
Retrospective Theses and Dissertations

2008

The role of information flow in engineering
optimization
Steven Michael Corns
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/rtd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in
Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

Recommended Citation
Corns, Steven Michael, "The role of information flow in engineering optimization" (2008). Retrospective Theses and Dissertations.
15638.
http://lib.dr.iastate.edu/rtd/15638

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15638&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15638&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15638&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15638&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F15638&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd/15638?utm_source=lib.dr.iastate.edu%2Frtd%2F15638&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

The role of information flow in engineering optimization

by

Steven Michael Corns

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Mechanical Engineering

Program of Study Committee:
Kenneth Mark Bryden, Major Professor

Daniel Ashlock
H. Scott Hurd
James Oliver

Tom I. P. Shih
Eliot Winer

Iowa State University

Ames, Iowa

2008

Copyright © Steven Michael Corns, 2008. All rights reserved.

3307065

3307065
 2008

ii

TABLE OF CONTENTS

LIST OF FIGURES ...v
LIST OF TABLES.. vii
ABSTRACT .. viii
1. INTRODUCTION ...1

Overview ..3

2. EVOLUTIONARY ALGORITHMS ..6
Evolutionary Algorithm Parameters...8

Population Size .. 9

Selection Method... 11

Crossover ... 12

Mutation... 13

Diversity and Convergence in Evolutionary Algorithms...........................13

Evaluating Evolutionary Algorithms and the No Free Lunch Theorem....15

Diversity Control Techniques ..17
Population Size, Crossover, and Mutation .. 18

Niche Specialization .. 18

GENITOR II .. 19

EcoGA ... 20

3. GBEAs AND THE EVALUATION OF EVOLUTIONARY
COMPUTATION METHODS...21

Graph Based Evolutionary Algorithms ..23

Test Problems ...25
One-Max.. 26

Variable Dimension Surface (Keane Bump Test) ... 26

DeJong Test Functions .. 29

Greiwangk Function .. 29

Plus-One-Recall-Store ... 30

North Wall Builder .. 31

iii

Self Avoiding Walk ... 34

DNA Barcode .. 34

Simple Differential Equation... 35

Steiner Systems.. 36

Ordered Genes Problems ... 36

Parity Problems.. 37

Summary of Problems ... 38

A Taxonomy and Test Suite ...39
A Taxonomy of Evolutionary Computation Problems.. 42

A Proposed Test Suite ... 44

Conclusion ..48

4. CONTROLLING INFORMATION FLOW AND DIVERSITY49
Population Size in Graph Based Evolutionary Algorithms........................50

Plus-One-Recall-Store ... 53

One-max .. 59

North Wall Builder .. 61

Keane Bump Test .. 63

Self-Avoiding Walk... 68

Takeover Times for Graph Based Evolutionary Algorithms79
Takeover Times ... 81

Expected Value Calculations... 82

Empirical Takeover Time Experiments... 87

Diversity Measurement Experiments .. 88

Takeover Time Experiment Results .. 90

Conclusion ..118

5. APPLYING GRAPH BASED EVOLUTIONARY ALGORITHMS.....124
Bacteria and Swine Growth Model ..126

Bacteria, Antimicrobials, and Swine..130

Previous Bacteria Models...132

iv

Early Mathematical Models... 133

Lipsitch and Levin ... 135

Nikolaou and Tam ... 136

The Chemostat ... 136

BacSim... 137

Summary of Bacteria Growth Models... 138

Modeling Swine..139

New Bacteria/Swine Model..143
Equations and Differencing ... 144

Programming ... 147

Optimization .. 150

Results ... 151

Conclusions ..155

6. CONCLUSIONS ...161
7. FUTURE RESEARCH..167
APPENDIX: GRAPH THEORY OVERVIEW ..172

List of Graphs .. 172

Random Graphs ... 174

REFERENCES ..177

v

LIST OF FIGURES

Figure 1, Graph types used in this study: Cycle (a), Petersen (b), Toroid (c) and
Hypercube (d). 24

Figure 2, Keane bump test in two dimensions. 28

Figure 3, North wall builder sample board. 33

Figure 4, Cladogram of test problems based on solution times for various graphs. 43

Figure 5, The average number of mating events to solution as a function of graph for
the PORS 16 problem, 512 vertices. 52

Figure 6, The average number of mating events to solution as a function of population
size and graph for the PORS 16 problem. 54

Figure 7, The average number of mating events to solution as a function of population
size and graph for the PORS 15 problem. 58

Figure 8, The average number of mating events to solution as a function of population
size and graph for the one-max problem. 60

Figure 9, The average number of mating events to solution as a function of population
size and graph for the North Wall Builder problem. 62

Figure 10, The average number of mating events to solution as a function of
population size and graph for the Keane Bump Test, n=6. 64

Figure 11, The average number of mating events to solution as a function of
population size and graph for the Keane Bump Test, n=10. 66

Figure 12, The average number of mating events to solution as a function of
population size and graph for the Self-Avoiding Walk, 3x3 grid. 69

Figure 13. The average number of mating events to solution as a function of
population size and graph for the Self-Avoiding Walk, 3x4 and 4x4 grids. 71

Figure 14, Population Size Regions (Log vs. Log scale). A – diversity starved, B –
optimization, C – excess diversity, D – saturation. 75

Figure 15, Information spread as a function of mating events and graph, 512 vertices,
r= 2. 92

Figure 16, Information spread as a function of mating events and graph, 512 vertices,
r= 2. 93

Figure 17, Information spread as a function of mating events and graph, 4096
vertices, r= 2. 99

vi

Figure 18, Information spread as a function of mating events and graph, 4096
vertices, r=2. 100

Figure 19, Information spread as a function of mating events and graph, 512 vertices,
r= 1.5. 101

Figure 20, Information spread as a function of mating events and r for the hypercube
graph, 512 vertices. 102

Figure 21, Information spread as a function of mating events and r for the toroid 4
graph, 512 vertices. 103

Figure 22, Information spread as a function of mating events/population size for the
hypercube, r=2. 105

Figure 23, Information spread as a function of mating events/population size for the
Petersen 3 graph, r=2. 106

Figure 24, Information spread as a function of mating events/population size for the
Petersen 3 graph, r=2. 107

Figure 25, Takeover times for cycle graph by method, n=512. 108

Figure 26, Takeover times for complete graph by method, n=512. 109

Figure 27, Kappa as a function of graph diameter for r=2. 110

Figure 28, Kappa as a function of graph diameter for r=3. 111

Figure 29, Number of solutions found by graph for the 3 dimensional sine problem. 113

Figure 30, Number of solutions found by graph for the 9 dimensional sine problem. 114

Figure 31, Number of solutions found by graph for the PORS16 problem. 115

Figure 32, Stepwise Risk Assessment-based approach for estimating the impact on
human health from macrolide resistance that develops on poultry farms (Hurd,
2006). 128

Figure 33, Percent of Campylobacter.spp resistant to antibiotic vs. Animal Weight at
Abattoir. 156

Figure 34, Antibiotic regimen found by Petersen graph (k=7) for antibiotic regimen
problem. 157

Figure 35, Antibiotic regimen found by standard evolutionary algorithm (complete
graph) for antibiotic regimen problem use. 158

Figure 36, Sytem of systems concept for engineering optimization (John Deere
Company, 2008.) 165

vii

LIST OF TABLES

Table 1, Proposed test suites of evolutionary computation problems.47

Table 2, Performance Increase from Using Preferred Graph. ...55

Table 3, Critical points for test problems by graph family. Best graph family denoted
with an asterisk (*)...73

Table 4, Graph Diameters and κ for population size 32 to 256, r = 2.95

Table 5, Graph Diameters and κ for population size 512 to 4096, r = 2.96

Table 6, Graph Diameters and κ for population size 32 to 256, r = 3.97

Table 7, Graph Diameters and κ for population size 512 to 4096, r = 3.98

Table 8, Winnowed graph sets for use in evaluation of evolutionary computation
problems, population size of 512. ..120

Table 9, Animal weight gain in pounds per hour without antibiotics and with
antibiotics (Cromwell, 2001). ..140

Table 10, Delivered Weight and Percent of Resistant Bacteria by Graph or Method.154

Table 11, Separation distances for random tori generation. ..175

viii

ACKNOWLEDGMENTS

I would like to give my sincere thanks to all of those who helped make the completion of

this dissertation possible. First I would like to thank my friend and advisor Kenneth Mark

Bryden for his inspiration, insights and encouragement. His guidance in engineering,

education, and professional service has proven invaluable in my research and

professional pursuits.

I would also like to thank Dr. Daniel Ashlock, who shared with me his enthusiasm for

computational intelligence and has helped me appreciate the breadth of problems it can

be used to address. Dr. Ashlock has been a constant source of information and guidance

in my chosen professional research. For his instruction, support, and patience, I would

also like to thank Dr. H. Scott Hurd. Dr. Hurd helped me to broaden my work into the

area of veterinarian medicine. To the faculty, staff, and students of the Virtual Reality

Applications Center at Iowa State University I give my thanks for the many years or

support and camaraderie.

I would like to thank my parents, Charles and Nancy Corns. Without their encouragement

and assistance this work would not have been possible. Most importantly I would like to

thank my wife Melissa, to whom this work is dedicated, for her love and understanding

throughout my academic career.

ix

ABSTRACT

Current optimization techniques work well for single components represented by a single

model. However, many of the problems we face today are multi-disciplinary problems

requiring the integration of complex models from different fields to gain a more complete

understanding of the overall performance of a biological, engineering, or human system.

One example is a modern automobile. Multiple systems (such as the power train and

electronic engine control system) are designed and built from various assemblies and

components, all of which are then integrated into one final product. This design process

evokes a systems-of-systems concept that is also found in agricultural facilities, aircraft

design, and many other industrial applications where multiple systems are orchestrated to

achieve common goals. Optimization of these complex systems is challenging. Tight

coupling between the various models, discontinuous search spaces, and long run times

can quickly defeat traditional optimization techniques.

Evolutionary algorithms provide a way to approach optimization of these complex

systems. Evolutionary algorithms blend the information contained in a population of

solutions to answer problems that thwart many classical optimization methods, but loss of

diversity in the evolving solutions is a critical issue. As this information is shared

between the population members, the diversity in that population decreases as the

solutions converge to a single answer. For many challenging engineering problems this

loss of diversity occurs too rapidly for novel solutions to emerge. In addition, systems of

systems optimization problems are often deceptive because the global optimum is

composed of multiple building blocks, making the preservation of diversity crucial.

x

This work presents graph based evolutionary algorithms as a tool to control the rate at

which information is spread throughout an evolving population and thereby limit

diversity loss. Graph based evolutionary algorithms impose a computational geography

on the evolving population, placing barriers to information flow to allow for the

development of the building blocks required to assemble one or more superior solutions.

Graph based evolutionary algorithms can be used to find new solutions and decrease the

time to convergence to a global optimum for complex, deceptive problems. In addition,

the performance of a problem on a set of graphs can be used as a taxonomical character

to classify evolutionary computation problems. If comparisons can be made between

classified problems and a new problem being examined, it would be possible to select a

graph that matches the desired performance. This careful graph selection can provide

solutions that are both novel and superior to those found by standard evolutionary

algorithms. Successful examples can be found in a variety of disciplines, including the

engineering design problem of optimizing cook stoves for use in the third world to

biological systems-of-systems, such as the tailoring of antibiotic regimens for use in

swine production.

1

1. INTRODUCTION

Optimization has long been a significant part of engineering. After a new solution is

introduced, efforts are made to make it faster, less expensive, more efficient, or improve

the design in some fashion. For most of engineering history there was no conscious

practice of optimization; improvements to designs were typically done on a trial-and-

error basis while the technologies were being developed and then by examination of

performance when it was placed in service.

In the 1940’s, optimization using mathematical models was introduced (Vanderplaats,

1999). These classical techniques, such as linear programming or Newtown’s method,

manipulated the mathematical models of components or systems using calculus or

gradient methods. The maxima (or minima) found using these methods was typically

sufficient for a single component, although there was no guarantee that it is the global

optima.

In 1975, Holland put forth the idea that computer code could be manipulated to mimic

natural selection (Holland, 1975). This was further explored by DeJong (1975), who

proposed that this technique could be used to solve a wide variety of problems. These

ideas have been merged with other concepts, such as evolution strategies, evolutionary

programming and genetic programming to allow for a larger selection of representations,

making it possible to successfully attack a much broader range of problems. These

resulting evolutionary algorithms (EAs) provide an approach to solving and optimizing

many mathematics, physics and engineering problems.

2

EAs are a valuable optimization tool. They have been used in the design of gas turbine

blades (Martin and Dulikravich, 2002), airfoils (Jang and Lee, 2000), steam boilers

(Vavak, Jukes and Fogarty, 1997), missile nozzle inlets for high-speed flow (Blaize,

Knight and Rasheed, 1998) and heat exchangers (Fabbri, 1997). EAs are not as

vulnerable to problems with early convergence as gradient search methods, and are able

to find solutions to problems with discrete or discontinuous landscapes that are

unsolvable by most other optimization techniques. They are also capable of solving high

dimension problems that would thwart conventional methods. These algorithms work by

blending different members of a solution population to generate new, novel and hopefully

superior solutions through simulated evolution.

Combinatorial graphs have recently been combined with evolutionary algorithms to

impose a spatial geography on the population of solutions. These graph based

evolutionary algorithms (GBEAs) allow for a better control of diversity and time to

convergence, preventing early termination of the algorithm when a sub-optimal solution

to a deceptive problem is found. The members of the population are each placed on a

vertex of a graph that is connected to a set number of other population members. When

the program is started, population members are only allowed to mate with individuals that

are connected to them by the graph’s structure, controlling the rate that their information

is spread.

3

Slowing the rate of information spread is vital for problems where the optimal answer is

difficult to find and it is easy to find a good but sub-optimal answer. By imposing a

spatial geography, sub-optimal answers are prevented from rapidly spreading across the

population, destroying diversity. Additionally, as a sub-optimal answer spreads the

average fitness increases. As a result it becomes more difficult for solutions that are

significant different from the norm to survive. This creates a substantial barrier to

maintaining a diverse population of solutions. Disparate individuals who mate with a

creature nearer the average fitness are usually subject to replacement by their children,

who are more similar to the sub-optimal leader.

The mechanisms and measures of information flow within a GBEA are not well

understood. This research examines the dynamics involved in the controlling the spread

of information across the solution set and develops a methodology for examining the rate

of information spread. By understanding this transfer rate, an EA developer can select a

graph that will give the best results depending on the problem at hand. In addition, this

research investigates the interaction between population size and information spread in

GBEAs.

1.1. Overview

Chapter Two provides an overview of evolutionary algorithms and the methodologies

that led to their development. The parameters that affect the amount of information

available initially and as the evolutionary proceeds are discussed, as well as methods to

control diversity. The chapter concludes with a review of previous test suites and a

4

discussion of the No Free Lunch theorem, which states that there is no one best method to

approach all evolutionary computation problems.

Chapter Three presents graph based evolutionary algorithms. A discussion of how

GBEAs differ from standard evolutionary algorithms is given, followed by a description

of several test problems used to investigate these algorithms. This is followed by a

discussion of the development of a taxonomy of evolutionary computation problems by

using information gained from GBEA research. This taxonomy makes it possible to apply

a priori knowledge to select the graph that matches the desired outcome of the problem

being solved. In addition, this taxonomy can be used to develop an effective test suite of

evolutionary computation problems, making it possible to evaluate new techniques in the

field and determine where their strengths lie.

Chapter Four investigates the rate at which information is transferred within a GBEA.

First, the impact of population size on GBEAs is discussed. Of particular interest is the

difference between initial diversity supplied by population size and the preservation of

diversity achieved with GBEAs. Next, computational and empirical methods for finding

the takeover times for GBEAs are discussed and the results are given, making it possible

to determine the extent to which diversity is preserved for a particular graph. This chapter

concludes with some recommendations on the type of graph to use for a given problem.

Chapter Five lists several applications in which the use of GBEAs has proven to be

beneficial. While several applications are described, the use of GBEAs to develop an

5

antibiotic regimen for use in the swine industry is examined in detail. After presenting

some background information on the use of antibiotics with swine and the effects of the

antibiotic on bacteria, a review of existing bacteria models and swine growth modeling is

given.

Chapter Six concludes the dissertation with a review of the benefits of using GBEAs,

some qualitative rules for achieving the desired results with GBEAs in optimization

problems. Chapter 7 lays out the direction of future work in this area. Appendix A gives

an overview of graph theory to help in the understanding of this research and a

description of the graphs used.

6

2. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms attempt to mimic proposed natural evolution processes in

computer code to develop novel and useful solutions to a variety of problems.

Evolutionary algorithms encompass several earlier techniques that share similar

attributes: evolution strategies, evolutionary programming, genetic algorithms (GAs), and

genetic programming (GP) (Parmee, 2001). All of these methods share common traits,

such as having several solutions being developed at once (population based) and using

current solutions in the populations (parents) to develop newer solutions (children). As

these techniques are the key components that form today’s methodology, a brief

overview of each is in order.

Evolution strategies (Rechenburg, 1984; Scwegel, 1975) and evolutionary programming

(Fogel, Owens, and Walsh, 1966) are similar but independently developed methods for

evolving solutions. Both use solutions of real valued strings, which could be compared to

chromosomes, to form new solutions by changing one or more values in the string

(mutation), typically using a normal distribution from the initial value. The major

differences between the two are that evolutionary strategies use every member of the

population to develop children that are compared to the parents, possibly using more than

one parent to make the children (similar to recombination in genetics, where genetic

material is contributed from more than one parent.) Evolutionary programming uses only

the most fit of a group of population members to produce children for the next

generation.

7

Genetic algorithms (DeJong, 1975; Holland, 1975) use a form of natural selection to

determine which individuals in the population mate. Chromosomes are replaced with

data arrays that can hold variables in an equation, instructions for controlling a virtual

agent, or many other forms of information. These data arrays are normally made up of

binary strings that represent real numbers or integers, although they can contain real

values or program directions for controlling artificial agents. The solution set is then

populated with different creatures made up of one or more chromosomes, usually

constructed randomly. The major difference between GAs and the previous methods is

the selection method used. Evolution strategies and evolutionary programming used only

the most fit members of the population to produce offspring, while genetic algorithms

allow for any member of the population to reproduce, although this is weighted to favor

the more fit individuals. Those population members selected to breed then undergo one or

more operators meant to simulate natural mating phenomenon, such as cross-over of

parent chromosomes or random mutation of a data array values. In the simplest form, the

children generated then replace the parents in the population, and the process is repeated

until a satisfactory solution to the problem is achieved. The children may also be

compared to all or part of the population using a fitness value that gives some indication

of how well they solve the problem at hand, replacing inferior solutions if any are found.

Genetic programming (Koza, 1992) is significantly different from genetic algorithms,

evolution strategies and evolutionary programming. Whereas the previous methods

operated on numerical values, either binary or real strings, genetic programming is

intended to evolve computer code. This is accomplished by using parse trees to store

8

formulas, with the internal nodes being operators, and the terminals being either constants

or variables (terminals). Genetic programming is very similar to genetic algorithms in

that it emulates natural selection in how parents are selected for breeding, and shares

many of the same operators such as crossover and mutation. These operators, however,

are necessarily altered slightly due to the differences in representation. When crossover

is performed, care must be taken to ensure that the generated program is executable. This

means that operands can only be crossed with operands, and terminals can only be

switched with terminals. More information on genetic programming can be found in

(Banzhaf, Nordin, Keller, and Francone, 1998; Kinnear, 1994; Koza, 1992).

Each of these methods has strengths and weaknesses. Evolution strategies and

evolutionary programming have long run times, while crossover is often disruptive in

genetic algorithms and even more so in genetic programming. There is also a problem

with mutation having different impact on a binary string depending on the position at

which the mutation is applied. Evolutionary algorithms can be thought of as using

different aspects from these methods to develop a representation of the problem being

studied that can avoid a particular method’s weakness. Using this representation, it is

then possible to choose parameters for the algorithm that properly explore the search

space.

2.1. Evolutionary Algorithm Parameters

There have been several attempts to gain an insight into how different parameters in an

evolutionary algorithm effect the time to convergence and/or the quality of the final

9

answer. Some of these parameters effect how the evolutionary algorithm is initialized,

such as problem representation and population size. Other parameters such as local

mating rules dictate how the algorithm simulates mating in nature. This includes selection

method, crossover rate and type, mutation rate and type, and how the children are

introduced into the population. To discuss the role of information flow when using

evolutionary algorithms, it is first necessary to discuss the parameters that have the

strongest impact on solution diversity.

2.1.1. Population Size

The population size is the number of creatures in the population available to breed. The

first estimation for an optimal population size was the Schema Theorem for genetic

algorithms introduced by Holland (1975), which estimated a population size of the order

of magnitude of n3 would ensure that there was a sufficient representation of possible

combinations to solve the problem, where n is the length of the bit string being used.

Grefenstette (1986) studied the effects of varying population size, as well as many other

parameters, on the five problems introduced by DeJong in his doctorial dissertation

(1975). He found that for the binary string problems he studied, a population size ranging

from 30 to 100 provided sufficient diversity to solve these problems.

Goldberg has done the most extensive testing of population variations (Goldberg, 1989;

Goldberg, Deb, and Clark, 1992; Goldberg, Sastry, and Latoza, 2002) along with Harik

(1997.) Together they used the Schema Theorem (DeJong, 1975) to estimate the best

10

population sizes based on statistical analysis for the availability of necessary building

blocks and probability of failure to select those blocks during mating. While this method

was limited to specific section and crossover methods (Altenberg, 1995), it provides

guidelines for population size based on the building blocks necessary to construct the

final solution. Arabas, Michalewicz and Mulawka (1994) developed GAVaPS (genetic

algorithm with varying population size), giving each member of the population a lifespan

in generations based on their fitness, causing the more fit members to last longer and

therefore produce more offspring as the algorithm progressed. Nimwegen and Crutchfield

(2001) conducted research into population size by examining the epochal behavior of

genetic algorithms. They found that finding population size and mutation rate

combinations that prevent highly superior creatures from developing rapidly allow for

faster convergence to a true optimal solution in all but the simplest cases.

All of these previous studies only examined populations of binary strings. While binary

strings are useful in some applications, many real-world engineering problems require

optimization of real valued functions. One example of the use of real valued functions is

the work of Haupt and Haupt (1998; 2000), who performed experiments varying the

population size and mutation rate for real valued functions. They found that for the real

valued problems they studied a smaller population size and low mutation rate performed

best, which is consistent with the observations made when evolutionary strategies are

applied to similar problems (Rechenburg, 1984.) It should be noted that while the test

problems used in their study (2000) are engineering problems, they are non-deceptive

problems with simple fitness landscapes that can be solved with little difficulty. Real

11

values can be represented using a base two numerical system, but there are major

drawbacks to this approach; it can require very long gene length as well as making the

mutation operator unstable. A bit flip at different locations on the string could have

drastically different impact on the value of the string, making crossover and mutation

highly disruptive. This is commonly avoided by the use of gray coding which makes

each bit flip have equal value (an implementation can be seen in Mathias and Whitley’s

work (1994)), but this creates unnecessary overhead in the algorithm, as real value coding

could easily be used without as much added computational cost.

2.1.2. Selection Method

Selection method is normally associated with genetic algorithms and genetic

programming. There are two major schemes to be chosen from when determining a

selection method; whether to use a generational algorithm (DeJong, 1975) or a steady

state algorithm (Reynolds, 1992; Syswerda, 1991; Whitley, 1989). The difference

between these two being that a generational algorithm involves all members of the

population while the steady state (originally termed the “GENITOR” algorithm by

Whitley (1989)) selects individuals and performs mating on just the pair selected. After

one of these mating schemes is chosen a method for pairing up individuals for the actual

mating still needs to be determined. These are the methods in which GAs and genetic

programming emulate natural selection. Some of the most popular are fitness

proportionate selection (random selection of parent with higher fitness having a better

chance of selection), rank selection (like fitness proportionate selection, but arranging the

12

solutions by fitness and then using this “rank” for selection) and tournament selection

(the population is divided into groups, with the most fit members of the group

reproducing) (Parmee, 2001). Closely related to selection method is the algorithm’s

replacement method, which can be absolute (child replaces a population member

regardless of its fitness) or elite (child replaces a population member only if it is more

fit).

2.1.3. Crossover

The crossover operator is how most evolutionary algorithms perform recombination to

generate offspring. It is normally performed by randomly choosing one or more points

on the selected parents’ strings, then producing a child by copying the data first from one

parent, then switching to the other whenever a crossover point is reached (called single or

multiple point crossover). Another method is uniform crossover, where the donating

parent is randomly determined for each locus. The chance of crossover occurring,

normally referred to as the crossover rate, and how the crossover is accomplished have

been studied by several researchers. One of the first attempts to determine what

crossover rate should be used for an evolutionary algorithm was done by Grefenstette

(1986). He also studied mutation rate and selection method in determining GA

parameters. Although he found that genetic algorithms performed as well or better than

other methods for a small problem set, no recommendations were made in his

conclusions. DeJong and Spears (1990) compared multiple point crossover to uniform

crossover, where they found that for small population sizes, uniform crossover performed

13

better. Researchers at UIUC (Goldberg, 1989; Goldberg and Deb, 1991; Goldberg, Deb,

and Clark, 1992; Goldberg, Deb, and Thierens, 1993) studied the effects of crossover on

the availability of building blocks. Wu, Lindsay and Riolo (1997) examined crossover

and mutation as it occurred during a GA run, the results of which showed that diversity

preservation was a major influence on time to convergence.

