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ABSTRACT 

 The advent of medical imaging technology enabled physicians to study patient 

anatomy non-invasively and revolutionized the medical community.  As medical images 

have become digitized and the resolution of these images has increased, software has been 

developed to allow physicians to explore their patients’ image studies in an increasing 

number of ways by allowing viewing and exploration of reconstructed three-dimensional 

models.  Although this has been a boon to radiologists, who specialize in interpreting medical 

images, few software packages exist that provide fast and intuitive interaction for other 

physicians.  In addition, although the users of these applications can view their patient data at 

the time the scan was taken, the placement of the tissues during a surgical intervention is 

often different due to the position of the patient and methods used to provide a better view of 

the surgical field.  None of the commonly available medical image packages allow users to 

predict the deformation of the patient’s tissues under those surgical conditions. 

This thesis analyzes the performance and accuracy of a less computationally intensive 

yet physically-based deformation algorithm- the extended ChainMail algorithm.  The 

proposed method allows users to load DICOM images from medical image studies, 

interactively classify the tissues in those images according to their properties under 

deformation, deform the tissues in two dimensions, and visualize the result. 

The method was evaluated using data provided by the Truth Cube experiment, where 

a phantom made of material with properties similar to liver under deformation was placed 

under varying amounts of uniaxial strain.  CT scans were before and after the deformations.   

The deformation was performed on a single DICOM image from the study that had been 
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manually classified as well as on data sets generated from that original image.  These 

generated data sets were ideally segmented versions of the phantom images that had been 

scaled to varying fidelities in order to evaluate the effect of image size on the algorithm’s 

accuracy and execution time.   Two variations of the extended ChainMail algorithm 

parameters were also implemented for each of the generated data sets in order to examine the 

effect of the parameters. 

The resultant deformations were compared with the actual deformations as 

determined by the Truth Cube experimenters.  For both variations of the algorithm 

parameters, the predicted deformations at 5% uniaxial strain had an RMS error of a similar 

order of magnitude to the errors in a finite element analysis performed by the truth cube 

experimenters for the deformations at 18.25% strain.  The average error was able to be 

reduced by approximately between 10-20% for the lower fidelity data sets through the use of 

one of the parameter schemes, although the benefit decreased as the image size increased.  

When the algorithm was evaluated under 18.25% strain, the average errors were more than 8 

½ times that of the errors in the finite element analysis.   Qualitative analysis of the deformed 

images indicated differing degrees of accuracy across the ideal image set, with the largest 

displacements estimated closer to the initial point of deformation. This is hypothesized to be 

a result of the order in which deformation was processed for points in the image. 

The algorithm execution time was examined for the varying generated image 

fidelities.  For a generated image that was approximately 18.5% of the size of the tissue in 

the original image, the execution time was less than 15 seconds.  In comparison, the 

algorithm processing time for the full-scale image was over 3 ½ hours.   
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The analysis of the extended ChainMail algorithm for use in medical image 

deformation emphasizes the importance of the choice of algorithm parameters on the 

accuracy of the deformations and of data set size on the processing time.   
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INTRODUCTION 

Medical imaging 

Medical imaging is a primary tool used by physicians to diagnose, monitor, and treat 

patients.  Medical imaging has evolved through the years to include the following major 

modalities: x-ray imaging, magnetic resonance imaging (MRI), nuclear medicine imaging 

modalities, and ultrasound imaging [1]. 

X-ray imaging 

X-rays were first utilized for medical imaging in 1895 (Figure 1), and this oldest form 

of medical imaging is still widely used today.  In this type of image acquisition, a cathode is 

heated in a vacuum tube also containing an anode.  Electrons flow from the cathode to the 

anode.  When these electrons strike the nuclei of atoms in the anode, X-ray radiation is 

released.  It is this radiation that is detected by a film plate or modern detector. Attenuation 

of the X-ray depends on the density of the tissues through which it passes; denser tissues 

result in lighter areas on the final image [2].  
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Figure 1: The first X-ray image, taken in 1895 (http://prl.aps.org/50years/timeline/Alpha) 

 

X-ray imaging has developed from the single 2D projection to computed tomography, 

or CT, which provides 3D information about the subject being studied.  CT scanners utilize 

multiple detectors and an x-ray source which rotates about the study object to collect 3D 

physiological data.  When the first CT scanner was made in the 1970’s, data acquisition for a 

single image took several hours.  Now, state of the art CT machines can collect up to 4 slices 

of data in 350 ms and reconstruct a 515x512 image in less than a second [3]. 
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Magnetic resonance imaging 

Like CT imaging technology, magnetic resonance imaging provides 3D information 

about the subject, but unlike x-ray based technology, the scanning technology does not 

transmit external radiation through the subject but instead utilizes an electromagnet to cause 

the protons in the subject to align.  This causes the body tissues produce magnetic fields 

which are detected by the scanner and are used to construct an image [4].  

The images taken from CT and MRI scans share some common verbiage.  Images 

taken of the same subject are called a study.  Images taken of that subject in different 

orientations or at different periods of time are called a series. 

