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ABSTRACT

Modeling and simulation of segregation phenomena in granular flows are investigated. Com-

putational models at different scales ranging from particle level (microscale) to continuum level

(macroscale) are employed in order to determine the important microscale physics relevant to

macroscale modeling. The capability of a multi-fluid model to capture segregation caused by

density difference is demonstrated by simulating grain-chaff biomass flows in a laboratory-scale

air column and in a combine harvester. The multi-fluid model treats gas and solid phases as

interpenetrating continua in an Eulerian frame. This model is further improved by incorporat-

ing particle rotation using kinetic theory for rapid granular flow of slightly frictional spheres.

A simplified model is implemented without changing the current kinetic theory framework by

introducing an effective coefficient of restitution to account for additional energy dissipation

due to frictional collisions. The accuracy of predicting segregation rate in a gas-fluidized bed

is improved by the implementation. This result indicates that particle rotation is important

microscopic physics to be incorporated into the hydrodynamic model. Segregation of a large

particle in a dense granular bed of small particles under vertical vibration is studied using

molecular dynamics simulations. Wall friction is identified as a necessary condition for the

segregation. Large-scale force networks bearing larger-than-average forces are found with the

presence of wall friction. The role of force networks in assisting rising of the large particle is

analyzed. Single-point force distribution and two-point spatial force correlation are computed.

The results show the heterogeneity of forces and a short-range correlation. The short correla-

tion length implies that even dense granular flows may admit local constitutive relations. A

modified minimum spanning tree (MST) algorithm is developed to asymptotically recover the

force statistics in the force networks. This algorithm provides a possible route to constructing
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a continuum model with microstructural information supplied from it. Microstructures in gas

fluidized beds are also analyzed using a hybrid method, which couples the discrete element

method (DEM) for particle dynamics with the averaged two-fluid (TF) equations for the gas

phase. Multi-particle contacts are found in defluidized regions away from bubbles in fluidized

beds. The multi-particle contacts invalidate the binary-collision assumption made in the ki-

netic theory of granular flows for the defluidized regions. Large ratios of contact forces to drag

forces are found in the same regions, which confirms the relative importance of contact forces

in determining particle dynamics in the defluidized regions.
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CHAPTER 1. INTRODUCTION

1.1 Background

A granular material is a collection of discrete solid particles, which interact with dissipative

collisions and for which the thermal energy is small compared to any energy scale in the

problem. Granular flows are referred here as both dry granular flows and gas-solid flows

investigated in this dissertation. Dry granular flow means that the interstitial fluid either does

not exist or can be ignored in describing the flow behavior when particles alone will play the

greatest role in momentum transport within the material (Campbell, 1990).

Granular flows are abundant in nature, such as snow and avalanches, and widely used in

many operations in chemical, petroleum, pharmaceutical, agricultural, biochemical, food, elec-

tronic, mining and power-generation industries. For example, Chevron refinery in Pascagoula,

MS uses a fluidized bed catalytic cracker operating around the clock, 365 days per year to

process 325,000 barrels (13.6 million gallons) of crude oil per day (Chevron, 2005). At 60

dollars a barrel, that is about 7 billion dollars per year.

Granular flows are, however, poorly understood despite the widespread importance for

industrial applications. A study indicates that the commercial and large-scale solids-processing

plants have an operating reliability of 63 percent, compared to 84 percent for large-scale plants

using only liquids and gases (Plasynski et al., 1992). One of the most puzzling phenomena

in granular flows is segregation. Segregation is a process in which a homogeneous granular

material composed of various constituents of different properties becomes spatially nonuniform

as a result of relative movement within the material (Enstad, 2001; Rosato et al., 2002). Its

occurrence is rather ubiquitous and of universal concern to the above-mentioned industries. For

example, in a fluidized bed coal gasifier, segregation of coal and hot circulating solids should
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be avoided to prevent the occurrence of non-uniform volatile distribution, which leads to low

gasification efficiency. Knowledge of the degree and rate of this kind of segregation phenomena

is of tremendous practical importance (Rosato et al., 1991). In most industrial applications,

segregation poses a formidable impediment to the general requisite of creating and maintaining

a well-mixed mixture. Failure to achieve this homogeneous mixture throughout its processing

history can lead to unfavorable economic consequences. In some industrial applications, the

tendency for segregation is utilized, such as removing chaff from grain in a combine.

In addition to the practical importance, segregation in granular flows is also fundamen-

tally challenging as an outstanding problem in granular physics. It has recently gained more

attention in fundamental experimental (Möbius et al., 2001; Breu et al., 2003; Nahmad-

Molinari et al., 2003; Huerta and Ruiz-Suárez, 2004b; Möbius et al., 2004) and theoretical

studies (Rosato et al., 1987; Shishodia and Wassgren, 2001; Hong et al., 2001; Trujillo et al.,

2003). Efforts have been made in these studies to explain segregation from the non-equilibrium,

dissipative nature of granular material and to establish hydrodynamics models for segregation

behavior. However, the mechanisms of segregation have not been fully understood through

these extensive studies in both engineering and physics communities. Moreover, first-principle

modeling of segregation is either unrealistic or impossible (Ottino and Khakhar, 2000). For

example, Goldschmidt et al. (2001b) and Sun and Battaglia (2006) found that a multi-fluid

continuum model predict much higher segregation rates than experimental results in a dense

gas fluidized bed. Current engineering approaches attack segregation problems on an ad hoc

basis and often result in unsatisfying predictions.

The importance of understanding segregation in granular flows and the inability to model

the phenomena accurately motivate the current research to enhance the fundamental under-

standing of the mechanisms of segregation, and to improve and develop continuum models

to predict segregation in a more accurate way. The continuum models can be then used in

computational fluid dynamics (CFD) tools to better capture segregation characteristics and to

assist in design and optimization of the processes involving segregation.
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1.2 Research objectives and approaches

The research herein is generally aimed to address questions in the following aspects: “What

are the fundamental segregation mechanisms? How can these mechanisms be incorporated into

continuum models? How successful will these models address engineering problems?”

Segregation is often governed by a combination of mechanisms, which themselves depend on

flow regimes and particle properties. For example, particle properties which influence segrega-

tion are particle sizes and size distribution, density, shape, morphology, contact friction, elastic-

ity, brittleness, chemical affinities, ability to absorb moisture and magnetic properties (Enstad,

2001; Rosato et al., 2002). Segregation is further complicated by the means in which energy

is imparted into the granular material causing it to flow. According to practical interests and

scientific simplifications, this research focuses on segregation of spherical particles of different

size and/or density excited by vibration or gas flows. The particle volume fraction is relatively

large and the particle Stokes number is usually much larger than unity. Studies will show

what mechanisms drive the segregation under both fluidized and partial fluidized conditions.

The driving forces will be quantified and modeled at a continuum level. The engineering ap-

plications focus on using the continuum models to improve predictions of segregation in gas

fluidized beds and biomass flows in a combine.

Due to the complexity of the segregation in granular flows and the discrete nature of

solid particles, a multiscale modeling strategy is proposed, as presented in figure 1.1. In this

strategy, at the macroscale level, a multi-fluid model is used to simulate large scale engineering

granular flows, in which both fluid and solid particles are treated as continua and their velocities

are locally averaged (Jackson, 2000). At the microscale level, molecular dynamics (MD) is

employed to simulate dry granular flows. MD can simulate individual particle movements and

the contact forces between particles. The microscale information will give physical insights into

the collective particle behaviors, such as flow regimes and microstructure formation, and guide

the continuum model development. By obtaining macroscale continuum fields from microscale

particle information statistically, the microscale simulations can also be used to validate the

closure laws in solid phase rheology and solid-solid phase momentum transfer. Combining
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Figure 1.1 Multiscale modeling strategy for simulation of segregation in
granular flows.

continuum models for fluid and MD for solid particles, a hybrid model can be formed to

study the solid particles behavior under the influence of a fluid. It should be noted that in

this research, averaged Navier-Stokes equations for the fluid are used. Fluid-solid interaction is

modeled by an empirical correlation for gas-solid drag. Therefore, no instantaneous information

about the interaction between fluid and solid can be provided and the simulation accuracy

depends on the empirical correlation. The main goal of this research is to investigate the solid

particle behavior from the microscale and incorporate more relevant modeling information to

the continuum models at the macroscale.

1.3 Outline of the dissertation

In chapter 2, a general survey of modeling methods of granular flows and segregation is

presented including macroscale models, microscale models and hybrid methods. In macroscale

models, kinetic theory for granular flows (KTGF) is emphasized, while soft-sphere MD or

discrete element method (DEM) is stressed for the microscale models since these two are the

main tools in this research.

Chapter 3 summarizes the hydrodynamics theory for a multi-fluid model and numerical

formulation used in the Multiphase Flow with Interphase eXchanges (MFIX) code, which is
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extensively used in the macroscale simulation work. The basic procedure of using KTGF to

derive constitutive equations of solid phases for the multi-fluid model is also presented.

Application of CFD modeling for biomass flows in a combine is shown in chapter 4 by

simulations for grain fluidization and simulations for grain and chaff separation.

Chapter 5 presents an implementation of a particle rotation model using KTGF to the

multi-fluid model and the improvements of the accuracy of predicting segregation rates in a

bubbling fluidized bed using the improved multi-fluid model.

Chapter 6 studies the rise dynamics of a large particle in a granular bed under vertical

vibration using molecular dynamics simulations. Force networks in the granular bed are also

investigated. The distribution and the two-point spatial correlation of normal contact are

studied. The structural properties of the force network are analyzed using a graph-theoretic

approach, which is a modification of a minimum spanning tree (MST) constructed on the

particles in physical space.

In chapter 7, simulations of gas-solid fluidized beds are carried out using a hybrid simula-

tion method, which couples the DEM for particle dynamics with the averaged two-fluid (TF)

equations for the gas phase. The coupling between the two phases is modeled using an inter-

phase momentum transfer term. The results of the hybrid TF-DEM simulations are compared

to experimental data and two-fluid model simulations. The microstructures in fluidized beds

are analyzed and the implications to KTGF are discussed. Various forms of the interphase

momentum transfer model are examined.

Chapter 8 summaries the main conclusions from the research work in this dissertation.

Possible extensions to the dissertation work are discussed from the microscale and macroscale

modeling perspectives. An outlook of deriving continuum models that can predict segregation

behavior in a broad range of granular flow regimes is given.

It is worth noting that different notations are used in different chapters. Symbols are either

listed in a nomenclature list for an individual chapter or explained in context. Bold type or

over-vector ~() are used for vectors. Sans Serif type or double over-lines () are used for tensors.
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CHAPTER 2. LITERATURE REVIEW

This chapter presents a survey on modeling of segregation phenomena in granular flows.

The theories and models for general granular flow behaviors are also reviewed as a basis for

understanding the particular segregation phenomena.

2.1 Macroscale (continuum) modeling of granular flows and segregation

Granular materials can behave like solids, liquids or gases depending on material properties

and external forcing conditions (Jaeger et al., 1996). Simply, in the quasi-static regime, the

external force is constantly supported by the force chains within the granular material. In

the transitional regime, as the solid concentration decreases, or the non-dimensional strain

rate increases, the internal force chains become intermittent, being continuously destroyed and

regenerated by relative particle motion. As this trend continues, the solid concentration further

reduces and the non-dimensional strain rate increases, particle motion becomes more agitated,

and the external load is supported by the impact momentum transfer generated when the

particles collide with the boundary. This complex behavior makes it very difficult to formulate

a comprehensive macroscale theory of granular flow, which can describe all the flow regimes.

Approaches to formulate a macroscale model can use the following schemes:

• Classical continuum theories

• Statistical mechanics (e.g., kinetic theory for granular flows)

• Micromechanical approach

• Phenomenological models based on experiments or computer simulations
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Table 2.1 Comparison of particle properties between granular flows and
molecular gases.

Molecular gases particles Granular flow particles

diameter scale 10−10 m diameter scale > 10−6 m

elastic inelastic

identical with size distribution

smooth rough

spherical non-spherical

Kinetic theory for granular flows (KTGF) has been reasonably successful in describing the

“rapid shear” fluidized regime. The development of KTGF, especially the extension to binary

mixtures will be reviewed in detail. However, rigorously extending KTGF to moderately dense

and dense granular flow has met great difficulties. Alternative models for transitional regime

and slow dense granular flows will be reviewed following KTGF.

2.1.1 Kinetic theory for granular flows

Solid particles in the rapid shear regime interact by nearly instantaneous collisions (com-

pared with the mean free time) in a way that is reminiscent of the classical picture of a

molecular gas. In this sense, the rapid granular flow is also known as a “granular gas”. Al-

though rapid granular flows resemble molecular gases, there are important differences between

them, which determine the intrinsic behavior of rapid granular flows. A comparison between

granular material particles and molecular gas particles is shown in table 2.1. The important

difference is the inelasticity of granular particles, which causes energy losses from collisions of

granular particles and leads to the dissipative dynamics.

The physical similarity between rapid shear granular flows and the kinetic theory view of

gases has led to research on extending kinetic theory for gases (Chapman and Cowling, 1970)

to granular flows. The idea is to derive a set of continuum equations entirely from microscopic

models of dissipative individual particle interactions. All of the models assume that particles

interact by instantaneous collisions, which implies that only binary interactions need to be

considered. Furthermore, molecular chaos is generally assumed, implying that the random
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motion of even closely neighboring particles are independently distributed.

The most primitive KTGF was derived for identical, smooth, nearly elastic, spherical par-

ticles and the form of the velocity distribution function was assumed to be Maxwellian instead

of attempting to solve the Boltzmann equation to find the distribution function. The first

calculation of this type was done by Savage and Jeffrey (1981), who derived the collisional

portion of the stress tensor based on the assumption that the random particle velocities fol-

lowed a Maxwellian distribution. The theory did not include the granular energy equation.

Jenkins and Savage (1983) solved the energy balance for granular temperature but neglected

the streaming (kinetic) contribution to the stress tensor, i.e., when the particles are not in

collision. Later Lun et al. (1984) first attempted to compute the streaming contribution to

the stress tensor and used a perturbation to the Maxwellian velocity distribution. An accurate

prediction of streaming stressed was obtained.

The generalization of the KTGF provides a means to address particles with property differ-

ences, particle friction, and high inelasticity. The generalization has been done in the following

theoretical aspects:

• Non-Maxwellian distribution function by perturbation to the Maxwellian distribution

function.

• Homogeneous cooling state as the zeroth order in Chapman-Enskog expansion (Chapman

and Cowling, 1970).

• Burnett order Chapman-Enskog expansion (one order higher than Navier-Stokes order).

• Revised Enskog theory (RET) to evaluate radial distribution function for dense flows

to correct the inconsistencies with irreversible thermodynamics caused by the standard

Enskog theory (SET).

• Ring level kinetic theory to account for the particle velocities correlation in dense flows.

Some of these theoretical aspects will be discussed as follows. KTGF for particles with shapes

other than spheres has not been addressed in literature although kinetic theory for rigid ellip-

soid have been developed for polyatomic liquids (Theodosopulu and Dahler, 1974).
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The effort in extending KTGF to describe granular mixtures of particles with different

properties was first done by Jenkins and Mancini (1987) for a planar flow of a dense, binary

mixture of smooth, nearly elastic, circular disks and spheres assuming a Maxwellian velocity

distribution. Later Jenkins and Mancini (1989) developed a more exact theory using RET in-

volving perturbations to the Maxwellian velocity distribution. They assumed that the energy

dissipation in the collision was sufficiently small, such that the deviation of the temperature

of each component from the mixture granular temperature is very small. Thus, in the applica-

tion of their model, they assumed energy equipartition in each component. Based on the work

of Jenkins and Mancini (1989), Arnarson and Willits (1998) and Willits and Arnarson (1999)

extended KTGF of a binary mixture using the Chapman-Enskog procedure. They solved

the Ensgok kinetic equation near the steady-state equilibrium, assuming energy equipartition

and almost equal particle mass, to calculate the transport coefficients. They found that the

shear viscosity was three times higher than that obtained using only a Maxwellian velocity

distribution. Alam et al. (2002) generalized the model of Willits and Arnarson (1999) to

a mixture of particles having different mass and size. However, their model was limited to

energy equipartition. Zamankhan (1995) solved the Enskog kinetic equation using the Grad

method (Grad, 1949) and assumed that the particles fluctuate with the same energy; he con-

cluded that energy non-equipartition must be included in mixtures with different properties.

Garzó and Dufty (1999a) showed theoretically that energy equipartition was violated for inelas-

tic collisions of particles of different mechanical properties, and was experimentally confirmed

by Wildman and Parkar (2002) and Feitosa and Menon (2002). Lu et al. (2001) developed a

model for two-size particles with different granular temperatures; however, the approach they

used was phenomenological and inappropriate, thus making their model limited to only the

energy equipartition case. Recently Garzó and Dufty (2002) solved the Boltzmann equation

for systems away from equilibrium and analyzed the shear viscosity coefficient (Montanero

and Garzó, 2003), mass and heat fluxes (Garzó et al., 2006). Their model not only captures

the energy non-equipartition, but also is formally correct for a broader range of restitution

coefficients. However, their model is restricted to dilute systems. Later on, Garzó and Mon-
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Table 2.2 Summary of KTGF models for granular mixtures (EP is abbre-
viation for equipartition and NEP is for non-equipartition).

References Single particle Energy Radial Mixture

velocity distribution distribution or phase

distribution function representation

Jenkins and Mancini (1987) Maxwellian NEP SET Mixture

Jenkins and Mancini (1989) Non-Maxwellian EP RET Mixture

Zamankhan (1995) Non-Maxwellian EP RET Mixture

Arnarson and Willits (1998) Non-Maxwellian EP RET Mixture

Willits and Arnarson (1999) Non-Maxwellian EP RET Mixture

Lu et al. (2001) Maxwellian NEP SET Phase

Garzó and Dufty (2002) Non-Maxwellian NEP SET Mixture

Garzó and Montanero (2003) Non-Maxwellian NEP RET Mixture

Rahaman et al. (2003) Maxwellian NEP SET Mixture

Iddir and Arastoopour (2005) Non-Maxwellian NEP SET Phase

tanero (2003) extended the same method to moderately dense binary mixture using RET, for

which the flow condition was limited to uniform shear flow. Rahaman et al. (2003) also derived

a non-equipartition kinetic theory for binary mixtures using a Maxwellian velocity distribu-

tion. Most recently, Iddir and Arastoopour (2005) extended KTGF to a multi-type mixture

assuming a non-Maxwellian velocity distribution and energy non-equipartition. Each group

type is represented by a phase with an average velocity and a granular temperature, unlike

previous work, where the fluctuations of the flow variables are about the mixture average.

The Enskog kinetic equation for each particulate phase was solved using the Chapman-Enskog

procedure. However, in their approach, the deviation from the Maxwellian velocity distribu-

tion is in each individual particulate phase and Maxwellian velocity distribution was assumed

at the interface and RET is not used. A complete KTGF for dense binary mixtures, which

considers non-Maxwellian distribution and energy non-equipartition and employs RET, has

not yet available for general flow conditions. A summary of these KTGF models is listed in

table 2.2.

The KTGF for a mixture has direct relevance to modeling segregation phenomena. For

example, from KTGF, the momentum balance is derived in the following general form

ρi
dvi
dt

= ρiFi − ρi∇ · Pi + φi, (2.1)
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for species or phase i, where φi is the momentum source due to collisions between unlike

particles. Each of the previous reviewed KTGF models gives different specific expressions for

the constitutive equations. From equation 2.1, a diffusion velocity equation can be derived.

For example, using Jenkins and Mancini (1987) theory, a simplified diffusion velocity equation

for binary mixture is derived as:

v1 − v2 = − n2

n1n2
D12d1, (2.2)

where n = n1 + n2 is the number density of the mixture, D12 is the coefficient of ordinary

diffusion and d1 is the diffusion driving force. A few researchers have been using this approach

to analyze segregation phenomena in simple granular flows. Hsiau and Hunt (1996) used the

theory of Jenkins and Mancini (1989) to investigate the driving force for segregation. Khakhar

et al. (1999) compared model predictions based on the Jenkins and Mancini (1989) theory with

discrete particle simulations for chute flows. Jenkins and Yoon (2002) studied the segregation

criteria for a binary mixture with large particles being dilute under gravity. Arnarson and

Jenkins (2002) derived a simplified constitutive theory for a steady, fully developed, rectilinear

flow and studied the segregation in this flow with a corrected expression for the ordinary

diffusion coefficient. However, most of these applications are limited to particles of slight

difference in diameter and mass and for very simple flows. Furthermore the newly derived

KTGF by Iddir and Arastoopour (2005) has not been tested in their capability of predicting

segregation.

There are also developments to derive KTGF for rough particles. Jenkins and Richman

(1985) studied identical, rough inelastic, circular disks. Lun and Savage (1987) developed a

kinetic theory for a system of inelastic, rough spherical particles to study the effects of particle

surface friction and rotary inertia. They considered only the case of high bulk solids fractions

where the major stress contributions are the collisional ones. Later Lun (1991) extended

their theory to incorporate the kinetic stresses as well as the kinetic and collisional energy

flux for a system of slightly inelastic and slightly rough spheres. In the above theories, two

granular temperatures are involved. The first is translational granular temperature, which

measures the energy associated with the translational velocity fluctuations. The second is
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rotational granular temperature. Additional conservation equations for angular momentum

and rotational granular temperature were used. Recently, Jenkins and Zhang (2002) simplified

the theory to obtain a simple model for rapid flow of identical, slightly frictional, nearly elastic

spheres. Details of this model can been found in chapter 5, where application of this model in

a multi-fluid formulation has been made.

The dissipative dynamics feature of granular flow makes the assumptions for Chapman-

Enskog expansion invalid unless the inelasticity is very small. The kinetic theory of granular

flow was limited to a very weak dissipation situation. More recently, a generalization of the

Chapman-Enskog expansion for granular flows has been proposed in Brey et al. (1998). This

method employs the homogeneous cooling state (HCS) as its zeroth order and uses an expansion

in powers of Knudsen number as in the original Chapman-Enskog method. As this method

does not employ inelasticity as a small parameter, it is formally correct for all physical values

of inelasticity. However, it is unclear whether the use of a local HCS as a zeroth order term in

this Chapman-Enskog expansion is justified in principle. This method has already been applied

to dense granular flow (Garzó and Dufty, 1999b) and low density binary mixtures (Garzó and

Dufty, 2002).

2.1.2 Macroscale models for transition and slow dense granular flows

It is clear that a rapid shear granular flow is seldom realized in nature or in industrial

processes. Even if it does occur, it often coexists with a slow flow or a quasi-static regime (Shen

and Babic, 1999; Campbell, 2002). For example, in a gas fluidized bed of a binary mixture, the

large particles may not be well fluidized when the gas velocity is between the two minimum

fluidization velocities for the two different types of particles. The closely packed particles may

hinder the segregation of smaller particles (Gera et al., 2004). Many practical flow situations,

especially those strongly affected by gravitational forces, fall into a transitional regime (Savage,

1998). It is extremely difficult to construct theoretical models, which are capable to describe

the transition and slow dense flow behaviors.

Early models simply ad hoc patched together the results taken from KTGF for rapid shear
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regime and from soil mechanics for plastic regime by assuming simple additivity (Johnson and

Jackson, 1987; Srivastava and Sundaresan, 2003) or by switching according to voidage (Syam-

lal et al., 1993). However, the addition of “frictional” stress (Johnson and Jackson, 1987;

Srivastava and Sundaresan, 2003) to collisional stress made extra “frictional” contribution to

the solid stress for situations where there is no “frictional” stress. The switching method only

considered the voidage regardless of other influences, e.g., the shear rate, on the real solid

constitutive behavior. The plastic model failed to capture the no shear zone. For example, the

stagnant flow regimes in the hopper shoulders could not be captured (Srivastava and Sundare-

san, 2003). Nevertheless, there have been more promising theoretical model developments to

capture the transition and slow dense behaviors, some of which are reviewed next.

