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ABSTRACT

Current optimization techniques work well for single components represented by a single 

model. However, many of the problems we face today are multi-disciplinary problems 

requiring the integration of complex models from different fields to gain a more complete 

understanding of the overall performance of a biological, engineering, or human system. 

One example is a modern automobile. Multiple systems (such as the power train and 

electronic engine control system) are designed and built from various assemblies and 

components, all of which are then integrated into one final product. This design process 

evokes a systems-of-systems concept that is also found in agricultural facilities, aircraft 

design, and many other industrial applications where multiple systems are orchestrated to 

achieve common goals. Optimization of these complex systems is challenging. Tight 

coupling between the various models, discontinuous search spaces, and long run times 

can quickly defeat traditional optimization techniques.

Evolutionary algorithms provide a way to approach optimization of these complex 

systems. Evolutionary algorithms blend the information contained in a population of 

solutions to answer problems that thwart many classical optimization methods, but loss of 

diversity in the evolving solutions is a critical issue. As this information is shared 

between the population members, the diversity in that population decreases as the 

solutions converge to a single answer. For many challenging engineering problems this 

loss of diversity occurs too rapidly for novel solutions to emerge. In addition, systems of 

systems optimization problems are often deceptive because the global optimum is 

composed of multiple building blocks, making the preservation of diversity crucial.



x

This work presents graph based evolutionary algorithms as a tool to control the rate at 

which information is spread throughout an evolving population and thereby limit 

diversity loss. Graph based evolutionary algorithms impose a computational geography 

on the evolving population, placing barriers to information flow to allow for the 

development of the building blocks required to assemble one or more superior solutions.

Graph based evolutionary algorithms can be used to find new solutions and decrease the 

time to convergence to a global optimum for complex, deceptive problems. In addition, 

the performance of a problem on a set of graphs can be used as a taxonomical character

to classify evolutionary computation problems. If comparisons can be made between 

classified problems and a new problem being examined, it would be possible to select a 

graph that matches the desired performance. This careful graph selection can provide 

solutions that are both novel and superior to those found by standard evolutionary 

algorithms. Successful examples can be found in a variety of disciplines, including the 

engineering design problem of optimizing cook stoves for use in the third world to 

biological systems-of-systems, such as the tailoring of antibiotic regimens for use in 

swine production.
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1. INTRODUCTION

Optimization has long been a significant part of engineering.  After a new solution is 

introduced, efforts are made to make it faster, less expensive, more efficient, or improve 

the design in some fashion. For most of engineering history there was no conscious

practice of optimization; improvements to designs were typically done on a trial-and-

error basis while the technologies were being developed and then by examination of 

performance when it was placed in service. 

In the 1940’s, optimization using mathematical models was introduced (Vanderplaats, 

1999). These classical techniques, such as linear programming or Newtown’s method, 

manipulated the mathematical models of components or systems using calculus or 

gradient methods. The maxima (or minima) found using these methods was typically 

sufficient for a single component, although there was no guarantee that it is the global 

optima.

In 1975, Holland put forth the idea that computer code could be manipulated to mimic 

natural selection (Holland, 1975). This was further explored by DeJong (1975), who 

proposed that this technique could be used to solve a wide variety of problems. These 

ideas have been merged with other concepts, such as evolution strategies, evolutionary 

programming and genetic programming to allow for a larger selection of representations, 

making it possible to successfully attack a much broader range of problems. These

resulting evolutionary algorithms (EAs) provide an approach to solving and optimizing 

many mathematics, physics and engineering problems.  
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EAs are a valuable optimization tool. They have been used in the design of gas turbine 

blades (Martin and Dulikravich, 2002), airfoils (Jang and Lee, 2000), steam boilers 

(Vavak, Jukes and Fogarty, 1997), missile nozzle inlets for high-speed flow (Blaize, 

Knight and Rasheed, 1998) and heat exchangers (Fabbri, 1997).  EAs are not as 

vulnerable to problems with early convergence as gradient search methods, and are able 

to find solutions to problems with discrete or discontinuous landscapes that are

unsolvable by most other optimization techniques.  They are also capable of solving high 

dimension problems that would thwart conventional methods. These algorithms work by 

blending different members of a solution population to generate new, novel and hopefully 

superior solutions through simulated evolution.

Combinatorial graphs have recently been combined with evolutionary algorithms to 

impose a spatial geography on the population of solutions. These graph based 

evolutionary algorithms (GBEAs) allow for a better control of diversity and time to 

convergence, preventing early termination of the algorithm when a sub-optimal solution 

to a deceptive problem is found. The members of the population are each placed on a 

vertex of a graph that is connected to a set number of other population members. When 

the program is started, population members are only allowed to mate with individuals that 

are connected to them by the graph’s structure, controlling the rate that their information 

is spread.
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Slowing the rate of information spread is vital for problems where the optimal answer is 

difficult to find and it is easy to find a good but sub-optimal answer. By imposing a 

spatial geography, sub-optimal answers are prevented from rapidly spreading across the 

population, destroying diversity. Additionally, as a sub-optimal answer spreads the 

average fitness increases. As a result it becomes more difficult for solutions that are 

significant different from the norm to survive. This creates a substantial barrier to 

maintaining a diverse population of solutions. Disparate individuals who mate with a 

creature nearer the average fitness are usually subject to replacement by their children, 

who are more similar to the sub-optimal leader.

The mechanisms and measures of information flow within a GBEA are not well 

understood. This research examines the dynamics involved in the controlling the spread 

of information across the solution set and develops a methodology for examining the rate 

of information spread. By understanding this transfer rate, an EA developer can select a 

graph that will give the best results depending on the problem at hand. In addition, this 

research investigates the interaction between population size and information spread in 

GBEAs.

1.1. Overview

Chapter Two provides an overview of evolutionary algorithms and the methodologies 

that led to their development. The parameters that affect the amount of information 

available initially and as the evolutionary proceeds are discussed, as well as methods to 

control diversity. The chapter concludes with a review of previous test suites and a 
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discussion of the No Free Lunch theorem, which states that there is no one best method to 

approach all evolutionary computation problems.

Chapter Three presents graph based evolutionary algorithms. A discussion of how 

GBEAs differ from standard evolutionary algorithms is given, followed by a description 

of several test problems used to investigate these algorithms. This is followed by a 

discussion of the development of a taxonomy of evolutionary computation problems by 

using information gained from GBEA research. This taxonomy makes it possible to apply 

a priori knowledge to select the graph that matches the desired outcome of the problem 

being solved. In addition, this taxonomy can be used to develop an effective test suite of 

evolutionary computation problems, making it possible to evaluate new techniques in the 

field and determine where their strengths lie.

Chapter Four investigates the rate at which information is transferred within a GBEA. 

First, the impact of population size on GBEAs is discussed. Of particular interest is the 

difference between initial diversity supplied by population size and the preservation of 

diversity achieved with GBEAs. Next, computational and empirical methods for finding 

the takeover times for GBEAs are discussed and the results are given, making it possible 

to determine the extent to which diversity is preserved for a particular graph. This chapter 

concludes with some recommendations on the type of graph to use for a given problem.

Chapter Five lists several applications in which the use of GBEAs has proven to be 

beneficial. While several applications are described, the use of GBEAs to develop an 
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antibiotic regimen for use in the swine industry is examined in detail. After presenting 

some background information on the use of antibiotics with swine and the effects of the 

antibiotic on bacteria, a review of existing bacteria models and swine growth modeling is 

given. 

Chapter Six concludes the dissertation with a review of the benefits of using GBEAs, 

some qualitative rules for achieving the desired results with GBEAs in optimization 

problems. Chapter 7 lays out the direction of future work in this area. Appendix A gives 

an overview of graph theory to help in the understanding of this research and a 

description of the graphs used.
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2. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms attempt to mimic proposed natural evolution processes in 

computer code to develop novel and useful solutions to a variety of problems.  

Evolutionary algorithms encompass several earlier techniques that share similar 

attributes: evolution strategies, evolutionary programming, genetic algorithms (GAs), and 

genetic programming (GP) (Parmee, 2001). All of these methods share common traits, 

such as having several solutions being developed at once (population based) and using 

current solutions in the populations (parents) to develop newer solutions (children).  As 

these techniques are the key components that form today’s methodology, a brief 

overview of each is in order.

Evolution strategies (Rechenburg, 1984; Scwegel, 1975) and evolutionary programming 

(Fogel, Owens, and Walsh, 1966) are similar but independently developed methods for 

evolving solutions.  Both use solutions of real valued strings, which could be compared to 

chromosomes, to form new solutions by changing one or more values in the string 

(mutation), typically using a normal distribution from the initial value.  The major 

differences between the two are that evolutionary strategies use every member of the 

population to develop children that are compared to the parents, possibly using more than 

one parent to make the children (similar to recombination in genetics, where genetic 

material is contributed from more than one parent.)  Evolutionary programming uses only 

the most fit of a group of population members to produce children for the next 

generation.
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Genetic algorithms (DeJong, 1975; Holland, 1975) use a form of natural selection to 

determine which individuals in the population mate.  Chromosomes are replaced with 

data arrays that can hold variables in an equation, instructions for controlling a virtual 

agent, or many other forms of information.  These data arrays are normally made up of 

binary strings that represent real numbers or integers, although they can contain real 

values or program directions for controlling artificial agents.  The solution set is then 

populated with different creatures made up of one or more chromosomes, usually 

constructed randomly.  The major difference between GAs and the previous methods is 

the selection method used.  Evolution strategies and evolutionary programming used only 

the most fit members of the population to produce offspring, while genetic algorithms 

allow for any member of the population to reproduce, although this is weighted to favor 

the more fit individuals. Those population members selected to breed then undergo one or 

more operators meant to simulate natural mating phenomenon, such as cross-over of 

parent chromosomes or random mutation of a data array values. In the simplest form, the 

children generated then replace the parents in the population, and the process is repeated 

until a satisfactory solution to the problem is achieved.  The children may also be

compared to all or part of the population using a fitness value that gives some indication 

of how well they solve the problem at hand, replacing inferior solutions if any are found.

Genetic programming (Koza, 1992) is significantly different from genetic algorithms, 

evolution strategies and evolutionary programming.  Whereas the previous methods 

operated on numerical values, either binary or real strings, genetic programming is 

intended to evolve computer code.  This is accomplished by using parse trees to store 
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formulas, with the internal nodes being operators, and the terminals being either constants 

or variables (terminals).  Genetic programming is very similar to genetic algorithms in 

that it emulates natural selection in how parents are selected for breeding, and shares 

many of the same operators such as crossover and mutation.  These operators, however, 

are necessarily altered slightly due to the differences in representation.  When crossover 

is performed, care must be taken to ensure that the generated program is executable.  This 

means that operands can only be crossed with operands, and terminals can only be 

switched with terminals.  More information on genetic programming can be found in 

(Banzhaf, Nordin, Keller, and Francone, 1998; Kinnear, 1994; Koza, 1992).

Each of these methods has strengths and weaknesses.  Evolution strategies and 

evolutionary programming have long run times, while crossover is often disruptive in 

genetic algorithms and even more so in genetic programming.  There is also a problem 

with mutation having different impact on a binary string depending on the position at 

which the mutation is applied.  Evolutionary algorithms can be thought of as using 

different aspects from these methods to develop a representation of the problem being 

studied that can avoid a particular method’s weakness.  Using this representation, it is 

then possible to choose parameters for the algorithm that properly explore the search 

space.    

2.1. Evolutionary Algorithm Parameters

There have been several attempts to gain an insight into how different parameters in an 

evolutionary algorithm effect the time to convergence and/or the quality of the final 
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answer.  Some of these parameters effect how the evolutionary algorithm is initialized, 

such as problem representation and population size.  Other parameters such as local 

mating rules dictate how the algorithm simulates mating in nature. This includes selection 

method, crossover rate and type, mutation rate and type, and how the children are 

introduced into the population. To discuss the role of information flow when using 

evolutionary algorithms, it is first necessary to discuss the parameters that have the 

strongest impact on solution diversity. 

2.1.1. Population Size

The population size is the number of creatures in the population available to breed.  The 

first estimation for an optimal population size was the Schema Theorem for genetic 

algorithms introduced by Holland (1975), which estimated a population size of the order 

of magnitude of n3 would ensure that there was a sufficient representation of possible 

combinations to solve the problem, where n is the length of the bit string being used.  

Grefenstette (1986) studied the effects of varying population size, as well as many other 

parameters, on the five problems introduced by DeJong in his doctorial dissertation 

(1975). He found that for the binary string problems he studied, a population size ranging

from 30 to 100 provided sufficient diversity to solve these problems.

Goldberg has done the most extensive testing of population variations (Goldberg, 1989; 

Goldberg, Deb, and Clark, 1992; Goldberg, Sastry, and Latoza, 2002) along with Harik

(1997.) Together they used the Schema Theorem (DeJong, 1975) to estimate the best 
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population sizes based on statistical analysis for the availability of necessary building 

blocks and probability of failure to select those blocks during mating. While this method 

was limited to specific section and crossover methods (Altenberg, 1995), it provides 

guidelines for population size based on the building blocks necessary to construct the 

final solution. Arabas, Michalewicz and Mulawka (1994) developed GAVaPS (genetic 

algorithm with varying population size), giving each member of the population a lifespan 

in generations based on their fitness, causing the more fit members to last longer and 

therefore produce more offspring as the algorithm progressed. Nimwegen and Crutchfield 

(2001) conducted research into population size by examining the epochal behavior of 

genetic algorithms.  They found that finding population size and mutation rate 

combinations that prevent highly superior creatures from developing rapidly allow for 

faster convergence to a true optimal solution in all but the simplest cases.  

All of these previous studies only examined populations of binary strings.  While binary 

strings are useful in some applications, many real-world engineering problems require 

optimization of real valued functions.  One example of the use of real valued functions is 

the work of Haupt and Haupt (1998; 2000), who performed experiments varying the 

population size and mutation rate for real valued functions. They found that for the real 

valued problems they studied a smaller population size and low mutation rate performed 

best, which is consistent with the observations made when evolutionary strategies are 

applied to similar problems (Rechenburg, 1984.) It should be noted that while the test 

problems used in their study (2000) are engineering problems, they are non-deceptive 

problems with simple fitness landscapes that can be solved with little difficulty.  Real 
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values can be represented using a base two numerical system, but there are major 

drawbacks to this approach; it can require very long gene length as well as making the 

mutation operator unstable.  A bit flip at different locations on the string could have 

drastically different impact on the value of the string, making crossover and mutation 

highly disruptive.  This is commonly avoided by the use of gray coding which makes

each bit flip have equal value (an implementation can be seen in Mathias and Whitley’s 

work (1994)), but this creates unnecessary overhead in the algorithm, as real value coding 

could easily be used without as much added computational cost.

2.1.2. Selection Method

Selection method is normally associated with genetic algorithms and genetic 

programming.  There are two major schemes to be chosen from when determining a 

selection method; whether to use a generational algorithm (DeJong, 1975) or a steady 

state algorithm (Reynolds, 1992; Syswerda, 1991; Whitley, 1989).  The difference 

between these two being that a generational algorithm involves all members of the 

population while the steady state (originally termed the “GENITOR” algorithm by 

Whitley (1989)) selects individuals and performs mating on just the pair selected.  After 

one of these mating schemes is chosen a method for pairing up individuals for the actual 

mating still needs to be determined.  These are the methods in which GAs and genetic 

programming emulate natural selection.  Some of the most popular are fitness 

proportionate selection (random selection of parent with higher fitness having a better 

chance of selection), rank selection (like fitness proportionate selection, but arranging the 
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solutions by fitness and then using this “rank” for selection) and tournament selection 

(the population is divided into groups, with the most fit members of the group 

reproducing) (Parmee, 2001).  Closely related to selection method is the algorithm’s 

replacement method, which can be absolute (child replaces a population member 

regardless of its fitness) or elite (child replaces a population member only if it is more 

fit).

2.1.3. Crossover

The crossover operator is how most evolutionary algorithms perform recombination to 

generate offspring.  It is normally performed by randomly choosing one or more points 

on the selected parents’ strings, then producing a child by copying the data first from one 

parent, then switching to the other whenever a crossover point is reached (called single or 

multiple point crossover).  Another method is uniform crossover, where the donating 

parent is randomly determined for each locus.  The chance of crossover occurring,

normally referred to as the crossover rate, and how the crossover is accomplished have 

been studied by several researchers.  One of the first attempts to determine what 

crossover rate should be used for an evolutionary algorithm was done by Grefenstette

(1986). He also studied mutation rate and selection method in determining GA 

parameters. Although he found that genetic algorithms performed as well or better than 

other methods for a small problem set, no recommendations were made in his

conclusions. DeJong and Spears (1990) compared multiple point crossover to uniform 

crossover, where they found that for small population sizes, uniform crossover performed 
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better.  Researchers at UIUC (Goldberg, 1989; Goldberg and Deb, 1991; Goldberg, Deb, 

and Clark, 1992; Goldberg, Deb, and Thierens, 1993) studied the effects of crossover on 

the availability of building blocks.  Wu, Lindsay and Riolo (1997) examined crossover 

and mutation as it occurred during a GA run, the results of which showed that diversity 

preservation was a major influence on time to convergence.

2.1.4. Mutation

Mutation changes the value at one or more location in the evolving solution, thereby 

making it possible to introduce an entirely new solution into the population.  This is an 

effort to mimic mutations that occur naturally in living species.  Mutation is normally 

conducted by randomly changing one or more values in a newly produced child before its 

fitness is evaluated.  Much of the work done investigating evolutionary algorithms 

previously mentioned also explored the effect of varying mutation rate and the mutation 

itself (Goldberg, 1989; Greffenstette, 1986; Nimwegen and Crutchfield, 2001; Wu, 

Lindsay, and Riolo, 1997).  One area of interest that has recently been studied is varying 

the mutation rate as the algorithm proceeds in an attempt to fine-tune the use of the 

operator (Smith and Fogarty, 1996).  All research in genetic evolution can be considered 

studies in mutation, as this is the only operator used (Fogel, Owens, and Walsh, 1966).

2.2. Diversity and Convergence in Evolutionary Algorithms

Whenever an evolutionary algorithm is applied to a problem there is always a tradeoff

between exploration of the search space and exploitation of the superior solutions already 
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found (Parmee, 2001).  The exploration of a search space refers to how many different 

solutions are analyzed, and can be evaluated by taking inventory of the diversity of the 

members of the population.  Diversity, as it applies to evolutionary algorithms, can be 

thought of as how many different solutions or partial solutions exist the in solution 

population.  The exploitation of superior solutions can be seen as the population members 

utilize information already discovered by other members of the population to converge to 

a single and hopefully optimal solution. 

The balance between exploration and exploitation required is problem specific, and is

best highlighted by examining two extremes, a simple uni-modal evolutionary 

computation problem and a highly deceptive evolutionary computation problem. In a 

simple uni-modal problem, a change to the chromosome that leads to an improved fitness 

also leads to the global optimum. A highly deceptive problem in evolutionary 

computation is a problem in which any change in the chromosome that leads to an 

improved fitness causes the solution to converge to a sub-optimal answer. These two 

extremes require the maximum amount of exploitation and exploration, respectively.

For very simple and non-deceptive problems it is preferable to converge to a solution 

with little or no diversity required. As the fitness landscape grows more difficult (through 

increasing size, modality or deceptiveness) the need to preserve diversity increases 

(Parmee, 2001). Unfortunately, there is currently no method for determining beforehand 

how much diversity is necessary other than an experienced user’s estimate.  
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Exploration and exploitation can be balanced by adjusting the various parameters of the 

algorithm being used. Initially, the amount of diversity is set by the population size used 

in the algorithm. In most evolutionary algorithms this diversity is then decreased by the 

selection methods and crossover, and increased by mutation. Other methods exist to 

control the rate at which diversity is destroyed, and will be discussed in Chapter 3.

There has been a significant amount of work done by Goldberg and Deb (1991) to

determine the amount of time (measured in mating events) necessary for a single solution 

to dominate all others in the population. In its simplest form, his “takeover time” is based 

on separating solutions into different classes and then using probability theory to predict 

the number of members of that class there will be in the next generation.  This was done 

for several selection schemes, including Whitley’s GENITOR algorithm (1989). This 

gives a general idea of the number of mating events required for a method to converge to 

a solution, but does not take into account the modality of a problem. For this method to 

give a better insight into the true takeover time for an algorithm, other factors must be 

considered.

2.3. Evaluating Evolutionary Algorithms and the No Free Lunch 
Theorem

Whenever a new algorithm is developed, the creators need some method to evaluate its 

performance against other algorithms.  The most common way to do this is to either find 

or develop a test problem or suite of test problems.  There are several test problems and 

test suites available both on-line and in the literature (Ackley and Littman, 1992; DeJong, 
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1975; Mühlenbein, Schomisch, and Born, 1991; MDO Test Suite, 2002; Schaffer, 

Caruana, Eshelman, and Das, 1989).   The authors of each test problem have applied their 

particular algorithm to the test problem as well as algorithms produced by others and 

made comparisons between the results.  Unfortunately, there is often little emphasis 

placed on why a certain algorithm outperforms another and many of these test suites are 

unwittingly biased towards the new algorithm.

