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ABSTRACT 

 

A lab-scale biomass fast pyrolysis system was designed and constructed based on an auger 

reactor concept. The design features two intermeshing augers that mix biomass with a heated bulk 

solid material that serves as a heat transfer medium. A literature review, engineering design process, 

and shake-down testing procedure was included as part of the system development.  

A response surface methodology was carried out by performing 30 experiments based on a 

four factor, five level central composite design to evaluate and optimize the system. The factors 

investigated were: (1) heat carrier inlet temperature, (2) heat carrier mass feed rate, (3) rotational 

speed of the reactor augers, and (4) volumetric flow rate of nitrogen used as a carrier gas. Red oak 

(Quercus Rubra L.) was used as the biomass feedstock, and S-280 cast steel shot was used as a heat 

carrier. Gravimetric methods were used to determine the mass yields of the fast pyrolysis products. 

Linear regression methods were used to develop statistically significant quadratic models to estimate 

and investigate the bio-oil and biochar yield. The optimal conditions that were found to maximize 

bio-oil yield and minimize biochar yield are high nitrogen flow rates (3.5 sL/min), high heat carrier 

temperatures (625°C), high auger speeds (63 RPM) and high heat carrier feed rates (18 kg/hr).  

The produced bio-oil, biochar and gas samples were subjected to multiple analytical tests to 

characterize the physical properties and chemical composition. These included determination of bio-

oil moisture content, solid particulate matter, water insoluble content, higher heating value, viscosity, 

total acid number, proximate and ultimate analyses and GC/MS characterization. Statistically 

significant linear regression models were developed to predict the yield of gaseous carbon monoxide, 

the hydrogen content, moisture content and water-insoluble content of the bio-oil, and the vapor 

reaction temperature at the reactor outlet. A significant result is that with increasing bio-oil yield, the 

oxygen to carbon ratio and the hydrogen to carbon ratio of the wet bio-oil both decrease, largely due 

to a reduction in water content. 

The auger type reactor is currently less researched than other systems, and the results from 

this study suggest the design is well suited for fast pyrolysis processing. The reactor as designed and 

operated is able to achieve high liquid yields (greater than 70%-wt.), and produces bio-oil and biochar 

products that are physically and chemically similar to products from other fast pyrolysis reactors. 
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CHAPTER 1.  INTRODUCTION 

 

A fundamental branch of the mechanical engineering discipline is energy conversion, 

transforming naturally occurring resources into forms that are more usable by society. Energy 

conversion is an application of engineering principles from thermodynamics, fluid mechanics, and 

heat transfer, as well as machine design and mechanics of materials. A classic example of an energy 

conversion process is coal combustion to provide heat for raising steam that runs turbines and 

generators for producing electricity. More recently, however, biomass has been recognized as a viable 

and abundant resource that can be used for the production of renewable fuels, energy, chemicals and 

other bioproducts [1].  

According to The Global Summit on the Future of Mechanical Engineering  2028, “One of 

the most critical challenges facing mechanical engineers…is to develop solutions that foster a cleaner, 

healthier, safer and sustainable world [2].” Biomass fast pyrolysis is an energy conversion process 

that can be considered one such solution to these challenges. 

The objective of this research study is to design and develop a novel lab-scale auger reactor 

for biomass fast pyrolysis processing, determine its optimal operating conditions, and relate the 

product yields and composition to these conditions. This will allow for the reactor design to be 

evaluated and compared to existing, published data.  

This reactor type is relatively new in the field of biomass fast pyrolysis, and can be currently 

considered as an “alternative reactor.” Though there are potential economic and processing 

advantages of utilizing this reactor technology for bio-oil production, there is little published data 

relating the pyrolysis product yields and composition to the operating conditions of the reactor.  

 

1.1 Biomass fast pyrolysis 

Fast pyrolysis is a thermochemical process used to produce primarily a liquid product known 

as pyrolysis oil or bio-oil [3], and is considered a promising route for biomass conversion. When 

biomass is rapidly heated in a controlled, oxygen depleted environment at atmospheric pressure to a 

final temperature of approximately 500°C, it is decomposed and converted within seconds to liquid 

bio-oil, solid biochar, and non-condensable gases [4]. Fast pyrolysis can collect over 70% of the 

starting material mass as liquid bio-oil, with the balance formed by approximately equal portions of 

biochar and gases.  
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Bio-oil can be used as a renewable industrial fuel to generate heat and electrical power, or can 

be upgraded into transportation fuels and specialty chemicals. Biochar can be used as a solid fuel 

source, and has more recently found applications as an agricultural soil amendment. The non-

condensable gases are typically recycled into the process to provide process heat.  

A general schematic of this thermal process is shown in Figure 1, noting the relationship 

between the fast pyrolysis reactor and the system that separates and collects the reaction products. 

Also note the energy input to the reactor in the form of heat, which is required to carry out the 

endothermic fast pyrolysis reactions.  

 

 

Figure 1. Biomass fast pyrolysis schematic 

 

1.2 Thesis overview 

This thesis consists of five remaining sections to systematically explain and support the 

research effort. The next section, Chapter 2, will summarize the literature review performed to 

determine the general state-of-the-art of the science and technology of biomass fast pyrolysis and 

review previous research efforts related to auger reactors. Chapter 3 will review the R&D efforts 

required to construct the laboratory reactor system, including a detailed description of the apparatus. 

Chapter 4 will detail the methodology and materials used for the experimental phase of the research. 

The results of the experiments will be presented in Chapter 5 along with a discussion, and Chapter 6 

includes the conclusions of the research and recommendations for future work. Supplemental 

information is located in Appendices and will be referred to as necessary. 
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CHAPTER 2.  TECHNICAL LITERATURE REVIEW 

 

2.1 Introduction 

Lignocellulosic biomass is an abundant and geographically diverse natural resource. The 

USDA estimates that over one billion tons of dry matter may be available annually in the United 

States [5]. Examples of biomass resources include: agricultural crop residues such as corn stover, 

wood residues from the forest and milling industries, municipal solid waste (MSW) from urban areas, 

herbaceous energy crops such as switchgrass, and short-rotation woody crops [6].  

Through photosynthesis, plants convert sunlight and CO2 into stored chemical energy, 

therefore biomass can be considered an indirect form of solar energy and a renewable source of 

carbon [7].  The stored chemical energy in biomass can be converted into bioenergy (heat and 

electricity), liquid biofuels for transportation, chemicals, and other biobased products. This utilization 

of biomass can contribute to a net reduction in greenhouse gas emissions which may impact global 

climate change, and provide other benefits such as reducing foreign energy imports [8]. 

There are many biomass conversion pathways in various stages of development, and these 

pathways are commonly grouped into two major technology platforms: biochemical and 

thermochemical. These platforms are not exclusive, though, and opportunities exist to combine 

technologies into so-called “hybrid processes” [9]. Biochemical technologies, such as fermentation to 

produce alcohol fuels and anaerobic digestion to produce methane gas, are outside the scope of this 

research and will not be discussed.  

Thermochemical conversion techniques utilize heat to decompose biomass, and include four 

main processes (in order of increasing temperature): direct liquefaction, pyrolysis, gasification and 

combustion. Though pyrolysis and liquefaction are sometime grouped into one process, they will be 

discussed here separately.  

Direct liquefaction. Direct liquefaction, or often just “liquefaction”, is a mild temperature, 

high pressure conversion process (around 300°C and up to 240 bar, respectively) with the primary 

goal of producing a liquid product [1]. Liquefaction is often a catalytic process, and requires that the 

feedstock material be slurried in an aqueous solution, usually with water as a solvent. Because of this 

requirement, liquefaction may be well suited for resources that naturally have particularly high 

moisture contents, such as animal manure. Huber et al. [10] note that while bio-oils from liquefaction 

(often referred to as bio-crude) are of a high quality due to the low oxygen content, this comes at the 
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expense of a lower liquid yield. In general, direct liquefaction has been less investigated than other 

thermochemical processes; however refer to Behrendt et al. [11] for a recent review of direct 

liquefaction. Applications of bio-crude are similar to applications for bio-oil, and will be discussed 

later.  

Pyrolysis. Pyrolysis is the thermal decomposition of organic matter without oxygen present 

[3]. The origins of pyrolysis date back as far as ancient Egypt [4]. Upon heating, moisture is first 

driven off from a material, and then pyrolysis reactions occur before any remaining thermal processes 

occur. Depending on the conditions, varying amounts of solid, liquid and gas will be produced [12]. 

Pyrolysis occurs over a range of temperatures from 400°C – 600°C, and usually at atmospheric 

pressure. Fast pyrolysis is marked by high heating rates, short vapor residence times (seconds) and 

rapid cooling of the reaction products, which favors maximum formation of liquids around 500°C 

[13]. Slow pyrolysis, alternatively, is marked by slower heating rates, longer vapor residence times 

(minutes), and high yields of solid char material [4]. Slow pyrolysis – also known as conventional 

pyrolysis – has basically been applied for many years as a carbonization type process for converting 

wood into charcoal [4, 14]. As slow pyrolysis yields minimal bio-oil, it will not be reviewed further. 

In addition to fast and slow pyrolysis (which are not always clearly delineated), several other types of 

pyrolysis are reviewed by Mohan et al. [4]. The fast pyrolysis process and technology, including 

applications for the end-products, are discussed in more depth in the next section.  

A benefit of direct liquefaction and pyrolysis over gasification and combustion is the ability 

to produce a liquid product, which can be more readily stored and transported compared to gaseous 

fuels. This implies that bio-oil can be produced in a separate location from the end-use application, 

and this “distributed processing” scheme may be advantageous as biomass transportation costs can be 

minimized for small scale regional facilities [15]. 

Gasification. Gasification is an endothermic process occurring around process temperatures 

of 750°C – 1000°C to produce primarily a combustible fuel gas commonly referred to as producer gas 

or syngas [1]. Depending on the process conditions and the fluidizing gas, the syngas composition 

will contain varying amounts of CO, H2, CH4, CO2, N2 and other organic species. The heat required 

for gasification is often provided by partially oxidizing a portion of the feedstock material. Syngas 

can be combusted for heat and power applications, or upgraded into transportation fuels and 

chemicals using the Fischer-Tropsch process or other techniques [16]. For more information on 

gasification technology refer to Ciferno et al [17].  

Combustion. Combustion is the highest temperature thermochemical conversion process (in 

excess of 1500°C), and it is well understood and commonly used in many industries. With 
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stochiometric or excess air present to fully oxidize the feedstock fuel, combustion produces heat with 

water and CO2 as byproducts. Heat from combustion is used for various processes, including steam 

production and electricity generation. This process will not be reviewed further, however refer to 

Jenkins et al. for more information on biomass combustion [18]. 

Refer to Demirbas for a thorough review of thermal conversion of biomass [19], and 

Olofsson et al. for a review of applicable technologies and reactor configurations [20]. An overview 

of these processes and their general applications is shown in Figure 2. Liquefaction is shown offset in 

Figure 2 because it is not as well researched as the other thermochemical processes, and is sometimes 

not even mentioned as a thermal process and lumped together with pyrolysis as a means for 

producing primarily liquid fuels.  

 

COMBUSTION

LIQUEFACTION
LIQUID

SOLID

GAS POWER

HEAT

CHEMICALS

FUELS

GASIFICATION

PYROLYSIS UPGRADING

 

Figure 2. Thermochemical processes 

 

2.2 Fast pyrolysis fundamentals 

Fast pyrolysis is a complex process, and though much research has been performed over the 

past few decades, it is still developing at a rapid rate. This process has shown great promise for being 

flexible and diverse, and is prized for the ability to produce a high yielding liquid fuel from almost 

any type of biomass feedstock. Minimal biomass pretreatments are required for fast pyrolysis [3], and 



 6 

depending on the desired outputs the process can be carried out such that no outside energy inputs are 

required. Furthermore, depending on the product applications, fast pyrolysis can be a carbon neutral 

or even carbon negative process.  

As previously noted, fast pyrolysis is a rapid heating process in the lack of oxygen to 

decompose biomass into a liquid fuel, with solid and gaseous by-products. It is generally accepted 

that there are four main process characteristics for fast pyrolysis [4, 21], and will be discussed in more 

depth in the next section: 

 

• Very high heat transfer rates 

• Controlled reaction temperature 

• Short vapor residence times 

• Rapid separation and cooling of reaction products  

 

As the fast pyrolysis process occurs in a few seconds or less, heat transfer and mass transfer 

effects as well as reaction kinetics are all important phenomenon, however these considerations will 

not be reviewed here and can be found elsewhere [22-27]. Blasi [28] and Babu [29] discuss several 

different kinetic models in separate reviews of biomass pyrolysis.  

 

2.2.1 Operating conditions 

There is much literature reported on the operating conditions for biomass fast pyrolysis, and 

biomass properties are the first consideration in maximizing liquid yield. To ensure rapid heating and 

complete devolatilization, small biomass particles are required. Though the particle size requirement 

is somewhat dependent on the specific reactor technology used, the general particle size requirement 

is agreed to be around 2.0 mm [10, 21, 30]. The only other pretreatment required prior to fast 

pyrolysis is reduction of the biomass moisture content. Typical requirements are around 10%-wt. or 

less, which minimizes the amount of water that is collected in the final bio-oil [21] and decreases the 

overall reaction heat energy requirements.   

Overall fast pyrolysis is an endothermic process, with sensible heat required to bring the 

biomass from ambient conditions to the reaction temperature regime. Above the sensible heat 

requirements, though, the fast pyrolysis reactions require a minimal heat addition. Daugaard et al. 

estimate a total heat for pyrolysis ranging from 1.0 – 1.8 MJ/kg depending on the feedstock [31]. The 

condition that this heat be rapidly transferred to the biomass is critical for fast pyrolysis, and many 
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mechanisms and reactor configurations have been researched and developed to accomplish this. 

Heating rates on the order of 103 °C/sec have been claimed [4]. If biomass is slowly heated, secondary 

reactions occur and more solid products are formed as liquid yields are decreased [32]. Rapid heating 

in a fast pyrolysis reactor typically occurs by means of a hot carrier gas or solid heat carrier material, 

or a heated reactor wall, or a combination of these [21, 33]. Though the addition of air or oxygen can 

provide heat by oxidizing a portion of the feedstock (as is performed for biomass gasification), this 

approach decreases the yield of bio-oil. Therefore, many reactors (especially lab-scale systems for 

research purposes) utilize a flow of nitrogen gas to provide an inert reaction environment. Depending 

on the reactor configuration, the heat transfer mode of conduction, convection or radiation may 

dominate, however they will each contribute to some degree.  

The reaction temperature is also critical for fast pyrolysis and has effects on the product 

yields and qualities. Higher char formations occur at temperatures less than approximately 425°C, 

and non-condensable gas production increases for temperatures above 600°C. Several sources report 

bio-oil yields are maximized around temperatures of 500°C ± 25°C [4, 13, 21, 30]. The heat transfer 

rate and the reaction temperature are both important: rapid heating to a reaction temperature that is 

too low or too high will adversely affect the products, as will a slow heating rate to the optimal 

reaction temperature. The reaction pressure for fast pyrolysis is typically near atmospheric, as higher 

pressures favor the formation of biochar [34].  

In addition to rapid heating and controlled temperatures, a short residence time for the 

pyrolysis products is important to maximize liquid yields. As biomass is pyrolyzed, the reaction 

products evolve in the form of condensable vapors, tiny aerosol droplets, non-condensable gases and 

biochar. From the time biomass enters the reactor, the vapor residence time (where “vapors” here are 

considered to be all the reaction products other than solid biochar particles) is traditionally less than 2 

seconds for fast pyrolysis. This consideration is extended to include the cooling of the vapor and 

aerosol products to collect them as bio-oil. For instance if the reaction products are formed in the 

reactor within the first second, within the next second they should be rapidly cooled to condense and 

recover as much vapors and aerosols as possible. The cooling process during the collection of bio-oil 

effectively minimizes further reactions that occur at high temperatures, so fast pyrolysis can not be 

considered an equilibrium process [4]. As with the “optimal” reaction temperature for fast pyrolysis, 

the 2 second vapor residence time is currently a well accepted and documented operating condition 

[4, 13, 30]. Longer residence times allow for secondary reactions to occur which form either 

additional gases or char, both of which are undesired and reduce the liquid yield.  

 



 8 

2.2.2 End products description 

The chemical and physical characteristics of the fast pyrolysis products are dependent on 

many factors, including: the biomass composition and the operating conditions (as discussed 

previously), as well as the reactor and product recovery technology used for the processing (as 

discussed in Section 2.2.4). A brief introduction to the products of fast pyrolysis is presented next.  

Bio-oil. The primary product from fast pyrolysis is a dark brown liquid known as pyrolysis 

oil, bio-oil, liquid smoke, wood distillate, or a number of many other terms. Bio-oil has a distinct odor 

similar to smoke from a wood fire, and is often quite pungent. As discussed, the yield of bio-oil will 

vary depending on the operating conditions and feedstock properties, but yields in excess of 70%-wt. 

are common for wood biomass and well documented in the literature. In general, bio-oil yields for 

biomass fast pyrolysis range from 65%-wt. – 75%-wt. 

Bio-oil is a complex mixture of more than 300 organic compounds formed during pyrolysis 

reactions that are essentially “trapped” in a liquid form [35]. Bio-oil is very different from traditional 

fossil-fuel based liquids, and indeed some researchers prefer not to refer to it as oil at all (“pyrolysis 

liquid”, for example). Many of these differences and the unique properties of bio-oil are attributed to 

its high oxygen content (over 40%-wt.), which originates from the oxygen contained in the biomass 

feedstock. It is often noted that bio-oil elemental composition is very similar to that of the original 

feedstock, just in a more convenient liquid form [4, 36]. Bio-oil also contains significant amounts of 

water, which results from condensing any moisture contained in the feedstock as well as significant 

“reaction water” formed during the process. A common value for bio-oil moisture content is 25%-wt. 

An important aspect of bio-oil is that it can not be directly mixed with hydrocarbon fuels because 

phase separation occurs due to the high moisture content. Also due to the high oxygen and water 

contents, bio-oil has a lower heating value than petroleum based fuel-oils, often reported around 40% 

– 50% less [4, 36]. In addition to higher oxygen and water contents, bio-oil is more acidic than 

petroleum based fuel-oils, with a common pH value of 2.5. Common physical properties of bio-oil are 

shown in Table 1, as reported by the reviewed literature.  

Note that bio-oil cannot be readily heated for distillation purposes. Due to its unique nature, a 

residue of up to 50%-wt. may remain. This has implications for bio-oil upgrading operations, which 

are discussed in the next section.  

The chemical composition of bio-oil is dependent on many factors, and includes many classes 

of oxygenated species. In addition to water, Bridgwater et al. describe the major chemical constituents 

of bio-oil as: aldehydes (15%-wt.), carboxylic acids (12%-wt.), carbohydrates (8%-wt.), phenols (3%-

wt.), furfurals (2%-wt.), alcohols (3%-wt.) and ketones (3%-wt.) [13]. Alternatively, Mohan et al. list 
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five more general categories of chemical compounds: hydroxyaldehydes, hydroxyketones, sugars and 

dehydrogugars, and phenolic compounds [4]. Another major constituent of bio-oil (15%-wt. – 30%-

wt.) is a water-insoluble fraction thought to originate from the lignin portion of the biomass, and is 

therefore often referred to as “pyrolytic lignin” [4, 13]. Some of the interesting properties of bio-oil 

are based on the pyrolytic lignin fraction, as are the processing challenges and opportunities 

associated with bio-oil.  

 

Table 1. Typical physical properties for bio-oil 

Unit Value Notes

%-wt. 15 - 35 Wet basis
- 1.1 - 1.3

cP 40 - 100 @ 40°C
- 2 - 3.7

MJ/kg 16 - 19 HHV
%-wt. 0.1 - 1.0 Wet basis
%-wt. Wet basis

Carbon 32 - 58
Hydrogen 5 - 8.6
Oxygen 35 - 60
Nitrogen 0 - 0.3
Ash 0 - 0.2

%-wt. ~50 Wet basis

Property

Water content
Specific gravity
Viscosity

Distillation residue

pH 
Heating value
Solids content
Elemental analysis

 

      Note: Adapted from [10, 21, 36-38]. Refer to these sources  
      for more in-depth reviews of bio-oil  physical properties.  

 

 

Though the chemical and physical characterization of bio-oil has been researched for 

decades, methodologies and standards are still being developed. Specific methodologies and practices 

important to this research will be discussed as necessary in later sections. Refer to Oasmaa et al. for 

several studies of commonly used procedures and recommendations for bio-oil testing [38-40].  

Bio-oil has unique aging and stability issues, and as it is not an equilibrium reaction product it 

is known to change over time. Low temperature storage is a commonly used practice to minimize 

these changes. Bio-oil stability will not be discussed here, but is documented in the literature and is 

currently a research topic of great interest.  

Non-condensable gas. The gaseous products from fast pyrolysis will be referred to as non-

condensable gas (NCG), rather than syngas or producer gas which is reserved for the reaction 

products of gasification. The NCG fraction from fast pyrolysis is a combustible mixture, and contains 

many species including: large amounts of carbon monoxide (CO) and carbon dioxide (CO2), with 
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lesser amounts of hydrogen (H2), methane (CH4), ethylene (C2H4), ethane (C2H6), propane (C3H8), 

and other light hydrocarbons. The NCG stream will also contain any un-reactive gases that were used 

in the process for fluidization, such as nitrogen. As with bio-oil and biochar, the NCG yield and 

composition will be dependent on many factors including the process conditions and feedstock. NCG 

yield is in the range of 10%-wt. to 20%-wt, and commonly has a yield similar to that of biochar. 

Biochar. The solid product from fast pyrolysis is a black, powdery substance known as 

biochar, char, agri-char or just charcoal [41]. Biochar yields from fast pyrolysis range from 

approximately 11%-wt. to around 25%-wt., with 13%-wt. to 15%-wt. being common values for fast 

pyrolysis of wood biomass. Elementally, biochar is composed mostly of carbon (> 60%-wt.), with 

smaller amounts of hydrogen, oxygen, nitrogen and sulfur depending on the biomass composition. In 

2007, Mohan et al. reported biochar with fixed carbon values up to 78%-wt. and higher heating values 

up to 31.7 MJ/kg [42]. Typically the majority of the ash component in the biomass feedstock ends up 

concentrated in the biochar. The physical, chemical and biological properties of biochar vary widely, 

and are reviewed in a recent and comprehensive book by Lehmann & Joseph [41].  

 

2.2.3 End product utilization 

Bio-oil. There are many applications for bio-oil, in varying stages of research and commercial 

implementation. As produced, bio-oil can be considered a fuel source for standard industrial 

equipment such as boilers, furnaces, burners, stationary diesel engines, gas turbines and stirling 

engines [4, 36, 43]. Bio-oil used for generating heat or electricity in these applications displaces the 

use of light fuel oil, heavy fuel-oil or even diesel fuel; however modifications are often required to 

accommodate the unique properties of bio-oil as discussed. In these applications, options exist to 

potentially emulsify or co-fire traditional fuels with bio-oil. Bio-oil used for heat and power 

applications have been demonstrated with documented decreases in certain emissions. Refer to 

Bridgwater et al. [13], Czernik et al. [36], and Oasmaa et al. [38] for more information. Gust et al. 

also review potential standards for bio-oil properties used in heat and power applications [44].  

In addition to utilizing bio-oil directly, there are various options for bio-oil utilization that 

require an intermediate upgrading step. Recently there has been considerable research and 

commercial interest in upgrading bio-oil into synthetic hydrocarbon fuels for transportation 

applications. For this type of application, the high oxygen content of bio-oil is reduced through 

“deoxygenation” processes commonly used in the petrochemical industry: hydrotreating and catalytic 

cracking  [10, 13, 21, 36]. These processes upgrade bio-oil at high temperatures and pressures with 
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hydrogen present. Refer to Jones et al. for a design study considering bio-oil as a feedstock for 

upgrading to diesel and gasoline [45], Huber et al. for a study of integrating bio-oil into petroleum 

refineries [46], and Elliot for a review of bio-oil upgrading [47].  

A different approach to synthesizing transportation fuels from bio-oil is using the pyrolysis 

liquid as a feedstock for gasification, rather than raw biomass. By gasifying a slurry of bio-oil and 

biochar, it is possible to produce a clean syngas which is then upgraded to transportation fuels using 

Fischer-Tropsch processing [48].  

A final upgrading consideration for bio-oil is using steam reforming techniques for the 

production of hydrogen [10, 35, 49]. Hydrogen is required for many industrial processes, is frequently 

used in the petrochemical industry, and can be used in fuel cells to generate electricity.  

Even though bio-oil is a complex liquid, is contains specific compounds such as acetic acid, 

levoglucosan, and hydroxyacetaldehyde that have been researched for potential extraction [36, 43]. 

There are many other “specialty products” originating from bio-oil that are already in commercial use 

or have been identified, including: wood preservatives, insecticides and fungicides, fertilizers, resins, 

adhesives, road de-icers and numerous food flavorings and additives [21, 36].  

Non-condensable gas. The gaseous by-products of fast pyrolysis are of relatively low value; 

hence their main application is direct combustion to provide heat as part of the fast pyrolysis process. 

This use of the gas, rather than flaring or reserving for a different application, makes the process more 

thermally efficient and more greenhouse gas neutral because auxiliary fossil-fuel based sources are 

minimized. In lab-scale applications, the non-condensable gas is typically vented.  

Biochar. Until recently, biochar was often considered a fast pyrolysis by-product similar to 

the non-condensable gas in that its best use is as a fuel source to provide energy for the process. As 

biochar has a high carbon content, it is a relatively energetic material that can contribute heat energy 

for the reactions or biomass drying, thus minimizing external fuel inputs. More recently, however, 

there has been research interest in utilizing biochar as a soil amendment [41, 50]. In this approach, 

biochar is incorporated into the soil where the biomass was harvested from, which provides benefits 

to the soil, the crop and the environment – including a net reduction in atmospheric carbon  [51]. In 

this sense the biochar is referred to as a “carbon sequestration agent”, as shown in the schematic of 

fast pyrolysis (FP) applications in Figure 3. 
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Figure 3. Fast pyrolysis product applications 

Image adapted from Bridgwater et al. [21] 
 

2.2.4 Systems technology 

As with any advanced process, fast pyrolysis systems are composed of multiple subsystems. 

The generalized subsystems that will be discussed are: pretreatment, reactor, and product recovery 

with a relationship as shown in Figure 4. 

Pretreatment. Compared to other biomass conversion technologies, the so called 

“pretreatment” required for fast pyrolysis processing is minimal [30]. Typically no catalysts are used, 

and no chemical treatments are required. Typically only size reduction and drying are required. As 

shown in Figure 5, raw biomass from a storage and handling facility is passed through a chopping 

device to reduce the particle size of the biomass and homogenize it such that it can easily be 

transported through a dryer. Heat for drying purposes can be provided with either flue gas from a 

direct use combustor as shown, or with process heat originating elsewhere. Finally, a grinder or 

milling device is used to reduce the biomass particles to the desired size range, typically around 2 mm 

as discussed previously. This is a general pretreatment subsystem, and specific technologies related to 

drying and size reduction will not be discussed and can be found elsewhere.  
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Figure 4. Fast pyrolysis subsystem schematic 

 

 

Figure 5. Biomass pretreatment schematic 

 

Before specific reactor technologies are discussed, common biochar and bio-oil recovery 

technologies will be discussed. The biochar recovery and bio-oil recovery technologies combined 

represent the product recovery subsystem shown in Figure 4. These technologies are discussed first 

because very similar product recovery technologies are utilized on fast pyrolysis systems, largely 

independent of the reactor type. 

Biochar recovery. It is important that biochar is separated from the remaining pyrolysis 

products quickly because interactions with char may cause unwanted secondary reactions. For biochar 

collection and separation, gas cyclones are common and used frequently because of their simple 

design and operation [21]. Gas cyclones have no moving parts, are well understood and used 

successfully in many industrial applications. Though well researched and able to provide high 

collection efficiencies (above 99%), cyclone separators are not able to collect very fine particulate 

matter. This is true even when multiple cyclones are used in series [13]. Other biochar collection 

equipment such as hot vapor filtration and moving bed filters [52] have been researched and are still 

under development. As such, some biochar particles inevitably bypass biochar collection equipment 

and end up as fine particulate matter suspended in the collected bio-oil. This can be a problematic for 
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certain bio-oil utilization equipment or processes, whereas in other applications this may be 

advantageous because of the increased energy value associated with the biochar. The amount of 

biochar in bio-oil (reported on %-wt. basis) can be determined by addition of a solvent such as 

methanol because the biochar particles will not dissolve with the liquids and can be filtered out. 

Bio-oil recovery. As discussed, bio-oil recovery technology is crucial to quickly cool the 

reaction products so as high yields can be realized. The associated technology can be complex and 

varies greatly between systems, with major differences between lab-scale and commercial reactors. 

Many research sized fast pyrolysis systems use a staged approach to cool and collect the reaction 

products sequentially. Small systems typically use water and ice cooled condensers or impingers, and 

a 2002 study by Gerdes et al. reviews the design and construction of a common lab-scale setup [53]. 

In contrast to simple heat exchangers, a more traditional technology for larger scale systems is a 

“quenching” type device in which collected bio-oil is re-circulated and cooled before being sprayed 

onto a stream of hot vapors and aerosols exiting the reactor. This type of quenching process 

minimizes potential blockages in heat exchanger type condensers [13]. Bio-oil aerosols are 

particularly difficult to collect, and a secondary device in addition to the quench system is often 

required. Denoted as a “filter” in Figure 6, an electrostatic precipitator (ESP) is the preferred 

secondary collection technology [13, 21]. Non-condensable gas is effectively separated from the 

collected bio-oil in the quench system as shown.  

 

 

Figure 6. Bio-oil recovery schematic 
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Bubbling fluidized bed. Bubbling fluidized bed (BFB) reactors, or more simply fluidized 

beds or even just fluid beds, are commonly used for bio-oil production and data from these systems is 

widely published and available. Refer to Boateng et al. [54] for a recent representative study, and 

Bridgwater et al. [30] for a detailed review. These systems used for fast pyrolysis have been 

developed over decades, based on similar technology used for combustors in industries including 

petrochemical and manufacturing. A well recognized company in fast pyrolysis processing is 

Dynamotive Energy Systems (Canada), and several bubbling fluidized bed reactors operate 

commercially using their patented BioTherm process [55].  Refer to a review of “short residence time 

cracking processes” by Hulet et al. for details on the BioTherm process [56].  

Referring to Figure 7, a feeding system is used to mechanically (or pneumatically) convey 

biomass into a vertical reactor vessel featuring a bed of hot sand. A large flow of inert gas is used to 

fluidize the sand, providing a well-mixed volume with excellent heat transfer characteristics in which 

the reactions occur. The reactor, in this example, is heated indirectly by combustion flue gas in an 

annulus around the reactor, where other heating provisions such as tubes through the reactor are 

possible [21]. Pyrolysis products, including condensable bio-oil vapors and aerosols, biochar and 

non-condensable gases exit the top of the reactor with the fluidizing gas. Biochar and bio-oil are then 

collected as discussed. Resulting non-condensable gases are recirculated as a fluidizing gas or can be 

combusted for process heat.  

 

 

Figure 7. Bubbling fluidized bed reactor schematic 
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Note that Figure 7 is only one representation of this reactor type, where modifications to the 

gas handling and reactor heating configurations are common. For instance, biochar is shown here to 

be a by-product, where instead it could be used as a fuel source for the combustor to limit the 

auxiliary fuel requirement. Details of the biomass pretreatment and bio-oil recovery operations can be 

found in Figure 5 and Figure 6, respectively, as discussed previously.  

Though fluidized beds have been demonstrated commercially and provide high liquid yields, 

heat transfer problems can be significant and significant energy can be required to handle the 

fluidizing gas.  

Circulating fluidized beds. Circulating fluidized bed (CFB) reactors, sometimes referred to 

as transport beds, are similar to bubbling fluidized beds. However rather than having bed material 

remain suspended in one reactor, CFBs have a separate combustion reactor used to re-heat the sand 

which is continuously recirculated. As with fluidized beds, the CFB reactor is well understood and is 

currently used in several industries on commercial scales. One configuration of a CFB reactor for fast 

pyrolysis is shown in Figure 8, noting that biochar entrained with the bed material is combusted in the 

presence of air to provide heat for the re-circulated sand.  

Another Canadian company, Ensyn, utilizes circulating fluidized bed reactors as part of their 

proprietary Rapid Thermal Processing (RTP) technique used at several commercial fast pyrolysis 

plants [57]. Through a partnership with Red Arrow, the RTP technique is used to produce a consumer 

grade food flavoring, which is often referred to as “liquid smoke” [58].  

 

 

Figure 8. Circulating fluidized bed reactor schematic 
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The CFB design has similar advantages as the BFB and may have fewer problems scaling up, 

but the sand recirculation loop requires significant complexity. As such, the CFB is not a common 

reactor design used for lab-scale fast pyrolysis studies. Refer to Hulet et al. for a review of several 

configurations of the Ensyn RTP design [56].  

Rotating Cone. The rotating cone reactor is quite different than the bubbling fluidized or 

circulating fluidized bed reactors [3]. Rather than a vertical reaction vessel with bed material that 

remains well-mixed due to flowing fluidization gas, biomass is mechanically mixed in a rotating cone 

with a bulk solid heat transfer medium. Sand is used as the heat transfer medium, and is referred to as 

a “heat carrier”. Though sand is used as a heat carrier material in the fluidized bed reactors, hot 

fluidizing gas is also used to promote heat transfer and mixing effects. Therefore, one benefit of the 

rotating cone reactor is minimizing the amount of gas required for the process. However, as shown in 

Figure 9, one configuration of the rotating cone reactor includes a separate fluidized bed reactor to 

combust the biochar to provide heat for the recirculated sand. This aspect of the rotating cone design 

is very similar to the operation of the CFB reactor.  

The rotating cone reactor concept has been commercialized through work by Biomass 

Technology Group (BTG) in the Netherlands, which has developed a 50 ton per day facility in 

Malaysia [59]. In this design, sand and biomass are driven up the wall of the cone due to fast rotation 

speeds from 300 – 600 RPM, and pyrolysis products exit from the top of the cone [13, 21, 56].  
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Figure 9. Rotating cone reactor schematic 



 18 

Though the BTG rotating cone concept has claimed high liquid yields from a physically 

compact system [59], it has not been proven at large scales or operated for significant time periods.   

Auger reactor. The auger reactor concept also features mechanical mixing of biomass and a 

bulk solid heat transfer medium. However instead of the reactor vessel itself rotating, there are mixing 

devices that rotate inside a stationary horizontal reaction vessel. Typically the biomass and heat 

carrier are independently metered into the reactor, and the heat carrier is heated prior before entering 

the reactor. Figure 10 shows a reactor with two augers (or screws); however a single auger or similar 

mechanical mixing implement may also be used. As vapor products evolve they exit the reactor due 

to pressure differences, and the solid materials including biochar and the heat carrier exit at the end of 

the reactor. Similar to the previous designs, some biochar does leave the auger reactor with the vapor 

products and is removed with cyclones as discussed previously. A solid separator device can be used 

to remove biochar from the heat carrier material based on differences in particle size or density. 

Similar to CFB and rotating cone reactors, a combined heat exchanger and combustion reactor then 

reheats the heat carrier before it is recirculated into the auger reactor.  

 

 

Figure 10. Auger reactor schematic, configuration 1 

 

Alternatively, Figure 11 shows an auger reactor that does not separate the biochar from the 

heat carrier. Similar to the CFB reactor, biochar is combusted to reheat the recirculated heat carrier.  
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Figure 11. Auger reactor schematic, configuration 2 

 

The auger reactor has similar advantages and disadvantages to the rotating cone reactor. As 

no fluidization gas is necessary, a smaller reactor volume can be realized which has the potential to 

decrease capital costs. Mechanical wear is a potential problem with this reactor. This concept has not 

been demonstrated on large scales, and there is no known commercial system in operation. This 

technology is still in the research phase and will be reviewed in depth in the next section.  

Ablative reactors. Rather than heat transfer to biomass through contact with hot solid 

material or hot gas, ablative pyrolysis is a completely different approach that has been researched. 

Biomass is pyrolyzed be being brought into contact with a hot surface, either under the influence of 

mechanical pressure or high gas flow rates. One version of an ablative reactor as shown in Figure 12 

is a spinning disk or plate, and biomass is pressed against the hot surface to produce biochar and 

vapors. The influence of pressure for this reaction mechanism is often likened to melting butter on a 

hot frying pan by pressing down on it [4, 13].  

The major benefit of this design is that much larger biomass particles can be used, and no 

carrier gas is required. However it is clearly a complex mechanical design which complicates the 

scale up.   

An alternative to the spinning disk is a vortex type reactor that uses high gas velocities rather 

than pressure to force biomass against a hot cylindrical surface. The National Renewable Energy 

Laboratory (NREL) operated a vortex reactor for some time with high bio-oil yields, but it required a 

“gas ejector” to provide extremely high gas velocities [13, 56]. There have been some 
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commercialization efforts for these types of fast pyrolysis reactors, but there has been much less 

research performed compared to BFBs and CFBs.  
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Figure 12. Ablative reactor concept 

 

Other types. There are other reactor concepts that have been researched; however they will 

not be reviewed here. These include using vacuum pressure to quickly remove pyrolysis vapors, 

entraining biomass in a flow of hot gas, and cyclonic type reactors similar to the vortex reactor 

previously mentioned. These reactors typically either have low liquid yields or are complicated, but 

they have had some commercialization efforts and are reviewed by Bridgwater [13, 21], Mohan et al. 

[4] and Hulet et al. [56], among others.  

Refer to recent pyrolysis reviews by Bridgwater [21] and Mohan et al. [4] for comparisons of 

reactor technologies, and Bridgwater & Peacocke for a particularly in-depth review of many fast 

pyrolysis reactor technologies and configurations [30].  

 

2.3 State of the art for auger type reactors 

Reported literature was reviewed to determine past and present research efforts related to 

auger reactors for processing biomass. It was quickly determined that there is a long history of augers 

being used to mechanically convey and mix materials in a reaction vessel, beginning as far back as 

the 1920s with coal as a feedstock. Therefore, auger type reactors for fossil fuel processing will be 

reviewed first, followed by research on biomass processing.  
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2.3.1 Fossil fuel processing 

In 1927, Laucks investigated a simple device used to process coal for “smokeless fuel 

production [60].” Though not described as such, this system was essentially a slow pyrolysis auger 

reactor used to produce a coke-like product from coal. The reactor was a heated tube with a screw 

installed, where coal was introduced at one end, and the carbonized product exited the other. A 6 in 

(15.2 cm) diameter tube with a length of 12 ft (3.7 m) was situated vertically, and eventually scaled 

up to 12 in (30.5 cm) diameter and a length of 18 ft (5.5 m). While theoretically simple, many 

problems were noted during operation of the system, and were attributed to the difficulties in 

handling coal and conveying bulk solid type materials with a screw. The screw would often bind up 

upon coal decomposition, and residues would adhere to the screw. Modifications to the geometry of 

the screw, as well the feed direction did not remedy the clogging problems. Eventually it was 

determined that the reactor wall was at a much higher temperature than the screw surface, so that the 

coal adhered to the screw during the reaction. Design modifications included heating the hollow shaft 

of the screw, which allowed scaling up to a 36 inch (91.4 cm) diameter. The paper presents an 

interesting discussion on coal decomposition and the effect of temperature and pressure. It was 

concluded that the reactor system is favorable based on low power requirements and simple 

operation, the ability for continuous processing, high heat transfer, and the ability to heat different 

zones independently. It can be said that these types of considerations are all still important.  

Later, in 1941, Woody investigated the commercial viability of the Hayes Process for 

producing a residential fuel from petroleum coke or coal [61]. A 40 ton per day plant was operated in 

West Virginia, based on a 17 in (43.2 cm) ID, 20 ft (6.1 m) long reactor installed in a furnace. Similar 

to Laucks’ work, this system was an early auger reactor for slow pyrolysis of coal for solid fuel 

production (to be used as a heating or cooking fuel source). The reactor tube itself rotated slowly at 

1.5 – 4.0 RPM, and the auger inside was mated to a gear system that allowed for forward and 

backward rotation resulting in an “apparent rotational speed” of 13.5 RPM. The feed had a residence 

time of 20 minutes, and the product exited at the end of the reactor into another screw system where a 

water quench was used for cooling. Gas and tar also exited at the end of the reactor and were passed 

through a cooling and collection system. Using a coal combustion system, the reactor was operated at 

593°C to 704°C. Brief analyses of the products are given, including production costs. A schematic of 

the reactor used in the Hayes Process is shown in Figure 13.  
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Figure 13. Hayes Process reactor 

Image source: Woody [61] 
 

Hulet et al. review the Lurgi-Ruhrgas (LR) process, developed in the 1950s to upgrade 

various carbonaceous feedstocks [56]. Developed in Germany to produce town gas from oil shale, the 

LR reactor is sometime referred to as a “sand cracker” because sand was used as a heat carrier to 

decompose (or crack) feedstock materials into higher value products such as fuel gases and 

hydrocarbon liquids. A more common heat carrier material used in the process was coke particles. 

The reactor in this system is also referred to as a “mixer-reactor”, as intermeshing screws are used to 

quickly combine the feedstock and the heat carrier material. The vapor products quickly exit the 

reactor (as low as 0.3 second residence times) and travel through cyclones and a product recovery 

section, whereas the solids exit the reactor and can be separated and recycled. A commercial plant 

utilizing the LR process was built in 1958 (Germany) to process naphtha for ethylene production on 

the order of 1.5 x 107 kg/year. In this review there was no mention of the mixing characteristics inside 

the reactor with regards to screw speed, ratio of heat carrier to feedstock, or other conditions. A 

schematic of the LR process is shown in Figure 14. 

By the 1980s, the LR process had begun limited operation in the United States. Schmalfeld 

favorably reviews the LR process by highlighting its versatility in the ability to utilize various 

feedstocks for generating of a wide variety of products [62]. He states that this flexible and efficient 

process has responded to “changes in the energy market, as well as to environmental concerns.”  In 

addition to oil shale, feedstocks listed include: tar sands, asphaltic rock, heavy oil and diatomaceous 
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earth. Entrained particulate matter is removed from the vapor products in cyclones, and condensers 

are used to collect products.  A liftpipe section is used to reheat (via combustion of carbon residues) 

and convey the heat carrier material back into the reactor. The process is noted to operate at 

temperatures and pressures (704°C and 13.8 kPa, respectively) such that specialty equipment is not 

required. Schmalfeld suggests sulfur dioxide emissions could be controlled with the addition of lime 

or dolomite in the heat carrier. A pilot scale operation was referenced to be operating by 1981 in 

McKittrick, California, near the McKittrick tar pits. One conclusion of this conference proceeding is 

that the LR process is superior to other similar methods and that products are of high enough quality 

for traditional refining methods.  

 

 

Figure 14. Lugi-Ruhrgas process schematic 

Adapted from Probstein et al. [63] 

 

Daniels et al. review another LR pilot plant operation in California to process tar sands for the 

production of 20,000 barrels per day of hydrogenated oil [64]. Similar to the LR process, TOSCO II 

is a commercial process to convert shale to fuels which utilizes a rotating drum reactor with 

recirculated ceramic balls as a heat transfer medium, and is reviewed by Probstein and Hicks [63].  

During the 1990s, the auger type reactor was researched for pyrolysis of coal. Lin et al. 

investigated a dual-auger to lower the sulfur content in coal prior to combustion [65]. Coal pyrolysis 

was deemed an inexpensive alternative to post-combustion cleaning methods such as wet flue gas 

desulfurization and dry injection processes. A ‘dual screw coal feeder reactor’ was employed in the 

study to simultaneously carry out two steps: desulfurization of coal via mild pyrolysis, and the 
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reaction/separation of the resulting H2S gas using a sorbent. At temperatures less than 550°C, the coal 

structure was maintained, while still allowing for sulfur to be removed as H2S. The unique design of 

this system features concentric augers, operated by independent motors. The inner tube (2.54 cm) was 

where the coal was fed and pyrolyzed, whereas the outer tube (5.08 cm) conveyed limestone pellets in 

the opposite direction to react with the H2S gas produced. The two motors were used to control the 

respective particle residence times. The reactor was heated for a length of 0.521 m via three electric 

heaters, and featured collecting tanks on either end (one for char opposite the coal feed, and one for 

the spent sorbent on the opposite side of the CaO feed). The cleaned gas exited the reactor and passed 

through a volume meter before entering three condensers to collect liquid products. The tar and char 

yields were determined gravimetrically and the gas was analyzed via gas chromatography. Variable 

parameters included the process temperature (400°C – 475°C), coal residence time in the reactor (2 

min – 6 min) and coal particle size (4 – 35 mesh). The resulting parameters of interest were the 

‘extent of devolatilization’, product distribution, gas composition (especially H2S concentration), and 

desulfurization yield. It was concluded that both devolatilization and desulfurization increased with 

both residence time and temperature. The H2S was determined to be mostly from organic sulfur in the 

coal and was found to be released more readily than organic volatiles due to lower activation energy 

values. Also, CaO pellets were deemed to be an acceptable sorbent for this application. 

In a descriptive and useful report, Camp discusses various aspects of the Lawrence Livermore 

National Laboratory’s involvement in assisting the DOE and the Coal Technology Corporation with 

several screw reactors for coal pyrolysis [66]. Here pyrolysis (termed “mild gasification” or “low 

temperature carbonization”) is understood to be slow pyrolysis based on the low liquid yields and 

high char yields. However, producing liquid fuels and chemicals from the coal feedstock was the 

major aim of their research and development efforts. Caking and agglomerating coals were used in 

the study, and are mentioned to be problematic during processing. Screw pyrolyzers heated externally 

with combustion gas were deemed appropriate for this type of coal. Advantages of the externally 

heated reactor include no separation of recirculated solids or carrier gas. Disadvantages include 

mechanical maintenance and low liquid yields (which are likely attributed to the low gas flow rate 

and the low heat transfer rates). Three types of screw configurations are listed as design candidates – 

single screw and two types of twin screw configurations: weld fabricated or machined type (as used 

in twin-screw extruders). The single screw design is the most simple and least inexpensive, but is 

prone to deposit formation likely similar to that described by Laucks [60]. The twin-screw extruder 

type system is the least prone to forming carbon build-up as the screws are fully meshing; however 

this results in the highest cost.  
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Camp concluded that the welded flight screws (intermeshing, but not fully) combine the 

benefit of preventing deposits from forming while remaining relatively inexpensive. A single screw 

pyrolyzer was first developed to help determine design and scale up equations. The 89 cm long screw 

had a diameter of 38 mm, with a pitch equal to the diameter. Various screw materials were 

investigated, and the reactor was heated electrically. Various types of coal and experimental 

conditions were investigated, and over 51 hours of operation were accomplished. Problems with the 

single screw design included clogging of vapor ports and binding of the screw. Coal would become 

packed in the reactor, and could bind the augers. To remedy these problems, the screw could be either 

turned off and on, or operated in reverse. Depending on the screw construction, the feed rate ranged 

from 3.7 kg/hr to 7.6 kg/hr. Rotational speeds of the auger ranged from 12 RPM to 36 RPM. It was 

determined that the single screw pyrolyzer was an unattractive option based on the torque 

requirements and the low feed rates that were achievable. Interestingly, Camp found that feed rates 

did not appear to increase with increasing screw speed.  

Therefore, Camp recommends a twin screw pyrolyzer to help free the char deposits that may 

form, as well as aid in mixing and heat transfer within the system. Welded flights are an inexpensive 

option compared to fully intermeshing screws. Recommendations for screw design include a hollow 

shaft to introduce a heat transfer fluid, as well as modifying the profile of the screw flighting to 

increase the intermeshing effect. Many design type equations and relationships were presented for 

externally heated screw pyrolyzers. For instance: the feed rate as a function of screw speed, geometry 

and fill conditions, as well as a heat transfer correlation also based on the same parameters. The feed 

rate and the heat transfer coefficient were related by the heat transfer area and a log mean temperature 

difference. The solid material residence time is shown to be a function of the feed rate, screw 

geometry and the fill characteristics. Each of these equations is combined into a final design equation 

to solve for the maximum feed rate of coal, which is claimed to be limited by heat transfer and not 

“conveyance problems”. To increase the heat transfer coefficient, Camp notes that radial mixing must 

be improved by flight design modifications, recommending a non-standard pitch of 0.25 to 0.5 times 

the diameter (in standard auger construction, the pitch is equal to the flight diameter).  

As a final recommendation, Camp recommends pre-heating the coal before the entering the 

pyrolyzer. The benefit of this pre-heating is the ability to condense water separate from the oil 

fractions. With a reported outlet temperature of 280°C, this pre-heating process is at higher 

temperatures than standard drying practices (approximately 100°C), and therefore appears to be a 

torrefaction chemical conversion process. Torrefaction is a mild thermal treatment process, and is 
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reviewed by Bergman et al [67]. For a follow up report on this research investigating twin screw heat 

transfer and other topics, refer to a later report by Camp et al [68].  

 

2.3.2 Biomass processing 

The following literature sources detail various aspects of pyrolysis carried out in reactors that 

feature one or more augers (or screws), or a similar rotating mechanical element. It is important to 

note that the operating conditions for these reactors varies widely, and important conditions such as 

auger speed are often not reported. A heat transfer medium is sometimes used that is mixed with the 

feedstock, whereas other reactors have heated walls that induce the pyrolysis reactions. There has 

been no finding of research relating to the mixing mechanisms of biomass and a heat transfer 

medium. Also, the reported research lacks clear relationships between product yields and composition 

with the reactor operating conditions. There is a wide range of system sizes, stages of development, 

biomass feedstocks and product distributions.  

The first known reference to the auger type reactor for biomass pyrolysis is from 1969, when 

Lakshmanan et al. investigated pyrolysis of starch and cellulose for the production of levoglucosan 

[69]. This reference includes a detailed account of the chemistry involved in the pyrolysis process to 

produce levoglucosan. Among two other reactor schemes, a screw conveyor was investigated because 

the researchers perceived this design would be useful for continuous handling the biomass as it 

underwent chemical and physical changes throughout the length of the reactor. The screw reactor was 

comprised of a feed hopper (batch feeding), a 1” ID steel tube with a similar diameter screw to allow 

for scraping of the reactor wall. No heat transfer medium was used as the reactor walls were heated 

via electrical means. The biomass feed rate was 200 g/hr, and the reactions were carried out at 

temperatures ranging from 340°C to 500°C. A heated vessel was installed at the end of the reactor to 

collect solid products, from which stemmed a tube that carried pyrolysis vapors to a product receiver 

and traps. Surprisingly, the screw had to be rotated by hand via a simple handle mechanism. The 

results of the experiments indicate that the screw reactor had slightly lower yields of levoglucosan 

than the batch reactor investigated, possibly due to further decomposition of the vapors as they 

traveled through the reactor. The study also found that char residues occasionally bound the screw 

inside the reactor. This was remedied by occasionally adding oxygen into the heated reactor to “burn-

out” any deposits and free the screw. The authors state that this type of reactor would be problematic 

at a large scale due to heat transfer issues. Also, the shaft seals were noted for areas to be concerned 

with mechanical wear.  
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Yongrong et al. discuss an auger reactor concept for pyrolyzing tire waste in a conference 

proceeding from 2000 [70]. They note that worldwide generation of used tire rubber exceeds 9 

million tons annually, a sizeable amount when considered as a feedstock high in carbon. There is a 

brief review on the mechanisms and kinetics of fast pyrolysis, as well as a literature review on the 

reactor schemes currently being used for tire pyrolysis in China. At the Zhejiang University, two 

reactors have been developed that were briefly described (but will not be discussed here): an 

externally heated rotary kiln, and an internally heated cascade moving bed (CMB) reactor. There was 

also a description for the design of a screw reactor that can be either externally or internally heated. 

Perceived benefits include lower costs for construction and operation. Figure 15 shows a conceptual 

schematic of this reactor. The end of the paper lists 21 Chinese patents related to pyrolyzing tire 

rubber, including 4 patents on ‘screw reactors’ and 4 patents on ‘agitator reactors’ (including 

impellers and mechanical scrapers). 

 

 

Figure 15. Screw reactor concept 

Image source: Yongrong et al. [70] 
 

Around 2002, researchers at the Forschungszentrum Karlsruhe (FZK) center in Germany 

began investigating a two step biomass to liquid (BTL2) processing scheme consisting of 

decentralized fast pyrolysis followed by centralized gasification of bio-oil and biochar mixtures [71, 

72]. The regional (also known as distributed or decentralized) processing includes: drying and 

grinding of biomass, fast pyrolysis in a twin-screw reactor, and recombination of the bio-oil and 

biochar into a slurry mixture. This slurry is formed to reclaim most of the energy from the biomass, 

but in a form that is more easily transported to a central facility where it can be pumped into a 
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pressurized entrained flow gasification reactor. Clean syngas is produced and subsequently upgraded 

into fuel using the Fischer Tropsch process.  

Operational in 2003, a 10 kg/hr fast pyrolysis reactor at FZK was the first known system to 

intentionally and directly utilize the mixer-reactor concept from the Lurgi-Ruhrgas process as 

discussed previously [73]. A schematic of the FZK mixer-reactor is shown in Figure 16, and the 

reactor system is shown in Figure 17.  Note the long vertical pipe seen in the right side of Figure 17 is 

the hot sand recirculation loop as shown in Figure 16. 

A 2006 publication describes the reactor, the process and some preliminary results [74]. The 

twin screw reactor was selected for the fast pyrolysis system because of the experience and operation 

related to commercial sized Lurgi-Ruhrgas plants, and the fact that carrier gas which dilutes the 

product stream is not required for this type of reactor. The 10 – 15 kg/hr reactor has a length of 1.5 m, 

with intermeshing screws with inner and outer diameters of 20 mm and 40 mm, respectively. Sand is 

heated indirectly to 500°C - 550°C in a vertical tube, surrounded by a shell with fluidized sand that is 

heated with flue gases from combusting the non-condensable pyrolysis gas. In the axial direction, 

straw biomass enters the reactor before the hot sand enters. There is no mention of mixing 

characteristics or mechanisms of the heat carrier and the biomass, other than a “mechanically 

fluidized” state is achieved. This is most likely based on the high rotational speed of the screws, up to 

240 - 300 RPM. To provide heat for the reactions, the sand to biomass feed ratio was originally 20:1 

(mass basis), but ultimately reduced to 6:1. The vapor products leave the reactor due to pressure 

differences, coarse char is transported to the end of the reactor, and fine char is separated with two 

cyclones. It is not clear how or if the coarse char is separated from the sand before recirculating. If it 

is not separated, the coarse char will enter the reactor with the sand, as there appears to be no direct 

combustion process to burn off residual char (only the NCG is combusted). 

