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ABSTRACT 
 

 This thesis examines the benefits of haptics-based interaction for performing 

assembly-related tasks in a virtual environment.  A software application that combined 

freeware and open-source software development kits was developed and demonstrated 

principles of physics-based modeling in a haptics-enabled immersive virtual environment.  A 

user study was designed to evaluate subjects in performing a series of experiments relevant to 

the assembly engineering process including weight recognition, part positioning, and 

assembly simulation.  Each experiment featured a structure based on factorial combinations 

of effects, resulting in a series of designed trials.  Methods of assessing user performance 

were established based on task completion time and accuracy.  Using a randomized complete 

block design, a sample population of forty individuals performed all trials within the 

experiments in random sequences.  Statistical methods were used to analyze the 

performances of individuals upon the conclusion of the study.  When compared to visuals-

only methods, the results show that haptics-based interaction is beneficial in improving 

performance including reduced completion times for weight comparisons, higher placement 

accuracy when positioning virtual objects, and steadier hand motions along three-

dimensional trajectories.  Furthermore, the results indicate that the accuracy in weight 

identification is dependent on both the hand controlling the object and sensory modality used.  

The study was inconclusive in determining the affect of haptics-based interaction on 

completion times when positioning objects or completing manual assembly tasks.    
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CHAPTER 1.  INTRODUCTION 

 The concept of a computer-generated environment has existed for several decades.  

Ivan Sutherland, the father of computer graphics, envisioned: 

The ultimate display would…be a room within which the computer can 

control the existence of matter.  A chair displayed in such a room would be 

good enough to sit in.  Handcuffs displayed in such a room would be 

confining (Sutherland 1965). 

To mimic real-world interaction, a virtual environment (VE) requires four key elements: 

three-dimensional stereoscopic viewing, position tracking, multiple sensory stimuli, and 

object to object interaction (Jayaram et al. 2001).   

Virtual reality (VR) technology has been applied to many engineering areas such as 

product design, maintenance and assembly planning.  Gomes de Sa and Zachmann (1998) 

demonstrated the utility of VR for  evaluating a prototype of an automobile design.  Virtual 

assembly is the ability to assemble CAD models of parts using a three-dimensional 

immersive interface with natural human motion (Kim and Vance 2004).  One example of a 

virtual assembly simulation is the Virtual Assembly Design Environment (VADE) developed 

at Washington State University (Jayaram et al. 1997).  This system was capable of 

exchanging geometric data of part models and assembly constraints from Pro/Engineer to an 

immersive virtual environment. 

As the use of VR expands, researchers continue to investigate methods for increasing 

the realism experienced within virtual simulations.  These simulations rely on visualization 

as a primary method of conveying information.  Research efforts have examined haptics-

based interaction to convey additional sensory cues.  The Haptic Integrated Dis/Re-Assembly 
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(HIDRA) simulation environment developed at Georgia Tech University (McDermott and 

Bras 1999) incorporated haptic feedback for user interaction.  The system featured two haptic 

devices configured for object manipulation using a pinch-like gesture.  Frohlich et al. (2000) 

developed a responsive workbench system for virtual assembly.  Their system presented a set 

of haptics-enabled virtual tools that permitted the use of multiple hands.  Each interaction 

tool included a maximum of four virtual springs that connected a user-controlled outer frame 

to an interior frame that cradled the manipulated object.  System for Haptic Assembly and 

Realistic Prototyping (SHARP) developed at Iowa State University (Seth et al. 2005) 

presented a cross-platform solution for performing virtual assembly sequences within an 

immersive simulated environment.  The application was capable of importing complex CAD 

geometry into the virtual environment and featured a dual-handed haptic device interface, 

stereoscopic viewing with head tracking, and network communication. 

Although incorporating haptics within a virtual environment provides users with a 

method of interacting with virtual objects, it increases the complexity of virtual environments 

due to hardware and software requirements.  Identifying the benefits of haptics on user 

performance presents a unique research challenge and is the focus of this research. 

 

1.1  Objective and Motivation 

The objective of this research is to assess the performance benefits of haptics-based 

interaction for virtual assembly.  We will determine whether completion times and several 

measures of accuracy are affected by haptic feedback including and identify assembly tasks 

where haptic feedback affects user performance.  To achieve this goal, user performances of 

the same assembly task with two different sensory feedbacks are compared: a visual-only 
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feedback and a method with both visual and haptic cues.  The methodologies for the current 

research feature three phases: development of a virtual assembly application, a user study 

investigation, and analysis of data collected in user study using statistical methods.    

 

1.2  Organization of the Thesis 

 Chapter 2 discusses elements of virtual reality for achieving realistic simulations 

including collision detection, physics-based modeling, and haptics-based interaction.  

Chapter 3 presents the design of the user study including software application, framework, 

preliminary and final investigations, and methods of data analysis.  Chapters 4, 5, and 6 

introduce three assembly-related experiments including weight recognition, part positioning, 

and assembly simulation.  The final chapter of the thesis summarizes the research 

contributions and outlines future work. 
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CHAPTER 2.  REALISTIC SIMULATION IN VIRTUAL REALITY 

2.1  Introduction 

 Virtual reality can provide several benefits to industry by reducing costs associated 

with the product development process.  It has been approved a powerful tool and applied to 

engineering applications such as conceptual design, preliminary design and analysis, 

manufacturing planning, and factory layout (Jayaram et al. 2001).  

 There are several requirements for developing a realistic simulation for virtual 

assembly.  The first is the ability to detect collisions between virtual objects.  This provides 

the necessary information to identify contacting models.  The second requirement is to 

simulate the physical behavior and interactions of virtual objects similar to their real world 

counterparts.  The third requirement is that the simulation must present information in an 

intuitive manner through haptic feedback, position and head tracking, or stereoscopic 

viewing.  

 

2.2  Collision Detection 

The implementation of collision detection within the software program structure 

provides the first step in achieving a realistic virtual environment.  There are two major 

methods for detecting collisions: polygon-based method and volume-based method (Kim and 

Vance 2004).   Polygon-based collision detection method reports the result by checking if two 

triangles (polygon) overlap.  Example libraries are SWIFT which requires that the data define 

a convex polyhedra that distinguishes internal and external regions of space and RAPID and 

V-Collide which do not require the geometry to be of bounded form (Lin and Gottschalk 

1998).  In both classifications, vertices and triangle indices provide the necessary information 
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for constructing the collision representation.  Since the geometric information is associated 

with both the collision and graphics representation, accuracy of collision detection is 

dependent on fineness of triangle mesh. 

 Volume-based collision detection method generates a set of volume elements of a 

customized size to approximate the geometry of the part model while additional volume 

elements represent the interior and exterior regions (McNeely et al. 1999).  An example is 

Boeing’s Voxmap Pointshell (VPS) software which has been extensively researched at Iowa 

State University (Kim and Vance 2003).  The voxels (small cubic) assist in determining 

whether collisions have occurred, the locations of collision, and depth of penetration of the 

colliding parts.  In VPS, the shape of a dynamic model is approximated by a network of 

voxel center points called “point shell” and a static model is approximated by a network of 

voxels called “voxmap”.  Collision detection occurs when the point shell of the dynamic 

model interferes with the voxmaps of the static objects.  The accuracy of volume-based 

collision detection is dependent on the size of the voxels.  The smaller the voxel size, the 

more accurate of the part geometry, but more processing time and memory requirements.   

 

2.3  Physics-Based Modeling 

After detecting collisions and identifying points of contact, the next step involves the 

rendering of physical responses.  The goal of physics-based modeling is to simulate part 

interaction in the VE such that all objects and interactions within the virtual simulation react 

similarly to their real counterparts.  Entities in everyday life adhere to the laws of physics 

including applied external forces, static and dynamic states, and exhibit physical properties 

such as mass, friction, and hardness.  The key is to model these governing rules into the 
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virtual environment.  Physics-based modeling approach utilizes Newtonian equations to 

compute the motions of rigid bodies within a simulation. 

Three well-regarded methods for simulating physical behaviors include impulse-

based, constraint-based, and penalty-based.  Mirtich and Canny (1995) developed an 

approach to simulating dynamics of rigid bodies known as the impulse-based method.  This 

technique incorporates the continuous application of equal and opposite impulses between 

contacting models.  After applying the impulse at the points of contact, updates for the 

position of the body’s center of mass and angular velocity are applied.  This approach is 

capable of handling a wide assortment of collision scenarios including rolling, sliding, and 

resting conditions at interactive simulation rates. 

The constraint-based method was extensively researched by Baraff and Witkin (2001) 

and involved computing force quantities from conditions of constrained motion for 

impenetrable bodies.  This technique simulates the motion of an object along a trajectory 

until it has interpenetrated with another object.  The solver determines the last time interval 

in which the bodies’ surfaces were in contact and updates their physical states.  This method 

yielded accurate calculation of reaction forces at the expense of computing performance. 

 The penalty-based method for determining the dynamic state of objects after collision 

employs a spring and damper system (Erleben et al. 2005).  The time-dependent Newtonian 

equation, 2.1, calculates the applied penalty force, F.  This force quantity separates two 

bodies that have interpenetrated beyond a specified threshold. 

     Fkxxbxm =++ &&&                           (2.1) 

The variable m indicates the mass of the body while b and k denote damping and spring 

coefficients, respectively.  These values are user-defined within a simulation environment 
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while the solver computes quantities such as acceleration, velocity, and displacement for the 

moving body.   

  

2.4  Haptics-Based Interaction 

Salisbury and Srinivasan (1997) define computer haptics as the discipline concerned 

with the techniques and processes associated with generating and displaying synthesized 

haptic stimuli to the human user.  They note that haptic rates ranging from 500 to 2,000 Hz 

are required to render force feedback with minimal noise vibrations.  This is due to the 

human hand’s sensitivity in detecting tactile vibrations (250 Hz), and kinesthetic resolution 

for changes in finger position (1 mm), velocity (10%), and acceleration (20%) (Burdea 

1996).  Haptic cues include force and tactile feedback.  Tactile feedback concerns sensory 

information resulting from skin contact with objects including geometry, smoothness, 

slippage, and temperature.  Force feedback involves rendering properties including weight, 

inertia, resistance, and hardness of virtual objects.  The current research of haptics-based 

interaction concerns only force rendering. 

 Within a simulation, haptic feedback provides users with an opportunity to interpret 

virtual objects with sensory modalities other than sight and sound.  From an input standpoint, 

traditional computer systems utilizing a keyboard and two-dimensional mouse device are 

counterintuitive when interacting within a three-dimensional virtual environment.  Massie 

(1998) proposed the value of haptic feedback in several contexts: 

• Providing feedback to help position objects accurately in 3D space. 

• Resolving visual ambiguities by letting users feel the models. 

• Communicating physical properties of objects. 
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• Letting users naturally and continuously manipulate models. 

 

2.4.1  Haptic Devices 

 According to the portability of the mechanisms, haptic devices are categorized as 

grounded haptic devices and portable haptic devices.  Grounded haptic devices feature a 

frame of reference that is fixed to either a desktop, ceiling, or wall (Burdea 1996).  The 

grounded nature of the device provides mechanical stability for the system and permits the 

rendering of large force quantities including the weight of virtual objects and resistance.  

However, it presents limitations in terms of restricting users’ range of motion to the extents 

of the haptic workspace.  Some of the commercially available grounded haptic devices 

include the PHANToM
™
 series (Sensable Technologies 2007), the Omega.x

™
 interface 

(Force Dimension 2001-2007), and the Virtuose
™
 family of devices (Haption 2007).   

Portable haptic devices utilize user’s body such as back, chest, arm, or palm as the 

base frame (Burdea 1996).  Examples of portable haptic devices include the Rutgers Master I 

and II developed at Rutgers University, and Immersion’s CyberGrasp
™ 
 (Immersion 

Corporation 2007).  They usually provide users a larger range of free motion than the 

grounded haptic devices.  However, wearing such equipment may affect the interpretation of 

simulated force feedback.   

 

2.4.2  Issues 

 The workspace of a haptic device limits the effectiveness in simulating industrial 

assembly operations that demand a large range of motion (Hollerbach 2000).  Research work 

conducted by  Fischer and Vance (2003) addressed this issue by putting a PHANToM
™
 1.5 

device on a movable platform.  An algorithm has been developed to define a virtual volume 
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that mapped the haptic device’s position within the simulation.  It has been demonstrated its 

usage in a six-sided CAVE environment. 

 A second limitation of haptic devices concerns the force rendering capabilities.  

Common devices such as the PHANToM
™
 series only provide three degree of freedom point 

force rendering without torque feedback (Massie 1998).  This limitation restricts the 

rendering of touch-based information resulting from surface to surface contact.  In addition, 

the maximum force output capabilities also present a limit to the use of the haptic devices.  

For instance, the PHANToM
™ 
Premium 1.5 High Force

™
 can exert a maximum force output 

of 37.5 N (8.4 lbf.); a quantity that is less than the weight of many real assembly 

components. 

 

2.5  Previous Research 

 Identifying the utility of haptic-based interaction has motivated research efforts from 

several institutions.  In these investigations, researchers have examined the influence of 

haptic feedback on users’ ability to interpret force information or to assist in task completion.  

Studies concerning haptics that are relevant to virtual assembly include weight recognition, 

performing spatial tasks, and manual assembly. 