These issues along with several other issues related to test suite choice were discussed by 

Whitley, Mathias, Rana, and Dzubera (1996).  In this work no test suite was proposed, 

but desirable characteristics for good test suites were proposed.  These included: 1) the 

test suites should be resistant to hill-climbing techniques, since problems that can be 

solved with hill-climbers are solved faster and with better results using these methods, 2)

test suites should also be nonlinear, non-separable and non-symmetric, as these types of 

problems can be decomposed and simplified into smaller parts that can be optimized on 

their own, 3) improving solutions with many interdependencies is one of the strengths of 

EAs, and should be stressed, and 4) test suites should be scalable in both the test function 

and the problem evaluation cost.  Many real world problems need to be scalable in the 

number of variables of interest that are being manipulated.  Also, when more variables 

are introduced into a problem the evaluation cost often increases at an exponential rate.  

An algorithm proposed for inclusion in a test suite needs to be able to manage this size 

increase without experiencing a degradation in performance.  
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Wolpert and Macready (1995; 1997) developed two theories to examine whether any 

algorithm was superior to another; one based on algorithms and one based on problem 

type. One of the key points of this work was that it can be proven that when compared to 

the entire population of problems available no algorithm is superior to another. This was 

contrary to the common opinion of the time, which held that some algorithms were 

intrinsically better than others, mainly due to the previously mentioned flaws in common 

test suites and problems. Called the “No Free Lunch Theorems,” they showed that there 

is a relationship between problems and algorithms, indicating that there is no one 

algorithm that will outperform all others in a wide variety of problems. This makes 

comparisons of different algorithms difficult at best.

2.4. Diversity Control Techniques

There have been many theories as to why diversity is necessary and has not vanished in 

nature (Kimura and Crow, 1963; Wright, 1986). Many of these theories suggest that 

geographical obstacles and inherent mating rules (such as “mating dances”) impose 

mating restrictions and hence preserve diversity. When obstacles such as these are 

applied to EAs, it helps to preserve the diversity and slow the time to convergence, which 

in turn helps keep the algorithm from getting stuck in local optima for deceptive 

problems (Ackley and Littman, 1992; Mühlenbein, 1991). There are several methods 

currently being employed to maintain, increase or otherwise control solution diversity in 

a population. These include the initial parameters of the algorithms, Niche Specialization, 

the Island Model (GENITOR II) and the EcoGA (Davidor, Yamada, and Nakano, 1993).
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2.4.1. Population Size, Crossover, and Mutation

The first methods employed in evolutionary algorithms to control diversity were the 

population size, crossover and mutation. In fact, these methods were used in EAs before 

the necessity of diversity preservation was understood! An examination of these 

parameters shows how they contribute to diversity control. The larger the population size, 

the more “genetic materials” or building blocks (Goldberg, 1989) are available with 

which to build solutions. As the evolutionary process continues, crossover blends the

solutions, making children that tend to match the higher fitness parent and thereby 

lowering diversity. Traditionally, the only way to re-introduce diversity was by applying 

a mutation operator. When a mutation occurs, part of the information in the solution is 

changed, which usually makes it different from other solutions it may have been similar 

to and increasing diversity.

2.4.2. Niche Specialization

Niche specialization (Goldberg, 1989) is a method that discourages solutions that are 

very similar by imposing fitness penalties to those individuals. The concept is similar to 

the biological concept that shares its name. It is an easily understood concept that usually 

yields good results; as more individuals find the same high performance solution, their 

fitness decreases, encouraging exploration of other areas of the search space. While the 

concept is rather simple, it can sometimes be difficult to employ since there needs to be 

some similarity measure to determine how different a solution is from others in the 

population. A hamming distance can easily be found for binary encoded problems, but if 
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there are a significant number of building blocks this could lower the methods 

effectiveness if there is no a priori knowledge of these blocks. For other problems, it is 

usually computationally expensive to calculate a similarity measure, if it is even possible 

at all. As the problem complexity increases, usually the difficulty in finding and 

computing the similarity measure increases as well.

2.4.3. GENITOR II

One approach to preserve diversity is the GENITOR II algorithm, also referred to as 

island Gas (Whitley and Starkweather, 1990), which simulates the natural separation of 

population members caused by land masses separated by bodies of water. In this 

approach, several populations are evolved separately for a given number of generations. 

Selected members are then copied from one of these “islands” onto another using a 

predetermined pattern in a process called migration, hopefully adding new and useful 

information into the receiving population. The number of members moved in a migration 

is termed the migration size, and the number of generations between migrations is the 

migration interval. These can be adjusted to control the rate at which information is 

shared between populations.  

This method not only prevents early convergence for deceptive problems, it is also easily 

implemented on parallel computers, greatly lowering the amount of time required for 

results.  A drawback of this method is that due to the inherit elitism, there are limits to 

how much diversity it can preserve.  
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2.4.4. EcoGA

The EcoGA (Davidor, Yamada, and Nakano, 1993) was another early GA to impose a 

geographic structure on a solution population to control diversity. This algorithm places 

the population of solutions onto a grid that wraps around to form a continuous space.

Acting as a steady state algorithm (Reynolds, 1992; Syswerda, 1991; Whitley, 1989),

members of the population are selected for mating, but only allowed to interact with 

neighboring solutions, creating a subpopulation of nine members for each event. This is 

very similar to graph based evolutionary algorithms, acting as a single type of graph with 

a degree of k=8. This work did show some promise, but was abruptly stopped for 

unknown reasons.



21

3. GBEAs AND THE EVALUATION OF EVOLUTIONARY 
COMPUTATION METHODS

To evaluate the role of information flow in engineering optimization, we first need a 

method to control that flow of information. For this research, graph based evolutionary 

algorithms (Bryden, et al., 2006) are employed. GBEAs use graph structures to control 

the rate at which information is spread through an evolving population. While exploring 

how these GBEAs can be used to control the flow of information, a large body of 

research data was collected, making it possible to construct both a taxonomy of 

evolutionary computation problems from those studied and to develop a test suite of 

problems that would allow an unbiased evaluation of newly proposed evolutionary 

computation methods. Together, these tools would make it possible to select a desirable 

level of information flow using a priori knowledge of the problem.

Research has shown that GBEAs can provide significant improvement in time to solution 

when the appropriate graph is selected for the problem being solved (Bryden, et al., 

2006). The initial set of graphs used was chosen ad hoc and with little or no idea of which 

graph would perform well. As of yet, there is still only a limited understanding of what 

occurs within the population to make one graph perform better than another. By 

developing a better understanding of these interactions it would be possible to apply other 

graphs and develop new graphs that could be used to fine tune the rate of information 

flow.
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With a wide variety of graphs to choose from, there is still a problem in determining 

which graph to use. Currently, the assignment of which graph would perform best is 

based largely on conjecture, with only modest accuracy. To improve the selection of 

preferred graph, it is necessary to not only gain a better understanding of the interactions 

that occur within a population of solutions in a GBEA but also to develop a means to 

classify evolutionary computation problems. While a classification of problems has been 

introduced (Ashlock, Bryden, Corns, and Schonfeld, 2006), more data needs to be 

incorporated into the hierarchy and the relationships between the problems examined 

before any guidelines could be established for graph usage. To do this, a variety of 

problems need to be examined.

In building the necessary information to make predictions about which graph would be 

best, it was also be possible to develop a preliminary test suite of evolutionary 

computation problems. To get a representative sample of the problems to which 

evolutionary computation would be applied, several types of test problems were 

examined. Using the taxonomical values found while classifying the problems, it is 

possible to determine which evolutionary computation problems are significantly 

different from one another. This would help to decrease the potential for bias in test 

problems, making it possible to develop a test suite to evaluate new evolutionary 

computation techniques and make an accurate comparison to existing methods.
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3.1. Graph Based Evolutionary Algorithms

Graph based evolutionary algorithms are a method of preserving diversity by using 

graphs to impose an artificial geography on the population. In these graph based 

evolutionary algorithms (GBEAs), the population members are separated by limiting the 

number of other members they are allowed to interact with. Appendix A gives an 

overview of the graph theory used to design this geography. GBEAs control information 

flow, unlike the GENITOR II algorithm (Whitley, 1989) that prohibits information flow 

except during migration. This is done by assigning each member of the population to a 

vertex V(G) of the graph G, and if that vertex shares an edge E(G) with another vertex it 

is possible for it to mate with the individual assigned to the second vertex. A steady state 

evolutionary algorithm is then used, where the evolution occurs one mating event at a 

time. Mating is conducted by first randomly selecting a member of the population, and 

then selecting its mate by fitness proportional selection of the vertices it shares an edge 

with. This proceeds until one of the members of the population achieves a fitness level 

greater than a specified fitness goal or the algorithm times out. By varying the graph 

diameter and degree, the rate at which information spreads can be controlled, allowing a 

means for controlling diversity loss.

Initial research has been done using various types of graphs with a population size of 512 

vertices (Bryden, Ashlock, Corns, and Willson, 2006), as described in Appendix A. Of 

the graphs used, the complete graph had the smallest diameter, followed by the 

hypercube graph. The toroidal graphs and the Petersen graphs had the next larger 

diameters, with the cycle graph having the largest diameter. Figure 1 shows examples of 
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Figure 1, Graph types used in this study: Cycle (a), Petersen (b), Toroid (c) and Hypercube (d).
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the cycle graph (a), the Petersen graph for k=3 (b), the toroid graph for m=4 (c) and the 

hypercube graph (d) for a population size of 32. Information on the graphs used in GBEA 

studies can be found in Appendix A. This initial study showed that problems with a 

simple fitness landscape are best solved by graphs with the smallest diameters, with the

complete graph performing best (had the fewest mating events to solution.) For problems 

with a deceptive landscape, it was found that graphs with the largest diameters performed 

well, with the cycle graph performing best. This gave results indicating that the number 

of mating events to solution grouped together into different families (similar types of 

graphs). While these results were promising, more investigation is necessary to test the 

robustness of the method and to determine how best to apply these new tools.

3.2. Test Problems

To establish a taxonomy of evolutionary computation problems and develop a test suite, 

it is first necessary to examine a selection of problems. Intuitively, the problems selected 

should encompass the variety of areas of research found in evolutionary computation, 

including binary strings, real valued functions, genetic programming, and artificial life 

simulations. While no experimental evidence existed prior to this study, the inclusion of 

these diverse problems should guarantee adequate coverage of the problems being 

explored in the area of evolutionary computation.
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The test problems within these research areas should also be significantly different from 

each other. Evaluation of a new evolutionary computation technique with similar 

problems at best increases the amount of time necessary to complete the experiments, and 

more likely will introduce bias in the results. The challenge is that there is no method for 

determining how similar two problems are without first performing experiments with 

them. With this in mind, several proposed test problems for evolutionary computation 

have been examined, and the following were selected for this study.

3.2.1. One-Max

The one-max problem is a simple string evolver.  Chromosomes composed of a number 

of bits (20 were used when applied to GBEAs) are generated randomly and inserted into 

the population.  Local mating rules for the algorithm are then applied, in the case of 

GBEAs single point crossover with a 10% chance of mutation (one of the bits is flipped)

and elite replacement of the randomly selected parent.  Fitness is calculated by summing 

the characters in the string.  The algorithm was declared solved when the entire string is 

composed of ones, giving the largest fitness available.

3.2.2. Variable Dimension Surface (Keane Bump Test)

For the second test problem, a variable dimension surface problem (Eqns. 3-1 thru 3-4) as 

developed by Keane (1994) and used by Hacker, Eddy, and Kemper (1992) for a 

benchmark test of their hybrid genetic algorithm/hill climbers was used.  It is designed to 

allow the user to adjust the degree of multi-modality, making the problem increasingly 
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difficult and deceptive.  Figure 2 shows a graph of the function with two variables.  The 

work by Hacker, Eddy, and Kemper used 2 and 10 design variables. When applied to 

GBEAs these values were used along with the addition of runs using 6 design variables to 

further investigate the equation.  In this use of this test problem, the Keane Bump Test 

can be classified as a real valued string evolver using one point crossover and a 10% 

mutation rate.  The mutation adds or subtracts a value ranging from 0.0 to 0.2 to the value 

stored in the selected string location.  Elite replacement of the randomly selected parent 

was used and the algorithm was declared successful when a solution appeared that was 

within 1% of the true maximum value.

n

i
i

n

i
i

n

i
i

ix

xx
xF

1

2

1

2

1

4 coscos 2

(3-1)

Subject to: xg1 075.0
1

n

i
ix (3-2)

xg2 0
2

15
1

nx
n

i
i (3-3)

100 ix ni ,1 (3-4)



28

Figure 2, Keane bump test in two dimensions.
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3.2.3. DeJong Test Functions

The DeJong test functions are described in detail in DeJong’s doctorial dissertation 

(DeJong, 1975).  The first function is a three-dimensional bowl and the second is a 

fourth-degree bivariate polynomial surface featuring a broad sub-optimal peak (also 

known as “Rosenbrock’s Saddle”).  The third function is a sum of integer parts of five 

independent variables creating what could be described as a six-dimensional ziggurat,

being flat where it is not discontinuous.  The fourth function is a fourth-order paraboloid 

in 30 dimensions with distinct diameters in different numbers of dimensions made more 

complex by adding Gaussian noise.  The last function, often referred to as “Shekel’s 

Foxholes”, is a grid with many narrow local optima.  These functions have been 

traditionally used as test problems in function optimization do not serve as a complete 

test suite (Whitley, et al., 1996). They are all classic GA problems in that they are 

composed of binary strings.  Each of the variables in the solutions is represented by a 

string in the chromosome, which is subsequently transformed into Gray Code (Mathias 

and Whitley, 1994) before being used in the fitness evaluation.  As used in previous 

GBEA studies the local mating rules were the same as those used in the one-max 

problem.

3.2.4. Greiwangk Function

The Greiwangk function is a sum of quadratic bowls, one per dimension, with cosine 

terms applied to them.  These terms are subsequently translated to yield a positive 

function.  It has a large number of local optima, making it a natural member of a test suite
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(Mühlenbein, 1991.) Unfortunately, as the dimension of the Greiwangk function 

increases it approaches a uni-modal bowl.  For this reason only five cases of relatively 

low dimension have been used for GBEA studies; N = 3, 4, 5, 6, and 7.  As used for 

GBEAs, these problems share the same local mating rules as the one-max problem.

3.2.5. Plus-One-Recall-Store

The plus-one-recall-store (PORS) problem was originally developed to be included in a 

test suite for research conducted by Ashlock and Lathrop (1998a). It is a maximization 

problem that uses parse trees, which applies a basic form of genetic programming. The 

problem involves the efficient use of nodes so that when it is executed, the largest integer 

value result possible is generated when given a fixed maximum number of parse tree 

nodes. There are two operations (integer addition and store) and two terminals (one and 

recall from a memory position) in the language. Fitness for a parse tree is the number 

produced when it is executed. Maximum values are given in (Ashlock and Lathrop,

1998b). The difficulty of the PORS efficient node use varies depending on the 

congruence class (mod 3) of the maximum number of nodes. This problem has been 

studied in depth and the necessary building blocks for finding the solutions are well 

documented. For a solution to be successful, it must make use of a combination of four 

distinct building blocks given in (Ashlock, 2006): (+ 1 1), (+ (+ 1 1) 1), (+ Recall (Store 

T)) and (+ (+ Recall Recall) (Store T)). These are, respectively, 2, 3, times-2, and times-

3.  The 3 and times-3 blocks also have two equivalent forms: (+ 1 (+ 1 1)) and (+ Recall 

(+ Recall (Store T)). 
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In GBEA studies, experiments were run for a number of nodes equal to n=15, n=16 and 

n=17, the hardest, easiest and intermediate difficulty of the three classes respectively. 

Fitness for a parse tree was evaluated as the number produced when it was executed. The

initial population for this experiment was of randomly generated trees with a number of 

nodes equal to the maximum. The trees then underwent crossover by randomly picking 

two nodes of the same type (either operation or terminal) and switching them with their 

corresponding sub-trees. If this resulted in a parse tree with more nodes than the 

maximum, a chopping operation was performed on the tree, which replaced the root node 

with one of its sub-trees until the number of nodes is equal to or less than the maximum. 

There was then a 10% chance that a mutation would occur, in which a new random sub-

tree of the same size replaced a randomly chosen sub-tree. For all of the PORS 

experiments, local elite roulette mating was used.  

3.2.6. North Wall Builder

The north wall builder problem uses computer-generated agents that are controlled by a 

genetic programming (Banzhaf, et al., 1998; Kinnear, 1994; Koza, 1992) structure called 

an ISAc (If Skip-Action) list (Ashlock, 2006.) An ISAc list is an array of four values [a, 

b, act, jump]. The first two values are indices to a data vector of the form [x1, x2, ... ,x8, 

0, 1, 2], which relate to the eight grid locations surrounding the agent and the values they 

can contain for comparison purposes. Each of these can have a value of zero (location is 

empty), one (location is occupied by a block) or two (location is not on the grid). The 

third is an action that may be taken, with the choices being no action, jump, move 
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forward, turn right, or turn left. The do nothing command is inserted as a check, and 

should be rapidly weeded out of the population. The fourth is a location to jump to if the 

action is a jump command. This results in an evolvable programming language that is 

customizable to the problem being solved.  

These agents are placed on a 7 x 7 grid, along the southern border and facing towards the 

spot marked ‘X’ on figure 3. Blocks are introduced into the grid at this marked location, 

with a new block appearing whenever that space is empty. The agents move on the grid 

as specified by the controlling ISAc list, pushing any blocks that are in front of them.  

This trial is ended after either 283 actions have taken place, or the bot “falls” off of the 

grid by moving outside of the grid’s constraints. The fitness of an individual agent is 

evaluated by subtracting the number of grid blocks from the top (north wall) of the grid 

before a block is encountered from the total number of grid spaces (49). Figure 3 shows a 

configuration with a fitness of 42.

This fitness is then used for determining the second parent in the crossover of the ISAc 

structures, and for determining the finishing criteria. When applied to GBEAs, the 

crossover operator is used much like that in the one-max problem, with a section of the 

array being swapped between the two parents.  The local mating rule for this problem is 

local elite, fitness proportional selection. This problem is of intermediate difficulty, with 

no mandatory building blocks as are found in the PORS 15 problem, but a high degree of 

solution interconnectivity as the early moves impact the effect of moves further along the 

ISAc list. 
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Figure 3, North wall builder sample board.
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3.2.7. Self Avoiding Walk

The self avoiding walk (SAW) is a multi-modal problem with a linear string chromosome 

guiding an agent to efficiently cover a rectangular grid. The grids are denoted as number 

of columns by number of rows. The cases of the SAW problem treated in this study 

include 3x3, 3x4, 4x4, 4x5, 5x5, 5x6, and 6x6. For a given grid size NxM the 

chromosome will store NxM-1 moves, as the starting square is given to the agent for free. 

Each array value ranges from zero to three, representing agent movements of down, right, 

up, or left respectively. Starting in the lower left corner of the grid, the array dictates the 

path followed across the grid. The number of grid blocks the path travels through 

determines fitness, with the maximum (and stopping criteria) reached when all blocks are 

visited. Attempts to move off of the grid are ignored, but are implicitly penalized because 

a move is wasted. The agent is permitted to cross his own path, but this also wastes 

moves. The problem is called the self avoiding walk problem because the optimal 

solutions are self avoiding. As implemented for this study, crossover and mutation were 

performed in every mating event, with the crossover being two-point and the mutation 

operator being stochastic replacement of one array value with a new, randomly generated 

value.  

3.2.8. DNA Barcode

DNA barcodes (Ashlock, Guo, and Qiu, 2002) are error correcting codes (McEliece, 

1977) over the DNA alphabet {C, G, A, T} that are able to correct errors relative to the 

edit metric (Gusfield, 1997).  They are used as embedded markers in genetic constructs to 
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permit retention of source information when sequencing pooled genetic libraries.  An 

example of their successful use to retrieve sequence source information appears here 

(Qiu, Guo, Wen, Ashlock, and Scnable, 2003).  The algorithm used previously in GBEA 

studies searches for six-letter DNA words that are at a mutual distance of at least three.  

These are the parameters used for the wet lab testing of the technique in Qiu et al. (2003).

Barcodes of this size and distance can correct one sequencing (edit) error.

3.2.9. Simple Differential Equation

Solving differential equations is a standard genetic programming problem. Modifying the 

usual technique, the algorithm used in GBEA studies extracts the derivatives 

symbolically when computing fitness. The differential equation solved was:

065 yyy (3-5)

which is a simple homogeneous equation with a two-dimensional solution space:

xx BeAey 32 (3-6)

for any constants A and B. A complete description and some solutions that appeared in 

the final population can be found in Bryden et al. (2006).
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3.2.10. Steiner Systems

Steiner systems can be described as follows. For a set V of n objects, a Steiner k-tuple 

system on V is a set of k-subsets of V with the property that every pair of elements from 

V appears in one and only one of the k subsets. For the set {A;B;C;D;E; F;G} a Steiner 

triple system would be the set of 3-tuples: {{A,B,D}, {B,C,E}, {C,D,F}, {D,E,G}, {A,E,

F}, {B, F,G}, {A,C,G}}. Notice that every pair of letters is present and each appears in 

exactly one triple. The example given is a Steiner triple system on seven points.  Steiner 

systems are used in the statistical design of experiments. More information on Steiner 

triple systems can be found in Ashlock, Bryden, and Corns (2005). Steiner triples, 

quadruples, and quintuples have been examined to date.