Savage (1998) proposed a continuum theory based on associated flow rule that relates the

strain rate and the shear stress in plastic frictional systems. Averaging strain rate fluctuations

yields a Bingham-like constitutive relation, in which the shear stress and strain rate tensors

are always coaxial. Furthermore, it also postulates that the viscosity diverges as the density

approaches the close-packing limit. A problem of slow granular flow in rough-walled vertical

chute flow was studied by this model. A concentration boundary layer being thicker than the

velocity boundary layer was obtained, which was consistent with experimental observations.

Aranson and Tsimring (2001, 2002) employed a different approach based on the order

parameter description of granular matter. The stress was decomposed into a “fluid” and

a “static” part, i.e., σ = σf + σs. The value of the order parameters specifies the ratio

between static and “fluid” parts of the stress tensor. The order parameter was assumed to

obey dissipative dynamics governed by a free energy functional with two local minima. This

description was based on the separation of static and fluid components of the shear stress and

assumed Newtonian friction law for the fluid components. The viscosity coefficient is expected

to remain finite at the fluidization threshold (Volfson et al., 2003a,b, 2004). The model yields

a good qualitative description of many phenomena occurring in granular flows. However, the

model is limited to two dimensions (2D) and the correlation of the order parameters was

fitted from only 2D molecular simulations. The stress tensor in this model was correctly
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generalized to an objective form that is independent of the coordinate system by Gao et al.

(2005). The objective representation correctly models the isotropic and anisotropic parts of

the stress tensor. This general objective form of the model also relaxes the assumption in the

original model that the principal axes of the granular stress tensor be coaxial with that of the

fluid stress tensor.

Zhang and Rauenzahn (1997) used an ensemble averaging technique to examine the effects

of finite particle interaction time and multi-particle collisions and developed a viscoelastic

model for granular particles coated with resin. The model predicts that the shear stress is

quadratically proportional to the shear rate when the particle concentration is relatively low

and that shear stress depends linearly on the rate of strain. Zhang and Rauenzahn (2000) also

analyzed the stress relaxation in dense and slow dry granular flows and derived an evolution

equation for the collisional stress based on their statistical method (Zhang and Rauenzahn,

1997), which predicts a finite stress at the limit of zero shear rate associated with plasticity

of the granular system. The advantage of their approach is that all the model quantities can

be computed for microscale simulations. However, the coefficients in their constitutive model

were not determined from microscale simulations or experimental data. They used artificially

chosen coefficients to show that the model is capable to predict fluid to solid transition.

From the perspective of continuum mechanics, there are many other different approaches,

such as non-Newtonian models, rate independent theory, plasticity theories, viscoelastic theo-

ries, hypoplastic theory, micropolar models, turbulence models, multiple natural configurations

theory, etc.. These are not reviewed here but the readers are referred to an excellent review

article by Massoudi (2004).

2.2 Microscale (discrete) modeling of granular flows and segregation

Alternative to the continuum model of granular flows, microscale modeling for granular

flows treats granular material as a collection of discrete particles and resolves the particle in-

teraction at the individual particle scale. The particle properties and interaction laws are used

with a molecular dynamics (MD) algorithm to get the collective behavior of the dissipative
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many-body system. The microscale modeling of particles can be used to capture physical

behaviors of granular flows usually at a more accurate level than a continuum description,

even when coupled with averaged Navier-Stokes equations for the fluid phase (Goldschmidt,

2001; Bokkers et al., 2004). Therefore, microscale simulations can produce useful information

to derive macroscopic constitutive relations needed to describe the material within the frame-

work of a macroscale continuum theory. The microscale simulations also serve to validate the

continuum models by testing the validation of their underlying assumptions and the range of

their applications in terms of all the control parameters (e.g., inelasticity, size, solid fractions,

etc.).

There basically exists two different approaches, the so-called soft sphere MD method and

the hard sphere, event-driven method. The former is straightforward, easy to generalize, and

has numerous applications, while the latter is optimized for rigid interactions and is mainly

used for collisional, dissipative granular gases.

The idea of MD is to numerically integrate the equations of motion for all the particles in

the system (Allen and Tildesley, 1987; Rapaport, 2004). Soft sphere MD for granular flows or

discrete element model (DEM) is to supply contact force models for solid particles to the MD

algorithm. 1 Pioneering work in this field was done by Cundall and Strack (1979) and Walton

(1992). Many more sophisticated engineering mechanics models have been developed to de-

scribe the contact force (Thornton, 1999). Since the realistic modeling of the deformations of

the particles is much too complicated, a simplified contact force and the overlap relation (Sil-

bert et al., 2001), the so called spring-dashpot model, is used in this work (demonstrated in

chapter 6).

The procedure of soft sphere MD is conceptually simple. However, there are only two-

body interactions being employed to characterize a granular system of many particles assuming

many-body interactions to result from the sum of the two-particle forces. This assumption may

fail for some particular situations. For example, Luding (2004) pointed out that dissipation is

very inefficient for long wavelength cooperative modes of motion when many particles are in

1Note that both methods are identical in spirit, however, different groups of researchers use these (and also
other) names.
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contact with each other. Furthermore, an accurate description of the simultaneous collision of

more than two spheres is not yet available (Hinch, 1995). A relevant disadvantage is that the

choice of contact force model may affect the accuracy of the MD method. This cautions us to

carefully set up a MD simulation for a real granular system and to be aware of the effect of

all kinds of parameters on the phenomena of interest. Despite these disadvantages, soft sphere

MD is still a powerful tool to study granular flows when it is being used appropriately.

Most of the soft sphere MD simulations focus on dry granular flows. However, MD has

also been coupled with fluid dynamics in hybrid methods to simulate gas solid flows (Tsuji

et al., 1993; Xu and Yu, 1997; Yu and Xu, 2003; Feng and Yu, 2007; Beetstra et al., 2007).

Volume averaged or instantaneous descriptions of fluid motion were coupled with solid particle

motion through interactions between them. However, the details will not be discussed here.

The hybrid method used in this work is demonstrated in chapter 7.

In the framework of the hard sphere model, particles are assumed to be perfectly rigid

and they follow an undisturbed motion until a collision occurs. Due to the rigidity of the

interaction, the collisions occur instantaneously, so that an event-driven simulation method

can be used (Lubachevsky, 1991). The interaction force is then impulsive, thus the hard

sphere model treats collisions much simpler (than the soft sphere model) by using a collision

matrix based on the momentum conservation and energy loss rule. The instantaneous nature

of hard sphere collisions is artificial, it is valid when binary collisions dominate and multi-

particle contacts are rare. It is mainly useful for simulations of granular gases (Luding and

McNamara, 1998; Luding and Herrmann, 1999). However, it has also been applied to simulate

dynamics (Hoomans et al., 1996) and segregation (Hoomans et al., 2000) in gas fluidized beds

and to test the validation of KTGF in a dense fluidized beds (Goldschmidt et al., 2002).

2.3 Transition from microscale to macroscale

From section 2.1, it can be seen that the macroscale continuum models rely on constitu-

tive equations, which are functions of velocity, stress, strain and other physical quantities, to

describe the state of the system. On the microscale, however, the physical quantities are at
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the individual particle level. Therefore, a so called micro-macro transition (Kirkwood et al.,

1949; Luding and Pöschel, 2001) needs to be performed to obtain the physical quantities at the

macroscale. The framework through which microscale models reduce to macroscale continuum

ones includes irreversible thermodynamics (Truesdell, 1984; Beris and Edwards, 1994; Öttinger,

2005), non-equilibrium statistical mechanics (Chapman and Cowling, 1970; Evans and Morriss,

1990), etc. The continuum models reviewed in section 2.1 provided a few examples. However,

the whole topic of the framework is too vast to review here.

What is of particular interest in this work is how to obtain macroscale quantities from

the microscale simulations. For this purpose, the homogenization theory in micromechanics,

which has been applied to granular material to establish micro-macro relations (Walton, 1987;

Emeriault and Cambou, 1996), is used. While it is straightforward to average velocity, density

and spin, the stress and strain definitions were given slightly different in the literature (Savage

and Jeffrey, 1981; Kruyt and Rothenburg, 1996). Lätzel et al. (2000) and Luding et al. (2001)

recently derived macroscale stress and strain equations, which can be easily used based on

quantities from discrete element simulations. Their results indicate two contributions to the

stress. The first is the dynamic stress due to momentum flux, a kinetic energy density. The

second is the static stress due to particle contact, a potential energy density.

For dynamic systems, there is momentum transport via flux of the particles (Luding, 2004).

This contribution to the stress tensor is the standard stress in an ideal gas, where the atoms

move with a certain fluctuation velocity. In the general case, the dynamic stress in a sample

volume V is σd = 1/V
∑n

i miCiCi, which is a dyadic product of the fluctuation velocity

giving a second order tensor with trace tr(σd)/D = nT being the kinetic energy density in

D dimensions. The dynamic stress is essentially identical to the kinetic part of the pressure

tensor in kinetic theory (see equation 3.50).

The additional contribution to the stress is due to collisions and contacts, which can be

derived from the principle of virtual displacement for soft interaction potentials and can

be modified for hard sphere systems (Luding, 2004). The static stress is given as σs =

1/V
∑n

i

∑

j,j 6=i
1
2rijFij. Combining the dynamic and static contributions, the stress tensor
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for the soft sphere system is:

σ =
1

V

n
∑

i



miCiCi +
∑

j,j 6=i

1

2
rijFij



 , (2.3)

which will be used to determine solid stresses from soft sphere MD simulations.

2.4 Summary

In this chapter, the fundamental macroscale, microscale and hybrid methods for modeling

granular flows have been reviewed with emphasis on the capability to predict segregation.

The review guides the research to determine the capabilities and limitations of the state-of-art

models and to contribute to the new understanding and development of the models.
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CHAPTER 3. BASIC THEORIES AND NUMERICAL

FORMULATIONS

In this chapter, the hydrodynamic theory for the multi-fluid model and kinetic theory for

granular flows are presented. The numerical formulations to solve the hydrodynamic equation

system are also shown. This chapter serves to give a overview of the theoretical basis for the

entire research work for this thesis.

3.1 Hydrodynamic theory for multi-fluid model

The multi-fluid model for multiphase flow assumes that different phases behave as inter-

penetrating continua and the instantaneous variables are averaged over a region which is larger

than the particle spacing but much smaller than the flow domain. Multiple types of particles

should be considered to describe phenomena such as particle segregation and elutriation. Each

particle type has a unique diameter with identical material properties (Syamlal et al., 1993).

3.1.1 Governing Equations

The field variables, called phasic volume fractions, are used to determine the fraction of

the average volume occupied by each phase. The sum of all of the volume fractions, both for

the gas phase and the mth solids phases, where m denotes a unique solids phase, must equal

unity

εg +

M
∑

m=1

εsm = 1

The subscript g indicates the gas phase and s indicates solids phases with the total number of

solids phase M. The gas phasic volume fraction is also called the void fraction. The effective
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densities of the gas phase ρ′g and solids phases ρ′sm respectively, are

ρ′g = εgρg

ρ′sm = εsmρsm

The continuity equations for the gas phase and the solids phase m, respectively, are

∂

∂t
(εgρg) + ∇ · (εgρg~vg) =

Ng
∑

n=1

Rgn (3.1)

∂

∂t
(εsmρsm) + ∇ · (εsmρsm~vsm) =

Nsm
∑

n=1

Rsmn (3.2)

The first and second terms on the left sides of Eqs. (3.1) and (3.2) are the rate of mass

generation per unit volume and the net rate of convective mass flux. The terms of Rgn and

Rsmn on the right sides account for interphase mass transfer due to chemical reactions or

physical processes.

The momentum equations for the gas phase and the solids phase m have the form

∂

∂t
(εgρg~vg) + ∇ · (εgρg~vg~vg) = ∇ · Sg + εgρg~g −

M
∑

m=1

~Igm + ~fg (3.3)

∂

∂t
(εsmρsm~vsm) + ∇ · (εsmρsm~vsm~vsm) = ∇ · Ssm + εsmρsm~g + ~Igm −

M
∑

l=1
l 6=m

~Iml (3.4)

The first terms on the left sides of Eqs. (3.3) and (3.4) are the net rate of momentum generation

and the second terms are the net rate of momentum transfer by convection. Equations (3.3)

and (3.4) include the gas phase and solids phase stress tensors Sg and Ssm, the body forces

due to gravity ~g, the flow resistance force ~fg due to internal porous surfaces, the interaction

force ~Igm accounting for the momentum transfer between the gas phase and the mth solids

phase, and the interaction force ~Ilm between the mth and lth solids phases.

The internal energy balances for the gas and solids phase m are

εgρgCpg

(

∂Tg

∂t
+ ~vg · ∇Tg

)

= −∇ · ~qg −
M

∑

m=1

Hgm − ∆Hrg +Hwall(Twall − Tg) (3.5)

εsmρsmCpsm

(

∂Tsm

∂t
+ ~vsm · ∇Tsm

)

= −∇ · ~qsm +Hgm − ∆Hrsm (3.6)
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with temperature T and constant pressure specific heats Cp. Equations (3.5) and (3.6) include

the conductive heat flux ~qg and ~qsm, the gas-solids interphase heat transfer Hgm, and the heats

of reaction ∆Hrg and ∆Hrsm. The last term in Eq. (3.5) is the heat loss to the wall. Heat

transfer between different solids phases and radiative heat transfer are negligible.

The gas and solids phases are formulated to represent an arbitrary number of chemical

species, Ng and Nsm. The corresponding conservation of species for the gas and solids phases

are

∂

∂t
(εgρgXgn) + ∇ · (εgρgXgn~vg) = Rgn (3.7)

∂

∂t
(εsmρsmXsmn) + ∇ · (εsmρsmXsmn~vsm) = Rsmn (3.8)

where X is the mass fraction. Equations (3.7) and (3.8) include accumulation, convection and

the rate of reaction but neglect diffusive fluxes.

The chemical source terms are closed by reaction kinetic expressions in the species balance

equations. It should be noted that the chemical source terms involve a wide range of time

scales which will make the equations stiff. Therefore, efficient algorithms must be used to treat

these terms.

3.1.2 Constitutive relations

The complete formulation requires that the governing equations be closed. A wide range

of constitutive relations can be found by using different approaches, from empirical informa-

tion to kinetic theory. Most differences between multiphase theories originate from closure

assumptions. The closure models used in this research are introduced next.

3.1.2.1 Gas-phase equation of state

The equation of state for the gas phase assumes ideal gas behavior,

ρg =
PgMw

RTg

where Pg is the gas pressure, Mw is the molecular weight and R is the universal gas constant.

For an incompressible gas the density is assumed to be constant.
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3.1.2.2 Gas-Solids momentum transfer

From previous studies on the dynamics of a single particle in a gas, three important mech-

anisms for the gas-solids interaction force ~Igm are considered: drag force, caused by velocity

differences between gas-solids phases; buoyancy, caused by the gas pressure gradient; and mo-

mentum transfer due to mass transfer between phases. Other forces, such as virtual mass effect

caused by relative acceleration between phases, Magnus force caused by particle spin and so

on, are not considered. Thus, the gas-solids momentum interaction force becomes

~Igm = −εsm∇Pg − Fgm(~vsm − ~vg) +R0m[ζ0m~vsm + ζ̄0m~vg] (3.9)

where R0m is the mass transfer from the gas phase to solids phase m, and

ζ0m =















1 for R0m < 0

0 for R0m > 0

for ζ0m = 1 − ζ0m,

The gas-solids drag formulation for converting terminal velocity correlations to drag corre-

lations (Syamlal et al., 1993) is

Fgm =
3εsmεgρg

4V 2
rmdpm

CDS

[

Rem
Vrm

]

|~vsm − ~vg| (3.10)

where dpm is the diameter and Vrm is the terminal velocity correlation for the mth solids phase.

Vrm = 0.5
(

A− 0.06Rem +
√

(0.06Rem)2 + 0.12Rem(2B −A) +A2
)

(3.11)

where A and B are the functions of void fraction

A = ε4.14g , (3.12)

and

B =















Cε1.28g if εg ≤ 0.85

εDg if εg > 0.85.

(3.13)

The coefficients C and D can be calibrated against experimental data and are set to 0.8 and

2.65, respectively. Note that the coefficients C and D have to satisfy the relation

C0.851.28 = 0.85D (3.14)
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to guarantee the continuity of the function B at εg = 0.85. The Reynolds number of the mth

solids phase is

Rem =
dpm|~vsm − ~vg|ρg

µg
(3.15)

The single sphere drag function (Dalla Valla, 1948) has the form

CDS

[

Rem
Vrm

]

=

[

0.63 +
4.8

√

Rem/Vrm

]2

(3.16)

Equations (3.11), (3.15) and (3.16) are coupled to (3.10) for the complete description of the

gas drag coefficient.

3.1.2.3 Solids-solids momentum transfer

The drag between the phases due to velocity differences is assumed as the major effect

in the solids-solids momentum transfer. Thus, the momentum transfer Iml between solids is

represented as

~Iml = −Fsml(~vsl − ~vsm) +Rml[ζml~vsl + ζ̄ml~vsm] (3.17)

where Rml is the mass transfer from solids phase m to solids phase l,

ζml =















1 for Rml < 0

0 for Rml > 0

and ζ̄ml = 1 − ζml,

The drag coefficient Fsml is derived by using a simplified version of kinetic theory (Syamlal,

1987a)

Fsml =
3(1 + elm)(π/2 +Cflmπ

2/8)εslρslεsmρsm(dpl + dpm)2g0lm
|~vsl − ~vsm|

2π(ρsld
3
pl + ρsmd3

pm)
(3.18)

where elm and Cflm are the coefficient of restitution and coefficient of friction, between the

lth and mth solids-phase particles, and g0lm
is the radial distribution function at contact for a

mixture of hard spheres.
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3.1.2.4 Gas phase stress tensor

The gas phase stress tensor has two parts: the pressure contribution and the Newtonian

viscous stress tensor, which is given by

Sg = −PgI + τg (3.19)

The viscous stress tensor, τg, is

τg = 2εgµgDg + εgλgtr(Dg)I (3.20)

where I is the identity tensor and Dg is the strain rate tensor for the gas phase

Dg =
1

2

[

∇~vg + (∇~vg)T
]

3.1.2.5 Solids phase stress tensor

In the solid phase stress tensor term, a solids pressure is calculated to ensure that the

volume fraction does not exceed the packed-bed volume fraction. This can be accomplished by

treating the particles as an incompressible fluid at a critical void fraction and the pressure is

set to zero when the void fraction becomes greater than the packed-bed void fraction (Syamlal

and O’Brien, 1988).

Granular flow theory is used to describe the solids phase stresses in detail. There are two

distinct flow regimes in granular flow: a viscous or rapidly shearing regime in which stresses

arise due to collisional or translational momentum transfer, and a plastic or slowly shearing

regime in which stresses arise due to Coulomb friction between grains in close contact. Two

different approaches are used for these regimes:

Ssm =















−P p
smI + τ

p
sm if εg ≤ ε∗g

−P v
smI + τ

v
sm if εg > ε∗g

where P p
sm and τ

p
sm are the pressure and the viscous stress in the mth solids phase for the

plastic regime, P v
sm and τ

v
sm are the pressure and the viscous stress for the viscous regime, and

ε∗g is a critical packing number, usually set to the void fraction at minimum fluidization.
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The granular stress equation based on kinetic theory (Syamlal, 1987b) is applied to the

viscous regime. The granular pressure and stresses are given by

P v
sm = K1mε

2
smθm (3.21)

τ
v
sm = 2µv

smDsm + λv
smtr(Dsm)I (3.22)

where θm is the granular temperature and λv
sm is the second coefficient of viscosity,

λv
sm = K2mεsm

√

θm

The shear viscosity factor µv
sm is

µv
sm = K3mεsm

√

θm

The strain rate tensor, Dsm, is given by

Dsm =
1

2

[

∇~vsm + (∇~vsm)T
]

and K1m, K2m and K3m are

K1m = 2(1 + emm)ρsmg0mm, (3.23)

K2m =
4dpmρsm(1 + emm)εsmg0mm

3
√
π

− 2

3
K3m, (3.24)

K3m =
dpmρsm

2

{ √
π

3(3 − emm)
[1 + 0.4(1 + emm)(3emm − 1)εsmg0mm] +

8εsmg0mm(1 + emm)

5
√
π

}

.

(3.25)

In the plastic flow regime, frictional flow theory (Jenike, 1987) provides an arbitrary function

that allows a certain amount of compressibility in the solids phase where

P p
sm = εsmP

∗ (3.26)

and P ∗ is expressed by an empirical power law

P ∗ = A(ε∗g − εg)
n

for values of A = 1025 and n = 10.

The solids stress tensor is calculated for solid phase m using the formulation (Schaeffer,

1987)

τ
p
sm = 2µpsmDsm (3.27)
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3.1.2.6 Gas-solids heat transfer

The heat transfer between the gas and solids phases is a function of a temperature difference

Hgm = −γgm(Tsm − Tg) (3.28)

where γgm is the heat transfer coefficient between the gas phase and the mth solids phase. The

heat transfer coefficient γgm (Bird et al., 1960) is corrected using the coefficient γ0
gm by adding

the influence of the interphase mass transfer,

γgm =
CpgR0m

e(CpgR0m /γ0
gm) − 1

and the coefficient γ0
gm is

γ0
gm =

6kgεsmNum
d2
pm

The correlation is applicable for a porosity range of 0.35–1.0 and a Reynolds number up to

105.

3.1.2.7 Conductive heat flux in gas and solids phase

The conductive heat fluxes for both the gas and solids phases are described according to

Fourier’s law

~qg = −εgkg∇Tg (3.29)

~qsm = −εsmksm∇Tsm (3.30)

where kg and ksm are the thermal conductivity for gas and particle phases, respectively. The

particle thermal conductivity (Syamlal and Gidaspow, 1985) has the form

ksm

kg
=

[ΦkRkm + (1 − Φk)λrm]
√

1 − εg
, (3.31)

where

λrm = − 2

1 − b/Rkm

[

(Rkm − 1)b/Rkm
(1 − b/Rkm)2

ln(b/Rkm) +
b− 1

(1 − b/Rkm)
+
b+ 1

2

]

, (3.32)

and, for spherical particles,

b = 1.25

(

1 − εg
εg

)10/9

. (3.33)

The contact area fraction has the value Φk = 7.26 × 10−3.
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3.1.2.8 Heat of reaction

The heat of reaction accounts for the difference in temperatures between phases by parti-

tioning reaction processes between each phase. Partitioning of the heat is arbitrary since the

averaging required to derive the hydrodynamic equations does not contain any information

regarding the gas-solids interface. The actual chemical reactions occur in an interface region,

however, the partitioning of the heats of reaction must be based on physical arguments. For

example, to partition the heat of the coal combustion reaction C + O2 → CO2, the heat of

reaction for the step C + 1
2O2 → CO is assigned to the solids phase (∆Hrs in Eq. (3.6)) and

the heat of reaction for the step CO + 1
2O2 → CO2 is assigned to the gas phase (∆Hrg in

Eq. (3.5)).