 

2.5.1   Weight Recognition 

 Researchers from Washington State University (Gurocak et al. 2003) examined 

weight sensations using a prototype haptic device, the AirGlove.  The study involved three 

treatments using multiple pairs of blocks with distinct weight differences.  Subjects had to 

identify the lightest block using their right hand.  The first treatment involved pairs of real 

cubes made from wood material.  The second treatment featured pairs of cubes simulated in a 
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virtual assembly design environment (Jayaram et al. 1997) that were manipulated using the 

AirGlove device.  The third treatment in the study was similar to the second, but included 

prerecorded air jet sound to disguise auditory noise produced from the haptic interface.  In all 

three treatments, performance was assessed based on correct identification of the lighter 

component and task completion time.  After data collection and analysis, their study 

concluded that treatments involving real cubes produced the most desirable results in terms 

of accurate recognition of lightest component (100%) and time of completion and the two 

treatments using virtual cubes, resulted in 88% response accuracy.  Each of the two 

treatments that involved virtual cubes required a greater amount of time than the treatment 

involving real cubes. 

 Coutee and Bras (2004) also investigated weight sensations in real and virtual 

environments.  In three experiments, users compared the weight differences between pairs of 

cubes: two real, two virtual, and one from each domain.  In all three cases, a control cube 

with a mass of 100 grams was compared with cubes of lesser and greater masses.  In trials 

involving cubes within the same environment, participants used one hand to estimate the 

weight while the third procedure involved the use of both hands.  For tests in the virtual 

environment, users interacted with the virtual objects using two PHANToM
TM
 haptic devices 

configured for single-handed pinch gesture.  The simulation of the virtual environment was 

performed using the HIDRA application (McDermott and Bras 1999).  The researchers 

concluded that participants were able to distinguish the weight between two real cubes with a 

higher success rate and in faster time (70%, 12.10 seconds) than experiments involving 

virtual counterparts (51%, 18.12 seconds).  They also concluded that the tolerance of 
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differentiating weights between two real cubes was approximately 20 grams while the results 

from the virtual cube were inconclusive. 

 

2.5.2   Spatial Tasks 

Arsenault and Ware (2000) examined the relationship between hand-eye coordination 

and haptic feedback.  The investigators were interested in the effects of head tracking and 

force rendering when completing a Fitts tapping task between two cylindrical targets.  User 

performance was evaluated based on interval tap times and error in failing to contact targets.  

Three factors were used: with and without head tracking, haptics and non-haptics, and 

various target distances.  In non-haptic trials, participants relied on visual cues to perceive 

contact between cursor and target, while the haptics trials included rendered contact forces.  

The investigators found that haptic interaction using the PHANToM™ device improved the 

user performance of the tapping task in terms of time (12% interval reduction) and error. 

Volkov and Vance (2001) examined the effectiveness of force feedback to evaluate 

virtual prototypes.  Their simulation presented users with a digital mockup of an automobile 

interior design.  Participants used a haptic device to provide input into the simulation.  In 

haptic and non-haptic treatments, subjects estimated the distances between the virtual 

components.  Their work concluded that participants using force feedback were able to 

complete the evaluations in less time than subjects who used only visual perception.  The 

researchers noted the use of haptic or non-haptic sensory methods did not influence to 

correctness of response from users. 

 Using a similar Fitts tapping task, O’Malley et al. (2006) examined the use of haptics-

based interaction for performance enhancement and training.  Their work presented a shared 
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control force rendering method in which haptic cues guided hand motions along a two-

dimensional trajectory.  The research involved two studies to evaluate performance using 

shared control, virtual fixturing, and non-haptics assistance methods.  The first study 

examined subjects in completing trials featuring combinations of assistance modes, target 

distances, and target orientations.  The second study was similar to the first but included an 

extended training module.  Their work concluded that trials involving haptic assistance 

(virtual fixturing and shared-control) revealed improvements in user performance than non-

haptic treatments. 

 

2.5.3   Manual Assembly 

Adams et al. (2001) investigated haptics-based interaction for performing manual 

assembly tasks within a virtual environment.  Their user study involved three treatments: 

virtual training with force feedback and without force feedback, and no virtual training.  

During virtual training, participants used one hand to control an Excalibur Force Display.  

The assembly sequence featured a biplane model of LEGO
TM
 components.  The study 

required users to perform their respective training methods followed by five iterations of a 

real assembly.  The researchers concluded that participants who received virtual training with 

haptic feedback completed trials in less times than users who did not receive training.  Their 

work found no significant difference in performance between participants who received 

either form of the virtual training. 

 Bloomfield et al. (2003) formulated a taxonomy of haptic actions required in 

performing virtual disassembly tasks.  To examine the influence of haptic feedback, 

researchers compared user performance in disassembling an F-16 aircraft fuel tank.  The 
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study included three interactive devices: a SpaceMouse™, a CyberGlove™, and a 

PHANToM™ device.  Only the PHANToM™ device was capable of rendering haptic 

feedback to users.  The investigators observed that the participants completed the 

disassembly sequence in less time when using the PHANToM™ device (57.98 seconds) than 

the SpaceMouse™ (89.27 seconds) and the CyberGlove™ (96.81 seconds). 

 In 2004, researchers (Edwards et al. 2004) examined the use of haptic and auditory 

cues for performing assembly and disassembly procedures within a virtual environment.  The 

researchers were interested in determining if auditory cues were a viable substitution for 

haptic feedback.  Their work included a study with 24 participants completing assembly 

sequences using four sensory methods: auditory, haptics, auditory with haptics, and visuals-

only.  Their research concluded that trials featuring haptic or auditory feedback required 

greater amounts of time than trials using visual perception.   The researchers also observed 

that force rendering had a significant effect on the number of detected collisions in 

assembling components. 
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CHAPTER 3.  USER STUDY 

3.1  Introduction 

In order to investigate the effect of haptic-based interaction in the virtual assembly, a 

user study is designed and approved by Iowa State University’s Institutional Review Board. 

This authorization process ensured the ethical nature of the investigation in terms of risks, 

benefits, and all methods of evaluation that would affect the targeted sample population.  The 

user study involved two stages: a preliminary and final investigation.  The intent of the 

preliminary investigation was to validate test procedures and to identify areas of 

improvement in the study.  After addressing the necessary modifications, the final 

investigation involved a larger sample population. 

 

3.2  VR Application 

 This research included the development of a software application that integrated 

haptics-based interaction with rigid body dynamics in a virtual reality simulation.  The goal 

was to evaluate user performance with haptics-based interaction in performing assembly 

tasks in a virtual simulation.  The application was written in C++ language in an object 

oriented programming context and consists of three dedicated threads for rendering graphics, 

haptics, and physics. 

 

3.2.1  Software 

 The user study application is based on VR Juggler, an open source package developed 

at Iowa State University (Cruz-Neira et al. 2005).  VR Juggler framework is comprised of 

modular components that handle a variety of VR hardware devices and software components.  



15 

For instance, VR Juggler’s Gadgeteer module manages input devices such as positional 

tracking systems.  The Juggler Configuration and Control Library (JCCL) contain a 

collection of configurations and tools for monitoring software performance.  The Tweek 

module allows developers to specify different graphical user interface configurations.  VR 

Juggler also incorporates the Graphics Math Template Library (GMTL) for performing 

calculations.   

 The physics-based modeling is implemented on Ageia’s PhysX SDK™ v2.4.4 

(2006).  The toolkit simulates rigid body dynamics using the penalty-based method at a 

minimum update rate of 60 Hz.  PhysX™ offers several important features for developing 

realistic simulations including collision detection, modeling of part interaction, and an ability 

to handle concave triangular mesh geometry.  PhysX also supports modeling of different 

kinematic joints (NxJoint) that constrains individual degrees-of-freedom for actors (NxActor) 

within the simulation. 

 PhysX is capable of performing collision detection and physics simulation for 

complex CAD models using penetration maps.  This programming structure (NxPMap) 

represents the triangular mesh geometry in voxelized form at a user-defined resolution.  For 

each virtual assembly component, the respective triangle mesh data assists in defining an 

actor (NxTriangleMesh) in the simulation.  The mesh actor object is then passed as a 

parameter into a function, NxCreatePMap(), that returns a corresponding collision model.  

The resulting data is written and stored to an external file (*.pmap) to facilitate future use 

without the initial preprocessing step. 

 To allow users to select and manipulate virtual components, the application 

implements a virtual coupling, a spring and damper system that connects a user-controlled 
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virtual cursor to a selected component.  PhysX provides a joint class, NxD6Joint, which 

allows programmers define spring and damping parameters along each of the six degrees of 

freedom.  The spring force is calculated and sent to haptic device for rendering. 

 To provide haptic rendering, the user study application integrates SensAble 

Technologies OpenHaptics™ toolkit.  The toolkit provides two API’s that provide different 

levels of programming access to developers; Haptics Library API (HLAPI) and Haptics 

Device Library (HDAPI).  The HDAPI was utilized for the software development since it 

provided low-level access to the haptic device (Sensable Technologies 2005).  Programming 

for haptic device operates based on a scheduler that maintains a high frequency (~1000 Hz), 

high priority thread.  The scheduler handles the execution of callback functions for sending 

computed force quantities and retrieving device state information at interactive rates. 

 Figure 3.1 depicts the virtual assembly application’s infrastructure.  The infrastructure 

consists of two aspects in executing the program: initialization and runtime.  The application 

startup involves the initialization of the haptic devices and scheduler using OpenHaptics 

function calls.  For each assembly component, two files are loaded in the application: an 

*.obj file and a *.pmap file for graphical visualization and physics calculation respectively.  

The runtime phase consists of the core of the application and user interaction.  The core of 

the program involves three independent threads that perform updates for haptics, physics, and 

graphics.  Haptics and physics threads communicate state information of virtual objects in a 

bidirectional manner.  Updates pertaining to scene visualization are dependent on state 

information obtained from both the haptic and physics threads.  In terms of user interaction, 

the software application permits input through mouse, keyboard, and haptic devices.  Three-
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dimensional graphics visualization and haptic feedback provide users with sensory 

information from the virtual simulation. 

 

 

Figure 3.1.  Virtual assembly application infrastructure 

 

3.2.2  Hardware 

 The software application was tested on a Windows™ workstation that featured an 

Intel Xeon™ 3.06 GHz processor, 1.0 GB of RAM, and a NVIDIA Quadro™ FX 1000 

graphics card with 128 MB dedicated memory.  The display involved a rear-projected system 

comprised of an InFocus DepthQ™ DQ3120-A stereoscopic projector and a 30-inch 

Graybow Glasfire™
 
screen.  Graphics rendering was set at a screen resolution of 800 by 600 

pixels with a 120 Hz refresh rate. 
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 The use of specialized equipment allowed participants to experience an immersive 

VR simulation. This included stereoscopic viewing using Crystal Eyes™ shutter glasses 

synchronized with a Stereographics™ emitter, and head tracking using a Polhemus Patriot
TM
 

electromagnetic system with a position sensor mounted to the side of the shutter glasses.  

This setup allowed users to adjust the viewing perspective based on head motions. 

 The system utilizes two PHANToM™ Omni devices arranged in a dual-handed 

configuration.  These mechanisms are cost effective and are able to render three-dimensional 

haptic feedback.  The Omni model can exert a maximum force of 3.3 N (0.75 lbf.) at nominal 

positions and can render a continuous force of 0.88 N (0.2 lbf.).  The device features three-

dimensional position tracking using digital encoders and provides a workspace of 6.4 x 4.8 x 

2.8 inches.  The tracking of stylus orientation is accomplished through potentiometers 

(Sensable Technologies 2007).  Figure 3.2 depicts the configured virtual reality system used 

during the user study investigation. 

 

 

Figure 3.2.  Hardware setup for immersive virtual reality system 

 

 



19 

3.3  Framework 

 The framework of the user study consists of three phases.  The introductory phase 

involved participants completing a pre-study questionnaire regarding demographics along 

with relevant experiences.  Users also received an overview of the study and a hands-on 

demonstration of hardware and software application.  Subjects were given time to become 

familiar with the haptic device’s workspace and range of input. 

 The second phase of the user study involved subjects performing three experiments 

including weight recognition, part positioning, and assembly simulation.  The presentation of 

each experiment involved a discussion covering the motivation, task procedures, the methods 

of performance evaluation, and the different experimental variations.  Users proceeded 

through the study and performed a series of trials within each of the assembly-related 

experiments.  The final phase of the user study investigation required subjects to complete a 

post-study questionnaire about levels of comfort in performing the experiments, the usability 

of the haptic devices, and the effectiveness of the simulation.   

 

3.4  Preliminary Investigation 

The preliminary study involved a sample population of eleven students from Iowa 

State University.  Their ages ranged from 21 to 28 years old with a median of 25.  Only one 

individual indicated left hand dominance.  The majority (63.6%) of the sample population 

had prior experiences with haptic interfaces through demonstrations, academic research, or 

from similar equipment including video game controllers.  In addition, 54.5% of users 

indicated previous experience in performing assembly operations including computer 

hardware installation and in using CAD software such as Pro/Engineer.  
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Each subject proceeded through the user study according to the framework defined in 

section 3.3.  One issue observed during the pilot study concerned the randomization of trials 

within each experiment.  The sequence of trials was determined based on random 

presentation of haptic and non-haptics sensory methods and did not account for additional 

experimental factors.  This issue was resolved for the final investigation. 

 

3.5  Final Investigation 

 The final study involved 29 participants from Iowa State University and 15 engineers 

from industry.  Due to the uneven number of subjects between groups, subjects were 

evaluated as one sample population.  From the original 44 participants, the results of four 

individuals were removed from the data analysis due to external sources of variation during 

testing including interruptions or significant knowledge of the research that could influence 

their performance. 