The resultant images from CT and MRI scans look very similar, as shown in the 

images from the Visible Human male dataset seen in Figure 2, but the modalities are 

generally used for differing types of medical image studies.  MRI imaging is more often used 

for soft tissue studies, where contrast dyes may be injected into the patient to highlight 

certain tissue types in the final image.  CT imaging is more often used for a wider range of 

tissue types including bone. 
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Figure 2: CT image of the Visible Human male head (a) and MRI image of the Visible Human male head (b) [5] 

Digital Imaging and Communications in Medicine (DICOM) format 

The advent of digital medical imaging technologies such as computed tomography 

led to the formation of a committee comprised of members of the American College of 

Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) to create a 

standard format for the storage and transmission of digital medical images.  In 1985, this 

committee released the standard, now called the Digital Imaging and Communications in 

Medicine (DICOM) format.  DICOM stores information such as the patient’s name, age, and 

doctor, along with technical specifications of the image acquisition method, and the density 

information of each image [5]. 

DICOM files are composed of many different types of data elements.  These elements 

are defined in the DICOM standard’s data dictionary, where each element is assigned a tag, a 

name, value characteristics, and semantics for that element.  Examples of different elements 

(a) (b) 
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are: the date the study was performed, the modality, the manufacturer of the imaging 

machine, the imaging institution’s name, the referring physician’s name, the patient’s name, 

the patient’s age, and the image data.  A DICOM file is composed of two major parts, the 

image data and non-image data referred to as the “header”, although it is not necessarily at 

the beginning of each file.  The header contains attributes that give information about the 

patient, the procedure, and other information.  It  is where data elements such as the patient 

name, the number of different “slices” if the file contains multiple compressed images, the 

number of rows and columns if image data, the modality, the sampling spacing of the 

scanner, and other similar information are stored.  The image data contains the density of 

each pixel for the image or images stored in the file.  A simplified illustration of this format 

is shown in Figure 3. 

 

 

Three-dimensional representations of medical image data 

The choice of modeling a physical object as a volume or a surface depends greatly on 

the fidelity needed for the intended use and the computational power and time available for 

modeling.  As shown in a blind study which had participants rate reconstructed volume and 

Figure 3: Example DICOM file with data elements: the header is shown in blue, the image data shown in red 

Patient name Scan date 

Modality Referring physician Rows Columns Manufacturer 

Institution 

 

 

Image Data 

 

 

 

 

 

 

Patient sex Patient birth date 
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surface models of colonic, gastric, and bronchial structures, the participants preferred the 

volume renders over surface renders [6].  Although the surface render was less 

computationally intensive, tissue density for each of the structures varied across patients, and 

the surface render was also more sensitive to noise and image artifacts, leading to “absence 

or exaggeration of detail”.  In contrast, volume rendering resulted in greater detail and greater 

dimensionality of the data.  Volumetric models also result in more accurate deformations 

over thin regions, through inhomogeneous tissue, and for cutting or suturing operations [7].  

Volume models 

Volumetric models are completely solid models, with data points located in the 

interior and on the exterior of the object being modeled.  In medical imaging, these models 

can be created from raw data from scans, where each element in the three-dimensional array 

of data is a sampled point from the original scan image.  This use of the original data makes 

the volume render more accurate than other modeling methods in terms of representing the 

original data and not losing fidelity [8].  A volume render of a CT chest study is seen in 

Figure 4.  The volume model may also be easily “cut” into through the use of clipping planes 

to show the model’s internal data. 
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Figure 4: Artificially colored volume render of chest study (left), and same volume render using "clipping planes" to 

look into the tissue (right) 

 

An example of using volume representations can be seen in a knee arthroscopy 

simulation by Mitsubishi as shown in Figure 5 [9].  The models used in this simulation were 

created by hand-segmenting the femur, fibula, and tibia from a 512x512x124 dataset by 

orthopedic surgeons, then generating volumes from the segmented images. 

 

Figure 5: Volumetric model of knee used in Mitsubishi knee arthroscopy simulator [9] 
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 Although volume modeling maintains the level of detail in the original scans, there 

are drawbacks.  Volume models have a greater amount of data than surface models, which 

requires more computational storage space and power to compute changes to the model.     

Indirect volume rendering 

 Indirect volume rendering is a method that maintains a greater level of data than 

surface modeling but requires less computational power than volume rendering.  In indirect 

volume rendering, partial volumes or surfaces of interest are extracted from the original 

volume using segmentation techniques.  This decreases the portion of the volume’s data that 

must be maintained and altered in processing.  Textures made from the original volume can 

be applied to the resultant surfaces for greater realism.  Radezky et al. have used indirect 

volume rendering alone [10] and in combination standard volume modeling [11] in their 

work with surgical simulators like that shown in Figure 6. 

 

Figure 6: Indirect volume render of a MR data set in ROBO-SIM surgical simulator [10] 
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Surface models 

 Surface models are created from a volume dataset by isolating the parts of the dataset 

that compose a surface and only displaying those polygons.  The decreased dataset size 

results in computational performance increases over volume datasets in exchange for 

decreased accuracy.  Surface models can also result in unrealistic deformations for some 

tissue types, although they have been shown to function well for cavernous tissues such as 

blood vessels and the gallbladder [7].  

