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ABSTRACT 
Fast pyrolysis bio-oil, char and non-condensable gases were produced from a 8 kg/hr 

fluidized bed reactor.  The bio-oil was collected in a fractionating bio-oil collection 

system that produced multiple fractions of bio-oil.  This bio-oil was fractionated through 

two separate, but equally important, mechanisms within the collection system.  The 

aerosols and vapors were selectively collected by utilizing laminar flow conditions to 

prevent aerosol collection and electrostatic precipitators to collect the aerosols.  The 

vapors were successfully collected through a selective condensation process.  The 

combination of these two mechanisms has created the ability to effectively fractionate the 

bio-oil into distinct fractions with improved characteristics.  The fractions of bio-oil each 

contained different properties.  Bio-oil properties that were improved included the energy 

content, water content, acid content and distribution of certain carbohydrates 

(levoglucosan and acetic acid).  The improved properties that are associated with the 

fractionated bio-oil could allow bio-oil to be used in new markets, preferably without 

further upgrading.  The decreased water and acid contents in the first four (of five) 

fractions could allow for easier upgrading of the bio-oil into transportation fuels or other 

valuable products. 
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CHAPTER 1.  OVERVIEW 

1.1 Introduction 
Fractionated bio-oil collection is a method of bio-oil collection, produced through the fast 

pyrolysis of biomass, that has been used very sparingly in research and industry.  Most 

bio-oil collection systems that are currently in use purposefully collect only a single 

fraction.  This single fraction of bio-oil contains all of the water from the process as well 

as all of the over 300 compounds2 that are found in fast pyrolysis bio-oil.  This can lead 

to many problems, including low energy contents and bio-oil instability.   

 

The encompassing goal of fractionating bio-oil collection is to separate the bio-oil into 

distinct fractions that contain different families of compounds.  Each fraction has 

different properties that make that fraction unique.  For instance, one of the main goals of 

the system is to collect the vast majority of the water in the final fraction.  This will 

increase the energy content of the other fractions because of the lack of water in those 

fractions of bio-oil.  This system operates by making a distinction between vapors and 

aerosols as well as collecting the vapors based on the boiling point.  By collecting the 

vapors based on the boiling point, it is possible to separate the compounds that are found 

in the vapor phase into distinct fractions. 

1.1.1 Hypothesis 

Hypothesis: The separation of bio-oil components is possible through the utilization of 

cooling surfaces that have elevated temperatures that are analogous with the dew point of 

certain compounds.  

 

Discussion of hypothesis:  Each bio-oil component that is present in the vapor phase has 

a certain vapor pressure that is constantly changing.  If the vapor pressure of that 

component is lower than atmospheric pressure, then the dew point of that component will 

be lower than its boiling point at atmospheric pressure.  This phenomena is described 



2 
 

 
 

with the  Clausius-Clapeyron relationship.  Using this principle, this thesis will show that 

it is possible to collect bio-oil in distinct fractions, separating compounds like acetic acid, 

water and levoglucosan.   
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1. 2 Definition of Terms 
Fast Pyrolysis: A high temperature process that converts raw biomass into bio-oil, char 

and non-condensable gases.  This process takes place between 450 and 550oC in the lack 

of oxygen. 

Biomass: Mixture of cellulose, hemicelluloses, lignin and small amounts of minerals.  

Biomass can range from agricultural wastes (cornstover, bagasse) to energy crops 

(switchgrass, wood). 

Bio-oil: The liquid product from fast pyrolysis reactions.  Bio-oil is composed of up to 

3002 organic compounds that include anhydrosugars, phenolics, carboxylic acids, 

pyrolytic lignin, ketones, aldehydes and water.  

Char: Solid byproduct of fast pyrolysis.  Consists mainly of carbon, but can also contain 

other compounds including minerals and ash. 

Non-Condensable Gases: Gaseous product of fast pyrolysis reactions.  Contains 

hydrogen, carbon monoxide, carbon dioxide, methane and other light hydrocarbon gases. 

Cyclones: Solid-gas separation filters that utilize centrifugal forces to remove solid 

particulate from gas flow.  Most utilize a tangential entrance to force the gas to move 

around the outer walls at high velocities. 

Diffusion: The macroscopic result of random thermal motion on a microscopic scale.3  

Products are drawn from high concentrations to lower concentrations.  

Condensation: Physical change of state from a gaseous phase to a liquid.  The energy 

that is released during condensation is referred to as the enthalpy of vaporization.  

Electrostatic Precipitator (ESP): Filter that utilizes electrostatic forces to clean gases.  

Has the ability to remove either solid particulate or liquid aerosols.  Typical operating 

voltages: 15-40 kVDC.  

Heat Exchanger: Device designed to transfer heat from one medium to another.  

Requires a temperature gradient between mediums. 

Gas Chromotography:  Method for separating and analyzing organic compounds that 

can be detected in the gas phase without decomposition.  Can be used to analyze either 

gases or liquids. 
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GC-MS: A method that combines both gas chromatography and mass spectrometry.  

Used to analyze liquid samples to identify compounds that are present.  Can only detect 

compounds that can volatilize without degradation. 

GC-FID: A method that combines both gas chromatography and flame ionization 

detection.  Analyzes a sample by detecting the electrical current that is generated by the 

electrons that are generated from burning the carbon in said sample. 

Modified Acid Number (MAN): Amount of potassium hydroxide (KOH) that is 

required to neutralize the organic acids that are present in one gram of sample.  Typically 

used for petroleum, but recently gaining interest in bio-oil analysis.  This analysis is used 

to detect weak, carboxylic acids.   

Moisture Content: Amount of moisture, in weight percent, that is present in a sample. 

% Water Insolubles: Amount of water insoluble components, in weight percent, that are 

present in bio-oil after complete washing in water.  In bio-oil, these insolubles are 

thought to be products of the lignin and possible secondary reactions. 

Higher Heating Value: Amount of heat that is released when the product is combusted 

and returned to atmospheric temperature.  This value takes into account the latent heat of 

vaporization water which makes the higher heating value a strong function of moisture 

content. 

Solids: Solid particulate that escaped the solid-gas separation filter.  The solids found in 

bio-oil are typically considered char, ash and even some condensed organic residues can 

act as solids. 

Viscosity: Measure of resistance a fluid feels when it is being deformed through either 

shear forces or other forces. 
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CHAPTER 2.  REVIEW OF LITERATURE 

2.1 Introduction 
There is a large amount of literature available on general biomass fast pyrolysis and the 

associated reactors that are used, but there are very few articles that discuss the collection 

of bio-oil directly.  The concept of fractionated bio-oil collection is new, thus there is no 

literature to directly compare the results.  Comparisons will be made with whole bio-oil 

which is well documented from many biomasses. 

 

2.2 Fast Pyrolysis and Fast Pyrolysis Reactors 
Fast pyrolysis is the rapid thermal decomposition of carbonaceous organic matter in the 

absence of oxygen.  This process occurs at moderate temperatures (450-550oC) and in a 

very short amount of time (1-2 seconds).  Fast pyrolysis produces three main products 

which include char, bio-oil and non-condensable gases.  The amount of these products 

produced is dependent on many factors including reactor temperature, feed stock and 

residence time.  The best results for biomass occur when the reactor is operated in the 

temperature range of 450oC to 550oC, the reactor can provide high heating rates and there 

is a method of rapidly cooling the pyrolysis vapors after the char has been sufficiently 

removed.2  

 

Fast pyrolysis of biomass occurs in multiple steps.4  First, heat is transferred from the 

heat source to the biomass.  This causes an increase in temperature in the entire biomass 

particle.  The increase in temperature leads to primary pyrolysis reactions.  These 

reactions lead to the release of volatiles and the initial formation of char.  The flow of the 

volatiles out of the biomass particle results in heat transfer between the hot volatiles and 

liquids and the cool un-reacted biomass.  Finally, there are autocatalytic secondary 

reactions that are caused by the interaction of bio-oil vapors and liquids with the char that 

is produced.   
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Typical fast pyrolysis systems include a reactor, solid particulate removal and bio-oil 

collection system.  There are many reactor configurations currently available for fast 

pyrolysis.  These include bubbling fluidized bed, circulating fluidized bed, vacuum 

reactors, ablative reactors, auger reactors and free fall reactors.  All of these reactors have 

their benefits and pitfalls.  Each of these fast pyrolysis reactors are very distinct in their 

operating parameters and conversion techniques.  Bubbling fluidized beds offer high heat 

transfer rates, good mixing, good temperature control and good elutriation of char 

particles.  These factors make a bubbling fluidized bed a good reactor for fast pyrolysis.  

Many fast pyrolysis systems, both in industry and research, utilize fluidized beds because 

of their beneficial attributes and ease of operation.5-8   

 

Circulating fluidized beds use fluidization velocities that are sufficiently high enough to 

elutriate both the sand and char particles.9 This mixture of sand and char then enter a 

cyclone which removes all of the particulate from the gas flow.  The gases then proceed 

to a system to collect the bio-oil.  Typically, the char and sand are then sent to a separate 

reactor where the char is combusted, thus heating the sand.  The sand then is sent back 

into the pyrolysis reactor already preheated.  The circulating fluidized bed shares some of 

the same benefits as a bubbling fluidized bed, but has the added value of pre-heated sand.  

There are some disadvantages to using a circulating fluidized bed as well.  Circulating 

fluidized beds require large amounts of inert gases (nitrogen, CO2, etc.)  to act as a 

fluidizing gas.  This large amount of gas dilutes the vapors even further.  This dilution 

creates a higher amount of heat that must be removed from the product stream as the bio-

oil vapors are condensed.  Industrial companies who have utilized this technology include 

Ensyn and Dynamotive.9 

 

Vacuum reactors utilize a negative pressure (a vacuum) to remove the vapors from the 

reactor.  Vacuum pyrolysis uses relatively slower heating rates but utilizes the vacuum 

pressure to lower the vapor pressure of the products.  This removal of vapors keeps the 

vapor residence time similar to that of other fast pyrolysis reactors.  Vacuum pyrolysis 
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reactors typically only have a 60-65% liquid yield with higher yields of solid particulate. 
9, 10  These yields may be due to the lower heating rates found in vacuum pyrolysis. 

 

Ablative reactors utilize hot plates and large particle sizes to “melt” the biomass on the 

ablative plate.  This process requires both a large amount of force to be applied to the 

biomass as well as a large relative motion between the biomass and the heated surface.  

The bio-oil that is deposited on the plate is then evaporated and later condensed.  This 

process works very well with large particle sizes and is only limited on the amount of 

heat that can be applied to the rotating disc.  Some benefits to ablative reactors is a 

compact size and a lack of carrier gas.  The disadvantages include poor control and 

moving parts that are at an elevated temperature.11 

 

Auger reactors are a fairly new technology in the biomass pyrolysis industry.  Auger 

reactors, also referred to as mechanically fluidized beds, use either one or two auger 

configurations to mix and move hot sand and biomass particles.9  The biomass particles 

mix with the hot sand, causing the fast pyrolysis reactions.  Typically, very little or no 

carrier gas is used in the process.  These reactors could be very useful because of their 

small size, lack of fluidizing gas and a possible lower operating temperature.   

 

The free fall reactor that has recently gained interest in the research of fast pyrolysis.12  

This reactor utilizes radiant heat to quickly heat free falling particles of biomass.  The 

major benefit of this system is its simplicity and lack of moving parts.  There are 

questions that are associated with scale-up to commercial scale though. 
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2.3 Fluidized Bed and Cyclone Design 
Fluidized bed design is a well developed methodology that has been used for many 

applications.  Even though bubbling fluidized beds have been used quite frequently for 

the fast pyrolysis of biomass, there is not much information in the literature concerning 

the sizing of the fluidized bed for certain biomass feed rates.  For the fluidized bed fast 

pyrolysis reactor that was designed, the amount of heat required for fast pyrolysis was the 

determining factor when sizing the fluidized bed.  According to Daugaard13, the enthalpy 

of pyrolysis for cornstover was determined to be 1.35 MJ/kg (dry).  This design required 

an assumed convective heat transfer coefficient in the range of 100-250 W/m2-K.14  The 

final heat transfer coefficient was selected to be 150 W/m2-K.  This heat transfer 

coefficient is between the sand particles and the reactor walls.  Heat transfer between the 

bed media and a surface is dependent on the particle size as well as other fluidization 

characteristics.  Figure 1 depicts the relationship between particle diameter and the bed-

to-surface heat transfer coefficient.   

 

 
Figure 1 Heat Transfer from Fluidized Bed14 
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Fluidized bed design is based on the combination of bed media properties and fluidizing 

gas properties.  A bed of sand is fluidized when the forces due to gravity on the particles 

is equal to the drag forces generated by a fluid passing by the particle.  This balance has 

been studied extensively and is shown in an empirical formulation in Equation 1.14   

 

 Equation 1 

 

This equation for the minimum fluidization velocity (Umf) is a function of the fluid 

properties, the particle diameter and the Archimedes number (Ar).  The Archimedes 

number (Equation 2), is used to determine the motion of fluids due to differences in 

densities.  This can apply to solids that are within a fluid as well.   

 

 Equation 2 

 

Gas cyclones have long been used in industry for the removal of solids from a gas flow.  

The solids are removed from the flow through the application centripetal forces.  Gases 

enter the cyclone tangentially and are forced to flow around the outside, creating large 

centripetal forces that force the solid particulate towards the walls.  There are many 

methods of designing cyclones.  One method that is presented by L. Svarovsky14 makes a 

distinction between high flow and high efficiency.  The difference between these cyclone 

designs is the distance the gases have to travel within the cyclone as well as the inlet and 

outlet velocities.  Cyclone calculations can be seen in Appendix A.  It has been shown 

that a series of multiple cyclones will produce a better overall efficiency than a single 

cyclone.15 
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2.4 Condenser Technology 
One of the most important processes in fast pyrolysis, which is typically viewed as 

secondary compared to the reactor, is the bio-oil collection system.  To be able to use the 

bio-oil, you must be able to condense it from the vapor form in a reliable and fast 

manner.  If the vapors are left at high temperatures for a prolonged period of time, 

secondary reactions can occur.  These secondary reactions occur either when larger, 

heavier molecules break down into lighter molecules and eventually into a non-

condensable gas, or when bio-oil vapors react with char.   

 

Bio-oil collection has long been a challenge for fast pyrolysis researchers.  The product 

stream exiting a reactor is a combination of vapors, aerosols and polar molecules that are 

bonded to water vapor molecules.11  ESPs are commonly used to collect the aerosols 

droplets.5, 7, 11  There are problems that can occur with ESPs, including electrical arcing 

across the bio-oil.  Currently, there are a few different options available in the literature 

for bio-oil collection systems.  These bio-oil collection systems can be broken down into 

two main categories: spray towers and heat exchangers.  Large scale systems typically 

utilize quench systems that are designed specifically for the reactor that they service.  

Bridgwater11 summarized the use of heat exchangers by stating that slow cooling can lead 

to the preferential collection of lignin-derived components, but that can lead to blockages 

in the heat exchanger equipment due to the high viscosity of the lignin-derived 

components.  

 

A spray tower is a commonly used bio-oil collection system that many authors have 

presented in the literature.  These systems are presented in this section.  Spray tower or 

spray quench systems utilize a re-circulated spray of bio-oil to cool and collect all of the 

bio-oil at once.  An example of a spray quench system can be seen in Figure 2.  The 

already condensed bio-oil is sprayed in a countercurrent manner in a spray column.  

Westerhof et al.16 used two jacketed spray columns along with an intensive cooler to cool 

their gases and collect their bio-oil.  Shell Ondina 941 was used by Westerhof et al. as a 

start-up liquid for their spray tower.  This solvent was used because it had a low 
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solubility in bio-oil.  Zheng et al.17 used a similar system in their research of cotton stalk 

fast pyrolysis.  Their spray system featured a heat exchanger that had cool bio-oil sprayed 

over it from the top.  The bio-oil was initially collected by the spray and all of the bio-oil 

was cooled by the heat exchanger.  This allows the sprayed bio-oil to be cool in 

temperature when it is sprayed again. 

 

 
Figure 2 Spray Quench System 

 

Heat exchangers utilize a cool surface to cool the gases and condense the bio-oils.  This 

can be a very effective manner of cooling and collecting bio-oil for any size of system.  

Boateng et al.5 used a series of four identical impingers (see Figure 3) that were 

submersed in a water bath that was chilled by dry ice.  Boateng used a bench scale, 2.5 

kg/hr, fluidized bed fast pyrolysis reactor.   
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Figure 3 Example of Fluidized Bed with Impingers13 

 

Scott et al.8 utilized two separate water cooled condensers with their 3 kg/hr fluidized bed 

reactor.  The first condenser used water that could be kept at temperatures up to 100oC.  

The second condenser utilized a chilled water bath that was kept at 0oC to finish cooling 

the gases and oil product.  Lede et al.18 used a series of three water cooled heat 

exchangers with their 1 kg/hr cyclone fast pyrolysis reactor.  Each of these heat 

exchangers was approximately 0.5 meters long and had a diameter of 0.01 meters. Lede 

then used an air cooled condenser to cool and collect the last of the bio-oil.  Predel and 

Kaminsky7 utilized a slightly different configuration when cooling the bio-oil from their 

1-3 kg/hr fluidized bed fast pyrolysis system.  Predel and Kaminsky utilized an initial 

cooler followed by two electrostatic precipitators.  The ESPs were then followed by two 

more coolers.  Z. Luo et al.6 used a pipe bundle quencher to collect the bio-oil produced 

from their 3 kg/hr fluidized bed fast pyrolysis system.  Miao et al.19 used a hot water 

condenser followed by an ice water condenser to collect the bio-oil that was created in 
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their system.  Gerdes et al.20 designed a process development unit that utilized both a heat 

exchanger and an intensive cooler to cool and collect their bio-oil.  

 

One common theme that was found among all of the bio-oil collection systems that were 

found was that all of the bio-oil was either collected in one container or eventually mixed 

together.  The system that is used in this study fractionates the bio-oil as it is being 

collected.  Another commonality that can be found in most of these systems is an 

electrostatic precipitator.  ESPs are commonly used to collect the aerosol droplets that are 

present when the bio-oil vapors leave the fast pyrolysis reactor. 

 

Separating whole bio-oil (post condensation) into separate compounds or fractions can be 

a costly and difficult proposition.  Bio-oil is very sensitive to changes in temperature.  

Heating bio-oil can cause an array of reactions that include decomposition, 

polymerization and oxygenation.  These reactions cause difficulties when traditional 

distillation is attempted on whole bio-oil.  There is a high probability for coking and 

polymerization, which prevent full distillation from occurring.   

 

Recent research has shown that molecular distillation is possible at small scales.1, 21  

Molecular distillation has been historically used for purification of chemicals when there 

were concerns about thermosensitivity, usage of high molecular weight materials, high 

viscosity and high boiling points.  According to Wang et al.1 molecular distillation has 

historically been used in the following industries:  fine chemical, petrochemical, 

pharmaceutical, oil and grease, food processing and light industry.  Molecular distillation 

is a process where the bio-oil is heated to moderate temperatures (50-130oC) under a 

vacuum (10-60 Pa) in a thin film (1mm) on a plate.  A second cool plate is placed at a 

specified distance from the warm plate.  The distance between the plates is the distance a 

light molecular weight molecule can travel before colliding with another molecule.  This 

allows for purification compounds in complex mixtures like bio-oil. 
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Wang et al. and Guo et al. were able to separate bio-oil into three distinct fractions.  

These fractions were analyzed and the results are shown in Table 1 Results from 

Molecular Distillation (Adapted from Wang et al.)1.  Note the removal of water and acid 

from two of the fractions.  The water and acid is concentrated in the first fraction.  The 

second fraction was a dark-red liquid that was combustible with a low moisture content.  

The final fraction was a solid at room temperature and was high in carbon and 

levoglucosan.   

 

2.5 Biomass and Bio-oil Components 
Biomass is comprised of three main components that have a specific function integral to 

the life and survival of a plant material.  These components include cellulose, 

hemicelluloses and lignin. 

 

Cellulose 

Cellulose is a linear polymer comprised of β-(1-4)-D-glucopyranose units that are linked 

in the 4C1 conformation.9  The linear polymers make fibers that provide strength to plant 

material.  Wood, which is a strong material, is comprised of between 40-50% by weight 

of cellulose.  Cellulose has the propensity to form crystalline structures through hydrogen 

bonding, making it insoluble to normal solvents.  Cellulose decomposes at temperatures 

that range between 240-350oC.  The degradation of cellulose produces anhydrosugars 

including levoglucosan.  Figure 4 is an example of the cellobiose unit which is the 

building block for cellulose polymers. 

 
Figure 4 Cellulose Structure9 
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Hemicellulose 

Hemicellulose is a polymer that is comprised of five and six carbon sugars.  These sugars 

include glucose, mannose, galactose, xylose, arabinose and glucuronic acid.  These 

sugars form a polymer that can comprise between 25-35% by weight of the biomass.  

Thermal degradation of hemicellulose occurs between 200-260oC.  The thermal 

degradation of hemicellulose is thought to produce most of the acetic acid that is 

produced during the fast pyrolysis of wood.9  There is some levoglucosan that is 

produced during the fast pyrolysis of hemicellulose as well.  Figure 5 shows the six main 

components that comprise the hemicellulose polymer. 
 

 
Figure 5 Hemicellulose components9 

 

Lignin 

Lignin is the final major component of biomass.  Lignin can comprise between 16 and 

33% of woody biomass.  Lignin is an amorphous cross-linked resin that has no exact 

structure.9  Figure 6 is a partial lignin molecule from a hard wood.  Lignin is thermal 

decomposed at temperatures that span a wide range, from 280-500oC.  Lignin is specific 

to the biomass that is being pyrolyzed.22  Hardwoods have a significantly different lignin 

structure than cornstover, switchgrass or even softwoods.  Hardwoods typically favor the 

production of both guaiacols and syringols while softwoods typically favor only the 

production of guaiacols.22  Lignin is thought to be responsible for the bio-oil that is 

collected in the aerosol form.  Lignin is also responsible for the production of guaiacols 

and phenols from fast pyrolysis.23   
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There are many ways to break down the compounds and components of bio-oil.  It has 

been suggested in the literature that the GC/MS compounds can be broken down into 

major and minor carbohydrates, furans, phenols, guaiacols and syringols.22  Table 2 

denotes the breakdown of compounds that are in these groups.  Other major bio-oil 

constituents that can be documented include water content, solids content, water 

insoluble content and ash.   

 

 
Figure 6 Partial Lignin Molecule9 

 

 

 

 

 

 



18 
 

 
 

 

Table 2 GC/MS Compound Groupings22 

Major Carbohydrates 
 

Minor Carbohydrates 
 

Furans 

hydroxyacetaldehyde 
 

3-ethyl-2-hydroxy-2-
cyclopentenone 

 
2-acetylfuran 

hydroxypropanone 
 

acetoxyacetone 
 

5-methyl-2-furaldehyde 

acetic acid 
 

propionic acid 
 

2-furaldehyde 

levoglucosan 
 

2-methyl-2-cyclopentenone 
 

furantetrahydro-2,5-dimethoxy cis 

  
3-methyl-2-cyclopentenone 

 

furantetrahydro-2,5-dimethoxy 
trans 

  
1-hydroxy-2-butanone 

 
furfuryl alcohol 

  
formic acid 

 
2(5H)-furanone 

     
     Phenols 

 
Guaiacols 

 
Syringols 

phenol 
 

guaiacol 
 

syringol 

o-cresol 
 

4-acetoneguaiacol 
 

syringaldehyde 

p-cresol 
 

4-ethylguaiacol 
 

acetosyringone 

m-cresol 
 

4-methylguaiacol 
 

4-methylsyringol 

2-methyl-4-propylphenol 
 

isoeugenol cis 
  3,4-dimethylphenol  

 
isoeugenol trans 

  2,5 or 2,4-
dimethylphenol 

 
eugenol 

  2-ethylphenol 
 

vanillin 
  hydroquinone 

    
     Other GC/MS Detectable 

Compounds 
      1,2-Cyclopentanedione, 

3-methyl- 
     2-Propanone, 1-

(acetyloxy) 
     2H-Pyran-2-one 
     Acetol 
    Methanol 
     

 

 

  



19 
 

 
 

Acetic Acid 

Acetic acid is one of the simplest carboxylic acids.  It is a two carbon acid that has a 

molecular formula of C2H4O2.  Acetic acid is classified as a major carbohydrate, as 

shown in Table 2.  Acetic acid has a molecular weight of 60.05 grams/mol and a boiling 

point of 118.1oC at atmospheric pressure.  Current understanding shows that acetic acid is 

formed through the thermal degradation of hemicellulose, lignin and cellulose.9, 22, 24  

Figure 7 denotes the chemical structure of acetic acid. 

 
Figure 7 Acetic Acid Molecule25 

 

Levoglucosan 

1,6-anhydro-β-D-glycopyranose (commonly known as levoglucosan) is a product of the 

thermal degradation of cellulose.24  Levoglucosan is classified as a major carbohydrate as 

shown in Table 2.  The chemical formula is C6H10O2, with a molecular weight of 114 

grams/mol.  The chemical structure of levoglucosan can be seen in Figure 8.  When 

heated, levoglucosan proceeds through single phase change.  It has been shown that 

levoglucosan has a melting point of 113oC.26  As the temperature of levoglucosan is 

increased further, it degrades into smaller compounds before it reaches the boiling point.  

Suuberg has estimated that the true boiling point of levoglucosan is approximately 260oC 

with an enthalpy of vaporization of 120 kJ/mol.26  The enthalpy of vaporization was 

based on the Clausius-Clapeyron equation, which relates the enthalpy of vaporization to 

the boiling point at a give pressure. 