3.2.11. Ordered Genes Problems

Ordered gene problems are those using a permutation ordered list as their representation. 

Two ordered gene problems were studied: sorting a list into order (the Order problem)

and maximizing the period of a permutation. The period of a permutation is the smallest 

number of times it must be composed with itself to obtain the identity permutation. Both

these problems are discussed in (Ashlock, 2006). Two variation operators were used. The 

crossover operator functions by choosing a crossover point uniformly at random. The 

entries of the list before the point are preserved. Those after the crossover point are 

retained but in the order they appear in the other permutation. The mutation operator 

exchanges two entries of the permutation chosen uniformly at random. Both these 

variation operators were applied, once each, for each mating event. The list ordering 
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problem was run for lists of length 8, 9, and 10 while the period maximization problem 

was run for lists of length 30, 32, 34, and 36. For both problems the sizes were selected 

so that the smallest size of a problem run was the first at which performance became 

significantly different on different graphs.

3.2.12. Parity Problems

Odd-parity is a boolean genetic programming (Banzhaf, et al., 1998) problem. The goal is 

to compute the truth value of the proposition “an odd number of the input variables are 

true.” Two forms of genetic programming are used for parity in this study: simple parse 

trees and function stacks. Fitness for both representations is the number of cases of the 

parity problem computed correctly. Simple parse trees use no automatically defined 

functions (ADFs), and the variation operators are as for PORS. The operations used are 

logical and, or, nand, and nor; the terminals are the constants true and false and the input 

variables. Only the three-input version of the problem was done with simple parse trees –

without ADFs the problem becomes exceedingly difficult. A function stack is a 

representation derived from Cartesian Genetic Programming (Miller and Thompson, 

2002; Yu and Miller, 2002). The parse tree structure used in genetic programming is 

replaced with a directed acyclic graph. The vertices of this graph are stored in a linear 

chromosome. Each node specifies a binary Boolean operation, an initial output value for 

that operation, and two arguments for the operation. The available Boolean operations 

are: and, or, nand, and nor. The available arguments are: Boolean constants true and 

false, the input variables, and the output of any Boolean operation with a larger index in 
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the chromosome than the current one. Permitting references to the current output of nodes 

with larger indexes gives function stacks a feed forward topology. The binary variation 

operator used on function stacks is two-point crossover of the linear chromosome. The 

single point mutation operator chooses a random operation three-eighths of the time, a 

random argument half the time, and an initial value for a node’s memory one-eighth of 

the time. If an operation is selected, then it is replaced with another operation selected 

uniformly at random. If an argument is selected, then it is replaced with a valid argument 

selected according to the scheme used in initialization. If an initial memory value is

selected, it is inverted. The 3-, 4-, and 5-odd parity problems were run with function 

stacks.

3.2.13. Summary of Problems

The one-max problem was included as a baseline for comparison.  There is a large 

amount of research already conducted on bit string evolvers, and inclusion of the one-

max problem allows for a comparison to previous research.  The DeJong functions and 

the Griewangk function are also bit string evolvers with a large amount of research, and 

so give a well known and representative sample from genetic algorithms. The Keane 

bump test was included because it is a real-valued optimization problem, giving a wider 

range to the types of problems being approached. The Plus-One-Recall-Store (PORS) 

problem is a genetic programming optimization problem that was shown to have results 

favoring the extremes in initial study (Bryden, et al., 2006).  The north wall builder 

problem is a moderate difficulty agent based problem, and the self avoiding walk 
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problems are a scalable agent based problem that are interesting in that the fitness of the 

end values of the string are dependent on the earlier values. The DNA barcode, simple 

differential equation, Steiner systems, ordered gene, and parity problems are all 

application problems that have shown interesting results when GBEAs have been applied 

to them.

These problems give a good selection of problems that may be approached using 

evolutionary computation. They all have execution times that do not make multiple 

experiments require large amounts of computational resources, making comparisons 

between different methods manageable. The next step is to validate that there are indeed 

significant differences between the problems

3.3. A Taxonomy and Test Suite

As previously mentioned, there have been many different test problems or suites of 

problems introduced to evaluate different algorithms (Ackley and Littman, 1992;

Mühlenbein, Schomisch, and Born, 1991; Schaffer et al., 1989). While these problems 

are necessary, most were written to test a specific method and tend to be biased because 

of that. To find what problems a method would work well on requires an unbiased test 

suite to show the method’s performance over a wide range of problems. Before this test 

suite can be proposed, a method for differentiating problems needs to be devised. This 

can be done by developing a taxonomy of problems based on one or more aspect of the

problem and its interaction with an evolutionary algorithm.
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A taxonomy is a hierarchical classification of a set first established by Linnaeus to 

classify living organisms. This original taxonomy for living things assigned a kingdom, 

phylum, class, order, family, genus and species to each organism. This hierarchy gave a 

tree-like structure (known as a cladogram) to the taxonomy of all living creatures, 

showing the evolutionary relationship among various taxonomic groups. More 

information on developing taxonomies can be found in Mayr and Ashlock (1991). These 

concepts could be extended to other areas where classification would be beneficial. To 

construct a cladogram, it is necessary to extract taxonomic characters to perform the 

clustering of similar members of the set (in this case, evolutionary algorithms.) The 

choice of the taxonomic characters is critical for an accurate analysis. They must be 

unbiased, vary across the set of problems, and avoid arbitrary judgments to the greatest 

degree possible. One example of a bad selection would be using numbers to represent 

colors, as assigning numbers arbitrarily ranks some colors closer than others. This gives 

just a brief view of the difficulties that can be encountered in determining usable 

taxonomic characters.

GBEAs yield a source of taxonomic characters that are numerical and computable for any 

evolutionary computation problem that has a detectable solution or end point. These 

characters are objective in the sense that they do not favor any particular choice of 

representation or parameter setting. In outline, these characters are computed in the 

following fashion.  The time-to-solution for a problem varies in a complex manner with 

the choice of graphical connection topology. This complexity is the genesis of our 

taxonomic characters.  The taxonomic characters used to describe a problem are the 
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normalized mean solution times for the problem on each of a variety of graphs.  While 

this presents a set of objective characters that enable automatic classification, these are 

not necessarily the “right” or only characters.  Using results from the problems in Section 

3.2, the mean number of mating events to solution were normalized to yield the 

taxonomic characters for the problems.  Normalization consisted of subtracting the 

minimum average time from each average time and then dividing through by the 

maximum among the resulting reduced times. The taxonomic characters for each problem 

are thus numbers in the set [0, 1] for each graph.  In this way a method for comparing the 

similarity of the problems was introduced with the problem’s relative hardness removed.   

Earlier work studying GBEAs (Bryden et al., 2006) has given a large amount of data on 

how different problems perform on different graphs. This normalized mean time to 

solution to find a satisfactory solution varies in a complex manner between graph type 

and the test problem being solved. This data is numerical in nature and objective, in that 

they do not have a preference to representation or parameter settings. This makes it 

possible to use this data to construct a cladogram for these different test problems to 

evaluate similarities in the desired amount of diversity preservation each problem 

requires. The study resulted in a cladogram (Fig. 4) constructed from 26 taxonomic 

characters for each of the problems investigated.
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3.3.1. A Taxonomy of Evolutionary Computation Problems

It has been established that GBEAs provide a rich source of taxonomical characters, but 

to put these characters to use would require a broad assortment of problems to be 

analyzed.  A taxonomy of evolutionary computation problems would provide researchers

with a means to select a graph to apply to their problem of interest that would give a 

desired result in the shortest time.  For computationally expensive problems previously 

studied, this could result in a speed up of weeks (Bryden, Ashlock, McCorkle, and Urban, 

2002).

The authors of the initial work on GBEAs (Bryden, et al., 2006) have encouraged others 

to apply graphs to their problems to help build the taxonomy, as the addition of this 

information would serve to make the cladogram more representative of problems 

currently examined in evolutionary computation research. There are several problems 

available in the literature and on the web that would be useful additions that would 

improve this taxonomy. Other than those mentioned previously, there is also a repository 

maintained by William Spears (2006) that has contributions from various researchers.  

This is not so much a repository but more a listing of websites where researchers in 

evolutionary computation have posted some of the problems they have worked on.  

Adding these test problems to the taxonomy will increase the likelihood that a new 
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Figure 4, Cladogram of test problems based on solution times for various graphs.
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problem will have a representation similar to one that already exists, giving the user a 

priori knowledge of how the problem can be approached.  Also, if the representation can 

be changed to closely match one of the existing problems, it would seem likely that they 

would share the same preferred graph.  Both of these would depend on whether there 

were any strong differences in problem deceptiveness, which may make a sparser graph 

preferable.

3.3.2. A Proposed Test Suite

With a method to differentiate problems in hand, a suite of test problems can now be 

developed.  The first step to producing a test suite is to review those used by others.  One 

of the most popular test suites used to determine the effectiveness of an evolutionary 

algorithm were the original five problems proposed in DeJong’s doctorial dissertation 

(1975), as described in section 3.2.3.  While these problems are solvable using 

evolutionary algorithms, they do not comprise a complete test suite and it has been 

questioned whether or not they were ever intended to be a test suite or just used as a proof 

of concept (Belew, 1992).  Whitley et al. (1996) performed a review of the available test 

suites and found that many of the functions being used, such as the Rastrigin and 

Schwefel functions (Mühlenbein, 1991), are ill suited for use as test problems.  

NASA/MDO (2002) offers a test suite of engineering problems, but these are complex

problems that do not lend themselves well to extensive study.  
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The work by Whitley et al. (1996) also described key traits that good test problems 

should have. This includes characteristics such as being non-separable, resistance to hill-

climbing algorithms, being nonlinear, and having good scalability. It is apparent looking 

at the cladogram of evolutionary computation problems that graph preference should be

added to this list. Keeping these guidelines in mind, it should be possible to develop a 

non-biased test suite based on the numerous problems evaluated to construct the

cladogram (Fig. 4). First, it is necessary to examine the problems for the key traits of test 

problems and other factors.

The one-max problem is a simple uni-modal problem. While it meets none of the key 

traits, it was included as a baseline for comparison because of the speed at which it runs 

and the large amount of data readily available. For this same reason, the DeJong test 

functions are also being included. The Keane bump test is nonlinear and nonseperable, 

although the nature of the fitness function would likely favor a hill climbing algorithm, 

even if it were part of a memetic algorithm. While the scalability of the applied problems 

is questionable, the remaining problems all roughly fit the recommended principles for 

good test suite problems.

While it would be possible to use all of these problems as a test suite, the amount of 

computational resources to perform all 43 problems and build a large enough database to 

develop statistically significant results would become prohibitive. To further reduce the 

number of problems to be included in a test suite, the location of the problem in the 

taxonomy is used as the deciding factor. Because of varying levels of compute power 
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between users, two test suites are proposed, a smaller suite of seven problems to give a 

general performance of the proposed method(s) and a larger test suite of fifteen problems

to evaluate across a wider range of possible problems that may be explored. The 

recommended problems for these test suites are given in Table 1. The first column lists 

the problems included in the smaller test suite, while the second column gives the 

problems that are added to the smaller test suite to build a more thorough problem set.

The problems in these test suites were sorted by their separation from the other problems. 

If two or more problems had similar performance on the graph set, only one would be 

selected. To determine which problem was retained, different considerations were used 

for the different test suites. For the smaller test suite, the general rule was to select 

problems that were similar in coding and easy to implement. For this reason, the PORS 

and function stack parity problems were chosen. The second DeJong function and the 

3X4 Saw problem were included to cover the remaining areas of the cladogram. For the 

larger test suite, consideration was given to the run time of the problems and the make-up 

of the problem’s fitness landscape. It was also desired to maintain a variety of 

evolutionary computation problems. As these are still only proposed test suites, ensuring 

that a representative sampling of the problems that are being solved with evolutionary 

computation techniques should allow for a more robust test suite.
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Table 1, Proposed test suites of evolutionary computation problems.

Smaller Test Suite: Larger Suite Also Includes:

DeJong function 2 One-max

PORS15 DeJong function 1

PORS16 DeJong function 5

PORS17 Griewangk Function in 5 dimensions

SAW 3X4 “Order” ordered gene problem 9

Function Stack Parity 4 Function Stack Parity 3

Function Stack Parity 5 Steiner Triple System 55

North Wall Builder
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3.4. Conclusion

The performance of different combinations of graphs and test problems shows that there 

is an abundance of data available for use in classifying both population structures and test 

problems. By continuing to compare graphs by using test problems and test problems 

using graphs, it is possible to explore the larger space of all evolutionary computation 

problems. The goal of this work is to one day have a large enough collection of data so 

that with a limited amount of a priori information it would be possible to select a graph 

that is tuned to the needs of the problem at hand. This information on the development of 

a test suite is a first step in making a recommendation of graph selection, although more 

information is needed on how information flow manages diversity. This is the topic of the 

following chapter.
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4. CONTROLLING INFORMATION FLOW AND DIVERSITY

The control of information flow within an evolving population is the mechanism by 

which GBEAs achieve superior performance to standard evolutionary algorithms. While 

it has been shown that the use of graphs in evolutionary algorithms helps preserve 

diversity and allows for faster solution times for deceptive problems, it would be 

beneficial to have a deeper understanding of the dynamics of these GBEAs. Not only 

would knowing the optimal parameter settings allow for a more rapid solution of 

problems, it would be possible to select parameters that would promote the development 

of a more diverse population of solutions that are all satisfactory. This would allow for a 

more robust design tool, readily capable of providing another solution to the given 

problem if an unforeseen constraint were imposed on the problem. 

In this chapter we examine diversity in graph based evolutionary algorithms and how 

diversity can be controlled. The amount of diversity present initially in any evolutionary 

algorithm is dictated by the population size. While diversity can be added using mutation, 

generally the amount of diversity present when the algorithm is started is the most that 

will be present. The question that arises is whether all of the necessary information is 

available to find a superior answer and how easy is it to bring the necessary pieces 

together. By comparing the affects of population size and graph choice, it is possible to 

gain some insight into diversity in a problem, when diversity needs to be preserved and 

when there is too much diversity.
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4.1. Population Size in Graph Based Evolutionary Algorithms

The initial study of GBEAs investigated using various types of graphs with a fixed 

population size of 512 vertices (Bryden, et al., 2006.) This investigation showed that the 

selection of a graph significantly impacts the time to solution for many types of 

problems. In addition, selection of the optimum graph is specific to the problem and, in 

general, simpler fitness landscapes perform better as the graphs in which the rate of 

information spread was faster, e.g. graphs with smaller diameters. Conversely, those 

problems with more complex fitness landscapes perform better on graphs in which the 

rate of information spread was slower, e.g. with larger diameters. In the earlier study 

(Bryden et al., 2006), the population size was fixed, and the connectivity of the graph was 

only changed by changing the graph. Another mechanism for revising graph connectivity 

is to change the population size. This section investigates the role of population size in 

GBEAs and the interaction between graph type and population size in time to find a 

satisfactory solution.

To investigate the effects of varying the population size using different families of 

graphs, five test problems were selected and 5000 simulations were performed for each

problem on each graph. The number of mating events required to find a solution in each 

of these simulations was recorded. A separate collection of simulations was run for each 

population size selected for the experiment, ranging from 32 vertices to 4096 vertices. 

While all population sizes of 256 or greater vertices had 22 graphs, some families of 

graphs become identical or else do not exist for smaller population sizes. This results in 
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there being only 21 graphs for population sizes 64 and 128, and only 19 graphs for 

population size 32.

Previous work such as that done by Goldberg, Deb, and Clark (1989; 1992) and 

Grefenstette (1986) has concentrated mainly on bit-string evolvers, real-string evolvers 

and genetic programming are also of interest and are examined in this study. The test 

problems used were designed to cover as broad a range of problem types as possible 

while still being unbiased to a particular algorithm (Whitley, et al., 1996). To perform a 

useful comparison of graph performance, it was also necessary to select problems with a 

know solutions. While this is true of all the test problems selected, the stopping criterion 

for the real-string evolver was a small range around the solution to account for the 

continuous nature of the solution space.

The goal of this computational experiment was to investigate the impact of varying the 

population size and graph on the mean number of mating events to solution. For each of 

the problems, 5000 evolutionary runs were performed on each graph and the mean time

to solution was computed. A 95% confidence interval was used to compare performance 

across the set of graphs. Only results in which the confidence intervals calculated did not 

overlap were considered to be statistically significant and usable in comparing graph 

performance. To determine the utility of GBEAs, the performance of the preferred graph 

was compared to the complete graph, which resembles a standard genetic algorithm and 

so is used as a baseline. In the initial study (Bryden et al., 2006) it was found that graphs 

of the same family generally performed similarly, as shown in Figure 5. Based on the 
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Figure 5, The average number of mating events to solution as a function of graph for the PORS 16 
problem, 512 vertices.
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similarities between families of graphs for a given population size, each of the graph 

groups were averaged together and presented as a “graph family,” as shown in Figure 5. 

These graph family results are then plotted as a function of population size for each of the 

problems examined. Table 2 gives the average percent speed for each problem and 

population size combination studied here.

To explain these results in this study the term “critical point” is introduced. For each 

graph or graph family there is a population size where it performs best for a particular 

problem. When that graph or graph family is also the best choice at that population size, 

this is referred to as a critical point for the problem being examined. These are the 

combinations of population size and graph type that work together to provide and 

maintain the proper balance of diversity to solve the problem most efficiently.

4.1.1. Plus-One-Recall-Store

For the PORS 16 problem, increasing the population size from 32 to 64 resulted in a 

sharp improvement for all graphs, with critical points found using the cycle graph with 64 

vertices and the complete graph with 128 vertices (Figure 6). For population sizes of 32 

and 64, using the cycle graph works best with a speed up over the baseline of 311% and

152% respectively (Table 2), while using the complete graph results in the poorest 

performance. At a population size of 128 the usefulness of the graphs reverses order so
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Figure 6, The average number of mating events to solution as a function of population size and graph 
for the PORS 16 problem.
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Table 2, Performance Increase from Using Preferred Graph.

32 64 128 256 512 1024 2048 4096
Onemax 0% 0% 0% 0% 0% 0% 0% 0%
PORS 15 39% 144% 432% 2395% 1146% 96% 10% 18%
PORS 16 311% 152% 0% 0% 0% 0% 0% 0%
n=6 -- 45% 152% 239% 62% 0% 0% 0%
n=10 -- 29% 241% 497% 51% 0% 7% 11%
NWB 175% 131% 64% 8% 8% 7% 6% 5%
3x3 11% 16% 15% 13% 1% 11% 13% 11%
3x4 41% 17% 20% 22% 22% 21% 22% 21%
4x4 -- 12% 8% 25% 32% 40% 37% 36%
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that the complete graph yields the best performance and the cycle graph the worst. This 

proves to be the trend for the remainder of the population sizes. The cycle graph (the 

graph with the slowest rate of information transfer) is the first graph to reach its 

maximum performance at a population size of 64, followed by the complete graph with 

128 vertices (the graph with the fastest rate of information transfer). Once the graphs’ 

rank ceases to change, the time to solution for all graphs displays asymptotic convergence 

to increasing parallel lines.  

The PORS 16 problem is a relatively simple genetic programming problem, and as 

expected the optimal population size for the problem was small (cycle graph at 64 and 

complete graph at 128). It is interesting to note that there is a shift in which graph 

performs best that is related to population size. To satisfactorily solve the PORS 16 

problem there needs to be a sufficient supply of the building blocks to reach one of the 24 

solutions. When the population size is insufficient to provide the necessary supply of 

building blocks either initially or early in the search process (less than 128 members in 

this study), the population is dominated by sub-optimal solutions and it then becomes 

necessary to introduce diversity through mutation to find a satisfactory solution. Using a 

diversity preserving graph allows for the assembly of compatible building blocks before a 

solution dominates the search space by limiting the spread of information within the 

population. When the population size increases, there is a sufficient supply of building 

blocks either initially or early in the search process to assemble one of the correct 

solutions and so a diversity preserving graph is no longer required. In fact, once the 

necessary pieces are available, the restrictions on the spread of information imposed by a 
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diversity preserving graph slows the time to find a satisfactory solution by limiting the 

transfer of the building blocks through the population of solutions.