3.1.2.9 Granular energy equations

The constitutive relation for granular flow is based on kinetic theory of smooth, slightly

inelastic, spherical particles. The relationship contains the granular temperature θm which is

proportional to the granular energy of the continuum. The granular temperature is introduced

as a measure of the particle velocity fluctuations

3

2
θm =

1

2
〈 ~C2

m〉

where ~Cm is the fluctuating component of the instantaneous velocity ~cm of the mth solids phase

~cm = ~vsm + ~Cm

The transport of granular energy is

3

2

[

∂(εsmρsmθm)

∂t
+ ∇ · (εsmρsmθm)~vsm

]

= Ssm : ∇~vsm−∇·~qθm
−γθm

+Φgm+
M

∑

l=1,l 6=m

Φlm (3.34)

where γθm
is the rate of granular energy dissipation due to inelastic collisions of the form (Lun

et al., 1984)

γθm
= K4mε

2
smθ

3
2
m

and ~qθm
is the diffusive flux of granular energy

~qθm
= −kθm

∇θm
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The term Φgm is the transfer of granular energy between the gas phase and the mth solids

phase, and Φlm accounts for the transfer of granular energy between the mth and lth solids

phases. The formulation for granular energy transfer (Ding and Gidaspow, 1990) is

Φgm = −3Fgmθm

and Φlm is ignored by setting Φlm = 0.

3.1.3 Initial and boundary conditions

3.1.3.1 Initial conditions

The initial values of all field variables must be specified for the entire computational domain.

However, the initial conditions are usually not of interest, and the solution is governed by the

boundary conditions. Therefore, the initial conditions need only be physically correct to initiate

convergence of the equations.

3.1.3.2 Boundary conditions

Two types of inflow boundary conditions are possible, constant velocity or constant mass

flux. Specifying constant pressure is the most common condition for the fluid outflow boundary.

At impermeable walls, the normal velocities are set to zero. The condition for the tangential

components is specified either as a non-slip or as a free-slip condition. The fixed temperature

and specified heat flux can be used as thermal boundary conditions. For species equations,

either specified species concentration or species diffusion flux can be used.

3.2 Kinetic theory for granular flows

The procedure of deriving the constitutive equations for the solid stress tensor in sec-

tion 3.1.2.5 and the granular energy flux and dissipation in section 3.1.2.9 is presented next. In

kinetic theory, a system of N spheres of diameter σ, mass m and velocity c is considered.The

state of the granular flow is described by particle velocity distribution functions. The evolution
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of velocity distribution functions is governed by the Boltzmann equation

∂f

∂t
+ c · ∂f

∂r
+ F · ∂f

∂c
=

(

∂f

∂t

)

coll

, (3.35)

where r is the position vector of a particle, F is external force and
(

∂f
∂t

)

coll
is equal to the

rate of change in the velocity distribution function f at a fixed point due to collisions. It can

be expressed as an integral evaluating collision effects on the distribution function. (In dense

flows, the collision integral is modified according to Enskog (Chapman and Cowling, 1970).

The thus modified equation 3.35 is referred as the Enskog kinetic equation.)

The single-particle velocity distribution function f (1)(c, r, t) is defined so that f (1)(c, r, t)dc

is the probable number of particles per unit volume at r and t with velocities in the element

dc at c. Integrating f (1)(c, r, t) over all velocities gives the local number density of particles

∫

f (1)(c, r, t)dc = n(r, t). (3.36)

Given any property ψ(c), its mean, or ensemble average, < ψ > is determined in terms of

f (1) by

< ψ >=
1

n

∫

ψ(c)f (1)(c, r, t) dc. (3.37)

As in the case of molecular gases (or liquids), one can define macroscopic fields for granular

flows, such as the granular temperature T , velocity v =< c >, and mass density ρ =< m >.

It is common to define the granular temperature in a slightly different way than for molecular

gases; T is defined as the average over an ensemble of the square of the fluctuating velocities

of the grains:

T =
1

3
< C2 > (3.38)

where C = c− v is the fluctuation velocity of a grain.

The statistics of binary collisions are determined by the complete pair distribution function

f (2), a function of two particle velocities, positions and time, defined so that

f (2)(c1, r1, c2, r2, t) dc1 dr1 dc2 dr2 (3.39)

is, at time t, the probable number of pairs of particles located in the volume elements dr1, dr2

centered at the points r1 and r2 and having velocities in the ranges dc1 and dc2 at c1 and c2.
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3.2.1 Collision dynamics

Collision dynamics is then needed to determine the quantities exchanged during a collision,

i.e., to determine the integrand in the collision integral in equation 3.35. Consider the collision

of two identical smooth spherical particles. Quantities associated with each sphere are distin-

guished by the subscript 1 or 2 and primes denote the values of these quantities following a

collision.

The balance of linear momentum requires that the velocity vectors c′1 and c′2 of the center

of each particle after a collision be related to those c1 and c2 before the collision by

mc′1 = mc1 − J, mc′2 = mc2 + J, (3.40)

where J is the impulse of the force exerted by particle 1 upon particle 2 in the collision. The

relative velocity c′12 of the centers of the particles after the collision is

c′12 ≡ c′1 − c′2. (3.41)

Its component normal to the plane of contact can be related to the corresponding component

prior to the collision by

(k · c′12) = −e(k · c12), (3.42)

where k is the unit vector directed from the center of the first particle to that of the second

particle at contact, and e is the coefficient of normal restitution. Depending upon the material

of the particle, e may range from zero to unity. When e equals unity, the relative velocities

of the centers of the particles are reversed upon collision and energy is conserved. Values of e

less than unity involve the dissipation of energy.

With equation 3.41 and equation 3.42, the value of the impulse J may be expressed in

terms of c12 as

J =
1

2
m(1 + e)(k · c12)k. (3.43)

The energy loss ∆E in the collision is

∆E =
1

4
m(e2 − 1)(k · c12)

2. (3.44)
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Knowing the collision dynamics, the transport equations can be evaluated. To obtain the

transport equations, let ψ(c) be any property of a particle. Multiplying equation 3.35 by ψ(c)

and integrating over c, a transport equation for ψ(c) is obtained:

∂

∂t
〈nψ〉 = n〈Dψ〉 − ∇ · 〈ncψ〉 + C(ψ), (3.45)

where Dψ ≡ dc
dt ·

∂ψ
∂c = m−1F · ∂ψ∂c and F = F(r, t) is the external force acting on a particle,

and C is the mean collisional rate of change of ψ per unit volume. After examining the details

of a collision, C is obtained in the form

C(ψ) = −∇ · θ(ψ) + χ(ψ), (3.46)

where the collisional transfer contribution is

θ = − σ3

2

∫

c12·k>0
(ψ′

1 − ψ1)(c12 · k)k

[

1 − 1

2
σk · ∇ +

1

3!
(σk · ∇)2 + · · ·

]

× f (2)(r, c1; r + σk, c2; t) dk dc1 dc2,

and the “source-like” contribution is

χ =
σ2

2

∫

c12·k>0
(ψ′

2 + ψ′
1 − ψ2 − ψ1)(c12 · k)f (2)(r− σk, c1; r, c2; t) dk dc1 dc2.

Note that, when ψ is a summational invariant, χ is zero.

3.2.2 Conservation equations

By taking ψ to be m, mc and 1
2mc

2 in equation 3.45, after the averaging operation “<>”,

the hydrodynamic conservation equations are deduced in the forms of

dρ

dt
= −ρ∇ · v, (3.47)

ρ
dv

dt
= ρF − ρ∇ · P, (3.48)

3

2

dT

dt
= −P : ∇v − ∇ · q − Γ. (3.49)

The total pressure tensor P is the sum of a kinetic (streaming) part

Pk = ρ〈CC〉, (3.50)
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and a collisional part

Pc = θ(mC). (3.51)

The fluctuation energy flux q is the sum of a kinetic part

qk =
1

2
ρ〈C2C〉, (3.52)

and a collisional part

qc = θ(
1

2
mC2). (3.53)

The Γ is the collisional rate of dissipation per unit volume:

Γ = −χ(
1

2
mc2). (3.54)

3.2.3 Constitutive equations

Lun et al. (1984) assumed the single-particle distribution function f (1) is a perturbation

to the local equilibrium Maxwellian single-particle velocity distribution function. They also

made the Enskog assumption that the pair distribution function

f (2)(c1, r1, c2, r2; t) = g0(σ)f (1)(c1, r− σk; t)f (1)(c2, r; t), (3.55)

where the equilibrium radial distribution function g0(σ) was taken to be the one given by

Carnahan and Starling (1969).

With these treatments, the constitutive equations 3.50 to 3.54 were evaluated. The results

were adopted in the multi-fluid model in MFIX as shown in sections 3.1.2.5 and 3.1.2.9.

3.3 Numerical formulation

A finite volume approach is used for the numerical discretization of the equations for

multiphase flows. The approach has an advantage to ensure the conservation laws for mass,

momentum and energy. The conservative property of finite volume methods is more attractive,

especially if a fine grid is too computationally expensive. Thus, even for coarse grids, the

solutions hold the integral balances (Patankar, 1980).
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3.3.1 A staggered grid

A staggered grid is used for discretizing the partial differential equations. Scalars such

as pressure, void fraction, temperature, and mass fraction are stored at the cell centers and

the velocity components are stored at the cell surfaces. If all variables such as velocity and

pressure are stored on the same grid points, the pressures for two alternate grid points appear

in the momentum equations. Thus the zigzag pressure field for a one-dimensional domain and

checkerboard pressure field for a two-dimensional domain develop as an acceptable solution.

More complex results exist for three-dimensional case and a similar situation appears for the

velocity components from continuity equations (Patankar, 1980). If a staggered grid is used,

unphysical pressure and velocity fields will not occur since two neighboring grid points appear

in the momentum equations.

3.3.2 Discretization

3.3.2.1 Discretization of the governing equations

The discretization of the governing equations is discussed using the transport equation for

a scalar variable Φ

∂

∂t
(εmρmΦ) +

∂

∂xi
(εmρmvmiΦ) =

∂

∂xi

(

ΓΦ
∂Φ

∂xi

)

+RΦ (3.56)

where m = 0 denotes the gas phase, m = 1 to M denotes the solids phases, ΓΦ is the diffusion

coefficient for Φ and RΦ is the source term.

Equation (3.56) has all the features of the equations for multiphase flow except the inter-

phase transfer term. The interphase transfer term is important in the multiphase flow equations

and is discussed in §3.3.2.2. The equation is integrated over a control volume. Figure 3.1 shows

a computational cell and the nomenclature of discretization (Syamlal, 1994). The point P is

at the center of the control volume and its neighboring points are referred to as E, W, N, S,

T, B. The half-node positions are referred to as e, w, n, s, t, b.

A one-dimensional scalar equation is used as an example for discretization. Convection-
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Figure 3.1 Computational cell for the scalar equations

diffusion terms have the following form in the x-direction

ρu
∂Φ

∂x
− ∂

∂x

(

Γ
∂Φ

∂x

)

(3.57)

Equation (3.57) is integrated over a control volume dV shown in Fig. 3.2.

∫
[

ρu
∂Φ

∂x
− ∂

∂x

(

Γ
∂Φ

∂x

)]

dV =

[

ρuΦe −
(

Γ
∂Φ

∂x

)

e

]

Ae −
[

ρuΦw −
(

Γ
∂Φ

∂x

)

w

]

Aw (3.58)

With assumption of the piecewise-linear profile between the grids, the diffusive flux, for exam-

ple, at the east-face becomes
(

Γ
∂Φ

∂x

)

e

≈ Γe
(ΦE − ΦP)

δxe
(3.59)

with second order accuracy. Other fluxes have a similar form.

Higher-order schemes for discretizing convection terms are used to prevent numerical dif-

fusion which typically occurs with first-order schemes such as the upwind method. First-order
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Figure 3.2 Nomenclature for the discretization in the x-direction

schemes lead to pointed bubble shapes in simulations of bubbling fluidized beds (Syamlal,

1998). However, high-order schemes tend to be deficient due to oscillations when discontinu-

ities are encountered. Total variation diminishing (TVD) schemes in the high-order methods

can help avoid oscillations. Such schemes use a limiter on the dependent variables (Tannehill

et al., 1997). The value of Φe at the east face is an example of a TVD scheme and it has the

form

Φe = ξeΦE + ξ̄eΦP (3.60)

where ξ̄e = 1 − ξe.

The convection weighting factor ξe in Eq. (3.60) is calculated from the down-wind factor

dwfe, where

if ue ≥ 0

Φe = dwfeΦE + (1 − dwfe)ΦP

ξe = dwfe

if ue < 0

Φe = dwfeΦP + (1 − dwfe)ΦE

ξe = 1 − dwfe

The down-wind factor dwfe is calculated using the superbee method which can be applied

to explicit conservative convection and diffusion schemes of any order of accuracy (Leonard,

1991)
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dwfe = 1
2 max[0,min(1, 2θ),min(2, θ)]

where θ = Φ̃C /(1 − Φ̃C) and Φ̃C is

if ue ≥ 0

Φ̃C =
ΦP − ΦW

ΦE − ΦW

if ue < 0

Φ̃C =
ΦE − ΦEE

ΦP − ΦEE

The locations of ΦE, ΦW, ΦP and ΦEE are shown in Fig. 3.3.

The transient term in discretized form is

∫

∂

∂t
(εmρmΦ)dV ≈

[

(εmρmΦ)P − (εmρmΦ)0P
] δV

δt
(3.61)

where the superscript 0 indicates previous time step values. Source terms are usually nonlinear

and are first linearized as

RΦ ≈ R̄Φ −R′
ΦΦP (3.62)

where R̄Φ stands for the constant part of RΦ, while R′
Φ is the coefficient of ΦP. Then, the

integration of the source term gives

∫

RΦdV ≈ R̄ΦδV −R′
ΦΦPδV (3.63)

For the stability of the iteration, R′
Φ ≥ 0.

All scalar equations may be arranged to get the following linear equation for Φ

aPΦP =
∑

nb

anbΦnb + b (3.64)

where b is a source term. Equation (3.64) should be subtracted by the discretized continuity

equation, which is multiplied by Φ (Patankar, 1980).
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3.3.2.2 Interphase phase transfer terms

The continuity equations for multiphase flows have a source term for interphase mass

transfer
∑

Rlm and can be discretized as

ΦP

M
∑

l=0

Rlm = ΦP〈Rlm〉 − ΦP〈−Rlm〉 (3.65)

where l = 0 indicates gas phase and

〈R〉 =















0 if R ≤ 0

R if R > 0

The first term on the right side of Eq. (3.65) is substituted in the source term b of Eq. (3.64).

〈−Rlm〉 in the second term of Eq. (3.65) is substituted in aP of Eq. (3.64).

The interphase momentum and energy transfer terms
∑

Flm(ul−um) and
∑

γlm(Tl−Tm)

strongly couple the components of velocity and temperature amongst the phases. These terms

should be made fully implicit for solving the equations. However, the equations for each velocity

component must be solved together, which leads to a nonstandard matrix structure. The partial

elimination of interphase coupling (Syamlal, 1998) is used for decoupling the equations.

3.3.2.3 Boundary conditions

Periodic boundary conditions also referred to as cyclic conditions, are specified for the

azimuthal direction in cylindrical coordinates. Rotationally (without pressure drop) or trans-

lationally (with pressure drop) cyclic boundary conditions may be specified at any of the

boundaries.

The free-slip condition is shown schematically in Fig. 3.4 for a cell abut a wall and the

ghost cell. The free-slip requirement is

(V )ghost cell = (V )near wall cell

so that the gradient of the velocity at the wall is zero. The boundary condition becomes

V (i) − V (i− 1) = 0 (3.66)
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Figure 3.4 Free-slip wall boundary condition

The no-slip condition shown schematically in Fig. 3.5 is set as

(V )ghost cell = −(V )near wall cell

so that the velocity at the wall is zero. The boundary condition becomes

V (i) + V (i− 1) = 0 (3.67)

3.3.3 Modified SIMPLE method

The semi-implicit method for pressure-linked equations (SIMPLE) was developed for the

calculation of the single flow field and it has served well (Patankar, 1980). Here, an extension of

SIMPLE is used to solve the discretized equations. However, the method requires modifications

for multiphase flows due to more field variables and more equations.

The SIMPLE algorithm derives the pressure correction equation to handle the pressure

terms in the momentum equations. These pressure terms are not expressed explicitly using

an equation. Velocities solved from the momentum equations with the correct pressure satisfy

the continuity equations. Similar procedures can be applied to multiphase flows using solids

pressure corrections. However, the solids volume fraction correction equation is used instead
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Figure 3.5 No-slip wall boundary condition

of solids pressure correction equation since solids pressure correction equation requires that

∂Ps /∂εs does not vanish when εs → 0.

In densely packed regions, the solids pressure is an exponentially increasing function of

the solids volume fraction. A small increase in the solids volume fraction will cause a large

increase in the solids pressure. For numerical stability, solids volume fraction corrections are

under-relaxed, where

If (εm)new > (ε)p and ε′m > 0

ε′m = ωεmε
′
m (3.68)

and εp is the volume fraction for the packed region, ωεm is an under-relaxation factor, and ε′m

is correction of solids volume fraction with guessed value ε∗m

εm = ε∗m + ε′m (3.69)

Transient simulations are performed since gas solids flows are inherently unstable. Small

time steps for a simulation and under-relaxation for iteration are chosen to ensure the numerical

stability. Further numerical details and parameters will be discussed with results.
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CHAPTER 4. BIOMASS FLOW IN A COMBINE

In this chapter, CFD simulations using the multi-fluid model presented in chapter 3 will be

applied to investigate the gas biomass flow process in single-pass multi-component harvesting

equipment.

4.1 Introduction

The expression “combine harvester” comes from the fact that in the old days, field binders

were used to harvest the grain crop into shocks, which were taken to the stationary threshing

machines to separate the grain. These two operations were “combined” in one grain harvester.

Today, the time has come to develop the next generation of harvesters that “combine” yet

another set of processes into a single harvest machine. The result must be equipment that can

harvest multiple crop components (i.e., grain and stems) in a single pass across the field.

As part of this innovation effort, CFD analyses are used to understand the biomass segrega-

tion mechanisms in the combines. The segregation of different components of the biomass, i.e.,

grain, chaff, and stems, occurs mainly in the cleaning shoe unit in a combine (see figure 4.1).

There is usually a cleaning loss of 0.1% - 0.5%, which is one of the essential criteria for the

work quality of a combine. Understanding the segregation mechanism is very beneficial for the

design and operation of a combine.

Segregation is most difficult in the material layer on top of the sieves. Experimental results

(see figure 4.2 (CIGR, 1999)) show that with a constant fan speed, losses increase sharply at

low throughputs because some grain is blown out, i.e., in the flight phase. On the other end

losses increase also at a high throughput because the material layer can not be loosened enough

and grain penetration is hampered, i.e., in the bulk phase. Maintaining the fluidization state
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(a) A 3D model

(b) Schematic drawing showing different parts

Figure 4.1 Clean shoe unit in a combine for (a) a 3D model and (b) a 2D
schematic.
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Figure 4.2 Grain loss versus grain throughput at a constant fan speed.

of the material allows good penetration of the grain through the layer and reduces grain loss.

Therefore, the research efforts have been focused on studying the fluidization state of grain

and chaff and the segregation in a fluidized bed.

4.2 Grain fluidization experiments and simulations

The grain has a non-spherical shape and the fluidization characteristics have not been well

studied in the literature, especially the drag force between gas (typically air) and grain in a

fluidized state has not been carefully measured. The drag force equation used in MFIX (see

equation 3.10) can take non-sphericity into account by using the particle dynamic diameter

(the diameter of a sphere having the same surface-to-volume ratio). However, the drag force

equation is an empirical correlation according to experimental results of different types of

particles (e.g., the experiments by Wen and Yu (1966)), which may deviate from the air-

grain drag characteristics. Therefore, grain fluidization experiments were conducted at the

Idaho National Laboratory to obtain grain-chaff fluidization characteristics in a controlled

study. Grain material properties were also measured, as listed in table 4.1. The experimental

procedure is first briefly introduced.

The experiment apparatus is a small-scale air column, whose dimension and instrumenta-

tion are shown in figure 4.3. Experiments were performed for a grain bed with initial height of



43

c

ab

dimensions (cm): a = 0.32; b = 0.16;

c = 0.16.

sphericity: 0.58

material density (g/cm3): 1.4918

Table 4.1 Grain is approximated as an ellipsoidal with semi-axes of length
a, b and c.

pressure tap

Drilled air−in pipe

Distributor

Plenum

Grain/Chaff bed

7.
62
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m

7.62 cm

38
.1

 c
m

Figure 4.3 Schematic graph of the central plane view of the air column for
grain-chaff fluidization experiments.
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Figure 4.4 2D computational domain with boundary conditions specified
for the grain fluidization simulation.

7.62 cm, which was compacted using vibration. Pressure drop across the bed and distributor

was measured for different flow rates. The experimental data was used to calibrate the drag

force formula used in MFIX simulations.

A two dimensional geometry was used to simulate the grain fluidization experiment with

an initial bed height of 7.62 cm. The computational domain is shown in figure 4.4, and the

basic computational parameters are listed in table 4.2. The full height of the experimental

domain was not simulated because experimental observations showed the bed did not expand

higher than 10 cm. A number of cases were run with inlet velocities of n× 10.35 cm/s, where

n = 1, 2 . . . 10. The velocities were so chosen that the corresponding flow rates represent

uniform increasing increments within the range of the experimental flow rates. The pressure

drop across the bed was obtained from the computational results and compared to experimental

data, as shown in figure 4.5. To calibrate the drag force formula against the experimental data,

the coefficients C and D in equation 3.13 were adjusted to make the computed results agree

reasonably with the experimental data. The simulation results obtained from three sets of

coefficient values are denoted as “CFD 1”, “CFD 2” and “CFD 3”, respectively in figure 4.5.
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Table 4.2 Computational parameters and initial and boundary conditions
for the grain fluidization simulation.

Geometry:

Height of domain 15.24 cm

Width of domain 7.62 cm

Horizontal grid size, ∆x 0.95 cm

Vertical grid size, ∆y 0.95 cm

Initial conditions:

Freeboard region

εg 1.0

Vg Umf

Bed region

Initial bed height 7.62 cm

εg 0.404

Vg Umf/εmf

Boundary conditions:

Uniform gas inflow Specified velocity

Specified pressure at outlet 101325.00 Pa

Wall boundary for gas phase No slip

Wall boundary for solid phase No slip

Numerical scheme:

Modified SIMPLE algorithm (see chapter 3)

Spatial discretization Second order

Temporal discretization First order

The values are listed in table 4.3. It can be observed from figure 4.5 that the simulations

whose drag force equation using C = 0.8 D = 2.65 (CFD 1) predict a pressure drop curve that

falls in the middle range of the experimental pressure drop curves. Therefore, the drag force

equation with the coefficients, C = 0.8 D = 2.65, is thought to be able to predict reasonably

the air-grain interaction in a typical combine clearing shoe setting. This parameter setting was

used for simulating biomass flow in a combine.

4.3 Simulation of biomass flow in a combine

CFD simulations for grain and chaff segregation have been performed using a three di-

mensional computational domain (see figure 4.6) resembling the upper space in the cleaning

shoe of a combine. Grain and chaff are modeled as spherical particles with the same dynamic
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Table 4.3 The values of coefficient C and D used for the simulations

C D

CFD 1: 0.8 2.65

CFD 2 0.7 3.44

CFD 3: 0.64 4.03

Inflow velocity (cm/s)

P
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Defluidization
curves

Figure 4.5 Experimental and computational pressure drop across the grain
bed. In the legend, “Expt 1”, “Expt 2” and “Expt 3” are the
results from the three sets of repeated experiments; “CFD 1”,
“CFD 2” and “CFD 3” are the results from CFD simulations
with drag force equation using coefficients C = 0.8 D = 2.65,
C = 0.7 D = 3.44 and C = 0.64 D = 4.03, respectively.
The red horizontal solid line is a guide to eyes for a mini-
mum fluidization pressure, ∆Pmf . This pressure is calculated
from the balance of pressure force with the bed weight, i.e.,
∆Pmf = (1 − εgmf)(ρs − ρg)gH, where H is the bed height.
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Figure 4.6 Computational domain for the simulation of biomass flow in a
combine shown in (a) a 3D view and (b) a view from y-z plane.

diameter. However, the material density of chaff is much less than that of grain; typically grain

density is 30 ∼ 40 times that of chaff. As seen from figure 4.6, grain and chaff are fed into the

domain from the upper part of the left y-z plane, mimicking the process of biomass coming

from the grain pan in a combine. Air flows in from the bottom of the domain. The boundary

conditions at the right y-z plane and top x-z plane are boundaries where ambient pressure is

specified. The rest of the domain boundaries are walls. Extensive simulations with various

air inflow velocities, grain and chaff feeding velocities have been performed for engineering

application purposes. However, since the results are not qualitatively different for the model-

ing purpose, only one typical simulation is presented here. The computational parameters are

listed in table 4.4.