 
Figure 8 Levoglucosan Molecule27, 28 
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Formic Acid 

Formic acid is the simplest carboxylic acid with a chemical formula of CH2O2.  It has a 

molecular weight of 46 grams/mol and a boiling point of 101.3oC at atmospheric 

temperature.  The production of formic acid is due to dehydration and elimination 

reactions of cellulose and hemicelluloses.22  Figure 9 denotes the chemical structure of 

formic acid. 

 
Figure 9 Formic Acid Molecule29 

 

Furans 

Furans are a heterocyclic organic compound that has an oxygen molecule and two double 

bonds.  An example of a furan is shown in Figure 10.  Furans are aromatic compounds 

that are very flammable and volatile.  Furans have low boiling points (31.4oC for pure 

furfural).  Furans are the product of the thermal decomposition of hemicellulose22 and are 

commonly found in bio-oil.  A list of other furans can be found in Table 2. 

 

 
Figure 10 Furfural Molecule30 

 

Phenolic Compounds 

There are many phenolic compounds that can be found in bio-oil.  These can include 

phenols, syringols and guiacols.  Phenols are aromatic rings that have a single hydroxyl 

group.  A list of phenols typically found in bio-oil can be seen in Table 2.  The chemical 

structures of many phenolic compounds can be found in Figure 11.  Phenols can be 

relatively acidic and can have more than one hydroxyl group attached to the same 
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aromatic ring.  Phenols also have a relatively high boiling point with the boiling point for 

phenol being 181.7oC.  Phenolic compounds in bio-oil originate from the lignin that was 

originally in the biomass.  Inspection of the lignin molecule in Figure 6 shows that there 

are many aromatic rings that are available to become phenolic compounds.  

 

 
Figure 11 Phenolic Compounds31 

 

Guaiacols are phenolic compounds that have a methoxy group that is located one carbon 

away from the hydroxyl group on the #2 carbon.  Gusiacol is shown in Figure 12.  Other 

guaiacols can be found in Table 2.  Guaiacols typically have boiling points that are 

greater than 200oC.  Guaiacols, like phenols, are a product of the breakdown of lignin.  

 

 
Figure 12 Guaiacol Molecule32 

 

Syringols are very similar to phenols and guaiacols with a single main difference.  

Syringols have two methoxy groups that surround the hydroxyl group.  The two methoxy 

groups are located on the 2nd and 6th carbons.  Syringol has a boiling point of 261oC at 

atmospheric pressure.  The chemical structure for syringols can be seen in Figure 13 and 
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a list of other syringols can be seen in Table 2.  Syringols are products of lignin 

degradation.  Both  syringols and guaiacols can be seen in the lignin structure in Figure 6. 

 
Figure 13 Syringol Molecule33 

 

Water insoluble content is a term that has been coined for the large molecular weight 

products that are not soluble in water.  Some researchers feel that these compounds are 

derivatives of lignin.34  Typically, these compounds are very large molecules that are 

products of lignin thermal degradation.  Attempts to identify these compounds through 

GC/MS have not been successful. 

 

2.6 Bio-oil Challenges and Stability 
Bio-oil presents many challenges based on its complex make-up.  Combinations of 

certain compounds can cause adverse reactions.  These undesired reactions can cause 

both an increase in water content as well as an increase in viscosity.  Other challenges 

that are present due to the complex nature of bio-oil include low energy content and low 

pH. 

 

Water content can have both positive and negative impacts on bio-oil.  Water has the 

ability to lower the viscosity of bio-oil which is a major benefit when considering the 

challenges related to pumping bio-oil.  Water, though, negatively affects the heating 

value and pH.9  Water can also cause problems with homogeneity and separation of the 

bio-oil.  Water also acts as a reagent in some reactions that can occur after the bio-oil has 

been collected.35  Water contents have been reported to be as high as 15-30 wt% of the 

bio-oil. 
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The acid content of bio-oil is a challenge that has been prevalent in fast pyrolysis for 

many years.  There are two different methods of determining the acid content of bio-oil.  

Many researchers have used pH9 to determine the severity of acid content.  It has been 

reported that whole bio-oil can have a pH as low as 2.5.  Another method that is starting 

to be commonly used for determining acid content is the Total Acid Number (TAN).5  

The TAN is a titration that measures the amount of KOH that is required to neutralize the 

organic acids in a sample.  This method has only been used recently, but gives a true 

value of the amount of acids that are present in bio-oil.  The total acid number is a 

measure of all of the acids including strong, weak and very weak acids.  

 

Most of the acids that are found in bio-oil are organic acids.  These acids include acetic, 

formic and propanic acid22 as well as other hydrocarbon molecules that have acidic 

qualities.  Acetic acid is the most prevalent acid found in bio-oil.  Carboxylic acids cause 

problems associated with corrosion of materials and stability of bio-oil.  Aubin36 studied 

the corrosiveness of bio-oil and found that stainless steel resisted corrosion of pyrolysis 

bio-oil from wood.  It was also reported that increasing the temperature of the bio-oil to 

45oC significantly increased corrosion activity.36  Stainless steel is widely used to prevent 

corrosion of metal in bio-oil collection systems.  There are some olefin polymers that can 

stand up to the large concentration of organic acids that are present in bio-oil as well.9  

Acids can act as a catalyst for bio-oil reactions as well as reactants.  Almost all of these 

reactions have a negative effect on the stability of bio-oil over long periods of time. 

 

Bio-oil’s low energy content can be attributed to two separate sources.  First, bio-oil has a 

large amount of water.  This water has an enthalpy of vaporization of 2.257 MJ/kg.  This 

becomes lost energy when considering the energy content present in bio-oil.  The oxygen 

content of bio-oil also has a negative effect on the energy content of bio-oil.  Energy 

content is measured by combusting the bio-oil.  Combustion takes place when oxygen 

reacts with carbon and hydrogen to create carbon dioxide and water.  Oxygen, which is 

considered excess weight, lowers the heating value because it is counted into the mass of 
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the sample but does not contribute any energy to the combustion reactions that occur 

when the reaction is operated under fuel lean conditions.  

 

The presence of solids in bio-oil has many negative effects.  Solids are typically 

suspended char particles that were able to escape the solids removal process.  Solid char 

can act as a catalyst for bio-oil reactions that can take place during storage.  Solid 

particulate can also cause erosion, equipment blockages, slower rates of combustion and 

clogging of spray nozzles.9   

 

There has been a recent emphasis on the stability of bio-oil and the reactions that occur in 

whole bio-oil as it ages.  As whole bio-oil ages, it increases in viscosity and water content 

at the same time.35  These changes act as a double-edged sword for bio-oil.  The increase 

in viscosity makes it more difficult to pump the bio-oil; while the increase in water 

content lowers the heating value of the bio-oil and it also has the possibility of causing 

the bio-oil to separate into phases.  Stability studies include analysis of initial bio-oil 

followed by accelerated aging at elevated temperatures.   

 

There are many adverse reactions that can occur between the numerous compounds that 

are present in bio-oil.  The list below, adapted from an NREL report written by J.P. 

Diebold35, is a list of probable chemical mechanisms that contribute to bio-oil instability: 

 

• Organic acids with alcohols to form esters and water 

• Organic acids with olefins to form esters 

• Aldehydes and water to form hydrates 

• Aldehydes and alcohols to form hemiacetals, or acetals and water 

• Aldehydes to form oligomers and resins 

• Aldehydes and phenolics to form resins and water 

• Aldehydes and proteins to form oligomers 

• Organic sulfur to form oligomers 
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• Unsaturated compounds to form polyolefins 

• Air oxidation to form more acids and reactive peroxides that catalyze the 

polymerization of unsaturated compounds 

The list above denotes that many of the reactions that produce water as a byproduct of 

reactions that naturally occur in bio-oil.  Esters, which have a low boiling point, are also 

produced by the reactions that are listed above.  Esters will easily volatilize from the bio-

oil, thus increasing the overall viscosity of the bio-oil.  It should also be noted that resins, 

oligomers and polyolefins are produced by many of these reactions.  These compounds 

are high molecular weight compounds that increase the overall viscosity of the bio-oil.  

These compounds are also typically not soluble in water which increases the chances of 

phase separation. 
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CHAPTER 3.  METHODS AND PROCEDURES 

3.1 Introduction 
The system utilized to fractionate the bio-oil for this study is shown below in Figure 14 

and a complete detailed description is given.  Selected engineering drawings can be seen 

in Appendix B.  The system consisted of multiple components: 

 

• Reactor 

• Particulate Removal 

• Bio-oil Collection System 

• Gas Analysis 

• Data Acquisition and Automated Controls System 

 

 
Figure 14 System Schematic 

 

 

3.2 System Design 
The fast pyrolysis system was designed with many goals in mind.  The initial goal was to 

build a reliable system that could produce bio-oil from any biomass in significant 

quantities.  Large amounts of bio-oil are needed to progress the end-uses of bio-oil.  

Acrison Feed System Reactor Cyclones SF1 

SF2 SF3 SF4 SF5 
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Determining the end uses of bio-oil needs to be a top priority for fast pyrolysis to become 

a solution to energy and resource problems.  This system was designed for an 8 kg/hr 

throughput of biomass into the reactor.  The reactor is a fluidized bed that can provide 

high heat transfer rates from a nearly isothermal bed to the biomass.  Particulate removal 

is accomplished with gas cyclones that were designed to remove 99% of the solid 

particulate from the product flow out of the reactor.   

 

Bio-oil collection is being performed with a fractionating bio-oil collection system.  This 

system has the ability to fractionate bio-oil vapors and aerosols based on dew point and 

phase.  The fractionating bio-oil collection system collects the bio-oil in five distinct 

fractions.  Each of these fractions has unique characteristics, both physical and chemical.  

This research project is acting as a proof of concept for the fractionating bio-oil collection 

system.   

 

3.3 Experimental Apparatus 

3.3.1 Reactor 

The reactor that was utilized and designed for this project was a bubbling fluidized bed.  

This reactor utilizes silica sand and nitrogen as a bed medium and fluidization gas.  The 

complete set of design calculations can be found in Appendix A. 

 

The reactor is an assembly of stainless steel pipes and flanges.  The reactor is split into 

three pieces, including the plenum, fluidized bed and freeboard.  The bottom section is 

the plenum.  Heated gases enter the bottom of the plenum through a distributor pipe.  

Calcium silicate insulation, that is 3″ thick, surrounds the outside of the plenum.  The 

plenum is constructed of standard (schedule 40) 6″ stainless steel pipe welded to standard 

150# flanges.  This pipe has a nominal outer diameter of 6.625″ and a nominal inner 

diameter of 6.065″.  The overall height of the plenum is 12″.  The purpose of the plenum 

is to allow the fluidization gas to expand before passing through the distributor plate.  
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This section has a thermocouple and a pressure transducer to allow for temperature and 

differential pressure readings. 

 

Located at the top of the plenum is a distributor plate that separates the plenum from the 

fluidized bed.  The distributor plate is designed to provide proper pressure drop and gas 

distribution for fluidization.  The distributor plate is 0.3175 cm (1/8 inches) thick and has 

55 holes that each have a diameter of 0.15875 cm (1/16 inches).  The holes are placed in 

an equilateral triangle orientation where all holes are equally spaced from each other.  

This is represented in Figure 15. 

 

 
Figure 15 Distributor Plate Hole Distribution 

 

 

The second section of the fluidized bed reactor is the actual fluidized bed.  This section of 

the reactor houses the fluidized sand bed.  The sand is silica sand with a mean particle 

size of 500 microns.  This section is constructed from 15.24 cm (6 inch) schedule 40 

stainless steel pipe.  The fluidized bed section of the reactor is 38.42 cm (15.13 inches) 

tall.  Standard pipe and flanges were used throughout the system for two different 

reasons.  Standard pipe is readily available which allows for quick turnaround time for 

replacement parts.  Standard flanges were used because there is already an industry for 

high temperature gaskets that will provide a gas tight seal with relative ease.  
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The fluidized bed is heated with electric clam shell heaters.  Clam shell heaters provide 

radiant heat to the outside of the reactor.  There are five thermocouples located within the 

fluidized bed which provide temperature measurement throughout the fluidized bed.  

There is also a thermocouple that is located between the reactor and the clam shell 

heaters.  The purpose of this thermocouple is to prevent the heater from overheating.  

This array of thermocouples will allow for constant monitoring and precise control of the 

fluidized bed temperature.  

 

The top section of the reactor is referred to as the “freeboard”.  The purpose of the 

freeboard is to provide the proper volume of gas to prevent the fluidizing media from 

elutriating from the reactor.  The total disengagement height (TDH) is a correlation that 

determines the height above a fluidized bed that is required to prevent entrainment.  The 

TDH is a balance between the forces that were applied on a particle within the fluidized 

bed and gravity once the particle has entered the freeboard.  For the reactor conditions 

that were used, the TDH was calculated to be 8.35 cm (3.288 inches).  The height of the 

freeboard is 15.24 cm (6 inch).  Gases exit the freeboard through a 3.8 cm (1.5 inch) pipe 

that is located at the top of the freeboard.  The freeboard is heated with another set of 

clam shell heaters and there are three thermocouples that allow for temperature 

measurement and control within the freeboard.  There is also a differential pressure 

transducer that measures the pressure drop across the fluidized bed and distributor plate. 

 

The required heat for the reactor is provided from two different heat sources.  Initially, 

the fluidization gases are pre-heated to the process temperature with a pair of inline gas 

immersion heaters.  The Watlow Starflow heaters are each powered with 208 volts to 

generate 2,600 watts of heat.  Preheating the gas before it enters the fluidized bed will 

allow for better fluidization.  Preheating also reduces the amount of heat that has to be 

transferred into the fluidized bed from other sources.  The heaters utilize a rotating star 

configuration to cause turbulence and transfer heat to the gas from the heating coil.   
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The fluidized bed and the freeboard are both heated with “clam shell” ceramic fiber 

heaters.  These electric heaters are semi-circular heaters that fit the outer diameter of the 

reactor.  A 2.54 cm (1 inch) space was left between the reactor wall and the heater.  The 

pair of clam shell heaters that provide heat to the fluidized bed are powered with 208 volt 

electricity.  Each heater is rated to provide 1,972 watts of heat.  The reactor heaters have 

two main purposes.  The main purpose is to provide the heat required for the fast 

pyrolysis reactions.  The secondary purpose of the reactor heaters is to act as active 

insulation.  The active insulation is to prevent any heat loss.  The pair of heaters that are 

located on the freeboard are 60 volt heaters that are placed in series.  This configuration 

creates a 120 volt heater that can provide 2600 watts of heat.  The overall heat load at the 

freeboard is minimal and the heater will act solely as active insulation. 

 

3.3.2 Feed System 

The need of a consistent biomass feed rate led to the design of a complex continuous feed 

system.  This system is designed to provide continuous feeding of biomass throughout the 

duration of a test.  For this study, though, the system was operated as a batch system that 

was refilled after each test. 

 

There are three major challenges that have to be overcome when designing and 

implementing a continuous feed system.  The first challenge that must be overcome is the 

consistent feeding of biomass into the reactor.  Obstacles that must be overcome for 

consistent feeding include varying bulk densities and biomass bridging.  The biomass 

bridging can be prevented by inserting an agitator in the hopper, directly above the auger, 

to keep the biomass moving down to the auger.  The feeder that is being used is a weigh 

and loss feeder that was purchased from Acrison.  This feeder utilizes a scale and ballast 

system that can accurately determine the change in biomass weight within the hopper.  

The system operator has the ability to input a desired feed rate and the control system will 

actively adjust the auger speed to provide that feed rate. 
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The second challenge that is addressed with this feed system is continuous, rather than 

batch, operation of the system.  The biggest challenges to continuous feeding are 

associated with refilling the hopper.  The hopper on the Acrison feeder has a capacity of 

8 cubic feet, thus it must be refilled if the test runs longer than a few hours.  To 

accomplish the refilling of the feeder, a surge hopper system was installed.  This system 

consists of two slide-gate valves, a surge hopper with two agitators, a bucket elevator and 

a refill hopper.  Biomass is loaded into the refill hopper.  This hopper is a large hopper, 

on wheels, that utilizes three augers in the bottom that can feed the bucket elevator.  The 

bucket elevator then lifts the biomass into the surge hopper, which has a 15.24 cm (6 

inch) slide gate valve on the top.  The surge hopper resides directly above the Acrison 

feeder, separated by a 25.4 cm (10 inch) slide gate valve.  When the feeder signals for 

more biomass, the surge hopper closes the upper 15.24 cm (6 inch) valve and becomes 

pressurized with nitrogen.  The surge hopper will be pressurized so that it is at the same 

pressure as the feeder to prevent back flow.  The lower 25.4 cm (10 inch) valve then 

opens and the agitators in the surge hopper empty the surge hopper into the Acrison 

feeder.  Once the surge hopper is emptied, the agitators stop and the lower valve closes.  

The surge hopper is then allowed to release its pressure and is once again refilled by the 

refilling hopper and bucket elevator.  This extensive process allows the system to 

continue to operate while more biomass is added to the feeder. 

 

Finally, the ability to seal the feed system to prevent back flow is essential to successful 

operation of a fast pyrolysis system.  This was done by using two different approaches.  

First, there was a nitrogen purge that passed nitrogen straight into the feeder.  This purge 

was high enough in flow that it always generated positive gas flow into the reactor.  

Secondly, rubber coated nylon sleeves were used to the inlet and outlet of the feeder.  

These sleeves kept the feeder isolated from any vibrations or outside forces.  They also 

kept the hopper sealed. 
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3.3.3 Cyclones 

The design of the two gas cyclones was based off of standard gas cyclone design 

methodology.  According to Hoffman and Stein37, the design methodology requires 4 

design parameters: gas flow rate, particulate density, desired efficiency and desired 

pressure drop.  The gas flow rate for the cyclones was determined by estimating the 

amount of gas (volumetrically) that would be produced during the fast pyrolysis reaction.  

The bio-oil vapors were assumed to be ideal gas with a molecular weight of 98.9 gram 

per mole.  The non-condensable gases were also modeled as an ideal gas but with a 

molecular weight of 29.4 gram per mole.  The calculations for the flow can be seen in 

Appendix A.  The design flow rate for the cyclones was determined to be 500 liter per 

minute when the bio-oil vapors, the non-condensable gases and the nitrogen were added 

together.  The char was then assumed to have a density of 240 kg/m3.  This value was 

determined both through experimentation with char produced on a separate fast pyrolysis 

reactor and from the literature.38 

 

The actual design of the cyclone is traditionally based on the diameter of the cyclone.  

The other dimensions are then determined by using pre-determined ratios.  There are two 

different ratios that were used and the use of either was determined by the Stokes 

number.  For a high flow cyclone, a Stokes number of 0.006 is used; a high efficiency 

cyclone will have a Stokes number of 0.000117.  The overall efficiency is then 

determined by the allowable pressure drop.  The higher the pressure drop, the lower the 

50% cut diameter of the cyclone.  The efficiency of a gas cyclone can be described by 

comparing the 50% cut diameter of the cyclone particle size distribution of the 

particulate.  The 50% cut diameter is the diameter of particle in which exactly 50% of the 

particles of that size are collected.  Figure 16 illustrates the efficiency for the high 

efficiency cyclone with a 50% cut diameter of 1.6 microns.  Larger particles will 

experience a more thorough removal while smaller particles will have a high probability 

of passing through the cyclone.  The calculated 50% cut diameter of the two cyclones that 

were designed and built for this project were 11 microns and 1.6 microns. 
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Figure 16 Cyclone Efficiency for 1.6 Micron 50% Cut Diameter 

 

3.3.4 Bio-oil Collection System 

The product stream entering the bio-oil collection system consists of the products of the 

reactions that have occurred in the fluidized bed fast pyrolysis reactor.  The product 

stream has passed through the gas cyclones to remove up to 99% of the solid particulate 

(char) that was present in the bulk flow.  The product stream entering the bio-oil recovery 

system includes three main components classified by their physical state: non-

condensable gases, vapors and aerosols.  Also entering with the product stream are the 

fluidization gases from the reactor.  The non-condensable gases include hydrogen, carbon 

monoxide, carbon dioxide and light hydrocarbons created during pyrolysis.  The non-

condensable gases represent 10-20 wt-% of pyrolysis products.9   

 

Vapors include water and organic compounds that can be condensed upon cooling the gas 

stream exiting the pyrolyzer.  The organic compounds tend to be of “medium” molecular 
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weight and include carboxylic acids, alcohols, esters and phenolic compounds.  Aerosols 

are micron and submicron liquid droplets39 of organic compounds that either have too 

high of boiling point to evaporate in the pyrolyzer (typically operated around 500°C) or 

have condensed from vapor after leaving the reactor because the gas stream has cooled.  

Aerosols tend to consist of carbohydrates, highly substituted phenolic compounds and 

lignin oligomers.   

 

The relative amounts of vapor and aerosol are difficult to ascertain, partly because each 

can transform into the other depending upon the temperature and nucleation environment. 

It has been reported that up to 90% of the flow exiting a fluidized pyrolyzer is in the form 

of aerosols, although this depends upon feedstock and reaction conditions.40  The bio-oil 

collection system exploits the different behavior of vapors and aerosols exiting the fast 

pyrolysis reactor in order to collect “stage fractions” that are partitioned according to 

saturation temperature.  

 

Operation of the bio-oil collection system is based on setting the temperature in each 

stage fraction to correspond to the saturation temperature of specific compounds that are 

thought to exist as vapors in the product stream from the pyrolyzer.  Compounds will 

condense from the product gas stream whenever the surface temperature drops below the 

saturation temperature of the compound in the product gas stream.  Saturation 

temperature, Tsat, is calculated from the vapor pressure, Pv, of the compound in the 

product gas stream using the Clausius-Clapeyron equation: 

 

         

 
Equation 3 

 

 

where Po is the saturation pressure corresponding to a standard temperature, To, and 

∆Hvap is the enthalpy of vaporization of the compound.  The vapor pressure is estimated 
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from the mass fraction of the compound in the bio-oil, mf, and the mass concentration of 

bio-oil, Coil, in the product gas stream using the ideal gas law: 

 

 

 
Equation 4 

 

 

 

where Ru is the Universal gas constant, To is the standard temperature at which the 

volumetric flow rate of the product gas is determined, and MW is the molecular weight of 

the compound.  Table 3 denotes some of the constants used in the design of the system. 

 

Table 3 Boiling Point and Enthalpy of Vaporization for Selected Compounds41 
 Tb(K) Hvap (kJ/mol) 

Water 373.15 40.657 
Phenol 454.95 45.69 

Acetic Acid 391.15 23.7 
Methanol 338.15 35.21 

Acetaldehyde 293.25 25.76 
Formic Acid 374 22.69 

 

 

Figure 17plots saturation pressure vs. temperature, as determined by Equation 3, for 

several important bio-oil components.  Theoretical vapor pressures (horizontal lines in 

Figure 17) were determined using Equation 4.  The intersection of the saturation pressure 

curves and vapor pressure lines indicates the temperatures at which the various 

compounds will condense.  For the case shown in Figure 17, levoglucosan is expected to 

condense at 200oC, phenol will condense at 80oC and water will condense at 50oC. 
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The design of each condenser fraction is based on a constant surface temperature shell 

and tube heat exchanger.  Standard design procedure was used to model the heat flow 

through the heat exchangers.  Assumptions made for the design include inlet temperature, 

outlet temperature, wall temperature, flow composition and mass flow rate.  The heat 

transfer analysis proceeded as follows (All equation were taken from Incropera3): 

 

1. The total heat flow (Equation 5) was calculated from both assumed and 

theoretical values.  This value included both the sensible heat associated with the 

total flow and the latent heat of vaporization of the liquid that was being 

condensed.  It was assumed that only 95% of the desired compound was 

condensed. 

 Equation 5 

 

2. The configuration of the heat exchanger was assumed.  This value was eventually 

compared to the final solution.  The configuration parameters included diameter 

of tubes, number of tubes and length of tubes. 

3. The Reynolds Number was then calculated.  If the Reynolds Number did not 

indicate the desired flow regime, the heat exchanger configuration parameters 

were adjusted.  The first two heat exchangers were designed as laminar flow 

systems, while the last heat exchanger was designed as a turbulent flow system.  

The Reynolds Number equation for flow through a pipe is shown in Equation 6. 

 Equation 6 

 

4. The Nusselt Number (Equation 7) is the ratio of convection to pure conduction 

heat transfer.  When rearranged, the Nusselt Number can be written as a function 

of the Reynolds Number, tube length, tube diameter and Prandtl Number.  There 

are special correlations that have been derived from experimental data that are 

applicable for laminar and turbulent flow in a pipe.  These two correlations can be 
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seen in Equation 8 and Equation 9.  A friction factor is used for turbulent flow 

because the higher velocities will be affected more by the friction forces along the 

walls of the pipe.  This friction force has the ability to create eddy currents and 

enhance mixing – thus enhancing the heat transfer of the fluid.  

 

 Equation 7 

 

 

 Equation 8 

 

 

f= friction factor 

Equation 9 

 

 

 

5. The convection coefficient (h) can be found by rearranging Equation 7.  Heat flow 

is then equal to the convection coefficient multiplied by the area and the log-mean 

temperature difference.  This equation was then used to determine length of tubes 

required for the number and size of tubes that were assumed.  If the length was 

not similar to the assumed length, then the heat exchanger configuration 

parameters were iterated to design an appropriate heat exchanger. 

 Equation 10 
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Heat transfer was only half of the design for the heat exchangers.  The mass transfer from 

the bulk flow to the heat exchanger walls was equally important to the design of the 

condensers.  The mass transfer design was completed with the Reynolds Analogy (as 

seen in Equation 11) which is a relationship between mass transfer and heat transfer.  The 

Reynolds Analogy is a function of the Nusselt, Prandlt, Sherwood and Schmidt Numbers. 

