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ABSTRACT

The output tracking problem has been extensively studied. The linetegrnsycase has been ad-
dressed by B. A. Francis. (1976) by converting the tracking probleanrégulator problem. Such an
approach was later extended to nonlinear systems by A. Isidori. et aR0Y1®Dn the feedforward
control side, the stable inversion theory solved the challenging outpkingaproblem and achieved
exact tracking of a given desired output trajectory for nonminimum pbkgseems (linear and non-
linear). The obtained solution is noncausal and requires the entire di¢ésifectory to be known a
priori. This noncausality constraint has been alleviated through the ¢heweltt of the preview-based
inversion approach, which showed the precision tracking can be achveith a finite preview of the
future desired trajectory, and the effect of the limited future trajectoryrinédion on output tracking
can be quantified. Moreover, optimal scan trajectory design and conétblod provided a systematic
approach to the optimal output-trajectory-design problem, where the oudrdtory is repetitive and
composed of pre-specified trajectory and unspecified trajectory fwsitian that returns from ending
point to starting point in a given time duration.

This dissertation focuses on the development of novel inversion-tiasdtbrward control tech-
nique, with applications to output tracking problem with tracking and transitiatclsings, possibly
non-repetitive. The motivate application examples come from atomic force snimpe (AFM) imaging
and material property measurements. The raster scanning procesMairFoptimal scan trajectory
design and control method inspired the repetitive output trajectory tragkimigjem and attempt to
solve in frequency domain. For the output tracking problem, especialth&AFM, there are several
issues that have to be addressed. At first, the shape of the desiretbtsajaust be designed and opti-
mized. Optimal output-trajectory-design problem provided a systematic agpto design the desired

trajectory by minimizing the total input energy. However, the drawback isthieatlesired trajectory



XV

becomes very oscillatory when the system dynamics such as the dynamiegpadzbelectric actuator
in AFM is lightly damped. Output oscillations need to be small in scanning opesgaticime AFM. In
this dissertation, this problem is addressed through the pre-filter desige optimal scan trajectory
design and tracking framework, so that the trade off between the inpugyeand the output energy in
the optimization is achieved. Secondly, the dissertation addressed theeadffect of modeling error
on the performance of feedforward control. For example, modelingsecan be caused in process of
curve fitting.

The contribution of this dissertation is the development of novel inversisadBeedforward con-
trol techniques. Based on the inversion-based iterative learning ¢q8trdien. et al. (2005))
technique, the dissertation developed enhanced inversion-basedétaatitrol and the model-less
inversion-based iterative control. The convergence of the iteratimgaldaw is discussed, and the
frequency range of the convergence as well as the effect of theltisite/noise to signal ratio is
guantified. The proposed approach is illustrated by implementing them to pégudorce-distance
curve measurements by using atomic force microscope (AFM). Then theocapproach is ex-
tended to high-speed force-volume mapping. In high-speed forceneofnapping, the proposed ap-
proach utilizes the concept of signal decoupling-superimposition andd¢katly-developed model-less
inversion-based iterative control (MIIC) technique. Experiment ofdevolume mapping on a Poly-
dimethylsiloxane (PDMS) sample is presented to illustrate the proposed apprblae experimental

results show that the mapping speed can be increased by over 20 times.



CHAPTER 1. Introduction

Most of the control issues might be finding a way how to regulate a planthayahow to track
given reference trajectory. Then the secondary question might bestiesisf stability and the tracking
error. This dissertation seeks a systematic feedforward control metHoshirency domain for high-
speed precision output trajectory tracking. The control method is testedrgalemented in atomic
force microscope. Then the proposed feedforward control tecarigapplied in material property
measurement. The complexity mostly due to their vibrational dynamics and naitlees handled
by the notion of system inversion and iterative learning control. To redus@eling error effect in
inversion of the system, iterative control technique is blended on top of$ters inversion technique.
The system inversion with iterative control technique is implemented for theditigp trajectory track-
ing first. Then the testing trajectory is extended to non-repetitive trajecidng.precision trajectory
tracking requirements and convergence conditions are analyzed. &jmti¢o force volume measure-
ment shows that the proposed control technique can improve the meastspaed up to 20 times

faster than the commercial device.

1.1 Study of system inversion and iterative control technige: a brief review

Several approaches have been proposed to tackle the output trackiigm. One of the major
groups tried to track output trajectory by feedback control which is cadigdlation theory. The output
regulation was achieved by B. A. Francis. (1976) for the linear systachAalsidori. et al. (1990)
for the nonlinear system. The uncertainty of the desired trajectory wasdawad by A. Serrani. et
al. (2001). A benefit of the approach based on regulation theory wasasiness of the controller
design by solving a set of matrix differential equation. However, asympt@aking of the desired

trajectory was a major advantage in a sense of robustness and disgeviarttacking precision with



respect to its speed. And also designing nonlinear regulator is still chaltebgcause of the diffi-
culty in solving the first order partial differential equations. In conttasegulation theory, the system
inversion theory (R. M. Hirschorn. (1979); M. Silverman. (1969)hiaees exact output tracking
of minimum-phase system. Since the conventional system inversion thea@yatgsiunbounded in-
put for the nonminimum-phase system, implementation of the theory was limited. This limitedi®
solved by the development of the stable inversion theory (Devasia, 5. €996, 1998); L. R. Hunt
et al. (1996)). Despite the stable inversion theory achieves exacttdtdjmctory tracking for min-
imum/nonminimum phase system, the performance of the stable-inversionrigadfapproach can

be limited by the modeling error and/or disturbance effects.

Iterative learning control(ILC) is an approach to improve the systenpopeence that operates
repetitively. Based on the concept of practice, learning controllerectsrthe performance of a system
on a given trajectory by learning process. Major benefit of the learridmgrol is the effectiveness of
implementation over a system that cannot be modeled accurately. With ad&exdivdroller alone, the
identical task generates the same tracking error in every repeated tgahthast, a learning controller
can use the information from the previous executions to improve the trackifigrmance in the next
execution. First ILC was introduced by M. Uchiyama. (1978) and Arimotal.e (1984). And the
ILC was further developed by many researchers later (S. Kawamur@88); C. Atkeson. (1986);
P. Bondi et al. (1988)). It has been shown that iterative learningralofiLC) is quite efficient in
tracking repetitive trajectories (R. Horowitz. et al. (1991); K. Krishnartiny. et al. (2004); M. R.
Graham. et al. (2006); L. Moore. et al. (2000)). Limits, however,térisonventional ILC designs
(M. Verwoerda. et al. (2006)) because causal controllers weze insthese designs. As a result, the
noncausality (i.e., the “preview” of the future desired trajectory as welhagpredicted output of the
system) was not exploited to improve the tracking, particularly for nonminimuaselsystems (M.
Verwoerda. et al. (2006)). Such a limit is alleviated by ILC in frequencaydio (J. Ghosh. et al.
(2002); S. Tien. etal. (2005)).



1.2 Precision tracking for periodic and non-periodic trajectory using ILC

Conventional iterative learning control (ILC) technique starts from riiogef the plant. Based
on the assumption that the model is not accurate, the ILC develops the #ewatihating law with
the proper choice of iterative learning gain. However, there are twiedggs. Time consumption
for learning process, which is a main drawback of the ILC, dependsemtidel accuracy and its
updating law, especially depends on iterative learning gain. In contrabetmajor advantage of
ILC that the ILC is used for any system that the model is not correct,argewnce condition for the
frequency domain ILC analyzed by S. Tien. et al. (2005) showed teahtideling phase error should
be less thart/2 for the bounded convergence. And also the smaller the iterative leagaingthe
more precise convergence is achieved with the consumption of longeiniganocess. Inspired by the
inversion-based iterative control (1IC) technique by S. Tien. et a800%2, the research effort to remove
the convergence condition for modeling phase variation resulted in investtienhanced inversion-
based iterative control (EIIC) technique by separation of the iteratwéral law in magnitude from
the iterative control law in phase. The EIIC mitigates the convergencetmmndbatter than [IC and
the EIIC techniques utilize the noncausality to improve the tracking precissdhustrated in (Y. Wu.
et al. (2007)). However, their performance depends on the qualityeo$yhtem dynamics model,
and the modeling process as the preparation process of the ILC is timeatiogsand prone to errors.
As the another evolution of the EIIC, model-less inversion based iterataraitey control (MIIC)
technique is invented and removed modeling process completely. Experimesub$ show that the
MIIC technique can be effectively implemented into the output trajectory immggiroblem with the
complete knowledge of the repetitive desired trajectory. The MIIC cotgadiniques extended from
the repetitive trajectory tracking to non-repetitive trajectory tracking lerabin force volume mapping
application. The non-periodic trajectory problem is shown in switching motaset) force-volume
mapping mode that we proposed. The vertical trajectory of the measurg@nuird motion for the
force volume mapping is decoupled into the element trajectory. The inversesiaphieved from the
MIIC control technique for each element trajectory are superimposeddk tron-periodic sampling
point tracking trajectory and periodic force curve measurement trayecidre experimental results

reveal efficacy of the proposed control technique.



1.3 Dissertation overview

The rest of this dissertation is organized as follows. In chapter 2, twesssacountered in the
design and track of repetitive scan trajectories are addressed. Sterifing issue is how do we sys-
tematically determine the desired trajectory. The repetitive trajectory inspjrétlvaster scan motion
of the AFM, which is composed of active scan trajectory that is pre-spddiy user, and transition
section that brings the end of active scan states to the origin of the actimestates, is tested. The
main designing problem lies on finding transition trajectory, boundary statetha resulting input that
tracks the desired trajectory exactly. Based on stable inversion thguipab scan trajectory design
and control technique (OSDC, H. Perez. et al. (2004)) presentadalytical approach by minimiz-
ing input energy. Despite the OSDC technique gives an systematic apmithe transition trajectory
design, unacceptable large output oscillations for the low damped systdmasyiezo actuators and
flexible structures, that, in turn, shortens the life span of mechanicahsyditee piezo actuators, must
be treated properly. This problem is analyzed mathematically and suggsstiarsin terms of output
energy minimization by differently penalizing each frequency componerg.s€boond arising issue is
about the model uncertainty and its correction. In this case, the modetaintgincludes the uncer-
tainty of the system dynamics, the disturbances (e.g., sensor noise) eagdis from the modeling
process (e.g., curve fitting the experimental frequency response o aldtav-order transfer function).
This chapter propose a novel enhanced inversion-based iteratitreldd&|1C) method, and integrate it
with the OSDC technique. This EIIC algorithm extends the inversion-basadiviee control algorithm
proposed in literature. (S. Tien. et al. (2005)). The optimal scan trajeatad the optimal control
input, obtained from the OSDC technique, are used as the desired trajactbthe initial input in the
EIIC algorithm, respectively. Then the control technique is implemented ins$pgled adhesion force
measurement, and shows that output oscillations during the transition seatidseaninimized and
the output tracking errors caused by model uncertainties are dramatiedllged. In chapter 3, the
EIIC is implemented to achieve high-speed force-curve measurement @mraercial atomic force
microscope (AFM), through the measurement of time-dependent prapéstie, elastic modulus) of
poly(dimethylsiloxane) (PDMS) as an example. The measured values dasie enodulus are com-

pared with the results obtained from the dynamic mechanical analysis (DNMApftehe PDMS. In



chapter 4, model-less inversion-based iterative control (MIIC) tectenighich eliminates the need
for the dynamics model is proposed for high-speed precise repetitipatauacking while further en-
hances the output tracking performance. Two types of trajectoriessaceto evaluate the tracking
performance with comparison to the IIC algorithm: triangular trajectories amd-bmited white-
noise type of trajectories. Experimental results show that precise oufjgldirig is achieved in both
cases, whereas the IIC algorithm failed to track the complicated band-limitietadise trajectories.
Moreover, the MIIC algorithm is also implemented to compensate-for the legiteaffect when track-
ing large-range triangle trajectory at high-speed. Experimental refiolisthat precise output tracking
can also be achieved. In chapter 5, MIIC technique is extended to hggdg$orce-volume mapping on
atomic force microscopy (AFM). Achieving high-speed force-volume nrapis challenging in three-
fold: (1) high-speed force-curve measurement at each sample @jimapid transition of the probe
from one sample point to the next while compensating for the sample topggd#fdrence between
the two points, with no sliding of the probe on the sample, and (3) seamlessititegyf the above two
motions. The main contribution of the chapter is the development of a novehswgtmotion based
force-volume mapping mode. The proposed mode consists of stop-aswlifgbing motion in lateral
scanning, synchronized with the vertical probe motion switching betweee-fmrve measurement
and point-to-point output transition. To achieve precision tracking in thealadeanning as well as in
the vertical switching motion, we propose to combine the utilization of the notionpEramposition
with the recently-developed MIIC technique. The a priori sample topdgr&powledge is utilized in
the proposed mode, which can be obtained by using high-speed AFM imizgimgique. To imple-
ment switching-motion based force-volume mapping mode, first, the sampleaphygs simplified
by digitizing the sample surface by its measurement point. Secondly, the ¥ertiian of the probe is
decoupled as the summation of elements of force-curve measurementmedslef output transition
at one sample point. Then, the MIIC technique is implemented to obtain the cimubko track the
element force-curve, and to achieve the element output-transition (gicdmg as well. Finally, the
control is achieved by superimposing these element inputs together a@pjelyp In superimposition of
the vertical motion for the output transition from one sample point to the nexérgeed non-repetitive

trajectory tracking problem is treated in terms of superimposition. The pedpmethod is illustrated



by implementing it in experiments to obtain force-volume mapping of a PolydimethylsiofRDMS)
sample. The experimental results show that the speed of force-volumengaanm be achieved over
20 times with large lateral scan range (40 and high spatial resolution (128 number of force curves

measured per scan line). Finally, the conclusion is given in chapter 6.



CHAPTER 2. A New Approach to Scan-Trajectory Design and Track: AFM Force

Measurement Example

A paper published in ASME Journal of Dynamic Systems, MeasuremerCanttol

Abstract

In this chapter, two practical issues encountered in the design and traclar trajectories are
studied: One issue is related to the large output oscillations occurring dimengcanning, and the
other one is the effect of modeling errors on the trajectory tracking. @utguillations need to be
small in scanning operations, particularly for lightly-damped systems supleaselectric actuators
and flexible structures. Moreover, modeling errors are ubiquitous ictipah applications. The pro-
posed approach extends the recently-developed optimal scan trajgesign and control method, by
introducing the pre-filter design into the design to reduce the output osciattanmthermore, a novel
enhanced inversion-based iterative control (EIIC) algorithm is mego The EIIC algorithm is then
integrated with the optimal scan trajectory design method to compensate fofabeoéimodeling er-
rors on the scanning. The convergence of the iterative control lamdastied, and the frequency range
of the convergence is quantified. The proposed approach is illustratetblementing it to high-speed
adhesion force measurements by using atomic force microscope (AFM)laBionuand experimental

results are presented and discussed to demonstrate the efficacy ajibeqat approach.

2.1 Introduction

In this chapter, two issues encountered in the design and track of sjguidriees are addressed: One

issue is related to the large output oscillations occurring during the scaramdghe other one is the



effect of modeling errors on the trajectory tracking. It is noted thatrsicgroperations are involved in
many applications, including (a) the nano-scale topography imaging (e\idg2endanger. (1994))
and material property measurements (i.e., (Kees O. van Werf. et al. )j188dg atomic force micro-
scope (AFM); (b) the scanning mechanism on MEMS-based micro-mififoFslhol. et al. (2005); F.
Zimmer. et al. (2005)); (c) the quick-return mechanisms and cams in mandfec(R.-F. Fung. et al.
(2000)); and (d) the manufacturing process in rapid prototyping (anguet al. (2005)). A typical
scanning operation consists of two sections: (1) the active-scan sestidng which a pre-specified,
desired output trajectory must be tracked precisely, followed by (2)utpubtransition section, during
which the output needs to be returned to a setpoint value (for repeatiagtthe scan in the next cycle).
While the desired output for the active-scan section is usually specifititelgpplication, the output
trajectory during the transition section is often not specified and therebpeaesigned to optimize
the performance. In this chapter, we introduce the design of a prefiltethintoecently-developed
optimal scan trajectory design and control (OSDC) technique (H. Peted. (2004)), with an aim
to minimize the output oscillations during the transition section. Moreover, d imwesion-based it-
erative control algorithm is introduced and integrated with the OSDC tecandagiurther improve the
tracking precision. The proposed technique is illustrated by implementing itgbrspeed adhesion
force measurements using AFM. Simulation and experimental results aenf@@ésand discussed to

demonstrate the efficacy of the proposed method to compensate for theatticgdrissues.

The development of the OSDC technique (H. Perez. et al. (2004))de®wa systematic approach
to solve the scanning problem. Although previous methods based on trgjsotoothing and poly-
nomial function optimizations (C. Cloet. et al. (2001); A. Piazzi. et al. (2080V. Dowd. et al.
(2000)) can lead to an acceptable output tracking, these methods rdwuireer to choose an initial
set of acceptable output trajectories. Such a choice, howeveradvasc and can be challenging.
On the contrary, in the OSDC technique, the optimal output trajectory wamlfas the result of an
input-energy minimization process, thereby eliminating the need to choose thedutpat trajecto-
ries. Moreover, conventionally the optimal output-transition problem wasearted and solved as the
optimal state-transition problem, by first, pre-specifying the boundarysstatthne beginning and the

end of the output-transition section, and secondly, performing an optintaltsaasition (e.g., (F. L.



Lewis. etal. (1995))). However, the boundary states are usuallyaymka priori, thereby the choice

of the boundary states wasl hog and may not be optimal. Instead, in the OSDC technique, such un-
known boundary states (i.e., the initial and the final states of the outputtimarsection) were treated

as the variables to be optimized when minimizing the total input energy during thie scanning
period (i.e., both active-scan and output-transition are included) (l¢zPet al. (2004)). The efficacy

of the OSDC technique has been experimentally demonstrated also (H. &eakz(2004)).

Challenges, however, may arise when implementing the OSDC technique titgsad-irst, the ob-
tained optimal output transition trajectory may contain large oscillations duringutpt-transition
section, not desirable for systems such as piezo actuators and flexildeists. This is because ex-
cessive output oscillations may induce overheating of the structure tgulkfa of the materials, which
in turn, shortens the life span of mechanical systems like piezo actuataesdyflamics of these sys-
tems tends to have one or multiple lightly-damped (i.e., Hijlresonant peak(s), characterized by a
dramatic gain increase accompanied by a rapid phase drop. The dranrafitcgease at the resonant
peak(s) implies that the output transition can be achieved with a small amoingudfenergy, pro-
vided that the main frequency components of the input are concentrateddathe resonant peak(s),
i.e., a minimal input-energy transition. Such an input was obtained with the OSiD@ideie via the
minimization of the input-energy (H. Perez. et al. (2004)). However, thedamping at the resonant
peak implies that when such a minimal-energy input is used, large output tisnslavill occur during
the transition section. This is illustrated in this chapter by using a piezotube@casaan example.
Secondly, output errors can also be generated due to the model umtgeféodel uncertainty gener-
ally exist in practices, because of the uncertainty of the system dynaméadistirbances (e.g., sensor
noise), and the errors from the modeling process (e.g., curve fitting pleeimental frequency response
to obtain a low-order transfer function). Although such model-uncertaiatysed output errors can be
reduced, in general, by augmenting a feedback controller to the optintdibfeard control input (H.
Perez. etal. (2004); Q. Zou. etal. (2004)), there are applicatibeserthe feedback compensation is
challenging, because of, for example, the lack of sensors (H. Retrak. (2004)), or the nature of the
operation. One example for the latter case (adhesion force measuremsiagtéABM) is discussed in

this chapter. Therefore, there exists a need to account for thesedwaticpl issues (output oscillations
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and model uncertainty) in the design and track of optimal scan trajectories.

The contribution of this chapter is a systematic approach to account fobthe awo practical is-
sues in the design and tracking of scan trajectories. First, we introdugedfiker design into the
OSDC technique (H. Perez. et al. (2004)). It is shown that by applyiaddSDC technique to the
augmented system (i.e., the prefilter followed by the system to be controlledjittimization of the
input-energy (in the original OSDC technique (H. Perez. et al. (20@4)) be transformed to the
minimization of the output-energy with frequency-dependent weights.eftrer, the minimization of
output-oscillations and its trade-off with the minimization of input-energy carcheaed in the OSDC
technique framework through the design of the prefilter. Secondly, tbeureduce the output errors
caused by the model uncertainty, we propose a novel enhancedanvbesed iterative control (EIIC)
method, and integrate it with the OSDC technique. This EIIC algorithm exterdishrsion-based
iterative control algorithm proposed in Ref. (S. Tien. et al. (2005} ®ptimal scan trajectory and
the optimal control input, obtained from the OSDC technique, are used deslred trajectory and the
initial input in the EIIC algorithm, respectively. We illustrate the proposedrtiglte by implementing
it to the high-speed adhesion-force measurements using AFM. Simulati@xpadmental results are
presented to show that output oscillations during the transition section caimimeized, and the output
tracking errors caused by model uncertainties are dramatically redAseal result, high-speed force

measurements can be achieved by using the proposed technique.

2.2 lIteration-based Output Transition with Output Oscillation Minimization
2.2.1 Problem Formulation
Consider a linear, time invariant square syst(®) = C(sl — A) !B with {A, B, C}in
X(t) = AX(t) +Bu(t), y(t) =Cx(t), (2.1)

wherex(t) € 0" is the stateu(t) € OP is the inputy(t) € OP is the output. The system is square (i.e.,
the number of the inputs is the same as that of the outputs), controllable, aadvedl defined relative

degreep := [p1,P2,---,Pp]" (€.9. (A. Isidori (1995))). Then the scanning problem is stated asifsllo
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The Scanning Problem Given 1) the time section for the output transiti t;), and 2) a desired
output trajectoryyirack(t) to be tracked during the tracking sectipr< t < t; (see Fig. 2.1), find a

bounded pair of desired input-state trajector{es (-), Xef(:)}, such that:

1. The reset of the system output priori to the next scan is achievathdbe transition section,

Yiran(ti) = Y(ti) = Cxet(ti) = t”r‘?* Yerack(t) =Y
Yiran(tf) = Y(tf) = Cxet(ts) = t”rP* Yirack(l) =V, (2.2)
—'o
2. The system dynamics is satisfied by the desired input-state trajectories, i.e.,
Xref(t) = Axer(t) +Buss (t), fort € [t;, t¢]; (2.3)

3. Exact output tracking is achieved during the tracking section, i.e.,

Yirack(t) = Cxet(t), fort e [ti, t¢]. (2.4)

’ C
Q
€.
*
z[
T (time period) time
to ti tf tet T

Figure 2.1 The scan trajectory consisting of a transition sectiom(fot < t;) and
a tracking section (fof <t < t;), where the desired output trajectory
is pre-specified for the tracking section only.

Acco unt of Practical Issues in the Scanning Problemn Ref. (H. Perez. etal. (2004)), the OSDC
technique was proposed to systematically design the scan trajectory, abito the corresponding
control input. The OSDC technique integrated the system-inversion thatmttve optimal control

technique. In this chapter, we seek, through the extension of the OSDh@idqae (H. Perez. et al.

(2004)), to
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e minimize the output oscillations during the transition section through the desigprefiler in

the OSDC technique; and

e compensate for the output errors caused by model uncertainties thiftwaightegration with a

novel EIIC technique.

2.2.2 Optimal Scan Trajectory Design with Frequency-Weighted OutpttEnergy Minimization

First, we will show that the minimization of the output oscillations during the transsgation can
be obtained through the design of a prefilter in the OSDC technique (Hz.Petral. (2004)). Then
secondly, the scanning problem will be solved by applying the OSDC tewhmigthe augmented sys-

tem consisting of the prefilter followed by the plant dynamics.