Surface rendering has been used with success at the University of Colorado’s Center 

for Human Simulation in a haptic surgical simulator [12] which utilized the Visible Human 

Dataset [13]. A render from this application is shown in Figure 7.  This surgical simulator 

includes a PHANToM-controlled virtual scalpel which users can use to make incisions on the 

volume dataset. 
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Figure 7: Surface render of the bones, muscles, and veins of the Visible Human Male [12] 

Usage of three-dimensional models in training and planning 

 Surface and volume models have been used to assist in medical diagnosis, surgical 

planning, and physician training in surgical simulators.   One of the areas of medicine where 

these models are of assistance is in surgical training simulators for laparoscopic surgery.  In 

laparoscopic surgery, surgeons access the patient’s body through small ports, rather than 

through a large incision.  Laparoscopic surgeons must rely on a camera inserted through 

those ports, which removes the surgeons’ tridimensional perception, limits tactile feedback, 

and also requires different mapping between the surgeons’ movements and the movement of 

the instrument than in traditional, “open” surgeries.   
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Simulators have been developed to assist surgeons in the development of key skills 

for laparoscopic surgeries.  These simulators include those created by Immersion Corporation 

[14].  The LapVR Surgical Simulator, a laparoscopic simulator, is shown in Figure 8.  This 

simulator allows surgeons to refine their motor skills in preparation for surgery, but the data 

used in these simulators is artist-generated.  Surgeons cannot train on the actual patient data.  

Immersion Corporation also provides endoscopic, endovascular, arthroscopy, and vascular 

access simulators, but these, too, use artist-generated images. 

 

Figure 8: Immersive Corporation's LapVR Surgical Simulator [14] 

 Generated data has also been used for endoscopic surgery training simulation [15], 

open surgery simulation [16], and suturing simulation [17]. 
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  Training simulations with authoring systems for new data input do exist.  CathSim 

[18], a commercial intravascular catheterization simulator, is one such product.  This system 

utilized the occupancy-map algorithm and the ChainMail algorithm to model volumetric 

deformations.  Users of this system could create case studies by creating a deformation mesh 

on top of a user-provided picture.  This system was available for PC.  CT and MRI data is not 

input into the system, however. 

Although the use of deformable, three-dimensional models have provided to be a 

great asset to the field of medicine, the data used in simulation is rarely obtained directly 

from medical image data from a specific patient. Although these simulators are useful in 

refining technical skills, these simulators cannot be used to broaden surgeons' understanding 

of a specific patient’s medical data.  This limits the usefulness of both the CT and MRI 

images collected and the simulators themselves.   

Motivation 

The advancement of medical imaging technology and the increased resolution of 

scans such as CTs and MRIs, paired with the increased computing capacity of general 

performance hardware, makes it possible to perform high-quality volume renders for use in 

pre-surgical planning.  Unfortunately, the orientation of the patient during surgery is rarely 

the same as when the scan was taken, and the patient’s tissues are often manipulated and 

deformed.  For example, in minimally invasive abdominal laparoscopic procedures like those 

in Figure 9, the patient’s abdomen is inflated with pressurized gasses in order to improve the 

surgeon’s view of the field and allow her more room for manipulation.  This inflation causes 
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significant distension of the abdominal wall and also affects the position and shape of the 

organs within the cavity. 

 

Figure 9: Abdominal inflation during laparoscopic procedure 

(http://thefirsthundred.files.wordpress.com/2009/04/laparoscopy.jpg) 

The difference in tissue positioning between the imaging study and the actual 

procedure necessitates that surgeons using medical images in their planning must exploit 

their understanding of anatomy to create a mental model of the deformed patient tissue.  This 

mental model is then verified or proven faulty during the execution of the surgical procedure.  

If the model is shown to be inaccurate, several actions may be taken depending on the 

severity of the conflict.  If the mental model was only slightly different from the actual 

patient condition, the surgery may continue as planned.  For gross miscalculations, surgeons 

may have to create a new surgical plan while the patient is sedated or the surgery may have 

to be rescheduled.  This increases both the risk to the patient and the costs incurred.  

Discussions with surgeons revealed that creating an accurate mental model required 

amassing a large collection of previous cases from which to refer.  Less experienced 

surgeons and their patients are then at a disadvantage in pre-surgical planning.  Some 
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conditions are also so rare it is unlikely even an experienced surgeon can create a highly 

accurate model.   

The required elements for surgical planning software are shown in Figure 10.  Once a 

study has been acquired, the software will need to identify the various types of tissue present 

in the study, then use the properties of that tissue and other inputs (such as forces applied) to 

set the parameters that will describe the deformation.  These parameters are then input into 

the deformation algorithm to create a 3D model of the deformed tissue. 

   

 

   Some software attempts to provide surgeons with an accurate visualization of the 

patient data, but this software is often unintuitive, uses deformation algorithms that are too 

intensive for commodity hardware, or uses algorithms that are not tied to the actual physical 

model of the tissues.   The goal of this thesis is to focus on the elements of the surgical 

planning software highlighted in blue in Figure 10 in order to create the foundation for a 

Medical study 
acquired 

Tissue regions 
defined 

Deformation 
parameters defined 

Deformation 
performed 

3D tissue model 
visualized 

Figure 10: Elements of software-assisted surgical planning algorithms 
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robust and effective tissue deformation algorithm using existing deformation techniques, 

combined with basic HCI knowledge to design a usable interface. 

Thesis organization 

The organization of the remainder of the thesis is as follows: the second chapter will 

be devoted to an in-depth review of the current literature on tissue deformation and intuitive 

interfaces in medical imaging, followed by the third chapter’s explanation of the 

methodology used to develop deformations for this thesis.  Test cases will be run and 

analyzed in fourth chapter’s results section, while conclusions will be discussed in the last 

chapter.  
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LITERATURE REVIEW 

Tissue deformation models 

 As is required for deciding between surface and volume models of tissue, choosing a 

deformation algorithm for the tissue model is a tradeoff between responsiveness and fidelity 

[8]. As the deformation algorithm becomes more accurate, it becomes more complex and 

computationally expensive, leading researchers to choose between several methods to suit 

their individual demands.  As described by Liu et al. [19], deformation models can be broken 

into two large categories: physically based models and kinematically based models.  