2.1.4. Mutation

Mutation changes the value at one or more location in the evolving solution, thereby

making it possible to introduce an entirely new solution into the population. This is an

effort to mimic mutations that occur naturally in living species. Mutation is normally

conducted by randomly changing one or more values in a newly produced child before its

fitness is evaluated. Much of the work done investigating evolutionary algorithms

previously mentioned also explored the effect of varying mutation rate and the mutation

itself (Goldberg, 1989; Greffenstette, 1986; Nimwegen and Crutchfield, 2001; Wu,

Lindsay, and Riolo, 1997). One area of interest that has recently been studied is varying

the mutation rate as the algorithm proceeds in an attempt to fine-tune the use of the

operator (Smith and Fogarty, 1996). All research in genetic evolution can be considered

studies in mutation, as this is the only operator used (Fogel, Owens, and Walsh, 1966).

2.2. Diversity and Convergence in Evolutionary Algorithms

Whenever an evolutionary algorithm is applied to a problem there is always a tradeoff

between exploration of the search space and exploitation of the superior solutions already

14

found (Parmee, 2001). The exploration of a search space refers to how many different

solutions are analyzed, and can be evaluated by taking inventory of the diversity of the

members of the population. Diversity, as it applies to evolutionary algorithms, can be

thought of as how many different solutions or partial solutions exist the in solution

population. The exploitation of superior solutions can be seen as the population members

utilize information already discovered by other members of the population to converge to

a single and hopefully optimal solution.

The balance between exploration and exploitation required is problem specific, and is

best highlighted by examining two extremes, a simple uni-modal evolutionary

computation problem and a highly deceptive evolutionary computation problem. In a

simple uni-modal problem, a change to the chromosome that leads to an improved fitness

also leads to the global optimum. A highly deceptive problem in evolutionary

computation is a problem in which any change in the chromosome that leads to an

improved fitness causes the solution to converge to a sub-optimal answer. These two

extremes require the maximum amount of exploitation and exploration, respectively.

For very simple and non-deceptive problems it is preferable to converge to a solution

with little or no diversity required. As the fitness landscape grows more difficult (through

increasing size, modality or deceptiveness) the need to preserve diversity increases

(Parmee, 2001). Unfortunately, there is currently no method for determining beforehand

how much diversity is necessary other than an experienced user’s estimate.

15

Exploration and exploitation can be balanced by adjusting the various parameters of the

algorithm being used. Initially, the amount of diversity is set by the population size used

in the algorithm. In most evolutionary algorithms this diversity is then decreased by the

selection methods and crossover, and increased by mutation. Other methods exist to

control the rate at which diversity is destroyed, and will be discussed in Chapter 3.

There has been a significant amount of work done by Goldberg and Deb (1991) to

determine the amount of time (measured in mating events) necessary for a single solution

to dominate all others in the population. In its simplest form, his “takeover time” is based

on separating solutions into different classes and then using probability theory to predict

the number of members of that class there will be in the next generation. This was done

for several selection schemes, including Whitley’s GENITOR algorithm (1989). This

gives a general idea of the number of mating events required for a method to converge to

a solution, but does not take into account the modality of a problem. For this method to

give a better insight into the true takeover time for an algorithm, other factors must be

considered.

2.3. Evaluating Evolutionary Algorithms and the No Free Lunch
Theorem

Whenever a new algorithm is developed, the creators need some method to evaluate its

performance against other algorithms. The most common way to do this is to either find

or develop a test problem or suite of test problems. There are several test problems and

test suites available both on-line and in the literature (Ackley and Littman, 1992; DeJong,

16

1975; Mühlenbein, Schomisch, and Born, 1991; MDO Test Suite, 2002; Schaffer,

Caruana, Eshelman, and Das, 1989). The authors of each test problem have applied their

particular algorithm to the test problem as well as algorithms produced by others and

made comparisons between the results. Unfortunately, there is often little emphasis

placed on why a certain algorithm outperforms another and many of these test suites are

unwittingly biased towards the new algorithm.

These issues along with several other issues related to test suite choice were discussed by

Whitley, Mathias, Rana, and Dzubera (1996). In this work no test suite was proposed,

but desirable characteristics for good test suites were proposed. These included: 1) the

test suites should be resistant to hill-climbing techniques, since problems that can be

solved with hill-climbers are solved faster and with better results using these methods, 2)

test suites should also be nonlinear, non-separable and non-symmetric, as these types of

problems can be decomposed and simplified into smaller parts that can be optimized on

their own, 3) improving solutions with many interdependencies is one of the strengths of

EAs, and should be stressed, and 4) test suites should be scalable in both the test function

and the problem evaluation cost. Many real world problems need to be scalable in the

number of variables of interest that are being manipulated. Also, when more variables

are introduced into a problem the evaluation cost often increases at an exponential rate.

An algorithm proposed for inclusion in a test suite needs to be able to manage this size

increase without experiencing a degradation in performance.

17

Wolpert and Macready (1995; 1997) developed two theories to examine whether any

algorithm was superior to another; one based on algorithms and one based on problem

type. One of the key points of this work was that it can be proven that when compared to

the entire population of problems available no algorithm is superior to another. This was

contrary to the common opinion of the time, which held that some algorithms were

intrinsically better than others, mainly due to the previously mentioned flaws in common

test suites and problems. Called the “No Free Lunch Theorems,” they showed that there

is a relationship between problems and algorithms, indicating that there is no one

algorithm that will outperform all others in a wide variety of problems. This makes

comparisons of different algorithms difficult at best.

2.4. Diversity Control Techniques

There have been many theories as to why diversity is necessary and has not vanished in

nature (Kimura and Crow, 1963; Wright, 1986). Many of these theories suggest that

geographical obstacles and inherent mating rules (such as “mating dances”) impose

mating restrictions and hence preserve diversity. When obstacles such as these are

applied to EAs, it helps to preserve the diversity and slow the time to convergence, which

in turn helps keep the algorithm from getting stuck in local optima for deceptive

problems (Ackley and Littman, 1992; Mühlenbein, 1991). There are several methods

currently being employed to maintain, increase or otherwise control solution diversity in

a population. These include the initial parameters of the algorithms, Niche Specialization,

the Island Model (GENITOR II) and the EcoGA (Davidor, Yamada, and Nakano, 1993).

18

2.4.1. Population Size, Crossover, and Mutation

The first methods employed in evolutionary algorithms to control diversity were the

population size, crossover and mutation. In fact, these methods were used in EAs before

the necessity of diversity preservation was understood! An examination of these

parameters shows how they contribute to diversity control. The larger the population size,

the more “genetic materials” or building blocks (Goldberg, 1989) are available with

which to build solutions. As the evolutionary process continues, crossover blends the

solutions, making children that tend to match the higher fitness parent and thereby

lowering diversity. Traditionally, the only way to re-introduce diversity was by applying

a mutation operator. When a mutation occurs, part of the information in the solution is

changed, which usually makes it different from other solutions it may have been similar

to and increasing diversity.

2.4.2. Niche Specialization

Niche specialization (Goldberg, 1989) is a method that discourages solutions that are

very similar by imposing fitness penalties to those individuals. The concept is similar to

the biological concept that shares its name. It is an easily understood concept that usually

yields good results; as more individuals find the same high performance solution, their

fitness decreases, encouraging exploration of other areas of the search space. While the

concept is rather simple, it can sometimes be difficult to employ since there needs to be

some similarity measure to determine how different a solution is from others in the

population. A hamming distance can easily be found for binary encoded problems, but if

19

there are a significant number of building blocks this could lower the methods

effectiveness if there is no a priori knowledge of these blocks. For other problems, it is

usually computationally expensive to calculate a similarity measure, if it is even possible

at all. As the problem complexity increases, usually the difficulty in finding and

computing the similarity measure increases as well.

2.4.3. GENITOR II

One approach to preserve diversity is the GENITOR II algorithm, also referred to as

island Gas (Whitley and Starkweather, 1990), which simulates the natural separation of

population members caused by land masses separated by bodies of water. In this

approach, several populations are evolved separately for a given number of generations.

Selected members are then copied from one of these “islands” onto another using a

predetermined pattern in a process called migration, hopefully adding new and useful

information into the receiving population. The number of members moved in a migration

is termed the migration size, and the number of generations between migrations is the

migration interval. These can be adjusted to control the rate at which information is

shared between populations.

This method not only prevents early convergence for deceptive problems, it is also easily

implemented on parallel computers, greatly lowering the amount of time required for

results. A drawback of this method is that due to the inherit elitism, there are limits to

how much diversity it can preserve.

20

2.4.4. EcoGA

The EcoGA (Davidor, Yamada, and Nakano, 1993) was another early GA to impose a

geographic structure on a solution population to control diversity. This algorithm places

the population of solutions onto a grid that wraps around to form a continuous space.

Acting as a steady state algorithm (Reynolds, 1992; Syswerda, 1991; Whitley, 1989),

members of the population are selected for mating, but only allowed to interact with

neighboring solutions, creating a subpopulation of nine members for each event. This is

very similar to graph based evolutionary algorithms, acting as a single type of graph with

a degree of k=8. This work did show some promise, but was abruptly stopped for

unknown reasons.

21

3. GBEAs AND THE EVALUATION OF EVOLUTIONARY
COMPUTATION METHODS

To evaluate the role of information flow in engineering optimization, we first need a

method to control that flow of information. For this research, graph based evolutionary

algorithms (Bryden, et al., 2006) are employed. GBEAs use graph structures to control

the rate at which information is spread through an evolving population. While exploring

how these GBEAs can be used to control the flow of information, a large body of

research data was collected, making it possible to construct both a taxonomy of

evolutionary computation problems from those studied and to develop a test suite of

problems that would allow an unbiased evaluation of newly proposed evolutionary

computation methods. Together, these tools would make it possible to select a desirable

level of information flow using a priori knowledge of the problem.

Research has shown that GBEAs can provide significant improvement in time to solution

when the appropriate graph is selected for the problem being solved (Bryden, et al.,

2006). The initial set of graphs used was chosen ad hoc and with little or no idea of which

graph would perform well. As of yet, there is still only a limited understanding of what

occurs within the population to make one graph perform better than another. By

developing a better understanding of these interactions it would be possible to apply other

graphs and develop new graphs that could be used to fine tune the rate of information

flow.

22

With a wide variety of graphs to choose from, there is still a problem in determining

which graph to use. Currently, the assignment of which graph would perform best is

based largely on conjecture, with only modest accuracy. To improve the selection of

preferred graph, it is necessary to not only gain a better understanding of the interactions

that occur within a population of solutions in a GBEA but also to develop a means to

classify evolutionary computation problems. While a classification of problems has been

introduced (Ashlock, Bryden, Corns, and Schonfeld, 2006), more data needs to be

incorporated into the hierarchy and the relationships between the problems examined

before any guidelines could be established for graph usage. To do this, a variety of

problems need to be examined.

In building the necessary information to make predictions about which graph would be

best, it was also be possible to develop a preliminary test suite of evolutionary

computation problems. To get a representative sample of the problems to which

evolutionary computation would be applied, several types of test problems were

examined. Using the taxonomical values found while classifying the problems, it is

possible to determine which evolutionary computation problems are significantly

different from one another. This would help to decrease the potential for bias in test

problems, making it possible to develop a test suite to evaluate new evolutionary

computation techniques and make an accurate comparison to existing methods.

23

3.1. Graph Based Evolutionary Algorithms

Graph based evolutionary algorithms are a method of preserving diversity by using

graphs to impose an artificial geography on the population. In these graph based

evolutionary algorithms (GBEAs), the population members are separated by limiting the

number of other members they are allowed to interact with. Appendix A gives an

overview of the graph theory used to design this geography. GBEAs control information

flow, unlike the GENITOR II algorithm (Whitley, 1989) that prohibits information flow

except during migration. This is done by assigning each member of the population to a

vertex V(G) of the graph G, and if that vertex shares an edge E(G) with another vertex it

is possible for it to mate with the individual assigned to the second vertex. A steady state

evolutionary algorithm is then used, where the evolution occurs one mating event at a

time. Mating is conducted by first randomly selecting a member of the population, and

then selecting its mate by fitness proportional selection of the vertices it shares an edge

with. This proceeds until one of the members of the population achieves a fitness level

greater than a specified fitness goal or the algorithm times out. By varying the graph

diameter and degree, the rate at which information spreads can be controlled, allowing a

means for controlling diversity loss.

Initial research has been done using various types of graphs with a population size of 512

vertices (Bryden, Ashlock, Corns, and Willson, 2006), as described in Appendix A. Of

the graphs used, the complete graph had the smallest diameter, followed by the

hypercube graph. The toroidal graphs and the Petersen graphs had the next larger

diameters, with the cycle graph having the largest diameter. Figure 1 shows examples of

24

Figure 1, Graph types used in this study: Cycle (a), Petersen (b), Toroid (c) and Hypercube (d).

25

the cycle graph (a), the Petersen graph for k=3 (b), the toroid graph for m=4 (c) and the

hypercube graph (d) for a population size of 32. Information on the graphs used in GBEA

studies can be found in Appendix A. This initial study showed that problems with a

simple fitness landscape are best solved by graphs with the smallest diameters, with the

complete graph performing best (had the fewest mating events to solution.) For problems

with a deceptive landscape, it was found that graphs with the largest diameters performed

well, with the cycle graph performing best. This gave results indicating that the number

of mating events to solution grouped together into different families (similar types of

graphs). While these results were promising, more investigation is necessary to test the

robustness of the method and to determine how best to apply these new tools.

3.2. Test Problems

To establish a taxonomy of evolutionary computation problems and develop a test suite,

it is first necessary to examine a selection of problems. Intuitively, the problems selected

should encompass the variety of areas of research found in evolutionary computation,

including binary strings, real valued functions, genetic programming, and artificial life

simulations. While no experimental evidence existed prior to this study, the inclusion of

these diverse problems should guarantee adequate coverage of the problems being

explored in the area of evolutionary computation.

26

The test problems within these research areas should also be significantly different from

each other. Evaluation of a new evolutionary computation technique with similar

problems at best increases the amount of time necessary to complete the experiments, and

more likely will introduce bias in the results. The challenge is that there is no method for

determining how similar two problems are without first performing experiments with

them. With this in mind, several proposed test problems for evolutionary computation

have been examined, and the following were selected for this study.

3.2.1. One-Max

The one-max problem is a simple string evolver. Chromosomes composed of a number

of bits (20 were used when applied to GBEAs) are generated randomly and inserted into

the population. Local mating rules for the algorithm are then applied, in the case of

GBEAs single point crossover with a 10% chance of mutation (one of the bits is flipped)

and elite replacement of the randomly selected parent. Fitness is calculated by summing

the characters in the string. The algorithm was declared solved when the entire string is

composed of ones, giving the largest fitness available.

3.2.2. Variable Dimension Surface (Keane Bump Test)

For the second test problem, a variable dimension surface problem (Eqns. 3-1 thru 3-4) as

developed by Keane (1994) and used by Hacker, Eddy, and Kemper (1992) for a

benchmark test of their hybrid genetic algorithm/hill climbers was used. It is designed to

allow the user to adjust the degree of multi-modality, making the problem increasingly

27

difficult and deceptive. Figure 2 shows a graph of the function with two variables. The

work by Hacker, Eddy, and Kemper used 2 and 10 design variables. When applied to

GBEAs these values were used along with the addition of runs using 6 design variables to

further investigate the equation. In this use of this test problem, the Keane Bump Test

can be classified as a real valued string evolver using one point crossover and a 10%

mutation rate. The mutation adds or subtracts a value ranging from 0.0 to 0.2 to the value

stored in the selected string location. Elite replacement of the randomly selected parent

was used and the algorithm was declared successful when a solution appeared that was

within 1% of the true maximum value.

n

i
i

n

i
i

n

i
i

ix

xx
xF

1

2

1

2

1

4 coscos 2

(3-1)

Subject to: xg1 075.0
1

n

i
ix (3-2)

xg2 0
2

15
1

nx
n

i
i (3-3)

100 ix ni ,1 (3-4)

28

Figure 2, Keane bump test in two dimensions.

29

3.2.3. DeJong Test Functions

The DeJong test functions are described in detail in DeJong’s doctorial dissertation

(DeJong, 1975). The first function is a three-dimensional bowl and the second is a

fourth-degree bivariate polynomial surface featuring a broad sub-optimal peak (also

known as “Rosenbrock’s Saddle”). The third function is a sum of integer parts of five

independent variables creating what could be described as a six-dimensional ziggurat,

being flat where it is not discontinuous. The fourth function is a fourth-order paraboloid

in 30 dimensions with distinct diameters in different numbers of dimensions made more

complex by adding Gaussian noise. The last function, often referred to as “Shekel’s

Foxholes”, is a grid with many narrow local optima. These functions have been

traditionally used as test problems in function optimization do not serve as a complete

test suite (Whitley, et al., 1996). They are all classic GA problems in that they are

composed of binary strings. Each of the variables in the solutions is represented by a

string in the chromosome, which is subsequently transformed into Gray Code (Mathias

and Whitley, 1994) before being used in the fitness evaluation. As used in previous

GBEA studies the local mating rules were the same as those used in the one-max

problem.

3.2.4. Greiwangk Function

The Greiwangk function is a sum of quadratic bowls, one per dimension, with cosine

terms applied to them. These terms are subsequently translated to yield a positive

function. It has a large number of local optima, making it a natural member of a test suite

30

(Mühlenbein, 1991.) Unfortunately, as the dimension of the Greiwangk function

increases it approaches a uni-modal bowl. For this reason only five cases of relatively

low dimension have been used for GBEA studies; N = 3, 4, 5, 6, and 7. As used for

GBEAs, these problems share the same local mating rules as the one-max problem.

3.2.5. Plus-One-Recall-Store

The plus-one-recall-store (PORS) problem was originally developed to be included in a

test suite for research conducted by Ashlock and Lathrop (1998a). It is a maximization

problem that uses parse trees, which applies a basic form of genetic programming. The

problem involves the efficient use of nodes so that when it is executed, the largest integer

value result possible is generated when given a fixed maximum number of parse tree

nodes. There are two operations (integer addition and store) and two terminals (one and

recall from a memory position) in the language. Fitness for a parse tree is the number

produced when it is executed. Maximum values are given in (Ashlock and Lathrop,

1998b). The difficulty of the PORS efficient node use varies depending on the

congruence class (mod 3) of the maximum number of nodes. This problem has been

studied in depth and the necessary building blocks for finding the solutions are well

documented. For a solution to be successful, it must make use of a combination of four

distinct building blocks given in (Ashlock, 2006): (+ 1 1), (+ (+ 1 1) 1), (+ Recall (Store

T)) and (+ (+ Recall Recall) (Store T)). These are, respectively, 2, 3, times-2, and times-

3. The 3 and times-3 blocks also have two equivalent forms: (+ 1 (+ 1 1)) and (+ Recall

(+ Recall (Store T)).

31

In GBEA studies, experiments were run for a number of nodes equal to n=15, n=16 and

n=17, the hardest, easiest and intermediate difficulty of the three classes respectively.

Fitness for a parse tree was evaluated as the number produced when it was executed. The

initial population for this experiment was of randomly generated trees with a number of

nodes equal to the maximum. The trees then underwent crossover by randomly picking

two nodes of the same type (either operation or terminal) and switching them with their

corresponding sub-trees. If this resulted in a parse tree with more nodes than the

maximum, a chopping operation was performed on the tree, which replaced the root node

with one of its sub-trees until the number of nodes is equal to or less than the maximum.

There was then a 10% chance that a mutation would occur, in which a new random sub-

tree of the same size replaced a randomly chosen sub-tree. For all of the PORS

experiments, local elite roulette mating was used.

3.2.6. North Wall Builder

The north wall builder problem uses computer-generated agents that are controlled by a

genetic programming (Banzhaf, et al., 1998; Kinnear, 1994; Koza, 1992) structure called

an ISAc (If Skip-Action) list (Ashlock, 2006.) An ISAc list is an array of four values [a,

b, act, jump]. The first two values are indices to a data vector of the form [x1, x2, ... ,x8,

0, 1, 2], which relate to the eight grid locations surrounding the agent and the values they

can contain for comparison purposes. Each of these can have a value of zero (location is

empty), one (location is occupied by a block) or two (location is not on the grid). The

third is an action that may be taken, with the choices being no action, jump, move

32

forward, turn right, or turn left. The do nothing command is inserted as a check, and

should be rapidly weeded out of the population. The fourth is a location to jump to if the

action is a jump command. This results in an evolvable programming language that is

customizable to the problem being solved.

These agents are placed on a 7 x 7 grid, along the southern border and facing towards the

spot marked ‘X’ on figure 3. Blocks are introduced into the grid at this marked location,

with a new block appearing whenever that space is empty. The agents move on the grid

as specified by the controlling ISAc list, pushing any blocks that are in front of them.

This trial is ended after either 283 actions have taken place, or the bot “falls” off of the

grid by moving outside of the grid’s constraints. The fitness of an individual agent is

evaluated by subtracting the number of grid blocks from the top (north wall) of the grid

before a block is encountered from the total number of grid spaces (49). Figure 3 shows a

configuration with a fitness of 42.

This fitness is then used for determining the second parent in the crossover of the ISAc

structures, and for determining the finishing criteria. When applied to GBEAs, the

crossover operator is used much like that in the one-max problem, with a section of the

array being swapped between the two parents. The local mating rule for this problem is

local elite, fitness proportional selection. This problem is of intermediate difficulty, with

no mandatory building blocks as are found in the PORS 15 problem, but a high degree of

solution interconnectivity as the early moves impact the effect of moves further along the

ISAc list.

33

Figure 3, North wall builder sample board.

34

3.2.7. Self Avoiding Walk

The self avoiding walk (SAW) is a multi-modal problem with a linear string chromosome

guiding an agent to efficiently cover a rectangular grid. The grids are denoted as number

of columns by number of rows. The cases of the SAW problem treated in this study

include 3x3, 3x4, 4x4, 4x5, 5x5, 5x6, and 6x6. For a given grid size NxM the

chromosome will store NxM-1 moves, as the starting square is given to the agent for free.

Each array value ranges from zero to three, representing agent movements of down, right,

up, or left respectively. Starting in the lower left corner of the grid, the array dictates the

path followed across the grid. The number of grid blocks the path travels through

determines fitness, with the maximum (and stopping criteria) reached when all blocks are

visited. Attempts to move off of the grid are ignored, but are implicitly penalized because

a move is wasted. The agent is permitted to cross his own path, but this also wastes

moves. The problem is called the self avoiding walk problem because the optimal

solutions are self avoiding. As implemented for this study, crossover and mutation were

performed in every mating event, with the crossover being two-point and the mutation

operator being stochastic replacement of one array value with a new, randomly generated

value.

3.2.8. DNA Barcode

DNA barcodes (Ashlock, Guo, and Qiu, 2002) are error correcting codes (McEliece,

1977) over the DNA alphabet {C, G, A, T} that are able to correct errors relative to the

edit metric (Gusfield, 1997). They are used as embedded markers in genetic constructs to

35

permit retention of source information when sequencing pooled genetic libraries. An

example of their successful use to retrieve sequence source information appears here

(Qiu, Guo, Wen, Ashlock, and Scnable, 2003). The algorithm used previously in GBEA

studies searches for six-letter DNA words that are at a mutual distance of at least three.

These are the parameters used for the wet lab testing of the technique in Qiu et al. (2003).

Barcodes of this size and distance can correct one sequencing (edit) error.

3.2.9. Simple Differential Equation

Solving differential equations is a standard genetic programming problem. Modifying the

usual technique, the algorithm used in GBEA studies extracts the derivatives

symbolically when computing fitness. The differential equation solved was:

065 yyy (3-5)

which is a simple homogeneous equation with a two-dimensional solution space:

xx BeAey 32 (3-6)

for any constants A and B. A complete description and some solutions that appeared in

the final population can be found in Bryden et al. (2006).

36

3.2.10. Steiner Systems

Steiner systems can be described as follows. For a set V of n objects, a Steiner k-tuple

system on V is a set of k-subsets of V with the property that every pair of elements from

V appears in one and only one of the k subsets. For the set {A;B;C;D;E; F;G} a Steiner

triple system would be the set of 3-tuples: {{A,B,D}, {B,C,E}, {C,D,F}, {D,E,G}, {A,E,

F}, {B, F,G}, {A,C,G}}. Notice that every pair of letters is present and each appears in

exactly one triple. The example given is a Steiner triple system on seven points. Steiner

systems are used in the statistical design of experiments. More information on Steiner

triple systems can be found in Ashlock, Bryden, and Corns (2005). Steiner triples,

quadruples, and quintuples have been examined to date.