 The sample population featured 6 females and 34 males with ages ranging from 18 to 

58 years of age (median of 24, mean of 27.2 + 9.5).  The ages of the entire sample 

demonstrated a right-skewed distribution with the majority of participants being of younger 

age.  Figure 3.3 illustrates the distribution of the sample population.  
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Figure 3.3.  Histogram plot of age 
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Nine participants specified having an engineering profession and featured a mean age 

of 38.4 + 13.5 years old.  Twelve individuals were graduate research assistants with a mean 

age of 25.6 + 2.4 years old.  Eighteen subjects were undergraduate students with a mean age 

of 21.8 + 2.7 years old.  One individual, 42 years old, listed clerical as their field of work.  Of 

the forty participants, two individuals indicated left hand dominance. 

 The majority of the sample population (75%) indicated that they had prior assembly 

experience.  Additional responses indicated that participants were assembly engineers, have 

assembled consumer products, and have completed assemblies using CAD software.  

Subjects were also required to specify their past exposure to haptic devices.  A larger 

percentage (72.5%) of the individuals did not have any previous knowledge of haptics-based 

interaction, while 27.5% had exposure from using haptic devices or video game controllers.  

In conducting the final investigation, the sample population performed the three experiments 

in accordance to the framework outlined in section 3.3.   

 

3.6  Data Analysis 

Details of the three experiments and results are presented in Chapters 4, 5, and 6.  

Each experiment featured a randomized complete block design.  Each individual performs all 

trials in randomized sequences without replication.  The data for each participant was 

analyzed as a set in order to minimize error between subjects.  The randomized complete 

block design was used to examine the difference in treatment means for a particular effect 

(Ott and Longnecker 2001).  For the analysis of each performance measurement, the 

hypothesis test considers a null statement where all mean values for levels of an effect are 



22 

equivalent.  The alternative hypothesis estimates that at least one mean value was statistically 

different from the remaining quantities:   
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 Once data collection was completed, mean tables were constructed to summarize and 

contrast the different levels within a particular variable.  An overall mean value was 

computed for each table to depict the average performance resulting from the variable.  The 

distribution of data for each variable was illustrated using a box plot diagram.  This graphical 

method summarizes the data set in terms of quartiles and assists in identifying the skew 

points of the data set.   

After summarizing the performances observed during the current investigation, data 

values were examined using ANOVA (analysis of variance).  This method evaluates the 

sources of variability in the designed study and their statistical significance.  An Effect Tests 

table was included to proportion the ANOVA’s Model source by all variations in  the 

experiment as individual and combined effects (SAS 2005).  The statistics obtained from the 

Effect Tests assist in evaluating the hypothesis test (equation 3.1) for a variation source.  An 

F-ratio was calculated for each effect by dividing the respective Mean Square by the 

estimate of error variance given by the Mean Square Error.  A probability, p-value, was 

computed and reflected the likeliness of obtaining a larger F-ratio.  A significance level (α) 

of 0.05 was stipulated to determine the statistical significance of the source of variability.  

The significance level was selected since the designed study did not warrant a restricted 

value of 0.01 that is more commonly found in medical studies (Ott and Longnecker 2001).  If 
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the computed p-value was less than the α-level, the experimental factor was assessed as being 

a significant source of variation on the resulting performance measurements. 
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CHAPTER 4.  WEIGHT RECOGNITION EXPERIMENT 

4.1  Introduction 

 The weight of a component is critical in planning for parts handling due to ergonomic 

factors (Boothroyd 2005).  Objects of considerable size and weight (i.e. engine block) require 

hoists or fixtures to assist in positioning the component within the assembly.  Small objects 

such as bolts, nuts, and screws are light enough that the assembly workers can operate using 

a single hand.  Within a virtual environment, interpreting the mass of an object using just 

visual sensory cues can be difficult and lead to incorrect assumptions.  Virtual objects of 

larger volume are not guaranteed to be heavier than small parts with greater densities.  The 

addition of haptics-based interaction provides a means of higher fidelity in interpreting the 

object weight. 

 

4.2  Hypotheses 

The primary hypothesis of this study is that in a digital simulated environment, haptic 

interaction will assist users in distinguishing weight properties of objects more intuitively 

than visual information alone.  Haptic rendering will result in less completion times and a 

higher accuracy in performing weight comparisons and gravitational force quantities. 

The investigators also hypothesize that subjects will distinguish paired virtual objects 

more accurately and in less time when the difference in mass properties is greater.  The 

subjects are anticipated to perform the weight recognition tasks more efficiently when 

controlling the heavier object with their dominant over non-dominant hand. 
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4.3  Experimental Procedures 

The objective of this experiment is to observe users in performing a weight 

recognition task.  Each trial featured paired virtual objects of similar shape and size, but with 

different mass properties.  Models were identified based on color; red for objects on the right 

side of the environment and blue for objects on the left.  These assigned colors corresponded 

with the virtual cursors that represented the haptic devices’ end effecter in the simulation.  

Participants manipulated the virtual objects with the color-coordinated device and observed 

the objects’ physical responses.  Using the sensory information provided in the trial, 

participants were required to identify the heaviest object. 

 

4.3.1  Experimental Factors 

 Variations in the perception of weight served as the primary experimental factor.  For 

the trials that did not include force rendering, participants observed the physical nature of the 

dynamic objects using only visual perception.  This included monitoring the effects of 

gravity, contact, and friction forces on the manipulated components.  For trials that included 

force rendering, the participants were able to feel the weight forces. 

 The second experimental factor involved the mass relationship between the paired 

objects.  There were three distinct ratios in the weight recognition experiment. A weight ratio 

of 1:1 served as a control to determine if participants were capable of detecting equally 

weighted models.   Two ratios (2:1 and 3:1) provided weight differences between the paired 

virtual models. 

 The final experimental factor concerned which hand was manipulating the heaviest 

object.  In all trials, subjects were required to use both hands to manipulate the paired virtual 
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models.  Subjects controlled the heaviest object with either their dominant or non-dominant 

hand. 

  

4.3.2  Experiment Structure 

 The weight recognition experiment featured a randomized complete block design.  

Each participant completed ten trials consisting of factorial combinations of mass ratio, 

sensory rendering, and active hand.  Subjects performed the trials in randomized sequences 

without replication.  Table 4.1 defines all ten trials based on the combinations of 

experimental factors. 

 
Table 4.1.  Weight recognition experiment trials 

Trial Mass Ratio Hand Rendering 

1 2 to 1 Dominant Non-Haptics 

2 2 to 1 Non-Dominant Non-Haptics 

3 3 to 1 Dominant Non-Haptics 

4 3 to 1 Non-Dominant Non-Haptics 

5 1 to 1 -- Non-Haptics 

6 2 to 1 Dominant Haptics 

7 2 to 1 Non-Dominant Haptics 

8 3 to 1 Dominant Haptics 

9 3 to 1 Non-Dominant Haptics 

10 1 to 1 -- Haptics 

 

4.4  Performance Evaluation 

 Performance was evaluated based on two criteria: time of completion in seconds and 

accuracy of weight difference determination.  Subjects could use as much time as they 

needed before responding. Participants had to state which of the two objects was heaviest.   

The instructions indicated that the heaviest object could occur in either hand or the weights 

could be equivalent. 
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4.5  Data Analysis 

 
 The data analysis involved examining the performance of forty participants in 

completing the weight recognition experiment.  The use of mean tables summarizes user 

performance for each level of variation.  The first two tables organized mean values based on 

sensory method.  The third and fourth tables examined the mean values for trials involving a 

2:1 and 3:1 mass ratio, respectively.  The final two tables arranged mean values based on 

active hand control.  The summary process also involved graphical evaluation through box 

plot comparisons.  This provided an opportunity to observe the distribution of measurements 

between the levels within each experimental factor.   

Statistical analysis using an ANOVA procedure evaluated the significance of each 

source of variation on the obtained measurements.  Since the experiment involved three 

factors, an Effect Tests table proportioned the Model source of variation.  Based on the 

computed test statistics, the statistical significance of each experimental factor was 

determined. 

 

4.5.1  Completion Time   

 The first aspect of evaluating performances during the weight recognition experiment 

concerned the amount of time participants required to complete the weight recognition tasks. 

 
Table 4.2.  Table for mean times in haptics trials 

Haptics 2:1 3:1 Hand Avg. 

Dominant 28.265 24.251 26.258 

Non-Dominant 31.239 22.855 27.047 

Ratio Avg. 29.752 23.553 26.653 
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Table 4.2 contrasts mean completion times for trials that included haptic feedback 

during the weight recognition experiment.  The sample population performed the haptics-

assisted trials with a mean time of 26.653 + 14.117 seconds.  Table 4.3 summarizes the trials 

that provided only visual information.  A mean time of 29.171 + 18.468 seconds was 

required to perform each of the non-haptics weight recognition trials. 

 
Table 4.3.  Table for mean times in non-haptics trials 

Non-Haptics 2:1 3:1 Hand Avg. 

Dominant 35.283 28.716 32.000 

Non-Dominant 28.789 23.893 26.341 

Ratio Avg. 32.036 26.305 29.171 

 

 The measurements obtained from the sample population indicate contradicting results 

in terms of central tendency.  The mean values demonstrate that participants required less 

time to evaluate the paired virtual models when weight forces were rendered.  However, the 

median completion time for the non-haptics trials was 22.190 seconds while the haptics trials 

required 22.929 seconds.  Time values for trials presenting only visual cues demonstrated a 

larger variance in measurements (341.081) than the haptics-based approach (199.306).   

Figure 4.1 depicts the distribution of time measurements between the two sensory 

methods.  Based on the two mean tables and the graphical statistics, variations in force 

rendering did not appear to affect completion times in performing the weight recognition 

experiment. 
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Figure 4.1.  Box plot comparison of times based on sensory method 

 

Table 4.4.  Table for mean times in 2:1 trials 

2:1 Haptics Non-Haptics Hand Avg. 

Dominant 28.265 35.283 31.774 

Non-Dominant 31.239 28.789 30.014 

Rend. Avg. 29.752 32.036 30.894 

 

Table 4.4 summarizes mean completion times for trials with mass ratio of 2:1.  In 

performing the four trials, subjects took a mean of 30.894 + 18.982 seconds to distinguish the 

weight quantities.  Table 4.5 compares the mean completion times for trials with a mass ratio 

of 3:1.  The result shows a mean time of 24.929 + 12.859 seconds for these trials. 

 

Table 4.5.  Table for mean times in 3:1 trials 

3:1 Haptics Non-Haptics Hand Avg. 

Dominant 24.251 28.716 26.484 

Non-Dominant 22.855 23.893 23.374 

Rend. Avg. 23.553 26.305 24.929 

 

A comparison of mean values indicated that participants were capable of 

distinguishing paired models in less time for trails with a mass ratio of 3:1.  The median 

values demonstrated this trend; 20.320 versus 24.4766 seconds for the 3:1 and 2:1 ratios, 
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respectively. Time measurements obtained from 2:1 trials demonstrated greater variation in 

measurements (360.316) than the 3:1 trials (165.353).  Figure 4.2 contrasts the distribution of 

each data series.  The researchers assumed that the difference in mass property between 

paired objects affects weight recognition times. 
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Figure 4.2.  Box plot comparison of times based on mass scale 

 

The final set of mean tables examines completion times based on active hand.  During 

the eight trials, each hand manipulated the heavier object in four procedures.  Table 4.6 

outlines the mean time of completion for trials that featured the heaviest object manipulated 

by the dominant hand.  Participants required a mean time of 29.129 + 18.202 seconds to 

identify the heavier virtual object when was controlled by the dominant hand. 

 
Table 4.6.  Table for mean times in dominant hand trials 

Dominant Haptics Non-Haptics Ratio Avg. 

2:1 28.265 35.283 31.774 

3:1 24.251 28.716 26.484 

Rend. Avg. 26.258 32.000 29.129 
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Table 4.7.  Table for mean times in non-dominant hand trials 

Non-Dominant Haptics Non-Haptics Ratio Avg. 

2:1 31.239 28.789 30.014 

3:1 22.855 23.893 23.374 

Rend. Avg. 27.047 26.341 26.694 

 

Table 4.7 contrasts the mean completion time for trials that featured non-dominant hand 

control of the heavier model.  An overall mean time of 26.694 + 14.466 seconds was required 

to complete the four trials. 

 The mean values indicated that trials featuring non-dominant hand control of the 

heavier object required less time than the dominant hand trials.  The median times for hand 

control also confirmed this notion; 21.913 for non-dominant hand and 22.984 seconds for 

dominant hands.  Data values pertaining to dominant hand use revealed higher variation 

between measurements, indicated by a variance of 331.312 for the dominant hand 

measurements and 209.282 for the non-dominant.   

Figure 4.3 demonstrates the distributions for both data series.  The measurements 

collected from the sample population indicated that controlling the heaviest object with 

dominant or non-dominant hand had minimal influence on completion times during the 

weight recognition experiment.  
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Figure 4.3.  Box plot comparison of times based on hand usage 

 

After summarizing the completion times, ANOVA was used to determine the 

statistical significance of the sources of variation within the experiment.  An additional Effect 

Tests table portioned the Model source of variation by the experimental factors.  Tables 4.8 

and 4.9 outline the results of the ANOVA procedure and the Effect Tests, respectively. 

