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ABSTRACT

In this dissertation, a suite of inversion-based feedforward-feedback control techniques are

developed and applied to achieve high speed AFM imaging. In the last decade, great efforts

have been made in developing the inversion-based feedforward control as an effective approach

for precision output tracking. Such efforts are facilitated by the fruitful results obtained in the

stable-inversion theory, including, mainly, the bounded inverse of nonminimum-phase systems,

the preview-based inversion method that quantified the effect of the future desired trajectory

on the inverse input, the consideration of the model uncertainties in the system inverse, and

the integration of inversion with feedback and iterative control. However, challenges still

exist in those inversion-based approaches. For example, although it has been shown that the

inversion-based iterative control (IIC) technique can effectively compensate for the vibrational

dynamics during the output tracking in the repetitive applications, however, compensating-

for both the hysteresis effect and the dynamics effect simultaneously using the IIC approach

has not been established yet. Moreover, the current design of the inversion-based feedforward-

feedback two-degree-of-freedom (2DOF) controller is ad-hoc, and the minimization of the model

uncertainty effects on the feedforward control has not been addressed. Furthermore, although

it is possible to combine system inversion with both iterative learning and feedback control

in the so-called current cycle feedback iterative learning control (CCF-ILC) approach, the

current controller design is limited to be casual and the use of such CCF-ILC approach for

rejecting slowly varying periodic disturbance has not been explored. These challenges, as

magnified in applications such as high-speed AFM imaging, motivate the research of this

dissertation. Particularly, it is shown that the IIC approach can effectively compensate for

both the hysteresis and vibrational dynamics effects of smart actuators. The convergence of
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the IIC algorithm is investigated by capturing the input-output behavior of piezo actuators

with a cascade model consisting of a rate-independent hysteresis at the input followed by the

dynamics part of the system. The size of the hysteresis and the vibrational dynamics variations

that can be compensated for (by using the IIC method) has been quantified. Secondly, a novel

robust-inversion has been developed for single-input-single-output (SISO) LTI systems, which

minimized the dynamics uncertainty effect and obtained a guaranteed tracking performance for

bounded dynamics uncertainties. Based on the robust-inversion approach, a systematic design

of inversion-based two-degree-of-freedom (2DOF)-control was developed. Finally, the robust-

inversion-based current cycle feedback iterative learning control approach was developed for

the rejection of slow varying periodic disturbances. The proposed CCF-ILC controller design

utilizes the recently-developed robust-inversion technique to minimize the model uncertainty

effect on the feedforward control, as well as to remove the causality constraints in other CCF-

ILC approaches. It is shown that the iterative law converges, and attains a bounded tracking

error upon noise and disturbances. In this dissertation, these techniques have been successfully

implemented to achieve high-speed AFM imaging of large-size samples. Specifically, it is shown

that precision positioning of the probe in the AFM lateral (x-y) scanning can be successfully

achieved by using the inversion-based iterative-control (IIC) techniques and robust-inversion-

based 2DOF control design approach. The AFM imaging speed as well as the sample estimation

can be substantially improved by using the CCF-ILC approach for the precision positioning of

the probe in the vertical direction.
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CHAPTER 1. Introduction

In the last decade, great efforts have been made in developing the inversion-based feedforward

control as an effective approach for precision output tracking. Such efforts are facilitated by the

fruitful results obtained in the stable-inversion theory, including, mainly, the bounded inverse

of nonminimum-phase systems, the preview-based inversion method that quantified the effect

of the future desired trajectory on the inverse input, the consideration of the model uncertain-

ties in the system inverse, and the integration of inversion with feedback and iterative control.

However, challenges still exist in those inversion-based approaches.

For example, it is shown that the inversion-based iterative control (IIC) technique can effec-

tively compensate for the vibrational dynamics during the output tracking in the repetitive

applications and it was successfully utilized for the precision positioning of piezo actuator with

small displacement range [1, 2]. However, there exists nonlinear hysteresis during the large

range operation of piezo actuator and compensating-for both hysteresis effect and the dynam-

ics effect simultaneously using the IIC approach has not been established yet.

System inversion can also be utilized in feedforward-feedback two-degree-of-freedom (2DOF)

system for output tracking. It is noted that the development of the stable inversion methodol-

ogy [5, 6] has demonstrated the efficacy of combining the inversion-based feedforward control

and feedback control in output tracking (e.g., [7]). The performance of the inverse feedforward

control, however, can be limited by system dynamics uncertainties and disturbances [8], and

the dynamics uncertainty effect has not been explicitly addressed in existing system inver-

sion methods [5, 9, 7]. Moreover, existing 2DOF approach design feedforward and feedback
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controllers separately and a systematic approach is sought to design the feedback control to

complement the inversion-based feedforward control.

By combining system inversion with both iterative learning and feedback control, the so-called

current cycle feedback iterative learning control (CCF-ILC) approach can be utilized for dis-

turbance rejection. In the CCF-ILC framework, the iterative control input is generated online

by using the tracking results from the previous iteration (i.e., previous cycle), and is augmented

to the feedback control input during the current iteration (i.e., current cycle, called ”current-

cycle-feedback” as in literature [10]). The convergence of CCF-ILC approach was proved when

the disturbance is repetitive. It is noted that, for the slow varying periodic disturbance, this

feedforward feedback control framework can also improve tracking when the cycle-to-cycle vari-

ation is small. However, the convergence of the approach was not explored for slow varying

periodic disturbance, and the allowable cycle-to-cycle variation for the tracking enhancement

was not quantified. Moreover, in the existing CCF-ILC design, since the feedforward controller

is limited to be causal, the constraints posed by the nonminimum-phase dynamics cannot be

overcomed.

These challenges as magnified in applications of high-speed AFM imaging, motivate the re-

search work of this dissertation.

The rest of this dissertation is organized as follows.

In Chapter 2,the inversion-based iterative control (IIC) technique was utilized to compensate

for both the hysteresis and vibrational dynamics effects of piezo actuators. The convergence

of the IIC algorithm is investigated by capturing the input-output behavior of piezo actuators

with a cascade model consisting of a rate-independent hysteresis at the input followed by the

dynamics part of the system. The size of the hysteresis and the vibrational dynamics variations

that can be compensated for (by using the IIC method) is quantified. The IIC approach is il-
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lustrated through experiments on a piezotube actuator used for positioning on an AFM system.

A novel robust-inversion-based two-degree-of-freedom (2DOF)-control approach for output

tracking is developed in Chapter 3. A robust-system-inversion based approach is proposed

to directly account for and minimize the dynamics uncertainty effect when finding the feed-

forward controller. Therefore, a guaranteed tracking performance was achieved for bounded

dynamics uncertainties. Then this quantified bound of the tracking error is utilized in design-

ing robust feedback controller to complement the feedforward control. Based on the concept

of Bode’s integral, it is shown that the feedback bandwidth can be improved from that ob-

tained by using feedback alone. The proposed approach is also illustrated by implementing it

in experiments on a piezotube actuator of an atomic force microscope for precision positioning.

Then in chapter 4 and 5, we proposed a novel current cycle feedback (CCF) iterative learning

control (ILC) approach to achieve high-speed imaging in the vertical z-axis direction on atomic

force microscope (AFM). The proposed CCF-ILC approach aims at achieving high-speed imag-

ing of relatively-smooth samples, where the sample variation from one scanline to the next is

relatively small. The idea is to use the proposed CCF-ILC approach to repetitively image

on the first scanline, then apply the converged input to image the rest of scanlines without

iteration, thereby achieving high-speed imaging. Chapter 4 – as the first step – is to show that

the CCF-ILC controller can achieve precision tracking of the sample profile on one scanline. It

is shown in Chapter 4 that the iterative law converges, and attains a bounded tracking error

upon noise and disturbances without line-to-line sample variation. Then in Chapter 5, we

extend this CCF-ILC approach to the entire imaging of samples. The main contribution of the

chapter is the analysis and the use of the CCF-ILC approach for tracking sample profiles with

variations between scanlines (called line-to-line sample variations). The convergence (stability)

of the CCF-ILC system is analyzed for the general case where the line-to-line sample variation

occurs at each iteration. The allowable line-to-line sample profile variation is quantified. The

performance improvement of the CCF-ILC is discussed by comparing the tracking error of the
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CCF-ILC technique to that of using feedback control alone. The proposed CCF-ILC control

approach is illustrated by implementing it to the z-axis direction control in AFM imaging.

Experimental results show that the imaging speed can be significantly increased by using the

proposed approach.

The dissertation is concluded in Chapter 6.
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CHAPTER 2. Iterative control approach to compensate for the hysteresis

and the vibrational dynamics effects of piezo actuators

A paper published in IEEE Transactions on Control Systems Technology

Ying Wu 1 and Qingze Zou 2

Abstract

In this chapter, the compensation for both the nonlinear hysteresis and the vibrational

dynamics effects of piezo actuators is studied. Piezo actuators are the enabling device in many

applications such as atomic force microscopy (AFM) to provide nano- to atomic-levels precision

positioning. During high-speed, large-range positioning, however, large positioning errors can

be generated due to the combined hysteresis and dynamics effects of piezo actuators, making

it challenging to achieve precision positioning. The main contribution of this chapter is the use

of an inversion-based iterative control (IIC) technique to compensate for both the hysteresis

and vibrational dynamics effects of piezo actuators. The convergence of the IIC algorithm is

investigated by capturing the input-output behavior of piezo actuators with a cascade model

consisting of a rate-independent hysteresis at the input followed by the dynamics part of the

system. The size of the hysteresis and the vibrational dynamics variations that can be com-

pensated for (by using the IIC method) is quantified. The IIC approach is illustrated through

experiments on a piezotube actuator used for positioning on an AFM system. Experimental

results show that high-speed, large-range precision positioning can be achieved by using the

proposed IIC technique. Furthermore, the proposed IIC algorithm is also applied to experi-
1Primary researcher and author
2Corresponding author



6

mentally validate the cascade model and the rate-independence of the hysteresis effect of the

piezo actuator.

2.1 Introduction

This chapter studies the compensation for both the hysteresis and the vibrational dynamics

effects of piezo actuators during high-speed, large-range, periodic motions. Piezo actuators are

the enabling device to provide nano- to atomic-levels precision positioning in systems such as

atomic force microscope (AFM) (e.g., to position the AFM-probe relative to the sample dur-

ing the imaging process, e.g., [11]). However, during high-speed, large-range positioning, the

positioning precision is complicated by the nonlinear hysteresis behavior [3, 12] and the linear

vibrational dynamics (e.g., [3, 7]) of piezo actuators, resulting in large positioning errors. It

is challenging, however, to compensate-for both hysteresis and vibrational dynamics effects of

piezo actuators. The main contribution of this chapter is the use of an inversion-based itera-

tive control (IIC) technique [1] to compensate for both the hysteresis and vibrational dynamics

effects of piezo actuators. Convergence of the IIC technique is investigated and experimental

results are presented to demonstrate that by using this technique, high-speed, large-range pre-

cision positioning of a piezo actuator can be achieved.

High-speed, large-range precision positioning of piezo actuators requires the compensation of

both the hysteresis effect and the vibrational dynamics effects. Smart materials such as mag-

netostrictive, shape memory alloys, and piezoelectric ceramics [3, 13, 14] tend to present a

nontrivial nonlinear hysteresis behavior in their input-output relation. As a result, positioning

errors as large as 15% of the total displacement range can be generated [15]. Large positioning

errors can also be generated in high-speed motion when the vibrational dynamics of piezo actu-

ator is excited. Furthermore, during high-speed, large-range motions, both the hysteresis and

the vibrational dynamics of smart materials will effect the positioning of piezo actuators, re-

sulting in larger positioning errors (than under either effect alone) [7]. Large-range, high-speed

precision positioning, however, is needed in applications such as the use of AFM to interrogate

rapid biological processes like the migration of living cell [16], where the displacement range is
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large (i.e., the cell size at ∼100 μm is close to the full displacement range of the piezoactua-

tor), and the required scan speed is high. Therefore, there exist needs to account for both the

hysteresis effect and the vibrational dynamics of piezo actuators.

These two adverse effects (hysteresis and dynamics) of piezo actuators can be compensated for

by using control techniques, for example, the PID-type of control used on commercial AFM

system. The low-gain margin of piezo actuators, however, limits the performance of the ad hoc

PID-type of control in achieving high-speed positioning [7, 17, 18]. More advanced feedback

control [7, 17, 19] can be used to alleviate such low gain margin limit and increase the band-

width of the piezo positioning system. In feedback-based approaches, the hysteresis effect is

treated as the unknown disturbance to the system, thereby a priori knowledge of the hysteresis

effect was not explored. Whereas the inversion-type of feedforward approach [3, 12] explored

such a priori knowledge of hysteresis by modeling the hysteresis effect and inverting it to obtain

the control input to “cancel” the hysteresis effect. Such idea of inverse was also employed in

the stable-inversion based technique [3, 20] to address the vibrational dynamics effect of piezo

actuators. The successful implementation of these model-based inversion techniques, however,

requires an accurate modeling (of the hysteresis or the vibrational dynamics), which is time-

intensive and prone to errors. These modeling-related issues are avoided in the development of

the iterative learning control (ILC). For example, recently, an ILC technique based on Preisach

model approach [13, 4] was proposed to compensate for the hysteresis effect, while a dynamics

inversion-based iteration control (IIC) algorithm [1, 2] was developed to tackle the vibrational

dynamics effect. The ILC technique is particularly useful in applications involving repetitive

operations, for example, the lateral scanning process during AFM imaging. Compensating-for

both hysteresis effect and the dynamics effect simultaneously using the ILC approach, however,

has not been established yet.

In this chapter, it is shown that the IIC technique [1, 2] can compensate-for both the nonlinear

hysteresis and the linear dynamics effects of piezo actuators. We capture the input-output be-

havior of the piezo actuator by a cascade model which consists of a rate-independent, nonlinear-

hysteresis at the input followed by the linear dynamics model. Then such a cascade model is
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used to study the convergence of the IIC algorithm in L2-norm, and accordingly, quantify the

size of the hysteresis effect and the dynamics variations that can be compensated-for by using

the IIC algorithm. We illustrate the use of the proposed IIC technique (to compensate-for both

the hysteresis and dynamics effects) through experiments on a piezotube scanner of an AFM

system. The experiment results show that high-speed, large-range precision positioning can be

achieved. Moreover, the proposed IIC algorithm is applied to experimentally validate i) the

cascade model of the piezo actuator; and ii) the rate-independence of the hysteresis effect. We

note that although with the recent efforts [21, 22], the charge-control based approach becomes

practically efficient for hysteresis compensation, such an approach may be restricted to piezo

actuators only. On the contrary, the proposed IIC technique can also be applied to other smart

actuators (with similar hysteresis characteristics as piezo actuators). We also note that the

tracking performance of the proposed IIC technique can be further improved, in general, by

augmenting with the feedback control [7]. This chapter, however, is focused on the use of the

IIC technique for high-speed, large-range precision positioning of piezo actuators.

2.2 Hysteresis & Vibrational Dynamics Compensation: IIC Approach

In this section, we will show that a recently developed inversion-based iterative-control

(IIC) technique [1, 2] can be used to compensate for both the nonlinear hysteresis and the

linear dynamics effects of piezo actuators. We start with a brief review of the IIC technique.

2.2.1 Inversion-based Iterative Control (IIC) [1, 2]

The IIC control law can be described in frequency domain as follows

u0(jω) = 0, (2.1)

uk+1(jω) = uk(jω) + ρ(ω)G−1
a,m(jω)[xd(jω) − xk(jω)]

where Ga,m(jω) is the frequency response model of the system, ρ(ω) ∈ � is the frequency-

dependent iterative coefficient, and uk(jω) and xk(jω) are the Fourier transform of the input

and the output at the kth iteration, uk(t) and xk(t), respectively. The convergence of this IIC

algorithm (2.1) is given by the following lemma [1]:
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IIC
uk+1(jω)

xk(jω) xd(jω)+

+

-

+

H[u(t)] (jω) Ga(jω)
uk(jω) vk(jω)

Piezo Actuator

Figure 2.1 The block diagram of the IIC algorithm, where the input-output
relation of the piezo actuator is captured by a cascade model
[3] (Assumption 1).

Lemma 1 For any given frequency value ω, let the actual system’s vibrational dynamics

Ga(jω) and its model Ga,m(jω) be stable and hyperbolic (i.e., have no zeros on the jω axis),

also let the linear dynamics variation ΔG(jω) be described by

ΔG(jω) =
Ga(jω)

Ga,m(jω)
=

ra(ω)ejθa(ω)

ra,m(ω)ejθa,m(ω)
= Δr(ω)ejΔθ(ω). (2.2)

Then the iterative law (2.1) will converge at frequency ω, i.e., limk→∞ xk(jω) = xd(jω), if and

only if

1. The magnitude of the phase variation is less than π/2, i.e., |Δθ(ω)| < π/2, and

2. The iteration coefficient ρ(ω) is chosen as 0 < ρ(ω) < 2cos(Δθ(ω))
Δr(ω) .

Lemma 1 implies that the IIC algorithm (2.1) can be implemented to compensate-for the

effect of vibrational dynamics in output-tracking, as experimentally demonstrated in [1, 23].

Next, we discuss the use of this IIC technique to compensate-for both the hysteresis and the

vibrational dynamics effects of piezo actuators.

2.2.2 Compensation for both the Hysteresis and the Vibrational Dynamics Ef-

fects

We begin by assuming that [3]

Assumption 1 The input-output mapping, u(t) → x(t) : � → �, of a piezo actuator can

be captured by using a cascade model consisting of the rate-independent, nonlinear hysteresis

operator H[u(t)] at the input followed by the linear vibrational dynamics, Ga(jω), such that

x(jω) = Ga(jω)H[u(·)](jω) (see Fig. 2.1).
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Assumption 2 The hysteresis effect of the system is rate-independent [14, 4].

Therefore, Assumptions 1, 2 decouple the time-independent (i.e., the hysteresis) effect from

the time-dependent(i.e., the vibrational dynamics) effect in the input-output relation of a

piezo actuator. In Sec. 2.3.3, we will experimentally validate Assumptions 1, 2 on a piezotube

actuator. Next we employ the Preisach model of hysteresis [24] that effectively captures the

range (amplitude)-dependent nature of the hysteresis effect [7]. Specifically, we say that the

system has the same initial condition in hysteresis (ICH) if the system has the same memory

curve on the Preisach plane [4] for modeling the hysteresis, i.e., the initial values of the internal

states of the Preisach model are the same.

Remark 1 The same ICH requirement can be satisfied, for example, by using the initialization

process as discussed in [4]: Before each iteration, slowly increase the input to its upper bound

needed to track the desired output vd, then slowly decrease the input to the value corresponding

to the initial desired output vd(t0). In the following, such an initialization process is applied

when implementing the IIC algorithm.

Then we consider that the hysteresis part of the cascade model, u(t) → v(t) (see Fig. 2.1),

satisfies,

Assumption 3 For the piezo system having the same ICH condition at the initial time instant

ti, the difference in the hysteresis output, v2(·)− v1(·), can be bounded by the input difference,

u2(·) − u1(·), as∫ ∞

−∞
|f(t) + (v1(t) − v2(t))|2 dt

≤
∫ ∞

−∞
|f(t) + η1(u1(t) − u2(t))|2 dt +

∫ ∞

−∞
|f(t) + η2(u1(t) − u2(t))|2 dt (2.3)

where η1, η2 > 0 are constants, u1(·), u2(·) ∈ C∩L∞ are two continuous, bounded inputs applied

from time instant ti, and the function f(t) ∈ L2 ∩ L∞ ∩ C is also square integrable, and has

the same sign as the input difference, u1(t) − u2(t), in the integration sense, i.e.,∫ ∞

−∞
f(t) (u1(t) − u2(t)) dt > 0. (2.4)



11

Remark 2 For inputs u1(·) and u2(·) being both monotonic, the above Assumption 3 can be

satisfied if the hysteresis operator is strictly piecewise increasing as assumed in [13] or satisfies

a Lipschitz like condition as in [4]. In both cases, the above Assumption 3 is less stringent.

Remark 3 For a linear time invariant system (e.g., the vibrational dynamics part of the piezo

actuator), the input and output will have the same-sign in the integration sense (i.e., satisfy

(2.4)) if the phase change of the dynamics is less than π
2 [25].

Lemma 2 Let Assumptions 1 to 3 be satisfied, and the desired trajectory xd(t) ∈ C be contin-

uous and have a compact support S = [ti, tf ]. Also, let the following conditions be satisfied,

1. There exist a compact set of frequency, Ω, such that for all frequency ω ∈ Ω,

(a) both the system’s actual linear dynamics Ga(jω) and its model Ga,m(jω) are stable

and hyperbolic (i.e., both have no zeros on jω axis, and thereby Δr(ω) > 0);

(b) the phase variation is bounded as

|Δθ(ω)| ≤ θ1 � arccos

[√
η2
1 + η2

2

(η1 + η2)2

]
(2.5)

(c) there exists a constant ε > 0, such that under the hysteresis effect, ΔH, and the

effect of the system dynamics variations, ΔGL(jω) and ΔGH(jω),

sup
ω∈Ω

(ρ�(ω)) + ε < inf
ω∈Ω

(ρh(ω)) (2.6)

with ρ�(ω) � ΔH × |ΔGL(jω)|,
ρH (ω) � ΔH × |ΔGH(jω)| and

ΔH�η1 + η2

η2
1 + η2

2

, (2.7)

ΔGH,L(jω)�cos Δθ(ω) ±
√

cos2 Δθ(ω) − cos2 Δθ1

Δr(ω)

2. The iteration coefficient ρ in the iterative control law (2.1) is chosen as ρ = 0 for ω /∈ Ω,

and a constant for ω ∈ Ω from

ρ ∈
(

sup
ω∈Ω

(ρ�(ω)), inf
ω∈Ω

(ρh(ω))
)

. (2.8)
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Then the iteration law (2.1) will converge in L2-norm to the desired input ud(jω) = Ga(jω)H[ud(·)](jω)

with restrict to the set Ω:

lim
k→∞

‖uk(·) − ûd(·)‖2= lim
k→∞

[∫ ∞

−∞
|uk(τ) − ûd(τ)|2dτ

]1/2

= 0, (2.9)

where ûd(jω) = ud(jω) for ω ∈ Ω, and ûd(jω) = 0 otherwise.

Proof By Assumption 1, the input-output mapping of a piezo actuator can be modeled by

using the cascade model, i.e., x(jω) = Ga(jω)H[u(·)](jω) (see Fig. 2.1). Thus, the iterative

control law (2.1) can be rewritten as

uk+1(jω)=uk(jω) + ρ · G−1
a,m(jω) [xd(jω) − xk(jω)]

=uk(jω) + ρ · G−1
a,m(jω) · [Ga(jω)vd(jω) − Ga(jω)vk(jω)]

=uk(jω) + ρ · ΔG(jω) [vd(jω) − vk(jω)] (2.10)

where vd(t) and vk(t) are hysteresis outputs for inputs ud(t) and uk(t) respectively (see

Fig. 2.1). Next, we consider the tracking of the frequency components in set Ω only (given by

Eqs. (2.5,2.6)), by choosing ρ = 0 for all ω /∈ Ω—uk(jω) = 0 for ∀k, and ∀ω /∈ Ω. Thus, the

above equation is equivalent to

uk+1(jω) = uk(jω) + ρ · ΔĜ(jω) [vd(jω) − vk(jω)] , (2.11)

with ΔĜ(jω) = ΔG(jω) for ω ∈ Ω, and ΔĜ(jω) = 0 otherwise. Since both the actual linear

dynamics Ga(jω) and its model Ga,m(jω) are hyperbolic, ΔĜ(jω) is invertible for ω ∈ Ω, and

(2.11) leads to

ΔĜ−1(jω) [uk+1(jω) − ud(jω)]

=ΔĜ−1(jω) [uk(jω) − ud(jω)] + ρ · ΔĜ−1(jω)ΔĜ(jω) [vd(jω) − vk(jω)] (2.12)

=ΔĜ−1(jω) [uk(jω) − ud(jω)] + ρ · [vd(jω) − vk(jω)]
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Taking the square of 2-norm in (2.12),

∥∥∥ΔĜ−1(jω) [uk+1(jω) − ud(jω)]‖2
2

=
∫ ∞

−∞

∣∣∣Δ Ĝ−1(jω) [uk+1(jω) − ud(jω)]
∣∣∣2 dω

=
∫

ω∈Ω
|ΔĜ−1(jω) [uk(jω) − ud(jω)] + ρ · [vd(jω) − vk(jω)] |2dω

=
∫ ∞

−∞
|φ(t) ⊗ [uk(t) − ud(t)] + ρ [vd(t) − vk(t)]|2 dt

(by Parseval’s Theorem [26].) (2.13)

where φ(t) denotes the impulse response of ΔĜ−1(jω) and ‘⊗’ denotes the convolution oper-

ation. Note in (2.13), the inputs ud(·) and uk(·) are continuous and bounded functions (more

precisely, we choose the continuous function from the equivalent class [26] of the inverse Fourier

transform of ud(jω) and uk(jω), respectively). Therefore, the output of the dynamics variation

for the input difference uk(t) − ud(t), g(t) � φ(t) ⊗ [uk(t) − ud(t)], belongs to L2 ∩ L∞ ∩ C

[27]. Furthermore, Condition 1(b) (Eq. (2.5)) implies that the phase change of the dynamics

variation ΔĜ−1(jω), |Δθ(ω)|, is less than π/2 (i.e., θ1 ≤ arccos[
√

1/2] < π/4). As a result,

the output g(t) of the dynamics variation ΔĜ−1(jω) has the same sign as the input in the

integration-sense (see Remark 3), i.e.,∫ ∞

−∞
g(t) (uk(t) − ud(t)) =

∫ ∞

−∞
{φ(t) ⊗ [uk(t) − ud(t)]} (uk(t) − ud(t)) > 0 (2.14)

From the Preisach model of the hysteresis, the continuity and boundness of the inputs, ud(·) and

uk(·), implies that the hysteresis outputs, vd(·) and vk(·), are also bounded and continuous [24].

