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ABSTRACT 

 

The primary objective of this study is to improve the spray and combustion modeling 

of internal combustion engines using dynamic mesh refinement. The first part of the study 

used advanced spray models with a dynamic mesh refinement scheme to simulate 

atomization of gasoline and diesel sprays. Traditionally gasoline sprays and diesel sprays 

were simulated using different models due to their different characteristics. This study was 

able to use the same set of models without adjustments in model constants and obtain good 

agreement between experimental and simulation results. The model was also used to simulate 

a direct-injection gasoline engine with realistic geometry. The present spray model with 

dynamic mesh refinement algorithm was shown to predict the spray structure and liquid 

penetration accurately with reasonable computational cost. 

 In the second part of this study, diesel combustion modeling was performed using the 

above advanced spray model. The Shell ignition model, which uses a simplified reaction 

mechanism, was used to simulate the autoignition process of hydrocarbon fuels. The laminar-

and-turbulent characteristic-time combustion model along with the Shell model was used to 

simulate the overall low and high temperature chemistry. The simulation results were 

compared with the experimental data with good agreement. The combination of combustion 

and spray models along with the dynamic mesh refinement was also validated using 

experimental data obtained from a heavy-duty diesel engine. In conclusion, a model, which is 

a combination of advanced spray model and combustion model with dynamic mesh 

refinement, was developed to simulate spray combustion in internal combustion engines. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

With the rising competition in engine industry and emission restrictions due to the 

environmental concerns, manufacturers are forced to explore cost-effective ways to evaluate 

engine performance using different combustion chamber geometries, fuel injection strategies, 

combustion processes and alternative fuels. The fuel consumption and emissions can be 

reduced by improving the fuel injection system and the combustion process.  

Despite the uncertainties of numerical simulation often greater than those of experiments, 

the modeling of spray and combustion process has some significant advantages. The 

numerical simulations are especially suited to carry out extensive parametric studies in more 

time and cost effective way compared to experiments. The numerical simulations also allow 

to output very single variable of a problem at any position in physical space and at any point 

in time during the process. Such a complete set of information cannot be obtained by 

experiments for several reasons. First, it is extremely difficult to apply sophisticated optical 

measurements techniques to a rapidly oscillating combustion engine without affecting the 

boundary conditions of spray development and combustion and even if this task is achieved 

to a satisfactory degree, there will always remain several areas of interest that are not 

accessible. Moreover, experiments can hardly yield three-dimensional resolved information. 

They are usually limited to two dimensions if light-sheets are applied or integrated 

information that are one-dimensional for a specific volume. Hence, the modeling of spray 
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and combustion processes can help understand the in-cylinder phenomena in a cost and time 

effective way and benefit engine development.   

Modeling of the important sub-process to predict heat release rates and exhaust emissions 

as a function of characteristic engine parameters is possible with proper numerical grid 

resolution. The spatial resolution is a concern in realistic geometries due to the size of the 

domain and complicated features of the geometry. Hence, dynamic mesh refinement can be 

used to properly resolve the sub-process of spray and combustion using a baseline coarse 

mesh with increased spatial resolution for better numerical accuracy. 

1.2 Objectives 

The goal of this study is to improve the predictive capabilities of spray breakup and 

combustion models. The first objective is to develop a unified spray model to be used with 

dynamic mesh refinement to simulate spray atomization in gasoline and diesel engines. The 

model will be validated by experimental data of both gasoline and diesel sprays. The second 

objective is to implement a chemistry model to simulate the overall combustion and emission 

formation process. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

Due to the growing importance of fuel economy and future emissions restrictions, engine 

manufactures are continuously forced to improve the combustion process. Despite the 

quantitative uncertainties of numerical simulation, modeling of fuel spray and combustion 

processes has significant advantages that make its utilization in current engine development a 

necessity. Numerical simulation can potentially provide detailed information about the 

complex in-cylinder process. However, accurate models are required. 

To describe the sub-grid scale physics it is necessary to introduce submodels into spray 

computations for processes that occur on time and length scale that are too short to be 

resolved. Empirical correlations are introduced into these submodels to describe the 

unresolved physical processes. The capability and limitations of these models can be 

validated by comparing their results with experiments. Sub-process like atomization, drop 

distortion and drag, drop breakup, collision/coalescence, drop vaporization, and spray/wall 

interaction comes under the category which requires realistic physical models to describe 

them. Analytical models and controlled experiments that isolate the relevant processes have 

been used to generate correlations to form the basis of these submodels. 

The spray and combustion process in engines consists of many sub-processes, which can 

be modeled by corresponding mathematical models. Engine simulation models can be 

divided into three groups based on the complexity, subprocess included, and computational 

cost. First, the thermodynamic or zero-dimensional models consider only the most relevant 
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process without accounting for spatial resolution. These models are often used in applications 

where short computing times are more important than the details of the sub-processes.  

The phenomenological spray and combustion models come under the second class of the 

models and use more detailed sub-models for processes such as breakup, collision and 

combustion. These models divide the combustion chamber into different zones based on 

temperatures and compositions. The spatial resolution is still coarse to completely resolve the 

physics taking place in the engine.  

The third class of the models is multidimensional computational fluid dynamics (CFD) 

models that solve partial differential equations for mass, momentum, energy and species with 

spatial resolution. In these models detailed sub-models are used to describe the sub-processes 

of interest. These models can be computationally expensive than the other categories of the 

models mentioned above. 

The study focused on direct injection engines, including both compression-ignition 

(diesel) and spark-ignition (gasoline) engines. Development of appropriate CFD models to 

describe spray, mixture formation and combustion in direct injection engines is necessary. In 

this chapter, a review of the spray and combustion models will be provided and a brief 

review of the dynamic mesh refinement will also be mentioned. 

2.2 Spray Models 

The engine sprays are used for mixing the liquid fuel with air. In direct-injection engines, 

the fuel is injected into the combustion chamber to form a combustible mixture with air. The 

spray and the mixture formation affect the ignition behavior, heat release, pollutant formation 
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and fuel economy. The high injection pressure of fuel will also impart turbulence which 

complicates the spray phenomena. The interaction of the spray with the gas phase is also very 

complex because there is an exchange of momentum between the gas phase and liquid phase. 

The spray originated from an injector can be divided into different regimes as shown in 

Fig. 2.1. The intact core of the liquid phase from the injector rapidly disintegrates into 

ligaments and further into droplets and the density of the droplets reduces as the spray moves 

away from the nozzle.  

 

Figure 2.1 Schematic diagram of different flow regimes in a spray 

The region near the nozzle has the density of the liquid phase much higher than the 

gas phase and is generally called a thick or dense spray region.  Due to the shape of the spray 

and the atomization of the fuel as the spray moves further, the average spacing between the 

droplets increases and the volume fraction occupied by the gas phase increases. This region 

is called the thin spray region and the region becomes very thin and dilute as the spray moves 
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further and the volume and the mass fraction of the liquid phase becomes negligible in the 

very thin region. The droplet-droplet interactions such as collisions and coalescence are 

important near the nozzle.  

The liquid spray breaks up into ligaments and droplets, the first kind of breakup 

occuring near the vicinity of the injection nozzle orifice, i.e. in the region that has been 

scaled up in the bottom part of Fig. 2.1. This region is referred to as primary breakup region. 

The primary breakup is the breakup of the intact liquid phase into ligaments and initial 

droplets. The initial droplets are further distorted and subsequently broken up into smaller 

secondary droplets. This region is termed as secondary breakup region that takes place 

farther downstream of the nozzle. 

The primary breakups of liquid jets at the nozzle exit are mainly caused by a 

combination of three mechanisms: turbulence within the liquid phase, collapsing of 

cavitation bubbles and aerodynamic force acting on the liquid jet. A high level of turbulence 

is generated within the liquid phase that has destabilizing effect on the jet once it exits the 

nozzle. The velocity of the jet gets accelerated due to the sharp edges at the nozzle inlet and 

this causes a local reduction of the static pressure inside the nozzle much less than that of the 

vapor pressure and causes cavitation of the bubbles. The cavitations of the bubbles are swept 

out of the nozzle into the combustion chamber where they implode and contribute to the 

disintegration of the spray. The relative velocity between the liquid jet and the gas results in 

aerodynamic forces that act on the liquid surface. Hence, surface disturbances develop and 

start to grow that lead to breakup of liquid jet as well. The injection parameters such as 
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relative velocity between liquid and gas, the liquid and gas densities, and the liquid viscosity 

and surface tension also affect the above mechanisms and cause several breakup modes.       

There are only a few detailed models available for the simulation of the primary 

breakup of high-pressure sprays. The experimental verification of the primary breakup 

models is difficult due to the complicated dense spray and the small dimensions. The 

mathematical description of the liquid phase inside and outside the nozzle, hence, is not 

possible to calculate the primary breakup directly such that appropriate models need to be 

used.   

There are different classes of breakup models depending on the mechanisms 

including aerodynamics-induced, cavitation-induced and turbulence-induced breakup. The 

simpler the model, the less input data needed for the model and less the nozzle flow linked to 

primary breakup and more assumptions to be made about the upstream conditions.  Detailed 

models will require more information about the injector flow and cause an enormous increase 

in computational time. Different kinds of models have different applications, depending upon 

the available input data and computational time. 

2.1.1 Blob-Method 

The “blob” is the most popular and simplest way of defining the exit conditions of the 

nozzle (Reitz and Diwakar, 1987). This model injects uniform spherical droplets with 

diameter equal to that of the nozzle. The droplet is further subject to secondary 

aerodynamics-induced breakup. The conservation of mass gives the initial velocity at the exit 
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of the nozzle hole. The blob method is a simple and well-known method of treating the 

primary breakup in the Eulerian and Lagrangian CFD codes. 

2.1.2 Distribution Functions 

This approach uses the assumption that fuel fully atomizes at the nozzle exit and a 

droplet size distribution is described by mathematical functions. The measurements are 

difficult at the nozzle exit of the high-pressure sprays, hence, the droplet distribution should 

be assumed and iteratively adjusted until the far field droplets match with the measured 

drops. This approach is not a detailed modeling of the primary breakup, but can be an 

alternative for the mono-disperse injection of the blob method. 

2.1.3 Turbulence-Induced Breakup 

A phenomenological model of the turbulence induced atomization for diesel sprays 

was proposed by Huh and Gosman (1991). This model was also used to predict the primary 

spray cone angle. In this model the initial surface perturbations are created due to the 

turbulent forces within the liquid emerging from the nozzle and they grow exponentially due 

to the aerodynamic forces to form new droplets. The turbulent length scale determines the 

wavelength of the most unstable surface wave. The model is initiated with the injection of the 

spherical droplets of the diameter of the nozzle hole diameter. The surface waves grow due to 

the relative velocity between gas and drop. The drop breaks up with a characteristic 

atomization length scale 
AL  and the time scale

Aτ . The characteristic atomization length 

scale 
AL  is given by 

A 1 t 2 wL = C L = C L      (2.1)  
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where 
tL  is the turbulent length scale, 

1 2C = 2.0, C = 0.5 , and 
wL  is the wavelength of 

surface perturbations determined by turbulence. The characteristic time scale
Aτ is a linear 

combination of the turbulence time scale 
tτ  and the wave growth time scale

wτ , 

A 3 t 4 w spontaneous exponentialτ = C τ + C τ = τ + τ   (2.2)  

where 
3 4C = 1.2  and  C = 0.5  (Huh et al., 1998).  This model also predicts the spray cone 

angle. The effects of cavitation are not included and the turbulence at the nozzle exit 

influence the primary spray break-up. This model is limited to non-cavitating flows. 