 
Table 4.8.  ANOVA for time measurements 

Source DF Sum of Squares Mean Square F Ratio 

Model 46 34538.620 750.840 3.9502 

Error 273 51890.480 190.075 Prob > F 

C. Total 319 86429.100  <.0001 

 

 
Table 4.9.  Effect tests for time measurements 

Source DF Sum of Squares F Ratio Prob > F 

Subject 39 29656.072 4.0006 <.0001 

Scale 1 322.244 1.6954 0.1940 

Hand 1 176.839 0.9304 0.3356 

Rendering 1 984.992 5.1821 0.0236 

Scale*Hand 1 190.934 1.0045 0.3171 

Scale*Rendering 1 65.157 0.3428 0.5587 

Hand*Rendering 1 896.257 4.7153 0.0308 

Scale*Hand*Rendering 1 182.411 0.9597 0.3281 
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Variations in sensory modalities were determined to have a significant effect on 

completion times (F-ratio = 5.1821, p-value = 0.0236).  In five of the six mean tables, 

procedures that rendered gravitational forces required less time to perform.  This concluded 

that haptics-based interaction could be effective in reducing performance times for weight 

comparison tasks. 

 The variations in mass ratios between paired objects did not effect performance times 

during the weight recognition experiment (F-ratio = 1.6954, p-value = 0.1940).  From an F-

ratio of 0.9304 and a p-value of 0.3356, variations in hand control were determined to be 

statistically insignificant.  Measurements obtained from the sample population revealed 

minimal differences between completion times in dominant and non-dominant hand use.   

The ANOVA procedure indicated that combinations of active hand and rendering 

factors had a significant influence on performance times (F-ratio = 4.7153, p-value = 

0.0308).  This infers that performance times were dependent on which hand was controlling 

the heaviest object and the method of presenting sensory information. 

 

4.5.2  Response Accuracy 

 The second aspect of evaluating performance during the weight recognition 

experiment concerned the accuracy of participants in identifying the heaviest object.  Table 

4.10 summarizes the mean response accuracy for trials that rendered weight forces.  Subjects 

were capable of accurately detecting the greater weight at a mean of 78.1 + 41.4% when 

haptic feedback was included.   
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Table 4.10.  Table for mean accuracy in haptics trials 

Haptics 2:1 (10:5 kg) 3:1 (15:5 kg) Hand Avg. 

Dominant 0.600 0.850 0.725 

Non-Dominant 0.725 0.950 0.838 

Ratio Avg. 0.663 0.900 0.781 

 

Table 4.11 contrasts the mean accuracy of users in trials that provided only visual 

information.  Subjects correctly identified the heaviest object at mean percentage of 51.9 + 

50.1 in the non-haptics trials. 

 
Table 4.11.  Table for mean accuracy in non-haptics trials 

Non-Haptics 2:1 3:1 Hand Avg. 

Dominant 0.525 0.600 0.563 

Non-Dominant 0.375 0.575 0.475 

Ratio Avg. 0.450 0.588 0.519 

 

Trials that included force feedback produced a greater mean percentage of correct 

responses than the non-haptics procedures.  The median value of accuracy for each data 

series was equivalent to 100.0%.  The non-haptic data series conveyed a higher amount of 

variation (2512.1) between measurements than the haptic procedures (1719.7).  The 

measurement results indicate that the subjects were capable of identifying the heaviest virtual 

object with higher accuracy when using haptic feedback. 

 
Table 4.12.  Table for mean accuracy in 2:1 trials 

2:1 Haptics Non-Haptics Hand Avg. 

Dominant 0.600 0.525 0.563 

Non-Dominant 0.725 0.375 0.550 

Rend. Avg. 0.663 0.450 0.556 

 

The second evaluation of response accuracy focuses on variations in implemented 

mass ratios.  Table 4.12 and Table 4.13 reports the mean accuracy scores of users in trials 
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that involved paired objects defined using a 2:1 and 3:1 mass ratio respectively.  The 

experimental data shows that subjects were capable of detecting the heaviest object with an 

accuracy of 55.6 + 49.8% and 74.4 + 43.7% for paired objects with mass ratio 2:1 and 3:1 

respectively.   

 
Table 4.13.  Table for mean accuracy in 3:1 trials 

3:1 Haptics Non-Haptics Hand Avg. 

Dominant 0.850 0.600 0.725 

Non-Dominant 0.950 0.575 0.763 

Rend. Avg. 0.900 0.588 0.744 

 

It can be concluded that participants were able to identify the heaviest object more 

accurately and less variation (1917.8) for the 3:1 mass ratio.  Both data series had similar 

median values of 100.0%.  Based on the measures of central tendency, variations in mass 

ratios appeared to have influenced the percentages of correct responses during the weight 

recognition experiment. 

 
Table 4.14.  Table for mean accuracy in dominant hand trials 

Dominant Haptics Non-Haptics Ratio Avg. 

2:1 0.600 0.525 0.563 

3:1 0.850 0.600 0.725 

Rend. Avg. 0.725 0.563 0.644 

 

 The last experimental factor in which accuracy scores were evaluated concern 

variations in active hand.  Table 4.14 contrasts the mean percentage of correct responses for 

trials that involved participants controlling the heaviest object with their dominant hand.  The 

mean accuracy for the four dominant hand trials was 64.4 + 48.0%.  The final mean table 

(Table 4.15) summarizes the mean accuracy of response for trials that featured non-dominant 
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hand control of the heaviest object.  Subjects demonstrated an overall accuracy of 65.6 + 

47.6% during these trials.   

 
Table 4.15.  Table for mean accuracy in non-dominant hand trials 

Non-Dominant Haptics Non-Haptics Ratio Avg. 

2:1 0.725 0.375 0.550 

3:1 0.950 0.575 0.763 

Rend. Avg. 0.838 0.475 0.656 

 

Variations hand control revealed minimal differences in accuracy scores.  For both 

dominant and non-dominant hands, participants correctly identified the heaviest object with 

similar mean percentages.  Each series had a median accuracy score of 100.0%.  Data values 

for each method had comparable variances in measurements; 2269.5 and 2307.7 for non-

dominant and dominant hand control.  It can be concluded that variations in active hand had 

a minimal effect on users’ ability to identify the heavier of paired objects. 

 An ANOVA procedure (Table 4.16) assisted in determining the statistical significance 

of each source of variation.  An additional Effect Tests (Table 4.17) proportioned the Model 

source of variation by the experimental factors. 

 
Table 4.16.  ANOVA for accuracy percentages 

Source DF Sum of Squares Mean Square F Ratio 

Model 46 24.300000 0.528261 2.9735 

Error 273 48.500000 0.177656 Prob > F 

C. Total 319 72.800000  <.0001 
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Table 4.17.  Effect tests for accuracy percentages 

Source DF Sum of Squares F Ratio Prob > F 

Subject 39 14.800000 2.1361 0.0002 

Scale 1 1.250000 7.0361 0.0085 

Hand 1 0.312500 1.7590 0.1859 

Rendering 1 0.112500 0.6332 0.4269 

Scale*Hand 1 0.006250 0.0352 0.8514 

Scale*Rendering 1 0.306250 1.7238 0.1903 

Hand*Rendering 1 0.756250 4.2568 0.0400 

Scale*Hand*Rendering 1 0.112500 0.6332 0.4269 

 

As an independent variable, the use of haptic and non-haptic sensory rendering had an 

insignificant effect on user accuracy (F-ratio of 0.6332, p-value = 0.4269).  However, the 

analysis indicated that the combined effect of active hand and sensory rendering factors was 

statistically significant (F-ratio = 4.2568, p-value = 0.0400).  This infers that the correct 

identification of objects was dependent on which hand was controlling the heavier object and 

the type of sensory modality. 

 From a test statistic of 1.7590 and a p-value of 0.1859, variations in hand control as 

an independent effect was determined to be statistically insignificant.  However, the applied 

mass ratio between paired models was determined to be a significant source of variation in 

the study.  An F-ratio of 7.0361 and a p-value of 0.0085 indicate that subjects were able to 

detect the heavier object more accurately when paired models were defined using a 3:1 mass 

ratio than the 2:1 baseline. 

 

4.5.3  User Preference 

 Upon the completion of the weight recognition experiment, the sample population 

answered three questions regarding the ten procedures.  The first asked users about their level 

of comfort in selecting the heaviest virtual model during the non-haptics trials.  The second 
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question was similar to the first but concerned trials that involved rendering of gravitational 

forces.  Figure 4.5 contrasts the responses for each question. 
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Figure 4.5.  User level of comfort in non-haptics and haptics treatments 

 

For the non-haptics trials, the majority of participants (38.6%) felt Comfortable in 

performing the weight recognition experiment with only visual cues.  An additional 25.0% of 

users were Neutral in their response while 22.7% indicated feeling either Uncomfortable or 

Very Uncomfortable.  In responding to this question, 13.6% expressed a high level of 

comfort in identifying the heaviest component through visual perception.   

For the haptics-enabled trials, equal portions (47.7%) of the sample population felt 

either Very Comfortable or Comfortable in comparing weight forces.  The remainder of the 

sample population, 4.5%, indicated a Neutral response.  None of the users felt uncomfortable 

during the haptics-based procedures.  
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Figure 4.6.  Force feedback usefulness for weight recognition experiment 

 

The third question involved participants indicating the usefulness of haptic feedback 

during the weight recognition experiment (Figure 4.6).  The majority (65.9%) of the sample 

population indicated that haptics-based interaction was Very Useful for distinguishing weight 

forces between paired objects.   An additional 29.5% viewed haptic feedback as Useful, 

while the remaining users where Neutral.  No one from the sample population assessed 

haptic feedback as Useless. 

 

4.6  CONCLUSION 

 The objective of the weight recognition experiment was to examine the performance 

benefits associated with haptics-based interaction. The hypotheses of this experiment are that 

haptic force feedback can benefit the weight recognition by (1) a reduction in evaluation 

times and (2) higher accuracy in identifying the heavier object. 
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The experimental results were analyzed using ANOVA and agreed with the hypothesis 

concerning evaluation times.  More specifically, the rendering of gravitational forces resulted 

in lower completion times when users performed the designed weight recognition 

experiment.  The statistical analysis also determined the presence of interaction between 

hand control and sensory methods.  This shows that completion times were significantly 

dependent on which hand was manipulating the heavier object and the type of sensory 

modality.   

With regard to the second hypothesis of accuracy of in identifying the heavier component,  

trials show an accuracy of 78.1% when haptic force feedback is present.  This accuracy is 

better than the accuracy of 51.9% for the case when haptic force feedback is not provided.  

This concluded is again drawn based on statistical evaluation using ANOVA.  However, the 

analysis of variance procedure attributed a significant influence from interactions between 

active hand and sensory factors on the resulting accuracy percentages.  The accuracy of was 

dependent on which hand was controlling the greater massed virtual object and the sensory 

modality used.   

The evaluation concluded that the scaling of mass ratios between the paired virtual 

components was the most influential factor on user accuracy.  Trials that featured models 

with mass quantities defined by the 3:1 baseline resulted in a higher percentage (74.4%) of 

accurate responses than trials involving the 2:1 mass relationship (55.6%).  The statistical 

evaluation did not assign significant effects to the other sources of variation in the 

experiment.  



41 

CHAPTER 5.  PART POSITIONING EXPERIMENT 

5.1  Introduction 

 One fundamental aspect of the assembly process is the positioning of components 

with respect to other parts.  In performing teleoperation tasks, the physical and corresponding 

virtual workspaces must provide the user with the same degrees of freedom in order to 

present a realistic simulation.  Compared to 2D mouse, a benefit of haptic devices is their 

three-dimensional workspace.  Users must not be encumbered by the device (Massie and 

Salisbury 1994) and be able to position a digital assembly component at any desired location 

within the virtual workspace.  This chapter will present user study for the task of positioning 

components within a virtual environment. 

 

5.2  Hypotheses 

 The primary hypothesis for this study is that haptic-based interaction will enable users 

to position objects within a three-dimensional simulated environment more proficiently than 

using only visual perception.  The investigators hypothesize that force rendering will allow 

users to complete positioning trials in less time.  In addition, haptic feedback will permit 

users to interpret contact forces that assist in placing a virtual object at its final location.  This 

has been observed in several scholarly endeavors that examined user performance with 

regard to contact between virtual objects (Magnusson et al. 2002; Jones et al. 2005).  The 

researchers also estimate that the rendering resistive forces will enable users to displace an 

object more steadily than teleoperation tasks that do not include the assistance of haptics. 

The study will examine variations in translational direction.  The researchers 

anticipate that displacements along the z-direction will present a unique challenge to many of 
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the subjects.  These trials require participants to rely on their perception of depth within the 

virtual simulation.  The experiment also considers the performance effect associated with 

dominant and non-dominant hand usage.  The purpose of this is to evaluate the usability of 

the haptic device with each hand.  The investigators hypothesize that the sample population 

will produce contrasting measurements based on hand-dominancy. 

  

5.3  Experimental Procedures 

The primary objective of the experiment is to find out whether or not the haptic 

feedback is beneficial in controlling the position of a virtual object.  Starting at an initial 

location, subjects are required to steadily translate a movable virtual model along a specified 

trajectory until it has assembled with a static object.  Trials involved factorial combinations 

of sensory rendering, translational direction, and active hand.   

 

5.3.1  Experimental Factors 

The primary experimental factor is variations in the sensory perception.  Two 

treatments are carried out to determine the usefulness of haptic force feedback in positioning 

objects.  In the first treatment, users performed the teleoperation without the aid of haptic 

forces and were required to observe contact between objects using visual interpretation.  In 

the second treatment, the users experienced resistive forces to ensure steady translation and 

contact forces upon placing the object at its target location. 

The secondary experimental factor is the translational direction.  The displacement of 

the movable part occurred along a target direction with the remaining degrees of freedom 

constrained.  Input to the haptic devices affected the virtual component only along the target 
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direction.  Table 5.1 shows the relationships between the free and constrained directions used 

during the part positioning experiment. 