The biomass flow process was simulated for 10 seconds. The results at the fifth second

are presented in figures 4.7–4.11, showing a 3D view of y-z planes and the central x-y plane.

Figure 4.7 shows the volume fractions of grain. It is demonstrated that grain is deposited

to the bottom of the domain after it drops from the upper inlet. The grain velocity profile

shown in figure 4.8 also indicates the trend of grain deposition. The volume fractions of chaff

in figure 4.9 show that chaff distributes mostly in the upper part of the domain and is blown

out the domain from the top and right outlets. The chaff velocity profile in figure 4.10 shows

the chaff blows out of the domain and it largely follows the trajectory of the gas flow as shown

in figure 4.11. To quantitatively study the segregation of grain from chaff, the average particle
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Table 4.4 Computational parameters and initial and boundary conditions
for the simulation of biomass flow in a combine.

Geometry:

Length of domain x 240 cm

Height of domain y 48 cm

Width of domain z 60 cm

Grid size ∆x 6 cm

Grid size ∆y 6 cm

Grid size ∆z 6 cm

Particle properties:

Grain diameter 0.23 cm

Grain density 1.4918 g/cm3

Chaff diameter 0.23 cm

Chaff density 0.0406 g/cm3

Initial conditions:

εg 1.0

Vg 85 cm/s

Boundary conditions:

Uniform gas inflow Vg = 85 cm/s

Grain-chaff inflow U = 10cm/s

Specified pressure at outlet 101325.0 Pa

Grain volume fraction at inlet 0.05

Chaff volume fraction at inlet 0.55

Wall boundary for gas phase No slip

Wall boundary for solid phase No slip

Numerical scheme:

Modified SIMPLE algorithm (see chapter 3)

Spatial discretization Second order

Temporal discretization First order
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heights of grain and chaff are shown in figure 4.12. An average particle height is defined as

< hp >=

∑Npart

i hi
Npart

=

∑Ncells

k εs, khk
∑Ncells

k εs, k
. (4.1)

The grain is quickly segregated at the bottom after 1 second while the chaff concentrates at

the upper part of the domain. Therefore, the basic segregation phenomena of biomass flow in

a combine is captured by the simulation.

4.4 Summary

In this chapter, it has been demonstrated that the grain fluidization characteristics, specifi-

cally the pressure drop curve, can be predicted by CFD simulations using the multi-fluid model

presented in chapter 3. The coefficients in the drag force model need to be calibrated to rea-

sonably reflect the fluctuations of the pressure drops in repeated experiments. The segregation

of grain from chaff in a combine has also been captured by CFD simulations.

However, it should be noted that the real particle properties such as roughness, shape

and size distribution are not considered in the current multi-fluid model. The additional

complexity caused by these properties are not able to be captured by the model. For example,

it was observed in the experiments that a pre-mixed grain and chaff mixture was difficult to

be fluidized and segregated. The whole biomass bed tended to be slugging, which could be

caused by particle inter-locking and friction. The inter-locking phenomena may happen in a

real combine but cannot be captured by the current model.

In order to derive models that can more accurately predict realistic multiphase flows, the

physics at particle scale is studied using the kinetic theory for granular flow, molecular dynamics

and a hybrid method. The studies are presented in the following chapters.
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Figure 4.7 Grain volume fraction distribution shown in (a) the y-z planes
and an iso-surface at volume fraction 0.02 and (b) the middle
x-y plane. The contour levels indicate the values of volume
fractions. The length unit is cm.
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Figure 4.8 Grain velocity vectors with their lengths and colors indicating
the velocity magnitudes shown in (a) a three dimensional view
and (b) a middle x-y plane. The velocity unit is cm/s. The
length unit is cm.
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Figure 4.9 Chaff volume fraction distribution shown in (a) the y-z planes
and an iso-surface at volume fraction 0.02 and (b) the middle
x-y plane. The contour levels indicate the values of volume
fractions. The length unit is cm.
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Figure 4.10 Chaff velocity vectors with their lengths and colors indicating
the velocity magnitudes in (a) a three dimensional view and
(b) a middle x-y plane. The black curves are streamlines orig-
inated at the inlet and middle y-z planes, respectively. The
velocity unit is cm/s. The length unit is cm.
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Figure 4.11 Gas velocity vectors with their lengths and colors indicating
the velocity magnitudes in (a) a three dimensional view and (b)
a middle x-y plane.The black curves are streamlines originated
at the inlet and middle y-z planes, respectively. The velocity
unit is cm/s. The length unit is cm.
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CHAPTER 5. HYDRODYNAMIC MODELING OF PARTICLE

ROTATION FOR SEGREGATION IN BUBBLING GAS FLUIDIZED

BEDS

A paper published in Chemical Engineering Science 1

Jin Sun and Francine Battaglia

Abstract

A multi-fluid Eulerian model has been improved by incorporating particle rotation using

kinetic theory for rapid granular flow of slightly frictional spheres. A simplified model was im-

plemented without changing the current kinetic theory framework by introducing an effective

coefficient of restitution to account for additional energy dissipation due to frictional collisions.

Simulations without and with particle rotation were performed to study the bubble dynamics

and bed expansion in a monodispersed bubbling gas-fluidized bed and the segregation phenom-

ena in a bidispersed bubbling gas-fluidized bed. Results were compared between simulations

without and with particle rotation and with corresponding experimental results. It was found

that the multi-fluid model with particle rotation better captures the bubble dynamics and

time-averaged bed behavior. The model predictions of segregation percentages agreed with ex-

perimental data in the fluidization regime where kinetic theory is valid to describe segregation

and mixing.

1Chemical Engineering Science, 61(5):1470–1479, 2006.
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Nomenclature

~c Instantaneous particle velocity

~C Translational particle velocity fluctuation

d Particle diameter

e Coefficient of normal restitution

F Drag coefficient

~g Gravity

g0 Equilibrium radial distribution function at contact

I Moment of inertia of a particle

~I Interphase momentum transfer

Jcoll Rate of dissipation of translational fluctuation kinetic energy

due to particle collisions

Jvis Rate of dissipation of translational fluctuation kinetic energy

due to interstitial gas viscous damping

mp Mass of a particle

~n Unit normal vector from a boundary to particles

R Rate of formation

Re Reynolds number

Sd Segregation degree

Sp Segregation percentage

S Stress tensor

U Fuidization velocity

~v Velocity for gas and solids phases

x Mass fraction

Greek letters

β0 Coefficient of tangential restitution

Φ Particle shape factor
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φ
′

Specularity coefficient for wall

Γ Rate of dissipation of rotational fluctuation kinetic energy

γslip Production of translational fluctuation kinetic energy

due to gas-particle slip

µ Coefficient of friction

~ω Particle angular velocity

~Ω Fluctuation in particle angular velocity

ε Volume fraction

ρ Density

θt Translational granular temperature

θr Rotational granular temperature

Superscripts/Subscripts

eff Effective parameters

g Gas phase

coll Collision

l lthsolid phase

m mthsolid phase

M Number of phases

mf Minimum fluidization

max Maximum value

N Number of species

p Particle

r Rotational

s Solid phase

t Translational

w Wall boundary
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5.1 Introduction

It is not uncommon to encounter industrial applications of dense gas-solid fluidized beds

for mixtures of particles with different physical properties such as size and density. Examples

of industrial applications are coal gasification, fluidized bed polymerization and granulation.

In such systems, the mixing of solids is often incomplete and a vertically non-uniform blend of

particles forms. For example, in a system consisting of particles of equal density but different

size, the bigger particles tend to reside at the bottom of the bed if the inlet velocity does

not exceed the minimum fluidization velocity of the bigger particles. The bigger particles in

this case are commonly referred to as jetsam. Smaller particles will float and reside at the

top of the bed, commonly referred to as floatsam (Hoffmann et al., 1993). Knowledge of the

degree and rate of this kind of segregation phenomena is very important for several reasons.

In many industrial fluidized beds, good mixing is required for uniform product quality or to

avoid defluidization. In other applications, however, the tendency for segregation is utilized

such as the case for continuous removal of a product.

Segregation phenomena in gas-fluidized beds have been extensively studied. Hoffmann et al.

(1993) experimentally studied systems consisting of particles of equal density but different sizes.

Wu and Baeyens (1998) also examined the behavior of equal density systems of large and small

particles. They showed segregation patterns where larger particles migrated to the bottom,

whereas the smaller particles concentrated at the top section of the bed. Nienow and Naimer

(1980) performed experiments on systems consisting of particles of equal size but different

density. These studies indicate that mixing and segregation of bubbling fluidized beds are

largely determined by the bubble dynamics. Bubbles act as a vehicle for both mixing and

segregation. Goldschmidt et al. (2003) measured bed expansion and segregation dynamics

with particles of well-known properties (size, shape, density and collision properties) in dense

gas-fluidized bed using digital image analysis. An advantage of the experimental setup is that

it can be easily simulated numerically using robust hydrodynamic models.

Numerical simulations of the hydrodynamics of gas-fluidized beds have been employed

as a useful tool to study segregation phenomena. Recently, Hoomans et al. (2000) showed
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bubble dynamics in dense gas-fluidized beds strongly depend on the amount of energy dissi-

pated by particle-particle collisions using hard sphere discrete particle models. Goldschmidt

et al. (Goldschmidt et al., 2001a,b; Goldschmidt, 2001) used Eulerian models to study the

segregation phenomena in bubbling gas-fluidized beds. The number of particles specified using

a discrete particle model (typically less than 106) was an order of magnitude lower than that

encountered in most industrial fluidized beds (Goldschmidt, 2001).

In order to describe the segregation phenomena in large industrial-scale fluidized bed reac-

tors, a multi-fluid Eulerian model is better than a Lagrangian model due to the computational

expense to simulate large numbers of particles. In this kind of model both gas and particu-

late phases are described as interpenetrating continua and the kinetic theory of granular flow

(KTGF) is used to provide constitutive closures for particulate phases. Although Eulerian mod-

els have been developed and used to study bed hydrodynamics and segregation (Goldschmidt

et al., 2001a,b; Goldschmidt, 2001; Enwald et al., 1996; Gidaspow, 1994), these models can not

describe quantitatively segregation rates in polydispersed fluidized beds. For example, higher

segregation rates were predicted by numerical simulations compared with experiments, as re-

ported by Goldschmidt et al. (2001b). It is speculated that KTGF, which is limited to slightly

inelastic spherical particles and does not allow for particle rotation, underestimates the amount

of energy dissipated in the frictional inelastic collisions for common particles. Consequently

the bubble intensity is underestimated. Further studies (Goldschmidt, 2001) showed that the

absence of rotation and subsequent energy losses is a deficiency of the multi-fluid model in

contrast to discrete particle models which provide closer resemblance to experimental results.

Therefore, it should be of interest to incorporate particle rotation into the hydrodynamic model

and analyze the effects on segregation in gas-fluidized beds.

In principle, particle rotation can be incorporated in a multi-fluid model by addition of con-

servation equations for angular momentum and rotational fluctuation kinetic energy. Jenkins

and Richman (1985) and Lun and Savage (1987) derived models for rough disks and spheres,

respectively. The kinetic energies associated with fluctuations in both translational velocity

and spin were considered. The addition of conservation equations for angular momentum and
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rotational fluctuation kinetic energy greatly increase the complexity of the kinetic theory. Since

the most important influence of particle rotation on bed dynamics is the energy dissipation, a

simpler approach which only modifies the granular energy dissipation seems promising.

In this work, particle rotation is incorporated into a multi-fluid Eulerian model using a

simple kinetic theory for rapid granular flow of slightly frictional spheres (Jenkins and Zhang,

2002). The improved multi-fluid Eulerian model is used to study the size-driven segregation in

a bidispersed gas-solid fluidized bed. Results from the particle rotation model are compared

with numerical simulations without particle rotation and with corresponding experimental

results.

5.2 Methodology

5.2.1 Basic multi-fluid model

A Fortran code, Multiphase Flow with Interphase eXchanges (MFIX), is used for all sim-

ulations in this work. The multi-fluid Eulerian model in MFIX divides the particle mixture

into a discrete number of phases, each of which can have different physical properties and can

be mathematically described as interpenetrating continua. The governing equations for the

multi-fluid model are as follows (Syamlal et al., 1993):

Continuity equation for gas phase

∂

∂t
(εgρg) + ∇ · (εgρg~vg) =

Ng
∑

n=1

Rgn . (5.1)

Continuity equation for mth solid phase

∂

∂t
(εsmρsm) + ∇ · (εsmρsm~vsm) =

Nsm
∑

n=1

Rsmn . (5.2)

Momentum equation for gas-phase

∂

∂t
(εgρg~vg) + ∇ · (εgρg~vg~vg) = ∇ · Sg + εgρg~g −

M
∑

m=1

~Igm . (5.3)
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Momentum equation for mth solid-phase

∂

∂t
(εsmρsm~vsm) + ∇ · (εsmρsm~vsm~vsm) =

∇ · Ssm + εsmρsm~g + ~Igm −
M
∑

l=1
l 6=m

~Iml . (5.4)

Translational granular temperature equation (Agrawal et al., 2001)

3

2

[

∂

∂t
(εsmρsmθsm,t) + ∇ · (εsmρsmθsm,t~vsm)

]

=

−∇ · ~qsm − Ssm : ∇~vsm + γsm,slip − Jsm,coll − Jsm,vis , (5.5)

where the translational granular temperature is defined as

θsm,t =
1

3
< C2

sm > . (5.6)

The fluctuation in the particle translational velocity shown in Eqn. 5.6 is defined as ~Csm =

~csm− < ~csm >, where ~csm is the instantaneous translational velocity and <> is the ensemble

average.

Constitutive equations for the gas phase stress tensor (Sg) and gas-solid momentum transfer

(~Igm) can be found in Syamlal et al. (1993). The solid-solid interaction term (~Ism) was derived

by Syamlal (1987a) using a simple model from kinetic theory, in which singlet velocity distri-

bution functions were expressed as Dirac delta functions. Thus, granular temperature terms

do not appear in the solid-solid interaction. The constitutive equations for multi-component

solid mixtures are derived from granular flow theory. There are two distinct flow regimes for

granular flow: a viscous or rapidly shearing regime in which stresses arise due to collisional

or translational momentum transfer, and a plastic or slowly shearing regime in which stresses

arise due to Coulomb friction between particles in enduring contact (Syamlal et al., 1993).

The rapid granular flow regime is of main interest in this research. The constitutive equations

used in MFIX for this regime were derived based on kinetic theory of granular flow, derived by

Lun et al. (1984) and modified by Ma and Ahmadi (1988) to take into account of the effects

of interstitial gas on particle phase viscosity and thermal diffusivity.
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The constitutive relationship and boundary conditions, which will be modified in the par-

ticle rotation model, are shown in the following. The rate of dissipation of translational fluc-

tuation kinetic energy due to particle collisions is defined as:

Jsm,coll =
12√
π

(1 − e2sm)
ρsmε

2
sm

dm
g0mmθ

3/2
sm,t . (5.7)

The partial slip boundary conditions for particle-wall interactions, proposed by Johnson and

Jackson (1987), are employed. The boundary condition for the slip velocity is:

~vsm,slip · Ssm · ~n+

√
3π

6εsm,max
φ

′

ρsmεsmg0mmθ
1/2
sm,t|~vsm,slip|2 = 0 . (5.8)

The boundary condition for the flux of translational fluctuation energy to the wall is:

−~n · ~qsm =

√
3π

4εsm,max
(1 − e2w)εsmρsmg0mmθ

3/2
sm,t + ~vsm,slip · Ssm · ~n , (5.9)

where

~vsm,slip = ~vsm − ~vw . (5.10)

5.2.2 Particle rotation model

Most common particles are frictional as well as inelastic. As a result, particles can rotate

with angular velocity ~ω and translate under rapid rates of deformation. Lun et al. (Lun and

Savage, 1987; Lun, 1991) developed a kinetic theory for a system of inelastic, rough spheres

to study the effects of particle surface friction and rotational inertia. Jenkins and Richman

(1985) used Grad’s method of moments to derive conservation laws and constitutive relations

for planar flows of a dense gas consisting of identical, rough, inelastic, circular disks. In these

theories (Lun and Savage, 1987; Lun, 1991; Jenkins and Richman, 1985), two granular tem-

peratures are involved. The first is translational granular temperature θt, which measures

the energy associated with the translational velocity fluctuations, as defined in Eqn. 5.6. The

second is rotational granular temperature θr, which measures the energy associated with the

angular velocity fluctuations, defined as θr = 1
3mp

I < Ω2 >, where I is moment of inertia,

~Ω = ~ω− < ~ω > is the angular velocity fluctuation and mp is the mass of a particle. Addi-

tional conservation equations for angular momentum and rotational granular temperature are
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required, which greatly increase the complexity of the kinetic theory and is often difficult to

apply to general flows. Since the most important influence of particle rotation on bed dynamics

is the additional energy dissipation due to frictional collisions, a simpler approach which only

modifies the translational fluctuation energy dissipation seems promising.

A simple model from kinetic theory for rapid flow of identical, slightly frictional, nearly

elastic spheres (Jenkins and Zhang, 2002) was adapted to incorporate particle rotation into

the multi-fluid model presented in the previous section. In this model, the frictional collision

is described by a normal restitution coefficient e, a friction coefficient µ and a tangential resti-

tution coefficient β0. For slightly frictional spheres, the distribution of translational velocities

does not differ too much from that for smooth spheres. The balance equations for the moments

associated with the rotational degree of freedom are satisfied in an approximate way by ignor-

ing unsteady and inhomogeneous terms. Thus, the conservation of angular momentum reduces

to the requirement that the mean spin of spheres be equal to half the vorticity of their mean

velocity. The conservation of rotational fluctuation kinetic energy is approximately satisfied

by requiring that the net rate of energy production for the angular velocity fluctuations is

zero. The influence of friction on the collisional transfer of linear momentum and translational

energy is negligible, and the stress and the translational energy flux are identical to those for

smooth, elastic spheres. Only the dissipation rates for translational and rotational fluctuation

energy, Jsm,coll and Γsm respectively, are influenced by friction. The approximations of Jsm,coll

and Γsm are (Jenkins and Zhang, 2002):

Jsm,coll =
12√
π

ρsε
2
sm

dm
g0mmθ

3/2
sm,t

[

2(1 − esm) + a1 − a2
θsm,r
θsm,t

]

, (5.11)

where

a1 ≡ µ

µ0

[

πµ0

(

1 − 2

π
arctan µ0

)

+
2µ2

0

1 + µ2
0

(

1 − 2
µ

µ0

)]

, (5.12)

a2 ≡ 5µ

µ0

[

π

2
µ0

(

1 − 2

π
arctan µ0

)

− µ4
0

(1 + µ2
0)

2

]

, (5.13)

and

Γsm = −120√
π

ρsε
2
sm

dpm
g0mmθ

3/2
sm,t

[

b1 − b2
θsm,r
θsm,t

]

, (5.14)
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where

b1 ≡
(

µ

µ0

)2 µ2
0

1 + µ2
0

(5.15)

b2 ≡ µ

2µ0

[

π

2
µ0

(

1 − 2

π
arctan µ0

)

+
µ2

0

1 + µ2
0

]

(5.16)

µ0 ≡ 7

2
µ

1 + esm
1 + β0

. (5.17)

The conservation equation for rotational granular energy is approximately satisfied by

setting the rate of dissipation of rotational granular energy equal to zero. Then, the rotational

granular temperature θsm,r is determined in terms of the translational granular temperature

θsm,t:

θsm,r
θsm,t

=
b1
b2

. (5.18)

Substituting Eqn. 5.18 to Eqn. 5.11 and comparing the result to Eqn. 5.7, we can define an

effective coefficient of restitution esm,eff (assuming that (1 + esm) ≈ 2, i.e. nearly elastic):

esm,eff = esm − 1

2
a1 +

a2b1
2b2

. (5.19)

Thus, the kinetic theory for slightly frictional, nearly elastic spheres has the same structure

as that for frictionless spheres, i.e., only conservation of mass, mean translational velocity

and translational temperature need to be considered. The modification to the multi-fluid

model is through the introduction of an effective coefficient of restitution that incorporates the

additional dissipation due to frictional interactions in the rate of dissipation of translational

fluctuation energy.

The only equations that need to be modified are the dissipation terms in the translational

granular temperature equation and the partial slip boundary condition for the flux of transla-

tional fluctuation energy to the wall. The corresponding equations, 5.7 and 5.9 become:

Jsm,coll =
12√
π

(1 + esm)(1 − esm,eff)
ρsmε

2
sm

dm
g0mmθ

3/2
sm,t , (5.20)

and

−~n · ~qsm =

√
3π

4εs,max
(1 + ew)(1 − ew,eff)εsmρsmg0mmθ

3/2
sm,t + ~vsm,slip · Ssm · ~n . (5.21)



66

5.2.3 Numerical formulation

MFIX uses a finite volume approach with a staggered grid for the discretization of the

governing equations to reduce numerical instabilities (Syamlal, 1998). Scalars such as pressure

and volume fraction are stored at the cell centers and the velocity components are stored

at cell surfaces. A second-order discretization is used for spatial derivatives and first-order

discretization for temporal derivatives. A modified SIMPLE algorithm with partial elimination

of interphase coupling is employed to solve the discretized equations (Syamlal, 1998).

5.3 Computational cases and results

The effects of particle rotation on the hydrodynamics of segregation in a gas-solid fluidized

bed is examined. Previous experiments by Goldschmidt et al. (Goldschmidt, 2001; Goldschmidt

et al., 2003) are used to benchmark the numerical simulations using the multi-fluid model with

and without particle rotation. Goldschmidt et al. examined monodispersed (Goldschmidt,

2001) and bidispersed (Goldschmidt et al., 2003) gas-solid fluidized systems using digital image

analysis techniques. The rectangular geometry of the experimental setup was pseudo-two-

dimensional due to the small chamber depth relative to the height and width (see Tab. 5.1).

The thin depth suppresses particle motion in that direction in the experiments and the effect

of the front and back walls to the bed was not considered of interest (Goldschmidt, 2001).