The PORS 15 problem, a more difficult, deceptive problem, also shows a significant 

improvement as the population size reached certain values but shows a wider separation 

of graph performance (Figure 7). For population sizes of 32, 64, 128, and 256, the graph 

rankings are the same as for the PORS 16 problem with a population size of 64 with 

performance increases ranging from 39% to 2,395% (Table 2). However, there is an 

increasing separation between the graphs and graph families. The Petersen graph family 

ranks second to the cycle graph for a population size of 256, and is followed by the toroid 

family. For a population size of 512, the cycle graph outperforms all other graphs, 

showing the best performance and reaching a critical point. At a population size of 1024, 

the only graph that has a statistically significant difference from the others is the 

complete graph, which has the poorest performance. This ranking continues for 

population sizes 2048 and 4096, with the complete graph performing closer, but still 

inferior to, all other graphs. As with the PORS 16 problem, once the graphs’ ranking 

ceases to change, the time to solution using all graphs displays asymptotic convergence to 

parallel lines.  

The preferred graph for the PORS 15 problem follows the same general trend as that seen 

in the PORS 16 problem, but with more diversity required. This diversity comes from 

both the size of population desired and the selection of graph, although a diversity
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Figure 7, The average number of mating events to solution as a function of population size and graph 
for the PORS 15 problem.
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preserving graph is preferred in all the trials conducted. It is interesting to note that this is 

the only problem studied in which the preferred graph never changed: the cycle graph 

was always the preferred graph. This is most likely due to the deceptive nature of the 

problem. Five building blocks composed of three nodes are required to find the solution, 

but it is easy for the algorithm to find blocks of five nodes that improve the fitness but 

prevent convergence to the true optima. By limiting the rate at which these larger 

building blocks are shared in the solution population, the algorithm is able to assemble 

the smaller building blocks to find superior solutions. For the algorithm to benefit from a 

higher rate of information transfer, a larger amount of initial diversity is required to 

provide a sufficient number of these building blocks to prevent them from being lost 

before they are put to use.

4.1.2. One-max

The one-max problem is a simple uni-modal problem that requires very little diversity for 

efficient solution (Bryden et al., 2006). Since this problem is a binary string evolver, 

schema theory can be applied to calculate an optimal population size for a simple genetic 

algorithm. Using formula’s derived by Goldberg (1989) and a building block size of 1; 

the optimal population size without using a graph is approximately 4. Because this 

optimum is so low no critical point can be seen in the results (Figure 8). It is also 

impossible to construct many of the graphs used in this study with this population size, so 

no experiments were done using these parameters. The results show that graphs with a 

higher level of connectivity and a small population size work best; for small populations, 
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Figure 8, The average number of mating events to solution as a function of population size and graph 
for the one-max problem.
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the algorithm using the complete graph converges to a solution fastest and using a cycle 

graph converges slowest. The optimal performance was observed with a population size 

of 32 (the smallest population examined) using the complete graph. For population sizes 

greater than 64, using the hypercube works best, and when the population size exceeded 

1000 the toroid graph family outperforms the complete graph although the performance 

increase is modest (Table 2). Increasing the population size for this problem causes an 

almost exponential increase in time to solution, and population size has a much more 

significant effect than graph type.

4.1.3. North Wall Builder

For the north wall builder (NWB) problem, there is again a population size at which each 

graph makes a sharp improvement in performance, but the preferred graph for this 

problem changes several times as the population size increases (Figure 9). For the 

smallest population size, the cycle graph performed best. The Petersen graphs were 

preferred when the population was changed to 64. Population size 128 is the optimal 

population size, with the best performer being in the toroid family. When the population 

size is increased to 256 the hypercube family and complete graph performed best. For a 

population size of 512 the hypercube family performed best, followed by the complete 

graph. As the population size increases, graph performance exhibited more separation 

and shows the same general trend towards identical behavior at 512 vertices and higher 

with the time to solution for all graphs converging asymptotically. The largest benefit to
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Figure 9, The average number of mating events to solution as a function of population size and graph 
for the North Wall Builder problem.
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using a GBEA is seen for smaller population sizes, starting with a 175% performance 

increase for a population size of 32 and decreasing quickly to 8% at a population size of 

256 (Table 2.)

As previously noted, the NWB problem is an intermediate difficulty problem and these 

results show that an intermediate amount of diversity is required for optimal 

performance. An interesting difference in this problem is that unlike the PORS 15 and 16 

problems, the preferred graph makes a more gradual shift from one that preserves the 

most diversity to a more connected graph. As the population size increases, more

connected graphs are preferred, but there is no abrupt change from a very sparse graph to

a very connected graph as seen in the other problems. While the number of mating events 

to solution for the NWB problem is comparable to the PORS 16 problem, the NWB 

problem has a much larger selection of acceptable solutions that may or may not have 

interchangeable building blocks. A diversity-preserving graph allows a more effective 

search of the solution space so that one of these solutions may be found, as opposed to a 

larger population size that provides more diversity initially, but does not preserve it.

4.1.4. Keane Bump Test

For the Keane Bump Test with six variables, the graph families show only modest 

separation statistically. There is no statistically significant difference between the graphs 

with a population size of 32, and only the performance of the cycle graph can be 

distinguished from the other graphs for a population size of 64 (Figure 10.)  All graphs 
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Figure 10, The average number of mating events to solution as a function of population size and 
graph for the Keane Bump Test, n=6.
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show improved performance at population sizes of 128 and 256, with the cycle graph still 

performing best with a performance increase of 152% and 239% respectively (Table 2.)

When the population size is increased to 512, the cycle graph’s performance is not 

significantly different from the toroid and Petersen families, with these graphs 

performing best. When the population size is increased to 1024, all graphs but the cycle 

graph show improved performance. As the population increases from 512 to 1024, the

cycle graph switches from the best to worst performer, and the complete graph or a graph 

in the hypercube family becomes the best performer. This trend continues as the 

population size increases, but with all performances decreasing as population size is 

increased beyond 1024.  

The results for the 10-variable problem are strikingly similar to those for the 6-variable 

problem (Figure 11), although graph choice had more of an impact on time to solution as 

the population size changes. Again there is difficulty separating the graphs at population 

size 64, although the cycle graph performs best. The graphs’ rankings are the same for 

population sizes 128 and 256, with performance increases of 241% and 497% 

respectively. At population size 512, the cycle graph flips from best performer to worst 

with the toroid graphs, the Petersen graphs, and the random toroid graphs grouped 

together as best. When the population size is increased to 1024, the complete and 

hypercube family of graphs perform best. This is the trend as the population size is 

increased to 2048 and 4096. While the superiority is not statistically significant, the 

random toroid graph shows some signs of outperforming the toroid graphs and Petersen 

graphs at the highest population size.
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Figure 11, The average number of mating events to solution as a function of population size and 
graph for the Keane Bump Test, n=10.
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There are three points in Figure 11 where the preferred graph changes; one for the cycle 

graph when it switches from best to worst at population size 512, one for graphs with 

intermediate information transfer rate (Petersen, toroid and random toroid) when they

become best at population size 512, and one for graphs with high levels of information

transfer (hypercube graphs and complete graph) when they become best at population 

size 1024. This indicates again that with a smaller population size and a corresponding

smaller initial diversity, the need for diversity preservation is higher.

Note that, with higher dimensionality, graph choice becomes more important. When the 

population size for this problem is small, a graph with a slow rate of information transfer 

is preferred, indicating that there is some need for diversity. As the population size 

increases, the corresponding increase in initial diversity makes the need to preserve 

diversity less important, so graphs with intermediate amounts of information transfer are 

preferred. At 1024 vertices, there is enough diversity in the initial population to allow 

graphs with the fastest information transfer rate to solve the problem most efficiently. 

This is due to the increased number of building blocks necessary to find a satisfactory 

solution. The building blocks correspond to the correct solution in each dimension, which 

have to be found and then assembled. By isolating these pieces as the solutions develop, 

the graph structures allows all of these blocks to be found, preventing sub-optimal 

solutions with other building blocks from dominating the population and preventing this 

development. Larger population sizes allow for a more diverse population making it less 

likely that a solution with one or more correct building blocks will be replaced.
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4.1.5. Self-Avoiding Walk

The smaller population sizes perform best for the 3x3 grid (the smallest grid studied) with 

more mating events required as the population size increased to 1024 vertices (Fig. 12.)

This is a fairly simple instance of this problem, and all graphs are statistically 

indistinguishable at every population size, with the exception of the complete graph, 

which performs the worst for every population size. Performance gains from using 

GBEAs ranged from 11% to 16% (Table 2.) Graph performance at 2048 vertices is 

roughly the same as at 1024, and with 4096 vertices some improvement is seen. There 

appeared to be some need for diversity preservation to develop solutions, but a small 

population size has sufficient initial diversity to solve the problem.

The decrease in the number of mating events necessary from population sizes 2048 to 

4096 warrants some extra analysis. The 3x3 SAW problem is a length 8 string evolver 

with a four-character alphabet. This gives 48 or 65,536 different combinations of strings 

available. There are 8 different possible solutions to the 3x3 SAW problem, meaning that

there is a 1 in 8192 probability that each string generated when the algorithm is initialized 

will be a correct solution to the problem. This explains why the rate at which the number 

of mating events to solution increases starts to slow when the population size reaches 

512, where there is a 6% probability that a solution will be in the initial population. There 

is also an increase in the confidence interval due to more correct solutions appearing in 

the initial population.
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Figure 12, The average number of mating events to solution as a function of population size and 
graph for the Self-Avoiding Walk, 3x3 grid.
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For grid size 3x4 and 4x4, a similar trend to other problems is seen with all graphs 

improving as population size increases to an optimal point, and then performance lessens 

as the population size increases past the critical point (Fig. 13.) When the grid size was 

increased to 4x4, graph of population size 32 ceased to have more than 95% of the runs 

find satisfactory results within the ten million mating events allowed. Because of this and 

the large confidence intervals calculated for this population size the results considered 

uninformative and are not given. As with the 3x3 SAW problem, there is little 

statistically significant difference between the graphs for population sizes up to 512 other 

than the complete graph, which consistently performs worst. Performance gains from 

using GBEAs ranged from 8% to 41% (Table 2.) It is interesting to note that the preferred 

graph did not change when the problem difficulty is increased, but the optimal population 

size and the ability of the graphs to solve the problem as a function of population size 

changes significantly.  

As the grid size is increased to 4x5 and higher, graphs of population size 64 cease to have 

more that 95% of the runs find satisfactory results and the best population size is still 

128. All of the graphs perform similarly at this optimal population size with the exception 

of one of the random toroid graphs and the complete graph that fails to consistently solve 

the problem. When the population size is increased to 1024, the hypercube family starts 

to perform worse than all the other graphs except the complete graph, which is still the 

worst performer. All graphs take more time to converge as population size is increased 

beyond 128. When the grid size is further increased to a 5x5 grid, most of the graphs
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Figure 13. The average number of mating events to solution as a function of population size and 
graph for the Self-Avoiding Walk, 3x4 and 4x4 grids.
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could not consistently find a solution until the population size is increased to at least 512. 

The trends shown by the experiments that did successfully solve the problem are the 

same as those exhibited by the 3x4 and 4x4 versions of the SAW problem.

This study investigates the effects of population size on the performance of graph based 

evolutionary algorithms. Five test problems were examined and the number of mating 

events required to find a satisfactory solution were determined for 5000 runs of each 

problem on each of the graphs. Over 80% of the problem and population size 

combinations showed some improvement when a graph based evolutionary algorithm 

was used, with nearly 20% finding the solution at least twice as fast.

As every graph’s population increases, there is a point at which the required number of 

mating events to solve the problem decreases drastically, which is then followed by a 

slow increase in the necessary number of mating events as the population size increases. 

The trend of the results suggests that for each graph applied to a problem, there is a 

population size where the optimum performance is achieved, as shown in Table 3. The 

least difficult problem (one-max) and the least difficult SAW problem (3x3) do not show 

this behavior, but it would seem intuitive that there is also a preferred population size for 

these problems. For the one-max problem that size would be less than 32. As noted, the 

optimal population size for the one-max problem is 4.  
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Table 3, Critical points for test problems by graph family.  Best graph family denoted with an 
asterisk (*).

Problem Cycle Complete Hypercube Petersen Toroid Random 
Toroid

Onemax none none* none none none none
PORS 16 64 128* 128 128 128 128
PORS 15 512 2048 1024 512* 512 1024
NWB 128 256 256 128 128* 128
Keane n=6 512 1024* 1024 512 512 1024
Keane n=10 256 1024 1024* 512 512 512
SAW 3x3 none none none none* none none
SAW 3x4 64 64 64 64 64* 64
SAW 4x4 128 128 128 128 128* 128
SAW 4x5 none none none none none* none
SAW 5x5 none none none none* none none
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Based on the results of the computational experiments, there is an apparent progression as 

the population size increases. As noted earlier, the results of the all the experiments in 

this study followed the same trends. In some experiments only a portion of this 

progression is shown based on the population sizes explored, but in each case the section 

observed follows this pattern. Before the critical point, the population is diversity starved, 

and so a graph that preserves the available diversity has a large impact on the 

performance. In this region sparser graphs (e.g. the cycle graph) are superior as they 

preserve the available diversity.  This diversity starved region is labeled A in Figure 14.  

Region B is the optimal performance region, where the amount of diversity is best for 

evolutionary optimization to find single solutions fastest. This region contains the critical 

point for the problem and a satisfactory solution can be found in the fewest mating 

events. Region C, the excess diversity region, represents the population size where the 

diversity is rich, making it possible for the algorithm to find multiple solutions but at a 

substantial cost in added time. A large population with sufficient diversity to ensure that 

global solutions will evolve is also so large that it takes a long time to simply evaluate the 

fitness of each member of the population. In addition that algorithm often has competing 

solutions in the population. This competition between different solutions also slows

convergence. In Region C the best graph tend to be a highly connected graph that can 

burn off the excess diversity as fast as possible. However as the population size grows the 

initial diversity overwhelms the ability of a graph to burn off diversity and all graphs tend 

to look the same. In the problems examined the exceptions to this were the PORS 15 

problem and the self-avoiding walks. In these cases it appears that the solution is built 

from building blocks that must be first found and then assembled correctly. As a result 
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Figure 14, Population Size Regions (Log vs. Log scale).  A – diversity starved, B – optimization, C –
excess diversity, D – saturation.
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graphs that maintain some diversity have a slight edge. The saturation region (Region D) 

is where the population size has increased sufficiently so that global solutions start to 

have a positive probability of appearing in the initial population of solutions. At this point 

the time cost of simply evaluating all the creatures in the initial population dominates 

time to solution. While there is a reduction in the average number of mating events in 

Region D over Region C, the reduction flattens out as the algorithm becomes equivalent 

to an algorithm that simply tests random examples until an optimal solution is found. The 

improvement in time-to-solution observed in Region D never reaches the low level of the 

critical point in Region B.

The use of a GBEA has several impacts on the population size at which the evolutionary 

algorithm enters the different regions. For smaller population sizes, GBEAs using sparser 

graphs tend to move Region B to the left on Figure 14, as the preservation of diversity 

makes up for lack of initial diversity. For more difficult problems, using a sparser graph 

allows the algorithm to function in Region B at a smaller population size and so find an 

optimal solution in fewer mating events. We theorize that preserving population diversity 

permits that algorithm to situate in more basins of attractions of the fitness landscape. 

This, in turn, makes it possible for necessary building blocks to be assembled when they 

are present in a given problem and, at least, permits that algorithm to climb and compare 

multiple hills in the fitness landscape. As the population size increases into Region C 

there is a gradual shift in the best performer from sparser graphs to graphs with a higher 

connectivity. As the population size increases, excess diversity inhibits the progress of 

the algorithm, and so population structures that increase the rate of information spread 
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start to outperform those that preserve diversity. When the population size enters Region 

D, graph choice begins to have no significant effect on the algorithm performance. Since 

search in Region D is equivalent to examining random examples until a solution is found 

the structure of the graph has no leverage to affect performance.

A second phenomenon of interest is a shift in the best graph as the population size 

increases for some problems. This can be seen with the PORS 16 problem (Fig. 6), where 

initially the cycle graph performs best, followed by the Petersen and toroidal graphs. This 

shifts to the complete graph performing best, followed by the hypercube, as the 

population size increases to 128. A similar shifting occurs with the north wall builder 

problem, although it occurs more slowly as a function of population size. This slower 

shift also shows that every graph was preferred at some population size, except for the 

complete graph. The most prominent case for this is seen in the variable dimension 

surface. It appears that for these problems, a certain amount of diversity is required to 

arrive at a solution, and when that level of diversity can be achieved, the problem then is 

benefited most by a faster sharing of that information, as shown by the graph families 

with higher connectivity being preferred in the Keane Bump Test problem (n=6 and 

n=10.) The fact that the shift in preferred graph occurs at a different rate for different 

problems indicates that the diversity preservation achieved by using a graph affects the 

evolving solutions differently than initializing the population with more diversity by 

using a larger population size.
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As the population size is increased beyond the critical points for the problems, two trends 

were observed. These trends appear to be due to the differences in the type of problems 

investigated. For the problems that have building blocks (PORS and Keane Bump Test), 

there is a shift in the preferred graph that indicates that the complete graph is always the 

preferred graph when the population size increases to a very high level. This population 

size would correspond to the point when all of the necessary building blocks are available 

in sufficient supply to assemble the final solution. At this point, the algorithm benefits 

from having the highest amount of information sharing. In contrast, the NWB and SAW 

problems have constructs that are more tightly coupled to the solution they appeared in 

(i.e. the last 4 characters may contribute four to the fitness in one string, but when 

crossover is performed with another string, these characters may no longer make any 

contribution to fitness). In addition, it is likely that there are multiple competing optimal 

solutions evolving within the population that produce less fit children when they mate. 

For these reasons, there is less of a need for information sharing to speed the finding of a 

satisfactory solution, and so the complete graph does not become the best performer.

An increase in population size provides a larger amount of diversity (or necessary 

building blocks) in the initial population, as shown by the research of Goldberg (1989) 

and Grefenstette (1986), among others. For the problems examined in this study, there is 

a given amount of diversity required to find the solution. This required diversity can be 

achieved using just a larger population size, but by using a graph based evolutionary 

algorithm to limit the rate at which this diversity is destroyed during the evolutionary 

process by superior yet sub-optimal solutions, a smaller population can be used to arrive 
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at an optimal solution faster than with standard techniques. This results in a decrease in 

computational expense and faster answers to the problem being solved, especially those 

in which the cost of initializing the population is high compared to future evaluations, 

such as using neural networks to control computational fluid dynamic calls (McCorkle, 

Bryden and Carmichael, 2003). Future experiments could indicate if diversity 

preservation using graph based evolutionary algorithms instead of larger populations is 

universally superior.

While the combined effect of using graphs together with the optimal population size has 

been seen to give results as positive as a 94x increase in time to solution, as occurred in 

the PORS 15 problem, where the complete graph (which is equivalent to a standard EA) 

requires approximately 6.6 million mating events to find the solution with a population 

size of 32, while using a cycle graph with a population size of 512 requires just over 

70,000. If applied to a similarly deceptive problem with a fitness evaluation taking just 1 

second per evaluation, the cycle graph would require a day as compared to two weeks for 

the complete graph with the same population size.

4.2. Takeover Times for Graph Based Evolutionary Algorithms

Previous studies (Bryden, et al., 2006) have shown that using a properly selected graph 

decreases the number of mating events to find a solution for difficult and/or deceptive 

problems. This is thought to be because GBEAs allow the user to control the rate at 

which information is spread through that population. By decreasing the rate that 
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information about the solution space is shared by population members, a higher level of 

solution diversity is maintained but the time required for the population to converge to a 

solution is also increased.  In this research we calculate the takeover time for various 

graphs to verify the information transfer rates. In addition, experiments are conducted to 

empirically determine the solution diversity present in the population after a set number 

of mating events. By comparing these results, it is possible to observe the balance 

between exploitation and exploration in the search space and how GBEAs can be used to 

adjust that balance. 

Takeover times were first introduced by Goldberg and Deb and Thierens (1993) as a

means for comparing the impact of varying selection pressures. Takeover time for an 

evolutionary algorithm (EA) is defined as the time (in generations or mating events) 

necessary for a superior solution to spread through the entire population. These takeover 

times are a common indicator of the amount of diversity preservation an algorithm yields 

in a population of solutions, with smaller takeover time algorithms being exploitive while 

larger takeover times are more nearly explorative. For most if not all algorithms, a larger 

takeover time generally leads to a more diverse final population.  

There is a larger body of work concerning takeover times following the derivation of 

theoretical takeover times by Deb and Goldberg. This initial work was performed on

standard genetic algorithms (SGAs) using standard selection methods. This was extended 

to spatially structured EAs empirically by Sarma and DeJong (1996), where it was found 

that grid based EAs have a growth curve that is logistic in nature. Rudolph (2000b) and 
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Giacobini et al. (Giacobini, Tomassini, Tettamanzi, and Alba, 2005) performed analysis 

on spatially structured EAs and cellular EAs respectively. These studies found that for a 

2-D grid the growth curve is quadratic and for a ring structure the growth curve is linear.

This work introduces both analytical and empirical results for takeover times in GBEAs.  

The majority of work in the literature deals with generational algorithms and so cannot be 

assumed to be comparable to GBEAs, which are steady-state algorithms. However, there 

should be some correlation between synchronous cellular evolutionary algorithms using a 

ring of radius=1 (Giacobini, et al., 2005) and the cycle graph, which should be helpful in 

validation of these results.