 
Table 5.1.  Target and constrained directions scenarios in the experiment 

Target Direction Constrained Direction #1 Constrained Direction #2 

X-Direction Y-Direction Z-Direction 

Y-Direction X-Direction Z-Direction 

Z-Direction X-Direction Y-Direction 

 

During the actual teleoperation procedure, participants must control the device while 

minimizing movements along the constrained directions.  Afterwards, users released the 

virtual object at the target position.  Figure 5.1 demonstrates a positioning task along the x-

direction. 

 

 

Figure 5.1.  Target and constrained directions scenario in the experiment 

 

 The third experimental factor is hand control.  Many real assembly sequences require 

the positioning of objects using either hand to complete a particular operation.  Subjects were 

required to use either their dominant or non-dominant hand to translate the movable object in 

the VR simulation. 
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5.3.2  Experiment Structure 

 Table 5.2 defines twelve trials based on combinations of experimental factors 

including sensory rendering, translational direction, and active hand.  The structure of the 

experiment featured a randomized complete block design.  Each participant performed the 

trials in individually random sequences without replication.  Subjects were instructed which 

hand to use, the translational direction, and the sensory modality.   

 

Table 5.2.  Part positioning experiment trials 

Trial Direction Hand Rendering 

1 X Non-Dominant Non-Haptics 

2 Y Non-Dominant Non-Haptics 

3 Z Non-Dominant Non-Haptics 

4 X Dominant Non-Haptics 

5 Y Dominant Non-Haptics 

6 Z Dominant Non-Haptics 

7 X Non-Dominant Haptics 

8 Y Non-Dominant Haptics 

9 Z Non-Dominant Haptics 

10 X Dominant Haptics 

11 Y Dominant Haptics 

12 Z Dominant Haptics 

 

5.4  Performance Evaluation 

 The user performance is evaluated by three criteria: completion time, target error, and 

average path deviation.  Subjects can use as much time as they need to complete the 

teleoperation.  The target error measures the users’ ability to place objects at specified (final) 

locations within the three-dimensional environment.  The position of the movable object’s 

local origin with respect to the VE’s coordinate system was recorded throughout the entire 

process.  A three-dimensional displacement vector was computed using the coordinates of 

the virtual object’s final position, Pa, and the trial’s target location, Pt.  The magnitude of the 
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vector indicated a measure of target error, Et, for placement accuracy (Equation 5.1).  A 

target error value of zero would indicate that the user was capable of positioning the object 

with high accuracy. 
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 The final performance evaluation examines user hand stability in controlling the 

haptic device.  A two-dimensional vector represents the path deviation along the constrained 

directions at a given interval.   Figure 5.2 depicts an x-direction translation trial with 

deviations along the constrained directions for one interval measurement. 

  

Figure 5.2.  Path deviation interval measurement 

 

The magnitude of the vector quantity yields a single measure of path deviation for a given 

interval.  The total number of interval measurements is dependent on the time of completion.  
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The following calculation (equation 5.2) depicts the average path deviation, Dx, experienced 

during an x-translation along the y-direction (dy) and z-direction (dz) in n total intervals. 
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5.5  Data Analysis 

The user study resulted in 480 (40 participants and 12 trials) data values for each 

performance evaluation outlined in section 5.4.  For each of three criteria (completion time, 

target error and average path deviation), an ANOVA procedure is evaluated to identify the 

statistical significance of the variation sources including sensory modality, translational 

direction and hand usage.  An Effect Tests table was included to proportion the Model source 

of variation by the experimental factors.  The statistical significance of each factor was 

determined by comparing the related probability value against the study’s significance level.   

 

5.5.1  Completion Time   

 Table 5.3 reflects the mean completion times for the non-haptics positioning trials.  

Users completed these trials in an average time of 17.182 + 6.674 seconds.  Table 5.4 

contrasts mean completion times for trials that included the rendering of resistive and contact 

forces.  Subjects completed the haptics-assisted trials in a mean time of 17.490 + 6.593 

seconds. 
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Table 5.3.  Table for mean times in non-haptics trials 

Non-Haptics Dominant Non-Dominant Direction Avg. 

X-direction 16.383 16.215 16.299 

Y-direction 16.731 16.581 16.656 

Z-direction 17.682 19.502 18.592 

Hand Avg. 16.932 17.433 17.182 

 

Table 5.4.  Table for mean times in haptics trials 

Haptics Dominant Non-Dominant Direction Avg. 

X-direction 18.424 16.953 17.689 

Y-direction 18.552 17.222 17.887 

Z-direction 15.741 18.050 16.896 

Hand Avg. 17.572 17.409 17.490 

 

Figure 5.3 illustrates median completion times of 16.281 seconds for the haptics-

enabled trials and 15.703 seconds for trials using only visual perception.  The variance of 

measurements for the two data series were also similar; 43.467 and 44.542 for haptic and 

non-haptics trials respectively. A comparison of mean values based on sensory modality did 

not indicate observable differences in completion times.   
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Figure 5.3.  Box plot comparison of times based on sensory method 
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The second set of mean tables evaluates completion times along each of the coordinate 

directions.  Table 5.5, 5.6 and 5.7 show that subjects required an average of 16.994 + 7.078, 

17.271 + 6.396, and 17.744 + 6.408 seconds to complete the task for positioning the object 

along the x-direction, y-direction and z-direction respectively. 

   
Table 5.5.  Table for mean times in x-direction trials 

X-Direction Dominant Non-Dominant Rend. Avg. 

Haptics 18.424 16.953 17.689 

Non-Haptics 16.383 16.215 16.299 

Hand Avg. 17.403 16.584 16.994 

 

 
Table 5.6.  Table for mean times in y-direction trials 

Y-Direction Dominant Non-Dominant Rend. Avg. 

Haptics 18.552 17.222 17.887 

Non-Haptics 16.731 16.581 16.656 

Hand Avg. 17.641 16.901 17.271 

 

Table 5.7.  Table for mean times in z-direction trials 

Z-Direction Dominant Non-Dominant Rend. Avg. 

Haptics 15.741 18.050 16.896 

Non-Haptics 17.682 19.502 18.592 

Hand Avg. 16.711 18.776 17.744 
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Figure 5.4.  Box plot comparison of times based on direction 
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The box plot in Figure 5.4 shows the median values of 15.406, 16.195, and 16.135 for 

x-, y-, and z-directions and further reveals discrepancies in task completion times.  It appears 

that translational direction possesses some effects on users’ competition time.  More 

specifically, positioning along a z-translation demanded the longest time, followed by y-

direction and x-direction.  

The last two mean tables evaluated time measurements based on hand control.  Table 

5.8 and 5.9 shows that the mean completion times with the dominant hand and non-dominant 

hand are 17.252 + 6.662 and 17.421 + 6.607 seconds respectively.  Figure 5.5 portrays 

similar distributions of data values for each level of hand variation.  Hence, the use of 

dominant or non-dominant hand did not appear to affect performance times during the part 

positioning experiment. 

 
Table 5.8.  Table for mean times in dominant hand trials 

Dominant Haptics Non-Haptics Direction Avg. 

X-direction 18.424 16.383 17.403 

Y-direction 18.552 16.731 17.641 

Z-direction 15.741 17.682 16.711 

Rend. Avg. 17.572 16.932 17.252 

 

Table 5.9.  Table for mean times in non-dominant hand trials 

Non-Dominant Haptics Non-Haptics Direction Avg. 

X-direction 16.953 16.215 16.584 

Y-direction 17.222 16.581 16.901 

Z-direction 18.050 19.502 18.776 

Rend. Avg. 17.409 17.433 17.421 
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Figure 5.5.  Box plot comparison of times based on hand usage 

 

 The final phase of data analysis for completion times during the part positioning 

experiment involved performing an ANOVA procedure.  Tables 5.10 and 5.11 report the 

computed statistics for evaluating the significance of the sources of variation. 

 
Table 5.10.  ANOVA for time measurements 

Source DF Sum of Squares Mean Square F Ratio 

Model 50 8563.854 171.277 5.8858 

Error 429 12483.972 29.100 Prob > F 

C. Total 479 21047.826  <.0001 

 

Table 5.11.  Effect tests for time measurements 

Source DF Sum of Squares F Ratio Prob > F 

Subject 39 8012.2283 7.0598 <.0001 

Direction 2 201.6276 3.4644 0.0322 

Hand 1 43.2463 1.4861 0.2235 

Rendering 1 83.3379 2.8638 0.0913 

Direction*Hand 2 183.7280 3.1568 0.0436 

Direction*Rendering 2 200.4698 3.4445 0.0328 

Hand*Rendering 1 16.9780 0.5834 0.4454 

Direction*Hand*Rendering 2 20.0649 0.3448 0.7086 

 

The variations in sensory modality did not reveal significant differences in mean 

completion times due to an F-ratio of 2.8638 and a p-value of 0.0913.  This infers that the 

rendering of resistive and contact forces did not reduce performance times during the part 
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positioning experiment.  Variations in dominant and non-dominant hand control on 

completion times was also determined to be statistically insignificant (F-ratio = 1.4861, p-

value = 0.2235). 

The ANOVA procedure confirmed that variations in translational direction had a 

significant effect on task completion times (F-ratio = 3.4644, p-value = 0.0322).  This 

concludes that the mean completion time for positioning along one of coordinate directions 

were statistically different from the other mean values for the other directions. 

The combination of direction with sensory rendering factors (F-ratio = 3.4445, p-

value = 0.0328) had a significant effect on completion times.  This indicates that time 

measurements were dependent on the particular direction of translation and the sensory 

method used.  The combined effects of direction with hand control was also determined to 

have significant influences on completion times (F-ratio = 3.1568, p-value = 0.0436).  The 

probability value indicates that performance times varied between the different combinations 

of translational direction and hand usage. 

 

5.5.2  Placement Accuracy 

Table 5.12 summarizes the observed target error measurements for trials that 

provided haptic rendering of contact forces.  During the haptics-enabled trials, subjects 

demonstrated a mean target error of 0.0388 + 0.0438 ft. 

  
Table 5.12.  Table for mean target errors in haptics trials 

Haptics Dominant Non-Dominant Direction Avg. 

X-direction 0.0218 0.0343 0.0281 

Y-direction 0.0349 0.0323 0.0336 

Z-direction 0.0544 0.0552 0.0548 

Hand Avg. 0.0371 0.0406 0.0388 
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Table 5.13 contrasts the mean target error for trials in which users positioned the virtual 

object based on visual approximation.  In the absence of force rendering, participants 

committed a mean target error of 0.3555 + 0.5656 ft. 

 
Table 5.13.  Table for mean target errors in non-haptics trials 

Non-Haptics Dominant Non-Dominant Direction Avg. 

X-direction 0.1922 0.3295 0.2609 

Y-direction 0.1644 0.2035 0.1840 

Z-direction 0.4925 0.7511 0.6218 

Hand Avg. 0.2830 0.4280 0.3555 

  

Participants were less accurate in placing the object at the target location using only 

visual cues.  This was evident when considering that the mean target error of the non-haptics 

trials was nearly ten times larger than the mean value from the force rendered trials.  The 

target error data set from the non-haptics trials featured a larger variation in measurements 

(0.3199) than data from the haptics-based trials (0.0019).  The median target error for trials 

that featured haptics interaction was 0.0279 ft. while the non-haptics methods resulted in a 

value of 0.1548 ft.   
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Figure 5.6.  Box plot comparison of target errors based on sensory method 
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Figure 5.6 illustrates the distribution of measurements for each sensory method.  The 

rendering of contact forces appeared to have assisted users in positioning components at 

targeted locations within the virtual environment. 

The second series of mean tables report target error measurements based on 

translational direction.  Table 5.14 summarizes the placement accuracy for trials along the x-

direction.  In completing these four trials, users produced a mean target error of 0.1445 + 

0.4732 ft.  Table 5.15 outlines the mean target error measurements for positioning along the 

y-direction.  Participants committed an average of 0.1088 + 0.1665 ft. of target error during 

the y-direction trials.  Table 5.16 compares the mean target error values of the four z-

direction trials.  Subjects demonstrated their placement accuracy with a mean target error of 

0.3383 + 0.5264 ft. 

 
Table 5.14.  Table for mean target errors in x-direction trials 

X-Direction Dominant Non-Dominant Rend. Avg. 

Haptics 0.0218 0.0343 0.0281 

Non-Haptics 0.1922 0.3295 0.2609 

Hand Avg. 0.1070 0.1819 0.1445 

 

Table 5.15.  Table for mean target errors in y-direction trials 

Y-Direction Dominant Non-Dominant Rend. Avg. 

Haptics 0.0349 0.0323 0.0336 

Non-Haptics 0.1644 0.2035 0.1840 

Hand Avg. 0.0997 0.1179 0.1088 

 

Table 5.16.  Table for mean target errors in z-direction trials 

Z-Direction Dominant Non-Dominant Rend. Avg. 

Haptics 0.0544 0.0552 0.0548 

Non-Haptics 0.4925 0.7511 0.6218 

Hand Avg. 0.2734 0.4032 0.3383 
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Figure 5.7.  Box plot comparison of target errors based on direction 

 

Figure 5.7 contrasts the distribution for each direction’s measurements.  The sample 

population had the greatest difficulty in placing the virtual component at the final location 

when translating along the z-direction.  Positioning trials along the y-direction yielded the 

lowest mean of target error.  The variations in measurements were also unique for the three 

trials.  Data values resulting from the z-direction trials indicated higher variance (0.2771) 

than the x-direction (0.2239) and y-direction (0.0277).  Target error measurements along the 

x- and y-directions conveyed similar median values; 0.0408 and 0.0381 ft., respectively.  