2.1.4 Cavitation-Induced Breakup   

A primary breakup model for diesel sprays that considers cavitation, turbulence, and 

aerodynamic was developed by Arcoumanis et al. (1997). This model assumes that the 

cavitation bubbles are transported to the blob surface by the liquid velocity inside the nozzle 

and either burst on the surface or collapse. The characteristic time is calculated for both 

conditions and the smaller one causes the breakup of the droplet. The cavitation bubbles are 

lumped together into a single droplet whose surface area is equal to that of the sum of the 

droplets and the collapse time of the cavitation bubble depends upon the radius of the bubble. 

The cavitation bubble which is bigger than the radius of the single bubble is used to estimate 

the atomization time from the Rayleigh theory (Brennen, 1995). 

2.1.4 Cavitation and Turbulence-Induced Break-Up 

A cavitation and turbulence-induced primary breakup model for diesel sprays were 

presented by Nishimura and Assanis (2000). The cavitation collapse bubble energy is taken 
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into account in this model. Cylindrical ligaments with diameter equal to the blob are injected 

and it contains bubbles depending upon the volume fraction and size distribution at the 

nozzle exit. The turbulent kinetic energy and the injection velocity are also provided by this 

model. The energy released from the bubble collapse will increase the turbulent kinetic 

energy. The reduction in volume during the collapse is given by the Rayleigh theory and 

isotropic turbulence is assumed in this model and the turbulent velocity inside the cylinder is 

calculated. 

2.1.5 Wave-Breakup Model 

The development of this model is based upon the growth of the surface disturbances 

on the liquid phase (Reitz, 1987). This model is widely applied in primary and secondary 

breakup modeling. The cylindrical jet that penetrates from the orifice is subject to a number 

of infinitesimal perturbations with amplitude of 
0η  and a spectrum of wavelengths λ  with 

wave number k = 2π λ . The disturbances are initially caused by the turbulence in the liquid 

and their amplitudes exponentially increase due to the liquid-gas interaction with a growth 

rate of  

r iω = ω + iω        (2.3)  

( ) [ ]( )0
η t = R η exp ikx +ωt       (2.4)  

Perturbations of different wavelengths will superimpose each other, but only the fastest 

growing perturbation by growth rate Ω  and wavelength Λ will lead to breakup. The 
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simplified expressions for the maximum growth rate Ω  and corresponding wavelength Λ are 

obtained from Reitz (1987). 

( )( )
( )

0.5 0.7

0.6
1.67

g

1+ 0.45Z 1+ 0.4TΛ
= 9.02

a 1+ 0.87We
    (2.5)  

( )( )

0.5 1.53
gl

0.6

0.34 + 0.38Weρ a
Ω =

σ 1+ Z 1+1.4T

 
 
 

             (2.6)  

0.5 2
0.5l l
g l l

l l

We ρ U a Ua
Z = , T = ZWe , We = ,Re =

Re σ υ
 

In order to estimate the sizes of droplets formed by breakup, it is often assumed that there is a 

linear dependence between the droplet radius 
dr  and the most unstable surface disturbanceΛ  

2.1.6 Taylor Analogy Breakup Model 

The Taylor Analogy Breakup model assumes that droplet distortion can be described 

as a forced, damped, harmonic oscillation. The oscillating drop that penetrates into a gaseous 

environment is similar to the spring-mass system. The force initiating the oscillation of the 

mass will correspond to the aerodynamic force distorting the droplet. The restoring force in 

the spring-mass system is similar to the surface tension force in the droplet. The damping 

force will correspond to the friction force inside the droplet due to the dynamic viscosity of 

the liquid. An equation for droplet distribution will be solved analytically for the time-

dependent distortion amplitude. The breakup occurs if the distortion parameter exceeds unity. 
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2.1.7 Kelvin-Helmholtz Breakup Model 

The wave breakup theory that describes the development of Kelvin-Helmholtz 

instabilities was applied to the secondary breakup modeling of droplets by Reitz (1987). The 

breakup time was given by 

bu 1

r
τ = 3.726B

ΛΩ
    (2.7)  

The wavelength Λ and wave growth rate Ω  of the most unstable surface waves are given by 

Eq. 2.10 and Eq. 2.11. r is the parent droplet radius equivalent to the jet radius a . The 

Kelvin-Helmholtz breakup model also predicts a normal velocity component of the 

secondary droplets after breakup. However, it should be noted that there is considerable 

uncertainty about the value of
1B . The value of 

1B may need to be adjusted to different initial 

disturbances levels of the droplets and  in literature the value ranging from 1.73 up to 30. The 

Kelvin-Helmholtz breakup model results in a bimodal droplet size distribution with small 

droplets shearing off from the parent droplet and the larger droplets remaining on the original 

parent droplet. 

2.1.8 Rayleigh-Taylor Breakup Model 

Taylor (1963) investigated the stability of liquid-gas interfaces when accelerated in 

normal direction to the plane, and the Rayleigh-Taylor breakup model is based on these 

theoretical considerations. The interface is stable when acceleration and density gradient 

point to the same direction and Rayleigh-Taylor instabilities can develop if the fluid 

acceleration has an opposite direction to the density gradient. Instabilities may grow unstable 
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at the trailing edge of the droplet when a liquid droplet decelerated by drags forces in a gas 

phase. The acceleration and deceleration of a droplet is due to drag forces 

2

g rel

D

l

ρ v3
F = C

8 ρ r

�
    (2.8)  

where 
rel

v  the relative velocity between droplet and gas, and r is the droplet radius.  The 

frequency and wavelength of the fastest growing waves are 

( )
1 4

l g2 F F ρ -ρ
Ω = ×

3 3σ

 
 
  

� �

    (2.9)  

( )l g

3σ
Λ = 2π   

F ρ -ρ
�      (2.10)  

The acceleration causes the rapid growth of Rayleigh-Taylor instabilities and the surface 

tension counteracts the breakup mechanism. The breakup time found as the reciprocal of the 

frequency of the fastest growing wave as 

-1

but = Ω       (2.11)  

The Rayleigh-Taylor breakup model is usually applied to describe the secondary droplet 

breakup and Kelvin-Helmholtz model describe stripping breakup. The Kelvin-Helmholtz and 

Rayleigh-Taylor are implemented in a competing manner. The droplets breakup mechanism 

that predicts a shorter breakup mechanism are used as breakup mechanism. 
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2.3 Combustion Models 

The diesel engine in-cylinder combustion process is a complicated process and has to be 

studied using computational models with proper attention to spray development, 

vaporization, mixture formation and combustion process. The development and application 

of engine CFD models have become increasingly important and effective in analyzing the 

complex diesel combustion process involved. Diesel combustion models are mainly 

classified into two groups, thermodynamic and multidimensional models. The 

thermodynamic models are concerned with energy conversion and are mainly used to 

calculate heat release rate based on a given pressure history. The multidimensional models 

intend to describe the real engine process by considering spatial variation of flow field, 

temperature, composition, pressure and turbulence within the combustion chamber and are 

more informative about combustion phenomena. The physics and chemistry involved in 

combustion process of diesel engine is one of the most challenging in modeling diesel 

combustion. In diesel engines, the process shortly after ignition is believed to be premixed 

burning and the subsequent process is thought to be mixing-controlled combustion process 

and is characterized as diffusion burning. Hence, the modeling of combustion needs take 

account of both the premixed and diffusion burn. 

The combustion of simple hydrocarbons such as methane is subject to very complex 

reaction mechanisms and involves numerous species and reactions. For example, Frenklach 

et al. (1992) has proposed a methane combustion scheme consisting of 149 reactions and 33 

chemical species. The long hydrocarbons used in diesel engines have even more complicated 

reaction mechanisms and are computationally costly to solve. It is important to create 
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reduced mechanisms with smaller number of species and reactions that are able to describe 

the combustion characteristics to a reasonable level of details. The global single-step 

mechanism gives a rough estimate of the heat release rate, but does not give details about the 

intermediate species formation and oxidation. Multi-step mechanisms can give details about 

these intermediate species and rate-controlling reaction steps.  

Different flame regimes can be identified depending on the mixture state and the 

interactions between chemistry and turbulence. The flames can be mainly distinguished into 

two types, premixed and diffusion, depending on the mixing of fuel and oxidizer 

homogenously prior to combustion or mixing during the combustion. 

 

Figure 2.2 Flame types in combustion engines (Stiesch, 2004)   

In an engine combustion chamber, the gas flow turbulent and Fig. 2.4 shows relative 

applications in which the respective combustion types can be observed.  The following is a 

review of ignition and combustion models which are used to simulate diesel combustion. 
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2.3.1 Single-step mechanism 

A single-step reaction expressed by an Arrhenius equation is assumed in this model 

and the production rate of the radical species becomes the reciprocal value of the formal 

ignition delay. The ignition delay is expressed as  

   ( )id id id2

1
τ = C exp E T

j×P
   (2.12)  

where 
idE is the activation temperature, T and P are temperature and pressure and j is the 

equivalence ratio. The increase of the ignition delay for an increasing temperature due to the 

degenerated chain branching reactions cannot be predicted with this single step method 

(Otto, et al., 1998). 

2.3.2 Shell Model 

The Auto ignition Shell model originally developed by Halstead et al. (1977) for 

spark ignition engines was adjusted and applied to model diesel ignition (Kong, et al., 1995). 

This model is the most widely used ignition model in engine modeling. It consists of eight 

reaction steps between five species to simulate the ignition behavior of hydrocarbon-air 

mixtures. The model considers multistage ignition and cool flame phenomena using the 

following reactions. 

qk *

2RH  +  O   2R→     (2.13)  

    pk* *R     R  + P + Heat→     (2.14)  

1 pf k* *R   R  + B→      (2.15)  
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    4 pf k* *R   R  + Q→      (2.16)  

2 pf k* *R  + Q  R  + Β→     (2.17)  

bk *B  2R→       (2.18)  

3 pf k*R    termination→     (2.19)  

tk*2R   termination→     (2.20)  

RH indicates fuel, *R  is the generalized radical, B is the branching agent, and P denotes 

oxidized products. The species concentration can be solved numerically by integrating 

differential equations. The rate of change of the intermediate species, oxygen and fuel are 

[ ][ ] [ ]
*

2
* *

q 2 b 3 p t

d R
= 2k RH O + 2k B - f k R - k R

dt

           (2.21)  

[ ]
[ ] [ ]* *

1 p 2 p b

d B
= f k R + f k R Q - k B

dt
          (2.22)  

[ ]
[ ]* *

4 p 2 p

d Q
= f k R - f k R Q

dt
           (2.23)  

[ ]2 *

p

d O
= -pk R

dt
         (2.24)  

[ ] [ ] [ ]
[ ]

2 2 (t=0)

t=0

O - Od RH
= + RH

dt p× m
    (2.25)  
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where m is related to the number of hydrogen atoms in the fuel 
n 2mC H  and p is calculated 

from 

( )n 2 - γ + m
p = .