 

 Equation 11 

  

Through the Reynolds Analogy, relationships for the Nusselt Number can be transformed 

into relationships for the Sherwood Number.  The Sherwood Number (Equation 12) is a 

dimensionless concentration gradient at the surface in which mass transfer is occurring.3  

This transformation is completed by replacing the Nusselt Number (Nu) with the 

Sherwood Number (Sh).  Similarly, the Prandlt Number (Pr) is replaced with the Schmidt 

Number (Sc).  To complete the transformation, the conductive heat transfer coefficient 

(k) is replaced with mass diffusivity (D).  

 

 Equation 12 

 

 Equation 13 

 

 

             f= friction factor 

Equation 14 
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To transfer vapors through the boundary layer, from the bulk flow to the condenser walls, 

a driving force is needed.  For this analysis, partial pressure was used as the driving force.  

Differences in concentration are also commonly used as a driving force for mass transfer 

calculations.  Concentration and partial pressure can be related through the ideal gas law.  

The partial pressures were calculated as noted earlier in this section with Equation 4.  

Like temperature, a log-mean partial pressure difference is required to determine the 

surface area required for mass transfer.  The mass transfer (Equation 15) is calculated by 

multiplying the mass transfer coefficient, surface area and log-mean pressure difference. 

 

 Equation 15 

 

 

At the inlet of the Stage 1, the product stream temperature ranges from 350-500oC and 

the pressure at the inlet between 1.2 - 5 kPa (5 and 20 inches of water column).  The goal 

of the first condenser is to collect levoglucosan, the most prevalent anhydrosugar in bio-

oil, and other high boiling point compounds that exist as vapors in the product stream 

exiting the pyrolyzer.  Levoglucosan and the other high boiling point compounds are 

challenging to collect using a traditional condenser as they are solid at temperatures 

below approximately 75oC.  Thus, to prevent build up on the condenser walls, the 

condenser walls must be operated at temperatures higher than 75°C.  If the condenser 

wall temperature exceeds temperatures greater than approximately 100°C, the condensed 

liquid may begin to thermally decompose to char and non-condensable gases.  Hence, the 

condenser must have a wall temperature between 75 and 90°C.  This temperature is just 

above the saturation temperature of phenol at its calculated partial pressure, shown in 

Figure 17.  The condenser is designed to operate with a coolant maintained at 75-90°C 

and the ability to cool the inlet stream temperature from 350-500°C to 170-125°C.  To 

significantly decrease the chances that the aerosol droplets would impact the walls and 

collect in the first condenser, laminar flow conditions were chosen.   
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For the 8 kg/hr process development unit, a shell and tube heat exchanger was utilized to 

collect the bio-oil in stage 1.  The tubes were 2.54 cm (1 inch) diameter thin-walled 

stainless steel tubes while the shell was constructed from 35.56 cm (14 inch) schedule 40 

stainless steel pipe.  According to both design calculations that can be found in Appendix 

A and testing, 30 tubes were required to cool the product stream from the 450oC inlet 

temperature to the desired outlet temperature of 150oC.  The product stream entered 

through a cone that distributed the vapors evenly to all tubes.  The gases flowed in a 

downward direction, pushing the liquid down the tubes to the collection bottle.  This 

downward flow aided the collection of the bio-oil.  The downward gas flow also helped 

to keep the tubes clear by encouraging the bio-oil to flow towards the bottom of the 

condenser.  There was a second cone at the bottom that funnels the bio-oil into the 

collection bottle.  This cone had a pipe that exited from the side that allowed the gas to 

proceed to the ESP. 

 

The stream exited the first stage, at a temperature between 150-125oC, and entered the 

second stage, which was a pair of electrostatic precipitators (ESP).  The purpose of the 

second stage was to collect all of the aerosols present in the product stream without 

additional vapor condensation.  To accomplish this, the second stage was heat traced to 

prevent the vapor stream from cooling.  These aerosols contain phenolics, anhydrosugars 

and pyrolytic lignin formed during the pyrolysis process.  

 

An ESP consists of two main components.  The pipe that the gas and vapors flow through 

will act as a ground and collection site for the aerosols.  A cylindrical rod that is 

suspended in the center of the pipe will act as the high voltage (20-40 kV DC) electrode.  

The high voltage applied to the electrode causes an electrostatic field to be formed 

between the electrode and the grounding pipe.  This field causes a force on any particle 

(aerosols or particulate) that passes through it.  As the particle passes through the field, it 

moves towards the ground wall and thus collects on the wall.  The liquids will flow down 

to the bottom of the ESP to be collected in a bottle.  The walls of the ESP were kept at a 
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temperature between 150 and 125oC to prevent the gases that are passing through the ESP 

from cooling before they leave.  The ESP should only collect the aerosols in the flow. 

 

For the 8 kg/hr process development unit, both ESPs were the same size and placed in 

series.  The main pipe was a 15.24 cm (6 inch) schedule 40 stainless steel pipe. The 

cylindrical rod, in the center of the ESP, had a diameter of 2.54 cm (1 inch).  The product 

stream flowed upward from the bottom of the ESP to the top.  The bio-oil that was 

collected on the walls flowed downward to a cone at the bottom that funneled the bio-oil 

into the collection bottle. 

 

The third stage has the same inlet temperature as both the inlet and outlet of the ESP 

(between 150 and 125oC).  The desired products that are obtained from the third stage are 

the remaining phenolic compounds and any other compounds that have a saturation 

temperature that is greater than the saturation temperature of water at the partial pressures 

present in the second condenser.  The third stage was designed much like the first stage 

with the wall temperature of the tubes being determined by the saturation temperature of 

the undesired component of the bio-oil – in this case, water.  The saturation temperature 

of water was approximately 55oC at the given conditions.  The wall temperature of the 

second condenser was held between 60 and 70oC and the flow rate of the water passing 

through the shell is sufficient to keep a constant temperature on the inner tubes. The 

condenser was configured for laminar flow but was also capable of operating in a 

turbulent flow regime as well.  The desired outlet temperature of the second condenser 

was between 75 and 100oC.  This outlet temperature should prevent any water from 

condensing in third stage.   

 

The third stage of the 8 kg/hr process development unit was designed as a shell and tube 

heat exchanger in the same manner as the first stage.  This stage operated with 24- 1.9 cm 

(¾ inch) tubes, but had the ability of adding or taking tubes away to adjust for different 

biomasses.  The shell for the third stage was constructed from 25.4 cm (10 inch) schedule 

40 stainless steel pipe. 
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The fourth stage was another ESP that acted as a final aerosol collection point within the 

bio-oil collection system.  These aerosols could be aerosols that were not collected in 

second stage or they could have also been created while the fast pyrolysis vapors were 

cooled in the third stage.  Stage four consisted of a shell, electrode and power supply.  

This stage was purely insulated with no heat tracing to prevent condensation.  The gases 

and vapors exited stage four at temperatures between 75 to 100oC.   The design procedure 

for the second ESP was the same as the first ESP.  The outer pipe is a 10.16 cm (4 inch) 

pipe.  The inner cylindrical rod has a diameter of .635 cm (1/4 inches).   

 

Stage five acted as a final stage removal of the remaining compounds.  The fifth stage 

should collect the water, alcohols, acids and any other compounds that are still in the 

vapor form when the stream enters the third condenser.  This condenser had an inlet 

temperature that ranged from 75 to 100oC and an outlet temperature that will ranged 

between and 0 to 20oC depending on coolant temperature.  Stage five was designed to be 

a turbulent flow condenser rather than laminar.  This was due to the lack of aerosols.  The 

turbulent flow provides for better heat and mass transfer. The goal of the final condenser 

was to collect all of the remaining pyrolysis vapors.   

 

The fifth stage of the bio-oil collection system was designed in the same manner as the 

first and third stages as a shell and tube heat exchanger.  The fifth stage contained 8 tubes 

with an inner diameter of 0.9398 cm (0.37 inches).  The shell is constructed of 10.16 cm 

(4 inch) schedule 40 stainless steel pipe.  The shell can be filled with either cool water, 

chilled water or a chilled mixture of water and glycol (to reach wall temperature of less 

than 0oC).  The fifth stage flowed in a downward direction that aided in the collection of 

the liquids at the bottom of the condenser. 
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3.3.5 Gas Analysis 

To determine the composition and amount of gases being produced, a Varian Micro-GC 

was used.  A Micro-GC makes it possible to see relative amounts of gas on a semi-

continuous basis.  Two columns were used to detect the non-condensable gases.  A 

MolSieve 5A (MS5A) detected the hydrogen, helium, oxygen, nitrogen, methane and 

carbon monoxide.  A PoraPLOT Q (PPQ) was utilized to detect carbon dioxide, ethane 

and ethylene.  The operating conditions of the two columns can be seen in Table 4. 

Table 4 Micro-GC Operating Conditions 

Column MS5A PPQ 
Length of Column (m) 10 10 

Pressure (kPa) 151.7 117.2 
Oven Temperature (oC) 100 58 

Injector Temperature (oC) 110 110 
Injection Time (ms) 40 40 

Run Time (s) 130 130 
Length of sample (s) 30 30 

Carrier Gas Argon Helium 

 

To determine the actual flow rate of the non-condensible gases, a helium tracer was 

utilized.  1.5 standard liters per minute of helium was introduced into the reactor along 

with the fluidizing gases.  Helium can be accurately detected with the MS5A.  The MS5A 

can be calibrated to see accurate concentrations of helium as long as the carrier gas for 

the column is not helium.  A typical percentage of helium that was measured was 

approximately 0.6%.  By recording the input flow rate of helium, the output 

concentrations of the product gases can be calculated.  This makes it possible for an 

accurate mass balance to be kept.  
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3.3.6 Data Acquisition and Control 

The controls and automation system consisted of five main components.  These 

components included the HMI (human-machine interface) server, historian server, work 

station, I/O racks and instrumentation.  The controls and automation system was provided 

by Rockwell Automation and Van Meter Industrial.  The system, which is still in place, 

was a PlantPAx Process Automation System.  The two servers, the work station and the 

I/O racks are all connected on an Ethernet network.  This system has the capabilities to 

monitor and control an entire array of digital and analog devices.  Screenshots from the 

controls system can be seen in Appendix D. 

 

Two servers, which include the HMI and historian servers, are required to operate the 

system on a continuous basis. The HMI server contained all of the control programming 

as well as the HMI control screens.  The work station computer loaded the HMI 

interfaces from the HMI server.  The historian server logged all of the data from the 

instrumentation while the I/O racks were powered.  The historian logged new data points 

whenever it detects a change in the state of the instrumentation.  If the process were to 

remain at a constant temperature for five minutes, only one data point would be logged. 

 

The control of the fast pyrolysis system could be accomplished from a single work station 

computer.  The I/O racks were located in three different enclosures.  The main panel 

contained digital input and digital output cards as well as the controller.  The controller 

housed the control program and controlled the other I/O racks.  The other two sets of I/O 

racks were stored in remote enclosures.  The remote enclosures were placed near the 

reactor and the last condenser.  These remote panels contained two I/O racks each and 

received signals from almost all of the instrumentation that was utilized on the fast 

pyrolysis system. 

 

The fast pyrolysis system utilized many types of instrumentation, motors and valves.  For 

temperature measurement, Omega brand Type K thermocouples were used.  Type K 

thermocouples are chromel-alumel which outputs 41 micro-volts/ oC.42  The range of 
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Type K thermocouples is between -200 to +1350oC.  For pressure measurement, Dwyer 

Series 677 differential pressure transducers were utilized.  The full system pressure was 

measured on a 0-100” of water column (0 – 24.88 kPa) transducer that had a 0.4% full 

scale accuracy.  The other pressure transducers were 0-25” of water column (0 – 6.22 

kPa) transducers with a 0.4% full scale accuracy.  Liquid flow measurement of the hot 

water was accomplished with an Omega turbine flow meter (Omega part # FPR205-PC).  

This meter has a range of 5-50 gallon per minute (18.82 - 189.27 liter per minute) with 

2% full scale accuracy.   

 

3.4 Test Methods    

3.4.1 Test Procedure 

The test procedure to produce bio-oil from the fast pyrolysis system is a simple process 

that begins with the selection of operating conditions.  Operating conditions that include 

the reactor temperature, heat tracing temperatures, biomass feed rate, condenser 

temperature set points and fluidization gas flow rate.  For the study of fast pyrolysis 

products from different feed stocks, similar conditions were utilized for each experiment.  

The reactor was held at 500oC and was fluidized with 183 standard liters per minute of 

nitrogen and 1.5 standard liters per minute of helium.  The heat tracing lines were held at 

high enough temperatures to prevent any condensation of bio-oil before it was desired.  

The condenser walls were held at 85oC for the first fraction.  The walls of the first ESP 

were held at a high enough temperature to keep vapors and gases at 125oC for the second 

fraction.  The walls of the third fraction were held at 65oC and the walls for the final 

fraction were held at 18oC.  This temperature corresponds to the temperature of the 

potable water that was available at the facility.  The reactor was fed with the desired 

biomass at 4-6 kg/hr on a volumetric basis.   

 

The desired volumetric flow rate was determined through a feeder calibration procedure 

that is meant to generate a mass flow versus auger speed.  The feeder is set at a speed 

(25% to begin) and biomass is collected for 30 seconds three consecutive times.  The feed 
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rate at that speed is calculated and this process is repeated for 50%, 75% and 100%.  A 

linear fit is generated and the speed for the desired feed rate is calculated. 

 

To start the actual fast pyrolysis system, the condenser coolant system is initiated first.  

This system has to be started ahead of time to allow the coolant to reach the desired 

operating temperatures.  The water pumps are each set to 13 gallons per minute (49.21 

liters per minute) and the hot water heaters are started.  The control loops for the hot 

water heaters are set to heat the separate loops to their desired temperatures.  Meanwhile, 

the heat tracing heat tapes are activated at this time as well.   

 

Prior to fluidization, the mass of the feeder is recorded and the injection auger cooling 

water is turned on.  Once the water control loops have both reached 60oC, the startup 

sequence can proceed.  First, the compressed air is started at 183 standard liters per 

minute and the injection auger is started.  Once the fluidization gas is flowing through the 

reactor, the pre-heaters and clam shell heaters can be turned on.  

 

Air is used to fluidize the bed at the beginning of the start-up to both conserve nitrogen 

and also to burn out any contaminates that could be located either in the fludized bed or 

in the piping between the reactor and the first condenser.  The temperatures throughout 

the system are monitored and the fluidized bed is heated to 550oC.  When the system is at 

its proper temperature, the fluidization gas is switched from air to nitrogen and helium. 

 

While the system is heating, the Micro-GC is prepared.  The GC has to be taken out of 

bake-out and a calibration gas is used to verify that the Micro-GC is operating properly.  

While the verification is taking place, a cold trap is prepared with both glass wool and a 

desiccant filter.  The desiccant filter and cold trap are used to prevent any moisture from 

reaching the Micro-GC.  Once the verification has taken place, a leak check is performed 

on the entire system.  This is done to make sure the vacuum pump is not drawing any air 

into the system. 
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With the gas analysis equipment and the fast pyrolysis system both ready, the biomass 

can be fed into the reactor at the desired feed rate.  This will cause the reactor 

temperature to lower into the desired reactor temperature.  Once the biomass feeder is 

started, the ESP power supplies must be started to ensure that the aerosol droplets are 

collected.  A timer is started as well to keep track of the biomass that is fed into the 

system.  The Micro-GC is then used throughout the test to monitor the gas production.  

Nalgene bottles are used to collect the bio-oil from each fraction.   

 

For this study, a small sample of steady state bio-oil was used to perform the mass 

balance and bio-oil analysis.  To perform the mass balance, the system was run for 45 

minutes to allow the bio-oil collection system to reach a steady state.  The bottles will 

then be switched and allowed to collect bio-oil for the duration of the test.  At the same 

time that the bio-oil collection bottles were switched, the char catches were emptied as 

well.  The char and bio-oil production were monitored to ensure that the containers do not 

overflow.   After the test was completed 150 milliliters of bio-oil was placed into three 

separate containers to be used for bio-oil analysis. 

 

When the test has been completed, the biomass feeding is stopped and the bed is allowed 

to clear itself of any biomass.  The fluidized bed is allowed to stabilize and the clam shell 

heaters are stopped to allow the bed cool.  Nitrogen is used as a fluidization gas until the 

fluidized bed is below 300oC.  This is done to prevent combustion inside the fluidized 

bed.  Once the bed has cooled, the fluidization gas is transitioned from nitrogen to 

compressed air.  The system is then cooled to room temperature while the bio-oil is 

allowed to continue to collect in the Nalgene bottles.  
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3.4.2 Set of Experiments 

A set of 9 experiments were conducted with the fast pyrolysis system for this thesis.  All 

of the tests were conducted with the same set-points.  Three tests were run with each of 

the following biomasses: red oak, cornstover and switch grass.  The three biomasses were 

chosen so that a comparison of biomass types could occur.   

 

Each of the three biomasses that were selected is unique in their chemical and elemental 

analysis.  Typical chemical analysis of each biomass is shown in Table 5 while a full 

elemental breakdown of these three biomasses is shown in Table 6.  Each biomass 

contains similar amounts of lignin but significantly different amounts of cellulose and 

hemicellulose.  It is believed that the lignin is responsible for the production pyrolytic 

lignin and other high molecular weight compounds.  The pyrolysis of cellulose can 

produce many products that include levoglucosan and organic acids38 as well as other low 

molecular weight compounds.  Hard woods typically contain large concentrations of 

cellulose and low ash contents.  The switchgrass and cornstover both contain lower 

concentrations of cellulose and higher amounts of ash and moisture.  

 

 
Table 5 Typical Biomass Constituents 

Wt% of Biomass Hard wood (i.e. Red Oak)43 Cornstover44 Switchgrass44 

Cellulose 45 35 33 
Hemicellulose 30 23 26 

Lignin 20 19 18 
 

Table 6 Biomass Ultimate Analysis 
Wt% of constituents Red Oak Clean Cornstover Switchgrass 

Ash 0.3 2.5 5.6 
Percent Moisture 4.8 12.1 11.1 

C 46.4 41.4 42.6 

H 6.4 5.8 6.1 

N 0.1 0.4 0.2 

O 46.8 49.9 45.5 
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3.4.3 Bio-oil Analysis 

The analysis of bio-oil is a process in which multiple tests are performed to determine the 

major components and qualities of the bio-oil.  The testing methods are standard methods 

that are typically used in other industries (i.e. petroleum), but there are new methods that 

are being developed solely for the analysis of bio-oil. 

 

GC/MS 
To determine the major organic constituents that are contained in each bio-oil fraction, 

two separate instruments are used.  These two devices are the Gas Chromatography/Mass 

Spectrometer (GC/MS) and the Gas Chromatography/Flame Ionization Detector 

(GC/FID).  The GC/MS is used to determine specific compounds that are volatilized in 

an inert atmosphere.  The GC/MS utilizes an ion trap that traps ions in a small volume.  

As the electrodes that are trapping the ions change voltages, different ions are ejected 

from the trap.  The mass spectrometer then uses differences in mass to charge ratio of the 

ionized atoms to separate and determine the specific compounds that are present in the 

bio-oil.  To prepare a sample for the GC/MS, bio-oil is mixed with methanol in a ratio of 

4:96 bio-oil to methanol.  The instrument, with an auto-sampler, then samples the mixture 

and performs the separation of ions.  The amount of time between the injection and the 

detection of a specific compound is referred to as the retention time.  The GC/MS then 

outputs results as shown in Figure 18. 

. 
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Key:
1. Acetic Acid  
2. Furfural
3. Phenol

4. Phenol 2, methoxy-4,methyl (Guaiacol)
5. Phenol 2,6 Dimethoxy (Syringol)
6. Levoglucosan

SF1

SF2

SF3

SF4

SF5

 

Figure 18 GC/MC Chromatograph for 1-20090731 
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The above chemical analysis was performed with a Varian Saturn 2200 GC/MS. The 

column used was a Varian capillary column CP8722 which was 60 meters in length, a 

0.25 mm inner diameter, with a 0.25 mm film thickness. The carrier gas was helium 

(99.9995%) with a constant flow rate of 1.0 mL/minute. The oven temperature was 

programmed at 45ºC for 4 minutes to 235ºC at a heating rate of 3ºC/minute (63.3 

minutes) and held at 235ºC for 13 minutes. The injector temperature was held at 250ºC 

and the GC/MS interface was kept at a constant temperature of 235ºC.  Sample 

preparation was 4.5% pyrolysis liquid in 95.5% methanol for all samples except the 

fractions high in acetic acid. These fractions were 2.0% pyrolysis oil and 98% methanol. 

After sample preparation the samples were filtered with 0.45µm Corning micro filters. A 

sample volume of 1µL was injected utilizing a Varian CP 8400 auto sampler. There was 

a split ratio of 45. The MS was operated in the electron ionization mode scanning an m/z 

range from 30 to 300. The standard mass spectra with 70-eV ionization energy were 

recorded. Identification of the peaks was based on calibration standards purchased from 

Fisher Scientific. Calibrations were performed by injecting 4 standard solutions of each 

standard. 

 

GC/FID 
The GC/FID is another method and instrument that is used to determine the components 

that are present in a mixture.  In this study, a Varian 430-GC with FID was used to 

analyze the water soluble fraction of the bio-oil.  The GC/FID is used to analyze the 

water soluble portion of each fraction as well as the entire last fraction of the bio-oil.  The 

GC/FID vaporizes the sample, which then passes through a capillary column.  Hydrogen 

and standard breathing air are used to create a flame.  The flame is used to produce ions 

as the organic compounds are heated to high temperatures.  The detector on the 

instrument then responds to the number of ions that are released.  This response can be 

used to determine the compounds that are present in the mixture.  Column and system 

operating conditions can be seen in Table 7. 
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Table 7 GC/FID Operating Conditions 

Column Restek Stabilwax - DA (water tolerant) 

Injection Volume 0.5 µL 
Split mode 50:1 
  
Injector Temperature 200oC 
Oven Temperature Ramp 40-175oC 
Ramping Rate 15oC /min 
Detector Temperature 240oC 
Column Flow 7.7 mL/min 
Helium 25 mL/min 
Hydrogen 30 mL/min 
Air 200 mL/min 

 

 

Moisture Content 
To determine the amount of water in each of the bio-oil fractions, a Karl Fischer Moisture 

Titrator MKS-500 is utilized.  This instrument follows ASTME E203 Standard Test 

Method for Water Using Karl Fischer Reagent.  

 

To complete the analysis, the following procedure is used:  The bio-oil sample is injected 

into the titration vial where it is dissolved by the solvent.  In this case, the solvent is 

Hydranal Working Medium K which contains chloroethanol and chloroform.  The 

mixture is then titrated with iodine (reagent) until the mixture is devoid of all water.  The 

iodine and water react on a mole to mole basis, thus the percentage of water in the sample 

can be calculated from the initial sample weight.  This specific instrument utilizes 

Hydranal Composite 5K as the reagent.  A micro-processor in the instrument monitors 

the current change during the reaction for multiple reasons.  The current can be an 

indicator for the end point of the reaction, and the amount of iodine produced and used in 

the reaction.  The initial and final weight of the sample syringe is recorded and entered 

into the instrument.  When the analysis is complete, the instrument outputs percent 

moisture. 
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Heating Value 
A bomb calorimeter is used to determine the heating value of the bio-oil.  The method for 

this test is ASTM D240 (Test Method for Heat of Combustion of Liquid Hydrocarbon 

Fuels by Bomb Calorimeter), suggested by ASTM Standard Specification for Pyrolysis 

Liquid Biofuel.  The method of determining the heating value of a sample is to first 

combust the sample while monitoring the amount of heat that is released from the 

sample.  A small sample of bio-oil is placed in a cup, which is then positioned inside of 

the calorimeter.  For low heating value samples, mineral oil is mixed with the sample to 

encourage combustion.  The sample is then ignited under fuel lean conditions and the 

temperature rise of the water surrounding the device is continuously monitored.  An 

energy balance is completed on the system and the temperature rise in the water bath is 

used to determine the heating value of the sample.  The units of measure for this test are 

MJ/kg. 

 

Water Insolubles 
The determination of the percentage bio-oil that is not soluble in water is important for 

the characterization and utilization of bio-oil.  Water insoluble compounds typically 

contain more than six carbon molecules and an oxygen molecule.  To determine the 

percent of water insolubles that are present in the bio-oil, a small sample of bio-oil is 

mixed with water in a ratio of 20:1 water to bio-oil.  Hot water (~80oC) is used for 

fractions that are near solid at room temperature.  The bio-oil and water are mixed well 

using a vortex mixer, a sonicator, a mixing table and a centrifuge.  The mixture is then 

passed through a 2.5 micron filter that will catch the water insoluble compounds as well 

as any particulate that is present.  The vial and filter paper are dried.  The percent water 

insolubles is the mass of the bio-oil that is not soluble in water divided by the total mass 

of bio-oil tested. 
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Solids 
The determination of the solids content of bio-oil is integral to creating standards for bio-

oil usage.  Solid particulate can erode surfaces, which can cause a need for increased 

maintenance.  The procedure for determining the solids content of bio-oil has been 

adapted from the standards that are in place for many hydrocarbon fuels.  A known mass 

of bio-oil is mixed with methanol.  The methanol acts as a solvent, thinning the bio-oil, 

making it easier to filter.  The char and other solid particulate are typically either not 

soluble in methanol or too large to pass through the filter paper.  The methanol-bio-oil 

mixture is then filtered and the mass of solid particulate that was collected is measured.  

