move around inside the immersive application, the 

NavigationViewController was created.  This class, which is activated by the fourth 

button on the UITabBar, takes advantage of iPhone-specific hardware.

One of the simplest classes in the iPhone application, NavigationViewController has 

a single, large UIButton that covers the entire screen, which is shown in Figure 19.  

When a user taps and holds on this button, its image changes with new text, telling 

the user to tilt to navigate around.  At the same time, when iPhone OS detects a 

touch down event on the button, it stores the current orientation of the device from 

the accelerometer.  As long as the user is still touching the button, the iPhone 

application gets the current accelerometer position every 0.1 seconds, finds the 

difference between the current orientation and the stored orientation and sends the 

difference to iSceneBuilder.  By storing an initial orientation and finding the 
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difference, a new “neutral” position is set every time the user begins navigating.  This 

provides for a better user experience when controlling the application, because 

users arenʼt forced to hold their iPhone in a specific orientation to navigate properly.  

When the user lets up on the button, 

the initial position is erased and the 

application stops responding to 

accelerometer events.

In addition to the button that 

controls user navigation, there are 

two additional controls that modify 

how the user navigates.  By default, 

user navigation moves on a 

horizontal plane, along the X and Z 

axes.  However, users occasionally 

need to move up and down as well.  

To enable this behavior, a UISwitch 

was placed at the top of the view.  

When toggled on, user navigation 

occurs in a vertical plane, along the 

X and Y axes.  In this situation, tilting 

their iPhone towards the user moves 

up, while tilting their iPhone away from the user moves down.
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Figure 19: The NavigationViewController of the 
iPhone application.



Some scenes can be fairly large, so the user needs to move from one part of the 

scene to another.  However, the user also needs precise speed controls in smaller 

areas.  To facilitate these needs, the UISlider at the bottom of the view controls a 

multiplier for the navigation speed.  With values ranging from one to ten, the 

accelerometer values are multiplied by the current value of the slider to get the final 

navigation speed.  This gives the user slow and precise or fast navigation as 

necessary.

The following table, Table 1, summarizes all of the custom classes in iSceneBuilder 

and the iPhone application that have been described in the Methodology chapter.
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Class Name Application Purpose

ScenegraphControls iSceneBuilder Set of tools for manipulating the 
scenegraph in iSceneBuilder

AnimationCommand iSceneBuilder A single command to animate 
changes to the scenegraph

AnimationEngine iSceneBuilder Maintains a list of 
AnimationCommands and 
automatically updates active 
commands

NodeVisitor iSceneBuilder Recurses through the 
scenegraph and returns data 
from or makes changes to each 
node

UserData iSceneBuilder Custom data that can be 
attached to nodes in the 
scenegraph

ApplicationDelegate iPhone 
Application

Responds to events from the 
OS and manages the network 
connection to iSceneBuilder

FileListingTableViewController iPhone 
Application

Allows the user to navigate the 
remote file system

ScenegraphTableViewController iPhone 
Application

Represents the scenegraph 
and allows the user to select a 
node to edit

FileListing iPhone 
Application

Object containing a file type 
and file name

ScenegraphListing iPhone 
Application

Object containing data about a 
specific scenegraph node

NodeDetailViewController iPhone 
Application

View for making changes to a 
scenegraph node

NavigationViewController iPhone 
Application

Allows the user to navigate in 
the immersive environment

51

Table 1: Description of custom classes in iSceneBuilder and the iPhone application



Chapter 4: Results

In order to demonstrate the capabilities of iSceneBuilder and the iPhone application 

for building and managing scenegraphs, two different scenes were created.  Each of 

these scenes had a different purpose, and different techniques were employed to 

achieve the final result.  Both scenes were created inside C6 at Iowa State 

University and are presented in this chapter.  In addition to these two scenes, a 

potential real-world use case is discussed at the end of the chapter.

The first demonstration of the capabilities of iSceneBuilder was to create a simulated 

space battle, using models from the original Star Wars movies.  This scene, which 

includes several copies of each model, could be used as part of a larger space 

application or as a standalone model.  The goal for the scene was to have six X-

wing fighters approach three TIE fighters, which would be escorting an Imperial 

shuttle.  Because the scene is set in space, a star field is an appropriate 

background.

52



Figure 20: The fleet of X-wings.

The first step in creating this scene was to load a single X-wing model and place it in 

the scene.  As is common with many 3D models, the internal rotation matrix didnʼt 

match the desired rotation of the model.  Because of this, the first step was to rotate 

the model so it was upright and facing the correct direction.  Once the model was 

moved into place, five additional X-wings were loaded and configured similarly.  A 

portion of this X-wing fleet is shown in Figure 20.
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Figure 21: The TIE fighters and Imperial shuttle models.