2m
     (2.26)  

The Shell model can predict the negative temperature coefficient observed in auto ignition 

phenomena under engine-like conditions.  

 

2.3.3 The Characteristic Time Scale Model 

The laminar and turbulent characteristic time scale model has been used to model 

combustion in diesel engines (Kong et al. 1995). The change in species density in terms of 

characteristic time scale and actual and equilibrium mixture compositions are 

eq eq

i i i i i

c l i

dρ ρ -ρ ρ -ρ
= - = - .

dt τ τ + fτ
    (2.27)  

The delay factor f  and r as a function of local composition is given below 

( )-rf = 1- e 0.632      (2.28)  

2 2 2

2

CO H O CO H

N

Y + Y + Y + Y
r =

1- Y
    (2.29)  

The parameter r value varies from zero to unity for unburned and completely burned mixture. 

The delay factor f  also varies from zero and unity. The turbulence driven microscale mixing 
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becomes more important compared to the chemistry effects as the combustion propagates. 

The laminar and turbulent time scale for diesel fuel is given as  

[ ] [ ] ( )
0.75 -1.5-1

l 14 30 2 A
τ = A C H O exp E RT    (2.30)  

tτ = 0.142× k ε .       (2.31)  

The pre-exponential constant and the activation energy are 8A = 7.68×10  and 

AE = 77.3KJ mol ,
 
respectively. The characteristic time scale combustion model has been 

applied in many studies of diesel engine combustion. The time scale combustion model is 

better suited to describe non-premixed combustion. The turbulent mixing of reactants is 

primarily governed by the dissipation of the large scale eddies in diesel combustion. 

2.3.4 Flamelet Models  

In the flamelet approach, substantial fraction of chemical reactions is assumed to take 

place in the thin layers and is locally treated as laminar reaction sheets (Peters, N., 1984 and 

Peters, N., 1986). This is justified as the chemical time scales are typically short compared to 

diffusion and convection time scales. The turbulent flame brush is viewed as an average of 

numerous laminar flamelets subject to the statistical probability distribution similar to the 

turbulent fluctuations of the flow field. In these thin laminar flamelets, combustion can be 

treated as a process that depends only on the mixing between fuel and oxidizer. The mixture 

fraction Z is the ratio of the fuel mass flow rate to the total mass flow rate. 

fuel

fuel oxidizer

m
Z =

m + m

�

� �
     (2.32)  



20 

 

 

The mixture fraction is not affected by combustion but only by mixing. In this 

approach, the change in species density due to chemical reactions is solved one 

dimensionally as a function of mixture fraction only. The results of these calculations can be 

stored in lookup tables and can be made readily available when the actual CFD calculation is 

performed. The chemistry has to be solved only once for a set of flamelet boundary 

condition, hence complicated chemical mechanisms can be used without the penalty of 

computational cost. 

The effects of turbulent fluctuations on combustion are accounted for by weighing the 

one-dimensional flamelet results with the probability that the flamelet is found in a 

computational cell. The integration of these weighted flamelet solution is executed over all 

possible flamelets to obtain the overall solution for the new composition within each CFD 

grid cell, where 
iY� indicates the Favre-averaged mass fraction of species i in a grid cell in the 

following given equation. 

( ) ( )
1

i i

0

Y = P Z × Y Z .dZ∫�      (2.33)  

Flamelet models can provide a platform for implementing the detailed chemical mechanisms 

with less computational resources than other models for non-premixed combustion. 

2.4 Dynamic Mesh Refinement 

The engine sprays in internal combustion engines are widely modeled by the Lagrangian 

and Eulerian approach, and the gas phase in the modeling are described using the Eulerian 

approach. The numerical solution of the Navier-Stokes equations may become more accurate 
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if the grid is refined, due to the way the differential equations are discretized and the 

differential coefficients are approximated. To achieve accurate results, the grid resolution 

needs to be fine enough to resolve the physical scales of the problem. The liquid phase is 

modeled by Lagrangian approach and the grid resolution also effects the Lagrangian liquid 

phase description. If the Eulerian field is not properly computed in the vicinity of the liquid 

phase, diffusion may be over-estimated and can lead to inaccurate results. The reduction of 

the grid size for the Eulerian phase to very small may cause a limitation on the Lagrangian 

liquid phase description, because it is based on the assumption of a large void fraction within 

a cell. In contrast, the coarse grid size for the Eulerian phase can predict an incorrect gas-

droplet momentum exchange. The dynamic mesh refinement adapted to spray is an 

appropriate option to partially alleviate the grid resolution problem. The adaptive methods 

are generally characterized as r-refinement, h-refinement and p-refinement. 

2.4.1 r-refinement 

In r-refinement a fixed-topology mesh is concentrated in regions where enrichment 

indicators are high. This enrichment criterion is a weighting function, which is large where a 

high grid resolution is required and small elsewhere. This function would lead to low node 

density where solution variation is small and increased node density where the variation is 

large. The standard weighting function could be a primitive variable, a derived quantity or 

any identifiable characteristic of the solution that needs increased resolution. Once the 

weighting function is found, it should be considered to be a mass associated with each mesh 

node. This information can be used to reallocate the mesh nodes in a direction toward the 
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center of mass for a local collection of cells. Then the mesh node reallocation is done and the 

solution redistribution occurs in the computational space. 

The main advantage of this refinement is that dynamic and automatic adaptation for 

both steady and unsteady solution can be found with constant computational resources. It can 

also adapt to many features simultaneously and tend to align mesh with strong features of the 

solutions with efficient use of mesh nodes. The disadvantages include that surface geometry 

is not preserved as nodes translate on the surface and errors may increase when cell surface 

movement is more than one local cell dimension.  

2.4.2 p-refinement 

In p-refinement the order of numerical approximation is varied locally. In this 

refinement the initial mesh is kept the same and there is a selective increase in the order of 

the polynomial. One of the most important advantages of p-refinement is the ability to 

produce the exponential decay of the dicretization errors for sufficiently smooth solutions. 

The effectiveness of p-refinement also depends on the number of elements and its uniformity, 

the form of geometric singularities and the discontinuities in boundary conditions. These 

factors degrade convergence because they propagate into the high-order components of the 

solution that would otherwise be exponentially small. To circumvent this problem with p-

refinement, it often selects a fixed good mesh, i.e., one that is sufficiently refined near 

potential singularities. Thus, these troubling factors can be isolated and the error can be 

decreased exponentially. The fast convergence of p-refinement is achieved at the expense of 

significantly increased computational cost.  
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2.4.3 h-refinement 

The h-refinement method is to add more nodes in regions where a higher accuracy is 

desired. In this refinement either mesh is refined or coarsened by adding or removing cells. 

With h-refinement it is possible to reduce the error in the domain by selectively increasing 

the number of nodes. The h-refinement is both used in Cartesian mesh and unstructured 

mesh.   

One can decrease error in the solution on a computational mesh by increasing the 

number of nodes in the mesh. It has been shown that the error decreases when the number of 

nodes is increased in a regular mesh. However, in the case of an irregular mesh, the addition 

of nodes must be selective, since the distribution is not less important than the number of 

nodes. It is interesting to note that not only number, but location of nodes influences finite 

difference operator quality and that is recommended to use good quality clouds of nodes. At 

the same time it is necessary to realize increasing the number of nodes may decrease the 

solution error, but it does not change precision of finite difference operators. In order to 

avoid ill-conditioning clouds, a limit for the distance between nodes is used as a second 

parameter minimum distance such that if the distance between the new node and any node of 

the domain is smaller than this minimum distance, the new node should not be added. This 

minimum distance is an important parameter involved for the control of the h-refinement 

procedure and it is given as the maximum distance between all the nodes of the mesh, 

multiplied by a positive parameter. 
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h-refinement does not have all the disadvantages mentioned in the other types of 

refinement and is flexible to apply to a multi-dimensional CFD code. It is also less difficult 

to implement the h-refinement and use it with sub-models in a multi-dimensional CFD code. 
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CHAPTER 3. UNIFIED SPRAY MODEL 

3.1 Introduction 

One of the key issues to simulating the direct-injection gasoline and diesel engines is 

the proper prediction of the fuel spray at the nozzle exit, primary breakup, secondary 

atomization, droplet collision, and the interaction of spray particles and gas. Advanced 

physical models and accurate numerical schemes are required. It is known that the prediction 

of the fuel spray is sensitive to the grid resolution. An adequate grid resolution is required to 

obtain accurate results, especially in the dense spray region where the velocity and species 

gradients are strong (Abraham, 1997; Berad et al., 2000; Hieber, 2001). 

Engine sprays are widely modeled by the Lagrangian-drop and Eulerian-fluid 

technique. The Lagrangian-Eulerian technique was based on the particle-fluid numerical 

model by Dukowicz (1980), also known as the stochastic parcel method. In this method, the 

spray was represented by collective computational parcels. Each computational parcel 

consisted of a number of droplets that were often assumed to have identical properties such 

as velocity, density, radius, temperature and position. On the other hand, there were other 

approaches based on an Eulerian-Eulerian formulation for spray (Wan and Peters, 1997; Von 

Berg et al., 2003; Blokkeel et al., 2004; Beck and Watkins, 2004). Blokkeel et al. (2004) 

formulated an Eulerian model to improve the primary breakup of the atomizing jet. This 

model used an Eulerian formulation for the spray close to the injector and a Lagrangian 

formulation for the remaining dilute spray. This model had numerous advantages but the 

implementation of other spray submodels based on this framework was relatively 
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cumbersome. The Eulerian-Eulerian formulation to describe the complicated diesel spray 

was also discussed by Baumgarten (2006). 

In the Lagrangian-Eulerian approach, the Eulerian mesh for the gas phase simulation 

needs to be adequate in order to avoid the mesh dependence. If the Eulerian field is not 

properly computed in the vicinity of the liquid phase, diffusion may be over-estimated and 

lead to inaccurate results. The reduction of the grid size for the Eulerian phase to very small 

may cause a limitation on the Lagrangian liquid phase description. The Lagrangian liquid 

phase description is based on the assumption of a large void fraction within a cell. The coarse 

grid size for the Eulerian phase can predict an incorrect gas-droplet momentum exchange. 

The momentum gain from the droplets is transferred uniformly to the cell, hence, fast 

diffusion of momentum will occur using a coarse grid and the predicted spray penetration 

will be reduced. On the other hand, a cell volume smaller than the actual area of influence of 

the droplet will cause the gas velocity to exceed the actual velocity, which in turn results in a 

longer spray penetration. The grid resolution can also affect the collision algorithm used in 

the model and further influence the simulation results (Schmidt and Rutland, 2000; 

Subramaniam, 1988; Beard, 2000; Hieber, 2001).  

The dynamic mesh refinement adapted to spray is an appropriate option to partially 

alleviate the grid resolution problem. A fine grid resolution is needed primarily in the spray 

region and the dynamic mesh refinement adapted to spray can increase the grid resolution in 

the spray region. Various adaptive mesh refinement algorithms were developed for numerous 

purposes (Bell et al., 1994; Biswas and Strawn, 1998; Jasak and Gosman, 2000). Nomura et 

al. (2001) used adaptive mesh refinement for direct-injection gasoline engine simulation. The 
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refinement was focused on a fixed region without the capability to refine the mesh 

dynamically. Lippert et al. (2005) used least-squares fitting for gas-to-liquid coupling and 

kernel smoothing for liquid-to-gas coupling based on dynamic mesh refinement to improve 

the efficiency of spray modeling. Local mesh refinement using h-refinement was also 

developed to improve the accuracy and computational efficiency of spray simulation (Xue et 

al. 2008; Xue and Kong, 2009).   