Prefilter Design for Output-Oscillation Minimization We consider augmenting an invertible prefilter
of compatible dimensiorGye(s) € CP*P, to the original systen®(s), and minimizing the energy of

the inputu,(t) to the augmented system (see Fig. 2@)S) = Gpre(S)G(9),

Jowr = | ualt) ua(t)ct (2.5)

to
In Eq. (2.5), a unit weighR=1 € OJP*P is chosen to simplify the presentation (Similar derivation can

be carried out for non-unit weights).

Ypre(s)

Ypre(s) = U(s)
Figure 2.2 The augmented system consisting of a pre@ies(s) followed by the

plant dynamicg5(s)

The following development will show that minimizing the above cost function)(®.2quivalent to
minimizing the output energy with a frequency-dependent weight (where¢tight is specified by the

prefilter Gpre(s)). We consider that the following inpu(-)

Ua(t) = Ua(t), fort € [to,t¢], anduy(t) = 0, otherwise, (2.6)
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is applied to the augmented syst&x(s) with the same initial state when the the input) is applied,

and denote the corresponding outpuy@s. Then, the cost given by Eq. (2.5) can be rewritten as

daa = [ GOTRO= [ GO GO, @)
to

and the output
y(t) =y(t), fort € [to, tf]. (2.8)

By Parseval’'s Theorem (e.g., (W. Rudin (1966))), Equation (2.7)sl¢éad

Jora = [ ()" Gat)dt = [~ () Ba(j )
= [ ol ie0) G 0)* Gk i)l o)
(bY Yore(jw) = Gpre( jw)ua(jw), andGpre( jw) being invertible, see Fig. 2.2.
= [ o) [Goli0)6 Hiw)] [Gpli0)6 H(jw)] Tljw)dw
(by y(jw) = G(jw)ypre(jw), andG(jw) being invertible)

= [ Sierwieliods (W(jo) = Gu(w)c (jw), 2.9

where *’ denotes the complex conjugate operation. Note that the syStgm) is invertible by As-
sumption (i.e., the syste®(jw) is square and has a well-defined relative-degree), and the prefilter
Gpre(jw) is invertible by design. Therefore, the frequency-dependent w#ighjw) in Eq. (2.9) is
positive-definite, andEquation (2.9) implies that minimizing the original dggt is equivalent to
minimizing the output energy with an frequency-dependent wafghjw) when the input isu,(t).
Combining with Eq. (2.8), this shows that such a minimization also leads to the minimizdttbe
system outpuy(t) (with the same frequency-dependent weightjw)) when the input isi,(t). Par-
ticularly, the frequency weightV(jw) can be manipulated to minimize output oscillations during the
output-transition section. This is achieved through the design of the pr&jigijw). For example,

by rendering the prefilteGpre(jw) small (i.e.,|G§r}3(jw)\ large) around the resonant peak(s) of the
plant dynamics3(jw), a large weightV (jw) = |Gp(jw)G*(jw)|? around the resonant peaks of the
plant dynamic$G( jw) is used when minimizing the cost function (2.5). As a result, the components

of the output energy around the resonant peak(s) are minimized, aondting oscillation during the
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output-transition section tends to be minimized. This idea is illustrated in Sec. 2.3.

Optimal Scan Trajectory for the Augmented System (H. Perez. etla (2004)) Next, the scanning
problem is solved by applying the OSDC technique to the augmented sY&iésh= Gpre( jw)G(jw) =
Ca(sl—As) ~1Bq, where the state matricés, Ba, C4} are the minimal realization of the transfer func-
tion matrix Ga(s),

X=AgX+Bala, Yy=0Cax. (2.10)

The idea is to I) split the cost (2.5) into the cost for output-trackilgek, and the cost for output-
transition,Jyan,

1 s
Jscan:/ U;Uadt"i‘[ U;Uadt:-Jtrans+-Jtracka (2.11)

to

and then I1) find the input for the output-transitiagan(t) for timet € [to, t], as well as the input for
the output-trackingurack(t) for timet € [t;, t¢], as affine functions of the boundary state at the time
instantstp (i.e.,tf) andt;. The transition inputkan(t) is obtained by using the optimal state transition
method (e.g., (F. L. Lewis. et al. (1995))), and the tracking ingut«(t) is unique and obtained
by using the stable-inversion technique. Subsequently, the optimal inputg(t) and Uyan(t), are
obtained by |) substituting these two inputs 4, anduack for the transition and the tracking section,
respectively) back into Eq. (2.11) to present the cost function as @raiafunction of the boundary
state; and then Il) minimizing such a cost function to obtain the optimal boustitg. WWe summarize
the results of the OSDC technique next. The readers are referred.tHR&kerez. et al. (2004)) for

details.

We start by transforming the state-space equation of the augmented ssiéhito theoutput-
tracking form If the system has a well-defined relative degree, then there existdjrdinate trans-

formation,®,

3 g
X= q> r’S = |:cDE ? cDrls7 cl)rlu:| ns (212)

Nu Nu
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and 2) an inverse inpuk,(t) = us¢(t),
Ut (t) = Bsns(t) +Bunu(t) + B Yq (1), (2.13)

such that by using the state-transformatirand the inverse inpuis¢(t), the system (2.10) can be

transformed into the following output tracking form

E o= &), (2.14)
' 0 B
Tl | Ll N Il B (2.15)
Nu 0 Ay Nu By

In Eq. (2.15),¢ is the vector of the output and its derivatives up to one order less tharldte/e

degreep,
) dprlyl _ dpzfly2 ) de—lyp T
&=y, Y1, o, W? Y2, e Wa s Y Yo s W , (2.16)
Y is given by
dPry; dPzy, dPey, 1"
= |&T P
YO =8 G g e | (2.17)
and for given desired trajectory,
&= & lyyov. > Yat) = YO [y —yu(o).- (2.18)

Equation (2.15) is called thaternal dynamicf the system (2.10), angk andny are the stable part
and the unstable part of the internal dynamics of the system, respectivtilyall the eigenvalues of
As on the open left half of the complex plane, and all the eigenvaludg oh the close right half of
the complex plane, respectively. Then, the solution of the OSDC technigyieeis in the following

Theorem 1 (H. Perez. etal. (2004)).

Theorem 1 The optimal solution to minimize the cost function (2.9) for the scanning prablgiven

as follows,
1. The total cost (Eg. (2.9)) is minimized by the following boundary conditian

to)* A~1b, if Ais invertibl
W Ns(to)” | _ e (2.19)

Nu(ti)* A'b, otherwise
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whereA' is the pseudo-inverse (J. M. Ortega (1987)\ofvith A specified as follows,

N = Atrack+/\tran

ti
where Agack = P(t)TP(t)dt

to

Ntran = H;G(tiﬁf)Hz (2.20)

In Eq. (2.20), Gy, is the invertible controllability Gramian,

t
Gt :/feA(tf’T)BﬁlBTeAT(tf’r)dr, (2.21)
&
and
Pt) — [gseAsa—to) Bie (n—t)}

Ho = [-WyKs+ Py, Pp Ky —Wy]

We, Wi Wy, ] = el o
&5 VVns> VVny

Ks = ettt
K, = g Aulti—to)
As = ttieAs(t‘”BsYd(r)dr
0
Ny = — tie‘A“(T‘tO)BUYd(r)dr (2.22)

to

In Eq. (2.19), the term b is specified by

b = btrack+btran

with  byans = _H;G(;i%tf)Hlf

Dtrack = — tip(t)TS(t)dt (2.23)

AT
where B and Rt) are given by Eg. (2.20), and
Hl = [¢E7 quIU, _WE, _Wnu]
f= [&altr), Au, &alt), AT (2.24)

.t
St) = Bs[ eMtUBY(1)dT —

to

i —
Bu/ e AT-UB,Y(T)dT + B Y (1) (2.25)
t



2. The optimal input { (t) is given by

whereW*, P(t), and St) are given by Eq. (2.19, 2.22, 2.25), respectively, and

with

17

u:racka) = P(t)LP* +S(t)7 fo <t <t

Ut (t) =
Uran (1),

Uran(t) = R8T eAT G}

(ti vtf)

G <t<ts

[ (t) — U (1)

ns (t)

N (tr)

= Kunu(t) + Ay

3. The corresponding reference statgrxs given by:

fort e (to, t), and

fort e [t;, tf].

Xef(t) = efeltx) 4 teA(t*T)Bl{“ran(r)dr
ti

Xref(t) - q)

)N (to)*+
Jp €"DBYy(1)dT

e AEUny ()~

e AT0)B, Yy (1)dT

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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2.2.3 Enhanced Inversion-based Iterative Control (EIIC)

In general, the model-uncertainty-caused output-tracking errors eaoimpensated for by us-
ing iterative control approaches (J. Ghosh. et al. (2000); L. Moatal. (2000)): the initial
input for the first iteration is set as the optimal control input to the originalesyG(s), Ui (jw) =
Gpre(jw)ut¢ (jw) (see Fig. 2.2), where the optimal inpuft (jw) is obtained from Theorem 1; and the
desired output trajectory is set as,

Ya(t) = CaXret(t), (2.31)

wherex¢(t) is the optimal state trajectory obtained in Egs. (2.29, 2.30). Next, we praseniel
enhanced inversion-based iterative control (EIIC) algorithm foICB$8stems, based on the extension
of the IIC technique proposed in (S. Tien. etal. (2005)). The Ell@riigm is given in the frequency-

domain as follows,

Uo(jw) = Ut (jw), k=0,(2.32)

w(jw)| = |u1(jo)+p(w) |Gxt(jw)|llya(jw)| - lyk-1(jw)]]
Zi(jw) = Zu-1(jw)+ (Lya(jw) — Lyk-1(jw))

k>1, (2.33)

whereyi(-) denotes the input obtained by applying the iterative inp() to the actual system in the

K" iteration. The convergence of the EIIC law (Egs. (2.32, 2.33)) is dgiyethe following lemma.

Lemma 1 For any given frequency valug, let both the actual dynamics of the syste(j&@) and its
model Gy(jw) be stable and hyperbolic (i.e., have no zeros on thexis), and also let the dynamics
uncertaintyAG(jw) be given as

G(jw) |G(jw)e“C@ .
G0 [Gm(w)|ei26@ = IAC(@)I€ e, (2.34)

AG(jw)

Then, the iterative control law (2.32, 2.33) converges at frequenty the desired input (jw) =

G(jw) lya(jw), i.e.,limy o U(jw) = ug(jw), or equivalently,
lim [ue(j)| = [ua(jeo)l, and Jim Zu(jeo) = Zug(jw).
if and only if the iterative coefficiem(jw) is chosen as

0 < p(w) < Psup(w) = | (2.35)

AG(jw)|
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Proof: We first show that lim_.. |uk(jw)| = |ug(jw)| when the iterative coefficiemi(w) is chosen as

in Eqg. (2.35). Note that Eqg. (2.33) can be rewritten as

e 1(j )| — ua(j@)| = |u(j@)| - [ua(jw)|+p(w) |G (jw)| [Iya(jw)| - I(jw)]]
= |uk(j)| = ua(jw)| = p(@) |G (jw)| [Galjw)| [Jux(jo)| — |ua(jw)]
= [1- p(®) [AG(jo)[] |lu(j )| — ug(j)]
(2.36)
= [1—p(w) [AG(j) " [|uo(jw)| — |ua(jw)]]

Note that bothup(jw) (given by Eqg. (2.32)) andy(jw) are bounded, thus Eq. (2.36) shows that

iMoo [ Uk 1(j )| — |Ug(jw)| = 0, if and only if limy_... [1— p(w) |[AG(jw)|]€ = 0, or equivalently,
[1-p(w)[AG(jw)[| < 1. (2.37)

Therefore, the range @f(w) to guarantee the convergence of the magnitude part of the iterativelcontro
input (Eqg. (2.35)), is obtained directly from Eq. (2.37). Next, the cogpeace of the phase part of the
iterative control input can be verified directly from Eq. (2.33): singg(jw) = ZG(jw) + Zug(jw),
andZyk(jw) = ZG(jw) + Zu(jw). Thus Eqg. (2.33) can be rewritten as

Zugi(jw) = Zu(jw)+ (Lya(jw) — Lyk(jw))
= Zu(jw)+ (Lug(jw) + £6(jw) — Zw(jw) — £G(jw))

= Zug(jw) (2.38)
Equation (2.38) shows thatuy(jw) = Zug(jw) for all k > 1. This completes the proof. n

Remark 1 The iterative law (2.32, 2.33) extends the following inversion-based iterativieat (11C)

law in (S. Tien. etal. (2005); Y. Wu. etal. (2007)),

Uk(j) = U1 (jw) + p(w)Ga H(jw)Ya(jw) — Yi-1(jw)], (k=1), (2.39)

in two aspects: 1). The following phase condition needed for the convargsdrthe [IC law (2.39)
is removed (in the EIIC law (2.33)): the size of the phase uncertainty brugtss thar/2 (i.e.,
|A/G(jw)| < m/2) for the IIC law (2.39) to converge (S. Tien. et al. (2005)); thereftire frequency
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range of the convergence is increased in the proposed EIIC law (2.32); and 2). the range of the
iterative coefficienp(w) for convergence is also increased—for any nonzero phase unceyttiaty
upper bound of the iterative coefficieptw) in the EIIC law (Eq. (2.35)) is larger than the upper
bound of the iterative coefficieptw) in the IIC law (2.39),0(jw) < 2cogAG(jw))/ |AG(jw)|.

Remark 2 We note that the convergence of the phase part of the iterative contutli;@chieved after
only one iteration, k= 1. However, in practical implementations, updating the phase of the iterative
control input throughout the iteration process is desirable to remove tieets of disturbance and

noise on the control input.

We further note that the iterative control input is applied to the system asdfofevard control
input, thus potential instability issues of the entire control system (contrdllsttipe system dynamics)
as encountered in feedback-control case is avoided. When th¢ @fffiesise is considered, it can be
shown that the noise-caused input error at given frequanisypounded above by the ratio of the noise

level to the system gain at the frequernay This is given by the following Corollary:

Corollary 1 Let the conditions in Lemma 1 be satisfied, and consider that the systent gujps

effected by measurement noigé yas

¥(t) = y(t) +yn(t). (2.40)

Then, for measurement noise bounded above by a frequencydgepeaonstant(w) at any given

frequencyw, |yn(jw)|2 < €(w), the error in the iteration control input is bounded as:

lim ||uk(joo)| —[ua(je)| < |G (jw)le(w) (2.41)
: . 1 &(w)
Zu(jw)—Zug(jo)| < tamt——"— forvk>1. (2.42)
o) o) valj)
Proof The proof is similar to the proof of Lemma 1 and is omitted. |

Remark 3 Corollary 1 provides a basic guideline to determine the frequency range which the
EIIC law should be implemented in practices: The EIIC law should be appliégquencies where
both the system gai®(jw)| and the size of the output (frequency components) are large enowggh wh

compared to the system noise level.



21

2.3 Example: AFM Adhesion-Force Measurement

We illustrate the proposed optimal scan trajectory design and control teehimygmplementing it
to the adhesion-force measurement using an AFM system (Dimension\&€) Inc.). We start by

describing the operation of adhesion force measurement.

2.3.1 Adhesion-Force Measurement

Adhesion-Force Measurement Operation To measure the adhesion force using AFM, the cantilever
is driven by a piezoelectric actuator to approach and touch the sampéeesuiff the cantilever de-
flection (i.e., the probe-sample interaction force) reaches the setpoimt (gda Fig. 2.3). Then the
piezoelectric actuator retraces to withdraw the cantilever from the samfiteswand broke-out the
probe-sample bonding. The adhesion force is then measured as tleesairople interaction force at
the break-out point, which is obtained from the cantilever deflection (BPpp€ida. et al. (1999))(
indicated as fqpin Fig. 2.3). Such force-curve measurement using AFM enables the styugper-
ties of a wide variety of materials at submicro- to nano- scale, making it a ctitichin areas such as

materials science and biomedical imaging (e.g., (H.-J. Butt. etal. (2005); Mouy. etal. (2001))).

Maintaining a constant pulling-up rate of the cantilever, or equivalenthgrstant time-gradient of
the pulling-up force, is critical in adhesion-force measurement. This igusecthe variations of the
pulling-up rate (i.e., a non-zero acceleration of the pulling-up motion) will thice extra external
force to the probe-sample interaction, i.e., the non-zero acceleration impl@s-eguilibrium force
condition during the pulling-up (i.e., retrace) process, resulting in measureerrors in the obtained
adhesion force. Currently, force-curve are measured on commafeialby simply driving thez-axis
piezo actuator driven with the desired trajectory (i.e., a triangle trajectoaj¢d by the DC-Gain of
the z-axis AFM dynamics (calleddC-Gain methodn the following). Such an open-loop, DC-Gain
method can maintain a constant pulling-up rate when the operation speed ish&osby thez-axis
AFM dynamics is not excited. As the pulling-up rate is increased, howtheedynamics of the piezo
actuator and the cantilever (along with the mechanical structure in betwaeecexcited, resulting

in the dynamics-induced variations in the pulling-up rate. Therefore, théd dynamics effect must
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be accounted for to achieve high-speed adhesion-force measurement.

—Piezo (b)

actuator

Approach
Cantilever
N

AZp

Figure 2.3 The scheme of AFM adhesion-force measurement (a), ahdmatic
drawing of the force-distance curve (b) to measure the adhesion force
(denoted a&,qn in (b)).

Achieving high-speed force-curve measurement, however, is chiad@grigeedback control approaches
for force-curve measurements, by using the cantilever deflection sigriaé feedback signal, are hin-
dered by the following challenges: 1) The deflection signal is uncha@igedclose to zero) during
the pushing-in (load) period until the probe “snaps” into the sample (Bp€&lp et al. (1999)).
The “snap-in” point, however, is difficult to predict in practice and thgranknowna priori; 2) The
sample-probe break-out point during the pulling-up (unload) section isriabdependent (B. Cap-
pella. et al. (1999)), and thereby unknown in general also; and achmve high-speed force-curve
measurements, the dynamics of the probe along with the associated meck@uatale must be ac-
counted for in the controller design. However, such a dynamics carsigarificantly whenever a probe
is re-mounted or replaced. These feedback-control related isswvesyér, are avoided in the proposed

feedforward control technique.

Finally, we note that High-speed measurement of adhesion force ischeed®ny applications. For
example, to study the viscoelastic properties of a material, a maping of the@dfwese over the sam-
ple area needs to be obtained. This amounts to acquiring force cunashdbeation while scanning
the sample in a rastern pattern (O. H. Willemsen. et al. (1998, 2004)), wduelied theforce-volume

measurement. Thus, high-speed adhesion force is needed to achiemérbigghput in such force-
volume measurement. Rapid adhesion force measurement is also needely thetdependence of

the adhesion force on the pulling-up rate (S.-J. Marrink. et al. (1998))
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Use of the Proposed Control Approach We note that the control objectives for adhesion-force
measurement are: 1) During the approach section, the deflection siggds o quickly reach the
desired value without induced oscillations; and 2) During the retrace see&iconstant pulling-up
rate must be maintained. These control objectives were achieved bythei@SDC technique: The
problem of adhesion-force measurement was solved as a scannbigmyravhere the approaching
(load) section was mapped to the transition section, and the retrace (pwiécgxn was mapped to
the trajectory tracking section, respectively. Then the proposed HgiiCitom was applied to further

improve the positioning precision in the experiments.

2.3.2 Implementation of the Optimal Output Tracking Technique

Dynamics Modeling of AFM The dynamics of the AFM system with the input voltage to the vertical
Z-axis piezoelectric actuator to the cantilever deflection output was modelediraentally using a
dynamic signal analyzer (DSA) (Hewlett Packard 356653A). The castileas carefully lowered to
establish a stable tip-sample contact with a samll load force (i.e., cantilevectaeflealue, tuned by
using the AFM software). Then a small sinusoidal signal (with an amplitud® ofiV) was generated
by using the DSA and sent to the piezoelectric actuator. Then the measilectidn signal was sent
back to the DSA and used to construct the frequency response of tiledfffamics from the piezo
actuator to the cantilever. The obtained frequency response, as shbign2.4 (a), captured the AFM
dynamics within the frequency rangec [0, 4.4] KHz. The following transfer function modeG(s)

was obtained via curve fitting the experimental frequency responsengsaced in Fig. 2.4,

a(s) = 3O _¢ Ma-1(5=%) (2.43)

u(s) Me_1(s—pr)

In Eq. (2.43), the gailk = 1.7398 , the zerog; = {18.9965 —0.0045+ 0.8948,0.0030}, the poles

pr = {—0.01704+-2.2798,—0.0041 +0.90971, —0.8294 0.0031}, and the unit of the Laplace variable

israd /104 sec. (to reduce the numerical computation errors).

Note that our objective was to compensate for the AFM dynamics (from tlze pietuator to the can-
tilever) during high-speed adhesion force measurements, thus thestraursdtion in Eq. (2.43) should

capture and only capture such an AFM dynamics. This was ensured byghemental condition dur-



24

ing the modeling: the continuous contact of the cantilever with the sample was meathturing the
entire experimental modeling process, and the sample material (silicon) veasheaeby the obtained
frequency response were mainly due to the dynamics from the piezoeksttuitor to the cantilever.
Moreover, we also note that the first resonant frequency of the ozettilised in the experiments was at
20 KHz, over four times higher than the model frequency range of 4.4. KiHerefore, the frequency
response in Fig. 2.4 captured the dynamics of the piezo actuator along withettteanical connec-
tions from the piezo actuator to the cantilever. Particularly the dominantaasprak at-3.6 KHz in
Fig. 2.4 was due to the piezo actuator. Similar experimental approach hassesktbefore in (S. Tien.
etal. (2005)) for compensating for the vibrations caused by the exdssdynamics coupling (from-
axis to thez-axis) of a piezotube actuator. The efficacy of such a modeling appreas demonstrated

in experiments (S. Tien. etal. (2005)).

Prefilter design To minimize output oscillations, a notch-filter type of prefil@g(s) was designed
to counteract (i.e., cancel) the two dominant resonant peaks of the AFdndgs captured in the

modelG(s) at 1.4 KHz and 3.6 KHz, respectively:

Gorels) — s?+5.198 s*+0.8275
e ™ 2 1 7.65+5.198 2 +0.909%+ 0.8275

(2.44)

The Laplace variable in Eq. (2.44) isiiad/10~%s, and the bode plot of the augmented system model
(the prefilter followed with the AFM dynamics model, see Fig. 2.2) is shown inZE#(b).
Implementation of the OSDC Technique The optimal control input to reduce the output oscillations,
and the corresponding optimal output trajectory were obtained by applygn@$DC technique to the
augmented systen@a(s) = Gpre(S)G(S). The state-space model of the augmented sys@yts) =
{Aq,Ba,Cy}, was obtained from the state-space models of the prefilige(s) = {Apre, Bpre,Cpre},

and the AFM dynamics3(s) = {Aaem, Barm,Carm}, Where

Aarm  BarmCore Barm
Ag = . Ba= . Ca=[Carv 0. (2.45)
O Apre Bpre

Then the augmented system model (2.45) was used in the OSDC technigueumbrical results are

omitted!. The readers are referred to Ref. (H. Perez. et al. (2004)) éontimerical results of a an

1The numerical results are available via email to kyongsoo@iastate.edu.
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implementation of the OSDC algorithm .