4.2.1. Takeover Times

Takeover times are a method for determining how long it takes for the population of 

solutions to become completely taken over by a single solution, usually measured in 

generations or number of mating events. In this study, two methods were employed to 

determine the takeover times: expected value calculations and empirical testing.  

Expected value calculations are an analytical solution for takeover times that give highly 

accurate approximations, with only the stochastic nature of the algorithms providing 

variation. While accurate, they are also exceedingly difficult to calculate for most graphs. 

For this reason, empirical tests were conducted for the graph set, with the empirical 

results compared to the analytical results when possible.
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4.2.2. Expected Value Calculations

To find the takeover times for these two graphs, it is first necessary to examine the 

interactions of population members as the solutions evolve, beginning with complete 

graph. There are two possible outcomes at the beginning of a mating event:  either a 

superior member is selected or an inferior member is selected.  The probability of a 

superior member being initially selected is:

n
xPs (4-1)

and the probability of selecting an inferior member is:

n
xnPi (4-2)

Where x is the number of superior solutions in the population and n is the population 

size. Next the probability of selecting an appropriate neighbor using fitness proportional 

selection is considered. For this experiment, only outcomes mating a superior individual 

to an inferior are of interest as this is how the superior solutions spread through the 

population. This depends on whether a superior solution was initially selected and also 

depends on the fitness ratio of the superior and inferior solutions. Treating the complete 

graph as a size n GBEA mating event, the probability of selecting an inferior co-parent 

when a superior parent was selected is:
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xrrxn
xnP sco p, (4-3)

and the probability of selecting a superior co-parent when an inferior parent was selected 

is:

1, xrxn
rxP ico p (4-4)

where r is the fitness ratio of the superior solution to the inferior solution. The probability 

that a superior parent will be randomly selected and then an inferior co-parent is selected 

is the product of equations 4-1 and 4-3:

nxrnrnxn
xnxP scops 2

2

,* (4-5)

And the probability that an inferior parent will mate with a superior co-parent is the 

product of equations 4-2 and 4-4:

nnxrnxn
rxrnxP icopi 2

2

,* (4-6)
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Adding these two probabilities together gives the chance that an inferior and a superior 

population member interact, leading to the spread of the superior solution (eqn4-7).

nnxrnxnnxrnrnxn
nxrnrnxnrxrnxnnxrnxnxnxPK 22

2222

(4-7)

For the cycle graph a different approach is necessary to determine the probability of a 

superior solution interacting with an inferior solution due to the lowered connectivity of 

the graph. When there is only a single superior solution, either the superior solution must 

be selected as a parent ( NPS 1 ), or one of the inferior solutions adjacent to it must be 

selected as parent and the superior solution selected by fitness proportional selection:

1
2

r
r

n
Pi (4-8)

For a total probability of:

nnr
r

r
r

nn
PC

13
1

21
1 (4-9)

After a second population member has a superior fitness and until there is only one 

inferior solution left, there are only two edges on the graph where there is a possibility of 

the solution spreading, referred to here as “active” edges. These are the edges that 
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connect a superior solution to an inferior solution. The probability of the randomly 

selected parent being either a superior or an inferior solution on one of these edges is the 

same: 

n
Pparent

2 (4-10)

The co-parent is then selected using fitness proportional selection, with the probability of 

a superior neighbor being selected of:

1r
rPi (4-11)

and a probability of an inferior neighbor being selected of:

1
1

r
Ps (4-12)

Adding equation 4-11 and 4-12 and multiplying by equation 4-10 gives the probability 

that the superior solution will spread to another vertex:

nnr
rPC

22 (4-13)
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Reducing equation 4-13 gives:

nr
r

nnnr
rPC

2
1
1222

(4-14)

Equation 4-14 merits some extra discussion. The results indicate that with the exception 

of the first and last successful mating the fitness ratio has no influence on the probability 

a solution will spread and thereby the takeover time for a cycle graph. At first glance this 

would seem counter-intuitive, but as progress is only made on the “active edge” of the 

graph, there are two superior and two inferior population members of interest. A closer 

examination of equations 4-11 and 4-12 shows that as they are always sum to one, so the 

only effect the fitness ratio has on the spread of information is on how much more likely 

it is that information spread results from an inferior parent mating with a superior co-

parent.

Using these probabilities the number of mating events required for the superior solution 

to takeover the graph are found using expected values. Letting m denote the number of 

mating events and j be a running counter, the takeover time can be found by as follows:
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Set 1x and 0jm

While nx {

Increment m

Calculate Pjj

Set jx

}

At the end of this iterative process the value of j gives the takeover time in number of 

mating events for the corresponding graph probability. As previously discussed, this 

probability is a function of the number of population members (n), the fitness ratio (r), 

and the number of superior solutions present (x). To validate the curves generated using 

this method, empirical experiments were done to create takeover time curves for these 

and other commonly used graphs.

4.2.3. Empirical Takeover Time Experiments

To further investigate the rate of information transfer within the various combinatorial 

graphs used in GBEAs, a series of numerical experiments were performed, each 

experiments consisting of 1000 runs. These experiments were conducted for each 

population size and graph type used, with a comparison of the cycle and complete graphs 

to the expected value solutions used as validation. For each run, the graph is populated 

with a candidate solution at each vertex, assigned a fitness of one. An individual is then

inserted into a random vertex and a mating event involving that vertex is performed to 
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start the run. A mating event consists of selecting of a population member (randomly 

after the introduction of the high fitness individual), and then selecting a mate using

roulette selection of the available neighbors. If there is a difference in fitness between the 

two population members selected, the lower fitness individual is replaced by a copy of 

the higher fitness individual. After initialization, mating continues until the entire 

population has this higher fitness, recording the number of mating events after 

initialization required to reach whole number percentages.  

Letting r be the fitness ratio between the superior individual and the initial population, 

runs were performed with fitness ratios of 1.5, 1.75, 2, and 3. In this way, the rate at 

which the superior solution spread across the graph can be tracked. The data is reported 

as the number of mating events required as a function of percentage spread, and then as 

the number of mating events required divided by the population size as a function of 

percentage spread, in an attempt to normalize the results.  

4.2.4. Diversity Measurement Experiments

To test what effect different graphs have on the number of different solutions obtained, 

two problems were used: a real-valued multiple-sinusoid function and the PORS efficient 

node usage problem, a maximization problem in genetic programming.  
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4.2.4.1. Sinusoidal Function

The first set of experiments investigating the diversity enhancement enabled by a GBEA 

used a multiple-sinusoid function. The optima are known, and the function is highly 

multi-modal. A population of 512 individuals was used with the gene length (or problem 

dimension d) ranging from 3 to 9 real values. Values for each locus were randomly 

generated from 0.0 to 2.0 to initialize the populations. Fitness was then calculated using 

the equation:

d

i
ixf

1
10sin (4-15)

where xi is the value of the ith locus. The search for a solution was said to be complete 

when the fitness evaluated in Eq. 4-15 was equal to the dimension of the problem within 

six decimal places. The variation operators used were single point crossover and mutation 

of one of the gene’s values at random. For each of these experiments, there are 10d

different solutions, giving a large multi-modal landscape to explore. Since all solutions 

are expected to be equivalent, no attempt was made to distinguish different forms of the 

solution.

4.2.4.2. PORS Problem

The Plus-One-Recall-Store (PORS) problem is a standard genetic programming test 

problem, as explained in section 3.2.5. For this study, the number of nodes was set to 16 
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(designated PORS16.) PORS16 has 24 distinct solutions. While each of the 24 solutions 

is distinct from the others, the combination of nodes results in 4 permutations of 6 

different combinations of the available building blocks (since two of the building blocks 

have two equivalent forms). Because of this, we examined both the number of different 

solutions (24 total) and the number of building block combinations (6 total) that were 

found in each experiment.  

The sinusoid function and the PORS problem both have known solutions and so are 

useful for testing the impact of GBEAs on diversity. For the various trials of the sinusoid 

function and the PORS16 trials, 5000 runs were performed on each graph. For each of 

these simulations, the number of different solutions was calculated once 90% of the 

population had found an acceptable answer. These results were used to find a mean 

number of different solutions produced by each graph and a 95% confidence interval. It 

should be noted that since there are many solutions to these problems, the number of 

solutions found in each individual run was used to perform statistical analysis. Since the 

solutions are equivalent and come from random initialization, there should be no 

statistically significant difference when the data is examined in this way.

4.2.5. Takeover Time Experiment Results

This experiment was designed to investigate the spread of information in a GBEA, as 

well as the effect the difference in fitness has on this rate of spread. Figure 15 shows the 

information spread (percentage of vertices with higher fitness value) as a function of 
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mating event for the cycle; Petersen n,1; Petersen n,3; and toroid graphs with a 

population size of 512. Because of the scaling of Fig.15, the performance of the 

additional graphs is shown, but not identified. These additional graphs are shown in 

Figure 16. Figures 15 and 16 show that the general relationship between the number of 

mating events and the extent of the information spread is initially slow. This occurs 

because the number of high fitness members in the population is small and the randomly

selected individual and its neighbors will not include a high fitness member each time. As 

the number of high fitness members grows, the extent of the information spread grows 

nearly linearly, until the population is composed of primarily high fitness members. At 

this point, the rate of information spread slows due to the difficulty of finding and 

selecting low fitness members to replace. The results for the graphs with higher 

connectivity in Figure 16 behave similarly to a logistic curve. As the connectivity of the 

graphs decrease, the results behave in a more linear fashion, although even the cycle 

graph displays the S-shape found in a logistic curve.

In the case of the cycle graph, the rate of information spread is constant for the entire 

experiment until only one low fitness individual is left, as there are always two edges 

where change can occur. There is a curve at the end of the run, when the final low fitness 

member must be found. For all other graphs, the rate of information spread is slow to

begin with, increases to a nearly linear rate, and then slows again as the last low fitness

members are found. As the rate of information spread within the graph increases, the S-

shape of the mating event curves becomes more pronounced and more closely resembles

a logistic curve.  
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Figure 15, Information spread as a function of mating events and graph, 512 vertices, r= 2.
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Figure 16, Information spread as a function of mating events and graph, 512 vertices, r= 2.
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The ranking of the graphs by slowest to fastest rate of information spread is cycle, 

Petersen and toroid, random toroid, hypercube, and complete (Fig. 16.) Figures 17 and 18

show the rate of information spread for a population of 4096. As shown, the general 

shape of the curves and ranking of the graphs remains the same for all population sizes. 

The toroid and Petersen graphs were interspersed between the other graph families, with 

higher diameter graphs (Tables 4-7) having a slower spread rate, and lower diameter 

graphs having faster spread rates (Figs. 17 and 18). This indicates that the takeover times 

increase roughly the same for any GBEA as the population size increases. This is also 

true for a decrease in population size, although the effect is diminished for very small 

population sizes as the differences in the graphs decrease with a decrease in population 

size.

Another result was that for all population sizes and most graph types, the rate of spread 

was proportional to r. The rankings of the graphs did not change as the fitness ratio was 

changed (Fig. 19), but there was more of an increase in takeover time for the highly 

connected graphs when the fitness ratio was increased than for the sparser graphs (Figs 

20 and 21.) For the cycle graph, it was found that changing the fitness ratio had little

effect on the takeover time.

The number of mating events required for a solution to takeover the population was 

divided by the population size for each graph in an effort to make comparisons to 

generational schemes. When the number of mating events is divided by the population
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Table 4, Graph Diameters and κ for population size 32 to 256, r = 2.

32 64 128 256

Diameter κ Diameter κ Diameter κ Diameter κ
Complete 1 3.39 1 4.17 1 4.87 1 5.64
Cyclic 16 15.10 32 31.22 64 63.03 128 127.08
H-n 5 4.27 6 5.58 7 6.36 8 7.09
Pn_1 9 8.07 17 14.24 33 27.39 65 53.81
Pn_3 6 5.31 8 8.96 14 13.41 24 22.41
Pn_7 5 5.34 6 8.28 10 10.57 14 13.96
Pn_17 N/A N/A 9 9.02 10 10.53 10 12.37
T4_(n/4) 6 5.13 8 10.55 18 19.81 34 38.28
T8_(n/8) N/A N/A 10 6.86 12 10.81 20 18.88
T16_(n/16) N/A N/A N/A N/A N/A N/A 16 12.32
RAND3_1 6 5.99 7 8.12 8 10.15 9 11.74
RAND3_2 6 5.89 7 8.46 8 10.16 9 11.88
RAND3_3 6 5.78 7 8.38 8 9.91 10 11.81
RAND4_1 4 4.58 5 6.23 6 7.48 6 8.64
RAND4_2 4 4.73 5 6.22 6 7.40 7 8.58
RAND4_3 4 5.03 5 6.27 6 7.47 6 8.68
RAND9_1 3 4.32 4 5.19 4 5.91 4 6.61
RAND9_2 3 4.24 4 5.21 4 5.93 4 6.60
RAND9_3 3 4.18 4 5.28 4 5.91 4 6.61
RTor_1 4 5.24 8 7.08 10 8.86 13 16.23
RTor_2 4 6.02 6 6.82 9 9.39 26 16.73
RTor_3 6 5.36 5 6.59 8 9.54 17 15.91
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Table 5, Graph Diameters and κ for population size 512 to 4096, r = 2.

512 1024 2048 4096

Diameter κ Diameter κ Diameter κ Diameter κ
Complete 1 6.32 1 7.05 1 7.71 1 8.37

Cyclic 256 255.60 512 512.22 1,024 1,022.36 2,048 2,047.17
H-n 9 7.83 10 8.56 11 9.23 12 9.72

Pn_1 129 106.74 257 211.80 513 423.21 1,025 986.54
Pn_3 46 40.37 88 76.34 174 147.90 344 340.85
Pn_7 22 21.04 42 35.28 78 63.89 150 137.21

Pn_17 18 15.97 25 21.11 34 32.07 67 59.50
T4_(n/4) 66 75.33 130 149.48 258 297.62 514 461.22
T8_(n/8) 36 34.88 68 66.96 132 131.01 260 208.36

T16_(n/16) 24 19.65 40 34.60 72 64.70 136 102.38
RAND3_1 11 13.49 12 15.20 12 17.15 15 16.70
RAND3_2 10 13.44 12 15.18 13 17.05 14 16.60
RAND3_3 10 13.45 11 15.15 13 17.15 15 16.63
RAND4_1 8 9.80 8 10.89 9 12.04 10 12.53
RAND4_2 7 9.75 8 10.91 9 12.06 9 12.48
RAND4_3 7 9.78 8 10.89 9 12.09 10 12.45
RAND9_1 4 7.30 5 8.00 5 8.68 5 9.27
RAND9_2 4 7.32 4 8.00 5 8.66 5 9.31
RAND9_3 4 7.31 4 7.99 5 8.70 5 9.34

RTor_1 19 17.15 23 20.70 38 35.04 30 26.75
RTor_2 20 17.08 29 23.44 47 29.70 50 26.40
RTor_3 16 15.99 25 21.95 29 30.30 40 26.65
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Table 6, Graph Diameters and κ for population size 32 to 256, r = 3.

32 64 128 256

Diameter κ Diameter κ Diameter κ Diameter κ
Complete 1 2.85 1 4.17 1 4.89 1 5.62
Cyclic 16 14.58 32 31.15 64 63.05 128 126.73
H-n 5 3.18 6 5.21 7 5.94 8 6.77
Pn_1 9 7.17 17 15.17 33 29.94 65 58.91
Pn_3 6 4.71 8 7.90 14 12.96 24 22.87
Pn_7 5 4.69 6 6.69 10 8.92 14 12.76
Pn_17 N/A N/A 9 8.40 10 9.19 10 10.87
T4_(n/4) 6 4.17 8 8.35 18 15.00 34 28.47
T8_(n/8) N/A N/A 10 6.41 12 9.21 20 15.04
T16_(n/16) N/A N/A N/A N/A N/A N/A 16 11.28
RAND3_1 6 5.32 7 7.28 8 8.91 9 10.22
RAND3_2 6 5.31 7 7.40 8 8.92 9 10.45
RAND3_3 6 5.25 7 7.52 8 8.73 10 10.44
RAND4_1 4 3.65 5 5.92 6 6.96 6 8.10
RAND4_2 4 3.94 5 5.79 6 6.94 7 8.00
RAND4_3 4 4.07 5 5.85 6 7.06 6 8.11
RAND9_1 3 3.26 4 5.09 4 5.81 4 6.56
RAND9_2 3 3.17 4 5.07 4 5.83 4 6.55
RAND9_3 3 3.15 4 5.13 4 5.79 4 6.50
RTor_1 4 4.35 8 6.73 10 8.42 13 14.78
RTor_2 4 4.94 6 6.50 9 8.91 26 15.28
RTor_3 6 4.52 5 6.29 8 8.58 17 14.31
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Table 7, Graph Diameters and κ for population size 512 to 4096, r = 3.

512 1024 2048 4096

Diameter κ Diameter κ Diameter κ Diameter κ
Complete 1 6.30 1 6.98 1 7.71 1 8.37
Cyclic 256 255.28 512 512.23 1,024 1025.16 2,048 2047.59
H-n 9 7.51 10 8.22 11 9.01 12 9.69
Pn_1 129 117.90 257 235.46 513 470.61 1,025 938.17
Pn_3 46 42.98 88 82.80 174 162.92 344 322.81
Pn_7 22 20.54 42 36.07 78 67.43 150 129.82
Pn_17 18 14.63 25 20.08 34 32.13 67 56.50
T4_(n/4) 66 54.81 130 107.99 258 214.44 514 427.35
T8_(n/8) 36 26.94 68 50.57 132 97.96 260 192.61
T16_(n/16) 24 16.35 40 27.42 72 49.76 136 94.57
RAND3_1 11 11.77 12 13.27 12 14.68 15 16.43
RAND3_2 10 11.79 12 13.22 13 14.74 14 16.37
RAND3_3 10 11.76 11 13.16 13 14.69 15 16.39
RAND4_1 8 9.10 8 10.14 9 11.23 10 12.34
RAND4_2 7 9.13 8 10.19 9 11.22 9 12.30
RAND4_3 7 9.06 8 10.17 9 11.28 10 12.33
RAND9_1 4 7.27 5 7.91 5 8.65 5 9.33
RAND9_2 4 7.23 4 7.94 5 8.65 5 9.32
RAND9_3 4 7.28 4 7.95 5 8.67 5 9.37
RTor_1 19 15.58 23 18.81 38 26.79 30 24.26
RTor_2 20 15.61 29 21.00 47 26.82 50 23.99
RTor_3 16 14.77 25 20.06 29 29.77 40 24.22
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Figure 17, Information spread as a function of mating events and graph, 4096 vertices, r= 2.
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Figure 18, Information spread as a function of mating events and graph, 4096 vertices, r=2.
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Figure 19, Information spread as a function of mating events and graph, 512 vertices, r= 1.5.
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Figure 20, Information spread as a function of mating events and r for the hypercube graph, 512 
vertices.
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Figure 21, Information spread as a function of mating events and r for the toroid 4 graph, 512 
vertices.
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size (κ , Eq. 4-15), it can be seen that, for the hypercube graphs, the difference increases 

in fixed amounts as the population size is doubled (Fig. 22.) For the other types of 

к =
SizePopulation

EventsMatingofNumber
(4-15)

graphs, this increase appears to be a doubling of the difference per increment (Figs. 23 

and 24.) When κ at 100% information spread is compared to the graph diameters as 

shown in Tables 4 through 7, they are found to be roughly equal for all graphs but the 

complete and hypercube graphs (Figs. 25 and 26.)  

To validate the results of the empirical experiments, the results of the complete and cycle 

graphs were compared to the analytical solutions. While the empirical experiments do 

have stochastic mating rules, the standard deviation of the results was insignificant. The 

analytical and empirical results for the cycle graph (Fig. 27) differed by 110 mating 

events compared to a mean value of 130,450 mating events for the experimental results. 

Both plot behaving linearly with identical slopes and a slight curvature at the tails of the 

plot. A comparison of the analytical and empirical results for the complete graph (Fig. 

28) shows that the expected value plot leads the empirical plot at the beginning and the 

end of the curves, with a maximum difference of 146 from the experimental results mean 

value of 3237. Both of these results are well within a standard deviation of the empirical 

results, and so are considered valid results.
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Figure 22, Information spread as a function of mating events/population size for the hypercube, r=2.



106

Figure 23, Information spread as a function of mating events/population size for the Petersen 3 
graph, r=2.
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Figure 24, Information spread as a function of mating events/population size for the Petersen 3 
graph, r=2.
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Figure 25, Takeover times for cycle graph by method, n=512.
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Figure 26, Takeover times for complete graph by method, n=512.
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Figure 27, Kappa as a function of graph diameter for r=2.
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Figure 28, Kappa as a function of graph diameter for r=3.
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This experiment was designed to investigate the effect that the choice of graph would 

have on the number of different designs found when using a GBEA. All of the 

experiments showed that there is a correlation between sparsity of graph used and how 

many different solutions are obtained.