On the other hand, the accurate prediction of the spray dynamics requires the use of 

advanced spray submodels. The internal flow in the nozzle, especially for diesel injectors, 

may experience separation and cavitation that can enhance the turbulence level of the spray. 

The nozzle geometry and the flow characteristics inside the nozzle strongly affect the initial 

liquid jet conditions. Thus, a model to predict the nozzle flow is needed to provide the initial 

fuel spray conditions. Studies were performed to model the injection process by considering 

the detailed nozzle geometry and needle lift (Arcoumanis et al., 1997; Hountalas and 

Kouremenos, 1998). A nozzle model was also available to predict possible flow regimes for 

different injector geometries and injection conditions (Sarre et al., 1999).  

The fuel spray was usually modeled for primary breakup and secondary breakup 

separately. The initial droplets and ligaments formed from the liquid jet were modeled using 

the primary breakup model. Various models were available to simulate the primary breakup 

induced by aerodynamic, cavitation, or turbulence forces. The model by Reitz and Diwakar 

(1987) was a blob method that was based on the assumption that jet breakup and drop 

breakup near the nozzle were indistinguishable processes. Huh and Gosman (1991) and 

Arcoumanis et al. (1997) assumed that droplets were formed due to the surface perturbations 
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resulting from aerodynamic forces. Nishimura and Assanis (2000) presented a primary 

breakup model that considered the cavitation bubble collapse energy. Yi and Reitz (2003) 

proposed a 1-D model based on the surface wave growth to predict the primary breakup.  

The breakup of droplets and ligaments formed from the primary breakup were 

modeled using the secondary breakup model. O’Rourke and Amsden (1987) proposed a 

model based on the analogy between a forced oscillating spring-mass system and the drop 

deformation that resulted in breakup. Patterson and Reitz (1998) developed a hybrid Kelvin-

Helmholtz / Rayleigh-Taylor (KH/RT) model for diesel spray modeling. The KH model was 

based on the surface wave instability that induced the shearing-off of droplets, and the RT 

model was based on the instability resulting from the deceleration of the drops due to the 

relative velocity between the gas and liquid phases. Beale and Reitz (1999) also applied this 

model for gasoline spray simulation. 

This study implemented various spray submodels, including nozzle flow, primary 

breakup, and secondary breakup models, into an engine simulation code that was capable of 

performing dynamic mesh refinement. Note that traditionally gasoline sprays and diesel 

sprays were simulated using different models (Stiesch, 2004; Baumgarten, 2006). Even 

though the same model was used, different model constants were often required (Beale and 

Reitz, 1999; Kong et al., 1999). The present study used the same set of models and constants 

to simulate both gasoline and diesel sprays under different conditions. Additionally, the 

previously developed dynamic mesh refinement scheme was not validated using 

experimental spray data (Xue and Kong, 2009). In this study, the mesh refinement algorithm 
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was further improved and the resulting numerical model was validated using experimental 

spray data and was also applied to simulate sprays in realistic engine geometries. 

3.2 Model Formulation 

3.2.1 Base CFD Code 

The CFD code used in this study was KIVA-4 (Torres and Trujillo, 2006; Torres, 

2007). KIVA-4 solves the three-dimensional compressible Navier-Stokes equations and is 

capable of using unstructured meshes. KIVA-4 uses the Lagrangian-Eulerian methodology to 

simulate engine sprays. The original KIVA-4 (Torres and Trujillo, 2006) used a “staggered” 

approach, in which the velocity was assigned at the node while the remaining cell properties 

(density, temperature and pressure) are assigned at the cell center. Note that the version used 

in this study was based on the “collocated” approach that assigned all cell properties at the 

cell center, including the velocity (Torres, 2007). The collocated version of KIVA-4 was 

used for the development of dynamic mesh refinement to ease the use of an overly fine mesh 

(Xue and Kong, 2009). The collocation of velocity at the cell center had the advantage of 

prescribing velocity boundary conditions on the cell faces rather than at the nodes. The 

Lagrangian particles were coupled with cell-centered grid velocity in the spray term of the 

momentum equation. 

The representation of pressure and velocity at the cell center can cause unphysical 

pressure oscillations (Tsui and Pan, 2006). The Rhie-Chow technique was used to mitigate 

these oscillations when computing face velocities. The conservation equations were solved in 

three stages. In Stage 1, the spray and chemical source terms were updated, In Stage 2, 
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diffusion calculations are performed. The equations were solved using a SIMPLE algorithm 

implicitly and a conjugate residual method was used to solve the equations. The final stage 

was the rezoning (Eulerian) phase in which the flow field was frozen but cell vertices were 

moved to new positions and the flow field was rezoned on the new mesh. Further details 

about KIVA-4 can be found in Torres and Trujillo (2006). 

3.2.2 Dynamic Mesh Refinement Algorithm 

The schematic of mesh refinement is shown in Figure 3.1. The basic conservation 

equations for the development of dynamic mesh refinement can be found in Xue and Kong 

(2009). The implementation of dynamic mesh refinement in the collocated KIVA-4 required 

modifications in numerical schemes for the calculation of diffusive and convective fluxes and 

dynamic timestep adjustment. These changes are mainly due to the coarse-fine interface 

between the child and parent cells. This study differs from the previous work (Xue and Kong, 

2009) in improved algorithms for mesh refinement and enhanced numerical schemes to 

obtain the second-order accuracy for flux calculation, as discussed below.  

 

Figure 3.1 Schematic of the refinement and coarsening of cells.  

Parent cell Child cells

Refinement

Coarsening
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The diffusion flux terms with the form 
s

Q*dA∇∫  in the conservation equations are the area 

integrals over surfaces of cells, which can be calculated as the sum over the cell faces using a 

quadrature rule.     

        ( )
f

fs

Q d Q∇ ∗ ≈ ∇ ∗∑∫ f
A A          (3.1)  

( ) 12 1 2 34 3 4( ) ( ) ( )c c cnf
Q a Q Q a Q Q a Q Q∇ ∗ = − + − + −fA  (3.2)  

The subscript f represents the cell face, 
c cnQ ,  Q  are the cell-centered values of the cells 

connected to face f . 
1 2 3 4Q ,  Q ,  Q ,  Q  are the edge-centered values of the four edges 

bounding face f , as shown in Figure 3.2. These quantities are obtained by averaging the cell-

centered values of the cells connected to the edge. The geometric coefficients 
c 12a ,  a and 

34a

in Eq. (3.2) are computed by solving the equations 

c c cn 12 1 2 34 3 4 fa (x - x ) + a (x - x ) + a (x - x ) = A   (3.3)  
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Figure 3.2  Geometric arrangement of points to define the gradient of cell-centered 

quantity Q  on cell face f . 

where 
c cnx , x are the centers of the cells connected to face f  and 

1 2 3 4x , x , x , x are the centers 

of the four edges bounding face f . 
fA  is the face area vector of face f . If face f  is an 

interface between four child cells and one parent cell, the fluxes at the interface will be 

computed as 

( ) ( )
pf cf

c

Q Q∇ ∗ ≈ − ∇ ∗∑A A      (3.4)  

where pf  is the parent face, c  is the child cell faces, and cf  is the child face, as shown in  

 

Figure 3.3 Gradient calculation at the interface f  of the child cells and parent cell. 
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The viscous stress tensor 
s

σ*dA∫  in the momentum equations is approximated in the same 

way as in Eq. (3.1). 

f

fs

dAσ σ∗ ≈ ∗∑∫ f
A       (3.5)  

If face f is an interface between the parent cell and four child cells, the term in the left-hand 

side of Eq. (3.5) is approximated as 

( ) ( )
pf cf

c

σ σ∗ ≈ − ∗∑ .A A      (3.6)  

The term ( )
L

f
u ∗ A  is used to calculate the Lagrangian cell volume L

V  that appears in the 

pressure iteration. This term is also approximated in the same way as above for the coarse-

fine interface. 

( ) ( )
L L

pf cf
c

u u∗ ≈ − ∗∑A A      (3.7)  

When the mesh is moved with the fluid in the Lagrangian phase, the mesh is rezoned to the 

new location, which leads to the convective transport of the flow fields due to the relative 

movement of the mesh. The total computational timestep is explicitly sub-cycled. The 

number of the sub-cycles is the ratio of 
c

t t∆ ∆ , where t∆  is the main computational 

timestep and 
c

t∆  is the convective timestep that satisfies the Courant condition.  

At each sub-cycle the face volume change 
fVδ associated with cell face f  is 

calculated by considering the total face volume change from the Lagrangian position to the 
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final position after rezoning. The convective fluxes in the conservation equations are 

explicitly sub-cycled and the flux through a normal face into a cell is calculated as  

( ) ( )
1 1( )

s s s

f fc c
QV QV Q Vρ ρ ρ δ

− −= + ∗     (3.8)  

where ρ is the density, V is the volume, c is the cell considered, s is the current sub-cycle, 

1s −  represents the previous sub-cycle, and Q  represents the cell-centered quantity. ( )
f

Qρ  

is determined by using a quasi-second-order upwind (QSOU) scheme at each sub-cycle. If 

the face is a coarse-fine interface, Eq. (3.8) will change to 

( ) ( ) ( )
1 1s s s

fcp p fc
c

QV QV Q Vρ ρ ρ δ
− −

= − ∗∑    (3.9)  

where p represents the parent cell and c  is the number of child cell at the coarse-fine 

interface face. 

The criterion for adaptive refinement and coarsening was based on the sum of the 

mass of liquid and fuel vapor in a cell. The threshold was 1.0e-6 g above which a cell would 

be refined. This value was determined by a sensitivity analysis and was appropriate for 

engine spray simulation (Xue and Kong, 2009). 

3.2.3 Nozzle Flow Model 

A nozzle flow model provides initial spray conditions for the subsequent breakup 

simulation. In direct-injection gasoline and diesel engines, the injector nozzle geometry 

affects the fuel atomization and also influences engine combustion and emissions. The nozzle 

flow model (Sarre, et al., 1999) that can specify the initial fuel jet conditions was 
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implemented in this study. The conditions inside the nozzle can be estimated from the nozzle 

geometry (diameter d , r d  and l d ratio), injection pressure, and ambient pressure (
2p ). 

The model output includes discharge coefficient ( )
d

C , effective velocity ( )effU , average 

turbulent kinetic energy, spray angle, and initial drop size. The nozzle upstream pressure 

1( )p  can be initially estimated and will be modified depending on the type of flow inside the 

nozzle. 

The pressure at vena contracta is then computed and compared with the saturated 

vapor pressure ( )vaporp  to decide whether cavitation occurs in the nozzle. The values of 
1p ,

d
C  and 

effU  can be determined by the following relations.  