3.2.11. Ordered Genes Problems

Ordered gene problems are those using a permutation ordered list as their representation.

Two ordered gene problems were studied: sorting a list into order (the Order problem)

and maximizing the period of a permutation. The period of a permutation is the smallest

number of times it must be composed with itself to obtain the identity permutation. Both

these problems are discussed in (Ashlock, 2006). Two variation operators were used. The

crossover operator functions by choosing a crossover point uniformly at random. The

entries of the list before the point are preserved. Those after the crossover point are

retained but in the order they appear in the other permutation. The mutation operator

exchanges two entries of the permutation chosen uniformly at random. Both these

variation operators were applied, once each, for each mating event. The list ordering

37

problem was run for lists of length 8, 9, and 10 while the period maximization problem

was run for lists of length 30, 32, 34, and 36. For both problems the sizes were selected

so that the smallest size of a problem run was the first at which performance became

significantly different on different graphs.

3.2.12. Parity Problems

Odd-parity is a boolean genetic programming (Banzhaf, et al., 1998) problem. The goal is

to compute the truth value of the proposition “an odd number of the input variables are

true.” Two forms of genetic programming are used for parity in this study: simple parse

trees and function stacks. Fitness for both representations is the number of cases of the

parity problem computed correctly. Simple parse trees use no automatically defined

functions (ADFs), and the variation operators are as for PORS. The operations used are

logical and, or, nand, and nor; the terminals are the constants true and false and the input

variables. Only the three-input version of the problem was done with simple parse trees –

without ADFs the problem becomes exceedingly difficult. A function stack is a

representation derived from Cartesian Genetic Programming (Miller and Thompson,

2002; Yu and Miller, 2002). The parse tree structure used in genetic programming is

replaced with a directed acyclic graph. The vertices of this graph are stored in a linear

chromosome. Each node specifies a binary Boolean operation, an initial output value for

that operation, and two arguments for the operation. The available Boolean operations

are: and, or, nand, and nor. The available arguments are: Boolean constants true and

false, the input variables, and the output of any Boolean operation with a larger index in

38

the chromosome than the current one. Permitting references to the current output of nodes

with larger indexes gives function stacks a feed forward topology. The binary variation

operator used on function stacks is two-point crossover of the linear chromosome. The

single point mutation operator chooses a random operation three-eighths of the time, a

random argument half the time, and an initial value for a node’s memory one-eighth of

the time. If an operation is selected, then it is replaced with another operation selected

uniformly at random. If an argument is selected, then it is replaced with a valid argument

selected according to the scheme used in initialization. If an initial memory value is

selected, it is inverted. The 3-, 4-, and 5-odd parity problems were run with function

stacks.

3.2.13. Summary of Problems

The one-max problem was included as a baseline for comparison. There is a large

amount of research already conducted on bit string evolvers, and inclusion of the one-

max problem allows for a comparison to previous research. The DeJong functions and

the Griewangk function are also bit string evolvers with a large amount of research, and

so give a well known and representative sample from genetic algorithms. The Keane

bump test was included because it is a real-valued optimization problem, giving a wider

range to the types of problems being approached. The Plus-One-Recall-Store (PORS)

problem is a genetic programming optimization problem that was shown to have results

favoring the extremes in initial study (Bryden, et al., 2006). The north wall builder

problem is a moderate difficulty agent based problem, and the self avoiding walk

39

problems are a scalable agent based problem that are interesting in that the fitness of the

end values of the string are dependent on the earlier values. The DNA barcode, simple

differential equation, Steiner systems, ordered gene, and parity problems are all

application problems that have shown interesting results when GBEAs have been applied

to them.

These problems give a good selection of problems that may be approached using

evolutionary computation. They all have execution times that do not make multiple

experiments require large amounts of computational resources, making comparisons

between different methods manageable. The next step is to validate that there are indeed

significant differences between the problems

3.3. A Taxonomy and Test Suite

As previously mentioned, there have been many different test problems or suites of

problems introduced to evaluate different algorithms (Ackley and Littman, 1992;

Mühlenbein, Schomisch, and Born, 1991; Schaffer et al., 1989). While these problems

are necessary, most were written to test a specific method and tend to be biased because

of that. To find what problems a method would work well on requires an unbiased test

suite to show the method’s performance over a wide range of problems. Before this test

suite can be proposed, a method for differentiating problems needs to be devised. This

can be done by developing a taxonomy of problems based on one or more aspect of the

problem and its interaction with an evolutionary algorithm.

40

A taxonomy is a hierarchical classification of a set first established by Linnaeus to

classify living organisms. This original taxonomy for living things assigned a kingdom,

phylum, class, order, family, genus and species to each organism. This hierarchy gave a

tree-like structure (known as a cladogram) to the taxonomy of all living creatures,

showing the evolutionary relationship among various taxonomic groups. More

information on developing taxonomies can be found in Mayr and Ashlock (1991). These

concepts could be extended to other areas where classification would be beneficial. To

construct a cladogram, it is necessary to extract taxonomic characters to perform the

clustering of similar members of the set (in this case, evolutionary algorithms.) The

choice of the taxonomic characters is critical for an accurate analysis. They must be

unbiased, vary across the set of problems, and avoid arbitrary judgments to the greatest

degree possible. One example of a bad selection would be using numbers to represent

colors, as assigning numbers arbitrarily ranks some colors closer than others. This gives

just a brief view of the difficulties that can be encountered in determining usable

taxonomic characters.

GBEAs yield a source of taxonomic characters that are numerical and computable for any

evolutionary computation problem that has a detectable solution or end point. These

characters are objective in the sense that they do not favor any particular choice of

representation or parameter setting. In outline, these characters are computed in the

following fashion. The time-to-solution for a problem varies in a complex manner with

the choice of graphical connection topology. This complexity is the genesis of our

taxonomic characters. The taxonomic characters used to describe a problem are the

41

normalized mean solution times for the problem on each of a variety of graphs. While

this presents a set of objective characters that enable automatic classification, these are

not necessarily the “right” or only characters. Using results from the problems in Section

3.2, the mean number of mating events to solution were normalized to yield the

taxonomic characters for the problems. Normalization consisted of subtracting the

minimum average time from each average time and then dividing through by the

maximum among the resulting reduced times. The taxonomic characters for each problem

are thus numbers in the set [0, 1] for each graph. In this way a method for comparing the

similarity of the problems was introduced with the problem’s relative hardness removed.

Earlier work studying GBEAs (Bryden et al., 2006) has given a large amount of data on

how different problems perform on different graphs. This normalized mean time to

solution to find a satisfactory solution varies in a complex manner between graph type

and the test problem being solved. This data is numerical in nature and objective, in that

they do not have a preference to representation or parameter settings. This makes it

possible to use this data to construct a cladogram for these different test problems to

evaluate similarities in the desired amount of diversity preservation each problem

requires. The study resulted in a cladogram (Fig. 4) constructed from 26 taxonomic

characters for each of the problems investigated.

42

3.3.1. A Taxonomy of Evolutionary Computation Problems

It has been established that GBEAs provide a rich source of taxonomical characters, but

to put these characters to use would require a broad assortment of problems to be

analyzed. A taxonomy of evolutionary computation problems would provide researchers

with a means to select a graph to apply to their problem of interest that would give a

desired result in the shortest time. For computationally expensive problems previously

studied, this could result in a speed up of weeks (Bryden, Ashlock, McCorkle, and Urban,

2002).

The authors of the initial work on GBEAs (Bryden, et al., 2006) have encouraged others

to apply graphs to their problems to help build the taxonomy, as the addition of this

information would serve to make the cladogram more representative of problems

currently examined in evolutionary computation research. There are several problems

available in the literature and on the web that would be useful additions that would

improve this taxonomy. Other than those mentioned previously, there is also a repository

maintained by William Spears (2006) that has contributions from various researchers.

This is not so much a repository but more a listing of websites where researchers in

evolutionary computation have posted some of the problems they have worked on.

Adding these test problems to the taxonomy will increase the likelihood that a new

43

Figure 4, Cladogram of test problems based on solution times for various graphs.

44

problem will have a representation similar to one that already exists, giving the user a

priori knowledge of how the problem can be approached. Also, if the representation can

be changed to closely match one of the existing problems, it would seem likely that they

would share the same preferred graph. Both of these would depend on whether there

were any strong differences in problem deceptiveness, which may make a sparser graph

preferable.

3.3.2. A Proposed Test Suite

With a method to differentiate problems in hand, a suite of test problems can now be

developed. The first step to producing a test suite is to review those used by others. One

of the most popular test suites used to determine the effectiveness of an evolutionary

algorithm were the original five problems proposed in DeJong’s doctorial dissertation

(1975), as described in section 3.2.3. While these problems are solvable using

evolutionary algorithms, they do not comprise a complete test suite and it has been

questioned whether or not they were ever intended to be a test suite or just used as a proof

of concept (Belew, 1992). Whitley et al. (1996) performed a review of the available test

suites and found that many of the functions being used, such as the Rastrigin and

Schwefel functions (Mühlenbein, 1991), are ill suited for use as test problems.

NASA/MDO (2002) offers a test suite of engineering problems, but these are complex

problems that do not lend themselves well to extensive study.

45

The work by Whitley et al. (1996) also described key traits that good test problems

should have. This includes characteristics such as being non-separable, resistance to hill-

climbing algorithms, being nonlinear, and having good scalability. It is apparent looking

at the cladogram of evolutionary computation problems that graph preference should be

added to this list. Keeping these guidelines in mind, it should be possible to develop a

non-biased test suite based on the numerous problems evaluated to construct the

cladogram (Fig. 4). First, it is necessary to examine the problems for the key traits of test

problems and other factors.

The one-max problem is a simple uni-modal problem. While it meets none of the key

traits, it was included as a baseline for comparison because of the speed at which it runs

and the large amount of data readily available. For this same reason, the DeJong test

functions are also being included. The Keane bump test is nonlinear and nonseperable,

although the nature of the fitness function would likely favor a hill climbing algorithm,

even if it were part of a memetic algorithm. While the scalability of the applied problems

is questionable, the remaining problems all roughly fit the recommended principles for

good test suite problems.

While it would be possible to use all of these problems as a test suite, the amount of

computational resources to perform all 43 problems and build a large enough database to

develop statistically significant results would become prohibitive. To further reduce the

number of problems to be included in a test suite, the location of the problem in the

taxonomy is used as the deciding factor. Because of varying levels of compute power

46

between users, two test suites are proposed, a smaller suite of seven problems to give a

general performance of the proposed method(s) and a larger test suite of fifteen problems

to evaluate across a wider range of possible problems that may be explored. The

recommended problems for these test suites are given in Table 1. The first column lists

the problems included in the smaller test suite, while the second column gives the

problems that are added to the smaller test suite to build a more thorough problem set.

The problems in these test suites were sorted by their separation from the other problems.

If two or more problems had similar performance on the graph set, only one would be

selected. To determine which problem was retained, different considerations were used

for the different test suites. For the smaller test suite, the general rule was to select

problems that were similar in coding and easy to implement. For this reason, the PORS

and function stack parity problems were chosen. The second DeJong function and the

3X4 Saw problem were included to cover the remaining areas of the cladogram. For the

larger test suite, consideration was given to the run time of the problems and the make-up

of the problem’s fitness landscape. It was also desired to maintain a variety of

evolutionary computation problems. As these are still only proposed test suites, ensuring

that a representative sampling of the problems that are being solved with evolutionary

computation techniques should allow for a more robust test suite.

47

Table 1, Proposed test suites of evolutionary computation problems.

Smaller Test Suite: Larger Suite Also Includes:

DeJong function 2 One-max

PORS15 DeJong function 1

PORS16 DeJong function 5

PORS17 Griewangk Function in 5 dimensions

SAW 3X4 “Order” ordered gene problem 9

Function Stack Parity 4 Function Stack Parity 3

Function Stack Parity 5 Steiner Triple System 55

North Wall Builder

48

3.4. Conclusion

The performance of different combinations of graphs and test problems shows that there

is an abundance of data available for use in classifying both population structures and test

problems. By continuing to compare graphs by using test problems and test problems

using graphs, it is possible to explore the larger space of all evolutionary computation

problems. The goal of this work is to one day have a large enough collection of data so

that with a limited amount of a priori information it would be possible to select a graph

that is tuned to the needs of the problem at hand. This information on the development of

a test suite is a first step in making a recommendation of graph selection, although more

information is needed on how information flow manages diversity. This is the topic of the

following chapter.

49

4. CONTROLLING INFORMATION FLOW AND DIVERSITY

The control of information flow within an evolving population is the mechanism by

which GBEAs achieve superior performance to standard evolutionary algorithms. While

it has been shown that the use of graphs in evolutionary algorithms helps preserve

diversity and allows for faster solution times for deceptive problems, it would be

beneficial to have a deeper understanding of the dynamics of these GBEAs. Not only

would knowing the optimal parameter settings allow for a more rapid solution of

problems, it would be possible to select parameters that would promote the development

of a more diverse population of solutions that are all satisfactory. This would allow for a

more robust design tool, readily capable of providing another solution to the given

problem if an unforeseen constraint were imposed on the problem.

In this chapter we examine diversity in graph based evolutionary algorithms and how

diversity can be controlled. The amount of diversity present initially in any evolutionary

algorithm is dictated by the population size. While diversity can be added using mutation,

generally the amount of diversity present when the algorithm is started is the most that

will be present. The question that arises is whether all of the necessary information is

available to find a superior answer and how easy is it to bring the necessary pieces

together. By comparing the affects of population size and graph choice, it is possible to

gain some insight into diversity in a problem, when diversity needs to be preserved and

when there is too much diversity.

50

4.1. Population Size in Graph Based Evolutionary Algorithms

The initial study of GBEAs investigated using various types of graphs with a fixed

population size of 512 vertices (Bryden, et al., 2006.) This investigation showed that the

selection of a graph significantly impacts the time to solution for many types of

problems. In addition, selection of the optimum graph is specific to the problem and, in

general, simpler fitness landscapes perform better as the graphs in which the rate of

information spread was faster, e.g. graphs with smaller diameters. Conversely, those

problems with more complex fitness landscapes perform better on graphs in which the

rate of information spread was slower, e.g. with larger diameters. In the earlier study

(Bryden et al., 2006), the population size was fixed, and the connectivity of the graph was

only changed by changing the graph. Another mechanism for revising graph connectivity

is to change the population size. This section investigates the role of population size in

GBEAs and the interaction between graph type and population size in time to find a

satisfactory solution.

To investigate the effects of varying the population size using different families of

graphs, five test problems were selected and 5000 simulations were performed for each

problem on each graph. The number of mating events required to find a solution in each

of these simulations was recorded. A separate collection of simulations was run for each

population size selected for the experiment, ranging from 32 vertices to 4096 vertices.

While all population sizes of 256 or greater vertices had 22 graphs, some families of

graphs become identical or else do not exist for smaller population sizes. This results in

51

there being only 21 graphs for population sizes 64 and 128, and only 19 graphs for

population size 32.

Previous work such as that done by Goldberg, Deb, and Clark (1989; 1992) and

Grefenstette (1986) has concentrated mainly on bit-string evolvers, real-string evolvers

and genetic programming are also of interest and are examined in this study. The test

problems used were designed to cover as broad a range of problem types as possible

while still being unbiased to a particular algorithm (Whitley, et al., 1996). To perform a

useful comparison of graph performance, it was also necessary to select problems with a

know solutions. While this is true of all the test problems selected, the stopping criterion

for the real-string evolver was a small range around the solution to account for the

continuous nature of the solution space.

The goal of this computational experiment was to investigate the impact of varying the

population size and graph on the mean number of mating events to solution. For each of

the problems, 5000 evolutionary runs were performed on each graph and the mean time

to solution was computed. A 95% confidence interval was used to compare performance

across the set of graphs. Only results in which the confidence intervals calculated did not

overlap were considered to be statistically significant and usable in comparing graph

performance. To determine the utility of GBEAs, the performance of the preferred graph

was compared to the complete graph, which resembles a standard genetic algorithm and

so is used as a baseline. In the initial study (Bryden et al., 2006) it was found that graphs

of the same family generally performed similarly, as shown in Figure 5. Based on the

52

Figure 5, The average number of mating events to solution as a function of graph for the PORS 16
problem, 512 vertices.

53

similarities between families of graphs for a given population size, each of the graph

groups were averaged together and presented as a “graph family,” as shown in Figure 5.

These graph family results are then plotted as a function of population size for each of the

problems examined. Table 2 gives the average percent speed for each problem and

population size combination studied here.

To explain these results in this study the term “critical point” is introduced. For each

graph or graph family there is a population size where it performs best for a particular

problem. When that graph or graph family is also the best choice at that population size,

this is referred to as a critical point for the problem being examined. These are the

combinations of population size and graph type that work together to provide and

maintain the proper balance of diversity to solve the problem most efficiently.

4.1.1. Plus-One-Recall-Store

For the PORS 16 problem, increasing the population size from 32 to 64 resulted in a

sharp improvement for all graphs, with critical points found using the cycle graph with 64

vertices and the complete graph with 128 vertices (Figure 6). For population sizes of 32

and 64, using the cycle graph works best with a speed up over the baseline of 311% and

152% respectively (Table 2), while using the complete graph results in the poorest

performance. At a population size of 128 the usefulness of the graphs reverses order so

54

Figure 6, The average number of mating events to solution as a function of population size and graph
for the PORS 16 problem.

55

Table 2, Performance Increase from Using Preferred Graph.

32 64 128 256 512 1024 2048 4096
Onemax 0% 0% 0% 0% 0% 0% 0% 0%
PORS 15 39% 144% 432% 2395% 1146% 96% 10% 18%
PORS 16 311% 152% 0% 0% 0% 0% 0% 0%
n=6 -- 45% 152% 239% 62% 0% 0% 0%
n=10 -- 29% 241% 497% 51% 0% 7% 11%
NWB 175% 131% 64% 8% 8% 7% 6% 5%
3x3 11% 16% 15% 13% 1% 11% 13% 11%
3x4 41% 17% 20% 22% 22% 21% 22% 21%
4x4 -- 12% 8% 25% 32% 40% 37% 36%

56

that the complete graph yields the best performance and the cycle graph the worst. This

proves to be the trend for the remainder of the population sizes. The cycle graph (the

graph with the slowest rate of information transfer) is the first graph to reach its

maximum performance at a population size of 64, followed by the complete graph with

128 vertices (the graph with the fastest rate of information transfer). Once the graphs’

rank ceases to change, the time to solution for all graphs displays asymptotic convergence

to increasing parallel lines.

The PORS 16 problem is a relatively simple genetic programming problem, and as

expected the optimal population size for the problem was small (cycle graph at 64 and

complete graph at 128). It is interesting to note that there is a shift in which graph

performs best that is related to population size. To satisfactorily solve the PORS 16

problem there needs to be a sufficient supply of the building blocks to reach one of the 24

solutions. When the population size is insufficient to provide the necessary supply of

building blocks either initially or early in the search process (less than 128 members in

this study), the population is dominated by sub-optimal solutions and it then becomes

necessary to introduce diversity through mutation to find a satisfactory solution. Using a

diversity preserving graph allows for the assembly of compatible building blocks before a

solution dominates the search space by limiting the spread of information within the

population. When the population size increases, there is a sufficient supply of building

blocks either initially or early in the search process to assemble one of the correct

solutions and so a diversity preserving graph is no longer required. In fact, once the

necessary pieces are available, the restrictions on the spread of information imposed by a

57

diversity preserving graph slows the time to find a satisfactory solution by limiting the

transfer of the building blocks through the population of solutions.

The PORS 15 problem, a more difficult, deceptive problem, also shows a significant

improvement as the population size reached certain values but shows a wider separation

of graph performance (Figure 7). For population sizes of 32, 64, 128, and 256, the graph

rankings are the same as for the PORS 16 problem with a population size of 64 with

performance increases ranging from 39% to 2,395% (Table 2). However, there is an

increasing separation between the graphs and graph families. The Petersen graph family

ranks second to the cycle graph for a population size of 256, and is followed by the toroid

family. For a population size of 512, the cycle graph outperforms all other graphs,

showing the best performance and reaching a critical point. At a population size of 1024,

the only graph that has a statistically significant difference from the others is the

complete graph, which has the poorest performance. This ranking continues for

population sizes 2048 and 4096, with the complete graph performing closer, but still

inferior to, all other graphs. As with the PORS 16 problem, once the graphs’ ranking

ceases to change, the time to solution using all graphs displays asymptotic convergence to

parallel lines.

The preferred graph for the PORS 15 problem follows the same general trend as that seen

in the PORS 16 problem, but with more diversity required. This diversity comes from

both the size of population desired and the selection of graph, although a diversity

58

Figure 7, The average number of mating events to solution as a function of population size and graph
for the PORS 15 problem.

59

preserving graph is preferred in all the trials conducted. It is interesting to note that this is

the only problem studied in which the preferred graph never changed: the cycle graph

was always the preferred graph. This is most likely due to the deceptive nature of the

problem. Five building blocks composed of three nodes are required to find the solution,

but it is easy for the algorithm to find blocks of five nodes that improve the fitness but

prevent convergence to the true optima. By limiting the rate at which these larger

building blocks are shared in the solution population, the algorithm is able to assemble

the smaller building blocks to find superior solutions. For the algorithm to benefit from a

higher rate of information transfer, a larger amount of initial diversity is required to

provide a sufficient number of these building blocks to prevent them from being lost

before they are put to use.

4.1.2. One-max

The one-max problem is a simple uni-modal problem that requires very little diversity for

efficient solution (Bryden et al., 2006). Since this problem is a binary string evolver,

schema theory can be applied to calculate an optimal population size for a simple genetic

algorithm. Using formula’s derived by Goldberg (1989) and a building block size of 1;

the optimal population size without using a graph is approximately 4. Because this

optimum is so low no critical point can be seen in the results (Figure 8). It is also

impossible to construct many of the graphs used in this study with this population size, so

no experiments were done using these parameters. The results show that graphs with a

higher level of connectivity and a small population size work best; for small populations,

60

Figure 8, The average number of mating events to solution as a function of population size and graph
for the one-max problem.

61

the algorithm using the complete graph converges to a solution fastest and using a cycle

graph converges slowest. The optimal performance was observed with a population size

of 32 (the smallest population examined) using the complete graph. For population sizes

greater than 64, using the hypercube works best, and when the population size exceeded

1000 the toroid graph family outperforms the complete graph although the performance

increase is modest (Table 2). Increasing the population size for this problem causes an

almost exponential increase in time to solution, and population size has a much more

significant effect than graph type.

4.1.3. North Wall Builder

For the north wall builder (NWB) problem, there is again a population size at which each

graph makes a sharp improvement in performance, but the preferred graph for this

problem changes several times as the population size increases (Figure 9). For the

smallest population size, the cycle graph performed best. The Petersen graphs were

preferred when the population was changed to 64. Population size 128 is the optimal

population size, with the best performer being in the toroid family. When the population

size is increased to 256 the hypercube family and complete graph performed best. For a

population size of 512 the hypercube family performed best, followed by the complete

graph. As the population size increases, graph performance exhibited more separation

and shows the same general trend towards identical behavior at 512 vertices and higher

with the time to solution for all graphs converging asymptotically. The largest benefit to

62

Figure 9, The average number of mating events to solution as a function of population size and graph
for the North Wall Builder problem.

63

using a GBEA is seen for smaller population sizes, starting with a 175% performance

increase for a population size of 32 and decreasing quickly to 8% at a population size of

256 (Table 2.)

As previously noted, the NWB problem is an intermediate difficulty problem and these

results show that an intermediate amount of diversity is required for optimal

performance. An interesting difference in this problem is that unlike the PORS 15 and 16

problems, the preferred graph makes a more gradual shift from one that preserves the

most diversity to a more connected graph. As the population size increases, more

connected graphs are preferred, but there is no abrupt change from a very sparse graph to

a very connected graph as seen in the other problems. While the number of mating events

to solution for the NWB problem is comparable to the PORS 16 problem, the NWB

problem has a much larger selection of acceptable solutions that may or may not have

interchangeable building blocks. A diversity-preserving graph allows a more effective

search of the solution space so that one of these solutions may be found, as opposed to a

larger population size that provides more diversity initially, but does not preserve it.

4.1.4. Keane Bump Test

For the Keane Bump Test with six variables, the graph families show only modest

separation statistically. There is no statistically significant difference between the graphs

with a population size of 32, and only the performance of the cycle graph can be

distinguished from the other graphs for a population size of 64 (Figure 10.) All graphs

64

Figure 10, The average number of mating events to solution as a function of population size and
graph for the Keane Bump Test, n=6.

65

show improved performance at population sizes of 128 and 256, with the cycle graph still

performing best with a performance increase of 152% and 239% respectively (Table 2.)

When the population size is increased to 512, the cycle graph’s performance is not

significantly different from the toroid and Petersen families, with these graphs

performing best. When the population size is increased to 1024, all graphs but the cycle

graph show improved performance. As the population increases from 512 to 1024, the

cycle graph switches from the best to worst performer, and the complete graph or a graph

in the hypercube family becomes the best performer. This trend continues as the

population size increases, but with all performances decreasing as population size is

increased beyond 1024.