The solid particulate that was collected is divided by the sample mass to determine the 

percent solids content. 

 

Modified Acid Number 
The modified acid number (MAN) is a measure of the amount of carboxylic acid that is 

present in a sample.  The instrument that is used to determine the MAN is a Metrohm 798 

Titrino.  This instrument follows ASTM SMANdard D 664.  The acid number is 

determined by potentiometric titration.  The modified acid number represents the amount 

of potassium hydroxide (KOH) that is required to neutralize the acid present in 1 gram of 

a sample.  The units of measure for MAN are mg KOH/gram of sample.  A known mass 

of bio-oil is mixed with MAN solvent.  The mixture of bio-oil and MAN solvent is 

placed on the device, where it is mixed vigorously.  It is at this point that the titration 

occurs.  The instrument monitors the amount of KOH that is injected into the mixture.  A 

probe also monitors the reaction to determine when the reaction has been completed.  

When the reaction has been completed, the instrument outputs the MAN on the screen. 

 

Elemental Analysis 
Elemental analysis is completed for each fraction of bio-oil to determine the breakdown 

of carbon, hydrogen, nitrogen, sulfur and oxygen.  This test was completed with a 

TruSpec Series instrument with a separate instrument for the measurement of sulfur.  For 
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the measurement of carbon, hydrogen and nitrogen, bio-oil is prepared in a foil packet.  

The sample is dropped from an auto-sampler into a furnace that is held at 950oC.  The 

furnace is flushed with pure oxygen and the product gases are conditioned and analyzed.  

Carbon and hydrogen concentrations are determined with infrared detectors.  Nitrogen 

concentration is determined by passing a small sample of the gas over a hot copper 

element that removes oxygen.  This process also transforms NOx to N2.  The conditioned 

gas is then passed by a thermal conductivity detector to determine nitrogen content.  

Oxygen is determined by summing the amount of ash, carbon, hydrogen, nitrogen and 

sulfur and subtracting that from 100. 

 

ASH 
The ash content of bio-oil is determined through thermal gravimetric analysis.  A small 

sample (<5 micrograms) is placed in a crucible.  The thermal gravimetric analyzer (TGA) 

places the crucible in a furnace that has the ability to measure heat flow with a 

differential scanning calorimeter.  The sample is slowly heated through many stages.  The 

stages are set-up to determine the moisture content, volatiles, fixed carbon and ash.  

Some of the heating occurs with a nitrogen purge to prevent combustion.  Typical tests 

last between 1 and 3 hours.   

 

Viscosity 
The kinematic viscosity of bio-oil can be determined with a Cannon-Fenske Opaque 

viscometer.  This viscometer is used in accordance to ASTM D 445, 446 and 2170.45-47  

The viscometer is a reverse flow viscometer that has a capillary tube that passes bio-oil 

through to the set of three bulbs.  These tubes are used for opaque Newtonian fluids 

where the bottom of the meniscus cannot be seen.  The viscosity is measured at 40oC for 

all bio-oil except for the heavy bio-oil which is measured at 60oC.  The heavy bio-oil is 

measured at the elevated temperature, in a similar manner to asphalt.   
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To complete the viscosity test, the bio-oil is pulled into the upper bulb with a vacuum.  

The tube is placed in a warm oil bath that is held at a constant temperature.  The tube is 

given 10-15 minutes to equilibrate to the bath temperature.  Once the bio-oil has settled to 

the desired temperature, a plug is removed from the tube and the bio-oil flows through 

the three bulbs.  The time that is required for the bio-oil to pass through the two upper 

bulbs in used to calculate the kinematic viscosity (cSt). 

 

Mass Balance 
Complete mass balances were kept for each fast pyrolysis trial.  Each fraction was 

captured in a one liter Nalgene bottle that was weighed before and after the test.  The char 

was collected during the test and weighed afterwards.  The mass of the non-condensable 

gases was calculated using a helium tracer gas.   

 

The helium gas flow was controlled with a mass flow controller that logged the 

continuous flow rate of helium into the system.  The helium remained in the gas flow 

throughout the system as we detected in the non-condensable gases with the Micro-GC. 

Seeing the flow rate of the helium was known, as well as the concentration, the flow rate 

of the other gases could be determined utilizing the measured concentrations. 

 

The mass balances from the fast pyrolysis trials are an indication that the reactor has not 

yet been optimized.  Optimal yields for biomass fast pyrolysis are typically reported as 

75% bio-oil, 12% char and 13% non-condensable gases (NCG).2  Increased production of 

char and NCG act as an indication that the pyrolysis process has not been optimized.  

This could be a function of many operations within the reactor.  These factors include 

fluidization gas flow rate, biomass feed rate, sand particle size, heating rates and even 

biomass particle size.   
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CHAPTER 4.  RESULTS AND DISCUSSION 
The hypothesis developed for this research states that separation of bio-oil components 

can be achieved through the utilization of cooling surfaces that have elevated 

temperatures that are analogous with the dew point of desired compounds.  Bio-oil 

analysis indicates that is it possible to remove water and low molecular weight acids from 

some of the bio-oil by collecting it in a single fraction.  The analysis also provided 

evidence that is possible to collect fractions that are rich in levoglucosan and water 

insoluble content.  While the fractionation was not as clear cut as hoped, this data 

indicates that with further refining of the process high quality bio-oil can be produced on 

a large scale.  

 

The full analysis included a mass balance of the bio-oil collection system, moisture 

content, energy content, modified acid number, elemental analysis, chemical analysis, 

water insoluble analysis, solids content analysis and measurement of the viscosity of each 

bio-oil fraction.  Appendix C contains tables with the full analysis for each test.  The 

following sections present and discuss the results from this analysis.  The error bars 

shown in the graphs are based solely on the standard deviation of the data that was 

collected. 

 

4.1 Mass Balance 
The mass balances for the fast pyrolysis trials are shown in Figure 19, Figure 20 and 

Figure 21.  These figures show each test as well as averages for the three biomasses.  

Visually significant differences can be seen between the results from each biomass.   

 

Char production is one quality that varies between biomasses.  The red oak produced less 

char than the other two biomasses (cornstover and switchgrass).  One explanation for this 

is the fundamental differences between a hard wood and the grasses/agricultural wastes.  

Hard woods have been shown to produce more bio-oil, less char and a higher quality bio-

oil in general.48  There is also significantly less ash in the red oak than there is in either 
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the cornstover or the switchgrass (See Table 6).  Ash can cause secondary reactions 

which lead to an increase in char yield.  The removal of ash from the switchgrass char 

could lead to a similar percentage of char being produced from both the switchgrass and 

the red oak.   

 
Figure 19 Red Oak Mass Balance 

 
Figure 20 Cornstover Mass Balance 
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Figure 21 Switchgrass Mass Balance 

 

The bio-oil production of the three biomasses was similar, but also very different.  Each 

biomass produced around 50% bio-oil (55.89% for red oak, 49.35% for cornstover and 
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which is consistent with multiple values seen throughout the literature.  This can also 

partially be attributed to the amount of ash that is present in the biomass.  The secondary 

reactions that are catalyzed and caused by ash reduce the amount of bio-oil that is 

produced.  These secondary reactions tend to produce a higher amount of char and non-

condensable gases.9 
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test and SF4 collected nearly 10% of the bio-oil during each test.  These fractions are 
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meant to contain the phenolic compounds (Figure 11) and any other compounds that have 

a higher dew point than water.  This low percentage could be an indication that most of 

the phenolics produced have a higher boiling point than simple phenol.  SF5 produced the 

largest volume and mass of bio-oil for each biomass.  This was due to the large amount of 

water and light organic compounds that were collected in this fraction. 

 

Table 8 Bio-oil Collection Mass Balance 
Test # Biomass SF1 SF2 SF3 SF4 SF5 

1-20090619 Red Oak 21.9% 24.7% 5.8% 11.5% 36.1% 
1-20090622 Red Oak 20.8% 21.6% 5.1% 14.2% 38.3% 
1-20090731 Red Oak 20.4% 33.4% 5.4% 7.4% 33.4% 
 Average 21.0% 26.6% 5.5% 11.0% 35.9% 
1-20090629 Cornstover 8.5% 17.7% 3.9% 12.3% 57.6% 
1-20090630 Cornstover 18.0% 15.7% 5.1% 10.3% 50.8% 
1-20090702 Cornstover 17.2% 17.1% 5.0% 10.0% 50.7% 
 Average 14.6% 16.8% 4.7% 10.9% 53.0% 
1-20090707 Switchgrass 16.2% 23.4% 6.3% 10.0% 44.0% 
1-20090709 Switchgrass 19.0% 23.9% 5.3% 9.6% 42.2% 
1-20090710 Switchgrass 17.2% 25.9% 5.6% 7.4% 44.0% 
 Average 17.5% 24.4% 5.7% 9.0% 43.4% 

 

4.2 Qualitative Properties of Bio-oil 
Each fraction of bio-oil had a distinct appearance that was consistent through all of the 

fast pyrolysis trials.  Figure 22 shows samples of bio-oil produced from oak.  The first 

and second fractions of bio-oil (SF1 and SF2) behaved and looked similar.  These 

fractions of bio-oil were collected as a liquid, and as the bio-oil cooled, it transitioned 

into a solid.  The solid bio-oil from SF1 and SF2 became like thick molasses upon 

reheating to approximately 60oC and a pourable liquid at 75oC.  These first two fractions 

also had a sweet, barbeque smell. 

 

The third fraction (SF3) of bio-oil had a consistency similar to maple syrup.  The bio-oil 

in this fraction was designed to be the final condensation step before water began to 

condense.  SF3 appeared to be a black bio-oil until it was spread thin.  Once spread thin, 
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SF3 appeared to have a red tint.  The red tint of this fraction is due to the compounds that 

were collected; specifically the multiple phenolic compounds found in this fraction. 

 

SF4, which was an ESP fraction, had a similar consistency to SF3.  The bio-oil was 

pourable with a consistency similar to that of maple syrup.  The color of the fourth 

fraction of bio-oil appeared to be pitch black, even when spread thin.  The dark black 

coloring can be attributed to the nature of the aerosols that were contained in this fraction.  

Aerosols contain a wide array of compounds, including lignin derived oligomers.  These 

lignin derived oligomers are typically found to be very dark and black in color. 

 

The last fraction (SF5) was a very watery, thin fraction.  The liquid collected in this 

fraction was mainly water.  The high water content produced a liquid that had a 

consistency that was similar to water.  Depending on the amount of water that was 

collected, the color of this fraction varied.  Typically SF5 was clear with a red tint.  If the 

ESPs were not operating correctly, black oily droplets could be seen floating on the top of 

this fraction.  SF5 had an overpowering acidic smell. 

 

 
Figure 22 Bio-oil Samples from Oak 
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4.3 Moisture Content 
One of the primary goals of the fractionating bio-oil collection system is to collect bio-oil 

fractions with low amounts of water.  This will have multiple effects on the quality and 

composition of the bio-oil.  Removing the water from the bio-oil creates a viscous bio-oil 

that is more difficult to pump.  Alternatively, the presence of water in a liquid reduces the 

higher heating value of it.  This is due to the need to vaporize the water when combusting 

the bio-oil.  Typical whole bio-oil has a moisture content of around 25%.2 

 

The moisture content of the bio-oil fractions from all of the fast pyrolysis trials was 

completed by using a Karl-Fischer Titrator.  The average moisture content for each of the 

fractions and biomasses is shown in Figure 23.  The different biomasses gave visually 

significantly different moisture contents, but the trend was the same for all three 

biomasses. 

 

 
Figure 23 Average Moisture Content in Bio-oil Fractions 
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The general trend in the experiments was increasing moisture content with decreasing 

condenser temperatures.  In all of the tests, SF1 and SF2 both had significantly less 

moisture than the other fractions.  The bio-oil collection system was designed to collect 

little to no water in the first two fractions of bio-oil.  The presence of water in the 

upstream fractions (SF1 and SF2) was not expected, but can be explained:  

• Water could condense on the bio-oil that had already been collected in the bottle 

or on the bottle walls if they were cooler than the dew point of water.   

• Water could be produced through reactions that occur while the bio-oil is cooling.   

• Water molecules could bond with larger polar molecules through hydrogen 

bonding. 

As the bio-oil was gathered in SF3 and SF4, more moisture was condensed and collected 

in the bio-oil.  This occurred even though the wall temperature set-point for SF3 was 

theoretically higher than the dew point of water.  There are multiple explanations for this 

occurrence.  The most likely explanation for the moisture content in fractions 3 and 4 is a 

change in water vapor pressure.  The design vapor pressure was based on a theoretical 

combination of bio-oil constituents.  If the bio-oil composition had changed due to 

secondary reactions or differing biomass, the vapor pressure of water would have 

changed as well.  The dew point of water increases with the concentration of water in the 

product stream.  This would cause water to begin to condense even though the condenser 

wall set-point was thought to be greater than the dew point of water.   

 

The last fraction of bio-oil (SF5) was mainly water.  The primary goal of this fraction 

was to collect the water and acid found in the bio-oil.  The results show that this was 

partially accomplished.  In each test, a majority of the water was collected in the SF5.  

 

Even though there is a trend of increasing moisture content as the bio-oil progresses from 

SF1 to SF5, the different biomasses have noticeably different moisture contents.  Red oak 

typically had lower moisture concentration for each of the fractions when compared to 
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the other two biomasses.  Cornstover and switchgrass typically had higher moisture 

contents overall.  Other than SF5, each fraction had less water than typical bio-oil. 

 

Bio-oil was collected in the separate fractions in different ratios depending on the 

biomass that was being processed.  There are many ways to compare the moisture 

content, but comparing them on a basis of grams of water per gram of bio-oil collected 

places each biomass on equal footing.  This analysis is used throughout this chapter to 

compare the properties of the bio-oil produced from different biomasses.  Figure 24 

displays the % moisture contained in the bio-oil. 

 

 
Figure 24 Comparison of Moisture Content by Biomass (Wet Basis) 
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fractionated these early fractions in a similar method during these tests.  Red oak though 

collected large amounts of water, compared to the other biomasses, in the first two 

fractions.  A large majority of the water was pushed to the last condenser while the first 

four condensers collected less than 15% of the water. 

 

 
Figure 25 Comparison of Carried and Reaction Water in Whole Bio-oil 

 
When comparing the moisture content of bio-oil, it is helpful to separate the water into 

carried and reaction water.  The carried water is water that entered the system as trapped 

moisture in the biomass.  The reaction water is water that was generated as a byproduct 

of the multitude of reactions that occur during fast pyrolysis.  Figure 25 shows the 

difference between the carried and reaction water from each biomass.  This figure 

illustrates that the carried water was not the most significant contributor to moisture 

found in the bio-oil.  Rather, the moisture found in the bio-oil was generated mainly from 

the reactions that occurred during the fast pyrolysis process.  Through this analysis it is 

shown that cornstover produces the largest amount of water during the process.  The 

increased production of water indicates the presence of secondary reactions which are 

catalyzed by ash and char.  These secondary reactions reduce the overall production of 
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bio-oil and increase the moisture content, char production and non-condensable gas 

production of the process.   

 

4.4 Higher Heating Value 
The higher heating value, which was defined earlier in the term definitions, is a key 

property of bio-oil.  This value, which is determined with a bomb calorimeter, is an 

indication of the amount of energy that could be utilized when the bio-oil is combusted.  

Conventional fuel oils have heating values that are typically between 42-44 MJ/kg while 

traditional bio-oil only has heating values around 17 MJ/kg (wet basis).38  The analysis of 

the bio-oil was completed and is presented on a wet basis unless otherwise noted.   

 

The average heating values of the individual fractions from each biomass are shown in 

Figure 26.  The average HHV for each biomass is also given on a mass averaged basis.  

The results from the individual biomasses varied, but the overall trend of the higher 

heating values was the same for all biomasses.  As the collection temperature lowered, 

the higher heating value of the bio-oil lowered as well.  This corresponds to the amount 

of water that was collected in each of the bio-oil fractions.  Energy is required to vaporize 

the water in bio-oil, thus the energy for vaporization lowers the total energy content of 

the bio-oil.  This also explains the lower overall energy contents of the cornstover and 

switchgrass bio-oils which had higher moisture contents than the red oak bio-oil.   

 

The total energy content of the bio-oil that was produced from the multiple biomasses is 

also presented in Figure 26 and Appendix C.  The HHV for the total red oak bio-oil was 

determined to be 17.3 MJ/kg.  The mass average heating value was determined by 

multiplying the HHV for each fraction with the mass of bio-oil collected for each 

fraction.  This value was then divided by the total mass collected to produce the total 

higher heating value.  Based on this method, the switchgrass bio-oil had an HHV of 16.2 

MJ/kg and the cornstover bio-oil had an HHV of 17.7 MJ/kg.  These HHVs are lower 

than the typical HHV that has been previously presented in the literature.38  These lower 
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energy contents can be attributed to the higher moisture content and lower overall yield 

that was collected for these two biomasses.  The lower yield and higher moisture content 

could be due to secondary reactions that break the larger bio-oil molecules into smaller 

organic molecules.  These secondary reactions produce more char, NCG and low 

molecular weight compounds, including water. 

 

 
Figure 26 Higher Heating Value of Bio-oil Fractions (Wet Basis) 

 

The energy content of the individual fractions of bio-oil range from over 25 MJ/kg to less 

than 10 MJ/kg.  The highest energy contents were consistently found in the first two 

condensers.  Complete analysis can be seen in Appendix C.  The first two fractions 

contain 67.6% of the total energy for red oak.  This compares to 62.5% for cornstover 

and 65.38% for switchgrass.  The final fraction of bio-oil contains the lowest HHV of any 

of the bio-oil fractions.  The final fraction (SF5) of red oak bio-oil has a higher heating 

value of 7.3 MJ/kg.  Similarly, SF5 for switchgrass and cornstover had HHVs of 4.6 

MJ/kg and 4.1 MJ/kg.  The differences in heating values for SF5 can be correlated to the 

moisture content.  Cornstover bio-oil had higher moisture content in SF5 than 
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switchgrass, which had higher moisture content than red oak.  As the moisture content 

increased, the energy content of the last fraction decreased. 

 

Due to differences in bio-oil yields, it is helpful to compare the energy content on a level 

base.  Figure 27 presents the heating value of the mass averaged bio-oil (in MJ/kg of bio-

oil), separated into individual fractions.  Comparing the heating value on a whole bio-oil 

basis provides an equal basis to compare the bio-oils produced from different biomasses.  

This graphic illustrates that red oak was the best biomass that was tested for the 

conversion of biomass to a liquid energy carrier.  For the bio-oil that was produced and 

tested, red oak bio-oil contained 17.5 MJ/kg of biomass reacted.  This compares to 

biomass energy values that are reported between 15-19 MJ/kg.49  Cornstover and 

switchgrass each produced 13.7 and 15.2 MJ/kg of biomass fed respectively.   

 

 
Figure 27 Heating Value of Bio-oil by Biomass (Wet Basis) 
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4.5 MAN 
The modified acid number (MAN), as defined in Section 1.2, is the amount of KOH in 

mg that is required to neutralize the organic (carboxylic) acids in a gram of sample liquid.  

This method of determining acid content of bio-oil is more quantitative than pH.  pH is a 

qualitative measurement that can be used to compare the severity of acid content, but not 

the actual amount of acids present.  Typical pH measurements for bio-oil are reported to 

be 2.5.2 

 

The modified acid number for the separate fractions of bio-oil is shown in Figure 28.  

This figure contains the average modified acid numbers for each fraction of bio-oil for 

each biomass that was tested.  A mass averaged overall MAN is also shown in this figure.  

This figure also denotes the standard deviation for each value presented as error bars.   

 

 
Figure 28 Modified acid number of Bio-oil Fractions (Wet Basis) 

 

The MAN for each fraction differed greatly both between fractions and between 
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1 and 2 had the lowest MANs.  These values were both consistently less than 40 mg 

KOH/gram of bio-oil.  The fraction with the highest MAN was very dependent on the 

biomass.   Cornstover and switchgrass behaved similarly to each other, although 

cornstover bio-oil had a noticeably lower MAN than bio-oil produced from switchgrass.  

The first two fractions of bio-oil from both cornstover and switchgrass had similar MANs 

followed by a higher MAN in the third fraction.  The fourth fraction of bio-oil for these 

biomasses had the highest MAN of any fraction from the respective biomass.  The fourth 

fraction was ESP fraction that had cooled to approximately 75oC before being collected.   

 

The final fraction of bio-oil had a lower MAN than the fourth fraction, but, as can be seen 

in Figure 29, over half of the total acid that was found in the bio-oil was contained in this 

fraction.  Cornstover, which had lowest MAN for stage fraction 5 (43.5 mg KOH/ gram 

of bio-oil) also had the highest average moisture content of any fraction (78.7 wt%).  The 

high concentration of water present in the final fraction dilutes the acids that are present.  

This allows for a small MAN but a large amount of collected acid when compared to the 

other fractions on a wet basis. 

 

Bio-oil produced from red oak had the highest overall MAN.  SF4 and SF5 each had 

MANs that averaged 117.1 and 116.8 mg KOH/gram of bio-oil respectively.  These 

MANs were significantly higher than the other three fractions which averaged 34.9, 31.6 

and 79.1 mg KOH/gram of bio-oil.  This is an indication that the bio-oil collection system 

is successfully separating a significant portion of the acids from the rest of the bio-oil.  

Another indication can be seen in Figure 29.  This figure breaks the MAN into biomass 

types and presents the MAN as mg KOH/gram of bio-oil produced.  This figure shows 

that approximately 56% of the total acid that is found in the bio-oil is contained in the 

final fraction of bio-oil from red oak.  This figure also shows that cornstover produced 

the lowest amount of total acid but still collected about 54% of that acid in the final 

fraction.  The lower acid content in cornstover could be due to the fact that cornstover 

typically has a lower concentration of hemicelluloses than either switchgrass or red oak 
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as shown in Table 5.  By collecting over half of the acid in the final fraction of bio-oil, 

this system is lowering the acid content of the other four fractions.   

 

 
Figure 29 Mass Averaged MAN by Biomass in a mg KOH/g whole bio-oil 

  

The modified acid number takes into account only carboxylic acids, although some of the 

acidic compounds that are detected are non-conventional carboxylic acids.  These other 

compounds include phenolic compounds that contain a carboxyl group.  It is likely that 

the modified acid number that was measured for SF1 and SF2 consists of many “acidic 

tars” (phenolic compounds with acidic tendancies).  Further indication of the effect of the 

fractionation technology can be shown through the acetic acid content of the bio-oil.  

This can be seen in Section 4.7 Chemical Analysis.  
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4.6 Elemental Analysis 
The elemental analysis of each bio-oil fraction was completed in triplicate and the results 

are presented and discussed below.  All of the elemental analysis is presented on a 

moisture free basis.  Full results can be seen in Appendix C. 

 

Carbon contents (dry basis) of the bio-oil fractions are shown in Figure 30.  This figure 

illustrates the significant difference between the first two stage fractions (SF1 and SF2) 

and the final stage fraction (SF5).  The first two fractions have carbon contents that 

exceed 60%, with the bio-oil from cornstover exceeding 65%.  Meanwhile, the final 

fraction of bio-oil has carbon contents that are less than 45% by weight on a dry basis. 

 

Typical wood-derived bio-oil contains between 54 and 58% carbon on a dry basis.9  The 

mass averaged bio-oil contained carbon contents that ranged from 51.5% to 58.7% which 

falls into the general range of carbon for whole bio-oil.  The differences between the 

fractions of bio-oil and the typical carbon contents are significant. These differences 

indicate that more carbon is being collected in the first two fractions (on a dry basis) than 

typical bio-oil.   

 

A simple explanation for the differences between the fractions concerns the size of 

organic molecules that are present in the individual bio-oil fractions.  Carbon has a 

molecular weight of 12 grams per mole which is significantly larger than that of 

hydrogen but slightly less than the molecular weight of oxygen.  Large molecules 

typically have a higher carbon to oxygen and carbon to hydrogen ratio than smaller 

molecules. This explains why the concentration of carbon is higher in the first two 

fractions where there are large concentrations of high molecular weight compounds than 

in the final fraction where there are mainly low molecular weight compounds. 
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Figure 30 Carbon Content of Bio-oil Fractions (Dry Basis) 

 

The hydrogen content of the bio-oil is shown in Figure 31.  This figure illustrates that the 

hydrogen content (on a dry basis) is relatively constant as it progresses from the first 

fraction to the fourth fraction.  Meanwhile the final fraction of bio-oil contained 

significantly less hydrogen than the other four fractions.  Typical bio-oil contains 

between 5.5 and 7% of hydrogen by weight.9  Based on this analysis, it appears that the 

hydrogen content of the individual fractions of bio-oil is similar to the average 

concentration of hydrogen found in other bio-oil.  This could be due to the high amount 

of water that was produced during the fast pyrolysis process.  This would deprive the rest 

of the bio-oil from the available hydrogen. 
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Figure 31 Hydrogen Content of Bio-oil Fractions (Dry Basis) 

 

Oxygen content is a very important property of bio-oil due to its negative effect on 

heating value.  Figure 32 illustrates the differences in oxygen content (on a dry basis) 

between the separate stage fractions.  The oxygen content of SF1 and SF2 for each 

biomass was similar.  Meanwhile, the oxygen content (on a dry basis) is higher in SF3 

and SF4 than in SF1 and SF2.  Typical bio-oil has an oxygen content that ranges between 

35 and 40% by weight.9  The oxygen content of both the bio-oil fractions and the whole 

bio-oil is lower than the typical bio-oil that is reported in the literature.  This, similar to 

hydrogen, could be due to the higher amount of water that was produced through the fast 

pyrolysis reactions.   
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Figure 32 Oxygen Content of Bio-oil Fractions (Dry Basis) 

 

The presence of nitrogen and sulfur in bio-oil is viewed as a negative occurrence.  