2

1
2

vapor venap p U
ρ

= + ∗          (3.10)  

1

1 2

vapor

d c

p p
C C

p p

−
= ∗

−
    (3.11)  

2 vapor

eff vena

l mean

p p
U U

Uρ

−
= −

∗
    (3.12)  

The nozzle contraction coefficient ( )
c

C  and velocity at the vena contracta ( )
vena

U  are 

determined by the nozzle geometry. The mean flow velocity ( )
mean

U  is calculated based on 

the flow rate and nominal nozzle area (Sarre, et al., 1999). 
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3.2.4 Primary Breakup Model  

The breakup of the liquid jet at the nozzle exit was modeled using a primary breakup 

model (Yi and Reitz, 2003) by which the secondary droplets were created. The model tracks 

the growth of the disturbance on the jet surface leading to the generation of droplets. The 

surface structure obtained from the model is decomposed into a combination of waves using 

a fast Fourier transform. Initially, a disturbance, which is a combination of waves due to the 

nozzle flow, is applied to the undistributed jet leaving the nozzle exit. The initial disturbance 

is represented as 

( ) ( )0

1

1
0, sin

n

i i i

i

R x R x
n

η ω ϕ
=

= + +∑    (3.13)  

( )0i ifη η λ= ∗     (3.14)  

where R  is the initial jet radius at axial position x . 
0R is the undisturbed jet radius, 

i
ϕ  is the 

phase of the 
th

i wave, n  is the number of waves. 
i

η  is the initial amplitude, 
0η  is the 

amplitude of the most probable wave with a wavelength 
0λ . ( )if λ  is the value of the 

normalized Gaussian distribution for the 
th

i wave, where ( )0 1f λ = . The tracking of the 

disturbance growth is accomplished using a 1-D model approach, 

2 2
R R u

t x

∂ ∂
= −

∂ ∂
      (3.15)  

2 2 2 2
22

gl
l

l

ppR u R u R u
R

t x x x x x
ν

ρ

∂ ∂∂ ∂ ∂ ∂ 
+ = − + +   

∂ ∂ ∂ ∂ ∂ ∂  
   (3.16)  
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where t  is time, x  is the axial coordinate with its positive direction pointing in the 

flow direction of the jet. ( ),R R t x=  and ( ),u u t x=  are the velocity and radius of the liquid 

jet, respectively, as a function of time and axial position, and 
l

ρ  and 
l

ν  are the density and 

viscosity of the liquid, respectively.  

The jet surface structure obtained from the model is divided into a breakup zone and a 

liquid core. Drops are stripped from the breakup zone after a breakup time is achieved and 

their number depends on the mass of liquid in the breakup zone. The jet surface area increase 

due to the unstable wave growth is compared with the surface area of the drops formed from 

the breakup zone to determine the time of breakup. The initial breakup time and the drop 

diameter are calculated by choosing
0 20 mλ µ= , 

0 00.01η λ= . Further details about the model 

can be found in Yi and Reitz (2003). 

3.2.5 Secondary Breakup Model 

The further breakup of already existing droplets into smaller droplets takes place 

subsequently and was simulated by a secondary breakup model. The breakup of droplets 

takes place due to the aerodynamic forces that are induced by the relative velocity between 

the droplet and the surrounding gas. In the model, unstable waves are allowed to grow on the 

droplet surface due to these aerodynamic forces leading to further atomization. The model 

used for the secondary breakup was the hybrid KH/RT model (Patterson and Reitz, 1998; 

Beale and Reitz, 1999). The KH model is based on a first-order linear analysis of the KH 

instabilities growing on the surface of a cylindrical jet (Reitz, 1987). This model was 
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previously applied to drop atomization modeling by monitoring the surface wave growth rate 

Ω  and wavelength Λ  (Reitz, 1987). Child droplets are formed when breakup criteria are met. 

The radius of the child drop '( )r   is proportional to the wavelength Λ  of the most 

unstable surface wave, 

'

0r B= ∗ Λ       (3.17)  

where 
0B =0.61 is a constant. The mass of the parent drop is reduced based on the mass 

conservation. The reduction of the radius of the parent drop depends on the initial size of the 

parent drop ( )r  and the breakup time τ . 

'
dr r r

dt τ

−
= −       (3.18)  

13.788
r

Bτ = ∗
Λ ∗Ω

     (3.19)  

The value of 
1B  is equal to 40 in this study. 

The RT model is based on the theory of Taylor (1963) on wave stability. The 

interface between the gas and liquid is unstable when the acceleration is directed into the gas 

and the unstable disturbances can grow with acceleration. Due to the deceleration of the drop 

due to the drag forces, unstable waves can grow on the backside of the drop and the 

disintegration of the drop will take place when a critical limit is achieved. The acceleration of 

the interface of the gas and the drop due to the drag force can be found as 
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r

ρ

ρ
=      (3.20)  

Where 
D

C  is the drag coefficient of the drop, 
rel

u  is the relative velocity between the gas and 

liquid drop, 
gρ  and 

l
ρ  are the gas density and liquid drop density, respectively. The linear 

stability analysis is used to find the growth rate Ω  and the corresponding wavelength Λ of 

the fastest growing wave (Patterson and Reitz, 1998). The new drop radius and the breakup 

timescale can be determined from 

' 3
*

2

C
r

Λ
=       (3.21)  

1
τ =

Ω
       (3.22)  

where 'r  the radius of the new drop and τ  is the breakup time. The model tracks the time of 

the individual drop since last breakup. When breakup time is reached, new drops are formed 

with radius 'r and the breakup time is reset to zero.  

In the secondary breakup region, both the KH and RT models are allowed to grow the 

unstable waves simultaneously. The disintegration of a drop will occur when one of the KH 

or RT models predicts breakup to occur.  

3.3 Results and Discussions 

The present model with dynamic mesh refinement was applied to simulate both gasoline 

and diesel sprays. The computational domain was a constant-volume cylindrical chamber 

with 100 mm in diameter and 100 mm in length, as shown in Figure 3.4. The average mesh 
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size was 5.0 mm before the refinement of the cells. Note that the base mesh was relatively 

coarse and the mesh would be refined in the spray region by the present mesh refinement 

algorithm. The experimental data used for gasoline spray validation included spray images 

and penetration data of a 10-hole gasoline injector that was used in direct-injection gasoline 

engines. The present model was also validated using the high-pressure diesel spray data 

obtained from high-pressure, high-temperature conditions in a constant-volume chamber 

Siebers (1998). The model was also used to simulate the gasoline sprays in realistic engine 

geometry. 

Liquid phase fuel penetration is one of the important issues with respect to optimizing in-

cylinder processes in diesel engines, especially for the direct-injection engines. Penetration of 

the liquid phase fuel is needed to promote fuel-air mixing, but can also lead to greater 

emissions if liquid fuel impinges and collects on the piston bowl. Hence, developing a better 

understanding of the parameters and processes that control the extent of the liquid-phase fuel 

in a diesel spray is important, both to the engine designer and to those developing multi-

dimensional computational models for use as engine design and optimization tools.   

 

Figure 3.4 Computational mesh of the cylindrical chamber for model validation. 
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3.3.1 Gasoline Spray Modeling 

The test conditions for gasoline spray experiments are listed in Table 3.1. Figure 3.5 

showed the computational mesh and drop and vapor distributions on a cut-plane. It can be 

seen that the spray penetrations varied with different mesh resolutions. Extensive studies on 

the present mesh refinement scheme have been documented (Xue and Kong, 2009). 

Therefore, this study will only present results using mesh refinement with the present spray 

models. 

Table 1 Conditions for the gasoline sprays. 

Fuel Gasoline  

Ambient gas pressure 1 bar to 5 bar 

Ambient gas density 1.15 to 5.8 3
kg m  

Ambient gas temperature 300 K 

Orifice diameter 130 µm 

Number of orifices 10 

Fuel temperature 300 K 

Injection pressure 60 bar to 120 bar 
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(a) 0.7 ms after spray injection  (b)  1.6 ms after spray injection 

 

Figure 3.5 Predicted drop and vapor distributions of the  gasoline spray. Injection pressure, 

back pressure, gas density, gas temperature and orifice diameter are 100 bar , 1 bar , 1.16 
3kg m , 300 K and 130 µm , respectively. 

  

Figure 3.6 showed the comparison of the experimental images and predicted drop 

distributions for injection pressure 100 bar and back pressure 1 bar, at 0.7 ms after injection. 

The simulation results were in good agreement with the experimental images. The predicted 

droplet distribution was also satisfactory. Figure 3.7 showed the comparison at 1.6 ms after 

injection with the same conditions. The spray structure was well predicted using the present 

model.  
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Figure 3.6 Experimental image and predicted spray structure of the gasoline spray at 0.7 

ms after injection. Injection pressure, back pressure, gas density, gas temperature and 

orifice diameter are 100 bar , 1 bar , 1.16 3kg m , 300 K  and 130 µm , respectively.  

 

 

Figure 3.7 Experimental image and predicted spray structure of the gasoline spray at 1.6 ms 

after injection. Injection pressure, back pressure, gas density, gas temperature and orifice 

diameter are 100 bar , 1 bar , 1.16 3kg m , 300 K  and 130 µm , respectively.  

 

The effects of back pressure on the penetration of gasoline sprays were also modeled 

and the results were compared with the experimental data, as shown in Figure 3.8. The 

injection pressure was maintained constant and the back pressure was varied. The predicted 

penetration decreased as the back pressure increased, as also observed in the experiments. 

The simulation results over-predicted the penetration for one bar case by about 20 percent 

and were within (+/-) 5 percent for the three and five bar cases. 
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Figure 3.8 Effects of back pressure on the liquid penetration history. Injection 

pressure, gas density, gas temperature and orifice diameter are 100 bar , 1.16-5.78 
3kg m , 300 K  and 130 µm , respectively.  

 

Predicted spray penetrations using different injection pressures were compared with 

experimental data as shown in Figure 3.9. As expected, liquid penetrations increased as the 

injection pressure increased. The model prediction of penetration was (+/-) 10 percent with 

the measurements. The model was able to predict the trend as well as the actual liquid 

penetration length. Overall speaking, the present primary atomization model and the hybrid 

KH/RT model with dynamic mesh refinement are able to predict the spray penetration and 

spray structure correctly. 
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Figure 3.9 Effects of injection pressure on the liquid penetration history. Back pressure, 

gas temperature and orifice diameter are 3 bar , 3.47 3kg m , 300 K  and 130 µm , 

respectively. 

 

3.3.2 Diesel Spray Modeling 

The model was further validated by comparing the simulation results with the 

experimental diesel spray data of Siebers (1998) under various conditions. The liquid length 

was the maximum axial penetration of the liquid phase fuel in an evaporating diesel spray. 

The parameters that were varied included the orifice diameter, fuel temperature, and ambient 

gas temperature and density. The conditions were given in Table 3.2.  
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Table 3.2 Conditions for the diesel spray. 

Fuel HMN (C16H34) 

Ambient gas density 3.3 to 60 3
kg m  

Ambient gas temperature 700 to 1300 K 

Fuel temperature 375 to 440 K 

Orifice diameter 100 to 500 �m 

Orifice pressure drop 130 to 150 MPa 

Number of orifices 1 

 

The effect of the ambient gas density on the liquid length is shown in Figure 3.10. 