Implementation of the EIIC algorithm  The optimal output trajectory (see Eq. (2.31)) obtained from
the OSDC technique were used as the desired trajectory in the EIIC algoaitiththe corresponding
optimal control input was used as the initial control input for the first iterafsee Eq. (2.32)). To
design the iterative coefficiept( w) (see Eq. (2.33)), the magnitude uncertainty of the AFM frequency
responses, as shown in Fig. 2.5, were estimated by measuring the fregegmenses at two different
sample locations with two different input levels (20mV, 40mV) respectivelg,taen finding the max-
imum magnitude difference among the four measured frequency responise upper bound of the
iterative coefficienpsyp(w) was computed according to Lemma 1. The value of the iterative coefficient
p(w) to maximize the convergence rdfie— p(w)AG(w)| was used in the experiments (see Fig. 2.5).

Note that the chosen iterative coefficient is frequency-dependent.

To seek the converged control input for high-speed adhesion easurements, the EIIC algorithm
was applied to drive the AFM-probe under ttentact-mode conditier- the probe was in continuous-
contact with the sample during the entire approach-retrace operationwabiachieved by adjusting
the probe position to attain a small probe-sample force upon the controhirgsugpplied. The con-
verged control input was applied later to measure the adhesion forceibyg lip the probe above the
sample before applying the control input. As a result, the probe broké&autsample during the

retrace section.

We note that piezoelectric actuators present a non-trivial hysterésis ief their input-output relation.
Our recent work (Y. Wu. et al. (2007)) has shown that the IIC teadmigee Eq. (2.39)) can be used to
simultaneously compensate for both the vibrational dynamics and the hysffests, provided that
that the iterative coefficienp(w) in Eq. (2.39)) is chosen blow the upper bound. Such an upper bound,
due to the hysteresis effect, is smaller than the bound for compensating fdylamics effect only

(Y. Wu. etal. (2007)). We expect that similar results hold for the Ellbégue. The focus of this

chapter, however, is to propose the EIIC technique for dynamics caapen. Therefore, to eliminate
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the hysteresis effects in the following experiments, the desired outputttngjexf a small amplitude
was chosen— as the hysteresis effect of piezo actuatmege dependerff. Zou. et al. (2004)), and

becomes negligible when the displacement is small.

2.3.3 Simulation and Experimental Resultst Discussion

Output Oscillation Reduction with the Designed Prefilter The optimal input to the piezoelectric
actuator, obtained by applying the OSDC technique to the augmented syséepnefifter along with
the AFM dynamics model, see Fig. 2.2), is compared with the control input @otdiyn applying the
OSDC technique to the AFM dynamics model only in Fig. 2.6 (a). The scaniratetfe rate of the
whole approach-retrace operation) was 100 Hz, and the dutyRat{oe., the ratio of the tracking-
section time over the entire approach-retrace period) was 50%. Thesponding optimal output
trajectories obtained in the simulation, with and without the prefilter, are alsoar@hin Fig. 2.6 (b).
The simulation results show that by using the design of the prefilter, the cagpiliations during the
transition section were almost completely removed, whereas large outputtastillaccurred when
applying the OSDC technique to the AFM dynamics alone directly (see Fig. 3.68({ch large output
oscillations is due to the utilization of the resonant peak of the AFM dynamiesKgg 2.4) in the
OSDC technique to minimize the input-energy during the transition (approactips—The oscilla-
tions were at the frequency of 3.5 KHz (close to the resonant peak éfRhedynamics at 3.6 KHz,
see Fig. 2.6). The corresponding input, with an input energy (2-ndrieoentire approach-retrace
period) at 0.6974, was almost zero during the transition section. The pike"sat the beginning of
the transition section, however, far exceeded the input voltage limit (seeZ(a)). Therefore, the
optimal input obtained by using the OSDC technique directly on the AFM dynamaissiot applicable
in the experiments. On the contrary, with the designed prefilter, such lggge“spike” as well as the
large output oscillations were removed, while the input energy was onltlglighreased by 14% (see
Fig. 2.6). Therefore, the simulation results show that the output-oscillationsefrequency-weighted

minimized through the design of a prefilter in the OSDC technique.

Experimental output tracking comparison The output tracking results, obtained by applying the

control input to the piezoelectric actuator under the contact-mode condséenSec. 2.3.2), are com-
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pared in Fig. 2.7 (left column) for the OSDC technique, the EIIC technigoe the DC-Gain method.
Note the DC-Gain method does not account for the dynamics of the systeefotieedhe obtained out-
put tracking quantitatively demonstrated the effects of the SPM dynamic&go#itioning precision.
In Fig. 2.7, the tracking results are shown for three different scas cdt€00 Hz, 260 Hz and 320 Hz,
with the duty ratio aRy = 50% 50%, and 11%, respectively. The corresponding pulling-up rate were
at 90.6um/s, 353.3um/s, and 724.§im/s, respectively (see Table 2.1). Note the transition (pulling-
up) time was kept the same for the scan rate of 320 Hz and 260 Hz. Thisaadsewhen applying
the control input to the adhesion-force measurement later, the pulling-uprtirsebe long enough to
allow the cantilever’s in-air free oscillations (governed by the cantileveadycs) to decay away after
the probe-sample break-out (see Fig. 2.8). In the right column of Figtt®dracking errors obtained
with the above three methods are also compared. The manufacturer spmstgrd of the cantilever
(k=0.12N/m) was used to convert the cantilever deflection sensor signal (in \olt) fartte-sample
force (in nano-Newton, nN). The use of the nominal spring constamés®ur purpose of comparing
the performance of the above three control methods. The performaticthesthree control methods
are also compared in Table 2.1 in terms of the relative RMS @&i0¥) and the relative maximum
errorE« (%), as defined blow,

Eo(%) = IyaC) =yC)ll2 100%  Ew(%) = Iyat)=YC)lle . 15094 (2.46)

1Ya(-)ll2 [1¥a ()l

When implementing the EIIC technique, the iteration was stopped when neithezl#tiee RMS-
tracking error nor the relative maximum-tracking-error decreaseddurtithe number of iterations
used in the experiment are listed in Table 2.1, where the pulling-up rate ftnattléng section is also

listed.

The experimental results demonstrate the efficacy of the proposed Icapmmach to achieve
high-speed precision-tracking of scan trajectory. At the scan rat®@®@Hk, the dynamics-effect on
the output tracking was pronounced, resulting in large tracking erseestbie DC-Gain tracking result
in Fig. 2.7 (al) and (b1))—the relative maximum erfa(%) = 19.75% (see Table 2.1). How-
ever, such large tracking errors were significantly reduced by uss@®DC technique. As shown

in Fig. 2.7 (al) and (b1) and Table 2.1, the relative maximum erg(%) was reduced by-2.5
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Table 2.1 Tracking performance comparison by using the OSDC techritupie,
EIIC technique, and the DC-Gain method, where the RMS-&t5(¥0)
and the maximum errdEnax %) are defined in Eq. (2.46). The number
of iterations used are also listed.

Scan P-U Ez (%) Emax (%) Iter.

Rate | Rate um/s) | DC-Gain OSDC EIIC| DC-Gain OSDC EIIC| No.
100 Hz 90.6 14.06 6.26 69| 19.75 8.80 1.20 6
260 Hz 353.3 25.96 11.27 119 24.14 13.01 229 6
320 Hz 724.8 50.10 11.48 2.84 46.80 13.15 3.81 6

times. The main frequency components of the tracking error (Fig. 2.7, (lnEntified through the
power spectrum (computated using MATLAB), were around the neididmat of the resonant peak of
the AFM-dynamics at 3.6 KHz — Note that the modeling errors tended to bedaoged the resonant
peak of the AFM-dynamics (see Fig. 2.4 (a)). Such tracking errorsechby the model-uncertainty
were removed by using the EIIC technique. As shown in Fig. 2.7 (b1), #lo&itrg error of the EIIC
technique was close to the signal noise level. As the scan rate was inttee&20 Hz, the pulling-
up rate was increased by 8 times (see Table 2.1), resulting in much largemitgacaused tracking
errors—the relative maximum errBrmax%) and the relative RMS-errdt, (%) were increased by over
2.5 times and 3.5 times, respectively (compare Fig. 2.7 (b1) with Fig. 2.7 (H8yever, the OSDC
technique still achieved much better tracking than the DC-Gain method—the maxémaoinwas over
3.5 times smaller, which was even smaller than the error by the DC-Gain methaslesitdoan rate
of 100 Hz. Such tracking errors were further reduced by using the Elethod. At the high-speed
pulling-up rate of 350 Hz, the relative maximum error obtained with the EllGrtiegie was still small
(the relative maximum errdEmax(%) = 3.81%). The power spectrum computation of the tracking error
revealed that the main frequency components of the tracking error wéré KHz, which is outside
the frequency range of the modeled AFM dynamics at 4.4 KHz. Moreauet) tracking precision
achieved with the proposed technique compares very well with our prewsults obtained by using
the IIC technique (Y. Wu. et al. (2007)), which in turn, were more fatte than the results obtained
with a robust control feedback design (M.-S. Tsai. et al. (2003))thadesults obtained with an
advanced PID feedback control design (Q. Zou. et al. (2004)dBs are referred to (Y. Wu. et al.

(2007)) for details). Therefore, the tracking experiments show thairty@osed control approach can
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achieve high-speed precision-tracking in scanning applications.

Experimental Adhesion Force Measurement The control inputs obtained by using the EIIC tech-
nique were used to measure the adhesion force between a silicon-nitiskegrd a silicon sample in
the ambient environment. We note that under the ambient environment, theratkadhesion force
is dominant by the capillary force due to a thin layer of water formed on thelsssupface (e.g., (B.
L. Weeks. et al. (2005))). The obtained force-time curve (i.e., thegsample force vs. time) for
the scan rates of 100 Hz, 260 Hz, and 320 Hz are shown in Fig. 2.8¢lefna), where the force-time
curves obtained with the DC-gain method are also compared. In the rightcaiiFig. 2.8, the devia-
tions of the pulling-up force away from the constant force-rate duriagthling-up section, measured
by curve fitting the force-time curve into a straight line, are compared foEthe technique and the
DC-Gain method. Note that all the force-time curves were acquired in segueithin two minutes,
under the same initial steady-state condition. Therefore, effects suitte a&nvironment variations
were minimized, and the variation of the force-rate during the pulling-up sedfiany, was mainly

due to the AFM-dynamics vibration effects.

The experimental results show that the constant pulling-up rate at hegdan be achieved by using
the proposed control technique. As shown in Fig. 2.8 (al) and (b1prtiee-sample force-rate was
maintained as constant (during the pulling-up section) under the contitué &lIC input. The relative
maximum variation of the force-rate is only1%. On the contrary, the force-rate deviation was much
larger (over 3 times larger) when using the DC-Gain method. Such fateedeviation was more
pronounced as the pulling-up rate was increased by almost 4 times at theaseaf 260 Hz (see
Fig. 2.8 (a2) and (b2)). However, by using the EIIC algorithm, the comgtalling-up (force-) rate was
still maintained. Even as the pulling-rate was increased top7/20, the constant pulling-out rate was
still well maintained. The relative maximum force-rate deviation was still en§%. Note that the
large-amplitude, high-frequency oscillations of the force curve in Fign2g: the free vibrations of
the cantilever in air after the probe-sample bonding was broken. The seitiagyf such oscillation
was governed by the dynamics of the cantilever. Such constant pullirrgtelwachieved in the adhesion

force measurement when using the EIIC control input was the resuke @irdcision tracking under the
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contact-mode achieved earlier (compare Fig. 2.7 with Fig. 2.8). Therdftgeexperimental results
demonstrate the efficacy of the proposed control technique in achieighgspeed adhesion-force

measurements.

2.4 Conclusions

This chapter studied the account of two practical issues in the desigoatrdlof scanning trajec-
tories: the minimization of the output oscillation, and the rejection of the modeling effiect on the
output tracking. The proposed approach was based on the extefhgi@recently-developed optimal
scan trajectory design and control (OSDC) technique. First, the debigm@filter was introduced
in the OSDC technique to minimize the output oscillation by using the OSDC technighe #ug-
mented system (of the prefilter cascaded with the system). Then, an edhanersion-based iterative
control (EIIC) technique was proposed to remove the modeling errecteh the output positioning,
further improving the positioning precision. The convergence of the Blgorithm was discussed,
and the convergence range was quantified. The proposed appvaadhustrated by implementing it
to high-speed adhesion force measurement using AFM. The simulatiorxpedmental results were
presented and discussed to demonstrate the efficacy of the propgseddpto compensate for the

two practical issues in scanning trajectory applications.
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Figure 2.4 (a) Comparison of the experimentally measured frequencynsespbd
the z-axis AFM dynamics (from the piezo actuator input to the can-
tilever deflection output under the contact-mode condition) with the
frequency response of the transfer function model obtained via-€urve
fitting method; and (b) the frequency response of the augmented sys-
tem model (the prefilter followed by the AFM-dynamics model).
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Figure 2.5 The estimated magnitude uncertainty of the AFM-dynamics (red-dot-
ted), the upper bound of the iterative coefficient (green-dash-dotted
psup(w) (see Eq. (2.35)), and the iterative coefficient used in the ex-
periments (blue-solid)p(w).
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Figure 2.6 Comparison of the optimal inputs (plot (a)) and the correspggin
timal output trajectories (plot (b)) obtained by using the OSDC tech-
nigue for the augmented system with (solid) and without (dashed) the
prefilter. The signal frequency is 100 Hz with the duty r&io= 50%.
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Figure 2.7 Comparison of the experimental tracking results obtained by tiging
DC-Gain method, the OSDC technique, and the EIIC technique for
the scan rate of (al) 100 Hz, (a2) 260 Hz, and (a3) 320 Hz; and the
comparison of the corresponding tracking errors (right column).
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Figure 2.8 Left column: The comparison of the experimentally measured
probe-sample force trajectory (i.e., force-time curve) for adhesion—
force measurements, obtained by using the DC-Gain method with
the curves by using the EIIC technique at the scan rates of (al)
100 Hz, (b1) 260 Hz, and (cl) 320 Hz. Right column: The com-
parison of the corresponding deviations of the force-curve from the
constant force-rate during the pulling-up section for the scan rates of
(a2) 100 Hz, (b2) 260 Hz, and (c2) 320 Hz.



36

CHAPTER 3. lterative Control Approach to High-Speed Force-Distance Curve
Measurement Using AFM: Time Dependent Response of PDMS

A paper published in Ultramicroscopy

Abstract

Force-distance curve measurements using atomic force microscopyemasidely used in a broad
range of areas. However, current force-curve measuremertaangered by its low speed. In this
chapter, a novel inversion-based iterative control technique is peapto dramatically increase the
speed of force-curve measurements. Experimental results are tecbs@ishow that by using the pro-
posed control technique, the speed of force-curve measuremertte @aecreased by over 80 times—
with no loss of spatial resolution—on a commercial AFM platform and with a stahdantilever.
This control technique is further applied to quantitatively study the time-dkp#relastic modulus
of poly(dimethylsiloxane) (PDMS), by measuring the force-curves withoadb spectrum of push-in
(load) rates, spanning two-order differences. The elastic modulusuneebat low-speed compares
well with the value obtained from dynamic mechanical analysis (DMA) testilamdalue of the elas-
tic modulus increases as the push-in rate increases, signifying that mdesmal deformation rate

transitions the viscoelastic response of PDMS from that of a rubbery islatavard a glassy one.

3.1 Introduction

In this chapter, we illustrate the implementation of a novel inversion-basethitecantrol technique
to achieve high-speed force-curve measurement on a commercial atawgcniccroscope (AFM),

through the measurement of time-dependent properties (e.g., elastic Madploly (dimethylsiloxane)
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(PDMS) as an example. Force-curve measurements using AFM (A. LeWesn. etal. (1989, 1992);
N. A. Burnham. et al. (1989)) has opened the door to experimentally stadigrials properties (H.-J.
Butt. etal. (2005)) as well as physical and/or chemical interactions keetwaterials (P. P. Lehenkari.
et al. (2000)). However, such interrogations are currently hindbyethe low-speed operation of
AFM. This is because numerous force-curve measurements usuallfobedbtained, particularly
in the so-call force-volume imaging (O. H. Willemsen. et al. (2004)-E. Adda. et al. (1989)),
where a distributive mapping of force-curves over the sample is obta8irde multiple force-curves
need to be acquired at each sample point while the sample is scanned wittra pagtern, currently
force-volume imaging is time-consuming (S. A. Syed Asif. et al. (2001)).reMandamentally,
the low-speed of force-curve measurements encumbers the study ofepeadnt material proper-
ties/interactions at micro-/nano- scale (J. Zlatanovaa. et al. (2000¢hweSinger. et al.  (2000)).
For example, the force-curve measurement using AFM enabled the stidles dependence of the
unfolding force of a titin domain (E. Evans. et al. (1999)), or the unbindlimge of a single DNA
strand (T. Strunz. et al. (1999)), on the retraction/pulling rate. Howexgrently the achievable
spectrum of the force (load)-rates in these studies is limited to the low-spege ¢ 10 um/sec in (E.
Evans. etal. (1999)) and 2 um/sec in (T. Strunz. et al. (1999))). Another example is the study of
stress-induced chemical bond breaking of siloxane elastomers in thednaghrégime. To verify the
theoretical prediction results (E.M. Lupton. et al. (2005)) obtained frootecular dynamics simula-
tion, the force-curves of single molecule need to be measured at a datettimgfion (unload) rate of
nearly m/s range, which is far beyond the achievable rate on current &iddrly, there exist needs

for high-speed AFM force-curve measurement.

The speed of force-curve measurement can be increased by usifogdienodulation technique (S.
A. Syed Asif. etal. (2001, 1999); W. C. Oliver. et al. (1992)), wda sinusoidal force signal (i.e.,
ac signal) of small amplitude is augmented with the displacement driven sigdapgtied to the tip
during the force-curve measurement. Then the amplitude change aragtiifasf the tip oscillations,
relative to the input driven force, are acquired and used to measueda$ie stiffness of the material

(S. A. Syed Asif. etal. (1999); W. C. Oliver. etal. (1992)). Althtithe modulation frequency can be
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changed from a few Hz to 200 Hz (S. A. Syed Asif. etal. (1999, 2@ equivalent push-in (load)
and retraction (unload) rate is still low:(6ptm/sec), due to the small oscillation amplitude 30 nm).

The push-in/retraction rate is further limited because only sinusoidal signabe applied—methods
to increase the rate by using other shape of trajectories (F. Schweseigal. (2000)) cannot be
implemented. Moreover, the force-modulation technique requires extdavher and a complicated
parameter calibration process (S. A. Syed Asif. et al. (1999, 20aty),ts efficiency is inherently
limited because a de-modulation process is needed to accurately measunapttiede and phase
shift, which is time consuming. Therefore, techniques need to be devetopmzhieve high-speed

force-curve measurement.

Recently, advanced control techniques (see, e.g., the tutorial papAb(Bmovitch. et al. (2007))
and the references therein) have been proposed to improve the thubudgAFM imaging, or more
generally, the nanopositioning of piezoelectric actuators (A. J. Fleming. €2006)). For example,
the system-inversion-based techniques (Q. Zou. et al. (2004))ditezP et al. (2004)) have been
developed to find the output-tracking feedforward control input byifegthe desired output trajec-
tory through the inverse of the system dynamics model and/or hysteresd.riibé feedback control
design (G. Schitter. et al. (2004)) based on robust control theayalsa been proposed. Recently,
efforts to combine these two approaches, the feedforward with thedekdiontrol, have also been
pursued for AFM applications (G. Schitter. et al. (2003); Ying Wu. et @007)). The efficacy of
these control developments in improving the lateral scanning (Ying Wu. e(2006); S. Salapaka.
etal. (2002)-H. Perez. et al. (2004)) as well as the vertical AFM-tigitppning (G. Schitter. et al.
(2003)) for AFM imaging have been successfully demonstrated. To tteobeur knowledge, how-

ever, no advanced control techniques have been developed fesegiul force-curve measurement.

We present a novel enhanced inversion-based iterative contid)(&ichnique for high-speed force-
curve measurements. This EIIC technique seeks an appropriate rigadfocontrol input through
iterations to eliminate, during high-speed force-curve measurements,vbesackffects of the AFM

system. The adverse effects include the vibrational dynamics, the tsistexed the creep effects (S.
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A. Syed Asif. etal. (1999); D. Croft. etal. (2001)) of the AFM systéfrom the piezo-tube actuator
to the cantilever along with the mechanical linkage in between). For foneecuneasurements, the
desired output (i.e., the applied force profile) is pre-defined, and thb-ipdretraction operation is
repetitive making it possible to account for the above adverse effects on thetdrapking through
iterative update of the control input with the measured output errorstefdre, the iterative control
strategy is intuitively appealing for force-curve measurements. It hais demonstrated that the [IC-
type of control algorithms can adequately “cancel” the dynamics-induitedtions (S. Tien. et al.
(2005)) and the hysteresis-caused nonlinear measurement ermgs\{d. et al. (2006)) during
high-speed repetitive motion. However, in the IIC algorithm, the iteration ofrthet magnitude is
coupled in the frequency-domain with the iteration of the input phase. Sugiling is removed in the
proposed EIIC technique. Therefore, the EIIC algorithm extendsi@algorithm, and can achieve
the convergence in a larger frequency range with a faster convergate . We illustrate the use
of the proposed EIIC technique in material characterization by applyinggtiémtitatively study the
time-dependent elastic modulus of poly(dimethylsiloxane) (PDMS). The mexhsalues of the elastic
modulus are compared with the results obtained from the dynamic mecharatadiatiDMA) test of

the PDMS.

3.2 Methods

3.2.1 Force curve measurement using AFM

AFM Force-Curve Measurement Various materials properties can be interrogated at submicro
to nano-scale by using AFM through the force-curve measurementgMakdingham. etal. (1997)).
To do so, the AFM-tip is driven by a piezoelectric actuator to push agaiastaimple till the bending
of the tip (i.e., the force applied onto the sample surface) reaches a tereadeed value, then the
AFM-tip will retrace to a pre-determined distance—the tip can be either in cantsar intermittent
contact with the sample surface during the process (H.-J. Butt. et al.5)2@@e Fig. 3.1(a)). The
force-distance curve, as schematically depicted in Fig. 3.1 (b), is obtaynedasuring the tip-sample

interaction force along with the vertical displacement of the AFM-tip duringptheh-in/retraction pro-
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cess. The tip-sample force is measured from the tip deflection via an optisimgescheme (Veeco
Manual. et al. (2004), and the AFM-tip displacement is measured frometitieal displacement of
the piezoelectric actuator if the indentation of the tip into the sample is negligible, hen the sample
is hard enough. Indentation, however, occurs and must be accefontetien the sample is soft (H.-J.
Butt. et al. (2005); S. A. Chizhik. et al. (2001); A. Weisenhorn. et £1993)), for example, the
PDMS. The indentation is obtained as the difference between the AFM-tiladé&pent on a reference
hard sample and on the soft sample (M. Vanlandingham. et al. (1998, Tiie measured tip-sample
interaction force vs. the indentation can be used to study various materiahmeal properties (H.-J.