The results for the 10-variable problem are strikingly similar to those for the 6-variable

problem (Figure 11), although graph choice had more of an impact on time to solution as

the population size changes. Again there is difficulty separating the graphs at population

size 64, although the cycle graph performs best. The graphs’ rankings are the same for

population sizes 128 and 256, with performance increases of 241% and 497%

respectively. At population size 512, the cycle graph flips from best performer to worst

with the toroid graphs, the Petersen graphs, and the random toroid graphs grouped

together as best. When the population size is increased to 1024, the complete and

hypercube family of graphs perform best. This is the trend as the population size is

increased to 2048 and 4096. While the superiority is not statistically significant, the

random toroid graph shows some signs of outperforming the toroid graphs and Petersen

graphs at the highest population size.

66

Figure 11, The average number of mating events to solution as a function of population size and
graph for the Keane Bump Test, n=10.

67

There are three points in Figure 11 where the preferred graph changes; one for the cycle

graph when it switches from best to worst at population size 512, one for graphs with

intermediate information transfer rate (Petersen, toroid and random toroid) when they

become best at population size 512, and one for graphs with high levels of information

transfer (hypercube graphs and complete graph) when they become best at population

size 1024. This indicates again that with a smaller population size and a corresponding

smaller initial diversity, the need for diversity preservation is higher.

Note that, with higher dimensionality, graph choice becomes more important. When the

population size for this problem is small, a graph with a slow rate of information transfer

is preferred, indicating that there is some need for diversity. As the population size

increases, the corresponding increase in initial diversity makes the need to preserve

diversity less important, so graphs with intermediate amounts of information transfer are

preferred. At 1024 vertices, there is enough diversity in the initial population to allow

graphs with the fastest information transfer rate to solve the problem most efficiently.

This is due to the increased number of building blocks necessary to find a satisfactory

solution. The building blocks correspond to the correct solution in each dimension, which

have to be found and then assembled. By isolating these pieces as the solutions develop,

the graph structures allows all of these blocks to be found, preventing sub-optimal

solutions with other building blocks from dominating the population and preventing this

development. Larger population sizes allow for a more diverse population making it less

likely that a solution with one or more correct building blocks will be replaced.

68

4.1.5. Self-Avoiding Walk

The smaller population sizes perform best for the 3x3 grid (the smallest grid studied) with

more mating events required as the population size increased to 1024 vertices (Fig. 12.)

This is a fairly simple instance of this problem, and all graphs are statistically

indistinguishable at every population size, with the exception of the complete graph,

which performs the worst for every population size. Performance gains from using

GBEAs ranged from 11% to 16% (Table 2.) Graph performance at 2048 vertices is

roughly the same as at 1024, and with 4096 vertices some improvement is seen. There

appeared to be some need for diversity preservation to develop solutions, but a small

population size has sufficient initial diversity to solve the problem.

The decrease in the number of mating events necessary from population sizes 2048 to

4096 warrants some extra analysis. The 3x3 SAW problem is a length 8 string evolver

with a four-character alphabet. This gives 48 or 65,536 different combinations of strings

available. There are 8 different possible solutions to the 3x3 SAW problem, meaning that

there is a 1 in 8192 probability that each string generated when the algorithm is initialized

will be a correct solution to the problem. This explains why the rate at which the number

of mating events to solution increases starts to slow when the population size reaches

512, where there is a 6% probability that a solution will be in the initial population. There

is also an increase in the confidence interval due to more correct solutions appearing in

the initial population.

69

Figure 12, The average number of mating events to solution as a function of population size and
graph for the Self-Avoiding Walk, 3x3 grid.

70

For grid size 3x4 and 4x4, a similar trend to other problems is seen with all graphs

improving as population size increases to an optimal point, and then performance lessens

as the population size increases past the critical point (Fig. 13.) When the grid size was

increased to 4x4, graph of population size 32 ceased to have more than 95% of the runs

find satisfactory results within the ten million mating events allowed. Because of this and

the large confidence intervals calculated for this population size the results considered

uninformative and are not given. As with the 3x3 SAW problem, there is little

statistically significant difference between the graphs for population sizes up to 512 other

than the complete graph, which consistently performs worst. Performance gains from

using GBEAs ranged from 8% to 41% (Table 2.) It is interesting to note that the preferred

graph did not change when the problem difficulty is increased, but the optimal population

size and the ability of the graphs to solve the problem as a function of population size

changes significantly.

As the grid size is increased to 4x5 and higher, graphs of population size 64 cease to have

more that 95% of the runs find satisfactory results and the best population size is still

128. All of the graphs perform similarly at this optimal population size with the exception

of one of the random toroid graphs and the complete graph that fails to consistently solve

the problem. When the population size is increased to 1024, the hypercube family starts

to perform worse than all the other graphs except the complete graph, which is still the

worst performer. All graphs take more time to converge as population size is increased

beyond 128. When the grid size is further increased to a 5x5 grid, most of the graphs

71

Figure 13. The average number of mating events to solution as a function of population size and
graph for the Self-Avoiding Walk, 3x4 and 4x4 grids.

72

could not consistently find a solution until the population size is increased to at least 512.

The trends shown by the experiments that did successfully solve the problem are the

same as those exhibited by the 3x4 and 4x4 versions of the SAW problem.

This study investigates the effects of population size on the performance of graph based

evolutionary algorithms. Five test problems were examined and the number of mating

events required to find a satisfactory solution were determined for 5000 runs of each

problem on each of the graphs. Over 80% of the problem and population size

combinations showed some improvement when a graph based evolutionary algorithm

was used, with nearly 20% finding the solution at least twice as fast.

As every graph’s population increases, there is a point at which the required number of

mating events to solve the problem decreases drastically, which is then followed by a

slow increase in the necessary number of mating events as the population size increases.

The trend of the results suggests that for each graph applied to a problem, there is a

population size where the optimum performance is achieved, as shown in Table 3. The

least difficult problem (one-max) and the least difficult SAW problem (3x3) do not show

this behavior, but it would seem intuitive that there is also a preferred population size for

these problems. For the one-max problem that size would be less than 32. As noted, the

optimal population size for the one-max problem is 4.

73

Table 3, Critical points for test problems by graph family. Best graph family denoted with an
asterisk (*).

Problem Cycle Complete Hypercube Petersen Toroid Random
Toroid

Onemax none none* none none none none
PORS 16 64 128* 128 128 128 128
PORS 15 512 2048 1024 512* 512 1024
NWB 128 256 256 128 128* 128
Keane n=6 512 1024* 1024 512 512 1024
Keane n=10 256 1024 1024* 512 512 512
SAW 3x3 none none none none* none none
SAW 3x4 64 64 64 64 64* 64
SAW 4x4 128 128 128 128 128* 128
SAW 4x5 none none none none none* none
SAW 5x5 none none none none* none none

74

Based on the results of the computational experiments, there is an apparent progression as

the population size increases. As noted earlier, the results of the all the experiments in

this study followed the same trends. In some experiments only a portion of this

progression is shown based on the population sizes explored, but in each case the section

observed follows this pattern. Before the critical point, the population is diversity starved,

and so a graph that preserves the available diversity has a large impact on the

performance. In this region sparser graphs (e.g. the cycle graph) are superior as they

preserve the available diversity. This diversity starved region is labeled A in Figure 14.

Region B is the optimal performance region, where the amount of diversity is best for

evolutionary optimization to find single solutions fastest. This region contains the critical

point for the problem and a satisfactory solution can be found in the fewest mating

events. Region C, the excess diversity region, represents the population size where the

diversity is rich, making it possible for the algorithm to find multiple solutions but at a

substantial cost in added time. A large population with sufficient diversity to ensure that

global solutions will evolve is also so large that it takes a long time to simply evaluate the

fitness of each member of the population. In addition that algorithm often has competing

solutions in the population. This competition between different solutions also slows

convergence. In Region C the best graph tend to be a highly connected graph that can

burn off the excess diversity as fast as possible. However as the population size grows the

initial diversity overwhelms the ability of a graph to burn off diversity and all graphs tend

to look the same. In the problems examined the exceptions to this were the PORS 15

problem and the self-avoiding walks. In these cases it appears that the solution is built

from building blocks that must be first found and then assembled correctly. As a result

75

Figure 14, Population Size Regions (Log vs. Log scale). A – diversity starved, B – optimization, C –
excess diversity, D – saturation.

76

graphs that maintain some diversity have a slight edge. The saturation region (Region D)

is where the population size has increased sufficiently so that global solutions start to

have a positive probability of appearing in the initial population of solutions. At this point

the time cost of simply evaluating all the creatures in the initial population dominates

time to solution. While there is a reduction in the average number of mating events in

Region D over Region C, the reduction flattens out as the algorithm becomes equivalent

to an algorithm that simply tests random examples until an optimal solution is found. The

improvement in time-to-solution observed in Region D never reaches the low level of the

critical point in Region B.

The use of a GBEA has several impacts on the population size at which the evolutionary

algorithm enters the different regions. For smaller population sizes, GBEAs using sparser

graphs tend to move Region B to the left on Figure 14, as the preservation of diversity

makes up for lack of initial diversity. For more difficult problems, using a sparser graph

allows the algorithm to function in Region B at a smaller population size and so find an

optimal solution in fewer mating events. We theorize that preserving population diversity

permits that algorithm to situate in more basins of attractions of the fitness landscape.

This, in turn, makes it possible for necessary building blocks to be assembled when they

are present in a given problem and, at least, permits that algorithm to climb and compare

multiple hills in the fitness landscape. As the population size increases into Region C

there is a gradual shift in the best performer from sparser graphs to graphs with a higher

connectivity. As the population size increases, excess diversity inhibits the progress of

the algorithm, and so population structures that increase the rate of information spread

77

start to outperform those that preserve diversity. When the population size enters Region

D, graph choice begins to have no significant effect on the algorithm performance. Since

search in Region D is equivalent to examining random examples until a solution is found

the structure of the graph has no leverage to affect performance.

A second phenomenon of interest is a shift in the best graph as the population size

increases for some problems. This can be seen with the PORS 16 problem (Fig. 6), where

initially the cycle graph performs best, followed by the Petersen and toroidal graphs. This

shifts to the complete graph performing best, followed by the hypercube, as the

population size increases to 128. A similar shifting occurs with the north wall builder

problem, although it occurs more slowly as a function of population size. This slower

shift also shows that every graph was preferred at some population size, except for the

complete graph. The most prominent case for this is seen in the variable dimension

surface. It appears that for these problems, a certain amount of diversity is required to

arrive at a solution, and when that level of diversity can be achieved, the problem then is

benefited most by a faster sharing of that information, as shown by the graph families

with higher connectivity being preferred in the Keane Bump Test problem (n=6 and

n=10.) The fact that the shift in preferred graph occurs at a different rate for different

problems indicates that the diversity preservation achieved by using a graph affects the

evolving solutions differently than initializing the population with more diversity by

using a larger population size.

78

As the population size is increased beyond the critical points for the problems, two trends

were observed. These trends appear to be due to the differences in the type of problems

investigated. For the problems that have building blocks (PORS and Keane Bump Test),

there is a shift in the preferred graph that indicates that the complete graph is always the

preferred graph when the population size increases to a very high level. This population

size would correspond to the point when all of the necessary building blocks are available

in sufficient supply to assemble the final solution. At this point, the algorithm benefits

from having the highest amount of information sharing. In contrast, the NWB and SAW

problems have constructs that are more tightly coupled to the solution they appeared in

(i.e. the last 4 characters may contribute four to the fitness in one string, but when

crossover is performed with another string, these characters may no longer make any

contribution to fitness). In addition, it is likely that there are multiple competing optimal

solutions evolving within the population that produce less fit children when they mate.

For these reasons, there is less of a need for information sharing to speed the finding of a

satisfactory solution, and so the complete graph does not become the best performer.

An increase in population size provides a larger amount of diversity (or necessary

building blocks) in the initial population, as shown by the research of Goldberg (1989)

and Grefenstette (1986), among others. For the problems examined in this study, there is

a given amount of diversity required to find the solution. This required diversity can be

achieved using just a larger population size, but by using a graph based evolutionary

algorithm to limit the rate at which this diversity is destroyed during the evolutionary

process by superior yet sub-optimal solutions, a smaller population can be used to arrive

79

at an optimal solution faster than with standard techniques. This results in a decrease in

computational expense and faster answers to the problem being solved, especially those

in which the cost of initializing the population is high compared to future evaluations,

such as using neural networks to control computational fluid dynamic calls (McCorkle,

Bryden and Carmichael, 2003). Future experiments could indicate if diversity

preservation using graph based evolutionary algorithms instead of larger populations is

universally superior.

While the combined effect of using graphs together with the optimal population size has

been seen to give results as positive as a 94x increase in time to solution, as occurred in

the PORS 15 problem, where the complete graph (which is equivalent to a standard EA)

requires approximately 6.6 million mating events to find the solution with a population

size of 32, while using a cycle graph with a population size of 512 requires just over

70,000. If applied to a similarly deceptive problem with a fitness evaluation taking just 1

second per evaluation, the cycle graph would require a day as compared to two weeks for

the complete graph with the same population size.

4.2. Takeover Times for Graph Based Evolutionary Algorithms

Previous studies (Bryden, et al., 2006) have shown that using a properly selected graph

decreases the number of mating events to find a solution for difficult and/or deceptive

problems. This is thought to be because GBEAs allow the user to control the rate at

which information is spread through that population. By decreasing the rate that

80

information about the solution space is shared by population members, a higher level of

solution diversity is maintained but the time required for the population to converge to a

solution is also increased. In this research we calculate the takeover time for various

graphs to verify the information transfer rates. In addition, experiments are conducted to

empirically determine the solution diversity present in the population after a set number

of mating events. By comparing these results, it is possible to observe the balance

between exploitation and exploration in the search space and how GBEAs can be used to

adjust that balance.

Takeover times were first introduced by Goldberg and Deb and Thierens (1993) as a

means for comparing the impact of varying selection pressures. Takeover time for an

evolutionary algorithm (EA) is defined as the time (in generations or mating events)

necessary for a superior solution to spread through the entire population. These takeover

times are a common indicator of the amount of diversity preservation an algorithm yields

in a population of solutions, with smaller takeover time algorithms being exploitive while

larger takeover times are more nearly explorative. For most if not all algorithms, a larger

takeover time generally leads to a more diverse final population.

There is a larger body of work concerning takeover times following the derivation of

theoretical takeover times by Deb and Goldberg. This initial work was performed on

standard genetic algorithms (SGAs) using standard selection methods. This was extended

to spatially structured EAs empirically by Sarma and DeJong (1996), where it was found

that grid based EAs have a growth curve that is logistic in nature. Rudolph (2000b) and

81

Giacobini et al. (Giacobini, Tomassini, Tettamanzi, and Alba, 2005) performed analysis

on spatially structured EAs and cellular EAs respectively. These studies found that for a

2-D grid the growth curve is quadratic and for a ring structure the growth curve is linear.

This work introduces both analytical and empirical results for takeover times in GBEAs.

The majority of work in the literature deals with generational algorithms and so cannot be

assumed to be comparable to GBEAs, which are steady-state algorithms. However, there

should be some correlation between synchronous cellular evolutionary algorithms using a

ring of radius=1 (Giacobini, et al., 2005) and the cycle graph, which should be helpful in

validation of these results.

4.2.1. Takeover Times

Takeover times are a method for determining how long it takes for the population of

solutions to become completely taken over by a single solution, usually measured in

generations or number of mating events. In this study, two methods were employed to

determine the takeover times: expected value calculations and empirical testing.

Expected value calculations are an analytical solution for takeover times that give highly

accurate approximations, with only the stochastic nature of the algorithms providing

variation. While accurate, they are also exceedingly difficult to calculate for most graphs.

For this reason, empirical tests were conducted for the graph set, with the empirical

results compared to the analytical results when possible.

82

4.2.2. Expected Value Calculations

To find the takeover times for these two graphs, it is first necessary to examine the

interactions of population members as the solutions evolve, beginning with complete

graph. There are two possible outcomes at the beginning of a mating event: either a

superior member is selected or an inferior member is selected. The probability of a

superior member being initially selected is:

n
xPs (4-1)

and the probability of selecting an inferior member is:

n
xnPi (4-2)

Where x is the number of superior solutions in the population and n is the population

size. Next the probability of selecting an appropriate neighbor using fitness proportional

selection is considered. For this experiment, only outcomes mating a superior individual

to an inferior are of interest as this is how the superior solutions spread through the

population. This depends on whether a superior solution was initially selected and also

depends on the fitness ratio of the superior and inferior solutions. Treating the complete

graph as a size n GBEA mating event, the probability of selecting an inferior co-parent

when a superior parent was selected is:

83

xrrxn
xnP sco p, (4-3)

and the probability of selecting a superior co-parent when an inferior parent was selected

is:

1, xrxn
rxP ico p (4-4)

where r is the fitness ratio of the superior solution to the inferior solution. The probability

that a superior parent will be randomly selected and then an inferior co-parent is selected

is the product of equations 4-1 and 4-3:

nxrnrnxn
xnxP scops 2

2

,* (4-5)

And the probability that an inferior parent will mate with a superior co-parent is the

product of equations 4-2 and 4-4:

nnxrnxn
rxrnxP icopi 2

2

,* (4-6)

84

Adding these two probabilities together gives the chance that an inferior and a superior

population member interact, leading to the spread of the superior solution (eqn4-7).

nnxrnxnnxrnrnxn
nxrnrnxnrxrnxnnxrnxnxnxPK 22

2222

(4-7)

For the cycle graph a different approach is necessary to determine the probability of a

superior solution interacting with an inferior solution due to the lowered connectivity of

the graph. When there is only a single superior solution, either the superior solution must

be selected as a parent (NPS 1), or one of the inferior solutions adjacent to it must be

selected as parent and the superior solution selected by fitness proportional selection:

1
2

r
r

n
Pi (4-8)

For a total probability of:

nnr
r

r
r

nn
PC

13
1

21
1 (4-9)

After a second population member has a superior fitness and until there is only one

inferior solution left, there are only two edges on the graph where there is a possibility of

the solution spreading, referred to here as “active” edges. These are the edges that

85

connect a superior solution to an inferior solution. The probability of the randomly

selected parent being either a superior or an inferior solution on one of these edges is the

same:

n
Pparent

2 (4-10)

The co-parent is then selected using fitness proportional selection, with the probability of

a superior neighbor being selected of:

1r
rPi (4-11)

and a probability of an inferior neighbor being selected of:

1
1

r
Ps (4-12)

Adding equation 4-11 and 4-12 and multiplying by equation 4-10 gives the probability

that the superior solution will spread to another vertex:

nnr
rPC

22 (4-13)

86

Reducing equation 4-13 gives:

nr
r

nnnr
rPC

2
1
1222

(4-14)

Equation 4-14 merits some extra discussion. The results indicate that with the exception

of the first and last successful mating the fitness ratio has no influence on the probability

a solution will spread and thereby the takeover time for a cycle graph. At first glance this

would seem counter-intuitive, but as progress is only made on the “active edge” of the

graph, there are two superior and two inferior population members of interest. A closer

examination of equations 4-11 and 4-12 shows that as they are always sum to one, so the

only effect the fitness ratio has on the spread of information is on how much more likely

it is that information spread results from an inferior parent mating with a superior co-

parent.

Using these probabilities the number of mating events required for the superior solution

to takeover the graph are found using expected values. Letting m denote the number of

mating events and j be a running counter, the takeover time can be found by as follows:

87

Set 1x and 0jm

While nx {

Increment m

Calculate Pjj

Set jx

}

At the end of this iterative process the value of j gives the takeover time in number of

mating events for the corresponding graph probability. As previously discussed, this

probability is a function of the number of population members (n), the fitness ratio (r),

and the number of superior solutions present (x). To validate the curves generated using

this method, empirical experiments were done to create takeover time curves for these

and other commonly used graphs.

4.2.3. Empirical Takeover Time Experiments

To further investigate the rate of information transfer within the various combinatorial

graphs used in GBEAs, a series of numerical experiments were performed, each

experiments consisting of 1000 runs. These experiments were conducted for each

population size and graph type used, with a comparison of the cycle and complete graphs

to the expected value solutions used as validation. For each run, the graph is populated

with a candidate solution at each vertex, assigned a fitness of one. An individual is then

inserted into a random vertex and a mating event involving that vertex is performed to

88

start the run. A mating event consists of selecting of a population member (randomly

after the introduction of the high fitness individual), and then selecting a mate using

roulette selection of the available neighbors. If there is a difference in fitness between the

two population members selected, the lower fitness individual is replaced by a copy of

the higher fitness individual. After initialization, mating continues until the entire

population has this higher fitness, recording the number of mating events after

initialization required to reach whole number percentages.

Letting r be the fitness ratio between the superior individual and the initial population,

runs were performed with fitness ratios of 1.5, 1.75, 2, and 3. In this way, the rate at

which the superior solution spread across the graph can be tracked. The data is reported

as the number of mating events required as a function of percentage spread, and then as

the number of mating events required divided by the population size as a function of

percentage spread, in an attempt to normalize the results.

4.2.4. Diversity Measurement Experiments

To test what effect different graphs have on the number of different solutions obtained,

two problems were used: a real-valued multiple-sinusoid function and the PORS efficient

node usage problem, a maximization problem in genetic programming.

89

4.2.4.1. Sinusoidal Function

The first set of experiments investigating the diversity enhancement enabled by a GBEA

used a multiple-sinusoid function. The optima are known, and the function is highly

multi-modal. A population of 512 individuals was used with the gene length (or problem

dimension d) ranging from 3 to 9 real values. Values for each locus were randomly

generated from 0.0 to 2.0 to initialize the populations. Fitness was then calculated using

the equation:

d

i
ixf

1
10sin (4-15)

where xi is the value of the ith locus. The search for a solution was said to be complete

when the fitness evaluated in Eq. 4-15 was equal to the dimension of the problem within

six decimal places. The variation operators used were single point crossover and mutation

of one of the gene’s values at random. For each of these experiments, there are 10d

different solutions, giving a large multi-modal landscape to explore. Since all solutions

are expected to be equivalent, no attempt was made to distinguish different forms of the

solution.

4.2.4.2. PORS Problem

The Plus-One-Recall-Store (PORS) problem is a standard genetic programming test

problem, as explained in section 3.2.5. For this study, the number of nodes was set to 16

90

(designated PORS16.) PORS16 has 24 distinct solutions. While each of the 24 solutions

is distinct from the others, the combination of nodes results in 4 permutations of 6

different combinations of the available building blocks (since two of the building blocks

have two equivalent forms). Because of this, we examined both the number of different

solutions (24 total) and the number of building block combinations (6 total) that were

found in each experiment.

The sinusoid function and the PORS problem both have known solutions and so are

useful for testing the impact of GBEAs on diversity. For the various trials of the sinusoid

function and the PORS16 trials, 5000 runs were performed on each graph. For each of

these simulations, the number of different solutions was calculated once 90% of the

population had found an acceptable answer. These results were used to find a mean

number of different solutions produced by each graph and a 95% confidence interval. It

should be noted that since there are many solutions to these problems, the number of

solutions found in each individual run was used to perform statistical analysis. Since the

solutions are equivalent and come from random initialization, there should be no

statistically significant difference when the data is examined in this way.

4.2.5. Takeover Time Experiment Results

This experiment was designed to investigate the spread of information in a GBEA, as

well as the effect the difference in fitness has on this rate of spread. Figure 15 shows the

information spread (percentage of vertices with higher fitness value) as a function of

91

mating event for the cycle; Petersen n,1; Petersen n,3; and toroid graphs with a

population size of 512. Because of the scaling of Fig.15, the performance of the

additional graphs is shown, but not identified. These additional graphs are shown in

Figure 16. Figures 15 and 16 show that the general relationship between the number of

mating events and the extent of the information spread is initially slow. This occurs

because the number of high fitness members in the population is small and the randomly

selected individual and its neighbors will not include a high fitness member each time. As

the number of high fitness members grows, the extent of the information spread grows

nearly linearly, until the population is composed of primarily high fitness members. At

this point, the rate of information spread slows due to the difficulty of finding and

selecting low fitness members to replace. The results for the graphs with higher

connectivity in Figure 16 behave similarly to a logistic curve. As the connectivity of the

graphs decrease, the results behave in a more linear fashion, although even the cycle

graph displays the S-shape found in a logistic curve.

In the case of the cycle graph, the rate of information spread is constant for the entire

experiment until only one low fitness individual is left, as there are always two edges

where change can occur. There is a curve at the end of the run, when the final low fitness

member must be found. For all other graphs, the rate of information spread is slow to

begin with, increases to a nearly linear rate, and then slows again as the last low fitness

members are found. As the rate of information spread within the graph increases, the S-

shape of the mating event curves becomes more pronounced and more closely resembles

a logistic curve.

92

Figure 15, Information spread as a function of mating events and graph, 512 vertices, r= 2.