A two-dimensional computational domain was used in the fluidized bed simulations, which

is a physical reliable model of the pseudo-two-dimensional experiment. The dimensions are

shown in Fig. 5.1 for a Cartesian coordinate system. The domain and grid size are specified in

Tab. 5.2. Although the experiment used a system with a domain height of 70 cm, the compu-

tational domain height was reduced to 45 cm to avoid computationally expensive simulations

yet ensuring the bed dynamics are physical. It was evident from the experiments that the bed

did not expand above 30 cm. The particle properties and collision parameters cited in the

experiments (see Tab. 5.1) are used as input parameters for the numerical work to test and

validate the particle rotation model. The effective coefficients of restitution for these two kinds

of particles are calculated using Eqn. 5.19 and the values are shown in Tab. 5.1.
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Table 5.1 Geometry of the experimental system and particle properties.

height 70 cm

width 15 cm

depth 1.5 cm

Small particles Large particles

dp 1.52 ± 0.04 mm 2.49 ± 0.02 mm

ρp 2523 ± 6 kg/m3 2526 ± 6 kg/m3

Φp ∼ 1 ∼ 1

Umf 92 cm/s 128 cm/s

Particle-particle collision parameters

esm 0.97 ± 0.01 0.97 ± 0.01

µ 0.15 ± 0.015 0.10 ± 0.01

β0 0.33 ± 0.05 0.33 ± 0.05

em,eff 0.83 0.86

Particle-wall collision parameters

ew 0.97 ± 0.01 0.97 ± 0.01

µw 0.10 ± 0.015 0.09 ± 0.01

β0,w 0.33 ± 0.05 0.33 ± 0.05

ew,eff 0.86 0.87

A spatial grid refinement study was performed to determine the grid sensitivity of the

computational results. Three successively halved grids, i.e., coarse, medium and fine grids, were

used. The study showed that the grid refinement from coarse to medium grid size improved

the results by a relatively large degree, while refinement from medium to fine grid size had

little influence on time-averaged results. A Richardson extrapolation based on the medium

and fine grids was used to provide error estimates. The time-averaged voidage for medium

grid had an average error of 1.4 % and a maximum error of 3.7 %, compared to the Richardson

extrapolation results. As a conclusion from the grid refinement study, the medium grid size

was used for the remaining simulations as cited in Tab. 5.2. In addition, the current grid

size is of the order of a few particle diameters, which is thought to adequately resolve the

meso-scale structures of gas-solid flows (Agrawal et al., 2001). Computational results were

not sensitive to time step change since an adaptive time stepping algorithm was used. For all
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Figure 5.1 Geometry of the 2-D computational domain and boundary con-
ditions.

simulations, the initial and boundary conditions are listed in Tab. 5.2, and numbers for the

minimum fluidization voidage and inlet gas velocity will follow in the text.

A case simulating the monodispersed powder of large particles was first performed to cali-

brate the particle rotation model incorporated into MFIX. The minimum fluidization voidage

εmf was set to 0.417 and the gas inflow velocity was 1.5 Umf , where the Umf is for large par-

ticles (see Tab. 5.2). Simulations without and with particle rotation were run for 10 seconds.

The instantaneous gas volume fractions are shown at two-second intervals in Fig. 5.2. Each

subfigure (a-f) has a pair of frames, whereby the left frame shows results for the simulation

without particle rotation and the right frame shows results with particle rotation. The model

with particle rotation predicts bigger bubbles and higher gas volume fractions compared to

the model without particle rotation. The primary reason is that more energy dissipates due

to particle rotation and particle velocities decrease after impact, leading to a more closely

spaced particle ensemble and thus higher gas volume fraction. A consequence is that gas-solid

interactions exert higher drag forces on particles and cause the particles to move vigorously.

Thus, particle rotation increases the bubble intensity, which is consistent with the numerical

findings of Hoomans et al. (1996) using a discrete particle model.

Time-averaged results were analyzed after 5 s to avoid initial transient fluctuations. Aver-
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Figure 5.2 Instantaneous gas volume fraction for a monodispersed fluidized
bed with inlet gas velocity of 1.5 Umf at (a) 0 s, (b) 2 s, (c) 4 s,
(d) 6 s, (e) 8 s and (f) 10 s. For each subframe, the left side are
simulations without particle rotation and the right frame with
particle rotation.
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Table 5.2 Computational domain and general initial and boundary condi-
tions.

Geometry:

Height of domain 45 cm

Width of domain 15 cm

Horizontal grid size, ∆x 1.0 cm

Vertical grid size, ∆y 1.0 cm

Initial conditions:

Freeboard region

εg 1.0

vg Umf

Bed region

Initial bed height 15 cm

εg εmf

vg Umf/εmf

Boundary conditions:

Uniform gas inflow Specified velocity

Specified pressure at outlet 101325.0 Pa

Wall boundary for gas phase No slip

Wall boundary for solid phase Partial slip

aging from 5 s to 10 s is sufficient since further averaging in time beyond 10 s provides no new

additional information for this monodispersed system. The solid volume fraction averaged over

5-10 s is shown in Fig. 5.3 (a) and (b) without and with particle rotation, respectively. The

particle volume fraction profile without particle rotation has a more homogeneous distribution.

With particle rotation, higher particle volume fractions were obtained near the walls and larger

bubbles formed in the bed center as was demonstrated in Fig. 5.2. This near-wall distribution

is consistent with experimental observations of Goldschmidt (2001). In Fig. 5.4, a similar com-

parison shows that the particle rotation model also predicts better particle distribution for the

same case where the inlet gas velocity is increased to 2.0 Umf .

To characterize the bed expansion, an average particle height is defined as

< hp >=

∑Npart

i hi
Npart

=

∑Ncells

k εs, khk
∑Ncells

k εs, k
. (5.22)

The time-averaged particle height was calculated over 5-10 s. The < hp > from the

simulations without and with particle rotation were compared to the experimental data in
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Table 5.3 Time averaged bed heights from experiments and simulations.

1.5 Umf 2.0 Umf

Experiments 0.1140 m 0.1180 m

Model without rotation 0.0921 m 0.1102 m

Model with rotation 0.0973 m 0.1176 m

(a) (b)

0.500
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0.325
0.290
0.255
0.220
0.185
0.150
0.115
0.080
0.045
0.010

Figure 5.3 Time averaged particle volume fraction for a monodispersed
fluidized bed with inlet gas velocity of 1.5 Umf for the model
(a) without particle rotation and (b) with particle rotation.

Tab. 5.3. Overall, the model with particle rotation was able to better capture bubble dynamics

and bed expansion of monodispersed gas-solid fluidized systems. Based on these results for a

monodispersed fluidized bed, the particle rotation model should better predict the segregation

phenomena in a polydispersed system where bubbles play a dominant role in transporting

particles.

Simulations of a binary mixture of small and large particles were examined next. The

minimum fluidization voidage is also 0.417. The initial gas velocity vg was set as the minimum

fluidization velocity of the small particles in the freeboard region. The mass fraction of the small

particles xsmall was 0.5. Small and large particles were perfectly mixed. This assumption yields

equal volume fractions of both small and large particles assuming the maximum packing density
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Figure 5.4 Time averaged particle volume fraction for a monodispersed
fluidized bed with inlet gas velocity of 2.0 Umf for the model
(a) without particle rotation and (b) with particle rotation.

in a fluidized state for small and large particles are equal. The gas inflow velocity is 1.3 m/s,

slightly higher than the minimum fluidization velocity of the larger particles. Simulations

without and with particle rotation were both run for 20 s each.

Figure 5.5 shows bubble dynamics of the binary mixture system without and with particle

rotation. The instantaneous gas volume fractions are shown in Fig. 5.5. Each subfigure (a-f)

has a pair of frames, whereby the left frame shows results for the simulation without particle

rotation and the right frame shows results for particle rotation. It can be seen that larger

bubbles formed, i.e., the bubble intensity increased, with the inclusion of particle rotation.

To understand the particles distribution in the bed, time averaged solid volume fractions

spatially averaged over the bed width, are shown in Fig. 5.6 with respect to the bed height.

Each curve represents the particle distribution with respect to particle size and rotation. The

model without particle rotation predicts significant segregation, whereby large particles pre-

dominately occupy the bottom of the bed and small particles reside closer to the top. In

contrast, the solid volume fractions of the small and large particles based on the rotation

model tend to be equally distributed throughout the bed. The model with particle rotation
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Figure 5.5 Instantaneous gas volume fraction for a bidispersed fluidized
bed at (a) 0 s, (b) 6 s, (c) 10 s, (d) 14 s, (e) 18 s and (f) 20
s. For each subframe, The left side are simulations without
particle rotation and the right frame with particle rotation.

predicts better mixing except at the bottom, where there is a small difference between them.

The model with particle rotation also predicts higher bed expansion because of larger bubble

intensity as mentioned above.

To further investigate the segregation extent and rate, the segregation percentage is de-

fined (Goldschmidt et al., 2003):

sp =
Sp − 1

Sp,max − 1
, (5.23)

and sp equals 0 when the particles are perfectly mixed and 1 when the mixture has completely

segregated. The parameter Sp is the ratio of the average heights of the small and large particles
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Figure 5.6 Time averaged solid volume fractions as a function of bed height
normalized by the maximum bed height 45 cm.

according to Eqn. 5.22:

Sp =
< hsmall >

< hlarge >
. (5.24)

The parameter Sp,max is the maximum degree of segregation, which can be calculated in terms

of mixture composition (assuming the maximum packing density in the fluidized state for small

particles equals that for large particles) from:

Sp,max =
2 − xsmall

1 − xsmall
. (5.25)

Figure 5.7 shows the segregation percentage for the numerical simulations without and

with particle rotation and how they compare to the experimental data provided by Gold-

schmidt (Goldschmidt et al., 2003; Goldschmidt, 2001). The experimental data were averaged

over 1 s time intervals, while the numerical results are instantaneous values at 0.1 s time inter-

vals. The simulation without particle rotation over-predicts the segregation percentages and

has a much higher segregation rate. The simulation with particle rotation, on the other hand,
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Figure 5.7 Segregation percentages from simulations without and with par-
ticle rotation and experiments for gas inlet velocity of 1.30 m/s,
experimental data were averaged over 1 s time intervals.

is in good agreement with the experimental data. For this case, recall that the inlet velocity

was slightly greater than the minimum fluidization velocity for the larger particles. Thus, both

small and large particles fluidize, creating a well mixed system.

Further simulations using MFIX (without and with the rotational model) were conducted

for other bidispersed fluidized bed systems (for example, the study by Hoomans et al. (2000)).

Results showed the same improvement: the rotational model effectively reduced segregation

percentages as long as the inlet gas flow was within the same limits with respect to the small

and large particle minimum fluidization velocities.

It is, however, worth while to point out that the particle rotation model does not have the

same kind of improvement for segregation cases where the gas inlet velocity is between the

minimum fluidization velocities of the small and large particles. As shown in Fig. 5.8, for a

case with gas inlet velocity at 1.0 m/s, numerical results with and without particle rotation
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Figure 5.8 Segregation percentages from simulations without and with par-
ticle rotation and experimentsfor gas inlet velocity of 1.00 m/s,
experimental data were averaged over 1 s time intervals.

both predicted much higher segregation percentages than the experimental data. The particle

rotation model predicted larger fluctuations of the segregation percentages, which can also be

attributed to the increased bubble intensity by this model. The major discrepancy between

numerical results and experimental results, however, is due to the fact that the large particles

are not very well fluidized in this conditions and thus the “hindrance effect” (Gera et al., 2004)

is produced between the small particles and the reluctant large particles. To account for this

kind of hindrance effect is beyond the capability of the current kinetic theory for granular

flows.

5.4 Conclusions

A multi-fluid Eulerian model has been improved by incorporating particle rotation using

a simplified kinetic theory for rapid granular flow of slightly frictional spheres. Simulations
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without and with particle rotation were performed to study bubble dynamics in a monodis-

persed gas-solid fluidized bed and segregation phenomena in a dense gas-solid fluidized bed

of a binary solid mixture. Results were compared between simulations with and without the

particle rotation model and with corresponding experimental results. To the authors’ knowl-

edge, this is the first time a multi-fluid model with particle rotation has been used to study

segregation phenomena in gas-fluidized beds. In the monodispersed system, bubble intensity

and bed expansion increased as a result of more energy dissipation with the particle rotation

model, which better agrees with experimental results. In the binary systems studied in this

paper, better agreement was achieved by using the model with particle rotation in the regime

where kinetic theory is applicable and the particle-particle interactions have a noticeable ef-

fect on segregation. Despite these limitations on applications of the particle rotation model,

preliminary results indicated that particle rotation is an important microscopic physics to be

incorporated into the fundamental hydrodynamic model.

For further model development, the particle rotation effect can be more directly coupled to

the momentum transfer between solid phases, which is very important to segregation, in the

following two aspects. First, the granular temperature can be included in the solids momentum

transfer term. Second, the influence of particle rotation on collisional transfer of the linear

momentum can be considered by more sophisticated kinetic theory. Whether including these

two factors will better model segregation phenomena in bubbling gas-fluidized beds will be of

interest for further investigation. The authors also recognize that the two-dimensional domain

reduces the rotation effect, therefore, particle rotation in a three-dimensional domain will be

addressed in future studies.
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CHAPTER 6. DYNAMICS AND STRUCTURES OF SEGREGATION

IN A DENSE, VIBRATING GRANULAR BED

A paper published in Physical Review E 1

Jin Sun, Francine Battaglia and Shankar Subramaniam

Abstract

We study the rise dynamics of a large particle in a granular bed under vertical vibration

using molecular dynamics simulations. Systematic variation of the particle properties and

external wall friction in the simulations shows that the large particle rising is very sensitive to

external wall friction. The dynamical response of the granular bed with wall friction is shown

to include an expansion stage and a compression stage within one cycle. With wall friction,

large-scale force networks bearing larger-than-average forces are found in the compression stage.

However, without wall friction, large strong force networks do not exist. The distribution of

normal contact forces in the force networks is found to have an exponential tail similar to

those in packing experiments. Numerical estimation of the two-point spatial correlation of

normal contact force reveals predominantly short-range force correlation persisting over only

2-3 particle diameters. The structural properties of the force network are analyzed using a

novel graph-theoretic approach, which is a modification of a minimum spanning tree (MST)

constructed on the particles in physical space. The modified MST algorithm, which identifies

local structures such as nearest neighbors, asymptotically recovers all particle contacts, the force

distribution, and spatial force correlation of the force network. This indicates that although

wall friction strongly affects the rising dynamics of the Brazil nut over the device scale (tens of

particle diameters) through the force network, it does so through local short-range interactions.

1Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 74(6):061307–13, 2006.
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Thus this study affirms the basis for local constitutive models in continuum descriptions of

segregation.

6.1 Introduction

Segregation in granular media occurs both in nature and in industrial processes. Therefore,

a fundamental understanding of the dynamics and mechanisms of segregation is of practical

importance. A canonical problem in granular segregation is the rise or fall of a large particle

in a bed of small particles as a consequence of vibration applied to the granular bed. This

phenomenon was first named the “Brazil nut problem” (BNP) 2 by Rosato et al. (1987), who

used a Monte Carlo method to study this problem. Since then there have been extensive exper-

imental studies, theoretical investigations, and computer simulations of the BNP. Simulation

of the BNP is acknowledged as a benchmark of granular segregation.

Granular segregation observed in the BNP is dependent on particle properties, flow condi-

tions and external boundary conditions, and is not explained by a single mechanism. While

many mechanisms have been proposed from different perspectives to explain the BNP phe-

nomenon, no unified theory has yet emerged and our understanding is still incomplete. This

is in part because the mechanisms do not solely manifest themselves in clearly demarcated

regimes, but rather they appear to coexist across different regimes. The problem is further

complicated by the interaction between different time and length scales, which is affected by

the bed vibration parameters, namely the amplitude and frequency (Rosato et al., 2002).

The vibration parameters can be characterized by the dimensionless amplitude A0/d0,

where A0 is the vibration amplitude and d0 is the particle diameter, and the dimensionless

frequency ω0

√

d0/g. When characterizing the dynamics of the BNP, these appear in combina-

tion as a dimensionless acceleration Γ = A0ω
2
0/g, which characterizes the acceleration due to

external forced vibration relative to gravity.

Some segregation mechanisms may be classified into two categories according to the ac-

celeration and frequency in the system (Huerta and Ruiz-Suárez, 2004b). For Γ > 1 and low

2The Brazil nut is a name coined from the observed behavior of shaking a can of mixed nuts and noting that
the Brazil nut rises to the top.
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frequencies, convection and inertia are proposed as segregation mechanisms. Convection, where

particles descend along vertical (frictional) walls and ascend at the center, is proposed as the

dominant mechanism (Knight et al., 1993) when ρr, the relative density of the large particle

to small particles, is less than a critical value ρrc (ρrc ≈ 0.57 from experiments in Ref. (Huerta

and Ruiz-Suárez, 2004a)). On the other hand, inertia dominates when ρr > ρrc. The inertia

effect is believed to dominate segregation in the granular system studied in this paper, where

Γ = 3.39, ω0

√

d0/g = 0.67 and ρr = 7.09 (calculated from parameters in Table 6.1).

For Γ > 1 with small amplitudes and high frequencies, where the granulate is fluidized

without convection, a “buoyancy force” analogous to fluid buoyancy has been proposed to

predict the Brazil nut effect (Shishodia and Wassgren, 2001; Trujillo et al., 2003). Other

mechanisms from topological considerations have also been proposed, such as arching (Duran

et al., 1993) and “void filling” beneath large particles (Rosato et al., 2002). In addition to

these mechanisms, air-driven segregation has also been found to be important in the case of

very fine particles (Möbius et al., 2001; Burtally et al., 2002; Möbius et al., 2004). Despite

the variety of mechanisms proposed, many important details of the microscopic dynamics

driving the segregation remain unknown. For instance, while the existence of force chains

in three-dimensional vibrating granular systems and its role in the segregation have been

hypothesized (Nahmad-Molinari et al., 2003), the sensitivity of the force chain formation to

external boundary conditions is still unclear.

In this paper, we investigate the segregation dynamics of the BNP using molecular dynamics

(MD) simulations, which allow us to systematically examine the effects of particle properties

and external wall boundary conditions that are not easily controllable in experimental studies.

We compare the rising time to a related experimental system (Nahmad-Molinari et al., 2003)

and show that the rising of the large particle is very sensitive to wall friction. Furthermore,

we show the existence of large-scale force networks when wall friction is present and relate

the rise dynamics to formation and destruction of these force networks. We also calculate

the force distribution and force correlation within the granular bulk and discuss their physical

implications and similarity to force statistics in granular packs. We propose a graph-theoretic
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Figure 6.1 Schematic of two particles i and j in contact and position vec-
tors ri, rj, respectively, with overlap δij .

approach based on minimum spanning trees (MST) to analyze the force networks. The multi-

pass MST is shown to capture microstructural information, i.e., the particle configuration and

connectivity information, which may be used to define a length scale for continuum modeling.

Force statistics are also recovered by the multi-pass MST algorithm.

In the next section we briefly describe the simulation methodology and computational

model setup. In section 6.3, we present results for rising dynamics, force networks and the

MST algorithm. In section 6.4 we summarize and conclude this work.

6.2 Model and method

Molecular dynamics simulations of the Brazil nut problem are performed using a soft sphere

model for one large particle and N − 1 small particles, which interact via contact laws and

friction only on contact. Since the realistic modeling of particle deformations is complicated,

a simplified contact force and the overlap relation (Silbert et al., 2001), the so called spring-

dashpot model, is used in this work. The principle of the computational model used in the

MD simulations is demonstrated in the following.

For two contacting particles {i, j}, with radii {ai, aj}, at positions {ri, rj}, with velocities

{vi, vj} and angular velocities {ωi, ωj} (see figure 6.1), the normal compression δij , relative

normal velocity vnij
, and relative tangential velocity vtij

are (Silbert et al., 2001):
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δij = d− rij, (6.1)

vnij
= (vij · nij)nij , (6.2)

vtij
= vij − vnij

− (aiωi + ajωj) × nij , (6.3)

where d = ai + aj, rij = ri − rj, nij = rij/rij , with rij = |rij | and vij = vi − vj. The rate of

change of the elastic tangential displacement utij
, set to zero at the initiation of a contact is:

dutij

dt
= vtij

−
(utij

· vij)rij
r2ij

. (6.4)

The last term in equation 6.4 arises from the rigid body rotation around the contact point

and ensures that utij
always lies in the local tangent plane of contact. Normal and tangential

forces acting on particle i are:

Fnij
= f(δij/d)(knδijnij − γnmeffvnij

), (6.5)

Ftij
= f(δij/d)(−ktutij

− γtmeffvtij
), (6.6)

where kn,t and γn,t are the spring stiffness and viscoelastic constants, respectively, and meff =

mimj/(mi +mj) is the effective mass of spheres with masses mi and mj . The corresponding

contact force on particle j is simply given by Newton’s third law, i.e., Fji = −Fij. The

function f(δij/d) = 1 is for the linear spring-dashpot model, and f(δij/d) =
√

δij/d is for

Hertzian contacts with viscoelastic damping between spheres.

Static friction is implemented by keeping track of the elastic shear displacement throughout

the lifetime of a contact. The static yield criterion, characterized by a local particle friction

coefficient µ, is modeled by truncating the magnitude of utij
as necessary to satisfy |Ftij

| <

|µFnij
|. Thus the contact surfaces are treated as “sticking” when |Ftij

| < |µFnij
|, and as

“slipping” when the yield criterion is satisfied.

In a gravitational field g, the translational and rotational accelerations of particles are

determined by Newton’s second law in terms of the total forces acting on each particle i:

Ftot
i = mig +

∑

j

Fnij
+ Ftij

− bvi, (6.7)
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and total torques acting on each particle i:

τ tot
i = −1

2

∑

j

rij × Ftij
. (6.8)

The last term −bvi in the force equation represents an external damping force. This term

is used to artificially enhance the energy dissipation due to two-particle contact, which is

under-predicted by the MD contact force model (Luding, 2004; Luding et al., 1994). A similar

damping term can also arise from the viscous drag a particle experiences due to the presence

of an interstitial fluid, but that term is proportional to the relative velocity between particle

and fluid.

The amount of energy lost in collisions is characterized by the inelasticity through the value

of the coefficient of restitution e, which is defined as the negative ratio of the particle normal

velocity after collision to the velocity before collision. For the linear spring-dashpot model, the

coefficient of normal restitution and contact time can be analytically obtained:

en = exp(−γntc/2), (6.9)

where the contact time tc is given by:

tc = π(kn/meff − γ2
n/4)

−1/2. (6.10)

The value of the spring constant should be large enough to avoid particle interpenetration,

yet not so large as to require an unreasonably small simulation time step δt, since an accurate

simulation typically requires δt ∼ tc/50. After the contact force is calculated, the equations

of motion, which are ordinary differential equations, can be numerically integrated to get the

particle trajectories.

The computational setup models the experiment in Ref. (Nahmad-Molinari et al., 2003).

In the experimental work, a steel bead was placed at the bottom of a bed of cabbage seeds in

a column vibrated by a sinusoidal excitation. The available experimental parameters include

the granular bed height of 12 cm; small particle diameter of 0.2 cm, large particle diameter

of 0.632 cm, and their densities of 7.8 g/cm3 and 1.1 g/cm3, respectively; and the sinusoidal

vibration with frequency 7.5 Hz and amplitude 1.5 cm. The basic computational parameters
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Table 6.1 Basic computational parameters settings

Small particle Large particle

Number of particles 7600 3 1

Particle diameter d0 3.16 (d0)

Particle density 1.91 (m0/d
3
0) 13.54 (m0/d

3
0)

Particle normal stiffness coefficient kn 2 × 105 (k0)

Particle tangential stiffness coefficient kt
2
7 kn

Particle normal damping coefficient γn 40 ( 1
t0

)

Particle tangential damping coefficient γt 0 ( 1
t0

)

Particle friction coefficient µ 0.5

Background damping coefficient b 0 for most cases (m0

√

g/d0)
4

Particle restitution coefficient 0.9 0.86

Wall normal stiffness coefficient 2 × 105 (k0)

Wall tangential stiffness coefficient 2
7 kn

Wall normal damping coefficient 40 ( 1
t0

)

Wall tangential damping coefficient 20 ( 1
t0

)

Wall friction coefficient µwall 0.5

Vibration frequency 0.107 ( 1
t0

)

Vibration amplitude A0 7.5 (d0)

Time step 2 × 10−4 (t0)

are chosen to mimic the experiment as closely as possible, and are listed in Table 6.1. In

this computational study, a non-dimensional system of equations are solved, where the scaling

factors for distance, time, velocity, force, elastic constants, and stresses are: d0, t0 =
√

d0/g,

v0 =
√
gd0, F0 = m0g, k0 = m0g/d0 and σ = m0g/d

2
0, respectively. The diameter and mass of

the small particles are d0 and m0.