After the X-wing fleet was configured, the user navigated away from the X-wings to 

where the Imperial fleet was to be place, then loaded the first TIE fighter model.  

Like the X-wing models, this model also needed to be rotated to the appropriate 

orientation before placing it.  A total of three TIE fighters were loaded and moved into 

a tight formation that faced the X-wing models.  Finally, an Imperial shuttle model 

was loaded and placed in between the TIE fighters and X-wing models, as shown in 

Figure 21.  Finally, a star field model was added to the scene.  Because this model is 

considerably larger than the ship models, it serves as a “sky dome” that gives a 

sense of a background in the scene.

This example demonstrates the ability of iSceneBuilder to load a variety of existing 

models, place them in a scene and manipulate them to create a new scene as the 
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user wants.  By creating the scene inside the VR environment, the user immediately 

sees how large models are compared to each other and how the scene looks in VR.

The next scene demonstrates additional capabilities of iSceneBuilder by creating a 

larger, more complex scene. Rather than create a new scene from nothing, this 

example recreates a scene from the Virtual Universe [69], a space exploration 

application created at the Virtual Reality Applications Center.  Specifically, the Virtual 

Universe contains an asteroid field environment, which contains thousands of 

asteroids in a pseudo-random pattern.  The asteroid field scene was originally 

created using 3ds Max by creating a pattern of several asteroids, then duplicating 

that pattern many times to generate a larger field of asteroids.  One of the significant 

challenges when creating the original scene was understanding how large the 

asteroids were and how tightly they should be spaced.
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Figure 22: The base set of nine asteroids.

The first step in recreating the asteroid field was to load a small number of asteroids 

and begin placing them.  A variety of asteroid models were used, each with a unique 

shape and size.  In order to create a sense of randomness, each asteroid was 

rotated to arbitrary values and moved into a position near another asteroid.  This 

base collection of nine asteroids, shown in Figure 22, was saved as a .osg file for 

future use.
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Figure 23: Several sets of asteroids.

Figure 24: The completed asteroid field.
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After saving the set of asteroids, a new, blank scene was created.  Then, the user 

loaded several copies of the previously saved collection of asteroids into the scene, 

as shown in Figure 23.  Because each copy was loaded from a separate file, each 

set of asteroids was grouped underneath a single MatrixTransform.  This made it 

easy to move around groups of asteroids at once.  Each group was rotated to 

arbitrary values and scaled so that they werenʼt readily recognizable as duplicates.  

Because iSceneBuilder allows users to manipulate parts of the scenegraph, the user 

was still able to modify the properties of individual asteroids as necessary, 

independently of the larger group.  Again, after laying out several groups of asteroids 

this way, the scene was saved as a .osg file for later use.  This process was 

repeated another time to generate the large asteroid field with thousands of 

asteroids visible at once.  A portion of the final scene is shown in Figure 24.

By using the iPhone application to control iSceneBuilder, the user was able to get 

immediate, real-time feedback about their actions in the immersive environment.  

This feedback included loading models and moving them inside the scene.  

Additionally, building the scene in the immersive environment made it possible for 

the user to realize the size of models, how close they were to each other and what 

the model would like in its final use.  This strongly contrasts with the experience of 

developing the same scene on a desktop computer, where users cannot easily 

understand how large a model is or what it will look like in the immersive 

environment.
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A final example of using iSceneBuilder is presented as a discussion for how it can be 

applied to a real-world situation.  One of the key strengths of iSceneBuilder is that 

users see their changes to the scenegraph in real-time, inside the VR environment.  

A common use for VR is for engineering design.  Rather than building costly and 

time consuming physical prototypes, VR environments can use existing CAD 

geometry to give engineers information about the product during the design process.  

For this hypothetical use case, a company is placing a new display system by the 

operatorʼs seat in their vehicle.  There are a number of potential locations for this 

display, but engineers are concerned about how the display will block line-of-sight to 

critical areas the operator needs to see at all times.  With many existing VR tools, an 

engineer would have to generate a finite number of models with the display in 

potential locations, then load each model into the VR environment, one at a time.  If 

the engineering team wanted to see the display in a different location, a new model 

would need to be generated, forcing the team to reconvene at a later time.

iSceneBuilder can easily facilitate this use case, by saving time before the design 

review session and offering the engineering team more flexibility during the session.  