Butt. et al. (2005)), for example, the elastic modulus.
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Figure 3.1 The scheme of AFM force curve measurement

3.2.2 Enhanced inversion-based lterative-Control (EIIC) Appoach to High-Speed Force-Curve

Measurement

EIIC technique  The EIIC control law can be described in frequency-domain as follohshe
first iteration, k=0, choose the initial input (e.g., the voltage applied to th@fidze actuator), as the
scaled desired output trajectary(jw), where the scale factor is chosen as the inverse of the system

dynamics modelG ! (jw),
Uo(jw) = Gp'(jw)z(jw), k=0, (3.1)

where ‘f(jw)’ is the Fourier transform of a time-signal (t)’, and the frequency response model of

the system dynamic&m(jw), can be measured experimentally (J.-N. Juang. et al. (2001)). Then fo
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all other iterationsk > 1, compute the control input by updating it with the positioning errors from the

previous iterationzy( jw) — z-1(jw),

u(jw)| = |u-1(jw)|+p(w) |Gt (jw)| [|zd(jw)| — |21 ()],
(3.2)

Zu(jw) = Zu-1(jw) + (Zz(jw) — £z 1 (jw)), k>1,

wherez( jw) denotes the output obtained by applying the iterative inRitw) to the system during
thek!" iteration,p(w) > 0 is the iteration coefficient. It has been shown that the choice of the iteration
coefficient to guarantee the convergence of the iteration depends siz¢hef the uncertainty of the
system dynamics. More specifically, let the dynamics uncertdi@yjw) be the ratio of the actual

AFM dynamicsG(jw) over the measured dynamics mo@gl( jw),

G(jw) _ |G(jw)e >

i) — A JAZG(jw)

then it can be shown that if the iterative coefficigrito) is chosen within the following range,

2

0<P®) < AG(jw)]

(3.4)
the above EIIC algorithm (3.2) will converge to the desired inguf w) at frequencyw, i.e.,

dm!Uk(Jw)\ =|ug(jw)|, and kimluk(Jw) = Zug(jw).

whereuy(jw) denotes the desired input for achieving exact tracking of the desiredttey at the
frequencyw. Therefore, the converged control input will remove the system dyrseffect on the

output (e.g., the AFM-tip deflection).

Note that in the above convergence analysis, the effect of noise ise@nblowever, it can be shown
that the noise effect is small provided that the noise level is low. Specifitetlthe the sensor noise

zy(t) is added to the system outm{t), and the measured system output becomes,
Z(t) = zn(t) + z(1).

Then it can be shown that the error between the converged iteratit®@lcioput and the desired input

is bounded above by a constant proportional to the noise level as follows
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lim [|ud(j)| = |ua(jo)l| < |Gy (jw)||z(jw)| (3.5)
[Zu(jw) = Zu(jw)| < tan‘lm, for vk > 1. (3.6)

Implementation of the EIIC Algorithm  Equation (3.4) implies that to determine the iteration coeffi-
cientp(w) in the EIIC algorithm (3.2), the dynamics uncertaitd@( j w) must be quantified. Although

in many applications, the exact dynamics uncertainty may not be quantifidd theeactual dynamics
G(w) being unknown, an estimation of the dynamics uncertainty can be obtainedthegperiments

so that the exact dynamics uncertaiti$(jw) is bounded above by the estimated dynamics uncer-
tainty AG(jw), |AG(jw)| < |AG(jw)|. Therefore, the iterative coefficieptw), computed by using
the estimated dynamics uncertainty in Eq. (3.4), will guarantee the coneergéthe EIIC algorithm.
The dynamics uncertainty can be estimated through experiments by measseiiggaf the frequency
responses of the system (for example, with different input amplitudeg)theen finding the maximum

difference among the measured frequency responses at eacbrfcgqu

We further note that as the iterative control methodology is intendedefuetitive applications
where the desired trajectory(t) is usually knowra priori, the comparison between the desired out-
put trajectory and the measured output, and thereby the computation ofl®ealgbrithm can be
conductedoffline instead of online. Then the obtained iterative control input is appliedfesdor-
ward control input to the system. This implies that the proposed EIIC algorithm eamplemented
in frequency-domain directly using the fast Fourier transform (FFTQrétlgm (and inverse Fourier

transform), i.e., the time-domain iterative control input is obtained as
U(t) =7 [uk(jw)] (3.7)

where.Z ~1 denotes the inverse Fourier transform. Such a frequency-domainatéaiizalso implies
that the experimentally measured frequency response data can bdresdg th the EIIC algorithm.
Therefore, the explicit transfer function model obtained via, for exangulese-fitting method, is not
needed. Not only is the implementation simplified, but the modeling errors gedeharing the curve-

fitting to obtain the transfer function model is removed—as usually a lowerdrdnsfer function
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model is preferred over high-order ones for computation efficiency in-tioreain realization.

Finally, the EIIC algorithm (3.2) is applied at those frequency compondritseadesired output
trajectoryzq(jw) where the gain of the system dynamics is large enough—relative to the natefle
the system, and the control input is set to zero at all other frequeneedefis are referred to Ref. for
details). The iteration process should be stopped if the tracking egfor— z(t), measured by using
some chosen signal norm (e.g., 2-norm and/or infinity norm), can nairtieef reduced. These imple-

mentation issues are illustrated in Sec. 3.3.1.

Desired trajectory design To use the above EIIC algorithm to interrogate the time-dependent elas-
tic modulus of PDMS, the desired trajectosy(jw) in Eq. (3.2)), e.g., the desired AFM-tip vertical
displacement vs. time during the push-in/retraction process, needs te{spguified. The desired
trajectory used in the experiments is schematically depicted in Fig. 3.2, whepushein and the
retraction sections are separated by two flat sections. Since the pustiionsof the force-curve is
chosen to measure and calculate the time-dependent elastic modules of tisefabidle, the desired
trajectory is designed by varying the time period of the push-in sedtion;] in Fig. 3.2 while main-
taining the same push-in distance. The retraction time peltiods], is chosen to be twice longer than

the push-in periodto, t;] in the experiments to reduce the zero load plastic deformation. The constant
flat period of a fixed duration at 5 ms, is added to help the tracking duringusle-in section (at high

speed), which can also be used to investigate material relaxation at wliffergh-in rates.

It is noted that other shapes of user-defined trajectories can be ubedEl C algorithm, provided
that the trajectory is continuous with its main frequency components within tholbdith of the piezo
actuator. For example, to measure the time-dependent viscoelasticity of fsatbeaesired cantilever
displacement trajectory can be designed by reversing the design ofdbe afymmetric trajectory to
have a fixed push-in rate but different retraction rates. Theretloegoroposed EIIC algorithm allows

the use of trajectory design (F. Schwesinger. et al. (2000)) in highesforce-curve measurements.
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Figure 3.2 The tracking trajectory consisting of a push-in section (an fatien
process) during the time intervg, t1] and a retraction section (a re-
covery process) during the time interysl, t3], with a flat period in
between, where the different push-in rate is obtained by varying the
push-in periodto, t;] while keeping the same push-in distamge- do.

Use of EIIC Algorithm in Force-Curve Measurement The EIIC algorithm was used to measure
the force-curve of the PDMS sample at different push-in rates. Firstht@in the control input that
compensates for the dynamics effects of the AFM system (from the piéeoatctuator to the can-
tilever along with the mechanical linkage in between) during high-speeeé-faro/e operations, the
EIIC algorithm was applied to measure the force-curve on a hard sangilega calibration sample).
Therefore, when such a control input is applied to measure the foree-on the PDMS sample, the
obtained force-curve should not contain distortions from the AFM systgmamics effect. As a result,
the difference between the force-curve obtained on the hard sampleambtained on PDMS should
yield the mechanical property (e.g., elastic modulus) of PDMS. Moreowgrexperimental results
(see Sec. 3.3) show that by using such a control input, constantip(istad) rate can be obtained on

the PDMS sample.

Force and Indentation Computation The force applied to the sampie is computed according to
Fs=kx C x Bs, wherek is the stiffness constant of the tip, C is the sensitivity constant of the defiectio
signal vs. the vertical displacement of the tip, addenote the deflection signal measured on the

sample. Then the indentation depths computed by

2 =Cx (64— 65) (3.8)
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where8y denotes the deflection signal measured on the hard surface. Note bettiftiess constant

k and the sensitivity consta@tcan be experimentally calibrated (J. L. Hutter. et al. (1993)).

3.2.3 Theory: Hertzian contact model

Hertzian model (H.-J. Butt. et al. (2005); M. Vanlandingham. et al. (}2®as employed to
estimate the elastic modulus of the sample PDMS by using the experimentally measaesdurve
data. The time-dependence of the elastic modulus is examined by using teetoves obtained at
different push-in rates in the calculation. According to the Hertzian model (Butt. et al. (2005);
Heinrich. Hertz. et al. (1896)), for two elastic materials (the sample and thierbpght into contact,
the contact area at zero load is zeag £ 0) and the surface forces or adhesion force is negligible
during the contactfgn = 0). Then the stiffness modulus of the samjite) Can be calculated by using

the indentation depth, and the reduced Elastic modulldg; of the sample:

FZ 1/3
5 = , (3.9)
Rx E&;
1 3/1-vZ 1-V2
Lt _ 2 1
Eror 4( E & ) (3.10)

whereF, R, andE; are the applied force, the tip radius, and the tip elastic modulus, respeciindhy
andyv; are the Poisson’s ratio of the sample and the tip, respectively. For sofleslike PDMS, its
elastic modulugs (in several MPa range) is over 7 order smaller than that of the probeo(siitride)

E; at 160-290 GPa (H.-J. Butt. et al. (2005)), therefore the above3ELD) can be simplified as

1 3 1v§>
— ~ - 3.11
Etot 4< Es (3.11)

3.3 Experimental Results and Discussion

3.3.1 Experimental Instrumentation

A commercial AFM system (Dimension 3100, Veeco Inc.) was used in allr@rpats along with
a standard V-shaped Silicon Nitride cantilever as provided by the mantéacithe nominal spring
constant and the nominal curvature radius of the cantilever were 0.12Md/20anm, respectively. The

effective spring constant of the cantilever, 0.07 N/m, was measuredy tire thermal noise method
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(J. L. Hutter. et al. (1993)) at room temperature. To minimize the effethetip shape variation
during the experiment, the tip had been used to image a silicon calibration samplefd000 scan
lines at the scan size of over pOn before the tip was used to measure the force-curve in the following
experiments, thus containing a “steady-state” radius. Kanaga Karugpibto-workers found negligi-
ble wear on the probe as a result of sliding friction and force curverarpats on ultra-high molecular
weight polyethylene (J. L. Hutter. et al. (2006)). Indentation on arsaterial like PDMS is therefore
not expected to result in wear of probe tip during the force displacempatienents. Hence a constant
tip radius is used for calculation of modulus in Hertzian analysis. In ouiguswvork (A. Mitchell. et
al. (2006); J. L. Hutter. et al. (2006)), we consistently obtained a tiusdaetween 42-50 nm after
imaging a hard sample for similar number of scan lines. The tip radius was raddbuough inverse
imaging the probe over a calibration grating that has silicon spikes with radiiviture less than
10nm. Hence, in the following, a tip radius of 50 nm was assumed for modalapwtation during

Hertzian analysis.

The experimental system to implement the EIIC control law to achieve higkdsjoece-curve mea-
surement is depicted in Fig. 3.3. All the control inputs to the piezoelectric tactware generated by
using MATLAB xPC-target (Mathworks Inc.), and sent out througlatadicquisition card (DAQ, PCI-
DAS1602/16, Measurement Computing Inc.) to the high-voltage amplifier oAEM-controller—
The AFM-controller was modified so that the PID (proportional-integraive&ve) control circuit is
bypassed when the external control input is applied. The corresmpoantilever deflection signal was
sampled at 50 KHz by using the DAQ system. The environment humidity wasotiedtunder 20%
by feeding Nitrogen gas into a home-made sealed plastic box that covera&th&ead for over 40
minutes before the experiments were conducted (We note that PDMS is@hpthic material, and
residual humidity is not expected to significantly influence the experimentauneraents). All the
experiments, including the iterations of the control inputs using the EIIC lath@hard surface, and
the application of the obtained control inputs to measure the force-cunvéeeed®DMS sample, were
conducted with the box sealed (A flash light and a webcam were placee ihgdox to aid the oper-

ation). The force-curve at different push-in rates were measursegnence with a separation time of
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~15s in between. The iteration was stopped when neither the relative RKayaerrorEy (%) nor

the relative maximume-tracking errét, (%) decreased further, wheEs (%) andE. (%) are defined as

Ey(o6) 2 1400 =20ll2 6000 £ (06 2 1240) =20l 900, 3.12
208 = Pl N PO (842
= Piezo Input Piezo Input u(t)
!\ ( (High-voltage) High-Voltage ( (Low-voltage) = =t
) Amplifier MATLAB,
| ? ( XPC-Target )
l% Cantilever Deflection T

Figure 3.3 The block diagram showing the experiment setup to implement the
EIlIC algorithm to measure the time-dependent elastic modulus of
PDMS using AFM.

Experimental Implementation of the EIIC algorithm  The frequency response of the AFM dy-
namics was measured by, first, positioning the AFM probe on the hard (3ikeonple with a small
deflection force (tuned by using the AFM controller software), theninyivhe piezoelectric actuator
with a sinusoidal input with frequency sweeping from 1 Hz to 6 KHz (i.e.,slveep sine methdd
and measuring the cantilever deflection signal. The frequency respaogeired with three different
input levels (20, 40, and 50 mV) at three different locations of the samgdpectively, were shown
in Fig. 3.4. The maximum magnitude variations among the three frequencynsesG( jw)| and
the upper bounded of the iteration coefficigaiy(jw) computed by (3.4) are shown in Fig. 3.5, from
which the iterative coefficient(jw) used in the experiments were determined, as shown in Fig. 3.5.
Finally, the nominal frequency response used in the EIIC algorithm wasnald as the average of the
four measured frequency responses (see Fig. 3.4). Note Fig. 3.4, Imgin frequency range (around
4~6 KHz), the gain of AFM system drops dramatically and large dynamics taingr occurs, there-
fore the EIIC algorithm was implemented for frequerwoy<6 KHz, i.e., the iterative control input

uk(jw) was set to zero for all frequeney > 6 KHz.
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Figure 3.4 The frequency responses of the AFM dynamics measuregéni-ex
ments with three different input levels (20, 40, and 50 mV), and the
nominal frequency response (the average of the above four) used in
the EIIC algorithm.

3.3.2 Tracking Results on the Silicon Sample

The force-curves at 12 different push-in rates, spanning 400 tiiffesechce from 2.16um/s to
864 um/s, were measured on the Silicon sample—every push-in rate is a multiple integeofithe
base speed at 1.08m/s (or equivalently, 12 mV/ms—with the system sensitivity at 90 nm/V). The
displacement range was fixed at 270 nm—thus the slowest push-in rat&6qiid/s corresponds to
a scan rate of 2.53 Hz (the scan rate is defined as the rate of one p@ttaation operation). The
RMS positioning erroEx(%) and the relative maximum erré, (%) for the 12 different push-in rates

are listed in Table. 3.1, where the iteration numbers to achieve the congergenalso listed for each
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Figure 3.5 The experimentally estimated magnitude variation of the AFM dynam-

ics |AG(jw)|, the computed upper bound of the iterative coefficient,
psup and the iterative coefficient used in the experiments,

push-in rate. In addition, the tip vertical displacements vs. time at the pustteirof 2.16um/s and
648 um/s are plotted in Fig. 3.6. As can be seen from Table. 3.1 and Fig. 3.6,iprep@sitioning is
maintained for all push-in rates—The positioning errors, measured byNt& dRrorE, < 1.5% and

the maximum tracking errdf., (%) < 2.5%, are close to the noise-level of the system. Particularly, we
note that even at the high rate of 864m/s, the positioning error is still close to the error at the low
rate of 2.16um/s. Therefore, our experiment results show that high-speed foree measurement

with no loss of spatial resolution can be obtained by using the propos€d&dhnique.

To ensure that force-curves of PDMS were measured within the elagtitrition range of PDMS,
arelatively small cantilever displacement (indentation) rang&0Q nm) was chosen in the experiments
(see Fig. 3.6). As shown later in Fig. 3.11, such a displacement rangjeetes a force load size at
~14 nN, which is well-below the elastic deformation range of PDMS as quaniifigi. Wahl. et al.
(2006)). However, not shown here, even if we doubled to quadiupke displacement range but kept

the same time duration of the push-in portion, the tracking precision similar to 3ablean still be
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Table 3.1 Tracking performance results obtained by using the EIIC tashmig
measure the force-curves on a silicon sample at different push-in rates
where the RMS-erroE;(%) and the maximum errdEnax %) are de-
fined in EqQ. (3.12), and the iteration numbers (Iter. No.) to achieve the
convergence at each push-in rate are also listed.

Push-in Ratei{m/s) | 2.16 54 108 21.6 43.2 64.8
E2(%) 0.96 0.97 0.82 091 137 0.73
E.(%) 207 241 15 174 239 211
Iter. No. 5 3 5 3 3 3

Push-in Rate{m/s) | 86.4 108 216 432 648 864
E2(%) 0.86 0.88 0.72 0.85 0.70 0.99
Ew (%) 1.68 2.08 216 186 186 2.2206
Iter. No. 2 2 1 6 4 3

maintained. This implies that even much higher push-in rate (doubled to guiedywean be achieved

with the proposed EIIC technique (8¢dn/s x4 = 3.456 mm/s).

3.3.3 Materials: PDMS

The PDMS sample with an appropriate thickness for DMA measurement wpaned as follows.
The prepolymer (Sylgard 184 Silicon Elastomer base, Dow Corning) ambcagent were vigorously
mixed at 1:10 ratio by weight. The prepolymer/curing agent mixture was thgasded in vacuum
oven for 1 hr to remove any trapped air inside the mixture. Subsequentlyiktere was deposited
in a plasticPetri dish, and cured at room temperature for 2 days in vacuum oven. Fithelyesulting

PDMS film was truncated into a desirable dimension for DMA and AFM measureme

3.3.4 Force-Curve Measurements on PDMS

The converged control inputs for the 12 different push-in ratesjmdaddn Sec. 3.3.2, were applied
to measure the force-curves on the PDMS sample. We note that due to #rerti# of the tip-sample
interaction on PDMS and on silicon, the obtained push-in rate and the cantilrtieal displacement

range on the PDMS sample are different from those on the silicon samgpectevely. Particularly,
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Figure 3.6 The plot of the cantilever vertical displacement during the
push-in/retraction (load/unload) operation on the silicon calibration
sample, obtained by using the EIIC technique, at the push-in rates of
(a) 2.16um/sec and (b) 648m/sec, respectively. (c) and (d) show the
corresponding positioning error with the desired trajectory.

non-constant push-in rate can be induced due to the soft contactdretiaee cantilever and the AFM
tip. However, our experiment results show that the deviation of the pushiénfrom the constant
push-in rate was very small and thus negligible. We calculated the pustesafatained on the PDMS
sample for the 12 different control inputs, and further quantified théatlens of the cantilever de-
flection from the nominal trajectory (specified by the computed push-in)raid®e deviations were
quantified by using both the relative RMS eriex%) and the relative maximum err&max(%), and
are shown in Table 3.2. By using the proposed EIIC technique, the variatithe push-in rates is
still very small even when the push-in rate is as high as 7p@més (corresponding to the push-in rate
of 848 um/s obtained on silicon sample). This can also be seen from Fig. 3.7, whecarttiever
vertical displacements for push-in rate of Lif/s and 565.2im/s are compared to the corresponding
cantilever displacements obtained on the Silicon sample for push-in rate6qgir/s and 64:m/s,
respectively. Table 3.1 and Fig. 3.7 also show that the differences ptigtein rate and the (cantilever
vertical) displacement, between the silicon sample and the PDMS sample, s#easdhe push-in rate
increased. This is because at the low push-in rate, PDMS exhibits aryutiieracteristic. As the

push-in rate increases, however, the movements of PDMS molecules @ifecaigly retarded since
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they cannot follow the external deformation fast enough, therebywirghéke a stiff material (H-W.
Hu. etal. (1992); S. Granick. etal. (1992)). As a result, the tip-samf@eaction on PDMS becomes
similar to the interaction on silicon, which in turn, leads to a similar push-in ratesese tiwo different
materials (Fig. 3.7 (b)) when the push-in rate is high. The experimentdigelsawever, demonstrate
that a desired constant push-in rate can be maintained by using the guldplb€ technique on soft

materials like PDMS during high-speed force-curve measurement.

Table 3.2 Tracking performance resulEs (%) andEmax %)) during the push-in
section of the force-curve, obtained by applying the converged EIIC
control input to the PDMS sample.

Push-in Rate on Sim/s) 216 54 108 216 432 6438
Push-in Rate on PDMSufn/s) | 1.7 4.4 9.0 185 369 564
E2(%) 0.39 047 071 067 111 0.66

Ew (%) 084 111 145 096 324 117

Push-in Rate on Sim/s) | 86.4 108 216 432 648 864
Push-in Rate on PDMSufn/s) | 75.3 952 1935 384.9 5652 777.6
Ex>(%) 070 0.84 097 159 250 2.86
Ew (%) 160 152 222 309 471 498

The measured force-curves were analyzed using the Hertzian modattdate the elastic modulus
of PDMS at different push-in rates. First, the tip indentation was obtaisetieadifference of the
cantilever vertical displacement of the PDMS and the silicon, as shown i3 Fidor the push-in rates

of 1.7 um/s and 565.2um/s, respectively. We note that the Si is not infinitely hard and might experi-
ences slight deformation during the force-curve measurements. Howewepared to the amount of
tip indentation on the PDMS, such deformation was much smaller and thus negligimsequently,

the force curves—the indentation vs. the force—were obtained for tlffePent push-in rates, and
fitted by using the Hertzian model (see Egs. (3.9, 3.11), Sec. 3.2.3) to éradiatstic module of PDMS.
The cantilever stiffness of 0.07 N/m has been experimentally calibrated3Set) and a nominal tip
radius of 50 nm was used in the calculation. As an example, the forcescahRDMS for push-in

rates of 1.7um/s and 565.4im/s are shown in Fig. 3.8, respectively.
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Figure 3.7 The comparison of the cantilever vertical displacement obtayed b
using the same control input for the push-in rate of (462unVs on
the silicon sample and.Z um/s on the PDMS sample, and (b) 648
um/'s on the silicon sample and 565i4m/s on the PDMS sample.
The corresponding displacement difference between the silicon and the
PDMS measurements are also shown, which equals to the indentation
of the tip into the PDMS sample during the measurement. The inset in
(a) is the zoomed-in view of the flat portion of the trajectories.

Note that the Hertzian model was used to obtain the optimal fit (in the leastesseiase) of the later
part of the experimental force curve, and the difference betweenxgegimental and the fitting curves
at the beginning part of the curve represents the so caiemload plastic deformatiofi.e., the resid-
ual plastic deformation, see Fig. 3.8) (H.-J. Butt. et al. (2005)). Su@r@alpad plastic deformation,
as schematically denoted in Fig. 3.9, is generated because the force pliasl appetitively on the
PDMS sample—At each push-in rate, the push-in/retraction operationepaated by 10 times, and
the period is much shorter than the relaxation time of PDMS. Note that the zmtglastic deforma-
tion depends on the kinetic energy applied to the PDMS sample during theiopdk-J. Butt. et al.
(2005)). Since the same force profile is applied during a longer time intan@lv push-in rate than at
high push-in rate, as a result, a larger amount of kinetic energy (applted DMS), thereby a larger

zero-load plastic deformation are generated at low push-in rate thanhapiédp-in rate. This is veri-
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fied by our experimental results. As shown in Fig. 3.10, the zero-loatiptieformation decreased as
the push-in rate increased. Therefore, by using the proposed Eh@itgie, force-curves of both hard
and soft materials can be measured in a broad spectrum of push-inr(egtcéaotion) rates, spanning

two-order difference.

Finally, the elastic modulus of the PDMS sample for the 12 different pushtés s@ere obtained, as
plotted in Fig. 3.11. The variation of initial tip radius from 30nm to 70nm will eaaschange of

+29.1% to—15.5% in the computed modulus values.
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Figure 3.8 The force curve (blue-dotted) plotted as the tip indentation vs. the
force applied for the push-in rate of (a) Jum/s and (b) 565.4m/s,
along with comparison to the curve-fitting (red-line) obtained by using
the Hertzian model, where the difference between the experimental
and the fitted curves at the beginning portion represents the zero-load
plastic deformation (H.-J. Butt. et al. (2005)).