Bio-oil is collected in two condensers: one is mostly organics with low water content, and the 

other is an aqueous fraction with high water content. The mass yields of rice and wheat straw were: 

50 – 55%-wt. bio-oil, 20%-wt. non-condensable gas, and 25 – 30%-wt. char. The mass yields of 

wood sawdust were: 70%-wt. bio-oil, 15%-wt. non-condensable gas, and 14 – 18% char. The heat 

carrier is recycled into the system via a mechanical type bucket elevator. The slurry is produced using 

a colloid mixer, and has 25 – 40%-wt. biochar solids with an energy density value of 17 – 33 GJ/m3, 

compared to 0.7 – 2.6 GJ/m3 for the raw biomass.  
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Figure 16. Twin screw mixer-reactor schematic 

Image source: Henrich [75] 
 

 

Figure 17. FZK twin screw mixer-reactor  

Image source: Henrich [75] 
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Other than the current system as described in this thesis, this is the only known reactor for 

fast pyrolysis of biomass utilizing two co-rotating, intermeshing screws and an independently metered 

heat carrier material. However there is no published information relating the product yields to process 

conditions such as sand temperature, heat carrier to biomass feed rate, screw speed, or others. As 

such, it is unclear why the particular operating conditions were selected and if the system or process 

is considered to be optimized. Furthermore, as the produced bio-oil has a specific intended end-use 

application, chemical analysis and composition is unfortunately not provided. The only analysis 

appears to be on the “gasification feedstocks”, which are understood to be the bio-oil and char 

slurries.  

In 2007, Plass discussed a partnership between FZK and Lurgi AG to commercialize the two 

step biofuel process [76]. This process, termed Bioliq, is reviewed in detail by Henrich, et al. in a 

2009 publication documenting the cost estimates and energy balance [48]. Dinjus, et al. [77] and 

Leible, et al. [78] have also had opportunities to describe the process and the economics. In the Bioliq 

processing scheme, biomass is transported from a 25 km radius to a decentralized 0.1 GW fast 

pyrolysis plant, where approximately 90 plants across Germany supply bio-oil slurries to one of three 

3.5 GW centralized gasification facilities for synthetic fuel production.  

Similarly in the U.S., commercialization efforts related to the auger reactor for biomass fast 

pyrolysis can be dated to the early 2000s. Renewable Oil International, ROI (Florence, AL) was 

formed in 2001 by Phillip Badger who describes the concept of having a small scale bio-oil plants to 

supply bio-oil to multiple end-users, or multiple plants supply bio-oil to one end-user [79]. ROI 

developed a 5 ton per day auger reactor system for use on a poultry farm to convert animal wastes to 

bio-oil, which is used for on-farm heating purposes. In a 2006 conference, Badger further describes 

the technology as simple and inexpensive to implement, with claims of liquid yields up to 60% [80]. 

The ROI commercialization strategy includes scaling up to a 125 ton per day plant located at a 

Massachusetts saw mill, though the construction or operation of this plant can not be confirmed as no 

information is currently available. The ROI system features a reactor with a single auger and uses 

steel shot as a heat carrier, but no known operational, yield or product composition data has been 

published. In a 2008 article, Badger discusses plans to have auger reactor systems on portable trailers 

that will be transported to various sites to process energy crops such as switchgrass [81].   

The ROI technology was developed in conjunction with Peter Fransham, who in a 2006 

article describes how scale-up limitations with fluidized bed reactors in the 1990s led to the auger 

reactor design [82].  Fransham claims his work with a “heated auger reactor” for processing treated 

wood dates back to the early 1990s, through Encon Enterprises. The concept of using a horizontal 
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reactor with a heat carrier material allowed for rapid vapor removal from the reactor and from the 

char, and high liquid yields around 60% are claimed at temperatures around 400°C. At some point, 

Encon Enterprises became Advanced BioRefinery, Inc., ABRI (Ontario, Canada), which is 

simultaneously commercializing the same reactor technology as ROI. ABRI has developed a 1 ton per 

day unit built for on-farm use, and also makes claims to the 5 ton per day unit operating on the 

Alabama chicken farm as described by Badger. A 50 ton per day unit was slated for operation at a 

logging site in Canada, though no information is currently available. 

In 2006, Badger and Fransham published an article describing fast pyrolysis technology that 

could be applied to modular, possibly transportable systems for bio-oil production [83]. As described 

above, ROI is developing small scale pyrolysis plants to place them in close proximity to a given 

biomass source, however there are no known commercial operating systems developed by ROI. The 

article notes underbrush material cleared by the U.S. Forestry Industry to minimize fires is expensive 

to transport due to its low density, and as an alternative Badger and Fransham suggest bio-oil 

production to simply handling, transportation and storage issues. A comparison of the energy density 

of bio-oil to various types of raw biomass and current densification techniques is presented. Based on 

various types of biomass and their moisture contents, bio-oil exhibits an energy content increase from 

1.5 to 15 times on a volumetric basis (MJ/m3). Another comparison is conducted for transporting 

solid biomass in a standard tractor trailer van versus transporting liquid bio-oil in a standard tanker 

trailer. Hauling solid wood chips results in approximately 24.5 tons maximum per trailer load, with an 

energy storage capacity of 220 GJ. However if transporting bio-oil in a tanker capable of hauling 

9500 gallons of No. 2 fuel oil, the energy storage increase to 558 GJ. The authors note that gross 

vehicle weight regulations limit the amount of bio-oil that can be transported in this method, not the 

volume of the tanker. As a final comparison, a bulk solids handling system is compared to a liquid 

handling system for a 50 MW power plant concept. The solid fuel system incorporates a complicated 

array of many operations whereas the liquid system is simply composed of a few operations. Though 

both systems have a comparable capital cost, no analysis was conducted for operations and 

maintenance costs, and it’s likely they would be much lower for the liquid system due to the lower 

number of unit operations. Another noted advantage of the bio-oil fuel system over the solid fuel 

system is the area requirement on site: 4.5 versus 9.6 acres, respectively. This study does not present 

any experimental data from an auger reactor system, or biomass fast pyrolysis in general. 

The only known published data specifically using a system constructed by ABRI or ROI is 

from a 2007 study by Schnitzer et al. that characterizes the composition of bio-oils and chars 

produced by fast pyrolysis of chicken manure [84].  Animal wastes are noted as a threat to the 
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environment, as well as posing health risks to humans and animals. These wastes, however, have the 

potential to be a feedstock for thermal conversion processes as opposed to alternative disposal 

methods. The “reactor screw conveyor” used for this study was developed by ABRI as discussed 

above. Steel shot heated to a mild temperature of 330°C was used as a heat transfer medium, where 

the size of the steel shot and the mixing of the shot with the feedstock were not described. There was 

also no mention of reactor design or crucial operating characteristics such as: feedstock or steel shot 

feed rate, or auger rotational speed. The vapors exited the reactor and were cooled to less than 100°C 

within 1 to 2 seconds. The product distribution was described as: 10% of the initial mass was 

converted to gas, 63% of the mass exited as hot vapor, and 27% left as solid char. Of the 63% vapor 

however, 13% was non-condensable, and no distinction was made between how the initial gas 

fraction was delineated from the final “non-condensable” gas fraction and how or if they exited the 

reactor separately. The bio-oil yield of 50% was split into two fractions by gravity via a separatory 

funnel. Several analytical methods were employed to characterize the products, including: 

combustion, NMR (both CP-MAS and C), and FTIR. Results indicated the heavier bio-oil fraction 

was higher in carbon and hydrogen, and lower in nitrogen and oxygen than the light bio-oil fraction.  

Utilizing a design from ROI, Mississippi State University (MSU) has been researching the 

auger reactor concept for bio-oil production since at least 2004, and has published multiple studies. A 

lab-scale auger reactor system has been developed at MSU as shown in Figure 18.  

 

 

Figure 18. Mississippi State University lab-scale auger reactor 

Image source: Steele [85] 
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In 2007, Mohan et al. published a paper documenting the biochar produced by the Mississippi 

State University auger reactor as a means for adsorbing heavy metals [42]. Lead, cadmium, arsenic 

and zinc can be toxic to plants and animals, and can be released into the environment by many 

industries. Though several methods to adsorb these materials currently exist, using biochar may be 

advantageous. Oak and pine samples (wood and bark) were pyrolyzed in a 1 kg/hr reactor at 400°C 

and 450°C. The 40 in (101.6 cm) reactor is externally heated in four separate zones, and no heat 

carrier is mixed with the biomass feed. The four heated zones are marked by an isothermal 

temperature and length in brackets, respectively: a “pre-heat” section [130°C, 4 in (10.2 cm)], an 

initial pyrolysis zone [either 400°C or 450°C, 10 in (25.4 cm)], a secondary pyrolysis zone [100°C 

less than the previous section, 8 in (20.3 cm)], and a cooling zone [300°C, 8 in (20.3 cm)]. The final 3 

in (7.6 cm) is left unheated, leaving 7 in (17.8 cm) unaccounted for in the description. The reactor has 

a simple pipe configuration, and features a single auger with a diameter of 3 in (7.6 cm), and a pitch 

equal to the diameter (standard flight construction). The rotational speed was said to be highly 

changeable, but 12 RPM was used for this study. A descriptive schematic is provided that clearly 

illustrates the temperature profile down the length of the reactor, which also shows the residence time 

in each section. The char residence time is 30 seconds in the pyrolysis zones, and around 60 seconds 

in the whole reactor (linear speed of 91.4 cm/min). A wealth of characterization studies were 

performed on the char products, including proximate and ultimate analyses, as well as kinetic, 

equilibrium and adsorption studies. Oak bark was found to be the best adsorbent due to the high 

surface area and pore volume of the char it produced. The results indicated that the biochar has less 

specific surface area than activated carbon, but the researchers concluded that biochar may still be 

more valuable as an adsorbent than a source of solid fuel.  

 In 2008, Ingram et al. published data on bio-oil produced from the previous study [86]. Oak 

and pine samples (both wood and bark) were pyrolyzed in the 1 kg/hr electrically heated reactor at 

450°C, with no carrier gas or heat carrier material, and at a low auger speed of 12 RPM. The authors 

note that the system operation has lower heat transfer rates and longer vapor residence times than 

prescribed for traditional fast pyrolysis, but that these characteristics are not inherent to the ROI 

design or the auger design in general. Though not described explicitly, the inclusion of a heat carrier 

is what provides the increased heat transfer in the ROI design. As such, the authors state that this 

system is a first generation design and a second generation system is under development. It is 

assumed the new system will include the capability of adding heat carrier material into the reactor. 

The bio-oil yields were relatively low for fast pyrolysis of wood biomass (44%-wt. - 56%-wt.), which 

can be attributed to the low heat transfer rates. A number of bio-oil characterization studies are 
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performed to conclude that the lab-scale auger reactor system produces bio-oil that is very similar to 

other fast pyrolysis reactors that have higher heat transfer rates. The authors note that the auger 

reactor may be a suitable technology for small scale, distributed fast pyrolysis systems as described 

by Badger and Fransham [83].  

In 2009, Bhattacharya et al. published a study investigating fast pyrolysis of wood and plastic 

mixtures using the MSU auger reactor [87]. As a means to recycle the 30 millions tons of plastic 

produced in the U.S. annually, the authors consider fast “co-pyrolysis” of plastic and wood. Three 

different types common plastics were mixed with yellow pine wood at 50:50 mixtures by weight: 

polystyrene, polypropylene, and high density polyethylene. The feedstocks were pyrolyzed at 1 kg/hr 

at 450°C (the polystyrene mixture was pyrolyzed at 525°C), and the bio-oil vapors were collected in a 

series of three water cooled condensers. As the authors refer to the previous studies for operation of 

the reactor, the auger speed is assumed to be the same at 12 RPM. As previously, there is no mention 

of heat carrier or purge gas used in this system. After detailed chemical and physical analyses, the 

authors conclude that the bio-oil from wood and plastic is upgraded relative to bio-oil from wood 

alone. As the plastic materials are hydrocarbons, the bio-oil from the mixed feed has a lower oxygen 

and water content, which increases the heating value. The bio-oil was also found to be less acidic and 

less dense, which are important considerations for storage and handling. For the various feedstock 

combinations, the bio-oil yields ranged from 38%-wt. to 64%-wt.   

Around this same time, a lab-scale auger reactor for slow pyrolysis was under development at 

the University of Georgia (UG). Garcia-Perez et al. published a 2007 report documenting the 

properties of bio-oil produced from pine wood in an indirectly heated reactor system [88]. The reactor 

is an electrically heated 100 mm diameter tube, and biomass is fed with a rotary valve at 1.5 kg/hr. 

The auger speed is very low at 2.2 RPM, which correlates to a solid residence time of almost 6 

minutes in the heated zone. Biochar exits at the end of the reactor into a char trap, and vapors exit into 

a vertical heat exchanger and a set of five ice traps. The reactor operates at a slight negative pressure 

using a vacuum pump, and is purged with 3 L/min of nitrogen. The pine wood resulted in a bio-oil 

yield of almost 58%-wt., and a char yield of 30%-wt. The collected bio-oil was separated into two 

fractions before analysis. Bio-oil was blended into biodiesel at various mass fractions from 10% to 

50%, with additional analyses performed. The authors concluded the bio-oil addition to biodiesel is 

feasible, and results in minimal changes in the fuel properties. There is minimal discussion on the 

reactor design, and it is not clear why the temperature or auger speed conditions were selected. No 

heat carrier is used in this system, which is shown schematically in Figure 19. 
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Table 2 summarizes the product yields and selected operating conditions from published data 

on auger type reactors used for biomass fast pyrolysis.  

 

 

Figure 19. University of Georgia auger reactor schematic 

Image source: Garcia-Perez et al. [88] 
 

Table 2. Comparison of auger reactor published data 

Bio-oil Biochar NCG

44 - 56 17 - 28 nr Oak

43 - 52 10 - 24 nr Pine

UGb 58 30 12 Pine 2 500 None

70 14 - 18 15 Wood
50 - 55 25 - 30 20 Wheat straw

ABRId 50 27 23 Chicken manure nr 330 Steel shot

12 450 NoneMSUa

FZKc 60 - 300 500 Sand

Heat
carrier

Temperature
(°C)Reactor

Product yields (%-wt.)

Feedstock

Auger 
speed

(RPM)

 

   Notes: All product yields are on a wet biomass basis (as reported or assumed)  
nr – Not reported 
a – Mississippi State University reactor, data from Ingram et al. [86] 
b – University of Georgia reactor, data from Garcia-Perez et al. [88] 
c – Forschungszentrum Karlsruhe reactor, data from Raffelt et al. [74] 
d – AdvancedBioRefinery Inc. reactor, data from Schnitzer et al. [84] 

 

 

Of special interest in Table 2 is the large variation in auger speed among the different reactor 

systems. Note that the MSU system [86] uses an auger speed very similar to that used in the Hayes 

Process reactor [61], and within the range of auger speeds as reported by Camp for the twin-screw 

coal pyrolyzer [66], and none of these three systems have a heat carrier material. These auger speeds 

are much lower than reported by Raffelt et al. for the twin screw reactor using sand as a heat carrier 
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[74]. Also it is noteworthy that over a period of six decades, researchers investigating auger reactors 

for coal and biomass processing repeatedly reported difficulties with mechanical binding and feed 

clogging. 

Hornung, et al., describe a system of two rotary type kilns used to process scrap electronic 

material [89]. This material, known as Waste Electronic and Electrical Equipment (WEEE), contains 

environmentally harmful components such as: dioxins, furans, lead, cadmium, and bromine. 

Discarded WEEE is typically either combusted or landfilled with traditional trash; however this 

allows the toxins to enter the atmosphere and ground water supply. In an effort to address this 

problem, 12 European entities have developed the Haloclean pyrolysis process. The feedstock is 

reduced to a size of 25 mm, where it is then mixed with steel spheres in a rotary kiln to promote both 

heat transfer and grinding of the material. This first kiln (Haloclean) operates around 350°C by means 

of external electric heaters, and features an axial screw to convey and mix the WEEE and metallic 

spheres as a heat carrier material. Volatile products exit the reactor, and the remaining material and 

heat carrier enter a second rotary kiln (PYDRA) operating at 500°C. The literature states that the 

rotary kiln is able to provide good heat transfer rates and “short” residences times to prevent 

secondary reactions, however these residence times are on the order of hours rather than seconds. 

There is no distinction mentioned between solid and gaseous residence times. The “thermal chemical 

treatment pilot plant” has a range of capabilities in regards to product utilization in terms of 

combusting gas and oil for process heat, or cooling and cleaning the products for other end uses. The 

oil formed was found to be composed mostly of phenols, and had a bromine content too high for 

subsequent processing. The system is considered to be successful in that it is able to both recover and 

separate precious metals from the electronic waste.  

Kodera et al. developed a small scale reactor based on a screw conveyor to process waste 

plastics for fuel gas production in Japan [90]. This gas production is envisioned as a way to recycle 

plastic, and as an energy source for various industries. When considering the pyrolysis of polyolefins, 

the paper mentions such difficulties as controlling the residence time and the formation of waxy 

products and coke. Also, when using a fluidized bed reactor, the reaction products require separation 

from the inert fluidizing gas. This led to the development of a horizontal, tubular reactor referred to as 

a moving bed reactor. This reactor features a screw conveyor used to mix a feedstock and sand that 

was used as a heat carrier. The reactor was heated electrically for 900 mm (500 mm at a constant 

temperature), and has dimensions of 1200 mm length by a diameter of 70 mm. The processing occurs 

at atmospheric pressure, and the system is purged with nitrogen. The gaseous products travel through 
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a gas meter and are analyzed via gas chromatography. The sand and any liquid products are collected 

in a receiver at the end of the reactor where a screen traps the sand and allows liquids to pass through.  

Two main experiments were performed: pyrolysis using polypropylene pellets (3 mm 

diameter) and sand (0.3 mm diameter), and catalysis using the same products in conjunction with a 

silica aluminum catalyst mixed in with the sand. The results of the experiments carried out at 700°C 

were a gas yield on the order of 82%-wt. and 94%-wt., with the main constituents being methane, 

ethylene, propylene and some C4 – C6 species. The sand in the 500 mm isothermal section had a 

residence time of 10 minutes, which was considered to be the reaction time. Important trends were 

that the mass yield of gas increased with reaction time and temperature, while the opposite was true 

for the oil yield (which decreased with both reaction time and process temperature). The yields were 

found to be linear with reaction time. Temperatures ranged from 500°C to 700°C, and reaction times 

ranged from 5 to 25 minutes. The authors concluded that the rotation rate of the screw “effectively 

controlled residence time of the polymer and liquid products”, but the gas composition was 

independent of reaction time implying that the gas residence time is independent of the screw speed. 

Also sand was deemed as an adequate heat transfer medium. There was no mention of screw speed, 

screw geometry, or mixing of the sand and feedstock. The authors suggest that the fuel gas could have 

applications for residential cooking, heating and even transportation. Based on the development of 

this bench-scale reactor, a similar demonstration scale reactor was conceptually designed. The 3 m 

long unit is sized for 100 kg/hr, and is heated via combustion of the oil by-product formed. The 

unique design features six screws: twin screws in the main reactor, which is flanked on either side by 

reactors each with two more screws rotating in opposite directions. 

Oudhuis et al. discuss a unique screw reactor that is part of a two-stage gasification process as 

part of the “Waste to Energy” research platform at the ECN of the Netherlands [91]. The Pyromaat 

facility is a 25 kWth two-stage gasifier concept that has processed such waste feedstocks as: scrap 

metal and plastics (including electronic equipment as discussed for the Haloclean reactor), tire rubber, 

construction and demolition material, carpets, and biomass. The pyrolysis system is electrically 

heated and features a horizontal screw reactor with a diameter and length of 10 cm and 150 cm, 

respectively. The screw is said to have “open flighting” and helps to ensure the feedstock contacts the 

hot reactor wall, similar to a rotary kiln. The feed rate ranges from 1 kg/hr – 10 kg/hr, and the 

operating temperature and pressure is 500°C and atmospheric, respectively. Approximately 28% char 

is formed by this step, and the volatile products are then gasified in a reactor with a diameter and 

height of 15 cm and 150 cm, respectively, at 1200°C. A gas cooler and scrubber follows the gasifier, 

which prepares the gas for sampling and various end-uses such as a Solid Oxide Fuel Cell. An 
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interesting aspect of this system is the feedstock composition and the potentially toxic chemicals 

contained therein. The metal constituents in the feedstock are contained in the char by-product, along 

with carbon and ash. This is a potential way to keep these environmentally harmful products out of 

the environment, for this byproduct has been envisioned by the ECN to be smelted for re-utilization 

rather than the alternative of landfill storage or incineration. 

Similarly, Brandt et al. investigate unique gasification system aimed at minimizing the tar 

yield in the producer gas stream [92]. A 100 kWth gasifer was preceded by an externally heated 

pyrolysis unit featuring a screw conveyor. The pyrolysis system, operating at 400 – 600°C, was fed 

with wood chips at a rate of approximately 28 kg/hr. The gaseous and char components were then 

directly fed into a gasifer where steam and air were introduced to oxidize the products at 1050 – 

1100°C. Before exiting the reactor and being analyzed, the gaseous products were also passed 

through a bed of char at the bottom of the reactor for further reactions to occur. This unique system 

results in documented decreases in tar production.  
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CHAPTER 3.  EXPERIMENTAL APPARATUS 

 

The lab-scale fast pyrolysis system designed and developed for this research is shown below 

in Figure 20, and the design and description of each sub-system will be described. The system 

consists of the following main components: biomass feeding sub-system, heat carrier sub-system, 

auger reactor sub-system, product recovery sub-system, data acquisition and control sub-systems.  

 

 
Figure 20. Lab-scale auger reactor system 
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3.1  Lab-scale system design 

The engineering design procedure for the lab-scale system centered primarily on the reactor 

and heat carrier sub-systems which will be described briefly. For a “lab-scale” biomass fast pyrolysis 

system, biomass feed rates around 0.5 kg/hr – 2.0 kg/hr are common. Therefore, early in the design 

phase a nominal biomass feed rate of 1.0 kg/hr was selected and became a fixed parameter. The initial 

design calculations were based largely on thermodynamics, and were used to calculate the required 

heat carrier mass feed rate. After the heat carrier feed rate was determined, then the geometry of the 

reactor and other sub-systems could was considered. The Mathcad 2001i Professional and Interactive 

Thermodynamics v1.5 software packages were used extensively during the design phase for 

simultaneous equation solving purposes.  

For the discussion of the reactor design, the generalized schematic shown in Figure 21 will be 

useful. Note that the parameters and variables shown will be discussed as necessary. 

 

bm

HCm
cbP mmm  −=

CHCS mmm  +=

 

Figure 21. Reactor design schematic 

 

Regarding the system mass balance, the reactor was considered an open system with biomass 

and heat carrier as entering flows, and solids and pyrolysis products as exiting flows. The mass 

balance for steady state conditions is described by Equation 1.  

 

( ) 0mmmmmmmmm
dt

dm
HCCpHCbSpHCb =+−−+=−−+=     Equation 1 
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Where , , , , and are the mass flow rates of biomass, heat carrier, 

pyrolysis products, solids, and biochar respectively, in units of kg/hr. This analysis assumes all 

biochar exits with the heat carrier material, and the pyrolysis products include condensable vapors, 

aerosols and permanent gases. Considering the reactor system as a heat exchanger in which flowing 

heat carrier material transfers heat to flowing biomass material, the heat carrier mass feed rate is 

determined by Equation 2.  

bm HCm pm Sm Cm

 

( )fHC,HC,iHCp,

bP
HC TTC

mQ
m

−⋅
⋅

=


         Equation 2 

 

Where QP (J/kg) is the heat required for pyrolysis of biomass, Cp,HC (J/kg-K) is the specific 

heat capacity for the heat carrier material on a mass basis, THC,i (K) and THC,f (K) are the inlet and exit 

temperatures of the heat carrier material, respectively, and the feed rates are as discussed. Biomass 

and heat carrier inlet properties and assumptions can be found in Appendix A. 

The heat for pyrolysis, QP, includes the sensible heat energy required to bring the biomass to 

the reaction temperature, plus the energy required to initiate and complete the pyrolysis reactions 

[31]. A value of 1.61 MJ/kg was selected for QP, which is slightly above the value required for 

pyrolysis of corn stover [31]. The system was originally designed to process corn stover biomass. 

Though fast pyrolysis is an endothermic process, it is noteworthy that the majority of the heat 

required is simply for the sensible heat input to raise the biomass temperature. For instance, assuming 

an average specific heat of 2.27 kJ/kg-K for biomass [93], a temperature increase from 25°C to 500°C 

requires 1.08 MJ/kg, or over 2/3 of the total heat required for pyrolysis. The details of the heat for 

pyrolysis analysis can be found in Appendix A. 

Referring again to Equation 2, the specific heat capacity of the heat carrier was selected to be 

815.2 J/kg-K for sand [94, 95]. Therefore, to determine the heat carrier mass feed rate, the only 

unknown variables are the inlet and outlet temperatures of the material. However to ensure sufficient 

heat is available for pyrolysis, the outlet temperature should remain above a threshold near the 

minimum pyrolysis reaction temperature. For suitable outlet temperatures between 400°C – 500°C, 

the required heat carrier feed rates are shown in Figure 22 as a function of inlet temperatures ranging 

from 475°C – 700°C. These are considered to be reasonable and achievable inlet temperatures, and 

the heat carrier feed rate results are in agreement with information regarding the FZK twin screw 

mixer-reactor [74, 75] and the CFB reactor as part of the RTP design [56].  
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Figure 22. Heat carrier mass feed rates as a function of temperature change 

 

Similar theoretical analyses were performed to determine the feed rate requirements for heat 

carrier materials other than sand, including steel and aluminum shot.  

After a suitable range of heat carrier feed rates was known, the design procedure was 

extended to consider the flow of biochar and pyrolysis products through the reactor. The analysis and 

assumptions for properties of biochar and pyrolysis products are found in Appendix A. To determine 

the volumetric flow rate of gaseous pyrolysis products through the reactor, the average molecular 

weight for bio-oil vapors and non-condensable gas was adapted from a 2006 design study utilizing 

ASPEN Plus software to analyze large-scale bio-oil production [96]. 

With feed rates and flow rates of reactants and products as determined, the design procedure 

continued by considering the reactor as a mechanical conveying system. This system was first 

designed to convey and mix biomass and heat carrier, at room temperature conditions. The volumetric 

“fill” of the solids in the reactor cross section, τfeed, was assumed to be 0.5 as is common for screw 

conveyors [97]. This assumption also allows for gaseous products to occupy volume in the reactor 

above the solids. The detailed analysis of the reactor fill specifications for biomass, heat carrier, 

biochar and vapors can be found in Appendix A.  
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Before any reactor dimensions were considered, the auger geometry and configuration were 

developed. To help ensure sufficient mixing in the reactor, a twin-auger design resembling the FZK 

system [74] and the LR process [56] was favored over the single auger design used by MSU [86] and 

UG [88]. The twin auger design was also chosen to limit the potential for feedstock clogging in single 

auger pyrolyzers as described by Camp [66, 68] and Laucks [60]. Literature on mechanical conveying 

of bulk solids and industrial mixing was reviewed to determine standard practices and design 

parameters [97-102]. A 2005 study by Al-Kassier et al. investigating a screw dryer for biomass was 

also referenced [103]. Many technologies for mixing of particulate solids were reviewed, and these 

sources helped verify that a mixer based on co-rotating, intermeshing augers with standard flighting is 

a suitable design for the system of interest. It was found that special auger flighting designs such as 

those shown in Figure 23 are often preferred for mixing applications [97], however these were not 

considered due to the corrosive, abrasive and high temperature environment inside the reactor.   

 

 

Figure 23. Various auger flighting designs 

Image adapted from Screw Conveyor Corporation [104] 
 

To assist in selection of the auger diameter, dA, manufacturer data was referenced to relate 

volumetric capacity to diameter and rotational speed [105]. For example, a 1.5 in (2.81 cm) OD auger 

has a nominal capacity of 57.9 cm3/revolution. For a requirement to convey a given volumetric flow 

of material, there is a tradeoff between auger size and speed: a small auger rotating quickly can 

theoretically convey the same volume of material as a larger auger rotating slower. For the range of 

volumetric feed rates determined for biomass and heat carrier mixtures (175 cm3/min – 475 cm3/min), 

a 1.0 in (2.54 cm) OD auger was found to be sufficient for reasonable rotational speeds that are within 

the range of similar pyrolysis reactor systems. Figure 24 shows the resulting volumetric feed rate of 

various size screws and screw speeds.  
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Figure 24. Volumetric feed rate as a function of screw size and speed 

 

Note that the volumetric feed rates shown in Figure 24, however, are in reference to a single 

auger. As the design calls for two augers, the volumetric carrying capacity is greater than for a single 

auger. The fact that the augers are intermeshing, though, implies the capacity will be inherently 

greater than for a single auger, but will not be doubled. It is therefore assumed that the capacity of 

twin intermeshing augers is 1.5 times that of a single auger with the same outer diameter.  

For a single #16 auger [1 in (2.54 cm) OD, 1.25 in (3.175 cm) pitch], the volumetric capacity 

is 16 cm3/revolution [105], so twin #16 intermeshing augers are assumed to have a capacity of 24 

cm3/revolution. These two cases represent the first two lines in Figure 25, respectively, as a function 

of screw speed. However as the system is designed not to operate completely full to allow for 

thorough mixing and efficient vapor removal, an additional case is shown for 50% volumetric fill. 

Recall the previous design assumption for the level of fill, τfeed, is 50%, implying faster auger speeds 

are required for a given volumetric feed rate. 
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Figure 25. Volumetric feed rate as a function of screw speed and configuration 

 

After 1.0 in (2.54 cm) was selected as a suitable auger size, the reactor dimensions were 

developed. Based on suitable auger speeds as shown in Figure 25, the superficial linear velocity of 

heat carrier and biomass could be determined based on the pitch of the auger and the rotational speed. 

Based on velocity and volumetric feed rate, the minimum required cross-sectional area to transport 

the materials can also be determined. To ensure sufficient volume for mixing operations, a factor of 

1.3 was included to increase the minimum required cross-sectional area. Refer to Appendix A for 

details on the cross-sectional area requirements analysis.  

With the auger dimensions specified, and the minimum area and volume requirements 

known, the reactor dimensions and geometry were drafted in the computer aided design package 

SolidWorks 2005. To eliminate any potential “dead space” between auger flighting where biomass 

and heat carrier are not able to mix, the reactor cross-section is omega-shaped (ω) rather than the 

rectangular design used by FZK. For a single auger design the reactor cross-section can be circular. 

After the reactor cross-section was designed, the reactor length was determined based on an 

iterative procedure to analyze the vapor residence time. Based on the known cross-section of the 

reactor, the auger geometry, and the fill specifications for the solids, the volume for vapors to occupy 

is known. Recall that for this analysis, the term “vapor” is used to describe the pyrolysis products 
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exiting the reactor: condensable vapors, aerosols and non-condensable gases. Based on the vapor 

properties analysis mentioned previously, the vapor velocity can now be determined, and with an 

assumption for reactor length the residence time can be determined. As discussed previously, the 

“optimal” residence time for fast pyrolysis is well documented, and typically around 2 seconds or 

less. Note that the residence time for vapors in the auger reactor is largely independent of the auger 

speed, and hence also independent of the solids residence time which is directly dependent on the 

auger speed. The length consideration for the vapor residence time analysis was the center-to-center 

distance from the biomass inlet to the vapor outlet. This length was chosen such that the residence 

time in the reactor was less than 1 second. So as to provide a mechanism for varying the residence 

time, however, five vapor outlet ports were incorporated into the reactor lid design. The residence 

time at the first outlet port was calculated to be less than 0.4 seconds. The first vapor outlet port is 

located an axial distance of 4.25 in (10.795 cm) from the heat carrier inlet, and the reaming ports are 

each spaced 2 in (5.08 cm) apart. The top view of the final reactor lid is shown in Figure 26, with 

dimensions in inches.  

 

  

Vapor outlets

Biomass inlet 

Heat carrier inlet 

Figure 26. Reactor lid drawing with dimensions in inches 

 

It is worth noting that the vapor residence time calculations are based on many assumptions 

and are likely to be accurate within ± 30%. The analysis is especially difficult for this type of reactor 

configuration (compared to fluidized beds, for instance) given the limited amount of design 

references available. The internal volume of the reactor that is occupied by the vapor products is 

difficult to calculate, based on the unknown level of solids inside the reactor as a function of axial 

length. Heat transfer and reaction effects were also not taken into account for this residence time 
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analysis, implying that biomass is basically instantly converted to reaction products upon entering the 

reactor. Nonetheless, refer to Appendix A for detailed calculations as part of the residence time 

analysis.  

The heat carrier residence time analysis is also shown in Appendix A, noting that this 

residence time is based only on reactor length and linear velocity, which is only a function of screw 

speed and geometry. For typical operating speeds as predicted by Figure 25, the heat carrier residence 

time is between 8 and 15 seconds as shown in Figure 109 in Appendix A. As the biomass entering the 

reactor is converted into various reaction products, no biomass residence time is given. Furthermore, 

as the reaction time and mechanism for biochar is unknown, it is difficult to calculate the solid 

residence time but it will be similar to that of the heat carrier.   

A digital rendering of the reactor design is shown in Figure 27, where the lid is shown 

removed to so the augers can be seen.   
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Figure 27. Auger reactor rendering with lid removed 
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A single 1/8 HP (92.3 W) motor was selected for the augers, and the procedure based on 

power requirements for conveying bulk solid materials [97] is saved for Table 45 of Appendix A. The 

motor transfers power to both augers through a system of three spur gears.  

The heat carrier system was designed as a vertical electrically heated pipe, with a storage 

hopper on top. The heat input requirements are known based on the heat for pyrolysis analysis as 

discussed. The hopper volume and pipe dimensions were based on geometric considerations to 

provide enough material for up to 3 hours of run time (depending largely on the heat carrier feed 

rate). The heat carrier material is volumetrically conveyed from the vertical pipe by a horizontal 1-1/8 

in (2.858 cm) OD auger into the reactor. Similar to the augers in the reactor, this auger is powered by 

a 1/8 horsepower motor as determined by the analysis shown in Table 45 of Appendix A. The heat 

carrier and biochar is conveyed out of the reactor into a cylindrical storage vessel sized to hold a 

greater volume than the vertical heat carrier assembly. Biomass is volumetrically conveyed into the 

reactor using a screw feeder. All components are housed on a portable aluminum frame. A digital 

rendering of the heat carrier system as designed is shown in Figure 28.  
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Figure 28. Auger reactor system rendering 
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3.2  Lab-scale system components 

Biomass feeding system. As shown in Figure 29, the main component of the biomass 

feeding system is a simple, off-the-shelf volumetric screw feeder (Tecweigh Flex-Feed 05 Series 

Volumetric Feeder). The descriptions for the symbols shown in Figure 29 are provided in Table 3. 

The unit has a 0.5 ft3 (14.16 dm3) capacity hopper that stores biomass, and a 0.5 in (1.27 cm) OD 

auger that serves to both meter and inject biomass into the reactor. The biomass is “agitated” and 

encouraged to exit the feeder by the walls of the hopper which flex alternately at the same speed as 

the metering auger. The feeder has a clear polycarbonate lid to view the condition of the biomass 

during a test, and is fitted with a nitrogen purge inlet. By purging a small amount of nitrogen through 

the hopper, a slight positive pressure is provided to discourage the back flow of pyrolysis vapors into 

the hopper. The injection auger feed tube [0.75 in (1.905 cm) OD] is wrapped with a water cooled 

copper coil, which serves to remove heat conducted from the reactor to ensure that the biomass does 

not begin decomposing prematurely. The cooling water for the injection auger is room temperature, 

and the flow rate is manually controlled with a 22 GPH (83.3 L/hr) rotometer.  

 

 

Figure 29. Biomass feeding system schematic 

Refer to Table 3 for descriptions 
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Table 3. Biomass feeding system descriptions 

Symbol designation Description

Temperature measurement

B Biomass inlet
Material flow

A Biomass
B Compressed nitrogen
C Nitrogen purge - Biomass hopper
D Nitrogen purge - Reactor inlet
E Cooling water (from tap)
F Cooling water return
Component

1 Gas rotometer (4.5 sL/min N2 max)

2 Feeder 
3 Feeder motor, 90 VDC
4 Feeder controller
5 Metering auger, 0.5 in (1.27 cm) OD
6 Metering auger cooling coil
7 Reacor inlet cooling coil
8 Biomass exit (to reactor)

9 Liquid rotometer (1.39 L/min H2O max)  

 

The biomass feed tube connects to the reactor with a ¾ in (1.905 cm) bored-through 

compression fitting, so as a quick connection and disconnection can be accomplished. At this 90° 

connection, biomass enters the reactor through a 1.5 in (3.81 cm) OD stainless steel tube, and a quick-

clamp cap on top of the inlet features an additional nitrogen purge inlet to prevent any back-flow of 

vapors. The quick-clamp cap allows for easy removal to visually inspect the biomass inlet area. The 

total volumetric flow rate of nitrogen to the biomass hopper and the biomass inlet is manually 

controlled with a 4.5 sL/min rotometer, and the flow rate between the two is equalized as necessary. 

The total volumetric flow rate of nitrogen to the system is controlled with an Alicat 20 sL/min mass 

flow controller. 

 Directly above the biomass injection auger is a type-K thermocouple to measure the 

temperature at the biomass inlet. The feeding system is positioned on aluminum rails and can slide 

back and forth to allow for ease of separating the feeder from the reactor during biomass calibration 

procedures. The biomass feeding system is shown in Figure 110 of Appendix A.  

Heat carrier system. The heat carrier feeding system is marked by a vertical 2 in (5.08 cm) 

Schedule 40 storage pipe and a 0.4 ft3 (11.33 dm3) conical feed hopper. The 2 in (5.08 cm)  heat 

carrier storage pipe transitions to a 1 in (2.54 cm) Schedule 40 pipe at the bottom and mates to a 

perpendicular 1-1/4 in (3.175 cm) Schedule 40 pipe. Inside the horizontal 1-1/4 in (3.175 cm) pipe is 

a #18 standard size metering auger [1-1/8 in (2.858 cm) OD, 1.5 in (3.81 cm) pitch] fabricated by 
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Auger Manufacturing Specialists (Frazer, Pennsylvania). This stainless steel auger features one piece 

construction with right-hand flighting and dimensions in inches as shown in Figure 30.  

 

 

Figure 30. Heat carrier auger drawing with dimensions in inches 

 

A schematic of the heat carrier system is shown in Figure 31, with a listing of descriptions in 

Table 4. As the metering auger rotates, it draws material from the vertical storage pipe and conveys it 

at a certain volumetric flow rate. The metering auger extends into a 90° bend, which reduces to a 

vertical 1 in (2.54 cm) Schedule 40 pipe that allows heat carrier material to drop directly into the 

reactor vessel. The entire heat carrier feeding system is constructed from stainless steel. A Dayton 

3XA80 1/8 HP (93.21 W), 90 VDC gearmotor (60 RPM max) powers the heat carrier metering auger, 

and is mounted on an adjustable bracket.  

The heat carrier feeding system is electrically heated by three sets of Watlow ceramic fiber 

heaters. Each set of cylindrical heaters forms a “clamshell” that wraps around the pipe and heat is 

transferred radiantly from the heater surface through an air gap and the pipe wall into the interior of 

the pipe. Below the hopper are two sets of 6 in (15.24 cm) x 3 in (7.62 cm) x 7.5 in (19.05 cm) [L x 

ID x OD] 450W/90V “pre-heaters”, followed by a 24 in (60.96 cm) x 3.5 in (8.89) x 7.5 in (19.05) [L 

x ID x OD] 1800W/240V heater. In-between the pre-heaters and the main heater is a flanged section 

of pipe where the assembly attaches to the reactor frame. This section of pipe is heated with an 

HTS/Amptek electrical heat tape. The horizontal feed pipe also features and electrical heat tape to 

maintain the desired temperature of the heat carrier material in-between the vertical pipe outlet and 

the reactor inlet. All exposed pipes and metal surfaces of the heat carrier system are insulated with 

ceramic insulation material to minimize heat losses.  
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Figure 31. Heat carrier system schematic  

Refer to Table 4 for descriptions 
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Table 4. Heat carrier system descriptions 

Symbol designation Description

Temperature measurement

PH Pre-heater section, upper vertical pipe

HC1 Heat carrier 1, midway vertical pipe

HC2 Heat carrier 2, vertical pipe outlet

HC3 Heat carrier 3, reactor inlet (gas phase)

Control temperature

PH1C Pre-heater 1 control (air gap)

PH2C Pre-heater 2 control (air gap)

HT1C Heating tape 1 control (wall)

HC1C Main heater control (air gap)

HT2C Heating tape 2 control (wall)

Material flow

A Hea
B Compressed nitrogen
C Nitrogen purge - Heat carrier hopper
D Nitrogen purge - Heat carrier auger
Component

1 Heat carrier hopper
2 Pre-heater 1 (15.24 cm, 450W x 2)
2a Pre-heater 1 controller
3 Pre-heater 2 (15.24 cm, 450W x 2)
3a Pre-heater 2 controller
4 Heating tape 1
4a Heating tape 1 controller
5 Heat carrier pipe
6 Main heater (60.96 cm, 1800W x 2)
6a Main heater contoller
7 Meter auger motor, 90 VDC
7a Metering auger motor controller
8 Metering auger, 2.858 cm OD
9 Heating tape 2
9a Heating tape 2 controller 
10 Heat carrier outlet (reactor inlet)

11 Gas rotometer (4.5 sL/min N2 max)

t carrier

 

 

The heat carrier feed hopper has a nitrogen purge inlet, again, to provide a positive pressure 

to ensure there is no back flow of pyrolysis vapors. As the heat carrier material empties from the 

hopper and storage pipe, this flow of nitrogen becomes especially important to fill the displaced 

volume that would otherwise create a low pressure zone that would encourage the flow of pyrolysis 

vapors into the heat carrier system. There is an additional nitrogen purge inlet where the metering 

auger shaft enters the horizontal feed tube, which provides a positive pressure to eliminate any air 

entering the system or any pyrolysis vapors exiting the system. A 4.5 sL/min rotometer manually 

controls the total volumetric flow of nitrogen to these inlets, and the flow rate between the two is 

equalized as necessary.  
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There are four temperature measurements associated with the heat carrier feeding system, all 

with Type-K thermocouples to measure process conditions inside the respective pipes. The first 

temperature is in-between the two pre-heaters, followed by a temperature measurement halfway down 

the length of the main heater, and then another location directly above the metering auger. As there is 

a pipe reducer directly above this thermocouple, the heat carrier material becomes more ‘packed’ and 

well mixed, giving the best indication of the entering heat carrier material temperature. This 

temperature (HC2) will be referred to often. The final temperature measurement location is in the 

vertical heat carrier inlet pipe; however this temperature measurement does not adequately measure 

the heat carrier material temperature, and instead provides a “gas phase” temperature. All four 

temperature measurement locations are in the middle of the respective pipes.  

Reactor system. The reactor system is completely constructed from stainless steel. The 

reactor outer dimensions are approximately 22 in (55.88 cm) x 2.5 in (6.35 cm) x 1.5 in (3.81 cm) [L 

x W x H], however the cross section is “omega shaped” (ω) rather than rectangular. The two #16 

standard augers [1 in (2.54 cm) OD, 1.25 in (3.175 cm) pitch], manufactured by Auger Manufacturing 

Specialists (Frazer, Pennsylvania), are identical and feature one piece 309 stainless steel construction, 

with left-hand flighting. The general auger dimensions in inches are shown below in Figure 32.  

 

 

Figure 32. Reactor auger drawing with dimensions in inches 

 

The augers in the reactor rotate in the same direction, and intermesh slightly (no contact). A 

detail of the augers is shown in Figure 111 of Appendix A. A Dayton 3XA78 1/8 HP (93.21 W) 

90VDC gearmotor (180 RPM max) drives the augers in the reactor through a solid stainless steel 5/16 

in (0.794 cm) power shaft. The motor is mounted on an adjustable bracket on the opposite end of the 

heat carrier inlet. In a custom housing at the motor end of the reactor, the power shaft terminates with 

a spur gear that transfers power to two identical gears so as the augers rotate at the same rotational 
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speed. As with the metering auger for the heat carrier material, there is a nitrogen purge on the reactor 

where the power shaft enters, which eliminates unwanted air from entering the system. Similarly, on 

the opposite end of the reactor, the terminating bearings on the auger shafts are purged with nitrogen 

as well. The volumetric flow rate of nitrogen on the biomass inlet side of the reactor is manually 

controlled with a 8.0 sL/min (max) rotometer, while the flow rate on the opposite end of the reactor 

can not be controlled [but can be inspected with a 5.0 sL/min (max) flow meter]. A ¼ in (0.635 cm) 

stainless steel lid is connected to the reactor with 24 bolts, and a custom ceramic gasket is used for 

sealing. In axial terms, the heat carrier material enters the reactor 2.25 in (5.715 cm) after the biomass 

inlet (center-to-center). Similarly, the first product outlet port is 4.25 in (10.795 cm) from the heat 

carrier inlet, or 6.5 in (16.51 cm) from the biomass inlet, center-to-center. There are 4 more product 

outlet ports, each spaced 2 in (5.08) axially from one another. Each of the 5 outlet ports are 0.75 in 

(1.905 cm) OD stainless steel tubes, with a height of 4 in (10.16 cm) above the reactor lid. The 

reaction products can exit only one port at a time, and the remaining ports are capped off. These 

features are seen in Figure 112 of Appendix A. A schematic of the reactor system is shown in Figure 

33, with associated descriptions provided in Table 5.   
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Figure 33. Reactor system schematic 

Refer to Table 5 for descriptions 
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Table 5. Reactor system descriptions 

Symbol designation Description

Temperature measurement

R1 Reactor 1, gas phase, 5.398 cm

R2 Reactor 2, gas phase, 13.335 cm

R3 Reactor 3, gas phase, 18.415 cm

R4 Reactor 4, gas phase, 23.495 cm

R5 Reactor 5, gas phase, 28.575 cm

SO Solids outlet, gas phase

Control temperature

HT3C Heating tape 3 control (wall)

RHC Reactor heater control (air gap)

Pressure measurement

1 Reactor, gage pressure
Material flow

A Bi
B Heat carrier
C Pyrolysis products
D Compressed nitrogen
E Nitrogen purge - Reactor end
F Nitrogen purge - Reactor main 1
G Nitrogen purge - Reactor main 2
Component

1 Reactor vessel
2 Reactor augers, 2.54 cm OD
3 Vapor outlet port (5)
4 Heating tape 3
4a Heating tape 3 controller
5 Reactor heater (30.48 cm, 900W x 2)
5a Reactor heater controller
6 Solids canister
7 Reactor augers motor, 90 VDC
7a Reactor augers motor controller
8 Compressed nitrogen cylinder
9 Nitrogen mass flow controller

10 Gas rotometer (5.0 sL/min N2 max)

11 Gas rotometer (8.0 sL/min N2 max)

omass

 

 

A Type-K thermocouple measures the temperature in-between each product outlet port (5 

axial temperatures), with the measurement location just below the inside surface of the reactor lid as 

shown in Figure 113 of Appendix A. There is an additional outlet port at the end of the reactor lid 

which serves as the high pressure measurement location for a pressure transducer.  

 Solid materials (heat carrier and bio-char) exit the reactor at the opposite end of the biomass 

feeder through a rectangular opening with approximate dimensions of 3.5 in (8.89 cm) x 1.45 in 

(3.683 cm) [L x W]. These solids fall into a cylindrical stainless steel canister with dimensions of 10 
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in (25.4) x 12 in (30.48) [OD x H]. A Type-K thermocouple measures the gas phase temperature at 

the solids outlet location.  

Heat losses from the reactor are minimized by the use of an additional 900W/120V Watlow 

ceramic fiber heater. This heater, positioned in-between the heat carrier inlet and the solids outlet, has 

dimensions of 12 in (30.48 cm) x 3.5 in (8.89) x 7.5 in (19.05) [L x ID x OD]. All major exposed 

metal surfaces of the reactor are insulated with ceramic insulation material to minimize additional 

heat losses. The major reactor equipment is housed on a heavy-duty 80/20 aluminum frame with 

casters.  

Product recovery system. Downstream of the product outlet tube from the reactor, 0.5 in 

(1.27 cm) OD stainless steel tubing is used with additional electric heat tapes to ensure sufficient 

process temperatures are maintained. In addition to the electric heat tape, ceramic insulation is used to 

insulate the tube. As part of the product recovery system, a gas cyclone separator is used to remove 

fine biochar particles entrained in the process stream exiting the reactor. Biochar is collected in a 1-

1/2 in (3.81 cm) OD stainless steel canister [L = 6 in (15.24 cm)], connected to the cyclone with a 

quick-clamp fitting. There are outlet ports before and after the gas cyclone which are used to measure 

the pressure drop across the device. There are also Type-K thermocouples before and after the 

cyclone to measure the process temperature at these locations. The cyclone is shown in Figure 114 of 

Appendix A. A schematic of the product recovery system is shown in Figure 34, with descriptions 

provided in Table 6. 

After the gas cyclone, the product stream enters a set of water cooled condensers. The 

condensers are single tube heat exchangers, and feature 1-1/2 in (3.81 cm) OD 304 stainless steel 

quick-clamp tubing wrapped with copper cooling coils. The quick-clamp tubing style allows for easy 

disassembly between runs to allow for thorough cleaning of the condensers. The first two condenser 

stages are each 17.5 in (44.45 cm) L, connected by a 4 in (10.16 cm) horizontal tee section. The vapor 

stream travels down through the first stage (co-current with the cooling water flow), and up through 

the first stage (counter-current with the cooling water flows), where condensed bio-oil collects on the 

walls of each condenser stage and drips down into separate 250 mL Nalgene bottles. The first 

condenser stage is cooled with room temperature water, and the flow rate is manually controlled with 

a 22 GPH (83.27 L/hr) rotometer. The second stage is cooled with chilled water using an Elkay TR2-

10 water chiller, and the flow rate is manually controlled using a 22 GPH (83.27 L/hr) rotometer. 

Condensers 1 and 2 are referred to as stage fraction 1 (SF1) and stage fraction 2 (SF2), respectively. 
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Figure 34. Product recovery system schematic 

Refer to Table 6 for descriptions 

 

After the first two condenser stages, the process stream exits though a 0.5 in (1.27 cm) OD 

stainless steel tube and enters an electrostatic precipitator (ESP) collection device [106]. The ESP is 

constructed of 2 in (5.08 cm) OD quick-clamp tube fittings, and is approximately 22 in (55.88 cm) L 

(inlet center-outlet center). A 1/8 in (0.3175 cm) stainless steel rod (or electrode) hangs down through 

the center of the ESP and is charged with approximately -15kV by using a Glassman Series ER high 

voltage power supply (30 kV max). The outer body of the ESP is grounded through the power supply, 

and the 15kV voltage difference encourages liquid bio-oil aerosol droplets to be attracted to the ESP 

walls. The ESP device basically serves to dis-entrain and collect any liquid aerosols (“bio-oil mist”) 
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in the process stream. Bio-oil that collects along the inner walls of the ESP drips down and is 

collected in a 250 mL Nalgene bottle. In-between the second condenser stage and the inlet to the ESP 

is a temperature measurement with a Type-K thermocouple, as well as a port that serves to determine 

the pressure drop across various components. The ESP is referred to as stage fraction 3 (SF3).  

After the ESP, the process stream flows through a flexible tube into another condenser, this 

one a 3/8 in (0.9525 cm) OD stainless steel coil placed in an ice bath container. This fourth and final 

bio-oil collection device serves to drop the process temperature to below atmospheric, and remove as 

much moisture and as many condensable products as possible. Condensed bio-oil is collected in a 

“tee section” at the end of the coil, before the coil exit. At the exit of the coil condenser, there is a 

final temperature measurement and pressure port, as well as a 0-5 in-H2O pressure gauge to ensure 

there is a slight positive pressure within the system. The third condenser is referred to as stage 

fraction 4 (SF4). 

 

Table 6. Product recovery system descriptions 

Symbol designation Description

Temperature measurement

D1 Downstream 1, cyclone inlet

D2 Downstream 2, SF1 inlet

C1 Condenser 1 (wall)

C2 Condenser 2 (wall)

D3 Downstream 3, SF3 inlet

D4 Downstream 4, SF4 outlet

VM Volume meter inlet
Control temperature

HT4C Heating tape 4 control (wall)

Pressure measurement

2 Cyclone, differential
3 SF1 - SF2, differential
4 SF3 - SF4, differential
5 SF4 outlet, gage
6 Volume meter inlet, gage
Material flow

A Pyrolysis products
B Cooling water (from tap)
C Condenser 1 cooling water
D Condenser 2 cooling water
E Cooling water return
F Non-condensable gas (to vent)  
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Table 6. (Continued) 

Symbol designation Description

Component

1 Gas cyclone
2 Biochar collection canister
3 Heating tape 4
3a Heating tape 4 controller

4 Liquid rotometer (1.39 L/min H2O max)

5 Liquid rotometer (1.39 L/min H2O max)

6 Chiller
7 Condenser 1
8 Cooling coil
9 SF1 collection bottle
10 SF2 collection bottle
11 Condenser 2
12 Electrostatic Precipitator (ESP)
13 SF3 collection botttle
14 ESP electrode
15 Power supply, 30 kV
16 Condenser 3 
17 SF4 collection bottle
18 Ice bath 
19 Gas drier tube
20 Vacuum pump
21 Micro GC
22 Volume meter  

 

The remaining fast pyrolysis products in the permanent gas phase are passed through a 

packed bed of desiccant to remove any further moisture or particulate matter that might be remaining. 

A Gast vacuum pump aids in overcoming the pressure drop associated with flowing the product 

stream through the packed bed of desiccant, and a loop in the process stream around the vacuum 

pump helps to maintain a slight positive pressure throughout the entire system. After the vacuum 

pump, the gas is analyzed in-situ with a Varian CP-4900 Micro-Gas Chromatograph (Micro-GC). 

Before venting, the total gas volume is measured in an Excel TY-LNM-1.6 diaphragm meter (2.5 

m3/hr max). The gage pressure and temperature are measured at the volume meter inlet with a 0-5 in-

H2O pressure gauge and Type-K thermocouple, respectively.  Refer to Figure 115 in Appendix A for 

an image of condensers 1 and 2, and Figure 116 and Figure 117 for images of the ESP and condenser 

3, respectively. Refer to Figure 118 of Appendix A for an overview picture of the reactor system.  
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Data acquisition and control system. The data acquisition system is based off a National 

Instruments cDAQ-9172 system, which has a simple 8-slot “plug and play” chassis and USB 

interface. Two NI9263 analog output modules (4-channel, ± 10V) are used to provide signals for 

controlling various devices such as the biomass feeder or nitrogen mass flow controller. One NI9205 

analog input module (32-channel, ± 10V) is used to monitor voltage inputs from pressure transducers 

and other devices. Five NI9211thermocouple input modules (4-channel, ± 80mV) are used to measure 

up to 20 process temperatures. The NI hardware communicates with a Dell Optiplex 755 PC through 

a single high speed USB cable and LabVIEW 8.2 software. A LabVIEW program was developed to 

both monitor process conditions during a test, as well as record important data during the test. A 

screenshot from this program is shown in Figure 35.  

 

 

Figure 35. LabVIEW program screenshot for data acquisition and process monitoring 

 

The control system is split into various components on the reactor frame. On the feeder side 

of the reactor, the pre-heaters and heat tapes associated with the heat carrier feed system are 
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controlled with a stand-alone 6-channel ‘heater control box’. Both of the 6 in (15.24 cm) ceramic pre-

heaters and both electrical heat tapes associated with the heat carrier feed system are controlled with 

Series 16A PID temperature controllers from Dwyer Instruments/Love Controls. Each of these 

controllers has feedback temperatures from Type-K thermocouples attached to the surface of the heat 

carrier pipe in their respective locations. The electrical heat tapes on the downstream product section, 

in-between the reactor exit and the condenser inlet are controlled with Series 32A PID temperature 

controllers from Dwyer Instruments/Love Controls located on the face of an electrical enclosure on 

the far end of the reactor. Similarly, each of these controllers has a feedback temperature from Type-

K thermocouples that measure the surface temperature of the 0.5 in (1.27 cm) OD process tube.  