Note that the liquid penetration reached a steady-state length due to the continuous 

vaporization of leading drops. The simulation results showed that the liquid length decreased 

with increased ambient gas density since it was more difficult for drops to penetrate in a 

high-density environment. The model results agreed with the experimental data and were (+/-

) 10 percent off the experimental results. The effect of ambient temperature on the liquid 

length was shown in Figure 3.11. Simulation results followed the general trend that the liquid 

length decreased with increased gas temperature due to high vaporization rate of liquid fuel 

in high-temperature environments.  
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Figure 3.10 Liquid length as a function of the ambient gas density. The injection 

pressure,  fuel temperature and orifice diameter are 136 MPa, 438 K and 246 µm , 

respectively. 

 

Figure 3.11 Liquid length as a function of ambient gas temperature. The injection 

pressure, fuel temperature and orifice diameter are 136 MPa, 438 K and 246 µm , 

respectively. 
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Figure 3.12 shows the variation of the liquid length with the orifice diameter. The 

liquid length increased linearly with an increase in the orifice diameter. This was because a 

small nozzle hole produced small drops that could atomize and vaporize more easily. 

Additionally, the large drops resulting from the large orifice had higher momentum to 

penetrate further into the combustion chamber. In the actual diesel engine application, a 

smaller orifice is preferred due to its capability to produce a better fuel-air mixing to reduce 

soot emissions (Pickett and Siebers, 2004). 

 

Figure 3.12 Liquid length as a function of orifice diameter. The injection pressure and 

fuel temperature are 135 MPa, and 438 µm , respectively. 

The effect of the fuel temperature on the liquid length was also modeled and the 

results were compared with the experimental data as shown in Figure 3.13. The decrease in 

the liquid length with increased fuel temperature was predicted correctly using the present 

model. A high fuel temperature would enhance vaporization and thus reduce the liquid 

penetration. However, the effects were not significant. 
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Figure 3.13 Liquid length as a function of fuel temperature. The injection pressure 

and orifice diameter are 135 MPa, and 246 µm , respectively. 

It should be noted that traditionally the gasoline spray and diesel spray are modeled 

using different breakup models (Kong et al., 1999). The model by O’Rourke and Amsden 

(1987) has been widely used for gasoline spray breakup simulation while the KH-RT model 

(Patterson and Reitz, 1998) was used for diesel spray modeling. The present study used an 

integrated nozzle flow model and primary and secondary breakup models to simulate both 

gasoline and diesel sprays. Model results were in good agreement with experimental data 

over a wide range of condition with adjustments in model constants. Additionally, the present 

dynamic mesh refinement allowed using a coarse base mesh for efficient computation.  
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3.3.3 Direct-Injection Gasoline Engine Modeling 

The present model was applied to simulate the in-cylinder spray process in a direct-

injection gasoline engine. The computational mesh was shown in Figure 3.14. The bore was 

103.75 mm and the stroke was 107.55 mm. A baseline coarse mesh on this geometry had 

approximately 80,000 cells and a further refined mesh would be computationally expensive. 

Thus, it was appropriate to use a coarse mesh with dynamic mesh refinement that could 

provide proper grid resolution in the spray region and avoid the use of an overly fine mesh. 

Note that this study focused on the application of dynamic mesh refinement and spray 

models. Benchmark studies on computer time using different mesh densities were not 

performed. The speed-up obtained due to use of AMR in comparison to the fine mesh was 

done by comparing two grids of spatial resolution 20 x 20 x 20 and 40 x 40 x 40. The speed-

up is based on the computer time of using the fine grid and defined as 

.
Computationaltime for globally fine mesh

Speed up
Computational time

− =
                

    
 

The AMR mesh shows a significant speed-up of nearly 5 times of the speed-up for solid-cone 

spray and 3 times of the speed-up for the hollow-cone spray. More details on the comparison 

of computer times using different meshes can be found in Xue and Kong (2009). 
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Figure 3.14 Computational mesh of the present gasoline engine. 

The engine operating conditions were given in Table 3.3. Figure 3.15 showed the 

liquid drop distribution on two different views at two different times. The mesh and fuel 

vapor mass fraction on a cut-plane were also shown. The cut-plane was across two fuel jets 

and through the center of the cylinder. It can be seen that locally fine mesh was generated in 

the spray region. The present spray model and mesh refinement algorithm were applied to 

simulate the direct-injection gasoline spray process successfully. Further analysis of mixture 

distributions and validation using experimental data will require future investigations. 

Table 3.3 Conditions for the present direct-injection gasoline engine. 

Bore and stroke (cm) 10.375 and 10.755 

Engine speed (rpm) 1000 

Fuel Gasoline  

Initial gas temperature and pressure 300 K and 1 bar 

Orifice diameter and fuel temperature 100 �m and 300 K 

Number of orifices 6 
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Computation duration 300 to 720 ATDC 

Start of injection 400 ATDC 

Injection duration 60 ATDC 

Injected fuel mass 0.060 g s  

Averaged injection velocity(cm/s) 13500 

Intake valve (open / closure) 370 / 608 ATDC 

Exhaust valve (open / closure) 106 / 372  ATDC 

 

 

(a) 420 ATDC              (b)  440 ATDC 

 

Figure 3.15 Predicted fuel drop distributions and fuel vapor mass fraction on two views at 

two  different times. The injection timing was 400 ATDC. The scale shown is the fuel 

mass fraction. 
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3.4 Summary 

This study implemented a nozzle flow model, a primary jet breakup model, and a 

secondary drop breakup model into the collocated version of KIVA-4 capable of performing 

dynamic mesh refinement. The model was validated using experimental data of low-pressure 

gasoline sprays and high-pressure diesel sprays. This study demonstrated that the present 

model with mesh refinement schemes can be successfully applied to engine spray simulation 

with satisfactory performance. The application of adaptive mesh refinement in modeling 

realistic engine geometries was also demonstrated in this study. The present mesh refinement 

scheme can allow the use of a coarse baseline mesh for computational efficiency.  
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CHAPTER 4. DIESEL COMBUSTION MODELING 

4.1 Introduction 

In direct-injection diesel engines, the spray combustion process is a non-stationary, 

three-dimensional, multi-phase process that takes place in high-temperature and high-

pressure environments. The development of multidimensional CFD-codes can help simulate 

this complex diesel combustion process and describe the real engine process by considering 

temporal and spatial variations of the flow field, temperature, and fuel-air composition in the 

combustion chamber. The use of engine CFD models to help understand the diesel 

combustion process has been extensive (Hergart et al., 1999; Kong et al., 2002; Kong et al., 

2003; Kong et al., 2007).  

Even the combustion of simple hydrocarbons, such as methane 
4(CH ),  is a complex 

reaction mechanism and involves numerous intermediate species. A popular single-

component surrogate for diesel fuel is n-heptane
7 16( )C H , which is large hydrocarbon, and 

the reaction mechanism becomes even more complicated. The detailed reaction mechanism 

of the n-heptane consists of hundreds of reactions and species (Baulch et al., 1992; Chevalier, 

1990). The application of these complex mechanisms to three-dimensional turbulent flows is 

not commonly used because of the excessive computational cost. Instead of these detailed 

mechanisms, reduced mechanisms with a few reactions and species can be a good alternative 

to reflect the combustion characteristics to a desired level of detail.  

The global single-step mechanisms allow rough estimations about integral reaction 

and heat release rates, but they cannot provide more detailed insights into the formation and 
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oxidation of intermediate species, which may be important for the formation of exhaust 

emissions. The quasi-global multi-step mechanisms can describe the oxidation of 

hydrocarbon fuels by a set of at least two or more global reactions. But these multi-step 

mechanisms must include the rate controlling reaction steps and characteristic intermediate 

species. The complex mechanisms can be reduced to simple mechanisms by identifying the 

rate controlling reactions and reducing it to a simpler and computationally more efficient 

quasi-global multi-step mechanism (Peters, 1993). It is also necessary to obtain the main 

reaction path by determining how much of certain species is formed by a specific reaction. 

Further simplification of the mechanisms can be obtained by assuming that several species 

are in partial equilibrium with each other because reactions between these species are 

extremely fast. This allows to directly solve for their concentrations, without the need of 

numerical integration of the differential equations describing the chemical kinetics. A 

prominent example for quasi-steadiness is the formation of the thermal nitrogen oxides.  

In CFD calculations of internal combustion engines, one- and two-step schemes are 

still widely used to model the combustion process. Nevertheless, a number of on turbulent 

combustion in IC engines have been executed based on detailed chemistry, and improved 

results compared to the simpler reaction mechanisms have been reported. There are different 

flame regimes depending on the mixture formation and the interaction between the chemistry 

and turbulence. The non-premixed flames are considered in diesel engines, where the mixing 

of fuel and air and combustion takes place simultaneously. This is also referred to as 

diffusion flame, Figure 2.2 indicates the engine-related applications where the respective 

combustion types can be observed. The different flame types of various engine concepts may 
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require different modeling approaches to appropriately describe the respective combustion 

phenomena. 

The ignition process is mainly classified into thermal and chemical explosions. The 

temperature change in thermal explosion is explained by the difference in the heat production 

by chemical reactions and the heat loss to the surroundings. The heat loss is approximated by 

the Newton’s law for convective heat exchange and the heat production is expressed by an 

Arrhenius equation for a single-step reaction from fuel to products. The heat production term 

increases exponentially with temperature and the heat loss changes linearly with temperature. 

The thermal explosion takes place depending upon the difference between the heat 

production and heat loss. On the other hand, chemical explosions depend on the reaction 

path. The associated heat release increases when there is an increase in the number of 

radicals in a system by chain branching reactions. The important steps involved are chain 

initiation (radicals are formed from stable molecules), chain propagation (radicals are 

conserved), chain branching (increase in the number of reactive species which cause the 

explosion), and chain termination. 

 In this chapter, the study implemented an ignition model to simulate the auto ignition 

of hydrocarbons and a combustion model to simulate the remaining combustion process. For 

modeling emissions, nitric oxide production is described by the extended Zel’dovich 

mechanism, and a two-step soot model was used to predict the soot emissions. The spray is 

modeled by the Lagrangian-drop and Eulerian-fluid technique. The fuel spray primary 

breakup, secondary atomization, droplet collision and the interaction of spray particles and 

gas are modeled using the spray model mentioned in Chapter3. Additionally, the dynamic 
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mesh refinement was used to reduce the computational cost and. The overall model was 

validated using experimental results of a constant-volume combustion chamber and realistic 

diesel engines.  

4.2 Model Formulation 

4.2.1 Base CFD Code 

 The ignition, combustion and emission models were implemented into a three-

dimensional CFD code KIVA-4 (Torres and Trujillo, 2006; Torres, 2007) that solves the 

compressible Navier-Stokes equations and have the capability of using both structured and 

unstructured meshes. The version of KIVA-4 used in this study is based on the “collocated” 

approach that assigned all cell properties at the cell center, including the velocity (Torres, 

2007). The dynamic mesh refinement to save the computational cost was also implemented 

into the code. The details about the CFD code and dynamic mesh refinement can be found in 

Chapter 3 and the related references. 