3.3.5 DMA result

The viscoelastic properties of PDMS in bulk were characterized by DMAsareanent (TA instru-
ment, Q800). The storage modulug’), loss modulusE”), and tand as a function of temperature
(—133~ 60°C) were obtained from a 202 x 7mn? sample under the tension mode at a frequency of

1 Hz and a heating rate of&/min.
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Figure 3.9 The schematic drawing to show the zero-load plastic deformation du
ing the force-curve measurement.

3.3.6 Discussion

In case of Si, which is an elastic solid, the stress is always in phase with tejrthe phase
angle between stress and stradn= 0°). In contrast, the stress of the viscoelastic material, PDMS to
the applied strain (i.e., the push-in force applied by the AFM tip in the presady)sis out of phase
with the strain, in which 8< d < 90°. When the push-in rate was low (e.g., ui/s), the PDMS
molecules were able to move (i.e., deform, and subsequently recover todbéibréum conforma-
tion) in response to the applied deformation. So the modjsdompares well to that obtained in
the DMA measurement. As shown in Fig. 3.11, the value of the PDMS elastic nsoalulow push-in
rate of 1.7um/s (equivalent to a push-in/retraction frequency of 2.53 Hz), estimatediby the AFM
experimental data, is at2 MPa, while the elastic modulus value obtained from the DMA measurement
at the frequency of 1 Hz and the same room temperature (£3.5 at 1.56 MPa, as pointed out in
Fig. 3.12. However, as the rate of external deformation increased kg timan 2 orders of magnitude
(e.g., 565.4u m/s), the PDMS molecules cannot move fast enough to follow the imposed aixtern
formation, thereby behaving like a stiff material. This led to a dramatic incredbe ielastic modulus

E’, as evidenced in Fig. 3.11.

Time Temperature Superposition (TTS) principle is widely applied to charaeteraterial response
of viscoelastic polymeric materials (J. D. Ferry. et al. (1980)). AccgdnTTS, material response
at low (high) temperature is similar to response at high (low) frequencyrigadAt low temperatures

or under high frequency loadings, polymers behave as a stiff or gtadisly While at high tempera-
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Figure 3.10 The zero load plastic deformation depghobtained at different
push-in rates.

tures or low frequency loading, polymer molecules are mobile and as a l@selt modulus values
are measured. Following TTS principle, PDMS response determined usiod figh-speed force dis-
placement curves (Fig. 3.11) can be qualitatively compared to storage rodehsured using DMA
(Fig. 3.12). As the loading rate is increased, PDMS modulus increagsesatoout 2 MPa to about 6
MPa and similar magnitude of change in storage modulus is observed as theaemgis decreased
from room temperature. Note that results of the DMA test are used to dératenghe viscoelastic
nature of PDMS sample investigated in the study. Comparison of the fordaabspent and DMA
test results indicates that the current control technique may be utilized taraghe time dependent
modulus. Magnitude of the modulus determined from force displacement redhiois higher than
that measured using DMA because of the limitations in analytical model of ddmaeeen tip and
sample. In previous work VanLandingham and co-workers (C. Whital. e(2005)) have noted that
mechanics of contact between indenting tip and sample surface is nattbooaptured by analytical

Hertzian models. This limitation of contact mechanics models leads to consistretstmation of
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Figure 3.11 The elastic modulus of PDMS at different push-in rates, estimgte
using the Hertzian model with the AFM experimental data, where the
triangles denote the values obtained by using the nominal AFM tip
radius of 50 nm. The variation of the tip radius from 30nm to 70nm
will cause a change 6£29.1% to —15.5% in the computed modulus
values.

modulus measured from indentation experiments in comparison to bulk meastsé@a/Nhite. et al.
(2005)). Since the focus of this paper is on development and demoribtatierative control algorithm
for high-speed force measurement, a simple analytical (Hertzian) modeitikaed to extract the mod-
ulus. Therefore, the correlation between modulus determined from hagudprce-displacement and

DMA clearly indicates that our technique may be used for characterizatimaterial time dependent

response.
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Figure 3.12 The storage modulUs’), loss modulusg”), and tard of PDMS as
a function of temperature measured by DMA.

3.4 Conclusions

In this chapter, we presented a novel enhanced inversion-baset/é&aentrol (EIIC) technique
to achieve high-speed force-distance measurement using AFM, and inmpehieto measure the
time-dependent elastic modulus of poly(dimethylsiloxane) (PDMS). Therempetal results showed
that the proposed EIIC technique can effectively remove the effettieoAFM dynamics (from the
piezotube actuator to the cantilever along with the mechanical connection ied®tauring high-
speed force-curve measurements. A push-in or retraction rate assh&gam/sec (over 80 times
faster) were achieved with no loss of spatial resolution. The time-depealdstic-modulus of PDMS
was obtained by measuring the force-curve measurements with diffarshtip rates, and utilizing
the measurements on a hard (silicon) sample and on the PDMS in the Hertztantcondel. The
obtained values of the elastic modulus were compared with the results fromMiAet&st of the
PDMS. As we expected, the elastic (storage) modulus value obtained feo@MIA test compared

well with our experimental result at low push-in ratel(.7 um/s), and the measured elastic modulus
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increased as the push-in rate increased, signifying that a faster axtieformation rate transitions
the viscoelastic response of PDMS from that of a rubbery material towvaldssy one. Compared
with other approaches, the proposed EIIC technique has advantageting being readily applied to
current AFM system with minor hardware modification/updates, robustsi@syoperation variations
(because such variations can be compensated for via iterations), ssidlp@achieving measurement
precision beyond the signal noise limit (the signal noise effect can bédisagily reduced using av-
eraging methods, as the control input is computed off-line iteratively, Jer&fhre, we expect that
the proposed high-speed force-curve measurement techniques caadily implemented in various

material characterization/synthesis applications.
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CHAPTER 4. Model-less Inversion-based Iterative Control for Qutput Tracking:

Piezoelectric Actuator Example

A paper A paper submitted to the ASME Journal of Dynamic Systems, Measutend Control

Abstract

In this chapter, we propose a model-less inversion-based iterativeoc¢kitiiC) approach for
high-speed output tracking in repetitive applications such as the latemnahisg during atomic force
microscope (AFM) imaging. The MIIC algorithm extends the inversion-thatszative control (11C)
technique and the enhanced inversion-based iterative control (EtBhique. It has been demon-
strated that these two recently-developed techniques can effectivepetsate for the linear dynamics
as well as the nonlinear hysteresis effects of systems such as the peeaotubtor used for position-
ing on AFM. The IIC algorithm, however, can be sensitive to the dynamicentainty of the system
dynamics. The development of the EIIC algorithm removes such dynamatainty-caused con-
straints, by decoupling the iteration of the input amplitude from the iteration oiningt phase (in
frequency domain). However, the implementation of these two techniqueseganodeling the sys-
tem dynamics, which can be time consuming and prone to errors. Thus, thecamdiibution of
this chapter is the development of the MIIC algorithm to eliminate the modeling modake further
enhancing the output tracking performance. The disturbance and/sumeeznt noise effect is ex-
plicitly considered in the convergence analysis of the MIIC algorithm. Itdéswshthat convergence can
be reached in one iteration step if the noise/disturbance effect is negli@itiierwise, the input error
is quantified by the disturbance/noise to signal ratio (NSR, relative to theedegjectory); and the

upper bound of the NSR for guaranteeing the MIIC algorithm to improveitngds also quantified.
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The MIIC is applied to a piezotube scanner on an Atomic Force Microseopkexperimental results

are presented to demonstrate the efficacy of the MIIC technique.

4.1 Introduction

In this chapter, we propose a hew model-less inversion-based iteratiic(MIIC) technique for
high-speed precise output tracking. It is noted that precise trackipgraddic trajectories at high-
speed is needed in applications such as the nano-scale imaging/measursngeatomic force micro-
scope (AFM) (R. Wiesendanger. (1994); Kees O. van Werf. et 8094)), the scanning mechanism
on MEMS-based micro-mirrors (F. Filhol. et al. (2005); F. Zimmer. et 208)), the quick-return
mechanisms and cams in manufacturing (R.-F. Fung. et al. (2000)), anththe&acturing process in
rapid prototyping (S. Huang. et al. (2005)). For example, in atomic foriceoscope (AFM) imag-
ing, repetitive precise scanning at high-speed is needed to achievegegd imaging, which not only
improves the throughput, but more importantly, enables the interrogatiomnokoale dynamic pro-
cesses (R. Wiesendanger. (1994); F. Zimmer. et al. (2005)). bdé&as shown that iterative learning
control (ILC) is quite efficient in tracking repetitive trajectories (R. Haita. et al. (1991); K. Krish-
namoorthy. et al. (2004); M. R. Graham. et al. (2006); L. Moore.l.et(2000)). Limits, however,
exist in conventional ILC designs (M. Verwoerda. et al. (2006)xose causal controllers were used
in these designs. As a result, the noncausality (i.e., the “preview” of theefdtesired trajectory as
well as the predicted output of the system) was not exploited to improve thengaparticularly for
nonminimum-phase systems (M. Verwoerda. et al. (2006)). Such a limit iSsevin the 11IC and
the EIIC techniques. Although the IIC and the EIIC techniques utilize theangsality to improve the
tracking precision, as illustrated in (S. Tien. et al. (2005); Y. Wu. et &007)), their performance
depends on the quality of the system dynamics model, whereas modelinggped¢iEne-consuming
and prone to errors. Thus, the main contribution of this paper is the denetdpf the MIIC technique
which eliminates the need for the dynamics model while further enhances titvé tnacking perfor-

mance.

Iterative learning control approach (L. Moore. et al. (2000); Modtelvin. et al. (1993); Jian-Xin
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Xu. etal. (2003)) has been effective in output tracking in repetitiverajions. Compared to feedback
control methods, the ILC approach avoids the potential stability issuegddnysthe high feedback
gain (needed to achieve precise tracking). Instead, a learning machiarirgroduced in the ILC ap-
proach to utilize the repetitive nature of the applications to improve the trackirigrmance (Q. Zou.
etal. (2004); S. Salapaka. et al. (2002)). Moreover, ILC apgr@dso has the advantages such as
being ease to design and implement—as precise model usually is not requit€ddtyorithms. ILC
techniques have been successfully implemented in various applicationtogf. € al. (2001)). The
majority of the ILC algorithms aims at obtaining a stable controller based onx&mgle,H. robust
control theory (Gaspar, P.. et al. (1998)). Such a stable controtleever, limits the ILC method in
exploring the noncausality provided by the knowledge of the entire outpzkingthrough iterations.
Particularly, we note that it has been shown recently (M. Verwoerdal. e€2006)) that a causal I1IC
controller is essentially equivalent to a feedback controller. Thereforestraints exist in the conven-

tional ILC approaches.

Such causality-related constraints in the ILC approaches are removediemblopment of the inversion-
based iterative control approaches (J. Ghosh. etal. (2002);1s.4tial. (2005); Y. Wu. etal. (2007);
K. Kim. et al. (2007)). Particularly, the IIC approach utilizes the inversthe system dynamics a
frequency-domain implementation scheme (S. Tien. et al. (2005); Y. Wal. e2007)). The con-
vergence of the IIC algorithm, however, can be sensitive to the dynarseriaimties of the system,
i.e., the phase uncertainty of the system dynamics must betj@st guarantee the convergence (S.
Tien. et al. (2005)). To improve the robustness of the IIC techniqumsighe phase uncertainty,
the enhanced inversion-based iterative control technique (EIIC)wamosed. In the EIIC method,
the updating of the input magnitude is decoupled from the updating of the pifase (in frequency-
domain). Thereby, the EIIC approach can achieve convergence igea faequency range at a faster
convergence rate. The efficacy of the IIC and the EIIC algorithms &as demonstrated through ex-
periments to achieve high-speed precise scanning (Y. Wu. et al. (2@0id) to compensate-for the
cross-axis coupling-caused vibrations of piezotube actuators (S. diel. (2005)). However, both

the 1IC and the EIIC algorithms require a reasonably-good model of stersydynamics, and the the
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convergence rate (i.e., the choice of the iterative coefficient) is deterrhingee model accuracy. We
note that system dynamics modeling is time consuming and prone to errors, anadyi@ppdications,

the measured dynamics response depends on the operation conditiancamiso vary significantly
from time to time (for example, the positioning dynamics on AFM system). Thexgetbere exists

need to overcome the modeling-related constraints in the ILC approaches.

The main contribution of the chapter is the development of the MIIC technifjue.MIIC algorithm
does not require the modeling of the system dynamics, therefore, thieaiotssrelated to the modeling
process, and the requirement for a good dynamics model are remasgéehd, in the MIIC algorithm,
the input-output relation of the system is iteratively updated by using the meshisput-output signals.
We note that a similar idea was utilized before in the adaptive ILC appro&Ehamscois Padieu. et al.
(1990); K. L. Moor. et al. (1992)). Fundamental differences, &osv, exist between the proposed
MIIC technique and the adaptive ILC approaches in that how such oumfidating is utilized: In the
adaptive ILC approaches (Francois Padieu. etal. (1990); K. lorMai al. (1992)), a dynamics model
is used and the measured input-output signals are used to update the moeledas\ih the proposed
method, no dynamics model is needed, and the measured input-output signaked to update the
iterative control input directly. Moreover, we explicitly address the distnde/noise effects—which
was not considered in (Francois Padieu. et al. (1990); K. L. Mobal.e (1992))—in the conver-
gence analysis of the proposed MIIC algorithm. We show that the coeweegof the MIIC algorithm
can be achieved in one iteration when the noise/disturbance effect isibkgli@r, the input error is
guantified by the disturbance/noise to signal ratio (NSR, relative to theedesajectory) when the
disturbance and/or noise effects are considered. The size of N&kefiHIC algorithm to be effective
(i.e., the tracking error is smaller when using the MIIC algorithm than that wbénsing it) is further
qguantified. We illustrate the proposed MIIC technique by implementing it in @xeeits to the output
tracking of a piezotube actuator on an AFM system. Two types of trajectangessed to evaluate the
tracking performance with comparison to the IIC algorithm: triangular trajes@nd band-limited
white-noise type of trajectories. Experimental results show that prectpetduacking is achieved in

both cases, whereas the 11C algorithm failed to track the complicated banddiwtiiee-noise trajecto-
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ries. Moreover, the MIIC algorithm is also implemented to compensate-fonyteresis effect when
tracking large-range triangle trajectory at high-speed. Experimerdaltseshow that precise output

tracking can also be achieved.

The rest of the paper is organized as follows. The MIIC algorithm andoitsargence analysis are
presented in Section Il, followed by the experimental implementation of theopeaptechnique and

discussion in Section Ill. Our conclusions are given in section IV.

4.2 Model-less Inversion-based Iterative Control

We start with briefly reviewing the inversion-based iterative control (En.Tet al. (2005); Q.
Zou. et al. (2005)) and the enhanced inversion-based iterativeotaigorithm. These two control

algorithms form the base for the proposed MIIC algorithm.

4.2.1 Inversion-based lterative Control (IIC) and Enhanced Irversion-based Iterative control

(EIIC)

IIC Algorithm (S. Tien. et al. (2005)) Recently, an inversion-based iterative control technique (S.
Tien. etal. (2005); Y. Wu. et al. (2007)) was developed to achieva-bjped output tracking of
periodic trajectories. For a stable, single input single output (SISO) ltimearinvariant (LTI) system,

the IIC control law can be described in the frequency-domain as

Ww(jw) = Gm(jw) 'ya(jw), k=0 4.1)
u(jw) = Uc1(jo)+p(w)Gm(jw) tya(jw) —Yi1(jw)] k=1

where ‘f(jw)’ denotes the Fourier transform of the signal(t)’, ‘yq(-)’ denotes the desired output
trajectory, yx(-)’ denotes the output obtained by applying the inpyt )’ to the system during the"
iteration, p(w) > 0O is the iterative coefficient, an@ny(jw) denotes the frequency response model of
the system. It has been shown that the above IIC algorithm can lead totexadng of the desired

trajectory at frequencw, provided that the modeling error is not too large and the iterative coefficie
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is appropriately chosen (S. Tien. etal. (2005)). More specificallycdneergence of the IIC algorithm

is given in the following lemma 2.

Lemma 2 (S. Tien. et al. (2005)) At any given frequeniaylet both the actual dynamics of a SISO
LTI system Gjw) and its model G(jw) be stable and hyperbolic (i.e., both have no zeros on the j

axis), and the dynamics uncertaiis(jw) be described as

G(jw) _ [G(jw)[ecle)

Gm(jw)  |Gm(jw)|el<Cnli®w)

£ |AG(w)| et eI, (4.2)

AG(jw) =

then the I1C control law converges at frequernoyo the desired inputd(jw) 2 G(jw) tyqy(jw), i.e.,
liMy_e Uk(jw) = ug(jw), if and only if,

1) the iterative coefficient(w) € R is chosen as

0 < p(w) < psup(w) = ZCjSA(é(AJ(i)()J‘w)) (4.3)

2) the magnitude of the phase variation is less thg@, i.e.,

/AG(jw)| < g (4.4)

The 1IC algorithm has been successfully implemented in applications sucé egrtipensation for the
cross-axis coupling effects of piezoelectric tube actuator (S. Tien. €2805)), and the high-speed
precise tracking of driving wave forms for inertial reaction devicesZQu. et al. (2005)). Moreover,
it has also been shown recently that the 1IC method can compensate fathbdtlysteresis and the
vibrational dynamics effects of piezotube actuators (Y. Wu. et al. (B00he convergence of the
[IC algorithm (Eq. (4.1)), however, can be sensitive to phase unogets of the system dynamics,
particularly at frequencies where the phase uncertainty is clogg2ofor example, near the resonant
peaks of the system dynamics. On the contrary, we note that regardéephdbke relation between

the desired output and the current output, if the output amplitude in cuteeation is larger than the
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desired output amplitude at frequenay then the input amplitude at that frequency should become
smaller in the next iteration than that in current iteration, and vise versa.evwsuch an updating
mechanism is not realized in the IIC algorithm. To that end, the following Elg@rahm has been

proposed.

EIIC Algorithm The EIIC control law is also given in the frequency-domain as follows,

Uo (j)) = Gm(jw) *ya(jw) k=0
u(jw)l = Juc1(jo)|+p(w) |Gy (jw)| [IVa(j@)| = Vk-1(jw)l] k>1
Zu(jw) = Zuca(jw)+ (£(Ya(jw) - Lyk-a(jw))

As shown in Eq. (4.5), the updating of the input magnitude is decoupledtfrempdating of the phase
angle in the EIIC algorithm. As a result, the EIIC algorithm can converge ingaidrequency range

and at a faster convergence rate than IIC algorithm.

Lemma 3 For any given frequency value, let G(jw), Gm(jw) andAG( jw) be defined asin Lemma 2,

respectively. Then the input of the EIIC law converges to the desiredugpjm), i.e.,
lim Ju(jw)| = [ua(jeo)l, and Jim Zu(jeo) = Zug(jw).

if and only if the iterative coefficiemt(w) is chosen as

a 2

0<p(w) < Psup(w) 8G(jw)|

(4.6)

The efficacy of the EIIC algorithm has been illustrated through expetsnecuding the measurement
of adhesion force measurement at high-speed using AFM , and tteurea@ent of the time-dependent

elastic modulus of a polymer material (Polydimethylsiloxane, PDMS) (Kif8. et al. (2007)).

Remark 4 The EIIC law extends the IIC control law (4.1) in two aspects (S. Tien.l. et(2005)):

1). The phase condition needed for the convergence of the IIC law({&4)) is removed in the EIIC



67

law, thereby the convergence frequency range of the EIIC law is laaged 2). The range of the it-
erative coefficienp(w) to guarantee the convergence also becomes larger — for any nonzase p
uncertainty, the upper bound pf w) for the convergence of the EIIC law (Eqg. (4.6)) is larger than that

for the IIC law (Eq. (4.1)), i.e.2/|AG(jw)| > 2co§AG(jw))/ |AG(jw)|.

Remark 5 The frequency-domain implementation of the 1IC and the EIIC algorithmgighes a nat-
ural and straightforward avenue to explore the noncausality in the iteratorerol, particularly for

non-minimum-phase systems. This is in contrast to the time-domain | taGsalgorithms (Peter B.
Goldsmith. et al. (2002)). Recently it is shown (Kelvin L. Moor. et al. 999M. Verwoerda. et
al. (2006)) that the advantages of the iterative control approach mainlinliae utilization of the
noncausality gained from the repetitive nature in applications, and a cau€ahklgorithm is equiva-
lent to a feedback controller. Therefore, the 1IC algorithm and the Ell@atgm are very efficient in
achieving precise positioning control at high-speed (S. Tien. et alOFR0r. Wu. et al. (2007); K.
Kim. etal. (2007)).

The implementation of the IIC and the EIIC algorithms, however, requireasnably-good model of
the system dynamics, while the modeling process can be time consuming aadgeorors. Thus, the
success of the IIC and EIIC algorithms and the challenges involved in thenggs modeling motivate

the development of the following model-less inversion-based iterativeatontr

4.2.2 Model-less Inversion-based Iterative Control (MIIC)

The proposed MIIC algorithm is given below,

w(jw) = ayy(jw), k=0,
U1 (J@)y (o), wheny(jw) #0 andyg(jw)#0 k>1
uljo) = Vet Ya(]w) Y(jw) # Va(jw) # 2L un
0 otherwise

wherea # 0 is a pre-chosen constant (e g.can be chosen as the estimated DC-Gain of the system).
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Remark 6 Comparing Eq. (4.5) with Eq. (4.7), we see that the EIIC law is transfortoede MIIC
law by replacing the inverse dynamics modef'@ w) with u_1(jw) /yk_1(jw) and settingo(w) = 1
in Eq. (4.5). Thus, essentially the proposed MIIC technique introducé®rative adaptation mecha-

nism into the inversion-based iterative control approach.

Next, we discuss the convergence of the MIIC algorithm upon the addititistarbance and/or mea-

surement noise.

Theorem 2 Let G(jw) be a stable SISO LTI system, then at frequency

1. if the disturbance (and/or noise) effects are negligible, then the MlIGralgn converges after

one iteration, i.e.,

W (jw) = Ug(jw), (4.8)
2. if the system output yw) is effected by the disturbance and/or the measurement noise as
y(jw) =y (jw) +(jw), (4.9)

where y(jw) denotes the linear part of the system response to the ingat)ui.e. y(jw) =
G(jw)u(jw), and y(jw) denotes the output component caused by the disturbances and/or mea-
surement noise. Then at th® kteration, the ratio of the iterative control input to the desired
input is given by:

U(jw) G(jw)

(o) 60 A158(w) TAgw/a * | <l (4.10)

where R(jw) denotes the product of the noise/disturbance-to-signal (NSR) ragdetiye to

the desired outputqyf jw)) at frequencyw from all the past iterations, andi§ w) denotes the
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summation of the produckf w),

k—1 -
: . Yin(jw)
Adiw) = - Ya(jw)’
_ 0, for k=1
S(jw) =

SNl s, for k=2

Proof We start with showing Result 1). Equation (4.8) follows directly by substitutiegoutput of

the system after the initial input (k=0)e(jw) = G(jw)uo( jw), back into the MIIC law

wiio) = 2 y(io @.11)
2

Uo(' .
= Glw)wlj@) )Yd(Jw)

J
G(jw)u(jw
= W(jw).