Thus, all the conditions in Assumption 3 are satisfied, and Assumption 3 implies that for any
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given positive constant ρ, (2.13) leads to∥∥∥ΔĜ−1(jω) [uk+1(jω) − ud(jω)]
∥∥∥2

2

=
∫ ∞

−∞
|φ(t) ⊗ [uk(t) − ud(t)]|2 dt

≤
∫ ∞

−∞
|φ(t) ⊗ [uk(t) − ud(t)] + ρ · η1 · [ud(t) − uk(t)]|2

+ |φ(t) ⊗ [uk(t) − ud(t)] + ρ · η2 · [ud(t) − uk(t)]|2 dt

=
∫ ∣∣∣ΔĜ−1(jω) [uk(jω) − ud(jω)] + ρη1 [ud(jω) − uk(jω)]

∣∣∣2
+
∣∣∣ΔĜ−1(jω) [uk(jω) − ud(jω)] + ρη2 [ud(jω) − uk(jω)]|2 dω

=
∫

ω∈Ω

∣∣∣ΔĜ−1(jω) [uk(jω) − ud(jω)]
∣∣∣2 [∣∣∣1 − ρη1ΔĜ(jω)

∣∣∣2 +
∣∣∣1 − ρη2ΔĜ(jω)

∣∣∣2] dω

≤sup
ω∈Ω

[∣∣∣1 − ρη1ΔĜ(jω)
∣∣∣2 +

∣∣∣1 − ρη2ΔĜ(jω)
∣∣∣2] ∫

ω∈Ω

∣∣∣ΔĜ−1(jω) [uk(jω) − ud(jω)]
∣∣∣2 dω

· · ·

≤
{

sup
ω∈Ω

[∣∣∣1 − ρη1ΔĜ(jω)
∣∣∣2 +

∣∣∣1 − ρη2ΔĜ(jω)
∣∣∣2]}k+1 ∫

ω∈Ω

∣∣∣ΔĜ−1(jω) [u0(jω) − ud(jω)]
∣∣∣2 dω

=
{

sup
ω∈Ω

[∣∣∣1 − ρη1ΔĜ(jω)
∣∣∣2 +

∣∣∣1 − ρη2ΔĜ(jω)
∣∣∣2]}k+1 ∥∥∥ΔĜ−1(jω) [u0(jω) − ud(jω)]

∥∥∥2

2
(2.15)

Note that
∣∣∣ΔĜ−1(jω)

∣∣∣ > 0 for any ω ∈ Ω, thus the above (2.15) shows that the input law

uk(·) will converge to the desired input ud(·) with restrict to the set Ω (see (2.9)) if there

exists a constant ρ, such that

sup
ω∈Ω

[∣∣∣1 − ρη1ΔĜ(jω)
∣∣∣2 +

∣∣∣1 − ρη2ΔĜ(jω)
∣∣∣2] < 1 (2.16)

Next we show that such a constant ρ > 0 exists if Conditions 1-2 are satisfied. Equation (2.16)

can be rewritten as

[
Δr(ω)2(η2

1 + η2
2)
]
ρ2−[2 cos (Δθ(ω))Δr(ω) (η1 + η2) ] ρ + 1 < 0, for ∀ω ∈ Ω. (2.17)

A positive ρ satisfying the above (2.17) exists provide that the coefficients of the quadratic

polynomial of ρ on the left side of (2.17) satisfying

4 cos2 Δθ(ω)Δr(ω)2(η1 + η2)2 − 4Δr2(ω)(η2
1 + η2

2) > 0 (2.18)

Simplifying (2.18) leads to Condition 1. b) (2.5). Under Condition 1. b), the range of the

iteration coefficient ρ to guarantee the convergence can be obtained by finding the roots of



15

the polynomial of ρ in (2.17) as ρH ,� = ΔH × |ΔGH ,�(jω)| with ΔH,ΔGH,L given by (2.7).

Therefore, a desired positive constant ρ can be found (given by (2.8), Condition 2) provided

Condition 1 (i.e., (2.6)) is satisfied, This completes the proof.

Remark 4 The bound of the iteration coefficient ρ, as given by (2.7, 2.8), reflects the cascade

model of the piezo actuator: it is a multiplication of one term reflecting the hysteresis effect,

ΔH, with the other term reflecting the dynamics effect, ΔGL,H(jω).

Remark 5 Compared with the use of the IIC algorithm to compensate for the dynamics effects

only, the converged frequency range, as well as the bound of the iterative coefficient ρ, becomes

smaller, due to the effort to also combat the hysteresis effect: As shown in (2.5), the allowed

phase variation of the converged frequency range Ω is reduced from π/2 (when only compen-

sating for the dynamics, see Lemma 1) to π/4. Moreover, the bound of the iterative coefficient

ρ is also smaller than that for dynamics compensation only. As shown in (2.6–2.8), the range

of ρ approaches to that for dynamics compensation only (see Lemma 1) when the converged

frequency range Δθ1 approaches to π/2—only possible when there is no hysteresis effect.

Remark 6 The use of the dynamics model G(jω) in the proposed IIC algorithm is essential

for compensating for both the hysteresis and the vibrational dynamics effects. On the contrary,

a constant iteration coefficient (i.e., remove G−1(jω) in (1)) is used in the IIC algorithm

proposed in [13, 4] for hysteresis compensation. Note in the low frequency, G(jω) approaches

to the DC-Gain of the system, therefore, the IIC algorithm in [13, 4] can be regarded as a

special case of the proposed IIC algorithm in the low-frequency range.

Remark 7 It can be shown that under the effect of system noise (e.g., measurement noise),

the error between the converged iterative control input and the desired input (in 2-norm) is

bounded above by a constant that is proportional to the square-root of i) the system noise level,

ii) the iterative coefficient ρ, and iii) the size of the system dynamics variation.
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Figure 2.2 a) the schematic diagram of AFM operation, and b) the top
view of the typical scanning trajectories for AFM imaging[1, 4].

2.3 Example: High-speed Large-Range Scanning for AFM Imaging

The IIC approach is applied to control the piezotube actuator on an AFM system. The

goal is to experimentally demonstrate that high-speed, large-range precision positioning can be

obtained by using the proposed IIC algorithm. We begin by describing the use of the piezotube

actuator in the AFM operation.

2.3.1 The experimental AFM system

The AFM system (DimensionTM 3100, Veeco Inc) studied in this chapter utilizes piezotube

actuators to position the AFM probe with respect to the sample during the imaging (see Fig. 2.2

(a)), in both parallel (along the x-y axes) and perpendicular (along the z-axis) directions.

Positioning errors of the probe relative to the sample will generate large image distortions [3,

20], and further damage the probe [28], the sample [29], or both. Such large positioning errors

can be generated in both lateral scanning x-axis and vertical z-axis direction when imaging

relatively-large samples at high-speed. In this experiment, we will use the IIC algorithm to

the output tracking of the periodic scanning along the x-axis direction (see Fig. 2.2 (b)).
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Figure 2.3 The experimentally measured frequency response of the piezo
actuator in the x-axis direction (up to the frequency of 2kHz).

2.3.2 Experimental Implementation of the IIC Algorithm

Model the Linear, Vibrational Dynamics of the Piezotube Actuator We first exper-

imentally measured the frequency response of the piezotube actuator in the lateral scanning

(x-axis) direction, Ga,m(jω), by using a dynamic signal analyzer (DSA, HP35665A). To mea-

sure the frequency response Ga(jω), a sinusoidal input voltage u(t) generated by the DSA is

applied to the piezo actuator through a power amplifier and the x-axis sensor output voltage

of the actuator x(t) is measured (using an inductive sensor) and fed back to the DSA. Mea-

surements with several different input amplitudes (all were kept small to avoid the hysteresis

effect) were obtained and averaged to obtain the nominal frequency response up to 2 KHz (see

Fig. 2.3). The bode plot presents a sharp resonant peak at 840.2 Hz—a dramatic increase in

magnitude accompanied by a rapid drop in phase. As a result, the piezotube actuator has a

very low gain margin at only -20.4 dB, which, in turn, limits the performance of PID control.

Also note that the frequency response data can be used directly in the computation of the

proposed IIC algorithm in frequency-domain, thereby avoiding possible modeling errors from

the curve-fitting process to obtain a low-order transfer function model.

Quantify the linear vibrational dynamics variation Δr(jω), Δθ(jω) (see (2.2)) Next

we will quantify the iterative coefficient ρ used in the proposed IIC algorithm. We start

with quantifying the linear dynamics variation experimentally, by measuring the frequency



18

responses of the piezo actuator with different input amplitudes (0.1, 0.125, 0.15V) with a DSA

as described in Section 2.3.2. Then the magnitude variation and the phase variation at each

measured frequency, Δr(ω) and Δθ(ω), were computed from the three obtained frequency re-

sponses, as shown in Fig. 2.4 (a), (b).

Quantify the hysteresis effect constants η1, η2 (see (2.3)) Next, we quantify the

hysteresis effect constants η1, η2 needed to determine the iterative coefficient ρ (see (2.5–2.8)).

We modeled the nonlinear hysteresis behavior by using the Preisach approach as in [4, 30], and

estimated the constants η1 and η2 in Assumption 3 by using the monotonic increasing portion

of the hysteresis output (see Remark 2). The procedure detailed in [4, 30] was followed. First,

the Preisach plane was obtained experimentally and partitioned in Q sub-regions. Then, the

weighting function μ(α, β) used in the Preisach model (e.g., [4]) was estimated by using a least-

square approach [4, 30]. The obtained weighting function μ(α, β) was then used to estimate

the constants η1 and η2 (see [4, 30] for the details). For the piezotube actuator used in our

AFM system, η1 = 0.334 and η2 = 2.329 were obtained experimentally.

Choose the iteration coefficient ρ (Eq. (2.7)) The estimated phase and magnitude

variations, |Δθ(ω)| and |Δr(ω)|, and the estimated hysteresis constants, η1 and η2,, were used

to determine the trackable frequency range Ω (see Lemma 2, Eq. (2.5)), and correspondingly,

the upper and lower bounds of the iterative coefficient, ρ�(ω) and ρh(ω) (see (2.7)), as shown

in Fig. 2.4 (b). It can be seen from Fig. 2.4 (c) that a constant iterative coefficient ρ = 0.5 can

be found in the frequency range [0, 1.8] kHz—Conditions 1, 2 are satisfied, and the frequency

components in this frequency range are trackable by using the IIC algorithm.

Experimental Implementation of the IIC Algorithm (2.1) The quantified iterative

coefficient ρ and the measured nominal frequency response G(jω) (Fig. 2.7) was used to find

the iterative control input for tracking a triangle trajectory at four different scan rates, 10

Hz, 50 Hz, 150 Hz, and 300 Hz. The amplitude of the trajectory at 80 μm was chosen below
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the full displacement range of the piezotube at 90 μm, because the needed input amplitude

for tracking outputs of larger amplitude at high scan rate of 300 Hz exceeds the voltage

limit of the data acquisition system used in the experiments. The iterative control law was

numerically computed using MATLAB (using commands “fft” and “ifft”), and applied by

using MATLAB xPC-target package. After each iteration, the maximum error EM (along with

the relative maximum error ÊM ), given by

EM (μm) = maxt∈[0,T ]|xd(t) − x(t)|,

ÊM (%) =
EM

maxt∈[0,T ]|xd| × 100%, (2.19)

was measured and used to terminate the iteration—when the maximum error did not decrease

further. In (2.19), T is the period of the triangle trajectory.

2.3.3 Tracking results and Discussion

Experimental tracking results The tracking results for scan rates of 10 Hz and 300 Hz are

compared in Fig. 2.5 with the tracking results obtained by using the DC-Gain method, where

the input was obtained by scaling the desired output with the DC-Gain Kdc of the system

(adjusted with the output amplitude). Hence, the DC-Gain method does not address either

the hysteresis or the vibrational dynamics effect, and the comparison with the tracking of the

DC-Gain method demonstrates the amount of the tracking error caused by the hysteresis and

vibration dynamics effects. The tracking errors (EM and ÊM ) for the four chosen scan rates

are also compared in Table 2.1, where the iteration numbers used in the IIC algorithm are

listed.

Hysteresis and vibrational dynamics effects lead to the loss of precision in posi-

tioning The experimental results show that the effect of the piezotube actuator′s vibrational

dynamics on the output tracking is small when the scan rate is low. Fig. 2.5 (a1) and (a2)

showed that at scan rate of 10 Hz, no obvious oscillations were observed, instead, the hysteresis-

effect-caused positioning error is pronounced, expressed as the parabolic-shape bowing curve in

the output. Such hysteresis-caused positioning errors were augmented to the dynamics-induced
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vibrations as the scan rate was increased. When the scan rate was increased to 300 Hz, the

output obtained by using the DC-Gain method has large high-frequency oscillations, resulting

in a large relative tracking error at ÊM (%) = 36.5% (see Fig. 2.5 (d1) and (d2)). Therefore,

hysteresis and vibrational dynamics must be compensated-for to achieve high-speed and large-

range tracking in AFM operation.

IIC approach can compensates for the hysteresis effect The experimental results

showed that the hysteresis effect can be effectively compensated for by using the IIC algo-

rithm. At large-range (80 μm), slow-speed (scan rate of 10 Hz) tracking, the pronounced

hysteresis-caused positioning errors were significantly reduced by using the IIC algorithm after

6 times iteration (see Fig. 2.5 (a1, a2) and Table. 2.1). The equivalent voltage of the maximum

error ÊM is only about 25.5 mV, which is close to the noise level of the experimental system at

20.1 mV (measured as peak-to-peak value). Therefore, the experimental results demonstrate

that the proposed IIC approach can effectively compensate for the hysteresis effect.

We note that the noise of the experimental system is mainly generated by the BNC cable

connecting the data acquisition card to the AFM controller (The noise-level within the AFM

controller is over 1 order smaller). The noise effect on the control precision, however, can be

reduced with the use of the IIC algorithm: multiple periods of the tracking results obtained

at each kth iteration can be averaged to represent the tracking of the kth iteration in the IIC

algorithm, thereby various averaging techniques for noise reduction can be utilized—Note that

when the converged iterative feedforward control input is applied, sensor signal is not required.

Such average-based noise reduction method, however, is not possible in feedback-based control

approaches.

IIC approach can compensate for both the hysteresis and the vibrational dynam-

ics effects Our experimental results also demonstrate that the proposed IIC algorithm can

significantly reduce large tracking errors caused by the hysteresis and the vibrational dynamics

effects during high-speed, large-range positioning, as shown in Fig. 2.5 (b1) and (b2) and Table
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2.1. At the scan rate of 50 Hz, the tracking error is reduced by over 1.24 times (compared

with the DC-Gain method), and was small by using the IIC approach as the scan rate further

increased. For example, at the scan rate of 300 Hz, the tracking error with the IIC approach

is still less than 5% of the scan range. Such tracking results compare well with the previous

results using the inversion-based feedforward-feedback control (with a high-gain PID control

enabled by a notch filter as the feedback controller) in [7], and the results from robust feedback

control in [31]. For example, at the scan rate of 50 Hz, the proposed IIC algorithm reduced the

maximum tracking error to 0.89% of the scan size at 80 μm, compared to the tracking error of

1.46% of the scan size at 32 μm in [7], and 1.6% of the scan size at 19 μm. Furthermore, note

that in [7], the tracking error was measured against an optimal triangle trajectory obtained by

using the optimal inversion technique [20] that smoothes out the turn-around corner—where

exactly the maximum tracking error occurs (see Fig. 2.5 (b1, b2)), and a sinusoidal trajec-

tory was used in [31]. Whereas the triangle trajectory without any modification was used in

this experiment. Therefore, the experimental results show that the IIC approach effectively

compensate-for both the hysteresis and the vibrational dynamics effects.

We further verified that the residual tracking errors obtained by using the IIC algorithm at

Table 2.1 Comparison of the tracking errors obtained by using the IIC
technique and the DC-Gain method at different scan rates, where
the Iteration numbers used in the IIC technique are also listed.

Scan Rate EM (μm) ÊM (%) Iter.
(Hz) DC-gain IIC DC-gain IIC NO.
10 7.73 0.15 9.64 0.19 6
50 9.82 0.72 12.25 0.89 6
150 15.65 1.94 19.53 2.43 4
300 29.34 3.38 36.5 4.21 4

high-speed (300 Hz) mainly consist of high frequency components outside the trackable fre-

quency range [0, 1.8] kHz of the IIC algorithm. We estimated, by using MATLAB, the power

spectrum Pe(jω) of the tracking error obtained with the IIC algorithm when tracking the 300
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Figure 2.6 The estimated power spectrum of the tracking error ey(t) ob-
tained by using the inversion-based iterative control for scan
rate of 300 Hz. The frequency values where the first three large
peaks of the power spectrum appears are indicated.

Hz triangle signal (see ex(t) shown in Fig. 2.5 (b2)),

Pe(jω) = lim
T→∞

1
T

e∗y(jω) × ey(jω) (2.20)

where ey(jω) is the fourier transform of the tracking error signal in period T. As shown in

Fig. 2.6, the energy (i.e., the power spectrum) of the tracking error is mainly concentrated in

the high frequencies outside the trackable frequency range: the power spectrum value at fre-

quency 2.1 kHz (outside [0, 1.8] KHz interval) is 11.44 times larger than the value at 900 Hz.

Furthermore, by expanding the Fourier series of the input update term (since the signal is

periodic), ρG−1(jω)(xd(jω) − xk(jω)), we find that after four iterations, the amplitude of the

frequency component of the input updating at 900 Hz is only 20 mV, which is close to the

peak-to-peak noise-size of the system at ∼20.1 mV. This implies that further updating of the

iterative control input will be “swallowed” by the noise of the signal. Therefore, the experimen-

tal results illustrate that the IIC technique can achieve precision positioning of piezo actuators

during high-speed, large-range positioning.

Experimental Investigation of Assumptions 1, 2 To experimentally verify that the

input-output relation of the piezo actuator can be captured by a cascade model (Assump-

tion 1), we used the IIC algorithm to obtain the control input to compensate-for (“cancel”)

the hysteresis effect only when tracking a large-range (50 μm), triangle trajectory at high scan
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Figure 2.7 (a) compares the experimental tracking obtained by compensat-
ing for the hysteresis effect only during the large-range, high-
-speed (100 Hz) tracking (v1(t)) with the tracking obtained by
scaling-up the output obtained at high-speed (100 Hz), small-
-range (1 μm ) tracking (50v2), and the tracking using DC-Gain
method; (b) shows the difference of the hysteresis-compensated
output v1(t) with respect to the scale-up output 50v2(t), and
the DC-Gain output.

rate of 100 Hz (The readers are referred to [32] for details of the experimental procedure).

The obtained tracking results are compared with the scaled-up output tracking obtained at

small-range (1 μm) and at the same scan rate (100 Hz) in Fig. 2.7 (a). Since the hysteresis

effect is negligible at small range (i.e., hysteresis effect is range dependent [7]), if Assumption 1

holds, these two outputs should resemble each other, as can be seen from Fig. 2.7 (a), where

the tracking obtained by using the DC-Gain method is also compared. Fig. 2.7 (b) shows

that the difference between the hysteresis-compensated output v1(t) and the DC-Gain output

(dashed-line) is much larger than the difference between the output v1(t) and the scaled-up

output 50 v2(t) (solid line), even though the scaled-up output tracking 50 v2(t) was effected by

relatively-large noises (due to the drop of signal to noise ratio (S/N) in small-range measure-

ment). Therefore, our experimental results show that the piezotube actuator can be modeled

by using the cascade approach.

Similarly, to show the rate-independence of the hysteresis effect, the IIC algorithm was

also used to, from the output, remove the dynamics effect only when tracking a large-range
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(50μm) sinusoidal signal at different scan rates, xd(t) = A sin (2πft) with A = 50μm and

f = 10, 50, 100, 150 Hz (The readers are referred to [32] for the details of the experimental

procedure). The obtained tracking results are compared in Fig. 2.8 (a), and the difference be-

tween the outputs (at different scan rates) and the desired path yd(t) are compared in Fig. 2.8

(b). Figure 2.8 shows that the maximum difference between the tracking at different scan rates

(occurring between the scan rate of f = 10 Hz and f = 100 Hz) is small—only 7.9% of the

maximum tracking error caused by the hysteresis. Furthermore, to maximize the removal of

the vibrational dynamics effect by using the IIC algorithm, sinusoidal signals were used in this

experiment, because other types of signals such as the triangle signals have higher frequency

components (other than the fundamental frequency) of which some are outside the trackable

frequency range of the IIC algorithm. Therefore, our experimental results demonstrated that

the hysteresis effect is rate-independent.

2.4 Conclusion

This chapter demonstrated the use of iterative leaning control and inversion-based control

to achieve high speed AFM imaging. In particular, inversion-based iterative control (IIC) is

utilized to compensate for both the nonlinear hysteresis and the linear vibrational dynamics of

piezotube actuators. The convergence of the iterative approach was investigated by capturing

the hysteresis and the vibrational dynamics effects with a casecade model consisting of the

rate-independent hysteresis at the input followed by the linear dynamics of the piezo actuator.

The size of the hysteresis effect and the vibration dynamics variation that can be compensated

for by using the IIC method is quantified. The implementation of the IIC algorithm on a

piezotube actuator of an AFM system were presented to 1) show that high-speed, large-range

precision positioning can be achieved; and 2) validate the cascade model of the piezo actuator,

and the rate-independence of the hysteresis effect of the piezo actuator.
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CHAPTER 3. Robust-inversion-based 2DOF-control design for output

tracking: piezoelectric actuator example

A paper published in IEEE Transactions on Control Systems Technology

Ying Wu 1 and Qingze Zou 2

Abstract

In this chapter, a novel robust-inversion-based two-degree-of-freedom (2DOF)-control ap-

proach for output tracking is proposed. Inversion-based feedforward control techniques have

been successfully implemented in various applications. Usually to account for adverse effects

such as dynamics variations and disturbances, the inverse feedforward control is applied by

augmenting it with a feedback control. However, such effects has not been directly addressed

in existing system inversion methods, and the integration of the feedback control with the

inversion-based feedforward control is performed in an ad-hoc manner, which may not lead to

an optimal complement of the inversion-based feedforward control with the feedback control

(for example, optimal closed-loop bandwidth). The contribution of this chapter is the develop-

ment of (1) a novel robust-system-inversion approach to directly account for and then minimize

the dynamics uncertainty effect when finding the inversion-based feedforward controller, and

(2) a systematic integration (of such a feedforward controller) with a robust feedback con-

troller. The proposed robust-inversion method achieves a guaranteed tracking performance of

the feedforward control for bounded dynamics uncertainties. Then the quantified bound of

the tracking error of the feedforward control is utilized in designing a H∞ robust feedback
1Primary researcher and author
2Corresponding author
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controller to complement the feedforward control. Based on the concept of Bode’s integral, it

is shown that the feedback bandwidth can be improved from that obtained by using feedback

alone. We illustrate the proposed approach by implementing it in experiments on a piezotube

actuator of an atomic force microscope for precision positioning.