Nitrogen and sulfur produce NOx and SOx when combusted in the bio-oil.  NOx and 

SOx are pollutants that are heavily monitored and controlled in many industrial 

situations.  Figure 34 and Figure 35 illustrate the nitrogen and sulfur content of the 

individual fractions of bio-oil. Nitrogen content decreased as the bio-oil proceeded from 

the first stage fraction to the last.  Nitrogen compounds that have been found in bio-oil 

include both amines and pyridines.50  The amines typically have low boiling points while 

the pyridines have boiling points that exceed 115oC.  Like phenols, pyridines have 

varying boiling points depending on the degree of substitution found on the aromatic 

ring.  The structure of pyridine can be seen in Figure 33.  The presence of pyridines 

would explain the presence of large concentrations of nitrogen in the first two fractions of 

bio-oil. 

 

Both nitrogen and sulfur contents are strongly dependant on the initial nitrogen and sulfur 

contents of the biomass.  Red oak contains a smaller amount of nitrogen when compared 

to switchgrass and cornstover.  The cornstover contains the largest amount of nitrogen, 

which can be seen in both Table 6 and Figure 34.  
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Figure 33 Pyridine Molecule 

 

 
Figure 34 Nitrogen Content of Bio-oil Fractions (Dry Basis) 

 

The sulfur content of the bio-oil was measured on a separate instrument than the carbon, 

hydrogen and nitrogen.  The results from this analysis can be seen in Figure 35.  Sulfur 

content, much like nitrogen content, is strongly dependant on the original sulfur content 

of the biomass.  It is evident, based on Figure 35, that the sulfur is carried through the 

system as a medium weight compound.  The highest concentrations of sulfur were found 

in the third and fourth fractions.  Based on the chemical analysis, these two fractions 

consist of high concentrations of medium weight compounds, including furans and 

phenolics.  Cornstover and switchgrass produced bio-oil with the highest concentrations 

of sulfur. 
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Figure 35 Sulfur Content of Bio-oil Fractions (Dry Basis) 

 

The ash content of the bio-oil was determined with a thermal gravimetric analyzer 

(TGA).  The results for this analysis are illustrated in Figure 36.  According to this 

analysis, the largest concentration of ash content is found in the fourth fraction of bio-oil.  

This    fraction of bio-oil is from an ESP that removes aerosols, which are formed by one 

of two mechanisms.  First, the aerosol could have been produced in the fast pyrolysis 

reactor but was too small of an aerosol to be removed in the first ESP.  Some aerosols 

contain particulate matter that is carried through the system.  During the second pathway, 

liquid that has been condensed could be sheared into liquid droplets as it is dropping from 

the condenser tubes to the collection bottle.  These aerosol droplets would be pure liquid 

with little to no particulate matter.  The most logical explanation for the presence of large 

quantities of ash in SF4 would be the presence of solid particulate that is caught in small 

aerosol droplets.  Based on the analysis that was completed for red oak, cornstover and 

switchgrass, 28%, 47% and 56% of the ash was collected in SF4 for each of the 

respective fractions.   
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Figure 36 Ash Content of Bio-oil Fractions (Dry Basis) 

 

4.7 Chemical Analysis 

4.7.1 Introduction 

The chemical analysis of the bio-oil was completed for each fraction.  This data was 

compiled and used to create Figure 37, Figure 38 and Figure 39.  These results are based 

on a mass-averaged analysis.  This analysis takes into account the concentration of a 

component found in a fraction and the amount of bio-oil that was produced in that 

fraction.  This section provides a detailed breakdown of the chemical analysis of the bio-

oil.  All weight percents presented in this section are given on a wet basis unless 

otherwise denoted. 
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Figure 37 Chemical Analysis of Red Oak obtained through GC/MS and GC/FID  

 

 
Figure 38 Bio-oil Composition Cornstover obtained through GC/MS and GC/FID  

 

 
Figure 39 Bio-oil Composition Switchgrass obtained through GC/MS and GC/FID  
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4.7.2 Levoglucosan 

The concentration of levoglucosan (1,6-Anhydro-α-D-glucopyranose) was determined 

with a GC/MS.  This anhydrosugar has long been a compound of interest in fast pyrolysis 

bio-oil.  Typical bio-oil contains between 3 and 4.5% levoglucosan.22  The concentration 

of levoglucosan in each fraction of bio-oil can be seen in Figure 40.  This figure 

illustrates the degree of fractionation of levoglucosan.  This figure clearly illustrates that 

the first two fractions (SF1 and SF2) of bio-oil contain the highest concentrations of 

levoglucosan.  The final three fractions of bio-oil each have very low concentrations of 

levoglucosan.  In fact, levoglucosan was not detected in the final fraction of bio-oil 

produced from cornstover or switchgrass.   

 

Red oak produced the highest concentrations of levoglucosan in each fraction.  The 

highest overall concentration of levoglucosan detected was in the first fraction (SF1) of 

red oak bio-oil.  This fraction had 10% (by weight) levoglucosan.   

 

 
Figure 40 Levoglucosan Content of Bio-oil Fractions (Wet Basis) 
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An interesting observation can be made concerning the presence of levoglucosan in the 

second fraction.  The initial hypothesis concerning levoglucosan was that it exited the 

reactor as a vapor.  The presence of levoglucosan in the second fraction indicates that this 

anhydrosugar exits the reactor as an aerosol as well.  This is most apparent in the 

fractions of bio-oil generated from switchgrass.  The concentration of levoglucosan in the 

ESP fraction (SF2) is higher than the concentration in the condenser fraction (SF1).  This 

also occurs in the same fractions of cornstover bio-oil.  The ESP fraction (SF2) has a 

significant concentration of levoglucosan, but it is not higher than the detected 

concentration that was found in the first fraction. 

   

 
Figure 41 Mass Averaged Levoglucosan Content by Biomass (Dry Basis) 

 

When comparing the bio-oil created from the different biomasses, it is helpful to compare 

each on the same basis.  For levoglucosan production, Figure 41 compares each biomass 

on a gram of levoglucosan per gram of whole bio-oil collected basis.  This method 

illustrates that red oak produces a significantly higher amount of levoglucosan than either 

cornstover or switchgrass.  These differences in levoglucosan production correlate to the 

differences in cellulose in the different biomasses.  This figure also illustrates the fact that 
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the vast majority (over 90% for each biomass) of levoglucosan is collected in the first 

two fractions.   

 

The significant differences in total levoglucosan produced are most likely due to ash 

content in the biomass.  It has been shown in the literature that ach has a negative effect 

on the pyrolysis of cellulose into levoglucosan and other valuable organic molecules.24  

Analysis of the biomass has shown that both cornstover and switchgrass have significant 

amounts of ash.  This ash has reduced the amount of levoglucosan that was produced 

from these two biomasses, as can be seen in Figure 41.   

 

4.7.3 Acetic Acid 

Acetic acid content was measured with a gas chromatograph-flame ionization detector 

(GC/FID).  The bio-oil was “washed” with water to extract the water soluble compounds. 

The water mixtures were then analyzed on the GC/FID to determine the concentrations of 

the different water soluble compounds.  Figure 42 presents the results for acetic acid.  

This chart also contains the standard deviations of the samples. 

 

Figure 42 illustrates that the acetic acid content of the bio-oil differs depending on the 

fraction that was tested.  The first two fractions (SF1 and SF2) consistently had the 

lowest concentration of acetic acid.  Contrary to expectations, the fourth fraction (SF4) 

always contained the highest concentration of acetic acid. The overall goal of the system 

was to collect the vast majority of the acetic acid in the final fraction with the first four 

fractions having minimal acid content.  Even though SF5 is meant to collect the majority 

of the acids present in the bio-oil, SF5 had lower concentrations than two of the other 

fractions.  This can be attributed to the high volume of liquid collected and the large 

concentration of water present in this fraction.  
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Figure 42 Acetic Acid Content of Bio-oil Fractions (Wet Basis) 

 

Acetic acid concentrations have been reported in the literature between 2.5 and 4.7%.22  

SF1 and 2 both had acetic acid concentrations that are lower than the reported values.  

Otherwise, the other fractions all had higher acetic acid concentrations than the reported 

values.  The mass averaged total also had a higher concentration.  This indicates that 

secondary reactions are breaking larger molecules down into smaller compounds, which 

include acetic acid.   

 

One possibility for the large concentration of acetic acid in stage fraction 4 could be that 

condensation occurred while the aerosols were collected.  The presence of aerosols 

increases the surface area available for condensation.  The extra residence time in the 

ESP could have allowed for the acetic acid to collect on the aerosols because of hydrogen 

bonding with other polar compounds.  Acetic acid is hydrophilic which would allow it to 

bond to water.  As was shown in Section 4.3 Moisture Content, SF4 had moisture 

contents that range from 14% to 25%. 

 

Even though SF4 contains the largest concentration of acetic acid, it does not contain the 

highest amount.  When the acetic acid content of each fraction is compared by 
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investigating the total amount produced, it is easy to see that the final fraction contains 

the highest total amount of acetic acid.  Figure 43 compares the acetic acid content on a 

basis of grams of acetic acid per gram of total bio-oil collected.  This graph shows that 

the final fraction of bio-oil has the highest total mass of acetic acid.  For each of the 

biomasses tested, SF5 contained over 54% of the total acetic acid produced in the bio-oil 

because of the large volume of bio-oil collected in this fraction.  This indicates that the 

bio-oil collection system has the capability to collect a majority of the acetic acid in a 

single fraction.  

 
Figure 43 Mass Averaged Acetic Acid Content by Biomass (Dry Basis) 

 

The uncertainty of acetic acid concentration can be partially attributed to the methods 

used to test for acetic acid.  The test method includes a water extraction to collect all 

water soluble compounds.  This process is based on vigorously mixing water and bio-oil.  

This action is performed with a group of equipment that includes vortex mixers and a 

sonicator.  If the samples were not mixed exactly the same, there is a possibility that 

different degrees of extraction could be achieved.  This could cause significant 

differences in acetic acid concentration. 
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4.7.4 Furans 

The concentration of furans was determined with both the GC/MS and GC/FID.  For this 

study, the compounds that are considered furans can be found in Section 3.4 Test 

Methods.  Figure 44 illustrates the wt% of furans in each fraction as well as the mass 

averaged total concentration of furans in the bio-oil.   

 

 
Figure 44 Concentration of Furans in Bio-oil Fractions (Wet Basis) 

 

This graph illustrates that the highest concentration of furans can be found in the third 

fraction (SF3).  The last fraction (SF5) of bio-oil consistently had the lowest 

concentration of furans.  According to the analysis that was performed, furans condensed 

or were collected as both vapors and aerosols at many different temperatures.  The 

compounds that are grouped under the description have a large range of boiling points 

and molecular weights. 

 

Bio-oil has been reported to have furan concentrations between 1 and 1.5%.  The 

fractions of bio-oil each have higher concentrations of furans that are higher than the 

reported furan content.  This leads to an overall, mass averaged, furan content of over 2% 

for each of the biomasses.   
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Figure 45 presents the furan content on a gram of furans per gram of total collected bio-

oil basis.  This analysis helps to distinguish the total amount of furans that were produced 

from each biomass.  This analysis can also provide insight into how much each fraction 

contributes to the total furan content.  The analysis indicates that switchgrass produces 

the highest total amount of furans.  The GC/MS analysis also illustrates that, even with 

the low concentrations of furans present in the last fraction (SF5), it still contributes to a 

large portion of the total furan content.  The first two fractions, though, contain the 

highest overall amounts of furans.  This could be attributed to the high boiling point of 

the larger furan compounds.  This figure also illustrates that even though cornstover bio-

oil contains a larger concentration of furans in many of the fractions, cornstover and red 

oak produced very similar total amounts of furans. 

 

 
Figure 45 Mass Averaged Furan Content by Biomass (Dry Basis) 
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4.7.5 Phenols 

The total concentration of phenolic compounds was determined using a gas 

chromatograph/mass spectrometer (GC/MS) according to the methods discussed in 

Section 3.4 Test Methods.  Figure 46 denotes the overall concentration of phenolic 

compounds for each fraction of bio-oil.   

 

 
Figure 46 Phenolic Concentration in Bio-oil Fractions (Wet Basis) 

 

Depending on the biomass, the highest concentration was found in different fractions.  

For red oak, the highest concentration was found in the fourth fraction (SF4).  For 

cornstover and switchgrass though, the highest concentrations of phenolics could be 

found in the third and fourth fractions (SF 3 and 4).  Branca et.al22 report phenol 

concentrations between .4 and .8 % for whole bio-oil.  The GC/MS analysis indicates that 

the fractionated bio-oil has a much higher concentration of phenols.  Even SF5, which 

has the lowest concentration of phenolic compounds, has a similar concentration to the 

typical bio-oil.   
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The bio-collection system was designed to collect the majority of phenolics in the third 

fraction.  The presence of phenolics in significant quantities in the first two fractions, 

though, can be explained.  The system was designed using phenol as the model 

compound.  Except for phenol, all of the compounds in the phenol group (Table 2) are 

substituted phenolics with boiling points higher than that of un-substituted phenol.  

Phenol is one of the extremes and not an average compound that could act as a true 

representative of the phenol group.  Further improvements to the design of the bio-oil 

collection system will have to take into account the differences between the many types 

of phenols that are present in bio-oil. 

 

 
Figure 47 Mass Averaged Phenolic Content by Biomass (Dry Basis) 

 

When comparing the phenolics in the bio-oil, it is beneficial to compare the amount 

produced on a gram of total bio-oil collected basis.  Figure 47 contains this comparison.  

This figure illustrates that switchgrass produces the largest quantity of phenolic 

compounds.  This figure also illustrates that nearly 60% of the total phenolics produced 

are found in the first three fractions.  Based on this analysis, there does not appear to be 
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much difference between the total mass of phenolic compounds produced from the 

different biomasses. 

4.7.6 Guaiacols 

The analysis of the bio-oil to determine the amount of guaiacols present was completed 

with a gas chromatograph/mass spectrometer (GC/MS).  This analysis provides insight 

into the structural differences for the lignin of different biomasses.  Guaiacol, which is a 

substituted phenol with a methoxy group attached, is produced from lignin.  Depending 

on the structure of the lignin and the substitutions occurring on the aromatic rings within 

the lignin, different amounts of phenols, guaiacols and syringols can be produced. 

 

 

 

 
Figure 48 Concentration of Guaiacols in Bio-oil Fractions (Wet Basis) 

 

Figure 48 illustrates the concentration of guaiacols within each fraction of bio-oil.  An 

interesting occurrence is observed in the concentrations of guaiacols in the red oak bio-

oil.  The first and third fractions, both vapor condensers, each had higher concentrations 
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of guaiacols than the second fraction, an ESP.  This indicates that a large portion of the 

guaiacols produced from red oak are exiting the reactor as vapors, rather than aerosols.  

Bio-oil has been reported to have between 3 and 6% guaiacols by weight.22   

 

For both switchgrass and cornstover, Figure 48 illustrates that the largest concentration of 

guaiacols are collected in the third fraction.  For all of the biomasses, the fourth and fifth 

fractions of bio-oil contained the lowest concentrations of guaiacols. The reported values, 

for whole bio-oil, are higher than the measured concentrations that were produced for this 

study.  This could be due to the biomass used to determine the reported values.  

Guaiacols are produced from the lignin and the structure of the lignin dictates the 

percentage of guaiacols that can be produced.  Differences in the pyrolysis of the lignin 

could affect the percentage of measured guaiacols as well.    

 

 
Figure 49 Mass Averaged Content of Guaiacols by Biomass (Dry Basis) 

 

To determine which biomass produced the highest amount of guaiacols, the guaiacol 

content for each biomass was compared on a gram of guaiacols produced per gram of 

total bio-oil collected basis.  The results of this analysis can be seen in Figure 49.  This 
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figure clearly illustrates that switchgrass produced the largest amount of guaiacols.  It 

also illustrates that the first two fractions of bio-oil contain the majority of the guaiacols.  

This occurs in red oak even though the second fraction had a lower concentration than the 

first and third fractions.  This can occur because the third fraction produced significantly 

less bio-oil than the second fraction. 

 

4.7.7 Syringols 

Syringols, much like guaiacols, are indicators for lignin derivatives.  Syringols are a 

substituted phenol with two methoxy groups attached to the aromatic ring rather than the 

single methoxy group found on guaiacols.  The concentration of these compounds was 

determined through GC/MS analysis and the results are shown in Figure 50.   

 

 
Figure 50 Concentration of Syringols in Bio-oil Fractions (Wet Basis) 

 

This figure clearly illustrates that the first fraction from red oak had the highest 

concentration of syringols.  From the results that were gathered for this study, red oak 

appeared to produce the largest concentrations in each of the fractions collected.  This 
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indicates that hard wood lignin contains a larger percentage of aromatic rings with two 

methoxy groups when compared to cornstover or switchgrass.  The general trend for 

syringol collection was similar to that of other compounds.  As the collection temperature 

decreased, the amount of syringols collected also decreased.  Branca et al.22  report 

syringol concentrations between .3 and 2%. Much like phenol and guaiacol, the 

difference between reported values and the measured values could be a matter of biomass 

or pyrolysis conditions. 

 

  
Figure 51 Mass Averaged Content of Syringols by Biomass (Dry Basis) 

 

To compare the total amounts of syringols produced, the syringol content from each 

biomass was evaluated.  The results from this evaluation are shown in Figure 51.  This 

figure clearly illustrates that red oak produces the largest amount of syringols when 

compared to switchgrass and cornstover.  It has been shown in literature that different 

biomasses have unique lignin structures.22, 51  These unique lignin structures can lead to 

distinct distributions of phenolic compounds like syringols.  This figure also illustrates 

that almost all of the syringols are collected in the first and second fractions.  Syringols, 

which are highly substituted, have high boiling points which allow them to be collected 
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in the first two fractions.  These two fractions contained over 77% of the syringols for 

each biomass that was reacted. 

 

4.8 Water Insoluble Content 
The quantification of the water insoluble compounds that are found in bio-oil can be an 

indication of many different attributes that affect bio-oil quality.  A majority of water 

insoluble compounds are products of the lignin that can be found in the original biomass.  

These compounds in the bio-oil are referred to as pyrolytic lignin.  Most water insoluble 

compounds are also very large in molecular weight and structure.  The largest compounds 

were found in the first condenser and in the ESPs.  Oasmaa et al. report water insoluble 

content between 15 and 20%.52 

 

When comparing the fractions of bio-oil in Figure 52, it can be seen that SF 1 and 2 both 

have high percentages of water insoluble material.  The first fraction had the highest 

percentage of water insoluble components for both cornstover (69.6%) and switchgrass 

(61.1%).  For red oak, the average percentage of water insoluble material was higher in 

the second fraction (50.2%) when compared to all other fractions of red oak bio-oil.  

These values are well over other reported water insoluble contents that can be found in 

the literature.  SF 3, 4 and 5 each had significantly lower percentages of water insoluble 

content.  SF 2 and 3 had water insoluble contents that were in the range of typical bio-oil.  

SF 1 was designed to collect high molecular weight compounds that are in the vapor 

phase, while SF 2 was designed to collect the compounds that are in the liquid aerosol 

phase.  These liquid aerosols are naturally large molecular weight compounds.   
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Figure 52 Water Insolubles Concentration of Bio-oil Fractions (Wet Basis) 

 

Mohan states that oligomeric species of bio-oil, which are lignin derivatives, are “blown 

apart” during the rapid vaporization of water in the biomass particles9 to generate 

aerosols.  Similarly, Ba et al. states that the water insoluble portion of bio-oil consists of 

lignin derived compounds.34  Aerosol collection in the second fraction has led to high 

percentages of water insoluble material in this fraction.  These water insolubles are 

presumed to be lignin derived oligomeric aerosols.  The large oligomeric aerosols have 

high molecular weights and high boiling points allowing them to exist in the liquid phase 

even in high temperature environments.  High water insoluble contents in the first 

condenser (SF1) are due to either the vaporization of a portion of the aerosols into the 

vapor phase or the impaction of aerosols on the walls of the first condenser.  While 

vaporization of these compounds is possible, it is more likely that aerosols were collected 

in this fraction with the desired vapors.  There are a number of mechanisms that could be 

cause of the collection of aerosol droplets in this condenser.  The aerosols could have 

impacted on the condenser walls through either vigorous mixing or thermophoretic 

forces.  Even though the condenser was designed as a laminar flow condenser, there 

could have been a disturbance in the flow that forced it to become turbulent, thus causing 
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the aerosol droplets to impact the wall.  This disturbance could be anything from the 

transition from the pipe to the tubes to a build-up of bio-oil on the condenser tube walls.  

Either of these causes are likely to have caused turbulent flow through this condenser.  

Another likely possibility is that the assumptions for flow properties were not correct 

based on the assumed mixture of compounds in the flow.  Thermophoretic forces are 

caused temperature differences between a solid and a fluid.  The forces draw particles 

from the warm fluid to a cooler surface.  In the case of the first condenser, the hot gases 

could be affected by the cooler surface on the condenser tube walls.  More than likely, the 

aerosols were forced to the walls by turbulent flow in the condenser tubes.  

 

 

 
Figure 53 Water Insolubles by Biomass (Dry Basis) 

 

To compare the different biomasses, the water insolubles were averaged by the mass of 

bio-oil collected which can then be translated into grams of water insoluble components 

per gram of bio-oil collected in the bio-oil collection system.  The results can be seen in 

Figure 53.  This chart illustrates that red oak produced the largest total amount of water 

insoluble content while cornstover and switchgrass produced slightly less.  The water 
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insoluble content differences are consistent with the typical lignin contents of the selected 

biomases.  It also can illustrate the fact that the vast majority of water insoluble 

components, which are found in the bio-oil, are found in the first two fractions.  The 

other three fractions contain less than 25% of the total water insoluble components. 

 
The total mass of water insoluble components found in the bio-oil from individual 

biomasses was found to be analogous to the amount of lignin that was in each biomass.  

Red oak, which had 20% lignin by weight, produced the highest amount of water 

insoluble components (0.14 grams of water insoluble components per gram of biomass).  

Cornstover and switchgrass, which typically contain 19% and 18% lignin by weight 

respectively, produced similar amounts of water insoluble components (.1340 and .1309 

grams of water insoluble components per gram of biomass comparatively).  According to 

this analysis and the assumption that all of the water insoluble components are derived 

from lignin, each of the biomass produced the water insoluble components in the same 

ratios.  This can be seen in Table 9.  The rest of the lignin contributes the phenols, 

guaiacols and syringols as well as other organic compounds. 

 

 

 

Table 9 Comparison of Water Insolubles and Lignin 
 Red Oak Cornstover Switchgrass 

% of water insolubles from biomass 14.05 13.40 13.09 

% wt of lignin 20 19 18 

Grams water insolubles/gram of lignin 0.70 0.71 0.73 

 

 

4.9 Solids Content 
The solids content of the bio-oil was determined by following the procedures discussed 

earlier in the methods section, Section 3.4.3 Bio-oil Analysis.  The results from this 
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analysis are shown in Figure 54.  This figure illustrates the difference in solids content in 

each of the fractions of bio-oil produced from the three selected biomasses.   

 

 
Figure 54 Solids Content in Bio-oil Fractions (Wet Basis) 

 

The calculated solids content indicates that the first two fractions of bio-oil contained the 

highest percentage of solids.  Each of the final three fractions (SF 3,4,5) contained 

significantly less solid particulate when compared to the first two fractions (SF1 and 

SF2).  Based on the solids content of each fraction, there does not appear to be any 

noticeable trends in solids content.  Bridgwater reports that typical bio-oil contains 

around 0.2% solids but 3% is also encountered often as well.2, 38  The bio-oil that was 

produced for this study contained more solids than typical bio-oil, but this was due to 

inefficient solids removal. 

 

Further investigation of the solids content of each fraction indicates that there was a 

substantial amount of solids collected in SF1.  This fraction, which was theoretically 

operated in a laminar flow regime, should not have collected many solids.  There are 

multiple mechanism that could be the cause of this collection.  The most obvious would 
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be that the condenser was in fact not operating in a laminar flow regime, thus causing 

vigorous mixing at the cooling surface.  This mixing would allow solids and aerosols to 

be collected at the wall through impaction.  Secondly, the residue that was collected as 

solids could be condensed organic residues that were too large to pass through the filters 

that were used for the analysis.  Finally, the solids could have been forced to the 

condenser wall through thermophoretic forces caused by the heat gradient that exists 

between the hot vapors and the cool condenser wall.  This temperature gradient could 

have been large enough to cause both solids and aerosols to travel towards the walls 

allowing them to be collected.  The full explanation of the high solids content of SF1 is 

more than likely a combination of the three reasons.  There was a large temperature 

gradient present within the condenser tubes and any disruption in the flow through the 

condenser tubes could have cause the boundary layer in the flow to become turbulent.  

 

 

 
Figure 55 Solids Content by Biomass (Dry Basis) 

 

To further analyze the amount of solids content that was found in the bio-oil, the total 

percentage of solid particulate collected in the bio-oil.  This analysis is shown in Figure 
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55.  This figure illustrates the fact that the vast majority of solid particulate is collected in 

the first two fractions of bio-oil (SF1 and SF2).  This analysis also shows that cornstover 

produced the largest amount of solid particulate in the bio-oil.  In the same manner, the 

figure denotes that switchgrass and red oak produced similar amounts of solid particulate 

on a dry biomass basis. 