To show Result 2), rewrite the iterative control input at kHeiteration by combining Eq. (4.7) with

Eq. (4.9)
i) — U1 (jw)ya(jw)
e = G(jw)uk-1(jw) +Yk-1n(jw)
_ G(jw)uy(jw)
- G(jw)+ ykfl,n(jw)/kal(jw) ’ (4.12)
which yields
U(jw) _ G(jw) 1o

U(jw) G(jw)+ Yk-1n(jw)/Uca(jw)

Next, we proceed by using the induction method. First, Formula (4.10) hotte &rst iteration,

u(jw) G(jw)
uw(jw)  G(jw)+ Yon(jw)/uo(jw) (by Eq. (4.13))
G(jw)

= 1@+ Yon(jw)/aYa(i®) (by the choice of up(jw) = ayqy(jw))
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Secondly, we assume that Eq. (4.10) holds akthéeration, then at th&+ 1" iteration,

Uera(jw) Gliw)
Wi®) ~ G(jw) + ke
_ 6o
G(jw) + ol - [G(jw) (1+S(jw)) + Al jw)/a]
(by the assumption that Eq. (4.10) holds at kieteration)
= a1 Sl RIOTYr (4.14)
G(jw) +G(jw) ¥ J(1+S(jw) + i (i) /a
(by yu(jw) = G(jw)ua(jw))
Notice that
Ykn(jw) Yin(i0) | Yin(j0) " L Yicin(jw)
1 = — — —
yd<1w)( +5d]w) Ya(jw)  ya(jw) &) ya(jw)
 Ykn(jw) YKn jw) Yir1-in(jw)
T (o) va(io) erl ya(jw)
 Ykn(jw) Yir1-in(jw)
-~ v(jw +er| ya(jw)
ko]
_ Zl—l k+1|n]w, (for kZZ)
= S(jw) (4.15)
and
Yin(jw) _ /. Yin(jw) o Yin(jw)
yai F0 = i) [ yeliw)
K Yi,n(jw)
b Va(jw)
- Realio) (@16

Substituting the above Egs. (4.15, 4.16) back into Eq. (4.14) shows th{d.E@) holds at th¢k + 1)

iteration, thereby, holds for ai > 1—by induction. This completes the proof.

The next theorem finds the bound of the MIIC input relative to the desmedt, and quantifies the

upper-bound of the NSR at a given frequency for guaranteeing th@uament of the output tracking

by using the MIIC algorithm, i.e., below which the output tracking at that feeqy will be better by

using the MIIC algorithm than not tracking that frequency component.
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Theorem 3 Let assumptions in Theorem 2 be satisfied,

1. assume that during each iteration, the NSR is bounded above by a @os&s-than-half con-

stante(w), i.e.,
yk,n(jw)
Ya(jw)

then the ratio of the iterative input to the desired input is bounded in magnitudephase,

' <eglw)<1/2, Vk (4.17)

respectively, as

PR ) 1-&(w) o
Ruin(@) 21— (@) < limyq [0 < == 2e(cy) = Fneo(©) (4.18)
; Uk(Jw) () N
llmo / <ud(1w))’ < sin (1 g(w)) Bmax(w), (4.19)
and the relative tracking error is bounded as
: yk(jw)—yd(Jw)‘ 2e(w)(1—¢(w))
lim - < : 4.20
T () 1-2¢(w) (4.20)

2. The use of the MIIC algorithm will improve the tracking at frequeacy.e.,

| yk(Jw)fyd(Jw)'<1’ @.21)
ko Ya(jw)
if the NSR is bounded above by @ ~ 0.3, i.e,
Ykn(jw)' V2
— <glw)<l——, VKk 4.22
ya(jw) |~ (@) 2 4.22)

Proof To show Result 1), note that if the NSR is less than 1, then the Bfjw)/a in Eq. (4.13)

converges to zero,

Ekflﬁn(jw)
a iD) Ya(jw)
=0 (4.23)

lim A(jw)/al =

k— 00
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Therefore, the limit of the ratio of the iterative input to the desired input in(Ed.4) is simplified as:

Ui 0) o Ui®) G(jw)
W(jo) aug(j©) kw0 1+ S(w) +Rdw)/a
R 1

= i - . 4.24
kmo1+3<(1w) 1+Ss(jw) (4.24)
Since the termS. (jw)| is bounded as
k 1]
So)] = Jim|y [
k—eo Ya(jw)
k-1 j T
< lim 73"‘*"”.(””)
koo & 1] Va(jw)
< Y e w)
2
__&w)
= 1—£(w)<1 (for O0<e(w) <1/2), (4.25)

Equation (4.18) follows directly by substituting Eq. (4.25) back into Eq. (4a24dl applying the triangle

inequality:
um(jw)‘ - 1
Ug (] w) 1+ Ss(jw)l
B
- 1+1f(£(?(1))
= 1_8(0‘))7
and
um(jw)‘ - 1 .
. ——— (as |S(jw)| <1
Ug (jw) 1—!S»(Jw)!( Sl w)] <1)
< 1
N 1_15(:()()0)
 l-¢g(w)
= m<oo (as &g(w)<1/2) (4.26)

To quantify the phase variation of the iterative control input relative toéis&ed control input (Eq. (4.19)),

we note that by using Eq. (4.24) and writifg(jw) asS.(jw) = |S»(jw)|el“S(i®)

Uo(jw) 1 14 [Se(jw)[cosLSs(jw) — [Se(jw)|SiNLSs(jw) j

Ua(j®) 14 S (jo)lel®e) V(14180(10) | €08280(0))* + (S (1) SN S ()2
(4.27)
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Thus, the bound of the phase erm{ﬂ% can be obtained by examining the sine of the phase variation

and its derivative (with respect t0S,) as below

sin<4u°°(jw)> _ —|Se|SiNLSe (4.28)

Ua(jeo) \/(1+\So\coséso)2+(|3°|sin430)2
i Uso (j )
dfsin(<5H05)] _ —Isul(cos/S +[S.) (1+[Su[cos/S,) 429
dZS, (14 2|S0|€0S£S0 + |S6?) '

Since|S.(jw)| < 1 (Eq. (4.25)), the above Egs. (4.28, 4.29) imply that the bound of theepéaor

43‘:83)) is obtained when

COSLS, = —|Sy| (4.30)

Thus Eg. (4.19) follows directly by combining the above Egs. (4.28, 4.30) Bg. (4.25). Moreover,

we note that the limit of the relative tracking error yields

im yk(jw)—yd(jw)‘ — im Yk,l(jw)+YK,n(jw)_Yd(jw)‘
koo Ya(jw) ke Ya(jw)
< im|GU®) Uk(iw)—ud(iw)‘ yk,n(jw)'
T koo |G(jw) Ug (jw) Ya(jw)
. uk(jw)
< Ilirlo ud(jw)—1‘+s(w) (4.31)
So(jw)
1+S,.(jw)‘+£(a))' (by Eq. (4.24))

Thus Eq. (4.20) follows directly by substituting Eq. (4.25) into the abovestiure

|Ss(jw)
1-[Ss(jw)
&(w)
1-¢(w)
1- 15(!2)3»
2e(w)(1-e(w))

= 1 26(@) <o (as &£(w)<1/2) (4.32)

te(w) (as [Ss(jw)<1)

IN

+&(w)

This completes the proof of Result 1). To show Result 2, we note that(&£@4., 4.31) imply that the

bound
26 (w)(1— £(w))

1
1-2¢(w) <
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will guarantee that the use of the MIIC law at frequenrewvill improve the output tracking. Note the
above Eq. is equivalent to

2e?(w) —4e(w)+1>0 (4.33)

Thus the bound of the NSR (4.22) follows by solving the above (4.33 &ong with Eq. (4.17). This

completes the proof. |

Remark 7 Geometry interpretation of Theorem 3  First note that geometrically, Equation (4.24)
implies that the vector of the input ratio. (j ) /ug( jw), falls into the neighborhood of poirt, 0)

with a radius of §(jw), as shown by the grey area in Fig. 4.1 (a). Thus, it is evident from Fig. 4.1
(a) that the (lower and upper) magnitude bounds of the input ratjg(Bnd Rnax in Eq. (4.18)) are
attained when the two vector$,and S..(jw), are aligned with each other while the sizeS(jw)
reaches its upper bound (Eq. (4.25)), as marked as points A and B .id Hida), respectively. More-
over, the phase bound of the input ratiéytx in Eq. (4.19)), as marked &in Fig. 4.1 (a), is attained
when these two vectors are perpendicular to each other and the \@;(tg’)w) is at its upper bound,
which results in Eq. (4.19) directly. Secondly, a simple algebraic derivatbombining Eqgs. (4.24, 4.21)

leads to the following condition to guarantee the tracking error is less than &nhe MIIC law,

TS0 2 55

This implies that the vectofi, + S.(jw), must fall outside the circle centered at the origin with a

radius of1/(2— €), which is equivalent to requiring that the size of the ve&ofjw) must be below

1-1/(2—¢€). Combining with Eg. (4.25), this amounts to (see Fig. 4.1 (b))

which is equivalent to Eq. (4.33).

Remark 8 Theorem 3 implies that precise tracking at frequengyan be achieved provided that
the NSR at that frequency is small, which agrees with our intuition. AdditionBflgprem 3 gives

a guideline to determine the frequency range over which the MIIC law caappéed in practices



Figure 4.1 Geometric interpretation of Theorem 2.

(Eq. (4.22)). Note that the NSR at frequeroycan be experimentally estimated, for example, by
comparing the power spectrum of the measurement noise or distweiségital with that of the desired

output trajectory.

4.3 Experimental Example: Piezotube Actuator Output Tracking

In this section, we illustrate the MIIC technique by implementing it to the output itngokf a
piezotube actuator on an AFM system. First, a triangular trajectory wasasstbeé desired trajectory,
then secondly, band-limited white noise type of trajectories were used assireditrajectories to
further evaluate the performance of the MIIC algorithm. Finally, we alsdieghphe MIIC algorithm
for tracking of large-range trajectories when the hysteresis effeztrbe pronounced. We start with

describing the experimental system.

4.3.1 Experimental setup

The experimental system is schematically shown in Fig. 4.2 for the controéof-#xis piezotube
actuator of an AFM system (Dimension 3100, Veeco Inc.). All the contpaltisito the piezotube actu-
ator were generated by using MATLAB-xPC-target package, andtesugh a data acquisition card
(DAQ) to drive the piezotube actuator via an amplifier—The AFM-controli heen customized so

that the PID control circuit of the AFM-controller was bypassed wherettiernal control input was
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applied. The sampling rate was chosen at 50 KHz when tracking triangajlectories, and reduced to

20 KHz when tracking the band-limited white noise type of trajectories due to theonydimit.

Piezo Input Piezo Input u(t)
( (High-voltage) ( (Low-voltage) et
High-Voltage ==
) Amplifier MATLAB,
( XPC-Target )
Cantilever Deflection T

Figure 4.2 Schematic diagram of the experiment setup to implement the proposed

MIIC algorithm.
(a1)
Frequency Response 1.05KHz (a2)
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p(w) selected
20+ 4r
— = Py p(®)
) o 3H S
s Of = — — —max(AG(jw)
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Figure 4.3 The experimentally frequency responses of the x-axis péetie ac-
tuator on the AFM, measured with three different input amplitude lev-
els (20 mv,30 mv, and 40 mv), with comparison to the averaged re-
sponse.

4.3.2 Implementation and Tracking Results

Output Tracking of Triangle Trajectory  To illustrate and evaluate the tracking performance of
the proposed MIIC technique in compensating for the dynamics effect§ logystems, the MIIC
algorithm was implemented first to track a triangle trajectory. We note that tridrajéetories are

commonly used in many scanning operations such as the AFM imaging. Thecdis@at range was
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Figure 4.4 (top) The measured magnitude variation of the piezo actuatdEqsee
(4.6)), the upper bound of the iterative coefficignt(w), and the
iterative coefficiento(w) used in the experiments; and (bottom) the
measured phase variation.

chosen small (Bm, ~ 5% of the total displacement range of the piezotube actuator), therebifabe e
of the nonlinear hysteresis became small and negligible (as the hystefesisiefange-dependent)
(S. Tien. et al. (2005)). Three different rates (2 Hz, 100 Hz arf@®l i39) of the triangle trajectory
were chosen—which correspond to the tracking in the low, medium and pegdganges (relative to
the bandwidth of the piezotube actuator), respectively. The trackindisese shown in Fig. 4.5, with
comparison to those obtained by using the IIC technique. To implement thefiotlaw, we first
estimated the dynamics uncertainty of the piezotube actuator by measuringdberfcy responses
with three different input levels (20 mv, 30 mv, and 40 mv) with a dynamic signalyzer (DSA,
Hewlett Packard 356653A), as shown in Fig. 4.3. Then the iterativdicieet p(w) was determined
according to Eqg. (4.3). Moreover, the experimental tracking resultalsoecompared quantitatively in
Table. 4.1 in terms of the relative maximum erEax%) and the relative root mean square (RMS)

error Eyms(%), where
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o o 1960) =yOle o o 16O =yOllz
Frad¥) = e <108 EmlO =Ty, )08 (43

In the experiments, the iterations of the MIIC law (or the IIC law) were agadeen neither one of
the above two errorgmax(%) nor Ems(%), can be further reduced. The iterative input for tracking
multiple (over 10) periods of the triangle trajectory was sent to the systentharayeraged results are
shown in Table. 4.1 and Fig. 4.5 (The un-averaged results are compitinettie averaged ones later in

Fig. 4.6). Also, the numbers of iterations used in the experiments are liste@lm 4.

Output Tracking of a Band-limited White-Noise Type of Trajectory = We note that the triangle
trajectory only consists of a few significant frequency components (i.dtipheuinteger times of the
fundamental frequency of the triangle signal), whereas a band-limited-wbise type of trajectory
has much richer frequency components—up to the cut-off frequemgyretore, it is more challenging

to track band-limited white noise type of trajectories than to track the triangletvags: Specifically,

the band-limited white-noise of one second duration were generated lyyM&RLAB, and then du-
plicated for multiple copies to form the desired trajectory. Three differenoff frequencies, 400 Hz,
800 Hz, and 1050 Hz, where chosen in the experiments, and the displaaamge of the desired tra-
jectory was chosen aroundslum. For comparison, the IIC algorithm was also implemented to track
the three chosen white-noise type of trajectories. The obtained outpkihgaesults are compared in

Figs. 4.7, 4.8, and 4.9, and Table 4.2.

Output Tracking of Large-range Triangle Trajectory  The proposed MIIC technigue was also ap-
plied to track large-range triangle trajectories to evaluate its efficacy in awsapeg for the nonlinear
hysteresis effect. To demonstrate the tracking error caused by thedsystand vibration dynamics
effects, the DC gain method was applied in the experiments, where the inputhigined by simply
scaling the desired output with the DC gain of the system, i.e., the DC-Gain metiesdndt com-
pensate for the hysteresis and the vibrational dynamics effects. It id tiwtethe hysteresis effect of
piezotube actuators is significant as the displacement range become¥lafge et al. (2007)). The

triangle trajectories with the displacement range gfis0vas chosen. Such a displacement range is
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over 60% of the full displacement range of the piezotube actuator, andytteresis effect became
pronounced in the output tracking. The tracking results are shown iMtHi§.and Table. 4.3 for the

same three triangle rates (2 Hz, 100 Hz and 300 Hz) as in small-range gackin

4.3.3 Discussion of the Experiment Results

Triangle trajectory tracking  The tracking results in Table. 4.1 show that by using the proposed
MIIC algorithm, precise output tracking can be achieved. For the triangjectories at 2 Hz and
100 Hz, the tracking errors obtained by using the MIIC algorithm are simildraéerror when using
the 11IC method (see Fig. 4.5). However, only two iterations were needethdoMIIC law to reach
convergence, compared to 3 to 4 iterations needed for the IIC law. Asidingle rate increased to
300 Hz, the tracking error obtained by using the MIIC algorithm was 7 timedentlaan the error by
using the IIC algorithm (see Table 4.1). Note the frequency range to imptethmreMIIC algorithm
(or the 1IC algorithm) is a design parameter. The frequency range vesentas 2.5 KHz and 1 KHz
for the MIIC algorithm and the IIC algorithm, respectively, to optimize the tiragkesults. Particu-
larly, we notice that divergence occurred for the 1IC algorithm if thefiency range was chosen larger
than 1.4 KHz. This can be explained by using the frequency responsash Fig. 4.4: large phase
variation exists for frequencies lager than 1 KHz, which becomes largart/?2 around the second
resonant peak at 1.3 KHz. Therefore, by Lemma 2, the output trackihdiverge at those frequen-
cies. On the contrary, the proposed MIIC algorithm is not limited by suckehacertainties, thereby
the tracking performance can be further improved (see Fig. 4.5 (&), (doreover, we compared the
power spectrum (estimated by using MATLAB) of the tracking error with tidhe desired trajectory.
It was found that the maximum power spectrum value of the tracking erretega than @% of that

of the desired trajectory. Thus, the experimental results show the supadking performance of the

MIIC algorithm over the IIC algorithm.

We further evaluated the tracking precision of the proposed MIIC algoriii comparing the av-
eraged tracking result as well as the un-averaged one (picked feomitidle of the multiple periods

output) with the measurement noise. As shown in Fig. 4.6, the size of theanagmd tracking errors
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Table 4.1 Performance comparison of the MIIC algorithm and the IIC algorith
for tracking the triangle trajectory at three different triangle rates, her
Erms(%) andEnax%) are defined in Eq. (4.34), and the iteration num-
bers used are also listed. The displacement rangetis.5

Iter. Erms (%)
No. 2 Hz 100 Hz 300 Hz
MIIC 1[® MIIC Inc MIIC 1[®
1 | 0.6026| 1.3529 | 0.7160| 4.5145| 2.0689| 12.7279
2 | 0.2291] 0.3033 | 0.3477| 3.0220| 1.7508| 12.1486
3 0.2279| 0.2338 | 0.3243| 2.5296| 1.7529| 12.1497
4 | 0.2292| 0.23256| 0.3267| 2.0518| 1.7517| 12.1394
Iter. Emax (%)
No. 2 Hz 100 Hz 300 Hz
MIIC Inc MIIC IHc MIIC IHc
1 | 1.1106| 1.5927 | 1.7450| 4.7731| 5.8387| 17.7013
2 | 0.7296| 0.9274 | 1.5784| 4.9721| 5.4809| 19.7839
3 | 0.7890| 0.9197 | 1.6046| 5.3670| 5.4594| 19.3573
4 | 0.7677| 0.6804 | 1.6598| 2.6577| 5.5369| 19.4687

was close to the noise level for all the three chosen triangle rates (1®BIHA, and 300 Hz, compare
Fig. 4.6 (b, c, d) with (a)), and at low speed (2 Hz), the tracking erras dramatically reduced via
averaging—the 2-norm of the averaged tracking error was over 3 timakes than that of the noise.
Such a dramatic reduction via averaging can be utilized in applications to aghieeasurement preci-
sion beyond the noise limit, for example, in the measurement of material prepertianoscale (H.-J.
Butt. et al. (2005)). Even at higher speed tracking of 100 Hz, significeduction of the tracking

error was still achieved via averaging (see Fig. 4.6 (b1)). We note thatrthr reduction via averaging
became small in higher speed tracking of 300 Hz, due to the effect of shensydynamics beyond the
frequency range over which the MIIC algorithm was applied (at 2.5 KRhgerefore, our experimen-

tal results show that high-speed output-tracking can be achieved lg/tbsiproposed MIIC algorithm.

Tracking of band-limited white-noise trajectories The band-limited white noise trajectory has
much richer frequency components than triangle trajectories, which isre\adeshown by the power

spectrum of the three band-limited white noise trajectories in Fig. 4.9. Ourimgrgal results (Ta-
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ble. 4.2 and Figs. 4.7 and 4.8) demonstrate that by using the MIIC techmicpese output tracking
can still be achieved for such complex trajectories. For band-limited white tr@jectory with cut-off
frequency of 400 Hz, the tracking errors obtained by using the MII@riegie were very small (the
relative RMS error is less than 2 %). Such a tracking precision was mainteweedvhen the cut-off
frequency became much higher (800 Hz and 1.05 KHz). We note that @r twdachieve the same
tracking precision (RMS errdg;ms < 2 %) by using feedback control approaches, the closed-loop sen-
sitivity must be kept below -34 dB (i.e., 0.02) for frequenoy< 1.05 KHz, which, in turn, requires
the closed-loop bandwidth to be much higher than the cut-off frequen&y0df KHz. Such a high
bandwidth is extremely difficult to achieve with feedback control—if not eltilmpossible, as the
cut-off frequency of 1.05 KHz is significantly higher than the bandwidtthefpiezotube actuator, en-
compassing two resonant peaks as well as one "dip” (i.e., highly uradeped zero) of the piezotube
actuator dynamics, as marked out in Fig. 4.3. Note that such a comparisomighlight the efficacy
of the proposed MIIC algorithm in tracking broad-band trajectories ietitige operations, in light of
the Result of Ref. (M. Verwoerda. et al. (2006)) that an equivdksdback controller exists for causal

iterative learning algorithms.

The experimental results also show that the proposed MIIC techniquéustragainst system
dynamics uncertainty, particularly the phase uncertainty. As we can @eeHig. 4.7, divergences
occurred when the 1IC method was used to track such complex broatittagectories. For the band-
limited white-noise trajectory with cut-off frequency of 400 Hz, large tragkénror occurred, which
became much larger than the desired trajectory itself as the cut-off fregustcreased to 800 Hz
and 1.05 KHz. Such sensitivity of the iteration to the phase uncertainty is ezhiovhe MIIC tech-
nique. Therefore, the experimental results show that the proposec dligbrithm is superior to the

IIC method in tracking high-speed complex output trajectories.

Large-range triangle trajectory  The tracking results in Table. 4.3 and Fig. 4.10 show that precise
tracking at large displacement range can also be achieved by usingl@algorithm. As revealed by

the output tracking obtained by using the DC-gain method, the hysteresis leficame pronounced at
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Table 4.2 Tracking performance Comparison of the MIIC with the 1IC algorith
to track a band-limited white noise trajectory with different cut-off fre-
guencies are where “Iter. No.” denotes the number of iterations used in
experiments.

Iter. Erms (%)
No. 400 Hz 800 Hz 1050 Hz
MIIC [e MIIC IIC MIIC IIC
1 | 2.6123| 17.1439| 4.5240| 94.1437 | 4.93406| 962.8028
2 | 1.5548| 63.2610| 1.3014| 350.1737| 1.2710 | Diverge
3 | 1.5060| Diverge | 1.3223| Diverge | 1.1992 | Diverge
4 | 1.7034| Diverge | 1.3355| Diverge | 1.1934 | Diverge
lter. Emax (%)
No. 400 Hz 800 Hz 1050 Hz
MIIC [[e MIIC IIC MIIC IIC
1 | 3.3647| 17.3808| 5.7165| 98.9275| 6.7249 | 1003.9
2 | 1.9774| 61.4206| 4.5881| 563.5381| 3.1347 | Diverge
3 | 2.0713]| Diverge | 4.9661| Diverge | 3.3160 | Diverge
4 | 2.3516| Diverge | 4.9499| Diverge | 3.1175 | Diverge

large displacement range (30n, Fig. 4.10 (a)), which was augmented with the vibrational dynamics
effect at high-speed (100 Hz and 300 Hz), resulting in larger traakirgs, see Fig. 4.10 (b), (c). The
experimental results show that at slow-speed (2 Hz) tracking, the tgaekior obtained by the MIIC
algorithm was small (the relative RMS error and the relative maximum erecated.22 % and 0.37 %,
respectively), and very close to that of tracking small-range trianglectaaje(Compare Table 4.1 with
Table 4.2). Even at much higher speeds (100 Hz and 300 Hz), preatdeénty was still maintained.
For example, the relative RMS error was still only about 4.7 % for trackiegrilingle trajectory of
300 Hz. We note that this error is slightly larger than the error in small-raageitrg. This is mainly
due to the reduction of the frequency range over which the MIIC algoritla® implemented (from
2.5 KHz to 2 KHz)—to prevent the input voltage from saturation. We also ti@ethe dynamics
variations caused by the hysteresis effect became pronounce indangeiracking, thereby more iter-
ations were needed in large-range tracking than in the small-range trgskmable 4.3). Therefore,
the experimental results demonstrate that the MIIC algorithm can be usethpensate for both the

hysteresis and the dynamics effects simultaneously.
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Table 4.3 Tracking performance achieved by using the MIIC algorithm tk tra
a large range triangular trajectory at different speeds. The number of
iterations (Iter. No.) used is also listed.