All the cases were simulated in three-dimensions using a molecular dynamics code for

granular materials, GRANFLOW (Silbert et al., 2001). The granular media is confined in a

cylindrical container, as shown in Fig. 6.2. The cylinder has a diameter of 12.25 d0 and the

cylinder height is effectively infinite to allow for unrestricted particle rise. The initial particle

configuration (Fig. 6.2) for the large particle is at the bottom of the bed, surrounded by small

particles. The initial condition for the segregation simulations is constructed in two steps.

First, the large particle is fixed at the bottom and surrounded by small particles. The entire

column is vibrated at a high frequency until an equilibrium height is reached; then the frequency

is terminated to allow the particles to relax to a ground state, where the total particle kinetic
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Figure 6.2 (Color online) The initial particle configuration as seen in a
vertical cut-plane through the 3-D simulation, with the large
particle (in yellow) at the bottom and the surrounding small
particles (in grey).

energy is zero. At this state, the particles are arranged in a compact configuration, which is

then used as the initial condition for the segregation study. For the case with 6001 particles,

the initial bed height is about 43 d0 and with 7601 particles, the initial height is about 55 d0.

The different heights of the granular pack will be indicated for the cases in the next section. It

should be noted that the MD model allows for contact force and friction between the particles

and the cylindrical walls in the same way as described for two particles but with infinite mass

and diameter for the walls.

In this paper we focus on analyzing segregation using the particle sizes, mass ratio and

external excitation conditions as specified in Table 6.1. Unlike most experimental work, where

these parameters are varied to determine their effect on the segregation mechanism, we use

these parameters as given conditions and investigate other effects that cannot easily be studied

by experimental techniques. The effect of wall friction on the Brazil nut rising dynamics as

well as the parametric studies are investigated in the next section.
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6.3 Results

6.3.1 Brazil nut rising dynamics

The rise time of the large particle is an important phenomenological indicator of segregation

in the Brazil nut problem. Although many particle properties needed for the MD simulations

are not known from the experiment, a set of computational parameters is established (see

Table 6.1) to predict the correct rising behavior of the large particle, i.e., rising from the

bottom to the top and fluctuating about an equilibrium height with small amplitudes 5. The

rise time predicted from one simulation is compared with the experimental results (Nahmad-

Molinari et al., 2003) as shown in Fig. 6.3. Note that in this simulation the background

damping coefficient b = 0.24 in m0

√

g/d0 units was chosen to obtain a quantitative match

with the experimental result, but it is set to zero in the other simulations because it has

no effect on the qualitative behavior of the simulated system. Therefore, for all the other

simulations the background damping is set to zero, unless otherwise noted.

We perform parametric studies of the BNP to elucidate the effect of MD simulation param-

eters on rising behavior. We show that this rising behavior is robustly independent of many

particle properties but sensitive to wall friction. We first investigate the effect of varying spring

stiffness constant. The value of spring stiffness constant kn = 2 × 105 k0 is smaller than the

common value of O(1010 k0), which “softens” the particles used in the simulation. However,

it is shown in Fig. 6.4(a) that with increasing spring stiffness, the large particle rise time ap-

proaches an asymptotic value, with kn = 2 × 105 k0 giving a rise time close to the asymptotic

value. Two different particle contact force models, namely the linear spring-dashpot model and

the Hertzian model, did not change the rising behavior qualitatively, as shown in Fig. 6.4(b).

With the Hertzian model, the large particle rise time was slightly slower and fluctuations in

the particle position were reduced.

Interstitial gas within the granular media may play an important role in the segregation

when granular particle sizes are small (Burtally et al., 2002; Möbius et al., 2004). The inter-

5Fluctuations about the equilibrium height occur due to impacts with the top layer particles which are not
confined in the upward direction. In this paper, only the simulations with small fluctuations are considered,
which excludes the reentrance phenomena.
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Figure 6.4 (Color online) The large particle position as a function of shak-
ing cycles for (a) different values of spring stiffness coefficient
kn and (b) the linear and Hertzian spring-dashpot force models
in a granular pack with initial height of 43 d0.
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Figure 6.5 (Color online) The large particle position as a function of shak-
ing cycles for (a) varying interstitial air damping in a granular
pack with initial height of 43 d0, (b) small particle size distri-
butions in a granular pack with initial height of 55 d0.

stitial gas flow effect was investigated by modeling air as an incompressible fluid and treating

the granular bed as a porous medium, which gives rise to a damping term proportional to the

particle slip velocity in the particle force (Biswas et al., 2003). This damping term is of the

same form as the last term in equation 6.7 except that the velocity is the particle slip velocity

(in place of the particle velocity), and the damping coefficient b is in the range 10−3 ∼ 10−2

(in m0

√

g/d0 units). Comparing the large particle rise time with and without interstitial air

effects, it can be seen from Fig. 6.5(a) that the interstitial air has minimal influence on the

rise time. Thus, for this particular problem, the segregation of small and large particles are

not adversely affected by the presence of interstitial air, i.e., this is not air-driven segregation.

The effects of small particle polydispersity was examined for a monodispersed case and

polydispersed case, where the small particle diameters ranged from 0.9 d0 to 1.1 d0. The poly-

dispersed case in Fig. 6.5(b) demonstrates almost identical rising behavior. Particle friction is

another important particle property. Its effects on granular packings has been systematically

studied (Silbert et al., 2002a,b). However, its effects on the dynamics in granular systems are

still not clear. In this Brazil nut problem, it is shown that the variation of particle friction coef-
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Figure 6.6 (Color online) The large particle position as a function of shak-
ing cycles for (a) different particle friction coefficients and (b)
different spring stiffness constants in a granular pack with initial
height of 43 d0.

ficient within a reasonable range does not change the rising behavior significantly (Fig. 6.6(a)).

Even when there is no friction between the particles (Fig. 6.6(b)), the large particle can still

rise when the particle elastic coefficient is set to kn = 2×106 k0. This excludes particle friction

as a necessary condition for the large particle to rise.

However, friction between particles and the confining cylindrical wall, referred to as wall

friction hereafter, critically impacts the dynamic response of the granular system. The impact

is analogous to the wall friction effects on the internal stress distribution in static granular

packings as previously studied by simulations (Landry et al., 2003) and experiments (Vanel

and Clément, 1999). The rising behavior of the large particle is very sensitive to wall friction.

The large particle oscillates with the granular bed but cannot sustain a rising motion when

the wall friction coefficient µwall is reduced from 0.5 to 0.1 as shown in Fig. 6.7(a). As µwall

is reduced to zero, the fluctuation in the large particle position becomes larger as shown in

Fig. 6.7(b). Increasing particle stiffness for this situation only decreases the magnitude of the

fluctuation and the large particle does not rise. Thus, wall friction is necessary for the large

particle to rise.
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Figure 6.7 (Color online) The large particle position as a function of shak-
ing cycles for (a) different wall friction coefficients and (b) dif-
ferent spring stiffness constants for no wall friction in a granular
pack with initial height of 43 d0.

A comparison between the large particle rising behaviors with (µwall = 0.5) and without

wall friction (µwall = 0.0), as shown in Fig. 6.8(a), demonstrates that the large particle rises to

the top after 30 cycles and stays at the surface of the granular bed with wall friction. However,

without wall friction the large particle oscillates with no regular pattern. A closer look at the

displacements for a smaller range of cycles with wall friction, shown in Fig. 6.8(b), reveals that

the center of mass of the small particles and the large particle, vary in a one-cycle pattern.

It is, therefore, worthwhile to analyze the dynamics of particles within one cycle. Taking a

window from cycle 10 to cycle 11, as shown in Fig. 6.9, it can be observed from both the

displacements (Fig. 6.9(a)) and the velocities (Fig. 6.9(b)) that the entire granular bed loses

contact with the vibrating base at approximately T = 10.05 when the acceleration equals −g,

and subsequently impacts with the base at around T = 10.85. The stage from T = 10.05 to

10.85 is defined as the expansion stage since the granular bed experiences dilatation during

this period, while the rest of the cycle is defined as the compression stage corresponding to

compaction of the granulates. These concepts will be further elucidated by the microstructural

analysis presented in the next section.
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Figure 6.8 (Color online) The large particle position as a function of the
shaking cycles for (a) varying wall friction µwall and (b) parti-
cle positions for the case with wall friction (µwall = 0.5) from
T = 10 to T = 20 in a granular pack with initial height of
55 d0. The sinusoidal curve is shown to illustrate the vibration
frequency.
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Figure 6.9 (Color online) Changes in (a) particle displacements and (b)
velocities within one cycle for the case with wall friction in a
granular pack with initial height of 55 d0. The sinusoidal curve
is shown to illustrate the vibration frequency.
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In the expansion stage, the large particle experiences a free rise and fall together with the

small particles (the height gained by the large particle can be obtained from the displacement

data in Fig. 6.9(a), and it is close to
√

v2/2g calculated from the velocity data from Fig. 6.9(b).)

However, in the compression stage, the large particle quickly adjusts to the vibration velocity

which is transmitted through a strong force network. The large particle’s velocity is greater

than the velocity of the center mass of small particles (Fig. 6.9(b)). As a result the large particle

rises to a higher position at cycle 11 than that at the beginning of cycle 10 (Fig. 6.9(a)). The

reason behind this dynamical variation is closely related to the force network formation and

destruction in one cycle as demonstrated in the next section.

6.3.2 Force networks and statistics

It is natural to speculate whether there exist structures in non-fluidized granular me-

dia (Nahmad-Molinari et al., 2003), similar to the force networks in static packings (Silbert

et al., 2002b) or arches shown in two-dimensional vibrating piles (Duran et al., 1993, 1995).

This is indeed the case as shown in the following data analysis, where the interaction between

structures and dynamics is revealed.

Average coordination number, defined as the average number of contacts per particle, is a

measure that is sensitive to the local particle configuration and has been used to characterize

the static mechanical equilibrium state in static packing (Silbert et al., 2002a). In the dynamic

problem studied in this paper, the time evolution of the coordination number averaged over

all the particles in granular media is used to understand the dynamic response of the system

and the corresponding structural information at each instance. As shown in Fig. 6.10(a), the

average coordination number for the granular system with wall friction µwall = 0.5 shows a

periodic pattern, while the one for the granular system without wall friction shows an irregular

pattern. It can be seen from the evolution of the average coordination number within one cycle

in Fig. 6.10(b), that the average coordination number falls below unity during the expansion

stage, indicating most particles have no contact. However, the average coordination number

in the compression stage rises to 3, indicating there are multiple contacts for a particle and
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Figure 6.10 (Color online) Time evolution of the average coordination
number for all the particles (a) varying within 10 cycles and
(b) varying within one cycle for µwall = 0.5 in a granular pack
with initial height of 55 d0.

suggesting the presence of a force network during this stage.

To provide direct evidence of the existence of force networks during the compression stage,

a graph algorithm was used to identify force networks. A force network is defined as a collection

of particles such that every particle in the force network is in contact with at least one other

particle, and each particle has a nonzero normal contact force. For the case with wall friction

and a total of 7601 particles, the total number of force networks at T = 10 is 80. These

networks range from the minimum of two particles in contact to a very large network with

many particles. It is found that at the time instant when the average coordination number

reaches it maximum value of 3.2, most particles are indeed in a large force network. Of the total

number of 7601 particles, 5796 particles (including the large particle) are in a force network

with a network-averaged coordination number of 3.98.

Therefore, the lack of a strong force network during the expansion stage allows the large

particle to move freely. The force network in the compression stage, however, supports the

large particle and transmits the velocity boundary condition directly to the large particle.

Since not all the small particles are in the same force network, their average velocity is not the
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same as that of the large particle.

A corresponding force network analysis for the case with µwall = 0 reveals that there are no

large force networks for most of the cycle, and the magnitude of the forces is much smaller than

that with wall friction present. Configurations of the force network are visualized comparing

the cases with, and without, wall friction in Fig. 6.11(a) and Fig. 6.11(b), respectively. In both

figures, for clarity only connections between particles whose normal contact force Fn is greater

than the average normal contact force F̄n are shown. From Fig. 6.11(a), it can be clearly

seen that extended force-bearing structures exist over a long length scale with wall friction; in

contrast, there are no large force networks with strong forces when there is no wall friction,

which results in the oscillation of the large particle.

Further analysis of the largest force network with 5796 particles reveals a strong subnetwork

of 3375 particles, which carries forces Fn > F̄n, where F̄n is the average normal contact force.

This indicates a wide distribution of forces in the force networks. The statistics of all normal

forces in the force networks are characterized by the probability density function (PDF) of the

scaled forces f = Fn/F̄n. The PDF at T = 10 for µwall = 0.5 is shown in Fig. 6.12(a). The

PDF shows the generic feature of the force distribution in static granular packings (Mueth

et al., 1998; Silbert et al., 2002b), i.e., it exhibits a peak (plateau) for small forces (f < 1) and

exponential decay for large forces (f > 1). Mueth et al. (1998) fitted their experimental data

with an empirical function of the form

P (f) = a(1 − be−f
2

)e−βf , (6.11)

and found a = 3.0, b = 0.75, and β = 1.5 ± 0.1 for a static packing of glass spheres in a

cylindrical container. To compare with the static packing experimental data, we fit Eq. 6.11 to

our computational data and find the function with a = 2.46, b = 0.83, and β = 1.35 agrees well

with the force distribution in the force networks as shown in Fig. 6.12(a). For the expansion

stages and the case where µwall = 0.0, the number of contact forces is small and the PDF of

forces suffers from large statistical error due to insufficient samples. Therefore, the PDF for

those situations is not discussed here.

In addition to the PDF of the force distribution, the force pair correlation was also computed
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(a) (b)

Figure 6.11 (Color online) Force networks in the granular media at cycle 10
for (a) µwall = 0.5 (b) µwall = 0.0. In the figures, both the edge
thickness and color scales are proportional to the magnitude
of normal forces. The (red) sphere indicates the position of
the large particle and the dots indicate the positions of small
particles. Only the edge with forces Fn > F̄n are shown.
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Figure 6.12 (Color online) (a) Probability densities for normal contact
force based on all contacts from the computed data (open
circles) and fitted with Eq. 6.11 (solid line) using a = 2.46,
b = 0.68, and β = 1.35. (b) Force correlation function con-
structed from all contact forces.

with the aim of characterizing the force correlation length. The spatial force-force correlation

function F(r) measures spatial correlations between forces separated by a distance r. We use

the same definition as in Refs. (Mueth et al., 1998; Silbert et al., 2002b):

F(r) ≡
∑

i

∑

j>i δ(rij − r)fifj
∑

i

∑

j>i δ(rij − r)
, (6.12)

where rij is the distance between particle contacts i and j, and fi is the normalized contact force

acting at contact i. Note that this isotropic expression for the radial spatial force correlation

formulation is not strictly applicable to the anisotropic system of finite size that is considered

in this paper. However, the result for r smaller than the radius of the granular column still

gives some insight to the force correlations. The result at T = 10 for µwall = 0.5 produces

peaks around r = d0 and dies out after 3 d0 as shown in Fig. 6.12(b), indicating a diffusive

nature of the force transmission network. This behavior is again similar to the force correlation

in a granular packing (Silbert et al., 2002b). It is interesting to note that the force correlation

length scale is much smaller than the geometric contact length scale of 52.2 d0.
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6.3.3 Minimum spanning tree

As shown in section 6.3.2, there are force networks and structures existing in this Brazil

nut problem. It is difficult to directly represent this structural information in a continuum

model for the stress tensor. We explore the possibility of using a numerical algorithm based on

particle position information to capture the microstructures and provide structural information

in a statistical sense, i.e., we seek to determine if a representative sub-ensemble of the particles

can capture the important statistics of the force network and if there is a convergent procedure

to determine this representative sub-ensemble. We show that a modified minimum spanning

tree (MST) approach is indeed capable of achieving this goal.

Constructing an Euclidean MST (EMST) on N particles requires connecting every particle

with at least one neighbor particle through an edge (an unordered pair of particles). Since every

particle is connected in the EMST it possesses the spanning property. A tree is a set of edges

that contains no closed loops or cycles; i.e., starting from a particle and tracing an alternating

sequence of edges between particles does not lead back to the initial particle. Finally, since

it is a Euclidean minimum spanning tree, the sum of the Euclidean lengths of these edges

is a minimum. A formal graph-theoretic definition of a minimum spanning tree (MST) and

algorithms for constructing an MST can be found in the literature (Aho et al., 1983; Preparata

and Shamos, 1985). The minimum spanning tree has been previously employed in a mixing

model for turbulent reactive flows, where it was constructed on an ensemble of particles in

composition space to provide a definition of localness (Subramaniam and Pope, 1998).

An example of constructing the MST based on particle positions is illustrated in Fig. 6.13,

where particle 1, particle 2 and particle 3 are all in contact with each other, while particle 4

and particle 5 are in contact with each other but not with the others. Let the length of the

edges be the distance between the centers of two particles in Euclidean space. If the length

E(1, 3) of the edge between particle 1 and particle 3 is greater than E(1, 2) or E(2, 3) due to

difference in normal compression at contact, then the resulting MST is shown in Fig. 6.13(a)

by the lines connecting the centers of particles. If the lengths of E(1, 2), E(1, 3) and E(2, 3)

equal each other, then any two of the these three edges can be selected in the MST, which in



98

3

1

2

4

5

(a)

2

1

4

5

3

(b)

Figure 6.13 Schematics of the MST constructed based on (a) particle posi-
tions and (b) the sub-trees after deleting edges between non–
contacting particles. The particles are represented by circles
and the edges are shown by the lines connecting centers of
particles.

this case is non–unique.

Not all the edges in the MST correspond to the force network. Since particle 3 and particle

4 are not in contact, E(3, 4) does not contribute to the normal contact force statistics, and is

deleted when studying the force statistics produced from the MST. As shown in Fig. 6.13(b),

deleting E(3, 4) from the MST results in two sub-trees of contacting particles. A tree of con-

tacting particles (TCP) is defined by the number of contacting particles NP and the set of NE

edges that define the contacts between the particles. Therefore, the TCPs contain important

particle configuration information: how many particles NP are in a force network, and which

particles are connected (from the set of edges). From the MST we recover information relevant

to the force networks by deleting non–contacting edges and identifying the resulting TCPs as

the force networks.

As the first step toward applying the MST, we will show that the MST constructed on

the particle positions can capture the majority of structural information pertaining to force

networks within granular media. Then using a multi-pass MST technique, we show that almost
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all the contacts can be recovered from MST in just a few passes, and so can the force statistics.

Due to the minimum spanning property of a MST, at least one contact for a particle can

be captured in the MST if there exist contacts for that particle in monodispersed particle

configurations. If the MST is formed on all the particles and the non-contacting edges are

deleted to form the TCP’s, it is shown in the row corresponding to the first pass of Table 6.2

that the number of particles, NP in the largest TCP and number of other TCPs, NT, are

exactly the same as those from the MD force network. The distribution of TCPs with respect

to the number of particles in a TCP can also be shown to be exactly the same as that obtained

from the MD force networks. The MST can thus predict the geometric length scale present

in a force network, such as the maximum distance between two particles in a TCP or a force

network. This length scale is 52.2 d0 for the largest TCP or the largest force network. However,

the MST does not capture all the particle contacts in the TCPs. Since there is no closed loop

in a MST, some edges forming a closed loop in a force network are neglected. Since the MST

cannot capture multiple contacts in a single pass (cf. Fig. 6.13(b) where only two of the three

contacting edges for particle 1, 2 and 3 are selected by the MST algorithm), the number of

edges NE in the first pass of the MST 6 is only 5795, as compared to the 11533 edges in the

MD force network (see Table 6.2).

To capture all the edges in a force network, a multi-pass MST technique is proposed. A

second pass of MST is constructed by preferentially weighting edges that have already been

selected in previous passes of MST. The lengths of the edges selected in previous passes are

elongated by a specified factor in this case. Referring to the example shown in Fig. 6.13, the

edge E(1, 3) is not selected in the first pass. A second pass of MST is constructed on the

same particles after elongating the lengths of previously selected edges E(1, 2), E(2, 3) and

E(4, 5) by a factor of 1.2. In this way, the edge E(1, 3) will be selected in the second pass of

the MST. As shown in Table 6.2, the one-pass MST captured 5795 edges for the largest MST

and 106 edges for the other TCPs, although there are a total of 11533 edges in the largest

force network. The two-pass MST captured more than 90% of total edges (repeated edges are

6An MST on NP particles will always have NP − 1 edges.
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Table 6.2 Number of edges and TCPs captured by MST and comparison
with all force networks from MD.

Passes The largest TCP The rest of TCPs

NP NE NT NE

1 5796 5795 79 106

2 5796 10505 79 106

3 5796 11508 79 106

4 5796 11515 79 106

5 5796 11516 79 106

Force networks 5796 11533 79 106

not counted). The number of edges, NE, in the largest TCP captured by the multi-pass MST

increases with increasing number of passes, as shown in Table 6.2, and rapidly converges to

the total number of edges in the MD force network. In fact, all the edges have been recovered

by a four-pass MST except 18 edges connecting the large particle, which are much longer than

other edges and difficult to capture using the current multi-pass MST algorithm. Note that

the number of particles in the largest TCP stays the same since this information is faithfully

captured by the one-pass MST as discussed before.

Assigning the forces from the force networks to the corresponding edges in the MST, we can

determine how well the MST captures force statistics. The force PDF obtained from the MST

is compared with that obtained from the force networks in Fig. 6.14. It can be seen that most

of the forces in the one-pass MST are larger than the mean force due to the minimum spanning

property. This is indicated by higher probabilities for the larger force and lower probabilities

for the smaller-than-mean forces. The one-pass MST also preserves the exponential decay for

larger force values.

The force distributions generated by various passes of MST are also fitted to quantitatively

demonstrate these statistical characteristics. We find that the PDF can be fitted with a

functional form

P (f) = a(1 − be−(f−α)2)e−β(f−γ). (6.13)

We fit the forces captured by the one-pass MST using α = γ = 0.45 and the same values of a,

b and β as those used for fitting the forces in the force networks. This fitting indicates that

the force PDF for MST is shifted toward larger forces by the magnitudes of α and γ. It is
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Figure 6.14 (Color online) Probability densities for normal contact forces
based on all contacts (force networks) and constructed from
multi-pass MST. The PDF of all contact forces is overlapped
by the multi-pass MST results; however, it can also be seen in
Fig. 6.12(a) for clarity.

shown in Fig. 6.15(a) that the exponential decay for the larger forces is fitted well while the

smaller forces have smaller probabilities compared with the fitting. This result means that the

one-pass MST over-sampled larger forces, but with the same decay rate compared to the force

distribution in the force networks. Furthermore, we find that Eq. 6.13 fits the whole range of

forces well with a = 2.2, b = 0.9, β = 1.35, α = 0.25, and γ = 0.5, which is demonstrated in

the inset of Fig. 6.15(a). The two-pass, three-pass and four-pass MST quickly converge to the

PDF from the force networks, with almost no distinction between them after three passes. The

fit to the two-pass MST force PDF is done using α = γ = 0.1 to shift the fitted force networks

PDF and shows good agreement for the larger forces in Fig. 6.15(b). Similarly, Eq. 6.13 with

a = 3.1, b = 0.8, β = 1.35, α = −0.1, and γ = −0.1 fits the whole range of forces well as

shown in the inset of Fig. 6.15(b). For the three-pass and four-pass MST PDF, the fitted

force networks PDF also fits well, i.e., α = γ = 0. Overall, α and γ decrease to zero with

the increasing of number of MST passes and thus Eq. 6.13 recovers to Eq. 6.11, which shows

the multi-pass MST is a convergent procedure to capture forces in the force networks. The

same convergence was found for the force correlation functions as shown in Fig. 6.16. Thus
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Figure 6.15 (Color online) (a) Probability densities for normal contact
force based on the contacts from the one-pass MST(open tri-
angles) and fitted with Eq. 6.13 (solid line) using a = 2.46,
b = 0.83, β = 1.35, α = 0.45, and γ = 0.45. Inset: the
one-pass MST data is fitted with Eq. 6.13 (solid line) using
a = 2.2, b = 0.9, β = 1.35, α = 0.25, and γ = 0.5. (b) Proba-
bility densities for normal contact force based on the contacts
from the two-pass MST(open squires) and fitted with Eq. 6.13
(solid line) using a = 2.46, b = 0.83, β = 1.35, α = 0.1, and
γ = 0.1. Inset: the two-pass MST data is fitted with Eq. 6.13
(solid line) using a = 3.1, b = 0.8, β = 1.35, α = −0.1, and
γ = −0.1.

the modified MST algorithm is able to recover particle configuration information as well as

statistics and spatial correlation of the normal contact forces.