4.2.2 Ignition Model 

 The multistep Shell ignition model initially developed for the autoignition of 

hydrocarbon fuels at high pressures and temperatures by Halstead et al. (1977) and further 

extended to diesel combustion by Kong and Reitz (1993) was used for this study. This model 

also accounts for the “negative temperature” coefficient phenomena. The eight reaction steps 

between five species included in this ignition model are mentioned in Chapter 2 (Eq. 2.13 to 

2.20). The reaction (Eq. 2.13) represents the chain initiation, (Eq. 2.14 to 2.17) are chain 

propagation reactions, Eq. 2.18 is the chain branching step and finally, Eq. 2.19 and 2.20 are 
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the linear and quadratic terminations. The rate of change of the intermediate species are from 

Eq. 2.21 to 2.25. The rate coefficients used in the above mentioned equations are Arrhenius 

type, 

( )[ ] [ ]
1 1

1 1 1 2exp ,
x y

f f
f A E RT O RH = −    (4.1)  

( )2 2 2
exp ,

f f
f A E RT = −      (4.2)  

( )[ ] [ ]
3 3

3 3 3 2exp ,
x y

f f
f A E RT O RH = −    (4.3)  

( )[ ] [ ]
4 4

4 4 4 2exp ,
x y

f f
f A E RT O RH = −    (4.4)  

( )exp ,i i ik A E RT = −      (4.5)  

where index i stands for ( 1, 2,3, , )i Q B= , and 

[ ] [ ]

1

1 2 2 3

1 1 1
.pk

k O k k RH

−
 

= + + 
 

    (4.6)  

 The kinetic parameters used in the present Shell model for diesel ignition study, can 

be found in Kong et al. (1995). The model uses different values for the kinetic parameter for 

different fuels and has the capability of predicting the ignition delay and the dependence of 

the ignition delay on pressure, temperature and mixture stoichiometry with reasonable 

accuracy.  
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4.2.3 Combustion Model  

 In diesel spray combustion, once ignition occurs, the remaining combustion is 

thought to be mixing-controlled, and the interactions between turbulence and chemical 

reactions have to be considered. The combustion model used for this study is called laminar-

and-turbulent characteristic-time combustion model (Kong et al, 1995). This model was 

combined with the Shell ignition model to simulate the whole combustion process in a diesel 

engine. The criteria is to switch the between the models at 1000K. The Shell ignition model 

was used to simulate the low temperature chemistry when the local temperature is less than 

1000K. 

 The change in species density predicted by the combustion model, in terms of the 

characteristic time scale and the equilibrium composition, is given by   

     

eq eq

i i i i i

c l i

d

dt f

ρ ρ ρ ρ ρ

τ τ τ

− −
= − = −

+
    

(4.7)  

Where 
i

ρ the density of species i ,  
eq

iρ  is the local and instantaneous thermodynamic 

equilibrium of the density, and 
c

τ  is the characteristic time to achieve such equilibrium. The 

characteristic time is assumed to be same for all the species to predict the thermodynamic 

equilibrium temperature accurately. The characteristic time 
c

τ  is approximately formulated 

as the sum of a laminar time scale and a turbulent time scale 

.
c l t

fτ τ τ = +        (4.8)  
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Accordingly, the delay factor f  is a function of local composition r  , which indicates the 

local completeness of combustion and varies from zero to unity for unburned and completely 

burned mixture given by  

( )1 0.632r
f e

− = −       (4.9)  

2 2 2

2
1

CO H O CO H

N

Y Y Y Y
r

Y

+ + +
 = 

−
     (4.10)  

The delay factor f  also changes from zero to unity depending on the local conditions. The 

laminar timescale 
l

τ  is derived from the correlated one-step reaction rate and is found by 

assuming the equilibrium concentration of fuel equal to zero. The laminar time scale is given 

as  

[ ] [ ] ( )
0.75 1.51

14 30 2
exp

l A
A C H O E RTτ

−−=
   

(4.11)  

where the pre-exponential constant and the activation energy are given by 

87.68.10 77.3 ,AA and E kJ mol =    = respectively. The turbulent time scale 
t

τ  is proportional 

to the eddy turn-over time and depends upon the turbulent model used. The standard k ε−  

turbulence model is used for this study. 

0.142
t

kτ ε=        (4.12)  

The initiation of combustion relies on laminar chemistry and then turbulence influences the 

combustion gradually. The separate effects of laminar chemistry and turbulence are to use the 

appearance of products as an indicator of mixing following the initiation of combustion 
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events. The amount of heat release can be estimated based on the respective enthalpies of 

formation of the species involved i and the change rates of the various species densities 

�
0

,

1ch i
f i

i i

dQ d
h

dt dt MW

ρ
= −∑      (4.13)  

4.2.4 NOx Model 

The modeling of thermal nitric oxide (NO) is described by the extended Zel’dovich 

mechanism (Patterson et al., 1994; Kong et al., 1995). The extended Zel’dovich mechanism 

consists of the following equations (Bowman, 1995): 

1

1
2

f

b

k

k
O N NO N→ +  +←      (4.14)  

2

2
2

f

b

k

k
N O NO O→+   +←      (4.15)  

3

3

f

b

k

k
N OH NO H→+ +←      (4.16)  

The above equations are solved by assuming a steady state population of N and assuming Eq. 

4.17 in equilibrium 

4

4
2

f

b

k

k
O OH O H→+ +←      (4.17)  

Eq. 4.14 initiates the overall mechanism by production of nitrogen atoms and proceeds only 

at high temperatures. Considerable amount of thermal NO are produced in the hot products 

regions, where the gas temperatures are well above 2000 K. A single rate equation for NO 

can be written using the extended Zel’dovich mechanism as, 
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[ ]
[ ][ ]

[ ] [ ][ ]
[ ] [ ] [ ]( )

2

12 2 2

1 2

1 2 2 3

1
2

1
f

b f f

d NO NO K O N
k O N

dt k NO k O k OH

 − 
=  

+ +  

 (4.18)  

where ( ) ( )12 1 1 2 2f b f b
K k k k k= i  and 

2 2, ,N O O    and OH  are assumed to be in local 

thermodynamic equilibrium. The rate constants are given as: 

[ ] ( )13 3

1 7.6 10 exp 38000fk T cm mol s = × −     (4.19)

 ( )13 3

1 .6 10bk cm mol s = 1 ×       (4.20)

 [ ] ( )9 3

2 10 exp 3150fk T cm mol s = 6.4× −     (4.21)

 [ ] ( )9 3

2 10 exp 19500bk T cm mol s = 1.5× −     (4.22)

 ( )14 3

3 10fk cm mol s = 1.0×       (4.23)

 [ ] ( )14 3

3 10 exp 23650 .bk T cm mol s = 2.0× −     (4.24)  

The kinetic reaction rate of the equations shows close dependence with the temperature, 

hence, the NO prediction quantity is closely coupled to the prediction quality of the heat 

release profile. 

4.2.5 Soot Model  

 The soot formation is modeled by a two-step formation and oxidation model 

(Hiroyasu, 1989). Which is formulated by is kinetically controlled two step process written in 

a single step Arrhenius form. The rate of change of soot mass is equal to (Belardini et al., 

1992). 
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.
sfs so

dMdM dM

dt dt dt
= −      (4.25)  

The first term on the right-hand side of Eq.4.25 denotes the soot formation (Hiroyasu, 1989) 

given by  

,0.5

,
exp

sf s f

f f v

dM E
A m p

dt RT

 
= − 

 
   (4.26)  

where ,f v
m is the mass of vaporized fuel mass, p is the pressure in bar, f

A is equal to 450 

and ( )125000fE cal mol= . The second term on the right-hand side of Eq. 4.25 denote the 

soot oxidation (Nagle and Strickland-Constable, 1962) given by 

so c
s tot

s s

dM MW
M R

dt Dρ
=      (4.27)  

where 
c

MW  is the molecular weight of carbon, 
s

ρ  is the soot density 3(2 )g cm , 
s

D  is the 

soot diameter 6(3 10 )cm
−× , and 

tot
R  denotes the total soot oxidation rate given by 

( )2
2

2

1 .
1

A O

tot B O

z O

k p
R x k p x

k p

 
= + − 

+ 
    (4.28)  

Where 
2O

p  is the partial pressure of oxygen in atm, and x is the ratio of more reactive sites 

versus less reactive sites on the soot particle due to surface variation and is given by 

( )
2

2

.O

O T B

p
x

P k k
=

+
      (4.29)  

The rate constants used in Eq. 4.28 and 4.29 given by Nagle and Strickland are 
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20 exp( 30000 )
A

k RT= −      (4.30)

 
34.46 10 exp( 15200 )Bk RT= × −     (4.31)

 
51.51 10 exp( 97000 )Tk RT= × −      (4.32)

 21.3exp(4100 )
Z

k RT=      (4.33)  

The above soot mechanism has been widely used in many CFD combustion studies. The set 

of empirical parameters contained in the equations can be properly adjusted to specific 

engine conditions. 

4.3 Results and Discussion 

4.3.1 Sandia Constant-Volume Combustion Chamber 

The model was validated using experimental data obtained in the Sandia combustion 

chamber (Pickett and Siebers, 2004). These experiments were conducted in a constant-

volume combustion chamber under simulated diesel engine conditions. High-temperature and 

high-pressure environments were created by burning a specified premixed mixture before the 

start of fuel injection. The experimental conditions are given in Table 4.1.   

Table 4.1 Experimental conditions for Sandia combustion chamber. 

Fuel #2 Diesel 

Ambient gas density 7.3, 14.8, 30.0 3
kg m  

Ambient gas temperature 850 - 1300 K 

Fuel temperature 436 K 

Orifice diameter 100 �m 
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Orifice pressure drop 138 MPa 

Number of orifices 1 

Injection system Common-rail 

Injection profile Top-hat 

Discharge coefficient 0.80 

2
O  concentration 21% 

 

The computational domain for the simulations was a constant-volume cylindrical 

chamber with 100 mm in diameter and 100 mm in height, as show in Figure 3.3. The mesh 

size was 5 mm before cell refinement. The ambient temperature, pressure and species 

concentration are similar to those of the experimental conditions. 

 

(a) 1.4 ms ASI                      (b)  2.7ms ASI 

Figure 4.1 Predicted temperature distribution and fuel spray. The conditions are 
3

amb amb nozz ambP = 138 MPa, T = 900 K, d = 100 µm and ρ =14.8 kg m  . 
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The two images in Fig. 4.1 show the gas temperature distributions at different times after 

start of injection (ASI). The ignition location is where the flame is stabilized and it is also the 

flame lift-off location. The lift-off length is the distance from the fuel injection point to the 

initiation of the stabilized flame. The length decreases with increase in temperature. The 

images clearly show the lift-off location of the flame. The chemical reactions before the lift-

off location, where successive ignition events of the incoming fuel-air mixture occur, are 

significant in the stabilization of flame.  

 
       (a) Experimental PLII images              (b) Predicted soot mass fraction. 

Figure 4.2 Comparison of PLII images with the predicted soot mass-fractions. The plane 

shown is through the centre of the domain. The conditions are 
3

nozz inj ambd = 100 µm , P = 138 MPa, ρ = 14.8kg m .  

  The left image in Figure 4.2 shows the Planar laser-induced incandescence (PLII)  

images of soot along the thin plane of the fuel jet. The injector is located at the far left center 

of the images and the fuel is injected to the right. The right image of Figure 4.2 shows the 

simulation results of soot mass fraction distributions. The location of injector in the 

simulations are same as that in the experiments. The comparison of soot mass fraction 

KIVA4-AMR

3.50e-5

1.75e-5

0.00e-5
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distributions of PLII images and the simulations gives a reasonable match. However, the 

model predicted a shorter lift-off length. The experimental images and the simulations shows 

the increase in the lift-off length and decrease in soot production with decrease in ambient 

temperature.  