For the sinusoid function, the complete graph yielded the smallest variety of solutions, 

finding about six per run regardless of the dimension of the problem. (Note that using the 

complete graph is equivalent to running a standard evolutionary algorithm.) Using the 

hypercube resulted in more solutions as the dimension of the problem increased, but only

slightly. Using the remaining graphs resulted in a marked increase in the number of 

solutions found as the dimension of the problem increased. The toroid and Petersen

graphs performed similarly, with the average number of solutions increasing as the 

diameter of the graphs increased. Performance using the Petersen-1 graph was similar to 

that using the cycle graph (Fig. 29.) The surprising result of this study is that the 

simplexified graph (designated Z) had the largest variety of solutions for higher 

dimension problems even though it has the same degree as the toroid graph (Fig. 30.)

The PORS problem exhibited similar trends with the exception of those for the 

simplexified graph (Fig. 31.) As the degree of the graph decreased, the number of 

different solutions present when the run completed increased. Since there was no single 

solution that dominated the others, the results were ranked by number of solutions found 

in each run. These rankings reflect generic solution types; whichever solution happens to 

be dominant for a particular run and not a particular solution. In this way, the statistical 
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Figure 29, Number of solutions found by graph for the 3 dimensional sine problem.
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Figure 30, Number of solutions found by graph for the 9 dimensional sine problem.
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Figure 31, Number of solutions found by graph for the PORS16 problem.
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analysis shows the expected number of solutions and the level of population dominance, 

but does not infer that any solution is overall superior to any other. The population on the 

complete graph was nearly 60% of the same type of solution, while there was a much 

more diverse population found on the cycle graph. When only distinct solutions were 

considered, these results were even more pronounced with nearly half of the population 

comprised of a single solution for the complete graph compared to about 25% for the 

cycle graph.

It can be seen that when the graph diameter and population size increase, the rate of 

information spread decreases, while increasing the fitness ratio has the opposite effect. 

The number of mating events for the entire graph to be exposed to a superior solution 

appears to be directly proportional to the population size and graph diameter, and 

inversely proportional to the fitness ratio. It is interesting to note that even for the 

complete graph the value for kappa increases as the population size increases, indicating 

that the takeover times do not scale directly with population size. It also appears that 

there is an inverse relationship between graph degree and takeover time, although this 

seems to be to a lesser degree than the other factors as seen by the intermixing of the 

Petersen graphs (degree 3) and the toroid graphs (degree 4.)

It has been a general practice (Golberg and Deb, 1991) to divide the number of mating 

events in a steady state algorithm by the half the population size to get an equivalent 

number of generations to compare these steady state algorithms to generational 

algorithms. While this serves well as an easy approximation to make comparisons, a 
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review of the kappa values found in this study indicates that error may be introduced by 

using this assumption. When fitness proportional selection is being used, the bias towards 

selecting a more fit mating partner skews the search towards exploiting the better 

solutions at the expense of the lower fitness solutions. This means that the less fit 

individuals are involved in fewer mating events as the solutions evolve, speeding 

convergence to a solution. As the graph connectivity decreases, this effect is decreases 

until its effect is nearly negligible in the cycle graph. This can be seen in tables 4 through 

7, where the rate at which kappa increases for the hypercube graph decreases as 

population size increases, compared to the cycle graph where the rate is consistently half 

the population size.

Also shown in this study is that GBEAs enhance solution diversity. In the case of the 

real-valued problem in nine dimensions, the number of different solutions was increased 

by a factor of 9.6. When applied to a real world application of the sprayer nozzle

(Engelbrecht, 2007), three times as many solutions were found despite using a small 

population size. These results support the theory that GBEAs enhance diversity in an 

evolving population. As shown by the number of different solutions found in the real-

valued problem, the graph choice can have a strong impact on the diversity present in the 

population. The availability of multiple solutions could prove invaluable in design 

processes, not only by giving different alternatives to the decision maker in the early 

stages, but also by providing options further along in the process should the initial design 

be found infeasible.
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Unfortunately, there is a tradeoff between the number of solutions found in the 

population and the number of mating events required to arrive at the desired number of 

solutions. Previous results have indicated that the PORS16 problem was best solved 

(fewest mating events required) by those graphs that had higher connectivity and smaller 

graph diameter. Given the current thinking on diversity preservation, this tradeoff is what 

one would expect. PORS16 is a simple optimization problem requiring little diversity to 

solve. The more difficult and deceptive problems are best approached using diversity 

preserving graphs, the same graphs that are shown here to find multiple solutions.

4.3. Conclusion

This study provides additional evidence that graphs can be used to tune the rate of 

information spread in a population to maintain and control diversity. Earlier studies have 

indicated that diversity is a key parameter in determining the performance of an 

evolutionary algorithm. In addition, this type of study provides a relatively quick and 

easy methodology for comparing graph performance. These results indicate that if there 

is an initial estimate of the deceptiveness of a landscape, a significant speed up can be 

realized by utilizing the proper graph and population size combination.

It was also found that the graph set used in the initial work (Bryden, et al., 2006) had 

several graphs that had identical performance on the problems examined. By removing 

these redundant graphs, a winnowed graph set can be developed. This winnowed set can

range in size depending on the degree to which the researcher wishes to explore the 

effects of controlling the flow of information in the evolving population. Some guidelines 
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for graph selection using a population size of 512 are given in Table 8. Similar to the 

recommended set of test suite problems there are two recommended choices; a smaller 

graph set for use with problems that are computationally expensive and a list of 

additional graphs that may be used to further investigate the effects of controlling 

information flow. The smaller set of graphs comes from the observations of the 

population size study, where it was seen that the performance of the graphs separated into 

graph families. The smaller graph set is comprised of those graphs that showed 

performance indicative of their respectively families when the takeover times were 

calculated in Section 4.2. The list of additional graphs is comprised of the remaining 

variants of the Petersen and toroid graphs and the first random toroidal graph. The

additional Petersen and toroid graphs were included because they allowed for smaller 

changes in diversity preservation compared to the smaller graph set. The random toroidal 

graphs displayed performance similar to the toroid and Petersen graphs, and so were not 

included in the smaller set, although the first random toroidal graph was included in the 

larger set as a representative of that family of graphs. These recommendations also hold 

for population sizes other than 512, although smaller population sizes will preclude some 

of the graphs that cannot be constructed or are redundant, as discussed in section 4.1.

While more information needs to be gathered to give definitive advice on which graph 

will give the best results, there is sufficient information to formulate some guidelines to 

the use of graph based evolutionary algorithms. To use these guidelines, some of the 

characteristics of the problem must be know a priori. These characteristics are the 
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Table 8, Winnowed graph sets for use in evaluation of evolutionary computation problems, 
population size of 512.

Smaller Graph Set: Larger Graph Set Also Includes:

Complete P256_1

Cyclic P256_3

H9 P256_17

P256_7 T4_128

T8_64 T16_32

RTor7_1
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deceptiveness of the fitness landscape, the size of the character alphabet, and the number 

of variables in the chromosome of the problem being examined.

The first characteristic of the problem to consider is the deceptiveness of the fitness 

landscape for that problem. If this fitness landscape is thought to be deceptive, a lower 

amount of information flow is recommended. For many problems it may be impossible or 

impractical to determine if the problem is deceptive, in which case a moderate amount of 

diversity preservation would be recommended (for example, using one of the torus 

graphs.)  The results of the PORS15 problem on various graphs (Section 4.1.1, Fig. 7) 

shows that for this deceptive problem, a graph with a high amount of diversity 

preservation performs best. However, for problems where it is uncertain whether the 

fitness landscape is deceptive, the better compromise solution would be those graphs with 

an intermediate amount of information flow. Depending on the computational resources 

that are available, two trials could also be run; one with a diversity preserving graph and 

one with a highly connected graph. This could be used to determine the deceptiveness of 

the fitness landscape and return an optimal solution with minimal wall time.

The second characteristic to consider is the size of the available character alphabet for 

discreet problems. For problems with a smaller available alphabet, the benefit of using a 

diversity preserving graph increases. This is largely due to the decreased difficulty in 

assembling building blocks to be assembled into the final solution. This can be seen by 

comparing the results of a small alphabet problem (PORS16; Section 4.1.1, Fig. 6) to the 

results of a problem with a larger alphabet (the north wall builder problem; Section 4.1.3, 
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Fig. 9.) The problem with a smaller alphabet shows twice the improvement at small 

population sizes compared to the large alphabet problem.

The third characteristic is the number of variables in the chromosome of the problem. 

This is related to the size of the available character alphabet, in that more information is 

contained in each population member. Because of this, a larger population size is 

required to provide sufficient diversity to construct the optimal solution. This also makes 

diversity preservation important to maintain this information, although there is also a 

benefit to sharing information if the problem is not deceptive. 

The qualitative guidelines for graph selection can be described as follows:

 For a simple uni-modal problem, the complete graph is preferred (which is also 

equivalent to a standard evolutionary algorithm.) 

 If the problem being examined is thought to be deceptive, a diversity preserving 

graph is recommended. The more deceptive the fitness landscape, the sparser the 

graph. 

 For problems with a large alphabet and/or a large number of variables, a graph 

with an intermediate amount of diversity preservation is preferred, such as the 

torus or Petersen graphs. 

It should be stressed that these guidelines for the use of GBEAs are a starting point for 

the analysis of the given problem. While these recommendations do not guarantee the 
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best time to solution for a particular problem, they should still deliver satisfactory 

performance. 
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5. APPLYING GRAPH BASED EVOLUTIONARY ALGORITHMS

An important goal of this research is to present graph based evolutionary algorithms as a 

tool in both the design process and for the modeling of systems. The preceding chapters 

have given some insight into the behavior of both evolutionary computation problems 

and the different graph structures used in GBEAs, now it remains to apply the knowledge 

gained to the solving of real world problems. In this way it can be shown that GBEAs are 

more than a classifying system and an interesting mathematical construct; they are a 

means to augment the engineering decision process. The benefits to engineering design 

can be seen in both the time necessary to find an optimized solution and in supplying a 

wider variety of acceptable solutions, promoting computational creativity.

Some of the problems described in Chapter Three fall under the category of applied 

problems. These problems explore issues relating to current scientific research as well as 

meeting the criteria of viable test problems. Examples would be the DNA barcode 

problem and the Steiner systems problems (Ashlock, Guo, and Qiu, 2002; Ashlock, 

Bryden, and Corns, 2005). The results of these experiments show that proper graph 

selection has a strong positive impact on time to solution. By researching applied 

problems such as these it is possible to develop both a taxonomy and a proposed test suite 

for evolutionary computation problems that are relevant to research topics of industry.

Many of the problems found in industry would not be acceptable as test problems. The 

most common reason for this is the amount of time required to complete a fitness 

evaluation. For example, Bryden, Ashlock, McCorkle and Urban (2002) used a GBEA to 



125

improve the performance of third world cook stoves. The goal of this study was to 

determine the optimal placement of baffles in a Plancha stove. Plancha stoves are 

inexpensive and easily assembled stoves constructed of cast concrete with a metal 

cooking surface. These stoves are designed to replace open fires for cooking needs in 

rural Guatemala, decreasing the amount of fuel required and reducing health risks from 

open flames and the accumulation of smoke in dwellings. The design of these stoves is 

challenging due to limitations on construction methods that severely restrict the number 

of baffles that may be placed under the heating surface to direct the hot flue gases from 

combustion. The goal of this research was to optimize baffle placement under the heating 

surface, with the fitness being a measure of how uniform the stove top temperature was.

Three strings representing baffles were used as chromosomes in the GBEA. These strings 

were passed to a commercial computational fluid dynamics (CFD) package to return the 

fitness of the solution. Each fitness evaluation required approximately 3 minutes to 

perform, making completion of one run very time intensive and a sufficient number of 

runs for statistical data unreasonable. However, from the data obtained, it was found that

this optimization problem, when represented properly, was a fairly simple uni-modal 

problem and was solved best by the complete or hypercube graphs.  This agrees with the 

results found in Chapter Three of this research for other uni-modal problems. 

With the combined knowledge of how GBEAs act to control information flow and the

affect this has on problems examined thus far, we are now ready to apply this tool to 

another applied problem. While several problems exist that would benefit from this 

method, the problem to be examined here relates to the use of antibiotics as performance 
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enhancers for the raising of swine for human consumption. This problem is interesting in 

that it brings together elements of mechanical engineering, biology, economics and 

public policy to address concerns in the environment, the health care industry, and 

agricultural businesses. The remainder of this chapter is dedicated to a discussion of this 

problem and how it can be approached using graph based evolutionary algorithms.

5.1. Bacteria and Swine Growth Model

Since the late 1940s antibiotics have been used as an additive to livestock feed 

(Cromwell, 2001.) Antibiotics have been shown to both increase the growth rate and 

decrease the mortality rate of animals when administered in sub-therapeutic doses (doses 

smaller than that required for disease treatment.) There is also a large body of evidence 

indicating that antibiotic use has led to improvements in feed to growth ratio, 

reproduction rates and overall animal health (Hays, 1977; Cromwell and Dawson, 1992; 

Zhi, Nightingale, and Quintiliani, 1988.) One perceived problem with the widespread use 

of antibiotics in the swine industry is that of antibiotic resistance development among 

foodborne bacteria, e.g. Salmonella spp. and Campylobacter.spp. It has been well 

established that when bacteria are exposed to antibiotics in vitro, resistance to that 

antibiotic can develop (Prescott, Baggot, and Walker, 2000.) Using this information it 

seems intuitive that the use of sub-therapeutic levels of antibiotics for performance

enhancement could cause resistance in the bacteria present in the gastro-intestinal (GI) 

tract of swine. However, the actual risk of using sub-therapeutic levels on human health 

by way of the ratio of bacteria resistant to that antibiotic in either animal or human 
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reservoirs has not been quantified. This has led to debate as to whether performance 

enhancing substances should be restricted or banned (Cox, Copeland, and Vaughn, 2005; 

Singer, Cox, Dickson, Hurd, Phillips, and Miller, 2004; World Health Organization, 

1997, 1998, and 2001.)

What is needed now is specific guidance as to what is prudent or optimal use. This might 

be defined as minimizing the fraction of antibiotic resistant bacteria present in the animal 

when it is sent to slaughter without comprising animal health and performance. By 

adjusting the number of times and the amount per treatment that the antibiotic is given to 

the animals it is possible to explore different options for swine production to minimize 

antimicrobial resistance.  

5.2. The Need for Bacteria Models

To understand the need for modeling bacteria in the swine GI tract it is necessary to 

define the risk that the bacteria pose to human health. A stepwise risk assessment-based 

model (Fig. 32) for determining this risk was introduced by Hurd (2006.) While this 

diagram was made for use in the poultry industry, it is a general model that can be 

applied to any food animal production system.  

The release assessment portion starts by the administration of an antibiotic (in this case a 

macrolide) to the animal. This can lead to antibiotic resistance (RzD selected) in the 
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Figure 32, Stepwise Risk Assessment-based approach for estimating the impact on human health 
from macrolide resistance that develops on poultry farms (Hurd, 2006).
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bacteria present in the GI tract. If the animal appears healthy, it will most likely be sent to 

the abattoir, taking the resistant bacteria with it. The exposure assessment is a measure of 

factors that may cause the bacteria from the GI tract to be transported to the meat 

intended for retail sale. This could be from a number of sources, including mishandling of 

the product, undetected ruptures of the GI tract components or cross-contamination from 

other carcasses. It also takes into account the probability that this meat will be 

mishandled and eaten by a human. The final assessment is the consequences, which 

entails the probability that the patient will get ill from the bacteria and be treated with the 

antibiotic in question, resulting in treatment failure due to resistance in the bacteria. In 

previous studies, exploration of these assessments (Hurd, Enoe, Sorensen, Wachmann, 

Hald, and Greiner, 2004) has shown that a relationship between resistant bacteria arriving 

in animals at the abattoir and human does exist. It is then apparent that an investigation of 

steps that could be taken on-farm to lower this risk would be beneficial.

While constructing the model, it is necessary to keep in mind the objectives of this 

research: to minimize the risk to human health and the cost to raise the animals. The cost 

of raising the animals is related to how quickly the animals can be brought to market 

weight. The benefits in weight gain achieved by using antibiotics decreases the amount of 

time that the animals need to be fed and housed on the farm, decreasing the costs 

associated with raising the animals. While these economic benefits of sending the 

animals to the abattoir earlier are easily understood, the affect on human health from 

antibiotic use as performance enhancers requires additional discussion. To consider the 

impact on human health, we can apply this objective function:
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Rs HCDRHCDSID ** (5-7)

Where: ID is number of human illness days

DS is human illness days per case due to susceptible bacteria

DR is human illness days per case due to resistant bacteria

HCS is the number of cases due to susceptible bacteria

HCR is the number of cases due to resistant bacteria

The number of human cases can be simulated using an attribution factor that will be 

determined using historical data that correlates the bacteria level in animals to the number 

of reported human cases that can be attributed to pork. Data similar to this has already 

been applied to an investigation of the effectiveness of Denmark’s salmonella control 

program, although this dealt with the number of animals in each herd that tested positive 

for the bacteria (Hurd, et al., 2004.) There is no evidence that human illnesses are more 

severe or longer lasting from bacteria that are resistant to the antibiotics used in pork 

production. However, if it were possible to reduce any possible risk of antibiotic resistant 

bacteria entering the food chain at no additional cost, it would be a desirable course of 

action. 

5.3. Bacteria, Antimicrobials, and Swine

Antimicrobials are substances that inhibit the growth of or kill microorganisms in low 

concentration (Prescott, Baggot, and Walker, 2000.) Antibiotics are antimicrobials that 
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are produced by a microorganism to kill other microorganisms, although the two words

are often interchanged. For humans, antibiotics are most commonly used to treat illness 

caused by bacterial infections. These substances inhibit the bacterium’s ability to 

reproduce effectively or damage the cell function directly. The end effect is that, when 

used therapeutically, the bacteria die at a faster rate than they reproduce until the 

concentration is negligible or eradicated.  

Antibiotics have varying levels of effectiveness against different bacteria. This is further 

complicated by antibiotic resistance that can developed either by mutation of the bacteria 

or the sharing of genetic information in the form of plasmids from other resistant 

bacteria. This resistance may or may not be permanent, depending on the bacteria and the 

antibiotic. Resistance to one antibiotic can also translate into resistance to other 

antibiotics in the same class, although this varies mainly by the class of the antibiotic.

These complications make it clear that care must be exercised when administering 

antibiotics to humans or animals, as the acquisition of antibiotic resistance is a complex 

relationship.

Unlike human usage, antibiotics are given to poultry and swine for three different 

reasons; performance enhancement (often incorrectly termed “growth promotion”), 

disease prevention, and disease treatment. The regimens (dose, route, and length of time) 

for administering antibiotics to swine vary depending on the animals’ age and physical 

condition, and are based on manufacturer’s recommendations and advice from 

veterinarians. Typically, a low level of antibiotic is added to the feed of the animal to 
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enhance performance, resulting in an increase in feed efficiency (decrease the amount of 

feed the animals eat for the same amount of weight gain.) This effect is generally thought 

to be from a change in the microbiological ecosystem of the GI tract. When there is cause 

for taking preventative measures, such as when the animals are weaned or other times 

when it is suspected the animal may easily contract a disease, a larger dose is 

administered. This can be done by either increasing the amount of antibiotic added to the 

feed or by adding a water soluble antibiotic to the water given to the animals. When using 

antibiotics for disease treatment they are normally administered by either addition to 

drinking water or by injection. Given that there are thousands of different variants of 

bacterium existent in the GI tract of an animal and hundreds of different antimicrobial 

treatments available, the task of finding a superior regimen is challenging.

5.4. Previous Bacteria Models

The modeling of a living system is different from most mechanical models in that we 

understand the underlying relationships more fully in most of the mechanical models in 

use today. Great strides have been made in gaining understanding of biological systems, 

but there is still much to be learned. In our case, this includes the interactions between the 

host animal and the bacteria and between different bacteria in an animal’s gastro-

intestinal ecologies. The following is an overview of the methods used to model these 

systems.  
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5.4.1. Early Mathematical Models

The Malthus Equation is generally considered the first mathematical model for 

population growth (Schmidt, 1992.) Introduced in 1798, this is a simple formula stating 

that the rate at which a population increases is equal to the population size multiplied by a 

growth factor. While this was not introduced as a mathematical model, it can be written 

as:

N
dt
dN

max
(5-1)

which on integration yields:

t
O

MaxeNN (5-2)

Where: N = the population density at time t

NO = the initial population density

ΜMax = the maximum specific growth rate

The first model to be applied to population growth of microorganisms was the logistic 

equation (Schmidt, 1992.) This model incorporated the availability of resources into the 

equation by adding the environment’s carrying capacity (K) into the equation:

K
N1

max
(5-3)
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Where μ is the specific growth rate and is used instead of the maximum specific growth 

rate in equations 5-1 and 5-2. These equations can give a good idea of how populations 

grow, but since there is no input into what is controlling the rate, it is difficult to apply 

any factors that would allow for control of the maximum population size.

The next step in growth modeling was developed by the French scientist Monod in 1949.