6.4 Conclusions

We have performed MD simulations of the BNP at low vibration frequency in order to un-

derstand the underlying physical mechanisms of segregation dynamics. Systematic variation

of the particle properties and external wall friction reveals that the large particle rising is not

sensitive to particle stiffness, interaction force models, interstitial air effects, slight polydisper-

sity in small particles, or particle friction. However, the rise time is very sensitive to external

wall friction. We conclude that wall friction is the most important physical parameter in deter-
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Figure 6.16 (Color online) Force correlation function constructed from all
contact forces and constructed from multi-pass MST. The
force correlation function of all contact forces is overlapped
by the multi-pass MST results; however, it can also be seen in
Fig. 6.12(b) for clarity.

mining the segregation behavior in this BNP. We also show the one-cycle dynamical response

of the granular bed with wall friction (µwall = 0.5), within which there is an expansion stage

and a compression stage. The granular bed exhibits irregular oscillation without wall friction

(µwall = 0.0).

We found the presence of large-scale force networks bearing larger-than-average forces in the

compression stage with wall friction, while there are much fewer contacts in the expansion stage.

However, without wall friction such large strong force networks do not exist. We analyzed

the force network by comparing the PDF of normal contact forces and found exponential

tails similar to those found in packing experiments. We further analyzed the two-point force

correlation of the force network and found force correlations decay quickly. The fact that the

length scale over which the normal force is correlated is only two to three particle diameters,

whereas the geometric contacts extend over 50 d0 (the size of the system), indicates that a

local interaction model for the force on a particle is adequate. However, the large length

scale of geometric contact appears to be essential for transmission of the effect of wall friction.

Therefore, one can conclude that the geometric length scale indicates the nature of the material
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response: if it is small, the particle behaves like an isolated free body, if it is large, the granular

material behaves like a continuum composed of grain skeletons. Yet, even this continuum can

admit a local force or stress model because of the short-range nature of the contact force.

Finally, we applied the Euclidean minimum spanning tree to analyze the force network, and

explored the possibility of using MST based on particle position information to capture the

microstructures and provide structural information in a statistical sense. We showed that the

MST is able to capture the complete structural information. We developed a multi-pass MST

algorithm, which was able to recover all the contacts within the force network and thus was

able to recover the force distribution and force correlation for the force network. Therefore,

the MST provides a possible route to constructing a continuum model with microstructural

information supplied from this algorithm.
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CHAPTER 7. HYBRID TWO-FLUID DEM SIMULATION OF

GAS-SOLID FLUIDIZED BEDS

A paper submitted to Journal of Fluids Engineering1

Jin Sun, Francine Battaglia and Shankar Subramaniam

Abstract

Simulations of gas-solid fluidized beds have been carried out using a hybrid simulation

method, which couples the discrete element method (DEM) for particle dynamics with the

averaged two-fluid (TF) equations for the gas phase. The coupling between the two phases is

modeled using an interphase momentum transfer term. The results of the hybrid TF-DEM

simulations are compared to experimental data and two-fluid model simulations. It is found

that the TF-DEM simulation is capable of predicting general fluidized bed dynamics, i.e.,

pressure drop across the bed and bed expansion, which are in agreement with experimental

measurements and two-fluid model predictions. Multi-particle contacts and large contact forces

are found in the defluidized regions away from bubbles as demonstrated from the TF-DEM

simulation results. The TF-DEM model demonstrates the capability to capture more heteroge-

neous structural information of the fluidized beds than the TF model alone. The implications

to the solid phase constitutive closures for TF models are discussed. However, the TF-DEM

simulations depend on the form of the interphase momentum transfer model, which can be

computed in terms of averaged or instantaneous particle quantities. Various forms of the in-

terphase momentum transfer model are examined, and simulation results from these models

are compared.

1Under the second review.
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Nomenclature

C Fluctuation in particle translational velocity (cm/s)

d Particle diameter (cm)

e Coefficient of normal restitution

g Acceleration of gravity (cm/s2)

I Moment of inertia of a particle (g · cm2)

I Interphase momentum transfer (dyne/cm3)

Jcoll Rate of dissipation of translational fluctuation kinetic energy

due to particle collisions (g/cm · s3)

Jvis Rate of dissipation of translational fluctuation kinetic energy

due to interstitial gas viscous damping (g/cm · s3)

k Stiffness coefficient of a particle (dyne/cm)

m Mass of a particle (g)

n Unit normal vector from a boundary to particles

N Particle number

Nc Coordination number

Ng Total number of gas phase chemical species

Nsm Total number of solid phase (m) chemical species

P Pressure (dyne/cm2)

r Position vector (cm)

R Rate of formation (g/cm3 · s)

Re Reynolds number

S Stress tensor (dyne/cm2)

t Time (s)

U Fluidization velocity (cm/s)

u Tangential displacement (cm)

v Velocity for gas and solids (cm/s)
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Greek letters

β Coefficient for drag forces (g/cm3 · s)

δ Normal compression in particle collision (cm)

ε Volume fraction

γ Viscous damping coefficient (1/s)

Γ Rate of dissipation of rotational fluctuation kinetic energy

(g/cm · s3)

Γslip Production of translational fluctuation kinetic energy

due to gas-particle slip (g/cm · s3)

µ Coefficient of friction in DEM

µg Gas shear viscosity (dyne · s/cm2)

µsm Solid shear viscosity (dyne · s/cm2)

λg Gas second coefficient of viscosity (dyne · s/cm2)

λsm Solid second coefficient viscosity (dyne · s/cm2)

ω Angular velocity (rad/s)

ρ Density (g/cm3)

θ Translational granular temperature (cm2/s2)

Superscripts

p Plastic regime in granular flows

v Viscous regime in granular flows

Subscripts

cell Computational cell

coll Collision

g Gas phase

i Index of a particle

l lthsolid phase
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m mthsolid phase

n Normal direction in the particle contact frame

t Tangential direction in the particle contact frame

M Number of phases

mf Minimum fluidization

max Maximum value

p Particle

s Solid phase

w Wall boundary

7.1 Introduction

Gas-solid fluidized beds are widely used in many industrial applications, e.g., fluid catalytic

cracking, due to its good contacting between gas and solid phases, which prompts rapid heat

and mass transfer and fast chemical reactions. However, the dynamics of gas-solid fluidized

beds need to be better understood in order to improve existing processes and scale up new

processes. Reliable simulation tools can provide valuable insights into gas-solid flow processes

and, as a result, accelerate the achievement of substantial process improvements (Curtis and

van Wachem, 2004).

The dynamics of fluidized beds can be described at different levels of details (Jackson, 2000).

At the most fundamental level (atomic or molecular scale is not considered), the motion of

the whole system is determined by the Newtonian equations of motion for the translation

and rotation of each particle, and the fluid Navier-Stokes and continuity equations. The fluid

motion and particle motion are linked by the no-slip condition on each particle boundary.

At a second level, the fluid velocity at each point is replaced by its average, taken over a

spatial domain large enough to contain many particles but still small compared to the whole

region occupied by the flowing mixture. The Newtonian equations of motion are solved for

each particle. The coupling force between fluid and particles is then related to the particle’s

velocity relative to the locally averaged fluid velocity, and to the local concentration of the
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particle assembly. At a third level, both the fluid velocity and the particle velocity are averaged

over the local spatial domains. A description at this level of detail is often referred as the two

fluid model (TFM).

The kinetic theory of granular flows (KTGF) has been successful applied to the TFM for

fluidization in the last decade (Gidaspow et al., 2004). The KTGF has a basic assumption

that particle collisions are instantaneous and binary. However, questions about the validity

and capability of KTGF arise because of the microstructures formed in the fluidized beds,

e.g., clusters in a riser (Agrawal et al., 2001) and “defluidized” zones in a bubbling fluidized

bed (Rahman and Campbell, 2002). In a dense bubbling fluidized bed, the particle pressure

around a bubble was experimentally measured and shown to be large in the region far below

the bubble where there is no agitation (Rahman and Campbell, 2002). These facts lead to

the hypothesis that lasting multiple contacts in dense fluidized beds limit the application of

KTGF. Previous experiments (Choi et al., 2004) and models (Bazant, 2003, 2006) also showed

that diffusion and mixing are dominated by geometry, consistent with long-lasting contacts

(but not thermal collisions) in dense granular flows.

However, there has not yet been quantitative analysis to assess multi-particle microstruc-

tures under certain fluidization conditions, and how the microstructures affect the constitutive

behavior of a dense fluidized bed. A good understanding of the spatial distribution and tempo-

ral evolution of multi-particle contacts and corresponding particle contact forces is a necessary

step toward developing constitutive models that can accurately predict fluidized bed dynamics.

In this paper, a hybrid model at the second level will be employed to improve the understand-

ing. The hybrid model couples a two fluid model solving fluid equations with the discrete

element method (DEM) solving particle motion equations. Therefore, the hybrid model can

simulate a fluidized bed at particle scales and produce useful information to analyze the mi-

crostructures as well as particle dynamics. The computational results from the hybrid model

will be compared with experimental and TFM results for the validation purpose.

A key consideration in the hybrid model is the coupling between the phases, i.e., the fluid-

particle interaction force. Different formulations have been used to calculate and transfer the
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force between phases (Tsuji et al., 1993; Hoomans et al., 1996; Xu and Yu, 1997; Kafui et al.,

2002). However, formulations have not been thoroughly analyzed for different flow conditions.

In this paper, two different ways to transfer the effective drag force, an important coupling term

between gas and particles, will be discussed and simulation results from these two methods

will be compared.

7.2 Methodology

7.2.1 Multi-fluid Model

The multi-fluid Eulerian model describes the gas phase and solid phases as interpenetrating

continua. The particle mixture is divided into a discrete number of phases, each of which can

have different physical properties, e.g., particle diameter. It should be noted that the two fluid

model for a gas phase and single solid phase is a special case, m = 1, for the general formula

presented next. The governing equations for the multi-fluid model are (Syamlal et al., 1993):

Continuity equation for gas phase:

∂

∂t
(εgρg) + ∇ · (εgρgvg) =

Ng
∑

n=1

Rgn. (7.1)

Continuity equation for mth solid phase:

∂

∂t
(εsmρsm) + ∇ · (εsmρsmvsm) =

Nsm
∑

n=1

Rsmn. (7.2)

Momentum equation for gas-phase:

∂

∂t
(εgρgvg) + ∇ · (εgρgvgvg) = ∇ · Sg + εgρgg −

M
∑

m=1

Igm. (7.3)

Momentum equation for mth solid-phase:

∂

∂t
(εsmρsmvsm) + ∇ · (εsmρsmvsmvsm) =

∇ · Ssm + εsmρsmg + Igm −
M
∑

l=1
l 6=m

Iml. (7.4)
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Translational granular temperature equation (Agrawal et al., 2001):

3

2

[

∂

∂t
(εsmρsmθsm,t) + ∇ · (εsmρsmθsm,tvsm)

]

=

−∇ · qsm − Ssm : ∇vsm + γsm,slip − Jsm,coll − Jsm,vis, (7.5)

where the translational granular temperature is defined as:

θsm,t =
1

3
< C2

pi > . (7.6)

The fluctuation in the particle translational velocity shown in Eq. (7.6) is defined as Cpi =

vpi − vsm, where vpi is the instantaneous translational particle velocity and the symbol <>

designates the operation of taking average.

The constitutive equations for solid phases were derived for granular flows (Syamlal, 1987a).

There are two distinct flow regimes in granular flows: a viscous or rapidly shearing regime in

which stresses arise due to collisional or translational momentum transfer, and a plastic or

slowly shearing regime in which stresses arise due to Coulomb friction between grains in close

contact. Two different approaches are used for these regimes

Ssm =















−P p
smI + τ

p
sm if εs ≥ ε∗s

−P v
smI + τ

v
sm if εs < ε∗s

(7.7)

where P p
sm and τ

p
sm are the pressure and the viscous stress in the mth solids phase for the

plastic regime, P v
sm and τ

v
sm are the pressure and the viscous stress for the viscous regime, and

ε∗g is a critical packing solid volume fraction, set to 0.58 for the simulations in this paper.

The granular stress equation based on KTGF (Syamlal, 1987b) is applied to the viscous

regime. The granular pressure and stresses are given by

P v
sm = K1mε

2
smθsm,t, (7.8)

τ
v
sm = 2µv

smDsm + λv
smtr(Dsm)I, (7.9)

where λv
sm is the second coefficient of viscosity,

λv
sm = K2mεsm

√

θsm,t . (7.10)
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The shear viscosity factor µv
sm is

µv
sm = K3mεsm

√

θsm,t . (7.11)

The strain rate tensor, Dsm, is given by

Dsm =
1

2

[

∇vsm + (∇vsm)T
]

. (7.12)

The coefficients, K1m, K2m and K3m are functions of particle density, diameter, restitution

coefficient, radial distribution function and local volume fractions. The solid stress tensor in

the viscous regime only takes account of contributions from particle translational momentum

flux and binary collisions.

In the plastic flow regime, the solid stress tensor was derived based on plastic flow the-

ory (Jenike, 1987) and critical state theory (Schaeffer, 1987).

The constitutive equation for the gas phase stress tensor is:

Sg = −PgI + τg, (7.13)

where Pg is the gas pressure and I is the identity tensor. The viscous stress tensor τg is

assumed to be of the Newtonian form:

τg = 2µgDg + λg∇ · vg, (7.14)

where Dg is the strain rate tensor for the gas phase. The gas-solid momentum transfer (Igm)

will be discussed in the subsection on coupling TFM and DEM.

7.2.2 Discrete Element Method

Individual particle motion in a fluidized bed can be described by Newtonian equations of

motion. The discrete element method employs numerical integration of the motion equations

to resolve particle trajectories (Cundall and Strack, 1979). The translational and rotational

motions of a particle are governed by:

mi
dvpi

dt
= fci + fgpi +mig, (7.15)
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Figure 7.1 Schematic of two particles i and j in contact and position vec-
tors ri, rj, respectively, with overlap δij

Ii
dωi

dt
= Ti, (7.16)

where fci is the particle-particle contact force, fgpi is the fluid-particle interaction force, mig

is the gravitational force, Ti is the torque arising from the tangential components of the

contact force, and Ii, vpi, ωi are the moment of inertia, linear velocity and angular velocity,

respectively. The net contact force, fci, and torque, Ti, acting on each particle result from a

vector summation of the force and torque at each particle-particle contact. A linear spring-

dashpot model is employed for the contact force model due to its simplicity and reasonable

accuracy (Cundall and Strack, 1979). The basic principles of the linear spring-dashpot model

are briefly described in the following.

For two contacting particles {i, j}, with radii {ai, aj}, at positions {ri, rj}, with velocities

{vi, vj} and angular velocities {ωi, ωj} (see Fig. 7.1), the normal compression δij , relative

normal velocity vnij
, and relative tangential velocity vtij

are (Silbert et al., 2001):

δij = d− rij, (7.17)

vnij
= (vij · nij)nij , (7.18)

vtij
= vij − vnij

− (aiωi + ajωj) × nij , (7.19)

where d = ai + aj, rij = ri − rj, nij = rij/rij , with rij = |rij | and vij = vi − vj. The rate of
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change of the elastic tangential displacement utij
, set to zero at the initiation of a contact is:

dutij

dt
= vtij

−
(utij

· vij)rij
r2ij

. (7.20)

The last term in Eq. (7.20) arises from the rigid body rotation around the contact point and

ensures that utij
always lies in the local tangent plane of contact. Normal and tangential forces

acting on particle i are:

Fnij
= f(δij/d)(knδijnij − γnmeffvnij

), (7.21)

Ftij
= f(δij/d)(−ktutij

− γtmeffvtij
), (7.22)

where kn,t and γn,t are the spring stiffness and viscoelastic constants, respectively, and meff =

mimj/(mi +mj) is the effective mass of spheres with masses mi and mj . The corresponding

contact force on particle j is simply given by Newton’s third law, i.e., Fji = −Fij. The

function f(δij/d) = 1 is for the linear spring-dashpot model, and f(δij/d) =
√

δij/d is for

Hertzian contacts with viscoelastic damping between spheres.

Static friction is implemented by keeping track of the elastic shear displacement throughout

the lifetime of a contact. The static yield criterion, characterized by a local particle friction

coefficient µ, is modeled by truncating the magnitude of utij
as necessary to satisfy |Ftij

| <

|µFnij
|. Thus the contact surfaces are treated as “sticking” when |Ftij

| < |µFnij
|, and as

“slipping” when the yield criterion is satisfied.

The total contact force and torque acting on particle i are then given by

fci =
∑

j

(Fnij + Ftij), (7.23)

Ti = −1

2

∑

j

rij × Ftij . (7.24)

The amount of energy lost in collisions, characterized by the inelasticity through the value of

the coefficient of restitution e, which is defined as the negative ratio of the particle velocity after

collision to the velocity before collision. For the linear spring-dashpot model, the coefficient of

normal restitution and contact time can be analytically obtained:

en = exp(−γntc/2), (7.25)
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where the contact time tc is given by:

tc = π(kn/meff − γ2
n/4)

−1/2. (7.26)

The value of the spring constant should be large enough to avoid particle interpenetration,

yet not so large as to require an unreasonably small simulation time step δt, since an accurate

simulation typically requires δt ∼ tc/50. After the contact force is calculated, the equations

of motion, which are ordinary differential equations, can be numerically integrated to get the

particle trajectories.

7.2.3 Coupling of TFM and DEM

A hybrid model at the second level is constructed by coupling the TFM for gas phase with

DEM for particle motion (Boyalakuntla, 2003). The coupling term between the equations for

gas and particle motion is the gas-particle interaction Igm in the gas momentum equation

and fgpi in the particle equation of motion. Due to the averaging process in the derivation of

momentum equations for the TFM, the fluid-particle interaction force may be written as the

sum of a component due to macroscopic variations in the fluid stress tensor and a component

representing the effect of detailed variation of the point stress stress tensor as the gas flows

around the particle (Anderson and Jackson, 1967). For the gas force on a particle

fgpi = Vpi∇ · Sg + f ′gpi, (7.27)

where Vpi is the volume of particle i. The first term on the right in Eq. (7.27) accounts for the

macroscopic variation in the fluid stress tensor. The second term on the right in Eq. (7.27)

includes skin friction and drag contributions accounting for the detailed variation in the stress

tensor. In general, the term comprises an effective drag force in the direction of the relative

velocity between the fluid and particle, and a virtual or added mass force accounting for the

resistance of the fluid mass that is moving at the same acceleration as the particle. For gas

solid flows, the virtual mass force may be neglected and f ′gpi reduces to an effective drag force,

which should be the product of the local void fraction, εg, and the drag force, fdi, obtained
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from experimentally based correlations. Also substituting Eq. (7.13) to Eq. (7.27),

fgpi = −Vpi∇Pg + Vpi∇ · τg + εgfdi. (7.28)

The drag force on a single particle of diameter dpi in a multi-particle system can be calculated

from the correlation:

fdi =
1

2
CDiρg

πd2
pi

4
ε2g|vig − vpi|(vig − vpi)f(εg) (7.29)

=
πd3

pi

6εgεsm
β(vig − vpi)

where vig means the gas velocity at the location of particle i, and f(εg) is a function of local

void fraction. The single particle velocity vpi is used since the correlations relate the effective

drag force to that of a single particle in the absence of other particles. The expressions of β

are extended form the work of Ergun (Ergun, 1952), and Wen and Yu (Wen and Yu, 1966)

and were used by Tsuji (Tsuji et al., 1993):

β =















150 ε2sm
εgd2pi

µg + 1.75εsm
ρg
dpi

|vig − vpi| for εg ≤ 0.8

3
4CD

εgεsm
dpi

ρg|vig − vpi|ε−2.7
g for εg > 0.8.

(7.30)

The drag coefficient, CDi, depends on the particle Reynolds number, Repi =
dpiεg|v

i
g−vpi|ρg
µg

,

and is given by

CDi =















24(1 + 0.15Re0.687
pi )/Repi for Repi < 1000

0.43 for Repi ≥ 1000

(7.31)

The fluid-particle interaction force per unit volume of bed, Igm, in the gas momentum

equation is obtained by summing the gas forces, fgpi, over all the particles in a fluid cell and

dividing by the volume of the fluid cell, Vcell. Thus

Igm =

∑Nm

i fgpi

Vcell
(7.32)

= − εsm∇Pg + εsm∇ · τ g +

Nm
∑

i

εgfdi/Vcell,

where Nm is the number of particles of mth phase in a fluid cell. The last term in Eq. (7.32)

may also be calculated approximately using local mean gas and particle velocities:
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Nm
∑

i

εgfdi/Vcell = β(vg − vsm), (7.33)

where β use the same form as in Eq. (7.30), except that the velocities are replaced by the local

mean values in a fluid cell, i.e.,

β =















150 ε2sm
εgd2pm

µg + 1.75εsm
ρg
dpm

|vg − vsm| for εg ≤ 0.8

3
4CD

εgεsm
dpm

ρg|vg − vsm|ε−2.7
g for εg > 0.8.

(7.34)

The solid volume fraction and local mean solid velocities are evaluated in a fluid computa-

tional cell:

εsm =

∑Nm

i Vpi

Vcell
, (7.35)

vsm =

∑Nm

i vpiVpi
∑Nm

i Vpi

. (7.36)

The volume of a computational cell, Vcell, in two-dimensional (2D) simulations is calculated

using the cell thickness in the third dimension as the diameter of a spherical particle.

Based on the previous discussion above, it can be seen that the fluid-particle effective drag

force can be calculated in two ways to transfer between gas and particle motion equations.

The first method is to calculate the drag force using Eq. (7.33) in a fluid cell and then assign

this mean drag force back to each particle in the cell. This method, with the assumption that

particles in a cell with the same diameter have the same drag force, is used for most of the

simulations in this paper. The second method is to calculate the drag force on each particle

using Eq. (7.29) and then sum up the particle drag forces in a fluid cell as the total drag

force on the fluid according to Newton’s third law. This method is employed for one case as

a comparison to the results from the first method. However, it should be noted that further

assumptions are made in this paper. One assumption is that the total drag force on the gas

is calculated using Eq. (7.33) and is approximately equal in magnitude to that obtained from

the summation of each particle’s drag force. For the second method, Eq. (7.33) is also used for

calculating the drag force on gas phase and the only difference between these method is the

way to obtain the drag force on the particles. Finally, viscous stress gradient in Eq. (7.28) is

neglected.
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7.2.4 Numerical Formulation

A Fortran code, Multiphase Flow with Interphase eXchanges (MFIX), is used for all sim-

ulations in this work. MFIX uses a finite volume approach with a staggered grid for the dis-

cretization of the TFM governing equations to reduce numerical instabilities (Syamlal, 1998).

Scalars such as pressure and volume fraction are stored at the cell centers and the velocity com-

ponents are stored at cell surfaces. A second-order discretization is used for spatial derivatives

and first-order discretization for temporal derivatives. A modified SIMPLE algorithm is em-

ployed to solve the discretized equations (Syamlal, 1998). The explicit time integration method

is used to solve the translational and rotational motion equations used in the DEM (Cundall

and Strack, 1979; Hoomans et al., 1996).