Rather than generate a finite set of models, the team would only need a model of the 

vehicle and the display, as two separate models.  At the beginning of the design 

session, an engineering, using the iPhone application, would load the models of the 

vehicle and display.  Then the team could investigate positions for the display by 

moving and rotating it in the environment with the iPhone application.  When they 

found a potentially acceptable location for the display, the current scenegraph could 
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be saved for future reference.  By using iSceneBuilder, engineers can investigate an 

unlimited number of positions for the display without having to leave the VR 

environment or waiting for additional models to be generated.
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Chapter 5: Future Work & Conclusions

This thesis presented a system for creating and manipulating a scenegraph in an 

immersive environment, controlled with an iPhone.  By generating the scenegraph in 

the VR environment, rather than on a desktop computer, users have a better 

understanding of how models relate to each other.  Users are also able to see their 

changes to the scene in real-time, rather than being required to make changes to a 

model, then bring the modified model back into the VR environment.

The first part of this system, known as iSceneBuilder, is an application that runs in 

an immersive environment.  Built using VR Juggler and OpenSceneGraph, 

iSceneBuilder maintains an internal scenegraph of the current scene that can be 

modified by the user.  Because many VR systems run on a computer cluster, 

iSceneBuilder is designed to share incoming commands with all nodes in the cluster, 

so that each computer behaves identically to the master node.  iSceneBuilder also is 

designed with concurrency in mind, as typical computers have multiple processing 

cores available.  When making changes to the scenegraph, iSceneBuilder utilizes 

AnimationEngine, a state-based system for animating changes to nodes in a 

scenegraph.  By animating these changes, users have a better sense of the 

changes they are making to their environment.  Finally, iSceneBuilder utilizes a 

proprietary TCP/IP socket to communicate with its controlling iPhone application.

Rather than use existing tools for controlling VR applications, iSceneBuilder is 

controlled with a custom-built iPhone application.  This controller application both 

receives data from iSceneBuilder and sends numerous commands to iSceneBuilder.  
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Built using Cocoa Touch, the iPhone application has a number of different views, 

each with different capabilities, that the user can take advantage of.  The 

FileListingTableViewController allows users to navigate through the remote file 

system, view directory listings and load models into iSceneBuilder.  In order to view 

the scenegraph hierarchy and select models to manipulate, the 

ScenegraphTableViewController was created.  After selecting a node to edit, the 

NodeDetailViewController presents a set of customized UISliders that allow users to 

translate, rotate and scale models, as well as changing the transparency of a node.  

Finally, users are able to navigate in the remote environment by using the 

NavigationViewController.  While this view is active, users take advantage of the 

built-in accelerometer in iPhone by tilting the device to control their navigation.  By 

developing this application for iPhone, rather than other control systems, users have 

a small, lightweight, handheld device they can easily use in an immersive 

environment.  Because iPhone has a capacitive touchscreen, users donʼt need a 

stylus or other device to interact with the application.  Cocoa Touch, combined with 

the high resolution display, allows for a detailed and informative user interface.

By combining these two tools, users have a powerful system for creating and 

manipulating scenes from inside an immersive environment.  Rather than using a 2D 

desktop computer for scene creation, which make it difficult to understand the spatial 

relationships between models, building scenes in a 3D enable users to immediately 

understand how large models are and how they relate to one another.  This can be 

beneficial, not only for creating new scenes to use in other applications, but also as 
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a tool for engineering design.  Using an iPhone to control the immersive application 

gave users a tool with a graphically rich user interface that was easy to manipulate.  

Users werenʼt required to memorize the functionality of specific buttons or navigate 

through VR menu systems to control the application.  The iPhone helped users 

control the immersive application without being intrusive in the environment.

If further analysis of the described system was needed, a number of user studies 

could be performed to quantitatively assess the system.  These studies could first 

analyze how effectively users can build 3D scenes in VR compared to using a 

traditional 2D tool, such as 3ds Max.  In this study, users would be asked replicate a 

3D scene using one of the tools while being timed.  Feedback could also be 

gathered from the users while they work and through an exit interview.  A similar 

study could compare controlling the immersive application with an iPhone versus a 

gamepad, wand or Tablet PC.

To continue the development of iSceneBuilder and the iPhone application, there are 

several areas that could benefit from additional research and development.  

Currently, the iPhone application is only capable of manipulating scenegraph nodes 

that are imported from a file.  Support for additional node types, such as lights or 

particle systems, could be added.  Also, the ability to create new OSG Groups in the 

iPhone application would assist users in managing more complex scenegraphs.
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