The Monod equation added a factor to account for limits on population growth rate 

imposed by limitations in the system (Schmidt, 1992):

SK
S

S
max (5-4)

Where: S = the concentration of limiting substrate

KS = the half-saturation constant

The model introduced by Monod dealt with a finite amount of substrate to sustain the 

population (Eq. 5-4), but other variants exist. This model is also more flexible in that it 

can be used to fit growth curves that are not symmetrical.

Most of the modern models used now are based on the Monod equation, with 

modifications incorporated to address special circumstances. Some of these 

circumstances include problems modeling energy expended by bacteria to sustain life 
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(maintenance energy) and the production of toxic waste by the bacteria. Variations of this 

equation are also used in simulation packages available on the internet (Food Safety First, 

2006; Food Safety and Inspection Service, USDA, 2006.) Past modifications to this 

model also included the effects of antibiotics on the growth rates (Hochhaus and 

Derendorf, 1995; Nolting and Derendorf, 1995; Zhi, Nightingale, and Quintiliani, 1988.)

The Monod model and those models based on it are flexible and can be used to match 

many observed growth curves of bacteria in-vitro. In general practice, they are used on 

systems with a finite amount of substrate for the bacteria to grow from. They can take 

into account the presence of antibiotic, if the proper modifications are applied, but it is 

left to the user to determine what these modifications are.

5.4.2. Lipsitch and Levin

Lipsitch and Levin (1977) did work that focused on the development of antimicrobial 

resistance in bacteria. This research started with the logistic equation, but added in a loss 

term to account for interaction with antibiotics. This was expanded to investigate 

multidrug treatments, different dosing regimens and non-adherence scenarios. Statistical 

models were used to predict when and how many of the bacteria present gain resistance 

based on treatment dose and timing.  

The model can take into account multiple antibiotics at once with varying dosings, but

only models one bacteria type. It is limited in that it only considers the acquisition of 
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antibiotic resistance through mutation. It also uses discrete values for the levels of 

antibiotic present. In a non-laboratory biological environment it may not be possible for 

drug levels to change quickly, depending on the biological half-life of the antibiotic in 

question.

5.4.3. Nikolaou and Tam

Nikolaou and Tam (2005) introduced a model that stressed that the level of antibiotic 

resistance in bacteria varies across the population. They argued that to proper model these 

resistance levels the growth rate should not be a single term, but based on the cumulants 

of the distribution representing the resistance of the bacterial population. This allows for 

extrapolation of growth trends past the 24-hour in-vitro period that was used in the study.

The strong points of this model were that it modeled both bacteria and antibiotics at the 

same time, while accounting for varying levels of antibiotic resistance in the bacterial 

population. However, it requires prior knowledge of bacteria growth data to find the 

growth rate distribution. It also only examines one type of bacteria and one antibiotic at a 

time, making it ill suited for use in a model that requires multiple strains of bacteria to be 

accounted for.

5.4.4. The Chemostat

The Chemostat model is also attributed to Monod (Panikov, 1995; Schmidt, 1992) circa 

1950. This model was originally developed to investigate continuous cultivation of 
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bacteria so that useful by-products of the bacteria (such as yeast or ethanol) could be 

collected for human use. This model can be thought of as a bio-reactor in which substrate 

is continuously added to the bacteria population to either grow additional bacteria for 

cultivation or provide energy and resources to the bacteria so the desired by-product will 

be produced. In the previous models the amount of substrate is normally decreased as the 

model progresses. In contrast, the amount of substrate in this model is controlled to 

represent systems in which there is a continuous introduction of materials for growth and 

possibly the removal of toxins.

This model is the basis for most steady state bacteria models. It uses the Monod equation, 

but is modified to account for the addition of substrate, and possible other bacteria or 

compounds (Abrosov and Kovroc, 1977). To date, there has been no work that combines 

a chemostat model with the acquisition or development of antibiotic resistance in 

bacteria, although this would be a natural extension of this model.

5.4.5. BacSim

The BacSim model (Kreft, Booth, and Wimpenny, 1998; Kreft, 2006) is an agent based 

bacterial growth model that models the bacterium individually. Each bacterium is 

represented by an agent. This agent interacts with the other agents (bacteria) in this 

virtual world. As it is an individual-based model, it investigates concerns at a 

microscopic level, such as substrate diffusion and variations in cell size. The cells can 

then be viewed as a group, representing a colony of the bacteria type being modeled. The 
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model is built using various other models, such as the cell division model proposed by 

Donachie and Robinson (1996) and the maintenance cost model by Herbert (1958). Java 

code has been posted on the internet that allows for experimentation with the model

(Kreft, 2006). The URL for this application is http://www.theobio.uni-

bonn.de/people/jan_kreft/bacsim.html.

This model is very detailed, dealing with the growth, reproduction, and death of every 

cell present. The model is versatile enough to be used for many different types of 

organisms, and it appears that it could be adapted to multiple types of bacteria at once, 

although this has not yet been attempted. The detail of the model is also one of its 

weaknesses. When dealing with bacteria levels that can easily reach millions, this model 

can rapidly become cumbersome. To date there have been no attempts to implement 

interaction with antibiotics in either their effect on the growth rate or on the bacteria 

gaining resistance at this level of detail.

5.4.6. Summary of Bacteria Growth Models

There are several methods for modeling the growth of bacteria, with this being just a 

short listing. The models currently available are either general out of a necessity to be 

widely applicable or they are specialized to a point where they are not suitable for an 

investigation of bacteria and antibiotic interactions in a host animal. It is be possible, 

however, to use parts of these models as a basis for a new model that includes bacteria 
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and antibiotic interactions in a system that has a continuous inflow of both substrate and 

antimicrobial agents.

5.5. Modeling Swine

To accurately model the ecology in the gastro-intestinal tract of swine, it is an accurate 

model of the animal’s growth and GI tract is necessary. One of the major concerns of 

pork producers is the rate of weight gain in the animal, which is why sub-clinical levels 

of antibiotics are used. Feed is eaten by the animal and the animal gains weight. The 

more the animal weighs, the more feed it eats. This volume of feed and water is also 

important because it is the method by which performance enhancing antibiotics are 

administered. The rate at which the animals grow and the amount of feed and water they 

consume is well documented (Lewis and Southern, 2001), and so an accurate model can 

be developed.

Growing-finishing animals usually start with a weight ranging from 17-24 kilograms, or 

about 40-50 pounds (Cromwell, 2001.) As an animal gains weight, the rate at which it 

gains weight increases until it reaches market weight (around 230 pounds.) The fidelity of 

this weight gain model can be low, such as in Cromwell’s work (2001) given in Table 9,

or higher fidelity models can be constructed (Schnickel and Craig, 2001) such as:

it
a

t emtCWTGAIN exp1 (5-5)
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Table 9, Animal weight gain in pounds per hour without antibiotics and with antibiotics (Cromwell, 
2001).

Weight Range Weight Gain (Pounds),
No Antibiotic Used

Weight Gain (Pounds),
Antibiotic Used

Weight < 55 Pounds 0.035750 0.04125
55 Pounds – 110 Pounds 0.054083 0.06050
Weight > 110 Pounds 0.063250 0.06600
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where WTGAIN is the expected weight gain from birth to time t, C is the mature weight, 

m is an exponential growth decay constant, a is  a kinetic order constant, and eit is the 

residual weight gain for the ith pig at time t, with all constants calculated using live 

weight data from weaner pigs to market weight animals. A method should be chosen 

depending on the desired level of fidelity of the model. It should be kept in mind that 

with a higher fidelity model, there is an increase in the computation resources necessary 

to find that information.

In most studies, there is also a correlation between antibiotic usage and weight gain, with

animals fed antimicrobials in the feed gaining weight at a higher rate (Hays, 1977; Zhi, 

Nightingale, and Quintiliani, 1988.) Although it should be noted that there does exist 

some evidence that there is only a benefit in the early stage of animal growth (Dritz, 

Tokach, Goodband, and Nelssen, 2002.) Another model necessary in modeling the 

gastro-intestinal tract of swine is the size of the animals GI-tract, and how much feed and 

water the animal consumes in a day. 

The amount of antibiotic ingested by the animal is directly related to the amount of food 

and water consumed by the animals on a given day. To determine these inputs, it is first 

necessary to identify the amount of energy intake.  This can be calculated based on the 

animal’s weight:

32 0044.04.11881250 BWBWBWDEI (5-6)
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Where DEI is the digestible energy intake in kcal/day and BW is the body weight of the 

animal in kilograms. Assuming an average energy content for feed of 3400 kilocalories 

per kilogram (National Research Council, 1998), the mass of feed consumed per day can 

be calculated. To determine the amount of water ingested by an average animal each day, 

a comparison between feed intake and water intake can be used. Research by Braude, 

Clarke, Mitchell, Cray, Franke, and Sedgwick (1957) shows that when swine are allowed 

to eat as much feed as they desire, they consume approximately 2.5 kilogram of water per 

kilogram of feed.

To calculate the concentration of antibiotic or bacteria in the GI tract of an animal, it is 

first necessary to determine the volume of the GI tract. For a fully grown animal, the GI 

tract has a volume of about 27.5 liters (Patience, Thacker, and deLange, 2005), including 

the stomach, cecum, small intestine, and colon. To determine the size of the GI tract of 

the animal from weaner pig to market weight, it is assumed that the volume of the GI 

tract increases at the same rate as the animal gains weight. 

These equations and relationships make it possible to construct a model of the rate of 

weight gain in swine, also taking into consideration the amount of feed and water the 

animals consume. This modeling of the GI tract of swine allows for calculating the 

amount of antibiotic that is ingested by the animals, and by using the volume of the GI 

tract it is possible to make reasonable comparisons on the antibiotic concentrations 

present. It also makes it possible to determine the bacteria concentrations present. By 
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using the proper combination of models and making some modifications, it is possible to 

make a reasonable computation model of the ecology of an animal’s GI tract.

5.6. New Bacteria/Swine Model

To investigate the interactions between swine, antibiotics, and bacteria it is necessary to 

bring together several different models that span different size and time scales. When the 

GI tract of a typical animal is considered, it is necessary to couple the macro-scale model 

of the animal’s growth and feed intake with the micro-scale models representing the 

growth rate of the bacteria and the biological decay of the antibiotic. In addition to size, 

the differences in time scales must also be taken into account. The time necessary for a 

weaner pig to market weight is almost six months (National Research Council, 1998.) 

The amount of time necessary for any antibiotic ingested to be processed is measured in 

hours (Nolting and Derendorf, 1995), while the time necessary for a bacteria population 

to double is typically about 2 hours (Doyle and Roman, 1981.) In the case of bacteria 

modeling, it is also necessary to construct a new model borrowing from those models 

discussed in Section 5.4. By discretizing these models, it is possible to couple them

across the necessary time scales. By using the relationships outline in Section 5.5, the 

coupling between size scales can be accomplished. It is then possible to perform 

iterations on these models to encompass the life cycle of a pig and determine the affects 

of the antibiotics and bacteria on its growth. 
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5.6.1. Equations and Differencing

The use of GBEAs for analysis of this risk mitigation problem requires that we first 

develop a model of the interactions of bacteria and antibiotic within an average animal’s 

GI tract. This model takes into account not only the concentration of bacteria and 

antibiotic, but also the efficacy of the antibiotic and the resistance of the bacterial 

population. For the initial model one bacteria and one antibiotic will be taken into 

account, although a discussion of multiple antibiotics will be included for future 

consideration (Chapter 7), as later models would require multiple antibiotics to be 

evaluated on different bacteria types. In constructing this model, the following 

assumptions are made:

1. The pH and water activity of the environment remain constant throughout the 

process.  

2. The amount of resistant bacteria on carcasses in the chiller is proportional to 

the amount present when the animal arrives at the abattoir.

3. For animals in which the bacteria are present, the bacterial concentration is 

initially at a steady state level.

4. Animal growth is proportional to animal health.

5. When multiple antibiotics are used, they have the same decay rate and they 

combine according to Loewe additivity (Lipstich and Levin, 1997) (models 

without this assumption would be beyond the scope of this work.)

6. As the concentration of bacteria increases above a threshold level, the 

probability of human illness being caused by that bacteria increases.
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With these assumptions, it is possible to construct a differential equation that describes 

the growth rate for the bacteria of interest that would be applicable to evaluating human 

health risks. A bacterial concentration for both susceptible and resistant bacteria needs to 

be established for use in determining the affect on human health. Using the assumed 

initial bacteria concentration, it is possible to determine the growth dynamics of 

susceptible and resistant bacteria when exposed to an antibiotic:
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Where: N is the concentration of bacteria

s is susceptible bacteria

r is resistant bacteria

n is the total number of bacteria types
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i is the designation of which bacteria is being examined

Nmax is the maximum supportable amount of bacteria

KG is the growth rate of bacteria

Kk is the kill rate of bacteria for the antibiotic

Kabx is the decay rate for the antibiotic

CS is the antibiotic concentration

C50 is the concentration for half the maximum killing of bacteria

These equations can be discretized to give:

5 0
,

max

1
,

,1, 1
CC

C
N

N

N
NN

j

j
js

K

n

i
ji

js
K

js ee ksGs (5-11)

50
,

max

1
,

,1, 1
CC

C
N

N

N
NN

j

j
jr

K

n

i
ji

js
K

jr ee krGr (5-12)

j
K

j CC e Abx

1 (5-13)

where j designates the current time step.  Discretization of these equations allows for the 

solving of the final concentrations of bacteria. It also provides a means for which the 

antibiotic concentration can be increased, simulating either the use of antibiotic in feed or 
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the administration of therapeutic treatments. This model can be used for any combination 

of bacteria and one antibiotic by inserting an additional equation with the appropriate 

growth rate for each bacteria type being modeled and then using the sum of all bacteria 

concentrations to determine the amount present.

5.6.2. Programming

To investigate the antibiotic regimen problem the model must first be written as a 

computer program to be used as a fitness function for the GBEA. This was done by 

iterating through the discretized models for a representative number of time steps while

incrementing the weight of the animal dependent on the concentration of antibiotic 

present in the GI tract. The details and methodology of coding the model are as follows.

To begin the evaluation of the regimen the controlling variables are first initialized. The 

weight of the animal is initialized to thirty pounds to represent an average weight of a 

weaner pig arriving at the finishing facility. The concentration of antibiotic is started at a

value that corresponds to the amount of antibiotic it would receive while nursing and 

during weaning (Cromwell, 2001; Dritz, et al., 2002.) The concentration of bacteria is

initialized to an amount found to exist in animals at delivery (Corns, Hurd, Ashlock, and

Bryden, 2006.) The minimum inhibitory concentration (MIC) of the antibiotic for each 

bacteria type is initialized to values found in literature (Singer, et al., 2004). These 

bacteria concentrations and the MIC values for the antibiotic are then allowed to vary for 

each bacteria group, using a triangular distribution. These distributions are centered on 
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initial values with endpoints at +/-10% of the corresponding value in the case of the 

bacteria concentrations and +/-2.5% of the value for the MIC values. Using these 

triangular distributions makes it possible to account for the inherent variability of the 

bacteria concentrations found in an animal and their susceptibility to antibiotics. With 

these values set the model gives a representation of both the animal and its GI tract as it 

enters the production facility.

The model is now ready to be used to simulate the growth of the animal to market weight 

by iterating through the equations given in Section 5.6.1. A time step of one hour was 

selected to capture the changes in both the antibiotic and bacteria concentrations. For 

each one hour interval new values are calculated based on the previous time step values. 

First, the average amount of feed and water ingested by the animal is calculated based on 

the animal’s current weight using Eq. 5-6. These values are then used to find the amount 

of antibiotic taken in by the animal. The antibiotic content of the feed and the water are 

determined for the antibiotic regimen being evaluated at the current time step and the 

total antibiotic intake is calculated. The volume of the animal’s GI tract is then found, 

also based on the animal’s weight, and used to determine the antibiotic concentration for 

the current time step. Using Eq. 5-13 the decrease in antibiotic concentration is found and 

subtracted from the concentration of the previous time step. Adding the antibiotic intake 

concentration to this gives the total concentration for the current time stage of the 

iteration. 
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The next step is to find the new bacteria concentrations. The total amount of bacteria 

present in the GI tract is calculated and compared to the carrying capacity of the GI tract 

to find the limitations for the growth calculations. The change in bacteria concentration is 

then calculated using Eqs. 5-11 and 5-12 for all of the bacteria types being considered. 

Any changes between resistant and susceptible bacteria are then determined based on the 

current antibiotic concentration. This accounts for the offspring of susceptible bacteria 

expressing resistance to the antibiotic in question. 

The final step of the iteration is to determine the weight gain of the animal. The values 

from Table 9 are used to determine the amount of weight gained in that hour. If the 

current antibiotic concentration is above a threshold value, the “antibiotics present” 

column value is added to the weight. Otherwise, the “no antibiotics present” column 

value is added to the current weight. 

When the iterative process is complete, the fitness value for the regimen is found. This is 

done by first calculating the total amount of antibiotic added to the feed and water. A

penalty function is applied if the amount of antibiotic administered is significantly higher 

than the standard use. For the model used in this study, this limit was set to correspond to 

label usage for growth promotion with fourteen days of use to prevent disease. The

fitness is then calculated using the final weight of the animal, modifying this by the 

percent of bacteria that are resistant to the antibiotic and then applying the penalty 

function, if necessary.
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To take into account the uncertainty associated with the initial bacteria levels and the 

minimum inhibitory concentration (MIC) of the antibiotic, a Monte Carlo simulation is 

used for each fitness evaluation. Each Monte Carlo simulation consists of 500 trials of the 

model. For each trial, different samplings from the triangular distributions for the initial 

amount of each bacteria strain and the MIC values for the antibiotic are used. Mean 

values for the fitness are calculated using the mean animal weight and percentage of 

bacteria that are resistant to the bacteria. The standard deviation of the fitness value is

also calculated to make it possible to calculate a 95% confidence interval on the results.

5.6.3. Optimization

Using the previously described model, eight different graphs have been used to find a 

near optimal antibiotic regimen to minimize both bacterial resistance to antibiotics and 

the weight gain of the animal. For this set of experiments, tylosin phosphate was 

examined as the performance enhancer, with two strings hold information on the amount 

of antibiotic to be added to either the feed or the water. The first string contains 

information on the amount of antibiotic added to the feed ranging from 0 to 100 grams 

per ton in 10 gram increments. Each value represents one week of feed, for a total of 24 

values (168 days). The second string determines how much antibiotic is added to the 

water for disease prevention, ranging from 0, 125, or 250 milligrams per gallon. This 

string is of length 84, representing two-day periods that the antibiotic may be added to the 

water. When the GBEA is initialized, the amount of antibiotic added to the feed is 

allowed to vary within allowable label usage, while the amount added to the water is 
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initialized to zero. These two strings are the chromosomes being manipulated by the 

GBEA, and are also the input for the overall model.

A population size of 128 solutions was used with single point crossover and one mutation 

on each string per mating event. The mutation operator selects a string value at random 

and changes it to a new value selected at random from the range of possible values. The 

fitness of the individual solutions is determined based on the final weight of the animal, 

the percentage of bacteria that are resistant to the antibiotic and to a lesser extent the 

concentration of both susceptible and resistant bacteria at the end of the iterative process.

Eight different graphs were used in this study, with five replicates for each graph type 

conducted. For each of these experiments, 500 mating events were conducted and the 

best result from each was recorded.

5.6.4. Results

This goal of this research is not only to explore the utility of GBEAs, but also to find an 

antibiotic regimen that will minimize human health risk by managing the concentration 

and resistance level of the bacteria present in the animal as it is delivered to the abattoir. 

It is also necessary to maintain acceptable animal health and growth to make the 

optimized regimen financially attractive to the producers. To evaluate the results of this 

experiment, it is first necessary to compare the two indicators of these objectives.
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The results of the experiment indicate that the two objectives are in competition with 

each other. The use of antibiotics promotes growth, but also increases bacterial resistance 

to that antibiotic in the model as it is currently implemented. The decrease in human risk 

is represented by the decrease in the percentage of bacteria that are resistant to the 

antibiotic. The economic benefit to the pork industry is represented by the animal’s 

weight at the end of the simulation. A lower animal weight does not mean that the animal 

will be delivered weighing less, but instead that the amount of time necessary for the pig 

to reach market weight is increased, with an associated increase in the cost to feed and 

house the animal.

Initially, the graphs selected were to determine which would have the best performance 

when applied to this problem. The eight graphs used in this experiment are a winnowed 

set derived from those found earlier in this study (Section 4.3, Table 8.) However, instead 

of one graph performing optimally on this problem, a variety of solutions were found that 

were different compromises between higher animal weight and a lower percentage of 

resistant bacteria. The general trend was that diversity preserving graphs yielded higher 

animal weights while graphs with a high rate of information flow improved the 

percentage of antibiotic resistant bacteria. The range of solutions found by the graphs 

made it possible to construct a Pareto-optimal frontier, allowing for a direct comparison 

of the tradeoffs between the two objectives. The results of the forty trials were compared 

to determine if any of the solutions were dominated in both weight and percent of 

bacteria resistant. Because the values of the objective functions were real valued, the 

results were rounded to a tenth of a pound for the weight and a tenth of a percent for the 
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percent of resistant bacteria. If the solution found had a lower final animal weight that 

other solutions, the percentage of bacteria resistant to the antibiotic for that solution was 

compared to the higher weight solutions. If any of those higher weight solutions had a 

lower percentage of bacteria resistant to the antibiotic, they were considered a dominated 

solution and removed from consideration. After removing the dominated solutions from 

the population, seven of the solutions remained from those found using GBEAs.  