93

Figure 16, Information spread as a function of mating events and graph, 512 vertices, r= 2.

94

The ranking of the graphs by slowest to fastest rate of information spread is cycle,

Petersen and toroid, random toroid, hypercube, and complete (Fig. 16.) Figures 17 and 18

show the rate of information spread for a population of 4096. As shown, the general

shape of the curves and ranking of the graphs remains the same for all population sizes.

The toroid and Petersen graphs were interspersed between the other graph families, with

higher diameter graphs (Tables 4-7) having a slower spread rate, and lower diameter

graphs having faster spread rates (Figs. 17 and 18). This indicates that the takeover times

increase roughly the same for any GBEA as the population size increases. This is also

true for a decrease in population size, although the effect is diminished for very small

population sizes as the differences in the graphs decrease with a decrease in population

size.

Another result was that for all population sizes and most graph types, the rate of spread

was proportional to r. The rankings of the graphs did not change as the fitness ratio was

changed (Fig. 19), but there was more of an increase in takeover time for the highly

connected graphs when the fitness ratio was increased than for the sparser graphs (Figs

20 and 21.) For the cycle graph, it was found that changing the fitness ratio had little

effect on the takeover time.

The number of mating events required for a solution to takeover the population was

divided by the population size for each graph in an effort to make comparisons to

generational schemes. When the number of mating events is divided by the population

95

Table 4, Graph Diameters and κ for population size 32 to 256, r = 2.

32 64 128 256

Diameter κ Diameter κ Diameter κ Diameter κ
Complete 1 3.39 1 4.17 1 4.87 1 5.64
Cyclic 16 15.10 32 31.22 64 63.03 128 127.08
H-n 5 4.27 6 5.58 7 6.36 8 7.09
Pn_1 9 8.07 17 14.24 33 27.39 65 53.81
Pn_3 6 5.31 8 8.96 14 13.41 24 22.41
Pn_7 5 5.34 6 8.28 10 10.57 14 13.96
Pn_17 N/A N/A 9 9.02 10 10.53 10 12.37
T4_(n/4) 6 5.13 8 10.55 18 19.81 34 38.28
T8_(n/8) N/A N/A 10 6.86 12 10.81 20 18.88
T16_(n/16) N/A N/A N/A N/A N/A N/A 16 12.32
RAND3_1 6 5.99 7 8.12 8 10.15 9 11.74
RAND3_2 6 5.89 7 8.46 8 10.16 9 11.88
RAND3_3 6 5.78 7 8.38 8 9.91 10 11.81
RAND4_1 4 4.58 5 6.23 6 7.48 6 8.64
RAND4_2 4 4.73 5 6.22 6 7.40 7 8.58
RAND4_3 4 5.03 5 6.27 6 7.47 6 8.68
RAND9_1 3 4.32 4 5.19 4 5.91 4 6.61
RAND9_2 3 4.24 4 5.21 4 5.93 4 6.60
RAND9_3 3 4.18 4 5.28 4 5.91 4 6.61
RTor_1 4 5.24 8 7.08 10 8.86 13 16.23
RTor_2 4 6.02 6 6.82 9 9.39 26 16.73
RTor_3 6 5.36 5 6.59 8 9.54 17 15.91

96

Table 5, Graph Diameters and κ for population size 512 to 4096, r = 2.

512 1024 2048 4096

Diameter κ Diameter κ Diameter κ Diameter κ
Complete 1 6.32 1 7.05 1 7.71 1 8.37

Cyclic 256 255.60 512 512.22 1,024 1,022.36 2,048 2,047.17
H-n 9 7.83 10 8.56 11 9.23 12 9.72

Pn_1 129 106.74 257 211.80 513 423.21 1,025 986.54
Pn_3 46 40.37 88 76.34 174 147.90 344 340.85
Pn_7 22 21.04 42 35.28 78 63.89 150 137.21

Pn_17 18 15.97 25 21.11 34 32.07 67 59.50
T4_(n/4) 66 75.33 130 149.48 258 297.62 514 461.22
T8_(n/8) 36 34.88 68 66.96 132 131.01 260 208.36

T16_(n/16) 24 19.65 40 34.60 72 64.70 136 102.38
RAND3_1 11 13.49 12 15.20 12 17.15 15 16.70
RAND3_2 10 13.44 12 15.18 13 17.05 14 16.60
RAND3_3 10 13.45 11 15.15 13 17.15 15 16.63
RAND4_1 8 9.80 8 10.89 9 12.04 10 12.53
RAND4_2 7 9.75 8 10.91 9 12.06 9 12.48
RAND4_3 7 9.78 8 10.89 9 12.09 10 12.45
RAND9_1 4 7.30 5 8.00 5 8.68 5 9.27
RAND9_2 4 7.32 4 8.00 5 8.66 5 9.31
RAND9_3 4 7.31 4 7.99 5 8.70 5 9.34

RTor_1 19 17.15 23 20.70 38 35.04 30 26.75
RTor_2 20 17.08 29 23.44 47 29.70 50 26.40
RTor_3 16 15.99 25 21.95 29 30.30 40 26.65

97

Table 6, Graph Diameters and κ for population size 32 to 256, r = 3.

32 64 128 256

Diameter κ Diameter κ Diameter κ Diameter κ
Complete 1 2.85 1 4.17 1 4.89 1 5.62
Cyclic 16 14.58 32 31.15 64 63.05 128 126.73
H-n 5 3.18 6 5.21 7 5.94 8 6.77
Pn_1 9 7.17 17 15.17 33 29.94 65 58.91
Pn_3 6 4.71 8 7.90 14 12.96 24 22.87
Pn_7 5 4.69 6 6.69 10 8.92 14 12.76
Pn_17 N/A N/A 9 8.40 10 9.19 10 10.87
T4_(n/4) 6 4.17 8 8.35 18 15.00 34 28.47
T8_(n/8) N/A N/A 10 6.41 12 9.21 20 15.04
T16_(n/16) N/A N/A N/A N/A N/A N/A 16 11.28
RAND3_1 6 5.32 7 7.28 8 8.91 9 10.22
RAND3_2 6 5.31 7 7.40 8 8.92 9 10.45
RAND3_3 6 5.25 7 7.52 8 8.73 10 10.44
RAND4_1 4 3.65 5 5.92 6 6.96 6 8.10
RAND4_2 4 3.94 5 5.79 6 6.94 7 8.00
RAND4_3 4 4.07 5 5.85 6 7.06 6 8.11
RAND9_1 3 3.26 4 5.09 4 5.81 4 6.56
RAND9_2 3 3.17 4 5.07 4 5.83 4 6.55
RAND9_3 3 3.15 4 5.13 4 5.79 4 6.50
RTor_1 4 4.35 8 6.73 10 8.42 13 14.78
RTor_2 4 4.94 6 6.50 9 8.91 26 15.28
RTor_3 6 4.52 5 6.29 8 8.58 17 14.31

98

Table 7, Graph Diameters and κ for population size 512 to 4096, r = 3.

512 1024 2048 4096

Diameter κ Diameter κ Diameter κ Diameter κ
Complete 1 6.30 1 6.98 1 7.71 1 8.37
Cyclic 256 255.28 512 512.23 1,024 1025.16 2,048 2047.59
H-n 9 7.51 10 8.22 11 9.01 12 9.69
Pn_1 129 117.90 257 235.46 513 470.61 1,025 938.17
Pn_3 46 42.98 88 82.80 174 162.92 344 322.81
Pn_7 22 20.54 42 36.07 78 67.43 150 129.82
Pn_17 18 14.63 25 20.08 34 32.13 67 56.50
T4_(n/4) 66 54.81 130 107.99 258 214.44 514 427.35
T8_(n/8) 36 26.94 68 50.57 132 97.96 260 192.61
T16_(n/16) 24 16.35 40 27.42 72 49.76 136 94.57
RAND3_1 11 11.77 12 13.27 12 14.68 15 16.43
RAND3_2 10 11.79 12 13.22 13 14.74 14 16.37
RAND3_3 10 11.76 11 13.16 13 14.69 15 16.39
RAND4_1 8 9.10 8 10.14 9 11.23 10 12.34
RAND4_2 7 9.13 8 10.19 9 11.22 9 12.30
RAND4_3 7 9.06 8 10.17 9 11.28 10 12.33
RAND9_1 4 7.27 5 7.91 5 8.65 5 9.33
RAND9_2 4 7.23 4 7.94 5 8.65 5 9.32
RAND9_3 4 7.28 4 7.95 5 8.67 5 9.37
RTor_1 19 15.58 23 18.81 38 26.79 30 24.26
RTor_2 20 15.61 29 21.00 47 26.82 50 23.99
RTor_3 16 14.77 25 20.06 29 29.77 40 24.22

99

Figure 17, Information spread as a function of mating events and graph, 4096 vertices, r= 2.

100

Figure 18, Information spread as a function of mating events and graph, 4096 vertices, r=2.

101

Figure 19, Information spread as a function of mating events and graph, 512 vertices, r= 1.5.

102

Figure 20, Information spread as a function of mating events and r for the hypercube graph, 512
vertices.

103

Figure 21, Information spread as a function of mating events and r for the toroid 4 graph, 512
vertices.

104

size (κ , Eq. 4-15), it can be seen that, for the hypercube graphs, the difference increases

in fixed amounts as the population size is doubled (Fig. 22.) For the other types of

к =
SizePopulation

EventsMatingofNumber
(4-15)

graphs, this increase appears to be a doubling of the difference per increment (Figs. 23

and 24.) When κ at 100% information spread is compared to the graph diameters as

shown in Tables 4 through 7, they are found to be roughly equal for all graphs but the

complete and hypercube graphs (Figs. 25 and 26.)

To validate the results of the empirical experiments, the results of the complete and cycle

graphs were compared to the analytical solutions. While the empirical experiments do

have stochastic mating rules, the standard deviation of the results was insignificant. The

analytical and empirical results for the cycle graph (Fig. 27) differed by 110 mating

events compared to a mean value of 130,450 mating events for the experimental results.

Both plot behaving linearly with identical slopes and a slight curvature at the tails of the

plot. A comparison of the analytical and empirical results for the complete graph (Fig.

28) shows that the expected value plot leads the empirical plot at the beginning and the

end of the curves, with a maximum difference of 146 from the experimental results mean

value of 3237. Both of these results are well within a standard deviation of the empirical

results, and so are considered valid results.

105

Figure 22, Information spread as a function of mating events/population size for the hypercube, r=2.

106

Figure 23, Information spread as a function of mating events/population size for the Petersen 3
graph, r=2.

107

Figure 24, Information spread as a function of mating events/population size for the Petersen 3
graph, r=2.

108

Figure 25, Takeover times for cycle graph by method, n=512.

109

Figure 26, Takeover times for complete graph by method, n=512.

110

Figure 27, Kappa as a function of graph diameter for r=2.

111

Figure 28, Kappa as a function of graph diameter for r=3.

112

This experiment was designed to investigate the effect that the choice of graph would

have on the number of different designs found when using a GBEA. All of the

experiments showed that there is a correlation between sparsity of graph used and how

many different solutions are obtained.

For the sinusoid function, the complete graph yielded the smallest variety of solutions,

finding about six per run regardless of the dimension of the problem. (Note that using the

complete graph is equivalent to running a standard evolutionary algorithm.) Using the

hypercube resulted in more solutions as the dimension of the problem increased, but only

slightly. Using the remaining graphs resulted in a marked increase in the number of

solutions found as the dimension of the problem increased. The toroid and Petersen

graphs performed similarly, with the average number of solutions increasing as the

diameter of the graphs increased. Performance using the Petersen-1 graph was similar to

that using the cycle graph (Fig. 29.) The surprising result of this study is that the

simplexified graph (designated Z) had the largest variety of solutions for higher

dimension problems even though it has the same degree as the toroid graph (Fig. 30.)

The PORS problem exhibited similar trends with the exception of those for the

simplexified graph (Fig. 31.) As the degree of the graph decreased, the number of

different solutions present when the run completed increased. Since there was no single

solution that dominated the others, the results were ranked by number of solutions found

in each run. These rankings reflect generic solution types; whichever solution happens to

be dominant for a particular run and not a particular solution. In this way, the statistical

113

Figure 29, Number of solutions found by graph for the 3 dimensional sine problem.

114

Figure 30, Number of solutions found by graph for the 9 dimensional sine problem.

115

Figure 31, Number of solutions found by graph for the PORS16 problem.

116

analysis shows the expected number of solutions and the level of population dominance,

but does not infer that any solution is overall superior to any other. The population on the

complete graph was nearly 60% of the same type of solution, while there was a much

more diverse population found on the cycle graph. When only distinct solutions were

considered, these results were even more pronounced with nearly half of the population

comprised of a single solution for the complete graph compared to about 25% for the

cycle graph.

It can be seen that when the graph diameter and population size increase, the rate of

information spread decreases, while increasing the fitness ratio has the opposite effect.

The number of mating events for the entire graph to be exposed to a superior solution

appears to be directly proportional to the population size and graph diameter, and

inversely proportional to the fitness ratio. It is interesting to note that even for the

complete graph the value for kappa increases as the population size increases, indicating

that the takeover times do not scale directly with population size. It also appears that

there is an inverse relationship between graph degree and takeover time, although this

seems to be to a lesser degree than the other factors as seen by the intermixing of the

Petersen graphs (degree 3) and the toroid graphs (degree 4.)

It has been a general practice (Golberg and Deb, 1991) to divide the number of mating

events in a steady state algorithm by the half the population size to get an equivalent

number of generations to compare these steady state algorithms to generational

algorithms. While this serves well as an easy approximation to make comparisons, a

117

review of the kappa values found in this study indicates that error may be introduced by

using this assumption. When fitness proportional selection is being used, the bias towards

selecting a more fit mating partner skews the search towards exploiting the better

solutions at the expense of the lower fitness solutions. This means that the less fit

individuals are involved in fewer mating events as the solutions evolve, speeding

convergence to a solution. As the graph connectivity decreases, this effect is decreases

until its effect is nearly negligible in the cycle graph. This can be seen in tables 4 through

7, where the rate at which kappa increases for the hypercube graph decreases as

population size increases, compared to the cycle graph where the rate is consistently half

the population size.

Also shown in this study is that GBEAs enhance solution diversity. In the case of the

real-valued problem in nine dimensions, the number of different solutions was increased

by a factor of 9.6. When applied to a real world application of the sprayer nozzle

(Engelbrecht, 2007), three times as many solutions were found despite using a small

population size. These results support the theory that GBEAs enhance diversity in an

evolving population. As shown by the number of different solutions found in the real-

valued problem, the graph choice can have a strong impact on the diversity present in the

population. The availability of multiple solutions could prove invaluable in design

processes, not only by giving different alternatives to the decision maker in the early

stages, but also by providing options further along in the process should the initial design

be found infeasible.

118

Unfortunately, there is a tradeoff between the number of solutions found in the

population and the number of mating events required to arrive at the desired number of

solutions. Previous results have indicated that the PORS16 problem was best solved

(fewest mating events required) by those graphs that had higher connectivity and smaller

graph diameter. Given the current thinking on diversity preservation, this tradeoff is what

one would expect. PORS16 is a simple optimization problem requiring little diversity to

solve. The more difficult and deceptive problems are best approached using diversity

preserving graphs, the same graphs that are shown here to find multiple solutions.

4.3. Conclusion

This study provides additional evidence that graphs can be used to tune the rate of

information spread in a population to maintain and control diversity. Earlier studies have

indicated that diversity is a key parameter in determining the performance of an

evolutionary algorithm. In addition, this type of study provides a relatively quick and

easy methodology for comparing graph performance. These results indicate that if there

is an initial estimate of the deceptiveness of a landscape, a significant speed up can be

realized by utilizing the proper graph and population size combination.

It was also found that the graph set used in the initial work (Bryden, et al., 2006) had

several graphs that had identical performance on the problems examined. By removing

these redundant graphs, a winnowed graph set can be developed. This winnowed set can

range in size depending on the degree to which the researcher wishes to explore the

effects of controlling the flow of information in the evolving population. Some guidelines

119

for graph selection using a population size of 512 are given in Table 8. Similar to the

recommended set of test suite problems there are two recommended choices; a smaller

graph set for use with problems that are computationally expensive and a list of

additional graphs that may be used to further investigate the effects of controlling

information flow. The smaller set of graphs comes from the observations of the

population size study, where it was seen that the performance of the graphs separated into

graph families. The smaller graph set is comprised of those graphs that showed

performance indicative of their respectively families when the takeover times were

calculated in Section 4.2. The list of additional graphs is comprised of the remaining

variants of the Petersen and toroid graphs and the first random toroidal graph. The

additional Petersen and toroid graphs were included because they allowed for smaller

changes in diversity preservation compared to the smaller graph set. The random toroidal

graphs displayed performance similar to the toroid and Petersen graphs, and so were not

included in the smaller set, although the first random toroidal graph was included in the

larger set as a representative of that family of graphs. These recommendations also hold

for population sizes other than 512, although smaller population sizes will preclude some

of the graphs that cannot be constructed or are redundant, as discussed in section 4.1.

While more information needs to be gathered to give definitive advice on which graph

will give the best results, there is sufficient information to formulate some guidelines to

the use of graph based evolutionary algorithms. To use these guidelines, some of the

characteristics of the problem must be know a priori. These characteristics are the

120

Table 8, Winnowed graph sets for use in evaluation of evolutionary computation problems,
population size of 512.

Smaller Graph Set: Larger Graph Set Also Includes:

Complete P256_1

Cyclic P256_3

H9 P256_17

P256_7 T4_128

T8_64 T16_32

RTor7_1

121

deceptiveness of the fitness landscape, the size of the character alphabet, and the number

of variables in the chromosome of the problem being examined.

The first characteristic of the problem to consider is the deceptiveness of the fitness

landscape for that problem. If this fitness landscape is thought to be deceptive, a lower

amount of information flow is recommended. For many problems it may be impossible or

impractical to determine if the problem is deceptive, in which case a moderate amount of

diversity preservation would be recommended (for example, using one of the torus

graphs.) The results of the PORS15 problem on various graphs (Section 4.1.1, Fig. 7)

shows that for this deceptive problem, a graph with a high amount of diversity

preservation performs best. However, for problems where it is uncertain whether the

fitness landscape is deceptive, the better compromise solution would be those graphs with

an intermediate amount of information flow. Depending on the computational resources

that are available, two trials could also be run; one with a diversity preserving graph and

one with a highly connected graph. This could be used to determine the deceptiveness of

the fitness landscape and return an optimal solution with minimal wall time.

The second characteristic to consider is the size of the available character alphabet for

discreet problems. For problems with a smaller available alphabet, the benefit of using a

diversity preserving graph increases. This is largely due to the decreased difficulty in

assembling building blocks to be assembled into the final solution. This can be seen by

comparing the results of a small alphabet problem (PORS16; Section 4.1.1, Fig. 6) to the

results of a problem with a larger alphabet (the north wall builder problem; Section 4.1.3,

122

Fig. 9.) The problem with a smaller alphabet shows twice the improvement at small

population sizes compared to the large alphabet problem.

The third characteristic is the number of variables in the chromosome of the problem.

This is related to the size of the available character alphabet, in that more information is

contained in each population member. Because of this, a larger population size is

required to provide sufficient diversity to construct the optimal solution. This also makes

diversity preservation important to maintain this information, although there is also a

benefit to sharing information if the problem is not deceptive.

The qualitative guidelines for graph selection can be described as follows:

 For a simple uni-modal problem, the complete graph is preferred (which is also

equivalent to a standard evolutionary algorithm.)

 If the problem being examined is thought to be deceptive, a diversity preserving

graph is recommended. The more deceptive the fitness landscape, the sparser the

graph.

 For problems with a large alphabet and/or a large number of variables, a graph

with an intermediate amount of diversity preservation is preferred, such as the

torus or Petersen graphs.

It should be stressed that these guidelines for the use of GBEAs are a starting point for

the analysis of the given problem. While these recommendations do not guarantee the

123

best time to solution for a particular problem, they should still deliver satisfactory

performance.

124

5. APPLYING GRAPH BASED EVOLUTIONARY ALGORITHMS

An important goal of this research is to present graph based evolutionary algorithms as a

tool in both the design process and for the modeling of systems. The preceding chapters

have given some insight into the behavior of both evolutionary computation problems

and the different graph structures used in GBEAs, now it remains to apply the knowledge

gained to the solving of real world problems. In this way it can be shown that GBEAs are

more than a classifying system and an interesting mathematical construct; they are a

means to augment the engineering decision process. The benefits to engineering design

can be seen in both the time necessary to find an optimized solution and in supplying a

wider variety of acceptable solutions, promoting computational creativity.

Some of the problems described in Chapter Three fall under the category of applied

problems. These problems explore issues relating to current scientific research as well as

meeting the criteria of viable test problems. Examples would be the DNA barcode

problem and the Steiner systems problems (Ashlock, Guo, and Qiu, 2002; Ashlock,

Bryden, and Corns, 2005). The results of these experiments show that proper graph

selection has a strong positive impact on time to solution. By researching applied

problems such as these it is possible to develop both a taxonomy and a proposed test suite

for evolutionary computation problems that are relevant to research topics of industry.

Many of the problems found in industry would not be acceptable as test problems. The

most common reason for this is the amount of time required to complete a fitness

evaluation. For example, Bryden, Ashlock, McCorkle and Urban (2002) used a GBEA to

125

improve the performance of third world cook stoves. The goal of this study was to

determine the optimal placement of baffles in a Plancha stove. Plancha stoves are

inexpensive and easily assembled stoves constructed of cast concrete with a metal

cooking surface. These stoves are designed to replace open fires for cooking needs in

rural Guatemala, decreasing the amount of fuel required and reducing health risks from

open flames and the accumulation of smoke in dwellings. The design of these stoves is

challenging due to limitations on construction methods that severely restrict the number

of baffles that may be placed under the heating surface to direct the hot flue gases from

combustion. The goal of this research was to optimize baffle placement under the heating

surface, with the fitness being a measure of how uniform the stove top temperature was.

Three strings representing baffles were used as chromosomes in the GBEA. These strings

were passed to a commercial computational fluid dynamics (CFD) package to return the

fitness of the solution. Each fitness evaluation required approximately 3 minutes to

perform, making completion of one run very time intensive and a sufficient number of

runs for statistical data unreasonable. However, from the data obtained, it was found that

this optimization problem, when represented properly, was a fairly simple uni-modal

problem and was solved best by the complete or hypercube graphs. This agrees with the

results found in Chapter Three of this research for other uni-modal problems.

With the combined knowledge of how GBEAs act to control information flow and the

affect this has on problems examined thus far, we are now ready to apply this tool to

another applied problem. While several problems exist that would benefit from this

method, the problem to be examined here relates to the use of antibiotics as performance

126

enhancers for the raising of swine for human consumption. This problem is interesting in

that it brings together elements of mechanical engineering, biology, economics and

public policy to address concerns in the environment, the health care industry, and

agricultural businesses. The remainder of this chapter is dedicated to a discussion of this

problem and how it can be approached using graph based evolutionary algorithms.

5.1. Bacteria and Swine Growth Model

Since the late 1940s antibiotics have been used as an additive to livestock feed

(Cromwell, 2001.) Antibiotics have been shown to both increase the growth rate and

decrease the mortality rate of animals when administered in sub-therapeutic doses (doses

smaller than that required for disease treatment.) There is also a large body of evidence

indicating that antibiotic use has led to improvements in feed to growth ratio,

reproduction rates and overall animal health (Hays, 1977; Cromwell and Dawson, 1992;

Zhi, Nightingale, and Quintiliani, 1988.) One perceived problem with the widespread use

of antibiotics in the swine industry is that of antibiotic resistance development among

foodborne bacteria, e.g. Salmonella spp. and Campylobacter.spp. It has been well

established that when bacteria are exposed to antibiotics in vitro, resistance to that

antibiotic can develop (Prescott, Baggot, and Walker, 2000.) Using this information it

seems intuitive that the use of sub-therapeutic levels of antibiotics for performance

enhancement could cause resistance in the bacteria present in the gastro-intestinal (GI)

tract of swine. However, the actual risk of using sub-therapeutic levels on human health

by way of the ratio of bacteria resistant to that antibiotic in either animal or human

127

reservoirs has not been quantified. This has led to debate as to whether performance

enhancing substances should be restricted or banned (Cox, Copeland, and Vaughn, 2005;

Singer, Cox, Dickson, Hurd, Phillips, and Miller, 2004; World Health Organization,

1997, 1998, and 2001.)

What is needed now is specific guidance as to what is prudent or optimal use. This might

be defined as minimizing the fraction of antibiotic resistant bacteria present in the animal

when it is sent to slaughter without comprising animal health and performance. By

adjusting the number of times and the amount per treatment that the antibiotic is given to

the animals it is possible to explore different options for swine production to minimize

antimicrobial resistance.

5.2. The Need for Bacteria Models

To understand the need for modeling bacteria in the swine GI tract it is necessary to

define the risk that the bacteria pose to human health. A stepwise risk assessment-based

model (Fig. 32) for determining this risk was introduced by Hurd (2006.) While this

diagram was made for use in the poultry industry, it is a general model that can be

applied to any food animal production system.