Kinematic models do not account for the object’s mass, forces, or other physical properties 

during the deformation, while physics-based models do incorporate those material properties. 

Physically based models 

Linear elasticity 

One algorithm for calculating the displacement of tissues under stress is the linear 

elastic model based on Hooke’s law seen in Equation 1. For this representation of the 

equation,  is the stiffness matrix, which is symmetric, positive, definite, and sparse,  is the 

unknown displacement field, and is the external force.   

  Equation 1 
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  This algorithm has been used in medical modeling [20, 21].  A modified algorithm, 

which combines modeling of elastic tissues with an accounting for muscular and rigid 

tissues, has also been explored [22]. 

 A shortcoming of the linear elastic model is its inability to accurately model large 

(greater than 10% of the total mesh size) or nonlinear displacements.  Modified, nonlinear 

models have been created to more accurately model under those conditions, including the St. 

Venant-Kirchoff [20,23] and Mooney-Rivlin models [24]. 

 

Finite element method (FEM) 

Finite element analysis has been used with success in engineering applications.  In this type 

of analysis, the volume is decomposed into very small elements of triangular, quadrilateral, 

tetrahedral, or similar shapes.  The deformation of the tissues is then determined based on a 

shape function and global parameters for the volume or surface [25].  The finite element 

problem is continuous, but solves for each element individually by solving the system of 

equations shown in Equation 2, where K is the symmetric, spare stiffness matrix, U is the 

nodal displacement vector, and F is the force vector. 

 

  Equation 2 

Székely et al. used the FEM to model the deformation of soft tissues for use in a 

laparoscopic surgery simulation (Figure 11) [26].  The computational cost for this simulation 

was high, however.  A parallel cluster of high-performance computers were needed to 

computer the deformations in real time.  
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Figure 11: Finite element model of uterus with approximately 2000 elements [26] 

 Finite element modeling has also been used to successfully model the deformation of 

brain tissue with errors on the range of millimeters to sub-millimeters depending on the 

particular case [27, 28]. 

 The decomposition of the volume into elements results in a computationally 

intensive problem, but the solutions obtained through the use of this method are physically 

realistic in comparison to other methods [8].  Depending on the problem size and the 

computational resources available, some volumes must have large elements in order to be 

solvable on current hardware.  As the size of the elements in the volume increases, the 

solution accuracy can decrease. 

Attempts have been made to increase the computational speed for finite element 

models, including fast finite elements (FFE) [29], which sacrifices time in pre-computation in 
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order to provide some real-time simulation [30].  This method does not accurately compute 

large deformations or the behaviors of viscous volumes, however [31].  Off-loading of 

calculations onto the GPU has also been examined [32, 33].  Although this method is notably 

faster than FEA, the failure to compute large deformations makes this method less viable for 

simulation of laparoscopic surgeries, where the abdominal walls are displaced large amounts 

when the patient is inflated with pressurized gas in order to provide a large field of view and 

workspace for the surgeon. 

Mass spring method 

A simpler, and more commonly used, method for modeling tissue deformation is the 

mass spring method.  In this method, masses are attached to vertices and springs act as 

connectors between each mass.  These springs may have different stiffness values to 

represent different tissue types [34].   For the motion of a point i, the displacement can be 

described by the Equation 3, where µ is the mass, γ is the damping factor, K is the stiffness 

of the spring connecting point i to points in the neighborhood of i, j.   

 

 
 

Equation 3 

 

 Although the deformations resultant from a spring model have different physical 

mechanism than actual tissue deformation, spring models have been shown to approximate a 

linear finite element model as long as the deformations are small [35].  The mass spring 

problem can also be computed on standard hardware [36].   
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The mass-spring method has been used with success in real-time surgical simulators 

to model deformation based on collision with surgical instruments with soft tissues.  Brown 

et al. [37] were able to minimize computation time for the mass spring system by taking 

advantage of the damping effect of human tissues to only compute deformations in the local 

region where they were the greatest. Their methods were tested at 30 Hz with up to 8000 

masses and 66120 springs [38].  More recently, experimentation has been done with 

offloading spring compression and extension calculations to the GPU; a mesh with 5122 

vertices was able to be computed 480 times per second [39].  

 The mass spring method has several drawbacks.  First, inhomogeneous tissues or 

tissues with nonlinear elasticity cannot be correctly modeled with the basic mass spring 

algorithm.  Because the model is not based on the physical characteristics of real tissues, the 

spring constants for the system components may be difficult to determine appropriately, 

which results in incorrect deformation.  Spring constants that are too high may also result in 

“stiffness”, where the system is unstable and is slow in simulation [36].  These models are 

also prone to oscillation during real time deformation and do not maintain constant volume 

during deformation [31].  The small deformations for which the mass-spring system is valid 

when compared to a linear finite element model also mean that larger deformations, such as 

when tissues are manipulated in a surgical setting, may not be able to be accurately modeled 

with this method. 
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Kinematically based models 

Free form deformation lattice 

Sederberg and Parry [39] were able to model free-form deformation of a surface by 

utilizing control points on a free form deformation lattice. As the position of the control 

points changes, the surface is deformed using a trivariate tensor product Bernstein 

polynomial to calculate the displacement of each point in the surface.    This algorithm has 

been used as the basis for other surface deformation algorithms [40].  