3.1 Introduction

this chapter, we propose a novel robust-inversion feedforward-feedback two-degree-of-freedom

(2DOF) controller design. It is noted that the development of the stable inversion methodol-

ogy [5, 6] has demonstrated the efficacy of the inversion-based feedforward control in output

tracking (e.g., [33, 20, 7]). The performance of the inverse feedforward control, however, can

be limited by system dynamics uncertainties and disturbances [8], and the dynamics uncer-

tainty effect has not been explicitly addressed in existing system inversion methods [5, 9, 20].

Moreover, to combat these adverse effects, usually the inverse feedforward input is augmented

with a feedback controller [20, 7]. However, the integration of the inversion-based feedforward

control with the feedback control is performed in an ad-hoc manner. Challenges arise when a

systematic approach is sought to design the feedback control to complement the inversion-based

feedforward control for output tracking. Thus, the contribution of this chapter is the develop-

ment of (1) a novel robust-system-inversion approach to directly account for and then minimize

the dynamics uncertainty effect when finding the inversion-based feedforward controller, and

(2) a systematic integration (of such a feedforward controller) with a robust feedback controller.

The proposed control design approach is illustrated through the experimental implementation

on a piezoelectric actuator for high-speed precision positioning of an atomic force microscope

(AFM).

In the proposed robust-system-inversion based 2DOF control approach, issues unaddressed in

the system-inversion theory are considered. The development of the stable-inversion technique

[5, 6] has solved the challenging problem of achieving exact output-tracking for nonminimum-

phase systems, and the preview-based approach [20, 34] further extends such a stable-inversion
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methodology for online implementations. The efficacy of the stable-inversion technique has also

been successfully demonstrated in various applications, including aircraft guidance [35], flexible

structure tracking [36], and nanopositioning of piezo actuators for scanning probe microscope

[20, 7]. In practical applications, however, adverse effects such as dynamics uncertainties and

input saturation must be accounted when finding the inverse input. Although these effects

are considered in the optimal inversion technique [20, 9], the dynamics uncertainty was not

directly accounted for in the optimal inversion process, and its effect on the tracking perfor-

mance of the inversion-based feedforward control, therefore, was not quantified. Moreover,

the presence of the feedback control as well as the interaction between the inverse feedforward

control and the feedback control were also neglected. Such feedforward-feedback interaction is

studied in [8], and the size of allowable dynamics variations in the system inversion—for the

inverse feedforward control to improve the tracking performance—is quantified. The focus of

the study in [8], however, is not to quantify the tracking performance of the inversion-based

feedforward controller in the presence of dynamics, nor to optimize the interaction between

the inverse feedforward control with the feedback control. Therefore, there is a need to im-

prove the inversion-based feedforward controller in the presence of dynamics uncertainties, and

to further develop an integrated design approach to the inversion-based feedforward-feedback

2DOF control system.

Such an integrated design method—of the inversion-based feedforward-feedback control system—

is fundamentally different from the existing two-degree-of-freedom (2DOF) design approaches

(e.g., [37]-[42]). We note that the advantages of the 2DOF control over the feedback (or feed-

forward) control alone has long been recognized [37, 42, 43]. The philosophy of existing 2DOF

approaches is to first, design a feedback controller to satisfy the regulation requirements (e.g.,

internal stability, attenuation of disturbances/noise effects) then secondly, design a causal,

stable feedforward controller to improve the tracking performance [38, 42] by using, for exam-

ple, optimal control techniques [38, 43]. On the contrary, the proposed design method starts

with designing a robust-inversion-based feedforward controller—thereby the structure of the
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feedforward controller is chosen—to fully exploit the knowledge of the system dynamics. In

a second stage, a feedback controller is designed to complement the feedforward controller.

Therefore, the feedback controller is designed for improving tracking as well as the closed-loop

regulation properties. Moreover, rather than limiting the choice of the feedforward controller

to be causal, the proposed 2DOF design method will allow the inversion-based feedforward

controller to be non-causal. We note that the stable-inversion theory [5] has shown that for

nonminimum-phase systems, the non-causal feedforward controller is necessary, in general,

for achieving exact-output tracking. Whereas tracking performance limits exist when using

feedback control alone [44]. The proposed design method will utilize the recently-developed

preview-based stable-inversion technique [34] to enable the online implementation of the non-

causal feedforward controller. Therefore, the proposed 2DOF design technique broadens the

existing 2DOF design tools by introducing the stable-inversion into the 2DOF controller design.

The contribution of this chapter is the development of a novel robust system-inversion tech-

nique for single-input-single-output (SISO) linear time invariant system, along with a system-

atic approach to integrate the inversion-based feedforward control with the feedback control.

A frequency-dependent gain-modulation to the system inverse is introduced, and the robust

system-inverse is obtained by solving a minimax optimization problem to seek the optimal

modulation gain in the presence of dynamics uncertainties of known bound. Then to com-

plement the inversion-based feedforward control with the feedback control, the guaranteed

feedforward tracking-error is utilized to shape the desired feedback sensitivity, which is further

realized using H∞ robust feedback control framework [45] to design the feedback controller.

We note that although the integration of these two control approaches (the stable-inversion-

based feedforward control and the H∞ robust feedback control), can be proceeded through a

careful tuning, the tuning process tends to be ad hoc. On the contrary, the proposed control

design method represents one of the first attempts to systematically merge these two control

approaches together. We illustrate the proposed control technique by implementing it to con-

trol a piezoelectric actuator for AFM imaging applications. The experimental results show that
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compared with the feedback controller designed without considering the feedforward controller,

the feedback-bandwidth is increased by over 28% by using the proposed control method. As a

result, high-speed precision-output tracking can be achieved.

The rest of the chapter is organized as follows. The design of a robust-inversion-based 2DOF

control system is formulated and solved in Section 3.2, where the robust-system-inversion is

proposed and developed, followed by the design of the complementary feedback controller.

In Section 3.3, the implementation of the proposed approach to the output tracking of the

piezoelectric actuator is described, where the experimental results are presented and discussed.

Our conclusions are given in Section 3.4.

3.2 Robust-Inversion-Based 2DOF Control System Design

3.2.1 Problem Formulation

We consider the inversion-based 2DOF control system depicted in Fig. 3.1, where Go(jω) :

� → � is the transfer function of a single-input-single-output (SISO) plant, GFF (jω) and

GFB(jω) are the feedforward and the feedback controllers, respectively, r(jω) is the input

to the entire 2DOF system, v(jω) is the system output, and uFF (jω) and uFB(jω) are the

feedforward and the feedback inputs to the plant, respectively. Then the transfer function of

the entire system, from the input r(jω) to the output v(jω), can be represented as

Gtotal(jω) = [GFF (jω) + GFB(jω)] Go(jω)S(jω), (3.1)

where S(jω) and T (jω) are the closed-loop sensitivity and the closed-loop complementary

sensitivity, respectively, i.e.,

S(jω) =
1

1 + GFB(jω) · Go(jω)
, T (jω) =

GFB(jω) · Go(jω)
1 + GFB(jω) · Go(jω)

. (3.2)

In the following, we design the feedforward controller based on the inverse of the system

dynamics,

GFF (jω) = Ĝo
−1

(jω), (3.3)
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Figure 3.1 The block diagram of the 2DOF control system.

where Ĝo
−1

(jω) denotes the modified inverse of the plant Go(jω). Such a choice of feedfor-

ward controller is motivated by the successful implementations of the inversion-based control

in various applications [5, 6, 46].

To clarify the design problem of the robust-inversion-based 2DOF controller, we start with

decoupling the gain-error of the entire 2DOF system (3.1) with respect to the unit gain as

follows,

Lemma 3 [8] The gain-error of the entire 2DOF system ε(ω) can be decoupled as the gain-

error of the feedforward path,
∣∣∣1 − Ĝo

−1
(jω)Go(jω)

∣∣∣, multiplied with the feedback sensitivity

gain, |S(jω)|,

ε(ω) � |1 − Gtotal(jω)| =
∣∣∣1 − Ĝo

−1
(jω)Go(jω)

∣∣∣ · |S(jω)| (3.4)

In the following, we call ε(ω) the total gain-error, and
∣∣∣1 − Ĝo

−1
(jω)Go(jω)

∣∣∣ the feedforward

gain-error.

Remark 8 [8] Note that the feedback sensitivity S(jω) also represents the feedback gain-error

with absence of feedforward control. Therefore, Lemma 3 implies that the feedforward controller

will enhance the tracking of the entire 2DOF system, if and only if the feedforward gain-error

is less than 1, i.e., ∣∣1 − Ĝ−1
o (jω)Go(jω)

∣∣ < 1. (3.5)

The above sufficient and necessary Condition (3.5) holds regardless the type of the feedback

controller (provided that the feedback-loop is stable).
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Note that practical constraints exist in both feedforward and feedback designs: the feedfor-

ward control is limited by modeling error and dynamics uncertainty [8], while the feedback

control must possess certain stability robustness properties [45]. Thus, we formulate the robust-

inversion-based 2DOF controller design problem as below.

The Robust-Inversion-based 2DOF Controller Design Design the inversion-based

2DOF control system such that at the frequency ω where the overall tracking performance can

be improved by using the feedforward control (such a frequency will be specified later through

the development), the following two objectives are satisfied:

1. The tracking-error of the feedforward control at the frequency ω, measured by the feedfor-

ward gain-error εff (ω), is minimized in the presence of the worst dynamics uncertainties

of given bound, i.e.,

min sup
ΔG(jω)

εff (ω) � min sup
ΔG(jω)

∣∣∣1 − Ĝo
−1

(jω)Go(jω)
∣∣∣ , at frequency ω; (3.6)

where ΔG(jω) is the dynamics uncertainty as defined below

ΔG(jω) =
Go(jω)

Go,m(jω)
= Δr(ω) · ejΔθ(ω). (3.7)

In (3.7), Go,m(jω) denote the model of the system plant Go(jω), and it is assumed that

both the system plant Go(jω) and its model Go,m(jω) are hyperbolic. Δr(ω) and Δθ(ω)

denotes the magnitude and the phase variation, respectively.

2. The feedback controller i) complements the inversion-based optimal feedforward con-

troller by increasing the bandwidth of the closed-loop system, and also ii) attains the

desired requirements for robustness such that the sensitivity S(jω) and the complemen-

tary sensitivity T (jω) of the feedback control satisfy the given stability and robustness

requirements, i.e., ∥∥∥∥∥∥∥∥∥∥
WP (jω)S(jω)

WT (jω)T (jω)

Wu(jω)K(jω)S(jω)

∥∥∥∥∥∥∥∥∥∥
∞

≤ 1 (3.8)
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where ‖G(jω)‖∞ denotes the H∞ norm of the transfer function G(jω) [45], K(s) denotes

the feedback controller, and WP (s), WT (s), and Wu(s) are user-defined weighting func-

tions to impose the requirements for the bandwidth and tracking performance (Wp(s)),

the robustness against model uncertainties (WT (s)), and the input magnitude (Wu(s)),

respectively [45].

Our approach to solve the above control system design problem is based on the well-known

Bode’s Integral, which is stated and discussed as follows.

Lemma 4 Bode’s Sensitivity Integral [45] Suppose the open-loop system plant Go(jω)

has a relative degree larger than one (i.e., has at least two more poles than zeros), and Go(jω)

has Np right-half-plan (RHP) poles at locations pi. Then the closed-loop sensitivity function

must satisfy

∫ ∞

0
ln |S(jω)| dω = π ·

Np∑
i=1

Re(pi) (3.9)

where Re(pi) denotes the real part of pi.

Remark 9 In practice, the frequency response of the open-loop transfer function Go(jω) has

to roll off at frequencies above the bandwidth frequency ωc. Thus, if the open-loop system plant

Go(jω) is stable, Bode’s Integrals is reduced to an integral over a finite frequency interval as

follows [45],[47] ∫ ωc

0
ln |S(jω)| dω = 0. (3.10)

Moreover, for a stable system with a single real RHP-zero z, the Bode’s integral can be approx-

imately as [45] ∫ z

0
ln |S(jω)| dω ≈ 0. (3.11)

Bode’s integral applies to every feedback controller, no matter how it is designed. It implies

that a reduction of the feedback sensitivity in one frequency range must be paid off with an

increase of the feedback sensitivity in another frequency range. Therefore, small sensitivity
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and large bandwidth cannot be achieved simultaneously. However, combined with Lemma 3,

Bode’s Integral also implies that with the help of a small feedforward gain-error (for example,

in the low-frequency range), an increase of the feedback-sensitivity in one frequency range (for

example, the low-frequency range) can be utilized to lower the feedback-sensitivity in another

frequency range (for example, the middle-frequency range). As a result, the feedback band-

width can be increased, leading to better disturbance rejection and/or output tracking. This

idea is explored in the following development of the robust-inversion-based 2DOF controller

design.

3.2.2 Robust-Inversion-Based Feedforward Control

We introduce a frequency-dependent gain-modulation into the system-inversion, as follows

GFF (jω) = Ĝo
−1

(jω) = α(ω) · G−1
o,m(jω) (3.12)

With this gain-modulated system-inverse as the feedforward controller, the goal for the feed-

forward controller design (3.6) is now transformed to seeking the optimal gain coefficient α(ω),

i.e. Equation (3.6) is transformed to

min
α(ω)

sup
ΔG

εff (ω) = min
α(ω)

sup
ΔG

∣∣1 − α(ω)ΔG(jω)
∣∣ (3.13)

The solution to the above minimax problem (3.13) is given by the following Theorem.

Theorem 1 At any given frequency ω, let the magnitude variation of the system dynamics

Δr(ω) (defined in (3.7)) be bounded below and above by constants Δrmin(ω) ∈ (0, 1] and

Δrmax(ω) ≥ 1, respectively. Then

1. The gain-modulated inversion-based feedforward controller (3.12) will enhance the track-

ing of the entire 2DOF control system if and only if

(a) the size of the phase variation of the system dynamics, Δθm(ω), is less than π/2,

i.e.,
∣∣Δθ(ω)

∣∣ ≤ Δθm(ω) < π/2; and

(b) the gain coefficient α(ω) is chosen as

0 < α(ω) <
2 cos(Δθm(ω))

Δrmax(ω)
;
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2. Particularly, the solution to the robust system-inversion problem (3.13) for all dynamics

variations bounded by the constants Δrmin(ω),Δrmax(ω), and Δθm(ω), is given by

αopt(ω) =
2 cos (Δθm(ω))

Δrmin(ω) + Δrmax(ω)
. (3.14)

3. By using the robust-inversion-based feedforward controller, αopt(ω)G−1
o,m(jω), the feedfor-

ward gain-error is bounded above by the following constant ε∗ff (ω),

ε∗ff (ω) = min
α(ω)

sup
ΔG

∣∣1 − α(ω)ΔG(jω)
∣∣ =

√
1 − 4 cos2 (Δθm(ω))Δrmin(ω)Δrmax(ω)

(Δrmin(ω) + Δrmax(ω))2
.(3.15)

Proof Result 1 follows directly by substituting the gain-modulated inverse feedforward con-

troller Ĝ−1(jω) = α(ω)G−1
o,m(jω) into (3.5), and quantifying the allowable dynamics variations,

Δr(ω), Δθm(ω), as well as the allowable range of the gain coefficient α(ω). See Lemma 1 in

Ref. [1] for details.

To show Result 2, we rewrite (3.13), at any given frequency ω, as follows

ε∗ff (ω)2 = min
α

sup
Δr,Δθ

|1 − αΔG(jω)|2

= min
α

sup
Δr,Δθ

|1 − αΔr · [cos (Δθ) + i sin (Δθ)]|2

= min
α

sup
Δr,Δθ

|1 − αΔr · cos (Δθ) − iαΔr sin (Δθ)|2

= min
α

sup
Δr,Δθ

{
α2Δr2 cos2(Δθ) + α2Δr2 sin2 (Δθ) + 1 − 2αΔr · cos (Δθ)

}
= min

α
sup

Δr,Δθ

{
[αΔr − 1]2 + 2αΔr(1 − cos (Δθ))

}
= min

α
sup
Δr

{
[αΔr − 1]2 + 2αΔr(1 − cos (Δθm))

}
(since |Δθ| ≤ Δθm < π/2.) (3.16)

where the dependence of the variables on the frequency ω has been omitted for economy. Since

the function

f(Δr, α) = [αΔr − 1]2 + 2αΔr(1 − cos (Δθm)) (3.17)

is quadratic of Δr with the coefficient for the 2-order term Δr2 being positive (α2 > 0), the

supremum of the function f(Δr, α) can only be achieved at the two boundary points, i.e.,

Δr = Δrmax or Δr = Δrmin. Thus, Equation (3.16) is reduced to

ε∗ff (ω)2 = min
α

max
{
f(Δrmax, α), f(Δrmin, α)

}
(3.18)
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The above minimax problem is solved by seeking the optimal gain coefficient αopt such that

the two values in (3.18) equal to each other, i.e.,

f(Δrmax, αopt) = [αoptΔrmax − 1]2 + 2αoptΔrmax(1 − cos(Δθm))

= [αoptΔrmin − 1]2 + 2αoptΔrmin(1 − cos(Δθm)) = f(Δrmin, αopt)(3.19)

Solving (3.19) leads to the optimal gain coefficient αopt(ω) in (3.14). Such a choice of the gain

coefficient α is optimal, because for any given α ≥ αopt, the function f(Δrmax, α), as a quadratic

function of α as well, achieves its minimum value at α1 = cos(Δθm)/Δrmax. By (3.14), it can

be easily verified that α ≥ αopt ≥ α1, and the function f(Δrmax, α) is monotonically increasing

with α when α ≥ α1, this implies that the quadratic function f(Δrmax, α) ≥ f(Δrmax, αopt)

for all α ≥ αopt, i.e.,

sup
Δr

f(Δr, αopt) ≤ max
{
f(Δrmax, α), f(Δrmin, α)

}
, when α ≥ αopt. (3.20)

Similarly, for any given α ≤ αopt, we can show that f(Δrmin, α) ≥ f(Δrmin, αopt), which implies

that

sup
Δr

f(Δr, αopt) ≤ max
{
f(Δrmax, α), f(Δrmin, α)

}
, when α ≤ αopt. (3.21)

Result 3 is obtained by substituting the optimal gain coefficient (3.14) back into either side

of (3.19), and noticing that cos(Δθm) > 0. This completes the proof.

Remark 10 Geometric interpretation of Theorem 1 As depicted in Fig. 3.2(a),

for the magnitude variation Δr ∈ [rmin, rmax] and the phase variation Δθ ∈ [−θm, θm], the

shadowed area represents the set of all possible values of the feedforward gain-error vector
⇀
εff (ω,ΔG,α) = 1 − α(ω)ΔG(jω). It is noted that the maximum feedforward gain-error∣∣ ⇀
εff (ω,ΔG,α)

∣∣ can only be obtained at the two boundary points, i.e.,
⇀

εff,1 or
⇀

εff,2 in Fig. 3.2

(a). For the case of
∣∣∣ ⇀
εff,1

∣∣∣ >
∣∣∣ ⇀
εff,2

∣∣∣ depicted in Fig. 3.2 (a), the feedforward gain-error is

bounded above by the magnitude of the vector
⇀

εff,1. Thus the gain coefficient α(ω) needs to

be decreased to reduce the feedforward gain-error. The decrease of the gain coefficient α(ω),

however, will increase the feedforward gain-error governed by the lower-bound of the dynamics
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Figure 3.2 The geometric interpretation of the robust-system-inversion
method: (a) the feedforward gain-error (shadowed area) for the
dynamics uncertainties bounded by Δrmin,Δrmax, and Δθm,
with an arbitrarily chosen gain coefficient α, and (b) the mini-
mized gain-error for the optimal gain coefficient αopt.
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variation,
⇀

εff,2. Therefore, the minimal supreme value of the feedforward gain-error is achieved

when these two gain-errors are equal to each other, i.e.,
∣∣ ⇀
εff,1

∣∣ = ∣∣ ⇀
εff,2

∣∣, as depicted in Fig. 3.2

(b). By the law of cosines, the magnitudes of the two vectors
⇀

εff,1 and
⇀

εff,2 are given by

the two expressions in (3.18), respectively (see Fig. 3.2 (a)). Thus, the above equivalence,∣∣ ⇀
εff,1

∣∣ =
∣∣ ⇀
εff,2

∣∣, is exactly the same as (3.19), which leads to the optimal gain coefficient as

given in Theorem 1.

Remark 11 It has been shown in Ref. [8] that when the exact inverse is used as the feedforward

controller, i.e., α(jω) = 1 in (3.12), the feedforward controller will enhance the tracking of the

entire inversion-based 2DOF control system if and only if

∣∣Go(jω) − Go,m(jω)
∣∣ < ∣∣Go(jω)

∣∣. (3.22)

Using the dynamics uncertainty as defined in (3.7), it can be verified that the above Condition

is equivalent to requiring that the phase variation

∣∣Δθm(ω)
∣∣ < cos−1

( 1
2Δr(ω)

)
, (3.23)

which is less than π/2. Therefore, a larger dynamics (phase) uncertainty can be allowed in

the proposed robust inversion-feedforward controller—In implementations, the feedforward con-

troller Ĝ−1
o (jω) should set to zero at frequencies where the phase variation exceeds π/2.

Remark 12 Optimal Iterative Coefficient in the inversion-based iterative control

(IIC) algorithm [1, 23] We note that the same dynamics uncertainties allowed in Theorem

1 is also allowed in the recently-developed IIC algorithm [1] (to guarantee the convergence of

the IIC algorithm). Moreover, the criteria for achieving the fastest possible convergence in

IIC algorithm is also the same as that for achieving the optimal feedforward gain modulation

(Eq. (3.13)). Therefore, the optimal gain coefficient αopt(ω) in Eq. (3.14) is also the optimal

iterative coefficient to be used in the following IIC algorithm [1, 23]—for fastest guaranteed

convergence rate in the presence of dynamics uncertainties bounded by Δrmax, Δrmin, and Δθ:

u0(jω) = 0, uk+1(jω) = uk(jω) + α(ω)G−1
a,m(jω)[xd(jω) − xk(jω)], for k ≥ 1. (3.24)
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Corollary 1 The robust-inverse feedforward controller GFF (jω) has no poles on the jω axis,

provided that the model of the system plant Go,m(jω) is hyperbolic (i.e., has no poles/zeros on

the jω axis).

Proof We proceed by contradiction. Assume that the robust-inverse feedforward controller

GFF (jω) has a pair of poles on the jω axis, ±ja (with a ∈ �), then the frequency response of

the feedforward controller GFF (jω) approaches to infinity as the frequency ω approaches to

a, i.e., GFF (jω) → ∞ as w → a. However, the hyperbolicity of the system model Go,m(jω)

implies that its inverse G−1
o,m(jω) is also hyperbolic. The gain modulation term α(ω) is less than

2 (by (3.14)), and thereby bounded for all frequency ω. This implies that the robust-inverse

feedforward controller GFF (jω) is also bounded at all frequencies ω—a contradiction. This

completes the proof.

3.2.3 Time-Domain Realization

We note that the obtained robust-inverse feedforward controller,

GFF (jω) = αopt(ω)G−1
o,m(jω) = Ĝ−1

o (jω), (3.25)

might be unstable and un-proper and thus cannot be implemented online. The implementation

of such an unstable and un-proper controller has been addressed in the development of preview-

based system-inversion technique [20, 48]. For completeness, we summarize below the main

steps to realize the feedforward controller (3.25) in the time domain, the readers are referred

to Ref. [20] for details.

1. If the obtained robust-inverse feedforward controller Ĝ−1
o (jω) is not proper, obtain a

proper, robust-inverse feedforward controller Ĝ−1
o,p(jω) by redefining the output as follows,

u(jω) = Ĝ−1
o (jω)yd(jω) =

nf (jω)
df (jω)

yd(jω) =
nf,a(jω)
df (jω)

nf,b(jω)yd(jω) � Ĝ−1
o,p(jω)nf,b(jω)ŷd(jω),

(3.26)

where the order of the numerator nf,b(jω) equals to the order difference between the de-

nominator df (jω) and the numerator nf (jω) (i.e., Order(nf,b) = Order(nf )−Order(df )),
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and ŷd(jω) is the modified desired output consisting of the output and its derivatives

(Note it is assumed that the desired trajectory ŷd(·) is sufficiently smooth [5, 20].) Since

the time-domain realization of a proper, stable transfer function is straightforward, next

we only consider the realization of an unstable robust-inverse feedforward controller

Ĝ−1
o,p(jω).