To allow for a comparison to existing methods of raising these animals, two baseline 

experiments were conducted. The first baseline experiment was to determine the results 

when the conventional use of antibiotics was applied. In this model, 40 grams of the 

antibiotic were added to every ton of feed. This gave a final animal weight of 276.1 

pounds with 80.9% of the Campylobacter.spp present in the GI tract resistant to tylosin 

phosphate. For the second baseline experiment, no antibiotic was used (antibiotic free, or 

ABF), yielding a final animal weight of 256.5 pounds with only 40.2% of the 

Campylobacter.spp present in the GI tract resistant to tylosin phosphate. These results 

closely match published antibiotic resistance levels and animal weights for these 

regimens (Thakur and Gebreyes, 2005.) Using the results of the work by Thakur and 

Gebreyes provides validation of the model was validated against existing conditions 

found at animal production sites. 

The results of these baseline experiments and the non-dominated regimens found by the 

GBEAs are given in Table 10, along with the results from the best-of-five standard 
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Table 10, Delivered Weight and Percent of Resistant Bacteria by Graph or Method.

Graph or Method Delivered Animal 
Weight (lbs.)

Percent of Bacteria Resistant

ABF Method 256.5 40.2%
P64_7 Graph 273.4 43.7%
P64_7 Graph 273.8 46.3%
T4_32 Graph 273.9 46.9%
P64_17 Graph 274.6 49.8%
H7 Graph 274. 7 57.8%
C512 Graph 274.8 59.7%
K128 Graph 274.7 67.8%
P64_7 Graph 275.4 72.5%
Conventional Method 276.1 80.9%
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evolutionary algorithm. These results were used to construct the Pareto optimal frontier 

(Fig. 33) making it possible to compare the benefits of the regimens found. 

The results that make up the Pareto front in Figure 33 give a wide selection of solutions

to the use of antibiotics in swine production. A closer examination of the solutions shows 

that the regimen found by the Petersen graph (k=7, Fig. 34) is a distinctly different 

solution to the problem than that found by a standard evolutionary algorithm (complete 

graph, Fig. 35.) While the standard evolutionary algorithm made changes to the 

conventional method of antibiotic use, the GBEA found a regimen that more strongly 

resembles pulse administration of medication. This is noteworthy because this is an 

emergent behavior in the algorithm; no information was provided a priori to promote this 

solution. This pulse administration of medication is similar to that found in chemotherapy 

treatments used for cancer patients. While this type of therapy has been used in the pork 

industry before (Dewey, Cox, Straw, Bush, and Hurd, 1999), it is typically reserved for 

the treatment of illness. While careful consideration would need to be taken to fully 

assess the impact on micro flora in the animal’s GI tract, this could prove to be a novel 

technique to minimize the antibiotic resistance in bacteria that could lead to foodborne 

illness.

5.7. Conclusions

The use of graph based evolutionary algorithms for the antibiotic regimen problem has 

been shown to give superior results to those found using a standard evolutionary 

algorithm. More importantly, the use of diversity preserving graphs yields novel solutions
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Figure 33, Percent of Campylobacter.spp resistant to antibiotic vs. Animal Weight at Abattoir.
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Figure 34, Antibiotic regimen found by Petersen graph (k=7) for antibiotic regimen problem.
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Figure 35, Antibiotic regimen found by standard evolutionary algorithm (complete graph) for 
antibiotic regimen problem use.
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to the antibiotic regimen problem. When the results of this experiment are compared to 

the findings of Sections 3 and 4, it is possible to theorize what is occurring in the 

evolving population in the various graphs. The highly connected graphs quickly find a

method to decrease the amount of resistance displayed by the bacteria, but in doing so 

increase the amount of antibiotic used to a level where any additional antibiotics could 

quickly incur a fitness penalty. This is due to the rapid sharing of information increasing 

the average fitness, removing solutions that have very low antibiotic use and

corresponding low animal weight. For the graphs with a modest amount of diversity 

preservation, the slower information flow allows the regimens with lower antibiotic use 

to remain in the population longer, giving sufficient time for the algorithm to develop 

solutions taking advantage of the addition of antibiotic to the water supply. Normally 

reserved for disease treatment or prevention, the addition of antibiotic to the water supply 

is the most efficient method for administering pulse doses of antibiotic. The addition of 

antibiotics through the water supply is modeled using a 2 day period rather than the 7 day 

period for antibiotic addition to feed, allowing for a more precise addition of antibiotic.

This behavior is also displayed by the sparse graphs, although with the slow transfer of 

information the population members are less able to take advantage of the information 

related to pulses found elsewhere in the population. Further examination of the problem 

would make it possible to test this theory, although the computational resources 

necessary would be significant.

The use of graph based evolutionary algorithms has provided novel solutions to be 

address potential health risks from antibiotic use while largely maintaining the economic
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benefits gained. These results provide nearly the same benefits realized by the 

conventional use of antibiotics as performance enhancers while increasing the percentage 

of resistant bacteria only slightly compared to antibiotic free facilities. This compromise 

would make it possible to lower the potential risk to human health at little to no cost to 

the producer. With proper validation, this would provide a “win-win” situation for the 

pork industry, environmental groups and consumers.
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6. CONCLUSIONS

The use of population structures to control the flow of information in an evolving 

population of solutions has been demonstrated. While this work has focused on the use of 

GBEAs to control the rate of diversity loss, it should be noted that GBEAs are just one 

tool for controlling information flow and diversity loss. By placing restrictions on which 

population members may be selected during mating events, barriers are placed against the

flow of information. This makes it possible to control the rate at which diversity is lost in 

a population of evolving solutions, allowing building blocks and complete solutions time 

to mature. Depending on the amount of diversity necessary, this can lead to a faster 

convergence time or to the discovery of multiple satisfactory solutions. The amount of

diversity preserved is indirectly related to the flow of information in the evolving 

population. Applying these various graphs against a test suite of problems has made it 

possible to evaluate the graphs and determine which are best suited for the evaluation of 

evolutionary computation problems. The evaluation of the graph sets was done in tandem 

with the evaluation of evolutionary computation problems. In this way, representative 

graph sets and test suites were developed, increasing the utility of GBEAs and making it 

possible to construct an unbiased test suite of problems. 

Controlling the flow of information in evolutionary algorithms can improve the time to 

convergence to an optimal solution. While the benefit varies by problem, all but the one-

max problem had some amount of speed up when compared to a standard evolutionary 

algorithm. The PORS15 problem, a problem with a deceptive fitness function, had nearly 

a 24x decrease in the number of mating events to completion with a population size of 
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256, the largest improvement in time to convergence for any of the problems examined. 

This increase in performance is a result of several barriers to the flow of information 

preventing the destruction of necessary building blocks by superior yet sub-optimal 

solutions.

The results of Figure 14 and the shift of preferred graph in the population size study 

highlight a difference between the amount of diversity initially present in an evolutionary 

algorithm and the preservation of diversity. The use of a diversity preserving tool shifts 

the required population size to the left of Figure 14, decreasing the population size 

necessary for best algorithm performance. This is due to a tradeoff between initial 

diversity in the population of solutions and the preservation of the diversity present as 

evolution proceeds. After a sufficient population size is reached to provide the necessary 

information for an optimal solution, preserving diversity can be used as a surrogate to a 

larger population size. The mechanism by which diversity preservation does this is by 

maintaining copies of the necessary information to keep it available rather than providing 

a large number of copies. This allows for a smaller population size to be used when 

investigating problems, decreasing the number of fitness calls and thereby decreasing the 

amount of time necessary to find a satisfactory solution. This is especially beneficial 

when applied to problems with expensive fitness calls, such as implementations using 

computational fluid dynamics solvers (Bryden, et al., 2002).

The need for and preferred type of diversity can be used as a means to classify 

evolutionary computation problems. For problems with simple, non-deceptive fitness 
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landscapes there is little need for diversity. As problem landscaped become more multi-

modal and deceptive, diversity and diversity preservation become more important. In 

addition, as the number of variables and the size of the available alphabet increases the 

use of diversity preserving tools becomes more important. By developing a taxonomy of 

these problems, it is possible to apply a priori knowledge of a new problem to determine 

a population size and diversity preservation scheme.

This taxonomy of evolutionary computation problems also serves as a tool for the 

development of an unbiased test suite of problems. Just as graph preference can be used 

as a characteristic to classify problems, using a collection of problems that show a wide 

range of preferred graph would allow for an unbiased evaluation of any new graphs. This 

test suite would also provide a diverse sample of evolutionary computation problems that 

could be used to evaluate other proposed algorithms, giving researchers the ability to 

weigh the utility of different methods to make an informed decision as to which to 

include in their work.

Controlling the flow of information makes it possible to find several acceptable solutions 

to an evolutionary computation problem. Diversity preservation allows superior solutions 

enough time to develop a foothold in a local graph neighborhood. After these solutions 

have had an opportunity to mature, they begin to interact at the active edges in the 

population structure. If they are similar, the solutions will gradually merge together, 

leaving only those solutions that have distinct differences. A larger number of barriers to 

the flow of information gives more opportunities for the development of these local 
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solutions, although there is an added computational cost for these extra solutions and so 

more run time is necessary when compared to achieving a single solution.

By providing a variety of solutions for the design process these methods provide a benefit 

to engineering design by adding a computationally inexpensive method to increase the 

flexibility of the design process. This benefit is even more pronounced when using a 

system of systems approach (Fig. 36.) When bringing together multiple components to 

construct an assembly or system, an optimal component design may not lead to an 

optimal system design. Careful design of the models used to investigate the system can 

overcome these issues, but as more and more components are added to the system this 

quickly becomes unmanageable. Optimizing both components and the entire system 

using evolutionary computation methods and proper diversity management can 

automatically negotiate the necessary tradeoffs for this optimization. Compare this 

problem to a deceptive problem, where optimal component level design is not the optimal 

component design for the system. In the same manner in which necessary building blocks 

are preserved in a deceptive problem, these component designs necessary to the overall 

system optimization are preserved until they can be utilized in the global optimization 

process. 

A result of the antibiotic regimen experiment was the emergence of a novel solution to 

the problem that resembles one currently implemented in medical science. While the 
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Figure 36, Sytem of systems concept for engineering optimization (John Deere Company, 2008)
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graph set used was the larger recommended set of graphs, the guidelines for graph 

selection recommended the use of a graph that has a modest amount of diversity 

preservation. This is due mainly to the large number of variables used in the 

representation of the problem. When the results were analyzed this recommendation was 

confirmed, with the Petersen graph giving the best results, and also finding a novel pulsed 

method for providing the antibiotics to the animals. 

This pulse administration of antibiotics found by the GBEA is an example of how these 

techniques can be used by engineers as a tool to inspire creativity, similar to the concept 

of computational creativity (Saunders, 2002.) By controlling the flow of information 

within the evolving population of solutions, several novel solutions can be developed. 

When used in the design process, this tool can suggest a variety of novel solutions for the 

user to consider for the problem at hand, allowing human input to include design 

requirements that cannot be included in computer code.
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7. FUTURE RESEARCH

There are four distinct areas where this work can be extended. First, the classification of 

evolutionary computation problems and the continuation of the taxonomy and test suite 

work, which will continue to provide information on the similarities and differences of 

differently classes of problems. This information would be applied to two other areas of 

future work, the development of novel designs that encourage creativity and the

optimization of multilevel models of systems. Finally, there are several research avenues 

that the antibiotic regimen problem could be used to pursue, both in improvements to the 

current model and expansion to other areas of investigation. 

The development of a taxonomy of evolutionary computation problems and the use of

this information for test suite development will be a work in progress for several years. 

Sufficient information for preliminary recommendations exists, but more problems need 

to be examined to develop a more useful taxonomy of problems. While a complete 

taxonomy of problems is unlikely to be achieved, continued contributions to this work 

would increase the database of problems and allow researchers to find problems more 

similar to the one they would like to examine. Tied to this taxonomy work is the 

development of a test suite of evolutionary computation problems. As more information 

is gathered on the nature of the problems being approached with these techniques, a more 

representative and less biased test suite can be produced, giving better insight into new 

techniques.
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The use of diversity preserving tools to find multiple solutions could also be used to 

promote creativity, such as computational creativity in art (Romero and Machado, 2008.)

One example would the use of GBEAs to investigate an image segregation problem 

(Karthikeyan, Bryden and Ashlock, 2005).  In this study, a gene was constructed that held 

generator points and numerical weights.  These were used to construct panes of the image 

using Voronoi tessellation with the color of the pane determined by the color of the pixel 

specified by the generator points.  While the initial intent of this research was to find a 

novel method for image compression, it was found that this method created a stained 

glass effect by segmenting different colored tiles. By changing the numerical weights and 

generator points, different effects could be generated to form an artistic expression. 

Similar applications could be applied in both visual and audio artistic endeavors.

The use of these tools to control the flow of information in engineering optimization 

would be a benefit to design on a systems level. Utilizing more flexible frameworks for 

engineering design allows professionals to bring together larger sets of data and analyze 

more and more components and systems. To optimize these larger simulations, it is 

necessary to provide a tool that allows for a larger degree of design flexibility. This can 

be achieved by managing the amount of diversity present in and evolutionary algorithms. 

By combining simulations using different graph based evolutionary algorithms, 

computational resources can be assigned to components which are key to the design or 

are known to have several optimal configurations. By selecting an appropriate solution 

presented by the graph based evolutionary algorithm, novel designs can be developed that 
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are superior to those that already exist or that can provide solutions to the problems of the 

future.

There are also several opportunities to improve the modeling of the interactions between 

bacteria, antibiotics and swine. The model proposed in Chapter 5 is adequate for the 

evaluation of graph based evolutionary algorithms, but there are several areas where it 

can be expanded to encompass the issues of antibiotic use in pork production. A variety 

of solutions to the problem of finding a superior antibiotic regimen have been found that 

satisfy the limits placed on the model, but there are several more factors that should be 

considered. More bacteria, such as Salmonella.spp should be added to the model to better 

represent the risk to human health. This could be done by adding another bacteria term to 

model, with the associated growth and mortality coefficients and MIC values for the 

antibiotic being evaluated.

It would also be beneficial to consider more that on type of antibiotic, as it is not 

uncommon for one type of antibiotic to be used as a performance enhancer while a 

different antibiotic would be used for disease control or prevention. A slight adjustment 

to the second term of equations 5-8 and 5-9 and to equation 5-10 allows for modeling 

more than one antibiotic treatment:
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Where the ‘a’ and ‘b’ subscripts represent different antibiotics. This can be repeated 

multiple times for the administration of additional antibiotics to the regimen. It should be 

noted that there is a significant chance of drug interactions that should be taken into 

consideration when using multiple antibiotics. This can also be combined with 

expansions to the model to account for multiple types of bacteria that are a potential 

human health risk. It should be noted, however, that many of the drug interactions that 

would be encountered in this work are unknown and could require years of medical 

research to discover, and several more years to adequately model.
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While this model addresses the concentrations of bacteria and antibiotic in the animal as 

delivered to the abattoir, there is also a potential risk that the bacteria and antibiotic may 

be released to the environment while the animal is being grown (Qiang, Macauley, 

Mormile, Surampalli, and Adams, 2006.) This could be included in the model by the 

introduction of terms that track these concentrations during the growth period of the 

animal. The addition of these considerations would increase the complexity of the model 

as well as necessitating a good deal of research and evaluation to determine how best to 

incorporate the impact of the antibiotic and resistant bacteria on the surrounding 

environment. Some of these considerations would be the size of hog lagoons and the 

effectiveness of oxidation methods to break down the antibiotics found in the effluent 

streams.

With these additions in place, this model could also be implemented as a tool for use in 

the finishing facilities. If the amount of antibiotic administered to the animals were varied 

either by a necessary intervention or human error, this tool would allow the operator to 

determine a new regimen that would meet the same goals while taking into account the 

new antibiotic levels. 
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APPENDIX: GRAPH THEORY OVERVIEW

A combinatorial graph or graph (G), is a collection of vertices (V(G)) and edges (E(G)) 

where E(G) is a set of unordered pairs from V(G). Two vertices of the graph are 

neighbors if they are members of the same edge. The degree of the vertex is the number 

of edges containing that vertex. If all vertices in a graph have the same degree, the graph 

is said to be regular, and if the common degree of a regular graph is k, then the graph is 

said to be k-regular. If you can go from any vertex to any other vertex traveling along 

vertices and edges of the graph, the graph is connected. The diameter of a graph is the 

longest that the most direct path between any two of the vertices can be, or in other 

words, the shortest path across the graph. A graph used to constrain mating in a 

population can be called the population structure. The general strategy for graph based 

evolutionary algorithms is to use the graph to specify the geography on which a 

population lives, permitting mating only between neighbors, and finding graphs that 

preserve diversity without hindering progress due to heterogeneous crossover. Additional 

information on combinatorial graphs can be found in (West, 1996.)

List of Graphs

In this section, the graphs used in this study are defined, as well as those necessary to 

properly describe those used.

Definition 1 The complete graph on n vertices, denoted Kn, has n vertices and all 

possible edges.  



173

Definition 2 The n-cycle, denoted Cn, has vertex set Zn.  Edges are pairs of vertices that 

differ by 1 (mod n) so that the vertices form a ring with each vertex having two neighbors  

A C32 graph is shown in Fig 1(a).

Definition 3 The n-hypercube, denoted Hn, has the set of all n character binary strings as 

its set of vertices. Edges consist of pairs of strings that differ in exactly one position.  A 5-

hypercube is shown in Fig 1(d).

Definition 4 The n x m-torus, denoted Tn,m, has vertex set ZnxZm.  Edges are pairs of 

vertices that differ either by 1 (mod n) in their first coordinate or by 1 (mod m) in their 

second coordinate, but not both. These graphs are n x m grids that wrap (as tori) at the 

edges.  An 8 x 4-torus is shown in Fig 1(c).

Definition 5 The generalized Petersen graph with parameters n, k, denoted Pn,k, has 

vertex set 0,1,…,2n-1.  The two sets of vertices are both considered to be copies of Zn.  

The first n vertices are connected in a standard n-cycle. The second n vertices are 

connected in a cycle-like fashion, but the connections jump in steps of size k (mod n). The 

graph also has edges joining corresponding members of the two copies of Zn The graph 

P32,5 is shown in Fig 1(b).

Four classes of random graphs were added to the graph set in hopes that more insight into 

the usefulness of the technique. The first three graphs are generated using edge moves 
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(Ashlock, Walker, and Smucker, 1999) in a randomized algorithm that corresponds to a 

type of random graph (a probability distribution on some set of graphs).  

Definition 6Anedge move is performed as follows. Two edges {a,b} and {c,d} are found 

that have the property that none of {a,c}, {a,d}, {b,c}, or {c,d} are themselves edges. The 

edges {a,b} and {c,d} are deleted from the graph, and the edges {a,c} and {b,d} are 

added.  Notice that edge moves preserve the regularity of a graph if it is regular.

Random Graphs

The last of the random graphs was generated by randomly placing vertices on a unit torus 

(a unit square that is wrapped at the edges.)  In order to place a control on the degree of 

the graph, this distance was varied with the population size (Table 11.) Three different 

instances of each graph class were produced for use in this research.

The first three random regular graphs were generated using the following algorithm.  

Starting with a regular graph, 3000 edge moves are performed on vertices selected 

uniformly at random from those that are valid edge moves. Initially, the random graphs 

were labeled according to the degree of the graph, but since the degree of the graphs may 

change when the number of vertices is changed, these numbers are now merely labels, 

only necessarily showing the degree of the graphs for population size of 512. For 3-

regular graphs, the Petersen size one graph was the starting point. For 4-regular graphs, 

the starting point was Tn,m graph with the largest radius for that population size (ie T4,8
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Table 11, Separation distances for random tori generation.

Population size Separation
32 0.35
64 0.30

128 0.20
256 0.15
512 0.07

1024 0.05
2048 0.03
4096 0.02
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for 32 vertices, T8,m for 64 and 128 vertices, and T16,m for 256 vertices and above), and 

the 9-regular graph was started with a hypercube graph. These graphs are denoted R 

(n,k,i) in this study, with n being the number of vertices, k being the degree for 

population size 512 (as described above), and i is the instance of the graph.

For the final set of three random graphs, a number of points equal to the population size 

were placed on a unit torus. Edges were created with these points if they were within a 

certain distance from each other, varying for each population size, as outlined in Table 

11. These values were selected to try to maintain a roughly equal degree of graph for 

each population size. After generation, the graph was checked to see if it was connected, 

and rejected if the test failed. These graphs are denoted RT(r,i), where r is the maximum 

separation from another point where an edge would still be created, and i is the instance 

of the graph.  
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