  

Due to the fact that the different biomasses produced different amounts of char, a 

comparison of the particulate efficiency would provide more insight into the operation of 

the fast pyrolysis system.  Table 10 shows that the efficiency of the gas cyclones ranged 

between 95.3% and 96.3%.  This table shows how much of the solids produced from each 

biomass were collected in both the bio-oil and the cyclones.  By comparing the amount 

collected in the cyclones to the total amount of solids produced, collection efficiency was 

determined.   Red oak, which had the highest solids content in the bio-oil, had the lowest 

cyclone efficiency.  As expected, switchgrass, which had the lowest solids content, had 

the highest cyclone efficiency. 

 

Table 10 Cyclone Efficiency 
 Red Oak Cornstover Switchgrass 

Solids in Bio-oil (wt% of Biomass) 1.11% 1.15% 1.01% 
Char Collected in Cyclones (% of Biomass) 22.28% 28.77% 26.17% 
Percentage Total Solids Produced in Bio-oil 4.73% 3.84% 3.71% 
Cyclone Efficiency 95.27% 96.16% 96.29% 

 

 

4.10 Viscosity  
Viscosity measurements were conducted at two different temperatures.  These 

temperatures were dependant on the stage fraction.  For the first two stage fractions (SF1 

and SF2), the viscosity was measured at 60oC in accordance to ASTM D2170.47  This 

standard provides the method of measuring the kinematic viscosity of asphalts.  The other 
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three fractions (SF3, SF4 and SF5) were each analyzed at 40oC in accordance to ASTM 

D445.45 

 

The kinematic viscosity for the first two fractions of bio-oil is shown in Figure 56.  These 

viscosities were measured at 60oC in accordance with ASTM standard D2170.  This 

standard is commonly used to determine the viscosity of liquid asphalts.  This method 

was used because of the increased viscosity of the first two fractions of bio-oil.   

 

 
Figure 56 Kinematic Viscosity of Bio-oil Fractions Measured @ 60oC (ASTM 

D2170) 

 

The data indicates that for cornstover and switchgrass, the first fraction of bio-oil (SF1) 

had a significantly higher viscosity when compared to the second fraction (SF2).  The 

viscosities of the first two fractions are similar in magnitude.  The switchgrass bio-oil had 

the largest standard deviation indicating that the viscosity was not consistent from test to 

test.  This is illustrated through the error bars shown in Figure 56.  These error bars are 

based on the standard deviation between the three tests that were performed on 

switchgrass.  Once again, switchgrass had large variances in water insoluble content in 
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the first two fractions of bio-oil.  This can be seen in Figure 52.  This large variance could 

be a factor in the large variance seen in the viscosity of these bio-oil fractions. 

 

The average kinematic viscosities for the final three fractions are shown in Figure 57.  

The graph illustrates the varying viscosities that can be found in the different fractions.  

The viscosity of these three fractions is heavily dependent on the moisture content of the 

bio-oil.  The kinematic viscosity of the final fraction of bio-oil (SF5) was consistently 

measured around 1 cSt.  This fraction consisted of more than 60% water, which has a 

viscosity of 0.658 cSt at 40oC.  SF 3 and 4 had a large amount of variance.  This variance 

could be associated with the biomass and the constituents that were collected, as well as 

the moisture content.  The large variance could be due to the variance that is found in the 

water insoluble content.  Water insolubles, which are large molecules, could have a 

significant effect on the viscosity of the bio-oil. 

 

 
Figure 57 Kinematic Viscosity of Bio-oil Fractions Measured @ 40oC (ASTM D445) 
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4.11  Discussion of Differences Between Whole Bio-oil and 
Fractionated Bio-oil 

The comparison of whole bio-oil to fractionated bio-oil has revealed many differences 

between the two.  These comparisons have been presented throughout Chapter 4.  This 

section will include discussion into a comparison of the overall fractions and the mass 

averaged whole bio-oil that was presented before.  Figure 58 illustrates the breakdown of 

the bio-oil produced from red oak.  In the same manner, Figure 59 presents the 

breakdown of the bio-oil produced from cornstover and Figure 60 presents the 

breakdown of the bio-oil produced from switchgrass.   

 
There are many properties that are improved through fractionation.  One of the properties 

that have seen the most improvement is the moisture content of the fractionated bio-oil.  

Other than the last fraction from each biomass, all of the fractions have significantly less 

moisture than the whole bio-oil.  This reduction in moisture content can be attributed to 

the elevated temperatures on the cooling surfaces that are found within the bio-oil 

collection system.  These elevated temperatures have the ability to slow down and even 

prevent the condensation of water.  This has led to higher energy contents and larger 

concentrations of valuable compounds.  One of the drawbacks to the lower moisture 

contents would be the increased viscosity of the bio-oil.  The first two fractions of bio-oil 

from each biomass are considered semi-solids that become flowable when reheated to 

above 60oC.  The increase in viscosity will lead to problems with materials handling 

(mainly associated with pumping).  This can be overcome, though, by working with these 

fractions while they are warm. 

 

Another property that has seen significant improvement is the water insoluble content.  

This property is a measure of the oligomer content in each fraction. These oligomers are 

mainly lignin derivatives and have large molecular weights.  Many hope that these 

oligomers can act as building blocks for other chemical processes.53  The whole bio-oil 

for each biomass contains less than 30% water insoluble content.  This compares to the 
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first and second fractions of the bio-oil that each can contain over 60% water insoluble 

content depending on the biomass.   

 

One main drawback to water insoluble content, which contains large molecular weight 

compounds, is found when a distillation is performed on the bio-oil.  The larger 

compounds that are considered the water insolubles can polymerize when heated to 

moderate temperatures or even coke when heated to extreme temperatures.  This creates 

difficulties when attempting to separate the lighter compounds from the bio-oil.  The final 

fraction of bio-oil for each biomass contains less than 1% water insoluble content.  This 

would allow for simple distillation to be attempted without any problems occurring with 

sludge (polymerization) due to the lack of non-volatile material.54  

 

Two of the compounds that were used as model compounds for the design include acetic 

acid and levoglucosan.  The levoglucosan represents anhydrosugars, which are direct 

products of the pyrolysis of cellulose.  It was hypothesized that this compound could be 

collected entirely in the first fraction.  This hypothesis was made with the assumption that 

the levoglucosan exited the reactor as a vapor.  According to the results, a significant 

majority of the levoglucosan was collected in the first two fractions (SF1 and SF2).  The 

fact that there was levoglucosan found in the second fraction indicates that the 

levoglucosan exited the reactor as both a vapor and an aerosol. Based on where the 

levoglucosan was collected, the fractionated bio-oil collection system was capable of 

collecting levoglucosan in the early fractions. 

 

Acetic acid is produced from each of the main components in biomass with the majority 

being formed from hemicelluloses.9, 22, 24  According to the graph shown in Figure 17, the 

dew point of acetic acid is below 0oC, yet acetic acid is still detected in each fraction.  

Only the first and second fractions contained a lower concentration than the whole bio-

oil.  The presence of acetic acid in bio-oil fractions that theoretically should not contain 

acetic acid has a couple possible explanations.  First, acetic acid is considered 

hydrophilic.  This indicates that acetic acid can “bond” with or dissolve in water and 
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other polar compounds.  This would allow acetic acid, which is present in the vapor 

phase, to attach to polar compounds through hydrogen bonding.  When the bio-oil is then 

mixed in water, the acetic acid would be attracted more to the water than the other 

compound, thus releasing it into the water to be analyzed.  Another plausible explanation 

considers the fact that there are likely carboxyl groups that are attached to larger 

compounds.  These larger compounds include phenols and other compounds that have 

been produced from lignin.  When these large compounds, are mixed with the warm 

water that was utilized to extract the water soluble compounds, the carboxyl groups could 

be extracted from the bio-oil.  This removal of carboxyl groups could result in a false 

reading of acetic acid from the GC/FID. 

 

One aspect of the bio-oil that is hampered by the fractionation is the solids.  The overall 

bio-oil contained normal amounts of solids, but due to the nature of the bio-oil collection 

system, the solids content was concentrated into the first two fractions.  The ESP fraction 

(SF2) typically had a larger percentage due to the fact that the solids are collected 

through the electrostatic forces present in the ESP.  The higher solids content can lead to 

instabilities and problems with combustion and filtration.38  The other fractions have 

much lower solids content when compared to the overall solids content of the whole bio-

oil. 
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Figure 58 Red Oak Bio-oil Oil Comparison 
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Figure 59 Cornstover Bio-oil Comparison 
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Figure 60 Switch Grass Bio-oil Comparison 
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4.12 MAN vs. Acetic Acid Concentration 
The modified acid number is a measurement of the number of acidic compounds found 

within a sample of bio-oil.  This value is encompassing of all carboxylic acids as well as 

mineral acids.  These acids include acetic acid, formic acid and phenolic compounds with 

acidic tendencies.  A comparison of the acetic acid concentration and modified acid 

number yielded a linear relationship.  This relationship can be seen in Figure 61.  This 

linear relationship demonstrates that the modified acid number is strongly related to the 

acetic acid content.  It is also assumed that there are other acids present in the bio-oil 

even though acetic acid was the only acid quantified.  Through further analysis and more 

testing, it could be determined that the acetic acid concentration could be approximated 

through the modified acid number titration rather than processing the water soluble 

portion of the bio-oil on the GC/FID.  This relation could be used to quickly test the bio-

oil for acetic acid. 

 

 
Figure 61 MAN vs. Acetic Acid of Fractionate Bio-oil (Wet Basis) 
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To determine how much of the modified acid number can be attributed to the acetic acid 

found in the bio-oil, a predicted modified acid number was based on only the acetic acid 

concentrations.  The titration that is performed for MAN occurs on a 1:1 molar basis 

between KOH and carboxylic acid compounds.  Equation 16 gives the equation that was 

used to determine the theoretical MAN.  The concentration of acetic acid is transformed 

first into a partial molar ratio of moles of acetic acid per gram of bio-oil.  The number of 

moles of acetic acid is equal to the number of moles of KOH that is required to neutralize 

the acid.  The resultant partial molar concentration was then transformed into mg 

KOH/gram of bio-oil.  The resultant value is the theoretical MAN due to acetic acid. 

 

 

 

 

Equation 16 

 

 

To compare the predicted MAN to the measured MAN, Figure 62, Figure 63 and Figure 

64 were created.  These figures illustrate the differences between the MANs for the 

individual fractions for each of the selected biomasses.  The purpose of these three graphs 

is to illustrate the differences between not only the two MANs but also to illustrate the 

varying magnitudes of differences between the measured MAN and the predicted MAN. 
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Figure 62 Red Oak Comparison of MAN (Wet Basis) 

 

 
Figure 63 Cornstover Comparison of MAN (Wet Basis) 
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Figure 64 Switchgrass Comparison of MAN (Wet Basis) 

 

For the first two fractions of bio-oil (SF1 and SF2), the measured MAN was consistently 

higher than the predicted MAN.  This indicates that there are other acids present in these 

fractions that contribute to the MAN.  This occurrence has been discussed before and it 

has been suggested that the presence of certain substituted phenolic compounds could 

result in an increased MAN. 

 

A completely different situation was encountered for the final three fractions of bio-oil.  

These fractions had more variability and even included some fractions that had predicted 

MANs that were higher than the measured MAN.  The higher predicted MAN could be a 

result of improper mixing of the samples or the uncertainty associated with the water 

extraction process that was used to determine the acetic acid content.  The results for 

these three fractions suggest, though, that the majority of the acids that contribute to the 

MAN are acetic acid.  The lack of other high molecular weight acids enables the MAN to 

become a pseudo measurement of acetic acid content.   

 

This analysis works to enforce two different but equally important concepts.  First, that 

both low molecular weight carboxylic acids and high molecular weight compounds 
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contribute to the modified acid number.  The modified acid number is simplistically a 

count of the total number of moles of acid present in the bio-oil.  Based on the acetic acid 

concentrations and the total number of moles of acetic acid produced, it is apparent that 

there are other acids that contribute to the MAN.  Based on the fractions that have the 

highest percentage MAN that is not from acetic acid, it is assumed that one of the other 

acids that effects the MAN is large molecular weight phenolics that contain carbonxyl 

groups. 

 

Secondly, in the last three fractions of bio-oil, the modified acid number perfectly 

correlates to the acetic acid concentration.  In fact, based on the analysis shown above, 

the majority of the MAN is due to the acetic acid concentration in these three fractions.  

This analysis sheds light on the presence and type of acids that are present in the bio-oil.  

It also shows that the acetic acid and MAN are linearly related. 
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CHAPTER 5.  SUMMARY AND CONCLUSIONS 
From the analysis of the fractionated bio-oil, it is apparent that the fractionation of bio-oil 

can be achieved through the separation of vapors and aerosols to produce distinct 

fractions of bio-oil.  This separation can be achieved through the selection of distinct 

operating conditions that dictate which compounds are collected.  The practice of using 

“warm” heat transfer surfaces provides the ability to selectively condense bio-oil vapors.  

This process occurs because bio-oil is a complex combination of organic compounds that 

include anhydrosugars, phenolics, lignin derivatives, furans, alcohols, acids, water and 

many other organic compounds.  Each of these groups of compounds has distinct 

properties; most importantly, boiling point and vapor pressure. The differences in boiling 

points allow the bio-oil to be condensed in many distinct fractions.  By collecting the bio-

oil vapors at different temperatures, the majority of the water and acetic acid can be 

collected in the final fraction (SF5), which was one of the main goals of this research. 

 

The presence of aerosols in the product stream allows for the collection of an aerosol 

fraction that has distinct properties.  This fraction (SF2) was collected in an isothermal 

ESP that actively collected the aerosols while the gas stream was still at an elevated 

temperature.  This method prevented the collection of large amounts of water and acids in 

this fraction.  These aerosols contained large concentrations of water insoluble content 

and other high molecular weight compounds.  It is believed that these water insoluble 

compounds and oligomers are derivatives of lignin. 

 

Higher Heating Value and Moisture Content 

One of the bio-oil properties that were greatly improved with the fractionation process 

was the higher heating value (energy content) of the bio-oil fractions.  Average bio-oil 

has an energy content of approximately 17 MJ/kg.38  Meanwhile, the fractions of bio-oil 

that were produced through this bio-oil collection system had energy contents that ranged 

from 27.4 MJ/kg down to 4.1 MJ/kg.  The higher heating value of the bio-oil was largely 

dependent on the fraction in which the bio-oil was collected and the original biomass.  
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The final fraction contained the lowest energy content, while the first three fractions 

where consistently over 20 MJ/kg.  The energy content found in the final fraction of bio-

oil can be attributed to the acids and other light hydrocarbons that are found in that 

fraction.  If the first four fractions of bio-oil were to be combined to produce a “moisture 

free” bio-oil, this mixture would contain a higher heating value that is rarely seen in 

traditional bio-oil.  For red oak, the combination of the first four fractions would result in 

23.3 MJ/kg.  For switchgrass and cornstover, heating values of 23.3 and 24.4 MJ/kg 

respectively were found for the combination of the first four fractions.  These increased 

heating values could make bio-oil a suitable boiler fuel or home heating fuel. 

 

The key contributing factor for the increased energy content in the combination of the 

first four fractions was the lower moisture content found in these fractions.  In a similar 

fashion to the heating value, a comparison of the moisture content of a combination of the 

first four fractions yields moisture contents of 8.3%, 10.2%, and 8.9% for red oak, 

cornstover and switchgrass respectively.  This low moisture content allows the energy 

content to be much higher than typical bio-oil which contains upwards of 25% moisture.2   

 

While there is not a direct linear correlation between moisture content and higher heating 

value, there is a general trend.  According to the analysis that was performed, as the 

moisture content increases, the higher heating value becomes lower and lower.  This 

relationship is intuitive.  The moisture content that is present in the bio-oil needs to be 

vaporized when the bio-oil is combusted.  The enthalpy of vaporization of water robs 

some of the energy of combustion from the bio-oil. 

 

Levoglucosan Production 

The concentration of the GC/MS detectable compounds were significantly different based 

on the fraction of bio-oil and biomass that was being analyzed.  The levoglucosan 

concentration was largely dependent on the cellulose concentration in the original 

biomass with the majority of the levoglucosan being collected in the first two fractions of 



116 
 

 
 

bio-oil.  This indicated that the levoglucosan exited the reactor as both a vapor and an 

aerosol.  In fact, in cornstover and switchgrass, more levoglucosan was collected as an 

aerosol than as a vapor.  After full analysis, it is apparent that a combination of the first 

two fractions of red oak bio-oil would produce the highest concentration of levoglucosan 

and possibly other anyhydrosugars. 

 

Lignin Derived Products 

It is believed that the phenolics and the water insoluble content of the bio-oil are both 

products of the pyrolysis of lignin.  According to the analysis of the phenols, guaiacols, 

syringols and water insoluble content, there appears to be other products that are 

produced from the lignin but these phenolic compounds and water insoluble components 

are more than likely produced from the lignin.  The structure of lignin contains a large 

amount of aromatic rings that are the building blocks of phenolic compounds.  In the 

same manner, the water insoluble content consists of many large molecular weight 

oligomers that could easily be produced from the lignin.  Another possibility for the 

production of these large molecular weight compounds would be chains of five or six 

carbon sugars (depending on whether it is produced from cellulose or hemicellulose) that 

are longer than typical sugar monomers. A chain of this size could be large enough to be 

filtered out of the bio-oil during the water insoluble test.   

 

The relative distribution of syringols and guaiacols provides some insight into the 

structure of lignin present in the different biomasses.  The difference between guaiacols 

and syringols can be described as the degree of substitution found in each molecule.  

Guaiacols contain a single methoxy group, while syringols contain two methoxy groups 

in addition to the hydroxyl group that is in all phenolic compounds.  The concentrations 

of the phenolics, syringols and guaiacols can lead to more information about the structure 

of the lignin, as well as the degree of substitution of the aromatic rings that are contained 

within the lignin structure.   
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Modified Acid Number vs. Acetic Acid Content 

The results from this study have indicated that there is a direct and linear correlation 

between the acetic acid content of bio-oil and the total acid content of the specific bio-oil.  

Acetic acid is only one of many organic acids present in bio-oil that can be titrated during 

the MAN measurement, but it is the most prevalent acid present in bio-oil.  The results 

have also shown that there are other acids present in the bio-oil, even though they are not 

quantified in the chemical analysis of the bio-oil.  One of these acids could be 2-

hydroxybenzoic acid, which should be considered an “acid tar.”  The presence of large 

molecular weight acids is the reason that there is a significant modified acid number for 

the fractions where acetic acid should not be collected. 

 

Repeatability of Results 

For some of the analysis, the repeatability of the results was not very high.  This was seen 

for much of the bio-oil analysis.  Some of the repeatability issues can stem from low 

concentrations or even differences in moisture content (which can have an effect on other 

properties).  Below is a breakdown of the repeatability of each aspect of this study: 

 

• Mass Balance – The mass balance saw little variability between tests.  It appears 

that the collection of the bio-oil has a high degree of repeatability.  For each 

biomass, the separate fractions produced repeatable percentages of bio-oil for 

each of the three tests. 

 

• Moisture Content – The moisture content of each fraction was largely repeated for 

each test.  Based on the analysis, the only fraction that had significant uncertainty 

was SF4.  This fraction had uncertainty in other analysis as well.  The other four 

fractions of bio-oil each had relatively high repeatability of water content. 

 

• Higher Heating Value – The higher heating value for each fraction of bio-oil was 

determined to be a repeatable property.  There was some uncertainty, but overall 
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each fraction of bio-oil from each biomass had similar higher heating values for 

each test. 

 

• Modified Acid Number – For both SF3 and SF4, the MAN was not repeatable.  

This could be due to the uncertainties in the moisture content of these fractions.  

The other three fractions (SF 1, 2 and 5) each had repeatable total acid numbers. 

 

• Elemental Analysis – The elemental analysis for the fractions of bio-oil was 

repeatable for carbon, hydrogen and oxygen.  The ash, nitrogen and sulfur 

contents each had very large amounts of uncertainty.  The sulfur and nitrogen 

each had very low concentrations in the fractions.  This low concentration in each 

fraction makes even a small total change in concentration relatively large.   

 

• Chemical Analysis- The chemical analysis for each fraction had a large amount of 

variability.  The chemical analysis was performed by diluting the bio-oil in 

methanol at a 4% bio-oil to 96% methanol ratio.  This creates a very dilute 

mixture where any uncertainties in measurements could lead to large 

discrepancies in concentrations. 

 

• Water Insoluble Content – For each fraction of bio-oil, except SF2, the water 

insoluble content had a lot of variability.  This could be due to differences in the 

way that the biomass was pyrolyzed or even differences in the mixing of the bio-

oil and water.  There are many proposed methods in the literature for the 

measurement of water insoluble content and the simple action of mixing the bio-

oil/water mixture can cause discrepancies in the results. 

 

• Solids Content – The solids content of the bio-oil fractions was largely uncertain.  

This could be due to different amounts of solids escaping the cyclone filters. 
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• Viscosity – The viscosity of the bio-oil was very variable.  The variability could 

be largely due to variances in moisture content and water insoluble content for the 

different tests.  Water will effectively lower the viscosity of the bio-oil while the 

water insoluble content should increase the viscosity.  The variances in these two 

properties can greatly affect the viscosity of each sample. 

 

Future Work 

After analyzing the results from this research, it is apparent that there is much more work 

that can be done.  First and foremost, the reactor system needs to be optimized with each 

biomass to determine the optimal conditions to collect the highest percentage of bio-oil.  

After this has been completed, it is recommended that the fractionating bio-oil collection 

system be operated at multiple operating conditions, varying the set-points to determine 

the effect that this has on the bio-oil properties and components.  This research was 

completed by operating the system at a single set-point, but gaining knowledge 

concerning the effect that surface temperatures has on the collection of certain 

compounds could be useful.   

 

Further analysis should be completed on the long term effects of the fractionating bio-oil 

collection system on the stability of the bio-oil.  Accelerated tests have been completed, 

but aging the thick fractions at room temperature may produce differing results.  The 

thick, almost solid fractions would react differently as at room temperature rather than as 

a liquid with more fluidity.  Finally, more biomasses should be tested to see if there are 

any changes in bio-oil composition. 

 

Fractionation vs. Whole Bio-oil 

Before this research was started, the hope was that the fractionated bio-oil system would 

produce similar fractions for each biomass.  Each of these fractions would just be 

produced in different ratios.  After testing and analysis, it is apparent that each biomass 
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still produces a distinct bio-oil and that the same fraction of bio-oil is different depending 

on the biomass from which it was produced.  This is because each biomass contains 

different amounts of cellulose, hemicellulose, lignin and ash.  These differences lead to 

the production of different products. 

 

The fractionated bio-oil collection system has shown that it is possible to actively 

fractionate bio-oil into distinct fractions during the bio-oil collection process.  This 

fractionation process has the ability to produce distinct bio-oil fractions that have unique 

characteristics and properties.  The first and second fractions of bio-oil that were 

collected were similar in properties and composition.  Each of these fractions were high 

in levoglucosan and water insoluble content.  These fractions were also low in water and 

acid content.  The third and fourth fractions were each high in phenolic compounds and 

acetic acid, but had relatively low moisture contents.  Compared to the other fractions, 

these two fractions did not contain a high amount of the bio-oil. The final fraction, which 

typically collected the largest amount of bio-oil, contained large amounts of water and 

large amounts of acetic acid.  The concentration of acetic acid was not always the 

highest, but the overall mass of acetic acid produced was consistently the highest of any 

of the fractions.   

 

In conclusion, the fractionation system produced fractionated bio-oil with improved 

qualities including water insoluble content, water content, acid content and, especially, 

heating value.  This system was capable of producing fractionated bio-oil from all three 

biomasses that were tested (red oak, cornstover and switchgrass).  This separation was 

achieved through the separation of vapors and aerosols and the selective condensation of 

the vapors. 
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APPENDIX A 

Fluidized Bed Design Calculations 

Tatm 25K 273K+:=

Tbed Tpyrolysis:=

Fluid Bed Properties

ρp 2600
kg

m3
:= dv 500 10 6−

⋅ m:= ρbulk 400
kg

m3








:= dvchar 52 10 6− m⋅:=

dv= volume diameter of particle

µ T( ) 52.584 0.262
T
R







+ 2.954 10 5−
⋅

T
R







2
⋅−









10 7−
⋅

newton sec⋅

m2
⋅≡ εchar 0.4:=

RNitrogen

8.314
joule

mole K⋅
⋅

29.0
gm

mole
⋅

≡ ρ T P,( )
P

RNitrogen T⋅
≡ ρ char ρbulk 1 εchar−( )⋅:=

µf µ Tpyrolysis( ):= ρ f ρ Tpyrolysis Ppyrolysis,( ):= CpN2 1.05 103
⋅

J
kg K⋅

:=

These are just general fluid properties and also material properties for the sand and the char.  
The sand and char properties are assumed values that have come from previous experience.  
The char properties come from Joe Ritzert's thesis and the sand comes from general sand 
properties.  The sand diameter was reduced to 500 microns in an attempt to meet the 
specification that U/Umf>=4.

Reactor Dimension information
Green values are assumptions and blue 
sections are discussionwthick .280in:=rout

6.625
2

in:=

rin rout wthick−:= dia 2 rin⋅:= z dia 2⋅:=

Ain 2rin π⋅ z⋅:= Aout 2rout π⋅ z⋅:= Acs
π

4
dia2
⋅:=

mbiomass 8
kg
hr

:= rheater rout 0.688in+:=

The reactor is designed using 6 inch standard pipe (Stainless Steel).  The dimensions are 
shown above with the outer radius and the wall thickness.  The heater has a 8 inch inner 
diameter and will be placed around the entire reactor.