2. Decouple the robust-inverse feedforward controller as the summation of the stable part

and the unstable part by partial fraction expansion as

Ĝ−1
o,p(jω) = Gff,s(jω) + Gff,u(jω), (3.27)

where Gff,s(jω) and Gff,u(jω) are the stable and the unstable part of the controller

with all their poles on the open-left and open-right complex plan, respectively. Note

such a decoupling can be done because the original robust-inverse controller Ĝ−1
o (jω) is

hyperbolic (Corollary 1), so is the proper robust-inverse controller Ĝ−1
o,p(jω) [20]. Then

find the minimal state-space realization (e.g.,[49]) of the stable and the unstable parts of

the feedforward optimal controller as[
Gff,s(s)

]
: ẋs(t) = Asxs(t) + Bsŷd(t)

us
ff (t) = Csxs(t) + Dsŷd(t) (3.28)[

Gff,u(s)
]

: ẋu(t) = Auxu(t) + Buŷd(t)

uu
ff (t) = Cuxu(t) + Duŷd(t) (3.29)

3. Obtain the bounded feedforward input as the summation of the input portion from

the stable dynamics, us
ff (t), and the input portion from the unstable dynamics, uu

ff (t).

Particularly, the unstable dynamics
{
Au, Bu, Cu, Du

}
will be solved through a preview-

based stable-inversion approach [20, 34, 48], which finds the unstable portion of the

inverse input, uu
ff (t), by using a finite-preview of the future desired trajectory:

us
ff (t) = Cs

∫ t

−∞
eAs(t−τ)Bsŷd(τ)dτ + Dsŷd(t) (3.30)

uu
ff (t) = −Cu

∫ t+Tp

t
e−Au(τ−t)Buŷd(τ)dτ + Duŷd(t) (3.31)

uff (t) = us
ff (t) + uu

ff (t) (3.32)
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Note in (3.31), the bounded solution to the unstable dynamics is noncausal and is ob-

tained by using the previewed future desired trajectory within a finite preview time Tp.

It can be shown [20, 34, 48] that the computation error, due to the use of finite (instead

of infinity) previewed desired trajectory, can be rendered arbitrarily small by having a

large enough preview time Tp. Furthermore, the amount of preview-time (for ensuring

the precision of the feedforward control) can be quantified by the characteristics of the

unstable part of the robust-inverse feedforward controller (3.29). Readers are referred to

Ref. [20] for details.

3.2.4 Complementary Robust Feedback Controller Design

We note that although the proposed robust inversion feedforward control can minimize the

dynamics uncertainty effect on the output tracking, the feedforward controller itself cannot

reduce the effects of measurement noise and disturbance. Thus, feedback control is needed to

reduce such adverse effects on the control performance. We propose to design the complemen-

tary feedback controller by integrating the above robust-inverse feedforward control with the

H∞ robust feedback control [45]. First, we will determine the upper-bound of the feedback sen-

sitivity gain |S(jω)| in the absence of feedforward control to meet the requirements in tracking

performance and robustness, called the general upper-bound of the feedback sensitivity gain,

Bg(ω). The sensitivity gain needs to be i) small in the low-frequency range to ensure a good

tracking performance, ii) large in the high-frequency range to reject the noise and dynamics

uncertainty effects, and iii) bounded above by a constant M across all frequencies to satisfy

the robust stability requirement (e.g., [45]), i.e.,

|S(jω)| ≤ Bg(ω) ≤ M for some M > 0 and ∀ ω ≥ 0. (3.33)

A typical general upper-bound of the sensitivity transfer function is shown in Fig. 3.3.

Then, the designed upper-bound of the feedback sensitivity B�(ω) will be shaped by using

the minimized feedforward gain-error, obtained in Subsection 3.2.2, to design the complemen-

tary upper-bound of the feedback sensitivity, Bc(ω), i.e., with the effect of the robust-inverse
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feedforward control being considered. We note that when there is no feedforward control, the

feedback sensitivity also represents the system’s gain-error (with respect to the unit gain).

Therefore, combining Lemma 3 with Theorem 1, it becomes evident that by using the robust-

inverse feedforward control in the 2DOF system, the same gain-error can be maintained when

the feedback sensitivity is scaled-up with the inverse of the less-than-one feedforward gain-error

ε∗ff (ω) (see (3.16)), Bg(ω)/ε∗ff (ω). Such a scaled-up upper-bound of the feedback sensitivity

gain is depicted in Fig. 3.3. Moreover, we shall maintain the same feedback robustness stability

in the 2DOF control system as that with feedback only, i.e., (3.33) should be satisfied. There-

fore, the complementary upper-bound of the feedback sensitivity in the robust-inversion-based

2DOF control is chosen as:

|S(jω)| ≤ Bc(ω) = min{Bg(ω)/ε∗ff (ω), M} (3.34)

Equations (3.33, 3.34) show that in the low-frequency range, the feedback sensitivity of the

2DOF control system (|S(jω)| in Eq. (3.34)) can be larger than that of the feedback control

alone (|S(jω)| in Eq. (3.33))—while maintaining the same tracking precision in that frequency

range. Therefore, by the fact that Bode’s Integral is a constant (see Lemma 4), such an in-

crease of the feedback sensitivity in the low-frequency will enable a reduction of the feedback

sensitivity in the transition frequency range. This implies that the transition-band of the

feedback sensitivity can be pushed further into the higher frequency range. As a result, the

bandwidth of the feedback control, measured by the frequency where the desired feedback sen-

sitivity crosses -3dB from below [19], is increased. Such a desired feedback-sensitivity function,

for the robust-inversion-based 2DOF control system, can be obtained by using the H∞ robust

feedback control technique, as described below.

First, the weighting function WP,h(jω) for the sensitivity function used in the H∞ robust

control design is chosen such that |1/WP,h(jω)| ≤ Bc(ω), for all ω. Such a weighting function

will ensure that the obtained feedback sensitivity function S(jω) will be bounded above by its

upper-bound Bc(ω) given in (3.34). This is because the H∞ feedback control design will seek
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Bc(ω) = min{Bg(ω)/ε∗ff (ω), M}

Bg(ω) = |1/WP,�(jω)|

M

Bg(ω)/ε∗ff (ω)

|1/WP,h(jω)| < Bc(ω)

Figure 3.3 The illustrative plots of a general upper-bound of the
feedback sensitivity which is designed without considering
the feedforward control effect, Bg(ω) = |1/WP,�(jω)|, the
scaled-up upper-bound with the minimized feedforward gain-er-
ror, Bg(ω)/ε∗ff (ω), and the magnitude of the inverse of the sen-
sitivity weighting function in the H∞ control design that attains
a larger feedback bandwidth, |1/WP,h(jω)|. Note that for illus-
tration purpose, the minimized feedforward gain-error ε∗ff (ω) is
chosen as constant.
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to achieve [45]

||WP,h(jω)S(jω)||∞ ≤ 1.

Such a sensitivity weighting function WP,h(jω) is depicted in Fig. 3.3. As we expect, the sensi-

tivity weighting function WP,h(jω) is reduced in the low frequency range, and thereby a larger

feedback bandwidth is achieved (this is verified by our experimental example in Sec. 3.3). We

note that if the disturbance d mainly appears in the low-frequency range, such a decrease of the

weighting function may compromise the disturbance rejection of the closed-loop system. How-

ever, there exist applications where disturbances tend to be mainly occur in the high-frequency

range. Thus for such cases, the weighting function WP (jω) can be reduced as described above.

The resulted closed-loop bandwidth increase will improve both the tracking (of the reference

trajectory r) and the rejection (of the disturbance d).

Second, to impose the closed-loop robustness and noise rejection on the complementary sen-

sitivity transfer function T (jω), the corresponding weighting function WT (jω) is chosen such

that

||WT (jω)T (jω)||∞ ≤ 1.

Finally, to impose the input saturation requirement on the loop transfer function K(jω)S(jω),

the weighting function on the input Wu(jω) is chosen such that

||Wu(jω)K(jω)S(jω)||∞ ≤ 1.

It is noted that the weighting function Wu(jω) can be designed by considering the saturation

in the presence of both the feedforward and the feedback control. In the chapter, we simplify

the design by only considering the feedback-caused saturation effect, and accounting for the

feedforward control effect by setting the limit of the feedback control saturation to be an half

of that for the total 2DOF system.

Once all the three weighting functions, WP (jω), WT (jω) and Wu(jω), are chosen, the H∞

feedback controller can be readily obtained by solving the H∞ optimization robust feedback

problem (3.8) by using existing methods, e.g., [45].
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3.3 Example: Piezoelectric Actuator Design

Next, we illustrate the robust-inversion-based 2DOF controller design by implementing it

to the piezoelectric actuator on an AFM. We start by describing the use of the piezo actuators

in the AFM operation.

3.3.1 System Description

The AFM system (DimensionTM 3100, Veeco Inc) studied in this chapter utilizes piezotube

actuators to position the AFM probe with respect to the sample during imaging (see Fig. 3.4

(a)), in both parallel (along the x-y axes) and perpendicular (along the z-axis) directions.

The AFM probe motion signal is used to construct the topography of the sample, and/or to

interrogate the sample properties [50]-[53]. Therefore, positioning errors of the probe relative to

the sample will generate large image distortions [20, 3], and further damage the probe [28], the

sample [29], or both. Such large positioning errors can be generated in both lateral scanning

x-axis and vertical z-axis direction when imaging relatively-large samples at high-speed. In

the experiment, inversion-based robust 2DOF control is used for the periodic scanning along

the lateral x-axis direction (Fig. 3.4 (b)).

3.3.2 Design of the Robust-Inversion-Based Feedforward Controller

We experimentally measured the frequency response of the piezotube actuator in the lat-

eral scanning (x-axis) direction, Ĝo(jω), and quantified the model uncertainties ΔG(jω) (as

defined in (3.7)) by using a data acquisition system along with MATLAB toolboxes (Sys-

tem Identification Toolbox, Simulink and xPC Target). To measure the frequency response

Go(jω), a band-limited white noise signal u(t) generated using MATLAB-Simulink was ap-

plied to the piezo actuator through a power amplifier, and the x-axis displacement of the

actuator x(t) was measured (using an inductive sensor) and utilized to obtain the frequency

response Go(jω) (by using the MATLAB-System Identification Toolbox). To experimentally

quantify the model uncertainties, the frequency responses of the x-axis piezotube actuator were

measured at three different input levels (60mV, 70mV, 80mV) around seven different initial
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Figure 3.4 (a) the schematic diagram of the AFM operation, and b) the
top view of the typical scanning trajectories for AFM imaging
[1].

positions (origin, ±10μm, ±20μm, ±30μm). The total of 21 frequency responses measured are

plotted in Fig. 3.5, from which the bound of the gain uncertainty, Δrmax(ω) and Δrmin(ω),

and the phase uncertainty, Δθ(ω), were estimated by finding the minimum and the maximum

variations among the experimental frequency responses, as shown in Fig. 3.6(a) (b). Then the

nominal frequency response used in the robust-inversion-based 2DOF design, Go,m(jω), was

obtained by averaging these measured frequency responses.

The estimated bounds of magnitude and phase uncertainties were used, according to Theo-

rem 1, to obtain the optimal gain coefficient, αopt(ω), and to further obtain the minimized

upper-bound of the feedforward gain-error, ε∗ff (ω), as shown in Fig. 3.6 (c) and (d), respec-

tively. Note that the feedforward gain-error is bounded above at 1.5% in the low frequency

range till around 1100 Hz. As a result, Lemma 3 implies that the upper-bound of the feed-

back sensitivity, in the following feedback controller design part, can be increased by almost

two orders of magnitude while still maintaining the same small gain-error of the entire 2DOF

system in the low frequency range.
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Figure 3.5 The experimentally measured frequency responses of the piezo
actuator in the x-axis direction for different input voltage level
and at different initial positions (up to 2KHz).

We note that although the feedforward gain-error (Fig. 3.6(c)) was small (except around the

zero at 1179 Hz) till the frequency of 1800 Hz, the gain of the piezo actuator itself becomes much

smaller than the DC-Gain as frequency increases beyond 1500 Hz (see Fig. 3.5 ). Therefore,

in the experiment, the robust-inversion-based feedforward controller was chosen as

GFF,r(jω) =
{

αopt(jω)G−1
o,m(jω) ω ≤ 1500 Hz

0 otherwise
(3.35)

For comparison, the following exact-inverse feedforward controller was also implemented in the

experiments (see Remark 11)

GFF,e(jω) =
{

G−1
o,m(jω) ω ≤ 1100 Hz

0 otherwise
(3.36)
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3.3.3 Complementary Robust Feedback Controller Design

We start by obtaining the transfer function of the x-axis piezo actuator, as given below, by

curve fitting the nominal frequency response (MATLAB command “invfreqs”):

Gx(s) =
8.942 × 105(s2 − 3.39 × 104s + 3.11 × 108)(s2 + 411.7s + 5.357 × 107)

(s2 + 5250s + 1.41 × 107)(s2 + 82.02s + 2.887 × 107)(s2 + 72.67s + 8.437 × 107)
.(3.37)

The frequency response of the obtained model is compared with the nominal experimental re-

sponses in Fig. 3.7, which shows that the transfer function model captured the system dynamics

closely till 1100 Hz. Next, we specify the general upper-bound of the feedback sensitivity func-

tion, Bg(ω), by choosing the following weighting function WP,�(s) for the feedback sensitivity,

WP,�(s) =
0.05s2 + 309.1s + 4.777 × 105

s2 + 13.82s + 47.77
. (3.38)

Such a choice of weighting function leads to the general upper-bound of the feedback-sensitivity

Bg(ω) as shown in Fig. 3.8, which has a gain as small as 0.1% for frequency < 1 Hz and smaller

than 5% till around 100 Hz.

Next, the upper-bound of the feedback sensitivity in the robust-inversion-based 2DOF con-

trol system, Bc(ω), was obtained by shaping the above upper-bound of the feedback sen-

sitivity Bg(ω). Particularly, it was noted that the minimized feedforward gain-error is less

than 0.2% in the low frequency range (< 10Hz), and the general upper-bound Bg(ω) is

bounded above at 26.02dB (or equivalently, 20). Therefore, by (3.34), we chose Bc(ω) =

min{Bg(ω)/0.002, 20}. For this complementary upper-bound Bc(ω), the feedback sensitivity

weighting function WP,h(s) in the robust-inversion-based 2DOF control design was chosen as

WP,h(s) =
0.05s2 + 562s + 1.579 × 106

s2 + 562s + 7.896 × 104
, (3.39)

As shown in Fig. 3.8 (a), with such a choice of weighting function, the feedback sensitivity

for the inversion-based 2DOF system is bounded above at 5% till around 160 Hz, and has the

same robustness stability property as in the feedback-only design in the high-frequency range.
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To satisfy the robust performance requirement and account for the model uncertainty around

the resonant peaks, the weighting function for the complimentary transfer function, WT (s) (as

shown in Fig. 3.8 (b)), was chosen to be

WT (s) =
0.5s4 + 1.213 × 104s3 + 1.252 × 108s2 + 5.988 × 1011s + 1.218 × 1015

s4 + 4853s3 + 1.187 × 108s2 + 2.395 × 1011s + 2.436 × 1015
. (3.40)

It is noted that an analog low pass filter was added after the raw sensor signal to attenuate the

noise effect in our experimental system. The cut-off frequency at 2 KHz was much higher than

the closed-loop bandwidth, thereby for simplicity, its dynamics was ignored when designing

the weighting function WT (s).

Moreover, to prevent the input saturation, the weighting function for the input, Wu(s), is

selected to be a constant Wu(s) = 0.5. Using these weighting functions WP,h(s), WT (s), and

Wu(s) in the robust criteria (3.8), the robust feedback controller was obtained numerically in

MATLAB (MATLAB command “hinfsyn”) as follows

GFB,h(s) =
k ·

11∏
i=1

(s − zi)

12∏
j=1

(s − pj)
with k = 5.48 × 106, and

zi = {−810.13,−36.336 ± 9185.1i,−1530. ± 9056.8i,

−41.012 ± 5372.6i,−895.51 ± 5297.9i,−2624.9 ± 2685.4i}

pi =
{−2 × 106,−7008,−889 ± 9980i,−1522 ± 8694i, .

− 724.34 ± 6840.8i,−1252.1 ± 5005i,−281,−281} (3.41)

For comparison, we also designed the feedback controller without considering the effect of

the feedforward controller. By using the specified sensitivity weighting function WP,�(s) as in

(3.38), and the same weighting functions on complementary sensitivity and the input, WT (s)

as given by (3.40), and Wu = 0.5, the non-complementary controller transfer function was
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obtained as follows

GFB,�(s) =
k ·

11∏
i=1

(s − zi)

12∏
j=1

(s − pj)
with k = 2.98 × 106, and

zi = {−36 ± 9185i,−1531 ± 9057i,−41 ± 5373i,

−896 ± 5298i,−2625 ± 2685i,−305.49}

pi =
{−1.24 × 106,−6874,−887 ± 9965i,−1516 ± 8690i,

−725 ± 6830i,−1255 ± 4989i,−6.91,−6.91} (3.42)

The frequency responses of the closed-loop sensitivity S(jω) by using the two feedback con-

trollers, respectively, were simulated in MATLAB, and also experimentally measured. As

compared in Fig. 3.9 (a), (b), the experimentally measured feedback sensitivities were close to

their simulation counterparts. Moreover, the experimental results showed that the proposed

robust-inversion-based 2DOF control design can achieve a larger feedback bandwidth: the

feedback bandwidth of the complementary feedback controller GFB,h(jω) at 164 Hz was over

28% times higher than the feedback bandwidth of the non-complementary robust feedback

controller GFB,�(jω) at 128 Hz. Furthermore, we also note that the phase of the feedback

sensitivity for the complementary feedback controller GFB,h(jω), i.e., the phase error of the

output tracking, was smaller, in the low-frequency range (till ∼ 110 Hz), than that for the

non-complementary robust feedback controller.

It is noted that the experiments might be further improved by designing the weighting func-

tions more carefully through the noise and disturbance analysis. We further note that the same

weighting functions WT (s) and Wu(s) were used to design the feedback controllers in both cases

(the proposed complementary design, and the general 2DOF design), therefore such a more

careful design of the weighting functions WT (s) and Wu(s) will benefit the performance of both

controller designs.
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Figure 3.9 Comparison of the simulation (a) and the experimentally mea-
sured frequency response (b) of the feedback sensitivity by using
the complementary robust feedback controller (’FB, h’) with
that by using the non-complementary robust feedback controller
(’FB, �’).

3.3.4 Experimental Results and Discussion

Experiments were conducted to track a triangular trajectory at seven different frequen-

cies (10Hz, 50Hz, 100Hz, 150Hz, 200Hz, 250Hz and 300Hz) by using three different control

approaches: 1). the feedback controller GFB,�(s) alone; 2). the exact inverse feedforward

controller GFF,e(s) in (3.36) along with the non-complementary robust feedforward controller

GFB,�(s) in (3.42); and 3). the robust-inversion-based 2DOF robust approach, i.e., the robust-

inverse feedforward controller GFF,r(s) in (3.35) along with the complementary robust feedback

controller GFB,h(s) in (3.41). The output range was chosen at 5 μm. The obtained tracking

results for the triangular signal frequencies at 10, 100, and 250 Hz are compared in Fig. 3.10.

The tracking performance of the three different control approaches for all seven triangular

signal frequencies are compared in Table 3.1 in terms of the RMS error ERMS , the maximum
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error EM , and the relative maximum error ÊM , where

ERMS(μm) =

√√√√√(
n∑

k=1

(xd[k] − x[k])2)

n
,

EM (μm) = max
k∈[0,n]

|xd[k] − x[k]|,

ÊM (%) =
EM

maxk∈[0,n] |xd| × 100%. (3.43)

Table 3.1 Comparison of the tracking errors obtained by using the
feedback controller GFB,� only (A), the exact-inverse feedback
controller GFF,e with the non-complementary robust feedback
controller GFB,� (B), and the proposed robust-inversion-based
2DOF control (GFB,h + GFF,r ) (C). Displacement range: 5 μm.

triangular Rate ERMS(μm) EM (μm) ÊM (%)
(Hz) (A) (B) (C) (A) (B) (C) (A) (B) (C)
10 0.0315 0.0136 0.0149 0.1852 0.0724 0.0734 3.70 1.45 1.47
50 0.3085 0.0191 0.0160 0.7824 0.0829 0.0625 15.65 1.66 1.25
100 0.7748 0.0430 0.0331 1.3634 0.1332 0.1216 27.27 2.66 2.43
150 N/A 0.0593 0.0426 N/A 0.1478 0.1079 N/A 2.96 2.16
200 N/A 0.0773 0.0532 N/A 0.1772 0.1497 N/A 3.54 2.99
250 N/A 0.1129 0.0891 N/A 0.2724 0.2063 N/A 5.45 4.13
300 N/A 0.1341 0.0958 N/A 0.3772 0.2642 N/A 7.54 5.28

The experimental results show that when the triangular rate was low, precision output track-

ing can be achieved with the feedback controller alone. As shown in Fig. 3.10, at the signal

frequency of 10 Hz, the relative maximum tracking error by using the feedback controller

GFB,�(s) was 3.70%. As the signal speed was increased, however, the tracking error became

much larger. Particularly, at the signal frequency of 100 Hz, the main frequency components

of the desired signal other than the fundamental frequency component were outside the band-

width of the feedback control system at 128 Hz (see Fig. 3.9). As a result, large tracking

errors occurred–the relative maximum error was over 27.27% for 100Hz tracking. Therefore,

output tracking by using the non-complementary feedback controller GFB,�(jω) alone was not

proceeded in experiments for triangular signals with frequency higher than 100 Hz.



57

The output tracking performance can be significantly improved by using the inversion-based

2DOF control technique (including both the proposed robust-inversion-based 2DOF control

and the inverse-based feedforward control with the non-complementary feedback control). As

shown in Fig. 3.10 and Table 3.1, for the triangular signal at 10 Hz, the maximum tracking

error achieved by using the inversion-based 2DOF controller was only about 0.0724 μm (the

equivalent voltage equals to 12.1 mV), which was close to the noise level of the experimental

system (at 10.1 mV, measured as the maximum value with respect to its mean value). For

triangular trajectory with higher frequencies, the tracking error achieved with the inversion-

based 2DOF control techniques was also significant smaller than using the feedback controller

alone. For example, at the triangular frequency of 100 Hz, the tracking error achieved by

using the inversion-based 2DOF controller was about 10 times smaller than using the feedback

controller alone. Even for the high-speed triangular signal of 250 Hz, the obtained relative

maximum tracking error was still less than 6%.

The experimental results also show that the proposed robust-inversion-based 2DOF control,

GFF,r (s) + GFB,h(s), can further improve the tracking at high-speed, compared with the

exact- inverse feedforward, non-complementary robust-feedback 2DOF control, GFF,e(ss) +

GFB,�(s). As described in Sec. 3.3.2, the designed robust-inversion-based feedforward con-

troller GFF,r (jω) in (3.35) achieved smaller feedforward gain-error as well as larger frequency

range for precision output tracking than the exact feedforward control (Remark 11); Moreover,

as described in Sec. 3.3.3, the complementary robust feedback controller GFB,h(jω) achieved

a higher feedback bandwidth than the non-complementary feedback controller GFB,�(jω) (see

Fig. 3.9). Therefore, the 2DOF controller GFF,r (s)+GFB,h(s) obtained by using the proposed

approach attained a larger “total” bandwidth than the 2DOF controller GFF,e(ss)+GFB,�(s),

which, in turn, results in higher tracking precision at high-speed. As shown in Table 3.1, the

proposed robust-inversion-based 2DOF controller achieved higher tracking precision for all tri-

angular frequencies but 10 Hz than the non-complementary inversion-based 2DOF controller.
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For example, at the triangular trajectory of 250 Hz, the tracking error obtained by using the

proposed robust-inversion-based 2DOF controller was 25% smaller than that obtained by the

controller GFF,e(ss) + GFB,�(s).

To further evaluate the proposed control approach, the two inversion-based 2DOF controllers

were also applied to track triangular trajectories at a much larger displacement range of 50 μm.

It is noted that the nonlinear hysteresis effect is pronounced at this large displacement range

[54], and the quantification of the dynamics variation obtained in Sec. 3.3.2 did not adequately

account for the range-dependent hysteresis effect (To do so, a much larger input level in the

measured frequency range of 2 KHz needs to be applied to the piezo actuator, which can

potentially damage the piezo actuator, thereby was not pursued in the experiments). However,

the experimental results show that the proposed control approach can still achieve precision

tracking at high-speed for such large output-range. As shown in Table 3.2 and Fig. 3.11, for

the triangular signal at 10 Hz, the relative maximum tracking error ÊM (%) is only ∼ 0.67%

of the displacement range; even when the frequency of the triangular signal was increased to

100 Hz, the tracking error was still small at ÊM (%) = 3.60%, only 1/7 of the error when using

feedback alone. Therefore, the experimental results demonstrate that the proposed robust-

inversion-based 2DOF control approach can achieve precision output-tracking at high-speed.