The release assessment portion starts by the administration of an antibiotic (in this case a

macrolide) to the animal. This can lead to antibiotic resistance (RzD selected) in the

128

Figure 32, Stepwise Risk Assessment-based approach for estimating the impact on human health
from macrolide resistance that develops on poultry farms (Hurd, 2006).

129

bacteria present in the GI tract. If the animal appears healthy, it will most likely be sent to

the abattoir, taking the resistant bacteria with it. The exposure assessment is a measure of

factors that may cause the bacteria from the GI tract to be transported to the meat

intended for retail sale. This could be from a number of sources, including mishandling of

the product, undetected ruptures of the GI tract components or cross-contamination from

other carcasses. It also takes into account the probability that this meat will be

mishandled and eaten by a human. The final assessment is the consequences, which

entails the probability that the patient will get ill from the bacteria and be treated with the

antibiotic in question, resulting in treatment failure due to resistance in the bacteria. In

previous studies, exploration of these assessments (Hurd, Enoe, Sorensen, Wachmann,

Hald, and Greiner, 2004) has shown that a relationship between resistant bacteria arriving

in animals at the abattoir and human does exist. It is then apparent that an investigation of

steps that could be taken on-farm to lower this risk would be beneficial.

While constructing the model, it is necessary to keep in mind the objectives of this

research: to minimize the risk to human health and the cost to raise the animals. The cost

of raising the animals is related to how quickly the animals can be brought to market

weight. The benefits in weight gain achieved by using antibiotics decreases the amount of

time that the animals need to be fed and housed on the farm, decreasing the costs

associated with raising the animals. While these economic benefits of sending the

animals to the abattoir earlier are easily understood, the affect on human health from

antibiotic use as performance enhancers requires additional discussion. To consider the

impact on human health, we can apply this objective function:

130

Rs HCDRHCDSID ** (5-7)

Where: ID is number of human illness days

DS is human illness days per case due to susceptible bacteria

DR is human illness days per case due to resistant bacteria

HCS is the number of cases due to susceptible bacteria

HCR is the number of cases due to resistant bacteria

The number of human cases can be simulated using an attribution factor that will be

determined using historical data that correlates the bacteria level in animals to the number

of reported human cases that can be attributed to pork. Data similar to this has already

been applied to an investigation of the effectiveness of Denmark’s salmonella control

program, although this dealt with the number of animals in each herd that tested positive

for the bacteria (Hurd, et al., 2004.) There is no evidence that human illnesses are more

severe or longer lasting from bacteria that are resistant to the antibiotics used in pork

production. However, if it were possible to reduce any possible risk of antibiotic resistant

bacteria entering the food chain at no additional cost, it would be a desirable course of

action.

5.3. Bacteria, Antimicrobials, and Swine

Antimicrobials are substances that inhibit the growth of or kill microorganisms in low

concentration (Prescott, Baggot, and Walker, 2000.) Antibiotics are antimicrobials that

131

are produced by a microorganism to kill other microorganisms, although the two words

are often interchanged. For humans, antibiotics are most commonly used to treat illness

caused by bacterial infections. These substances inhibit the bacterium’s ability to

reproduce effectively or damage the cell function directly. The end effect is that, when

used therapeutically, the bacteria die at a faster rate than they reproduce until the

concentration is negligible or eradicated.

Antibiotics have varying levels of effectiveness against different bacteria. This is further

complicated by antibiotic resistance that can developed either by mutation of the bacteria

or the sharing of genetic information in the form of plasmids from other resistant

bacteria. This resistance may or may not be permanent, depending on the bacteria and the

antibiotic. Resistance to one antibiotic can also translate into resistance to other

antibiotics in the same class, although this varies mainly by the class of the antibiotic.

These complications make it clear that care must be exercised when administering

antibiotics to humans or animals, as the acquisition of antibiotic resistance is a complex

relationship.

Unlike human usage, antibiotics are given to poultry and swine for three different

reasons; performance enhancement (often incorrectly termed “growth promotion”),

disease prevention, and disease treatment. The regimens (dose, route, and length of time)

for administering antibiotics to swine vary depending on the animals’ age and physical

condition, and are based on manufacturer’s recommendations and advice from

veterinarians. Typically, a low level of antibiotic is added to the feed of the animal to

132

enhance performance, resulting in an increase in feed efficiency (decrease the amount of

feed the animals eat for the same amount of weight gain.) This effect is generally thought

to be from a change in the microbiological ecosystem of the GI tract. When there is cause

for taking preventative measures, such as when the animals are weaned or other times

when it is suspected the animal may easily contract a disease, a larger dose is

administered. This can be done by either increasing the amount of antibiotic added to the

feed or by adding a water soluble antibiotic to the water given to the animals. When using

antibiotics for disease treatment they are normally administered by either addition to

drinking water or by injection. Given that there are thousands of different variants of

bacterium existent in the GI tract of an animal and hundreds of different antimicrobial

treatments available, the task of finding a superior regimen is challenging.

5.4. Previous Bacteria Models

The modeling of a living system is different from most mechanical models in that we

understand the underlying relationships more fully in most of the mechanical models in

use today. Great strides have been made in gaining understanding of biological systems,

but there is still much to be learned. In our case, this includes the interactions between the

host animal and the bacteria and between different bacteria in an animal’s gastro-

intestinal ecologies. The following is an overview of the methods used to model these

systems.

133

5.4.1. Early Mathematical Models

The Malthus Equation is generally considered the first mathematical model for

population growth (Schmidt, 1992.) Introduced in 1798, this is a simple formula stating

that the rate at which a population increases is equal to the population size multiplied by a

growth factor. While this was not introduced as a mathematical model, it can be written

as:

N
dt
dN

max
(5-1)

which on integration yields:

t
O

MaxeNN (5-2)

Where: N = the population density at time t

NO = the initial population density

ΜMax = the maximum specific growth rate

The first model to be applied to population growth of microorganisms was the logistic

equation (Schmidt, 1992.) This model incorporated the availability of resources into the

equation by adding the environment’s carrying capacity (K) into the equation:

K
N1

max
(5-3)

134

Where μ is the specific growth rate and is used instead of the maximum specific growth

rate in equations 5-1 and 5-2. These equations can give a good idea of how populations

grow, but since there is no input into what is controlling the rate, it is difficult to apply

any factors that would allow for control of the maximum population size.

The next step in growth modeling was developed by the French scientist Monod in 1949.

The Monod equation added a factor to account for limits on population growth rate

imposed by limitations in the system (Schmidt, 1992):

SK
S

S
max (5-4)

Where: S = the concentration of limiting substrate

KS = the half-saturation constant

The model introduced by Monod dealt with a finite amount of substrate to sustain the

population (Eq. 5-4), but other variants exist. This model is also more flexible in that it

can be used to fit growth curves that are not symmetrical.

Most of the modern models used now are based on the Monod equation, with

modifications incorporated to address special circumstances. Some of these

circumstances include problems modeling energy expended by bacteria to sustain life

135

(maintenance energy) and the production of toxic waste by the bacteria. Variations of this

equation are also used in simulation packages available on the internet (Food Safety First,

2006; Food Safety and Inspection Service, USDA, 2006.) Past modifications to this

model also included the effects of antibiotics on the growth rates (Hochhaus and

Derendorf, 1995; Nolting and Derendorf, 1995; Zhi, Nightingale, and Quintiliani, 1988.)

The Monod model and those models based on it are flexible and can be used to match

many observed growth curves of bacteria in-vitro. In general practice, they are used on

systems with a finite amount of substrate for the bacteria to grow from. They can take

into account the presence of antibiotic, if the proper modifications are applied, but it is

left to the user to determine what these modifications are.

5.4.2. Lipsitch and Levin

Lipsitch and Levin (1977) did work that focused on the development of antimicrobial

resistance in bacteria. This research started with the logistic equation, but added in a loss

term to account for interaction with antibiotics. This was expanded to investigate

multidrug treatments, different dosing regimens and non-adherence scenarios. Statistical

models were used to predict when and how many of the bacteria present gain resistance

based on treatment dose and timing.

The model can take into account multiple antibiotics at once with varying dosings, but

only models one bacteria type. It is limited in that it only considers the acquisition of

136

antibiotic resistance through mutation. It also uses discrete values for the levels of

antibiotic present. In a non-laboratory biological environment it may not be possible for

drug levels to change quickly, depending on the biological half-life of the antibiotic in

question.

5.4.3. Nikolaou and Tam

Nikolaou and Tam (2005) introduced a model that stressed that the level of antibiotic

resistance in bacteria varies across the population. They argued that to proper model these

resistance levels the growth rate should not be a single term, but based on the cumulants

of the distribution representing the resistance of the bacterial population. This allows for

extrapolation of growth trends past the 24-hour in-vitro period that was used in the study.

The strong points of this model were that it modeled both bacteria and antibiotics at the

same time, while accounting for varying levels of antibiotic resistance in the bacterial

population. However, it requires prior knowledge of bacteria growth data to find the

growth rate distribution. It also only examines one type of bacteria and one antibiotic at a

time, making it ill suited for use in a model that requires multiple strains of bacteria to be

accounted for.

5.4.4. The Chemostat

The Chemostat model is also attributed to Monod (Panikov, 1995; Schmidt, 1992) circa

1950. This model was originally developed to investigate continuous cultivation of

137

bacteria so that useful by-products of the bacteria (such as yeast or ethanol) could be

collected for human use. This model can be thought of as a bio-reactor in which substrate

is continuously added to the bacteria population to either grow additional bacteria for

cultivation or provide energy and resources to the bacteria so the desired by-product will

be produced. In the previous models the amount of substrate is normally decreased as the

model progresses. In contrast, the amount of substrate in this model is controlled to

represent systems in which there is a continuous introduction of materials for growth and

possibly the removal of toxins.

This model is the basis for most steady state bacteria models. It uses the Monod equation,

but is modified to account for the addition of substrate, and possible other bacteria or

compounds (Abrosov and Kovroc, 1977). To date, there has been no work that combines

a chemostat model with the acquisition or development of antibiotic resistance in

bacteria, although this would be a natural extension of this model.

5.4.5. BacSim

The BacSim model (Kreft, Booth, and Wimpenny, 1998; Kreft, 2006) is an agent based

bacterial growth model that models the bacterium individually. Each bacterium is

represented by an agent. This agent interacts with the other agents (bacteria) in this

virtual world. As it is an individual-based model, it investigates concerns at a

microscopic level, such as substrate diffusion and variations in cell size. The cells can

then be viewed as a group, representing a colony of the bacteria type being modeled. The

138

model is built using various other models, such as the cell division model proposed by

Donachie and Robinson (1996) and the maintenance cost model by Herbert (1958). Java

code has been posted on the internet that allows for experimentation with the model

(Kreft, 2006). The URL for this application is http://www.theobio.uni-

bonn.de/people/jan_kreft/bacsim.html.

This model is very detailed, dealing with the growth, reproduction, and death of every

cell present. The model is versatile enough to be used for many different types of

organisms, and it appears that it could be adapted to multiple types of bacteria at once,

although this has not yet been attempted. The detail of the model is also one of its

weaknesses. When dealing with bacteria levels that can easily reach millions, this model

can rapidly become cumbersome. To date there have been no attempts to implement

interaction with antibiotics in either their effect on the growth rate or on the bacteria

gaining resistance at this level of detail.

5.4.6. Summary of Bacteria Growth Models

There are several methods for modeling the growth of bacteria, with this being just a

short listing. The models currently available are either general out of a necessity to be

widely applicable or they are specialized to a point where they are not suitable for an

investigation of bacteria and antibiotic interactions in a host animal. It is be possible,

however, to use parts of these models as a basis for a new model that includes bacteria

139

and antibiotic interactions in a system that has a continuous inflow of both substrate and

antimicrobial agents.

5.5. Modeling Swine

To accurately model the ecology in the gastro-intestinal tract of swine, it is an accurate

model of the animal’s growth and GI tract is necessary. One of the major concerns of

pork producers is the rate of weight gain in the animal, which is why sub-clinical levels

of antibiotics are used. Feed is eaten by the animal and the animal gains weight. The

more the animal weighs, the more feed it eats. This volume of feed and water is also

important because it is the method by which performance enhancing antibiotics are

administered. The rate at which the animals grow and the amount of feed and water they

consume is well documented (Lewis and Southern, 2001), and so an accurate model can

be developed.

Growing-finishing animals usually start with a weight ranging from 17-24 kilograms, or

about 40-50 pounds (Cromwell, 2001.) As an animal gains weight, the rate at which it

gains weight increases until it reaches market weight (around 230 pounds.) The fidelity of

this weight gain model can be low, such as in Cromwell’s work (2001) given in Table 9,

or higher fidelity models can be constructed (Schnickel and Craig, 2001) such as:

it
a

t emtCWTGAIN exp1 (5-5)

140

Table 9, Animal weight gain in pounds per hour without antibiotics and with antibiotics (Cromwell,
2001).

Weight Range Weight Gain (Pounds),
No Antibiotic Used

Weight Gain (Pounds),
Antibiotic Used

Weight < 55 Pounds 0.035750 0.04125
55 Pounds – 110 Pounds 0.054083 0.06050
Weight > 110 Pounds 0.063250 0.06600

141

where WTGAIN is the expected weight gain from birth to time t, C is the mature weight,

m is an exponential growth decay constant, a is a kinetic order constant, and eit is the

residual weight gain for the ith pig at time t, with all constants calculated using live

weight data from weaner pigs to market weight animals. A method should be chosen

depending on the desired level of fidelity of the model. It should be kept in mind that

with a higher fidelity model, there is an increase in the computation resources necessary

to find that information.

In most studies, there is also a correlation between antibiotic usage and weight gain, with

animals fed antimicrobials in the feed gaining weight at a higher rate (Hays, 1977; Zhi,

Nightingale, and Quintiliani, 1988.) Although it should be noted that there does exist

some evidence that there is only a benefit in the early stage of animal growth (Dritz,

Tokach, Goodband, and Nelssen, 2002.) Another model necessary in modeling the

gastro-intestinal tract of swine is the size of the animals GI-tract, and how much feed and

water the animal consumes in a day.

The amount of antibiotic ingested by the animal is directly related to the amount of food

and water consumed by the animals on a given day. To determine these inputs, it is first

necessary to identify the amount of energy intake. This can be calculated based on the

animal’s weight:

32 0044.04.11881250 BWBWBWDEI (5-6)

142

Where DEI is the digestible energy intake in kcal/day and BW is the body weight of the

animal in kilograms. Assuming an average energy content for feed of 3400 kilocalories

per kilogram (National Research Council, 1998), the mass of feed consumed per day can

be calculated. To determine the amount of water ingested by an average animal each day,

a comparison between feed intake and water intake can be used. Research by Braude,

Clarke, Mitchell, Cray, Franke, and Sedgwick (1957) shows that when swine are allowed

to eat as much feed as they desire, they consume approximately 2.5 kilogram of water per

kilogram of feed.

To calculate the concentration of antibiotic or bacteria in the GI tract of an animal, it is

first necessary to determine the volume of the GI tract. For a fully grown animal, the GI

tract has a volume of about 27.5 liters (Patience, Thacker, and deLange, 2005), including

the stomach, cecum, small intestine, and colon. To determine the size of the GI tract of

the animal from weaner pig to market weight, it is assumed that the volume of the GI

tract increases at the same rate as the animal gains weight.

These equations and relationships make it possible to construct a model of the rate of

weight gain in swine, also taking into consideration the amount of feed and water the

animals consume. This modeling of the GI tract of swine allows for calculating the

amount of antibiotic that is ingested by the animals, and by using the volume of the GI

tract it is possible to make reasonable comparisons on the antibiotic concentrations

present. It also makes it possible to determine the bacteria concentrations present. By

143

using the proper combination of models and making some modifications, it is possible to

make a reasonable computation model of the ecology of an animal’s GI tract.

5.6. New Bacteria/Swine Model

To investigate the interactions between swine, antibiotics, and bacteria it is necessary to

bring together several different models that span different size and time scales. When the

GI tract of a typical animal is considered, it is necessary to couple the macro-scale model

of the animal’s growth and feed intake with the micro-scale models representing the

growth rate of the bacteria and the biological decay of the antibiotic. In addition to size,

the differences in time scales must also be taken into account. The time necessary for a

weaner pig to market weight is almost six months (National Research Council, 1998.)

The amount of time necessary for any antibiotic ingested to be processed is measured in

hours (Nolting and Derendorf, 1995), while the time necessary for a bacteria population

to double is typically about 2 hours (Doyle and Roman, 1981.) In the case of bacteria

modeling, it is also necessary to construct a new model borrowing from those models

discussed in Section 5.4. By discretizing these models, it is possible to couple them

across the necessary time scales. By using the relationships outline in Section 5.5, the

coupling between size scales can be accomplished. It is then possible to perform

iterations on these models to encompass the life cycle of a pig and determine the affects

of the antibiotics and bacteria on its growth.

144

5.6.1. Equations and Differencing

The use of GBEAs for analysis of this risk mitigation problem requires that we first

develop a model of the interactions of bacteria and antibiotic within an average animal’s

GI tract. This model takes into account not only the concentration of bacteria and

antibiotic, but also the efficacy of the antibiotic and the resistance of the bacterial

population. For the initial model one bacteria and one antibiotic will be taken into

account, although a discussion of multiple antibiotics will be included for future

consideration (Chapter 7), as later models would require multiple antibiotics to be

evaluated on different bacteria types. In constructing this model, the following

assumptions are made:

1. The pH and water activity of the environment remain constant throughout the

process.

2. The amount of resistant bacteria on carcasses in the chiller is proportional to

the amount present when the animal arrives at the abattoir.

3. For animals in which the bacteria are present, the bacterial concentration is

initially at a steady state level.

4. Animal growth is proportional to animal health.

5. When multiple antibiotics are used, they have the same decay rate and they

combine according to Loewe additivity (Lipstich and Levin, 1997) (models

without this assumption would be beyond the scope of this work.)

6. As the concentration of bacteria increases above a threshold level, the

probability of human illness being caused by that bacteria increases.

145

With these assumptions, it is possible to construct a differential equation that describes

the growth rate for the bacteria of interest that would be applicable to evaluating human

health risks. A bacterial concentration for both susceptible and resistant bacteria needs to

be established for use in determining the affect on human health. Using the assumed

initial bacteria concentration, it is possible to determine the growth dynamics of

susceptible and resistant bacteria when exposed to an antibiotic:

50max

1

)(
)(0

)(
10

CtC
tCNK

N

tN
NK

dt
dN

sks

n

i
i

sGs
s (5-8)

50max

1

)(
)(0

)(
10

CtC
tCNK

N

tN
NK

dt
dN

rkr

n

i
i

rGr
r (5-9)

)0(CK
dt
dC

Abx (5-10)

Where: N is the concentration of bacteria

s is susceptible bacteria

r is resistant bacteria

n is the total number of bacteria types

146

i is the designation of which bacteria is being examined

Nmax is the maximum supportable amount of bacteria

KG is the growth rate of bacteria

Kk is the kill rate of bacteria for the antibiotic

Kabx is the decay rate for the antibiotic

CS is the antibiotic concentration

C50 is the concentration for half the maximum killing of bacteria

These equations can be discretized to give:

5 0
,

max

1
,

,1, 1
CC

C
N

N

N
NN

j

j
js

K

n

i
ji

js
K

js ee ksGs (5-11)

50
,

max

1
,

,1, 1
CC

C
N

N

N
NN

j

j
jr

K

n

i
ji

js
K

jr ee krGr (5-12)

j
K

j CC e Abx

1 (5-13)

where j designates the current time step. Discretization of these equations allows for the

solving of the final concentrations of bacteria. It also provides a means for which the

antibiotic concentration can be increased, simulating either the use of antibiotic in feed or

147

the administration of therapeutic treatments. This model can be used for any combination

of bacteria and one antibiotic by inserting an additional equation with the appropriate

growth rate for each bacteria type being modeled and then using the sum of all bacteria

concentrations to determine the amount present.

5.6.2. Programming

To investigate the antibiotic regimen problem the model must first be written as a

computer program to be used as a fitness function for the GBEA. This was done by

iterating through the discretized models for a representative number of time steps while

incrementing the weight of the animal dependent on the concentration of antibiotic

present in the GI tract. The details and methodology of coding the model are as follows.

To begin the evaluation of the regimen the controlling variables are first initialized. The

weight of the animal is initialized to thirty pounds to represent an average weight of a

weaner pig arriving at the finishing facility. The concentration of antibiotic is started at a

value that corresponds to the amount of antibiotic it would receive while nursing and

during weaning (Cromwell, 2001; Dritz, et al., 2002.) The concentration of bacteria is

initialized to an amount found to exist in animals at delivery (Corns, Hurd, Ashlock, and

Bryden, 2006.) The minimum inhibitory concentration (MIC) of the antibiotic for each

bacteria type is initialized to values found in literature (Singer, et al., 2004). These

bacteria concentrations and the MIC values for the antibiotic are then allowed to vary for

each bacteria group, using a triangular distribution. These distributions are centered on

148

initial values with endpoints at +/-10% of the corresponding value in the case of the

bacteria concentrations and +/-2.5% of the value for the MIC values. Using these

triangular distributions makes it possible to account for the inherent variability of the

bacteria concentrations found in an animal and their susceptibility to antibiotics. With

these values set the model gives a representation of both the animal and its GI tract as it

enters the production facility.

The model is now ready to be used to simulate the growth of the animal to market weight

by iterating through the equations given in Section 5.6.1. A time step of one hour was

selected to capture the changes in both the antibiotic and bacteria concentrations. For

each one hour interval new values are calculated based on the previous time step values.

First, the average amount of feed and water ingested by the animal is calculated based on

the animal’s current weight using Eq. 5-6. These values are then used to find the amount

of antibiotic taken in by the animal. The antibiotic content of the feed and the water are

determined for the antibiotic regimen being evaluated at the current time step and the

total antibiotic intake is calculated. The volume of the animal’s GI tract is then found,

also based on the animal’s weight, and used to determine the antibiotic concentration for

the current time step. Using Eq. 5-13 the decrease in antibiotic concentration is found and

subtracted from the concentration of the previous time step. Adding the antibiotic intake

concentration to this gives the total concentration for the current time stage of the

iteration.

149

The next step is to find the new bacteria concentrations. The total amount of bacteria

present in the GI tract is calculated and compared to the carrying capacity of the GI tract

to find the limitations for the growth calculations. The change in bacteria concentration is

then calculated using Eqs. 5-11 and 5-12 for all of the bacteria types being considered.

Any changes between resistant and susceptible bacteria are then determined based on the

current antibiotic concentration. This accounts for the offspring of susceptible bacteria

expressing resistance to the antibiotic in question.

The final step of the iteration is to determine the weight gain of the animal. The values

from Table 9 are used to determine the amount of weight gained in that hour. If the

current antibiotic concentration is above a threshold value, the “antibiotics present”

column value is added to the weight. Otherwise, the “no antibiotics present” column

value is added to the current weight.

When the iterative process is complete, the fitness value for the regimen is found. This is

done by first calculating the total amount of antibiotic added to the feed and water. A

penalty function is applied if the amount of antibiotic administered is significantly higher

than the standard use. For the model used in this study, this limit was set to correspond to

label usage for growth promotion with fourteen days of use to prevent disease. The

fitness is then calculated using the final weight of the animal, modifying this by the

percent of bacteria that are resistant to the antibiotic and then applying the penalty

function, if necessary.

150

To take into account the uncertainty associated with the initial bacteria levels and the

minimum inhibitory concentration (MIC) of the antibiotic, a Monte Carlo simulation is

used for each fitness evaluation. Each Monte Carlo simulation consists of 500 trials of the

model. For each trial, different samplings from the triangular distributions for the initial

amount of each bacteria strain and the MIC values for the antibiotic are used. Mean

values for the fitness are calculated using the mean animal weight and percentage of

bacteria that are resistant to the bacteria. The standard deviation of the fitness value is

also calculated to make it possible to calculate a 95% confidence interval on the results.

5.6.3. Optimization

Using the previously described model, eight different graphs have been used to find a

near optimal antibiotic regimen to minimize both bacterial resistance to antibiotics and

the weight gain of the animal. For this set of experiments, tylosin phosphate was

examined as the performance enhancer, with two strings hold information on the amount

of antibiotic to be added to either the feed or the water. The first string contains

information on the amount of antibiotic added to the feed ranging from 0 to 100 grams

per ton in 10 gram increments. Each value represents one week of feed, for a total of 24

values (168 days). The second string determines how much antibiotic is added to the

water for disease prevention, ranging from 0, 125, or 250 milligrams per gallon. This

string is of length 84, representing two-day periods that the antibiotic may be added to the

water. When the GBEA is initialized, the amount of antibiotic added to the feed is

allowed to vary within allowable label usage, while the amount added to the water is

151

initialized to zero. These two strings are the chromosomes being manipulated by the

GBEA, and are also the input for the overall model.