Proxy meshes 

Rezk-Salama and associates deformed volumes via proxy meshes, which utilized the 

original volume model but decreased the computation required to determine deformation 

[41].  In this method, rather than transforming the solid geometry directly, an intermediate 

model of the geometry is created using 3D textures.  This intermediate model is composed of 

a set of sub-cubes, known as “patches”, rather than maintaining the fidelity of the entire 

original geometry.  Then, rather than calculating deformation on the original model whenever 

deformation is performed, the deformation is calculated as translation of the texture 

coordinates for the model.  Deformations within the patches are computed using a weighted 

trilinear interpolation.  Constraints for the edges and vertices of the model can be created to 

prevent gaps in the model when it is deformed. 

A similar method was implemented by Correa et al. [42].  In that method, a 2D 

displacement map containing control points was generated.  Displacements on this map were 

then interpolated to the 3D volume as a whole.  By offloading computations to the GPU, real-
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time deformation and cutting were able to be performed.  Resultant deformations for a knee 

CT dataset are seen in Figure 12. 

    

Figure 12: Bending of a knee CT dataset 

Chainmail 

 In the Chainmail algorithm, developed by Gibson [43], deformation is transmitted 

through a series of “link” elements, shown in Figure 13.  Collision detection and an energy 

minimizing elastic relaxation algorithm are used to propagate deformation when a single link 

is moved.  As outlined by Gibson, elements in the volumetric object all have constrains that 

describe the maximum stretch and compression that can be performed on that element before 

that movement causes its neighbors to also become displaced.  At that point, the element’s 

top, left, bottom, and right neighbors are then added to a queue of candidate points to be 

processed.  Each of those neighbors is processed in first-in-first-out (FIFO) order in similar 

fashion as the first point until the queue is emptied.  Elastic relaxation is then preformed to 

relax the shape into a minimum energy configuration.  This method has been used to simulate 

the inflation of a balloon in the blood vessel lumen for a 2D angioplasty simulation [44]. 
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Figure 13: Deformation of a 2D chain mail when a selected link is moved [43] 

The basic ChainMail algorithm has also been modified to correctly process 

inhomogeneous materials in the enhanced ChainMail algorithm [45].  In this modification, 

the candidate queue is not processed in FIFO, but is instead prioritizes elements with stiffer 

properties.  Although this increases the processing time, it enables rigid materials to maintain 

their correct positions relative to each other. 

 The ChainMail algorithm has been used for tissue deformation calculation for a 

variety of reasons.  The parameters used the enhanced ChainMail algorithm can be modified 

to approximate the physical behavior of a variety of tissue types.  Also, although these 
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parameters used in the algorithm are tied to the physical properties of the tissue, the 

deformation calculations are far less computationally intensive than those used in finite 

element analysis.  Although computation time will suffer for large data sets no matter what 

tissue deformation method is used, the ChainMail algorithm’s relatively low overhead allows 

the method to use high-resolution data from CT and MRI images.   

 Fast, relatively accurate deformations with real patient tissue are necessary in order 

for the proposed surgical planning technology to be of use.  The data sets provided in typical 

medical scans are generally 512x512 pixels for each image, with a study containing between 

40 and several hundred images.  The sheer quantity of data provided suggests the use of a 

non-physically-based model in order to increase computation speed.  The ChainMail 

algorithm provides an efficient mode of processing while still maintaining a tie to the tissue 

properties through its parameters and has been used for other medical applications [44-46].  

For this reason, the ChainMail algorithm and its variations are the most promising for the 

application proposed. 

Visualization  

Current interfaces 

Many different medical imaging programs exist in the market today, including Amira, 

3D-DOCTOR, VolView, OsiriX, BodyViz, and Isis.   

The Amira [47] software is available on Windows, Mac OS, and Linux as a base 

package with a number of add-on functional modules available for purchase.  The base 

package includes the ability to import and export to and from a number of file formats (not 
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including DICOM).  It also includes surface and volume generation, material statistics, 

analysis tools, clipping and cutting tools, and presentation tools for the generation of 

animations, demos, annotation, and stereoscopic tools.  The functional modules add 

advanced options for the following: meshes, microscopy, skeletonization, molecular models, 

very large data, quantification, immersive virtual reality, specialized readers for other image 

formats such as DICOM, and a developer option for the creation of new components. Amira 

is seen in Figure 14. 

 

Figure 14: Volume representation of medical data seen in Amira  

3D-DOCTOR [48] is an imaging program that has been approved by the United 

States Food and Drug Administration for medical imaging applications.  This application can 
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read and display a number of 2D image formats, some in color, including the following: 

DICOM, TIFF, BMP, JPEG, Interfile, PNG, PGM, GIF, raw image data, and uncompressed 

file formats.  In addition to being able to save images and 3D objects to a number of file 

formats, 3D-DOCTOR also allows users to view images as a surface and volume, re-slice 

data along an arbitrary analysis, and perform segmentation and volume measurement.  It is 

available on Windows platforms only.  3D-DOCTOR is shown in Figure 15. 

 

Figure 15: 2D images and clipped volume representations seen in 3D-DOCTOR interface [48] 

 

VolView [49] is available for Mac or PC and can load  image data types including 

DICOM, TIFF, PNG, and JPG, then can display the data a volume render, a maximum 

intensity projection, 2D orthogonal images, or as a movie.  Tools included in VolView 
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include image manipulation such as window/level adjustment, panning, and zooming as well 

as cropping, and light box views.  The VolView interface is shown in Figure 16. 