Table 3.2 Comparison of the tracking errors for large-range tracking (50
μm) obtained by using the feedback control GFB,� alone (A), the
inverse 2DOF control GFF,e(s)+GFB,�(s) (B), and the proposed
2DOF control GFF,r(s) + GFB,h (C).

triangular Rate ERMS(μm) EM (μm) ÊM (%)
(Hz) (A) (B) (C) (A) (B) (C) (A) (B) (C)
10 0.2401 0.0487 0.1591 1.4505 0.2854 0.3384 2.90 0.57 0.67
50 2.4482 0.4268 0.3313 7.0059 0.9869 0.9428 14.01 1.97 1.88
100 6.2142 1.1114 0.8070 13.2612 1.9651 1.7994 26.52 3.93 3.60
150 N/A 1.9025 1.5903 N/A 3.0362 3.3377 N/A 6.07 6.68
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3.4 Conclusion

A robust-inversion-based 2DOF control design approach for output tracking was proposed

in this chapter. A novel robust-inversion technique is developed, which, when used as a feed-

forward control, achieved a guaranteed tracking precision in the presence of bounded dynamics

variations from the feedforward control. The bounded feedforward gain-error was then used

in the H∞ robust feedback control to design a robust feedback controller to complement the

feedforward control and increase the feedback bandwidth under the robust stability require-

ments. Therefore, the proposed approach, for the first time, systematically integrated the

system-inversion-based feedforward control with the H∞ robust feedback control together.

The implementation of the proposed method on piezotube actuator of an AFM is presented to

show that 1) the proposed approach achieved a larger feedback-bandwidth of the entire system

than that by using the regular robust H∞ design; and 2) high-speed precision output tracking

can be achieved by using the proposed robust-inversion-based 2DOF control technique.
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Figure 3.10 Comparison of the experimental tracking results (left column)
and the tracking errors (right column) obtained by using three
different control approaches for tracking the triangular trajec-
tory with frequencies of 10 Hz (a1, a2), 100 Hz (b1, b2), and
250 Hz (c1, c2). The displacement range is 5 μm.
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Figure 3.11 Comparison of the experimental tracking results (left column)
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displacement range is 50 μm.
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CHAPTER 4. A current cycle feedback iterative learning control

approach for AFM imaging

A paper published in IEEE Transactions on Nanotechnology

Ying Wu 1 and Qingze Zou 2

Abstract

In this chapter, we proposed a novel current cycle feedback (CCF) iterative learning control

(ILC) approach to achieve high-speed imaging on atomic force microscope (AFM). AFM-

imaging requires precision positioning of the AFM probe relative to the sample in 3-D (x-y-z).

It has been demonstrated that, with advanced control techniques such as the inversion-based

iterative-control (IIC) technique, precision positioning of the AFM probe in the lateral (x-y)

scanning can be successfully achieved. Precision positioning of the probe in the vertical z-axis

direction, however, is still challenging because of the issues such as the sample topography

is unknown in general, the probe-sample interaction is complicated, and the probe-sample

position is sensitive to the probe-sample interaction. The main contribution of this chapter

is the development of the CCF-ILC approach to the AFM z-axis control, which decouples

the robustness of the feedback control from the tracking precision of the feedforward control.

Particularly, the proposed CCF-ILC controller design utilizes the recently-developed robust-

inversion technique to minimize the model uncertainty effect on the feedforward control, and to

remove the causality constraints in other CCF-ILC approaches. It is shown that the iterative

law converges, and attains a bounded tracking error upon noise and disturbances. The proposed
1Primary researcher and author
2corresponding Author
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method is illustrated through experimental implementation and the experimental results show

an increase of imaging speed.

4.1 Introduction

In this chapter, we propose a current circle feedback (CCF) iterative learning control (ILC)

approach for tracking the unknown sample topography during AFM imaging. The nanoscale

resolution of AFM has made AFM an enabling tool to image as well as to manipulate matter

at nano-scale (e.g., [55, 56]). Current AFM, however, is slow and AFM imaging is time con-

suming. Such slow speed of AFM has also hindered the use of AFM to interrogate nanoscale

dynamic phenomena [57, 58]. AFM imaging requires the precision positioning of the probe

relative to the sample in all three axes (x, y, z). It has been demonstrated that with advanced

control techniques [54, 17, 18] such as the inversion-based iterative control (ILC) [54], precision

positioning of the AFM probe at high speed can be successfully achieved in the lateral (x, y-

axes) scanning. Challenges, however, must be overcomed to achieve the precision positioning of

the probe in the vertical z-axis because of the issues such as the sample topography is unknown

in general, the probe-sample interaction is complicated due to the nonlinear dependence of the

interaction force on the probe-sample position as well as the deformation/reaction of the sam-

ple [59, 60], and the relative probe-sample position is sensitive to the probe-sample interaction

[60]. Therefore, there exists a need to achieve precision positioning of the AFM-probe in the

vertical z-axis to achieve high-speed AFM imaging.

Currently, the low imaging speed has become one of the barriers in AFM imaging technology.

For example, AFM enables the imaging of live biological samples under bio-friendly environ-

ment (i.e., the liquid environment for the live biological sample to maintain its physiological

condition and/or biological function). However, the AFM imaging time of at least several

minutes is too slow to capture rapid biological phenomena happening in seconds, such as the

locomotion of living cells [16] and the dehydration process of collagen [61, 62]—because the

first pixel and the last pixel in the obtained image are acquired at very different time instants.
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As a result, large temporal errors occur in the obtained image. AFM is also used as a key

metrology tool at nanoscale in the semiconductor industry, however, current AFM is too slow

to meet the desired inspection throughput of over 100 wafers/hour (which is about 2 orders

of magnitude higher than the throughput achievable on current AFM). Other areas where

high-speed AFM is needed include in-situ characterization of the “interface” phenomena of

thin films and polymer crystallization [63, 64, 65], high-throughput manufacturing of nanoma-

terials and nanodevices [56, 66, 67], and high-sensitivity, multiplex bioarrays [67, 68]. Thus,

the development of high-speed AFM will generate a broad impact.

Control techniques are needed to achieve high-speed AFM imaging. We note that hardware

improvements including the high-bandwidth piezoactuators [69, 70, 71], the small cantilever

[72, 73], and the improved positioner structure [74] have led to the increase of AFM imaging

speed. For example, by using high-bandwidth piezoactuator (over 200 KHz in [69], compared

to ∼1 KHz bandwidth of the piezotube used on current AFMs), the scan rate of AFM imaging

was increased ∼100 times [69] (from ∼10 Hz to 1.25 KHz). Such high-speed AFM imaging

via hardware improvements, however, is very limited: the image size is only 2∼10% of that

of current AFM, and the sample can be imaged is also very flat (with sample asperities less

than 30 nm [69, 71], which is also less than 1% of the sample asperities that can be imaged

on current AFM). These limits arise because the displacement range of piezo actuators (with-

out exciting the dynamics effect of the hardware) becomes much smaller as the bandwidth

increases. Therefore, hardware improvement alone cannot achieve high-speed AFM imaging

with no loss of imaging size (sample asperity) and spatial resolution. Control techniques need

to be developed to fully exploit the hardware capability.

Various control approaches have been developed for the z-axis precision positioning of the

probe during the AFM imaging. For example, PI-type of controllers have been widely used in

commercial AFM systems. The performance of such ad-hoc controllers at high-speed, however,

is poor [17] because of the low gain margin of the piezo actuators. Modern model-based feed-
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back control approach increases the system bandwidth and achieves better robustness [17, 18].

However, the feedback-based approach is still limited by the fundamental trade-off of the band-

width with the robustness of the control system. Moreover, for nonminimum-phase systems

such as piezoelectric actuators on AFM [17, 20], the performance of feedback control is further

limited [44]. These constraints of feedback approaches to the z-axis control of AFM imag-

ing can be alleviated by combining the feedback control with the feedforward control in the

two-degree-of-freedom (2DOF) control framework [43]. Limits, however, still exist in current

2DOF control design. Because the feedforward controller is causal, the constraints posed by

the nonminimum-phase dynamics of piezo actuators cannot be overcomed, and the sample

profile information from previous scan cannot be fully utilized; also, the “bandwidth” of the

feedforward control is constrained. Therefore, there exists a need to better design the 2DOF

control system for the z-axis positioning of AFM imaging.

The main contribution of this chapter is the development of a novel CCF-ILC approach to

achieve z-axis precision positioning during the AFM imaging. In the CCF-ILC framework, the

iterative control input is generated online by using the tracking results from the previous iter-

ation (i.e., previous cycle), and is augmented to the feedback control input during the current

iteration (i.e., current cycle, called ”current-cycle-feedback” as in literature [10]). Particularly,

we decouple the bandwidth requirement from the robustness requirement by designing the

feedback controller mainly to enhance the robustness of the entire system, and the feedforward

control to increase the bandwidth. The feedforward controller is designed to overcome the

nonminimum-phase constraint of the piezo dynamics and to utilize the noncausality through

iterations to improve the tracking. Specifically, the feedback controller is designed using the

H∞ robust control theory [45], and the robust-inverse [75] is introduced into the ILC filter

design to explicitly account for the system dynamics uncertainty in the feedforward control.

The proposed CCF-ILC control approach is illustrated by implementing it to the z-axis di-

rection control in AFM imaging. Experimental results show that the imaging speed can be

significantly increased by using the proposed approach.
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4.2 Problem formulation and Analysis

In this section, we present the inversion-based CCF-ILC approach to the vertical z-axis po-

sitioning of the AFM probe during imaging. We start with a brief description of the z-axis

feedback control for the AFM imaging.

The feedback control system for z-axis AFM probe positioning is shown in Fig. 4.1(a), where

Gz(s) denotes the dynamics model of the piezo actuator for the z-axis positioning, Gc(s) de-

notes the cantilever-photodiode dynamics (from the output of the z-axis piezo to the cantilever

deflection), ds(·) denotes the sample profile, and ns(·) denotes the system noise. The goal of

the z-axis AFM probe positioning is to maintain a constant setpoint value (i.e., a constant

normal force between the tip and the sample) during the scanning process. Then the image of

the sample topography can be estimated using the control signal or the deflection error [76].

Unlike the above feedback-based approach to z-axis positioning, the proposed CCF-ILC ap-

proach integrates an online iterative-learning control (ILC) as feedforward to the z-axis feed-

back control. First, to simplify the presentation of the controller design, the unknown sample

profile in the z-axis feedback control loop in Fig. 4.1 (a) is scaled with the DC-Gain of the

cantilever-photodiode dynamics Gc(0), and then right-shifted to the joint point at the can-

tilever deflection output (denoted using the same notation ds(·) to simplify the notation), as

shown in Fig. 4.1 (b) (Such a signal-shift is feasible because the bandwidth of the cantilever-

photodiode dynamics tends to be much higher (over 10 times) than that of the z-axis piezo

dynamics). Then, the proposed CCF-ILC controller is schematically shown in Fig. 4.1 (c),

where Q(jω) and L(jω) are the ILC filters to be designed, delay D(jω) denotes the one-scan-

period delay, and R(jω) denotes the observer to obtain the measured sample profile de(jω).

Specifically, the objectives of the proposed CCF-ILC design are to:

1. Guarantee the convergence of the CCF-ILC approach, i.e., the feedforward control input
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Figure 4.1 The block diagram of (a) a standard feedback loop, (b) the mod-
ified feedback loop, and (c) the proposed CCF-ILC approach for
the z-axis positioning in AFM imaging.
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uk,FF (jω) remains bounded for iterations ∀k > 1, and the the residual error ek(jω)

converges to zero when the noise n(jω) vanishes;

2. Improve the feedback tracking with the augmented feedforward control, i.e., for the same

feedback controller, the tracking error e(jω) (e.g., the deflection signal) is smaller when

using the CCF-ILC approach than that when using the feedback control alone;

3. Improve the imaging accuracy, i.e., the estimation of the sample profile ds(jω) (denoted

as de(jω) in Fig. 4.1 (c)), is more accurate than the estimation obtained by current

commercial AFMs.

We note that the proposed CCF-ILC approach aims at achieving high-speed imaging of samples

with relatively smooth topography (i.e., the sample topography change from one scanline to

the next is relatively small). In those samples, the sample profiles across two adjacent scanlines

are similar, thus once a precision imaging on one scanline is obtained, then the line-to-line sim-

ilarity can be explored to minimize the iterations needed for the next scanline imaging. Thus,

the CCF-ILC approach will be able to significantly reduce the total imaging time. Samples

of relatively smooth topography appear in a wide variety of areas, such as polished surfaces

in semiconductor and optical industry [77], nano-/bio-materials [78], and various biological

samples [79]. As the first step, this chapter is focused on the precision tracking of the sample

profile on one scanline.

In the proposed CCF-ILC technique, a stabilizing feedback controller GFB(s) is designed first—

the feedback controller GFB(s) guarantees that the feedback loop is internally stable [45].

Therefore, the first objective of the proposed controller design implies that all the signals in

the control system (Fig. 4.1 (c)) should be bounded throughout the iterations. It is noted that

the z-axis positioning of the AFM probe can be sensitive to effects such as the probe shape, the

setpoint value of the loading force (i.e., the cantilever deflection), and the sensor/signal noise

[80]. Therefore, the feedback controller is designed to enhance the robustness of the entire

control system against these adverse effects.
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4.2.1 Robust Feedback Controller Design

The feedback controller GFB(jω) is designed by using the model-based H∞ robust feedback

control technique [17, 43]. The goal of the H∞ robust control design is to render the sensitivity

of the feedback control system, S(jω),

S(jω) =
1

1 + GPD(jω)GFB(jω)
, (4.1)

and the complementary sensitivity of the feedback control system, T (jω),

T (jω) =
GPD(jω)GFB(jω)

1 + GPD(jω)GFB(jω)
, (4.2)

to satisfy given stability and robustness requirements [45]. This goal can be achieved by seeking

the feedback controller GFB(jw) to satisfy the following criteria∥∥∥∥∥∥∥∥∥∥
WP (jω)S(jω)

WT (jω)T (jω)

Wu(jω)GFB(jω)S(jω)

∥∥∥∥∥∥∥∥∥∥
∞

≤ 1 (4.3)

where ‖G(jω)‖∞ denotes the H∞ norm of the transfer function G(jω) [45], GFB(jω) denotes

the feedback controller, and WP (jω), WT (jω), Wu(jω) are user-defined weighting functions to

impose the requirements for the bandwidth and tracking performance (WP (jω)), the robustness

against model uncertainties (WT (jω)), and the input magnitude (Wu(jω)), respectively [81].

4.2.2 CCF-ILC Design: Convergence Analysis

In the proposed CCF-ILC approach, the following general form of linear iterative learning

control law is employed [10]:

u0,FF (jω) = 0

uk+1,FF (jω) = Q(jω)(uk,FF (jω) + L(jω)ek(jω)), for k ≥ 1 (4.4)

where Q(jω) and L(jω) are the ILC filters as shown in Fig. 4.1 (c). Note that in Eq. (4.4),

the filter Q(jω) is factored out without loss of generality. The conditions to guarantee the

convergence of the CCF-ILC algorithm (the first objective) is given by the following lemma.
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Lemma 5 Let GPD(jω) be the frequency response of a linear time invariant plant, and let

GFB(jω) be a stabilizing feedback controller. Then for bounded measurement noise nk(jω),

i.e., |nk(jω)| ≤ δ(ω), both the iterative control input uk(jω) and the residual error ek(jω) are

bounded throughout the iterations; And the limit of the residue error ek(jω) (as the iteration

k → ∞) is bounded by an affine function of the sample profile ds(jω) and the noise effect δ(ω)

|e∞(jω)| � lim
k→∞

|ek(jω)| ≤ ∣∣ Ed(ω)
1 − ρ(ω)

∣∣ |ds(jω)| + Eδ(ω)δ(ω), (4.5)

provided that the ILC filters L(jω) and Q(jω) are chosen such that the following iteration

coefficient ρ(jω) is less than one,

ρ(ω) = |Q(jω) {1 − GPD(jω)S(jω)L(jω)}| < 1. (4.6)

In Eq. (4.5), the limit of the residual error e∞(jω) is called the ultimate ILC error, and the

frequency dependent coefficient Ed(ω) and Eδ(jω) are defined as

Ed(ω) � |(Q(jω) − 1)S(jω)| (4.7)

Eδ(ω) � |Q(jω)GPD(jω)S(jω)L(jω)S(jω)| + |S(jω)|
|1 − ρ(ω)| (4.8)

Proof We proceed by quantifying the residual error ek(jω) for given noise/disturbance

nk(jω) at the kth iteration. First note that by Fig. 4.1 (c), the feedforward control input

uk,FF (jω) can be written as

uk,FF (jω) = S−1(jω)G−1
PD(jω) [−ek(jω) − S(jω)d(jω) − S(jω)nk(jω)] (4.9)

In the following derivation, the dependence on jω is omitted for simplicity. Substituting Eq.

(4.9) into Eq. (4.4) leads to

G−1
PD [−ek+1 − Sd − Snk+1] = QG−1

PD [−ek − Sds − Snk] + SQLek (4.10)



71

Rewriting Eq. (4.10) yields

ek+1 = Q (1 − GPDSL) ek + (Q − 1)Sds + QSnk − Snk+1

= Q (1 − GPDSL) {Q (1 − GPDSL) ek−1 + (Q − 1)Sds}

+QSnk−1 − Snk + (Q − 1)Sds + QSnk − Snk+1

= · · ·

= {Q (1 − GPDSL)}k+1
e0 +

k∑
j=0

{Q (1 − GPDSL)}j (Q − 1)Sds

+
k∑

j=0

{Q (1 − GPDSL)}j
QSnk−j −

k∑
j=0

{Q (1 − GPDSL)}j
Snk+1−j (4.11)

By changing the index used in the last term in Eq. (4.11), the last two terms in Eq. (4.11)

can be simplified as:
k∑

j=0

{Q (1 − GPDSL)}j
QSnk−j −

k∑
j=0

{Q (1 − GPDSL)}j
Snk+1−j

=
k∑

j=0

{Q (1 − GPDSL)}j QSnk−j −
k∑

j=0

{Q (1 − GPDSL)}j+1 Snk−j

−snk+1 + {Q (1 − GPDSL)}k+1
sn0

=
k∑

j=0

{Q (1 − GPDSL)}j {Q − Q(1 − GSL)}Snk−j − snk+1 + {Q (1 − GPDSL)}k+1
sn0

=

⎧⎨⎩
k∑

j=0

{Q (1 − GPDSL)}j
QGPDSLSnk−j

⎫⎬⎭− snk+1 + {Q (1 − GPDSL)}k+1
sn0 (4.12)

Substituting Eq. (4.12) into Eq. (4.11) and using triangle inequality, the iterative residual

error ek+1 can be bounded as

|ek+1| ≤ ρk+1 |e0| + Ed |ds|
k∑

j=0

ρj + (1 + ρk+1) |Sδ| + |QGPDSLS| |δ|
k∑

j=0

ρj

(By definitions of Ed and ρ in Eqs. (4.6, 4.7))

≤ ρk |e0| + Ed |ds| (1 − ρk)
1 − ρ

+
|QGPDSLS| |δ| (1 − ρk)

1 − ρ
+ (1 + ρk+1) |S| |δ| . (4.13)

Thus, from the above Eq. (4.13) the tracking error ek is bounded for all iterations k ≥ 1, and

is eventually bounded by the ultimate error, |e∞|, as defined in Eq. (4.5), when the iteration

coefficient ρ(ω) < 1 and the iteration k → ∞. Similarly, it can be shown that under the

same condition (i.e., |ρ(ω)| < 1), the iterative control input in the kth iteration, uk(jω), is also

bounded. This completes the proof.
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Remark 13 The above Lemma 5 shows that implementation of the CCF-ILC approach is not

restricted to AFM imaging — it can be used for tracking/rejecting unknown periodic trajectory

or disturbance in other applications.

Equation (4.5) of the ultimate error e∞(jω) shows that when the measurement noise is

negligible (i.e., δ(ω) = 0), the ultimate error approaches to zero (the objective one), i.e.,

e∞ = 0, when 1) the ultimate error coefficient equals to zero (i.e., Ed(ω) = 0), and 2) the

iteration coefficient is less than one (i.e., ρ(ω) < 1). It will be shown next that these two

conditions can be satisfied in the proposed inversion-based CCF-ILC approach through the

design of the ILC filters Q(jω) and L(jω).

4.3 Design of the CCF-ILC Filters

Lemma 5 implies that to achieve good tracking, the filter Q(jω) should be chosen to be one

(to make Ed(ω) = 0), and the filter L(jω) should approximate the inverse of the closed-loop

transfer function GPD(jω)S(jω) (to render a small iteration coefficient ρ(ω)). This obser-

vation agrees with, in general, the design strategy of CCF-ILC controller as described in

Ref. [10]. However, exact inverse of the closed-loop transfer function GPD(jω)S(jω) is limited

by model uncertainties [8] and noise effect, particularly in the high frequency range. As shown

in Eq. (4.6), these adverse effects can result in a large iteration coefficient ρ(ω) (i.e., the second

term in Eq. (4.6) becomes large), and the filter Q(jω) should be designed, in general, to possess

low-pass characteristics. Thus in the following, Q(jω) is named as the “roll-off ILC filter” and

L(jω) as the “inversion-based ILC filter”.

We propose a two-step approach to design the ILC filters Q(jω) and L(jω). Since the ultimate

error coefficient Ed(ω) (as defined in (4.7)) is independent to the design of the inversion-based

ILC filter L(jω), we first, design the inversion-based ILC filter L(jω) to minimize the term

|1 − GPD(jω)S(jω)L(jω)| in the iteration coefficient ρ(ω). Then secondly, the roll-off ILC

filter Q(jω) is designed to ensure the convergence of the CCF-ILC algorithm, and to minimize

the ultimate error e∞(jω) (see Eq. (4.5)).
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4.3.1 Design of the inversion-based ILC filter L(jω)

The filter L(jω) is designed by using the recently-developed robust-inversion technique [75] to

minimize the term |1 − GPD(jω)S(jω)L(jω)| upon system dynamics uncertainties, i.e.,

min
L(jω)

sup
ΔG

∣∣1 − GPD(jω)S(jω)L(jω)
∣∣, (4.14)

where ΔG(jω) denotes the model uncertainties as defined below [75, 1],

ΔG(jω) =
GL(jω)

GL,m(jω)
= Δr(ω) · ejΔθ(ω). (4.15)

In Eq. (4.15), GL(jω) denotes the true linear dynamics response of the system, e.g., for the

z-axis AFM dynamics,

GL(jω) = GPD(jω)S(jω), (4.16)

and GL,m(jω) denotes the model of the linear dynamics GL(jω). In the robust-inversion

technique, a frequency-dependent gain-modulation α(ω) is introduced in the inversion-based

ILC filter,

L(jω) = α(ω) · G−1
L,m(jω), (4.17)

and then the design objective is transformed to finding the optimal gain modulation α(ω)

against the model uncertainty, i.e. ,

min
α(ω)

sup
ΔG

∣∣1 − α(ω)ΔG(jω)
∣∣ (4.18)

The solution to the above minmax problem (4.18) is given in the following Theorem [75].

Theorem 2 At any given frequency ω, let the magnitude variation of the system dynamics

Δr(ω) (defined in (4.15)) be bounded as Δr(ω) ∈ [Δrmin(ω), Δrmax(ω)], with Δrmin ∈ (0, 1]

and Δrmax(ω) ≥ 1, then if the size of the phase variation of the system dynamics, Δθm(ω), is

less than π/2, i.e.,
∣∣Δθm(ω)

∣∣ < π/2:

1. The feedforward control error term |1 − αΔG(jω)| is less than 1 if and only if the gain

coefficient α(ω) is chosen as

0 < α(ω) <
2 cos(Δθm(ω))

Δrmax(ω)
;
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2. The optimal gain α(ω) to solve the minmax problem (4.18) is given by

αopt(ω) =
2 cos (Δθm(ω))

Δrmin(ω) + Δrmax(ω)
. (4.19)

3. The solution to the minmax problem (4.18) (with the optimal gain (4.19)) is,

min
α(ω)

sup
ΔG

∣∣1 − α(ω)ΔG(jω)
∣∣ =

√
1 − 4 cos2 (Δθm(ω))Δrmin(ω)Δrmax(ω)

(Δrmin(ω) + Δrmax(ω))2
. (4.20)

Corollary 2 The inversion-based ILC filter L(jω) has no poles on the jω axis, provided that

the original system GL,m(jω) is hyperbolic (i.e., has no poles/zeros on the jω axis).