Data obtained from the z-direction trials indicated a median value of 0.0887 ft.  The three 

mean tables and graphical comparison convey a distinction in placement accuracy based on 

translational direction. 

 The last consideration for target error performance examines variations in hand 

control.  Table 5.17 contrasts the mean target error for trials that featured dominant hand 

guidance.  When using their dominant hand, subjects performed a mean target error of 

0.1600 + 0.2561 ft.    
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Table 5.17.  Table for mean target errors in dominant hand trials 

Dominant Haptics Non-Haptics Direction Avg. 

X-direction 0.0218 0.1922 0.1070 

Y-direction 0.0349 0.1644 0.0997 

Z-direction 0.0544 0.4925 0.2734 

Rend. Avg. 0.0371 0.2830 0.1600 

 

Table 5.18.  Table for mean target errors in non-dominant hand trials 

Non-Dominant Haptics Non-Haptics Direction Avg. 

X-direction 0.0343 0.3295 0.1819 

Y-direction 0.0323 0.2035 0.1179 

Z-direction 0.0552 0.7511 0.4032 

Rend. Avg. 0.0406 0.4280 0.2343 

 

Table 5.18 summarizes target error measurements for the four trials involving non-dominant 

hand use.  Participants produced a mean target error of 0.2343 + 0.5512 ft. within the virtual 

environment when using their non-dominant hand. 

The mean values of target error indicate higher placement accuracy when users 

positioned the object with their dominant hand.  However, each data series contained similar 

median values with 0.0618 ft. for dominant and 0.0616 ft. for non-dominant (Figure 5.8).  

The variance of measurements for the non-dominant hand approach (0.3038) was larger than 

the dominant hand trials (0.0656).  These variations in hand performances reflect different 

levels of dexterity between subjects.  The effects of variations in hand control appeared 

significant on target error measurements during the part positioning experiment. 
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Figure 5.8.  Box plot comparison of target errors based on hand usage 

 

The summary of target error measurements based on experimental factors uncovered 

differences in variance.  Comparing target error values based on sensory rendering 

demonstrated contrasting standard deviations; an observation confirmed in Figure 5.6.  

Furthermore, each translational direction had different standard deviations within their 

respective data series. 

In order to perform statistical analysis using an ANOVA procedure, the variance of 

data for each level of an experimental factor must be similar.  One solution is to apply a 

logarithmic transformation function (Ott and Longnecker 2001) since the coefficient of 

variation is approximately constant between factor levels.  For sensory modality, the 

coefficient of variation for haptic (1.129) and non-haptic methods (1.591) were nearly equal.  

In terms of translational direction, the coefficient of variation for the y-direction (1.531) and 

z-direction (1.555) was approximately constant but was different from the x-direction 

(3.275).  The coefficient of variation for the dominant hand (1.600) was less than the value 

(2.352) computed for the non-dominant hand effect. 
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The computed data series of logarithm values for target error, log(TE), demonstrated 

similar variances between levels within the three experimental factors.  The standard 

deviations for haptics (1.2125) and non-haptics (1.3572) were more similar than the values 

associated with the original data series.  The new data series demonstrated standard 

deviations of 1.7800, 1.3596, and 1.35563 for x-, y-, and z-directions, respectively.  The 

transformed target error values reflected standard deviations of 1.6785 and 1.5491 for 

dominant and non-dominant hand use. 

 Using the transformed data series, an ANOVA procedure evaluated the statistical 

significance of the sources of variation in the experiment on placement accuracy.  Tables 

5.19 and 5.20 report the statistics concerning the logarithmic values of target error. 

 
Table 5.19.  ANOVA for logarithm of target error measurements 

Source DF Sum of Squares Mean Square F Ratio 

Model 50 755.1676 15.1034 12.9840 

Error 429 499.0257 1.1632 Prob > F 

C. Total 479 1254.1932  <.0001 

 

Table 5.20.  Effect tests for logarithm of target error measurements 

Source DF Sum of Squares F Ratio Prob > F 

Subject 39 96.09790 2.1183 0.0002 

Direction 2 76.70617 32.9712 <.0001 

Hand 1 22.44577 19.2961 <.0001 

Rendering 1 144.01886 123.8094 <.0001 

Direction*Hand 2 13.77160 5.9196 0.0029 

Direction*Rendering 2 11.37532 4.8895 0.0079 

Hand*Rendering 1 9.47850 8.1484 0.0045 

Direction*Hand*Rendering 2 7.16325 3.0790 0.0470 

 

The ANOVA procedure indicated that all experimental factors were statistically 

significant.  As an individual effect, the haptic rendering of contact forces assisted users in 

positioning objects at target locations within the virtual environment (F-ratio = 123.8094, p-
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value < 0.0001).  Variations in translational direction had a significant influence on 

placement accuracy based on an F-ratio of 32.9712 and a p-value of less than 0.0001.  In 

addition, the use of dominant or non-dominant hand affected placement accuracy 

measurements in the experiment (F-ratio = 19.2961, p-value < 0.0001).   

The sources of variation featuring combined effects were all significant.  These 

statistics indicate that the users’ ability to position objects within a virtual environment is 

dependent on which hand is performing the displacement, the direction of travel, and the 

sensory method used.  Subjects were least accurate when positioning along the z-direction 

using the non-dominant and only visual cues.  The greatest demonstration of placement 

accuracy would occur in a task along the y-direction using the dominant hand and haptic 

assistance. 

 

5.5.3  Path Deviation 

 The first two mean tables examine path deviation measurements in terms of sensory 

modality.  Table 5.21 summarizes the mean path deviation for trials that rendered resistive 

forces to ensure steady object displacements in the virtual environment.  Subjects committed 

a mean path deviation of 0.9821 + 0.5856 ft. during these six trials. 

  
Table 5.21.  Table for mean path deviation in haptics trials 

Haptics Dominant Non-Dominant Direction Avg. 

X-direction 1.1699 1.0418 1.1058 

Y-direction 0.8424 0.9189 0.8807 

Z-direction 0.9575 0.9623 0.9599 

Hand Avg. 0.9899 0.9743 0.9821 
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Table 5.22.  Table for mean path deviation in non-haptics trials 

Non-Haptics Dominant Non-Dominant Direction Avg. 

X-direction 3.3055 3.1407 3.2231 

Y-direction 2.1779 2.1390 2.1585 

Z-direction 3.4514 3.7021 3.5767 

Hand Avg. 2.9783 2.9939 2.9861 

 

Table 5.22 outlines the mean path deviation values for non-haptics trials.  The sample 

population produced a mean value of 2.9861 + 2.2625 ft. for path deviation when using only 

visual perception. 

 The two sensory methods revealed contrasts in path deviation measurements.  The 

overall mean value associated with the non-haptics trials was over three times larger than the 

value obtained from the haptics-based trials.  In addition, the median value for haptic trials 

(0.8685 ft) was less than the non-haptics (2.3284 ft.).  The haptics and non-haptics 

measurements revealed different variances in data; 0.3429 and 5.1192, respectively.  Figure 

5.9 illustrates the distributions of the original series based on sensory modality.  The use of 

haptic and non-haptic approaches appeared to have influenced path deviation measurements 

during the positioning experiment. 
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Figure 5.9.  Box plot comparison of path deviation based on sensory method 
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Table 5.23.  Table for mean path deviation in y-direction trials 

X-Direction Dominant Non-Dominant Rend. Avg. 

Haptics 1.1699 1.0418 1.1058 

Non-Haptics 3.3055 3.1407 3.2231 

Hand Avg. 2.2377 2.0912 2.1645 

 

Table 5.23 contrasts the steadiest of user motions along the x-direction.  The sample 

population yielded a mean path deviation of 2.1645 + 1.7957 ft. in completing the four x-

direction trials. 

 
Table 5.24.  Table for mean path deviation in y-direction trials 

Y-Direction Dominant Non-Dominant Rend. Avg. 

Haptics 0.8424 0.9189 0.8807 

Non-Haptics 2.1779 2.1390 2.1585 

Hand Avg. 1.5101 1.5290 1.5196 

 

Table 5.24 summarizes path deviation measurements for trials along the y-direction.  The 

mean value of path deviation for the four y-direction translations equaled 1.5196 + 1.4880 ft. 

 
Table 5.25.  Table for mean path deviation in z-direction trials 

 Z-Direction Dominant Non-Dominant Rend. Avg. 

Haptics 0.9575 0.9623 0.9599 

Non-Haptics 3.4514 3.7021 3.5767 

Hand Avg. 2.2045 2.3322 2.2683 

  

Table 5.25 outlines the mean path deviation of participants in translating along the z-

direction.  The sample population performed the four z-direction trials with a mean path 

deviation of 2.2683 + 2.3390 ft. within the virtual simulation. 

Figure 5.10 contrasts the distribution of the original path deviation measurements 

along each direction.  The diagram depicts similarities in distribution for the x- and z-

directions.  Users performed the y-translations with more controlled hand input than the other 
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directions.  Based on standard deviations, participants completed the y-direction translations 

with less variation between measurements.  Comparing the three directions based on median 

values revealed similar trends with the lowest occurring within the y-direction series.  From 

the three mean tables and the graphical comparison, the variation in direction appeared to 

have affected the amount of path deviation committed during the part positioning 

experiment. 
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Figure 5.10.  Box plot comparison of path deviation based on direction 

 

Table 5.26.  Table for mean path deviation in dominant hand trials 

Dominant Haptics Non-Haptics Direction Avg. 

X-direction 1.1699 3.3055 2.2377 

Y-direction 0.8424 2.1779 1.5101 

Z-direction 0.9575 3.4514 2.2045 

Rend. Avg. 0.9899 2.9783 1.9841 

 

 The final consideration in evaluating user path deviation focused on hand usage.  

Table 5.26 reports the mean values for procedures that involved dominant hand control for 

teleoperation.  The sample population committed a mean path deviation of 1.9841 + 1.9160 

ft. during these trials.   
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Table 5.27.  Table for mean path deviation in non-dominant hand trials 

Non-Dominant Haptics Non-Haptics Direction Avg. 

X-direction 1.0418 3.1407 2.0912 

Y-direction 0.9189 2.1390 1.5290 

Z-direction 0.9623 3.7021 2.3322 

Rend. Avg. 0.9743 2.9939 1.9841 

 

Table 5.27 examines path deviation values for trials that featured non-dominant hand 

guidance of the virtual component.  The overall mean for the six trials was equivalent to 

1.9841 + 1.9512 ft.  
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Figure 5.11.  Box plot comparison of path deviation based on hand usage 

 

Figure 5.11 demonstrates the distribution of measurements for each hand.  A 

comparison of path deviation values in terms of hand usage indicates minimal discrepancies 

in performances.  Both data series have similar mean values for path deviation.  The median 

value for non-dominant hand performance (1.2978 ft.) was less than the value for the 

dominant hand trials (1.4091 ft.).  The variation in measurements for the non-dominant hand 

trials was slightly greater than the dominant hand performance; 3.8073 and 3.6711, 
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respectively.  Variations in hand usage did not appear to have influence the path deviation 

measurements. 

 Similar to the target error evaluation, measurements between each level of the 

experimental factors exhibited different variances in data.  A logarithmic transformation 

function was used since the coefficient of variation between factor levels was approximately 

constant.  For sensory rendering, measurements from the haptics trials exhibited a coefficient 

of 0.5962 while the value for non-haptics trials was 0.7576.  The coefficients were similar 

between dominant (0.9656) and non-dominant (0.9834) variations.  In terms of direction, the 

three coefficients were relatively similar for x-direction (0.8296), y-direction (0.9792), and z-

direction (1.0311).   

 Applying the transform function on the original data series resulted in similar 

standard deviations between the levels of each factor.    The transformed series featured 

standard deviations of 0.6766 and 0.8360 for haptic and non-haptics methods, respectively.  

The standard deviation of measurements based on active hand demonstrated values of 0.8942 

for dominant and 0.9359 for non-dominant hand.  Standard deviation values for x-direction 

(0.8435), y-direction (0.8722), and z-directions (0.9791) were relatively similar.   

An ANOVA procedure for the transformed data series computed the statistical 

significance of the sources of variation in the experiment on path deviation.  Tables 5.28 and 

5.29 report the results of the statistical analysis. 

 
Table 5.28.  ANOVA for logarithm of path deviation measurements 

Source DF Sum of Squares Mean Square F Ratio 

Model 50 178.20124 3.56402 6.8882 

Error 429 221.96939 0.51741 Prob > F 

C. Total 479 400.17063  <.0001 
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Table 5.29.  Effect tests for logarithm of path deviation measurements 

Source DF Sum of Squares F Ratio Prob > F 

Subject 39 34.132970 1.6915 0.0071 

Direction 2 1.557967 1.5055 0.2231 

Hand 1 0.120241 0.2324 0.6300 

Rendering 1 19.912896 38.4856 <.0001 

Direction*Hand 2 0.044197 0.0427 0.9582 

Direction*Rendering 2 3.937160 3.8047 0.0230 

Hand*Rendering 1 0.023687 0.0458 0.8307 

Direction*Hand*Rendering 2 0.068854 0.0665 0.9356 

 

The variation in rendering methods was determined to have a significant influence on the 

measured responses (F-ratio = 38.4856, p-value < 0.0001).  The haptic rendering of resistive 

forces allowed participants to position the virtual object along a specified trajectory with less 

deviation than methods using only visual modality. 