Temperatures and pressures

Tpyrolysis 500K 273K+:= The design parameters are set for a bed temperature 
of 500C and operating at atmospheric pressure

Ppyrolysis 14.696psi:=
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The preceeding calculation was to ensure that the velocities with in the fluidized bed were high 
enough to elutriate the char from the bed.  Once again Joe Ritzerts information was used to 
perform the calculation and the U_super was iterated to determine the velocity required.

Vt 0.2
m
s

=Vt
4 g⋅ dvchar⋅ ρ char ρ f−( )⋅

3 ρ f⋅ Cd⋅







.5

:=

Cd
10

Repy

1

2

:=Repy
ρ f Usuper⋅ dv⋅

µf
:=Usuper .2

m
s

:=

Char Elutriation Calculations

Umf 0.106
m
s

=Ar_py 1.125 103
×=

Umf
µf

ρ f dv⋅







1135.7 0.0408 Ar_py⋅+( )

1

2 33.7−







⋅:=Ar_py

ρ f dv3
⋅ ρp ρ f−( )⋅ g⋅

µf
2

:=

Minimum Fluidization Velocity

To investigate the entire spectrum of internal heat transfer coefficients, all of the calculations are 
being performed with a range of h_conv that spans from 100 to 250, with the main focus being 
placed on 150.  This is occuring because 150 is a value that has been used by multiple people in 
designing fluidized bed reactors and if the convective heat transfer coefficient does end up being 
higher than that, this adds a factor of safety to the calculations.

qreq 3 103
× W=

qreq mbiomass 1.35⋅ 106
⋅

J
kg

:=hbed

100

150

200

250











W

m2K
:=

Heat Transfer information

The emissivity of the heaters is assumed to 0.9 while the emissivity of the stainless steel wall is 
assumed to be 0.67.  The wall could vary from 0.2 to 0.9 depending on the condition of the 
reactor wall.  If a coating can be applied to the outer surface of the reactor then the emissivity of 
the wall can be increased.

σ 5.67 10 8−
⋅

W

m2 K4
:=kshell 14.9

W
m K⋅

:=εwall .58:=εheater 0.9:=

Material Properties
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This is just information concerning general heat transfer information that is used below to 
calculate the temperature of heater required to provide the required heat.  The heater temperature 
has been iterated to solve for the h_conv=150. 

rshell

ln
rout
rin









2 π⋅ kshell⋅ z⋅
:=rconv

1
hbed Ain⋅

:=

qrad qtot:=

Heat Transfer Information and Resistances

To determine the total amount of heat that needs to be transfered into the reactor, the heat 
required to heat the fluidizing gas is calculated above.  This  was then added to the heat required 
to transform the biomass into pyrolysis gases.

QN2s 183.048
L

min
=qtot 4.805 103

× W=qtot qreq qN2+:=

QN2s QN2
Tatm

Tpyrolysis









⋅:=qN2 1.805 103
× W=qN2 mf CpN2⋅ Tpyrolysis Tatm−( )⋅:=

mf 13.026
kg
hr

=mf QN2 ρ f⋅:=QN2 Uf Acs⋅:=Uf 4 Umf⋅:=

Total Amount of Heat Required

dvmax 2.341 10 4−
× m=

dvmax
Umaxd

2 3⋅ ρ f⋅ Cdmaxd⋅





4 g⋅ ρ char ρ f−( )⋅











:=

Cdmaxd
10

Repymaxd

1

2

:=Repymaxd ρ f Umaxd⋅
dvguess

µf
⋅:=

dvguess 2.342 10 4− m⋅:=
Umaxd Umf 4⋅:=

Max Char particle size to be Elutriated
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The temperature that is required if h_conv=150 is 915.125 C.  This is well below the 1023C that 
is the maximum temperature of the heaters that are being used for this design. 

TheaterC

998.202

915.125

875.018

851.443











K=TheaterC Theater 273K−:=

Theater

1.271 103
×

1.188 103
×

1.148 103
×

1.124 103
×















K=Theater qrad rrad⋅ Tout+:=

Rtot rrad rconv+ rshell+:=

rrad
1

hrad Aout⋅
:=hrad

σ Theater2
2 Tout

2
+



⋅ Theater2 Tout+( )⋅

1
εwall









1 εheater−

εheater







rout
rheater









⋅+

→

:=

Iterations done on h_bed=150Theater2 1161K:=

Radiative Heat Transfer

These two calculate solve for the inner and outer temperatures of the reactor shell.  The outer 
temperature will then be used to determine the temperature of the heater that is needed.

ToutC

836.929

729.523

675.82

643.598











K=TinC

822.218

714.812

661.109

628.887











K=

ToutC Tout 273K−:=TinC Tin 273K−:=

Tout qrad rshell⋅ Tin+:=Tin qrad rconv⋅ Tbed+:=

Heat Transfer through the pipeInside the Pyrolysis Reactor
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dor.i 0.059 in=

dor
1
16







in:= Aor π
dor
2









2

⋅:=

dbubble 0.54 Uf Umf−( )0.4 z 4 Aor+( )0.8
⋅ g 0.2−

⋅:= dbubble 3.371 in=

Pressure Drops Across Bed and Distributor

∆Pbed ρp g⋅ Hmf⋅ 1 εmf−( )⋅:= ∆Pdistributor ∆Pbed .25( )⋅:=

∆Pdistributor 695.195Pa=
Cor 0.5:=∆Pdistributor

∆Pbed
0.25=

Up
QN2_25

Ab
:= Uor Cor

2 ∆Pdistributor⋅

ρ f







1

2

⋅:=

Nor
QN2_25

Uor
π

4
⋅ dor

2
⋅

:= Nor 55.901= ∆Pplenum
ρ in
2

QN2_25
1

Ap
⋅
















2
⋅:=

∆Pdistributor
∆Pplenum

12.633= ∆Pplenum 7.982 10 3−
× psi=

Distributor Plate Design

εmf .4:=
ρ in ρ Tatm Ppyrolysis,( ):= QN2_25 QN2

Tatm
Tbed









⋅:= QN2_25 183.048
L

min
=

Dplenum
1
8

in:= Nplenum 40:= Ap Nplenum
π

4
⋅ Dplenum( )2⋅:= Ap 0.491 in2

=

deq 3.371in:= Ubr 0.5 g deq⋅⋅:= Hmf
Ubr z⋅

Ubr Uf Umf−( )+
:=

Dreactor dia:= Ab
π

4






Dreactor
2

⋅:= vstandard
mf
ρ in

:= vstandard 183.048
L

min
=

Orifice Dimensions
dor.i 3 dv⋅:=
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Height of Freeboard Calculation

Hsettled Hmf 1 εmf−( )⋅:=

TDH 1200 Hsettled⋅ Repy
1.55

⋅ Ar_py 1.1−
⋅:= TDH 3.288 in=

Volume Flow of Bio-oil coming out of the reactor

Mbiomass 98.9
gm
mol

:= Rbiooil

8.314
joule

mole K⋅
⋅

Mbiomass
:= Qbiooilvapor

mbiomass Rbiooil⋅ Tbed( )⋅ 0.065⋅

Ppyrolysis
:=

Qbiooilaerosol mbiomass
.585

1.2( )
kg
L

⋅

⋅:= Qbiooilaerosol 1.083 10 6−
×

m3

s
=

Qbiooilvapor 5.558
L

min
=

This is a calculation to determine the volume flow of bio-oil in the vapor form when it leaves the 
reactor and proceeds to the cyclones. 

Mgases 29.4
gm
mol

:= Rgases

8.314
joule

mole K⋅
⋅

Mgases
:= Qgases

mbiomass Rgases⋅ Tbed( )⋅ 0.10⋅

Ppyrolysis
:=

Qgases 28.765
L

min
=
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Cyclone Design 

 
d50_1 1.092 10 5−

× m=d50_1
St50_1 18⋅ µf⋅ Dc_1⋅

ρ char U_1⋅







1

2

:=

Dc_1 1.683 in=Dc_1
4 Qdesign⋅

π U_1⋅









1

2

:=

Check the particle diameter, d_50, the 
minimum diameter at which particle are filtered 
with a 50% effieicency. Particles larger than 
this diameter will be filtered with greater than 
50% efficiency. If d_50 is too large divide Q by 
two, using two cyclones of equal size and 
re-compute D_c.

Diameter of the cyclone

U_1 5.807
m
s

=U_1
2 δP_1⋅

Eu_1 ρ f⋅








1

2
:=

Characteristic flow velocity

Eu_1
12

St50_1









1

2
:=

Euler number

δP_1 0.05psi:=

Maximum acceptable pressure drop across the cyclone

St50_1 0.006:=

For a High Efficiency cyclone Use St_50 of 1.17*10^-4, for High Flow Rate Use St_50 of 0.006

Qbiooilvapor 5.558
L

min
=QN2 474.819

L
min

=Q 509.207
L

min
=

Qdesign 500
L

min
:=

Total Estimated Gas Flow through Cyclone

Q QN2 Qbiooilaerosol+ Qbiooilvapor+ Qgases+:=Cyclone Separator Design: Cyclone 1
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Other relevant dimensions of the cyclone

A_1

B_1

C_1

E_1

F_1

L_1

K_1

M_1

























4

2.5

1.5

0.375

0.5

0.2

0.5

0.5

























Dc_1⋅ St50_1 0.005<if

4

2.5

1.5

0.375

0.875

0.375

0.75

0.75

























Dc_1⋅ otherwise

:=

A_1

B_1

C_1

E_1

F_1

L_1

K_1

M_1

























6.732

4.207

2.524

0.631

1.473

0.631

1.262

1.262

























in=

η dpx( ) 100

1
d50_1 106

⋅

dpx











6.4

+

:=

0 4 8 12 16 20
0

50

100
Cyclone Efficiency 1

micrometers

Ef
fic

ie
nc

y

η dpx( )

dpx

The first cyclone will be used to remove the majority of the char from the flow.  Meanwhile the 
second cyclone will remove the rest of the char from the flow.  There will still be some char left 
because the cyclones aren't perfect in removing particulate from the flow.
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Cyclone Separator Design: Cyclone 2

For a High Efficiency cyclone Use St_50 of 1.17*10^-4, for High Flow Rate Use St_50 of 0.006

St50_2 1.17 10 4−
⋅:=

Maximum acceptable pressure drop across the cyclone

δP_2 .30psi:=

Euler number

Eu_2
12

St50_2









1

2
:=

Characteristic flow velocity

U_2
2 δP_2⋅

Eu_2 ρ f⋅








1

2
:= U_2 5.315

m
s

=

Diameter of the cyclone

Dc_2
4 Qdesign⋅

π U_2⋅









1

2

:=

Dc_2 1.759 in=

d50_2
St50_2 18⋅ µf⋅ Dc_2⋅

ρ char U_2⋅







1

2

:=

d50_2 1.629 10 6−
× m=
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Other relevant dimensions of the cyclone

A_2

B_2

C_2

E_2

F_2

L_2

K_2

M_2

























4

2.5

1.5

0.375

0.5

0.2

0.5

0.5

























Dc_2⋅ St50_2 0.005<if

4

2.5

1.5

0.375

0.875

0.375

0.75

0.75

























Dc_2⋅ otherwise

:=

A_2

B_2

C_2

E_2

F_2

L_2

K_2

M_2

























7.036

4.398

2.639

0.66

0.88

0.352

0.88

0.88

























in=

n dpx( ) 100

1
d50_2 106

⋅

dpx











6.4

+

:=

0 2 4 6
0

20

40

60

80

100
Cyclone Efficiency 2

micrometers

Ef
fic

ie
nc

y

n dpx( )

dpx
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Condenser 1 Design 

PrN2 .7061:=ρN2 0.6124
kg

m3
:=

MN2 14
kg
mol

:=kN2 41.7 10 3−
⋅

W
m K⋅

:=

ML 162.4
kg
mol

:=µN2 0.00002677
kg
m s⋅

:=

νN2 44.86 10 6−
⋅

m2

sec
:=HvapL .56835 1000×

J
gm

:=

DAB .638
cm2

sec
:=CpN2 1.065

J
gm K⋅

:=

Required Properties:

Out flowing partial pressurePout Pin .05⋅:=

Incoming partial pressurePin .008:=

Saturation Pressure at Wall Temperater

Problem Definition:  Predict the surface area needed to both cool and condense pyrolysis 
bio-oil from a mixture of gases.  Initially, condense the levoglucosan from the mixture.  The inlet 
temperature of the gas is 250C and the outlet temperature of the gas is 150C.  The wall 
temperature will be held constant at 85C.  The initial partial pressure of the levoglucosan is 
0.008 and the levoglucosan is produced at a mass flow rate of .75 kg/hr. The mass flowrate of 
the bulk gases is equal to 19 kg/hr and can be approximated as nitrogen gas and the given 
temperature.  The concentration at the walls is assumed to be equal to 0 and 95% of the 
levoglucosan is removed.

Given:

Flow Temperatures:

Tin 400 273+( )K:= Temperature of the incoming gas

Tout 150 273+( )K:= Temperature of the outflowing gas

Tw 85 273+( )K:= Temperature of the walls

Mass Flow Rates:

mbiomass 8:=

Mass flow of the nitrogen
mN2 13 mbiomass .75⋅+( ) kg

hr
:=

mL mbiomass .094⋅
kg
hr

:= Theoretical mass flow of the levoglucosan

Partial Pressures:

Psat 0.000001:=
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Adjust D and N if not laminarRed 329.426=

Red
4 mN2⋅

π D⋅ µN2⋅ N⋅
:=

The calculation of the Reynolds Number is important to perform first to check to see if the 
flow is laminar of turbulent.  The outcome of this calculation will help us decide what 
Nussetl number will be used with the problem.  Initial assumptions include that the entire 
flow is nitrogen.  

2. Reynolds Number:

L 24in:=N 30:=D 1in:=

1. Assume Diameter, Length and Number of Tubes

The goal is to determine the amount of surface area required to remove the required heat.  This will 
be done by following the procedure listed below:

1. Assume D and L the tubes and the number of tubes
2. Calculate the Reynolds number and adjust D and number of tubes to ensure that flow is 

laminar
3. Find correlation for Nu and Calculate Nu
4. Determine hd
5. Calculate ∆Tlm
6. Calculate As
7. Calculate L and iterate it back.  If ok porceed to mass transfer analysis

Where:
qtotal= total heat removed

hd= convective heat transfer coefficient

As= Surface area

∆Tlm= Log-mean temperature difference

qtotal hd As⋅ ∆Tlm⋅

Heat transfer for Condenser Design:
The condenser is being designed as a constant surface temperature, shell and tube heat 

exchanger.  The flow will be designed to be laminar to reduce the chance that aerosols will impinge 
on the condenser walls.  The flow is made of mainly nitrogen and there is levoglcosan vapors present 
that will be condensed from the flow.

qtotal mN2 CpN2⋅ Tin Tout−( )⋅ .95mL HvapL⋅+:=

qtotal =(Sensible heat for Nitrogen)+(Latent Heat for levoglucosan)

The total heat must contain both the sensible heat of the gas flow cooling and the latent hea  
of the levoglucosan.  The equation above contains first the sensible heat.  This assumes tha  
the entire flow is nitrogen and is cooling from 400 to 150.  The latent heat assumes that only 
95% of the levoglucosan is removed.

Heat Transfer:
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The surface area required to achomplish the desired heat removal is shown above, along with 
length of tubes required to achomplish the heat transfer. Note that the length of tube is not 
effected by diameter.

L 24.206 in=As 2.281 103
× in2

=

L
As

π D⋅ N⋅
:= *As

qtotal
hd ∆Tlm⋅

:=

6. and 7. Surface Area and Tube Length

The final piece of information needed to calculate the required area is the log-mean temperature 
difference.  This equation comes from simple heat exchanger design.  This takes into account 
the changing temperature within the tube.  The wall temperature is held constant.

Tw 358K=

Tout 423K=

∆Tlm 158.41K=∆Tlm
Tout Tw−( ) Tin Tw−( )−

ln
Tout Tw−( )
Tin Tw−( )









:=
Tin 673K=

5. Log-Mean Temerature Difference:

The Nussetl number can then be used to calculate a heat transfer coefficient.  This heat 
transfer coefficient is then insterted into the heat equation. 

hd 6.511
W

m2K
=hd

kN2
D

Nud⋅:=Nud
hd kN2⋅

D

4. Heat Transfer Coefficient:

Because the flow is laminar through the tubes and fully developed the preceeding 
correlation can be used to calculate the Nussetl Number.  This correlation can be found in 
Incropera (equation 8.57)  

Nud 3.966=Nud 1.86
Red PrN2⋅

L

D











1

3

:=

3. Nussetl Number
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mtotal hm As⋅ ∆Clm⋅====>qtotal hd As⋅ ∆Tlm⋅

FInally all of this combined becomes out mass flow instead of our heat flow.

∆Plm
Pout Psat−( ) Pin Psat−( )−

ln
Pout Psat−( )
Pin Psat−( )









:=====>∆Tlm
Tout Tw−( ) Tin Tw−( )−

ln
Tout Tw−( )
Tin Tw−( )









:=

Clevoglcosan
1

ML
⋅

1
ρN2
⋅ MN2⋅ P

Heat transfer is driven by temperature gradients.  Similarly, mass transfer is driven by 
concentration or pressure gradients.  Thus the Log-Mean Temperature Difference can be 
modified to become a Log-Mean Pressure Difference 

Shd
hm DAB⋅

D
====>Nud

hd kN2⋅

D

Getting mass transfer coefficients is very similar to getting heat transfer coefficients except 
that the mass transfer coefficient is a function of diffusivity instead of conductivity.

Shd 186
Red Sc⋅

L

D











1

3

====>Nud 186
Red PrN2⋅

L

D











1

3

Knowing that this ratio holds true, any convective correlation can be translated into a heat 
transfer correlation.  The equation below shows how the Nussetl correlation that was used 
previously for the heat transfer can be transformed into a Sherwood number correlation that 
can then be used for mass transfer.

Nu

Prn
Sh

Scn

The Reynold's Analogy is a way that simple heat translated into mass transfer through a 
simple transformation.  The key to this transformation is the fact that the ratios of 
dimensionless value are equal.

Reynold's Analogy

Mass Transfer for Condenser Design:
The mass transfer based design of the condensers is going to utilize the Reynold's 

Analogy to derive correlations between Heat Transfer and Mass Transfer.
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hm 9.947 10 3−
×

m
s

=hm
Shd DAB⋅

D
:=

The mass transfer coefficient is similar to the convective heat transfer coefficient.
4. Mass Transfer Coefficient:

Shd 3.96=Shd 1.86
Red Sc⋅

L

D











1

3

:=

The Sherwood Number is a dimensionless value that is analogus to the Nusselt number.  It 
is a dimensionless concentration gradient on the surface in which the condensation is 
taking place.  This value will allow us to calculate a mass transfer coefficient.

3. Sherwood Number: 

Sc 0.703=Sc
νN2
DAB

:=

The Schmidt number is the ratio of the momentum and mass diffusivities.  This 
dimensionless value is used to calculate a Sherwood number and is calculated from 
known/assumed properties.

2. Schmidt Number: 

N 30=L 24in:=D 1in=

The tube dimensions are taken from the heat transfer design.  The goal of these calculations 
are to calculate the required area.

1. Tube Dimensions and Reynold's Number

The procedure of design based on mass transfer is similar to the design based on heat transfer.

1. Use tube dimensions and Reynolds number from previous work.
2. Calculate Sc Number
3. Find correlation for Sh and Calculate Sh
4. Determine hm
5. Calculate ∆Plm
6. Calculate As
7. Calculate L and iterate it back.  If ok porceed to mass transfer analysis
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5. Log-Mean Partial Pressure Difference:
The purpose of this value is to take into account the change in partial pressures through 
the condenser.  The pressure at the wall is the saturation pressure.

Pout 4 10 4−
×=

∆Plm
Pout Psat−( ) Pin Psat−( )−

ln
Pout Psat−( )
Pin Psat−( )









:=
∆Plm 2.535 10 3−

×=
Pin 8 10 3−

×=

Psat 1 10 6−
×=

6. and 7. Surface Area Check and Length Calculation:

As_check
mL MN2⋅

hm ρN2⋅ ML⋅ ∆Plm⋅
:= L

As_check
π D⋅ N⋅

:= *

As_check 1.808 103
× in2

= L 19.179 in=

Assumes that cooling occurs first and mass is transfered second.  
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Condenser 2 Design 

PrN2 .711:=ρN2 .8425
kg

m3
:=

kN2 32.7 10 3−
⋅

W
m K⋅

:=
MN2 14

kg
mol

:=

ML 94.11
gm
mol

:=µN2 220.4 10 7−
⋅

N sec⋅

m2
:=

νN2 26.16 10 6−
⋅

m2

sec
:=HvapL 488.46

J
gm

:=

DAB .399
cm2

sec
:=CpN2 1.045

J
gm K⋅

:=

Required Properties:

Out flowing partial pressurePout .0175:=

Incoming partial pressurePin .029:=

Saturation Pressure at Wall Temperater

Problem Definition:  Predict the surface area needed to both cool and condense pyrolysis 
bio-oil from a mixture of gases. The second condenser will condense the phenols from the gas 
stream. The inlet temperature of the gas is 150C and the outlet temperature of the gas is 100C. 
 The wall temperature will be held constant at 65C.  The initial partial pressure of the phenol is 
0.029. The mass flowrate of the bulk gases is equal to 19 kg/hr and can be approximated as 
nitrogen gas and the given temperature.  The concentration at the walls is assumed to be equal 
to 0 and 95% of the Phenol is removed.

Given:
Flow Temperatures:

Tin 150 273+( )K:= Temperature of the incoming gas

Tout 100 273+( )K:= Temperature of the outflowing gas

Tw 65 273+( )K:= Temperature of the walls

Mass Flow Rates:

mbiomass 8:=

Mass flow of the nitrogen
mN2 13 mbiomass .75⋅+( ) kg

hr
:=

mL 8 .24⋅( )
kg
hr

:= Theoretical mass flow of the Phenol

Partial Pressures:

Psat .015:=
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Adjust D and N if not laminarRed 521.901=Red
4 mN2⋅

π D⋅ µN2⋅ N⋅
:=

The calculation of the Reynolds Number is important to perform first to check to see if the 
flow is laminar of turbulent.  The outcome of this calculation will help us decide what 
Nussetl number will be used with the problem.  Initial assumptions include that the entire 
flow is nitrogen.  

2. Reynolds Number:

L 24in:=N 23:=D 1in:=

1. Assume Diameter, Length and Number of Tubes

The goal is to determine the amount of surface area required to remove the required heat.  This will 
be done by following the procedure listed below:

1. Assume D and L the tubes and the number of tubes
2. Calculate the Reynolds number and adjust D and number of tubes to ensure that flow is 

laminar
3. Find correlation for Nu and Calculate Nu
4. Determine hd
5. Calculate ∆Tlm
6. Calculate As
7. Calculate L and iterate it back.  If ok porceed to mass transfer analysis

Where:
qtotal= total heat removed

hd= convective heat transfer coefficient

As= Surface area

∆Tlm= Log-mean temperature difference

qtotal hd As⋅ ∆Tlm⋅

Heat transfer for Condenser Design:
The condenser is being designed as a constant surface temperature, shell and tube heat 

exchanger.  The flow will be designed to be laminar to reduce the chance that aerosols will impinge 
on the condenser walls.  The flow is made of mainly nitrogen and there is phenol vapors present that 
will be condensed from the flow.

qtotal mN2 CpN2⋅ Tin Tout−( )⋅ .4mL HvapL⋅+:=

qtotal =(Sensible heat for Nitrogen)+(Latent Heat for Phenol)

The total heat must contain both the sensible heat of the gas flow cooling and the latent heat 
of the Phenol.  The equation above contains first the sensible heat.  This assumes that the 
entire flow is nitrogen and is cooling from 400 to 150.  The latent heat assumes that only 95% 
of the Phenol is removed.

Heat Transfer:
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The surface area required to achomplish the desired heat removal is shown above, along with 
length of tubes required to achomplish the heat transfer. Note that the length of tube is not 
effected by diameter.

L 24.247 in=As 1.752 103
× in2

=

L
As

π D⋅ N⋅
:= *As

qtotal
hd ∆Tlm⋅

:=

6. and 7. Surface Area and Tube Length

The final piece of information needed to calculate the required area is the log-mean temperature 
difference.  This equation comes from simple heat exchanger design.  This takes into account 
the changing temperature within the tube.  The wall temperature is held constant.

Tw 338K=

Tout 373K=

∆Tlm 56.351K=∆Tlm
Tout Tw−( ) Tin Tw−( )−

ln
Tout Tw−( )
Tin Tw−( )









:=
Tin 423K=

5. Log-Mean Temerature Difference:

The Nussetl number can then be used to calculate a heat transfer coefficient.  This heat 
transfer coefficient is then insterted into the heat equation. 

hd 5.965
W

m2K
=hd

kN2
D

Nud⋅:=Nud
hd kN2⋅

D

4. Heat Transfer Coefficient:

Because the flow is laminar through the tubes and fully developed the preceeding 
correlation can be used to calculate the Nussetl Number.  This correlation can be found in 
Incropera (equation 8.57)  

Nud 4.634=Nud 1.86
Red PrN2⋅

L

D











1

3

:=

3. Nussetl Number
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Psat 0.015=
∆Plm 6.675 10 3−

×=

Pin 0.029=

∆Plm
Pout Psat−( ) Pin Psat−( )−

ln
Pout Psat−( )
Pin Psat−( )









:=
Pout 0.018=

The purpose of this value is to take into account the change in partial pressures through 
the condenser.  The pressure at the wall is the saturation pressure.