Proof We show by contradiction. Assume that the ILC filter L(jω) has a pair of poles on

the jω axis, ±ja (with a ∈ �), then the frequency response of the ILC filter L(jω) approaches

to infinity as the frequency ω appoaches to a, i.e., L(jω) → ∞ as w → a. However, the

hyperbolicity of the original system implies that its inverse G−1
L,m(jω) is also hyperbolic, and

the gain modulation term α(ω) is less than 1 (by (4.19)) and thereby bounded for all frequency

ω. Therefore, the ILC filter L(jω) is also bounded at all frequencies ω—a contradiction! This

completes the proof.

Remark 14 Theorem 2 implies that when the phase variation of the system dynamics is larger

than or equal to π/2 at frequency ω, the optimal gain α(ω) should be set to zero, i.e., L(jω) = 0,

and the solution to the minmax problem (Eq. (4.14)) equals to one at that frequency ω. It is

noted that the dynamics uncertainty ΔG(jω) can be experimentally estimated in applications,

for example, by 1) measuring the system frequency response under various operation conditions,

and 2) obtaining the maximum dynamics differences (in both magnitude and phase) among the

measured frequency responses [75]. This procedure is illustrated in Sec.4.4.3.

Remark 15 The above robust-inversion-based ILC filter design is fundamentally different

from the existing CCF-ILC approaches, where the ILC filter L(jω) is designed using the H∞

robust-control approach [10] and a causal stable filter L(jω) is obtained. On the contrary, the



75

above robust-inversion-based ILC filter L(jω) is not restricted to a causal filter. Therefore, for

nonminimum-phase systems, the tracking performance of the robust-inversion based filter will

not be limited by the nonminimum-phase characteristics of the system [44], and the system

dynamics is better compensated for by using the proposed CCF-ILC method (than the existing

CCF-ILC approaches). Moreover, the proposed ILC filter design explicitly accounts for and

minimizes the effect of model uncertainties.

4.3.2 Realization of the inversion-based ILC filter L(jω)

It is noted that the inversion-based filter L(jω) might have right-half-plane poles, thereby

become unstable. Thus its online implementation, as needed in the proposed CCF-ILC algo-

rithm, can be challenging. We propose two implementation schemes: 1). the preview-based

stable inversion technique [20, 48]; and 2) the frequency-domain method using the Fourier-

transform method (e.g., FFT).

The preview-based stable-inversion approach obtains the bounded solution to the robust-

inversion-based filter L(jω) by using the notion of noncausality, provided that 1). the filter

L(jω) has no pure imaginary poles, and 2) the input signal to the filter L(jω) can be previewed

for some finite amount of time, (i.e., preview time). These two conditions are satisfied in the

proposed CCF-ILC approach—by Corollary 2 and that the input signal to the filter L(jω), the

error e(jω) from previous scanline (see (4.4)), is known a priori for one entire scanline, i.e., the

error e(jω) can be previewed with preview time of one scan period. It has been shown that

the precise output of the filter L(jω) can be obtained with a large enough preview time (the

required preview time depends on the unstable dynamics part of the filter L(jω), and thus can

be quantified [20, 48]). Readers are referred to [20, 48] for the details. Alternatively, the filter

L(jω) can be directly implemented in frequency-domain using fast Fourier transform (FFT).

This method is illustrated in Sec. 4.4.3.
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4.3.3 Design of the roll-off ILC filter Q(jω)

Next, the roll-off ILC filter Q(jω) is designed to compensate for the dynamics uncertainties

and noise effect. By (4.6), to garantee the convergence of the CCF-ILC approach, the roll-off

filter Q(jω) must be chosen to render the iteration coefficient ρ(jω) less than one. Such a

requirement leads to the following upper bound of the roll-off filter Q(jω):

|Q(jω)| <
1

|(1 − L(jω)GPD(jω)S(jω))| . (4.21)

To reduce the ultimate error |e∞| (see (4.5)), the roll-off filter Q(jω) should be close to one

whenever it is possible. Since in practices, precision tracking in low frequency range is usually

needed, the roll-off filter Q(jω) = 1 should be chosen in the low frequency range. Generally,

such a choice of filter Q(jω) can be realized in the proposed CCF-ILC framework, because

the model uncertainty tends to be small in the low frequency range (specifically, the phase

variation tends to be < π/2), and thus the upper bound of the roll-off filter Q(jω) (4.21) is

larger than 1 (see (4.13)). In the high frequency range, however, model uncertainty tends

to be significant and the phase variation can be larger than π/2, for example, around the

resonant frequencies and/or lightly-damped zeros. Thus by Theorem 2, the inversion-based

filter L(jω) = 0 should be chosen (see Remark 14), and the gain of the roll-off filter Q(jω)

becomes less than 1 (by (4.21)). Moreover, the noise and the disturbance effects also tend

to be large—compared to the system gain in the high frequency range. Therefore, the filter

Q(jω) should be rolled-off as frequency increased. Thus, the roll-off filter Q(jω) should have

“low-pass” characteristics, and Eq. (4.21) provides a guide to the design of such a low-pass filter.

The phase delay, associated with conventional low-pass filters, however, must be accounted for

when implementing the roll-off filter Q(jω). Such a phase delay can result in the residual error

ek(jω) to be amplified rather than reduced when the iterative feedforward control input is

applied. To remove this detrimental phase delay, a zero-phase low-pass filter is used to imple-

ment the roll-off filter Q(jω). Particularly, we present a discrete-time domain representation

of the zero-phase low-pass filter to facilitate its implementation [82]: A 2N order zero-phase
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FIR (finite impulse response) real filter is given by

Q(z) = b0 +
N∑

k=1

(bkz
k) +

N∑
k=1

(bkz
−k) (4.22)

where the coefficients bk ∈ �. It can be shown that the frequency response of Q(ejωT ) is

real—thus the phase of Q(z) is zero, i.e.,

Q(ejωT ) = b0 +
N∑

k=1

(2bk cos ωNT ) ∈ �. (4.23)

It is evident from (4.22) that the zero-phase FIR filter is noncausual. Such a noncausal filter,

however, is implementable in the proposed CCF-ILC framework because the signal to be filtered

is the sample profile from the previous scanline, thereby completely known ahead—as long as

the filter order N is not larger than the total sampling points on one scanline. For example,

even under a low-resolution imaging with 64 pixel per scanline, a 128 order zero-phase low-pass

filter can still be implemented.

4.3.4 Positioning Enhancement with CCF-ILC Approach

The inversion-based CCF-ILC will enhance the total tracking performance (the second design

objective) provided that the measurement noise/disturbance (nk(jω) in Fig. 4.1) is small.

Next, we discuss that the ultimate error of the CCF-ILC approach, |e∞(jω)|, is less than or

equal to the feedback residual error, |eFB(jω)| = |S(jω)ds(jω)|, when the noise is negligible.

By (4.5), when the noise is ignored (δ(ω) = 0), the ratio q(ω) of the CCF-ILC tracking error,

e∞(jω), with respect to the tracking error of feedback only, eFB(jω), becomes

q(ω) =
|e∞(jω)|
|eFB(jω)| =

|1 − Q(jω)|∣∣∣∣1 − |Q(jω)| |1 − GL(jω)L(jω)|
∣∣∣∣ . (4.24)

Then we proceed our discussion by considering the tracking with or without applying the

CCF-ILC feedforward input,

1. In the frequency range where the dynamics variation is small, the CCF-ILC controller

L(jω) is applied (see Remark 14), and the term |1 − GLL| in the error ratio (4.24) is

less than 1 (by (4.13)). Thus, the error ratio is less than one, q(ω) < 1, because the ILC

filter Q(jω) is a zero phase low-pass filter and Q(jω) ≤ 1 in that frequency range;
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2. In the frequency range where the dynamics variation is large, the CCF-ILC controller

L(jω) is set to zero (see Remark 14), the term |1 − GLL| = 1, and thereby the error ratio

equals to one, q(ω) = 1.

Thus by the continuity of the system dynamics, the above discussion implies that when the

noise/disturbance is small, the use of the proposed CCF-ILC approach will enhance the total

tracking performance.

4.3.5 Design of the sample topography observer R(jω)

Finally, we present a model-based observer of sample topography R(jω). In commercial AFMs,

sample profile is estimated simply by scaling the input to the z-axis piezo actuator by its DC-

Gain. Using such a method, good estimation can be obtained only when the scanning rate is

low, i.e., when the piezo actuator dynamics can be adequately approximated by its DC-gain.

As the scanning rate increases, the effects of the AFM z-axis dynamics (including the piezoac-

tuator, the cantilever, and the mechanical fixture connecting these two parts) also become

significant, i.e., the piezo input-output relation should be accounted for not by the DC-gain,

but by the full dynamics model instead. The effect of the z-axis AFM dynamics also im-

plies that during high speed imaging, even if the cantilever deflection is maintained around

the setpoint value, the motion of the piezo actuator may not resemble the sample profile at

all. Furthermore, during high-speed imaging, the dynamics coupling from the lateral scan-

ning of the piezotube scanner to its vertical motion also becomes significant, resulting in large

coupling-caused vertical motion [1, 83]. Such coupling-caused vertical displacement must be

accounted in the sample estimation. Therefore, new sample estimation method must be devel-

oped for high-speed AFM imaging.

We estimate the sample profile by using the z-axis dynamics model. Note that the x-to-

z dynamics-coupling effect can be regarded as an additional disturbance to the cantilever

deflection, thus it can be accounted-for by replacing the sample topography ds(jω) in Fig. 4.1
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(c) with

d̂(jω) = ds(jω) + dc(jω) (4.25)

where dc(jω) denotes the coupling caused disturbance. Therefore, from the block diagram in

Fig. 4.1 (c), the topography-coupling combined singal d̂(ω) can be represented as

d̂(jω) = −S−1(jω)ek(jω) − G−1
PD(jω)uk,FF (jω)

=
[−S−1(jω) − G−1

PD(jω)
][ ek(jω)

uk,FF (jω)

]

= R(jω)
[ ek(jω)

uk,FF (jω)

]
(4.26)

The above two Eqs. (4.25, 4.26) implies that the sample topography ds(jω) can be estimated

as

ds(jω) = R(jω)

⎡⎢⎣ ek(jω)

uk,FF (jω)

⎤⎥⎦− dc(jω). (4.27)

Note that the dynamics-coupling caused vertical displacement is repetitive at a period of the

lateral scanning rate, therefore, such coupling-caused vertical motion can be compensated for

by using iterative control approach. This idea has been explored in [1]. However, unlike the

approach in [1], where additional feedforward control input needs to be applied to the z-axis

control, the proposed CCF-ILC approach can accounts for the coupling-caused disturbance

with no extra input. Also note that the cantilever deflection error, ek(jω), is utilized in the

above sample topography estimation method, which implies that a good sample estimation

can be obtained even when the z-axis positioning error is relatively large. Precision position-

ing in the z-axis, however, is still needed in many AFM imaging applications, because large

variations of the cantilever deflection result in large variations in the tip-sample interaction

force, which can damage the sample (when the sample is soft), or the tip (when the sample

is stiff). Moreover, the proposed sample topography observer R(jω) is implemented offline in

frequency-domain in this chapter, thereby issues related to possibly nonminimum-phase and

non-proper dynamics of the observer R(jω) are avoided. However, the online implementation
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can also be realized by using the preview-based stable-inversion technique [20].

Remark 16 Recently, a sample estimation based on robust control approach has been proposed

with online implementation [76]. However, the dynamics-coupling effect was not considered

in [76], thereby significant imaging distortion can still occur when the dynamics-coupling caused

disturbance motion becomes pronounced.

4.4 Experiment Example: AFM Imaging

We illustrate the proposed CCF-ILC approach by implementing it on an AFM system (DimensionTM

3100, Veeco Inc). We start with describing the modeling of the z-axis AFM dynamics.

4.4.1 Model identification

First, the frequency response of the z-axis AFM dynamics, GPD(jω), was measured by using

a data acquisition system along with MATLAB toolboxes. The AFM probe with a nominal

spring constant of 0.12N/m was positioned to contact a silicon calibration sample with a

normal load of ∼9 nN . Then a band-limited white noise signal u(t) generated in MATLAB

was applied to drive the piezo actuator, and the cantilever deflection signal z(t) was measured

and utilized to obtain the frequency response using the System Identification Toolbox. To

estimate the model uncertainty, the frequency responses GPD(jω) were measured with five

different input voltage levels (0.6 V , 0.7 V , 0.8 V , 0.9 V , 1 V ) at three different normal loads

(all around 9 nN). The total of 15 frequency responses measured were averaged to obtain the

nominal frequency response GPD,m(jω), as shown in Fig. 4.2, which was used in the CCF-ILC

design.

4.4.2 Robust feedback controller design

The transfer function model of the z-axis AFM dynamics can be obtained by curve-fitting the

nominal frequency response (MATLAB command “invfreqs”). The frequency response of the

obtained model was compared with the nominal experimental responses in Fig. 4.2. As shown
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Figure 4.2 Comparison of the experimentally-measured nominal frequency
response with the frequency response of the transfer function
model for the AFM z−axis direction.

in Fig. 4.2, the transfer function model captured the z-axis AFM dynamics quite well until

∼ 4000 Hz. Then the feedback controller was designed mainly to enhance the robustness of

the position system (rather than obtain a large bandwidth) as in [84]. For comparison, we also

designed a proportional-integral (PI) feedback controller whose parameters were tuned during

the experiments to experimentally optimize the tracking performance of the PI controller.

4.4.3 Design of the CCF-ILC filters L(jω) and Q(jω)

Design of the robust-inversion-based ILC filter L(jω) As shown in Sec. 4.3 (see Eqs.

( 4.15, 4.16, 4.17)), the closed-loop frequency response GL,m(jω) and its dynamics uncertainty

ΔG(jω) need to be obtained in order to design the filter L(jω). By applying the feedback con-

troller GFB(s) to the nominal z-axis AFM dynamics (Subsec. 4.4.1), the closed-loop frequency

response (needed in the design of filter L(jω)), GL,m(jω), was obtained. Then to estimate the

related dynamics uncertainty, the measured open-loop frequency responses (total of 15) of the

z-axis AFM dynamics (see Sec. 4.4.1) were used. The upper bound of the amplitude uncer-

tainty and the phase uncertainty were estimated by finding the maximum difference among the
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experimental frequency responses at each frequency ω ∈ [0, 7] kHz, as shown in Fig. 4.3(a),

(b), respectively. Then the optimal gain coefficient, αopt(ω), and the ILC filter L(jω), were

obtained according to Theorem 2(Eq. (4.20)). The results are plotted in Fig. 4.3 (c) (αopt(ω))

and (d) (εL(ω)). Moreover, it was experimentally measured that the system noise has compo-

nents mainly in the frequency range ω ≥ 2000 Hz. Hence, to account for the noise effect, the

optimal gain coefficient, αopt(ω) was truncated at frequency ω = 2 KHz, i.e.,

αopt,m(ω) =
{

αopt(ω) ω ≤ 2000 Hz,

0 otherwise.
(4.28)

Finally, the ILC inversion-based filter L(jω) was obtained as L(jω) = αopt(ω)G−1
L,m(jω). In

the experiments, the filter L(jω) was implemented in frequency-domain using MATLAB and

SIMULINK toolbox (the blocks“fft” and “ifft” in SIMULINK). Particularly, MATLAB/SIMULINK

requires one cycle (one scanline for AFM imaging) time to do the FFT/IFFT calculation, there-

fore one flat scanline was inserted between each scanlines to allow the batch calculation.

Design of the roll-off ILC filter Q(jω) The design of the ILC roll-off filter Q(jω) as a

zero-phase, low-pass filter was realized by combining a linear phase FIR low-pass filter with a

linear phase lead,

Q(z) = Ql(z) × zP (4.29)

where Ql(z) is the linear-phase FIR low-pass filter (Matlab command “firpm”). Note that the

phase lead term zP in Eq. (4.29) is simply a P -step forward shift in discrete-time implemen-

tation. Also the signal L(jω)ek(jw) and the feedforward control signal uk,FF (jω) from the

previous scanline were delayed by one scanning period and applied in the CCF-ILC algorithm,

i.e., the residual error signal was delayed by N -step (N : number of sampling points per scan-

line) in implementations. Therefore, the P -step phase lead can be combined with the N -step

delay in implementations (denoted as the delay term“D(jω)” in Fig. 4.1(c)).
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Figure 4.4 (a) the applied disturbance signal (for ten repetitive scans) with
equivalent scan rate of 8 Hz; and (b) the zoomed-in view of the
disturbance signal in one scan period (the disturbance trajec-
tory for scan rate of 64 Hz is the same except it is 8 times
faster).

4.4.4 Experimental results and discussion

The experimental implementation was conducted in two stages. First, Note that the unknown

sample topography enters the z-axis positioning control system as a disturbance (see Fig. 4.1),

thus as similarly done before [76], the performance of the z-axis control system can be sepa-

rately evaluated by injecting a disturbance signal to the z-axis piezo actuator with no lateral

x-y axes scanning. The disturbance signal would mimic a given sample topography. There-

fore, this experiment is called the “one-point imaging”, which excludes, in the vertical z-axis

positioning control, the effects due to the lateral-to-vertical coupling [1, 83] and tracking errors

from lateral scanning [54, 17]. Then secondly, the proposed method was used to repeatedly

image a calibration sample on one scanline.

One point imaging

The disturbance trajectory was generated by mapping a simulation-generated sample profile

(with sample slope as usually existing in real samples) to the lateral scanning period. Two
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Figure 4.5 Comparison of the deflection signal (i.e., the residual error) ob-
tained by using the PI controller and that by using the proposed
CCF-ILC approach for the equivalent scan rates of (a1) 8Hz and
(a2) 64Hz in “one point imaging”, for 10 repetitive scans (Note
the CCF-ILC control input was applied from the fourth scan),
and the zoomed-in view of one scanline for the equivalent scan
rates of (b1) 8 Hz and (b2) 64 Hz.



86

0 0.005 0.01 0.015

−2

0

2

4

Time   (s)

0 0.005 0.01 0.015

−2

0

2

Time   (s)

0 0.05 0.1

−2

0

2

4

Time   (s)

Sa
m

pl
e 

Es
t. 

 (V
ol

t)

0 0.05 0.1
−1

0

1

Time   (s)

 E
rr

or
  (

Vo
lt)

 Disturbance PI control CCF-ILC 

Equivalent Scan Rate: 8 Hz Equivalent Scan Rate: 64 Hz
(a1) (a2)

Equivalent Scan Rate: 8 Hz Equivalent Scan Rate: 64 Hz
(b1) (b2)

 E
rr

or
  (

Vo
lt)

Sa
m

pl
e 

Es
t. 

 (V
ol

t)

Figure 4.6 Comparison of the estimated “sample profile” by using PI con-
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different scanning rates (8 Hz and 64 Hz) were used in the experiments, and the obtained

disturbance trajectory for scan rate of 8 Hz is shown in Fig. 4.4. Then the CCF-ILC approach

was used to account for such a disturbance trajectory of multiple periods (see Fig. 4.4 (a))–

tracking multiple periods of the disturbance trajectory is equivalent to iteratively imaging on

the same scanline. To compare the experimental results of the CCF-ILC approach with that

of feedback alone, the feedforward control signal was not applied until the 4th period (see

Fig. 4.5 (a)). The residual deflection errors are compared with the errors obtained by using

the PI controller in Fig. 4.5. Then, the “sample profile” can be estimated by using the observer

R(jω), as described in Sec. 4.3.5. The obtained sample estimation is compared with that by

using the commercial method (along with the PI controller) in Fig. 4.6.

The experimental results show that the proposed CCF-ILC approach significantly improved

the AFM z-axis precision positioning in high-speed scanning. For both scan rates (8 Hz and

64 Hz), much smaller residual error (i.e., deflection signal change) was obtained by using the

CCF-ILC approach than that by only using the robust feedback control or the PI feedback

control. As shown in Fig. 4.5 (a1), (b1), for disturbance trajectory at equivalent scan rate

of 8 Hz, the maximum residual error with the CCF-ILC approach was less than one third of

that with the robust feedback control only (the first three periods tracking of the CCF-ILC

approach in Fig. 4.5 (a1)), and is less than one seventh of that under the PI control only.

When the “scan rate” was increased to 64 Hz, significant frequency components of the distur-

bance signal were beyond the feedback bandwidth, thereby larger residual error was generated

under both the PI control and the robust feedback control. On the contrary, the residue error

was maintained small by using the proposed CCF-ILC approach, and the tracking error was

even similar than that by using (either robust or PI) feedback control only at “scan rate” of

8 Hz. We note that at 64 Hz tracking, the residual error under the robust feedback control

only was slightly larger than that under the PI control. This is because the robust feedback

controller was designed with emphasis on the robustness of the feedback control and the track-

ing precision at low frequency. We also note that, in both scan rates tracking, only one or
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two iterations were needed, and the deflection error signal remained bounded throughout the

iterations. Therefore, by using the CCF-ILC approach, the vertical z-axis positioning preci-

sion during high-speed scanning can be significantly improved over using feedback control only.

The experimental results also show that the CCF-ILC approach can significantly improve the

sample profile estimation over the commercial PI-control approach. When the “scan rate”

was relatively low (8 Hz), although the estimated disturbance trajectory (i.e., the estimated

sample profile) obtained by using the PI control or the CCF-ILC approach were both close to

the “true” sample profile (see Fig. 4.6 (a1), the estimation error with the use of the CCF-ILC

approach was still over 10 times smaller than that with the PI control (see Fig.4.6 (a1), (b1)).

When the “scan rate” increased much higher to 64 Hz, the imaging distortion/error was much

more prononced (18 times larger) under the PI control than that under the CCF-ILC approach,

as shown in Fig. 4.6 (a2) (b2), and the imaging error under the CCF-ILC approach is only

4.4% of the sample profile size. Therefore, the experiment results demonstrate that precise

sample estimation can be obtained by using the proposed CCF-ILC appraoch for high-speed

AFM imaging.

One line imaging

Next, the proposed CCF-ILC technique was implemented to repetitively scan a calibration

sample (TGZ02, MikroMasch, with a nominal pitch size of 3 μm and nominal step height of 84

nm) on the same scanline. The precision positioning in the lateral scanning was achieved by

using the inversion-based iterative control (IIC) approach [54]. It has been shown [54] that this

IIC technique can effectively compensate for both the vibrational dynamics and the hysteresis

effects simultaneously in high-speed, large-range lateral scanning. In this experiments, the

maximum relative tracking error of the lateral scanning was maintained to be less than 1% (of

the scan range of 20 μm) throughtout all four different scanning rates (8 Hz, 16 Hz, 32 Hz,

and 64 Hz). The obtained deflection error signals are compared with those obtained by using

the PI control in Fig. 4.7 (the first row for the total of ten repetitive scannings, and the second
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Figure 4.7 Comparison of the deflection error (the residual error) by using
by using the proposed CCF-ILC approach with that by using
the PI control for four different scan rates of (a1, b1) 8Hz, (a2,
b2) 16Hz, (a3, b3) 32Hz, and (a4, b4) 64Hz in one scanline
imaging, where the first row shows the total of 10 repeated
scan result with the feedforward control input applied from the
fourth scan; and the scecond row is the zoomed-in view of one
scanline results. The lateral scan range is 20 μ m.

row for the zoomed-in view of one period scan).

The experimental results show that by using the proposed CCF-ILC approach, much smaller

residual error was obtained than that by using the feedback control only. At the scan rate

of 8 Hz, the maximum residual error under the CCF-ILC approach was 3 times smaller than

that under the robust feedback control or under the PI control (The deflection error for the

first three periods scanning under the CCF-ILC was obtained by using the robust feedback

control only), as shown in Fig. 4.7 (a1) (b1). Such small residual error was maintained as the

scan rate was doubled and quadrupled (see Fig. 4.7 (a2) (a3) (b2) (b3)). Even at the scan

rate of 64 Hz, the residual error by using the CCF-ILC approach was still as small as that

by using the feedback control only at 8 times lower scan rate (compare Fig. 4.7 (b1) with (b4)).