Iter. Erms (%) Emax (%)

No. 2Hz 100 Hz | 300 Hz 2 Hz 100 Hz 300 Hz
16.2798| 14.9187| 16.7815| 17.8695| 14.48487| 17.4982
5.8267 | 4.4482 | 6.4311 || 6.0470 | 4.8405 8.5115
2.0171| 1.5763 | 4.8690 | 2.0396 | 4.0078 | 11.16333
0.6062 | 0.8372 | 4.7582 || 0.7377 | 1.5715 | 10.4311
0.2236 | 0.6078 | 4.7463 | 0.3760 | 2.4580 | 10.4798

QB WIN|F

4.4 Conclusions

This chapter introduced a model-less inversion-based iterative contrataicking of repetitive
trajectories at high-speed. The convergence of the MIIC algorithnanalyzed for both the case when
the noise/disturbance is negligible and the case when the effect of thebdisternoise is considered.
It was shown that the convergence can be achieved in one iterationtihenise effect is negligible.
When the disturbance/noise effect is considered, the input erroiarafgequency, as measured by the
ratio of the iterative input to the desired input, was quantified in terms of thel#tae/noise to signal
ratio (relative to the desired trajectory). It was shown that the conaeggef the MIIC algorithm can be
guaranteed when the NSR is smaller than one-half, and the MIIC algorithrguzaantee to improve
the tracking if the NSR is less than-11/+/2. The proposed method was applied to the output tracking
of a piezotube actuator on an AFM system. The experimental results deateddtrat the MIIC can
achieve precise output tracking for both high-speed triangle trajectamig®#and-limited white-noise
trajectories with cut-off frequency beyond the bandwidth of the piezoagheator. Moreover, precise
output tracking of large-range triangle trajectories at high-speedlsarba achieved, indicating the
ability of the proposed MIIC technique to compensate for both the hystexredithe dynamic effects

simultaneously.
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CHAPTER 5. High speed force-volume mapping using atomic forcenicroscope.

A paper A paper in proceedings of American Control Conference 200

Abstract

This chapter proposes a control approach based on the notion afrsppsition and iterative
learning control to achieve high-speed force-volume mapping on saapnibe microscope (SPM).
Current force-volume mapping measurement is slow, resulting in large taigoors in the force
mapping when rapid dynamic evolution is involved in the sample. The forcenetnapping speed is
limited by the challenge to overcome the hardware adverse effects excited High-speed mapping,
particularly over a relatively large sample area. The contribution of thideuridche development of
a novel control approach to high-speed force-volume mapping. Tdgoped approach utilizes the
concept of signal decoupling-superimposition and the recently-des@lowdel-less inversion-based
iterative control (MIIC) technique. Experiment on force-curve mappmhg Polydimethylsiloxane
(PDMS) sample is presented to illustrate the proposed approach. Thenssmpial results show that

the mapping speed can be increased by over 20 times.

5.1 Introduction

In this chapter, an approach based on iterative control to achieveshigd force-volume map-
ping on atomic force microscopy (AFM) is proposed. Force-volume mappvhgch is to acquire a
mapping of local material properties at nanoscale over a sample ardsed@mme an important tool in
sciences and engineering fields including biology and materials scietfice\(de Hutter. etal. (2004,

2000); H. Suzuki. et al. (1998)). Current force-volume mapping witlasneement time generally
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over 30 minutes, however, is slow (H. Suzuki. et al. (1998)) and irgllacge temporal errors into the
mapping when the material property to be measured changes rapidly dwimggping. For example,
in the elasticity of collagen sample changes rapidly during the dehydratiaegsqMarshall GW .
et al. (1998)). The force-volume mapping speed is limited by the challengestocame the hard-
ware adverse effects that can be excited during high-speed mapgng mlatively large sample area.
The contribution of this chapter is to propose a high-speed force-volumeintaapproach based on
signal decoupling-superimposition along with the model-less inversiordbsative control (MIIC)
technique. The proposed method is illustrated by implementing it to obtain thedoree mapping
of a Polydimethylsiloxane (PDMS) sample on one scan line. The experimestdls are presented to

show that the mapping speed can be increased by over 20 times.

Various force-volume mapping technigues have been developed (Mnd&tder. et al. (1994);
David R. Baselta. et al. (1994); Koleske, D. D. etal. (1995); B Chppet al. (1997)). However,
current force-volume mapping methods can not achieve the desiredpégu force-volume mapping.
For example, the absolute mode (M. Radmacher. et al. (1994)), whefertieecurve at each sam-
ple point was measured from the same initial position with the same (vertical) ckstandesirable
excessively large load force can be generated at some points antifoucioing the sample at others.
Such issues are avoided in the relative mode (David R. Baselta. et al4){1@®ere the same initial
load force is applied to the probe before measuring the force-cunachtsample point, as well as
when transiting the probe laterally between sample points. However, the dtiflthg probe on the
sample in this mode is not desirable for soft samples. To avoid such a sliding sartiple, the touch
and lift mode (B Cappella. et al. (1997)) has been proposed, whedbdek control has been used
to determine the load force profile during the force-curve measuremdriodift the probe off the
sample afterwards. However, the touch and lift mode is slow in order to awapefor the unknown
sample topography variations. In all these above modes, the measur@eedis further limited be-
cause during the mapping, the cantilever only moves (relative to the sampé&)tetizontally (during
the transition to the next sample point) or vertically (during the force-curvasorement), but not

simultaneously. This horizontal-vertical alternation is avoided by measuradptice curves while
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continuously scanning the sample in the lateral direction (H. Suzuki. et 808fL Although in this
method the probe is lift up after each force curve while the probe is trarisitib@ next sample point,
the lateral scanning speed has to be slow (0.1 Hz in (H. Suzuki. et al8)))®9 avoid lateral sliding
during the force curve. Clearly, there exist a need to develop newdigangor achieving high-speed

force-volume mapping.

Achieving high-speed force-volume mapping is challenging. The challisrtgece-fold: (1) high-
speed force-curve measurement at each sample point, (2) rapid tnan$itie probe from one sample
point to the next while compensating for the sample topography differegiveebn the two points,
with no sliding of the probe on the sample, and (3) seamless integration of ¢lve &lsgo motions.
These challenges are caused by the adverse effects that can be éxditg high-speed force-volume
mapping, including the vibrational dynamics of the piezo actuators (usedsitignothe probe relative
to the sample) along with the cantilever (K. Kim. et al. (2008); D. Abramovitdhal.e (2007); S.
Tien. et al. (2005)), the nonlinear hysteresis effect of the piezo tackugy. Wu. et al. (2007); K. K.
Leang. et al. (2006)), and the system uncertainties (Srinivasa Mp&alaet al. (2005); Ying Wu.
etal. (2007); Georg E. Fantner. et al. (2005)). The vibrationaadyins and the nonlinear hysteresis
effects limit the speed of the force-curve measurement (at one sampltg pparticularly when the
vertical displacement of the force-curve is large (in order to lift up tmepda and in case the required
load force is large). Additionally, during the transition of the probe to coraptnfor the sample to-
pography variation, post transition oscillations can occur (Mark A. leaal. (2003)), particularly at
high-speed. Moreover, the motion of the probe (in the vertical directieafls to switch back and forth
between force-curve measurement (at one sample point) and outpititrabetween current sample
point and the next one). Such a switching at high-speed, can aldbirerge transient oscillatory
response due to the mismatch of the state condition at the end of the foveerte@surement and the
desired initial state for the point-to-point transition (A. Serrani. et al. {200rherefore, there exist a

need to develop new control approach to achieve high-speed folaey® mapping.

The main contribution of the chapter is the development of a novel switchirigmioased force-
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volume mapping mode. The proposed mode consists of stop-and-go switebiimn in lateral scan-
ning, synchronized with the vertical probe motion switching between foucee measurement and
point-to-point output transition. To achieve precision tracking in the laszahning as well as in the
vertical switching motion, we propose to combine the utilization of the notion arsmposition with
the recently-developed MIIC technique . First, the vertical motion of théeie decoupled as the
summation of elements of force-curve measurement at one sample poir¢arahes of output transi-
tion at one sample point. Then secondly, the MIIC technique is implemented fa tieaontrol input
to track the element force-curve, and to achieve the element output-tran(itione point) as well.
Finally, the control is achieved by superimposing these element inputs toggibmpriately. The a
priori sample topography knowledge is utilized in the proposed mode, whithe obtained by using
high-speed AFM imaging technique (Paul K. Hansma. et al. (2006); Ying &/al. (2008)). The
proposed method is illustrated by implementing it in experiments to obtain forceaeatiapping of a
Polydimethylsiloxane (PDMS) sample. The experimental results show thapdieel ®f force-volume
mapping can be achieved over 20 times with large lateral scan ranger{dnd high spatial resolution

(128 number of force curves measured per scan line).

5.2 Iterative control approach to high speed force mapping

We start with describing force-volume mapping method and the related coatj@rements for
high-speed mapping. Then we will introduce the proposed force-volaimense based on switching-
motion. The proposed force-volume scheme is achieved by utilizing thethgdermeloped model-less

inversion based iterative control technique .

5.2.1 Precision control requirements in force-volume mapping

Force volume mapping extends the force-curve measurement at one gaimpl® obtain a map-
ping of the force-curves across a sample area (Hans-Jurgen Budta.(2008); M. Radmacher. et al.
(1994)). To measure the force curve using AFM, the cantilever is miyea piezoelectric actuator to
approach and touch the sample surface until the cantilever deflection @.proire-sample interaction

force) reaches the set-point value (see Fig. 5.1). Then the piezoekdinator retraces to withdraw
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the cantilever from the sample surface until the probe surface contawtksrb To obtain a mapping
of force-curves over a sample area (see Fig. 5.1)—the so daliegtvolume mappindhe force curve
is measured at each sample point while the sample is scanned continuoushspatked under a raster
pattern (Note as discussed in the introduction, other methods have bgasgugreviously, but this
method is currently employed by the industry). (Hans-Jurgen Butta. e2808J). Feedback control
is applied during the force-curve measurement to maintain the same forcaridapiide the point-to-
point probe relocation. The feedback control is to compensate for thglséopography variation from
one sample point to the next, thereby the difference of the measuredcianees at different sample
points will only represent the difference of the material properties—ffetted by the sample topog-
raphy difference. Therefore, precision positioning is important inderalume mapping, because the
positioning error during the force-curve measurement at each samptagdirectly translated to the
errors in the force and/or indentation measurements, and the positionangrethe lateral scanning
and in the transition will lead to the coupling of the sample topography into the fosasurements,
which leads to the positioning errors in the force-curve measurementltasample point as well.

Piezo
actuator

Cantilever
Proje Path

Figure 5.1 Concept of force mapping

5.2.2 Switching-motion based force-volume mapping

In this chapter, we propose a switching-motion based force-volume mappirme: First, we

assume that the sample topography profile has been obtained a priogg befdorce-volume map-
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ping (for example, through imaging the sample (Georg E. Fantner. et al05)2%ing Wu. et al.
(2008)). Then the obtained sample profile will be used to achieve higiddpece-volume mapping.
In the proposed force-volume mapping, the laterakis scanning trajectory consists of stop-sections
and go-sections alternative with each other (see Fig. 5.2 (a)). Sucp-arstiego switching in lateral
scanning will be synchronized with the vertical probe motion as followsiriguhe stop sectiort in
Fig. 5.2 (a)), the force-curve will be measured at each sample pointharatobe will be positioned
above the sample at the end of the force-curve measurement; then dersupequent go (transition)
section ; in Fig. 5.2 (a)), the AFM-probe will be transited from one sample point to e, rand
the sample topography difference between these two sample points will beeasated for. In this
method, since the force-curves are acquired with no lateral motion of thee grelative to the sam-
ple), the lateral spatial resolution is improved, particularly at high-speest, existing force-volume
mapping methods (M. Radmacher. et al. (1994); Koleske, D. D. et al95]) Wvith lateral scanning
during the force-curve measurement. Moreover, since the sample &gbygrariation is compensated
for (through the probe relocation), feedback control is not needathintain the same load force pro-
file during the force-curve measurement. Rather, the same input f@-éomve measurement can be
applied at each sample point. The use of the same input for force-duallsample points implies that
iterative learning control techniques can be applied to achieve higlt-#pé®ce-curve measurements,
as demonstrated in our recent work .

Next, we describe the design of the output trajectory in bothxtheis and the-axis.

5.2.2.1 Switching-motion based trajectory in laterakk-axis scanning

In the proposed approach, the desired stair-like trajectory in the Iataras can be specified as
follows: For given lateral scan rate(in Hz), lateral spatial resolutioR (i.e., number of force curves
per one scan line), duty ratid(%) (i.e., the ratio of the stop-section duratidp)(relative to the total
go and stop duration§+t;), D = 100t/ (tm+t;), See Fig. 5.2 (a)), and the total lateral scan lehgth

the duration time of the go (transition)-sectipand that of the stop (measurement)-sectjgrand the
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lateral spatial distance between two adjacent sample pQiate determined as below, respectively,

100-D D L (5.1)
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Figure 5.2 Basic element of the desired trajectories. (a) X-directionaladisp
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Figure 5.3 Desired deflection signal trajectory generation using linearisupo-
sition.

5.2.2.2 Verticalz-axis trajectory for force-curve measurements and sample topgraphy com-

pensation

In this chapter, we propose a feedforward control approach thabvioes offline iterative learning

with online implementation via superimpaosition for the switch-motion basaxis tracking. First, we



Figure 5.4 Surface tracking trajectory superimposition. One element ofuthe s
face topography tracking signal (dashed line) superimposed on the
other element of the surface topography tracking signal (dashed dotted
line) generates point to point transition trajectory (solid line).

decouple the desiredaxis trajectoryz(t) across the entire scan line, into the trajectory for measuring
the probe transition that compensates for the point-to-point sample toggrapation,z(t), and the

trajectory for the force-curves at each sample paptt), i.e.,

z4(t) = z(t) + zm(t) (5.2)

Then we will find the feedforward input to track the transition trajeci®fty, u; (t), and the feedforward
input to track the force-curves trajectany(t), um(t), respectively, through an offline iterative learning
method (see Sec. 5.2.3). Provided that the SPM dynamics can be adegpatelyimated by a linear
system around each sample point location, the total input to trackdkis trajectoryzy(t), u(t), can
be obtained as

Uz(t) = W (t) + Um(t). (5.3)

The linearization condition holds in the proposed force-volume mappin@appprovided that enough
points are sampled along the scan line—as needed to achieve high resoltitiefdrce-volume map-
ping. This is because that with enough sampled points, the displacemeataftige point-to-point
probe relocation at each sample pointis small. As aresult, the nonlineardgysteffect becomes small
and negligible. We note that although the vertical displacement range ifiazaelcurve might be large
and the hysteresis effect can be substantial, the hysteresis effecewifidrtively addressed through
offline iterations in the proposed approach. Based on the above trgjelecoupling (Eqg. (5.2)), we

further decouple the desired transition trajectn(y) as a summation of one-point transitinf(t) with
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different transition range (see Fig. 5.3 and 5.4) :
R
z(t) = Zlhizt,ia —ixTs), (Ts=ti+tm) (5.4)
i=

where R is the lateral spatial resolution defined befbrelenotes the scale factor for the one-point
transition, andz ; (t) denotes the transition trajectory element selected from a library for thetivans
at theith sample point, i.e., the library consists of trajectory elements for one-poirgitimwith
different transition ranges, which will be constructed offline a prioriughin implementations, the
entire sample topography trajectory across each scan line will be obtaprextiaand then partitioned
by the total number of sample points to determine the selection of the one-paisitiba element
z(-). Additionally, the one-point transition elemen}(-) comprises an up-transition section and a
down-transition, connected by a stop (flat) section in between (see F)g-&uding the flat section,
force curve will be measured. The inclusion of both up- and down-itransections renders the same
initial and post state condition, which facilitates the use of iterative controhttktsuch a trajectory.
To enable the point-to-point transitions along the scan line, the down-sedttbe current one-point
transition will be superimposed with the up-section of the next one-poingitiam, as schematically
shown in Fig. 5.4. Particularly, the up- and down- transition sections aigried by using cosine

functions, such that the superimposed trajectory becomes a cosine fuplctsoan offset, i.e.,.

% [cos(w(t —to)) + 1] + LS [cos(w (t —to) + 1) + 1]
_ hizhia _Zh”lcos(a)(t —t0)) + hi+hisa +2hi+l (5.5)

whereh; andh;_.; denotes the partitioned transition height at tHeand thei + 1" sample point, re-
spectively. Thus, such a construction will ensure that the superimposéiobe proceeded across the

sample points such that the smoothness at the transition points is maintained.

Similarly, the force-curve measurement trajectayyt) is also decoupled as a summation of indi-

vidual force-curves at each sample point as follows (see Fig. 5.2):

R
Zn(t) = lem,i (t—ixTs), (Ts=ti+tm) (5.6)
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wherezn;(t) denotes force curve measurement aitheample point. Note that in the proposed ap-
proach, the control input to track the one-point transition trajectory eleemgh), u j(t), and the input
to track the individual force-curvay(t), umi(t) will be obtained a priori through offline iterations (see
Sec. 5.2.3). Therefore, the input for the point-to-point transitip(t), is obtained by superimposing
the inputs for one-point transitions together—according to Eq. (5.4) anahput for the force-curve

measurementsiy(t) is obtained similarly via superimposition by Eq. (5.3).

Lemma4 Let u;(-) be the feedforward control input to track the one-point transition elemef z

and uy;(-) be the feedforward control input to track the one-point force curve elemg(-), then the
linearly superimposed input(t) as specified by Egs. (5.3,5.4,5.6) will track the superimposed trajec-
tory z(t).

Proof We proceed by examining the superimposition of one one-point transiéorest g;(-) with

one one-point force-curvenz(-) at any given sample point i on the scan line. By linearity, the super-
imposed input, y(-) + um;(-), will track the combined trajectory #-) + zm;(-). Additionally, from the
above construction, the one-point transition element gand the one-point force-curve are superim-
posed in such a way that the output change of the force-curve ocatirgdhe flat stop section of the

transition elementz(-), i.e.,

u(0) 2y — {0 T et
Zmi(t) for te |ty ty

wheret =t; —tg and t, = t, —t;. The above equation implies that such a superimposition of the two
trajectories, the one-point transition elemeyt(z) and the one-point force-curve elemert(z), avoids

the interference of the point-to-point transition with the force-curve messent at each sample point.
This analysis implies that the superimposed input for tracking the entireszti@ectory (i.e., the
superimposed transition and the force-curve trajectory as in Eq. 5.2) \aill te the desired switching-

based motion as described in Sec. 5.2.2.2. [ |

Remark 9 As shown through the development of the stable-inversion theory ge@ et al. (1996,
1998); Zou, Q. et al. (2007)), the feedforward input to track the ooietgransition element,(-),

and that to track the one-point force-curve element, exist, even forinanom-phase systems like
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many piezoactuators. Such a feedforward input for nonminimum-platenss requires the input to be
applied before the output change occurs—pre-actuation (or equivadetiew- actuation). Although
achieving exact tracking of the output trajectory (when disturbancesidimy modeling error and
noise effects are ignored), required the pre-actuation time (i.e., preview) timmapproach infinity,
finite pre-actuation (preview) time is usually used in implementations, anduhedtion error can be
rendered arbitrarily small by having a large enough preview time (Zouetal. (1999, 2007)). The
needed preview-time depends on the minimum distance of the nonminimasmzgros relative to the
jw axis. In force-volume mapping applications, the needed preview timeecdetermined by using

the force-curve element at the first sample point.

Remark 10 As the element trajectories,jz-) and z,i(-), are known a priori, it has been established
that iterative control approach is highly effective in achieving precisionkirag of such pre-known
trajectories in practices. Particularly, it has been demonstrated througieements that the recently-
developed MIIC technique can be applied to obtain the feedforward canprat for the element tra-
jectories, zi(-) and z,;(-). Similarly, the control input to track the stair-like trajectory for lateral x-axis

scanning can also be obtained by using the MIIC technique.

5.2.3 Model-less Inversion-based lterative Control (MIIC)

The MIIC algorithm is used to is given below,

W(jw) = avi(jw), k=0,
bell9y (), wheny(jw) #0

Uk(jw) = andyd(jw) ;é 0 k> 1, (5_7)
0 otherwise

wherea # 0 is a pre-chosen constant (e g.¢can be chosen as the estimated DC-Gain of the system).

The next theorem finds the convergence of the MIIC algorithm upondtigi@nal disturbance and/or
measurement noise, the bound of the MIIC input relative to the desiret enpaiquantifies the upper-

bound of the noise/disturbance-to-signal (NSR) at a given frequfenguaranteeing the improvement
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of the output tracking by using the MIIC algorithm, i.e., below which the outmdking at that fre-

quency will be better by using the MIIC algorithm than not tracking thatdfesmy component.

Theorem 4 Let the system output jw) is effected by the disturbance and/or the measurement noise

as
y(jw) =y (jw) +yn(jw), (5.8)
where y(jw) denotes the linear part of the system response to the irffpat)ui.e. y (jw) = G(jw)u(jw),

and y(jw) denotes the output component caused by the disturbances and/asrereast noise, at

frequencyw,

1. assume that during each iteration, the NSR is bounded above by a @o&fis-than-half con-

stante(w), i.e.,

Ykn(jw)
Ya(jw)
then the ratio of the iterative input to the desired input is bounded in magnitudephase,

' <eglw)<1/2, Vk (5.9)

respectively, as

| w(jw)
i < < :
Rmin(w) < Ilmo Ua(j) ‘ < Rnax(w), (5.10)
where Ryn() £ 1 £(w) and 1 512 £ Ryax(),
- Uk (j w) 1 €@ &
< = :
im < (et <5 (et ) & ot .
and the relative tracking error is bounded as
| () —yd<Jw)‘ 2e(w)(1-£(w))
lim - < : 5.12
T Vel 1-26(w) 612
2. The use of the MIIC algorithm will improve the tracking at frequeacy.e.,
k—oo Ya(jw)
if the NSR is bounded above by- g ~03,i.e.,
Yin(jw) ' V2
—. <gw)<l——, VK 5.14
Ya(jw) |~ (@) 2 =)
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Proof Proofis givenin .

5.3 Superimposition-based rapid switching-motion contrb

In this section, we present the superimposition-based control techmigwgantify the boundness
of the tracking error caused by finite pre-actuation time and its superimpofitidine non-minimum
phase system. We formulate boundness of the output tracking errdeprobhe solution begins with
the decomposition of the desired trajectory into simple element trajectories.eétitofward control
inputs for the element trajectories are computed and superimposed to taddeajectory. The

resulting tracking errors caused by finite pre-actuation time and its supesitiopads quantified.

5.3.1 Problem formulation

Consider a time-invariant linear system described by
X(t) = AXx(t)+Bu(t)
y(t) = Cx) (5.15)

wherex(t) € R" is the statey(t) € RP is the input, ang/(t) € RP is the output. We assume that the sys-
tem has a well defined relative degiree [rq,r»,---,rp] and the system is controllable, non-minimum

phase, and hyperbolic.