The main 24 in (60.96 cm) heat carrier heater and the 12 in (30.48 cm) heater around the 

reactor are controlled with EZ-ZONE PID controllers from Watlow, located on the opposite end of 

the reactor frame in a dedicated control box. The heat carrier heater feedback temperature is from a 

Type-K thermocouple measuring the surface temperature of the pipe, and the reactor heater feedback 

temperature is from a Type-K thermocouple measuring the air gap temperature in-between the heater 

surface and the reactor surface.  

On the same side as this heater control box are the motor controllers for the heat carrier 

metering auger and the reactor augers. The heat carrier metering auger and the reactor augers are 

manually controlled by Dayton 4Z527 and Dayton 2M171 DC motor controllers (potentiometer 

based), respectively. The biomass feeder is manually controlled by an off-the-shelf potentiometer 

based controller from Techweigh.  

 

3.3  Lab-scale system development 

After the complete system was designed, constructed and all components were installed, a 

development effort was undertaken to understand and refine the operation. Before high temperature 

pyrolysis experiments were performed, an informal “cold-flow” mixing study was completed. The 

goal of this study was to determine if the degree of mixing for solid particulate matter was a function 

of auger speed or location (axial and radial) within the reactor. A gas pycnometer was used to 

measure the particle density of sand and biomass mixtures sampled from different axial positions of 

the reactor for various auger speeds. Details of this study can be found in Appendix B.  

The novel use of a gas pycnometer to determine the particle density of solid mixtures was 

found to be a poor method of characterizing solid mixtures. Subsequently, a literature review on 

experimental apparatus for mixing studies confirmed that complex and specialized analytical 
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equipment is required for proper characterization of solid mixtures [107-111]. For instance Ziegler et 

al. used a special color meter to determine how well two different types of chocolate were mixed in a 

co-rotating twin-screw device [107]. In 2007, Jones et al. used positron emission particle tracking 

(PEPT) to follow tracer material in a ploughshare mixer to study axial mixing behavior [110]. Paul et 

al. describe other characterization techniques such as: diffusing wave spectroscopy, positron emission 

topography, magnetic resonance imaging and X-ray tomography in a comprehensive handbook [99].  

Therefore, a more qualitative approach was undertaken to study the mixing behavior of the 

system. A clear polycarbonate lid for the reactor was designed so the mixing interaction of biomass 

and heat carrier materials could be viewed in real time. Biomass particles and sand were fed into the 

reactor at various feed rates while the auger speed was varied. In time order from left to right and top 

to bottom, still images of sand and corn stover biomass (dyed green to enhance the contrast) are 

shown in Figure 36 to illustrate the mixing behavior. Note the black dot on the polycarbonate lid 

designates the location of the first vapor outlet port. The feed rates of biomass and sand are 1.0 kg/hr 

and 20 kg/hr, respectively, in Figure 36. 

By visual inspection, the “degree of mixing” between biomass and heat carrier was 

considered to be excellent. The mixing mechanisms could be described as a “bulk mixing process”, in 

which the materials would fold on top of the other by way of the screw flighting design. Mixing of 

material between the two augers was also noted to occur. More complete mixing was observed at 

lower auger speeds, with approximately 45 RPM being the ideal rotational speed for the design feed 

rates. At higher auger speeds (> 70 RPM), the material is quickly conveyed through the reactor with 

minimal mixing, and at lower speeds (< 35 RPM) the augers are not able to convey the materials 

through the reactor before clogging problems occur. At these low speeds, material begins to build up 

within the reactor and is not conveyed out quickly enough. Mechanical fluidization of the materials 

was not observed. 

As a result of these quantitative and qualitative mixing studies, general rotational auger 

speeds were known such that actual fast pyrolysis shakedown trials commenced. In all, over 19 

shakedown trials were performed to investigate the system operation and performance with various 

feedstocks and conditions. Different size particles of corn stover, corn fiber and two types of wood 

were tested as biomass feedstocks. Shown from left to right in Figure 37 are 1.0 mm corn stover, 1.0 

mm corn fiber, and 0.75 mm oak wood. 
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Figure 36. Cold flow mixing images of cornstover biomass and silica sand 
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Figure 37. Corn stover (1.0 mm), corn fiber (1.0 mm) and red oak biomass (0.75 mm)  

 

Different types and sizes of heat carrier materials were tested as well, as shown from left to 

right in Figure 38: sand, silicon carbide, alumina ceramic, 1.0 mm steel shot and 0.7 mm steel shot. A 

sample of operating conditions used during the shakedown trial phase is shown in Table 7. 

 

 

Figure 38. Sand, silicon carbide, alumina ceramic and steel shot heat carrier examples 

 

Table 7. Shakedown trials operating conditions 

THC TR db dHC QN2 ωA

(°C) (°C) (kg/hr) (kg/hr) (μm) (μm) (SLPM) (RPM)

Low 425 450 0.5 12 500 400 1.0 36
High 825 750 1.0 24 1000 1200 4.0 70

bm HCm

 

 

Calibration procedures are performed to determine the proper heater temperatures to maintain 

the desired heat carrier inlet temperature, THC (°C). This corresponds to temperature THC2 in Figure 

31. The electrical guard heater around the reactor is set to a sufficient temperature, TR (°C), to 

minimize heat losses. This corresponds to temperature TRHc in Figure 33. The biomass mass feed rate, 

(kg/hr), is achieved by setting the auger speed rate on the biomass feeder, based on calibration 

procedures. Similarly, the heat carrier mass feed rate,  (kg/hr), is achieved by setting the 

metering auger speed rate based on calibration procedures. The nominal biomass particle size, db 

bm  

HCm
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(mm), is achieved by the screen size used in a cutting mill or based on a standard sieving procedure. 

The nominal heat carrier particle size, dHC (mm), is as received by the manufacturer or based on a 

standard sieving procedure. The total volumetric flow rate of nitrogen into the system, QN2 (SLPM), is 

controlled by a mass flow controller and is constant for the duration of a test. The rotational speed of 

the augers in the reactor, ωA (RPM), is achieved by setting the desired speed rate on the motor 

controller and is constant for the duration of the test. These operating conditions correspond to the 

simplified schematic of the reactor shown in Figure 39. 
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Figure 39. Simplified reactor schematic with operational parameters shown 

 

In addition to testing various feedstocks and operating conditions, the shakedown trials were 

useful in refining the configuration and operation of the laboratory apparatus and finalizing the 

experimental procedures. Use of the different vapor outlet ports was investigated, as were different 

gas cyclones are condenser configurations. A final benefit of performing numerous shakedown trials 

was to demonstrate proof-of-concept of the reactor design, including steady-state operation.  

Several challenges and solutions were realized during the shakedown trial testing phase, and 

will not be discussed. Refer to Table 46 in Appendix A for details of the operating conditions 

performed for the shakedown trials, and Table 47 for the product distribution results. These tables 

illustrate that the procedures and the lab-scale system produce respectable mass balances and 

repeatable bio-oil yields within the range of reported literature for fast pyrolysis. This provided 

evidence and confidence to proceed with the experimentation phase of the research which will be 

described next.  
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CHAPTER 4.  EXPERIMENTAL METHODS AND MATERIALS 

 

4.1 Introduction 

For this research, a Response Surface Methodology (RSM) was selected to optimize the 

auger reactor design. This is a systematic methodology that allows for statistical investigation of 

responses that are a function of multiple factors (or variables), including any interaction effects 

between factors. For instance as discussed previously, the yields from biomass fast pyrolysis are 

known to be dependent on several conditions, thus these conditions need to be investigated 

simultaneously. As there is minimal data available on the auger reactor operating conditions, it is 

worthy to study the effects of these conditions on responses such as bio-oil yield and composition. 

RSM is a common experimental methodology used in the optimization of industrial processes [112, 

113]. By constructing a theoretical model to estimate a given response, useful visual representations 

and equations can be developed to maximize or minimize the response. A thorough procedure was 

followed to determine a specific design of experiments to carry out the RSM, and will be discussed.  

 

4.2 Experimental design 

The first step in a RSM is the selection of an appropriate experimental design. This selection 

is dependent not only on the number of factors of interest, but also the availability of resources. At 

least thirteen factors associated with the reactor system were identified that have possible effects on 

the product distribution and composition, as summarized in Table 8 along with the fast pyrolysis 

consideration affected by each factor. As the reactor system is a first generation design, factors that 

were assumed to have minimal effects were eliminated, as were factors that were not continuous 

(“categorical” factors). As the lab-scale system was designed for a certain biomass feed rate (1 kg/hr), 

this was also eliminated as a factor. Furthermore, changing the biomass feed rate will alter the heat 

removal requirements for the bio-oil recovery system, potentially causing inconsistent system 

operation. In regards to the bio-oil recovery system, the design and operation of these components 

will affect the pyrolysis products; however these considerations are outside the scope of this research. 

Finally, the system was designed to provide heat for pyrolysis by means of the heat carrier material, 

so the reactor heater temperature was eliminated as a variable. 

According to the literature review performed on biomass fast pyrolysis and solids mixing, the 

remaining factors were all considered to be important enough to warrant further study. The heat 
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carrier feed rate, , is easily adjustable by means of controlling the metering auger speed, and 

will intuitively effect the yields and composition because of the heat transfer effects. Similarly, the 

temperature of the heat carrier material, THC, can be controlled by setting the electric heaters and the 

importance of reaction temperature is well documented. The rotational speed of the augers in the 

reactor, ωA, will affect the mixing behavior of the biomass and heat carrier, as discussed previously, 

which is assumed to then affect the heat transfer and devolatilization of the biomass. Finally, the flow 

rate of nitrogen, QN2, effects the vapor residence time in the reactor and is easily controlled. 

HCm

 

Table 8. Factor considerations for experimental design procedure 

Factor 
No.

Factor
category Factor

Fast pyrolysis

considerationa
Concern for selection

1 Type 5 Not continuous
2 Feed rate 1 Small turndown, system design

3 Particle size 1 Minimal effect compared to other factors
4 Moisture content 1 Minimal effect compared to other factors
5 Type 1,5 Minimal effect, not continuous
6 Feed rate 1,2 None
7 Particle size 1 Minimal effect, system capabilities
8 Temperature 1,2,~3 None
9 Auger rotational speed 1,2,~3 System capabilities

10 Vapor outlet port 3 Not continuous
11 Total nitrogen flow rate 3 None
12 Reactor heater temperature 1,2 Control, system design

13
Product
recovery

Condenser temperature(s) 4 Outside scope of research

Biomass
properties

Heat carrier
properties

Reactor
configuration

Note: a - Fast pyrolysis considerations: (1) Rapid heat transfer, (2) Controlled reaction temperature, 
              (3) Short vapor residence times, (4) Rapid cooling of reaction products, (5) Catalytic effects  

 

With four factors, n, selected (n = 4), the experimental design selection process was 

continued. As mentioned previously, a design was required to study possible interactions between 

factors and develop a response surface, so a 2n factorial design was eliminated [113]. A 3n factorial 

design could be used to develop this response surface; however 81 experiments are required for four 

factors which were deemed impractical to implement. Therefore, a Central Composite Design (CCD) 

was selected as a suitable design for the response surface methodology, and is often used in place of 

3n factorials to minimize experimental time and expenses [113]. Out of the possible CCD options, the 

commonly used “circumscribed option” was selected (can be referred to as CCC) as it allows for 

investigation of a large design space [112]. Other CCD options such as the “inscribed” (CCI), “face 

centered” (CCF), and Box-Behnken designs may require fewer runs than the CCC, but have a more 

restricted experimental space [112, 113]. The circumscribed central composite design is called such 
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because it has a 2n factorial design imbedded within “axial points” as shown in Figure 40. Note this 

diagram only shows two factors, as all four factors can not be shown conveniently in two (or even 

three) dimensions. The axial points, also called “star points” [112], test conditions outside the main 

design space to help generate the curvature of the quadratic model. Note that typically all the points 

are given coded coordinates, with the so-called “center-points” having coordinates of (0, 0), and axial 

points at a distance “α” from the center point.  Center point replicates are performed to help establish 

the experimental error [113]. 
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Figure 40. Central Composite Design schematic for two factors 

Image adapted from Kuehl [113] 
 

The number of experiments, N, and the α value required for a CCD with n factors and m 

center point replicates are calculated by Equations 3 and 4 respectively.  

 

mn22N n +⋅+=          Equation 3 

 

1/4n )(2=α           Equation 4 
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For 6 center point tests (m = 6), this results in a four factor, five level central composite 

design requiring 30 experiments and an α value of 2.0. This α value implies that, for a given level, 

the “step” from the factorial point (1) to the axial point (α) is the same as from the center point (0) to 

the factorial point (1). The levels for the design were chosen based on information gathered or 

determined during the literature review, engineering design and shakedown trial portions of the 

project. In selecting levels for this type of design, there is a tradeoff between what the experimental 

apparatus can physically achieve and what will allow for a suitable response surface to be developed. 

The final factors and levels chosen for the design are shown in Table 9, with notation as discussed 

previously.  

 

Table 9. Selected factors and levels for experimental design  

`

THC

(°C)
QN2

(SLPM)
ωA

(RPM) (kg/hr)

−α 425.0 1.5 45.0 9.0
- 1 475.0 2.0 49.5 12.0
0 525.0 2.5 54.0 15.0

+1 575.0 3.0 58.5 18.0
+α 625.0 3.5 63.0 21.0

L
ev

el

Factor

HCm

 

 

As noted, the resulting model from this experimental design procedure is quadratic (second 

order) with 15 coefficients as shown in Equation 5, and serves to estimate the response surface [113]. 

There is an intercept term, βo, and 14 remaining coefficients associated with each factor (4), each of 

the interaction terms between factors (6), and each factor squared (4). Note that the response in 

Equation 5, Yi, is general and different models can be developed for any number of responses. 
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Equation 5 

s an expansion of Table 9, a list of all the experiments performed is shown in Table 10 in 

the coded format. Note the three sections shown: 16 factorial design experiments, 8 axial point 

experiments, and 6 center point experiments with the same conditions.  

A
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Table 10. Final central composite design, coded experiments 

Factor

DOE
#

THC

(°C)
QN2

(SLPM)
ωA

(RPM) (kg/hr)

2 +1 +1 +1 - 1
3 +1 +1 - 1 +1
4 +1 +1 - 1 - 1
5 +1 - 1 +1 +1
6 +1 - 1 +1 - 1
7 +1 - 1 - 1 +1
8 +1 - 1 - 1 - 1
9 - 1 +1 +1 +1

10 - 1 +1 +1 - 1
11 - 1 +1 - 1 +1
12 - 1 +1 - 1 - 1
13 - 1 - 1 +1 +1
14 - 1 - 1 +1 - 1
15 - 1 - 1 - 1 +1
16 - 1 - 1 - 1 - 1
17 0 0 0 −

1 +1 +1 +1 +1

α
18 0 0 0 +α
19 0 0 −α 0
20 0 0 +α 0
21 0 −α 0 0
22 0 +α 0 0
23 −α 0 0 0
24 +α 0 0 0
25 0 0 0 0
26 0 0 0 0
27 0 0 0 0
28 0 0 0 0
29 0 0 0 0
30 0 0 0 0

2n  f
ac

to
ri

al
 tr

ea
tm

en
t d
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ig

n 
(n

 =
 4

)
2n

 a
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al
 p
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nt

s 
(n

 =
 4

)
C
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r 
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ts

(m
 =

 6
)

HCm

 

 

Similarly, Table 11 is shown for the actual experimental conditions. Note the second column 

shows the order the experiments were performed in. Due to lengthy and comp

procedures for the heat carrier mass feed rate, , and inlet temperature, THC, the experiments were 

random

erati

lex calibration 

HCm

ized within blocks of heat carrier feed rates that were grouped together. While it is often 

preferred to completely randomize the experiments including the center point tests, minimization of 

experimental error is also an important consid on. Calibrating the system for one group of feed 

rates and completing that block of experiments was determined to be the best option for maintaining 

and repeating the operating conditions of the system.  
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Table 11. Final central composite design, actual experiments 

DOE
#

Run
#

THC

Factor

(°C)
VN2

(SLPM)
ωA

(RPM) (kg/hr)

2 24 575 3.0 58.5 12
3 10 575 3.0 49.5 18
4 29 575 3.0 49.5 12
5 8 575 2.0 58.5 18
6 26 575 2.0 58.5 12
7 4 575 2.0 49.5 18
8 23 575 2.0 49.5 12
9 5 475 3.0 58.5 18

10 27 475 3.0 58.5 12
11 7 475 3.0 49.5 18
12 25 475 3.0 49.5 12
13 6 475 2.0 58.5 18
14 28 475 2.0 58.5 12
15 3 475 2.0 49.5 18
16 30 475 2.0 49.5 12
17 1 525 2.5 54.0 9
18 2 525 2.5 54.0 21
19 14 525 2.5 45.0 15
20 16 525 2.5 63.0 15
21 11 525 1.5 54.0 15
22 18 525 3.5 54.0 15
23 13 425 2.5 54.0 15
24 20 625 2.5 54.0 15
25 19 525 2.5 54.0 15
26 21 525 2.5 54.0 15
27 17 525 2.5 54.0 15
28 12 525 2.5 54.0 15
29 15 525 2.5 54.0 15
30 22 525 2.5 54.0 15

2n  f
ac

to
ri

al
 tr

ea
tm

en
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es
ig

n 
(n

 =
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en
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)
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1 9 575 3.0 58.5 18

HCm

 

 

4.3 Experimental materials 

he biomass used for this research was northern red oak (Quercus Rubra L.) obtained from 

Wood Residuals Solutions (Montello, WI). Red oak is a hardwood species in the Beech family used 

e eastern United States [114]. This biomass was chosen based 

on two 

T

for lumber, and is native to most of th

factors: superior performance as determined during shakedown testing, and the ability to 

compare the results to other pyrolysis studies using oak wood. Often used as animal bedding, this oak 

wood was kiln dried before delivery in a ‘super-sack’ to the BECON facility in Nevada, IA. Here it 

was first processed into more homogenous sized particles in an Art’s Way Manufacturing stationary 
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hammer-mill with a 1/8” screen size, as shown in Figure 125 of Appendix C. Further size reduction 

was accomplished using a Retsch SM 200 heavy duty cutting mill with a 0.75 mm screen size, as 

shown in Figure 126 of Appendix C. This size was selected to minimize heat transfer limitations. 

Other than size reduction, no further drying or pre-treatment steps were carried out before testing. 

After grinding, the biomass was stored at ambient conditions in 5 gallon plastic buckets with sealed 

lids. The red oak biomass is shown in Figure 41 from left to right: as received, after hammer mill 

processing with a 1/8” screen, and after knife mill processing with a 0.75 mm screen. 

 

 

Figure 41. Red oak biomass samples of three different grind sizes 

 

Soil Control Lab (Watsonville, CA) analyzed the composition of the red oak biomass on 

April 21, 2009 with icellulose 

nd lignin account for over 93% of the mass, and that the biomass has a low ash content. 

 results as shown in Table 12. These results shown that cellulose, hem

a

 

Table 12. Red oak biomass composition  

1
Component Results Notes on method

Fats, Waxes and Oils 0.1 Ether extract
Resins cohol extraction
Water soluble polysacchardies 1.7 Hot water extraction
Hemicellulose 20.0 Hydrolysis with 2% HCl

Cellulose 29.8 Hydrolysis with 80% H2SO4

Protein 0.5 Total Nitrogen X 6.25
Lignin-humus 43.3 Total carbon X 1.724
Ash 0.3 550 deg. C

Total 97.3
Other or missing components 2.7
Percent Moisture 4.8

1 - Percent dry weight, unless otherwise noted

1.5 Al
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The elemental composition of the biomass was determined with a LECO TruSpec CHNOS 

analyzer as shown in Figure 127 of Appendix C. Carbon, hydrogen and nitrogen were analyzed based 

on the ASTM D5373 standard, and ASTM D4239 was referenced for the sulfur analysis. Thermal 

gravimetric analysis methods and ASTM D5142 were used to determine the ash content and perform 

the proximate analysis of the biomass using a Mettler Toledo Stare System as shown in Figure 128 of 

Appendix C. The higher heating value of the biomass was determined using standard calorimetric 

methods with a Parr 1341EB oxygen bomb calorimeter as shown in Figure 129 of Appendix C. 

These analyses, performed in triplicate, are summarized in Table 13.  

 

Table 13. Red oak biomass ultimate and proximate analyses 

Carbon Nitrogen Hydrogen Sulfur Ash Oxygena

Average 48.70 0.072 6.80 0.0016 0.395 44.03
Standard
deviation

3.15 0.011 0.35 0.0013 0.162 3.42

HHVb

Moisture Volatiles Fixed carbon Ash Total (MJ/kg)

Average 3.86 81.90 12.56 0.395 98.72 18.05
Standard
deviation 1.11 0.39 0.45 0.162

Proximate Analysis (%-wt., ar)

Ultimate Analysis (%-wt., ar)

1.12 0.87

Notes: a - Oxygen by difference. b - Higher heating value. ar - As received  

 

The heat carrier used for this research was AMASTEEL cast steel shot from Irvin Industries 

(Ann Arbor, MI), and is typically used for abrasive or shot peening applications [115]. Steel shot was 

selected as a heat carrier based on superior performance as determined during shakedown testing. 

Compared to sand, steel shot is denser and more thermally conductive, and is less likely to clog upon 

becoming moist. Though not important for this study, a potential downside to steel shot compared to 

sand is its inability to be conveyed pneumatically. The steel shot size used was S-280, and though the 

“280” indicates a nominal diameter of 0.028 in (0.71 mm), the official designation is a distribution 

based on SAE J827 standards as shown in Figure 42.  

The composition of the steel shot and select properties (as provided by Irivin Industries and 

not tested) is shown in Table 14 [115].  



 75 

To ensure similar composition of steel shot between tests, 1500 lbs (680.4 kg) was obtained 

from a single manufactured lot through LS Industries (Wichita, KS). The steel shot was stored at 

ambient conditions in sealed 50 pound bags, and fresh steel shot was used for each experiment.  

 

 

Figure 42. SAE J827 steel shot size distribution 

Image source: Marco U.S.A. [116] 
 

Table 14. Steel shot composition and select properties 

Element %-wt.

Iron > 96.0
Carbon < 1.20
Manganese < 1.30
Silicon < 1.20
Chromium < 0.25
Copper < 0.20

Meltin  1583

Nickel < 0.20

Specific gravity (@ 15.6°C) > 7.6
g point (°C) 1371 -  

 

4.4 Testing procedures 

The RSM was carried out by performing three major types of testing: reactor operation to 

determine the fast pyrolysis product distribution, analytical testing to determine the composition of 

the bio-oil and biochar that was produced, and statistical methods to analyze and evaluate the data. 
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Extensive graphical methods were also carried out to interpret and analyze the results. These three 

procedures will be discussed independently next.  

 

4.4.1 Product distribution 

The product distribution for each of the CCD runs was determined by performing 

experiments with the lab-scale reactor system previously described. The product yields are 

determined gravimetrically in the case of bio-oil and biochar while the mass of non-condensable gas 

 calculated from its volumetric yield. With notation as discussed previously, the operating 

conditions for the experiments are shown Table 15. 

is

 

Table 15. Experimental operating conditions 

THC TR db dHC QN2 ωA

(°C) (°C) (kg/hr) (kg/hr) (μm) (μm) (SLPM) (RPM)

425 - 625 550 1.0 9.0 - 21.0 750 711 1.5 - 3.5 45 - 63

bm HCm

 

 

The biomass feed rate is controlled by setting the motor speed on the biomass feeder, and is 

calibrated to feed a relatively constant mass rate. As the feeder conveys material volumetrically, small 

vary the mass feed rate slightly. Therefore, the rate is given as an 

average

mass is then weighed with a 2100 x 0.01g Ohaus 

xplorer scale and placed into the feed hopper. This mass is denoted as mb in the mass balance 

schematic shown in Figure 43, and recorded on the mass balance worksheet as shown in Figure 44. 

Note the biomass feed is not begun until the eratures.  

Similarly, the steel shot feed rate is controlled by setting the motor speed on the heat carrier 

metering auger motor controller. The calibration procedure includes recording the time required to 

feed a known amount of heat carrier through the reactor, and is performed for a minimum of one hour 

of feed 

23 kg of steel shot is then weighed and placed in the feed system. A 64 kg x 0.1g Sartorius FBG-64 

fluctuations in bulk density will 

 over the duration of an experiment. Calibration tests are a minimum of ten minutes each and 

performed for at least five speed settings.  

Before each pyrolysis run, the moisture content of the biomass is determined by heating a 4 g 

sample to 105°C using an Omnimark Mark 2 Standard moisture scale as shown in Figure 130 of 

Appendix C. Approximately 1200 g of prepared bio

E

system has reached operating temp

time for three different speed settings. Typical rotating speeds for the heat carrier metering 

auger are 15 - 30 RPM. Depending on the feed rate required for a specific experiment, approximately 
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EDE-H scale is used to determine the mass of the heat carrier. The steel shot mass is denoted as mHC 

in Figure 43, and is recorded on the mass balance worksheet shown in Figure 44. The important mass 

balance symbols used in Figure 44 are listed in Table 16. 

 

 

Figure 43. Reactor system schematic showing mass balance 

Refer to Table 16 for nomenclature 
 

Important components are then cleaned, weighed and installed on the system. These include 

the solids canister, the cyclone catch, condenser 1 (SF1) and condenser 2 (SF2) , the ESP collection 

bottle (SF3), and the third condenser coil (SF4). The masses are all recorded on the mass balance 

worksheet. Each of these components is weighed on the Ohaus scale, except the condensers which are 

each weighed on the Sartorius scale separately.  

The electric heaters associated with the heat carrier system and reactor, including heat tapes, 

are then initiated to began the warm-up phase of the procedure. The down-stream heat tapes in-

between the reactor and the condensers are set to 485°C. The reactor heater set point is constant for 
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all the tests, and the set point temperatures for the remaining heaters are determined based on suitable 

calibration procedures. These procedures are performed to determine the correct heater temperatures 

to maintain a steady heat carrier inlet temperature, THC, as a function of the heat carrier feed rate and 

the final desired temperature. The set points for the heat carrier heaters range from approximately 

40°C - 100°C above the required heat carrier inlet temperature, with 60°C - 70°C being the most 

common range. The warm-up phase takes approximately two hours.  

 

Table 16. Description of symbols used in mass balance procedure 

Symbol Description

mNCG Mass of non-condensable gas

mHC Mass of heat carrier

mb Mass of wet biomass

mS Mass of solids (heat carrier and biochar)

mcy Mass of biochar collected in cyclone

mC Total mass of biochar

mSF1 Mass of stage fraction 1 bio-oil

mSF2 Mass of stage fraction 2 bio-oil

mSF3 Mass of stage fraction 3 bio-oil

mSF4 Mass of stage fraction 4 bio-oil

m

mbio-oil Mass of total bio-oil 

b,H2O Mass of moisure in wet biomass  

 

g the warm up phase, and the total volumetric flow 

rate is 

Early in the warm-up phase, cooling water flow is initiated to the biomass injection auger at 

12 GPH (0.757 L/min), and condensers 1 and 2 at 20 GPH (1.26 L/min) each. The chiller is started to 

provide cold water to condenser 2. Around 5 gallons of Ice is added to the container where the third 

condenser is located.  

The nitrogen flow is also initiated durin

controlled with a mass flow controller based on the desired CCD value. As described 

previously, four gas rotometers are used to split the total flow between various other components on 

the system. As shown in Table 17, the volume fraction of flow through each rotometer remains 

constant for each flow rate. Before the pyrolysis phase of an experiment the nitrogen gas is vented. 

After sufficient heat carrier temperatures are attained, the augers in the reactor are initiated 

and set to the desired CCD value using the motor controller. The controller is set to a percentage of 

180 RPM (the maximum speed). For instance the center point setting is 30%, corresponding to 54 
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RPM. The heat carrier feed rate is begun and a lab timer is started. The LabVIEW program is then 

started to observe system temperatures and pressures during the heat carrier feeding phase. The time 

quired for the heat carrier feeding phase is dependent on the feed rate, and ranges from 

approximately 25 m eat carrier 

inlet temperatures have been attained, the pyrolysis phase can be initiated.  

 

Table 17. Gas rotometer settings for experiments 

re

inutes to over one hour to reach steady state conditions. Once steady h

Total flow rate
QN2

(sL/min)
Reactor

(end)
Heat carrier

system
Reactor
(main)

Biomass
feed system

1.5 214.0 475.9 233.5 576.5
2.0 285.4 634.6 311.3 768.7
2.5 356.7 793.2 389.2 960.9
3.0 428.1 951.9 467.0 1153.0
3.5 499.4 1110.5 544.8 1345.2

%-vol. of total 14.3 31.7 15.6 38.4

Purge flow rate through rotometers (smL/min)

 

 

The fast pyrolysis phase of the experiment is begun by switching the flow of purge nitrogen 

om the vent to the Micro-GC and gas volume meter. The ESP is then energized to -15 kV and the 

LabVIE

rksheet as shown in the lower right portion of Figure 44. 

he 

tempera

fr

W program is set to begin collecting temperature and pressure data. The Micro-GC program 

and the biomass feed are now initiated, while a lab timer is started and the volume reading on the gas 

meter is recorded. Gage pressure readings at the volume meter are observed and recorded periodically 

on the mass balance wo

The pyrolysis phase is continued until the biomass or heat carrier material is depleted, or until 

the bio-oil collection bottles become full, and typically lasts around one hour. The shutdown 

procedure begins with stopping the biomass feed and the lab timer, and recording the final volume 

reading on the gas meter. This is followed by stopping the heat carrier feed and lab timer. The heaters 

are then shutdown, and the water and nitrogen flows continue to cool the system while t

tures are observed. After the water and nitrogen are shut down, the condensers, the ESP bottle 

and third condenser coil are removed. The final masses are determined and recorded on the mass 

balance worksheet. After cooling to room temperature, the char catch and the solids canister are 

removed and the masses are determined and recorded. Any biomass and heat carrier material 

remaining in the system is also removed and the masses are determined and recorded.  
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Run date 550
Run ID
Run No./

Reactor heater set point temperature (°C)
Heat carrier inlet temperature (°C)

Heat carrier heater set point temperature (°C)
DOE No.

Vapor port

Note Value 1 Value 2 Unit Note Value 1 Value 2 Units Note Value Units
Moisture
content

- %-wt.
Canister 
mass

- g
Initial
volume

m3

Final
volume m3

Bucket 1 g Bucket 1 g Note
Bucket 2 g Bucket 2 g
Bucket 3 g Bucket 3 g

Hopper 1 g Canister - g

Hopper 2 g In reactor g
Below auger g Bucket 1 g

Feed tube 1 g Bucket 2 g

Feed tube 2 g Bucket 3 g

Vaccum g Bucket 4 g

Auger rotational speed (% of 180 RPM)

Initial mass Initial mass

Final mass Final mass

Jared Brown

Biomass Heat Carrier NCG

um
e 

m
et

er

Values

Run 
operators

N2 volutermic flow rate (SLPM)

1 Heat carrier feed rate (kg/hr)

Misc. g Bucket 5 g

Start/stop Time Start/stop Time

Elapsed time - min Elapsed time - min

Note Initial Final Units Note Initial Final Units
Condenser 1 g Catch g

Condenser 2 g In cyclone g
ESP (SF3) g Misc. 1 g

Tube (SF2-3) g

Coil (SF4) g NOTES

Feed rate Feed rate

Bio-oil Biochar (cyclone)

N
C

G
: P

re
ss

ur
e 

re
ad

in
gs

 (
in

-H
2O

) 
at

 v
ol

Condensers g
SF1 bottle g
SF2 bottle g
SF3 bottle g
Misc. 1 g
Misc. 2 g

Rotometer settings

 

Figure 44. Mass balance worksheet for experiments 

 

This procedure is repeated for all the central composite design experiments. Based on the data 

collected during the mass balance procedures, the product distribution can be completed as follows. 

As shown in Equation 6, the bio-oil yield on a “wet basis” (wb) is given as a weight 

percentage of the original wet biomass mass, mb. The total collected bio-oil mass, mbio-oil, is a sum of 

the individually collected fractions, SF1-SF4, as shown in Figure 43.   

 

b

oilbio

b

SF4SF3SF2SF1
wetoil,bio m

m

m

mmmm
wb)wt.,(%Y −

− =
+++

=−    Equation 6 
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However the weight of moisture carried in by the biomass, mb,H2O, varies slightly between 

experiments, so it is often appropriate to normalize the bio-oil yields to a “dry basis” (db). This is 

done by calculating the yield on a dry biomass basis, and with the biomass moisture content removed 

from the bio-oil mass, as shown in Equation 7. Note that the biomass moisture content is determined 

with the moisture scale as discussed previously. Also note that this calculation does not “remove” any 

reaction water contained in the bio-oil, only the original biomass moisture mass.  

 

H2Ob,b

H2Ob,oilbio
dry oil,bio mm

mm
db)wt.,(%Y

−
−

=− −
−       Equation 7 

 

The calculation of the biochar yield on a wet biomass basis is shown in Equation 8, with 

notation as discussed previously and shown in Figure 44. 

 

( )
b

C

b

cyHCS
C m

m

m

mmm
wb)wt.,(%Y =

+−
=−         Equation 8 

 

For notation used in Equations 6 – 8, refer to Table 16. As noted previously, the non-

condensable gas stream is analyzed with a Varian CP-4900 Micro-GC, connected to Galaxie 

Chromatogrpahy 1.9 software on a Dell D630 laptop. A Varian Molsieve 5A column is used for 

detecting hydrogen, oxygen, nitrogen, methane and carbon monoxide (110°C injector temperature, 

100°C oven temperature, with argon carrier gas at 151.7 kPa). A Varian Pora Plot Q column is used 

to detect carbon dioxide, ethylene, acetylene and ethane (110°C injector temperature, 58

temperature, with helium carrier 3 and 4 

minutes, and approximately 15 analysis points are collected during the steady state portion of an 

experim

n 

with ga

 state region 

here the pyrolysis reactions are occurring.  

 

°C oven 

gas at 117.2 kPa). Each gas sampling program lasts between 

ent. The Micro-GC is shown in Figure 131 of Appendix C. 

The non-condensable gas yield is determined by applying the ideal gas law, in conjunctio

s analysis data from the Micro-GC and gas property data collected at the gas meter 

(temperature, pressure and volume) as shown in Figure 132 of Appendix C. A characteristic sample 

output from the Micro-GC (Run #24/DOE #2) is shown in Figure 45, noting the steady

w
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Note: Run #24/DOE #2. Heat carrier temperature = 575°C, Heat carrier feed rate = 12 kg/hr, 

N2 flow rate = 3.5 sL/min, Auger speed = 58.5 RPM.
 

Figure 45. Micro-GC gas ana sis pr

 

The numerical results that correspond to this graphical representation are shown in the third 

column 

 gas produced, and the total gage 

pressure

 

ly ofile for Run #24 

of Table 18, noting the Micro-GC analyzer was able to detect approximately 96.4%-vol. of 

the gas. Therefore, the concentration of gas species needs to be normalized to account for the 

unknown portion by assuming the known composition of gas sums to 100% of the volume. Then, 

based on molecular weights of each gas species and the normalized concentration, the “weighted 

molecular weight” can be determined for each species’ contribution. The sum of these, shown in the 

last column of Table 18, is assumed to be the apparent molecular weight of the non-condensable gas 

mixture, MNCG (kg/kmol). During the steady-state operation as shown in Figure 45, the volume of 

nitrogen passing though the meter is also known based on the Micro-GC gas composition results. 

This allows for calculation of the total volume of non-condensable

 and gas temperature at the meter inlet are known, so the mass (and then the yield) of the 

NCG can be estimated by applying the ideal gas law. As shown in Table 18, 34 kg/kmol is a common 

value for the apparent molecular weight of the non-condensable gas mixture.  
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Table 18. Non-condensable gas analysis for Run #24 

Compound, i Formula

Known 
concentration

(%-vol)
Mi

(kg/kmol)

Normalized 
concentration

(%-vol)

yi

Nitrogen free
(kmol/kmol)

yi·Mi

Nitrogen free
(kg/kmol)

Nitrogen N2 68.68 28.01 71.22 0 -

Hydrogen H2 0.77 2.02 0.80 0.0277 0.06

Carbon monoxide CO 11.83 28.01 12.27 0.4262 11.94

Methane CH4 1.40 16.04 1.45 0.0505 0.81

Ethane C2H6 0.13 30.07 0.13 0.0045 0.14

Etheylene C2H4 0.18 28.05 0.18 0.0064 0.18

Carbon dioxide CO2 13.45 44.01 13.95 0.4847 21.33

Unknown - 3.57 - 0 - -

Sum 100 100 1.00 34.45

Note: Data from Run #24/DOE #2. Heat carrier inlet temperature = 625°C, Heat carrier feed rate = 12 kg/hr, N2 flow 

rate = 3.5 sL/min, Auger speed = 58.5 RPM  

 

A typical temperature profile of an experiment is shown in Figure 46, with data presented 

from Run #20/DOE #24. rease during the 

warm-up phase, and then level out to the desired value (625°C for this particular experiment). The gas 

phase te

 The heat carrier inlet temperature, THC, is shown to inc

mperatures inside the reactor are seen to increase with time as the heat carrier is fed, and then 

decrease once the biomass feeding begins. This happens because the cold biomass enters and absorbs 

heat from the reactor. However the reactor temperatures quickly steady out to a temperature ranging 

from approximately 450 – 515°C, depending on the axial location in the reactor. The condenser inlet 

temperature is maintained above approximately 430°C to prevent preliminary condensation of 

pyrolysis products, and is seen to quickly increase once biomass feeding begins and hot vapors leave 

the reactor. The downstream temperatures associated with the bio-oil recovery system are shown in 

Figure 47, and the ranges are based on the temperature of the vapor products entering the reactor, 

which is a function of the heat carrier temperature, THC.  The wall temperature of the first condenser 

quickly increases once biomass is fed into the reactor and hot vapors evolve. Note the non-

condensable gas leaving the final condenser is typically less than 15°C, however it increases to above 

ambient (approximately 30°C) by the time it reaches the volume gas meter after passing through the 

vacuum pump and Micro-GC.  
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Figure 46. Temperature profile example for Run #20 

 

 

Figure 47. Typical bio-oil recovery system temperatures 
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4.4.2 Product analysis 

After a given pyrolysis experiment was complete, the bio-oil and biochar collected were 

subjected to a number of analytical tests to characterize the physical properties and chemical 

composition. As applicable, the analysis methods closely follow the recommendations for testing as 

commonly reported in related literature - refer to Oasmaa et al. for one such study [117].  Note that 

the methods will only be described briefly here, and complete laboratory standard operating 

procedures (SOPs) were referenced during the analysis. Also, not all analyses were performed for all 

the bio-oil fractions or all of the biochar samples.  

Sample preparation. After cooling, biochar samples from the cyclone were stored in sealed, 

labeled plastic bags. Bio-oil fractions were immediately stored in sealed, separate and labeled plastic 

bottles (250 mL HDPE bottles for SF1 – SF3, and 50 mL polypropylene bottles for SF4) in dark, 

refrigerated conditions around 5°C. Prior to any testing procedures, all bio-oil samples were removed 

from the refrigerator, and homogenized by vigorously shaking the sample bottle by hand for a 

minimum of one minute, followed by stirring at 1700 RPM (Eastern Mixers 5VB-C) for a minimum 

of one additional minute. Some tests require additional homogenization techniques and will be 

discussed.  

Various lab balanc h the numbers in 

parenthesis corresponding to the test method(s) that are described below. 

 

a. Cole-Parmer Symmetry PA220, 220 g x 0.1 mg  (1, 4, 8) 

b. Sartorius ME 254S, 250 g x 0.1 mg    (2, 3) 

c. Mettler Toledo MX5, 5 g x 1 μg    (5, 7) 

d. Mettler AE 100, 110 g x 0.1 mg    (6) 

 

1. Moisture content. Moisture content is an important fuel property because it affects 

combustion behavior; however it is also used as an indication of bio-oil quality and has implications 

for stability. After the bio-oil preparation techniques were performed, moisture content of bio-oil was 

determined by the common Karl-Fischer (KF) titration method. This was accomplished by using a 

MK5 KF Moisture Titrator as shown in Figure 133 of Appendix C, and referencing ASTM E203. 

This is an accepted method for determining the moisture content for pyrolysis liquids.  

A 20 – 30 μg sample is injected into the instrument, and is dissolved in a solvent (Hydranal 

Working Medium K) and a reagent (Hydranal Composite 5K) that reacts with and consumes the 

water present. A syringe e sample mass. 

es are used as part of the analytical test procedures, wit

 is weighed before and after sample injection to determine th
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Calibration standards are performed with D.I. water prior to testing. Moisture content is reported on a 

percent 

ple in a bottle and homogenizing in an ultrasonic 

water b

.  

is filter paper, assisted by a 

vacuum pump (Fischer Scientific MaximaDry), where the water soluble components pass through the 

filter an aper, sample bottle and lid 

are drie esicca  vesse 5 minutes. The masses of the 

filter pa d. The water insoluble 

content is then determ weight of the fil ple bottle and lid from the 

mass of the total bio-oil sample. Insoluble content is reported on a 

percent weig

 

content is used, except methanol is used 

weight of the wet bio-oil, denoted by (%-wt., wb).  

2. Water insoluble content. Bio-oil can generally be separated into water soluble and water 

insoluble fractions, though some components are partially soluble which leads to inconsistencies in 

definitions used in related literature. Nonetheless, the water insoluble fraction is often referred to as 

the “pyrolytic lignin” portion of the bio-oil, and is an important property for bio-oil upgrading 

considerations and may reveal insight on the pyrolysis reactions.  

The method starts by placing 20 mL of sam

ath (Branson B-52) for 30 minutes, followed by additional homogenization on a laboratory 

shaker table (Thermo-Scientific Max Q 2500) for 30 more minutes. From this bottle, 2 g bio-oil 

samples are retrieved and 10 g of D.I. water is added to each. The mixtures are homogenized using a 

vortex mixer for 1 minute, after which 10 additional grams of water is added. This procedure is 

repeated twice more so the final mass ratio of water to bio-oil is 20:1. The final mixture is sonicated 

for an additional 30 minutes, placed on the shaker table for one hour, and rotated in a centrifuge 

(Fischer Scientific accuSpin 1) at 2500 RPM for 20 minutes to fully solubulize any miscible 

components

Filter paper (Whatman No. 42) is weighed after drying at 105°C for 15 minutes and cooled in 

a desiccant vessel for 15 minutes. The prepared sample is poured over th

d the water insoluble components are left on the filter. The filter p

d at 50°C for 20 hours and cooled in a d nt l for 1

per, sample bottle and the sample lid are then determined and recorde

ined by subtracting the final ter, sam

initial weights, divided by the 

ht of the wet bio-oil, denoted by (%-wt., wb). 

3. Solids content. The solids content of the bio-oil is an important fuel property because it 

affects combustion behavior and particulate emissions. As noted, the solids suspended in bio-oil are 

typically fine biochar particles that were not removed by the gas cyclone, but could include sand 

particles in the case of fluidized beds.  

To determine the solids content, a procedure similar to that for determining water insoluble

as a solvent rather than water. This allows for all compounds 

to be solubulized, except particulate matter. A 1 g sample of bio-oil is added to 12 g of ACS grade 

methanol, and homogenized using a vortex mixer. Filter paper (Whatman No. 42) is weighed after 
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drying at 105°C for 15 minutes and cooled in a desiccant vessel for 15 minutes. The prepared sample 

is poured over this filter paper, assisted by a vacuum pump, where the methanol soluble components 

pass thr

eat of combustion, of bio-oil is a 

major fu

for liquid hydrocarbon fuels. The bio-oil sample mass is typically 0.7 g, and 

approxi

g, with 80 mg being a common value, and 

biochar

tains many compounds other than water that volatilize at 

tempera

ough and the methanol insoluble components are left on the filter. The filter paper is dried 

under a fume hood for 15 minutes, dried at 105°C for 30 minutes, and cooled in a desiccant vessel for 

15 minutes. The final mass of the filter paper is determined, and the change in mass divided by the 

bio-oil sample mass is the solids content, reported on a percent weight of the wet bio-oil (%-wt., wb).  

4. Higher heating value. The higher heating value, or h

el property of interest. Using a calorimeter, the chemical energy stored in a fuel sample (solid 

or liquid) is released during combustion, and is quantified by measuring the temperature change of 

2000 g of water surrounding the combustion vessel. As the instrument is well-insulated (assumed to 

be adiabatic), the energy released from the combustion reaction is completely absorbed by the water, 

reflected as in increase in temperature that is precisely measured.  

A Parr 1341EB oxygen bomb calorimeter was used as shown in Figure 129 of Appendix C. 

The instrument includes a stainless steel vessel that is pressurized to 30 atmospheres with oxygen to 

ensure complete combustion. The procedure for determining the heating value is modified from 

ASTM D240 

mately 0.2 g of mineral oil is often added to the sample to aid in complete combustion. This is 

especially required for high water content samples, and is accounted for in the combustion value 

calculations. The higher heating value is typically reported in units of (MJ/kg) on a wet bio-oil basis.  

5. Thermal gravimetric analysis. Thermal gravimetric analysis, or TGA, is used to 

determine the mass change of a sample with increasing temperature and time. This data is used for the 

proximate analysis, which gives the percent weight of moisture, volatiles, fixed carbon and ash. As 

noted previously, a TGA/DSC Mettler Toledo Stare System is used (see Figure 128 in Appendix C), 

and ASTM D5142 is referenced for analyzing biochar. Calcium carbonate is used as a reference 

standard. Sample masses for bio-oil range from 60 – 100 m

 sample masses range from 11 – 20 mg, with 15 mg being a common value. The program 

method for the TGA is as shown in Table 19. 

Note that the moisture value as determined by TGA is much higher than as determined by KF 

titration methods, because bio-oil con

tures less than 105°C.  As such, for this study, the main property of interest as determined by 

TGA is the ash content of the bio-oil and biochar.  
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Table 19. Thermal gravimetric analysis program method 

Step Start Stop

Ramp - 25 105 10 N2 100

Hold 40 105 105 - N2 100

Ramp - 105 900 10 N2 100

Hold 20 900 900 - N2 100

Hold time
(min)

Temperature (°C) Heating rate
(°C/min) Purge gas

Flow rate
(mL/min)

Hold 30 900 900 - Air 100  

 

6. Elemental composition. The elemental composition of interest for bio-oil and biochar 

includes the percent weight amount of carbon (C), hydrogen (H), nitrogen (N), oxygen (O) and sulfur 

(S) present. In combination with the ash content, this represents the ultimate analysis of the product. 

As discussed previously, the elemental composition is determined with LECO TruSpec CHN/O/S 

analyze

 2.5 mgKOH/g) is added to the solvent and analyzed to 

verify t

 Varian CP-3800 GC and Saturn 220 GC/MS are 

used as shown in Figure 135. The capillary column is a CP-19CB/CP 8722 (86% 

dimethy ysiloxane phase, 14% cyanopropyl-phenyl), with dimensions of 60 m x 0.25 mm x 0.25 

rs (see Figure 127 in Appendix C). This system completely combusts fuel samples (solid or 

liquid), and analyzes the evolved gas products to determine the composition.  

Typical sample weights are 0.1g and 0.2g for the C/H/N analyses and the S analysis, 

respectively, for both bio-oil and biochar. ASTM D5291 and ASTM D1552 are referenced for 

analyzing the C/H/N and S content in the bio-oil, respectively, and ASTM D5373 and ASTM D4239 

are referenced for analyzing the C/H/N and S in the biochar, respectively. With C, H, N, S and ash 

known, the oxygen content is determined by difference for this study.  

7. Total acid number. The total acid number, or TAN, is a valuable property of interest 

when comparing bio-oil to petroleum based fuels. In general, this test determines the amount of 

potassium hydroxide (KOH) required to neutralize a 1 gram quantity of sample, given in units of 

milligrams KOH per gram of sample (mg/g).  A Metrohm 798 MPT Titrino titrator is used for the 

TAN analyses, as shown in Figure 134 of Appendix C, and ASTM D664 is referenced for the 

procedure. A solvent of 50%-wt. toluene, 49.5%-wt. 2-propanol and 0.5%-wt. D.I. water is prepared 

at a volume of 100 mL and analyzed as a “blank” to calibrate the instrument, after which 5.0 g of 

TAN standard (Fischer Scientific ST112-500,

he instrument operation. Then a 0.2 g sample of bio-oil is dissolved in 5 mL 

dimethylformamide (DMF), and added to 75 mL of methanol before analysis.  

8. Gas chromatography/Mass spectrometry (GC/MS). GC/MS methods are used to help 

characterize the chemical composition of bio-oil. A

lpol
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μm (length x ID x film njected sample 

(99.999% helium is used as a carrier gas at 1 mL/min) and separates compounds based on the column 

selection described. The compounds are then analyzed and detected in the MS portion of the 

instrument using the electron ionization mode. Ideally, specific compounds are detected which 

produce specific signals at a corresponding retention times. A m/z range from 30 to 300 is scanned, 

and standard mass spectra with 70 –eV ionization energy is recorded. The Varian GC/MS software 

package includes a NIST library that is used to match the resulting mass spectra r peak 

entification if necessary. 

 as an internal GC/MS 

standard

mpounds are grouped into the 

broad ch

in an adequate torque 

reading

thickness). The GC portion of the instrument vaporizes the i

fo

id

The injector temperature on the instrument is maintained at 250°C, and the GC/MS interface 

is maintained at 235°C. The initial oven heating begins at 45°C for four minutes and is brought to the 

GC/MS interface temperature at a heating rate of 3°C/min (63.3 minutes). The GC/MS interface 

temperature is then maintained for an additional 13 minutes.  

Bio-oil samples on the order of 0.25 g are diluted in HPLC grade methanol at 4.5%-wt 

(95.5%-wt. methanol). The methanol solution is prepared with phenanthrene

 at a concentration of 0.02%-wt. The bio-oil is homogenized with the methanol by mixing 

with a vortex mixer, and then filtered with a 0.2 μm filter before placing into a GC/MS sample vial. 

In addition to the phenatnthrene standard, the GC/MS instrument is calibrated to quantify the 

concentration of 32 additional compounds as shown in Table 20. In addition to acetic acid and 

levoglucosan (two common bio-oil constituents), the 30 remaining co

emical families of furans, phenols, guiacols, syringols, and “other GC/MS” as shown.   

9. Viscosity. Viscosity of bio-oil is an important property because it affects the fluid flow 

characteristics in pipes, pumps and injection nozzles on utilization equipment. Dynamic (absolute) 

viscosity measurements are made with a Brookfield LV-DV-II+ Pro viscometer as shown in Figure 

136 of Appendix C. This instrument determines the viscosity of a fluid by sensing the torque required 

to rotate a shaft spinning at a constant rotational speed within the fluid.  

Depending on the composition of a given bio-oil sample, different shaft attachments 

(spindles) are used to attain a minimum amount of torque required by the instrument. Depending on 

the spindle used, 3 – 16 mL of sample is required for analysis. In general, more viscous samples 

require a smaller diameter spindle. The spindle speed is adjusted to mainta

 (in-between 10% and 90% of the maximum), and a Thermo-Haake B7 water heater is used to 

maintain the temperature of a water jacket around the sample vessel. For this study, viscosity 

measurements were made at 40°C, which is a commonly reported value.   
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There are many other bio-oil and biochar analysis methods available for determination of 

other properties; however these are some of the most commonly reported methods and will indicate a 

broad overview of the product composition.   

 

Table 20. Chemical compounds quantified by GC/MS analysis 

Chemical compound Chemical formula
Acetic (ethanoic) acid C2H4O2

1,6-Anhydro-β-D-glucopyranose (Levoglucosan) C6H10O5  

Furans

C H O

C6H8O2

2H-Pyran-2-one C6H10O3

2-furancarboxaldehyde (Furfural) C5H4O2

2-Furanmethanol (Furfuryl alcohol) C5H6O2

3-Methyl-2(5H)-furanone C5H6O2

2-Furancarboxaldehyde, 5-methyl- C6H6O2

Phenols
Phenol C6H6O

Benzene-1,4-diol (Hydroquinone) C6H6O2

Phenol, 2-methyl- (o-cresol) C7H8O

Phenol, 3-methyl- (m-cresol) C7H8O

Phenol, 4-methyl- (p-cresol) C7H8O

Phenol, 2,4-dimethyl- C8H10O

Phenol, 2,5-dimethyl- C8H10O

Phenol, 2-ethyl- C8H10O

Phenol, 3-ethyl- C8H10O

Phenol, 3,4-dimethyl- C8H10O

Guaiacols
enol, 2-methoxy- C H OPh 7 8 2

Phenol, 2-methoxy-4-methyl- C8 H10 O2

4-OH-3-methoxybenzaldehyde (Vanillin) C8H8O3

Phenol, 4-ethyl-2-methoxy- C9H12O2

2-Methoxy-4-(2-propenyl)phenol (Eugenol) C10H12O2

Phenol, 2-methoxy-4-(1-propenyl)-, (E)- C10H12O2

Syringols
Phenol, 2,6-dimethoxy- 9 12 3

4 methyl 2,6 dimethoxy phenol C9H12O3

Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl) C14H12O2

Other GC/MS compounds
1-Hydroxy-2-Propanone C3H6O2

propane-1,2,3-triol (Glycerin) C3H8O

3-Hydroxy-2-butanone C4H8O2

2-Furancarboxaldehyde, 5-(hydroxymethyl) C6H6O3

2-methyl-2-cyclopenten-1-one C6H8O

1,2-Cyclopentanedione, 3-methyl-
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4.4.1 D

es of biomass and heat carrier. The Micro-GC data was 

analyzed, and the average temperature at the gas meter was determined from the LabVIEW data to 

help calculate the NC

volume basis to a mass basis composition. With the mass of NCG calculated as discussed previsouly, 

as well as an apparent molecular weight based on the normalized and weighted gas composition, the 

number of moles of NCG produced can be calculated. Then, based on the molar concentration as 

determined by the Micro-GC and each gas species molecular weight, the mass of each species could 

be determined. Finally, temperature data was also analyzed to determine the average heat carrier inlet 

temperature over the duration of the biomass feed time.   

The SAS-JMP 6.0 statistical software package was utilized to perform the regression 

modeling procedures. The parameters of the experimental design (type, factors, levels, and number of 

center points) were input into the program, along with the raw data values for a given response. The 

standard least squares method was selected to run the model, first with all coefficients present (“full 

model”) as show previously in Equation 5. The resulting model data was then analyzed graphically 

and statistically.  

The residuals (distance of actual experimental data from the predicted values) were first 

observed to ensure the experimental measurements were not related to each other in some way, which 

would decrease the validity of the model. The assumptions required to perform a linear regression 

model will not be discussed, but were reviewed by Kuhel [113] and Levine et al. [118]. The 

assumptions required to perform a linear regression are assumed to hold true for this study unless 

determined otherwise by analysis of the residuals. 

The overall fit of the data to the model was correlated through the coefficient of 

determination (R2 value), which gives the percentage of variation that can be explained by the model. 