Compensation for the dynamics coupling To remove the dynamics-coupling effect in

the obtained sample profile, we first used the proposed sample topography observer R(jω) (see
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Subsec. 4.3.5) to estimate the dynamics-coupling disturbance (dc(·) in (4.25)), by scanning a

flat sample with the proposed CCF-ILC technique: As (4.27) implies that when the sample

was flat (i.e., compared to the dynamics-coupling effect, the sample topography variation was

negligible, thereby ds(jω) ≈ 0 in (4.27)), the dynamics-coupling disturbance can be obtained

by using the observer R(jω) along with the feedforward control input uk,FF (jω) and the resid-

ual error ek(jω). The obtained dynamics coupling caused disturbance dc(·) is shown in Fig. 4.8

for the four different scan rates (where the surface slope has been removed). The experimental

results show that the dynamics coupling caused error increased as the scan rate increased. As

shown in Fig. 4.8, at scan rate of 8 Hz, the dynamics coupling caused error was small (∼5

nm). As the scan rate was further increased to 64 Hz, much larger (over four times larger than

that at 8 Hz) coupling-caused oscillations occurred. Such large dynamics-coupling caused error

must be accounted in AFM-imaging.

The sample estimation results obtained by using the CCF-ILC approach and those by using the

PI control approach are compared in Fig. 4.9 for the four different scan rates, where the sample

slope was removed from the sample estimation for the CCF-ILC approach. The sample slope

was obtained by linearly line fitting the sample estimation obtained at low scan rate (8 Hz).

The experimental results showed that, the proposed CCF-ILC approach can obtain a good

sample profile estimation, even under the dynamics-coupling effect. At the scan rate of 8 Hz,

the estimated sample profile obtained by using the CCF-ILC approach was close to the true

sample profile (the rectangle pitches can be clearly identified), whereas the estimated sample

profile by using the PI control showed pronounced sample distortions (the top of the pitches

were cornered around instead of being flat, see Fig. 4.9 (a)). As the scan rate was increased (to

16 Hz and 32 Hz), the estimation error became larger by using the PI control (where not only

the top but also the bottom of the pitches were cornered around), while the sample profile

can still be relatively well estimated by using the proposed approach. When the scan rate

was further increased to 64 Hz, the imaging distortion was even more pronounced under the

PI control—the basic shape of the sample surface cannot be recognized, and large variations



91

0 0.005 0.01 0.015
−40

−20

0

20

40

Time  (s)
0 0.01 0.02 0.03

−10

0

10

Time  (s)

0 0.02 0.04 0.06
−10

−5

0

5

10

Time  (s)
0 0.05 0.1

−10

−5

0

5

10

Time  (s)

dc
  (

nm
)

Scan rate:  64HzScan rate:  32Hz

Scan rate:  16HzScan rate:  8Hz
(a) (b)

(c) (d)

dc
  (

nm
)

dc
  (

nm
)

d c
  (

nm
)

Figure 4.8 Dynamics-coupling caused disturbance dc(t) at four scan fre-
quencies (a) 8 Hz, (b) 16 Hz, (c) 32 Hz, and (d) 64Hz.
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occurred among the estimated pitches. On the contrary, by using the CCF-ILC approach,

the sample estimation signal was still relatively close to the sample profile. Therefore, the

experiment results showed that the proposed CCF-ILC appraoch can achieve a smaller tracking

error as well as a better sample estimation than those obtained by using the feedback control

alone.

4.5 Conclusion

A current cycle feedback iterative learning control approach was proposed in this chapter to

achieve z-axis precision positioning during high-speed AFM-imaging. The CCF-ILC controller

took the general ILC form consisting of two filters. First, The convergence of this CCF-ILC

approach was investigated. Then secondly, with a robust-control based feedback controller

already being designed, a two-step CCF-ILC controller design was proposed. The recently

developed robust-inversion approach was used to design the inversion-based ILC filter, and a

zero-phase low-pass filter was used to design the roll-off ILC filter. Moreover, a new sample

profile observer was proposed which accounted for the dynamics-coupling effect. The proposed

method was illustrated by implementing it to an AFM system. The experimental results showed

that the imaging speed can be improved nearly 8 times by using the proposed technique than

the conventional PI control method, and the sample estimation precision was also significantly

improved.
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CHAPTER 5. An iterative based feedforward-feedback control approach

to high-speed AFM imaging

A paper to be published in the ASME Journal of Dynamic Systems, Measurement and

Control

Ying Wu 1 and Qingze Zou 2

Abstract

In this chapter, we propose an iterative-based feedforward-feedback control approach to

achieve high speed AFM imaging. AFM imaging requires precision positioning of the AFM

probe relative to the sample in all x-y-z axes. It has been demonstrated that, with advanced

control techniques such as the inversion-based iterative-control (IIC) techniques, precision po-

sitioning of the probe in the lateral (x-y) scanning can be successfully achieved. Precision

positioning of the probe in the vertical z-axis direction, however, is challenging because of

issues such as the sample topography is unknown in general, the probe-sample interaction is

complicated, and the probe-sample position is sensitive to the probe-sample interaction. Re-

cently, the current-cycle-feedback iterative-learning-control (CCF-ILC) approach is proposed

for high-speed AFM imaging. The CCF-ILC feedforward-feedback 2 degree-of-freedom (DOF)

controller design has been successfully implemented for iteratively imaging on one scanline. In

this chapter, we extend this CCF-ILC approach to the entire imaging of samples. The main

contribution of this chapter is the analysis and the use of the CCF-ILC approach for tracking

sample profiles with variations between scanlines (called line-to-line sample variations). The
1Primary researcher and author
2Author for correspondence
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convergence of the CCF-ILC system is analyzed for the general case where the line-to-line

sample variation occurs at each iteration. The allowable line-to-line sample profile variation

is quantified. The performance improvement of the CCF-ILC is discussed by comparing the

tracking error of the CCF-ILC technique to that of using feedback control alone. The proposed

CCF-ILC control approach is illustrated by implementing it to the z-axis direction control in

AFM imaging. Experimental results show that the imaging speed can be significantly increased

by using the proposed approach.

5.1 Introduction

In this chapter, we propose an iterative-based feedforward-feedback control approach to achieve

high speed AFM imaging. Since its invention [85], AFM has been established as an enabling

tool to image as well as to manipulate matter at nanoscale [86]. Current AFM system, however,

is slow and AFM imaging, therefore, is time consuming. Moreover, such slow speed of AFM

has hindered the interrogation of nanoscale dynamic phenomena [57, 58]. For example, AFM

enables the imaging of live biological samples in a biology-friendly environment. However, the

AFM imaging time of at least several minutes is too slow to capture rapid biological phenomena

occurring in seconds, such as the locomotion of living cells [16] and the dehydration process of

collagen [61, 62]. As a result, large imaging distortion (i.e., temporal error) can be generated

because the first pixel and the last pixel in the obtained image are acquired at very different

time instants. AFM imaging requires precision positioning of the AFM probe relative to the

sample in all x-y-z-axes, because large positioning error of the AFM-probe to the sample can

lead to not only large imaging distortion [3], but also damage of the sample (when the sample

is soft) [29], and/or the probe (when the sample is hard) [28]. Although precision positioning

of the AFM-probe in high-speed lateral x-y axes scanning can be achieved by using recently-

developed control techniques [54, 17] such as the inversion-based iterative learning control [54],

challenges exist in the precision positioning of the AFM-probe in the vertical z-axis. These

challenges arise because 1) the sample topography is unknown in general, 2) the probe-sample

interaction is complicated due to the nonlinear dependence of the interaction force on the
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probe-sample position as well as the deformation/reaction of the sample [59, 60], and 3) the

relative probe-sample position is sensitive to the probe-sample interaction [60]. Therefore,

precision positioning of the AFM probe in the vertical z-axis direction must be maintained to

achieve high-speed AFM imaging.

Efforts have been made to improve the z-axis precision positioning of the probe during AFM

imaging. For example, PID-type of controllers have been widely used in commercial AFM

systems. The performance of such ad-hoc PID controllers, however, is limited by its low band-

width and robustness [17], because of the low gain margin of the piezo actuators. Modern

model-based feedback control approach increases the system bandwidth and achieves better

robustness [17, 18]. However, the bandwidth and the robustness of feedback-based approaches

are limited by the fundamental constrains of closed-loop feedback control: the overall perfor-

mance and robustness of all feedback control systems is governed by the well-known Bode’s

integral [45], which implies that, in these advanced feedback control approaches, the closed-

loop bandwidth has to be traded-off with the system robustness. Furthermore, piezo actuators

tend to have nonminimum-phase dynamics characteristics [17, 20], while fundamental limit

exists in the output tracking of such nonminimum-phase systems when using feedback control

alone [44]. Therefore, z-axis positioning control of the AFM probe needs to be improved to

achieve high-speed AFM imaging.

The constraints of feedback approaches to the z-axis positioning control of AFM probe can

be alleviated with the two-degree-of-freedom (2-DOF) control scheme, by combining feedback

with feedforward control. For example, it has been demonstrated in [43] that by using the H∞

control theory to design the feedback and feedforward controllers in the 2DOF control system,

the AFM imaging speed can be improved. However, limits still exist in such a 2DOF con-

troller design. First, the H∞-based design of feedforward control results in causal (i.e., stable)

controllers, therefore, as piezo actuators tend to be nonminimum-phase, the performance of

such feedforward controllers is limited. Moreover, the “bandwidth” of the feedforward control
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is constrained by the bandwidth of the feedback control [43], because the current feedforward

control signal was generated by using the total control signal from the last scanline in [43].

Thus, new approach needs to be developed to further exploit the benefits of 2DOF control

approach for AFM-imaging,

Recently, the current-cycle-feedback iterative-learning-control (CCF-ILC) approach is pro-

posed in [84] for high-speed AFM imaging. The CCF-ILC approach integrated the H∞ robust

control technique [45] with the inversion-based feedforward control technique [5, 20]. Partic-

ularly, the feedback controller is designed based on the H∞ robust control theory, and the

feedforward controller is designed based on the recently-developed robust-inversion technique

[75]. The robust-inversion technique overcomes the causality limits and explicitly account

for the uncertainties of system dynamics when finding the inverse feedforward controller [75].

Moreover, iteration is introduced to further exploit the priori knowledge of the sample profile

in the AFM imaging, as well as to compensate for the disturbances and uncertainties effects. It

has been shown [84] that the convergence of the CCF-ILC law can be guaranteed by a proper

choice of the feedforward controller, and for any given feedback controller, the positioning

precision can be significantly improved when using the CCF-ILC approach. As the first step,

the CCF-ILC 2DOF controller design has been successfully implemented in [84] to iteratively

image on the same scanline. In this chapter, we extend this CCF-ILC approach to the entire

sample imaging.

The main contribution of this chapter is the analysis and the use of the CCF-ILC approach for

AFM z-axis positioning with line-to-line sample variations. The convergence of the CCF-ILC

law is discussed for the general case where the sample profile variation occurs at each itera-

tion. Then, the CCF-ILC law is designed as in [84] and the performance of the CCF-ILC is

discussed by comparing the tracking error of the CCF-ILC technique to that of using feedback

control alone. It is shown that the CCF-ILC approach can improve the tracking even when the

sample profile changes from one scanline to the next. Furthermore, the allowable sample pro-
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file variation (to guarantee the convergence of the CCF-ILC law) is quantified. The proposed

CCF-ILC control approach is illustrated by implementing it to the z-axis direction control in

AFM imaging. Experimental results show that the speed of obtaining an entire image can be

significantly increased by using the proposed approach.

The rest of the chapter is organized as follows. The general CCF-ILC framework is formulated

in section 5.2 and the convergence of the CCF-ILC approached is analyzed. In Section 5.3, the

design of the CCF-ILC is presented, and the tracking performance of the CCF-ILC approach is

discussed by quantifying allowable line-to-line sample variations in Section 5.4, followed by the

implementation of the proposed approach to the z-axis direction control in AFM imaging in

Section 5.5, where the experimental results are also presented and discussed. Our conclusions

are given in Section 5.6.

5.2 Problem formulation and Convergence Analysis

In this section, we formulate and discuss the CCF-ILC approach to the vertical positioning of

the AFM probe, when there exists line-to-line sample variation. We start with briefly describ-

ing the feedback control system of z-axis for the AFM imaging.

In general, the feedback control system for z-axis AFM probe positioning can be schematically

presented by Fig. 5.1(a), where Gz(s) denotes the dynamics model of the piezo actuator for

the z-axis positioning, Gc(s) denotes the cantilever-photodiode dynamics (from the output of

the z-axis piezo to the cantilever deflection), Ks(s) denotes the photodiode sensitivity, ds(·)
denotes the sample profile, and ns(·) denotes the system noise. The goal of the z-axis AFM

probe positioning is to maintain a constant setpoint value (i.e., constant normal force between

the tip and the sample) during the scanning process. Then the image of the sample topography

can be estimated using the control signal or the deflection error [76].

Unlike the above feedback-based approach to z-axis positioning, the proposed CCF-ILC ap-
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Figure 5.1 The block diagram of (a) a standard feedback loop, (b) the mod-
ified feedback loop, and (c) the proposed CCF-ILC approach for
the vertical z-axis positioning in AFM imaging.
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proach integrates an online iterative-learning control (ILC) as feedforward to the z-axis feed-

back control. First, to simplify the presentation of the controller design, the unknown sample

profile is scaled with the DC-gain of the cantilever-photodiode dynamics Gc(0), and then right-

shifted to the joint point at the cantilever deflection output in the control block diagram, as

shown in Fig. 5.1 (b) (The same notation ds(·) is used for simplification). Such a signal-shift

is feasible because the bandwidth of the cantilever-photodiode dynamics tends to be much

higher (over 10 times) than that of the z-axis piezo dynamics. Thus, the proposed CCF-ILC

controller can be schematically shown in Fig. 5.1 (c), where Q(jω) and L(jω) are the ILC

filters to be designed, ‘delay D(jω)’ denotes the one-scanline-period delay, and R(jω) denotes

the observer to be designed for obtaining the measured sample profile de(jω). Specifically, the

objectives of the proposed CCF-ILC design are that, during the entire imaging process, the

CCF-ILC system should

1. guarantee the convergence of the CCF-ILC approach, i.e., the feedforward control input

uk,FF (jω) remains bounded for all iterations (∀k > 1) when there exists line-to-line

sample variations between each iteration, and the residual error ek(jω) converges to zero

when the noise n(jω) and the line-to-line sample variation vanishes;

2. improve the output tracking with the augmented feedforward control, i.e., for the same

feedback controller, the tracking error e(jω) (e.g., the deflection signal) when using the

CCF-ILC approach is smaller than that when using the feedback control alone; and

3. improve the imaging accuracy (denoted as de(jω) in Fig. 5.1 (c)) , i.e., the estimation of

the sample profile ds(jω), is more accurate than the estimation obtained by using current

commercial AFMs.

In the proposed CCF-ILC technique, a stabilizing feedback controller GFB(s) is designed first—

the feedback controller GFB(s) guarantees that the feedback loop is internally stable [45]. This

implies that the first objective of the proposed controller design requires all the signals in the

control system (Fig. 5.1 (c)) to be bounded throughout the iterations. It is noted that the

z-axis positioning of the AFM probe can be sensitive to effects such as the variation of the
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cantilever type and/or mounting, the setpoint value of the loading force (i.e., the cantilever

deflection), and the measurement noise [80]. Therefore, the feedback controller is designed to

enhance the robustness of the entire control system against these adverse effects. We design

the feedback controller by using the robust control technique [84, 75] (The readers are referred

to [75] for details). In the following, we assume that such a feedback controller has already

been in place.

5.2.1 CCF-ILC Design: Convergence Analysis

In the proposed CCF-ILC approach, the following general form of the linear iterative learning

control law is employed [10]:

u0,FF (jω) = 0

uk+1,FF (jω) = Q(jω)(uk,FF (jω) + L(jω)ek(jω)), for k ≥ 1
(5.1)

where Q(jω) and L(jω) are the ILC filters to be designed, and the filter Q(jω) is factored out

without loss of generality. We note that the CCF-ILC approach can be implemented in several

different schemes. For example, the CCF-ILC algorithm can be applied to repeatedly image

on the first scanline until the required imaging precision (i.e., tracking precision) is achieved

before moving to image at the next scanline. Or alternatively, the CCF-ILC approach can be

applied to image at each scanline with a pre-chosen number of iterations. These schemes are

all special cases of the more general one where the line-to-line sample profile variation occurs

at each iteration. Thus, we discuss next the conditions to guarantee the convergence of the

CCF-ILC law (the first design objective) for this general scenario.

Lemma 6 Let GPD(jω) be the frequency response of a linear time invariant plant, and let

GFB(jω) be a stabilizing feedback controller. Then for bounded measurement noise nk(jw)

during the kth iteration, i.e., |nk(jω)| ≤ δ(ω), and bounded modified line-to-line sample varia-

tion as defined below,

Δ̂dk(ω) � |Q(jω)dk(jω) − dk+1(jω)| ≤ max
k

Δ̂dk(ω) � Δ̂dmax(ω), (5.2)
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both the iterative control input uk(jω) and the residual error ek(jω) are bounded throughout

the iterations, provided that the following iteration coefficient ρ(jω) is less than one, i.e.,

ρ(ω) = |Q(jω) {1 − GPD(jω)S(jω)L(jω)}| < 1. (5.3)

Moreover, the residual error ek(jω) is bounded by an affine function of the maximum modified

line-to-line sample variation Δ̂dmax(jω) and the noise level δ(ω)

|e∞(jω)| � lim
k→∞

|ek(jω)| ≤
∣∣∣∣ S(jω)
1 − ρ(ω)

∣∣∣∣ ∣∣∣Δ̂dmax(jω)
∣∣∣+ Eδ(jω)δ(ω), (5.4)

where the limit of the residual error e∞(jω) is called the ultimate ILC error, and the frequency

dependent coefficient Eδ(jω) is defined as

Eδ(ω) � |Q(jω)GPD(jω)S(jω)L(jω)S(jω)| + |S(jω)|
|1 − ρ(ω)| (5.5)

Proof We proceed by quantifying the residual error ek(jω) for given noise/disturbance

nk(jω). Note that from the block diagram in Fig. 5.1 (c), for any given stabilizing feedback

controller, the feedforward control input uk,FF (jω) in the kth iteration can be written as

uk,FF (jω) = S−1(jω)G−1
PD(jω) [−ek(jω) − S(jω)dk(jω) − S(jω)nk(jω)] (5.6)

In the following derivation, the dependence on jω is omitted for economy. Substituting Eq.

(5.6) into Eq. (5.1) leads to

G−1
PD [−ek+1 − Sdk+1 − Snk+1] = QG−1

PD [−ek − Sdk − Snk] + SQLek (5.7)

Then the residual error at the next iteration k + 1 can be obtained from Eq. (5.7) as
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ek+1 = Q (1 − GPDSL) ek + (Qdk − dk+1)S + QSnk − Snk+1

= Q (1 − GPDSL) {Q (1 − GPDSL) ek−1 +(Qdk − dk+1)S}

+QSnk−1 − Snk + (Qdk − dk+1)S + QSnk − Snk+1

= · · ·

= {Q (1 − GPDSL)}k+1 e0 +
k∑

j=0

{Q (1 − GPDSL)}j (Qdk − dk+1)S

+
k∑

j=0

{Q (1 − GPDSL)}j QSnk−j −
k∑

j=0

{Q (1 − GPDSL)}j Snk+1−j (5.8)

By changing the index used in the last term in Eq. (5.8), the last two terms in Eq. (5.8) can

be simplified as:

k∑
j=0

{Q (1 − GPDSL)}j QSnk−j −
k∑

j=0

{Q (1 − GPDSL)}j Snk+1−j

=
k∑

j=0

{Q (1 − GPDSL)}j QSnk−j −
k∑

j=0

{Q (1 − GPDSL)}j+1 Snk−j

−snk+1 + {Q (1 − GPDSL)}k+1 sn0

=
k∑

j=0

{Q (1 − GPDSL)}j {Q − Q(1 − GSL)}Snk−j − snk+1 + {Q (1 − GPDSL)}k+1 sn0

=

⎧⎨⎩
k∑

j=0

{Q (1 − GPDSL)}j QGPDSLSnk−j

⎫⎬⎭− snk+1 + {Q (1 − GPDSL)}k+1 sn0 (5.9)
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Substituting Eq. (5.9) into Eq. (5.8) and using triangle inequality, the iterative residual error

ek+1 can be bounded as

|ek+1| ≤ |{Q (1 − GPDSL)}|k+1 |e0| +
k∑

j=0

|{Q (1 − GPDSL)}|j |(Qdk − dk+1)S|

+
k∑

j=0

|Q (1 − GPDSL)|j |QGPDSLS| |nk−j| +
∣∣∣{Q (1 − GPDSL)}k+1 Sn0 − Snk+1

∣∣∣
≤ ρk+1 |e0| +

∣∣∣Δ̂dmaxS
∣∣∣ k∑

j=0

ρj + (1 + ρk+1) |Sδ| + |QGPDSLS| |δ|
k∑

j=0

ρj

(By definitions of Δ̂d and ρ in Eqs. (5.3, 5.5))

≤ ρk |e0| + Δ̂dmaxS(1 − ρk)
1 − ρ

+
|QGPDSLS| |δ| (1 − ρk)

1 − ρ
+ (1 + ρk+1) |S| |δ| . (5.10)

Thus, it is evident from the above Eq. (5.10) that when the iteration coefficient ρ(ω) < 1,

the tracking error ek is bounded for all iterations k ≥ 1, and the ultimate error, |e∞| is even-

tually bounded as in Eq. (5.4) when k → ∞. Similarly, it can be shown that under the same

condition (i.e., |ρ(ω)| < 1), the iterative control input, uk(jω), is also bounded for all iteration

k ≥ 1. This completes the proof.

Lemma 6 implies that, for the special case where the line-to-line sample variation vanishes, for

example, when repetitively imaging on the same scanline as in [84], the CCF-ILC law (5.1)

should also converge. Particularly, it can be easily verified that in this case the ultimate error

bound in Eq. (5.4) reduces to the ultimate error bound given in [84].

Corollary 3 Let the conditions in Lemma 6 hold, then when the line-to-line sample variation

vanishes, i.e., dk(jω) = dk+1(jω) = d(jω) for ∀k > 1, the ultimate error bound |e∞(jω)|
becomes

|e∞(jω)| � lim
k→∞

|ek(jω)| ≤ ∣∣ Ed(ω)
1 − ρ(ω)

∣∣ |ds(jω)| + Eδ(ω)δ(ω), (5.11)

where ρ(ω) and Eδ(ω) are as defined before in Eqs. (5.3,5.5), respectively, and the coefficient
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Ed is given by

Ed(ω) � |(Q(jω) − 1)S(jω)| (5.12)

Lemma 6 implies that when the noise effect is small (δ(jω) → 0), the bound of the residual error

is monotonically decreasing with iterations (see Eq. (5.10)). Thus, to guarantee the overall

imaging quality in implementations, it is preferred to iteratively image on one scanline until

the residual error is smaller than a user-chosen thresh-hold value, then proceed the imaging on

the rest of scanlines with a pre-chosen, given number of iterations. Therefore, we propose to

design the CCF-ILC filters Q(jω) and L(jω) for repetitively imaging on one scanline as in [84],

and then quantify the size of the allowable line-to-line sample variation such that the imaging

on the rest of scanlines can be proceeded with no iterations (i.e., scan once at each scanline).

Remark 17 We note that the modified line-to-line variation defined in Eq. (5.2) is different

from the line-to-line sample variation — the sample profile on the current scanline is multi-

plied by the ILC filter Q(jω). This is because in the CCF-ILC control law (5.1), the sample

topography information of current scanline passes through the ILC filter Q(jω) before it is used

to update the tracking for the next scanline.

Remark 18 The proposed CCF-ILC approach aims at achieving high-speed imaging of sam-

ples with relatively smooth topography (i.e., the line-to-line sample variation is relatively small).

Such smooth samples exist in a wide variety of areas, including semiconductor and optical in-

dustry [77], nano-/bio-materials [78], and biology [79].

5.3 Controllers Design

As in [84], a two-step approach to design the CCF-ILC filters is proposed. Note that by

Lemma 6, the filter L(jω), in general, should approximate the inverse of the closed-loop trans-

fer function GPD(jω)S(jω) (to render the iterative coefficient ρ(jω) and thereby the ultimate

error e∞(jω) small, see Eqs. (5.3, 5.4)), and the filter Q(jω) should be as close as possible

to one in the low frequency range (to drive the ultimate error to 0) while compensating for
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the model uncertainties and noise effect in the high frequency range, i.e., Q(jω) possess the

characteristics of a low-pass filter. Thus in the following, we call L(jω) the ‘inversion-based

ILC filter’ and Q(jω) the ‘roll-off ILC filter’.