Definition 1 Boundness of the output tracking error problem. Given a desired output trajectory
y4(t) to be tracked, quantify a bound of the tracking error using bounded imajetctory with the finite

pre-actuation time J'such that the following requirements are met.
1. The given desired output trajectory(y) is defined for t> 0, otherwise y(t) = 0.
2. The system equations are satisfied during tracking
X(t) = AX(t) + Bu(t) (5.16)
3. Exact output tracking is achieved if stable inversion control ingtit & us+ (t) is utilized.

ya(t) = Cx(t) (5.17)
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5.3.2 Superimposition-based rapid switching-motion control

5.3.2.1 Decomposition of the desired trajectory into elements of thaesired trajectory

In this article, we propose a feedforward control approach that casldfiline iterative learning
with online implementation via superimposition. First, we decouple the desiredttnajgg into the
desired trajectory elemenyg,Yq2,- - - ,Ydn. We assume that non-zero value of desired trajectory and
its element trajectories start from time zero. Since the desired trajectory loamitime delay; (see

Fig. 5.5), the desired trajectory is decomposed to satisfy the followingisupesition, i.e,

o0 = 5 yalt—1)

Definition 2 Separation time. Let the desired trajectory elementgiyyd.2,- - - ,Ya,n are arranged by
ascending order of the non-zero desired trajectory element starting timet, < t3 < --- <t, (see

Fig. 5.5). Then the separation timg s

tsi =tiy1 —t; (5.18)

Remark 11 Each desired trajectory elements can be used as the trajectory librarydattier differ-

ent complex desired trajectory tracking problem.

5.3.2.2 Control input generation by Stable inversion theory and its sperimposition

For the each element trajectory, feedforward control input can bergd by stable inversion
theory for the MIMO system. For the demonstration purpose, we chosatheceveloped Model-less
Inversion based Iterative Control algorithm and introduced in Secti@i3 5Provided that there exist a
inputuy,, that tracks the desired trajectory elements exactly and the SPM dynamice ededuately
approximated by a linear system, the exact solution of the input to track tirediésjectoryyy(t),

usf (t), can be obtained by the superimposition of the each individual feedfdiiwaut as follows

=}

Ure(t) = _ Uyq; (t—t) (5.19)
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Figure 5.5 Decomposition of the desired trajectory (D) into desired trajeetory
ements (DEX- DE3) and composition of the input trajectory (I) from
the input elements (IE4 IE3).

Since the pre-actuation time to track the desired trajectory must be finite, thedftiigonal pre-
actuation timet, is introduced (see Fig. 5.5) and the resulting pre-actuation time for eaatedles

trajectory elementp; is
i
Tp| - tp + Z ts,n
n=1
wherets1 = 0.

Then the finite pre-actuation time transforms the inputs to be truncated fromdbesolution of

the input as follows

u(t) = uss(t) for t > tp

otherwise u(t)=0 (5.20)

5.3.3 Boundness of superimposed tracking error

The key to the above proposed superimposition based rapid switching-motiomol method is to
determine the amount of pre-actuation tifyeneeded to guarantee the required tracking precision. In
this section, we quantify output tracking error caused by finite pre-actuame. At first, the bound-
ness of the tracking error is analyzed for a desired trajectory elementth&resulting boundness of

tracking error from superimposition of finite or infinite number of elementrdddrajectories are to
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be analyzed. The proper choice of pre-actuation time and separation timgpaspd for the complex

desired trajectory tracking.

Output Tracking Form (H. Perez. et al. (2004)). Consider a system described in Eq. (5.15).
With the proper state transformation, the states can be defined by

T

X(t) = [E(t)T’rls(t)Tarlu(t)T] (5.21)

, Whereé (t) denotegys,y, -+ ,Yp,Y1,¥2, -, Yp, - ,yg_l)]T andr denotes a well defined relative de-
gree. ns(t) andny(t) denotes stable internal dynamic states and unstable internal dynamic states re
spectively. Ther€ = [lp.p,0,...,0]pxn.

By using model-based inversion approaches there exists feedfoceatl inputus(t) that tracks

the desired output trajectogy(t) and state trajectong(t) as follows:
Ut (t) = Bsns(t) + Bunu(t) + Be Ya(t)

whereYy = [E T,y(r)]T that transforms the system (5.15) into the output-tracking form:

Et) = &)
’;’S _ AS 0 r’S + BS Yd
f] u 0 Ay Nu By

whereA, As have all the eigenvalues on the open right hand side and the open Idfsitnrespec-
tively Zou, Q. et al. (1999). Then the bounded solution to the internahiiyes in the transformed

coordinates can be found as
ns(t) = /t me‘\s“—ﬂssyd(r)dr
Nu(t) = — /tm e ATUB, Yy (1)dT
The state trajectory and output trajectory satisfy the following equation.
xa(t) = eUToIxy(—Tp) + tT ATBus (T)dT
—-'p
= /_preA ©OBu(r)dr+ [ e UBu (1)dT

ya(t) = Cxa(t)
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where—T, is any arbitrary time instant befote= 0.

yd(t) ’ A\

Tp Ts1 Ts2 t

ug(t)

:‘WJ 0
To

Figure 5.6 Desired trajectomy(t) and its tracking inputis (t).

Lemma 5 Let the desired trajectoryqyand its time derivatives upto the relative degree r be bounded,
i.e. there exists a positive scalar MR, such that the standard Euclidean noHn{!yd,yd,ya, fe ,yg)] Hz <

M for all time t. Then, the output tracking errdjiey(t)||, with a finite pre-actuation timeplis bounded

by
MaMa [|Byll, e~ (@+B)Tp
o), < IS 2 supiy o,

where the constant M Ma,, o andB satisfies the following Hurwitz matrix inequality.

4], < Mae

el < Mae™®
Proof: Suppose that the input signalt) is

uit) = uge(t) fort>—-Tp

ut) = 0 fort<—Tp.
Then the state trajector(t) and the state trajectory tracking ereg(t) fort > 0 is to be:

t
xt) = fDBus ¢ (T)dT

a(t) = xa(t)—x(t)

= Py, (=Tp) (5.22)



107

Notice that
X(=Tp) = Ns(—Tp)
Ya(—Tp)

= [P AT TBgYy(1)dT

— [, e A B Y y(T)dT

Notice thatyy(t) = [0] andYy(t) = [O];x1 fort <0, then
0
Xd(—Tp) = 0
— 5 e AT+ DB Yy (T)dT

SinceA and—A, is Hurwitz matrix, the norm of the state tracking error and output tracking &sro

lell, < ™| Ixa(=Tl,
< Mae e ™ [l | By, Ya(D)ll 0t
0
~ MaMa, [|Byfl, e~ @*F)To

3 SlTJpHYd(T)Hoo

eyl = lya(t) —y(®)ll

ICll5 [IXa(t) =x(t)[l, (with [|C|,=1)
MaMa, [|By|[,€ (@ F)To
B

This completes the proof. |

IN

IN

supl Ya(D).

The next theorem shows that the superimposed output tracking errdrésiimunded and can also

be made small by choosing a sufficiently large pre-actuation time.

Theorem 5 Let the desired trajectory elementgiyyqd 2, - - - , Ya,n and its time derivatives upto the rela-

T
tive degree r be bounded, i.e. there exists a positive scalaiMsuch that, for ¥ = |Va.i,Yd,i,Yd,i, - ,y((jr?] :

H[Ygl,vgz,.--,vgnf”gm for all time t. (5.23)
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Then for the given constantg F min{Ts}, the resulting output tracking error&) is bounded by

loy, < MaMa lBullpe (P max {sup|[Yai(r)ll, }
Yl = B 1_e(@+B)Tg

Proof: From the Lemma. 5,the summation of each tracking esy@) caused by superimposition

of the desired trajectory elements is

o0l = 3l

n MaMa, ”BUHZSUpHYdi(T)H g (a+B)Tpi
B iZ\ B T e
n T *
< NlA'VIAE;BUHZ rniax{sgm|§{d!i (T) ||°°} i;e*(CH»B)(TP*Ts*JrITs )
MaMp, ||Bul|, & (@+B) T 1—e (@+p)Tgn
< UBZ miaX SEpHYdJ(T)Hw 1 e @pT
Then
: MaMa, [|Bull & ()T max {sup [|Yai(T)]].,}
,L'_qloHeY(t)Hz < .B 1—e (@+B)T¢

Remark 12 Theorem 5 implies that the sum of the distances from stable pole and unsabl® z
the imaginary axis in complex plane affects the boundness of the outpuingamkor. Sincel —

e (@+B)Ts < 1, the boundness of the output tracking error is governed by the fetion time. As
the distance of the sum increases, the smaller pre-actuation time can senctwachieve the desired
output tracking accuracy. And sufficiently large pre-actuation time @achwsen to achieve the desired

output tracking accuracy for a given system.

5.4 Experimental Example: Elasticity and adhesion force volure mapping on a line

In this section, we illustrate the MIIC technique by implementing it into the outpukitngaof a
piezotube actuator on an AFM system. We start with describing the experiragstiam first.
5.4.1 Experimental setup

The schematic diagram of the experimental AFM system (Dimension 3100pVee.) is shown

in Fig. 5.7 for the control of the-axis piezotube actuator. All the control inputs to the piezo actuator
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were generated by using MATLAB-xPC-target package, and sdrthoough a data acquisition card
(DAQ) to drive the piezo actuator via an amplifier. The AFM-controller haghbmustomized so that the

PID control circuit was bypassed when the external control inputapagied.

Piezo Input Piezo Input u(t)
(High-voltage) (Low-voltage) .
( High-Voltage ( =—8=
) Amplifier MATLAB,
( XPC-Target )

Cantilever Deflection T

Figure 5.7 Schematic diagram of the experiment setup to implement the proposed
MIIC algorithm

5.4.2 Implementation of the Switching-motion-based force-volume apping

The proposed switching-motion based force-volume mapping is illustratedibby a PDMS sam-
ple as an example. The stair-like desired trajectory for the lateaals scanning was specified first.
The scan size was chosen apd@ and a total of 128 force curves were measured per scan line (i.e., R
=128). Moreover, two different duty ratios (D = 20 and 50) for the saiod-go section of each stair in
the x-axis trajectory (see Sec. 5.2.2.1), along with three diffexamtis lateral scan rates (f = 0.5, 1, 2
(Hz)), were chosen in the experiments. Therefor, the transitionttintiee measurement tintg, and
the point-to-point spatial distandg, are also specified accordingly (see Sec. 5.2.2.1). For example,
for the the case of 2 Hz lateral line scan speed and duty ratio of D=20 athgitton time { = 1.563
ms), the measurement timeg, & 0.39 ms), and the point-to-point spatial distankke=313nm) were
determined. Once theaxis desired trajectory was determined, #axis desired trajectory can be
determined accordingly. Particularly, the total trajectory for the foraeecmeasurementz(t) in
Eq. (5.6)) was designed by choosing the vertical displacement of eacé-¢urve elementzg; in
Eq. (5.6)) as 800 nm. As shown in Fig. 5.2 (b2), each force-curvsismu of a triangle trajectory
followed by a flat section, and to be synchronized witaixis motion, the duration of the triangle part
and the duration of the flat part were equivalent to the measurement,tiaral the transition timg,
respectively. The triangle part was symmetric with the same push-in time andlthegime. Simi-

larly, the total trajectory for the point-to-point transition(in Eq. (5.4)) was designed by specifying
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the one-point transition element also. In this experiment, we simplified the defkitpe library of
elements for one-point transitions (see Sec. 5.2.2.2 and Eq. (5.4)) mglay one element for one-
point transition. Specifically, the element for one-point transition waserhts have a displacement
range of 98 nm, corresponding to one voltage displacement sensor oUitprt. the total transition
trajectory was determined by scaling the one-point transition element @amgoodhe transition height
at each sample point (see Eq. 5.4 and Sec. 5.2.2.2). Next, the MIIC kalgooithm was used to
find, ahead of time, the converged inputs for tracking the stairdik&is desired trajectory, and then
the force-curve element along with the one-point transition element, @ésggcThe obtained control
inputs were stored and applied appropriately during the force volume ngappione scan line (such
that the switching-motion in the lateral scanning was synchronized with the-farrve and transition
switching in the vertical direction). We demonstrated the technique by megdherforce-volume
mapping on one scan line, and the sample topography profile was obtained aiteratively using
the absolute mode force-curve measurement along the scan line (to apbithgexcessively large
load force, we note that the sample topography profile can be obtainéatiavi@ high-speed imaging

(Ying Wu. etal. (2008)), in this chapter, however, we focus on the-Bjgged force-volume mapping).

5.4.3 Experimental Results% Discussion

We start with presenting the experimental tracking results in botk-thés and the-axis, followed

by the force-volume mapping results.

5.4.3.1 Experimental output tracking results

The output tracking results achieved by using the MIIC control technagaecompared with
those obtained by using the DC-Gain method in Figs. 5.8 and 5.9 for the tramkihg stair-likex-
axis trajectory and the tracking of the force-curve element and the @nétpansition element. In the
DC-Gain method, the control input was obtained by scaling the desiredtowiffuthe DC-Gain of
the system. Therefore, the DC-Gain method did not account for the dysarfibe system, and the

obtained output tracking quantitatively demonstrate the effects of the SR&rdgs on the positioning
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Table 5.1 Tracking errors by using the MIIC technique for thaxis trajectory, the
force-curve element, and the one-point transition elemertte RMS error
E2(%) and the maximum errdEmax(%) are defined in Eq. (5.24).

Scan | Duty App. Ez (%) Emax (%)

Rate | Rate | Rate(nnys) | X Zmn Zt X Zm Zt
0.5Hz| 20 1.02 0.77 3.76 1.17/ 0.63 1.51 2.94
0.5Hz| 50 0.41 1.16 065 3.38 045 2.34 1.18
1Hz 20 2.05 1.16 169 098 05 3.95 3.06
1Hz 50 0.82 1.74 0.7 092 044 251 293
2 Hz 20 4.1 192 355 0.67, 039 6.33 1.72
2 Hz 50 1.64 295 1.03 0.68 0.35 2.95 1.79

precision. In Fig. 5.8 and 5.9, the tracking results are shown for therates of 0.5 Hz and 2 Hz
with duty ratio D = 50 and D = 20, respectively, where the load rate of theefourve equaled to
0.41 mm/s and 4.1 mm/s, respectively. (Experimental results for the other dediffecanning and
duty combinations were omitted due to the page limits). When implementing the MIICigeehithe
iteration was stopped when neither the relative RMS-tracking error noelditive maximum-tracking-
error decreased further. The resulting tracking results are shovabie.15.4.3.1 in terms of the relative
RMS errorEz(%) and the relative maximum erré, (%), as defined below,

[¥a() =Y(C)ll2
[1¥a(-)ll2

[1¥a () = Y()lleo

Fa(%) = YaO)

x 100% Ee, (%) = x 100% (5.24)

The experimental results show that precision tracking in the proposedhgvgtmotion based
force-volume mapping can be achieved by using the MIIC technique. é&srsin Fig. 5.8 and Ta-
ble 5.4.3.1, when the lateral scan rate and the load-rate of the forcescwere relatively low, the
dynamics effect was small, thereby the tracking errors of the foroeecelement and the one-point
transition element by using the DC-gain method were relatively small (arou)d Bstead, due to
the large lateral scanning range (40), the hysteresis effect was pronounced (see Fig. 5.8 (al), (b1)).
However, by using the proposed MIIC technique, such a large hgsezffect was substantially re-
moved (as shown in Fig. 5.8 (b1), the tracking error was close to the neg lend so were the error
in the force-curve element and the one-point transition element trackéegHig. 5.8 (a2) to (b3)).
When both the lateral scan rate and the load-rate of the force-curesimezease by 4 times to 2 Hz

and 10 times to 4.1 mm/sec, respectively, the dynamics effect became sigrafichresulted in large
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Figure 5.8 Experimental tracking results for the line scan rate of 0.5 Hz, and
the duty ratio D = 50, where the load rate of the force-curve is 0.41
mm/sec.

oscillations in the force-curve element and the one-point transition trackisgts when DC-Gain
method was used (see Fig. 5.9 (a2), (b2), (a3), and (b3)). Howaemision tracking was still main-
tained by using the MIIC algorithm, and the tracking error was still small arsthes 3% (see Fig. 5.9
and Table 5.4.3.1). Therefore, the experimental results show thatipretiacking in the proposed

switching-motion based force-volume mapping can be achieved by usingltGad¢hnique.

5.4.3.2 Force-Volume Mapping of a PDMS Sample

The converged control inputs to the tracking of thaxis and thez-axis trajectories, obtained

above, were apply to measure the force-volume mapping on a PDMS sarhpl®DIMS sample was
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Figure 5.9 Experimental tracking results for the scan rate of 2 Hz, andutlye d

ratio D = 20, where the load rate
mm/sec.

of the force-curve equaled to 4.1

prepared as describe in (K.-S. Kim. et al. (2007)). The preparatioceps ensured that the PDMS

sample is homogeneous, i.e., the mechanical properties of the sample renhaiogidize same across

the entire sample area. First, the sample topography was obtained as etbseilier, then the ob-

tained sample topography was partitioned by using the

lateral spatial readRt 128), which was

then used to determine the scale fadipfor the control input to the one-point transition element at

each sample point. Then tlzeaxis control input was obtained via superimposition as described in

Sec. 5.2.2.2, and was synchronized with xkexis control

input during the implementation. The ob-

tained force-volume mapping results over one scan line are shown in Rigfds.the line scan rate of

0.5 Hz and the force load rate of 0.41 mm/sec, and in Fig. 5.11 for the line deanf Aand the force

rate of 4.1 mm/sec.
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Figure 5.10 (al) The 3-D plotand (b1) the side view of the force-volungping
on the PDMS sample, (a2) the sample topography across the scan
line, and (b2) the comparison of the force-time curve on the PDMS
with that on a sapphire sample. The load rate is Qus.

The experimental results show that force-volume mapping speed camiifecaintly improved by
using the proposed approach. As shown in Fig. 5.11 (al), the forves measured at all sampled
points were very close to each other, which is even more clear in the siesfithe force-volume
mapping result in Fig. 5.11 (b1). Such a uniformity across the sampled poitiedripat the me-
chanical properties at all sampled points were very close to each othethedPDMS sample was
homogeneous. Thus, the measured force-volume mapping results atjreevexpectation. We note
that such measurement results were achieved when there existed sigsificgle topography varia-
tion across the 4@um scan line—-as shown in Fig. 5.11 (a2). Thus, the experimental resultgedho
that the proposed method can effectively remove the sample topogrdpby @i the force-volume

mapping when the scan rate and the force load rate were relatively lovih éBuability, to remove
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Figure 5.11 (al) The 3-D plot and (b1) the side view of the force-volunygimg
on the PDMS sample, (a2) the sample topography across the scan
line, and (b2) the comparison of the force-time curve on the PDMS
with that on a sapphire sample. The load rate isilLs.

the sample topography effect on the force-volume mapping, was maintaiaedvaen the scan rate
and the force load rate were increased by 10-fold, as shown in Fig. bifhally, we also compared
the force-curves measured on the PDMS sample with those measured apfter€ sample for the
same control input at the load rate of 0.41 mm/sec and 4.1 mm/sec, as shown ti1Bi¢b2) and
Fig. 5.11 (b2), respectively. The obtained experimental results shovatielependent elastic modu-
lus of PDMS (K.-S. Kim. et al. (2007)). Note the slope of the force-csisieown in Fig. 5.10 (b2)
and Fig. 5.11 (b2) is proportional to the elastic modulus of the material (Hutl. Bt al. (2005)).
When the load-rate was slow, the PDMS sample tended to behave softer withreelastic modulus,
i.e., the slope of the force curve is smaller—as shown in Fig. 5.10 (b2). Asdldeate was increased,
the PDMS sample tended to behave stiffer with a higher elastic modulus, i.e., peedlthe force

curve was larger and close to that of sapphire—as shown in Fig. 5.)1 %b2h a trend agrees with
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our recent results reported in (K.-S. Kim. et al. (2007)). Therefineexperimental results illustrate

the efficacy of the proposed approach to achieve high-speedyolgate mapping.

5.5 Conclusions

In this chapter, high-speed force-volume mapping using switching-motisadbéorce-volume
mapping mode and model-less inversion based iterative control techniguerait force microscopy
is presented. The proposed approach was based on signal degesypgerimposition and the elemen-
tal input signals were found by MIIC technique. The proposed methadsplemented to obtain the
force-curve mapping of a PDMS sample on one scan line dealing with higgdsjorce-curve mea-
surement at each sample point and rapid transition of the probe fromaomgles point to the next
while compensating for the sample topography difference between the ins,pwith no sliding of
the probe on the sample with seamless integration of the above two motions. pdrarental results
were presented and showed that the force mapping speed with precisierctirve measurement can

be increased by over 20 times.
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CHAPTER 6. Conclusion

This dissertation presented a suite of systematic inversion-based feadfarontrol approaches
to design and track output trajectory. At first, we discussed optimal sapattiory design and control
(OSDC) with application to atomic force microscope (AFM) based materialgotppneasurement.
Based on active scan trajectory, optimum transition trajectory and the aguoanditions were found
by OSDC technique. Since the piezo-electric actuator of the AFM systeeligatly-damped resonant
peaks, resulting in output transition trajectory with large oscillations. Therae\weffect of the output
oscillation was addressed. To minimize output trajectory oscillations, inpugen@nimization was
transformed to the minimization of the output energy in frequency domain aredfée of the lightly-
damped resonant peaks was minimized through the pre-filter design.

The development of inversion-based feedforward control techgimueack the desired trajectory is the
main portion of this dissertation. The first control issue addressed wasitw/e or minimize the effect
of the a modeling error, system uncertainty and repetitive disturbancehiBgproblem, we extended
the iterative learning control approach. As the extension of the invelssad iterative control (11C)
in frequency domain, enhanced IIC technique increased the rangseérgence conditions and the
speed of convergence better than conventional IIC technique. Amthiementation into the adhesion
force measurement and time-dependent elastic modulus measuremerd ghewtectiveness of the
trajectory design by OSDC technique and its tracking performance byeetidlC technique. Model-
less IIC was an extended development from the enhanced IIC. ThelHreddIC technique doesn’t
require modeling process as a preparation. As a result, the model-lessritVed every issues related
with the modeling errors and introduced simplicity on its implementation. As a majoretiife from
the other iterative learning control technique, model-less 1IC guarantezstep convergence for the

linear time invariant system without disturbance existence. The conw@geralysis on the system
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with the existence of disturbance was presented and gave a guidelineeptatde bound of noise for
the better tracking performance. The experiments of the white noise typmmgdlex trajectory and
triangle trajectories tracking convinced efficacy of the proposed daethnique and convergence of
model-less IIC on the system with the hysteresis.

Then the implementation of model-less 1IC technique was extended with the nbSoperimposition
to non-repetitive trajectory tracking. To make the control problem more sjrti@edesired trajectory
was decomposed into several element desired trajectories. The elemsiead dejectory tracking was
achieved by model-less IIC and superimposed to tracking given desajedtory. Since the stable
inversion theory implied that the required pre-actuation time for the nonminimuamepbystem is
infinite, another practical issue that the limited finite pre-actuation time and thikimggracking error
was analyzed. For the precision trajectory tracking by the superimpositibie element trajectories,
the tracking error caused by the pre-actuation time and the minimum superimpiosendifference
was quantified. Then each directional trajectory tracking signals wehsynized for the high-speed
force-volume mapping on PDMS. The experimental results showed thatdpeged tracking control

technique can improve the measurement speed much better than currentrciainaegice.
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