 

Figure 16: The Visible Human dataset shown in VolView 

OsiriX [50] is available only on the Mac OS and on the iPhone.  Like VolView, it can 

load multiple file types such as DICOM, TIFF, JPG, PDF, AVI, MPEG, and QuickTime.  As 

well as displaying orthogonal views, surface rendering, and volume rendering, OsiriX can 

view 4D data, or 3D data with time lapse, and 3D data, or 3D data with time lapse and 

functional dimensions.  OsiriX is shown in Figure 17. 
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Figure 17: 2D image viewing in OsiriX 

In contrast to the previous software packages, the BodyViz [51] software targets 

surgeons.  The software, available for PC, enables users to navigate through volume 

representations of actual patient data though the use of an Xbox 360 controller.  In addition 

the software provides users with clipping planes, which are used to view the inside of the 

volume, virtual surgical tools that can be moved through the volume, and a variety of volume 

color schemes to highlight different tissue types.   
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Figure 18: Volume model shown in BodyViz 

 The Isis software package [52], created at Iowa State University, also limits the 

number of software features available in favor of providing simplified applications for non-

radiologists.  Isis is available in both a desktop and a virtual reality version and allows for 

synching between different platforms.    Like BodyViz, the virtual reality version allows 

interactive viewing of volumes with gamepad navigation, different color schemes, clipping 

planes, and surgical tools.  A volume model and surgical tools visualized in the virtual reality 

version of Isis is shown in Figure 19.  The desktop version has viewing of 2D and volume 

models with various color schemes, surface model generation and viewing.  The desktop 

version of the software uses mouse navigation.   
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Figure 19: Volume model with surgical tools in Isis software 

 

Although Amira, 3D-DOCTOR, VolView, and OsiriX desktop software have enabled 

a greater range of physicians to use patient data in their diagnostics and planning, these 

interfaces do have drawbacks.  These programs are targeted to the radiologist, and so use 

visualization methods, like 2D grayscale images, that are more familiar to the radiologist 

than to the surgeon.  These software packages also have an incredibly wide range of 

functionalities and allow for extreme tuning of settings within each functionality.  Although 

this may be of use to radiologists, the surgeons interviewed desired a software package that 

was intuitive, simpler to use, allowed easy manipulations, and offered attractive 

visualizations.  BodyViz and Isis attempt to tailor their software to surgeons by emphasizing 
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fast interactions with default settings, but neither they nor Amira, 3D-DOCTOR, VolView, 

and OsiriX  include the ability to deform the image data.   

User requirements 

 Interviews were conducted with two surgeons to assess their current methods, their 

priorities, and what they viewed as areas for additional technological assistance.  The 

information gathered was then used to develop requirements for the ideal interface for pre-

surgical planning.  This ideal interface for pre-surgical planning would allow the physicians 

to quickly and easily explore datasets without needing to set parameters, use familiar 

language in the interface, and be able to run on their current machines. 

Research issues 

 Several research issues were identified from the literature review.  These issues are as 

follows: 

1. Determine the factors critical for fast and accurate tissue deformation analysis of 

digital medical image software using ubiquitous computing hardware 

Most tissue deformation methods either use time-consuming finite-element 

analysis or models that do not account for the true physical behavior of tissue under 

forces.  Simplified deformation algorithms that still utilize the known properties of 

tissue would allow for an accurate deformation while minimizing computing 

overhead, but parameter setting for these algorithms is currently experimental.  An 

analysis of the   influence of parameters on the speed and accuracy of deformations 

would improve the resultant deformations while decreasing computation time. 
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2. To design a usable and intuitive user interface for examination and deformation of 

digital medical image data for surgical planning 

Existing medical image software has a highly complicated interface, which 

creates a barrier to the physicians’ ability to easily obtain accurate data for 

consideration in their treatment plan.  A streamlined software program would allow 

the physicians to quickly adjust parameters and create a greater understanding of their 

patient’s situation with a minimum of confusion.  
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METHODOLOGY 

As mentioned, discussions with surgeons emphasized the need for the utilization of 

real patient data, rather than artistic models, in surgical planning assistance software.  This 

requires utilizing a method that minimizes computational expense in order to efficiently 

operate on the vast amounts of data from an actual DICOM image.   The proposed method 

allows users to interactively classify tissues from a DICOM image according to their general 

material properties.  The classifications are then used in an implementation of the extended 

ChainMail algorithm. 

A comparison of the proposed method and other ChainMail variations is shown in 

Table 1.  Further details on the ChainMail variation selection are provided in the ChainMail 

variation selection  section. 
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Table 1: ChainMail method comparison 

Variation Multiple 
classifications  

Queue 
processing 

order 

Implemented 
for tissue 

deformation 

Uses DICOM 
data 

Original 
ChainMail No FIFO Yes Yes 

Enhanced 
ChainMail Yes 

Ordered queue 
based on 

magnitude of 
constraint 
violation 

Yes No 

Generalized 
ChainMail No FIFO Yes No 

Extended 
ChainMail Yes 

Priority queue 
based on 

classification 
No No 

Proposed 
method Yes 

Priority queue 
based on 

classification 
Yes Yes 

 

Inexpensive and readily accessible hardware was also important for the surgeons 

interviewed.  For this reason, the target hardware configuration was the commodity desktop 

PC with mouse and keyboard.  This limited the computational power and required the use of 

an interface easily manipulated through mouse and keyboard operations. 