 

Figure 4.3 Comparison of temporal variation of PLII images with the predicted soot mass-

fractions. The plane shown is through the centre of the domain. The conditions are      
3

nozz inj amb ambd = 100 µm , P = 138 MPa, ρ = 14.8kg m , T = 1000K.  

 Figure 4.3 shows the comparison of the temporal variation of the soot mass 

distributions at different times after the start of injection. The models under-predicted the lift-

off length and over-predicted the soot mass fractions.  

KIVA4-AMR

Distance from the injector [mm] Distance from the injector [mm]

ASI

1.3 ms

1.7 ms

2.1 ms

2.5 ms

3.2 ms
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Figure 4.4 Comparison of measured time-averaged KL factors and predicted soot mass 

fraction, both experimental and predicted results are normalized. The results are for different 

ambient temperatures 950 K, 1000 K, 1100 Κ and 1200 K  at ASI 3.2 ms
3

nozz inj ambd = 100 µm , P = 138 MPa, ρ = 14.8kg m .  

 The KL factor is an indication of the optical thickness obtained from the laser-

extinction soot measurements (Pickett and Siebers, 2004). The KL factor is also proportional 

to the mass of soot along the line of sight of the extinction measurement, hence, it can be 

compared with integrated soot mass of the simulations along the same plane. The measured 

KL factors and integrated soot mass fractions of the simulations are normalized to give a 

good comparison. The four plots in Figure 4.4 shows the comparison of the axial distribution 

of measured KL factors and the predicted normalized soot mass fraction at ambient 

temperatures of 950 K, 1000 K, 1100 K and 1200 K. The simulation results follows the same 

trend as the measured KL factors but, were 10 to 20 percent over and under predicting at 

some points.  
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4.3.2 Caterpillar Heavy-Duty Diesel Engine 

    Further validation of the present model is performed on a heavy-duty diesel engine by 

simulating combustion and emissions processes. The computational mesh for the suimulation 

was shown in Figure 4.5. The experimental conditions and engine specifications are given in 

Table 4.2 and Table 4.3. 

 

Figure 4.5 Computational mesh of the Caterpillar engine 

 

Table 4.2 Experimental conditions. 

Engine load 

(%) 

High load (75) - Single 

injection 

High load (75) – Double 

injection 

Injection 

pressure 

(MPa) 

90 90 

Engine 

speed (rpm) 

1600 1600 

SOI -1, +2, +5 -7, -4, -1, +2, +5 

EGR (%) 0 0 
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Table 4.3 Caterpillar engine specifications. 

Bore X Stroke (mm) 137.2  X 165.1 

Connecting rod length (mm)                  261.6 

Displacement volume (L)                   2.44 

Compression ratio       15.1 

Number of nozzles         6 

Nozzle diameter (mm)      0.259 

Spray angle (degree)       27.5 

Piston crown Mexican hat 

Combustion chamber   Quiescent 

Swirl ratio         1.0 

Inlet air temperature (K)      361.40 

Inlet air pressure (bar)        2.08 

 

The experimental conditions used for model validation are high load cases with both single 

injection and double injections at different start of injection. The computational domain is a 

cylindrical mesh with an average cell size of 15, 5, 0.5 mm in the direction, respectively. 

Measured cylinder pressure and the heat release rate are compared with the predicted values. 

Figure 4.6, 4.7 and 4.8 show the measured and computed cylinder pressure and heat release 

rate data for single injection cases, and Figure 4.8 to 4.13 for double injection cases. The 

computed results are in good agreement with the measured data. The model over predicted 

the cylinder pressure about 5 percent that of the experimental data.  



71 

 

 

 

Figure 4.6 Comparison of cylinder pressure and heat release rate for high-load, single 

injection case for SOI = -1 ATDC. 

Figure 4.7 Comparison of cylinder pressure and heat release rate for high-load, single 

injection case for SOI = +2 ATDC. 
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Figure 4.8 Comparison of cylinder pressure and heat release rate for high-load, single 

injection case for SOI = +5 ATDC. 

Figure 4.9 Comparison of cylinder pressure and heat release rate for high-load, double 

injection case for SOI = -1 ATDC. 

Figure 4.10 Comparison of cylinder pressure and heat release rate for high-load, double 

injection case for SOI = -4 ATDC. 

0

1

2

3

4

5

6

7

8

9

-60 -40 -20 0 20 40 60

C
y

li
n

d
e

r
-P

r
e

s
s
r
e

 (
M

P
a

)

CAD (ATDC)

SOI=+5 ATDC (Single Injection) 

Simul

Exp

-50

50

150

250

350

450

550

-60 -40 -20 0 20 40 60

H
e

a
t
 R

e
le

a
s
e

 R
a

t
e

 (
J/

d
e

g
r
e

e
)

CAD (ATDC)

SOI=+5 ATDC (Single Injection)

simul

exp

0

1

2

3

4

5

6

7

8

9

10

-60 -40 -20 0 20 40 60

C
y
li

n
d

e
r
-P

r
e

s
s
r
e

 (
M

P
a

)

CAD (ATDC)

SOI=-1 ATDC (Double Injection) 

Simul

Exp

-50

0

50

100

150

200

250

300

350

-60 -40 -20 0 20 40 60

H
e

a
t
 R

e
le

a
s
e

 R
a

t
e

 (
J/

d
e

g
r
e

e
)

CAD (ATDC)

SOI=-1 ATDC (Double Injection)

simul

exp

0

2

4

6

8

10

12

-60 -40 -20 0 20 40 60

C
y

li
n

d
e

r
-P

r
e

s
s
r
e

 (
M

P
a

)

CAD (ATDC)

SOI=-4 ATDC (Double Injection) 

Simul

Exp

-50

0

50

100

150

200

250

300

350

400

450

-60 -40 -20 0 20 40 60

H
e

a
t
 R

e
le

a
s
e

 R
a

t
e

 (
J/

d
e

g
r
e

e
)

CAD (ATDC)

SOI=-4 ATDC (Double Injection)

simul

exp



73 

 

 

Figure 4.11 Comparison of cylinder pressure and heat release rate for high-load, double 

injection case for SOI = -7 ATDC. 

 

Figure 4.12 Comparison of cylinder pressure and heat release rate for high-load, double 

injection case for SOI = +2 ATDC. 
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Figure 4.13 Comparison of cylinder pressure and heat release rate for high-load, double-

injection case for SOI = +5 ATDC. 

The predicted soot and NOx emissions were also compared with the measured data. 

Figure 4.14 and 4.15 show the variation of NOx and soot emissions with respect to the start-

of-injection timing. In the case of NOx, the model is able to maintain the trend, but is over 

predicting the NOx emissions in the case of early SOI. There is good match of soot emissions 

between the measured and computed results. The NOx and soot prediction of the models 

were varying away from the experimental results by 5 to 30 percent.    

 

Figure 4.14 Comparision of NOx emissions with start of injection timing for the high-load 

double-injection cases.  
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Figure 4.15 Comparision of soot emissions with start of injection timing for the high-load 

double-injection cases.  

 

The computational results shown further are for SOI at -1 ATDC. The fuel drop distributions 

at 10 CAD after SOI is shown in Figure 4.16.  Figure 4.17 showed the temperature 

distribution on two different views at two different times. The cut-plane was across two fuel 

jets through the centre of the computational domain. Figure 4.18 showed the fuel vapor mass 

fraction distribution on the same cut-plane at two different times. 
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Figure 4.16 Fuel drop distributions at 10 CAD after SOI and the scale shows the droplet 

radius in mm. 

 

Figure 4.17 Temperature distributions on two views at two different times. 

(a) 10 ATDC

(b) 15 ATDC
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Figure 4.18 Fuel vapor mass fraction distributions on two views at two different times. 

 

4.4 Summary 

 This study implemented an ignition model, combustion model, soot model and 

thermal NOx model into the collocated version of KIVA-4 capable of performing dynamic 

mesh refinement. The model was validated using experimental data of  high-pressure diesel 

sprays in the Sandia combustion chamber. The PLII images of soot along the thin plane of 

the fuel jet were compared with the predicted soot mass fraction distributions. The model 

was also validated using the experimental results of a heavy-duty diesel engine, for in-

cylinder pressure, heat release rate, and Soot and NOx emissions. This study demonstarted 

that the present model with mesh refinement schemes can be used to predict the engine 

combustion and emission process with satisfactory performance. The present model based on 

(a) 10 ATDC

(a) 15 ATDC
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mesh refinement scheme allow one to use a coarse mesh to predict the combustion and 

emission process with reasonable accuracy and a slight increase in computational resources 

compared to those using the coarse mesh.  
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CHAPTER 5. CONCLUSIONS 

5.1 Conclusions 

 The collocated version of KIVA-4 capable of performing dynamic mesh refinement 

was improved further by implementing the spray and combustion models. The unified spray 

model, which is a combination of a nozzle flow model, a primary jet breakup model, and a 

secondary breakup model, was used to simulate both the low-pressure gasoline sprays and 

high-pressure diesel sprays. The comparison of simulation results with experimental data 

indicated good levels of agreement in liquid penetration and spray structure under various 

operating conditions. The model predicted correctly the liquid penetration history of the 

present gasoline spray for different injection pressures and ambient pressures. In the diesel 

spray validation, the model was also able to capture the effects of various parameters on the 

liquid penetration including ambient gas temperature and density, injection pressure, fuel 

temperature, and nozzle diameter. 

 The chemistry model, which is a combination of an ignition model, laminar-and-

turbulent characteristic-time combustion model, and emission models, was used to simulate 

the combustion of diesel sprays. Initially, the model was validated by comparing the soot 

mass fraction distributions with PLII images of soot, and reasonable agreement was obtained. 

The comparison of measured KL factors and the integrated soot mass fractions of the 

simulations also gave a good level of agreement. The model was further validated by 

comparing the in-cylinder pressure and heat release data of a diesel engine. The model also 
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predicted the soot and NOx reasonably well when compared with the measured data. The 

present model and numerical schemes can further be applied to predict engine performance 

under new operating conditions and help with the engine design and development. 

5.2 Contributions 

 The development of a Unified spray model had been done, which can be applied to 

both low-pressure gasoline sprays and high-pressure diesel sprays. Traditionally, diesel and 

gasoline sprays are modeled with different models. The model consists of a nozzle flow 

model, primary breakup model, and secondary breakup to include all the sub process 

involved in spray atomization. Dynamic mesh refinement algorithm adapted to spray was 

also implemented in the model to reduce computational cost, which is a primary issue in 

modeling realistic engine geometries. The application of this model was also successfully 

implemented on realistic engine geometry. 

 An ignition, combustion, soot, and NOx model were also implemented in the Unified 

spray model to simulate the low and high temperature combustion chemistry in diesel 

engines. The model was also validated with the experimental conducted on a heavy-duty 

diesel engine. Finally, a model was developed which includes all the spray sub processes and 

combustion with dynamic mesh refinement to reduce the computational cost. 
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