A high R2 value does not imply the fit of the model to the data is “significant”, though, and for this 

purpose a simple F-test is carried out by reviewing the analysis of variance (ANOVA) table. This is 

common practice for validating linear regression models. A standard ANOVA table is provided by 

the JMP software, and provides the F-test statistic as the ratio of mean squares for the regression 

model (MSR) and the error (MSE). For this reason the F-statistic is often referred to as the “F-ratio”. 

The mean squares are determined based on the degrees of freedom (number of estimated parameters 

in the model and the number of observations), and the sum of squares based on the regression model. 

A sample ANOVA table is shown in Table 21, with standard notation that will not be discussed.  

ata analysis and hypothesis testing 

As the product distribution tests were completed, the yields of bio-oil and biochar were 

calculated, as were the resulting mass feed rat

G yield. The analysis of the NCG was extended to convert the composition on a 
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Table 21. ANOVA table 

Degrees of 
freedom (DOF)

Sum of 
squares Mean sqaure FANOVA

Regression (model) k SSR MSR = SSR / k MSR / MSE
Error ν = N-k-1 SSE MSE = SSE / ν
Total k + ν = N - 1 SST = SSR + SSE  

 

Recall that for this study the number of experiments, N, is 30, and k represents the number of 

parameters (besides the intercept term) estimated by the model. Also, note the R2 statistic is computed 

as the ratio of SSR over SST, and the root mean square error (RMSE or σ) is the square root of MSE. 

The RMSE approximates standard deviation of residual error, and is an important value to evaluate 

the model. The F-statistic calculated by the ANOVA table can be compared to a “critical F-value” 

based on the 

esis in Equation 10 states that at least one coefficient is not equal to zero and 

implies 

degrees of freedom and a desired confidence level. For this study, the confidence level 

for all analyses was selected to be 95% (α = 0.05). If the F-value from the ANOVA table is greater 

than the critical F-value, then the model is considered to be significant at a 95% confidence level. 

More formally, a null hypothesis, Ho, is stated such that each coefficient of the model is equal to zero 

as shown in Equation 9, implying that the full regression model is insignificant and is not useful. The 

alternative hypoth

that the model is significant and therefore useful for further analysis. 

 

Ho1: β1 = β2 = … = βi = 0           Equation 9 

 

Ha1: βi ≠ 0 (for at least one i)                    Equation 10 

 

The null hypothesis is rejected if the F-value from the ANOVA table, FANOVA, is greater than 

the critical F-value, Fα,k,ν, evaluated at the confidence level α, and degrees of freedom of k and ν, as 

denoted in Equation 11. Refer to Table 21 for descriptions of each value.  

 

Ho1 rejection region: FANOVA > Fα,k,ν                              Equation 11 

 

The critical F-values for the F-test to determine if the model is useful are shown in the last 

column of Table 22, and are based on the degrees of freedom as shown. Note that this is a general 

table and for certain situations the critical value of interest is not shown. Examples of this include 

reduced models that may not contain one or more of the main effects, and will be discussed. 
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Table 22. C VA F-test ritical F-values for ANO

Model Error Total

k ν = n-k-1 N-1 F0.05,k,ν

14 (Full) 14 15 29 2.42
13 13 16 29 2.40
12 12 17 29 2.38
11 11 18 29 2.37
10 10 19 29 2.38

No. terms in
model

Degrees of freedom

9 9 20 29 2.39
8 8 21 29 2.42
7 7 22 29 2.46
6 6 23 29 2.53
5 5 24 29 2.62
4 4 25 29 2.76
3 3 26 29 2.98
2 2 27 29 3.35
1 1 28 29 4.20  

 

In addition to the ANOVA table to evaluate the variance in the model, a “lack of fit” (LOF) 

analysis is also provided by the JMP software program and is reviewed. This analysis is only possible 

because of the replications performed at the center point conditions, and compares the error from the 

model to that originating from the replicated experimental data. The latter is called “pure error”, and 

originates from the realties of experimental apparatus and test procedures, and can not be explained 

by any type of model regardless of complexity.  

The “lack of fit table” is very similar to the ANOVA table, except that the first row describes 

the “lac

DOF for the pure error is based on the number of center point replicates, m, as discussed previously, 

and the e is based on the error DOF from NO

 

k of fit”, and the second row describes the “pure error” as shown in Table 23. Note that the 

total DOF for the lack of fit tabl  the A VA table. 

Table 23. Lack of fit table 

Degrees of 
freedom (DOF)

Sum of 
squares Mean sqaure FLOF

Lack of Fit λ = ν - (m-1) SSR MSR = SSR / λ MSR / MSE
SS  SSE / (Pure error m-1 E MSE = m-1)

Total ν = N-k-1 SST = SSR + SSE  

 

The F-test is used again to determine if the lack of fit is considered significant, with the null 

hypothesis as stated in Equation 12, the alternative hypothesis in Equation 13, and the null hypothesis 
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rejection region shown in Eq e rejected, the model 

usefulness must be carefully scrutinized.  

 

Ho2 = Lack of fit is significant                 Equation 12 

 

Ha2 = Lack of fit is insignificant                 Equation 13 

 

Ho2 rejection region: FLOF < Fα,λ,m-1                Equation 14 

 

The critical F values for the lack of fit test, FLOF, are shown in the last column of Table 24, 

with the degrees of freedom as shown. As with the table of critical FANOV  values, Table 24 is 

generalized and considers most but not all possible modeling situations.  

 

uation 14. If the lack of fit hypothesis can not b

A

Table 24. Critical F-values for lack of fit F-test 

Lack of fit Pure error Total
λ = ν - (m-1) m-1 ν F0.05,λ,m-1

14 (Full) 10 5 15 4.74
13 11

No. terms in
model

Degrees of freedom

5 16 4.70

7 17 5 22 4.59
6 18 5 23 4.58
5 4 4.57
4 20 5 25 4.56
3 21 5 26 4.55
2 22 5 27 4.54
1 23 5 28 4.53

12 12 5 17 4.68
11 13 5 18 4.66
10 14 5 19 4.64
9 15 5 20 4.62
8 16 5 21 4.60

19 5 2

 

 

Also, note that for the ANOVA F-test, a high FANOVA is desired because this implies the null 

hypothe

rejection region as shown. This form of the lack of fit test is chosen based on common convention. 

sis Ho1 will likely be rejected and the model can be considered significant. To reject the null 

hypothesis Ho2 for the lack of fit F-test (accept Ha2), however, a low FLOF is desired based on the 
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If visual analysis of the residuals from the model verifies the assumptions to use a regression 

model, and the null hypotheses for the significance of the model and the lack of fit are rejected, then 

the model can be used as an approximation of the response surface [118]. If the whole model is found 

to be sig i ply that all the terms in the model are 

the significance of each term is also reviewed to determine if the model can be reduced by removing 

terms. R lways decrease  the R2 ay

value and decrease the FLOF value which implies the “reduced model” may be more significant and 

less like  full odel. The JMP vi

for each coefficient estimate, βi, and the null hypothesis shown in Equation 15 is rejected and the 

alternati

o3,i = βi is insignificant                             Equation 15 

 

Ha3,i = βi is significant                             Equation 16 

 

Ho3,i rejection region: |t|i > t0.05,ν                  Equation 17 

 

The critical t-values to evaluate the significance of each estimate are shown in Table 25, as a 

function of the degrees of freedom, ν, as discussed previously. 

After the t-test is used to determine which coefficients are significant, the regression 

procedure is duplicated with insignificant terms removed and the new model is re-evaluated as 

discussed. In other words hypotheses 1, 2 and 3 are tested again for the new model. To determine if 

the reduced model is significant compared to the full model, a so-called “Model utility test” (MUT) is 

performed. The MUT also uses the F-statistic as a means to evaluate the significance of one model 

compared to another, as calculated by Equation 18. 

 

nificant, though, that does not m significant. As such, 

emoving terms from the model a s  value, but m  increase the FANOVA 

ly to occur by chance compared the  m  software pro des the t-test statistic 

ve hypothesis in Equation 16 is accepted if the absolute value of the t-statistic is greater than 

the critical t-value as shown in Equation 17. 

 

H









 −=

ν
k

MUT SSE
rkF                 Equation 18 

 





 − kr SSESSE
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Where r is the degrees of freedom in the reduced model and other notation is as described 

previously. After the FMUT value has been calculated, the null hypothesis shown in Equation 19 is 

either rejected to accept the alternative hypothesis shown in Equation 20, or accepted based on the 

rejection region shown in Equation 21. 

 

Table 25. Critical t-values for t-test 

t0.05,ν

14 (Full) 15 2.131
13 16 2.120
12 17 2.110
11

No. terms in
model

Degrees of freedom
ν

18 2.101
10 19 2.093
9 20 2.086
8 21 2.08
7 22 2.074
6 23 2.069
5 24 2.06
4 25 2.060
3 26 2.056

27 2.052
1 28 2.048

0

4

2

 

 

Ho4 = Reduced model is less significant than full model              Equation 19 

                    

erous graphical representations can be prepared 

for further analysis. A three-dimensional response surface can be generated to observe the influence 

of multiple factors on a given response, or two dimensional plots can be generated to observe the 

effect of a single factor while the others are held constant.  

 

 

 

 

Ha4 = Reduced model is more significant than full model                                       Equation 20 

                        

Ho4 rejection region: FMUT > F0.05,k-r,ν                 Equation 21       

               

After statistical analysis of the models, num
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As a summary, the hypothesis tests are listed below in Table 26, noting that if the null 

hypothesis can be rejected based on the region and test statistic shown, then the alternative hypothesis 

can be accepted. As such, in general it is desired that the null hypotheses 1 – 3 are rejected and the 

null hypothesis 4 is not rejected, if applicable. 

T

 

able 26. Summary of hypothesis tests 

Null Alternative
Rejection region

Ho1
Regression model
 is NOT significant

FANOVA > F0.05, k, ν Ha1
Regression model

 IS significant

Ho2
Model Lack of Fit

IS significant
FLack Of Fit < F0.05, λ, m-1 Ha2

Model Lack of Fit
is NOT significant

Ho3,i
Parameter estimate, i,

is NOT significant
|t|i > t0.05,ν Ha3,i

Parameter estimate, i,
IS significant

Ho4
Reduced model is
LESS significant

FMUT > 

F0.05, k-r, ν
Ha4

Reduced model is
MORE significant

Hypotheses Hypotheses

 

 

Refer to Table 27 for descriptions of the coefficients in the full regression model, as well as 

the terms, symbols and coded symbols associated with each coefficient. Note the three main 

horizontal sections correspond to: (1) the four “main effects” based on the factors selected, (2) six 

interaction or “cross-terms”, and (3) four higher order terms, all as discussed previously. The coded 

symbols r value (see Tab

and the difference between levels. It is important the coded values are always used when analyzing 

the regr

shown in Appendix D, Equations D1 – D5. The full regression model with the coded symbols is 

shown i ha values for the coded symbols are not the p

onditio s assoc ted wi  that t m. 

 

s a final and important note concerning data analysis, most bio-oil properties of interest are 

extensiv , implying that the total value for a given property is the sum of property values for a number 

 a e used to normalize each term based on the “0” level le 9) for each factor 

ession model equations. More information and sample calculations for the coded symbols are 

n Equation 22, noting t t the hysical properties or 

c n ia th er

 

HCA34HCN224HCHC14

AN223AHC13N2HC12

HC4A3N22HC1oi

μΩβμθβμτβ

ΩθβΩτβθτβ

μβΩβθβτββY

⋅⋅+⋅⋅+⋅⋅+
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⋅+⋅+⋅+⋅+=

              Equation 22 

2
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of “sub-

y Equation 23, where ySFi (i = 1,2,3,4) is the property 

for each bio-oil fraction, and other notation is as previously discussed. It is advantageous to perform 

this procedure so the resulting wh le bio-oils referenced in 

the literature.  

 

total values” [95]. In other words, if a given property is analyzed for each fraction (SF1-SF4), 

the resulting property can be determined for the “whole bio-oil” (equivalent of all fractions mixed 

together) by adding the weighted values of the property for each fraction. A given property for the 

whole bio-oil, ybio-oil, is frequently determined b

ole bio-oil can be compared to other who
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                                                                                                                                 Equation 23 

 

Table 27. Regression model coefficients and terms 

Coefficient
number

Coefficient
symbol Associated term Symbol

Coded 
Symbol

1 β0 (Intercept) - -

2 β1
Heat carrier inlet temperature, THC

(Temperature)
X1 τHC

3 β2
N2 volumetric flow rate, QN2

(N2 flow rate)
X2 θN2

4 β3
Auger rotational speed, ωA

(Auger speed)
X3 ΩA

5 β4
Heat carrier feed rate, 

(HC feed rate)
X4 μHC

6 β12 Temperature · N2 flow rate X1 ·X2 τHC ·θN2

7 β13 Temperature · Auger speed X1 ·X3 τHC ·ΩA

8 β23 N2 flow rate · Auger speed X2 ·X3 θN2 ·ΩA

9 β14 Temperature · HC feed rate X1 ·X4 τHC ·μHC

10 β24 N2 flow rate · HC feed rate X2 ·X4 θN2 ·μHC

11 β34 Auger spee  · HC feed rate X3 ·X4 ΩA ·d μHC

12 β11 Temperature · Temperature X1
2 τHC

2

13 β22 N2 flow rate · N2 flow rate X2
2 θN2

2

14 β33 Auger speed · Auger speed X3
2 ΩA

2

15 β44 HC feed rate · HC fe d r te X4
2e a μHC

2

HCm
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CHAPTER 5.  RESULTS AND DISCUSSION 

 

5.1  Introduction 

After the testing and analysis procedures were completed, numerous results were available 

that will be discussed. First the results of the product distribution testing will be presented, which 

cludes the regression models for the yields of bio-oil, biochar and NCG. Next, the results for the 

product analysis testing will be presented, which includes general results and regression m els for 

certain properties of interest. 

.2  Product distribution results 

The product distrib which allowed for 

examining the spectrum of pyrolysis. For instance Figure 48 shows the product distribution results for 

all the experiments, noting that the “carried water” present in the bio-oil is simply the moisture 

content of the biomass. This figure shows that the bio-oil yields on a wet basis ranged from just over 

42%-wt. to almost 74%-wt. Also seen is that in general, the mass balance closures were excellent, and 

for the 30 runs averaged 98.4 ± 1.08%-wt. Only one run required measurement of the non-

condensable gas yield by difference. The feedstock data including feed times and masses for biomass 

and heat carrier can be found summarized in Table 50 of Appendix D. This table shows that the red 

oak biomass moisture content averaged 5.8 ± 0.25%-wt. The biomass feed rate averaged 1.0 ± 0.04 

kg/hr for the 30 runs, and the absolute heat carrier temperature difference between the desired value 

and the value averaged over the steady state feeding time averaged 4.7 ± 3.7°C. Heat carrier feed 

rates were also shown to be consistent. A subset of Table 50 is shown in Table 28 for all 6 center 

point tests, plus the maximum bio-oil yield test (Run 20) and the minimum bio-oil yield test (Run 13). 

These specific tests will be referred to frequently. 

The yield data including masses of bio-oil and biochar collected, as well as the calculated 

mass of NCG and the totals can be found in Table 51 of Appendix D. Also shown in this table is the 

“dry basis” bio-oil yield as discussed (refer to Equation 7). A subset of Table 51 is shown in Table 29, 

which shows the yield data for the test conditions presented in Table 28. A graphical representation of 

the data in Table 29 is shown in Figure 49.  

in

od

 

5

ution tests resulted in a wide range of product yields 
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Figure 48. Product distribution results for the 30 fast pyrolysis tests 

 

Table 28. Sample experimental conditions for 8 selected tests 

Run 
No.

DOE
 No.

Run
Date

Moisture 
content
(%-wt.)

Mass fed
(g)

Feed time
(min)

Feed rate
(kg/hr)

Mass fed
(g)

Feed time
(min)

Feed rate
(kg/hr)

Average
temperature

(°C)

12 28 14-Apr 5.88 910.4 55.7 0.982 23361 94.9 14.8 528.8
15 29 24-Apr 6.01 867.5 53.5 0.973 22796 90.0 15.2 536.5
17 27 30-Apr 6.04 882.8 53.9 0.983 22806 93.5 14.6 527.7
19 25 4-May 5.94 925.1 55.9 0.994 22987 90.5 15.2 529.5
21 26 6-May 5.64 964.1 60.0 0.964 23197 94.6 14.7 538.7
22 30 7-May 5.72 919.0 56.9 0.969 22443 91.0 14.8 535.6
20 24 5-May 5.93 1026.7 59.8 1.031 24873 106.1 14.1 630.5

13 23 21-Apr 5.64 994.8 57.9 1.030 22816 90.3 15.2 427.8

Biomass Heat carrier

 

 

Table 29. Sample mass balance data for 8 selected tests 

TOTAL
Run DOE Run Mass Yield Yiel
No.  No. Date (g) (%-wt., wb) (%-wt., db) (g) (%-wt., wb) (g) (%-wt., wb) (%-wt., wb)

12 28 14-Apr 604.7 66.4 64.3 211.6 23.2 101.4 11.1 100.8
15 29 24-Apr 586.6 67.6 65.6 173.3 20.0 100.8 11.6 99.2
17 27 30-Apr 586.8 66.5 64.3 180.9 20.5 99.5 11.3 98.2
19 25 4-May 615.3 66.5 64.4 190.1 20.6 105.1 11.4 98.4
21 26 6-May 662.4 68.7 66.8 182.3 18.9 110.0 11.4 99.0
22 30 7-May 629.9 68.5 66.6 165.3 18.0 103.6 11.3 97.8
20 24 5-May 755.7 73.6

a 23 21-Apr 419.6 42.2

d Mass Yield Mass Yield

71.9 113.1 11.0 132.2 12.9 97.5

13 38.7 355.0 35.7 - 22.1 100.0

Note: a - NCG yield measured by difference for Run No. 13

Bio-oil Biochar NCG
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Figure 49. Pyrolysis product distribution range 

 

Extensive exp ta acquisition 

hardware and LabVIEW software as discussed. Temperature profiles for the duration of each 

experiment were plotted, and a suitable steady state region was determined as shown in Figure 46. 

The collected data was then averaged over this region for each experiment. The average pressure in 

the reactor for the steady state operating region, averaged for all experiments, was negligibly above 

atmospheric at 2.0 ± 0.58 in-H2Og. Refer to Table 52 of Appendix D for reactor pressure data, heat 

carrier system temperature data and biomass inlet temperature data. Similarly, refer to Table 53 in 

Appendix D for reactor temperature data, recalling that the thermocouples at these locations measure 

vapor phase temperatures (see Figure 113 of Appendix C). Product recovery system temperature data 

can also be found for all experiments in Table 54 f Appendix D. The steady state operating 

temperatures averaged fo locations on the 

reactor schematic in Figure 50. Though the heat carrier system temperatures (422°C, 506°C and 

533°C as shown circled in Figure 50) vary for each experiment, the remaining values shown in Figure 

50 are highly characteristic of the overall operation of the system. 

As discussed previously, the bio-oil was collected in four sequential stage fractions as 

follows: warm condenser (SF1), cool condenser (SF2), electrostatic precipitator (SF3), and an ice-

cooled condenser coil (SF4). It was found that the mass distribution among stage fractions was 

largely independent of test conditions. As shown in Figure 51, the average distribution at the six 

erimental testing data was collected using National Instruments da

 o

r the six center point tests are shown at their respective 
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center point tests (same conditions) was very similar to the overall average distribution for 30 tests 

(varying conditions).  The stage fraction mass distribution data is shown in Table 55 of Appendix D. 

On average, over 98% of the mass of bio-oil was collected in stage fractions 1 – 3.  

 

 

Figure 50. Average operating temperature schematic for 6 center point runs 
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Figure 51. Bio-oil fraction distributions for 6 center point tests and for all tests 
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Bio-oil yield. The full regression model for total bio-oil yield (Equation 6) resulted in the 

statistical analysis summarized in Table 30 and additional details are saved for Table 56 of Appendix 

D. The residuals of the model, as shown in Figure 137 of Appendix D, were reviewed and determined 

to be sufficient for satisfying the assumptions to use a linear regression model. A high R2 value (> 

98%) and a low RMSE value compared to the response (< 1.2 %-wt., wb) indicated an excellent fit of 

the data to the model. The null hypothesis Ho1 is rejected for the full model according to the F-test, 

implying the alternative hypothesis Ha1 is accepted and the model is considered significant at a 95% 

confidence level. In other words, with a p-value (area to the right of the critical F-value on the F-

distribution) less than 0.0001, there is basically zero probability of obtaining a higher FANOVA value by 

chance if Ho1 were true. The null hypothesis Ho2 is also rejected, and the alternative hypothesis Ha2 is 

accepted to imply there is no significant lack of fit. This implies the regression model is adequate. 

 

Table 30. Bio-oil yield model, statistics summary 

Statistic Value Significant Value Significant Hypothesis tests

R2 0.988 - 0.984 - -

FANOVA 91.22 √ 163.1 √ FANOVA  > F0.05,k,ν *

F0.05,k,ν 2.424 - 2.420 - Reject Ho1

FLOF 1.19 X 1.13 X FLOF < F0.05,λ,m-1 *

F0.05,λ,m-1 4.74 - 4.60 - Reject Ho2

t0.05,ν 2.13 - 2.08 - -
|t| statistics 

for model terms Value Significant Value Significant Hypothesis tests

β0 145.56 √ 206. √ |t| > t0.05,ν Reject Ho3

β1 31.79 √ 32.20 √ |t| > t0.05,ν Reject Ho3

β2 2.73 √ 2.76 √ |t| > t0.05,ν Reject Ho3

β3 2.26 √ 2.29 √ |t| > t0.05,ν Reject Ho3

β4 9.84 √ 9.97 √ |t| > t0.05,ν Reject Ho3

β12 1.02 X - - |t| < t0.05,ν Don't reject Ho3

β13 4.37 √ 4.42 √ |t| > t0.05,ν Reject Ho3

β23 0.32 X - - |t| < t0.05,ν Don't reject Ho3

β14 2.26 √ 2.29 √ |t| > t0.05,ν Reject Ho3

β24 0.74 X - - |t| < t0.05,ν Don't reject Ho3

β34 0.73 X - - |t| < t0.05,ν Don't reject Ho3

β11 11.17 √ 11.22 √ |t| > t0.05,ν Reject Ho3

β22 1.80 X - - |t| < t0.05,ν Don't reject Ho3

β33 0.50 X - - |t| < t0.05,ν Don't reject Ho3

β44 3.64 √ 3.46 √ |t| > t0.05,ν Reject Ho3

FMUT FMUT < F0.05,r-k,ν

F0.05,r-k,ν Don't reject Ho4

0.91

2.79

Full Reduced

99

Note: * The null hypotheses Ho1 and Ho2 are rejected for the full model and the reduced model  
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After the full model was considered significant, the t-test was performed for each term to 

accept or reject Ho3, and 6 terms were found to be insignificant as shown in Table 30. The reduced 

model was also found to be significant (F-test to reject Ho1), with no significant lack of fit (F-test to 

reject Ho2), and was determined to be more significant than the full model (using F-test to accept Ho4) 

with results also shown in Table 30. These results imply the reduced model provides an adequate 

estimate of the response surface and can be investigated further. 

As shown in Table 30, the four main factors of the experimental design were all found to be 

significant, as were two interaction effects and two higher order effects. Identification of significant 

interaction terms and higher order terms justifies the use of the experimental design selected. The 

relative significance of each of the model coefficients is shown graphically in Figure 52, noting the 

vertical line of the critical t-test statistic for significance at a 95% confidence level. If the absolute 

value of the t-test statistic for a given term is greater than the critical value shown, it is significant. 

However by reviewing the t- ared to another can 

also be determined. For instance it is easily seen that heat carrier temperature is more significant than 

nitrogen flow rate in terms of bio-oil yield. Also, according to the t-tests, the terms shown in Figure 

52 are the only ones to affect bio-oil yield.  

The response surface form of the bio-oil yield is shown in Equation 24 below, noting the 

factor coefficients are associated with the coded levels and not the physical quantity. For instance the 

temperature value in Equation 24, THC, must range from -2 (–α) to +2 (+α), which correlates to the 

physical quantities of 425°C and 625°C, respectively. All other values of interest can be interpolated.   

 

   Equation 24 

 

More information on the model equation is provided in Table 57 and Equations D1 – D5 of 

Appendix D. A common way to represent the fit of the model is to plot the expected values versus the 

actual experimental values, as shown in Figure 53. The narrow shaded band is the 95% confidence 

interval, and the broader shaded band is the 95% prediction interval associated with the fit of the data. 

If one product distribution experiment was conducted as described (with known conditions that need 

not be the same as those used to develop the model), the model “predicts” that the resulting bio-oil 

yield will fall within the broader range of values. However if several such experiments were 

statistics, the relative significance of one term comp

2
HC

2
HC

HCHCAHC

HCAN2HCoilbio
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conducted with the same conditions, similar to the procedure used for the center point runs, the 

resulting average is expected (with 95% confidence) to fall within the narrow band of values. 
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Figure 52. Absolute values for t-test statistics for bio-oil yield model 

 

70

65

60

75

o-
oi

l y
ie

ld
, w

b
)

40

45

50

55

A
ct

u
al

 b
i

(%
-w

t.

40 45 50 55 60 65 70 75

Predicted bio-oil yield
(%-wt., wb)

 

Figure 53. Actual vs. predicted bio-oil yield 
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In general, the model reveals several insights to the operation of the reactor regarding bio-oil 

yield. The three dimensional surface nature of the model response, however, presents both challenges 

and unique opportunities to display and discuss these insights. For instance Figure 54 shows typical 

response surface representations of bio-oil yield as a function of heat carrier temperature and each 

remaining factor separately. In these plots two factors are held constant. 

In Figure 54 (a), the heat carrier feed rate and the auger speed are kept constant at the center 

point conditions of 15 kg/hr and 54 RPM, respectively. Though temperature is a much more 

influential factor, the nitrogen flow rate is a significant factor and bio-oil yield is shown to increase 

for increasing nitrogen flow rate. This is an expected result as the residence time is decreased for 

increasing carrier gas flow rate. This is in accordance with Gronli & Antal [32] who discuss the effect 

of low gas flow rates increasing charcoal production at the expense of bio-oil yield. This simple 

correlation is also evident by inspection of Equation 24 and Figure 52 (no interaction or higher order 

terms with nitrogen flow rate).  

In Figure 54 (b), the heat carrier feed rate and the nitrogen flow rate are kept constant at the 

center point conditions of 15 kg/hr and 2.5 sL/min, respectively. Though not immediately apparent, 

this graphic shows that at lower heat carrier temperatures the yield increases for lower auger speeds, 

however the rear corner of the response surface shows that at higher temperatures low auger speeds 

begin to decrease the yield. This interaction effect between heat carrier temperature and auger speed 

will be discussed shortl

In Figure 54 (c), the auger speed and the nitrogen flow rate are kept constant at the center 

point conditions of 54 RPM and 2.5 sL/min, respectively. This response surface shows that, in 

general, the bio-oil yield increases with increasing heat carrier feed rate. This may be explained by 

the increased heat transfer effects associated when more heat carrier material is present. 

Note the similarity between Figure 54 (a), (b), and (c) – the bio-oil yield tends to increase 

continuously and quickly with increasing heat carrier temperature, and then begin to level out and 

plateau at the high heat carrier temperature conditions. No apparent “maximum” point is shown after 

which the yields begin to decrease, which was unexpected given the high heat carrier temperature of 

625°C (recall the review of literature stating the “optimal” fast pyrolysis temperature is 

approximately 500°C). This ‘anomaly’ begins to reveal interesting effects between the transfer of heat 

between the hot heat carrier and the cool biomass, as well as the relationship between the heat carrier 

temperature and the pyrolysis vapor reaction temperature. 

 

 

y.  
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(a) Bio-oil yield as a function of heat carrier temperature and N2 flow rate 
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(b) Bio-oil yield as a function of heat carrier temperature and auger speed 
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(c) Bio-oil yield as a function of heat carrier temperature and heat carrier feed rate 

Figure 54. Three response surfaces for modeled bio-oil yield 
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To further investigate the interaction effects between heat carrier temperature and auger 

speed, and heat carrier temperature and feed rate, Figure 55 and Figure 56 were developed, 

respectively. In Figure 55 the feed rate and nitrogen flow rate are kept constant at the center point 

conditions (15 kg/hr and 2.5 sL/min, respectively), while the reduced model equation is used to plot 

the bio-oil yield as a function of temperature and the 5 levels of constant auger speeds. Similarly, in 

Figure 56, the nitrogen flow rate and auger speed are kept constant at the center point conditions (2.5 

sL/min and 54 RPM, respectively), while the reduced model equation is used to plot the bio-oil yield 

as a function of heat carrier temperature and the 5 levels of heat carrier feed rates.  

As shown in Figure 55, the model shows a clear interaction between auger speed and heat 

carrier temperature in relation to bio-oil yield. As the auger speeds and temperature are continuously 

changing in the respo in Figure 54 

(b). Nonetheless, the bio-oil yield prediction equation suggests that for heat carrier temperatures 

below 550°C a low auger speed is preferred to achieve high bio-oil yields. This may be explained by 

the increased mixing of biomass and heat carrier that was observed for low auger speeds during the 

development of the reactor as described previously. However for temperatures above 550°C, higher 

auger speeds are desired to increase the yield, which suggests that additional mixing time between 

heat carrier material and biomass is not required and provides minimal benefit. The hot temperature 

of the material at these conditions may adequately pyrolyze biomass quickly without the additional 

solids residence time afforded by slow auger speeds. At the apparent “intersection point” shown, the 

auger speed is of little importance in predicting the bio-oil yields. As the general response shows that 

heat carrier temperatures above 550°C are desired for increasing bio-oil yield, the result from this 

interaction effect implies that high auger speed are also desired to maximize liquid yield. 

As shown in Figure 56, a higher heat carrier feed rate is preferred up to a temperature of near 

500°C, however for higher temperatures the next two lowest feed rates shown are desired. As with the 

auger speed and temperature interaction effect, this interaction is not clear in Figure 54 (b), but is 

revealed by the negative coefficients for the feed rate higher order term and the temperature and feed 

rate interaction term in Equation 24. The reason for this slight decrease in yield for high heat carrier 

feed rates at high temperatures is unclear, and could perhaps be due to the increased volume of the 

reactor occupied by heat carrier material at these conditions. Recall that the auger speed is constant 

for all the yield curves shown in Figure 56, so for more heat carrier material in a fixed volume, the 

bio-oil vapors have more surface area to interact with biochar. This interaction may decrease the bio-

oil yield by prom ribed by 

Gronli & Antal [32] and Babu [

nse surface representation, this interaction effect is not readily seen 

oting undesired reactions that convert hot vapors into secondary char as desc

29].  
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Figure 55. Modeled bio-oil yield as a function of heat carrier temperature and auger 
speed 
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Figure 56. Modeled bio-oil yield as a function of heat carrier temperature and feed rate 
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However for less reactor volume for the vapor products to occupy, the residence time is 

decreased because the vapor velocity increases, which does not agree with this interpretation of the 

interaction effect. Therefore, an alternate explanation may simply be that there can be “too high” of a 

heat carrier feed rate where excess heat is available and may actually decrease bio-oil yield and favor 

char or NCG production. This effect may be described as a high temperature cracking phenomenon. 

In general and with all conditions considered simultaneously, the regression model for bio-oil 

yield suggests that within the range of levels tested, the yield would be maximized at the highest 

nitrogen flow rate (3.5 sL/min), the highest auger speed (63 RPM), the highest heat carrier 

temperature (625°C) and a heat carrier feed rate of 18 kg/hr. Note that high auger speeds to promote 

high bio-oil yield is in agreement with the twin-screw reactor (up to 300 RPM) reported by Raffelt et 

al. [74], and the rotating cone reactor (600 RPM) as reported by Bridgwater [13] 

 

Biochar yield. After reviewing the experimental residuals for the biochar yield (Equation 8) 

as shown in Figure 138 of Appendix D, it was determined the same regression technique could be 

applied. The statistical summary of the model analysis is shown in Table 31, and more detailed results 

are saved for Table 58 in Appendix D. A high R2 value of 96.5% and low RMSE value (< 2%-wt., wb 

biochar yi o1 

and accept Ha1 to validate the significance of the model. The F-test for the lack of fit was used to 

reject Ho2, and the t-test was used to reject Ho3 for 6 significant terms as shown below.  

The same tests were used to analyze the reduced model, which was found to be significant 

with no lack of fit, and the t-test was used again to reject Ho3 for all included terms. Finally, the model 

utility F-test was used to verify that the reduced model is more significant than the full model. As 

shown in Figure 57, the reduced biochar model also contained an interaction effect and two higher 

order effects, further validating the experimental design selection. Recall that the parameter estimates 

shown in Figure 57 are all significant (|t|i > t0.05,ν), however the magnitude of the test statistic shows 

the relative significance of one parameter compared to another. It is clear that heat carrier temperature 

and heat carrier feed rate are both influential terms, much more compared to the other terms in the 

model.  

The response surface equation for biochar yield is shown in Equation 25, noting that 

coefficients greater than one increase the response value and coefficients less than one decrease the 

value. Also recall that detailed parameter estimate information is included in Table 58 in Appendix D. 

The predicted biochar yield versus the actual experimental data is shown in Figure 5

95% confiden

eld) suggest the full model fit the data well, which was confirmed by the F-test to reject H

8, with a 

ce interval (thin band) and 95% prediction interval (thick band) shown as discussed.  
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Table 31. Biochar yield model, statistics summary 

Full Reduced
Statistic Value Significant Value Significant Hypothesis tests

R2 0.965 - 0.948 - -

FANOVA 29.13 √ 69.96 √ FANOVA  > F0.05,k,ν *

F0.05,k,ν 2.424 - 2.528 - Reject Ho1

FLOF 1.32 X 1.21 X FLOF < F0.05,λ,m-1 *

F0.05,λ,m-1 4.74 - 4.58 - Reject Ho2

t0.05,ν 2.13 - 2.07 - -
|t| statistics 

for model terms Value Significant Value Significant Hypothesis tests

β0 25.00 √ 36.81 √ |t| > t0.05,ν Reject Ho3

β1 18.05 √ 18.47 √ |t| > t0.05,ν Reject Ho3

β2 0.05,ν Reject Ho32.20 √ 2.25 √ |t| > t

3 1.43 X - - |t| < t0.05,ν Don't reject Ho3β
β4 6.87 √ 7.03 √ |t| > t0.05,ν Reject Ho3

β12 0.25 X - - |t| < t0.05,ν Don't reject Ho3

β13 2.66 √ 2.72 √ |t| > t0.05,ν Reject Ho3

β23 0.10 X - - |t| < t0.05,ν Don't reject Ho3

β14 1.49 X - - |t| < t0.05,ν Don't reject Ho3

β24 0.78 X - - |t| < t0.05,ν Don't reject Ho3

β34 0.94 X - - |t| < t0.05,ν Don't reject Ho3

β11 2.84 √ 2.83 √ |t| > t0.05,ν Reject Ho3

β22 1.03 X - - |t| < t0.05,ν Don't reject Ho3

β33 0.10 X - - |t| < t0.05,ν Don't reject Ho3

β44 3.22 √ 3.23 √ |t| > t0.05,ν Reject Ho3

FMUT FMUT < F0.05,r-k,ν

F0.05,r-k,ν Don't reject Ho4

1.16

2.64

Note: * The null hypotheses Ho1 and Ho2 are rejected for the full model and the reduced model  

 

2
HC

2
HC

AHC

HCN2HCbiochar

μ1.17τ1.03

Ωτ1.31

μ2.77θ0.89τ7.2920.55wb)wt.,(%Y

⋅+⋅+

⋅⋅−
⋅−⋅−⋅−=−

                Equation 25 

 

The biochar yield response surface plots are shown in Figure 59, where Figure 59 (a) holds 

the heat carrier feed rate and auger speed constant at the center point conditions and Figure 59 (b) 

holds the auger speed and nitrogen flow rate constant at the center point conditions as discussed 

previously. 
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Figure 57. Absolute values for t-test statistics for biochar yield model 
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Figure 58. Actual vs. predicted biochar yield 
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Note that the biochar yield as a function of auger speed is not displayed because this was 

found to be an insignificant term by itself in the reduced model, even though it is one of the main 

factors and present in other model terms. Temperature is shown to be more influential than nitrogen 

flow rate in Figure 59 (a), but this plot shows that biochar yield is decreased for increasing nitrogen 

flow rate for all other parameters held constant. This result is in accordance with the results from 

Figure 54 (a) where bio-oil yield increases with increasing nitrogen flow rate. This is due to decreased 

residence time associated with higher gas flow rates which favors bio-oil production.  
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(a) Biochar yield as a function of heat carrier temperature and N 222 flow rate 
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(b) Biochar yield as a function of heat carrier temperature and feed rate 

Figure 59. Two response surfaces for modeled biochar yield 
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As shown in Figure 59 (b), the biochar yield is shown (in general) to decrease for increasing 

heat carrier feed rate. This result is in accordance with the bio-oil yield that increased (in general) for 

increasing heat carrier feed rate. It is theorized that this because more rapid heat transfer occurs for 

higher carrier feed rates, which minimizes secondary char forming reactions as reported by Ball et al 

[119] and Di Blasi [120]. However, as with the bio-oil yield, the biochar yield model has higher order 

and interaction effects that are not readily apparent in the response surfaces. For instance, in Figure 

59 (b), note that at a contour of constant temperature of 560°C, the biochar yield is less for 18 kg/hr 

than for 21 kg/hr heat carrier feed rate (shown in the lower right hand corner). The biochar yield as a 

function of heat carrier temperature and feed rate, and heat carrier temperature and auger speed are 

shown in Figure 60 and Figure 61, respectively.  

Note that the nitrogen flow rate and auger speed rate are kept constant at the center point 

conditions in Figure 60, and the nitrogen flow rate and heat carrier feed rate are kept constant in 

Figure 61 as shown. An interesting result is shown in Figure 60 – regardless of heat carrier 

temperature, a heat carrier feed rate of 18 kg/hr results in slightly lower char yields than a feed rate of 

21 kg/hr. This result seems to agree with the result from the bio-oil yield model in that (for higher 

temperatures) the 18 kg/hr feed rate results in the highest liquid yields. This result also supports the 

hypothesis that because of the higher feed rate of heat carrier material, there is less internal reactor 

volume for the vapor products to occupy as they are produced, hence more chance to react with 

biochar and decrease the liquid yield. However, in comparison to the standard deviation of the center 

point test, this effect 

The significant interaction effect between heat carrier temperature and auger speed is also 

apparent in regards to the biochar yield response as shown in Figure 61. For a heat carrier temperature 

near 525°C, the auger speed is seen to have little consequence on the product yield. At temperatures 

below this point, the lowest possible auger speed results in the lowest biochar yield. This result is in 

accordance with this interaction effect on the bio-oil yield response: low auger speeds may promote 

mixing and more complete pyrolysis to occur. However, at temperatures above 525°C, faster auger 

speeds are desired to decrease the biochar yield. This may be explained by the rapid pyrolysis of 

biomass as it comes into contact with hot heat carrier material – too much contact time results in 

increased solids yield (recall that solids residence time is directly related to auger speed). This is akin 

to stating that longer solid residence times are desired at less than 525°C to minimize biochar yield, 

and shorter solid residence times are desired at temperatures above 525°C to minimi  biochar yield. 

This interesting inter actor design: 

depending on the opera  modify.  

is rather minor. 

ze

action effect also speaks to the potential versatility of this re

ting conditions, the pyrolysis product distribution may be easy to



 115 

5

10

400 425 450 475 500 525 550 575 600 625 650

Heat carrier inlet temperature (°C)

M

15

20

25

30

35

40

45

50

55

60

od
el

ed
 b

io
ch

ar
 y

ie
ld

 (
%

-w
t.

, w
b)

9

12

15

18

21

Heat carrier 
feed rate (kg/hr)

Constant conditions:

N2 flow rate = 2.5 sL/min, Auger speed = 54 RPM

 

Figure 60. Modeled biochar yield as a function of heat carrier temperature and feed 
rate 
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Figure 61. Modeled biochar yield as a function of heat carrier temperature and aug
speed 

er 



 116 

In general, to minimize biochar yield in this reactor system, a heat carrier feed rate of 18 

kg/hr is preferred, with high nitrogen flow rates (3.5 sL/min) and high auger speeds (63 RPM), which 

also correlates to the conditions that favor maximizing bio-oil yield.  

Note that the results from plotting the modeled biochar yield as a function of auger speed 

(which is analogous to solids residence time) is in general agreement with a kinetic model of wood 

fast pyrolysis as reported by Di Blasi [27]. This model (2002) showed that for constant temperature, 

increased residence time resulted in increased solid char yields due to secondary reactions. It is 

theorized that this is what is occurring in the right half of Figure 61. At high temperatures, low auger 

speeds may promote secondary reactions that convert condensable vapors into biochar. 

 

Non-condensable gas yield. The analysis of the residuals for the NCG yield model showed 

that the assumptions required for performing a linear regression model could not be satisfied. As 

shown in Figure 139 of Appendix D, a clear relationship was seen between the residuals, and this 

relationship was not observed for the residual bio-oil and biochar experimental data. The relationship 

shown is e 

experiments were performed in. Recall as noted previously that in an effort to minimize experimental 

error and ensure consistent heat carrier feed rates and heat carrier inlet temperatures as a function of 

feed rate, the experiments were randomized within groupings according to heat carrier feed rates. 

This is shown in Table 11 and Table 50 in Appendix D. Nonetheless, the regression modeling 

procedure was performed for the NCG yield data for discussion purposes only and not for further 

investigation. Refer to Table 59 and Table 60 in Appendix D for a summary and detail of the 

statistical analyses, respectively. These tables show that even if the residuals were acceptable, the 

non-condensable gas yield model would not be significant at a 95% confidence level. 

 Despite the inability to evaluate a regression model for the overall yield of non-condensable 

gases, the yield of individual species was investigated. As discussed, the non-condensable gas 

mixture was analyzed with a Micro-GC, with gas concentration data (including nitrogen) as shown in 

Table 61 of Appendix D. Recall that these are the averaged values taken over the steady state region 

of an experiment (as shown in Figure 45), typically around 15 sample points. The mole fraction of 

each gas species on a nitrogen free basis is shown in Table 62 of Appendix D, calculated as 

previously discussed. The average gas composition for the center point runs is shown in Figure 62. 

 

time based and is directly related to the grouping of heat carrier feed rates in which th
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Figure 62. Average non-condensable gas composition at center points 

 

Also note in Table 62 of Appendix D that the estimated mass of NCG is provided, which 

allows for calculating the number of total moles of gas. Determining the apparent molecular weight 

and using the ideal gas law to calculate the mass was discussed previously. The total number of moles 

is used to convert the mole fraction of each gas species into the number of moles of each species, 

which is finally used to calculate the mass of each gas species as shown in Table 63 of Appendix D 

based on individual molecular weights. The gas property data found in Table 64 of Appendix D 

(pressure, temperature and total volume) is also required for this analysis. With the mass of a gas 

species known, the mass yield based on the biomass input can be determined as is performed for bio-

oil and biochar. The mass yields of carbon monoxide and carbon dioxide are of the most interest, but 

the yield of any species, i, on a percent weight of the original wet biomass is calculated as shown in 

Equation 26 with standard notation and as already discussed. 
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=−                   Equation 26 

 

The regression models for gas yields were chosen to be performed on a mass basis rather than 

on a volume basis because it results in a more interesting comparison with bio-oil and biochar yields 
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which are both on a mass basis. For instance, the carbon monoxide and carbon dioxide yields 

averaged 3.77%-wt. and 7.24%-wt., respectively for the center point tests. As the center point average 

gas yield was 11.35%-wt., CO and CO2 accounted for over 97% of the gas on a mass basis. The 

carbon dioxide and carbon monoxide yields are shown for all 30 tests in Figure 63 as a function of 

bio-oil yield. This result shows some type of relationship between gas yield and bio-oil yield, and 

prompted further study of the gas yields of independent species. 

 

4.5

6.5

7.5

8.5

s 
yi

el
d

 (
%

-w
t.

, w
b

)

CO

CO2

5.5

2.5

3.5

40 45 50 55 60 65 70 75

Bio-oil yield (%-wt., wb)

G
a

 

Figure 63. Carbon monoxide and carbon dioxide yields vs. bio-oil yield for all tests 

 

Carbon monoxide yield. The same regression modeling procedure for CO yield was 

performed after the residuals, shown in Figure 140 of Appendix D, were analyzed and deemed 

adequate. The full and reduced model were both found to be significant with no lack of fit (Ho1 and 

Ho2 rejected for both models) as shown in Table 32. The details of the analysis, including the 

ANOVA and Lack of Fit data, are shown in Table 65 of Appendix D. The reduced model was found 

to be more significant than the full model, and includes 7 significant terms as

 

 shown in Equation 27. 

2
HC

HCAAN2AHC

HCAHCCO

μ0.07-

μΩ0.05Ωθ0.07Ωτ0.08

⋅

⋅⋅+⋅⋅+⋅⋅+               Equation 27 
μ0.21Ω0.05τ0.503.75wb)wt.,(%Y ⋅+⋅−⋅+=−
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Table 32. Carbon monoxide yield model, statistics summary 

Statistic Value Significant Value Significant Hypothesis tests

R2
0.985 - 0.980 - -

FANOVA 71.04 √ 156.88 √ FANOVA  > F0.05,k,ν *

F0.05,k,ν 2.424 - 2.464 - Reject Ho1

FLOF 1.51 X 1.27 X

F 4.74 - 4.59 -

FLOF < F0.05,λ,m-1 *

0.05,λ,m-1 Reject Ho2

t0.05,ν 2.13 - 2.07 - -
|t| statistics 

for model terms Value Significant Value Significant Hypothesis tests

β0 105.83 √ 192.05 √ |t| > t0.05,ν Reject Ho3

1 28.32 √ 29.83 √ |t| > t0.05,ν Reject Ho3β

2 0.12 X - - |t| < t0.05,ν Don't reject Ho3β

3 2.91 √ 3.07 √ |t| > t0.05,ν Reject Ho3β
4 11.60 √ 12.22 √ |t| > β t0.05,ν Reject Ho3

12 0.12 X - - |t| < t0.05,ν Don't reject Ho3β

13 3.69 √ 3.88 √ |t| > t0.05,ν Reject Ho3β

23 3.15 √ 3.32 √ |t| > t0.05,ν Reject Ho3β
14 1.72 X - - |t| < t0.05,ν Don't reject Ho3β

24 0.99 X - - |t| < t0.05,ν Don't reject Ho3β
34 2.15 √ 2.26 √ |t| > β t0.05,ν Reject Ho3

11 0.02 X - - |t| < t0.05,ν Don't reject Ho3β

22 0.54 X - - |t| < t0.05,ν Don't reject Ho3β

33 0.80 X - - |t| < t0.05,ν Don't reject Ho3β
44 4.13 √ 4.30 √ |t| > β t0.05,ν Reject Ho3

FMUT FMUT < F0.05,r-k,ν

F0.05,r-k,ν Don't reject Ho4

Note: * The null hypotheses Ho1 and Ho2 are rejected the full model and the reduced model

0.80

2.71

Full Reduced

 

 

As before, the predicted vs. actual carbon monoxide values are shown in Figure 64 with the 

95% co

 

for high uger speeds. 

 

 

nfidence and prediction intervals. With a high R2 and low RMSE, the model fit the data well. 

The model for carbon monoxide predicts a yield behavior that is similar to that for bio-oil, which is to 

be expected based on Figure 63. The CO yield increases with temperature and heat carrier feed rate, 

and the interaction effect between auger speed and heat carrier temperature is significant. In other 

words at low temperatures where low bio-oil yields are favored, CO yields are maximized for low 

auger speeds. However at higher temperatures favoring high liquid yields, the CO yield is maximized

 a
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Figure 64. Actual vs. predicted carbon monoxide yield 

 

Carbon dioxide yield. As CO2 is also a major constituent in the NCG mixture, a regression 

model was developed to analyze the CO2 yield as a function of all test conditions. The residuals for 

the experimental data compared to the full model are shown in Figure 141 of Appendix D, and are 

appropriate for performing a linear regression. The full model was found to have a have an R  value 

f 90% and a high FANOVA value (indicating significance) as shown in Table 33, however the lack of 

fit F-tes

t was not constructed and the model was not further analyzed.  

2

o

t indicates a marginally significant lack of fit. This implies that the null hypothesis Ho2 can not 

be rejected, and that the lack of fit is considered significant. The t-tests were performed as before to 

remove insignificant terms, however the reduced model (though significant as a whole) also exhibited 

a significant lack of fit. The detailed statistical analysis of the CO2 yield model is shown in Table 66 

of Appendix D. The lack of fit implies that the linear regression model as fitted is not sufficient, 

despite including interaction and squared terms. Though a higher order (cubic) model may reduce the 

lack of fit, this was not attempted. As this form of the model is considered inadequate, the predicted 

vs. actual CO2 yield plo

 

 



 121 

Table 33. Carbon dioxide yield model, statistics summary 

Statistic Value Significant Value Significant Hypothesis tests

R2 0.902 - 0.833 - -

FANOVA 9.88 √ 15.63 √ FANOVA  > F0.05,k,ν *

F0.05,k,ν 2.424 - 2.464 - Reject Ho1

FLOF 5.04 √ 5.28 √ FLOF > F0.05,λ,m-1

F0.05,λ,m-1 4.74 - 4.59 - Don't reject Ho2

t0.05,ν 2.13 - 2.07 - -
|t| statistics 

for model terms Value Significant Value Significant Hypothesis tests

β0 121.36 √ 157.64 √ |t| > t0.05,ν Reject Ho3

β1 6.13 √ 5.67 √ |t| > t0.05,ν Reject Ho3

β2 1.20 X - - |t| < t0.05,ν Don't reject Ho3

β3 4.93 √ 4.56 √ |t| > t0.05,ν Reject Ho3

β4 5.57 √ 5.16 √ |t| > t0.05,ν Reject Ho3

β12 0.69 X - - |t| < t0.05,ν Don't reject Ho3

β13 2.80 √ 2.60 √ |t| > t0.05,ν Reject Ho3

β23 2.66 √ 2.46 √ |t| > t0.05,ν Reject Ho3

β14 1.07 X - - |t| < t0.05,ν Don't reject Ho3

β24 1.13 X - - |t| < t0.05,ν Don't reject Ho3

β34 2.12 X - - |t| < t0.05,ν Don't reject Ho3

β11 2.63 √ 2.24 √ |t| > t0.05,ν Reject Ho3

β22 0.75 X - - |t| < t0.05,ν Don't reject Ho3

β33 1.23 X - - |t| < t0.05,ν Don't reject Ho3

β44 3.14 √ 3.19 √ |t| > t0.05,ν Reject Ho3

Full Reduced

FMUT FMUT < F0.05,r-k,ν

F0.05,r-k,ν Don't reject Ho4

1.78

2.71

Note: * The null hypothesis Ho1 is rejected the full model and the reduced model  

 

Gas yield of other species. To further investigate the relationship between bio-oil and non-

condensable gas production, the calculated yields of other species were also plotted as a function of 

bio-oil yield. As shown in Figure 65, the yields of CH4, C2H6, C2H4 and H2 are all shown to increase 

with bio-oil yield. For C2H6, C2H4 and H2 this occurs slowly and then more rapidly past 

approximately 70%-wt. bio-oil yield. The yield of gaseous methane is not linear and resembles the 

trend for carbon monoxide as shown in Figure 63. These trends result in the total non-condensable 

gas yield trend as shown in Figure 66: gas yields tend to increase slightly as bio-oil yields increase. A 

simple linear fit is shown to illustrate this correlation. This phenomenon will be discussed shortly 

after discussions of the physical properties and chemical composition of the bio-oil. Note that based 

on the trends shown in Figure 65, regression models were not developed for the four gas species 

shown. It is expected that these models would reveal that the conditions that favor high bio-oil yields 

would also favor higher gas yields of each species. 
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Figure 65. Gas yields for 4 different species vs. bio-oil yield for all tests 
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Figure 66. Total non-condensable gas yield vs. bio-oil yield for 29 tests 



 123 

5.3  Product analysis results 

 

The biochar and bio-oil fractions collected were subjected to various chemical and physical 

tests as described. The appearance of the bio-oil fractions were all quite different from each other, but 

were similar from one experiment to the next. A characteristic picture of the bio-oil fractions is shown 

in Figure 67, with SF1 – SF4 pictured from left to right.  

 

 

Figure 67. Typical appearance of bio-oil fractions 

 

Visually, SF1 and SF3 were relatively viscous oils, while SF 2 and SF 4 appeared much less 

viscous. Stage fraction 4 was typically translucent, with an orange tint. SF2 and SF4 have a much 

stronger acidic odor than SF1 or SF3. SF3, the fraction from the ESP, was the most “syrup-like” 

fraction.  

 

Moisture content. Karl-Fischer (KF) moisture content analyses were performed on all four 

fractions for all experiments in triplicate. Average values and standard deviations are shown in Table 

67 of Appendix D. Moisture values were found to vary by stage fraction as shown in Figure 68 for the 

six center point tests. Standard deviations are shown among the triplicate moisture analyses. The 

whole bio-oil moisture content was calculated as discussed (Equation 22). The average moisture 

content for the center point tests is shown in Figure 69 along with the moisture contents from the 

minimum bio-oil yield and maximum bio-oil yield tests.  The whole bio-oil moisture content is shown 

to be in agreemen 8]. 

 SF1                    SF2          SF3                     SF4         

t with recently published data from two other auger reactors as shown [86, 8
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Figure 68. Bio-oil moisture content at center points 
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Figure 69. Bio-oil moisture content range 
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Note in Figure 69 the standard deviations for the center point averages are presented as 

pooled standard deviations, which takes into account the variance among standard deviations 

between the six tests. The pooled standard deviation is larger than the average of the standard 

deviations. In effect, this captures the deviations attributed to the analytical procedures, the in-

homogeneity of the bio-oil sample, and the variation among experimental testing. See Equations D6 

and D7 in Appendix D for a sample calculation of pooled standard deviation for the whole bio-oil. 

Also note in Figure 69 that the maximum yield bio-oil (73.6%-wt., wb) correlates to the 

lowest whole bio-oil moisture content (22 ± 2.4%-wt., wb), and the minimum yield sample (38.7%-

wt., wb) has the highest moisture content (35 ± 1.3%-wt., wb). So this image effectively shows the 

range of moisture contents for all samples. It is interesting to note that the moisture content for SF1 

and SF2 are seen to vary drastically among the three situations presented, whereas the water contents 

in SF3 and SF4 do not vary as much. As SF1 and SF2 typically represent over 75% of the total bio-oil 

mass collected, the whole bio-oil moisture content is seen to closely follow the trends for SF1 and 

SF2. The moisture conten al whole bio-oils, 

hereas the typical moisture contents for SF2 and SF4 are typically more than traditional oils. 

To extend the concept presented in Figure 69, the moisture content (whole bio-oil) for each 

experiment was plotted as a function of bio-oil yield with interesting results as shown in Figure 70. 

This result suggests that as bio-oil yield increases, secondary reactions that may increase water 

content are minimized. A simple linear regression fit is shown to indicate this correlation.  
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Figure 70. Bio-oil moisture content vs. bio-oil yield for all tests 
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The results from Figure 70 are shown to be in agreement with those shown in Figure 63, 

Figure 65 and Figure 66. The explanation for the decrease in moisture content as the bio-oil yield 

increases may be attributed to the increase in yields of the gas species. For high bio-oil yield 

situations, the hydrogen in the biomass appears to be converted into higher levels of gaseous H2, CH4, 

C2H4 and C2H6 rather than liquid H2O. Similarly, the oxygen from the biomass appears to be 

converted into gaseous CO and CO2 rather than liquid H2O for high bio-oil yield situations.  