The final desktop software utilized several libraries.  wxWidgets [53] was used to 

build the graphical interface.  Raw DICOM image data was loaded using DCMTK [54], and 

visualization of the image data was accomplished using OpenGL [55].  The software 

operated using the algorithm shown in Figure 20.   
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Figure 20: Proposed deformation algorithm 

In this method, digital medical images are painted with classifications that represent 

the gross properties of the tissues.  The user is then able to move individual elements of the 

2D slice using mouse interactions in the GUI to create deformations at single points in the 

image, or by using a button to deform the entire top of the tissue in the image by a default 

Tissue classification: 
The user paints image with three different 

colors representing rigid tissue (bone), 
soft tissue, and air on each image slice. 

Deformation initialization: 
The image elements closest to the point 

of deformation are moved and their 
neighbors are added to a queue to be 

processed. 

Chain deformation: 
The queue is processed.  Queue members 
that have not already been displaced are 

moved according to a modified 
ChainMail algorithm, and their neighbors 

are added to the queue. 

Relaxation: 
Elements that have been displaced are 

moved to a position that is the average of 
their neighbors’ locations. 
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amount (representing uniaxial compression).  As each element is moved, its neighbors are 

added to the priority queue, which is then processed as follows: 

1. Check next point in queue for constraint violation.  If there are no constraint 

violations, proceed to the next point in the queue. 

2. If constraints have been violated, deform point according to the generalized 

ChainMail algorithm. 

3. Add the current queue point’s neighbors to a priority queue according to the 

extended ChainMail algorithm.  

After queue processing, a relaxation step is performed to move processed elements to 

a position that is the average of their neighbors’ positions. 

ChainMail variation selection 

Multiple ChainMail variations have been developed, and the variation chosen for 

analysis needed to capable of approximating the physical behavior of heterogeneous tissues 

under stress.  The original ChainMail algorithm was the first variation considered.  This 

algorithm uses constraints seen in Figure 21.  As discussed in the background, deformations 

are propagated through the mesh by analyzing constraint violations at various points in the 

mesh.  MaxVertDx and maxHorizDy constrain the shear between the sponsor and its 

neighbors, while maxDx, minDx, maxDy, and minDy represent the maximum and minimum 

amount of stretch and compression.  When these constraints are violated between a deformed 

point and its neighbors, the neighbors are moved until a violation no longer exits.  In the 

original algorithm, these constraints were processed in FIFO order and the constraints were 
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assumed to be constant throughout the mesh.  This allowed the algorithm to execute 

expeditiously,   but did not accurately represent the behavior of inhomogeneous materials.  

The enhanced ChainMail method was developed by Schill et al. was specifically designed to 

correct this issue [45].   

 

Figure 21: Schematic of ChainMail constraints between a deformed point (shown in black) and its right and bottom 

neighbor [43] 

In contrast to the original Chainmail method’s FIFO candidate point processing, the 

enhanced ChainMail method uses constraints of both the neighbor and the sponsor point 

when calculating new neighbor positions.   Because the order in which candidate queue is 

processed influences the speed and direction of the deformation propagation, points with the 
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largest constraints are processed first.  This method results in better representations of 

deformation of inhomogeneous materials, but the ordering of the candidate queue by 

magnitude of constraint violation and the storage of the different constraints for points 

represents a significant overhead.   

The original and enhanced ChainMail methods both utilize the original six constraints 

to describe the “link” behavior of elements: maxVertDx and maxHorizDy constrain the shear 

between the sponsor and its neighbors, while maxDx, minDx, maxDy, and minDy and 

require a rectilinear mesh. The generalized ChainMail method [56] proposed by Yi and 

Brodlie was designed for fast processing for web applications and extends the ChainMail 

method to an arbitrary mesh.  For future extensibility of the proposed method, this method 

was chosen as the base for the algorithm development.   

In the generalized ChainMail method, the parameters which describe the 

compression, stretch, and shearing are modified. The compression of each mesh element is 

parameterized by  and the stretch by .  The shearing is parameterized by .  These 

parameters are used to define the valid region for deformation candidate points to lie in after 

the movement of their sponsors.  This generalized ChainMail element update is illustrated in 

Figure 22. 
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Figure 22: The original positions of elements A and B (a), and the repositioning of element B after sponsor A is 

moved to A*[56] 

The points A and B are initially located at  and , respectively.  For the 

purposes of this exposition,   and .  The original distance between the two 

points is represented as  and  in Equation 4 and Equation 5. 

  Equation 4 

  Equation 5 

The compression, stretch, and shearing parameters and the original distance between 

the two points are used to define a valid region for the candidate point, B, to be located in 

after its sponsor, A, is moved.  This region is represented in Equation 6 

 

  Equation 6 

 

where the region is defined by Equation 7 through Equation 10. 
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  Equation 7 

  Equation 8 

  Equation 9 

  Equation 10 

. 

 If the location of B lies outside of the valid region, B is moved to B*, the closest point 

in the valid region. 

 The generalized ChainMail algorithm is modified in a logical manner if the relative 

positions of A and B differ.  For example, if  the region bounds  and  are as 

shown in Equation 11 and Equation 12. 

  Equation 11 

 

  Equation 12 

 The generalized ChainMail method is still not sufficient to maintain the relative 

positioning of elements within rigid regions of the mesh because its list of candidate elements 

is processed in FIFO order.  A different method of ordering the deformation queue is needed. 