A population size of 128 solutions was used with single point crossover and one mutation

on each string per mating event. The mutation operator selects a string value at random

and changes it to a new value selected at random from the range of possible values. The

fitness of the individual solutions is determined based on the final weight of the animal,

the percentage of bacteria that are resistant to the antibiotic and to a lesser extent the

concentration of both susceptible and resistant bacteria at the end of the iterative process.

Eight different graphs were used in this study, with five replicates for each graph type

conducted. For each of these experiments, 500 mating events were conducted and the

best result from each was recorded.

5.6.4. Results

This goal of this research is not only to explore the utility of GBEAs, but also to find an

antibiotic regimen that will minimize human health risk by managing the concentration

and resistance level of the bacteria present in the animal as it is delivered to the abattoir.

It is also necessary to maintain acceptable animal health and growth to make the

optimized regimen financially attractive to the producers. To evaluate the results of this

experiment, it is first necessary to compare the two indicators of these objectives.

152

The results of the experiment indicate that the two objectives are in competition with

each other. The use of antibiotics promotes growth, but also increases bacterial resistance

to that antibiotic in the model as it is currently implemented. The decrease in human risk

is represented by the decrease in the percentage of bacteria that are resistant to the

antibiotic. The economic benefit to the pork industry is represented by the animal’s

weight at the end of the simulation. A lower animal weight does not mean that the animal

will be delivered weighing less, but instead that the amount of time necessary for the pig

to reach market weight is increased, with an associated increase in the cost to feed and

house the animal.

Initially, the graphs selected were to determine which would have the best performance

when applied to this problem. The eight graphs used in this experiment are a winnowed

set derived from those found earlier in this study (Section 4.3, Table 8.) However, instead

of one graph performing optimally on this problem, a variety of solutions were found that

were different compromises between higher animal weight and a lower percentage of

resistant bacteria. The general trend was that diversity preserving graphs yielded higher

animal weights while graphs with a high rate of information flow improved the

percentage of antibiotic resistant bacteria. The range of solutions found by the graphs

made it possible to construct a Pareto-optimal frontier, allowing for a direct comparison

of the tradeoffs between the two objectives. The results of the forty trials were compared

to determine if any of the solutions were dominated in both weight and percent of

bacteria resistant. Because the values of the objective functions were real valued, the

results were rounded to a tenth of a pound for the weight and a tenth of a percent for the

153

percent of resistant bacteria. If the solution found had a lower final animal weight that

other solutions, the percentage of bacteria resistant to the antibiotic for that solution was

compared to the higher weight solutions. If any of those higher weight solutions had a

lower percentage of bacteria resistant to the antibiotic, they were considered a dominated

solution and removed from consideration. After removing the dominated solutions from

the population, seven of the solutions remained from those found using GBEAs.

To allow for a comparison to existing methods of raising these animals, two baseline

experiments were conducted. The first baseline experiment was to determine the results

when the conventional use of antibiotics was applied. In this model, 40 grams of the

antibiotic were added to every ton of feed. This gave a final animal weight of 276.1

pounds with 80.9% of the Campylobacter.spp present in the GI tract resistant to tylosin

phosphate. For the second baseline experiment, no antibiotic was used (antibiotic free, or

ABF), yielding a final animal weight of 256.5 pounds with only 40.2% of the

Campylobacter.spp present in the GI tract resistant to tylosin phosphate. These results

closely match published antibiotic resistance levels and animal weights for these

regimens (Thakur and Gebreyes, 2005.) Using the results of the work by Thakur and

Gebreyes provides validation of the model was validated against existing conditions

found at animal production sites.

The results of these baseline experiments and the non-dominated regimens found by the

GBEAs are given in Table 10, along with the results from the best-of-five standard

154

Table 10, Delivered Weight and Percent of Resistant Bacteria by Graph or Method.

Graph or Method Delivered Animal
Weight (lbs.)

Percent of Bacteria Resistant

ABF Method 256.5 40.2%
P64_7 Graph 273.4 43.7%
P64_7 Graph 273.8 46.3%
T4_32 Graph 273.9 46.9%
P64_17 Graph 274.6 49.8%
H7 Graph 274. 7 57.8%
C512 Graph 274.8 59.7%
K128 Graph 274.7 67.8%
P64_7 Graph 275.4 72.5%
Conventional Method 276.1 80.9%

155

evolutionary algorithm. These results were used to construct the Pareto optimal frontier

(Fig. 33) making it possible to compare the benefits of the regimens found.

The results that make up the Pareto front in Figure 33 give a wide selection of solutions

to the use of antibiotics in swine production. A closer examination of the solutions shows

that the regimen found by the Petersen graph (k=7, Fig. 34) is a distinctly different

solution to the problem than that found by a standard evolutionary algorithm (complete

graph, Fig. 35.) While the standard evolutionary algorithm made changes to the

conventional method of antibiotic use, the GBEA found a regimen that more strongly

resembles pulse administration of medication. This is noteworthy because this is an

emergent behavior in the algorithm; no information was provided a priori to promote this

solution. This pulse administration of medication is similar to that found in chemotherapy

treatments used for cancer patients. While this type of therapy has been used in the pork

industry before (Dewey, Cox, Straw, Bush, and Hurd, 1999), it is typically reserved for

the treatment of illness. While careful consideration would need to be taken to fully

assess the impact on micro flora in the animal’s GI tract, this could prove to be a novel

technique to minimize the antibiotic resistance in bacteria that could lead to foodborne

illness.

5.7. Conclusions

The use of graph based evolutionary algorithms for the antibiotic regimen problem has

been shown to give superior results to those found using a standard evolutionary

algorithm. More importantly, the use of diversity preserving graphs yields novel solutions

156

Figure 33, Percent of Campylobacter.spp resistant to antibiotic vs. Animal Weight at Abattoir.

157

Figure 34, Antibiotic regimen found by Petersen graph (k=7) for antibiotic regimen problem.

158

Figure 35, Antibiotic regimen found by standard evolutionary algorithm (complete graph) for
antibiotic regimen problem use.

159

to the antibiotic regimen problem. When the results of this experiment are compared to

the findings of Sections 3 and 4, it is possible to theorize what is occurring in the

evolving population in the various graphs. The highly connected graphs quickly find a

method to decrease the amount of resistance displayed by the bacteria, but in doing so

increase the amount of antibiotic used to a level where any additional antibiotics could

quickly incur a fitness penalty. This is due to the rapid sharing of information increasing

the average fitness, removing solutions that have very low antibiotic use and

corresponding low animal weight. For the graphs with a modest amount of diversity

preservation, the slower information flow allows the regimens with lower antibiotic use

to remain in the population longer, giving sufficient time for the algorithm to develop

solutions taking advantage of the addition of antibiotic to the water supply. Normally

reserved for disease treatment or prevention, the addition of antibiotic to the water supply

is the most efficient method for administering pulse doses of antibiotic. The addition of

antibiotics through the water supply is modeled using a 2 day period rather than the 7 day

period for antibiotic addition to feed, allowing for a more precise addition of antibiotic.

This behavior is also displayed by the sparse graphs, although with the slow transfer of

information the population members are less able to take advantage of the information

related to pulses found elsewhere in the population. Further examination of the problem

would make it possible to test this theory, although the computational resources

necessary would be significant.

The use of graph based evolutionary algorithms has provided novel solutions to be

address potential health risks from antibiotic use while largely maintaining the economic

160

benefits gained. These results provide nearly the same benefits realized by the

conventional use of antibiotics as performance enhancers while increasing the percentage

of resistant bacteria only slightly compared to antibiotic free facilities. This compromise

would make it possible to lower the potential risk to human health at little to no cost to

the producer. With proper validation, this would provide a “win-win” situation for the

pork industry, environmental groups and consumers.

161

6. CONCLUSIONS

The use of population structures to control the flow of information in an evolving

population of solutions has been demonstrated. While this work has focused on the use of

GBEAs to control the rate of diversity loss, it should be noted that GBEAs are just one

tool for controlling information flow and diversity loss. By placing restrictions on which

population members may be selected during mating events, barriers are placed against the

flow of information. This makes it possible to control the rate at which diversity is lost in

a population of evolving solutions, allowing building blocks and complete solutions time

to mature. Depending on the amount of diversity necessary, this can lead to a faster

convergence time or to the discovery of multiple satisfactory solutions. The amount of

diversity preserved is indirectly related to the flow of information in the evolving

population. Applying these various graphs against a test suite of problems has made it

possible to evaluate the graphs and determine which are best suited for the evaluation of

evolutionary computation problems. The evaluation of the graph sets was done in tandem

with the evaluation of evolutionary computation problems. In this way, representative

graph sets and test suites were developed, increasing the utility of GBEAs and making it

possible to construct an unbiased test suite of problems.

Controlling the flow of information in evolutionary algorithms can improve the time to

convergence to an optimal solution. While the benefit varies by problem, all but the one-

max problem had some amount of speed up when compared to a standard evolutionary

algorithm. The PORS15 problem, a problem with a deceptive fitness function, had nearly

a 24x decrease in the number of mating events to completion with a population size of

162

256, the largest improvement in time to convergence for any of the problems examined.

This increase in performance is a result of several barriers to the flow of information

preventing the destruction of necessary building blocks by superior yet sub-optimal

solutions.

The results of Figure 14 and the shift of preferred graph in the population size study

highlight a difference between the amount of diversity initially present in an evolutionary

algorithm and the preservation of diversity. The use of a diversity preserving tool shifts

the required population size to the left of Figure 14, decreasing the population size

necessary for best algorithm performance. This is due to a tradeoff between initial

diversity in the population of solutions and the preservation of the diversity present as

evolution proceeds. After a sufficient population size is reached to provide the necessary

information for an optimal solution, preserving diversity can be used as a surrogate to a

larger population size. The mechanism by which diversity preservation does this is by

maintaining copies of the necessary information to keep it available rather than providing

a large number of copies. This allows for a smaller population size to be used when

investigating problems, decreasing the number of fitness calls and thereby decreasing the

amount of time necessary to find a satisfactory solution. This is especially beneficial

when applied to problems with expensive fitness calls, such as implementations using

computational fluid dynamics solvers (Bryden, et al., 2002).

The need for and preferred type of diversity can be used as a means to classify

evolutionary computation problems. For problems with simple, non-deceptive fitness

163

landscapes there is little need for diversity. As problem landscaped become more multi-

modal and deceptive, diversity and diversity preservation become more important. In

addition, as the number of variables and the size of the available alphabet increases the

use of diversity preserving tools becomes more important. By developing a taxonomy of

these problems, it is possible to apply a priori knowledge of a new problem to determine

a population size and diversity preservation scheme.

This taxonomy of evolutionary computation problems also serves as a tool for the

development of an unbiased test suite of problems. Just as graph preference can be used

as a characteristic to classify problems, using a collection of problems that show a wide

range of preferred graph would allow for an unbiased evaluation of any new graphs. This

test suite would also provide a diverse sample of evolutionary computation problems that

could be used to evaluate other proposed algorithms, giving researchers the ability to

weigh the utility of different methods to make an informed decision as to which to

include in their work.

Controlling the flow of information makes it possible to find several acceptable solutions

to an evolutionary computation problem. Diversity preservation allows superior solutions

enough time to develop a foothold in a local graph neighborhood. After these solutions

have had an opportunity to mature, they begin to interact at the active edges in the

population structure. If they are similar, the solutions will gradually merge together,

leaving only those solutions that have distinct differences. A larger number of barriers to

the flow of information gives more opportunities for the development of these local

164

solutions, although there is an added computational cost for these extra solutions and so

more run time is necessary when compared to achieving a single solution.

By providing a variety of solutions for the design process these methods provide a benefit

to engineering design by adding a computationally inexpensive method to increase the

flexibility of the design process. This benefit is even more pronounced when using a

system of systems approach (Fig. 36.) When bringing together multiple components to

construct an assembly or system, an optimal component design may not lead to an

optimal system design. Careful design of the models used to investigate the system can

overcome these issues, but as more and more components are added to the system this

quickly becomes unmanageable. Optimizing both components and the entire system

using evolutionary computation methods and proper diversity management can

automatically negotiate the necessary tradeoffs for this optimization. Compare this

problem to a deceptive problem, where optimal component level design is not the optimal

component design for the system. In the same manner in which necessary building blocks

are preserved in a deceptive problem, these component designs necessary to the overall

system optimization are preserved until they can be utilized in the global optimization

process.

A result of the antibiotic regimen experiment was the emergence of a novel solution to

the problem that resembles one currently implemented in medical science. While the

165

Figure 36, Sytem of systems concept for engineering optimization (John Deere Company, 2008)

166

graph set used was the larger recommended set of graphs, the guidelines for graph

selection recommended the use of a graph that has a modest amount of diversity

preservation. This is due mainly to the large number of variables used in the

representation of the problem. When the results were analyzed this recommendation was

confirmed, with the Petersen graph giving the best results, and also finding a novel pulsed

method for providing the antibiotics to the animals.

This pulse administration of antibiotics found by the GBEA is an example of how these

techniques can be used by engineers as a tool to inspire creativity, similar to the concept

of computational creativity (Saunders, 2002.) By controlling the flow of information

within the evolving population of solutions, several novel solutions can be developed.

When used in the design process, this tool can suggest a variety of novel solutions for the

user to consider for the problem at hand, allowing human input to include design

requirements that cannot be included in computer code.

167

7. FUTURE RESEARCH

There are four distinct areas where this work can be extended. First, the classification of

evolutionary computation problems and the continuation of the taxonomy and test suite

work, which will continue to provide information on the similarities and differences of

differently classes of problems. This information would be applied to two other areas of

future work, the development of novel designs that encourage creativity and the

optimization of multilevel models of systems. Finally, there are several research avenues

that the antibiotic regimen problem could be used to pursue, both in improvements to the

current model and expansion to other areas of investigation.

The development of a taxonomy of evolutionary computation problems and the use of

this information for test suite development will be a work in progress for several years.

Sufficient information for preliminary recommendations exists, but more problems need

to be examined to develop a more useful taxonomy of problems. While a complete

taxonomy of problems is unlikely to be achieved, continued contributions to this work

would increase the database of problems and allow researchers to find problems more

similar to the one they would like to examine. Tied to this taxonomy work is the

development of a test suite of evolutionary computation problems. As more information

is gathered on the nature of the problems being approached with these techniques, a more

representative and less biased test suite can be produced, giving better insight into new

techniques.

168

The use of diversity preserving tools to find multiple solutions could also be used to

promote creativity, such as computational creativity in art (Romero and Machado, 2008.)

One example would the use of GBEAs to investigate an image segregation problem

(Karthikeyan, Bryden and Ashlock, 2005). In this study, a gene was constructed that held

generator points and numerical weights. These were used to construct panes of the image

using Voronoi tessellation with the color of the pane determined by the color of the pixel

specified by the generator points. While the initial intent of this research was to find a

novel method for image compression, it was found that this method created a stained

glass effect by segmenting different colored tiles. By changing the numerical weights and

generator points, different effects could be generated to form an artistic expression.

Similar applications could be applied in both visual and audio artistic endeavors.

The use of these tools to control the flow of information in engineering optimization

would be a benefit to design on a systems level. Utilizing more flexible frameworks for

engineering design allows professionals to bring together larger sets of data and analyze

more and more components and systems. To optimize these larger simulations, it is

necessary to provide a tool that allows for a larger degree of design flexibility. This can

be achieved by managing the amount of diversity present in and evolutionary algorithms.

By combining simulations using different graph based evolutionary algorithms,

computational resources can be assigned to components which are key to the design or

are known to have several optimal configurations. By selecting an appropriate solution

presented by the graph based evolutionary algorithm, novel designs can be developed that

169

are superior to those that already exist or that can provide solutions to the problems of the

future.

There are also several opportunities to improve the modeling of the interactions between

bacteria, antibiotics and swine. The model proposed in Chapter 5 is adequate for the

evaluation of graph based evolutionary algorithms, but there are several areas where it

can be expanded to encompass the issues of antibiotic use in pork production. A variety

of solutions to the problem of finding a superior antibiotic regimen have been found that

satisfy the limits placed on the model, but there are several more factors that should be

considered. More bacteria, such as Salmonella.spp should be added to the model to better

represent the risk to human health. This could be done by adding another bacteria term to

model, with the associated growth and mortality coefficients and MIC values for the

antibiotic being evaluated.

It would also be beneficial to consider more that on type of antibiotic, as it is not

uncommon for one type of antibiotic to be used as a performance enhancer while a

different antibiotic would be used for disease control or prevention. A slight adjustment

to the second term of equations 5-8 and 5-9 and to equation 5-10 allows for modeling

more than one antibiotic treatment:

170

max

)()()(
10

N
tNtNtN

NK
dt

dN rbras
sGs

s (7-1)

bbaa

bbaa
ksa CtCCtC

CtCCtCK
5050

5050

/)(/)(1
/)(/)(

bb

b
krb

rbras
raGra

ra

CtC
tC

K
N

tNtNtN
NK

dt
dN

50max)(
)()()()(

10 (7-2)

aa

a
kra

rbras
rbGrb

rb

CtC
tC

K
N

tNtNtN
NK

dt
dN

50max)(
)()()()(

10 (7-3)

)0(aAbxCK
dt
dC (7-4)

)0(bAbxCK
dt
dC (7-5)

Where the ‘a’ and ‘b’ subscripts represent different antibiotics. This can be repeated

multiple times for the administration of additional antibiotics to the regimen. It should be

noted that there is a significant chance of drug interactions that should be taken into

consideration when using multiple antibiotics. This can also be combined with

expansions to the model to account for multiple types of bacteria that are a potential

human health risk. It should be noted, however, that many of the drug interactions that

would be encountered in this work are unknown and could require years of medical

research to discover, and several more years to adequately model.

171

While this model addresses the concentrations of bacteria and antibiotic in the animal as

delivered to the abattoir, there is also a potential risk that the bacteria and antibiotic may

be released to the environment while the animal is being grown (Qiang, Macauley,

Mormile, Surampalli, and Adams, 2006.) This could be included in the model by the

introduction of terms that track these concentrations during the growth period of the

animal. The addition of these considerations would increase the complexity of the model

as well as necessitating a good deal of research and evaluation to determine how best to

incorporate the impact of the antibiotic and resistant bacteria on the surrounding

environment. Some of these considerations would be the size of hog lagoons and the

effectiveness of oxidation methods to break down the antibiotics found in the effluent

streams.

With these additions in place, this model could also be implemented as a tool for use in

the finishing facilities. If the amount of antibiotic administered to the animals were varied

either by a necessary intervention or human error, this tool would allow the operator to

determine a new regimen that would meet the same goals while taking into account the

new antibiotic levels.

172

APPENDIX: GRAPH THEORY OVERVIEW

A combinatorial graph or graph (G), is a collection of vertices (V(G)) and edges (E(G))

where E(G) is a set of unordered pairs from V(G). Two vertices of the graph are

neighbors if they are members of the same edge. The degree of the vertex is the number

of edges containing that vertex. If all vertices in a graph have the same degree, the graph

is said to be regular, and if the common degree of a regular graph is k, then the graph is

said to be k-regular. If you can go from any vertex to any other vertex traveling along

vertices and edges of the graph, the graph is connected. The diameter of a graph is the

longest that the most direct path between any two of the vertices can be, or in other

words, the shortest path across the graph. A graph used to constrain mating in a

population can be called the population structure. The general strategy for graph based

evolutionary algorithms is to use the graph to specify the geography on which a

population lives, permitting mating only between neighbors, and finding graphs that

preserve diversity without hindering progress due to heterogeneous crossover. Additional

information on combinatorial graphs can be found in (West, 1996.)

List of Graphs

In this section, the graphs used in this study are defined, as well as those necessary to

properly describe those used.

Definition 1 The complete graph on n vertices, denoted Kn, has n vertices and all

possible edges.

173

Definition 2 The n-cycle, denoted Cn, has vertex set Zn. Edges are pairs of vertices that

differ by 1 (mod n) so that the vertices form a ring with each vertex having two neighbors

A C32 graph is shown in Fig 1(a).

Definition 3 The n-hypercube, denoted Hn, has the set of all n character binary strings as

its set of vertices. Edges consist of pairs of strings that differ in exactly one position. A 5-

hypercube is shown in Fig 1(d).

Definition 4 The n x m-torus, denoted Tn,m, has vertex set ZnxZm. Edges are pairs of

vertices that differ either by 1 (mod n) in their first coordinate or by 1 (mod m) in their

second coordinate, but not both. These graphs are n x m grids that wrap (as tori) at the

edges. An 8 x 4-torus is shown in Fig 1(c).

Definition 5 The generalized Petersen graph with parameters n, k, denoted Pn,k, has

vertex set 0,1,…,2n-1. The two sets of vertices are both considered to be copies of Zn.

The first n vertices are connected in a standard n-cycle. The second n vertices are

connected in a cycle-like fashion, but the connections jump in steps of size k (mod n). The

graph also has edges joining corresponding members of the two copies of Zn The graph

P32,5 is shown in Fig 1(b).

Four classes of random graphs were added to the graph set in hopes that more insight into

the usefulness of the technique. The first three graphs are generated using edge moves

174

(Ashlock, Walker, and Smucker, 1999) in a randomized algorithm that corresponds to a

type of random graph (a probability distribution on some set of graphs).

Definition 6Anedge move is performed as follows. Two edges {a,b} and {c,d} are found

that have the property that none of {a,c}, {a,d}, {b,c}, or {c,d} are themselves edges. The

edges {a,b} and {c,d} are deleted from the graph, and the edges {a,c} and {b,d} are

added. Notice that edge moves preserve the regularity of a graph if it is regular.

Random Graphs

The last of the random graphs was generated by randomly placing vertices on a unit torus

(a unit square that is wrapped at the edges.) In order to place a control on the degree of

the graph, this distance was varied with the population size (Table 11.) Three different

instances of each graph class were produced for use in this research.

The first three random regular graphs were generated using the following algorithm.

Starting with a regular graph, 3000 edge moves are performed on vertices selected

uniformly at random from those that are valid edge moves. Initially, the random graphs

were labeled according to the degree of the graph, but since the degree of the graphs may

change when the number of vertices is changed, these numbers are now merely labels,

only necessarily showing the degree of the graphs for population size of 512. For 3-

regular graphs, the Petersen size one graph was the starting point. For 4-regular graphs,

the starting point was Tn,m graph with the largest radius for that population size (ie T4,8

175

Table 11, Separation distances for random tori generation.

Population size Separation
32 0.35
64 0.30

128 0.20
256 0.15
512 0.07

1024 0.05
2048 0.03
4096 0.02

176

for 32 vertices, T8,m for 64 and 128 vertices, and T16,m for 256 vertices and above), and

the 9-regular graph was started with a hypercube graph. These graphs are denoted R

(n,k,i) in this study, with n being the number of vertices, k being the degree for

population size 512 (as described above), and i is the instance of the graph.

For the final set of three random graphs, a number of points equal to the population size

were placed on a unit torus. Edges were created with these points if they were within a

certain distance from each other, varying for each population size, as outlined in Table

11. These values were selected to try to maintain a roughly equal degree of graph for

each population size. After generation, the graph was checked to see if it was connected,

and rejected if the test failed. These graphs are denoted RT(r,i), where r is the maximum

separation from another point where an edge would still be created, and i is the instance

of the graph.

177

REFERENCES

Abrosov, N.S. and Kovroc, B.G. (1977) Analysis of the Structure of Community of
Unicelluar Organisms, Nauka Publisher, Novosibirsk.

Ackley, D. L. and Littman, M. L. (1992) “A Case for Distributed Lamarckian Evolution,”
Working Paper, Cognitive Science Research Group. Bellcore, New Jersey.

Altekruse, S.F., Cohen, M.L. and Swerdlow, D.L. (1997) “Emerging Foodborne
Diseases,” Emerging Infectious Diseases, Vol. 3, No. 3.

Altenberg, L. (1995) “The Schema Theorem and Price’s Theorem,” Foundations of
Genetic Algorithms 3, edited by Whitley, L. D. and Vose, M. D., Morgan Kaufmann
Publishers, San Francisco, CA, pp. 23-49.

Arabas, J., Michalewicz, Z., and Mulawka, J. (1994) “GAVaPS – a Genetic Algorithm
with Varying Population Size,” Proceedings of the First IEEE Conference on
Evolutionary Computation, 73-78. Kauffman.

Ashlock, D. A. (2006) Evolutionary Computation for Modeling and Optimization,
Springer Science+Business Meida, Inc., New York, NY.

Ashlock, D.A.,Bryden, K.M. and Corns, S.M. (2005) “Graph Based Evolutionary
Algorithms Enhance the Location of Steiner Systems.” Proceedings of the 2005 Congress
on Evolutionary Computation, pp. 1861-1866. IEEE Press.

Ashlock, D.A.,Bryden, K.M., Corns, S.M. and Schonfeld J. (2006), “An Updated
Taxonomy of Evolutionary Computation Problems Using Graph-Based Evolutionary
Algorithms,” Proceedings of the 2006 IEEE World Congress on Computational
Intelligence, pp. 403-410. IEEE Press.