As the bio-oil yield is a function of multiple factors, the relationship between bio-oil yield 

and moisture content provided evidence that a regression model was necessary for further 

investigation. The modeling procedure was performed as before with residuals shown in Figure 142 

of Appendix D, results summarized as shown in Table 34 and detailed results in Table 68 of 

Appendix D. The model was significant (Ho1 rejected) with no significant lack of fit (Ho2 rejected), 

and the reduced model was found to be more significant (don’t reject Ho4) and only includes four 

significant parameters as shown in Equation 28 (Ho3 rejected for these terms). Only two of the 

original four factors are significant (heat carrier temperature and feed rate), as well as one interaction 

term (heat carrier temperature and auger speed) and one higher order term (temperature squared). 

  

2
HC

AHC

HCHC

τ0.696

Ωτ0.684

μ0.535τ2.9625.67wt.)(%content  Moisture

⋅+

⋅⋅−
⋅−⋅−=−

                 Equation 28 

 

As shown in Figure 71, heat carrier temperature is the most influential term in the moisture 

content model. The predicted moisture content values (whole bio-oil) versus the actual experimental 

values are shown in Figure 72 with the 95% confidence and prediction intervals. The response surface 

for the moisture content is shown in Figure 73, where the auger speed and nitrogen flow rate are kept 

constant at the center point conditions. This surface shows that as feed rate and temperature are 

increased, moisture content is decreased (for a constant auger speed). 

However, as before, this response surface does not reveal the interaction effect between auger 

speed and heat carrier temperature. As shown in Figure 74, there is a distinct heat carrier temperature 

value where the auger speed has little influence on the moisture content. This phenomenon was also 

seen in the models for bio-oil yield and biochar yield. Below heat carrier temperatures of 525°C, low 

auger speeds are desired to minimize bio-oil moisture content, whereas above 525°C higher auger 

speeds are desired. Based on Figure 55 and Figure 70, this result is not unexpected due to the 

established relationship between bio-oil yield and bio-oil moisture content.  
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Table 34. Bio-oil moisture content model, statistics summary 

ReducedFull
Statistic Value Significant Value Significant Hypothesis tests

R2 0.942 - 0.907 - -

FANOVA 17.42 √ 61.06 √ FANOVA  > F0.05,k,ν *

F0.05,k,ν 2.424 - 2.759 - Reject Ho1

FLOF 0.84 X 0.48 X FLOF < F0.05,λ,m-1 *

F0.05,λ,m-1 4.74 - 2.54 - Reject Ho2

t0.05,ν 2.13 - 2.06 - -
|t| statistics 

for model terms Value Significant Value Significant Hypothesis tests

β0 62.64 √ 110.35 √ |t| > t0.05,ν Reject Ho3

β1 14.39 √ 14.67 √ |t| > t0.05,ν Reject Ho3

β2 0.66 X - - |t| < t0.05,ν Don't reject Ho3

β3 0.94 X - - |t| < t0.05,ν Don't reject Ho3

β4 2.61 √ 2.66 √ |t| > t0.05,ν Reject Ho3

β12 1.61 X - - |t| < t0.05,ν Don't reject Ho3

β13 2.72 √ 2.77 √ |t| > t0.05,ν Reject Ho3

β23 0.77 X - - |t| < t0.05,ν Don't reject Ho3

β14 1.18 X - - |t| < t0.05,ν Don't reject Ho3

β24 1.60 X - - |t| < t0.05,ν Don't reject Ho3

β34 0.27 X - - |t| < t0.05,ν Don't reject Ho3

11 3.58 √ 3.78 √ |t| > t0.05,ν Reject Ho3β

22 0.33 X - - |t| < t0.05,ν Don't reject Ho3β

33 0.57 X - - |t| < t0.05,ν Don't reject Ho3β
44 0.15 X - - |t| < t0.05,ν Don't reject Ho3β

FMUT FMUT < F0.05,r-k,ν

F0.05,r-k,ν Don't reject Ho4

1.51

2.54

Note: * The null hypotheses Ho1 and Ho2 are rejected the full model and the reduced model  
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Figure 71. Absolute values for t-test statistics for moistur
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Figure 72. Actual vs. predicted moisture content 

 

These results suggest that the conditions that favor high bio-oil yield and low biochar yield 

also favor low moisture content in the produced whole bio-oil. These conditions, in regards to the 

moisture content, include high auger speeds and high heat carrier feed rates to quickly transfer heat. 
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Figure 73. Response surface for modeled moisture content 
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Figure 74. Modeled moisture content as a function of heat carrier temperature and 
auger speed 

Water insoluble content. The water insoluble content was determined for stage fractions 1, 2 

and 3 for each experiment. The water insoluble content was not performed for the SF4 fractions due 

to the low mass collected to help ensure there was adequate sample to test moisture content and to 

perform the ultimate and proximate analyses and the GC/MS characterization. Furthermore, as the 

SF4 sample is highly aqueous, it is likely to contribute a negligible amount of water insoluble 

material to the whole bio-oil as it represents such as small portion of the total bio-oil mass. This 

assumption of minimal insoluble content is also based on the physical design of the reactor system 

and by visual inspection of the SF4 oil. Finally, this provides a conservative estimate for the water 

insoluble content, as testing the SF4 sample would only increase the total, albeit only slightly if at all. 

Refer to Table 69 of Appendix D for analytical data collected for water insoluble content. 

As shown in Figure 75, the water insoluble content varied among fractions SF1, SF2 and 

SF3, but was fairly con has the highest 

 

Note that the relationship between bio-oil yield, non-condensable gas yield and bio-oil 

moisture content will again be discussed after review of the elemental analysis of the bio-oil. 

 

sistent among each center point experiment. The SF3 fraction 
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average water insoluble content (26.6%-wt., wb), followed by SF1 (17.3%-wt., wb), and SF2 had the 

lowest water insoluble content (7.6%-wt., wb). Recall the water content for SF2 was significantly 

higher than in SF1 or SF3. As shown, the whole bio-oil has a water insoluble content (15.6%-wt., wb) 

within the range for bio-oil as reported by Bridgwater [13], but it is on the low end of the range. 
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Figure 75. Water insoluble content for center points 

 

The average water insoluble content for the center point tests are compared to the results from 

the maximum and minimum bio-oil yield tests in Figure 76. The standard deviations from triplicate 

analyses are shown, and the center point averages are shown with pooled standard deviations among 

the six runs as discussed previously. 

This figure is of interest because is reveals that there is a relationship between the reaction 

conditions that favor high bio-oil yield and the amount of water insoluble content in the 

ction and the resulting whole bio-oil, the amount of water insoluble material increases with 
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liquid yield. This phenomenon provides sufficient evidence that a model for water insoluble content is 

necessary to investigate the relationship. 
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Figure 76. Water insoluble content range 

 

A regression mod l water insoluble 

content as discussed previously, and the resulting residuals are shown in Figure 143 of Appendix D. 

Visual 

nificant lack of fit was found (Ho2 rejected). In addition to the 

intercep

model (don’t reject HO4). The resulting regression model is described by Equation 29.  

eling procedure was performed for the whole bio-oi

analysis of the residuals indicated that a linear regression model could be developed. The 

statistical results for the water insoluble content model are shown in Table 35, and more detailed 

results are saved for Table 70 of Appendix D. Both the full and reduced model were found to be 

significant (Ho1 rejected), and no sig

t, only two significant terms were found to affect the water insoluble response: heat carrier 

temperature and feed rate. The t-test was used to reject Ho3 for these terms as shown in Table 35. 

Finally, the model utility test also confirmed that the reduced model is more significant than the full 
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Table 35. Water insoluble content model, statistics summary 

Fu
Statistic Value Significant Value Significant Hypothesis tests

R2 0.951 - 0.912 - -

FANOVA 20.65 √ 139.7 √ FANOVA  > F0.05,k,ν *

F0.05,k,ν 2.424 - 3.354 - Reject Ho1

FLOF 2.43 X 1.85 X FLOF < F0.05,λ,m-1 *

F0.05,λ,m-1 4.74 - 2.59 - Reject Ho2

t0.05,ν 2.13 - 2.57 - -
|t| statistics 

for model terms Value Significant Value Significant Hypothesis tests

β0 49.19 √ 2.0 √ |t| > t0.05,ν Reject Ho3

β1 16.49 √ 2.50 √ |t| > t0.05,ν Reject Ho3

β2 1.25 X - - |t| < t0.05,ν Don't reject Ho3

β3 1.46 X - - |t| < t0.05,ν Don't reject Ho3

β4 2.36 X - - |t| < t0.05,ν Don't reject Ho3

β12 0.57 X - - |t| < t0.05,ν Don't reject Ho3

β13 1.72 X - - |t| < t0.05,ν Don't reject Ho3

β23 0.22 X - - |t| < t0.05,ν Don't reject Ho3

β14 0.07 X - - |t| < t0.05,ν Don't reject Ho3

β24 0.07 X - - |t| < t0.05,ν Don't reject Ho3

β34 0.31 X - - |t| < t0.05,ν Don't reject Ho3

β11 0.68 X - - |t| < t0.05,ν Don't reject Ho3

β22 1.58 X - - |t| < t0.05,ν Don't reject Ho3

β33 1.58 X - - |t| < t0.05,ν Don't reject Ho3

β44 0.89 X - - |t| < t0.05,ν Don't reject Ho3

FMUT FMUT < F0.05,r-k,ν

F0.05,r-k,ν Don't reject Ho4

Note: * The null hypotheses Ho1 and Ho2 are rejected the full model and the reduced model

ll Reduced

1.97

2.48

 

 

             Equation 29 

ues are shown 

HCHC μ0.374τ2.6116.15wb)wt.,(%content  insoluble ⋅+⋅+=−Water 

 

The water insoluble content model is quite simple, and predicts that the water insoluble 

material will increase with both temperature and heat carrier feed rate; statistically independent of all 

the other operating conditions. The modeled water insoluble content as a function of heat carrier 

temperature and feed rate is shown in Figure 77. As the bio-oil yield tends to increase with 

temperature and heat carrier feed rate as well, a relationship exists between water insoluble content in 

the bio-oil and the yield of bio-oil as shown in Figure 78. This suggests that conditions that favor high 

bio-oil yields may decompose lignin into water insoluble compounds in the bio-oil rather than 

conversion of lignin to biochar. One such condition may be higher heat carrier temperatures, which 

are required to decompose lignin [4, 23]. The predicted water insoluble content val
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plotted with the actu nfidence and 

prediction intervals.  
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Figure 77. Modeled H2O insoluble content as a function of heat carrier temperature and 
feed rate 
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Figure 78. Water insoluble content vs. bio-oil yield for all tests 
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Figure 79. Actual vs. predicted water insoluble content 

 

Solids content. The solids content analysis was performed in triplicate for the center point 

tests on

were not performed for SF4 to preserve the mass for other kinds of analysis. Since the percent of total 

bio-oil mass collected in SF4 was less than 2%-wt., it contributes an insignificant amount to the 

overall solids content. Also, based on visual inspection and the physical design of the system, it is 

likely that the solids content in SF4 is negligible. The analytical data for the solids content is shown 

in Table 71 of Appendix D. 

Recall that in general, the amount of solid material suspended in the bio-oil is a reflection of 

the biochar separation efficiency. In this sense, the solids content will be particularly dependent on 

the size of the biomass particles. In this study, the biomass particle size was kept constant for all test, 

and all the biomass was prepared in the same manner with the same equipment. Therefore, it is not 

expected that the solids content will vary as a function of the test parameters, and a regression model 

of this data would not be of much interest.  

The solids content was not found to vary significantly between fractions SF1 – SF3, and the 

average value in each fraction varied from 0.7%-wt., wb to 1.07%-wt., wb which is within the range 

of commonly reported values for bio-oil. The overall average for the whole bio-oil was 0.94 ± 0.22 

 SF1, SF2 and SF3 to determine the magnitude of value for the samples. Solids content tests 
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%-wt., wb for the center point tests shown in Figure 80, which is in agreement for the typical range of 

wood pyrolysis bio-oil as reported by Czernik & Bridgwater [36]. Note that these values are also 

within a general range that agrees with recently published literature on bio-oil produced from wood 

biomass in a 1 kg/hr auger reactor as shown and discussed previously [86]. 
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Figure 80. Solids content for center point tests 

heating values for all of the bio-oil samples, largely based 

on the w

 

Higher heating value. The higher heating value was investigated for three of the center point 

tests, the minimum bio-oil yield sample (Run 13), and the maximum bio-oil yield sample (Run 20).  

Based on the low pooled standard deviation among the 3 center point runs, it is likely that the other 3 

center point runs would have similar higher heating values. This range of samples is believed to give 

a representation of the magnitude of higher 

ater content as previously discussed. The higher heating value collected data is shown in 

Table 72 of Appendix D, which is presented graphically in Figure 81. When comparing this image to 

Figure 69, it is evident there is an inverse relationship between bio-oil moisture content and heating 
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value. The average higher heating value for the whole bio-oil for three of the center point runs was 

16.4 ± 0.16 MJ/kg, which although is on the low end is within the range of typical pyrolysis oils [36]. 

The higher heating value for SF3 is seen to be within the range of two other recent studies as shown 

[86, 88]. Recall the averaged center point heating values are presented with a pooled standard 

deviation, which takes into account the standard deviations among the different runs.  
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Figure 81. Higher heating value range 

 

Note that the highest yielding bio-oil sample has the highest energy value (whole bio-oil) 

shown in Figure 81, which may be attributed to this sample having the lowest moisture content. 

Similarly, the lowest bio-oil yield sample has the lowest energy value among tested samples, which is 

attributed to it having the highest moisture content. This is a common and documented relationship 

between bio-oil heating value and moisture content. The SF3 energy content varies the least. 
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Thermal gravimetric analysis. TGA tests were performed for all biochar samples and for 

many of the bio-oil samples to develop the proximate analysis.  

This analytical procedure is more useful for evaluating biochar than pyrolysis liquids. This is 

because, as discussed, the “moisture” and “volatiles” determined by this method are not directly 

applicable to bio-oil because of the many compounds that volatilize over a wide range of 

temperatures. For instance, as shown in Table 73 of Appendix D, the combined moisture and volatiles 

(as determined by TGA) of each bio-oil fraction exceeds 85 %-wt. The TGA analysis for bio-oil will 

be discussed again as part of the elemental analysis. 

The TGA data for biochar samples originating from the cyclone is shown in Table 74 of 

Appendix D. The data was plotted to determine if any visible trends warranted further study by 

developing a regression model, however no trends were observable. Therefore, no biochar regression 

models were developed for the proximate analysis results. As shown in Figure 82 for the center point 

tests, however, the proximate analysis results are in general agreement with recently published data 

on biochar originating from oak bark processed in an auger reactor [42].  
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Figure 82. Biochar proximate analysis for center point tests 
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Compared to this study, the proximate analysis results from the analyzed biochar show 

slightly lower fixed carbon content, higher volatiles content, as well as lower ash content. The center 

point av

for biochar at center point tests 

erage for ash was 5.5%-wt., however it varied from 3.3 – 12 %-wt. among all samples. Also 

shown in Figure 82 is the average red oak biomass proximate analysis as presented previously. Note 

that compared to the biomass, fixed carbon and ash contents are concentrated in the biochar, while the 

volatile matter is markedly lower due to much of this mass being converted into liquid bio-oil.  

 

Table 36. Ultimate analysis 

Averagea St. Dev.b Oak wood Oak bark

Moisture 4.30 0.557 3.17 1.56
Carbon 70.85 1.919 82.83 71.25
Nitrogen 0.11 0.046 0.31 0.46
Hydrogen 3.64 0.218 2.70 2.63
Sulfur 0.012 0.005 0.02
Ash 5.51 0.625 2.92

cThis study

0.02
11.09

Oxygend
19.88 1.919 11.22 14.55

Notes: All values in %-wt. a - Average of center point tests. 
b - Standard deviation among runs (not replicates).
c - As reported by Mohan et al. for a 1 kg/hr auger reactor.
    Source: J. Colloid & Interface Science 2007, 310 , 57-73.
d - Oxygen calculated by difference

Mohan et al.

 

 

Elemental analysis. The elemental composition of all bio-oil and biochar samples was 

determined by analyzing the carbon, nitrogen, hydrogen, and sulfur contents. Assuming these are the 

major constituents present, in combination with the ash content as determined by the TGA methods, 

the oxygen content is determined by difference. 

The analytical data for the elemental analysis of the biochar is shown in Table 75 of 

Appendix D, noting triplicate analyses were performed for the center point tests. It was found that the 

elemental analysis of the biochar did not vary significantly for different operating conditions, which 

implies regression modeling would be of little interest. A summary of the elemental analysis for the 

biochar is shown in Table 36 for the center point tests, noting the comparison to another study. Also, 

note that almost 82% of the carbon content as determined by the ultimate analysis (70.9 %-wt.) 

remains as fixed carbon during the proximate analysis (58.0 %-wt.).  

The data for th ollows: Table 

76 for SF1, Table 77 for SF2, Table 78 for SF3, Table 79 for SF4 and Table 80 for the resulting 

whole bio-oil as calculated. The carbon content for each of the fractions and the whole bio-oil is 

e elemental composition of bio-oil is found in Appendix D as f
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shown in Figure 83 for the center point tests with standard deviations shown from triplicate analyses. 

The fractions that are high in water content (SF2 and especially SF4) are shown to have carbon 

contents less than pyrolysis liquids as reported by Oasmaa & Meier [38]. However the remaining 

fractions and the whole bio-oil have carbon contents within the expected range. Also shown in the 

figure below is the repeatability among center points, and the small instrument error. 
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Figure 83. Bio-oil carbon content for center points 

 

The nitrogen content for each of the frac

ter point tests with standard deviations shown for triplicate analyses. Clearly nitrogen is a 

more difficult element to analyze because of its low levels in the bio-oil samples. In fact often the 

nitrogen content was below the detection level of the instrument (80 PPM), and for these cases it was 

then assumed that the nitrogen content in the sample was 80 PPM. These cases can be clearly 

identified in Figure 84. Out of the 120 samples (tested in triplicate), 61.7% had nitrogen contents that 

were below the detection limit. The nitrogen values that were above the detection limit, however, are 

shown to be less than the upper limit of 0.30% as reported by Oasmaa
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Figure 84. Bio-oil nitrogen content for center points 

 

The hydrogen content for each of the fractions and the whole bio-oil is shown in Figure 85 

for the center point tests with standard deviations shown for triplicate analyses. 
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The hydrogen content for each of the first three fractions (SF1, SF2, SF3) and the whole bio-

oil was found to be within the range of hydrogen for wood pyrolysis liquids reported by Oasmaa & 

Meier [38]. However the last fraction, SF4, had particularly high hydrogen content which may be 

attributed to the high water content.  

The sulfur content for each of the fractions and the whole bio-oil is shown in Figure 86 for 

the center point tests with standard deviations shown for triplicate analyses. It is shown the SF4 

typically exhibited the highest sulfur content, but no other clear trends were observed. It is shown that 

most of the center point runs produced bio-oil with sulfur contents on the lower end of the expected 

range for pyrolysis liquids from wood. 
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Figure 86. Bio-oil sulfur content for center points 

 

The ash content is required for the elemental analysis to estimate the oxygen content of the 

bio-oil, but recall the ash content is determined using the TGA analysis previously discussed. The ash 

content for the first three fractions is shown in Figure 87 for all center points with standard deviations 

for duplicate tests. The ash analysis for SF4 was not performed for all runs as shown. Therefore, the 

ash content for the whole bio-oil shown in Figure 87 is calculated based on the assumption that the 

contribution from SF4 is negligible. For four separate tests to determine the ash content of SF4 from 
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differen

ered negligible. In general, the ash content for the center point 

tests is w

t tests (as shown in Table 79 of Appendix D), the average ash content was found to be 0.028 

%-wt. For these four tests, the average mass fraction of SF4 was 1.0 %-wt. of the total bio-oil. 

Therefore, the ash contribution from SF4 to the whole bio-oil ash content for these tests is only 

0.00028 %-wt., which can be consid

ithin the range for pyrolysis liquids as reported by Oasmaa & Meier [38] as shown below. 
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Figure 87. Bio-oil ash content for center points 

 

The elemental oxygen content in the bio-oil fractions was then calculated by subtracting the 

contributions of carbon, nitrogen, hydrogen, sulfur and ash from 100%. This calculation assumes no 

other elements have major contributions to the composition. As just discussed, also recall that the ash 

content was not determined ered negligible for 

the oxygen calculation for SF4 and for the whole bio-oil. The calculated oxygen content for the center 

point te

for all SF4 samples, so the ash contribution is consid

sts for each fraction and the whole bio-oil is shown in Figure 88. Note that the fractions with 

higher water content (SF2 and SF4) have oxygen contents that are above the range for pyrolysis 

liquids as reported by Oasmaa & Meier [38] as shown. The remaining fractions and the whole bio-oil 

fraction have oxygen contents that are within the range for pyrolysis liquids from wood.  
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Figure 88. Bio-oil oxygen content for center points 

 

A regression model was performed for each of the main elements (carbon, hydrogen and 

oxygen content in the whole bio-oil) with data obtained as discussed. Given that many of the bio-oil 

samples had nitrogen values below the detection limit, a model for nitrogen content would provid

little if any insight. Similarly,  among different test 

conditions, it was assumed a model for sulfur content would also be of little value.  

del could be 

improved by adding complexity to the model such as cubed terms or more interaction terms, but this 

was also not investigated further.  

e 

 as the sulfur values were not found to vary greatly

The residuals for the carbon content data are shown in Figure 144 of Appendix D, and appear 

satisfactory for performing a linear regression model. The resulting model was found to be significant 

(reject Ho1) with a high R2 value of 97%, however the lack of fit was found to be significant as shown 

in Table 37. As with the carbon dioxide yield model, the significance of lack of fit for carbon content 

was marginal but still considered significant at the 95% confidence level. The details of the carbon 

content model are shown in Table 81 of Appendix D. A reduced model was developed by removing 

the 10 insignificant terms for which Ho3 could not be rejected; however this did not improve the lack 

of fit of for the reduced model. As the lack of fit was found to be significant and Ho2 could not be 

rejected, the model was not investigated further. It is possible that the carbon content mo
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Table 37. Bio-oil carbon content model, statistics summary 

Statistic Value Significant Value Significant Hypothesis tests

R2
0.970 - 0.951 - -

FANOVA 35.18 √ 121.4 √ FANOVA  > F0.05,k,ν *

F0.05,k,ν 2.424 - 2.579 - Reject Ho1

FLOF 6.10 √ 6.33 √ FLOF > F0.05,λ,m-1

F0.05,λ,m-1 4.74 - 2.84 - Don't reject Ho2

t0.05,ν 2.13 - 2.06 - -
|t| statistics 

for model terms Value Significant Value Significant Hypothesis tests

β0 224.22 √ 390.63 √ |t| > t0.05,ν Reject Ho3

β1 18.98 √ 19.03 √ |t| > t0.05,ν Reject Ho3

β2 0.41 X - - |t| < t0.05,ν Don't reject Ho3

β3 0.10 X - - |t| < t0.05,ν Don't reject Ho3

β4 8.26 √ 8.28 √ |t| > t0.05,ν Reject Ho3

β12 0.08 X - - |t| < t0.05,ν Don't reject Ho3

β13 1.60 X - - |t| < t0.05,ν Don't reject Ho3

β23 0.98 X - - |t| < t0.05,ν Don't reject Ho3

β14 2.13 √ 2.14 √ |t| > t0.05,ν Reject Ho3

β24 1.27 X - - |t| < t0.05,ν Don't reject Ho3

β34 1.23 X - - |t| < t0.05,ν Don't reject Ho3

11 6.70 √ 7.0 √ |t| > t0.05,ν Reject Ho37β
β22 0.05,ν o30.20 X - - |t| < t  Don't reject H

β33 0.25 X - - |t| < t0.05,ν Don't reject Ho3

β44 1.67 X - - |t| < t0.05,ν Don't reject Ho3

FMUT FMUT < F0.05,r-k,ν

F0.05,r-k,ν Don't reject Ho4

Note: * The null hypothesis Ho1 is rejected the full model and the reduced model

1.64

2.54

Full Reduced

 

 

The resulting residuals for the hydrogen content in the whole bio-oil compared to the values 

predicted by the full model are shown in Figure 145 of Appendix D, and suggest a regression model 

is appropriate. The resulting full model for hydrogen content was not found to have a particularly 

high R2 value (85.7%), however the F-test was used to reject Ho1 which shows the model is still 

significant at 95% confidence as seen in Table 38. As compared to the carbon content model, there 

was clearly no lack of fit in the hydrogen content model, so Ho2 was also rejected. A reduced model 

was developed by eliminating 11 insignificant terms, and the reduced model was also found to be 

significant with no significant lack of fit, and was more significant than the full model (use the MUT 

F-test to accept HO4). The details of this model are shown in Table 82 of Appendix D.  

The resulting form of the hydrogen content in the whole bio-oil is represented by Equation 

30, noting that it is only a function of heat carrier temperature, feed rate and feed rate squared.  
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Table 38. Bio-oil hydrogen content model, statistics summary 

Statistic Value Significant Value Significant Hypothesis tests

R2
0.857 - 0.773 - -

FANOVA 6.42 √ 29.5 √ FANOVA  > F0.05,k,ν *

F0.05,k,ν 2.424 - 2.975 - Reject Ho1

FLOF 0.22 X 0.53 X FLOF < F0.05,λ,m-1 *

F0.05,λ,m-1 4.74 - 2.68 - Reject Ho2

t0.05,ν 2.13 - 2.06 - -
|t| statistics 

for model terms Value Significant Value Significant Hypothesis tests

β0 244.20 √ 445.81 √ |t| > t0.05,ν Reject Ho3

β1 7.98 √ 8.34 √ |t| > t0.05,ν Reject Ho3

β2 0.06 X - - |t| < t0.05,ν Don't reject Ho3

β3 0.73 X - - |t| < t0.05,ν Don't reject Ho3

β4 3.36 √ 3.52 √ |t| > t0.05,ν Reject Ho3

β12 0.56 X - - |t| < t0.05,ν Don't reject Ho3

β13 0.06 X - - |t| < t0.05,ν Don't reject Ho3

β23 0.42 X - - |t| < t0.05,ν Don't reject Ho3

β14 0.76 X - - |t| < t0.05,ν Don't reject Ho4

β24 0.15 X - - |t| < t0.05,ν Don't reject Ho3

β34 0.54 X - - |t| < t0.05,ν Don't reject Ho3

β11 2.98 √ 2.59 √ |t| > t0.05,ν Reject Ho3

β22 1.33 X - - |t| < t0.05,ν Don't reject Ho3

β33 1.98 X - - |t| < t0.05,ν Don't reject Ho3

β44 2.03 X - - |t| < t0.05,ν Don't reject Ho3

FMUT FMUT < F0.05,r-k,ν

F0.05,r-k,ν Don't reject Ho4

Full Reduced

1.47

2.51

Note: * The null hypotheses Ho1 and Ho2 are rejected the full model and the reduced model  
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                     Equation 30 

 

The model for hydrogen content implies that as temperature and heat carrier feed rate are 

increased, the hydrogen content decreases. This effect is likely related to the effect determined by the 

moisture content model. The moisture content model showed that for a constant auger speed and 

nitrogen flow rate, the moisture content in the bio-oil decreased with increasing temperature and 

increasing heat carrier feed rate. The modeled hydrogen content in the bio-oil is show

nction of heat carrier feed rate and temperature. Note that the overall decrease, though 

apparent, is relatively minor in terms of the overall percentage of the bio-oil. The predicted and 
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hydrogen content valu nd prediction 

intervals. 
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Figure 89. Modeled bio-oil H content as a function of heat carrier temperature and feed 
rate 

 

The bio-oil oxygen content model was also investigated after the residuals as shown in Figure 

47 of Appendix D were considered adequate for regression modeling. The full model was found to 

be significant with an R2 value of 0.969 (Ho1 rejected), and no significant lack of fit was found (reject 

Ho2). Besides the intercept term, there were three additional significant ter

rejected. These details are summarized in Table 39 below. The detailed statistical analysis is saved for 

Table 8 Appendix D. In an attempt to reduce the model to fewer significant terms, it was found 

that the

1

ms for which Ho3 could be 

3 of 

 lack of fit became significant (Ho2 can not be rejected for reduced model). As with previous 

cases where the lack of fit was determined to be significant, there is a potential to develop a more 

complex model to decrease the lack of fit, however this was not investigated. However the full model 

is significant, and the resulting predicted versus actual oxygen values are shown in Figure 90 with the 

95% confidence and prediction intervals. 
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Table 39. Bio-oil oxygen content model, statistics summary 

Statistic Value Significant Value Significant Hypothesis tests

R2 0.969 - 0.945 - -

FANOVA 33.09 √ 106.4 √ FANOVA  > F0.05,k,ν 
a

F0.05,k,ν 2.424 - 2.759 - Reject Ho1

FLOF 2.10 X 5.85 √ FLOF < F0.05,λ,m-1 
b

F0.05,λ,m-1 4.74 - 2.84 - Reject Ho2

t0.05,ν 2.13 - 2.06 - -
|t| statistics 

for model terms Value Significant Value Significant Hypothesis tests

β0 319.10 √ - - |t| > t0.05,ν Reject Ho3

β1 18.09 √ - - |t| > t0.05,ν Reject Ho3

β2 0.47 X - - |t| < t0.05,ν Don't reject Ho3

β3 0.05 X - - |t| < t0.05,ν Don't reject Ho3

β4 8.19 X - - |t| < t0.05,ν Don't reject Ho3

β12 0.10 X - - |t| < t0.05,ν Don't reject Ho3

β13 1.65 X - - |t| < t0.05,ν Don't reject Ho3

β23 1.04 X - - |t| < t0.05,ν Don't reject Ho3

β14 2.13 X - - |t| < t0.05,ν Don't reject Ho3

β24 1.30 X - - |t| < t0.05,ν Don't reject Ho3

β34 1.09 X - - |t| < t0.05,ν Don't reject Ho3

β11 6.70 √ - - |t| > t0.05,ν Reject Ho3

β22 0.11 X - - |t| < t0.05,ν Don't reject Ho3

β33 0.27 X - - |t| < t0.05,ν Don't reject Ho3

β44 2.46 √ - - |t| > t0.05,ν Reject Ho3

Full Reduced

Notes: a -  The null hypotheses Ho1 is rejected the full model and the reduced model

b -  The null hypotheses Ho2 is rejected the full model, but not rejected for the reduced model  
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Figure 90. Actual vs. predicted oxygen content 
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The full model educed model 

equation is not presented because it has a significant lack of fit). Though difficult to interpret, the 

terms that were found to be significant (as shown in Table 39) dominate the equation.  

 

                           Equation 31 

 

The model basically predicts that with increasing temperature and heat carrier feed rate, the 

oxygen content in the bio-oil will decrease. This is in general agreement with some of the other 

findings: higher temperatures and heat carrier feed rates tend to increase the liquid bio-oil yield. With 

higher bio-oil yields the moisture content in the bio-oil was found to decrease, which will have an 

effect in decreasing the total oxygen content.  

With the amounts of elemental carbon, hydrogen and oxygen known in the bio-oil, the 

interesting concepts revealed in Figure 63, Figure 65, Figure 66 and Figure 70 can be extended to 

offer a possible ‘unifying’ explanation. In Figure 63, Figure 65, Figure 66, it was shown that the gas 

yields all increase with bio-oil yield. Due to gas species with hydrogen and oxygen, it was theorized 

that this helps explain why the moisture content in the bio-oil also decreases with yield as shown in 

Figure 70. This concept is extended further in Figure 91 to show that biochar yield decreases with 

increasing bio-oil yields. As discussed previously, this is likely attributed to high heat transfer rates 

and short residence times that limit secondary reactions which can increase char formation [32, 119].  

The decrease in char yield as a function of bio-oil yield can also be used to help explain the 

fascinating results shown in Figure 92. Note that each response is fit with a linear regression line to 

indicate a correlation between product yield and bio-oil yield. When the biochar yield decreases, there 

is more available carbon in the original biomass available for conversion into liquid and gases. As 

Figure 92 shows that bio-oil total carbon content increases with yield, it is clear that although the 

formation of carbon containing gases is a competing reaction [27], the formation does not result in 

significant carbon losses from the liquid. The total oxygen content in the bio-oil is shown to decrease 

with yield, which may be attributed to oxygen containing gases (CO and CO2) being formed. It is 

interesting to note that the slope of the regression lines for the carbon content and o

the bio-oil have the same mag

 for oxygen content is described by Equation 31 below (the r

2
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Figure 91. Biochar and non-condensable gas yield vs. bio-oil yield for 29 tests 
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Figure 92. Bio-oil C, O, H, H2O and water insoluble contents as a function of yield for 30 
tests 
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As presented previously (Figure 70), Figure 92 shows that moisture content decreases with 

bio-oil yield, with a similar slope to the decrease in total oxygen content. With decreasing water 

content as a function of bio-oil yield, a subtle result is a decrease in overall hydrogen content in the 

bio-oil. Though this result is not readily apparent in Figure 92, it is shown in the negative slope of the 

regression line. This decrease in hydrogen content for increasing bio-oil yield may also be attributed 

to the increasing yields of hydrogen containing gas species such as CH4 (Figure 65). Also shown in 

Figure 92 for comparison purposes is the water insoluble content of the bio-oil, which is seen to 

increase with bio-oil yield as discussed previously (Figure 78).  

To summarize and simply some of the underlying concepts resulting from interpretation of 

Figure 92, a so-called Van Krevelen diagram [121] was prepared as shown in Figure 93 for all 30 

tests. This plot compares the atomic oxygen:carbon  ratio vs. the atomic hydrogen:carbon ratio, and a 

linear regression fit is shown to indicate a correlation between the ratios. This image clearly illustrates 

that in general, as bio-oil yield increases, both the H:C ratio and the O:C ratio decrease. 
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Figure 93. Bio-oil H:C ratio vs. O:C ratio (Van Krevelen diagram) for all 30 tests 

 

oxygen:carbon ratio all decrease with increasing bio-oil yield,  it was suspected this was largely due 

Though these results show that total oxygen content, the hydrogen:carbon ratio and the 
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to the re

ng bio-oil yield, as was the case with 

for the w

pproximately 

15%-wt. to 30%-wt, and has a significant increasing linear relationship with increasing bio-oil yield.  

 

duction in water content (see Figure 70). To investigate this further, the analysis as presented 

in Figure 92 and Figure 93 was extended to consider the bio-oil on a dry basis. With known amounts 

of elemental carbon, hydrogen and oxygen in the wet bio-oil (ultimate analysis), as well as the 

moisture content of the bio-oil (Karl-Fischer titration), the elemental composition can be calculated 

for theoretically moisture-free bio-oil. The extenuation of Figure 92 is shown in Figure 94 for the 

elemental contents of carbon, oxygen, and hydrogen on a dry bio-oil basis as a function of dry bio-oil 

yield, as well as the water insoluble content on a dry bio-oil basis. It is shown here that there is not a 

significant linear relationship of increasing carbon with increasi

et bio-oil analysis. However with increasing yield, the organic oxygen content in the bio-oil 

is still shown to decrease slightly, independent of oxygen in the bio-oil water content. The results 

from this analysis therefore support the previous theory that a portion of the oxygen from the original 

biomass is converted to oxygen containing gases at higher bio-oil yield conditions (see Figure 63). On 

a dry bio-oil basis, the water insoluble portion of the bio-oil is shown to range from a
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Figure 94. C, O, H, H2O and H2O insoluble contents as a function of yield for 30 tests, 
dry basis 
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Whereas on a wet bio-oil basis the hydrogen content was shown to decrease with yield (due 

to decreasing water content), on a dry basis the hydrogen content is shown to increase slightly with 

increasing yield. The analysis presented in Figure 93 was then extended to consider the whole bio-oil 

hydrogen:carbon ratio and oxygen:carbon ratio on a dry basis as shown in Figure 95. Similar to the 

wet basis analysis, the oxygen:carbon ratio on a dry basis also decreases with increasing bio-oil yield, 

though less dramatically. This result is shown by comparing Figure 92 and Figure 94. However, 

unlike the wet basis analysis, the hydrogen:carbon ratio increases with increasing bio-oil yield on a 

dry basis. The dry basis analysis in Figure 95 is seen to have a much closer grouping of elemental 

ratios on the Van Krevelen diagram compared to the wet basis analysis. Based on these results, the 

reduction in the hydrogen:carbon ratio and the oxygen:carbon ratio (on a wet basis) with increasing 

bio-oil yields is largely due to decreasing water content. However it is important to note the results 

show there is still a reduction in the oxygen content of the organic portion of the bio-oil as yield 

increases.  
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Figure 95. Bio-oil H:C ratio vs. O:C ratio for all 30 tests, including dry basis analysis 

 

Total acid number. The total acid number was determined for six center points for all four 

fractions, except the test was not performed for SF4 for Run 12. The analytical data for these test  

performed in duplicate, is shown in  

Figure 96. The whole bio-oil for five of t e t tests averaged a TAN value of 108 ± 0.64 

s,

 Table 84 of Appendix D. These results are shown graphically in

h center poin
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mg/g, where SF2 has the highest TAN, followed by SF1, SF3 and SF4. As shown in Figure 96, the 

SF1, SF3 and whole bio-oil values are within the range of recently published values from bio-oil 

produced from oak wood and pine wood in the MSU auger reactor system [86]. 

 

0
10
20
30
40
50
60
70
80
90

100
110
120
130

ta
l A

ci
d 

N
um

be
r 

(m
g/

g)

12 15 17 19 21 22

Center Point tests

T
o

SF1
SF2
SF3
SF4
Whole

Reported by Ingram et al. for whole bio-oil from 1.0 kg/hr 
auger reactor. Source: Energy & Fuels 2008, 22 , 614-625

Oak wood/bark (120 mg/g)

Pine bark (84 mg/g)
 

Figure 96. Total acid number for center points 

 

Gas chromatography/Mass spectrometry (GC/MS). The GC/MS analysis was used to 

understand and interpret the chemical composition of the bio-oils from the auger rector, which may 

be useful to compare to other studies. Each bio-oil fraction was analyzed as discussed previously, and 

the concentrations of 32 compounds were quantified (Table 20). However for initial qualitative 

analysis, the chromatogram output from the GC/MS is often instructive. For instance t

chromato , 

and the SF4 chromatogram for the same test is shown in Figure 98. Visual comparison of these two 

figures 

he 

gram from SF1 for the test with the highest bio-oil yield (Run 20) is shown in Figure 97

reveals that there are indeed variations in chemical composition between SF1 and SF4. The 

peaks for certain compounds that were among those quantified are labeled on the figures. The 

chromatograms for SF2 and SF3 for the same test can be found in Figure 148 and Figure 149 of 

Appendix D, respectively.  
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(1) Acetic acid (2) 2-Propanone, 1-hydroxy- (3) Phenol, 2-methoxy-4-methyl (4) Phenol, 2,6-dimethoxy- 
(5) 4 methyl 2,6 dimethoxy phenol (6) Levoglucosan (7) Ehtanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)

 

Figure 97. GC/MS chromatogram for SF1, Run #20 (bio-oil max yield) 

 

A sample of the complete quantified GC/MS data for run 20 as shown in Figure 97 and 

Figure 98 can be found in Ta ot presented for each 

run however, and instead the compounds will be grouped together as discussed previously.  

ble 85 of Appendix D. This complete analysis is n

The GC/MS data for each run, with compounds grouped by chemical families, can be found 

summarized in Appendix D as follows: Table 86 for SF1, Table 87 for SF2, Table 88 for SF3, Table 

89 for SF4, and Table 90 for the resulting whole bio-oil. Inspection of the results indicated that 

though there was some difference in certain compounds among the fractions, overall the values were 

similar among different runs. Regression modeling procedures were attempted for various compounds 

and grouping of compounds, but the resulting models were insignificant and did not warrant further 

investigation. Instead, the data was compared to known information on bio-oil chemical composition, 

and organized to compare the composition among bio-oil fractions.  
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1
2

(1) Acetic acid (2) 2-Butanone, 3-hydroxy (3) Furfual (4) Phenanthrene - internal standard

3

4

 

Figure 98. GC/MS chromatogram for SF4, Run #20 (bio-oil max yield) 

 

As the reactor for this project is a first gene tion design, it is instructive to compare the 

compou

pared to 

the valu

so found to be within the range, 

and though levoglucosan is shown to be slightly higher than the range reported by Diebold, other 

references such as Mohan et al. [4] would consider this within range or even on the low end. It is 

interesting to note that most of the phenolic compounds were found to be lower than the common 

values for pyrolysis oil.  

ra

nds in the bio-oil to known information. For this purpose, a comprehensive list of common 

chemicals and their concentration in bio-oil was referenced by Diebold [122]. The “low” and “high” 

values common for bio-oil were tabulated for 27 of the 32 quantified compounds, and com

es averaged from the whole bio-oil for the 6 center points runs and the average for all 30 runs. 

The results of this comparison are shown in Table 40. Note that the last column indicates if the values 

from this study are in agreement with the values according to Diebold (denoted by a “√”), higher than 

the values reported (denoted by a “+”), or lower than the values reported (denoted by a “-”).   

In this study, 13 of the quantified chemical compounds (48%) were found to be in agreement 

within the range as reported by Diebold [122]. These compounds, highlighted in gray, also represent 

at least one compound from each of the five major groupings (furans, phenols, guaiacols, syringols, 

and other oxygenates) as described in Table 20. Acetic acid was al
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Table 40. GC/MS characterized compound comparison, whole bio-oil 

Chemical compound Low High
30 run 

average
Center point

average

Comparison

to typical b

Acetic acid 0.50         12.00       3.01 2.95 √
2-Propanone, 1-hydroxy- 0.70         7.40         2.16 2.49 √
2-Butanone, 3-hydroxy- - - 0.19 0.19
Furfural 0.10         1.10         0.21 0.27 √
2-Furanmethanol 0.10         5.20         0.22 0.22 √
2-Cyclopenten-1-one, 2-methyl- 0.10         1.90         0.03 0.03 -
2-Furancarboxaldehyde, 5-methyl- 0.10         0.60         0.07 0.07 -
2H-Pyran-2-one - - 0.12 0.10
1,2-Cyclopentanedione, 3-methyl- 0.10         0.50         0.59 0.59 +
2(5H)-Furanone, 3-methyl- 0.10         0.60         0.19 0.24 √
Phenol 0.10         3.80         0.04 0.04 -
Phenol, 2-methoxy- 0.10         1.10         0.52 0.51 √
Glycerin - - 0.18 0.30
Phenol, 2-methyl- 0.10         0.60         0.04 0.04 -
Phenol, 4-methyl- 0.10         0.50         0.06 0.07 -
Phenol, 3-methyl- 0.10         0.40         0.05 0.05 -
Phenol, 2-methoxy-4-methyl- 0.10         1.90         0.23 0.24 √
Phenol, 2,5-dimethyl- 0.10         0.40         0.04 0.04 -
2,4-Dimethylphenol 0.10         0.30         0.04 0.04 -
Phenol, 2-ethyl- 0.10         1.30         0.04 0.04 -
Phenol, 3-ethyl- 0.10         0.30         0.04 0.04 -
Phenol, 3,4-dimethyl- 0.10         1.90         0.04 0.04 -
Phenol, 4-ethyl-2-methoxy- - - 0.11 0.11

ugenol 0.10         2.30         0.15 0.14 √

Typical bio-oil rangea This study

E
2-Furancarboxaldehyde, 5-(hydroxymethyl) 0.30         2.20         0.33 0.34 √
Phenol, 2,6-dimethoxy- 0.70         4.80         1.00 1.03 √
Phenol, 2-methoxy-4-(1-propenyl)-, (E)- 0.10         7.20         0.33 0.34 √
4 methyl 2,6 dimethoxy phenol - - 0.75 0.80
Vanillin 0.10         1.10         0.42 0.41 √
Hydroquinone 0.10         1.90         0.10 0.11 √
1,6-Anhydro-β-D-glucopyranose 0.40         1.40         1.92 2.07 +
Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl) 0.10         0.30         1.21 1.21 +
Sum 4.80       63.00     14.46 15.18

Notes: All values in %-wt. a - Reference: Diebold, J.P. A review of the chemical and physical mechanisms of 
the storage stability of fast pyrolysis bio-oils. In Fast pyrolysis of biomass: A handbook ,CPL Press: Newbury, 
UK, 2005; Vol. 2. b - √ = Values within range for typical bio-oils, - = Values less than typical range for 
typical bio-oils, + = Values greater than range for typical bio-oils.

 

resented as the average values for the 6 center point runs, and the standard 

 

The quantified compounds were also cross-checked with those as reported by Ingram et al. 

[86] and Garica-Perez et al. [88] for bio-oil produced from wood in two different lab-scale auger 

reactors. Ingram et al. identified 17 of the 32 quantified compounds in this study, and Garcia-Perez et 

al. identified 8 of the 32 compounds. 

The concentration of acetic acid, levoglucosan, and the remaining groups of chemical 

families are shown as a function of bio-oil fraction and whole bio-oils in Figure 99 below. The 

fractions SF1 – SF4 are p
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deviations are sh io-oil is 

shown for the center point averages (Whole – CP), and can be compared to the resulting whole bio-oil 

data averaged from all runs (Whole – 30 tests). When comparing the two whole bio-oils, this image 

illustrates that there is minimal difference among chemical speciation as a function of test conditions. 

When considering the deviation among runs, the composition of the bio-oil is basically identical for 

the center point average (same conditions) and the total experimental average (many different 

conditions). Figure 99 shows that the average acetic acid does not vary greatly among fractions, but 

that the instrument and procedure may cause some difficulty in quantifying acetic acid. This is noted 

because many of the other quantified compounds have much lower deviations among the tests, and 

because all of the other bio-oil tests for the center point runs have shown these runs are very similar in 

composition. It is also shown in Figure 99 that fraction SF1 and SF3 have very similar chemical 

compositions. Besides phenols (and furans to a less extent), SF2 was found to have lower levels of 

levoglucosan, guaiacols, and syringols compared to SF1 and SF3. Fraction SF4 had low levels of 

furans, guaiacols, syringols, virtually no phenols and no levoglucosan. 
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Figure 99. GC/MS quantified volatile compounds 

 

The GC/MS data presented in Figure 99 can alternatively be presented by fraction rather than 

by compound as shown in Figure 100. This image clearly shows the similarities between SF1 and 

SF3, as well as the general similarity of these two fractions to the whole bio-oil. Also note the total 
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amount of mass quantified by the procedure varies among fraction: from less than 5 %-wt. for SF4 to 

almost 18 %-wt. for SF1. As discussed, there are many different compounds in bio-oil, and though 

the GC/MS instrument detects many of them, it is only calibrated to quantify the concentration of 

certain, common compounds. Also, a significant portion of bio-oil is non-volatile, implying that many 

of the compounds present can not be quantified with GC/MS analysis. Oasmaa & Meier [38] estimate 

that only 35%-wt. of the bio-oil mass is volatile, with the balance made up of water, water insolubles, 

and non-volatile compounds. Based on the low amount of volatiles quantified (< 18%-wt.), this 

implies that there is an opportunity to identify and quantify more of the compounds in the bio-oil 

form the auger reactor. 
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Figure 100. GC/MS quantified volatile compounds by fraction for center points 

 

The data presented in Figure 100 can be extended to consider the total mass of bio-oil that 

was quantified. Recall that the KF moisture content test determines what percentage of the bio-oil is 

water, and the water insoluble test determines a certain percentage of the bio-oil mass as well. When 

considering the mass that is quantified by f bio-oil 

that remains unidentified. Refer to Figure 150 in Appendix D for an image of the quantified mass for 

all runs.  

 GC/MS analysis, there is some additional mass o
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Viscosity. The viscosity of some representative bio-oil samples was investigated for 

comparison purposes. Similar to the higher heating value of bio-oil, viscosity is a strong function of 

moisture content. Therefore, in addition to testing the six center point tests (SF1 – SF3), the minimum 

and maximum water content samples were also investigated. The SF4 fraction was not tested for 

viscosity because it’s high water content implies the viscosity will be very similar to that of water and 

is therefore of little interest. Also, the small volume available from this sample precludes viscosity 

testing. 

Viscosity measurements were taken every 30 seconds for five minutes at a constant shear 

rate, and a minor shear thinning effect was observed with time. Typically this effect was not observed 

past five minutes as shown in Figure 101. This figure shows data from the maximum bio-oil yield test 

(run 20). An attempt was made to analyze each fraction at the same shear rate, however based on the 

large difference in viscosity among fractions; different spindles were required for analysis. This 

resulted in shear rates that ranged from 38 s-1 to 98 s-1, which is actually a very close range compared 

to the whole possible range. The standard deviation among these 11 measurements is shown in Figure 

102, and the viscosities at the center points are averages of the six center points and are shown with 

pooled standard deviations. The analytical data for these tests is shown in Table 91 of Appendix D. 
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Figure 101. Viscosity measurements for Run #20 vs. time 
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As shown in Figure 102, the viscosity range is in general agreement with published literature, 

though it is often difficult to compare viscosity measurements due to differences in temperatures, 

shear rates, testing methods and other inconsistencies. The viscosity measurements for this study were 

taken at 40°C as recommended by Oasmaa et al. in a 2005 report on the norms and standards for 

pyrolysis liquids [117]. Note that two of the comparisons from Ingram et al. as shown in Figure 102 

are at 50°C and different shear rates. However the “typical range” for wood derived bio-oil as 

reported by Bridgwater is 2007 is 40 – 100 cP [21], which is shown in Figure 102 as well, and it is 

likely the mixed bio-oil from this study would fall within that range. Unlike other properties, 

however, viscosity was not mass averaged to determine the whole bio-oil value.  
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Figure 102. Bio-oil viscosity range 

 

Vapor temperature. To conclude the results section, a brief discussion is given on the 

temperature of the vapor exiting the reactor. This temperature is useful because it gives insight to the 

actual “reaction” temperature rather than the heat carrier inlet temperature. To aid in future discussion 

and comparison efforts, the average of  the “vapor phase reaction temperature” was estimated as 
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reactor temperatures 1 and 2 as shown schematically in Figure 103. Recall that for all experiments, 

these temperatures were averaged over the steady state duration as shown in Table 53 of Appendix D. 

The dimensions related to Figure 103 are shown in Figure 26, and the thermocouple configuration is 

shown in Figure 113 of Appendix A. 

 

 

Figure 103. Reaction temperature schematic 

 

As the heated solid heat carrier reacts with biomass in the reactor, the vapor products leave at 

a certain temperature that is a function of the heat carrier temperature, but also other a function of 

other parameters. This is shown by the variance in the data points plotted in Figure 104 (all tests) as a 

function of heat carrier temperature only. For instance it has been shown that auger speed and heat 

carrier feed rate are significant factors for many responses, so it is likely these factors will also 

influence the reaction temperature as defined as the average of reactor temperatures 1 and 2.  
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Figure 104. Vapor temperatures vs. heat carrier temperatures 
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Therefore, a regression model was performed as described previously, to determine the 

reaction temperature as a response to multiple factors. The details will not be discussed, but the 

residuals were found to be acceptable as shown in Figure 151 of Appendix D, and the subsequent full 

model fit the data very well with an R2 value of 0.981. The statistical summary is shown in Table 41 

below, and the details are shown in Table 92 of Appendix D.  

 

Table 41. Reaction temperature model, statistics summary 

Statistic Value Significant Value Significant Hypothesis tests

R2 0.981 - 0.971 - -

FANOVA 55.40 √ 160.8 √ FANOVA  > F0.05,k,ν *

F0.05,k,ν ject Ho1

FLOF 3.58 X 0.66 X FLOF < F0.05,λ,m-1 *

F 4.74 - 2.59 - Reject H

2.424 - 2.621 - Re

0.05,λ,m-1 o2

t0.05,ν 2.13 - 2.06 - -
|t| statistics 

for model terms Value Significant Value Significant Hypothesis tests

β0 641.54 √ 1136.5 √ |t| > t0.05,ν Reject Ho3

β1 25.12 √ 25.71 √ |t| > t0.05,ν Reject Ho3

β2 1.35 X - - |t| < t0.05,ν Don't reject Ho3

β3 4.29 √ 4.39 √ |t| > t0.05,ν Reject Ho3

β4 9.65 √ 9.88 √ |t| > t0.05,ν Reject Ho3

12 1.11 X - - |t| < t0.05,ν Don't reject Ho3β
13 0.57 X - - |t| < t0.05,ν Don't reject Ho3β
23 0.60 X - - |t| < t0.05,ν Don't reject Ho3β
14 4.41 √ 4.51 √ |t| > t0.05,ν Reject Ho3β
24 1.75 X - - |t| < t0.05,ν Don't reject Ho3β
34 0.30 X - - |t| < t0.05,ν Don't reject Ho3β

11 0.29 X - - |t| < t0.05,ν Don't reject Ho3β
22 0.93 X - - |t| < t0.05,ν Don't reject Ho3β
33 0.22 X - - |t| < t0.05,ν Don't reject Ho3β

β44 2.43 √ 2.43 √ |t| > t0.05,ν Reject Ho3

FMUT FMUT < F0.05,r-k,ν

F0.05,r-k,ν Don't reject Ho4

Note: * The null hypotheses Ho1 and Ho2 are rejected the full model and the reduced model

Full Reduced

1.32

2.59

 

 

Both the full model and the reduced model were found to be significant based on the F-test 

(reject Ho1), and there was no significant lack of fit for either model (reject Ho2). The model utility test 

showed that the reduced model was more significant than the full model (don’t reject Ho4), and the t-

tests eliminated 9 pa perature as rameters that were insignificant. The expected vapor reaction tem
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measure

 and not the physical quantities.  

 

             Equation 32 

 

d compared to the temperature predicted by the model is shown in Figure 105, along with 

95% confidence and prediction intervals. The reduced model has a very low RMSE of 1.7°C. 

The resulting equation from the reduced model for the reaction temperature is shown in 

Equation 32, noting there is a significant interaction term and a significant higher order term. Also 

recall that the coefficients are associated with the coded factors

2
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Figure 105. Actual vs. predicted reaction temperature 

 

The absolute values of the t-statistics from Table 92 are shown graphically in Figure 106. As 

fully expected, heat carrier temperature is the most influential term in modeling the reaction 

temperature. However heat carrier feed rate is also shown to be significant, which is based the effect 

it has on heat transfer as previously discussed. 
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Figure 106. Absolute values for t-test statistics for vapor temperature model 

 

In general, the models shows that the reaction temperature increases for increasing heat 

carrier temperature, but it also increases as feed rate and auger speed increase. This result provides 

some insight into the heat transfer mechanisms and suggests higher heat carrier feed rates and auger 

speeds provide higher heat transfer rates. This result is in agreement with the bio-oil yield model that 

shows yield increases for high heat carrier feed rates and high auger speeds (at high temperatures). 

This also agrees with general fast pyrolysis knowledge that yield is increased with high heat transfer 

rates.  