5. Log-Mean Partial Pressure Difference:

hm 7.061 10 3−
×

m
s

=hm
Shd DAB⋅

D
:=

The mass transfer coefficient is similar to the convective heat transfer coefficient.
4. Mass Transfer Coefficient:

Shd 4.495=Shd 1.86
Red Sc⋅

L

D











1

3

:=

The Sherwood Number is a dimensionless value that is analogus to the Nusselt number.  It 
is a dimensionless concentration gradient on the surface in which the condensation is 
taking place.  This value will allow us to calculate a mass transfer coefficient.

3. Sherwood Number: 

Sc 0.656=Sc
νN2
DAB

:=

The Schmidt number is the ratio of the momentum and mass diffusivities.  This 
dimensionless value is used to calculate a Sherwood number and is calculated from 
known/assumed properties.

2. Schmidt Number: 

N 23=L 24.247 in=D 1in=

The tube dimensions are taken from the heat transfer design.  The goal of these calculations 
are to calculate the required area.

1. Tube Dimensions and Reynold's Number

The procedure of design based on mass transfer is similar to the design based on heat transfer.

1. Use tube dimensions and Reynolds number from previous work.
2. Calculate Sc Number
3. Find correlation for Sh and Calculate Sh
4. Determine hm
5. Calculate ∆Plm
6. Calculate As
7. Calculate L and iterate it back.  If ok porceed to mass transfer analysis
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6. and 7. Surface Area Check and Length Calculation:

As_check
mL MN2⋅

hm ρN2⋅ ML⋅ ∆Plm⋅
:= L

As_check
π D⋅ N⋅

:= *

As_check 3.097 106
× in2

= L 4.286 104
× in=

Assumes that cooling occurs first and mass is transfered second. 
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ESP Design 
 

At π R2
⋅:=R

dt
2

:=

R "Radius of Tube":=
At "Area of Tube":=

dt 6.357in:=
dw 1in:=

dt "Diameter of Tube":=
dw "Diameter of Wire":=

Ni
1013

m3
:=Zi .00015

m2

V s⋅
:=

Ni "Ion Number Concentration":=Zi "Ion Mobility":=

Q 260
liter
min

:=e 1.6 10 19− C⋅:=

Q "Volumetric Flow Rate":=e "Electron":=

Ke 9 109
⋅ N

m2

C2
⋅:=

Cc 1.051:=

Cc "Slip Correction Factor":=Ke "Electrostatic Constant of Proportionality":=

η 1.76 10 5−
⋅ N

s

m2
⋅:=d 3 10 6− m⋅:=

η "Vescosity":=d "Diameter of Aerosol Particles":=

Lt 48in:=∆w 25000V:=

∆w "Change in Voltage Input":=

Lt "Length of Tube":=

ε 12.4:=

ε "Permitivity of Phenol from CRC Handbook":=

ESP 1
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2 π⋅ R⋅ Lt⋅

Q
39.645

m2

1000
m3

hr

=

η 0.898=

η 1 exp
VTE 2 π⋅ R⋅ Lt⋅( )⋅

Q









1

2

−













−:=

E 0.994=

E 1 exp
VTE 2⋅ π⋅ R⋅ Lt⋅( )−

Q

















−:=

E "Efficiency":=

VTE 3.637
cm
sec

=

VTE
n e⋅ E⋅ Cc⋅( )
3 π⋅ η⋅ d⋅

:=

VTE "Thermal Electric Velocity":=

n 642.908=

n
3 ε⋅( )
ε 2+








E d2
⋅( )

4 Ke⋅ e⋅( )






⋅
π Ke⋅ e⋅ Zi⋅ Ni⋅ t⋅( )

1 π Ke⋅ e⋅ Zi⋅ Ni⋅ t⋅+







⋅:=

n "Number of Charges":=

t 2.881s=tt 5.761s=E 167423.516
V
m

=

t
tt
2

:=
tt

At Lt⋅( )
Q

:=
E

∆w

R ln
dt
dw









⋅

:=

t "Time Exposed to Electrode":=tt "Total Time in Apparatus":=E "Electric Field":=
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APPENDIX C 
Table 11 Fast Pyrolysis Mass Balance 

Test # Biomass Char 1 SF1 SF2 SF3 SF4 SF5 NCG 

1-20090619 Red Oak 23.0% 12.4% 14.0% 3.3% 6.5% 20.5% 25.0% 
1-20090622 Red Oak 24.0% 11.9% 12.3% 2.9% 8.1% 21.8% 26.5% 
1-20090731 Red Oak 19.9% 11.0% 18.0% 2.9% 4.0% 18.0% 29.3% 

  Average 22.3% 11.7% 14.8% 3.0% 6.2% 20.1% 26.9% 
                  
1-20090629 Cornstover 31.0% 3.9% 8.0% 1.8% 5.6% 26.2% 28.1% 
1-20090630 Cornstover 27.3% 9.0% 7.9% 2.6% 5.1% 25.4% 29.9% 
1-20090702 Cornstover 27.9% 9.1% 9.0% 2.6% 5.2% 26.7% 31.1% 

  Average 28.8% 7.3% 8.3% 2.3% 5.3% 26.1% 29.7% 
                  
1-20090707 Switchgrass 22.5% 8.5% 12.2% 3.3% 5.3% 23.0% 36.8% 
1-20090709 Switchgrass 32.2% 10.5% 13.2% 2.9% 5.3% 23.3% 24.9% 
1-20090710 Switchgrass 23.8% 9.5% 14.3% 3.1% 4.1% 24.4% 22.8% 

  Average 26.2% 9.5% 13.3% 3.1% 4.9% 23.6% 28.2% 
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Table 12 Bio-oil Analysis 1-20090619 

1-20090619-Red Oak 
Fraction SF1 SF2 SF3 SF4 SF5 Total 

Mass Balance (kg) 0.93 1.05 0.25 0.49 1.53 4.25 
Char Collected (kg) 1.72 

 
Non-Condensable Gases (kg) 1.87 

  SF1 SF2 SF3 SF4 SF5 
Mass Averaged  

Total 

Karl Fischer (% Moisture) 7.4 7.2 9.5 12.7 63.5 28.3 
MAN (mg KOH/g) 35.9 30.6 82.1 112.9 120.3 76.6 

Insolubles (%) 0.4 0.5 0.1 0.1 0.0 0.2 
Solids (%) 0.0 0.0 0.0 0.0 0.0 0.0 

HHV (MJ/kg) 23.8 24.4 20.1 19.1 7.2 17.2 

Elemental (%wt, Wet Basis) 

C 62.2 64.1 52.0 51.4 42.3 53.7 
H 5.5 5.4 5.8 5.6 1.8 4.2 
N 0.1 0.1 0.0 0.0 -0.2 0.0 
S 0.0 0.0 0.0 0.0 0.0 0.0 

O by Difference 27.8 27.8 37.5 35.6 19.3 26.2 
Ash 1.8 0.0 0.2 1.4 0.1 0.6 

Other Analysis  (wt% bio-oil) 

Water 7.4 7.2 9.5 12.7 63.5 28.3 
Solids 2.4 4.7 0.7 1.4 0.5 2.1 

Water Insolubles 40.0 46.4 6.9 12.9 0.8 22.4 
Undetectable 9.6 16.1 43.9 37.9 27.8 23.0 

GC/MS Detectable Compounds 

Levoglucosan 10.8 6.5 1.1 1.1 0.0 4.2 
Acetic Acid 2.3 2.7 11.0 12.3 0.4 3.4 

Furans 2.8 2.9 4.4 3.6 0.2 2.1 
Phenols 2.2 0.9 1.7 3.4 0.3 1.3 
Guiacols 2.7 1.3 2.3 0.9 0.4 1.3 
Syringols 6.6 3.1 2.6 0.8 0.3 2.6 

Other GS/MS Detected Compounds 13.1 8.0 16.1 13.0 5.8 9.4 
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Table 13 Bio-oil Analysis 1-20090622 

1-20090622-Red Oak 
Fraction SF1 SF2 SF3 SF4 SF5 Total 

Mass Balance (kg) 0.80 0.83 0.20 0.55 1.48 3.85 
Char Collected (kg) 1.62 

 
Non-Condensable Gases (kg) 1.79 

  SF1 SF2 SF3 SF4 SF5 
Mass Averaged  

Total 

Karl Fischer (% Moisture) 4.9 9.5 8.2 10.3 63.3 29.2 
MAN (mg KOH/g) 33.4 30.6 71.6 93.9 118.0 75.7 

Insolubles (%) 0.4 0.5 0.1 0.2 0.0 0.2 
Solids (%) 0.0 0.0 0.0 0.0 0.0 0.0 

HHV (MJ/kg) 24.1 24.5 20.3 20.7 7.0 17.0 

Elemental (%wt, Dry Basis) 

C 62.1 65.2 52.5 55.3 43.2 54.1 
H 5.7 5.2 6.0 5.6 1.8 4.1 
N 0.1 0.1 0.0 0.0 -0.3 0.0 
S 0.0 0.0 0.0 0.0 0.0 0.0 

O by Difference 25.7 24.8 37.2 33.5 19.2 24.7 
Ash 4.8 1.6 0.4 1.1 0.0 1.5 

Other Analysis  (wt% bio-oil) 

Water 4.9 9.5 8.2 10.3 63.3 29.2 
Solids 0.0 0.0 0.0 0.0 0.0 0.0 

Water Insolubles 44.0 45.7 11.5 23.3 0.8 23.2 
Undetectable 35.8 32.9 51.4 32.8 7.6 24.7 

GC/MS Detectable Compounds 

Levoglucosan 5.3 2.6 2.5 1.2 1.0 2.3 
Acetic Acid 0.0 0.0 6.8 8.7 12.4 6.3 

Furans 0.5 0.5 3.3 3.4 1.1 1.3 
Phenols 1.3 1.1 1.8 7.6 0.6 1.9 
Guiacols 1.3 1.2 1.9 0.9 0.5 0.9 
Syringols 3.0 2.7 2.4 0.8 1.2 1.9 

Other GS/MS Detected Compounds 4.0 3.8 10.2 11.1 11.5 8.2 
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Table 14 Bio-oil Analysis 1-20090731 

1-20090731-Red Oak 
Fraction SF1 SF2 SF3 SF4 SF5 Total 

Mass Balance (kg) 2.19 3.59 0.59 0.80 3.60 10.76 
Char Collected (kg) 3.97 

 
Non-Condensable Gases (kg) 5.84 

  SF1 SF2 SF3 SF4 SF5 
Mass Averaged  

Total 

Karl Fischer (% Moisture) 4.7 6.8 10.3 21.3 65.9 27.4 
MAN (mg KOH/g) 35.4 33.7 83.5 144.4 110.7 70.7 

Insolubles (%) 0.5 0.4 0.1 0.0 0.0 0.3 
Solids (%) 0.0 0.0 0.0 0.0 0.0 0.0 

HHV (MJ/kg) 24.7 24.4 20.2 16.3 6.5 17.7 
Elemental (%wt, Dry Basis) 

C 62.5 63.1 52.2 47.9 42.2 54.3 
H 5.8 5.7 5.9 4.8 1.6 4.3 
N 0.5 0.1 0.0 0.0 -0.2 0.1 
S 0.0 0.0 0.0 0.0 0.0 0.0 

O by Difference 29.0 28.4 36.7 32.1 18.1 25.8 
Ash 0.4 0.3 0.3 5.2 0.2 0.7 
Other Analysis  (wt% bio-oil) 

Water 4.7 6.8 10.3 21.3 65.9 27.4 
Solids 0.0 0.0 0.0 0.0 0.0 0.0 

Water Insolubles 48.6 43.8 6.3 3.1 0.7 25.3 
Undetectable 3.4 20.5 43.9 35.4 -2.5 11.7 

GC/MS Detectable Compounds 

Levoglucosan 14.1 8.5 1.3 0.8 0.0 5.9 
Acetic Acid 2.9 3.8 8.2 19.1 14.6 8.6 

Furans 3.2 2.9 4.5 3.4 3.6 3.3 
Phenols 2.3 1.0 1.8 3.1 0.4 1.3 
Guiacols 3.2 1.7 2.7 0.6 0.6 1.6 
Syringols 6.3 3.5 2.9 0.6 0.0 2.7 

Other GS/MS Detected Compounds 11.3 7.4 18.1 12.7 16.7 12.3 
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Table 15 Bio-oil Analysis 1-20090629 

1-20090629-Cornstover 
Fraction SF1 SF2 SF3 SF4 SF5 Total 

Mass Balance (kg) 1.02 0.89 0.29 0.58 2.88 5.67 
Char Collected (kg) 0.98 

 
Non-Condensable Gases (kg) 0.89 

  SF1 SF2 SF3 SF4 SF5 
Mass Averaged 

Total 

Karl Fischer (% Moisture) 5.6 6.8 12.2 23.2 79.9 45.7 
MAN (mg KOH/g) 23.9 23.6 45.2 82.0 42.1 40.2 

Insolubles (%) 0.7 0.6 0.3 0.1 0.0 0.2 
Solids (%) 0.1 0.1 0.0 0.0 0.0 0.0 

HHV (MJ/kg) 26.8 27.4 23.2 19.1 4.0 14.3 

Elemental (%wt, Dry Basis) 

C 67.2 69.3 60.7 55.5 41.6 53.0 
H 5.9 6.0 6.0 5.2 -0.1 2.8 
N 1.5 0.8 0.7 0.3 -0.4 0.4 
S 0.0 0.0 0.1 0.1 0.1 0.1 

O by Difference 23.3 21.1 27.6 27.0 11.9 17.8 
Ash 0.3 0.9 0.2 2.1 0.0 0.4 

Other Analysis  (wt% bio-oil) 

Water 5.6 6.8 12.2 23.2 79.9 45.7 
Solids 0.1 0.1 0.0 0.0 0.0 0.0 

Water Insolubles 66.4 61.3 26.4 14.3 0.6 24.8 
Undetectable 1.6 6.9 25.3 28.2 -3.6 3.7 

GC/MS Detectable Compounds 

Levoglucosan 4.5 4.3 1.2 1.0 0.0 1.7 
Acetic Acid 4.6 1.7 5.1 7.9 4.0 4.2 

Furans 3.7 3.4 4.3 4.8 0.8 2.3 
Phenols 2.2 2.5 4.3 4.3 0.6 1.8 
Guiacols 1.6 1.9 2.5 0.9 0.4 1.0 
Syringols 2.2 2.4 2.1 0.7 0.0 0.9 

Other GS/MS Detected Compounds 7.5 8.7 16.6 14.7 17.3 13.9 
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Table 16 Bio-oil Analysis 1-20090630 

1-20090630-Cornstover 
Fraction SF1 SF2 SF3 SF4 SF5 Total 

Mass Balance (kg) 1.03 1.02 0.30 0.60 3.04 5.99 
Char Collected (kg) 3.10 

 
Non-Condensable Gases (kg) 3.40 

  SF1 SF2 SF3 SF4 SF5 
Mass Averaged 

Total 

Karl Fischer (% Moisture) 5.8 4.2 13.2 18.3 76.9 43.2 
MAN (mg KOH/gram) 23.5 21.2 48.4 89.7 42.4 40.5 

Insolubles (%) 0.7 0.6 0.2 0.2 0.0 0.3 
Solids (%) 0.1 0.1 0.0 0.0 0.0 0.0 

HHV (MJ/kg) 26.8 27.6 22.9 16.8 4.2 14.3 

Elemental (%wt, Dry Basis) 

C 68.1 68.0 60.3 43.3 35.3 48.6 
H 5.9 6.2 6.0 6.0 0.1 3.0 
N 1.6 0.9 0.5 0.2 -0.2 0.4 
S 0.0 0.0 0.1 0.1 0.1 0.0 

O by Difference 22.3 23.3 27.6 37.5 14.9 20.5 
Ash 0.4 0.3 0.4 3.0 0.2 0.6 

Other Analysis  (wt% bio-oil) 

Water 5.8 4.2 13.2 18.3 76.9 43.2 
Solids 5.3 8.7 0.5 0.8 0.6 2.8 

Water Insolubles 70.1 63.3 21.6 17.1 3.0 27.2 
Undetectable -2.3 0.9 22.3 30.7 -3.6 2.1 

GC/MS Detectable Compounds 

Levoglucosan 2.9 3.9 1.0 0.9 0.0 1.3 
Acetic Acid 1.1 1.3 6.2 8.9 4.0 3.6 

Furans 3.3 3.3 4.9 4.2 0.8 2.2 
Phenols 2.3 2.1 5.1 3.5 0.6 1.7 
Guiacols 1.7 1.4 2.9 0.7 0.5 1.0 
Syringols 2.2 2.3 2.1 0.6 0.0 0.9 

Other GS/MS Detected Compounds 7.8 8.9 20.2 14.2 17.3 14.1 
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Table 17 Bio-oil Analysis 1-20090702 

1-20090702-Cornstover 
Fraction SF1 SF2a SF3 SF4 SF5 Total 

Mass Balance (kg) 1.03 1.02 0.30 0.60 3.04 5.99 
Char Collected (kg) 3.18 

 
Non-Condensable Gases (kg) 3.54 

  SF1 SF2 SF3 SF4 SF5 
Mass Averaged 

Total 

Karl Fischer (% Moisture) 5.8 7.1 13.4 24.5 79.6 45.7 
MAN (mg KOH/gram) 26.8 27.2 58.5 102.1 47.1 46.3 

Insolubles (%) 0.7 0.6 0.2 0.1 0.0 0.2 
Solids (%) 0.1 0.1 0.0 0.0 0.0 0.0 

HHV (MJ/kg) 26.7 27.1 21.6 17.1 4.1 14.1 

Elemental (%wt, Dry Basis) 

C 66.8 69.1 57.6 50.8 42.9 53.0 
H 5.9 6.0 6.0 5.2 0.0 2.9 
N 1.5 0.9 0.4 0.3 -0.3 0.4 
S 0.0 0.0 0.1 0.1 0.1 0.1 

O by Difference 24.0 20.8 29.0 28.5 11.5 17.8 
Ash 0.0 1.2 1.5 4.2 0.8 1.1 

Other Analysis  (wt% bio-oil) 

Water 5.8 7.1 13.4 24.5 79.6 45.7 
Solids 7.2 6.5 0.1 0.2 0.1 2.4 

Water Insolubles 66.0 60.8 16.5 10.6 0.4 23.8 
Undetectable -0.5 1.9 28.2 20.7 -3.7 1.8 

GC/MS Detectable Compounds 

Levoglucosan 2.3 3.2 1.0 0.0 0.0 1.0 
Acetic Acid 1.3 2.4 7.5 12.3 5.0 4.8 

Furans 3.5 3.4 4.3 4.3 0.9 2.3 
Phenols 2.1 2.1 3.3 3.1 0.6 1.5 
Guiacols 1.8 1.8 2.3 2.4 0.4 1.2 
Syringols 2.4 2.4 1.9 1.9 0.0 1.1 

Other GS/MS Detected Compounds 8.4 8.4 21.4 20.1 16.7 14.4 
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Table 18 Bio-oil Analysis 1-20090707 

1-20090707-Switchgrass 
Fraction SF1 SF2 SF3 SF4 SF5 Total 

Mass Balance (kg) 1.46 2.20 0.47 0.63 3.74 6.30 
Char Collected (kg) 4.76 

 
Non-Condensable Gases (kg) 7.78 

  SF1 SF2 SF3 SF4 SF5 
Mass Averaged 

Total 

Karl Fischer (% Moisture) 5.5 5.8 12.6 22.0 76.9 52.0 
MAN (mg KOH/gram) 33.9 38.5 72.5 126.4 68.8 80.2 

Insolubles (%) 0.6 0.5 0.1 0.1 0.0 0.3 
Solids (%) 0.1 0.0 0.0 0.0 0.0 0.0 

HHV (MJ/kg) 25.1 25.5 20.3 15.1 3.1 19.6 

Elemental (%wt, Dry Basis) 

C 64.7 65.2 53.3 48.3 45.2 73.4 
H 5.9 6.1 5.8 5.0 0.6 4.8 
N 1.3 0.8 0.3 0.2 0.0 0.6 
S 0.0 0.0 0.2 0.1 0.0 0.1 

O by Difference 26.0 25.7 34.5 34.1 12.0 28.2 
Ash 0.5 0.5 0.1 4.3 0.0 0.7 

Other Analysis  (wt% bio-oil) 

Water 5.5 5.8 12.6 22.0 76.9 52.0 
Solids 5.3 4.3 0.9 0.3 0.4 3.0 

Water Insolubles 64.9 50.9 7.8 5.5 1.2 34.6 
Undetectable -13.3 -4.3 13.1 18.9 -0.7 -2.1 

GC/MS Detectable Compounds 

Levoglucosan 2.1 6.8 2.0 0.0 0.0 3.0 
Acetic Acid 2.8 2.7 10.0 15.0 6.9 7.9 

Furans 4.1 5.5 6.8 6.0 0.6 4.3 
Phenols 3.5 4.2 5.2 4.7 0.9 3.7 
Guiacols 4.9 4.9 5.2 4.9 0.9 4.3 
Syringols 2.5 2.6 2.4 1.1 0.0 1.8 

Other GS/MS Detected Compounds 17.7 16.7 34.1 21.7 12.9 22.3 
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Table 19 Bio-oil Analysis 1-20090709 

1-20090709-Switchgrass 
Fraction SF1 SF2 SF3 SF4 SF5 Total 

Mass Balance (kg) 1.23 1.55 0.70 1.11 4.87 9.45 
Char Collected (kg) 3.76 

 
Non-Condensable Gases (kg) 2.92 

  SF1 SF2 SF3 SF4 SF5 
Mass Averaged 

Total 

Karl Fischer (% Moisture) 4.0 4.7 13.8 27.8 76.1 44.8 
MAN (mg KOH/gram) 38.5 39.7 73.8 129.1 68.2 67.3 

Insolubles (%) 0.5 0.5 0.1 0.0 0.0 0.2 
Solids (%) 0.0 0.0 0.0 0.0 0.0 0.0 

HHV (MJ/kg) 24.8 25.8 18.1 15.2 5.1 13.2 

Elemental (%wt, Dry Basis) 

C 63.2 64.3 52.8 47.8 43.2 50.5 
H 6.0 6.2 5.7 4.5 0.7 3.1 
N 1.2 0.8 0.3 0.2 -0.2 0.3 
S 0.0 0.0 0.2 0.1 0.0 0.1 

O by Difference 27.6 26.5 34.6 28.8 12.8 20.4 
Ash 0.5 0.5 0.1 5.9 0.4 1.1 

Other Analysis  (wt% bio-oil) 

Water 4.0 4.7 13.8 27.8 76.1 44.8 
Solids 2.8 4.6 0.4 0.1 0.1 1.1 

Water Insolubles 52.8 49.6 7.2 4.2 0.1 16.0 
Undetectable 17.7 18.9 40.1 32.8 2.5 13.5 

GC/MS Detectable Compounds 

Levoglucosan 1.7 2.8 0.9 0.9 0.0 0.9 
Acetic Acid 3.2 2.4 8.6 14.4 6.4 6.4 

Furans 3.4 3.3 5.0 3.4 1.0 2.2 
Phenols 1.6 1.5 2.2 3.0 0.4 1.2 
Guiacols 1.8 1.8 2.5 0.7 0.4 1.0 
Syringols 1.7 1.8 1.5 0.6 0.0 0.7 

Other GS/MS Detected Compounds 9.2 8.7 17.9 11.9 13.0 12.0 
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Table 20 Bio-oil Analysis 1-20090710 

1-20090710-Switchgrass 
Fraction SF1 SF2 SF3 SF4 SF5 Total 

Bio-oil Mass Balance (kg) 1.46 2.16 0.47 0.63 3.74 8.46 
Char Collected (kg) 3.65 

 
Non-Condensable Gases (kg) 3.50 

  SF1 SF2 SF3 SF4 SF5 
Mass Averaged 

Total 

Karl Fischer (% Moisture) 5.4 4.0 11.9 24.8 70.5 35.6 
MAN (mg KOH/gram) 35.2 39.3 68.2 125.6 75.7 62.7 

Insolubles (%) 0.7 0.5 0.1 0.0 0.0 0.3 
Solids (%) 0.1 0.0 0.0 0.0 0.0 0.0 

HHV (MJ/kg) 25.5 26.5 20.3 15.3 5.6 15.9 

Elemental (%wt, Dry Basis) 

C 65.0 64.4 53.4 46.8 41.0 52.2 
H 5.7 6.3 5.9 4.7 0.8 3.6 
N 1.3 0.8 0.2 0.2 0.1 0.4 
S 0.0 0.0 0.2 0.2 0.1 0.1 

O by Difference 25.4 27.0 34.6 30.5 16.5 22.8 
Ash 0.8 0.2 0.3 6.0 0.7 1.0 

Other Analysis  (wt% bio-oil) 

Water 5.4 4.0 11.9 24.8 70.5 35.6 
Solids 6.8 5.0 0.9 0.6 0.2 2.6 

Water Insolubles 67.0 53.0 9.0 3.3 0.6 26.1 
Undetectable -0.1 14.9 39.5 36.9 -6.1 6.1 

GC/MS Detectable Compounds 

Levoglucosan 1.8 4.0 0.9 0.9 0.0 1.5 
Acetic Acid 3.3 2.6 8.4 14.0 9.5 6.9 

Furans 3.3 3.2 4.3 3.7 3.5 3.5 
Phenols 1.7 1.7 2.8 2.6 0.5 1.3 
Guiacols 1.5 1.7 2.4 0.6 0.6 1.2 
Syringols 1.6 1.6 1.4 0.5 0.0 0.8 

Other GS/MS Detected Compounds 7.8 8.2 18.4 12.0 20.7 14.5 
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Figure 65 GC/MS Chromatogram for 1-20090702 
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Figure 66 GC/MS Chromatograph for 1-20090710
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