Ashlock, D., Guo, L. and Qiu, F., (2002) “Greedy Closure Genetic Algorithms,”
Proceedings of the 2002 Congress on Evolutionary Computation, pp. 1296-1301,
Piscataway, NJ. IEEE Press.

Ashlock, D. A. and Lathrop, J. I. (1998a) An Arithmetic Test Suite for Genetic
Programming, ISU Applied Mathematics Report AM98-1.

Ashlock, D. A. and Lathrop, J. I. (1998b) “A fully Characterized Test Suite for Genetic
Programming,” Evolutionary Programming VII, pp. 537-546.Springer, New York.

Ashlock, D. A., Walker, J., and Smucker, M. (1999) “Graph Based Genetic Algorithms,”
Proceedings of the 1999 Congress on Evolutionary Computation, pp. 1362-1368. Morgan
Kaufmann, San Francisco.

178

Banzhaf, W. G., Nordin, P., Keller, R. E., and Francone, F. D. (1998) Genetic
Programming: An Introduction. Morgan Kaufmann, San Francisco.

Bartholomew, M.J.,Vose, D.J., Tollefson, L.R., and Travis, C.C. (2005) “A Linear Model
for Managing the Risk of Antimicrobial Resistance Originating in Food Animals,” Risk
Analysis, Vol. 25, No. 1, pp. 99-108.

Belew, R. (1992) “Paradigmatic over-fitting,” GA-Digest, 6(18).

Blaize, M., Knight, D. and Rasheed, K. (1998) “Automated Optimal Design of Two-
Dimensional Supersonic Missile Inlets,” Journal of Propulsion Power 14, pp. 890-898.

Braude, R., Clarke, P.M., Mithcell, K.G., Cray, A.S., Franke, A. and Sedgwick, P.H.
(1957) “Unrestricted Whey for Fattening Pigs,” Journal of Agricultural Science, Vol. 49:
pp. 347

Bryden, K. M., Ashlock, D. A., Corns, S. M., and Willson, S.J. (2006) “Graph Based
Evolutionary Algorithms,” IEEE Transactions on Evolutionary Computations, Vol. 10:5,
pp. 550-567.

Bryden, K. M., Ashlock, D. A., McCorkle, D. S., and Urban, G. L. (2002) “Optimization
of Heat Transfer Utilizing Graph Based Evolutionary Algorithms,” International Journal
of Heat and Fluid flow, 24(2), pp. 267-277.

Canibe, N. and Jensen, B.B. (2003) “Fermented and Nonfermented Liquid Feed to
Growing Pigs: Effect on Aspects of Gastrointestinal Ecology and Growth Performance,”
Journal of Animal Science, Vol. 81, pp. 2019-2031.

Corns, S. M., Hurd, H. S., Ashlock, D. A., and Bryden, K. M. (2006) “Evolutionary
Optimization of an Antibiotic Feed Regimen Applied to Multiple Bacteria,” in Intelligent
Engineering Systems through Artificial Neural Networks, edited by C. H. Dagli et al.,
ASME Press , vol. 16: pp. 255-260.

Cox, L.A. (2004) “Potential Human Health Benefits of Antibiotics used in Food Animals:
A Case Study of Virginiamycin,” Environment International, Vol. 31, pp.549-563.

Cox, L.A., Copeland, D., and Vaughn, M. (2005) “Ciprofloxacin Resistance Does Not
Affect Duration of Domestically Acquired Campylobacteriosis,” Journal of Infectious
Diseases, 191, pp. 1565-1566.

Cromwell, G.L. (2001) “Antimicrobial and Promicrobial Agents,” in Swine Nutrition, 2nd

Ed. Edited by Lewis, A.J. and Southern, L.L., CRC Press LLC.

179

Cromwell, G. L. and Dawson, K. A. (1992) “Antibiotic Growth Promotants,” In
Emerging Agricultural Technology: Issues for the 1990’s, Office of Technology
Assessment, U.S. Congress, Washington, D.C.

Davidor, Y., Yamada, T., and Nakano, R. (1993) “The ECOlogical framework II:
Improving GA Performance at Virtually Zero Cost,” Proceedings of the Fifth
International Conference on Genetic Algorithms, pp. 171-175. Morgan Kaufman.

John Deere Company (2008) Image from www.leetractor.com/newequip.htm, last
accessed April 14, 2008.

DeJong, K. A. (1975) An analysis of the behavior of a class of genetic adaptive systems,
(Doctoral dissertation, University of Michigan, 1975). Dissertation Abstracts
International, 36(10), 5140B.

Dejong, K. A. and Spears, W. M. (1990) "An Analysis of the Interacting Roles of
Population Size and Crossover in Genetic Algorithms," Parallel Problem Solving from
Nature: 1st Workshop (PPSN 1), v496, edited by H-P. Schwefel and R. Manner, pp. 38-
47. Springer-Verlag.

Dewey, C. E., Cox, B. D., Straw, B. E., Bush, E. J., and Hurd, H. S. (1999) “Use of
Antimicrobials in Swine Feeds in the United States,” Swine Health and Production, Vol.
7, No. 1, pp. 19-25.

Donachie, W. D. and Robinson, A. C. (1996) “Cell Division: Parameter Values and the
Process,” In Excherichia coli and Salmonella typhimurium: Cellular and Molecular
Biology, 2nd ed., Edited by F. C Neidhardt and others, pp. 1578-1593, American Society
for Microbiology, Washington, D.C.

Doyle, M.P. and Roman, D.J. (1981) Growth and survival of Campylobacter
fetussusp.jejuni as a function of temperature and pH. J. Food Protect. 44(8), pp. 596-601.

Dritz, S.S.,Tokach, M.D., Goodband, R.D., and Nelssen, J.L. (2002) “Effects of
Administration of Antimicrobials in Feed on Growth Rate and Feed Efficiency of Pigs in
Multisite Production Systems,” JAVMA, Vol. 220, No. 11, pp. 1690-1695.

Engelbrecht, J. J. (2007) “Optimization of a hydraulic mixing nozzle,” (Master’s thesis,
Iowa State University, 2007).

Fabbri, G. (1997) “A Genetic Algorithm for Fin Profile Optimization,” International
Journal of Heat and Mass Transfer, Vol.40, No.9, 2165-2172.

Fernandes, C. and Rosa, A. (2001) “A Study on Non-random Mating and Varying
Population Size in Genetic Algorithms Using a Royal Road Function,” Proceedings of
the 2001 Congress on Evolutionary Computation, Vol.1, pp. 60-66.

180

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966) Artificial Intelligence through
Simulated Evolution. Wiley, New York.
Giacobini, M., Tomassini, M., Tettamanzi, A. G. B., and Alba, E.(2005) “Selection
Intensity in Cellular Evolutionary Algorithms for Regular Lattices,” IEEE Transactions
on Evolutionary Computation, Vol.9, No.5, pp. 489-505.

Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Publishing Company, Inc., Reading, MA.

Goldberg, D. E. and Deb, K., (1991) “A Comparative Analysis of Selection Schemes
Using in Genetic Algorithms,” Foundations of Genetic Algorithms, G. J. E. Rawlins Ed.,
pp. 69-93. Morgan Daufmann, San Mateo, CA.

Goldberg, D. E., Deb, K., and Clark, J. H. (1992) “Genetic Algorithms, Noise and the
Sizing of Populations,” Complex Systems, Vol.6, No.4, pp. 333-362.

Goldberg, D. E., Deb, K., and Thierens, D. (1993) “Towards a Better Understanding of
Mixing in Genetic Algorithms,” Journal of the Society of Instruments and Control
Engineers 32(1), pp. 10-16.

Goldberg, D. E., Sastry, K. and Latoza, T. (2002) “On the Supply of Building Blocks,”
Proceedings of GECCO-2002, pp. 328-335.

Grefenstette, J. J. (1986) “Optimization for Control Parameters for Genetic Algorithms,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol.SMC-16, No. 1.

Gusfield, D. (1997) Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge, MA.

Hacker, K. A., Eddy, J. and Lewis, K. E. (1992) “Efficient Global Optimization Using
Hybrid Genetic Algorithms,” 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization.

Harik, G., Cantú-Paz, E., Goldberg, D. E., and Miller, B. L. (1997) “The Gambler’s Ruin
Problem, Genetic Algorithms, and the Sizing of Populations,” Proceedings of the 1997
IEEE International Conference on Evolutionary Computation. IEEE press.

Haupt, R. L. and Haupt, S. E. (1998) Practical Genetic Algorithms. New York, John
Wiley & Sons.

Haupt, R. L. and Haupt, S. E. (2000) “Optimum Populations Size and Mutation Rate for a
Simple Real Genetic Algorithm that Optimizes Array Factors,” Applied Computational
Electromagnetics Society Journal, v. 15, 2, pp. 94-102.

181

Hays, V. W. (1977) Effectiveness of Feed Additive Usage of Antibacterial Agents in
Swine and Poultry Production, Office of Technology Assessment, U.S. Congress,
Washington, D.C. (Edited version: Hays, V.W. (1981). The Hays Report, Rachelle
Laboratories, Inc., Long Beach, CA.)

Herbert, D. (1958) “Some Principles of Continuous Culture,” Resumes de Travaux
Presentees a Sessions de Rapports: 7th International Congress International de
Microbiologie, Stockholm, pp. 381-396.

Hochhaus, G. and Derendorf, G. (1995) “Dose Optimization Based on Pharmacokinetic-
pharmacodynamic Modeling,”In Handbook of Pharmacokinetic/pharmacodynamic
correlation, Ed. H. Derendorf and G. Hochhaus, CRC Press, Inc., Boca Raton, Fl.

Holland, J. H. (1975) Adaptation in Natural and Artificial Systems. The University of
Michigan Press.

Hurd, H.S.,Enoe, C., Sorensen, L. Wachmann, H., Hald, T., and Greiner, M. (2004)
“Risk-based Optimization of the Danish Pork Salmonella Program.”, Project Report,
International EpiLab, Copenhagen, Denmark.

Hurd, H.S. (2006) “Assessing Risks to Human Health from Antibiotic Use in Food
Animals,” Microbe, Vol.1, No. 3, pp. 115-119.

Jang, M. and Lee, J. (2000) “Genetic Algorithm Based Design of Transonic Airfoils
Using Euler Equations,” in Collection of Technical Papers-AIAA/ASME/ASCE/ASC
Structures, Structural Dynamics and Materials Conference, 1(2), pp. 1396-1404. Atlanta,
GA.

Karthikeyan, B., Bryden, K.M. and Ashlock, D.A. (2005) “Low-Impact Image
Segmentation by Balance Weighted Voronoi Tessellations,” Intelligent Engineering
Systems Through Artificial Neural Networks, vol. 15, pp. 533-541. ASME Press, New
York.

Keane, A.J. (1994) “Experiences with Optimizers in Structural Design,” Proceedings of
the 1st Conference on Adaptive Computing in Engineering Design and Control, pp. 14-
27. Published by the University of Plymouth, UK.

Kim, E-Y. (2005) “Analysis of Game Playing Agents with Fingerprints,” (Doctorial
Dissertation, Iowa State University, 2005).

Kimura, M. and Crow, J. (1963) “On the Maximum Avoidance of Inbreeding,” Genetic
Research, 4, pp. 399-415.

182

Kinnear, K. (1994) Advances in Genetic Programming. The MIT Press, Cambridge, MA.

Konkel, M. E., Monteville, M. R., Riveral-Amill, V. and Joens, L. A.(2001) “The
Pathogenesis of Campylobacter Jejuni-Mediated Enteritis,” Current Issues in Intestinal
Microbiology, 2(2), pp. 55-71, 2001.

Koza, J. R.(1992) Genetic Programming. The MIT Press, Cambridge, MA, 1992.

Kreft, J.U., Booth, G. and Wimpenny, J.W.T. (1998) “BacSim, A Simulator for
Individual-based Modelling of Bacterial Colony Growth,” Microbiology, Vol. 144, pp.
3275-3287.

Kreft, J.U. (2006) Personal web-site, http://www.theobio.uni-
bonn.de/people/jan_kreft/bacsim.html, last accessed March 23, 2008.

Lee, M.K., Billington, J.B. and Joens, L.A. (2004) “Potential Virulence and
Antimicrobial Susceptibility of Campylobacter jejuni Isolates from Food and Companion
Animals,” Foodborne Pathogens and Disease, Vol. 1, No. 4, pp. 223-230.

Lewis, A.J. and Southern, L.L. (2001) Editors, Swine Nutrition, 2nd Ed., CRC Press, Boca
Raton, FL.

Lipsitch, M and Levin, B.R. (1997) “The Population Dynamics of Antimicrobial
Chemotherapy,” Antimicrobial Agents and Chemotherapy, Vol.41, No.2, pp. 363-373.

Loewe, S. (1953) “The Problem of Synergism and Antagonism of Combined Drugs,”
Arzneimittel Forschumg, Vol. 3, pp. 285-290.

Martin, T. J. and Dulikravich, G. S. (1992) “Implicit and Explicit Sensitivities for
Optimization of Cooled Turbine Blades,” 9th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, 1992.

Mathias, K. and Whitley, D. (1994) “Transforming the Search Space with Gray Coding,”
Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, v /1, pp. 513-
518.

Mayr, E and Ashlock, P. D. (1991) Principles of Systematic Zoology. McGraw-Hill,
New York.

McCorkle, D. S., Bryden, K. M., and Carmichael, C. G. (2003) “A New Methodology for
Evolutionary Optimization of Energy Systems,” Computer Methods in Applied
Mechanics and Engineering, 192(44-46), pp. 5021-5036.

McEliece, R. (1977) The Theory of Information and Coding. Addison-Wesley, Reading,
MA.

183

Miller, J. F. and Thomson, P. (2000) “Cartesian genetic programming,”
Proceedings of the European Conference on Genetic Programming,
pp. 121–132, London, UK. Springer-Verlag.

Food Safety First (2006) “Microbial Growth Simulation Program,”
http://www.foodsafetyfirst.org/pdfs/micro%20growth.pdf, last accessed April 15, 2008.

Food Safety and Inspection Service, United States Department of Agriculture (2006)
“Microbial Pathogen Computer Modeling,”
http://www.fsis.usda.gov/regulations_&_policies/Notice_25-05/index.asp, last accessed
April 13, 2008.

Mueller, M., Pena, A. and Derendorf, H. (2004) “Issues in Pharmacokinetics and
Pharmacodynamics of Anti-Infective Agents: Kill Curves versus MIC,” Antimicrobial
Agents and Chemotherapy, Vol. 48, No. 2, pp. 369-377.

Mühlenbein, H. (1991) “Darwin’s Continent Cycle Theory and Its Simulation by the
Prisoner’s dilemma,” Complex Systems, 5, pp. 459-478.

Mühlenbein, H., Schomisch, M., and Born, J. (1991) “The Parallel Genetic Algorithm as
Function Optimizer,” Proceeding of the Fourth International Conference on Genetic
Algorithms, pp. 271-278. Morgan Kaufmann Publishers.

MDO Test Suite. (2002). NASA Langley Research Center, Multidisciplinary
Optimization (MDO) Branch, http://mdob.larc.nasa.gov/mdo.test, last accessed October
17, 2003.

National Research Council (1998) Nutritional Requirements of Swine, 10th ed.,
Washington, D.C., National Academy Press.

Nikolaou, M. and Tam, V.H. (2005) “A New Modeling Approach to the Effect of
Antimicrobial Agents on Heterogeneous Microbial Populations,” Journal of
Mathematical Biology, vol 52, No. 2, pp. 154-182.

Nimwegen, E. V. and Crutchfield, J. P. (2001) “Optimizing Epochal Evolutionary
Search: Population-Size Dependent Theory,” Machine Learning, v. 45, n 1, pp. 77-114.

Nolting, A. and Derendorf, H. (1995) “Pharmacokinetic/Pharmacodynamic modeling of
antibiotics,” In Handbook of Pharmacokinetic/pharmacodynamic correlation, Ed. H.
Derendorf and G. Hochhaus, CRC Press, Inc., Boca Raton, Fl.

Panikov, N.S. (1995) Microbial Growth Kinetics, Chapman & Hall, London.

184

Parmee, I. C. (2001) Evolutionary and Adaptive Computing in Engineering Design.
Springer-Verlag London Limited.

Patience, J. F., Thacker, P. A., and deLange, C. F. M. (2005) Swine Nutrition Guide, 2nd

edition, Prairie Swine Centre, Inc.

Prescott, J.F.,Baggot, J. D., and Walker, R.D. (2000) Antimicrobial Therapy in
Veterinary Medicine, 3rd ed., Iowa State University Press, Ames, IA.

Qiu, F., Guo, L., Wen, T.J., Ashlock, D.A.,and Schnable, P.S. (2003) “DNA Sequence-
Based Barcodes for Tracking the Origins of Ests from a Maize CDNA Library
Constructed Using Multiple MRNA Sources,” Plant Physiology, 133, pp. 475-481.

Qiang, Z., Macauley, J., Mormile, M., Surampalli, R., and Adams, C. (2006) “Treatment
of Antibiotics and Antibiotic Resistant Bacteria in Swine Wastewater with Free
Chlorine,” J. Agriculture and Food Chemistry, 54, pp. 8144-8154.

Rechenburg, I. (1984) “The Evolution Strategy: A Mathematical Model of Darwinian
Evolution,” in Synergetics: From Microscopic to Macroscopic Order, Frehlend, E. Ed.,
Springer Series in Synergetics, Vol. 22; pp. 122-132.

Reynolds, C. (1992) An Evolved, Vision-based Behavioral Model of Coordinated Group
Motion. In Jean-Arcady Meyer, Herbert L. Roiblat, and Stewart Wilson, editors, From
Animals to Animats 2, pp. 384-392. MIT Press.

Romero, J. and Machado, P. (2008) The Art of Artificial Evolution, Springer-Verlag
London Limited.

Rosenquist, H., Nielsen, N.L.,Sommer, H.M., Norrung, B., and Christensen, B.B. (2003)
“Quantitative Risk Assessment of Human Campylobacteriosis associated with
Thermophilic Campylobacter Species in Chickens,” International Journal of Food
Microbiology, Vol. 83, pp. 87-103.

Rudolph, G. (2000a), “Takeover Times and Probabilities of Non-Generational Selection
Rules”, in Proceedings of the Genetic and Evolutionary Computation Conference, San
Francisco, CA, pp. 903-910.

Rudolph, G. (2000b), “On Takeover Times in Spatially Structured Populations: Array
and Ring”, in Proceedings of the Second Asia-Pacific Conference on Genetic Algorithms
and Aplications, Hong Kong, pp. 144-151.

Salipante, S.J. and Hall, B.G. (2003) “Determining the Limits of the Evolutionary
Potential of an Antibiotic Resistance Gene,” Journal of Molecular Biology and
Evolution, 20(4), pp. 653-659.

185

Sarma, J. and De Jong, K. (1996)“An Analysis of the Effects of Neighborhood Size and
Shape on Local Selection Algorithms.” Proceedings of the Fourth International
Conference on Parallel Problem Solving from Nature (PPSN IV), pp 236–244.

Saunders, R. (2002) Curious Design Agents and Artificial Creativity, (Doctoral
dissertation, University of Sydney, 2002).

Schaffer, J. D., Caruana, R. A., Eshelman, L. J., and Das, R. (1989) “A Study of Control
Parameters Affecting Online Performance of Genetic Algorithms for Function
Optimization,” Proceeding of the Third International Conference on Genetic Algorithms,
pp. 51-60. Morgan Kauffman.

Schnickel, A. P. and Craig, B.A. (2001) “Nonlinear Mixed Effects Model for Swine
Growth,” Purdue University 2001 Swine Research Report, Purdue University, Lafayette,
IN.

Schmidt, S. K. (1992) “Models for Studying the Population Ecology of Microorganisms
in Natural Systems,” in Modeling the Metabolic and Physiologic Activities of
Microorganisms, ed. by C. J. Hurst, pp. 1-59, John Wiley and Sons, NY.

Schwefel, H. P. (1975) “Evolutions strategie und Numerische Optimierung,” (Doctoral
dissertation, Technical University of Berlin, 1975).

Singer, R.S., Cox, L.A., Dickson, J.S., Hurd, H.S., Phillips, I., and Miller, G.Y. (2004)
“Potential Risks and Benefits of Tylosin Use in Poultry,” Interscience Conference on
Antimicrobial Agents and Chemotherapy. Paper C2-1986, Poster #3011, Washington,
DC.

Smith, J. and Fogarty, T. C. (1996) “Self Adaptation of Mutation Rates in a Steady State
Genetic Algorithm,” Proceedings of the IEEE International Conference on Evolutionary
Computing, pp. 318-323.

Spears W. M. (1993) “Crossover or Mutation?” Foundations of Genetic Algorithms 2, pp.
221 – 237. Morgan Kaufmann.

Spears, W.M. (2006) “Genetic Algorithms (Evolutionary Algorithms): Repository of Test
Functions,” http://www.cs.uwyo.edu/~wspears/functs.html, last accessed April 3, 2008.

Syswerda, G. (1991) A Study of Reproduction in Generational and Steady State Genetic
Algorithms. Foundations of Genetic Algorithms, pp. 94-101. Morgan Kaufmann.

Thakur, S. and Gebreyes, W.A. (2005) “Prevalence and Antimicrobial Resistance of
Campylobacter in Antimicrobial-Free and Conventional Pig Production Systems,”
Journal of Food Protection, Vol.68, No.11, pp. 2402-2410.

186

Urban, G. L., Bryden, K. M., and Ashlock, D. (2002) “Engineering Optimization of an
Improved Plancha Stove,” Energy for Sustainable Development, 6(2), pp. 5-15.

Van Boekel, M. A. J. S. (1996) “Statistical Aspects of Kinetic Modeling for Food
Science Problems,” Journal of Food Science, Vol.61, No. 3, pp. 477-485.

Vavak, F., Jukes, K., and Fogarty, T. C. (1997) “Adaptive Combustion Balancing in
Multiple Burner Boiler Using a Genetic Algorithm with Variable Range of local Search,”
The proceedings of the 7th International Conference on Genetic Algorithms, pp. 719-726.
Morgan Kaufmann.

West, D. B. (1996) Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ
07458.

Whitley, D. (1989) “The Genitor algorithm and selection pressure: Why Rank Based
Allocation of Reproductive Trials is Best,” Proceedings of the 3rd ICGA, pp. 116-121.
Morgan Kaufmann.

Whitley, D. and Starkweather, T. (1990) “GENITOR II: A Distributed Genetic
Algorithm,” Journal of Experimental and Theoretical Artificial Intelligence, vol. 2, pp.
189-214.

Whitley, D., Mathias K., Rana S., and Dzubera, J. (1996) “Evaluating Evolutionary
Algorithms,” Artificial Intelligence, vol 85, num 1-2, pp. 245-276.

World Health Organization (1997) “The Medical Impact of the Use of Anti-Microbials
in Food Animals: Report and Proceedings of a WHO Meeting, Berlin, Germany.

World Health Organization (1998) “Use of Quinolones in Food Animals and Potential
Impact on Human Health: Report and Proceedings of a WHO Meeting, Geneva,
Switzerland.

World Health Organization (2001) “Monitoring Anti-Microbial usage in Food Animals
for the Protection of Human Health: Report of a WHO Consultation,” Oslo, Norway,
September 2001.

Wolpert, D. H. and Macready, W. G., (1995) “No Free Lunch Theorems for Search,”
Santa Fe Institute, Santa Fe, NM. Tech. Rep. SFI-TR-05-010.

Wolpert, D. H. and Macready, W. G., (1997) “No Free Lunch Theorems for
Optimization,” IEEE Transactions on Evolutionary Computations, Vol.1, No.1, pp. 67-
82.

Wright, S. (1986) Evolution. University of Chicago Press. Edited and with introductory
Materials by W. B. Provine.

187

Wu, A. S., Lindsay, R.K., and Riolo R. (1997) “Empirical Observations on the Roles of
Crossover and Mutation,” Proceedings of the Seventh International Conference on
Genetic Algorithms, pp. 362-369. Morgan Kaufmann, San Francisco.

Wu, A. S. and DeJong, K. A. (1999) “An Examination of Building Block Dynamics in
Different Representations,” Proceedings of the Congress on Evolutionary computation,
vol. 1, pp. 715-721. IEEE Press.

Yu, T. and Miller, J. F. (2002) “Finding needles in haystacks is not
hard with neutrality,” EuroGP ’02: Proceedings of the 5th European
Conference on Genetic Programming, pp. 13–25, London, UK. Springer-Verlag.

Zhi, J., Nightingale, C.H., and Quintiliani, R. (1988) “Microbial Pharmacodynamics of
piperacillin in Neutropenic Mice of Systematic Infection Due due to Pseudomonas
aeruginosa,” Journal of Pharmacokinetics and Biopharmacy, Vol. 16, pp. 355-375.

Zimmerman, D.R. (1986) “Role of Subtherapeutic Antimicrobials in Animal
Production,” Journal of Animal Science, 62 (Suppl. 2):6.

	2008
	The role of information flow in engineering optimization
	Steven Michael Corns
	Recommended Citation

	3307065.pdf