7.3 Simulation Conditions

Gas-solid fluidized beds were simulated using the hybrid TF-DEM model presented in the

methodology subsection (for m = 1). The fluidized beds simulated have very small depths com-

pared to the other two dimensions. Therefore, two dimensional simulations were performed,

which also reduce the computational requirements needed for three dimensional (3D) simula-

tions. The first computational case simulates a fluidized bed experiment with a central air jet

flow, presented by Tsuji et al. (Tsuji et al., 1993). This case will be referred to as the central

jet case, hereafter. The computational domain is shown in Fig. 7.2 (a) and the simulation

parameters are listed in Tab. 7.1. Most particle parameters are set to be the same as what

were used in the experiment. One important difference between the computational setup and

experimental setup is that there is only one layer of particles in the thin depth direction for

computations while there were about five particle layers in the experiment.

A second simulation for a bubbling fluidized bed with uniform inflow was performed to

analyze a different flow situation, where the bed is fluidized by a uniform air inflow. The

simulations were based on the experiment of the bubbling fluidized bed by Goldschmidt et

al. (Goldschmidt et al., 2003). This case will be referred to as the uniform inflow case, hereafter.

The 2D simulation was set up using the same experiment conditions except there is only one
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Table 7.1 Computational parameters and general initial and boundary
conditions for the central jet case and the uniform inflow case.

Central jet case Uniform inflow case

Geometry:

Height of domain (cm) 90 45

Width of domain (cm) 15 15

Horizontal grid size, ∆x (cm) 1 1

vertical grid size, ∆y (cm) 2 1

Particle properties:

Particle diameter (cm) 0.4 0.25

Particle density (g/cm3) 2.7 2.526

Particle stiffness coefficient (dyne/cm) 8 × 105 8 × 105

Particle damping coefficient (dyne · s/cm) 18 1.77

Particle friction coefficient 0.2 0.1

Particle number 2400 4000

Initial conditions:

εg 1.0 1.0

vg(= Umf) (cm/s) 180 128

Initial bed height (cm) 22 15

Boundary conditions:

Central air jet inflow (cm/s) 3900 1.5Umf

Specified pressure at outlet (Pa) 101325.0 101325.0

Wall boundary for gas phase No slip No slip

Wall stiffness coefficient (dyne/cm) 1.2 × 106 1.2 × 106

Wall damping coefficient (dyne · s/cm) 22 3.93
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Figure 7.2 Schematic showing computational domains for (a) Tsuji
et al. (1993) (b) Goldschmidt et al. (2003) experiments.

layer of particles in the third dimension. The computational domain is shown in Fig. 7.2 (b).

and parameters are shown in Tab. 7.1.

The particle responses to the flow fields in these simulations can be analyzed as follows to

further elucidate and justify the hybrid method used. Define the particle Stokes number as

St =
τp
τg

, (7.37)

where τp =
ρpd2

18µ is particle Stokesian relaxation time, and τg = d
vg

can be deemed as a

characteristic time scale for gas momentum convection over one particle diameter. Taking

the uniform inflow case as an example, the Stokes number St ≈ 37000. The particle volume

fractions are typically greater than 0.1 in bed. In such a dense particle flow with very high

Stokes number, gas turbulence is damped and small scale gas velocity fluctuations do not affect

the particle dynamics significantly. Therefore, directly modeling the sub-grid gas velocities is

not considered in this paper.

Simulations using the TFM for both cases were also carried out using the same grids

corresponding to those listed in Tab. 7.1. However, the particle motion is modeled by the solid

phase equations in the TFM instead of using DEM directly. All the cases were simulated for

20 seconds simulation time. The computational time used by the TFM and the hybrid method
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Figure 7.3 Pressure drop at 20 cm above the inlet boundary fluctuates with
time for the central jet fluidized bed.

for the central jet case was 5350 and 6780 seconds, respectively, on one Opteron 270 (2.0 GHz)

processor. Only results for the first 10 seconds will be presented in the next subsection, since it

was found that the fluidized beds reached a quasi-steady state after approximately 5 seconds.

7.4 Results and Discussion

Computational results obtained from the simulation of the central jet case are first pre-

sented. The pressure drop at 20 cm above the inlet boundary obtained from the TF-DEM sim-

ulation, as shown in Fig. 7.3 is similar to Tsuji et al.’s computational findings, i.e., frequency

and magnitude of fluctuation are in good agreement with experiments but with a higher mean

pressure (Tsuji et al., 1993). The TFM predicts that the pressure drop fluctuates around a

similar mean pressure, but with a smaller fluctuating amplitude. This is probably because

averaged equations are solved in TFM. A refined grid with ∆x = 1cm and ∆y = 1cm is used

to determine the grid dependence of this hybrid method. Statistical error in the particle field

estimation becomes larger as the grid is refined due to the grid-cell based averaging technique

used in this paper. The comparison between the temporally averaged solid volume fraction

distributions calculated from the coarse and the fine grids is shown in Fig. 7.4. It can be seen

that the result from the fine grid shows slightly higher bed expansion and a more asymmetric
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Figure 7.4 The averaged (5-10 s) particle volume fractions for the cen-
tral jet fluidized bed for (a) the coarse grid with ∆x = 1cm
AND ∆y = 2cm, and (b) the fine grid with ∆x = 1cm AND
∆y = 1cm. The domain in the figure only shows 45 cm above
the inlet with width of 15 cm.

solid distribution with respect to the central jet. A method to address the particle field esti-

mation problem will be discussed in the conclusion subsection. The difference caused by the

grid refinement, however, does not alter the comparison between the hybrid method and TFM

made in this paper. The coarse grid was also used in previous computational studies (Tsuji

et al., 1993; Xu and Yu, 1997). The coarse grid results are thus shown in the following. The

choice of the grid for the uniform inflow case is based on our grid refinement study for the TFM

simulations of the same systems (Sun and Battaglia, 2006). The logic is that this grid should

capture enough details of the gas field and particle field as shown in the TFM simulations.

It has been shown that the grid of cell size ∆x = 1 cm, ∆y = 1 cm produced an average

error of 1.4% and a maximum error of 3.7% in time-averaged volume fraction, compared to

the Richardson extrapolation results and that further grid refinement had little influence on

the results.

The bulk coordination number is defined as the averaged number of contacting neighbors of

a particle. The time evolution of bulk coordination number can be used to characterize dynamic

responses of granular systems (Sun et al., 2006). The bulk coordination number corresponds

to the first peak in the isotropic radial distribution function g(r) and is a measure of order in
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Figure 7.5 The bulk coordination numbers as a function of time

the particle pattern. Thus, it can indirectly give a sense of whether the particle phase is more

“gas-like” or “liquid-like”. The isotropic radial distribution function g(r) cannot be rigorously

defined in the anisotropic configurations used in the simulations and is not presented in the

paper. The bulk coordination numbers varying with time for the two simulations are shown

in Fig. 7.5. The bulk coordination number for the central jet case varies around 1.2, which

indicates pair structures or other multi-contact structures exist in the system. In contrast,

the bulk coordination number for the uniform inflow case varies around 0.5, which indicates

structures with contacting particles do not prevail. To further elucidate the spatial variation

of the particle contacts, we look at local quantities for each particle.

The particle instantaneous positions and velocities are shown in Fig. 7.6 for the TF-DEM

simulation of the central jet case. The particle movements and bed expansion behaviors are

also in qualitative agreement with the experimental observation. These agreements serve to

initially substantiate the practicality of the hybrid TF-DEM model presented in the paper. The

number of contacting particles for each particle, Nc, is defined as the number of contacting

neighbors of one particle. A direct indication of Nc of each particle is to determine if a particle

is in a binary collision, i.e., Nc = 1, or is in a multi-contact, i.e., Nc > 1. The contour of Nc for

each particle is also presented in Fig. 7.6. From the result, it is clear that Nc is not distributed

homogeneously in space. The Nc is low (1-2) in bubble regions but high in other parts (> 2),
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Figure 7.6 Instantaneous particle positions and velocities for the central
jet fluidized bed, denoted by points and vectors. The contour
levels show the magnitudes of Nc. The domain in the figure
only shows 45 cm above the inlet with width of 15 cm.
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which are mainly on the bottom shoulders of the bed beside the jet after the jet penetrates

the bed (see Fig. 7.6 (b)-(d)). The high Nc shows that multi-contacts are prevailing in those

regions away from bubbles,

The spatial distributions of particle contact forces, drag forces and the ratios of these forces

are shown in Fig. 7.7. The magnitudes of total forces in every computational cell are shown,

i.e., the total contact force at a cell center, fcj =
∑Nm

i fci, and the total drag force at a cell

center, f ′gpj =
∑Nm

i f ′gpi, where i and j are indices of particles and grid nodes, respectively.

The force is also scaled by the magnitude of the gravitational force of a particle. It can be

seen from the instantaneous distributions (Fig. 7.7(a)) that the contact forces are large in the

regions away from bubbles, which is consistent with the experimental observation that higher

particle pressure is generated under bubbles (Rahman and Campbell, 2002). The drag forces

are large in the jet region. The ratios of contact forces to drag forces vary between 2–10 in

most of the bed region. However, contact forces may be as high as 100 times that of the drag

forces (higher than the contour level shown in Fig. 7.7) in the bottom shoulder regions beside

the jet. The high contact force regions could also correspond to the high solid stress regions.

The locations of large contact forces and force ratios are correlated with the locations of higher

Nc as compared to the corresponding snapshot at 5 s in Fig. 7.6. Solid volume fractions in

most of these regions are less than the critical solid volume fraction, ε∗s (see the left panels

in Fig. 7.8). The solid stress would be calculated using the KTGF. Since the solid stress

calculated using the KTGF does not take the contribution from the collisions with Nc > 1

into account, the solid stresses in these regions are also expected to deviate from the stresses

predicted using the KTGF. These observations emphasize the importance of studying particle

contacts in the regions away from bubbles in order to understand the constitutive behavior of

a fluidized bed. The time averaged distributions (Fig. 7.7(b)) show similar trends although

the forces are distributed more homogeneously.

A comparison between the solid volume fractions predicted by the TF-DEM model and

those predicted by TFM is also performed. The instantaneous and time averaged (5-10 s)

solid volume fraction distributions for the central jet case are shown in Fig. 7.8 (a) and (b),
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Figure 7.7 Distribution of particle contact forces and drag forces and their
ratios for the central jet fluidized bed for (a) the instantaneous
snapshots at 5 s, and (b) the time averaged snapshots (5-10
s). The left panel shows contact forces, the middle panel shows
drag forces and the right panel shows the ratios of contact forces
to drag forces. The fist legend levels indicate the magnitudes
of forces scaled by gravitational force of a particle. The second
legend levels indicate the ratios, where −1 indicates that the
drag force is zero at that position. The second legend levels do
not show the highest ratio of around 100 in order to distinguish
the majority of ratios below 20. The domain in the figure only
shows 45 cm above the inlet with width of 15 cm.



127

respectively. The distributions demonstrate that the TF-DEM model and TFM model predict

similar jet penetration behavior. However, the TFM predicts a more homogeneous and sym-

metric distribution of solids. The TF-DEM model can capture the concentration difference in

the shoulder regions even in the time averaged results as seen in Fig. 7.8 (b). The difference

reflects the inability of the TFM to capture the structural information although the TFM

predicts a similar mean pressure drop as the TF-DEM model does. The inability may also be

ascribed to the solid constitutive closures used in the TFM. The closures do not adequately

model the stress and energy dissipation caused by multi-contacts, which reduces the preferen-

tial change in solid volume fractions. A quantitative account of the differences between the

stresses and dissipation calculated using the TF-DEM and using the TFM is the subject of a

future study (Sun and Battaglia, 2007).

For the uniform inflow case, bed dynamics were first analyzed by the time evolution of

the mean particle height. The mean particle height is defined as the arithmetic mean of the

heights of all particles in the bed. It is straight forward to calculate in the TF-DEM model

and can also be estimated by a method defined in (Sun and Battaglia, 2006) for the TFM. The

mean particle height as a function of time is shown in Fig. 7.9. It is found that mean particle

heights predicted by both models fluctuate at a similar level. The 5–10 s time averaged values

are 8.9 cm and 9.16 cm for TF-DEM model and TFM, respectively. Both are lower than the

experimental value of 11.4 cm (Goldschmidt, 2001).

The particles instantaneous positions, velocities and Nc are presented in Fig. 7.10. It can

be seen that the bed is uniformly fluidized at the start-up stage (Fig. 7.10 (a)) with no bubble

and zero Nc over almost the whole bed. After bubbles develop, higher Nc appear in the region

away from the bubble, However, the ratio of number of multi-contacts over the total number of

collisions is small, fluctuating around 0.3 as shown in Fig. 7.11. This small ratio indicates that

the binary collision assumption in the KTGF may still be reasonable under this flow condition.

In contrast, the ratio for the central jet case is higher than 0.6 most of the time, which indicates

the binary collision assumption may deviate from the real particle collision scenario to a large

degree. The spatial distributions of particle contact forces, drag forces and the ratios of these
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Figure 7.8 Particle volume fractions for the central jet fluidized bed for (a)
instantaneous snapshot at 5 s, and (b) time averaged snapshot
(5-10 s). The left panel shows the TF-DEM simulation and
the right panel shows the TFM simulation. The domain in the
figure only shows 45 cm above the inlet with width of 15 cm.
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Figure 7.9 The mean particle height as a function of time for the uniform
inflow fluidized bed calculated from TF-DEM model and TFM

forces for the uniform inflow case are also shown in Fig. 7.12. Similar observations can be

drawn as for the central jet case. However, there is no region where the contact forces are

more than 15 times higher than the drag forces as observed in the shoulder region for the

central jet case.

The two different formulae for computing the effective drag force based on averaged or

instantaneous particle velocities were applied to simulate the uniform inflow case. Since the

method using the averaged particle velocities produces the same forces on each particle in

a fluid cell, it tends to smear the difference between particle movement and results in less

vigorous bed dynamics. It is expected that the method using instantaneous particle velocity

will predict higher bed expansion. This effect is actually shown by the time averaged solid

volume fraction in Fig. 7.13, where the result produced by the second method shows slightly

higher bed expansion. The time average mean particle height predicted by the second method

is 9.1 cm, and also higher than that predicted by the first method. However, it should be noted

that the difference between the mean quantities predicted by the two formulae is not large.

Local quantities such as granular temperature will be further studied to investigate the effect

of the formulae.
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Figure 7.10 Instantaneous particle positions and velocities for the uniform
inflow fluidized bed denoted by points and vectors. The con-
tour level shows the magnitude of Nc.The domain is 15 cm in
width and 45 cm in height (refer to Fig. 7.2).
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Figure 7.12 Distribution of particle contact forces and drag forces and their
ratios for the uniform inflow fluidized bed for (a) the instan-
taneous snapshots at 5 s, and (b) the time averaged snapshots
(5-10 s). The left panel shows contact forces, the middle panel
shows drag forces and the right panel shows the ratios of con-
tact forces to drag forces. The fist legend levels indicate the
magnitudes of forces scaled by gravitational force of a parti-
cle. The second legend levels indicate the ratios, where −1
indicates that the drag force is zero at that position. The do-
main is 15 cm in width and 45 cm in height (refer to Fig. 7.2).
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Figure 7.13 Time average from 5-10 s of the particle volume fractions, for
the uniform inflow fluidized bed predicted by the method using
(a) averaged particle velocities and (b) instantaneous particle
velocities. The domain is 15 cm in width and 45 cm in height
(refer to Fig. 7.2).

7.5 Conclusions

A methodology of a hybrid TF-DEM model for gas-solid fluidized beds has been presented.

The model couples the discrete element method for particle dynamics with the two-fluid equa-

tions for the gas phase. The coupling between the two phases is modeled by the gas-particle

interaction force. Simulations of two types of gas-solid fluidized beds have been carried out

using the hybrid simulation method. The results of the hybrid TF-DEM simulations are com-

pared to experimental data and TFM simulations. It is found that the TF-DEM simulation

is capable of predicting general fluidized bed dynamics, i.e., pressure drop across the bed and

bed expansion, which are in agreement with experimental measurements and TFM predictions.

Number of contacting particles, Nc, are found to be greater than 1 in the regions away from

bubble. The contact forces are much larger than the effective drag forces in the same regions.

It is also demonstrated that the multi-contacts prevail in the central-jet fluidized bed, implying

that the binary instantaneous collision assumption in the KTGF may not be applicable in this

flow condition. For the uniform inflow fluidized bed, the number of contacting particles are

around one to two so that the binary collision assumption is reasonable in this flow condition.
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With further research, the particle contact information will hopefully provide guidelines for

constitutive model development and may contribute to the sub-grid modeling method proposed

by Sundaresan (Sundaresan, 2000). The relations between the flow conditions and fluidized bed

constitutive behaviors and how the multi-interactions should be incorporated into the consti-

tutive modeling clearly need further investigation. It would be instructive to first compare the

stresses computed using particle information from the TF-DEM simulations with the stresses

computed using the KTGF or using the friction-kinetic model (Srivastava and Sundaresan,

2003). The stress analysis will be given in a following paper (Sun and Battaglia, 2007).

The effect of computing an effective drag force on a particle in terms of averaged or instan-

taneous particle velocities were demonstrated. It was shown that the formulation using instan-

taneous particle velocities better captures the force difference at particle scale and predicts a

higher bed expansion, which is closer to the corresponding experimental results. Furthermore,

the statistical error in estimation of the interphase momentum transfer term becomes high

as the grid is refined. This motivates using more sophisticated kernel estimation methods to

achieve optimal error control in both statistical error and discretization error (Dreeben and

Pope, 1992; Garg and Subramaniam, 2006).
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this dissertation, research efforts have been devoted to simulating and understanding

segregation phenomena in gas-solid flows and dry granular flows.

In chapter 4, CFD simulations using the multi-fluid model have been conducted to study

grain fluidization and grain-chaff segregation. It has been demonstrated that the pressure

drop curve across the grain bed can be predicted by the CFD simulations. Modeling grain

and chaff as spherical particles with the same diameter but different densities, the segregation

of grain from chaff in a combine has also been captured by CFD simulations. However, it

was found that it was difficult to simulate fluidization of a pre-mixed grain and chaff mixture.

This motivated the studies of particle scale physics in order to understand the segregation

mechanism and to derive models that can accurately predict the segregation phenomena.

In chapter 5, the multi-fluid model has been improved by incorporating particle rotation us-

ing a simplified kinetic theory for rapid granular flow of slightly frictional spheres. Simulations

without and with particle rotation were performed to study bubble dynamics in a monodis-

persed gas-solid fluidized bed and segregation phenomena in a dense gas-solid fluidized bed of a

binary solid mixture. Results were compared between simulations with and without the parti-

cle rotation model and with corresponding experimental results. In the monodispersed system,

bubble intensity and bed expansion increased as a result of more energy dissipation with the

particle rotation model, which better agrees with experimental results. In the binary systems

studied in this paper, better agreement was achieved by using the model with particle rotation

in the regime where kinetic theory is applicable and the particle-particle interactions have a

noticeable effect on segregation. These preliminary results indicate that particle rotation is an
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important microscopic physics to be incorporated into the fundamental hydrodynamic model.

However, the particle rotation model does not have the same kind of improvement for segre-

gation cases where the gas inlet velocity is between the minimum fluidization velocities of the

small and large particles. The reason is thought to be due to the fact that the large particles

are not very well fluidized in this condition and the long-lasting microstructures formed by the

large particles hinder the segregation.

Segregation and the microstructures for a Brazil nut problem in a dense dry granular system

have been studied in chapter 6. MD simulations have been performed for the BNP at low

vibration frequency in order to understand the underlying physical mechanisms of segregation

dynamics. It is concluded that wall friction is the most important physical parameter in

determining the segregation behavior in this BNP. The presence of large-scale force networks

bearing larger-than-average forces has been shown in the compression stage with wall friction,

while there are much fewer contacts in the expansion stage. The PDF of normal contact forces

in the force network bears exponential tails similar to those found in packing experiments. The

two-point force correlation of the force network decays quickly. A modified minimum spanning

tree algorithm has been developed. It was shown to be able to capture all the contacts within

the force network and thus was able to recover the force distribution and force correlation for

the force network.

In chapter 7, hydrodynamics and microstructures in gas-solid fluidized beds have been

investigated. A methodology of a hybrid TF-DEM model was used. Simulations of two types

of gas-solid fluidized beds have been carried out using the hybrid simulation method. Multi-

particle contacts and large contact force was found in the regions away from bubble. Therefore,

the assumption of binary collisions for KTGF is expected to be violated in these regions.

In summary, the multi-fluid model presented in chapter 3 was found to be able to capture

some basic features of fluidization and segregation in granular systems. The investigations on

microscale physics showed that the particle properties and microstructures affect the dynamic

behavior and the segregation rate of granular flows. The microscale physics should be incorpo-

rated to continuum models for better predictions of granular flows. This may be feasible even
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in the dense flow regime as indicated by the short force correlation length.

The research approaches, including the multi-fluid model, discrete element method and

the hybrid method, compose a hierarchical multiscale modeling framework with information

flowing from the microcale to the macroscale. The methodologies in this framework have

been demonstrated to be complimentary to each other. The microscale and hybrid methods

are able to capture useful microscale information to provide physical insights and relative

modeling information to the continuum models.

The full potential of this framework, however, has not been exploited yet. Some promising

continuing research, which could lead to better understanding and modeling of granular flows,

will be discussed in the future work section.

8.2 Future work

8.2.1 Probe microscale physics of granular flows

Systematic simulations of granular flows using microscale and hybrid methods can be per-

formed for all flow regimes ranging from the rapid flow regime to the quasi-static regime in

order to better understand the flow characteristics. The following information is of particular

interest for continuum model development.

8.2.1.1 Particle velocity distributions and correlations

The single particle velocity distribution is usually assumed to be Maxwellian in KTGF. It

will be interesting to see how the single particle velocity distribution extracted from the simu-

lations deviate from the Maxwellian form as the particle elasticity, roughness, size distribution

and flow regimes change. The spatial correlation of particle velocities should also be calculated

to investigate the correlation length variation with respect to all flow parameters.

8.2.1.2 Force distributions and correlations

Force heterogeneities can be investigated by extracting contact force probability distribu-

tion from the simulations. The force spatial correlations can be calculated to get the force
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correlation length.

8.2.1.3 Solid stresses

Macroscale stress field can be obtained using a coarse-graining function with width w.

The relation between the stresses and the width w can be explored to examine if there is a

scale independence in solid stress filed. The consistency of the computed stresses with those

predicted by other constitutive equations can also be examined. Fluctuations of the stresses

and strain rate can be calculated.

The information obtained from probing the microsale physics can provide insights for con-

structing constitutive relations and the correlation length scales may directly be used by such

relations.

8.2.2 Develop continuum models

8.2.2.1 Continuum models for rapid flow regime

A multi-fluid model can be derived from Boltzmann-like kinetic equations. While the formal

procedure is not novel, a new method, direct quadrature method of moments (DQMOM) (Fox,

2003), can be exploited to close the model. Using the DQMOM for the multi-fluid model has

the advantages that far-from-equilibrium flow conditions and particle size distributions can be

considered.

8.2.2.2 Constitutive models for dense flow regime

The hypoplastic constitutive model (Wu et al., 1996) may be employed and improved by

incorporating the dependence on particle properties and strain rate fluctuations, which can be

obtained from the microscale simulations.

As a last but not least note, validating the models against experimental data is a crucial

step underlying all the developments. Microscale models can serve as fruitful and powerful

tools to provide microscale information only after they have been validated against accurate
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measurement data. Therefore, accurate numerical methods and accurate experimental tech-

niques are necessary for the model developments.
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Möbius, M. E., Lauderdale, B. E., Nagel, S. R., and Jaeger, H. M. (2001). Size separation of

granular particles. Nature, 414:270.
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