From an F-ratio of 0.2324 and a p-value of 0.6300, the test concluded that subjects 

guided the virtual component with similar stability for each hand.  This demonstrates the 

usability of haptic devices in performing translation tasks regardless of hand control.  The 

analysis of variance procedure did not detect significant discrepancies in path deviation 

measurements due to variations in translational direction (F-ratio = 1.5055, p-value = 

0.2231).  This infers that subjects committed similar amounts of path deviation along the 

three coordinate directions. 

The combined effect of translational direction and sensory perception was statistically 

significant on the amount of path deviation committed during the part positioning experiment 

(F-ratio = 3.8047, p-value = 0.0230).  This indicates that the steadiest of users in displacing 

an object along a specific trajectory was dependent on the direction of travel and the 

provided sensory rendering.  The analysis did not report additional significant sources of 

variation from combined effects. 
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5.5.4  User Preference 

 After completing the twelve trials, participants answered three questions relevant to 

the part positioning experiment.  The first question asked participants to specify which 

translational direction was the most difficult during the non-haptics positioning trials.  The 

second question presented a similar inquiry but concerned trials featuring haptic feedback.  

Figure 5.12 contrasts the sample population’s response for the two questions. 
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Figure 5.12.  Task direction difficulty base for haptic and non-haptic treatments  

 

 When provided only visual information, 59.0% of the participants regarded the z-

direction trials as being the most difficult.  Only 22.7% of the sample population considered 

the same direction difficult when provided haptic assistance.  Three individuals reported 

difficulty in positioning the virtual component along all of the directions when using visual 
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perception.  In contrast, 56.8% of the subjects found none of the directions difficult when 

trials featured haptic feedback. 

The final question asked participants to assess the usefulness of force rendering 

during the part positioning experiment.  From the sample population, 72.7% of subjects 

regarded haptics interaction as Very Useful for completing the trials.  An additional 25.0% 

valued force feedback as being Useful, while only 2.2% were neutral in their response.  None 

of the subjects regarded haptics as Useless.  Figure 5.13 depicts the perceived usefulness of 

haptic feedback in completing the part positioning experiment.  The responses provided on 

the post-study questionnaire reveal favorable preference for force feedback implementation 

in performing positioning tasks within a virtual assembly simulation. 
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Figure 5.13.  Force feedback usefulness in part positioning experiment 
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5.6  Conclusion 

 The objective of the experiment was to evaluate the performance effects of haptic 

interaction when positioning objects in a virtual simulation.  Section 5.2 outlined several 

hypotheses concerning the use of haptic modality in terms of completion time, placement 

accuracy, and path deviation.  

Statistical analysis concluded that haptic rendering did not reduce completion times 

during the experiment (F-ratio = 2.8638, p-value = 0.0913).  One explanation includes the 

fact that users experienced haptic rendering that could have impeded their hand motion.  

Furthermore, the majority (70.4%) of users indicated that they did not have previous 

exposure to haptic devices.  Force rendering presents a new experience to some individuals 

that could have affected their performance times.   

The statistical evaluation determined that haptic interaction improved placement 

accuracy during the part positioning experiment (F-ratio = 123.8094, p-value < 0.0001).  In 

the haptics-assisted trials, rendered contact forces enabled participants to place virtual 

components at target locations with less error than trials requiring visual approximation.  The 

haptic feedback notified participants of the correct placement of the virtual object.   

The final measure of user performance, path deviation, also revealed improvements 

from haptic feedback (F-ratio = 38.4856, p-value < 0.0001).  Subjects were capable of 

guiding a virtual object along a target trajectory more steadily when provided resistive haptic 

cues than tasks using visual perception.   

Statistical analysis addressed the hypothesis concerning the use of three translational 

directions.  The variation in directions had a significant effect on completion times (F-ratio = 

3.4644, p-value = 0.0322) and placement accuracy (F-ratio = 32.9712, p-value < 0.0001).  
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However, the statistical analysis determined that variations in direction did not influence the 

amount of path deviation committed during the positioning trials (F-ratio = 1.5055, p-value = 

0.2231). 

The analysis also addressed the research hypothesis concerning active hand.  

Statistical evaluation concluded that variations in dominant and non-dominant hand use was 

not significant on completion times (F-ratio = 1.4861, p-value = 0.2235) and path deviation 

(F-ratio = 0.2324, p-value = 0.6300), but affected users’ ability to position objects at target 

locations (F-ratio = 19.2961, p-value < 0.0001). 

During the part positioning experiment, the combination of direction and sensory 

modality had significant influences on performance including completion time (F-ratio = 

3.4445, p-value = 0.0328), target error (F-ratio = 4.8895, p-value = 0.0079), and path 

deviation (F-ratio = 3.8047, p-value = 0.0230).  This indicates that a user’s ability of 

positioning virtual objects within a virtual environment is dependent on the direction of 

travel and the assistance of haptic feedback. 
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CHAPTER 6.  ASSEMBLY SIMULATION EXPERIMENT 

6.1  Introduction 

The manual assembly of components is a common activity in manufacturing.  

Boothroyd et al. (1994) categorize assembly scenarios into bench, multi-station, modular, 

custom, and flexible assemblies in terms of the accessibility of the components to the worker.  

Some components demand two hands due to weight, dimensions, or lack of grasping 

features.  The handling of assembly components can account for almost 80% of the total 

assembly time (Molloy et al. 1998).  In developing an assembly simulation, all aspects of real 

assembly procedures must be addressed adequately.   

 

6.2  Hypotheses 

 The objective of the experiment is to evaluate the benefits of haptic interaction in 

performing manual assembly tasks within a virtual simulation.  We hypothesize that the 

addition of force feedback will enable users to complete manual assembly sequences in less 

time than visuals-only procedures.  With the assistance of haptic rendering, participants will 

minimize unnecessary hand motions that can potentially increase the total assembly times.   

 The second hypothesis is that the use of two hands will enable participants to 

complete assembly sequences in less time than one-hand performance.  By using two hands, 

subjects will be able to manipulate multiple digital models simultaneously.  In addition, the 

use of two-hands promotes beneficial interactions including stabilizing and fixing dynamic 

objects. The use of one hand will permit the direct manipulation of only one object at a time.   

 The third hypothesis of this experiment is that the addition of a static virtual fixture 

will allow users to complete assemblies in less time than sequences containing all dynamic 
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components.  The use of a fixture will allow participants to assemble components with less 

concern regarding their hand steadiness than operations involving the manipulation of 

dynamic objects. 

 

6.3  Experimental Procedures 

Given a set of virtual objects, subjects are required to complete a specific assembly 

task using the haptic devices. To perform the assembly, participants must establish mate and 

alignment conditions between virtual parts.  In some of the trials, users are required to insert 

a bolt through a hole-based feature.  Participants will complete eight trials based on three 

experimental factors including sensory modality, interaction method, and task complexity.  

The goal of the experiments is to identify the effect of each factor on the assembly result 

through statistic procedures.   

 

6.3.1  Experimental Factors 

To investigate the effect of sensory modality, the subjects are required to perform the 

same assembly with or without haptic force feedback.  The second experimental factor 

features one and two-handed interactions.  Participants are required to perform the task by 

using their dominant hand or both hands. 

The final experimental factor concerns task difficulty.  Two assembly scenarios 

simulated a series of actions encountered in real world tasks.  The first assembly involved 

participants completing a five-piece puzzle depicted in Figure 6.1.  This was the simple task 

for the following reasons.  The red base object remained static throughout the entire 

performance and served as a fixture for the four dynamic components.  Each virtual object 

had initial locations within a small workspace and required small three-dimensional input 
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from the haptic device.  To complete the assembly, users must mate and align surfaces for all 

five of puzzle pieces.   

 

 

Figure 6.1.  Simple assembly sequence 

 

The second scenario presented to users was the complex assembly.  Three dynamic 

virtual components were initially located at far distances within the virtual environment: a 

bolt, an eyelet, and a crossbar member.  Selecting each object required large translational 

input in the haptic workspace.  All objects were small and required fine hand movements to 

assemble properly.  The sequence involved establishing mating conditions between surfaces 

of components and aligning hole-based features.  These actions were the precursor to a bolt 

insertion.  Figure 6.2 illustrates this assembly sequence. 

 

 

Figure 6.2.  Complex Assembly Sequence 
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6.3.2  Experiment Structure 

The experiment featured a randomized complete block design.  Each participant 

completed eight trials in individually random sequences without replication.  Table 6.1 lists 

all trials based on combinations of sensory rendering, interaction method, and task 

complexity.  Subjects were informed of these factors prior to each trial.  

 
Table 6.1.  Assembly simulation experiment trials 

Trial Complexity Interaction Rendering 

1 Simple Single Non-Haptics 

2 Simple Dual Non-Haptics 

3 Complex Single Non-Haptics 

4 Complex Dual Non-Haptics 

5 Simple Single Haptics 

6 Simple Dual Haptics 

7 Complex Single Haptics 

8 Complex Dual Haptics 

 

6.4  Performance Evaluation 

 The user performance in the experiment is assessed by the assembly completion time; 

recorded in seconds.  A completed assembly assumed that each virtual component was in the 

correct location using the proper sequence of actions.  Prior to each trial, users received the 

solution to the assembly since the intent of the experiment is to evaluate the subjects’ 

performance and not their decision-making skills.  Participants could use as much time as 

needed to complete each trial. 

 

6.5  Data Analysis 

 The experiment produced 320 measurements for assembly time.  The summary 

process used six mean tables to compare the data based on the three experimental factors.  
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The first two mean tables organize measurements based on haptic and non-haptic trials.  The 

second set of two mean tables examines completion times by interaction methods.  The last 

two tables contrast the mean performance times based on task complexity.  Box plot 

diagrams were used to convey the distribution of measurements for each level of an 

experimental factor. 

  After the summary process, an ANOVA procedure is used to determine the statistical 

significance of each source of variation in the experiment.  A comparison between the 

resulting probability values against the study’s significance level assisted in concluding the 

analysis. 

 

6.5.1  Completion Time 

 The first two mean tables examine the completion times based on sensory modality.  

Table 6.2 and 6.3 summarize the mean assembly times for the trials without and with haptic 

interaction respectively.  It can be seen that subjects required an average time of 41.366 + 

27.970 seconds to complete each of the non-haptics assembly scenarios.  However, with 

haptic rendering, they can complete the same task in a mean time of 39.062 + 27.830 

seconds. 

 
Table 6.2.  Table for mean times in non-haptics trials 

Non-Haptics Complex Simple Hand Avg. 

Single 38.031 36.846 37.438 

Dual 43.930 46.656 45.293 

Task Avg. 40.981 41.751 41.366 
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Table 6.3.  Table for mean times in haptics trials 

Haptics Complex Simple Hand Avg. 

Single 35.003 41.913 38.458 

Dual 37.093 42.241 39.667 

Task Avg. 36.048 42.077 39.062 

 

 Figure 6.3 depicts the distribution of time measurements based on sensory methods.   

When using haptic interaction is used, the median complete time value dropped from 32.635 

seconds to 29.020 seconds.  It can be concluded that sensory modality has a minimal effect 

on completion times during the assembly experiment. 

 

0

100

200

T
im
e
 (
s
e
c
.)

Haptics Non-Haptics

Rendering
 

Figure 6.3.  Box plot comparison of times based on rendering method 

  

Table 6.4 and 6.5 summarizes time measurements for trials that required single-hand and two 

hands to complete the assembly sequences respectively.  Users required a mean time of 

37.948 + 23.440 seconds and 42.480 + 31.618 seconds to complete the assembly operations 

using one hand and two hands respectively.   

Table 6.4.  Table for mean times in single-handed trials 

Single Complex Simple Rend. Avg. 

Haptics 35.003 41.913 38.458 

Non-Haptics 38.031 36.846 37.438 

Task Avg. 36.517 39.379 37.948 
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Table 6.5.  Table for mean times in dual-handed trials 

Dual Complex Simple Rend. Avg. 

Haptics 37.093 42.241 39.667 

Non-Haptics 43.930 46.656 45.293 

Task Avg. 40.511 44.448 42.480 

 

Figure 6.4 contrasts the distribution of measurements based on interaction methods.  

The median values show subjects required more time when providing input using two hands 

(31.985 seconds) than using single hand (30.150 seconds).  The high variance in 

measurement for the two-handed interaction (999.754) reflects the different level of dexterity 

between participants as opposed to using one hand (549.438).  Variations in interaction 

methods did not appear to have affected completion times during the assembly simulation 

experiment. 
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Figure 6.4.  Box plot comparison of times based on interaction method 

 

 The final method of variation in the experiment concerned task difficulty.  Table 6.6 

and 6.7 outlines the mean completion times for trials that featured the simple and complex 

assembly task respectively.  Figure 6.5 contrasts the completion times based on task 
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difficulty.  Participants completed the complex assembly task (38.514 + 27.338) in less time 

than simple task (41.914 + 28.395).  Furthermore, the simple task exhibited greater variance 

(806.321) than the complex task (747.366).  The simple task required additional time for 

correction if virtual objects lost their initial orientation.  The variations in task complexity did 

not appear to affect completion times in the experiment since the observed differences were 

minimal. 

 
Table 6.6.  Table for mean times for simple assembly trials 

Simple Single Dual Rend. Avg. 

Haptics 41.913 42.241 42.077 

Non-Haptics 36.846 46.656 41.751 

Hand Avg. 39.379 44.448 41.914 

 

Table 6.7.  Table for mean times for complex assembly trials 

Complex Single Dual Rend. Avg. 

Haptics 35.003 37.093 36.048 

Non-Haptics 38.031 43.930 40.981 

Hand Avg. 36.517 40.511 38.514 
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Figure 6.5.  Box plot comparison of times based on task complexity  
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 An ANOVA procedure analyzed the statistical significance of the sources of variation 

in the experiment. Using the corresponding probability values, inferences concerning each 

experimental factor was determined.  Tables 6.8 and 6.9 summarize the results of the ANOVA 

and Effect Tests. 