Design of the inversion-based ILC filter L(jω)

The inversion-based ILC filter L(jω) is designed to minimize the term |1 − GPD(jω)S(jω)L(jω)|
in the iteration coefficient ρ(ω), by using the recently developed robust inversion technique [75].

We start with defining the model uncertainties as

ΔG(jω) =
GL(jω)

GL,m(jω)
= Δr(ω) · ejΔθ(ω), (5.13)

where GL(jω) denotes the true linear dynamics response of the system, e.g., for the z-axis

AFM dynamics,

GL(jω) = GPD(jω)S(jω), (5.14)

and GL,m(jω) denotes the model of the linear dynamics GL(jω). Then the inversion-based

ILC filter L(jω) is designed as

L(jω) = αopt(ω) · G−1
L,m(jω), (5.15)

where αopt(ω) is the optimal frequency-dependent gain to compensate for the dynamics uncer-

tainty of the system GL(jω), i.e., the optimal gain αopt(jω) is sought to minimize the feedfor-

ward tracking error, |1 − GPD(jω)S(jω)L(jω)|, with the presence of the dynamics uncertainty

ΔG(jω),

min
L(jω)

sup
ΔG

∣∣1 − GPD(jω)S(jω)L(jω)
∣∣ = min

α(jω)
sup
ΔG

∣∣1 − α(ω)ΔG(jω)
∣∣ → αopt(ω). (5.16)

It can be shown that the optimal gain αopt(jω) is given as [75]

αopt(ω) =
{ 2 cos (Δθm(ω))

Δrmin(ω)+Δrmax(ω) ω ∈ Ωc,

0 otherwise.
(5.17)

where Δrmin, Δrmax and Δθm are the bounds to quantify the system uncertainties, i.e.,

Δr(jω) ∈ [Δrmin(jω),Δrmax(jω)]

|Δθ(jω)| ≤ |Δθm(jω)| < π/2 for ω ∈ Ωc
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and the set Ωc contains the frequencies where the phase variation is less than π/2, i.e.,

Ωc �
{
ω ∈ Ωc

∣∣|Δθ(jω)| < π/2 for ω ∈ Ωc

}
. (5.18)

Then with the robust inverse filter (5.15, 5.17), the term |1 − GPD(jω)S(jω)L(jω)| is mini-

mized for bounded dynamics uncertainties,

min
α

sup
ΔG

∣∣1 − GPD(jω)S(jω)L(jω)
∣∣ =
{ √1 − 4 cos2 (Δθm(ω))Δrmin(ω)Δrmax(ω)

(Δrmin(ω)+Δrmax(ω))2 ω ∈ Ωc,

1 otherwise.
(5.19)

Design of the roll-off ILC filter Q(jω)

Secondly, we design the roll-off ILC filter Q(jω) as a zero-phase low-pass filter to ensure

the convergence of the CCF-ILC algorithm, and render a small ultimate error e∞(jω) (see

Eq. (5.4)). To facilitate the implementation, the zero-phase low-pass filter Q(jω) is given in

z-transfer function in the discrete-time:

Q(z) = b0 +
N∑

k=1

(bkz
k) +

N∑
k=1

(bkz
−k) (5.20)

where the coefficients bk ∈ �. It can be easily verified that the frequency response of Q(ejωT )

is real—thus the phase of Q(z) is zero, i.e.,

Q(ejωT ) = b0 +
N∑

k=1

(2bk cos ωNT ) ∈ �. (5.21)

It is evident from (5.20) that the zero-phase FIR filter is noncasual. Such a noncausal filter,

however, is implementable in the proposed CCF-ILC framework because the signal to be filtered

is the sample profile from the previous scanline, thereby completed known ahead—as long as

the filter order N is not larger than the total sampling points on one scanline. The ILC roll-off

filter Q(jω) is realized by combining a linear phase FIR low-pass filter with a linear phase lead,

Q(z) = Ql(z) × zP (5.22)

where Ql(z) is the linear-phase FIR low-pass filter (Matlab command “firpm”). Note that

the phase lead term zP in Eq. (5.22) is simply a P -step forward shift in discrete-time imple-

mentation. Also the signal L(jω)ek(jw) and the feedforward control signal uk,FF (jω) from the
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previous scanline was delayed by one scanning period and applied as the input in the CCF-ILC

algorithm, i.e., the residual error signal was delayed by N -step (N : number of sampling points

per scanline) in implementations. Therefore, the P -step phase lead can be combined with the

N -step delay in implementations (denoted as the delay term ”D(jω)” in Fig. 5.1(c)).

5.4 Tracking improvement

To show that the CCF-ILC approach can enhance the total imaging performance over feedback

control alone, the tracking error of using the CCF-ILC approach is compared with that of using

the feedback control alone (the second design objective). We first discuss the enhancement

when the line-to-line sample variation is ignored (i.e., when using the CCF-ILC algorithm to

repetitively image on the same scanline).

5.4.1 No line-to-line sample variation case

It can be shown that in this case the ultimate error of the CCF-ILC approach, |e∞(·)|, is less

than or equal to the residual error with feedback only, |eFB(·)| = |S(jω)d(jω)|, when the noise

is negligible, i.e., δ(ω) = 0. By Eq. (5.4), when the noise is ignored, the ratio of the ultimate

error of the CCF-ILC approach with respect to the feedback control error, q(ω), becomes

q(ω) =
|e∞(jω)|
|eFB(jω)|

=
|1 − Q(jω)|

|1 − |Q(jω)| |1 − GPD(jω)S(jω)L(jω)||
=

|1 − Q(jω)|
|1 − ρ(ω)| . (5.23)

Then the discussion is proceeded by considering the tracking within and outside the frequency

set Ωc separately,

1. In the frequency set Ωc where the dynamics variation is small and the CCF-ILC controller

L(jω) is applied, the term |1 − GPD(jω)S(jω)L(jω)| in the error ratio (5.23) is less than

one (as shown in (5.19)). Consequently, the error ratio is less than one, q(ω) < 1, because

the ILC filter Q(jω) is a zero phase low-pass filter and Q(jω) ≤ 1 for frequency ω ∈ Ωc;
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2. At other frequencies where the dynamics variation is large and the CCF-ILC controller

L(jω) is set to zero, the term |1 − GPD(jω)S(jω)L(jω)| = 1 (see (5.19)), and thereby

the error ratio q(ω) equals to one.

Thus by the continuity of the system dynamics, the above discussion implies that when the

noise/disturbance is small and the line-to-line variation is ignored, the use of the proposed

CCF-ILC approach will enhance the tracking performance.

5.4.2 Line-to-line variation case

Next, we consider the more general case where the line-to-line sample profile variation occurs at

each iteration, i.e., |dk − dk+1| ≥ 0 for k ≥ 1. Similar in Section 5.4.1, the CCF-ILC ultimate

error, e∞(jω), is compared with the error of feedback only, |eFB,max(·)| � |S(jω)| |dmax|,
where dmax = maxk dk (Note the ultimate error e∞(jω) is the upper bound of the limit of the

residual error when using the CCF-ILC). The following lemma provides a sufficient condition

to guarantee that the CCF-ILC approach will improve the tracking over feedback alone.

Lemma 7 Let the noise effect nk be negligible, the use of the proposed CCF-ILC approach will

enhance the tracking performance, i.e.,

|e∞(jω)| ≤ |eFB,max(jω)| for ω ∈ Ωc, (5.24)

if the relative line-to-line sample variation ΔRd(%) is bounded as

ΔRd(%) �
∣∣∣∣∣Δ̂dmax(jω)

dmax(jω)

∣∣∣∣∣ ≤ |1 − ρ(ω)| × 100% (5.25)

Lemma 7 can be easily proved by using Eq. (5.4) in Lemma 6. Note that in the low frequency

range, the dynamics uncertainty tends to be small, so are the noise/disturbance effects. As

a result, the inversion-based ILC filter L(jω) can be chosen to render the iterative coefficient

ρ → 0, and the roll-off filter Q(jω) can be chosen to be one. Therefore, the above Eq. (5.25)

implies that large line-to-line sample variation can be allowed in the low-frequency range (or

alternatively, when the imaging speed is relatively low). Next, we introduce a more conservative

sufficient condition which quantifies the allowable line-to-line sample variation in terms of the
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line-to-line variation directly (instead of the modified line-to-line variation Δ̂dmax(jω), which

depends on the ILC filter Q(jω)).

Corollary 4 Let the noise signal nk be negligible, there exist a positive frequency dependent

coefficient

ηv(ω) � [|1 − ρ(ω)| − |Q(jω) − 1|] |dmax(ω)| > 0 for ω ∈ Ωc, (5.26)

such that when the line-to-line variation is bounded by ηv, i.e.,

max
k

|dk(jω) − dk+1(jω)| < ηv(ω), (5.27)

the use of the proposed CCF-ILC approach will enhance the tracking performance.

Proof The discussion right after Eq. (5.23) shows that the Inequality (5.26) holds for fre-

quencies ω ∈ Ωc, therefore (5.27) leads to

max
k

|dk − dk+1| < ηv = [|1 − ρ| − |Q − 1| |] dmax| . (5.28)

By the definition of dmax, the above equation yields

max
k

[|dk − dk+1| + |(Q − 1)dk|] < |1 − ρ| |dmax| (5.29)

Then the Corollary follows by applying the triangle inequality to the above equation and

Lemma 7 (Eq. (5.25)).

Obviously Corollary 4 shows that the CCF-ILC approach improves the tracking when the

line-to-line variation is small, which agreed with our expectation. Since frequency dependent

iterative coefficient ρ(ω) is less than one and the roll-off ILC filter Q(jω) has low pass charac-

teristics, it can be seen that the allowable line-to-line variation is larger in the low frequency

range than that in high frequency range.

Remark 19 Note that the discussion in this Section—the proposed CCF-ILC approach will

improve the tracking over feedback only— holds regardless the type of the feedback controller

GFB(jω), as long as the feedback controller GFB(jω) is a stabilizing controller.
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In [84], an observer that uses both feedforward signal uff (·) and deflection error d(·) to estimate

the sample profile is proposed. The observer also accounts for the dynamics-coupling effect

[84, 1] of vertical z-axis motion caused by the lateral input. On the contrary, the image is

obtained through a quasi-static scaling on current commercial AFM (the sample profile is

obtained by scaling the z-axis control input by the DC-Gain of the z-axis piezoactuator).

Thus, the observer proposed in [84] can achieve better sample image than such quasi-static

method, particularly in high-speed imaging (the third design objective). This is illustrated

through experiments in the next section.

5.5 Experimental Example

We implement the proposed CCF-ILC approach on an AFM system (DimensionTM 3100,

Veeco Inc.). The efficacy of the CCF-ILC approach to improve the imaging on one scanline

(over using feedback control only) has been demonstrated through experiments in [84]. In this

paper, we focus on the use of CCF-ILC method to obtain an entire image.

The CCF-ILC law was designed by following the procedure described in Sec. 5.3, similar to

the experiment example described in [84]. First, a stabilizing feedback controller GFB(s) was

obtained (using robust-control technique). Secondly, the model uncertainty (variation) was

quantified by using the measured system dynamics. The quantified uncertainty then was used

to design the inversion-based ILC filter L(jω). Finally, the roll off ILC filter Q(jω) was de-

signed as a zero-phase low pass filter. The readers are referred to [84] for details.

The experimental implementation was conducted in two stages. First, to exclude the effects

due to the lateral-to-vertical dynamics coupling [1, 83] and lateral tracking errors [54, 17], “One

point imaging” was conducted, where a trajectory that mimiced a calibration sample profile

was applied as a disturbance input to the z-axis piezo actuator. This experiment allowed us

to investigate the performance of the proposed CCF-ILC approach in z-axis tracking only (as

similarly done in [76]). Then secondly, the proposed method was used to obtain an entire
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Figure 5.2 (a) The computer generated ‘sample profile’; and (b) the cross
section of one scanline; and (c) the line-to-line sample variation.

image of a calibration sample.

5.5.1 One point imaging

The disturbance trajectory was generated by mapping a simulation-generated sample profile

(with no surface slope) to the lateral scanning period. Four different scan rates were used in

the experiments, 8 Hz, 16 Hz, 32 Hz, and 64 Hz. The obtained ‘sample profile’ is shown in

Fig. 5.2 (a) for the entire image and (b) one cross-section scanline, respectively. As seen in

Fig. 5.2 (a), the ‘sample profile’ consists of array of steps, where the angle of the arrays with

respect to the y-axis, β = 15◦, quantified the existing line-to-line sample variation. Specifically,

such a line-to-line sample variation is also shown in Fig. 5.2 (c). Here we assume the lateral

equivalent scan range is 20 × 20 (μm × μm), and total of 64 scanlines (in y slow scan axis)

was used in the experiment, the obtained “equivalent image” is shown in Fig. 5.2 (a). When

using the CCF-ILC approach to image the generated ‘sample profile’, we iteratively imaged on

the first scanline (until the residual error did not reduce further), then proceeded the imaging

on the rest of the scanlines with no iteration. The residual deflection errors for the first 10
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Figure 5.3 Comparison of the deflection error (the residual error) by using
the proposed CCF-ILC approach with that by using the PI con-
trol for four different equivalent scan rates of (a1, b1) 8Hz, (a2,
b2) 16Hz, (a3, b3) 32Hz, and (a4, b4) 64Hz in one point imag-
ing, where the left column shows the total of 10 repeated scan
result; and right column is the zoomed-in view of one scanline
results within the dashed window in the left column.
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Figure 5.4 Comparison of the sample estimation results by using by using
(the upper row) the proposed CCF-ILC approach with that by
using (the bottom row) the PI control for four different equiv-
alent scan rates of (a1, b1) 8Hz, (a2, b2) 16Hz, (a3, b3) 32Hz,
and (a4, b4) 64Hz. The effective lateral scan range was assumed
as 20 μm.

scanlines are compared with the errors obtained by using a PI controller in Fig. 5.3. Note that

one flat scanline was added between each scanlines in Fig. 5.3 (a) to allow the batch calculation

of the feedforward controller because of the hardware limitation (The feedforward controller

was implemented in frequency-domain using fast Fourier transform (FFT)). The PI controller

was carefully designed as in [84] and the convergence of the first scanline was also shown in

[84]. Then, the ‘sample profile’ can be estimated by using a sample observer as described in

[84]. The obtained sample estimation is compared with that by using the commercial method

(along with PI control) in Figs. 5.4, 5.5.

The experimental results show that the proposed CCF-ILC approach improved the AFM z-axis

precision positioning when there existed line-to-line sample variation. For the four scan rates,

much smaller residual error (i.e., the deflection signal change) was obtained when using the

CCF-ILC approach than that when using the PI feedback control only. As shown in Fig. 5.3

(a1), (b1), for ‘sample profile’ at the equivalent scan rate of 8 Hz, the maximum residual
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Figure 5.5 Comparison of the sample estimation results of cross section by
using the proposed CCF-ILC approach with that by using the
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error with the CCF-ILC approach was less than half of that with the PI feedback control only.

Particularly, we note that this positioning precision was achieved where there exists relatively

large line-to-line sample variation (see Fig. 5.2). Such large reduction of the residual error

with the use of the proposed CCF-ILC technique over the PI control was maintained even

when the equivalent scan rate was doubled (16 Hz) and tripled (32 Hz) as shown in Fig. 5.3

(a2), (b2), (a3) and (b3). When the ‘scan rate’ was further increased to 64 Hz, significant fre-

quency components of the disturbance signal moved beyond the feedback bandwidth, thereby

larger residual error was generated under the feedback control only. For the same ‘scan rate’,

tracking error was a little smaller than that by using feedback control only, because the main

frequency component of sample profile was out of the feedforward bandwidth of the proposed

CCF-ILC approach, which was limited by the system noise level. Therefore, by using CCF-ILC

approach, the vertical z-axis positioning precision during high-speed scanning can be improved

from using feedback control only.

The experimental results also show that the CCF-ILC approach can significantly improve the

sample profile estimation over the commercial PI-control approach. When the ‘scan rate’ was

relatively low (8 Hz), the estimated disturbance trajectory (i.e., the estimated sample profile)

obtained by the PI control and the CCF-ILC approach were both close to the ‘true’ sample

profile (see Fig. 5.4 (a1) (b1) for the obtained topography imaging and Fig. 5.5 (a1) (b1) for the

corresponding cross section plot). However, the estimation error with the use of the CCF-ILC

approach was still over 10 times smaller than that with the use of the PI control (see Fig. 5.5

(b1)). When the ‘scan rate’ was increased, imaging distortion become more and more serious

with the use of the PI control, whereas the same imaging quality was maintained with the use

of the proposed CCF-ILC approach. As shown in Fig. 5.4, by using the proposed CCF-ILC

approach, the edge of the arrays was much clearer than that by using the PI control at the

“scan rates” of 8 Hz, 16 Hz and 32 Hz (compare Fig. 5.4 (a1) (a2) and (a3), to (b1) (b2)

and (b3), respectively), and relatively good image can still be obtained even when the “scan

rate” was increased to 64 Hz. On the contrary, when using the PI control, the image became
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significantly fuzzy at the “scan rate” of 16 Hz (Fig. 5.4 (b2)), and the sample feature was almost

completely lost at the “scan rate” of 64 Hz (Fig. 5.4 (b4)). Especially, for the equivalent scan

rate of 64 Hz, the imaging error was 8 times smaller under the proposed CCF-ILC approach

than that under the PI approach (see Fig. 5.5 (a4), (b4)), and the imaging error under the

CCF-ILC approach is only 4.4% of the sample profile size. Therefore, the experiment results

demonstrate that precise sample estimation can be obtained by using the proposed CCF-ILC

approach for high-speed AFM imaging even when there existed significant line-to-line sample

variation.

5.5.2 Sample imaging

Next, the proposed CCF-ILC technique was implemented to scan a calibration sample (TGZ02,

from MikroMasch) where the nominal pitch size is 3 μm, and the nominal step height is 84 nm.

The image area is 20 μm × 20 μm, and the precision positioning in the lateral x-y scanning was

achieved by using the inversion-based iterative control (IIC) approach [54]. It has been shown

[54] that this IIC technique can effectively compensate for both the vibrational dynamics and

the hysteresis effects simultaneously during high-speed, large-range lateral scanning. In this

experiments, less than 1% of the maximum relative tracking error in the lateral scanning was

achieved by using the IIC technique for the three different scan rates, 16 Hz, 32 Hz, and 64 Hz

(The imaging results of lower scan rate at 8 Hz was not shown). The obtained deflection error

signals are compared with those obtained by using the PI control in Fig. 5.6 (the left column

is for the total of ten repetitive scanlines, and the right column is for the zoomed-in view of

the result on one of the scanline).

The experimental results show that the imaging speed can be significantly improved by using

the proposed CCF-ILC approach — much smaller residual error was obtained than that by

using the feedback control only. At the scan rate of 16 Hz, the maximum residual error un-

der the CCF-ILC approach was 3 times smaller than that under the PI control, as shown in

Fig. 5.6 (a1) (b1). Such large reduction of the residual error by using the proposed CCF-ILC

technique over the PI control was maintained even when the equivalent scan rate was doubled
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(32 Hz) and tripled (64 Hz) as shown in Fig. 5.6 (a2), (b2), (a3) and (b3). It is noted that

during the high speed imaging (scan rate at 64 Hz), the reduction of the residual error obtained

in the sample imaging was much larger than that in one point imaging experiment. Such a

larger reduction was because the surface slope and the x-to-z axis dynamics coupling effect

[83, 1] (which did not exist in one-point-imaging case) existed and became more pronounced

in the sample imaging. As a result, much larger residual error occurred when using feedback

control only. On the contrary, these effects were efficiently compensated for with the use of the

proposed CCF-ILC approach. Therefore, the experimental results demonstrated the efficacy

of the proposed CCF-ILC approach in improving the AFM imaging speed.

The experimental results also showed that the sample estimation at high-speed can also be

significantly improved with the use of the CCF-ILC approach, even when there existed large

cross-axis dynamics-coupling effect. The sample estimation results obtained by using the CCF-

ILC approach and those by using the PI control approach are compared in Fig. 5.7 for the three

different scan rates. Note that the dynamics coupling effect were removed from the sample

estimation for the CCF-ILC approach as in [84]. At the scan rate of 16 Hz, the estimated

sample profile obtained by using the CCF-ILC approach was close to the true sample profile

(the rectangle pitches can be clearly identified), whereas the estimated sample profile by using

the PI control showed pronounced sample distortions (the top of the pitches were cornered

around instead of being flat, see Fig. 5.7 (a)). As the scan rate increased (to 32 Hz), the

estimation error became larger by using the PI control (where not only the top but also the

bottom of the pitches were cornered around), while the sample profile can still be relatively

well estimated by using the proposed approach. When the scan rate was increased to 64 Hz,

the imaging distortion was even more pronounced under the PI control—the basic shape of

the sample surface can not be recognized, and large variations occurred among the estimated

pitches. On the contrary, by using the CCF-ILC approach, the sample estimation signal was

still relatively close to the sample profile. Therefore, the experiment results showed that the

proposed CCF-ILC approach can achieve a smaller tracking error as well as a better sample
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estimation than those obtained by using the feedback control alone.

5.6 Conclusion

A new CCF-ILC approach was proposed in this chapter to achieve the vertical z-axis

precision positioning during AFM-imaging. First, the convergence (stability) of the CCF-ILC

law was analyzed for the general case where the line-to-line sample profile variation (i.e., the

desired trajectory in general) occurred at each iteration. The conditions for the convergence

of the CCF-ILC approach were characterized. Secondly, the CCF-ILC system was designed

for repetitively imaging on the same scanline (i.e., with no line-to-line sample variation) as

in the authors’ recent work. Then the allowable line-to-line sample variation was quantified

for the CCF-ILC approach so that the imaging on the rest of the scanlines can be proceeded

with no iterations. The performance of the CCF-ILC was discussed by comparing the tracking

error with the proposed CCF-ILC technique to that with feedback control only. It was shown

that the CCF-ILC approach can improve the tracking even when there existed significant line-

to-line sample profile variations. The proposed CCF-ILC control approach was illustrated by

implementing it to the z-axis direction control in AFM imaging. Experimental results show

that the imaging speed as well as the sample estimation can be significantly improved by using

the proposed approach.
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CHAPTER 6. Conclusion

The dissertation demonstrated the use of advanced control approaches, e.g. iterative learn-

ing control and inversion-based control, to achieve high speed AFM imaging. The main con-

tribution of this dissertation is following

1. Inversion-based iterative learning approach (IIC) was utilized to compensate for both

the nonlinear hysteresis and the vibrational dynamics effects of piezo actuator in AFM

lateral direction positioning. The convergence of the iterative approach was investigated

by capturing the hysteresis and the vibrational dynamics effects with a cascade model

consisting of the rate-independent hysteresis at the input followed by the linear dynam-

ics of the piezo actuator. The size of the hysteresis effect and the vibration dynamics

variation that can be compensated for by using the IIC method is quantified. The IIC

algorithm was also implemented on piezotube actuator of an AFM system to validate the

convergence requirement as well as to show that high-speed, large-range lateral direction

precision positioning can be achieved.

2. A robust-inversion-based 2DOF control design approach was proposed for output track-

ing. A novel robust-inversion technique is developed, which, when used as a feedforward

control, achieved a guaranteed tracking precision in the presence of bounded dynam-

ics variations from the feedforward control. The bounded feedforward gain-error was

then used in the H∞ robust feedback control to design a robust feedback controller to

complement the feedforward control and increase the feedback bandwidth under the ro-

bust stability requirements. Therefore, the proposed approach systematically integrated

the system-inversion-based feedforward control with the H∞ robust feedback control to-
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gether. The implementation of the proposed method on piezotube actuator of an AFM

is presented to show that the proposed approach achieved a larger feedback-bandwidth

of the entire system than that by using the regular robust H∞ design; and high-speed

precision output tracking can be achieved by using the proposed robust-inversion-based

2DOF control technique.

3. A CCF-ILC approach was developed to achieve the vertical z-axis precision positioning

during AFM-imaging. The convergence of the CCF-ILC approach was analyzed and the

conditions for the convergence were characterized. The performance of the CCF-ILC

was discussed by comparing the tracking error with the proposed CCF-ILC technique

to that with feedback control only, and the allowable line-to-line sample variation was

quantified. It was shown that the CCF-ILC approach can improve the tracking even

when there existed significant line-to-line sample profile variations. The proposed CCF-

ILC control approach was illustrated by implementing it to the z-axis direction control in

AFM imaging. Experimental results show that the imaging speed as well as the sample

estimation can be significantly improved by using the proposed approach.
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