The modeled vapor reaction temperature is shown in Figure 107 as a function of heat carrier 

temperature and feed rate while holding the nitrogen flow rate and auger speed constant at the center 

point conditions. This representation strengthens the understanding of the relationship between the 

heat carrier temperature and the “optimal” fast pyrolysis temperature as reported by the literat re. For 

instance the bio-oil yield rrier temperature 

around C, which is shown to correspond to a vapor temperature of 490°C for 18 kg/hr. This is an 

expecte

u

model predicts the highest liquid yields occur at a heat ca

625°

d optimal vapor temperature value for biomass fast pyrolysis [21].  
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ater. Similarly, the critical F-value for lack of fit is different for each model, but typically it 

become

Figure 107. Modeled vapor temperature vs. heat carrier temperature 

 

Summary. The statistical results from the regression models are shown summarized in Table 

42 for the reduced models. Also recall that the root mean square error (RMSE) has the same units as 

the model response. The critical FANOVA value to indicate significance is a function of the model 

parameters, but for this study typical significance (95% confidence) occurs around F-values of 2.4 

and gre

s significant (95% confidence) for values of approximately 2.5 and greater.  

 

Table 42. Regression models, summary of statistics 

Other

Stat.

Bio-oil 
yield

(%-wt.)

Biochar 
yield

(%-wt.)

CO 
yield

 (%-wt.)

CO2 

yield
 (%-wt.)

KF 
moisture 
(%-wt.)

H2O
insolubles
(%-wt.)

C 
content 
(%-wt.)

H 
content 
(%-wt.)

O 
content 
(%-wt.)

Vapor 
RXN T.

(°C)

R2
0.984 0.948 0.980 0.833 0.907 0.912 0.951

RMSE 1.12 1.93 0.08 0.16 0.99 0.77 0.42

Yield models Bio-oil properties models

0.773 0.945 0.971
0.07 0.42 1.74

FANOVA 163.1 70.0 156.9 15.6 61.1 139.7 121.4 29.5 106.4 160.8

P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

FLOF 1.13 1.21 1.27 5.28 0.48 1.85 6.33 0.53 5.85 0.66  
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The significance of each term for all models is summarized below in Table 43, noting the 

grouping of main effects, interaction and higher order terms. Refer to Table 27 for the description of 

each term. Note that β1 (heat carrier temperature) and β4 (heat carrier feed rate) were significant terms 

for all the models, and β24, β22 and β33 were insignificant for all models. It is also noted that in 

general, the yield models tended to have more significant terms than the models for bio-oil properties. 

 

Table 43. Regression models, summary of significant terms 

Other

Term

Bio-oil 
yield

(%-wt.)

Biochar 
yield

(%-wt.)

CO 
yield

 (%-wt.)

CO2 

yield
 (%-wt.)

KF 
moisture 
(%-wt.)

H2O

insolubles
(%-wt.)

C 
content 
(%-wt.)

H 
content 
(%-wt.)

O 
content 
(%-wt.)

Vapor 
RXN T.

(°C)

β0 √ √ √ √ √ √ √ √ √ √

β1 √ √ √ √ √ √ √ √ √ √

β2 √ √ X X X X X X X X

β3 √ X √ √ X X X X X √
β4 √ √ √ √ √ √ √ √ √ √
β12 X X X X X X X X X X

β13 √ √ √ √ √ X X X X X

β23 X X √ √ X X X X X X

β14 √ X X X X X √ X X √

24 XX X X X X X X X Xβ

34 X X √ X X X X X X Xβ
β11 √ √ X √ √ X √ √ √ X

β22 X X X X X X X X X X

β33 X X X X X X X X X X
β44 √ √ √ X X X X √ √

Note:
X Term is not significant at 95% confidence level
√ Term is significant at 95% confidence level

H
ig

he
r 

or
de

r 
ef

fe
ct

s

√

Yield models Bio-oil properties models

M
ai

n 
ef

fe
ct

s
In

te
ra

ct
io

n 
ef

fe
ct

s

 

 

A summary of the analyzed bio-oil physical properties for the center point average and the 

maximum bio-oil yield sample (Run #20) is shown in Table 44, which compares the properties to 

typical bio-oil. Compared ample has a lower 

water content and oxygen content, and a higher carbon content all of which help to increase its 

heating value. This result is also reflected in Figure 92 and Figure 93.   

 

 

 

 

to the center point average, the highest bio-oil yield s
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Table 44. Bio-oil analysis summary and comparison 

Typical 

properties a

Bio-oil fraction > SF1 SF2 SF3 SF4 Whole SF1 SF2 SF3 SF4 Whole Whole

Mass yield
(%-wt. bio-oil) 47.5 31.9 18.8 1.8 100.0 45.4 31.6 20.8 2.1 100.0 100.0

Moisture content

Center point test average
(67.4 %-wt. bio-oil)

Maximum bio-oil yield test
(73.6%-wt. bio-oil)

(%-wt.) 16.5 41.3 17.8 65.9 25.7 10.7 37.5 18.2 71.0 22.0 20 - 35
Solids content

(%-wt.) 0.01  - 1.0
HHV (MJ/k 16 - 19

Viscosity
(cP @ 40°C) 115.6 5.3 146.0 - - 234.5 9.7 255.0 - - 40 - 100

Water insolubles
(%-wt., wb) 17.3 7.6 26.6 0.21 15.6 24.4 12.1 36.5 - 22.5 15 - 30

Ultimate analysis
C (%-wt., wb) 44.5 28.0 45.7 11.7 38.8 46.0 30.8 46.0 13.8 40.5 32 - 49
N (%-wt., wb) 0.045 0.035 0.072 0.070 0.047 0.035 0.008 0.028 0.008 0.025 0.0 - 0.3
H (%-wt., wb) 7.0 8.2 7.1 9.0 7.5 7.0 8.0 7.2 9.7 7.4 6.9 - 8.6
S (%-wt., wb) 0.006 0.006 0.004 0.011 0.006 0.000 0.006 0.007 0.012 0.004 0.006 - 0.05

Ash (%-wt., wb) 0.037 0.056 0.064 0.032 0.048 - - - - - 0.01 - 0.2
O - By diff. (%-wt., wb) 48.4 63.7 47.1 79.2 53.6 47.0 61.1 46.8 76.4 52.1 44 - 60

1.07 0.96 0.70 0.32 0.94 - - - - -
g) 18.7 12.1 19.2 6.5 16.4 19.2 13.3 19.5 7.0 17.1

 

  Notes: a – References: Bridgwater et al. [13], Czernik et al. [36], Oasmaa et al. [38] 
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CHAPTER 6.  CONCLUSIONS 

 

Based on the development of the auger reactor system, experimental testing procedures, and 

interpretation of the analyzed data as discussed, several conclusions can be made. These conclusions, 

along with future recommendations are discussed next. 

 

6.1 Research conclusions 

An operational lab-scale auger reactor for biomass fast pyrolysis was researched, designed, 

constructed, demonstrated and extensively tested. There is minimally published data on auger reactors 

for bio-oil production, and the results from this study contribute to the body of knowledge for fast 

pyrolysis. 

The engineering design and operational procedures are validated by the product yields well 

within the fast pyrolysis regime. This system achieved higher bio-oil yields than any published results 

from similar lab-scale reactors using similar feedstocks. The product composition of the bio-oil 

produced was very similar to accepted values as reported by published literature.  

Design. The auger reactor design is concluded to be suitable for fast pyrolysis processing. 

The tested heat carrier feed rates provide sufficient reaction heat and heat transfer rates. In practice, 

the auger reactor design holds promise for being a robust system capable of continuous processing 

with minimal carrier gas compared to other designs. For industrial sized systems, this may lead to 

lower operating costs due to minimal gas handling and compression equipment. The requirement for 

minimal carrier gas also suggests that the auger design may be more compact than other reactor types. 

Operation. The auger reactor system can be operated to obtain repeatable results with 

excellent mass closures near 100%. The mass balance procedure is adequate, including the estimation 

of non-condensable gas mass yield using Micro-GC data and a dry volume meter. The operating 

conditions to achieve high bio-oil yields have been established.   

Design of experiments. The results from this study indicate that the experimental design 

selected was not only adequate, but necessary to discover the existence of interaction effects and 

higher order terms. These significant terms, namely the interaction between auger speed and heat 

carrier feed rate, have not yet been discussed in the literature. The four factors and five levels of the 

design were carefully selected and allowed for a wide range of responses to be investigated. In 
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addition to the operating procedures, these experimental factors and levels allowed for the collection 

of data that was used to deve ll be discussed next.  

 

he bio-oil yield model is the interaction effect 

etween heat carrier temperature and auger speed. For heat carrier temperatures less than 550°C, 

higher auger speeds increase bio-oil yield whereas at temperatures below 550°C, low auger speeds 

el conclusion because it helps explain why lab-scale auger reactors 

that do 

e heat carrier material for a short time period. The hypothesis is that when no heat carrier 

material

econdary reactions, 

whereas

increasing temperature and heat carrier feed rate. This implies that as bio-oil yield increases, the 

loped several linear regression models that wi

6.1.1 Regression models 

Bio-oil yield. The most notable conclusion for t

b

increase bio-oil yield. This is a nov

not use a heat carrier material operate with such low auger speeds compared to those reactor 

systems that do use a heat carrier material. The conclusion from this study is that the introduction of 

heat carrier material can provide high liquid yields by improving heat transfer, but only if the biomass 

contacts th

 is used, longer solid residence times are required (via slow auger speeds) to provide 

sufficient reaction heat and time. 

Biochar yield. Biochar yield is minimized for similar conditions that favor bio-oil yield. To 

minimize biochar yield, high auger speeds are desired above 525°C to minimize s

 low auger speeds minimize biochar yield at temperature below 525°C by encouraging 

mixing. This conclusion provides insight into the flexibility of the auger reactor design, and the 

ability to easily shift the product distribution based on auger speed. 

Carbon monoxide yield. The conditions that favor carbon monoxide yield are similar to 

those that increase bio-oil yield. As the carbon monoxide yield increases it may contribute to a 

reduction in oxygen content in the organic portion of the bio-oil. 

Bio-oil moisture content. Moisture content was found to decrease for increasing heat carrier 

temperature and feed rate, which are conditions that favor high bio-oil yield and low biochar yield. 

For heat carrier temperatures above 525°C, high auger speeds are desired to decrease bio-oil moisture 

content.  

Bio-oil hydrogen content. Total elemental hydrogen in the bio-oil was found to decrease for 

increasing heat carrier temperature and feed rate. The decrease bio-oil hydrogen content for 

increasing bio-oil yield is attributed to gas formation of hydrogen containing species, and is related to 

the reduction of moisture content as bio-oil yield increases. 

Bio-oil water insoluble content. Water insoluble content was found to increase with 
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amount of water insoluble material in the pyrolysis oil will also increase because the higher 

temperatures help to decompose lignin.  

Vapor reaction temperature. Based on measured temperature data, it is concluded that the 

optimal vapor temperature for the auger reactor is similar to other systems, around 490°C. The higher 

equired, though, provide evidence of substantial temperature gradients 

and infl

ts were performed to characterize the physical and chemical 

compos

 conditions. The resulting whole 

bio-oil 

in the bio-oil samples was found to 

vary am

pyrolysis oil.  

he bio-oil samples is inversely related the 

moistur

heat carrier inlet temperatures r

uential solid-solid heat transfer effects.  

The development and interpretation of these models is important to satisfy the optimization 

objective of this project. The resulting equations for each of these models can be used to estimate the 

resulting response for any number of different operating conditions, and the output value will lie 

within a known interval. This then provides a powerful tool to estimate the operating conditions of the 

reactor required to give a desired result.  

 

6.1.2 Product analysis 

Extensive analytical tes

ition of the pyrolysis products from the auger reactor.  

Moisture content. The moisture content of the bio-oil varied among fractions consistently, 

and the experimental testing procedure was acceptable. Though the moisture content between SF1 

and SF3 varied (neither was consistently higher than the other), their magnitudes were similar and the 

SF3 moisture content varied much less among tests with different

moisture content was within the accepted range for fast pyrolysis liquids and was similar to 

reported literature.  

Water insoluble content. The water insoluble content 

ong fractions, in decreasing order: SF3, SF1, SF2. The water insoluble content for SF1 and 

SF3 was well within the range for typical pyrolysis oil from wood, and the insoluble portion in SF2 is 

less than typical bio-oil. For the whole bio-oil, the water insoluble content is on the low end of the 

range for 

Solids content. The solids content of the center point tests did not vary among fractions, and 

was found to be within the range for pyrolysis liquids. This implies the gas cyclone used for this 

research was adequate for separating biochar from the vapor product stream.  

Higher heating value. The higher heating value of t

e content of the liquid, and increases for increasing bio-oil yield. The higher heating value of 
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SF1, SF3 and the whole bio-oil was found to be within the expected range for pyrolysis liquids. The 

heating value for SF2 and SF4 was found to be less than expected for pyrolysis liquids.  

 the moisture and volatiles. 

rolysis oil. Though there was not great variation among 

actions, SF4 was found to have the highest nitrogen levels. The hydrogen content was found to be 

higher in the bio-oil fractions with higher water levels, SF2 and SF4. The reaming fractions, SF1 and 

o-oil had hydrogen content values within the expected range for bio-oil. 

The sul

-oil samples was not found to vary 

greatly 

the range for typical bio-oil, but on the high end of the range. This result is in 

accorda

ecreasing with yield largely due to a reduction in moisture content, however 

on a dry

by SF1, SF3 and SF4 in 

order. T

Thermal gravimetric analysis. The TGA methodology allowed for a complete proximate 

analysis of the biochar, which was found to be in agreement with published data on biochar from a 

similar lab-scale auger reactor. The methodology also allows for determining the fixed carbon content 

and ash content of bio-oil, with less emphasis on

Elemental analysis. The carbon content for SF1, SF3 and the whole bio-oil was found to be 

within the range for pyrolysis liquids, and slightly on the lower end of the range. The carbon content 

for SF2 and SF4 was below the typical range. The nitrogen was found to be very low in all fractions 

and was often below the detection limit of the instrument. The nitrogen levels that were detected were 

within the expected range for wood py

fr

SF3, as well as the whole bi

fur content was found to be very low in all fractions, and well within the range expected for 

fast pyrolysis oils. Similar to nitrogen, the sulfur content in the bio

between fractions, but overall SF4 was found to have the highest sulfur levels.  The ash 

content in the bio-oils was found to be within the range for typical bio-oils, and did not appear to vary 

among fractions. The oxygen content in the bio-oil, calculated as discussed, was found to be very 

similar for SF1 and SF3. Due partly to the high water contents, SF2 and SF4 were found to have 

oxygen contents outside the range for typical bio-oils from wood. The resulting whole bio-oil oxygen 

content was within 

nce with the average carbon content being on the low end of the range for pyrolysis oils.  

On a wet bio-oil basis, the hydrogen:carbon and oxygen:carbon ratios decrease with 

increasing bio-oil yield. On a dry bio-oil basis, the hydrogen:carbon ratio increases with increasing 

yield, and the oxygen:carbon ratio still decreases with increasing yield. On a wet basis the 

oxygen:carbon ratio is d

 basis the ratio decreases with yield in part to an increase in oxygen containing gases (namely 

carbon monoxide). 

Total acid number. SF2 had the highest total acid number, followed 

hough SF4 had the lowest TAN, it also has the highest water content. The TAN values are 

similar to those reported in a recently published study on bio-oil from a lab-scale auger reactor.  
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Gas chromatography/Mass spectrometry (GC/MS). The chemical speciation among 

fractions was found to be different, though SF1 and SF3 were very similar. SF4 was found to be the 

most ch

ase temperature. This thermocouple configuration is also recommended for the 

reactor 

lt to 

emically different from the other fractions, and mostly low molecular weight compounds 

were identified in this fraction. The chemical composition of the whole bio-oil was found to vary little 

as a function of operating conditions. Many of the quantified compounds were within the range of 

values for typical pyrolysis oil.  

Viscosity. The viscosity of the bio-oil samples was found to be related to the moisture 

content of the sample, as expected. SF3 has the highest viscosity, followed by SF1 and SF2.  

 

6.2 Recommendations for future work 

As the auger reactor system for this project is a first generation design, there are several 

recommendations to improve the performance and operation of the system. In general, the system can 

be greatly improved by modifying the design for the heat carrier heating and feeding system as shown 

in Figure 108. Rather than having a tall vertical pipe in which the heat carrier material is heated, a 

horizontal design with the heating occurring in the metering auger section offers several benefits. 

With the horizontal design, the mass feed rate of heat carrier material will be more constant over time, 

and the heat transfer from the heaters to the steel shot will be increased (because of the agitation 

offered by the metering auger). Whereas the vertical design had significant wall effects because the 

inner heat carrier material never came into contact with the heated wall, the recommended design will 

allow for bulk mixing of the heat carrier and thus more straightforward calibrations will be possible. 

An additional nitrogen purge inlet at the junction where the heat carrier metering auger ends may help 

to prevent back-flow of pyrolysis vapors into the heat carrier hopper system.  

Additional temperature measurement locations are suggested to improve the understanding of 

the heat transfer associated with the heat carrier material. To effectively monitor the temperature of 

the heat carrier material as it enters the reactor, a thermocouple can be fitted such that it only 

protrudes slightly past the “inner surface” of the metering pipe. This thermocouple can then measure 

the heat carrier temperature as it falls into the reactor. If it is placed further into the pipe, it will only 

measure the gas ph

outlet to measure the heat carrier exit temperature. By referring back to Equation 2, this 

temperature is clearly an important value for understanding the thermodynamic behavior and heat 

transfer mechanisms of the reactor. With the presence of rotating augers, however, it is difficu
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accurate

the relatively low flow rate of nitrogen used in the operation of the 

auger r

 for the 

successful operation of cyclone separators; however this becomes more difficult at the lab-scale given 

the low volumetric flow rate available.  

ly measure the exiting temperature of the solids (heat carrier and biochar). The current 

configuration only measures the gas phase temperature at the reactor outlet. 

Another design recommendation is a modified cyclone and perhaps two cyclones in series. 

Though the current cyclone on the reactor was able to remove biochar such that the solids content in 

the bio-oil was within the range of reported literature, it is believed a modified cyclone can improve 

the collection efficiency. Given 

eactor system, cyclone design for a lab-scale system is particularly difficult. For larger 

systems, the flow of pyrolysis vapors would provide an adequate volumetric flow rate

 

 

Figure 108. Recommended system design modifications 

 

The reliability of the system may be improved by upgrading the DC motor that drives the 

augers in the reactor to a unit with additional power and torque. The current motor provides marginal 

torque and sometimes had problems with material binding inside the reactor. Also, the motor 

controllers for both the augers in the reactor and the heat carrier metering auger could be upgraded to 

provide improved speed control.  

The range of operating conditions may be extended by improving the design of the seal 

between the reactor housing and main auger shaft. Moderate gas flow rates and pressures have the 
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potential to create leaks from the system, which causes pyrolysis vapors to escape at undesired 

locations. This design improvement can also be applied to the seal where the shaft for the heat carrier 

meterin

ntrol of the cooling water. The current configuration tends to 

result in high wall temperatures near the vapor outlet, which may adversely effect the collection of 

bio-oil. Also the heat transfer can be improved by soldering the cooling coils to the condenser wall. 

In terms of continued research and testing, one recommendation is to immediately begin 

testing and characterizing the heat carrier materials used. There is a high likelihood that commercial, 

off-the-shelf heat carrier type materials (such as the ones used in this study) have catalytic properties 

that may adversely affect product yields and composition. However this also suggests an opportunity 

to deliberately introduce catalysts into the reactor, either combined with the heat carrier material or as 

the heat carrier directly. There is also an opportunity to study the effects of different particle sizes and 

shapes of heat carrier material, as well as biomass particle sizes.  

g auger enters the system. 

Another possible design modification or research topic is improvement of the vapor outlet 

port configuration. As multiple outlet ports currently exist, they could potentially be connected into 

one outlet tube that leads to the bio-oil recovery system. This would allow for more vapor products to 

exit the reactor as they produced further downstream (in the axial direction) from the initial vapor 

outlet port. This design change is also shown schematically in Figure 108. 

In terms of the bio-oil recovery system, the condenser design could be improved by providing 

more functionality in the temperature co
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APPENDIX A.  DESIGN AND DEVELOPMENT 

 

Biomass inlet properties 

Type: Cornstover

Mb 1
kg

hr
:= Mass flow rate

kg
ρ b 225

m
3

:= Bulk density, measured

Qb
Mb

ρ b
:= Volumetric feed rate Qb 74.074

cm
3

min
= Equation A1

Tb1 25 273.15+( )K:= Initial temperature

Tb2 500 273.15+( )K:= Final temperature

Cpb 2273
J

kg K⋅
⋅:= Specific heat capacity (mass basis)

 

 

Heat carrier inlet properties 

Type: Sand

ρ HC 1631.3
kg

m
3

:= Bulk density, measured

CpHC 815.2
J

kg K⋅
⋅:= Specific heat capacity (mass basis)

THCi 550 273.15+( )K:= Initial temperature

THCf 450 273.15+( )K:= Final temperature
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Heat for pyrolysis analysis 

Equation A6QHC 201.341
cm

3

min
=Heat carrier volumetric

 feed rate
QHC

MHC

ρ HC
:=

Equation A5MHC 19.707
kg

hr
=Heat carrier feed rate

required to provide 
heat for pyrolysis

MHC
QdotP

CpHC THCi THCf−( )⋅
:=

Equation A4Qrxn 0.527
MJ

kg
=Reaction heat 

required for pyrolysis
Qrxn QP Qsens−:=

Equation A3Qsens 1.08
MJ

kg
=Sensible heat input 

required
Qsens Cpb Tb2 Tb1−( )⋅:=

Equation A2QdotP 446.25W=Heat transfer rate 
required for pyrolysis 

QdotP QP Mb⋅:=

Heat required 
for pyrolysis

QP 1.6065 10
6×

J
:=

kg

 

 

Biochar properties analysis 

Yc .18:= Ch
bio

ar yield (%-wt., wet 
mass basis)

ρ c 400
kg

m
3

:= Char bulk density

Mc Yc Mb⋅:= Char mass flow rate Equation A7

Qc
Mc

ρ c
:= Char volumetric 

flow rate
Qc 7.5

cm
3

min
= Equation A8

Ycvol
Qc

Qb
:= Char yield (%-vol., wet

biomass basis)
Ycvol 0.101= Equation A9
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Vapor properties analysis 

Qp 9.777
L

min
=

Equation A13Product stream
volumetric flow rate  

Qp
Mp

ρ p
:=

Equation A12ρ p 1.398
kg

m
3

=Product stream mass density, 
assuming Ideal Gas Law

ρ p
pp

Rp Tp⋅( ):=

Equation A11Rp 93.753
J

kg K⋅
=Product stream gas 

constant  
Rp

Rbar

MWp
:=

Universal gas 
constant

Rbar 8314
J

kmol K⋅
:=Product stream 

pressure (atmospheric)
pp 101325Pa:=

MWp 88.68
kg

kmol
:=Product streamt 

temperature
Tp 500 273.15+( )K:=

Molecular 
weight of 
products

Equation A10Mp 0.82
kg

hr
=Mass flow rate of pyrolysis

products without char. Includes 
bio-oil vapors,aerosols, and NCG  

Mp Mb Mc−( ):=

 

 

Reactor fill specifications analysis 

Equation A18τp 0.621=Volume percent fill of 
pyrolysis vapor products

τp 1 τHC− τc−:=

Equation A17τc 0.014=Volume percent fill of char, finalτc Ycvol τb⋅:=

Equation A16τN2 0.5=Volume percent fill of nitrogen 
(or excavated space), Initial

τN2 1 τfeed−:=

Equation A15τb 0.134=Volume percent fill of 
biomass, Initial

τb τfeed τHC−:=

Equation A14τHC 0.366=Volume percent fill of heat carrierτHC τfeed
QHC

QHC Qb+
⋅:=

Volumetric percent fill of 
biomass and heat carrier
(common for screw conveyors)

τfeed 0.5:=
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Reactor cross-sectional area requirement analysis 

Equation A23AcsREQ 5.397cm
2=otal required cross 

sectional area for biomass 
and heat carrier. 

τfeed

TAcsREQ
Acsb AcsHC+








Material factor, assumed
to allow for mixing volume

FM 1.4:=

Equation A22AcsHC 1.409cm
2=Required cross sectional 

area for heat carrier
AcsHC

MHC

ρ HC vHC⋅

FM⋅:=

:=

Equation A21Acsb 0.518cm
2=Required cross sectional

 area for biomass
Acsb

Mb

ρ b vb⋅
:=

Equation A20Heat carrier initial linear
velocity (superficial)

vHC vb:=

Equation A19vb 2.381
cm

s
=Biomass initial linear

velocity (superficial)
vb na Pa⋅:=

Auger rotation frequencyna
Na

60

1

s
⋅:=

Auger rotation speed (RPM)Na 45:=

Auger pitchPa 1.25in=

 

 

Reactor dimension specifications 

w 1.75 in⋅:= Equivalent reactor width (for rectangular cross section) 

h 1.396 in⋅:= Equivalent reactor height (for rectangular cross section) 

da 1in:= Auger outer diameter (#16 auger)

ds .3125in:= Axle shaft diameter (5/16 in.)

Pa 1.25in:= Auger pitch
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Reactor vapor residence time analysis 

trv Lr( )

0.513

0.671

0.829

0.987

1.145

















s=Vapor residence 
time

trv Lr( )
ρ v Av⋅ Lr⋅

Mv









:=
Equation A27

Lr

6.5in

8.5in

10.5in

12.5in

14.5in

















:=
Reactor length, biomass 
inlet to vapor exit ports
(1 - 5)

Equation A26vv 32.161
cm

s
=Vapor velocityvv

Mv

ρ v Av⋅
:=

Equation A25Av 5.067cm
2=Cross sectional area 

for vapor to occupy
Av Acs τv⋅:=

Equation A24Acs 8.161cm
2=Average cross sectional 

area for reactants and 
products to occupy

Acs w h⋅( ) 1.5
π
4







Ds
2⋅





−:=

 

 

Downstream and total vapor residence time analysis 

Equation A32ttotal Lr( )

0.741

0.899

1.057

1.215

1.373

















s=Total resience time: Biomass
inlet to condenser inlet

ttotal Lr( ) trp Lr( ) te+:=

Equation A31te 0.228s=Residence time from reactor 
outlet to condenser inlet

te
Lc

ve
:=

Exiting vapor velocity
Equation A30ve 2.227

m

s
=ve

Mp

ρ p Ae⋅








:=

Total tube length from
reactor outlet to condenser
inlet, assumed initially

Lc 20in:=

Equation A29Ae 0.732cm
2=Cross sectional area 

for exit port and tube
Ae

π
4







de
2⋅:=

Equation A28Vapor exit port and 
tube diameter 

de 0.380in:=
(1/2" OD)
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Reactor heat carrier residence time analysis 

Lexit 12in:= Length from heat carrier
inlet to solids exit

tHC
Lexit

vHC
:= Heat carrier residence

time in reactor tHC 12.8s= Equation A33
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Figure 109. Heat carrier residence time as a function of auger speed 
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Table 45. Motor power requirements analysis 

Reactor
augers

Heat carrier
metering 

auger

ρ kg/m3 Bulk density 1563 1631

Weighted average of biomass and
 heat carrier for reactor augers. 

Sand bulk density for heat 
carrier metering auger

kg/hr Mass feed rate 25 24
Maximum feed rate

(biomass and heat carrier)

Q m3/hr Volumetric feed rate 0.016 0.015 Q =     /ρ
C ft3/hr Volumetric feed rate 0.56 0.52 C = Q x 35.314

e - Drive efficiency 0.50 0.75
Overall mechanical efficiency. 

Estimated low to be conservative

Fb - Hanger bearing factor 4.4 4.4
Fb = 4.4 for Group D 

hard surfaced bearings

Fd - Conveyor diameter factor 13.57 13.34
Fd = .508x2 - 2.89x + 15.95
(x = Auger diameter, inches)

Ff - Flight factor 1.0 1.0 Ff = 1.0 for standard helicoid screws

Fm - Material factor 3.0 3.0
Fm = 3.0 for class III materials
 (abrasive, poor flowing, etc.)

Fo - Overload factor 3.0 3.0 Fo = 3.0 max for small motors

Fp - Paddle factor 1.0 1.0 Fp = 1.0 for no paddles

L ft Length of conveyor 1.83 1.00 As designed
H ft Lift 0.0 0.0 H = 0 for no lift (horizontal conveying)
N RPM Operating speed 180 60 N = max speed to be conservative

W lbs/ft3 Bulk density 97.6 101.8 W = ρ x 0.06243

Pf HP
Power required to overcome

converyor friction
0.0197 0.0035

Pf = (L x N x Fd x Fb) / 
1000000

Pl HP
Power required to

lift the material
0.000 0.000

Pl = (0.5 x C x W x H) / 
1000000

Pm HP
Power required to transport Pm = (C x L x W x Ff x Fp x Fm) / 

PT HP Total power requirement 0.120 0.015 PT = [(Pf + Pl + Pm) x Fo] / e

NotesSymbol Units Description

lueVa

material at specified rate
0.0003 0.0002

1000000

m

m
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Figure 110. Biomass feeding system 

 

 

Figure 110. Biomass feeding system 

 

Feed direction 

 

Figure 111. Close-up of reactor augers 

 

Feed direction 

 

Figure 111. Close-up of reactor augers 

 

 

Figure 112. Reactor mounted on frame 

Vapors Heat carrier 

 

Figure 112. Reactor mounted on frame 

Solids

Biomass 
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Flow 

Figure 113. Reactor lid and thermocouple detail 

 

 

Figure 114. Gas cyclone 

 

 

Fig 2) ure 115. Condensers 1 and 2 (SF1 and SF

Flow

Thermocouple

SF2 
outlet

SF1 inlet

SF1
oil

SF2
loi
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SF3 
outlet

SF3 
inlet

 

Figure 116. Electrostatic precipitator (SF3) 

 

SF3 oil

SF4 inlet

SF4 outlet 
 

Figure 117. Condenser 3 in ice bath (SF4) 
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Figure 118. Reactor system detail 
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Table 46. Shakedown trial operating conditions 

Shake-
down
trial

Trial
date Type Type

1 5.13.08
Corn 
stover

1.00 1.00 Sand 24.0 ~650 1.0 45

2 5.16.08
Corn 
stover

1.00 1.00 Sand 24.0 ~775 1.5 45

3 5.18.08
Corn 
stover

1.00 0.50 Sand 12.0 650 2.0 38

4 6.03.08
Corn 
stover

0.50 1.00 Sand 16.5 ~700 3.0 40

5 6.10.08
C
stover

0.50 1.00 Steel shot 12.5 650 2.0 38

6 .08
Corn 
stover

0.50 0.50 Steel shot 22.0 1.5 40

7 6.17.08
Co
stover

0 0.75 Sand 16.5 675 2.5 40

8 7.09.08
Corn 
stover

0.50 0.50
Silicon
carbide

12.5 500 2.0 40

9 7.14.08
Wood
chips

0.79 0.50
Silicon
ca

12.5 450 2.0 40

10 7.23.08
Wood
chi

0.50
Silicon
carbide

12.5 500 2.0 40

11 8.22.08
Corn 
stover

0.75 1.00 Steel shot 22.0 450 2.0 40

12 8.27.08
Corn 
stover

0.75 1.00
Steel shot/
Al ceramic

20.0 460 2.5 40

13 9.03.08
Corn 
stover

0.75 1.00 Steel shot 20.0 425 2.5

14 9.10.08
Corn 
fiber

1.00 1.00 Steel shot 20.0 475 2.5 40

15 9.16.08
Corn 
fiber

1.00 1.00 Steel shot 20.0 525 4.0 50

16 9.26.08
Wood
chips

550 2.5 45

17 10.02.08
Wood
chips

1.00 1.00 Steel shot 20.0 550 2.5 45

18 10.07.08
Wood
chips

1.00 1.00 Steel shot 20.0 550 2.5 45

19 10.17.08
Red
Oak

0.75 1.00 Steel shot 15.0 550 2.5 45

Auger
speed

(RPM)

N2

volume
flow
rate

(SLPM)

Heat
carrier
heater
temp.
(°C)

Biomass Heat carrier

Particle 
size

(mm)

Nominal
feed rate
(kg/hr)

Nominal
feed rate
(kg/hr)

orn 

6.13 650

rn 
0.5

rbide

ps
0.79

40

1.00 1.00 Steel shot 20.0
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Table 4  results 7. Shakedown trial yield and operating condition

Shake-
down
trial Biomass

Heat
carrier Bio-oil Biochar NCG

1 0.99 nd 32.5 22.5 45.0

2 nd nd nd nd nd

3 0.49 nd 43.4 nd nd

4 1.10 4.49 39.9 31.7 28.4

5 1.18 4.39 35.7 31.3 33.0

6 0.57 21.15 33.6 nd nd

7 0.73 15.62 39.1 nd nd

8 0.59 13.21 40.9 42.9 16.2

9 0.54 14.14 23.2 23.9 52.9

10 nd nd 43.3 37.6 19.1

11 1.13 nd 24.9 60.1 15.0

12 nd nd 38.5 42.7 18.7

13 1.20 15.06 23.1 58.2 18.7

14 1.02 19.05 54.5 26.3 19.2

15 1.03 16.66 56.4 26.5 17.1

16 0.89 nd 61.6 21.4 17.0

17 0.99 nd 60.9 28.8 10.4

18 1.03 22.76 62.8 26.1 13.0

19 1.03 16.55 70.8 15.9 13.0

Notes: 
nd - Not determined. wb - Wet basis
NCG yields are by difference except Nos. 18 and 19

Product yields
(%-wt., wb)

Feed rate
(kg/hr)



 188 

 

APPENDIX B.  MIXING STUDY 

 

A series of four tests was performed to collect 22 samples of biomass-sand mixtures for 
particle density measurements using a gas pycnometer as shown in Figure 123. Each test and 
subsequent analysis was repeated once. The goal of characterizing these mixtures was to determine 
the optimal operating speed of the augers, with respect to maximizing the “degree of mixing”.  

 
Initially 12 samples of sand and biomass were manually mixed at various mass fractions to 

develop a “calibration curve” for comparison to collected samples. The biomass tested was corn 
stover, ground to 1.0 mm particles using a Retsch SM 200 knife mill, and the sand was No. 35 to 45 
mesh. The baseline data plot, as seen in Figure 119, shows that the particle density of the biomass 
tested was 1.53 g/cm3 (100% biomass – right side), and the sand has a particle density of 2.65 g/cm3 
(0% biomass – left side). Samples were approximately all the same in volume, with masses ranging 
from 4g to 40g depending on the composition. Each of the samples was analyzed three times, and the 
raw data is presented in Table 48.  

 

y = -1.12x + 2.60

R2 = 0.99
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Figure 119. Biomass and sand mixture densities 

 
In comparing the mixture densities, the variables were: the axial position and radial positions 

of the sample and the auger speed. Four screw speeds were selected based on visual tests of feeding 
solid mixtures at various rates: N = 45, 50.4, 63 and 90 RPM. The lowest speed case represents the 
approximate lower operating end, and highest speed case represents the approximate higher operating 
end. It is especially important to note that these speeds seem suitable for cold flow feeding of this 
particular set of feed rates (the original design case: 1 kg/hr biomass and 24 kg/hr sand). At auger 
speeds less than 25% of the full speed (45 RPM), the auger flights become “full” of solid material and 



 189 

a potential exists for many operational problems such as auger binding. This is noted to be a 
‘conservative’ low end spee ible. At speeds above 50% 
of the maximum, the augers convey minimal mixing. 
Also, at these higher speed conditions, solid material only fills the bottom portion of the mixer and no 
material exist

 that a 
fifth va

ents show that material does travel between both augers, and 
several phenomena have been observed. As expected, fine biomass particles readily segregate by 
“falling” to the bottom, while other low density biomass particles “float” on the top of the mixture. 
Also of interest is the “pulsing” effect characteristic of the screw feeders: small chunks of biomass 
and sand are fed in during each successive auger flight.  

 
The biomass volumetric screw feeder and the heat carrier feeding system were independently 

calibrated, and the mass feed rates were found to be linearly proportional to screw speeds. The mixer 
was cleaned out, and biomass and sand feeding was begun (1.0 and 24.0 kg/hr, respectively) as the 
main augers were started at a specified speed. After a short time period required before reaching an 
apparent “steady state” condition, samples were taken from a moving stream of solid material exiting 
at the end of the mixer. The 3 motors were then shut down simultaneously and the lid removed. 
Samples were taken at each position by scooping out material with a small spatula, and placed in 
plastic containers. This procedure was repeated for each of the four auger speeds, and then duplicated 
once. The particle densities of the mixtures were then analyzed with a Pentapycnometer from 
Quantachrome Instruments. Each sample was analyzed a minimum of three times, resulting in 
standard deviations less than ± 0.8%. The collected data is presented in Table 49. 

 
Based on the particle density results, the data was analyzed and several plots were 

constructed to reveal any trends between operating conditions and mixture density. Figure 120 shows 
the mixture density (sampled from the left radial position) resulting from the experiments compared 
to the “expected density” based on the calibration curve as discussed. There are no clear trends 
observed between mixture density and speed or position, except that the density measurements e 
slightly most consistent for t rom the heat carrier 
entrance). Data points above the expected density  higher than 
expected, meaning more sand was sampled. It is un lear whether this indicates less mixing was 
achieve

d, as speeds as low as 20% (36 RPM) are poss
 the material so quickly that there appears to be 

s for easy sampling.  
 
The four axial sampling positions correspond to four of the vapor outlet ports, where the 

distance represents the length from the center of the heat carrier inlet (X = 4.25, 6.25, 8.25, 10.25 in.). 
The fourth position at 10.25 inches is at the mixer exit (the entrance to the solids catch). Note

por port exists at the end of the reactor, at the end of the solids exit.  
 
Samples were taken from two radial positions: the center, C (in-between the augers), and the 

left, L (facing auger motor: left edge in-between auger and mixer wall) of the mixer. For higher 
speeds, material is continuously moved to the left auger and it was difficult to obtain a sample from 
the right side. At these conditions it is not to say that mixing doesn’t occur, though, as there are 
mixing processes at the bottom of the screw and as material is conveyed from one auger to the next. 

 
ualitative, visual experimQ

ar
he 8.25 in position (longest mixing time/furthest f

 line indicate a measured density
c

d, or whether the fine biomass particles were able to be sampled from the top of the augers 
(due to the segregation and settling effect mentioned previously). Conversely, points below the 
expected density line indicate lower density, meaning more biomass was sampled than expected.  
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Figure 120. Mixture density (L) vs. auger speed at three axial locations, Run 1 

 
The duplicated test, as shown in Figure 121, found that each sample was denser than 

expected. Notable differences in density with respect to auger speed were not found.  
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Figure 121. Mixture density (L) vs. auger speed at three axial locations, Run 2 
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When comparing the densities obtained from the center of the mixer, an interesting result is 

shown in Figure 122. Noting the exit mixture (axial distance of 10.25 in), the density was extremely 
consistent and not a function of speed. Though this indicates an intuitive result (the materials that 
enter the mixer are the same materials that exit the mixer), it also speaks to the preferred method of 
sampling from a moving stream. Note that at the higher speeds, material was only sampled at the end 
of the mixer, and these results slightly validate the overall procedure. 
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Figure 122. Mixture density (C) vs. auger speed at four axial locations, Run 1 

 
Figure 124 shows the results from the material sampled from in-between the augers (the 

center position) on the duplicated run. Similar results were observed in regards to the consistency 
sampled from the end of the mixer, and the general result of the sampled densities being higher than 
expected.  

 

 

Figure 123. Pentapycnometer instrument 
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Figure 124. Mixture density (C) vs. auger speed at four axial locations, Run 2 

 

These results indicate that, for the materials tested at their respective feed rates, there are no 
clear trends for mixer performance as a function of auger speed or position. The method of using a 
gas Pycnometer for characterizing density to predict mixer performance, though unique, poses some 
challenges for this specific system (mainly in sampling).  

 

Table 48. Baseline biomass and sand mixture densities analytical data 

18

Biom
mass 
fraction

0.0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2.6530 2.5705 2.5008 2.3648 2.2184 2.0974 2.0440 1.8847 1.8593 1.7257 1.5757 1.5337
2.6547 2.5723 2.5080 2.3566 2.2138 2.0806 2.0508 1.8912 1.8117 1.7270 1.5665 1.5303
2.6533 2.5723 2.5159 2.3532 2.2133 2.0906 2.0558 1.8948 1.8105 1.7266 1.5702 1.5403

- - - - - - - - - - - 1.53
- - - - - - - - - - - 1.5349

Averge 2.6537 2.5717 2.5082 2.3582 2.2152 2.0895 2.0502 1.8902 1.8272 1.7265 1.5708 1.5342
St. Dev. 0.0009 0.0010 0.0075 0.0060 0.0028 0.0085 0.0059 0.0052 0.0278 0.0006 0.0046 0.0038

Mass 
density 

(g/cm3)

ass 

Sand 
mass
 fraction

1.0 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
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Table 49. Biomass and sand mixture densities analytical data 

45 50.4 63 90 45 50.4 63 90
(25) (28) (35) (50) (25) (28) (35) (50)

2.9691 1.7570 2.6741 2.7341 2.5885 2.5883 2.5815 2.8023
2.9093 1.7653 2.6675 2.7865 2.5861 2.6084 2.5976 2.8754
2.8816 1.7395 2.7020 2.7798 2.5790 2.5825 2.6370 2.8563
2.9033 1.7285 2.7118 2.7967 2.5846 2.5982 2.6100 2.8533

Avg. 2.9158 1.7476 2.6888 2.7743 2.5846 2.5944 2.6065 2.8468
St.Dev. 0.0375 0.0167 0.0214 0.0277 0.0040 0.0114 0.0235 0.0312

2.9107 1.9375 - - 2.7205 2.7733 - -
2.9739 2.1280 - - 2.8401 2.8578 - -
2.9853 2.0304 - - 2.7812 2.8398 - -
2.8810 1.9703 - - 2.8175 2.8616 - -

Avg. 2.9377 2.0166 - - 2.7898 2.8331 - -
St.Dev. 0.0501 0.0836 - - 0.0522 0.0410 - -

2.6883 2.3722 2.5358 2.8656 2.7792 2.6612 2.6712 2.6977
2.7152 2.3638 2.5079 2.9306 2.8711 2.7090 2.6855 2.7486
2.7406 2.3964 2.5216 3.0488 2.8442 2.7049 2.7058 2.7424

Avg. 2.7286 2.3782 2.5300 2.9351 2.8336 2.6942 2.6883 2.7300
St.Dev. 0.0350 0.0139 0.0200 0.0803 0.0388 0.0222 0.0143 0.0227

- 2.5297 3.1008 - -
Avg. 2.4827 1.7045 - - 2.5431 3.0178 - -

St.Dev. 0.0353 0.3011 - - 0.0447 0.0960 - -
52

2.8124 2.6924 2.8275 2.5549 2.7815 2.6003 2.7016 2.7439
2.7876 2.7129 2.8293 2.5180 2.7868 2.6063 2.7102 2.7898

- - - - 2.7846 2.6047 2.7226 2.7616
Avg. 2.7904 2.7273 2.8147 2.5302 2.7786 2.6002 2.7054 2.7576

St.Dev. 0.0207 0.0440 0.0238 0.0213 0.0116 0.0076 0.0148 0.0241
2.5706 4.7228 - - 2.5457 2.6418 - -
2.5484 4.1649 - - 2.5594 2.7418 - -
2.5744 4.7576 - - 2.5916 2.6988 - -
2.5596 - - - 2.5776 2.7620 - -

Avg. 2.5632 4.5484 - - 2.5686 2.7111 - -
St.Dev. 0.0117 0.3326 - - 0.0202 0.0532 - -

2.6096 2.6280 2.6119 2.6183 2.5751 2.6205 2.6130 2.6073
2.6102 2.6319 2.6092 2.6107 2.5797 2.6229 2.6162 2.6131
2.6140 2.6246 2.6103 2.6080 2.5785 2.6282 2.6164 2.6091

- - - - 2.5764 2.6253 2.6144 2.6096
- - - - 2.5783 2.5825 2.5754 2.5361
- - - - 2.5805 2.5835 2.5786 2.5352
- - - - 2.5824 2.5863 2.5771 2.5361
- - - - 2.5794 2.5853 2.5761 2.5362

Avg. 2.6113 2.6282 2.6105 2.6123 2.5788 2.6043 2.5959 2.5728
St.Dev. 0.0024 0.0037 0.0013 0.0053 0.0023 0.0214 0.0205 0.0396

Left

Screw speed [RPM, (% of max)]

Center

Axial
position

(in)
Radial

position

8.25

1st Run 2nd Run

10.25

Center

Left

Center

Left

4.25

Screw speed [RPM, (% of max)]

2.7702 2.3806 2.5545 2.8956 2.8398 2.7016 2.6909 2.7315

2.4597 1.9715 - - 2.5302 2.8792 - -
2.4838 1.2722 - - 2.5046 3.0437 - -
2.4551 1.7763 - - 2.6077 3.0476 - -
2.5321 1.7980 -

6.25

Center

2.7713 2.7767 2.7873 2.5178 2.7615 2.5895 2.6874 2.73
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APPENDIX C ENTS 

 

.  AUXILLARY EQUIPMENT AND INSTRUM

 

Figure 125. Hammer mill 

 

 

Figure 126. Knife mill 
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Figure 127. CHN/O/S analyzers 

 

 

Figure 128. Thermal gravimetric analyzer 
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Figure 129. Bomb calorimeter 

 

 

Figure 130. Moisture analyzer 
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Figure 131. Micro-GC cart 

 

 

Figure 13 re gauge 2. Gas volume meter and pressu
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Figure 133. Moisture titrator 

 

 

Figure 134. Total acid number titrator 
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Figure 135. GC/MS 

 

 

Figure 136. Viscometer
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APPENDIX D.  EXPERIMENTAL DATA 

 

Table 50. Feedstock and experimental condition data 

Run 
No.

DOE
 No.

Run
Date

(2009)

Moisture 
content
(%-wt.)

Mass fed
(g)

Feed time
(min)

Feed rate
(kg/hr)

Mass fed
(g)

Feed time
(min)

Feed rate
(kg/hr)

Average
temperature,

THC (°C)

1 17 9-Feb 5.83 1000.4 60.1 0.999 16984 108.3 9.4 523.1
2 18 24-Feb 5.77 721.7 45.1 0.959 21948 60.2 21.9 529.3
3 15 10-Mar 5.55 765.2 48.5 0.946 20517 65.1 18.9 479.8
4 7 11-Mar 5.63 792.3 49.1 0.969 22321 71.5 18.7 586.3
5 9 13-Mar 5.83 855.4 51.0 1.007 23804 73.9 19.3 480.6
6 13 16-Mar 5.56 894.6 50.2 1.069 23434 72.1 19.5 482.2
7 11 18-Mar 5.70 940.3 53.4 1.056 23401 70.2 20.0 478.3
8 5 20-Mar 5.97 462.5 27.6 1.005 16340 49.0 20.0 586.9
9 1 30-Mar 5.86 931.4 55.1 1.015 24445 78.1 18.8 576.5
10 3 1-Apr 5.95 902.8 52.8 1.027 25349 81.1 18.8 577.8
11 21 11-Apr 5.93 860.9 53.7 0.962 21983 91.3 14.4 527.6
12 28 14-Apr 5.88 910.4 55.7 0.982 23361 94.9 14.8 528.8
13 23 21-Apr 5.64 994.8 57.9 1.030 22816 90.3 15.2 427.8
14 19 22-Apr 6.11 788.0 47.9 0.987 21002 85.5 14.7 527.1
15 29 24-Apr 6.01 867.5 53.5 0.973 22796 90.0 15.2 536.5
16 20 28-Apr 6.02 789.5 50.4 0.941 22740 88.4 15.4 526.7
17 27 30-Apr 6.04 882.8 53.9 0.983 22806 93.5 14.6 527.7
18 22 3-May 5.98 934.9 54.3 1.034 23692 92.0 15.4 526.2
19 25 4-May 5.94 925.1 55.9 0.994 22987 90.5 15.2 529.5
20 24 5-May 5.93 1026.7 59.8 1.031 24873 106.1 14.1 630.5
21 26 6-May 5.64 964.1 60.0 0.964 23197 94.6 14.7 538.7
22 30 7-May 5.72 919.0 56.9 0.969 22443 91.0 14.8 535.6
23 8 16-May 5.81 959.3 58.3 0.987 21168 114.6 11.1 576.1
24 2 18-May 5.91 922.4 56.5 0.980 23149 107.8 12.9 582.7
25 12 21-May 6.14 896.5 55.3 0.972 24979 112.8 13.3 481.3
26 6 22-May 6.24 833.5 50.1 0.998 19911 108.1 11.1 571.5
27 10 24-May 6.29 926.3 55.0 1.011 23225 108.6 12.8 475.9
28 14 31-May 5.66 1059.3 57.9 1.098 22993 114.0 12.1 475.3
29 4 2-Jun 5.05 1005.8 54.1 1.115 21001 109.8 11.5 576.0
30 16 4-Jun 5.56 995.6 57.9 1.032 24544 108.4 13.6 477.8

5.84 891.0 53.3 1.00 - - - -
0.247 114.4 6.2 0.042 - - - -
5.87 911.5 56.0 0.977 22931 92.4 14.9 532.8

0.161 34.0 2.4 0.011 326 2.2 0.3 4.7
6.29 1059.3 60.1 1.115 25349 114.6 21.9 630.5
5.05 462.5 27.6 0.941 16340 49.0 9.4 427.8

Heat carrier

Cntr. Pt. Avg.

Biomass

Cntr. Pt. St. Dev.
MAX
MIN

Overall Avg.
Overall St. Dev.
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Table 51. Product distribution and mass balance data 

TOTAL
Run 
No.

DOE
 No.

Mass 
(g) (%-wt., wb) (%-wt., db) MC (g) (%-wt., wb) MCNG (g) (%-w

.52 59.23 56.70 299.59 29.95 107.89 10

Yield Yield Mass Yield Mass, Yield
t., wb) (%-wt., wb)

1 17 592 .78 99.96
2 18 502.32 69.60 67.74 129.29 17.91 88.87 12.31 99.83
3 15 460.88 60.23 57.89 209.57 27.39 84.68 11.07 98.68
4 7 565.35 71.35 69.64 119.95 15.14 99.87 12.60 99.10
5 9 506.71 59.23 56.71 240.25 28.09 92.47 10.81 98.13
6 13 506.67 56.64 54.08 262.42 29.33 92.50 10.34 96.31
7 11 572.22 60.86 58.49 250.29 26.62 102.66 10.92 98.39
8 5 334.15 72.26 70.50 64.96 14.05 56.05 12.12 98.42
9 1 675.87 72.57 70.86 107.28 11.52 117.14 12.58 96.67
10 3 654.66 72.51 70.77 124.61 13.80 110.36 12.22 98.54
11 21 563.16 65.41 63.23 184.85 21.47 97.70 11.35 98.23
12 28 604.66 66.42 64.32 211.61 23.24 101.43 11.14 100.80

13a 23 419.59 42.18 38.72 354.99 35.68 - 22.14 100.00
14 19 530.46 67.32 65.19 136.63 17.34 91.03 11.55 96.21
15 29 586.62 67.63 65.55 173.28 19.98 100.75 11.61 99.22
16 20 528.55 66.95 64.83 161.87 20.50 87.12 11.03 98.48
17 27 586.81 66.47 64.31 180.91 20.49 99.54 11.28 98.24
18 22 622.79 66.61 64.49 184.79 19.77 106.27 11.37 97.75
19 25 615.26 66.51 64.39 190.12 20.55 105.12 11.36 98.42
20 24 755.73 73.61 71.95 113.12 11.02 132.22 12.88 97.51
21 26 662.43 68.71 66.84 182.32 18.91 110.01 11.41 99.03
22 30 629.89 68.54 66.63 165.26 17.98 103.64 11.28 97.80
23 8 653.96 68.17 66.18 181.16 18.88 110.86 11.56 98.61
24 2 654.72 70.98 69.16 139.76 15.15 106.98 11.60 97.73
25 12 520.10 58.02 55.27 262.51 29.28 92.93 10.37 97.66
26 6 574.80 68.96 66.90 150.71 18.08 92.80 11.13 98.18
27 10 483.07 52.15 48.94 333.78 36.03 87.63 9.46 97.64
28 14 529.57 49.99 46.99 409.88 38.69 96.55 9.11 97.80
29 4 691.34 68.74 67.08 178.23 17.72 115.44 11.48 97.94
30 16 544.83 54.73 52.06 344.27 34.58 108.02 10.85 100.16

- - - - - - - 98.38
- - - - - - - 1.08
- 67.38 65.34 - 20.19 - 11.35 98.92
- 1.07 1.18 - 1.79 - 0.16 1.06

755.73 73.61 71.95 409.88 38.69 132.22 22.14 100.80
334.15 42.18 38.72 64.96 11.02 56.05 9.11 96.21

Note: a - NCG yield for Run 13 was calculated by difference.

Cntr. Pt. Avg.
Cntr. Pt. St. Dev.
MAX
MIN

NCG

Overall Avg.
Overall St. Dev.

BiocharBio-oil
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Table 52. He  conditions at carrier system temperature data and other operating

Run 
No.

DOE
 No.

Nominal 
heat carrier 

temperature (°C)

No. data 

pointsa

Average reactor 
pressure 

(in-H2Og) PH HC1 HC2 HC3

Average biomass 
inlet temperature

 (°C)

1 17 525 1306 1.71 425.4 529.7 523.1 340.1 41.3
2 18 525 855 1.26 147.4 479.2 529.3 351.8 40.8
3 15 475 904 1.14 158.5 434.1 479.8 329.7 42.4
4 7 575 993 1.67 238.2 551.4 586.3 377.7 42.6
5 9 475 1324 1.60 279.8 432.0 480.6 338.4 39.0
6 13 475 1076 1.35 224.7 425.5 482.2 338.2 40.2
7 11 475 1296 1.58 250.3 420.1 478.3 334.5 37.4
8 5 575 494 1.52 184.4 514.5 586.9 384.5 43.1
9 1 575 1275 1.91 390.6 507.6 576.5 385.4 36.9
10 3 575 1199 2.55 354.4 490.2 577.8 388.2 38.9
11 21 525 1379 3.06 361.4 504.5 527.6 349.6 44.0
12 28 525 1411 2.99 401.8 505.8 528.8 352.3 37.9
13 23 425 1525 2.40 336.9 434.5 427.8 297.7 36.5
14 19 525 1183 2.94 410.3 502.4 527.1 350.4 37.6
15 29 525 1192 2.17 449.3 518.8 536.5 351.6 38.3
16 20 525 1306 1.79 433.1 504.6 526.7 358.8 39.9
17 27 525 1284 2.03 442.6 505.4 527.7 359.4 39.5
18 22 525 1323 2.46 435.5 500.0 526.2 362.1 38.8
19 25 525 1404 2.19 435.2 507.3 529.5 360.5 39.6
20 24 625 1575 2.30 466.5 587.0 630.5 409.6 40.6
21 26 525 1298 1.39 417.5 502.2 538.7 359.8 38.5
22 30 525 1408 2.11 386.3 497.3 535.6 356.0 39.0
23 8 575 1493 2.19 521.9 597.8 576.1 373.7 41.8
24 2 575 1485 1.99 502.5 583.1 582.7 379.8 38.0
25 12 475 1365 2.09 427.9 492.6 481.3 334.0 36.9
26 6 575 1306 1.50 460.0 604.5 571.5 370.8 40.0
27 10 475 1466 2.68 411.3 493.9 475.9 330.8 36.8
28 14 475 1531 1.05 416.5 505.0 475.3 329.2 38.0
29 4 575 1278 3.00 448.6 600.2 576.0 373.5 39.1
30 16 475 1306 2.56 439.1 502.8 477.8 327.9 37.9

1275 2.04 - - - - 39.4
227 0.58 - - - - 2.0

1333 2.15 422.1 506.1 532.8 356.6 38.8
90 0.51 24.7 7.2 4.7 3.9 0.7

1575 3.06 521.9 604.5 630.5 409.6 44.0
494 1.05 147.4 420.1 427.8 297.7 36.5

Note: a - Number of data points collected for steady state operation. Data collection rate = 0.5 Hz

Heat carrier system 
average temperatures (°C)

Cntr. Pt. Avg.
Cntr. Pt. St. Dev.