Table 6.8.  ANOVA for time measurements 

Source DF Sum of Squares Mean Square F Ratio 

Model 46 83803.87 1821.82 3.0297 

Error 273 164161.35 601.32 Prob > F 

C. Total 319 247965.22  <.0001 

 

Table 6.9.  Effect tests for time measurements 

Source DF Sum of Squares F Ratio Prob > F 

Subject 39 79191.267 3.3768 <.0001 

Difficulty 1 530.141 0.8816 0.3486 

Interface 1 87.362 0.1453 0.7034 

Rendering 1 935.028 1.5549 0.2135 

Difficulty*Interface 1 31.038 0.0516 0.8204 

Difficulty*Rendering 1 58.697 0.0976 0.7550 

Interface*Rendering 1 145.085 0.2413 0.6237 

Difficulty*Interface*Rendering 1 160.915 0.2676 0.6054 

 

From an F-ratio of 1.5549 and a p-value of 0.2135, variations in sensory modality did 

not affect completion times.  Although the mean completion time for the haptics trials was 

less than the value for the non-haptics trials, further evaluation inferred that the observation 

was insignificant.  The conclusion is that the haptic interaction did not reduce completion 

times for performing assembly operations within the virtual simulation.    

 Variations in interaction methods was determined to be statistically insignificant (F-

ratio = 0.1453, p-value = 0.7034).  The results of the statistical evaluation inferred that 

participants required similar amounts of time when completing assembly operations using 

either one or two hands.   
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The ANOVA procedure did not attribute significant influences to task complexity on 

completion times.  Although participants assembled the complex scenario in less time than 

simple task, an F-ratio of 0.8816 and a p-value of 0.3486 regarded this observation not 

significant.  The statistical analysis did not indicate any significant interactions between the 

experimental factors used during the study. 

 

6.6.2  User Preference 

 After performing the trials within the assembly simulation experiment, participants 

answered four relevant questions on the post-study questionnaire.  The intent of the first two 

questions was to determine the ease of performing the assembly tasks using non-haptic and 

haptic sensory methods.  Figure 6.6 summarizes the responses provided by the sample 

population.   

The majority of the sample population indicated a Neutral response for trials using 

only visual perception; 36.3%.  Equal portions (29.5%) of the total users evaluated the same 

tasks as either Easy or Difficult.  Only 4.5% of the sample population considered the non-

haptics trials Very Easy.   None of the participants considered the non-haptics trials to be 

Very Difficult.   
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Figure 6.6.  Ease the assembly tasks for haptic and non-haptic treatments 

 

 An overwhelming percentage of the participants regarded the force-assisted trials as 

either Very Easy (34.0%) or Easy (56.8%).  An additional 6.8% of subjects were Neutral in 

their response.  Only 2.2% of the sample population assessed the haptics-based trials as 

Difficult.  No one in the sample population evaluated the haptics assembly trials as being 

Very Difficult.   

The third question regarding the experiment required users to indicate the usefulness 

of force rendering in completing the assembly sequences.  The majority of participants, 

56.8%, regarded force feedback as Useful.  An additional 43.1% of users found haptic 

feedback Very Useful.  A small percentage (9.0) of users was Neutral in their response.  

Figure 6.7 outlines the responses from the sample population. 
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Figure 6.7.  Force feedback usefulness in assembly simulation experiment 

 

The final inquiry regarding the assembly simulation experiment focused on 

interaction techniques (Figure 6.8).  This question was included to assess the sample 

population’s preference of using multiple haptic devices to complete the assembly sequences.  

The largest percentage (77.2%) of users viewed two-handed interaction as a Benefit.  Two of 

the participants noted that the ability of using two hands presented a realistic simulation of 

assembly processes.  Four subjects expressed satisfaction in handling multiple objects 

simultaneously.  One individual particularly found dual-handed interaction valuable for 

stabilizing a component with one hand while performing an action with the other.   
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Figure 6.8.  User rating of multiple device interaction 

  

The remaining portion of the sample population was Neutral concerning the use of 

multiple devices.  One participant noted an advantage and disadvantage for the interaction 

technique.  They noted that the ability to manipulate two objects with each hand was 

beneficial, but controlling the same object with both hands presented a unique challenge.  

Another subject thought it was much easier to use one device instead of concentrating on 

two.  None of the participants assessed multiple device interaction as a Burden.   

 

6.6  Conclusion 

 The intent of the experiment was to evaluate the performance effect of haptic 

interaction on completing manual assembly tasks in a VR simulation.  The first hypothesis 

anticipates that the addition of haptic feedback would allow users to complete assembly 

sequences in less time than using only visual perception.  Statistical analysis using an 
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ANOVA procedure concluded that variations in sensory modality had an insignificant effect 

on performance times (F-ratio = 1.5549, p-value = 0.2135).   

The second hypothesis considered user performance in terms of interaction methods. 

Subjects required less time to complete assembly tasks when using one hand instead of two.  

However, the statistical analysis inferred that there were no significant differences between 

the single and dual-handed interaction methods (F-ratio = 0.1453, p-value = 0.7034).  One 

important observation from the study was the different methods of two-handed interaction.  

A small portion of subjects would perform the tasks predominantly with one hand while the 

second hand stabilized or adjusted other components within the assembly.  The majority of 

the participants utilized both hands actively throughout the entire simulation. 

The last statistical analysis examined completion times based on task complexity.  

Users were capable of completing the complex task in less time than the simple assembly 

sequence.  The ANOVA procedure concluded that this observation was inconclusive (F-ratio 

= 0.8816, p-value = 0.3486).  One observed external source of variation concerned the 

correction of part orientation.  Some of the participants would take the selected component 

and collide it with other parts in the scene causing those objects to lose orientation or 

position.  For each affected object, additional time was required to rearrange the component 

into a suitable transformation. 
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CHAPTER 7.  CONCLUSION AND FUTURE WORK 

7.1  Conclusion 

The objective of this research was to investigate the effects of haptics-based 

interaction in performing virtual assembly.  The research involved an extensive study where 

users performed similar assembly tasks in two treatments: visuals-only and visuals with 

haptics.  The research identified specific assembly-related tasks in which haptic cues affected 

users’ completion time and measures of accuracy.  Statistical analysis of the collected data 

confirmed the significance of haptic interaction in performing simulations of weight 

recognition, part positioning and manual assembly. 

For weight recognition tasks, haptic feedback enabled users to compare the weights 

of paired models in less time than using only visual perception.  This observation confirmed 

the initial research hypothesis presented in section 4.2.  However, the correct identification of 

weight quantities between two objects is dependent on which hand was manipulating the 

heaviest model and the sensory modality used.  The majority of participants regarded haptic 

interaction very useful in completing weight comparisons in a virtual environment.   

 The research concluded mixed results concerning haptics-based interaction for 

performing positioning tasks in a three-dimensional VR simulation.  The addition of haptic 

feedback had an insignificant effect on user completion times.  However, the haptic 

rendering of contact forces enabled users to position objects at target locations with higher 

accuracy than using visual approximation.  Furthermore, the rendering of resistive forces 

allowed users to translate virtual components along a specified trajectory with steadier hand 

motions than tasks that did not provide haptics assistance.  The investigation also concluded 



84 

that user performance is dependent on both the direction of travel and the sensory modality 

used.  Positioning tasks completed along the z-direction without haptic feedback resulted in 

poor performance evaluations.  The majority of participants considered haptic interaction 

very useful when positioning components in a three-dimensional virtual simulation. 

 For manual assembly tasks, the research yielded inconclusive results regarding the 

performance effect of haptic interaction.  Although the study participants completed manual 

assembly tasks in less time when aided by haptics, further statistical analysis concluded this 

to be insignificant.  The majority of the sample population viewed haptic feedback useful in 

completing manual assembly tasks within a virtual simulation. 

 The manual assembly experiment also evaluated the performance effect regarding the 

use of multiple haptic devices.  The results of the study show that users were able to 

complete virtual assembly sequences using one or two-hands in similar amounts of time.  In 

performing two-handed operations, completion times were largely dependent on the dexterity 

of users in controlling two haptic devices.  The majority subjects valued the use of two haptic 

devices as beneficial.   

 

7.2  Future Work 

 This investigation provides support for further development and research of haptics-

based interaction.  The use of haptics for virtual assembly provided performance benefits in 

some aspects of user operation, but was inconclusive in others.  These results are a reflection 

of designed study and software application, and the involved sample population.  

Recommendations for future work can potentially resolve these issues and advance the 

current state of the research. 
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• Investigate user performance of haptics-enabled virtual assembly in immersive 

environments such as CAVE system. 

• Establish a unified testing environment that accommodates all users in terms of 

ergonomic factors. 

• Compare user performance for completing one and two-handed assembly in real 

and virtual environments. 

• Evaluate user performance in virtual assembly tasks involving joining methods 

and tools with haptic rendering. 

• Investigate the performance effects of additional haptic rendering techniques such 

as snapping and vibration for virtual assembly. 

• Evaluate user performance in haptics-based virtual assembly that features 

physics-based modeling, constraint-based modeling, and a combination approach. 
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APPENDIX A.  USER STUDY FORMS 

A.1  Pre-Study Questionnaire 

Introduction: 
The information provided on this questionnaire will be used to model the 

demographics associated with the participants of this study.  The provided information will 

be used anonymously and referenced with identification numbers. 

 

Section 1: Personal: 
1. Identification Number: 

 ________________________________________________ 

 

2. Age:   

 ________________________________________________ 

 

3. Gender:    Male   Female 

 

4. Hand Dominance:   Left Hand  Right Hand 

 Ambidextrous 

 

5. Vision:    Perfect   Nearsighted  Farsighted 

 

6. Occupation:  

 ________________________________________________ 

 

7. Educational Background: 
 ________________________________________________ 

 

Section 2: Experience: 
1. Please indicate the amount of your computer experience in years. 

a. 0 to  5 

b. 6  to  10 
c. 11  to  15 
d. 16  to  20 
e. 21  or  greater 

 

2. Please indicate the areas of computer usage that applies to your experience.  

a. Programming (software, web-based, database, etc.) 
b. Virtual Reality 
c. Computer-Aided Design 
d. Data Analysis (Matlab®, Excel®, etc) 
e. Fundamental (word processing, internet, email, etc.) 
f. Other: ____________________________________________________ 
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3. Do you have prior experiences with assembly operations?  If yes, please explain. 
 

 

 

 

4. Do you have prior experiences with haptics or similar devices?  If yes, please explain. 
 

 

A.2  Post-Study Questionnaire 

Introduction: 
The responses provided on this questionnaire will be used to determine conclusions 

associated with this study.  In particular, we are interested in the usefulness of force feedback 

interaction in virtual assembly applications. 

 

Section 1: Weight Recognition Experiment: 
1. How comfortable were you in selecting the heaviest component using just visual 

information? 

a. Very Comfortable 
b. Comfortable 
c. Neutral 
d. Uncomfortable 
e. Very uncomfortable 
 

2. How comfortable were you in selecting the heaviest component with the presence of 
force feedback? 

a. Very Comfortable 
b. Comfortable 
c. Neutral 
d. Uncomfortable 
e. Very uncomfortable 

 

3. To what extent did force rendering assist in the weight recognition of components? 
a. Very useful 
b. Useful 
c. Neutral 
d. Useless 
e. Very useless 
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Section 2: Part Positioning Experiment: 
1. In the trials that did not have force rendering, which translational direction was the most 

difficult to position the virtual object? 

a. X-direction 
b. Y-direction 
c. Z-direction 
d. All 
e. None 
 

2. With the presence of force rendering, which translational direction was the most difficult 
to position the virtual object? 

a. X-direction 
b. Y-direction 
c. Z-direction 
d. All 
e. None 
 

3. To what extent did force rendering assist in placing to virtual object in its final location? 
a. Very useful 
b. Useful 
c. Neutral 
d. Useless 
e. Very useless 
 

Section 3: Assembly Simulation Experiment: 
1. In the assembly sequences that did not have force feedback, please identify the 

ease/difficulty of completing the task. 

a. Very Easy 
b. Easy 
c. Neutral 
d. Difficult 
e. Very Difficult 

 

2. Please indicate the ease/difficulty of task completion when force rendering was provided. 
a. Very Easy 
b. Easy 
c. Neutral 
d. Difficult 
e. Very Difficult 
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3. To what extent was force rendering beneficial in regards to assembly task completion? 
a. Very useful 
b. Useful 
c. Neutral 
d. Useless 
e. Very useless 
 

4. Would you consider the use of multiple haptic devices a significant benefit or a burden to 
the simulation experience?  Please explain. 

a. Benefit 
b. Neutral 
c. Burden 

 

Section 4: Device Manipulation: 
1. Were there any difficulties encountered with using the devices?  Please explain. 
 

 

 

2. Were you able to achieve all of the desired motions with the device based on user input?  
Please explain. 

 

 

 

3. To what extent does the physical separation of hand and visual workspaces limit the 
effectiveness of the simulation?  Please explain your response. 

a. Greatly affects the effectiveness of the simulation 
b. Somewhat affects the effectiveness of the simulation 
c. Does not affect the effectiveness of the simulation 

 

 

 

4. To what extent does the magnitude of force rendering affect the simulation?  Please 
explain 

a. Largely affects the simulation 
b. Somewhat affects the simulation 
c. Does not affect the simulation 

 

 

 

5. Based on the software application that you have experienced, are there any possible 
improvements that can be made?  Please explain. 
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