Overall Avg.
Overall St. Dev.

MAX
MIN
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Table 53. Reactor system temperature data 

Run 
No.

DOE
 No.

Nominal 
heat carrier 

temperature (°C)
R1 R2 R3 R4 R5

Average solids 
outlet temperature

(°C)

1 17 525 427.5 486.2 478.8 434.3 344.9 237.1
2 18 525 443.0 496.0 486.4 438.2 341.3 238.8
3 15 475 427.4 484.9 476.6 432.0 339.9 230.6
4 7 575 455.9 502.8 492.2 443.4 346.1 247.1
5 9 475 432.1 486.6 477.5 430.6 340.1 233.6
6 13 475 433.2 486.2 477.0 430.4 339.6 232.1
7 11 475 425.4 483.3 475.0 429.9 338.6 230.1
8 5 575 457.4 507.3 498.3 449.6 353.0 245.6
9 1 575 452.8 504.6 497.0 449.5 354.9 251.7
10 3 575 452.8 503.8 497.6 451.6 357.2 258.5
11 21 525 439.5 496.1 490.1 446.0 355.2 243.7
12 28 525 438.2 495.3 489.7 445.5 355.1 244.4
13 23 425 417.1 479.0 476.4 435.2 349.0 229.7
14 19 525 432.2 493.6 489.4 446.4 354.8 240.0
15 29 525 439.2 496.8 490.7 446.1 355.0 242.9
16 20 525 441.8 499.5 491.5 444.5 352.8 239.7
17 27 525 435.4 495.1 489.5 445.1 354.2 241.0
18 22 525 431.4 493.8 489.2 444.7 353.8 240.2
19 25 525 437.0 495.5 489.6 445.1 354.0 240.6
20 24 625 458.6 509.6 502.0 454.5 360.4 257.7
21 26 525 435.3 495.7 490.4 445.7 354.0 242.1
22 30 525 434.3 496.1 490.8 446.3 354.8 243.1
23 8 575 438.1 497.6 493.4 450.0 359.7 250.0
24 2 575 443.5 501.8 496.3 450.3 358.5 253.7
25 12 475 423.6 487.9 485.3 444.0 356.2 239.6
26 6 575 438.4 499.4 493.8 448.5 357.8 245.0
27 10 475 423.4 486.5 482.2 439.1 352.7 237.6
28 14 475 421.8 484.4 480.7 438.7 353.4 237.0
29 4 575 433.6 494.8 491.1 447.7 357.8 245.1
30 16 475 419.9 484.1 482.5 442.9 357.4 240.6

436.6 495.7 490.1 445.6 354.5 242.3
1.9 0.6 0.6 0.5 0.5 1.4

458.6 509.6 502.0 454.5 360.4 258.5
417.1 479.0 475.0 429.9 338.6 229.7

Average reactor temperatures (°C)

MAX
MIN

Cntr. Pt. Avg.
Cntr. Pt. St. Dev.
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Tab ata le 54. Product recovery system temperature d

Run 
No.

DOE
 No.

Nominal 
heat carrier 

temperature (°C)

Nominal heat 
carrier feed rate 

(kg/hr)
SF1
 inlet

SF1 
wall

SF2 
wall

SF3 
inlet

SF4 
outlet

1 17 525 9 455.0 117.1 12.2 56.3 11.5
2 18 525 21 463.3 113.1 12.9 61.3 9.9
3 15 475 18 461.1 106.9 12.8 53.9 11.9
4 7 575 18 462.7 117.8 14.5 60.2 13.1
5 9 475 18 459.4 106.5 13.2 59.2 11.8
6 13 475 18 458.8 109.7 13.0 55.8 13.9
7 11 475 18 466.1 108.8 13.3 64.6 12.3
8 5 575 18 471.7 117.9 13.8 59.5 13.8
9 1 575 18 468.1 138.9 20.4 72.1 8.1
10 3 575 18 469.4 105.0 17.2 74.0 9.9
11 21 525 15 464.8 124.4 12.0 50.2 14.8
12 28 525 15 463.2 121.6 13.7 58.8 14.5
13 23 425 15 464.3 92.7 10.3 38.2 15.0
14 19 525 15 466.9 113.5 12.9 57.7 11.5
15 29 525 15 465.6 124.0 14.3 52.4 13.1
16 20 525 15 469.1 118.0 12.1 56.3 13.1
17 27 525 15 465.7 127.6 12.4 63.1 11.4
18 22 525 15 466.0 128.7 14.1 70.5 10.0
19 25 525 15 465.9 119.6 14.3 64.0 13.3
20 24 625 15 468.7 121.9 11.5 66.7 10.7
21 26 525 15 464.3 118.6 12.6 63.9 14.5
22 30 525 15 466.4 113.6 14.0 62.5 13.3
23 8 575 12 466.5 117.6 14.5 64.0 15.8
24 2 575 12 466.6 112.7 14.7 68.1 13.3
25 12 475 12 463.3 96.5 12.4 56.7 10.7
26 6 575 12 466.7 118.6 13.4 60.0 13.6
27 10 475 12 465.1 112.4 15.2 58.1 9.7
28 14 475 12 463.9 99.4 14.3 56.5 12.1
29 4 575 12 466.9 105.8 16.2 73.0 10.4
30 16 475 12 464.0 95.9 13.6 55.2 13.3

465.0 114.2 13.7 60.4 12.3
3.4 10.3 1.9 7.4 1.8

465.2 120.8 13.5 60.8 13.3
1.2 4.8 0.8 4.5 1.1

471.7 138.9 20.4 74.0 15.8
455.0 92.7 10.3 38.2 8.1

Product recovery system temperatures (°C)

MAX
MIN

Overall Avg.
Overall St. Dev.
Cntr. Pt. Avg.
Cntr. Pt. St. Dev.
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Table 55. Bio-oil fraction mass balance data 

Run 
No.

DOE
 No. SF1 SF2 SF3 SF4

1 17 48.96 30.45 18.57 2.03
2 18 45.23 32.83 20.25 1.69
3 15 64.36 17.75 16.64 1.26
4 7 49.00 30.67 18.69 1.64
5 9 60.17 16.66 20.41 2.76
6 13 63.55 17.84 16.82 1.78
7 11 42.08 34.43 21.11 2.38
8 5 58.12 22.71 17.34 1.83
9 1 40.54 33.32 24.27 1.87
10 3 38.98 32.64 25.64 2.73
11 21 56.38 28.64 14.11 0.87
12 28 53.98 28.07 16.78 1.17
13 23 65.40 21.26 12.03 1.31
14 19 62.51 18.89 17.32 1.28
15 29 53.13 30.04 15.55 1.28
16 20 52.35 26.73 19.23 1.68
17 27 43.52 34.73 19.69 2.05
18 22 43.84 29.34 23.94 2.89
19 25 42.91 35.01 19.98 2.10
20 24 45.40 31.63 20.83 2.15
21 26 41.62 35.04 21.14 2.20
22 30 49.85 28.32 19.78 2.05
23 8 43.64 36.81 18.07 1.48
24 2 51.55 23.48 22.82 2.16
25 12 58.49 20.23 19.22 2.06
26 6 58.54 23.05 16.49 1.91
27 10 45.98 32.02 19.49 2.51
28 14 47.85 34.42 16.24 1.48
29 4 48.27 27.19 22.18 2.35
30 16 54.73 28.16 15.36 1.75

51.03 28.08 19.00 1.89
7.76 5.95 3.07 0.50

47.50 31.87 18.82 1.81
5.49 3.42 2.16 0.46

65.40 36.81 25.64 2.89
38.98 16.66 12.03 0.87

Mass fraction of bio-oil collected (%-wt., wb)

MAX
MIN

Overall Avg.
Overall St. Dev.
Cntr. Pt. Avg.
Cntr. Pt. St. Dev.
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Figure 137. Residuals for bio-oil yield full model 

 

Table 56. Bio-oil yield model statistical data 

Term Estimate

Standard 
error t-ratio

Prob > |t|
(p-value) Estimate

Standard 
error t-ratio

Prob > |t|
(p-value)

67.379 0.4629 145.56 <0.0001 66.884 0.3231 206.99 <0.0001
7.357 0.2314 31.79 <0.0001 7.357 0.2285 32.20 <0.0001
0.631 0.2314 2.73 0.0156 0.631 0.2285 2.76 0.0117
-0.524 0.2314 -2.26 0.0389 -0.524 0.2285 -2.29 0.0324
2.278 0.2314 9.84 <0.0001 2.278 0.2285 9.97 <0.0001
-0.288 0.2835 -1.02 0.3254 - - - -
1.238 0.2835 4.37 0.0006 1.238 0.2798 4.42 0.0002
0.090 0.2835 0.32 0.7544 - - - -
-0.639 0.2835 -2.26 0.0394 -0.639 0.2798 -2.29 0.0328
-0.209 0.2835 -0.74 0.4732 - - - -
0.207 0.2835 0.73 0.4774 - - - -
-2.417 0.2165 -11.17 <0.0001 -2.356 0.2099 -11.22 <0.0001
0.387 0.2165 1.79 0.0938 - - - -
-0.108 0.2165 -0.50 0.6266 - - - -
-0.787 0.2165 -3.64 0.0024 -0.725 0.2099 -3.46 0.0024

R2 R2 adj RMSE Mean R2 R2 adj RMSE Mean
0.9884 0.9776 1.13 64.42 0.9842 0.9781 1.12 64.42

ANOVA DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value) DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value)

Regression (R) 14 1641.83 117.27 91.22 <0.0001 8 1634.80 204.35 163.09 <0.0001
Error (E) 15 19.28 1.29 21 26.31 1.25
Total (T) 29 1661.11 29 1661.11

Lack of fit analysis DOF
Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value) DOF

Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value)

Lack of fit 10 13.58 1.36 1.19 0.4489 16 20.61 1.29 1.13 0.4865
Pure error 5 5.70 1.14 5 5.70 1.14

Total 15 19.28 21 26.31

HC temperature · HC temperature

Reduced modelFull model

Intercept

HC temperature

HC feed rate
Auger speed

N2 flow rate

HC temperature · N2 flow rate

HC temperature · Auger speed

Auger speed · HC feed rate
N2 flow rate · HC feed rate
HC temperature · HC feed rate

N2 flow rate · Auger speed

Summary of model fit

HC feed rate · HC feed rate
Auger speed · Auger speed
N2 flow rate · N2 flow rate
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Table 57. Coded levels for model equations 

THC

(°C)
QN2

(SLPM)
ωA

(% of 180 RPM) (kg/hr) Coded level

425 1.5 25.0 9 -2
475 2.0 27.5 12 -1
525 2.5 30.0 15 0
575 3.0 32.5 18 1
625 3.5 35.0 21 2

Factor

HCm

 

 

The parameter values in the resulting model equations must be substituted according to Table 

57, which only lists the five levels associated with the experimental design. To investigate values 

other than these levels, the normalized Equations D1 – D4 are used to interpolate and find the correct 

value for the model based on an experimental level of interest. This form is used based on the 

software package selected to perform the regression procedures. Note the equations can be solved by 

using values beyond the ran ng must be closely 

scrutinized. Equation D5 is used as an example calculation for bio-oil yield (see Equation 24).  

 

ge of -2 to +2, but results obtained by extrapolati
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Figure 138. Residuals for biochar yield full model 

 

Table 58. Biochar yield model statistical data 

Term Estimate

Standard 
error t-ratio

Prob > |t|
(p-value) Estimate error t-ratio

ob > |t|
(p-value)

20.193 0.8078 25.00 <0.0001 20.545 0.5582 36.81 <0.0001
-7 292 0.4039 -18.05 <0.0001 -7 .0001
-0.889 0.4039 -2.20 0.0438 -0.889 0.3947 -2.25 0.0341
0.577 0.4039 1.43 0.1734 - - - -
-2.773 0.4039 -6.87 <0.0001 -2.773 0.3947 -7.03 <0.0001
0.126 0.4947 0.25 0.8025 -
-1.314 0.4947 -2.66 0.0180 -1.314 0.4834 -2.72 0.0123
-0.050 0.4947 -0.10 0.9211 - - - -
0.740 0.4947 1.49 0.1557 - - - -
0.386 0.4947 0.78 0.4479 -
-0.466 0.4947 -0.94 0.3612 - - - -
1.072 0.3778 2.84 0.0125 1.028 0.3626 2.83 0.0094
0.388 0.3778 1.03 0.3202 - - - -
-0.036 0.3778 -0.10 0.9255 - - - -
1.216 0.3778 3.22 0.0057 1.172 0.3626 3.23 0.0037

R2 R2 adj RMSE Mean R2 R2 adj RMSE Mean
0.9645 0.9314 1.98 22.31 0.9481 0.9345 1.93 22.31

ANOVA DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value) DOF

Sum of 
Squares

(SS-)

Mean 

Regression (R) 14 1596.80 114.06 29.13 <0.0001 6 1569.53 261.59 69.96 <0.0001
Error (E) 15 58.73 3.92 23 86.00 3.74
Total (T) 29 1655.53 29 1655.53

Lack of fit analysis DOF
Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value) DOF

Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value)

Lack of fit 10 42.64 4.26 1.32 0.3985 18 69.91 3.88 1.21 0.4543
Pure error 5 16.09 3.22 5 16.09 3.22

Total 15 58.73 23 86.00

Full mod

N2 flow rate · N2 flow rate

Auger speed · Auger speed
HC feed rate · HC feed rate

Summary of model fit

HC temperature · HC feed rate
N2 flow rate · HC feed rate
Auger speed · HC feed rate

HC temperature · HC temperature

HC feed rate

HC temperature · N2 flow rate
HC temperature · Auger speed
N2 flow rate · Auger speed

Intercept

HC temperature
N2 flow rate

Auger speed

Standard Pr
el Reduced model

. .292 0.3947 -18.47 <0

- - -

- - -

Square
(MS-) FANOVA

Prob > F
(p-value)
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Figure odel 

Table 59. Non-condensable gas yield mmary 

 139. Residuals for non-condensable gas yield full m

 

model, statistics su

Statistic Value Significant Hypothesis tests

R2 0.494 - -

FANOVA 1.04 X FANOVA  < F0.05,k,ν

F0.05,k,ν 2.424 - Don't reject Ho1

FLOF 261.8 √ FLOF > F0.05,λ,m-1

F0.05,λ,m-1 4.74 - Don' reject Ho2

t0.05,ν 2.13 - -
|t| statistics 

for model terms Value Significant Hypothesis tests

β0 13.12 √ |t| > t0.05,ν Reject Ho3

β1 0.76 X |t| < t0.05,ν Don't reject Ho3

β2 0.23 X |t| < t0.05,ν Don't reject Ho3

β3 0.31 X |t| < t0.05,ν Don't reject Ho3

β4 0.82 X |t| < t0.05,ν Don't reject Ho3

β12 0.23 X |t| < t0.05,ν Don't reject Ho3

β13 0.56 X |t| < t0.05,ν Don't reject Ho3

β23 0.13 X |t| < t0.05,ν Don't reject Ho3

β14 0.15 X |t| < t0.05,ν Don't reject Ho3

β24 0.22 X |t| < t0.05,ν Don't reject Ho3

β34 0.43 X |t| < t0.05,ν Don't reject Ho3

β11 3.03 √ |t| > t0.05,ν Reject Ho3

β22 0.77 X |t| < t0.05,ν Don't reject Ho3

β33 0.81 X |t| < t0.05,ν Don't reject Ho3

β44 0.66 X |t| < t0.05,ν Don't reject Ho3  

 



 210 

Table 60. Non-condensable gas yield model statistical data 

Term Estimate

Standard 
error t-ratio

Prob > |t|
(p-value)

11.347 0.8647 13.12 <0.0001

-0.326 0.4324 -0.76 0.4619
0.099 0.4324 0.23 0.8225

-0.136 0.4324 -0.31 0.7581
0.353 0.4324 0.82 0.4265

0.123 0.5295 0.23 0.8196

0.296 0.5295 0.56 0.5847
0.071 0.5295 0.13 0.8945
-0.079 0.5295 -0.15 0.8829
0.115 0.5295 0.22 0.8316
0.229 0.5295 0.43 0.6716

1.225 0.4044 3.03 0.0085
-0.313 0.4044 -0.77 0.4509

87
-0.265 0.4044 -0.66 0.5221

R2 R2 adjusted RMSE Mean
.60

ANOVA DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value)

Regression (R) 14 65.61 4.69 1.04 0.4650
Error (E) 15 67.30 4.49
Total (T) 29 132.91

Lack of fit analysis DOF
Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value)

Lack of fit 10 67.17 6.72 261.77 <0.0001
Pure error 5 0.13 0.03

Total 15 67.30

Full model

N2 flow rate · N2 flow rate
Auger sp
HC feed rate · HC feed rate

Summary of model fit

HC temperature · HC feed rate
N2 flow rate · HC feed rate
Auger speed · HC feed rate

HC temperature · HC temperature

HC feed rate

HC temperature · N2 flow rate

HC temperature · Auger speed
N2 flow rate · Auger speed

Intercept

HC temperature
N2 flow rate

Auger speed

-0.329 0.4044 -0.81 0.42eed · Auger speed

0.4937 0.0211 2.1181 11
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Table 61. Non-condensable gas data, composition 

Run 
No.

DOE
 No.

N2 H2 CO CH4 C2H6 C2H4 CO2

1 17 68.26 0.021 10.51 0.886 0.082 0.152 15.82
2 18 65.14 0.012 12.28 1.569 0.139 0.206 16.06
3 15 65.54 0.593 11.30 1.038 0.106 0.142 15.01
4 7 59.13 1.547 14.03 2.062 0.187 0.266 15.11
5 9 72.32 0.413 8.31 0.702 0.072 0.100 11.25
6 13 63.82 0.713 11.24 0.961 0.095 0.144 15.35
7 11 71.16 0.450 8.55 0.749 0.075 0.092 11.91
8 5 59.20 1.310 15.05 2.110 0.181 0.297 15.81
9 1 69.11 0.724 10.11 1.361 0.119 0.174 11.01
10 3 67.38 0.820 11.33 1.617 0.143 0.196 12.54
11 21 49.26 1.185 19.58 2.093 0.193 0.311 23.56
12 28 58.12 0.844 15.91 1.666 0.158 0.233 19.50
13 23 63.04 0.783 12.55 0.844 0.090 0.152 19.90
14 19 61.24 0.757 14.66 1.598 0.153 0.199 18.42
15 29 56.91 1.220 16.58 1.803 0.169 0.262 19.85
16 20 67.93 0.779 12.28 1.259 0.116 0.187 14.77
17 27 66.56 0.693 12.58 1.269 0.123 0.175 15.63
18 22 72.83 0.474 10.09 0.995 0.098 0.127 12.76
19 25 66.50 0.698 12.72 1.298 0.127 0.181 15.65
20 24 60.87 1.409 16.26 2.204 0.192 0.317 15.72
21 26 67.06 0.743 12.40 1.341 0.129 0.178 15.15
22 30 66.25 0.736 12.71 1.351 0.127 0.180 15.60
23 8 58.94 0.942 15.55 1.756 0.161 0.222 18.28
24 2 68.68 0.769 11.83 1.403 0.125 0.178 13.45
25 12 71.06 0.502 10.11 0.857 0.089 0.119 13.85
26 6 58.78 0.946 15.73 1.600 0.144 0.233 18.66
27 10 72.54 0.434 9.40 0.666 0.072 0.109 13.60
28 14 63.89 0.660 12.53 0.814 0.094 0.148 18.41
29 4 63.54 0.801 13.81 1.359 0.136 0.177 16.67
30 16 63.16 0.455 10.73 0.765 0.088 0.118 15.42

63.57 0.822 13. 2 1.455 0.139 0.201 16.90
4.71 0.20 1. 0.22 0.02 0.04 2.16

72.83 1.55 19. 8 2.20 0.19 0.32 23.56
49.26 0.01 8. 0.67 0.07 0.09 11.01

MAX
MIN

Cntr. Pt. Avg.
Cntr. Pt. St.Dev.

Gas composition (%-vol., kmoli/100 kmolNCG)

8
89
5
31  
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T  able 62. Non-condensable gas data, molar analysis

Mass Molecular weight No. mols

Run 
No.

DOE
 No.

m
(gNCG)

M
(kg/kmolNCG)

n = m/M
(molNCG)

H2 CO CH4 C2H6 C2H4 CO2

1 17 107.89 36.84 2.93 0.001 0.382 0.032 0.003 0.006 0.575
2 18 88.87 35.88 2.48 0.000 0.405 0.052 0.005 0.007 0.530
3 15 84.68 35.55 2.38 0.021 0.401 0.037 0.004 0.005 0.532
4 7 99.87 33.35 2.99 0.047 0.423 0.062 0.006 0.008 0.455
5 9 92.47 35.73 2.59 0.020 0.399 0.034 0.003 0.005 0.540
6 13 92.50 35.58 2.60 0.025 0.394 0.034 0.003 0.005 0.539
7 11 102.66 35.80 2.87 0.021 0.392 0.034 0.003 0.004 0.546
8 5 56.05 33.59 1.67 0.038 0.433 0.061 0.005 0.009 0.455
9 1 117.14 34.03 3.44 0.031 0.430 0.058 0.005 0.007 0.469
10 3 110.36 34.02 3.24 0.031 0.425 0.061 0.005 0.007 0.470
11 21 97.70 34.86 2.80 0.025 0.417 0.045 0.004 0.007 0.502
12 28 101.43 35.07 2.89 0.022 0.415 0.043 0.004 0.006 0.509
13 23 95.17 36.40 2.61 0.023 0.366 0.025 0.003 0.004 0.580
14 19 91.03 35.17 2.59 0.021 0.410 0.045 0.004 0.006 0.515
15 29 100.75 34.65 2.91 0.031 0.416 0.045 0.004 0.007 0.498
16 20 87.12 34.86 2.50 0.026 0.418 0.043 0.004 0.006 0.503
17 27 99.54 35.14 2.83 0.023 0.413 0.042 0.004 0.006 0.513
18 22 106.27 35.35 3.01 0.019 0.411 0.041 0.004 0.005 0.520
19 25 105.12 35.08 3.00 0.023 0.415 0.042 0.004 0.006 0.510
20 24 132.22 33.24 3.98 0.039 0.450 0.061 0.005 0.009 0.435
21 26 110.01 34.93 3.15 0.025 0.414 0.045 0.004 0.006 0.506
22 30 103.64 35.00 2.96 0.024 0.414 0.044 0.004 0.006 0.508
23 8 110.86 34.71 3.19 0.026 0.421 0.048 0.004 0.006 0.495
24 2 106.98 34.45 3.11 0.028 0.426 0.051 0.005 0.006 0.485
25 12 92.93 35.79 2.60 0.020 0.396 0.034 0.003 0.005 0.543
26 6 92.80 34.85 2.66 0.025 0.421 0.043 0.004 0.006 0.500
27 10 87.63 36.19 2.42 0.018 0.387 0.027 0.003 0.004 0.560
28 14 96.55 36.21 2.67 0.020 0.384 0.025 0.003 0.005 0.564
29 4 115.44 34.99 3.30 0.024 0.419 0.041 0.004 0.005 0.506
30 16 108.02 36.20 2.98 0.016 0.389 0.028 0.003 0.004 0.559

34.98 2.957 0.024 0.414 0.044 0.004 0.006 0.507
0.178 0.110 0.003 0.001 0.001 0.000 0.000 0.005
36.84 3.977 0.047 0.450 0.062 0.006 0.009 0.580
33.24 1.669 0.000 0.366 0.025 0.003 0.004 0.435

Note: a - Nitrogen free basis

Gas mol fraction, yi (kmoli/kmolNCG)a

Cntr. Pt. Avg.
Cntr. Pt. St.Dev.
MAX
MIN
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Table 63. Non-condensable gas data, mass analysis 

Run 
No.

DOE
 No.

H2 CO CH4 C2H6 C2H4 CO2 H2 CO CH4 C2H6 C2H4 CO2

1 17 0.00 1.12 0.09 0.01 0.02 1.68 0.00 31.34 1.51 0.26 0.46 74.11 3.13 7.41
2 18 0.00 1.00 0.13 0.01 0.02 1.31 0.00 28.12 2.06 0.34 0.47 57.79 3.90 8.01
3 15 0.05 0.96 0.09 0.01 0.01 1.27 0.10 26.76 1.41 0.27 0.34 55.81 3.50 7.29
4 7 0.14 1.27 0.19 0.02 0.02 1.36 0.28 35.45 2.98 0.51 0.67 59.97 4.47 7.57
5 9 0.05 1.03 0.09 0.01 0.01 1.40 0.10 28.90 1.40 0.27 0.35 61.46 3.38 7.18
6 13 0.07 1.02 0.09 0.01 0.01 1.40 0.13 28.71 1.41 0.26 0.37 61.63 3.21 6.89
7 11 0.06 1.12 0.10 0.01 0.01 1.56 0.12 31.46 1.58 0.30 0.34 68.86 3.35 7.32
8 5 0.06 0.72 0.10 0.01 0.01 0.76 0.13 20.24 1.62 0.26 0.40 33.40 4.38 7.22
9 1 0.11 1.48 0.20 0.02 0.03 1.61 0.21 41.48 3.20 0.53 0.72 71.01 4.45 7.62
10 3 0.10 1.38 0.20 0.02 0.02 1.53 0.20 38.64 3.16 0.52 0.67 67.17 4.28 7.44
11 21 0.07 1.17 0.13 0.01 0.02 1.41 0.14 32.75 2.01 0.35 0.52 61.93 3.80 7.19
12 28 0.06 1.20 0.13 0.01 0.02 1.47 0.13 33.63 2.02 0.36 0.49 64.80 3.69 7.12
13 23 0.06 0.96 0.06 0.01 0.01 1.52 0.12 26.78 1.03 0.21 0.32 66.71 2.69 6.71
14 19 0.05 1.06 0.12 0.01 0.01 1.33 0.11 29.70 1.85 0.33 0.40 58.63 3.77 7.44
15 29 0.09 1.21 0.13 0.01 0.02 1.45 0.18 33.86 2.11 0.37 0.54 63.70 3.90 7.34
16 20 0.07 1.04 0.11 0.01 0.02 1.26 0.13 29.24 1.72 0.30 0.45 55.28 3.70 7.00
17 27 0.06 1.17 0.12 0.01 0.02 1.45 0.13 32.76 1.89 0.34 0.46 63.96 3.71 7.25
18 22 0.06 1.24 0.12 0.01 0.02 1.56 0.12 34.62 1.96 0.36 0.44 68.77 3.70 7.36
19 25 0.07 1.24 0.13 0.01 0.02 1.53 0.14 34.80 2.03 0.37 0.49 67.28 3.76 7.27
20 24 0.16 1.79 0.24 0.02 0.03 1.73 0.31 50.16 3.89 0.63 0.98 76.21 4.89 7.42
21 26 0.08 1.30 0.14 0.01 0.02 1.59 0.16 36.53 2.26 0.41 0.53 70.13 3.79 7.27
22 30 0.07 1.23 0.13 0.01 0.02 1.50 0.14 34.34 2.09 0.37 0.49 66.21 3.74 7.20
23 8 0.08 1.35 0.15 0.01 0.02 1.58 0.16 37.68 2.44 0.42 0.54 69.61 3.93 7.26
24 2 0.09 1.32 0.16 0.01 0.02 1.51 0.17 37.07 2.52 0.42 0.56 66.24 4.02 7.18
25 12 0.05 1.03 0.09 0.01 0.01 1.41 0.10 28.81 1.40 0.27 0.34 62.01 3.21 6.92
26 6 0.07 1.12 0.11 0.01 0.02 1.33 0.14 31.44 1.83 0.31 0.47 58.62 3.77 7.03
27 10 0.04 0.94 0.07 0.01 0.01 1.36 0.09 26.25 1.07 0.22 0.30 59.71 2.83 6.45
28 14 0.05 1.02 0.07 0.01 0.01 1.50 0.11 28.65 1.07 0.23 0.34 66.15 2.70 6.24
29 4 0.08 1.38 0.14 0.01 0.02 1.67 0.16 38.73 2.18 0.41 0.50 73.46 3.85 7.30
30 16 0.05 1.16 0.08 0.01 0.01 1.67 0.10 32.52 1.33 0.29 0.36 73.43 3.27 7.38

0.07 1.23 0.13 0.01 0.02 1.50 0.15 34.32 2.07 0.37 0.50 66.01 3.77 7.24
0.01 0.05 0.01 0.00 0.00 0.06 0.02 1.28 0.12 0.02 0.03 2.43 0.075 0.076
0.16 1.79 0.24 0.02 0.03 1.73 0.31 50.16 3.89 0.63 0.98 76.21 4.89 8.01
0.00 0.72 0.06 0.01 0.01 0.76 0.00 20.24 1.03 0.21 0.30 33.40 2.69 6.24

Note: a - Percent weight yield on a wet biomass basis (gramsi/gram biomass)

CO 

yielda

(%-wt., 
wb)

CO2 

yielda

(%-wt., 
wb)

Cntr. Pt. St. Dev.
MAX
MIN

Massi (gi), mi = ni · MiNumber of moli (moli), ni = n · yi

Cntr. Pt. Avg.
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Table rties  64. Non-condensable gas data, volume meter prope

Run 
No.

DOE
 No.

Volume meter 
average 

temperature 
(°C)

Volume meter 
average 
pressure 

(in-H2Og)

Total 
elapsed 
volume 

(m3)

1 17 27.46 1.19 0.228
2 18 29.84 1.30 0.179
3 15 25.01 0.82 0.183
4 7 25.32 1.20 0.189
5 9 25.87 1.89 0.257
6 13 27.29 1.26 0.192
7 11 26.70 1.79 0.275
8 5 25.66 1.02 0.105
9 1 23.63 1.83 0.304
10 3 26.17 1.61 0.260
11 21 24.10 0.48 0.134
12 28 23.27 0.62 0.166
13 23 22.75 0.50 nd
14 19 23.26 0.84 0.161
15 29 24.06 0.72 0.163
16 20 24.46 1.03 0.189
17 27 24.85 1.02 0.206
18 22 23.57 1.57 0.266
19 25 24.89 1.07 0.218
20 24 24.26 1.17 0.246
21 26 28.12 1.11 0.238
22 30 28.06 1.05 0.218
23 8 31.20 0.82 0.197
24 2 28.96 1.26 0.247
25 12 28.84 1.13 0.224
26 6 30.19 0.75 0.163
27 10 26.97 1.04 0.218
28 14 27.51 0.73 0.183
29 4 29.68 1.23 0.227
30 16 27.91 1.08 0.236

Overall Avg. 26.33 1.10 0.21
Overall St. Dev. 2.35 0.37 0.04
Cntr. Pt. Avg. 25.54 0.93 0.20
Cntr. Pt. St. Dev. 2.06 0.21 0.03

Notes: nd - Not determined  
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Figure 140. Residuals for carbon monoxide yield full model 

 

Table 65. Carbon monoxide yield model statistical data 

Term Estimate

Standard 
error t-ratio

Prob > |t|
(p-value) Estimate

Standard 
error t-ratio

Prob > |t|
(p-value)

3.766 0.0356 105.83 <0.0001 3.746 0.0195 192.05 <0.0001

0.504 0.0178 28.32 <0.0001 0.504 0.0169 29.83 <0.0001
-0.002 0.0178 -0.12 0.9029 - - - -
-0.052 0.0178 -2.91 0.0108 -0.052 0.0169 -3.07 0.0057
0.206 0.0178 11.60 <0.0001 0.206 0.0169 12.22 <0.0001

-0.003 0.0218 -0.12 0.908 - - - -

0.080 0.0218 3.69 0.0022 0.080 0.0207 3.88 0.0008
0.069 0.0218 3.15 0.0066 0.069 0.0207 3.32 0.0031
0.038 0.0218 1.72 0.1053 - - - -
-0.022 0.0218 -0.99 0.3381 - - - -
0.047 0.0218 2.15 0.0484 0.047 0.0207 2.26 0.0339
0.000 0.0166 -0.02 0.9867 - - - -
-0.009 0.0166 -0.54 0.5954 - - - -

-0.013 0.0166 -0.80 0.4373 - - - -
-0.069 0.0166 -4.13 0.0009 -0.066 0.01542 -4.3 0.0003

R2 R2 adjusted RMSE Mean R2 R2 adjusted RMSE Mean
0.9851 0.9713 0.087 3.69 0.9804 0.9741 0.0828 3.69

ANOVA DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value) DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value)

Regression (R) 14 7.557 0.540 71.04 <0.0001 7 7.520 1.0 156.88 <0.0001
Error (E) 15 0.114 0.008 22 0.151 0.0
Total (T) 29 7.671 29 7.671

Lack of fit analysis DOF
Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value) DOF

Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value)

Lack of fit 10 0.086 0.009 1.51 0.3398 17 0.122 0.007 1.27 0.4278
Pure error 5 0.028 0.006 5 0.028 0.006

Total 15 0.114 22 0.151

Full model Reduced model

N2 flow rate · N2 flow rate

Auger speed · Auger speed
HC feed rate · HC feed rate

Summary of model fit

HC temperature · HC feed rate
N2 flow rate · HC feed rate
Auger speed · HC feed rate

HC temperature · HC temperature

HC feed rate

HC temperature · N2 flow rate

HC temperature · Auger speed
N2 flow rate · Auger speed

Intercept

HC temperature
N2 flow rate
Auger speed

74
06
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Figure 141. Residuals for carbon dioxide yield full model 

 

Table 66. Carbon dioxide yield model statistical data 

Term Estimate

Standard 
error t-ratio

Prob > |t|
(p-value) Estimate

Standard 
error t-ratio

Prob > |t|
(p-value)

7.243 0.0597 121.36 <0.0001 7.188 0.0456 157.64 <0.0001
0.183 0.0298 6.13 <0.0001 0.183 0.0322 5.67 <0.0001
0.036 0.0298 1.20 0.2474 - - - -
-0.147 0.0298 -4.93 0.0002 -0.147 0.0322 -4.56 0.0002
0.166 0.0298 5.57 <0.0001 0.166 0.0322 5.16 <0.0001
0.025 0.0365 0.69 0.5023 - - - -
0.103 0.0365 2.80 0.0133 0.103 0.0395 2.60 0.0165
0.097 0.0365 2.66 0.0178 0.097 0.0395 2.46 0.0221
-0.039 0.0365 -1.07 0.3028 - - - -
0.041 0.0365 1.13 0.2768 - - - -
0.078 0.0365 2.12 0.0507 - - - -
-0.073 0.0279 -2.63 0.019 -0.066 0.0296 -2.24 0.0352
-0.021 0.0279 -0.75 0.4665 - - - -
-0.034 0.0279 -1.23 0.239 - - - -
0.088 0.0279 3.14 0.0068 0.094 0.0296 3.19 0.0043

R2 R2 adjusted RMSE Mean R2 R2 adjusted RMSE Mean
0.9022 0.8109 0.1462 7.210 0.8326 0.7793 0.1580 7.210

ANOVA DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value) DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value)

Regression (R) 14 2.957 0.211 9.88 <0.0001 7 2.729 0.390 15.63 <0.0001
Error (E) 15 0.321 0.021 22 0.549 0.025
Total (T) 29 3.278 29 3.278

Lack of fit analysis DOF
Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value) DOF

Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value)

Lack of fit 10 0.292 0.029 5.04 0.044 17 0.520 0.031 5.28 0.0374
Pure error 5 0.029 0.006 5 0.029 0.006

Total 15 0.321 22 0.549

Full model Reduced model

N2 flow rate · N2 flow rate

Auger speed · Auger speed
HC feed rate · HC feed rate

Summary of model fit

HC temperature · HC feed rate
N2 flow rate · HC feed rate
Auger speed · HC feed rate

HC temperature · HC temperature

HC feed rate

HC temperature · N2 flow rate

HC temperature · Auger speed
N2 flow rate · Auger speed

Intercept

HC temperature
N2 flow rate

Auger speed
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Table 67. Moisture content analytical data 

Run 
No.

DOE
 No. Avg. St. Dev Avg. St. Dev Avg. St. Dev Avg. St. Dev Avg. St. Dev

1 17 26.29 1.40 17.37 0.38 43.77 3.52 16.04 0.39 73.29 3.32
2 18 25.01 1.15 15.04 0.41 40.86 2.29 17.88 0.86 69.49 2.19
3 15 28.37 1.92 25.66 1.60 46.62 1.11 16.47 3.93 66.62 3.24
4 7 23.48 2.55 15.93 0.96 37.86 4.96 15.76 2.52 67.80 5.43
5 9 27.84 1.18 24.56 1.35 44.35 0.85 17.38 0.70 77.07 2.92
6 13 28.84 0.77 25.38 0.68 45.60 0.41 15.93 0.73 67.51 4.36
7 11 27.78 1.19 17.18 1.23 42.25 1.50 20.46 0.62 70.83 1.16
8 5 23.00 0.99 17.67 1.05 39.17 1.05 14.51 0.54 72.15 2.70
9 1 22.14 0.76 11.50 1.00 34.58 0.86 19.20 0.15 69.37 1.56
10 3 24.09 1.18 10.85 0.35 36.91 2.11 23.40 1.17 66.28 2.15
11 21 25.90 1.68 18.43 1.78 45.13 1.80 13.80 0.89 73.36 4.18
12 28 26.13 1.46 20.26 1.02 41.13 1.43 17.44 2.70 61.75 4.75
13 23 35.00 1.29 31.02 0.56 54.97 2.80 17.11 1.85 74.05 7.79
14 19 25.82 1.61 22.43 1.62 43.57 2.12 15.62 0.98 67.52 2.70
15 4.61 4.52
16 20 24.84 1.32 16.89 0.86 44.10 1.93 15.86 1.78 68.88 0.99
17 27 27.38 1.17 16.37 0.97 42.89 0.88 20.11 1.60 68.03 6.25
18 22 68.08 4.61
19 25 67.17 5.71
20 24 22.04 2.45 10.73 2.59 37.50 2.50 18.17 1.95 71.04 3.67
21 26 24.86 1.95 13.22 2.55 38.78 1.51 19.87 1.14 71.09 5.56
22 30 24.39 2.59 17.20 2.27 37.63 3.45 19.57 1.83 62.89 5.65
23 8 22.79 1.90 11.54 2.24 37.39 1.63 17.06 1.55 61.23 2.92
24 2 23.03 1.79 16.23 1.70 37.98 2.43 18.56 1.09 70.15 4.36
25 12 28.46 0.40 24.36 0.23 46.13 0.58 18.12 0.37 67.94 3.78
26 6 22.51 0.61 14.63 0.24 42.12 0.33 17.31 1.84 72.46 4.63
27 10 31.58 1.49 22.85 0.81 48.71 2.53 18.77 1.22 72.50 2.82
28 14 30.39 1.63 20.18 2.55 49.20 0.88 17.20 0.57 67.86 0.55
29 4 27.14 1.97 16.96 0.87 49.15 4.86 17.72 0.79 70.34 2.26
30 16 29.92 1.17 23.04 1.08 48.13 1.25 16.66 1.02 68.24 3.59

25.74 1.79 16.52 1.60 41.25 1.76 17.82 2.14 65.92 5.41
- 1.71 - 1.96 - 2.37 - 5.44

35.00 31.02 2.59 54.97 4.96 23.40 4.13 77.07 7.79
22.04 0.40 10.73 0.23 34.58 0.33 11.77 0.15 61.23 0.55

Notes: All values in %-wt., wb. Each analysis performed in triplicate. a- Pooled standard deviation

MIN

Whole bio-oil SF1

Cnt. Pt. Avg.

SF2 SF3 SF4

MAX
Cntr. Pt. St. Dev.a

29 25.50 1.75 18.52 1.30 43.28 1.20 11.77 4.13 6

26.15 2.17 14.59 2.42 43.01 2.67 21.59 0.82
26.17 1.80 13.52 1.50 43.82 2.13 18.13 1.44

- 1.84
2.59
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Where: nk = Number of tests performed for sample k, sk = Standard deviation for sample k 
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Figure 142. Residuals for moisture content full model 

 

Table 68. Moisture content model statistical data 

Term Estimate

Standard 
error t-ratio

Prob > |t|
(p-value) Estimate

Standard 
error t-ratio

Prob > |t|
(p-value)

25.738 0.4109 62.64 <0.0001 25.671 0.2326 110.35 <0.0001
-2.955 0.2054 -14.39 <0.0001 -2.955 0.2015 -14.67 <0.0001
0.136 0.2054 0.66 0.5174 - - - -
-0.193 0.2054 -0.94 0.3619 - - - -
-0.535 0.2054 -2.61 0.0199 -0.535 0.2015 -2.66 0.0135
0.406 0.2516 1.61 0.1278 - - - -
-0.684 0.2516 -2.72 0.0159 -0.684 0.2468 -2.77 0.0104
-0.193 0.2516 -0.77 0.456 - - - -
0.298 0.2516 1.18 0.2554 - - - -
-0.402 0.2516 -1.60 0.1312 - - - -
-0.069 0.2516 -0.27 0.7875 - - - -
0.688 0.1922 3.58 0.0027 0.696 0.1839 3.78 0.0009
0.063 0.1922 0.33 0.7457 - - - -
-0.110 0.1922 -0.57 0.5772 - - - -
-0.029 0.1922 -0.15 0.8815 - - - -

R2 R2 adjusted RMSE Mean R2 R2 adjusted RMSE Mean
0.9421 0.8880 1.01 26.23 0.9071 0.8923 0.9870 26.23

ANOVA DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value) DOF

Sum of 
Squares

(SS-)

M
Square
(MS-) FANOVA

Prob > F
(p-value)

gression (R) 14 247.11 17.65 17.42 <0.0001 4 237.95 59.49 61.06 <0.0001
Error (E) 15 15.19 1.01 25 24.36 0.97

Lack of fit nalysis DOF
Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value) DOF

Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value)

Lack of fit 10 9.53 0.95 0.840 0.6203 10 5.93 0.59 0.483 0.8762
Pure error 5 5.67 1.13 15 18.42 1.23

Total 15 15.19 25 24.36

Intercept

HC temperature
N2 flow rate

Auger speed

HC temperature · HC temperature

HC feed rate

HC temperature · N2 flow rate

HC temperature · Auger speed
N2 flow rate · Auger speed

Full model Reduced model

N2 flow rate · N2 flow rate

Auger speed · Auger speed
C feed rate · HC feed rate

Summary of model fit

HC temperature · HC feed rate
N2 flow rate · HC feed rate
Auger speed · HC feed rate

H

ean 

Re

Total (T) 29 262.30 29 262.30

a
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Table 69. Water insoluble content analytical data 

SF4
Run 
No.

DOE
 No. Avg. St. Dev Avg. St. Dev Avg. St. Dev Avg. St. Dev

1 17 15.0 0.53 15.29 0.09 6.41 0.11 29.92 2.5 -
2 18 17.4 1.33 18.95 1.23 9.80 0.97 27.62 2.3 -
3 15 14.2 0.31 13.10 0.17 5.91 0.04 28.17 1.2 -
4 7 18.3 0.83 20.10 0.95 8.64 0.44 30.92 1.2 -
5 9 14.3 0.30 12.94 0.33 7.86 0.04 25.47 0.5 -
6 13 14.3 0.24 13.03 0.19 7.64 0.15 27.58 0.5 -
7 11 14.0 0.22 15.50 0.34 7.36 0.13 23.61 0.1 -
8 5 18.9 0.49 19.48 0.70 10.35 0.10 30.36 0.3 -
9 1 19.6 0.47 24.65 0.80 9.74 0.15 26.41 0.4 -
10 3 18.5 0.20 22.31 0.23 9.43 0.28 26.07 0.1 -
11 21 15.7 0.61 16.82 0.87 8.80 0.30 26.53 0.2 -
12 28 15.4 0.45 15.86 0.06 6.79 0.15 29.24 2.2 -
13 23 9.6 0.20 9.81 0.20 2.12 0.08 22.76 0.4 -
14 19 16.1 0.40 15.7 0.37 7.93 0.30 27.68 0.6 -
15 29 15.9 0.27 17.36 0.20 7.21 0.07 29.02 0.9 -
16 20 17.1 0.23 17.9 .21 10.29 0.23 28.90 0.3 -
17 27 15.3 0.47 17.71 .34 7.62 0.08 25.37 1.5 0.10
18 22 0.8 -
19 25 16.4 0.42 19.15 0.55 8.67 0.31 25.95 0.4 -
20 24 22.5 0.61 24.4 0.64 12.08 0.44 36.52 0.9 0.26
21 26 14.8 0.52 17.10 0.30 7.55 0.55 23.83 0.9 0.32
22 30 15.6 0.64 16.58 0.36 7.9 0.26 26.07 2.0 -
23 8 17.62 0.14 20.34 0.13 10.27 0.09 27.47 0.25 -
24 2 18.34 0.51 18.62 0.35 10.31 0.26 27.73 1.16
25 12 14.47 2.31 14.27 3.58 6.00 0.82 25.55 0.29 -
26 6 19.50 0.42 19.75 0.19 11.03 0.13 32.69 1.70 -
27 10 13.75 - 15.83 - 4.63 - 25.64 - -
28 14 12.99 - 14.47 - 4.89 - 27.00 - -
29 4 17.65 - 19.15 - 9.72 - 26.00 - -
30 16 13.57 - 14.81 - 4.80 - 26.76 - -

15.59 0.46 17.29 0.30 7.62 0.24 26.58 1.31 -
- 0.47 - 0.34 - 0.29 - 1.47 -

22.51 2.31 24.65 3.58 12.08 0.97 36.52 2.47 -
9.61 0.14 9.81 0.06 2.12 0.04 22.76 0.06 -

Notes: All values in %-wt., wb. Analysis performed in triplicate for samples
with standard deviations shown. a- Pooled standard deviation

Whole bio-oil SF1 SF2 SF3

MIN

Cnt. Pt. Avg.
Cntr. Pt. St. Dev.a

MAX

0
0

17.4 0.44 19.4 0.27 9.92 0.44 25.23
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Figure 143. Residuals for water insoluble content full model 

 

Table 70. Water insoluble content model statistical data 

Term Estimate

Standard 
error t-ratio

Prob > |t|
(p-value) Estimate

Standard 
error t-ratio

Prob > |t|
(p-value)

15.585 0.3169 49.19 <0.0001 16.146 0.1412 114.38 <0.0001
2.612 0.1584 16.49 <0.0001 2.612 0.1578 16.55 <0.0001
0.197 0.1584 1.25 0.2320 - - - -
0.231 0.1584 1.46 0.1648 - - - -
0.374 0.1584 2.36 0.0320 0.374 0.1578 2.37 0.025
-0.111 0.1940 -0.57 0.5762 - - - -

0.333 0.1940 1.72 0.1064 - - - -
-0.042 0.1940 -0.22 0.8322 - - - -

0.013 0.1940 0.07 0.9463 - - - -
0.014 0.1940 0.07 0.9419 - - - -
0.060 0.1940 0.31 0.7624 - - - -

0.101 0.1482 0.68 0.5070 - - - -
0.235 0.1482 1.58 0.1339 - - - -

0.234 0.1482 1.58 0.1358 - - - -
0.132 0.1482 0.89 0.3856 - - - -

R2 R2 adjusted RMSE Mean R2 R2 adjusted RMSE Mean
0.9507 0.9047 0.776 16.15 0.9119 0.9054 0.773 16.15

ANOVA DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value) DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value)

Regression (R) 14 174.18 12.44 20.65 <0.0001 2 167.07 83.53 139.72 <0.0001
Error (E) 15 9.04 0.60 27 16.14 0.598
Total (T) 29 183.21 29 183.21

Lack of fit analysis DOF
Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value) DOF

Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value)

Lack of fit 10 7.491 0.749 2.43 0.170 6 5.57 0.93 1.85 0.1384
Pure error 5 1.545 0.309 21 10.57 0.50

Total 15 9.036 27 16.14

Intercept

HC temperature
N2 flow rate
Auger speed

HC temperature · HC temperature

HC feed rate

HC temperature · N2 flow rate

HC temperature · Auger speed
N2 flow rate · Auger speed

Full model Reduced model

N2 flow rate · N2 flow rate

Auger speed · Auger speed
HC feed rate · HC feed rate

Summary of model fit

HC temperature · HC feed rate
N2 flow rate · HC feed rate
Auger speed · HC feed rate
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Table 71. Solids content analytical data 

SF4
Run 
No.

DOE
 No. Avg. St. dev. Avg. St. dev. Avg. St. dev. Avg. St. dev.

12 28 1.142 0.075 1.0378 0.073 1.198 0.077 1.465 0.080 nd
15 29 1.237 0.249 1.3653 0.230 1.370 0.257 0.6425 0.320 nd
17 27 0.838 0.255 1.164 0.103 0.846 0.569 0.1695 0.063 0.2071
19 25 0.810 0.312 1.0359 0.295 0.715 0.380 0.5662 0.262 0.1099
21 26 0.655 0.196 0.821 0.120 0.561 0.226 0.4868 0.316 0.6328
22 30 0.957 0.168 0.9764 0.189 1.073 0.181 0.8431 0.117 nd

0.940 0.209 1.0667 0.168 0.9605 0.282 0.6955 0.193 -

- 0.222 - 0.185 - 0.323 - 0.222 -

SF3

Average

Whole bio-oil SF1 SF2

St. Dev. a

Notes: All values in %-wt., wb. Each analysis performed in triplicate except for SF4. 
a- Pooled standard deviation  

 

Table 72. Higher heating value analytical data 

Run 
No.

DOE
 No. Avg. St. dev. Avg. St. dev. Avg. St. dev. Avg. St. dev. Avg. St. dev.

12 28 16.4 nd -
17 27 16.17 0.23 18.80 0.27 11.95 0.13 18.86 0.30 5.98 0.23
21 26 16.57 0.10 19.16 0.11 12.63 0.00 19.03 0.25 6.94 0.09

16.41 0.15 18.72 0.15 12.14 0.14 19.23 0.19 6.46 0.16

- 0.16 - 0.18 - 0.19 - 0.23 - 0.18
20 24 17.12 - 19.22 - 13.25 - 19.45 - 6.97 -
13 23 13.64 - 14.50 - 8.11 - 19.67 - 5.38 -

SF4

Average

Notes: nd - Not determined. All values in (MJ/kg) on a wet basis. Analyses with standard deviations 
performed in duplicate. Run No. 12 whole bio-oil average calculated without HHV contribution from SF4.
 a - Pooled standard deviation

St. Dev.a

SF2 SF3Whole bio-oil SF1

7 0.13 18.19 0.08 11.85 0.30 19.82 0.02

 

 

Table 73. Thermal Gravimetric Analysis data, bio-oil 

Run 
No.

DOE
 No. M V FC A M V FC A M V FC A M V FC A

12 28 36.9 50.8 13.3 0.045 68.2 25.0 6.9 0.065 28.0 57.9 14.2 0.059 98.0 1.55 0.36 0.043
15 29 35.2 50.6 14.1 0.056 67.8 25.1 7.1 0.028 24.1 59.8 16.2 0.144 98.1 1.53 0.37 0.011
17 27 30.8 54.6 14.6 0.032 67.5 25.5 7.1 0.051 33.7 52.8 13.5 0.001 98.2 1.56 0.20 0.040
19 25 29.3 55.5 15.2 0.029 68.1 24.8 7.2 0.060 31.1 54.7 14.0 0.142 98.6 1.43 0.04 0.063
21 26 27.3 57.6 15.2 0.028 66.8 26.3 6.9 0.072 30.4 53.4 16.2 0.010 98.6 1.24 0.11 0.021
22 30 32.4 53.2 14.4 0.034 67.5 25.6 6.9 0.062 31.0 53.6 15.4 0.031 98.9 1.02 0.12 0.011

32.0 53.7 14.5 0.037 67.7 25.4 7.0 0.056 29.7 55.4 14.9 0.064 98.4 1.39 0.20 0.032
3.63 2.73 0.71 0.011 0.52 0.55 0.12 0.015 3.29 2.81 1.18 0.064 0.34 0.22 0.14 0.021

Avg.
St. Dev.

Notes: All values in %-wt., wb. M - Moisture, V - Volatiles, FC - Fixed Carbon, A - Ash. 
Stadard deviation shown among runs, not replicates.

SF1 SF2 SF3 SF4
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Table 7 iochar 4. Thermal Gravimetric Analysis data, b

Run 
No.

DOE
 No. Moisture Volatiles Fixed Carbon Ash

1 17 4.80 46.92 45.00 3.28
2 18 4.77 27.01 63.82 4.42
3 15 4.33 30.78 57.75 7.15
4 7 4.76 27.38 60.62 7.25
5 9 4.15 38.01 49.09 8.77
6 13 4.50 34.18 51.67 9.64
7 11 4.68 40.28 48.06 6.98
8 5 4.85 29.13 59.97 6.04
9 1 4.74 31.30 58.81 5.16
10 3 4.82 29.83 60.15 5.19
11 21 4.80 28.80 62.86 3.53
12 28 3.75 31.53 58.33 6.40
13 23 4.23 26.70 56.90 12.17
14 19 5.34 33.74 53.90 7.03
15 29 4.39 31.71 59.21 4.70
16 20 4.13 33.23 54.70 7.93
17 27 4.43 35.49 53.86 6.07
18 22 4.51 38.16 52.22 5.11
19 25 4.43 31.20 58.93 5.45
20 24 5.10 27.62 62.22 5.07
21 26 5.18 26.82 62.80 5.21
22 30 3.65 36.24 54.90 5.21
23 8 5.24 33.01 57.86 3.89
24 2 4.93 31.14 58.47 5.46
25 12 4.72 28.79 57.56 8.94
26 6 4.24 36.85 54.36 4.56
27 10 4.53 31.50 52.71 11.26
28 14 4.52 29.90 55.18 10.40
29 4 4.58 29.70 60.59 5.11
30 16 4.35 24.47 63.01 8.20

4.30 32.16 58.00 5.51

0.56 3.40 3.23 0.63
MAX 5.34 46.92 63.82 12.17
MIN 3.65 24.47 45.00 3.28

Ov
Ov

Note: All values in %-wt., wb

Cntr. Pt. Avg.

Cntr. Pt. St. Dev.

4.58 32.05 56.85 6.52
0.39 4.75 4.68 2.28

erall Avg.
erall St. Dev.
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Table 75. Elemental analysis data, biochar 

Run 
No.

DOE
 No. C

St. 
Dev. N

St. 
Dev. H

St. 
Dev. S

St. 
Dev. Ash Oa

1 17 67.01 - 0.261 - 4.72 - 0.023 - 3.28 24.71
2 18 75.45 - 0.247 - 3.94 - 0.012 - 4.42 15.93
3 15 72.22 - 0.302 - 3.82 - 0.012 - 7.15 16.50
4 7 70.88 - 0.177 - 3.55 - 0.014 - 7.25 18.13
5 9 65.81 - 0.206 - 3.99 - 0.012 - 8.77 21.22
6 13 69.56 - 0.326 - 3.65 - 0.015 - 9.64 16.81
7 11 65.47 - 0.160 - 4.23 - 0.014 - 6.98 23.15
8 5 71.67 - 0.432 - 3.71 - 0.018 - 6.04 18.12
9 1 70.62 - 0.456 - 3.78 - 0.018 - 5.16 19.97
10 3 73.70 - 0.194 - 3.55 - 0.014 - 5.19 17.35
11 21 73.74 - 0.300 - 3.75 - 0.016 - 3.53 18.67
12 28 73.27 0.121 0.149 0.038 3.47 0.058 0.007 0.004 6.40 16.70
13 23 68.98 - 0.199 - 3.02 - 0.027 - 12.17 15.61
14 19 70.42 - 0.280 - 3.83 - 0.018 - 7.03 18.43
15 29 71.41 0.273 0.063 0.057 3.75 0.019 0.012 0.005 4.70 20.07
16 20 68.44 - 0.140 - 3.93 - 0.016 - 7.93 19.55
17 27 68.74 0.138 0.162 0.106 3.78 0.316 0.007 9E-04 6.07 21.24
18 22 67.04 - 0.404 - 4.31 - 0.014 - 5.11 23.12
19 25 70.03 0.174 0.134 0.032 3.54 0.054 0.022 0.0197 5.45 20.83
20 24 73.58 - 0.182 - 3.55 - 0.015 - 5.07 17.60
21 26 72.70 1.230 0.114 0.056 3.36 0.065 0.011 0.003 5.21 18.60
22 30 68.93 0.021 0.051 0.042 3.94 0.011 0.012 0.005 5.21 21.85
23 8 70.83 - 0.386 - 4.08 - 0.017 - 3.89 20.80
24 2 71.33 - 0.172 - 3.67 - 0.015 - 5.46 19.35
25 12 72.34 - 0.382 - 3.15 - 0.015 - 8.94 15.17
26 6 69.19 - 0.150 - 4.15 - 0.013 - 4.56 21.93
27 10 66.57 - 0.362 - 3.42 - 0.021 - 11.26 18.37
28 14 68.97 - 0.187 - 3.17 - 0.019 - 10.40 17.26
29 4 71.98 - 0.229 - 3.76 - 0.017 - 5.11 18.90
30 16 74.38 - 0.264 - 3.13 - 0.016 - 8.20 14.01

70.51 - 0.24 - 3.72 - 0.015 - 6.52 19.00
2.61 - 0.11 - 0.37 - 0.004 - 2.28 2.56

70.85 0.326 0.11 0.055 3.64 0.087 0.0117 0.006 5.51 19.88

- 0.734 - 0.082 - 0.192 - 0.012 - -
MAX 75.45 - 0.46 - 4.72 - 0.03 - 12.17 24.71
MIN 65.47 - 0.05 - 3.02 - 0.01 - 3.28 14.01

Overall Avg.
Overall St. Dev.
Cntr. Pt. Avg

Cntr. Pt. St. Dev.b

Notes: All values in %-wt., wb. a - Oxygen by difference. b- Pooled standard deviation  

 

 

 

 

 

 



 224 

T  able 76. Elemental analysis data, SF1 bio-oil

Run 
No.

DOE
 No. C

St. 
Dev. Na

St. 
Dev. H

St. 
Dev. S

St. 
Dev. Ash Ob

1 17 43.51 0.155 0.048 0.0091 7.26 0.098 0.007 - 0.029 49.14
2 18 45.97 0.152 0.008 0 7.01 0.041 0.004 - 0.303 46.71
3 15 39.30 0.141 0.008 0 7.49 0.015 0.006 - 0.011 53.19
4 7 45.51 0.315 0.008 0 7.02 0.031 0.003 - 0.008 47.45
5 9 39.36 0.053 0.008 0 7.48 0.030 0.003 - 0.252 52.90
6 13 39.35 0.159 0.008 0 7.50 0.031 0.007 - 0.075 53.07
7 11 44.84 0.113 0.008 0 6.99 0.031 0.004 - 0.094 48.07
8 5 43.48 0.338 0.008 0 7.03 0.060 0.002 - 0.131 49.35
9 1 47.54 - 0.046 - 6.87 - 0.003 - 0.131 45.41
10 3 47.96 - 0.038 - 6.86 - 0.001 - 0.23 44.92
11 21 43.20 - 0.030 - 7.17 - 0.006 - 0.143 49.45
12 28 42.79 0.141 0.008 0.0003 7.02 0.055 0.010 0.0024 0.045 50.13
13 23 34.71 - 0.023 - 7.82 - 0.001 - 1.089 56.35
14 19 39.76 - 0.008 - 7.52 - 0.002 - 0.640 52.07
15 29 43.10 0.385 0.008 0 7.19 0.063 0.008 0.0013 0.056 49.64
16 20 43.42 - 0.009 - 7.18 - 0.002 - 0.715 48.67
17 27 45.22 0.319 0.008 0 6.94 0.016 0.007 0.0010 0.032 47.79
18 22 44.93 - 0.047 - 6.99 - 0.001 - - 48.03
19 25 45.82 0.201 0.126 0.0743 7.03 0.127 0.003 0.0021 0.029 47.00
20 24 45.98 - 0.035 - 6.97 - 0.000 - - 47.02
21 26 46.08 0.384 0.008 0 6.78 0.069 0.004 0.0017 0.028 47.10
22 30 44.29 0.342 0.111 0.0659 7.07 0.052 0.003 0.0005 0.034 48.49
23 8 46.81 - 0.028 - 6.84 - 0.006 - 0.992 45.33
24 2 43.52 - 0.023 - 7.11 - 0.004 - 0.487 48.86
25 12 38.09 - 0.044 - 7.59 - 0.004 - 0.966 53.30
26 6 41.82 - 0.107 - 7.32 - 0.007 - 0.900 49.85
27 10 41.30 - 0.054 - 7.28 - 0.006 - 0.887 50.48
28 14 40.36 - 0.116 - 7.14 - 0.005 - 0.996 51.39
29 4 43.77 - 0.137 - 7.17 - 0.008 - 0.894 48.02
30 16 40.33 - 0.008 - 7.39 - 0.007 - 0.897 51.37

43.07 - 0.038 - 7.17 - 0.005 - 0.396 49.35
3.10 - 0.040 - 0.25 - 0.002 - 0.401 2.70

44.55 0.295 0.045 0.0234 7.01 0.064 0.006 0.0015 0.04 48.36

- 0.409 - 0.0574 - 0.098 - 0.0023 0.01 1.31
MAX 47.96 - 0.137 - 7.82 - 0.010 - 1.09 56.35
MIN 34.71 - 0.008 - 6.78 - 0.000 - 0.01 44.92

Cntr. Pt. Avg

Cntr. Pt. St. Dev.c

Notes: All values in %-wt., wb. a - Minimum detection level = 80 PPM (if St. Dev = 0, triplicate 
samples were all below detection limit). b - Oxygen by difference. c - Pooled standard deviation, 
except for ash and O which are shown as STDEV among runs

Overall Avg.
Overall St. Dev.
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Table 77. Elemental analysis data, SF2 bio-oil 

Run 
No.

DOE
 No. C

St. 
Dev. Na

St. 
Dev. H

St. 
Dev. S

St. 
Dev. Ash Ob

1 17 27.22 0.126 0.011 0.0094 8.55 0.043 0.007 - 0.044 64.17
2 18 29.99 0.025 0.008 0 8.20 0.082 0.005 - 0.879 60.92
3 15 27.21 0.477 0.008 0 8.47 0.059 0.004 - 0.082 64.23
4 7 30.14 0.017 0.008 0 8.19 0.015 0.004 - - 61.65
5 9 27.65 0.068 0.008 0 8.43 0.034 0.006 - 0.020 63.89
6 13 27.24 0.133 0.008 0 8.38 0.040 0.006 - 0.152 64.21
7 11 27.54 0.026 0.008 0 8.34 0.042 0.007 - 0.471 63.64
8 5 30.57 0.164 0.008 0 8.22 0.048 0.009 - 0.178 61.02
9 1 31.13 - 0.008 - 8.05 - 0.003 - 0.051 60.76
10 3 30.41 - 0.008 - 8.10 - 0.009 - 0.143 61.33
11 21 27.42 - 0.008 - 8.48 - 0.003 - - 64.10
12 28 27.30 0.057 0.008 0 8.23 0.047 0.008 0.0012 0.065 64.39
13 23 20.18 - 0.008 - 8.56 - 0.004 - 0.176 71.07
14 19 27.78 - 0.008 - 8.38 - 0.008 - 0.395 63.43
15 29 27.59 0.067 0.008 0 8.40 0.090 0.007 0.0007 0.028 63.97
16 20 26.81 - 0.008 - 8.38 - 0.006 - 0.040 64.76
17 27 28.01 0.064 0.008 0 8.05 0.039 0.008 0.0011 0.051 63.88
18 22 28.54 - 0.008 - 8.32 - 0.006 - 0.672 62.46
19 25 28.27 0.148 0.063 0.0598 8.36 0.045 0.003 0.0023 0.060 63.25
20 24 30.79 - 0.008 - 8.04 - 0.006 - - 61.15
21 26 28.76 0.180 0.020 0.0357 8.07 0.051 0.004 0.0027 0.072 63.08
22 30 27.80 0.112 0.102 0.0484 8.35 0.057 0.005 0.0009 0.062 63.67
23 8 28.79 - 0.008 - 8.24 - 0.007 - 0.907 62.05
24 2 29.25 - 0.008 - 8.20 - 0.005 - - 62.54
25 12 25.05 - 0.008 - 8.58 - 0.006 - 0.645 65.72
26 6 28.11 - 0.008 - 8.26 - 0.008 - 0.956 62.66
27 10 23.85 - 0.008 - 8.63 - 0.010 - - 67.50
28 14 24.16 - 0.008 - 8.62 - 0.009 - - 67.20
29 4 29.46 - 0.012 - 7.75 - 0.005 - - 62.77
30 16 24.87 - 0.008 - 8.60 - 0.009 - 0.821 65.68

27.73 - 0.014 - 8.31 - 0.006 - 0.303 63.70
2.33 - 0.020 - 0.21 - 0.002 - 0.334 2.20

27.95 0.105 0.035 0.0240 8.24 0.055 0.006 0.0015 0.056 63.71

- 0.160 - 0.0489 - 0.072 - 0.0023 0.015 0.485
MAX 31.13 - 0.102 - 8.63 - 0.010 - 0.96 71.07
MIN 20.18 - 0.008 - 7.75 - 0.003 - 0.02 60.76

Notes: All values in %-wt., wb. a - Minimum detection level = 80 PPM (if St. Dev = 0, triplicate 
samples were all below detection limit). b - Oxygen by difference. c - Pooled standard deviation, 
except for ash and O which are shown as STDEV among runs

Overall Avg.
Overall St. Dev.
Cntr. Pt. Avg

Cntr. Pt. St. Dev.c
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Table 78. Elemental analysis data, SF3 bio-oil 

Run 
No.

DOE
 No. C

St. 
Dev. Na

St. 
Dev. H

St. 
Dev. S

St. 
Dev. Ash Ob

1 17 46.31 0.292 0.048 0.0041 7.14 0.130 0.002 - 0.035 46.47
2 18 46.16 0.197 0.008 0 7.07 0.102 0.004 - 0.064 46.70
3 15 47.21 0.249 0.008 0 7.18 0.046 0.005 - 0.394 45.21
4 7 47.11 0.324 0.008 0 7.13 0.040 0.005 - 0.691 45.06
5 9 45.36 0.117 0.008 0 7.20 0.021 0.004 - 0.012 47.41
6 13 46.85 0.149 0.008 0 7.13 0.008 0.007 - 0.134 45.87
7 11 43.71 0.045 0.008 0 7.33 0.030 0.001 - 0.134 48.81
8 5 48.24 0.028 0.008 0 7.04 0.019 0.001 - 0.138 44.58
9 1 44.01 - 0.041 - 7.25 - 0.001 - 0.185 48.51
10 3 43.48 - 0.008 - 7.25 - 0.003 - - 49.26
11 21 48.14 - 0.015 - 7.10 - 0.002 - 0.203 44.54
12 28 46.03 0.176 0.008 0.0008 7.05 0.069 0.005 0.0018 0.059 46.84
13 23 47.11 - 0.038 - 7.19 - 0.003 - - 45.66
14 19 46.85 - 0.031 - 7.15 - 0.007 - 0.762 45.19
15 29 48.27 0.121 0.008 0 7.02 0.033 0.006 0.0009 0.144 44.55
16 20 46.57 - 0.030 - 7.12 - 0.001 - 0.820 45.46
17 27 45.31 0.249 0.008 0 7.07 0.078 0.007 0.0006 0.001 47.60
18 22 42.49 - 0.013 - 7.34 - 0.001 - 0.881 49.28
19 25 44.94 0.201 0.207 0.0683 7.14 0.141 0.002 0.0017 0.142 47.57
20 24 45.99 - 0.028 - 7.17 - 0.007 - - 46.80
21 26 44.60 0.296 0.042 0.0206 7.15 0.031 0.001 0.0004 0.010 48.20
22 30 44.89 0.032 0.162 0.1118 7.24 0.098 0.003 0.0025 0.031 47.67
23 8 44.75 - 0.028 - 7.22 - 0.001 - 0.531 47.47
24 2 44.39 - 0.013 - 7.25 - 0.004 - 0.363 47.98
25 12 45.37 - 0.009 - 7.28 - 0.002 - 0.861 46.48
26 6 46.73 - 0.065 - 7.10 - 0.003 - 0.642 45.46
27 10 44.71 - 0.020 - 7.34 - 0.002 - 0.827 47.10
28 14 45.57 - 0.039 - 7.23 - 0.002 - - 47.16
29 4 43.76 - 0.038 - 7.32 - 0.014 - - 48.87
30 16 45.26 - 0.008 - 7.19 - 0.003 - 0.828 46.71

45.67 - 0.032 - 7.18 - 0.004 - 0.356 46.82
1.47 - 0.045 - 0.09 - 0.003 - 0.330 1.43

45.67 0.179 0.072 0.0336 7.11 0.075 0.004 0.0013 0.064 47.07

- 0.277 - 0.0765 - 0.118 - 0.0021 0.064 1.3
MAX 48.27 - 0.207 - 7.34 - 0.01 - 0.88 49.28
MIN 42.49 - 0.008 - 7.02 - 0.00 - 0.00 44.54

Overall Avg.
Overall St. Dev.
Cntr. Pt. Avg.

Cntr. Pt. St. Dev.c

Notes: All values in %-wt., wb. a - Minimum detection level = 80 PPM (if St. Dev = 0, triplicate 
samples were all below detection limit). b - Oxygen by difference. c - Pooled standard deviation, 
except for ash and O which are shown as STDEV among runs  
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Table 79. Elemental analysis data, SF4 bio-oil 

Run 
No.

DOE
 No. C

St. 
Dev. Na

St. 
Dev. H

St. 
Dev. S

St. 
Dev. Ash Ob

1 17 12.46 0.050 0.008 0 10.04 0.039 0.014 - 0.043 77.43
2 18 13.62 0.143 0.008 0 9.96 0.082 0.016 - 0.051 76.34
3 15 13.22 0.342 0.008 0 9.77 0.341 0.021 - 0.008 76.97
4 7 13.82 0.328 0.008 0 9.68 0.305 0.011 - 0.702 75.78
5 9 11.98 0.220 0.008 0 9.88 0.117 0.014 - 0.368 77.75
6 13 14.06 0.171 0.008 0 9.52 0.143 0.013 - 0.332 76.07
7 11 14.02 0.082 0.008 0 9.73 0.117 0.013 - - 76.23
8 5 11.83 0.979 0.008 0 8.96 0.831 0.012 - - 79.18
9 1 13.86 - 0.008 - 9.75 - 0.012 - 0.566 75.81
10 3 13.10 - 0.008 - 9.58 - 0.010 - - 77.30
11 21 11.63 - 0.008 - 9.96 - 0.010 - - 78.39
12 28 12.43 0.499 0.008 0 8.64 0.153 0.017 0.0013 0.011 78.90
13 23 6.71 - 0.008 - 5.85 - 0.002 - - 87.42
14 19 12.96 - 0.008 - 9.95 - 0.014 - - 77.07
15 29 12.03 0.127 0.104 0.0977 10.00 0.132 0.013 0.0008 - 77.85
16 20 10.60 - 0.008 - 9.19 - 0.004 - - 80.19
17 27 9.73 0.750 0.009 0.0082 7.66 0.683 0.015 0.0008 0.040 82.54
18 22 12.51 - 0.008 - 9.57 - 0.017 - 0.029 77.87
19 25 12.89 0.197 0.158 0.1303 9.94 0.175 0.009 0.0009 0.063 76.94
20 24 13.84 - 0.008 - 9.73 - 0.012 - - 76.41
21 26 10.32 2.073 0.008 0 7.91 1.104 0.008 0.0015 0.021 81.74
22 30 12.88 0.136 0.131 0.1264 9.92 0.153 0.008 0.0016 0.011 77.05
23 8 13.97 - 0.008 - 9.81 - 0.007 - - 76.22
24 2 13.18 - 0.008 - 9.92 - 0.011 - - 76.88
25 12 11.26 - 0.008 - 10.20 - 0.012 - - 78.53
26 6 11.74 - 0.008 - 10.03 - 0.012 - - 78.21
27 10 10.64 - 0.008 - 9.58 - 0.011 - - 79.76
28 14 10.71 - 0.008 - 9.82 - 0.013 - - 79.45
29 4 13.25 - 0.008 - 9.93 - 0.013 - - 76.80
30 16 11.05 - 0.008 - 9.77 - 0.014 - - 79.16

12.21 - 0.02 - 9.47 - 0.012 - 0.173 78.21
1.61 - 0.04 - 0.90 - 0.004 - 0.24 2.41

11.71 0.631 0.07 0.0604 9.01 0.400 0.011 0.0011 - 79.17

- 1.314 - 0.1123 - 0.768 - 0.0016 - 2.42
MAX 14.06 - 0.158 - 10.20 - 0.021 - 0.70 87.42
MIN 6.71 - 0.008 - 5.85 - 0.002 - 0.01 75.78

Notes: All values in %-wt., wb. a - Minimum detection level = 80 PPM (if St. Dev = 0, triplicate 
samples were all below detection limit). b - Oxygen by difference. c - Pooled standard deviation, 
except for O which is shown as STDEV among runs

Overall Avg.
Overall St. Dev.
Cntr. Pt. Avg.

Cntr. Pt. St. Dev.c
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T  able 80. Elemental analysis data, whole bio-oil

Run 
No.

DOE
 No. C

St. 
Dev. Na

St. 
Dev. H

St. 
Dev. S

St. 
Dev. Ash Ob

1 17 38.44 0.169 0.036 0.0081 7.69 0.086 0.006 - 0.035 53.79
2 18 40.22 0.119 0.008 0 7.46 0.067 0.005 - 0.440 51.87
3 15 38.14 0.221 0.008 0 7.64 0.032 0.006 - 0.087 54.12
4 7 40.57 0.225 0.008 0 7.45 0.032 0.004 - 0.145 51.82
5 9 37.87 0.073 0.008 0 7.65 0.031 0.004 - 0.168 54.30
6 13 38.00 0.153 0.008 0 7.63 0.031 0.007 - 0.103 54.26
7 11 37.91 0.068 0.008 0 7.59 0.037 0.005 - 0.230 54.25
8 5 40.79 0.256 0.008 0 7.34 0.064 0.003 - 0.140 51.72
9 1 40.59 - 0.031 - 7.41 - 0.003 - 0.126 51.85
10 3 40.13 0.020 - 7.44 - 0.005 - 0.135 52.27
11 21 39.10 - 0.022 - 7.56 - 0.005 - 0.109 53.20
12 28 38.63 0.127 0.008 0.0003 7.39 0.056 0.009 0.0018 0.059 53.91
13 23 32.75 - 0.022 - 7.88 - 0.002 - 0.037 59.31
14 19 38.38 - 0.012 - 7.65 - 0.004 - 0.606 53.35
15 29 38.85 0.245 0.009 0.0012 7.56 0.068 0.007 0.0010 0.041 53.53
16 20 39.03 - 0.013 - 7.53 - 0.003 - 0.543 52.88
17 27 38.53 0.226 0.008 0.0002 7.37 0.050 0.007 0.0009 0.032 54.05
18 22 38.60 - 0.026 - 7.54 - 0.003 - 0.409 53.42
19 25 38.80 0.182 0.121 0.0692 7.58 0.102 0.003 0.0021 0.042 53.45
20 24 40.49 - 0.025 - 7.41 - 0.004 - 0.000 52.08
21 26 38.91 0.331 0.019 0.0093 7.34 0.077 0.003 0.0018 0.038 53.69
22 30 39.10 0.211 0.119 0.0712 7.53 0.065 0.004 0.0010 0.029 53.23
23 8 39.32 - 0.020 - 7.47 - 0.006 - 0.863 52.32
24 2 39.71 - 0.017 - 7.46 - 0.004 - 0.334 52.47
25 12 36.30 - 0.029 - 7.79 - 0.004 - 0.861 55.02
26 6 38.89 - 0.075 - 7.55 - 0.007 - 0.853 52.62
27 10 35.60 - 0.031 - 7.78 - 0.007 - 0.569 56.01
28 14 35.19 - 0.065 - 7.70 - 0.006 - 0.477 56.56
29 4 39.16 - 0.078 - 7.43 - 0.009 - 0.432 52.90
30 16 36.22 - 0.008 - 7.74 - 0.007 - 0.849 55.17

38.47 - 0.03 - 7.55 - 0.005 - 0.29 53.65
1.77 - 0.03 - 0.14 - 0.002 - 0.29 1.62

38.80 0.221 0.05 0.0252 7.46 0.070 0.006 0.0014 0.040 53.64

- 0.308 - 0.0576 - 0.098 - 0.0021 0.010 0.305
MAX 40.79 - 0.121 - 7.88 - 0.009 - 0.86 59.31
MIN 32.75 - 0.008 - 7.34 - 0.002 - 0.00 51.72

Overall Avg.
Overall St. Dev.
Cntr. Pt. Avg.

Cntr. Pt. St. Dev.c

Notes: All values in %-wt., wb. a - Minimum detection level = 80 PPM (if St. Dev = 0, triplicate 
samples were all below detection limit). b - Oxygen by difference. c - Pooled standard deviation, 
except for ash and O which are shown as STDEV among runs  

 



 229 

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

R
es

id
u

al
 (

C
 c

on
te

n
t 

%
-w

t.
, w

b
)

0 10 20 30

Run number
 

Figure 144. Residuals for bio-oil carbon content full model 

 

Table 81. Bio-oil carbon content model statistical data 

Term Estimate

Standard 
error t-ratio

Prob > |t|
(p-value) Estimate

Standard 
error t-ratio

Prob > |t|
(p-value)

38.804 0.1731 224.22 <0.0001 38.920 0.0996 390.63 <0.0001
1.642 0.0865 18.98 <0.0001 1.642 0.0863 19.03 <0.0001
-0.036 0.0865 -0.41 0.686 - - - -
0.008 0.0865 0.10 0.9238 - - - -
0.715 0.0865 8.26 <0.0001 0.715 0.0863 8.28 <0.0001
-0.008 0.1060 -0.08 0.939 - - - -
0.170 0.1060 1.60 0.1306 - - - -
0.104 0.1060 0.98 0.3425 - - - -
-0.226 0.1060 -2.13 0.0499 -0.226 0.1057 -2.14 0.0424
-0.134 0.1060 -1.27 0.225 - - - -
0.130 0.1060 1.23 0.2376 - - - -
-0.543 0.0809 -6.70 <0.0001 -0.557 0.0788 -7.07 <0.0001
0.016 0.0809 0.20 0.846 - - - -
-0.020 0.0809 -0.25 0.807 - - - -
0.135 0.0809 1.67 0.1151 - - - -

R2 R2 adjusted RMSE Mean R2 R2 adjusted RMSE Mean
0.9704 0.9429 0.4293 38.47 0.9510 0.9432 0.4227 38.47

ANOVA DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value) DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value)

Regression (R) 14 88.513 0.211 35.18 <0.0001 4 86.741 21.685 121.36 <0.0001
Error (E) 15 2.695 0.021 25 4.467 0.179
Total (T) 29 91.208 29 91.208

Lack of fit analysis DOF
Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value) DOF

Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value)

Lack of fit 10 2.491 0.249 6.10 0.030 4 2.442 0.611 6.33 0.0017
Pure error 5 0.204 0.041 21 2.025 0.096

Total 15 2.695 25 4.467

Intercept

HC temperature
N2 flow rate
Auger speed

HC temperature · HC temperature

HC feed rate

HC temperature · N2 flow rate

HC temperature · Auger speed
N2 flow rate · Auger speed

Full model Reduced model

N2 flow rate · N2 flow rate
Auger speed · Auger speed
HC feed rate · HC feed rate

Summary of model fit

HC temperature · HC feed rate
N2 flow rate · HC feed rate
Auger speed · HC feed rate
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igure 145. Residuals for bio-oil hydrogen content full model

 

able 82. Bio-oil hydrogen content model statistical data

Term Estimate

Standard 
error t-ratio

Prob > |t|
(p-value) Estimate

Standard 
error t-ratio

Prob > |t|
(p-value)

7.459 0.0305 244.20 <0.0001 7.523 0.0169 445.81 <0.0001
-0.122 0.0153 -7.98 <0.0001 -0.122 0.0146 -8.34 <0.0001
-0.001 0.0153 -0.06 0.9508 - - - -
-0.011 0.0153 -0.73 0.4743 - - - -
-0.051 0.0153 -3.36 0.0043 -0.051 0.0146 -3.52 0.0016
-0.011 0.0187 -0.56 0.5806 - - - -
-0.001 0.0187 -0.06 0.9502 - - - -
0.008 0.0187 0.42 0.6773 - - - -
0.014 0.0187 0.76 0.4599 - - - -
0.003 0.0187 0.15 0.8825 - - - -
-0.010 0.0187 -0.54 0.5985 - - - -
0.043 0.0143 2.98 0.0094 -0.035 0.0133 -2.59 0.0156
0.019 0.0143 1.33 0.2027 - - - -
0.028 0.0143 1.98 0.0664 - - - -
0.029 0.0143 2.03 0.1017 - - - -

R2 R2 adjusted RMSE Mean R2 R2 adjusted RMSE Mean
0.8571 0.7236 0.0748 7.55 0.7731 0.7469 0.0716 7.55

ANOVA DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value) DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value)

Regression (R) 14 0.503 0.036 6.42 <0.0005 3 0.454 0.151 29.53 <0.0001
Error (E) 15 0.084 0.006 26 0.133 0.005
Total (T) 29 0.587 29 0.587

Lack of fit analysis DOF
Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value) DOF

Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value)

Lack of fit 10 0.026 0.003 0.22 0.980 5 0.015 0.003 0.53 0.7516
Pure error 5 0.058 0.012 21 0.118 0.006

Total 15 0.084 26 0.133

Intercept

HC temperature
N2 flow rate
Auger speed

HC temperature · HC temperature

HC feed rate

HC temperature · N2 flow rate

HC temperature · Auger speed
N2 flow rate · Auger speed

Full model Reduced model

N2 flow rate · N2 flow rate
Auger speed · Auger speed
HC feed rate · HC feed rate

Summary of model fit

HC temperature · HC feed rate
N2 flow rate · HC feed rate
Auger speed · HC feed rate
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Figure 146. Predicted vs. actual hydrogen content 
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Figure 147. Residuals for bio-oil oxygen content full model 
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Table 83. Bio-oil oxygen content model statistical data 

Term Estimate

Standard 
error t-ratio

Prob > |t|
(p-value) Estimate

Standard 
error t-ratio

Prob > |t|
(p-value)

53.636 0.1681 319.10 <0.0001 53.648 0.1225 438.09 <0.0001
-1.521 0.0840 -18.09 <0.0001 -1.521 0.0866 -17.56 <0.0001
0.039 0.0840 0.47 0.6472 - - - -
0.004 0.0840 0.05 0.9617 - - - -
-0.688 0.0840 -8.19 <0.001 -0.688 0.0866 -7.95 <0.0001
0.010 0.1029 0.10 0.9235 - - - -
-0.170 0.1029 -1.65 0.1200 - - - -
-0.107 0.1029 -1.04 0.3147 - - - -
0.219 0.1029 2.13 0.0502 - - - -
0.134 0.1029 1.30 0.2133 - - - -
-0.112 0.1029 -1.09 0.2923 - - - -

0.527 0.0786 6.70 <0.0001 0.525 0.080 6.600 <0.0001
-0.009 0.0786 -0.11 0.9131 - - - -

0.021 0.0786 0.27 0.7935 - - - -
-0.193 0.0786 -2.46 0.0266 -0.195 0.080 -2.450 0.022

R2 R2 adjusted RMSE Mean R2 R2 adjusted RMSE Mean
0.9686 0.9394 0.41 53.91 0.9445 0.9356 0.42 53.91

ANOVA DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value) DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value)

Regression (R) 14 78.52 5.61 33.09 <0.0001 4 76.56 19.14 106.37 <0.0001
Error (E) 15 2.54 0.17 25 4.50 0.180
Total (T) 29 81.06 29 81.062

Lack of fit analysis DOF FLOF

n 
Square FLOF

Prob > F
(p-value)

Lack of fit 10 2.054 0.205 2.10 0.213 4 2.37 0.59 5.85 0.0025
Pure error 5 0.488 0.098 21 2.13 0.10

Total 15 2.543 25 4.50

Full model Reduced model

N2 flow rate · N2 flow rate

Auger speed · Auger speed
HC feed rate · HC feed rate

Summary of model fit

HC temperature · HC feed rate
N2 flow rate · HC feed rate
Auger speed · HC feed rate

HC temperature · HC temperature

HC feed rate

HC temperature · N2 flow rate
HC temperature · Auger speed
N2 flow rate · Auger speed

Intercept

HC temperature
N2 flow rate
Auger speed

Sum of 
Squares

Mean 
Square

Prob > F
(p-value) DOF

Sum of 
Squares

Mea

 

 

Table 84. Total acid number analytical data for center point tests 

Run 
No.

DOE
 No. Avg. St. dev. Avg. St. dev. Avg. St. dev. Avg. St. dev. Avg. St. dev.

12 28 nd - 112.6 0.10 119.9 0.77 84.2 0.42 nd -
15 29 106.1 0.74 109.1 0.64 113.0 0.64 85.9 1.30 63.3 0.50
17 27 108.4 0.86 107.0 0.50 124.9 1.19 88.2 1.13 54.9 0.20
19 25 109.3 0.26 107.5 0.40 125.7 0.03 91.0 0.28 48.8 1.32
21 26 107.9 0.43 104.5 0.62 125.9 0.29 90.9 0.29 50.1 0.20
22 30 108.4 0.74 111.1 0.86 120.4 0.93 90.6 0.22 48.9 0.09

108.0 0.60 108.6 0.52 121.6 0.64 88.5 0.61 53.2 0.46

- 0.64 - 0.57 - 0.75 - 0.75 - 0.55

Average

Notes: nd - Not determined. All values in (mgKOH/gbio-oil). Analyses with standard deviations performed in 

duplicate. a - Pooled standard deviation

St. Dev.a

Whole bio-oil SF1 SF2 SF3 SF4
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Figure 148. GC/MS chromatogram for SF2, Run #20 (bio-oil maximum yield) 
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(4) Phenol, 2-methoxy-4-methyl (5) Phenol, 2,6-dimethoxy- (6) 4 methyl 2,6 dimethoxy phenol  
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Figure 149. GC/MS chromatogram for SF3, Run #20 (bio-oil maximum yield) 
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Table 85. GC/MS sample analytical data, Run #20 (maximum bio-oil yield) 

Chemical compound SF1 SF2 SF3 SF4 Whole

Acetic acid 1.090 2.756 1.533 3.510 1.723
2-Propanone, 1-hydroxy- 1.468 1.578 1.933 1.200 1.584
2-Butanone, 3-hydroxy- 0.178 0.200 0.200 0.289 0.191
Furfural 0.044 0.111 0.044 0.156 0.067
2-Furanmethanol 0.200 0.156 0.178 0.000 0.179
2-Cyclopenten-1-one, 2-methyl- 0.022 0.044 0.022 0.022 0.029
2-Furancarboxaldehyde, 5-methyl- 0.067 0.067 0.067 0.000 0.066
2H-Pyran-2-one 0.000 0.156 0.133 0.000 0.073
1,2-Cyclopentanedione, 3-methyl- 0.645 0.444 0.533 0.000 0.552
2(5H)-Furanone, 3-methyl- 0.111 0.089 0.089 0.000 0.098
Phenol 0.044 0.044 0.044 0.000 0.044
Phenol, 2-methoxy- 0.556 0.444 0.489 0.111 0.502
Glycerin 0.000 0.000 1.133 0.000 0.212
Phenol, 2-methyl- 0.044 0.044 0.044 0.000 0.044
Phenol, 4-methyl- 0.067 0.067 0.067 0.000 0.066
Phenol, 3-methyl- 0.067 0.044 0.067 0.000 0.059
Phenol, 2-methoxy-4-methyl- 0.267 0.178 0.244 0.000 0.231
Phenol, 2,5-dimethyl- 0.044 0.044 0.044 0.000 0.0
2,4-Dimethylphenol 0.044 0.044 0.044 0.000 0.0
Phen
Phen
Phenol, 3,4-dimethyl- 0.0 4 0.044 0.044 0.000 0.044
Phenol, 4-ethyl-2-methoxy- 0.111 0.089 0.111 0.000 0.103
Eugenol 0.178 0.133 0.156 0.000 0.157
2-Furancarboxaldehyde, 5-(hydroxymethyl) 0.356 0.000 0.333 0.000 0.237
Phenol, 2,6-dimethoxy- 1.134 0.511 1.067 0.000 0.912
Phenol, 2-methoxy-4-(1-propenyl)-, (E)- 0.400 0.133 0.356 0.000 0.303
4 methyl 2,6 dimethoxy phenol 0.912 0.356 0.889 0.111 0.724
Vanillin 0.489 0.356 0.489 0.000 0.440
Hydroquinone 0.133 0.067 0.111 0.000 0.107
1,6-Anhydro-β-D-glucopyranose 2.246 1.333 2.244 0.000 1.929
Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl) 1.357 1.022 1.378 0.000 1.236
Sum 12.41 10.65 14.18 5.40 12.08
Note: All values in %-wt., wb

Bio-oil fraction

44
44

ol, 2-ethyl- 0.044 0.044 0.044 0.000 0.044
ol, 3-ethyl- 0.044 0.044 0.044 0.000 0.044

4
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Table 86. GC/MS analytical data, SF1 summary 

Run 
No.

DOE
 No. A
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S
/M

S

T
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al

1 17 1.50 2.87 0.72 0.54 2.00 3.44 3.88 14.95
2 18 1.06 3.32 0.49 0.58 2.10 3.67 2.74 13.96
3 15 3.69 2.38 0.55 0.53 1.84 3.15 3.53 15.67
4 7 3.38 3.31 0.49 0.60 2.09 3.47 3.98 17.32
5 9 3.69 2.29 0.76 0.53 1.91 3.18 3.29 15.65
6 13 1.21 1.57 0.71 0.57 1.92 3.18 3.11 12.28
7 11 6.11 3.02 0.81 0.58 2.28 4.02 3.16 19.97
8 5 2.70 2.10 0.60 0.60 2.01 3.20 4.25 15.45
9 1 4.28 4.14 0.47 0.60 2.07 3.58 2.81 17.95
10 3 1.25 3.64 0.47 0.61 2.19 3.78 3.05 14.99
11 21 2.31 3.14 1.00 0.53 1.91 3.18 3.25 15.34
12 28 4.42 3.27 0.94 0.56 1.93 3.32 5.63 20.07
13 23 1.51 0.00 1.09 0.51 1.78 2.71 5.11 12.72
14 19 4.30 3.21 1.76 0.53 1.98 3.30 5.71 20.79
15 29 3.91 3.53 1.24 0.58 1.82 3.49 5.78 20.35
16 20 1.20 2.02 0.73 0.56 1.87 3.33 5.16 14.87
17 27 4.70 2.25 0.76 0.56 2.09 3.70 3.72 17.76
18 22 3.42 2.02 0.71 0.55 2.09 3.71 3.11 15.60
19 25 1.67 2.16 1.07 0.56 2.00 3.76 3.62 14.83
20 24 1.09 2.25 0.42 0.58 2.00 3.40 2.67 12.41
21 26 1.20 2.35 0.71 0.56 2.20 3.98 4.13 15.13
22 30 2.42 2.22 0.87 0.56 2.07 3.64 5.02 16.80
23 8 3.05 2.43 0.87 0.58 2.18 4.06 4.19 17.36
24 2 3.76 2.30 1.16 0.56 2.02 3.44 2.58 15.81
25 12 1.25 1.85 0.80 0.53 1.87 3.30 4.55 14.15
26 6 3.42 2.21 0.72 0.56 1.93 3.38 4.12 16.35
27 10 3.16 1.74 0.73 0.53 2.09 3.52 3.67 15.44
28 14 1.22 1.71 0.80 0.53 2.13 3.53 4.84 14.78
29 4 1.64 2.40 0.49 0.56 1.98 3.62 4.20 14.89
30 16 3.40 1.89 0.76 0.53 2.02 3.49 4.29 16.38

2.73 2.45 0. 9 0.56 2.01 3.48 3.97 16.00
1.37 0.80 0. 8 0.02 0.12 0.29 0.93 2.20
3.05 2.63 0. 3 0.56 2.02 3.65 4.65 17.49
1.49 0.61 0. 0 0.01 0.13 0.23 0.95 2.37

MAX 6.11 4.14 1 6 0.61 2.28 4.06 5.78 20.79
MIN 1.06 0.00 0. 2 0.51 1.78 2.71 2.58 12.28

Overall Avg.
Overall St. Dev.

Note: All values in %-wt., wb

Cntr. Pt. Avg.
Cntr. Pt. St. Dev.

7
2
9
2

.7
4
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Table 87. GC/MS analytical data, SF2 summary 

Run 
No.

DOE
 No. A
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1 17 1.86 0.00 0.45 0.34 1.17 1.66 4.12 9.59
2 18 6.27 0.00 0.46 0.37 1.32 1.82 4.43 14.67
3 15 5.50 0.00 0.51 0.35 1.24 1.74 3.87 13.21
4 7 7.00 0.00 0.47 0.49 1.31 1.84 3.69 14.80
5 9 8.45 0.00 0.49 0.38 1.25 1.76 2.92 15.25
6 13 3.21 0.00 0.51 0.39 1.14 1.81 3.39 10.45
7 11 3.78 0.00 0.52 0.50 1.32 1.84 2.01 9.96
8 5 6.82 0.00 0.44 0.44 1.28 1.86 3.41 14.24
9 1 7.69 0.00 0.49 0.51 1.49 1.95 4.53 16.65
10 3 1.22 0.00 0.44 0.52 1.40 1.92 3.21 8.71
11 21 0.98 0.00 0.85 0.42 1.22 1.80 5.05 10.32
12 28 4.58 0.00 0.73 0.38 1.18 1.80 5.00 13.67
13 23 0.98 0.00 0.73 0.27 0.98 1.49 3.39 7.83
14 19 4.31 0.00 1.00 0.47 1.31 1.98 5.69 14.75
15 29 1.87 0.00 0.87 0.47 1.29 1.91 4.95 11.35
16 20 1.07 1.15 0.47 0.36 1.13 1.71 3.00 8.88
17 27 1.44 1.29 0.47 0.47 1.27 1.84 2.27 9.04
18 22 1.09 0.98 0.53 0.42 1.36 1.91 2.58 8.87
19 25 1.00 1.29 0.51 0.47 1.27 1.82 1.27 7.61
20 24 2.76 1.33 0.42 0.49 1.33 1.89 2.42 10.65
21 26 2.33 1.36 0.44 0.42 1.20 1.91 2.82 10.49
22 30 4.69 1.38 0.58 0.42 1.24 1.84 4.77 14.92
23 8 3.15 1.47 0.58 0.47 1.29 1.90 2.59 11.45
24 2 2.78 1.50 0.48 0.48 1.27 1.89 4.37 12.77
25 12 4.02 1.32 0.51 0.33 1.12 1.74 0.94 9.97
26 6 4.30 1.47 0.49 0.42 1.18 1.85 1.27 10.98
27 10 2.18 1.04 0.47 0.38 1.11 1.64 2.80 9.62
28 14 3.58 1.16 0.47 0.36 1.09 1.71 2.76 11.12
29 4 2.65 1.47 0.47 0.47 1.42 2.05 1.47 9.99
30 16 1.04 1.31 0.49 0.38 1.09 1.78 2.87 8.96

3.42 0.65 0.54 0.42 1.24 1.82 3.26 11.36
2.18 0.67 0.14 0.06 0.11 0.11 1.24 2.50
2.65 0.88 0.60 0.44 1.24 1.85 3.51 11.18
1.60 0.69 0.17 0.04 0.04 0.05 1.61 2.76

MAX 8.45 1.50 1.00 0.52 1.49 2.05 5.69 16.65
MIN 0.98 0.00 0.42 0.27 0.98 1.49 0.94 7.61

Note: All values in %-wt., wb

Overall Avg.
Overall St. Dev.
Cntr. Pt. Avg.
Cntr. Pt. St. Dev.
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Table 88. GC/MS analytical data, SF3 summary 

Run 
No.

DOE
 No. A
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1 17 5.91 3.18 0.54 0.52 2.11 3.68 2.99 18.94
2 18 4.12 4.10 0.47 0.54 1.90 3.51 3.67 18.31
3 15 1.32 3.54 0.58 0.54 2.19 3.78 2.87 14.82
4 7 4.33 3.38 0.65 0.56 2.08 3.50 3.00 17.50
5 9 0.97 3.12 0.75 0.53 2.13 3.59 2.71 13.80
6 13 4.37 2.83 0.58 0.56 2.20 3.74 2.80 17.07
7 11 4.87 0.00 0.74 0.56 2.09 3.69 2.97 14.93
8 5 3.13 3.90 0.47 0.62 2.11 3.53 2.36 16.12
9 1 1.15 3.36 0.42 0.56 1.88 3.27 2.63 13.29
10 3 1.80 3.11 0.44 0.54 1.89 3.27 2.95 14.01
11 21 4.73 4.27 1.27 0.53 2.18 3.67 3.69 20.33
12 28 4.09 3.47 1.27 0.53 1.96 3.51 3.11 17.93
13 23 1.74 2.69 1.62 0.53 2.20 3.41 3.47 15.67
14 19 4.68 3.85 1.22 0.56 2.27 3.99 4.70 21.27
15 29 3.54 3.56 1.20 0.53 2.18 3.80 4.23 19.04
16 20 2.27 2.33 0.76 0.53 2.04 3.62 2.33 13.88
17 27 4.44 2.40 0.67 0.53 2.02 3.71 4.00 17.78
18 22 1.47 2.11 0.64 0.53 2.11 3.95 2.75 13.57
19 25 4.02 2.13 0.62 0.51 1.98 3.62 1.64 14.53
20 24 1.53 2.24 0.38 0.56 1.84 3.33 4.29 14.18
21 26 1.91 2.33 0.47 0.53 2.07 3.78 3.69 14.78
22 30 1.11 2.42 0.82 0.51 1.98 3.64 4.75 15.24
23 8 4.07 2.45 0.80 0.53 2.05 3.67 4.54 18.10
24 2 3.13 2.38 0.56 0.51 1.91 3.53 4.47 16.49
25 12 2.96 2.29 0.91 0.53 2.18 3.97 4.54 17.40
26 6 4.86 2.41 0.76 0.53 2.03 3.70 4.34 18.62
27 10 4.00 2.07 0.58 0.51 2.16 3.69 2.58 15.58
28 14 1.49 2.11 0.62 0.51 2.20 3.74 3.54 14.21
29 4 1.20 2.44 0.47 0.51 1.96 3.76 2.84 13.18
30 16 3.36 2.36 0.76 0.53 2.27 3.96 3.45 16.67

3.09 2.76 0.73 0.54 2.07 3.65 3.40 16.24
1.46 0.84 0.30 0.02 0.12 0.19 0.82 2.20
3.19 2.72 0.84 0.53 2.03 3.68 3.57 16.55
1.35 0.62 0.33 0.01 0.08 0.11 1.09 1.93

MAX 5.91 4.27 1.62 0.62 2.27 3.99 4.75 21.27
MIN 0.97 0.00 0.38 0.51 1.84 3.27 1.64 13.18

Overall Avg.
Overall St. Dev.
Cntr. Pt. Avg.
Cntr. Pt. St. Dev.

Note: All values in %-wt., wb  
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Table 89. GC/MS analytical data, SF4 summary 

Run 
No.

DOE
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1 17 1.39 0.00 0.34 0.00 0.13 0.11 2.02 3.99
2 18 3.48 0.00 0.29 0.02 0.24 0.24 1.73 6.01
3 15 3.67 0.00 0.24 0.00 0.13 0.00 2.36 6.41
4 7 3.64 0.00 0.40 0.16 0.24 0.11 1.24 5.79
5 9 3.98 0.00 0.33 0.00 0.20 0.11 0.29 4.91
6 13 3.89 0.00 0.21 0.00 0.14 0.12 2.00 6.36
7 11 2.90 0.00 0.28 0.00 0.14 0.12 0.44 3.88
8 5 3.77 0.00 0.16 0.00 0.21 0.12 1.65 5.91
9 1 1.51 0.00 0.28 0.00 0.37 1.00 0.46 3.63
10 3 1.39 0.00 0.26 0.00 0.26 1.11 0.53 3.55
11 21 1.99 0.00 0.40 0.00 0.20 0.00 1.41 4.00
12 28 2.87 0.00 0.36 0.00 0.13 0.11 1.66 5.13
13 23 2.69 0.00 0.62 0.00 0.11 0.00 0.24 3.67
14 19 1.53 0.00 0.49 0.00 0.13 0.11 1.85 4.11
15 29 3.60 0.00 0.40 0.00 0.11 0.11 0.58 4.80
16 20 1.13 0.00 0.27 0.00 0.11 0.11 2.27 3.89
17 27 1.65 0.00 0.27 0.00 0.00 0.11 2.54 4.56
18 22 4.22 0.00 0.38 0.00 0.18 0.00 1.65 6.43
19 25 3.46 0.00 0.11 0.00 0.00 0.00 2.33 5.90
20 24 3.51 0.00 0.16 0.00 0.11 0.11 1.51 5.40
21 26 3.53 0.00 0.13 0.00 0.00 0.00 1.42 5.09
22 30 2.20 0.00 0.22 0.00 0.13 0.00 2.18 4.74
23 8 3.01 0.00 0.22 0.00 0.11 0.11 2.07 5.53
24 2 3.00 0.00 0.22 0.02 0.20 0.11 1.89 5.45
25 12 1.58 0.00 0.22 0.00 0.20 0.11 2.04 4.15
26 6 3.69 0.00 0.13 0.00 0.11 0.00 2.02 5.96
27 10 3.40 0.00 0.00 0.00 0.00 0.00 2.82 6.22
28 14 3.18 0.00 0.11 0.00 0.11 0.00 1.84 5.25
29 4 3.22 0.00 0.22 0.00 0.24 0.00 1.69 5.38
30 16 1.87 0.00 0.09 0.00 0.11 0.00 2.02 4.09

2.83 0.00 0.26 0.01 0.15 0.13 1.63 5.01
0.94 0.00 0.13 0.03 0.08 0.26 0.70 0.94
2.88 0.00 0.25 0.00 0.06 0.06 1.78 5.04
0.81 0.00 0.12 0.00 0.07 0.06 0.72 0.48

MAX 4.22 0.00 0.62 0.16 0.37 1.11 2.82 6.43
MIN 1.13 0.00 0.00 0.00 0.00 0.00 0.24 3.55

Note: All values in %-wt., wb

Overall Avg.
Overall St. Dev.
Cntr. Pt. Avg.
Cntr. Pt. St. Dev.
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Tab ary le 90. GC/MS analytical data, whole bio-oil summ

Run 
No.

DOE
 No. A

ce
ti

c 
ac

id

L
ev

og
lu

co
sa

n

F
ur

an
s

P
he

no
ls

G
ua

ia
co

ls

S
yr

in
go

ls

O
th

er
 G

S
/M

S

T
ot

al

1 17 2.43 2.00 0.60 0.46 1.73 2.87 3.75 13.84
2 18 3.43 2.33 0.47 0.49 1.77 2.97 3.47 14.94
3 15 3.61 2.12 0.55 0.49 1.77 2.97 3.46 14.98
4 7 4.67 2.26 0.51 0.55 1.82 2.92 3.66 16.39
5 9 4.65 1.71 0.67 0.48 1.72 2.77 3.02 15.00
6 13 2.46 1.30 0.62 0.51 1.70 2.82 3.12 12.52
7 11 5.11 1.48 0.70 0.54 1.91 3.22 2.72 15.69
8 5 4.06 1.76 0.52 0.54 1.77 2.80 3.60 15.05
9 1 4.69 2.66 0.46 0.56 1.83 2.98 3.27 16.45
10 3 1.34 2.37 0.45 0.56 1.86 3.07 3.04 12.69
11 21 2.35 2.33 0.99 0.49 1.72 2.80 3.85 14.55
12 28 4.38 2.25 0.93 0.49 1.67 2.84 4.90 17.46
13 23 1.41 0.50 1.07 0.43 1.58 2.42 4.20 11.62
14 19 4.33 2.29 1.41 0.51 1.80 2.97 5.45 18.75
15 29 3.21 2.40 1.11 0.53 1.70 3.01 5.15 17.09
16 20 1.36 1.78 0.65 0.48 1.65 2.84 3.92 12.67
17 27 3.60 1.95 0.64 0.52 1.79 3.07 3.31 14.87
18 22 2.35 1.68 0.64 0.50 1.84 3.14 2.85 13.01
19 25 1.93 1.85 0.80 0.51 1.74 3.08 2.51 12.41
20 24 1.72 1.93 0.41 0.54 1.74 2.87 2.88 12.08
21 26 1.72 2.01 0.57 0.50 1.83 3.24 3.60 13.47
22 30 2.87 1.96 0.76 0.50 1.77 3.03 4.85 15.73
23 8 3.27 2.10 0.76 0.53 1.85 3.26 3.73 15.49
24 2 3.33 2.03 0.82 0.52 1.74 2.92 3.47 14.83
25 12 2.42 1.74 0.72 0.46 1.67 2.89 3.40 13.31
26 6 3.96 1.98 0.65 0.50 1.69 2.91 3.25 14.96
27 10 3.02 1.56 0.61 0.47 1.77 2.92 3.19 13.53
28 14 2.03 1.59 0.65 0.47 1.79 2.95 3.91 13.39
29 4 1.90 2.08 0.47 0.51 1.78 3.10 3.07 12.91
30 16 2.64 1.77 0.66 0.48 1.75 2.99 3.66 13.96

3.01 1.92 0.70 0.50 1.76 2.96 3.61 14.46
1.12 0.41 0.22 0.03 0.07 0.17 0.71 1.72
2.95 2.07 0.80 0.51 1.75 3.04 4.05 15.18
1.01 0.21 0.19 0.01 0.06 0.13 1.07 1.99

MAX 5.11 2.66 1.41 0.56 1.91 3.26 5.45 18.75
MIN 1.34 0.50 0.41 0.43 1.58 2.42 2.51 11.62

Note: All values in %-wt., wb

Overall Avg.
Overall St. Dev.
Cntr. Pt. Avg.
Cntr. Pt. St. Dev.
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Figure 150. Quantified mass for all runs 

 

Table 91. Viscosity analytical data 

Run 
No.

DOE
 No. Avg. St. dev. Avg. St. dev. Avg. St. dev.

12 28 75.0 1.9 4.7 0.08 147.4 13.2
15 29 99.3 4.9 5.1 0.06 239.8 11.7
17 27 115.4 3.4 5.3 0.10 111.6 9.7
19 25 157.2 6.0 5.5 0.15 135.6 8.4
21 26 124.0 3.8 5.9 0.11 98.7 8.8
22 30 122.8 4.7 5.3 0.14 142.6 8.6

115.6 4.09 5.3 0.11 146.0 10.07

- 4.29 - 0.11 - 10.23
20 24 234.5 2.8 9.7 0.4 255.0 15.1
13 23 75.0 1.9 4.7 0.1 147.4 13.2

Notes: All values in (cP) @ 40°C. a - Shear rates for center points and

Run 20 = 38.4 s-1, shear rate for run 13 = 30.6 s-1. b - Shear rates for

center points and Run 13 = 97.8 s-1, shear rate for run 20 = 48.9 s-1. 

c - All shear rates = 38.4 s-1.
d - Pooled standard deviation

Average

St. Dev.d

SF1a SF2b SF3c
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Figure 151. Residuals for reaction temperature full model 

 

Table l data 92. Reaction temperature model statistica

Term Es

Standard Prob > |t|

mate

Standard 
error t-ratio

Prob > |t|
(p-value)

466.163 0.7266 641.54 <0.0001 465.864 0.4099 1136.52 <0.0001
9.127 0.3633 25.12 <0.0001 9.127 0.3550 25.71 <0.0001
-0.489 0.3633 -1.35 0.1975 - - - -
1.558 0.3633 4.29 0.0006 1.558 0.3550 4.39 0.0002
3.506 0.3633 9.65 <0.0001 3.506 0.3550 9.88 <0.0001
-0.492 0.4450 -1.11 0.2863 - - - -
0.253 0.4450 0.57 0.5787 - - - -
0.269 0.4450 0.60 0.5550 - - - -
1.962 0.4450 4.41 0.0005 1.962 0.4348 4.51 0.0001
-0.780 0.4450 -1.75 0.1002 - - - -
0.132 0.4450 0.30 0.7705 - - - -
-0.097 0.3399 -0.29 0.7791 - - - -
-0.315 0.3399 -0.93 0.3693 - - - -
0.076 0.3399 0.22 0.8256 - - - -
-0.826 0.3399 -2.43 0.0281 -0.789 0.3241 -2.43 0.0228

R2

timate error t-ratio (p-value) Esti

R2 adjusted RMSE Mean R2 R2 adjusted RMSE Mean
0.9810 0.9633 1.78 465.23 0.9710 0.9650 1.74 465.23

ANOVA DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value) DOF

Sum of 
Squares

(SS-)

Mean 
Square
(MS-) FANOVA

Prob > F
(p-value)

Regression (R) 14 2457.03 175.50 55.40 <0.0001 5 2431.96 486.39 160.84 <0.0001
Error (E) 15 47.52 3.17 24 72.59 3.024
Total (T) 29 2504.55 29 2504.550

Lack of fit analysis DOF
Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value) DOF

Sum of 
Squares

Mean 
Square FLOF

Prob > F
(p-value)

Lack of fit 10 41.693 4.169 3.58 0.086 9 20.57 2.29 0 66 0.7323
Pure error 5 5.827 1.165 15 52.01 3.47

Total 15 47.520 24 72.59

Intercept

HC temperature
N2 flow rate

Auger speed

HC temperature · HC temperature

HC feed rate

HC temperature · N2 flow rate

HC temperature · Auger speed
N2 flow rate · Auger speed

Full model Reduced model

N2 flow rate · N2 flow rate

Auger speed · Auger speed
HC feed rate · HC feed rate

Summary of model fit

HC temperature · HC feed rate
N2 flow rate · HC feed rate
Auger speed · HC feed rate

.
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