The extended ChainMail algorithm proposed by Faeth [57] incorporates ordered 

processing of the candidate queue with a minimum amount of computation.  In this method, 

used for haptic interaction with geologic surfaces, users interactively painted surfaces in 

order to represent the rigidity of the mesh points.  Rather than comparing the degree of 

constraint violation or processing neighbors using FIFO, this method utilized a Standard 

Template Library, or  STL, priority queue [58].  A STL priority queue which automatically 
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orders the elements from rigid to non-rigid  is utilized.   Although this order of processing 

adds complexity beyond a first-in-first-out style queue, it ensures the same relative 

positioning of connected regions of rigid tissues with greater processing speed than the 

Enhanced ChainMail algorithm.  This priority queue processing style was utilized in the 

proposed method in order to maintain the relative position of rigid bone tissue through the 

use of a three-part classification system. 

Tissue classification for ordered queue processing 

Digital medical scans contain a variety of tissues of varying properties.  To begin the 

deformation of each scan, a three-part tissue classification system was developed to represent 

the general properties.  The classification is performed manually by the user, who “paints” 

colors representing various tissue designations on top of the original image: air, represented 

by a blue color, rigid tissue or bone, represented by a white color, and soft tissue, represented 

by red.  These classifications are used to determine the rigidity of each element in ordering of 

the priority queue and in deformation calculations.  This classification painting is performed 

on individual slices of original medical scans. The following conditions were used for each 

tissue classification: 

1. Tissue classified as air does not propagate deformations to their neighbors.  This is an 

idealized representation, but is user-definable. 

2. The displacement of the rigid bone tissues is constant and fully transmitted to 

neighboring air and soft tissues. 
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3.  For point classified as soft tissues, the magnitude of the deformation decreases as the 

deformation is propagated through the tissue.   

Interactive tissue classification 

 All image elements are initially classified as air when images that have not previously 

been classified are brought into the deformation interface.  Bone and muscle tissue 

classifications can be painted onto the images through the use of a paintbrush technique.  

Five different brush sizes are provided, as well as the three different tissue types.  Different 

slices can be examined by use of the “previous” and “next” buttons.  The mode can be 

switched from classification to active deformation by the use of another button.    A DICOM 

image prior to tissue classification is seen in Figure 23.   As seen in the image, the default 

classification of all image data is air, shown in blue.  Painting the image with red and white 

classify the pixels as soft tissue and bone, respectively, as was done in Figure 24.  These 

tissue classifications can be saved and loaded back into the interface at a later date. 
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Figure 23: Loaded DICOM image in tissue classification mode 

 

Figure 24: Classified tissue 
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Neighbor determination and addition to queue 

 The choice of neighbors influences the propagation of deformations thorough a mesh.  

The traditional ChainMail algorithm named the four closest mesh points as neighbors: top, 

bottom, left and right.  The proposed methodology maintains an element placement that 

mirrors the placement of pixels in the original DICOM image.  For this configuration, the 

closest neighbors are the eight surrounding the element, shown in Figure 25.  These points 

are added to the processing queue from upper left to lower right.  

 

Figure 25: The sponsor point, shown in red, and its eight neighbors, shown in green  

 

 Before its addition to the queue, each neighbor is checked to ensure that it has not 

already been deformed by another sponsor.  This is done by giving each element in the image 

a Boolean property that notes if it has been processed.  Although this does not prevent the 

addition of duplicate unprocessed points to the queue, it does minimize unnecessary data 

storage. 

Relaxation 

 A final relaxation step is preformed at the conclusion of queue processing.  This 

relaxation moves the position of each of the deformed elements to the average of its 
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neighbors and is one of the relaxation algorithms suggested in the original ChainMail 

algorithm. 

Element data structure 

 The final data structure for the each point in the deformation mesh is modified from 

the generalized ChainMail method.  The stored parameters are as follows: 

1. Element row, column, and slice- this is also the original position of the element 

2. Current element position: the current x, y, and z location of the element 

3. Processed state: a Boolean indicating if this point has already been deformed by a 

sponsor 
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RESULTS 

 The algorithm was evaluated using the uniaxial compression truth cube dataset [59] 

created as a basis for evaluating soft tissue simulation models.  In that experiment, Kerdok et 

al. embedded Teflon spheres in a silicone rubber phantom which was then subjected to 

compression.  Pre- and post-deformation CT scans were taken of the cube. 

Truth cube composition 

 The truth cube was created with a two-part silicone rubber, RTV6166 General 

Electric, which behaves similar to soft tissues when in the linear range (less than 30% strain).     

The material also had similar properties to a mammalian liver.  The total size of the cube was 

8x8x8 cm. 

 A 7x7 matrix of commercially available 1.58mm radius spheres were positioned in 

the cube at intervals of 1 cm.  That size of sphere was chosen in order to allow the spheres to 

be visible on two successive scan planes without affecting the cube’s strain behavior.  The 

spheres were composed of Teflon, which provided a high-contrast image for the CT scanner 

yet did not drastically alter the material behavior of the cube during testing.   This was 

validated by conducting indentation tests samples of the pure silicone rubber, a sample with 

spheres placed sparsely through it, and a sample with spheres placed at 1 cm increments.   

The stiffness of the sample with spheres spaced most closely differed from that of the plain 

silicone sample by less than 2%, which was less than 4.4% of the standard deviation of the 

measurements on the plain sample. 
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The assembled truth cube was tested under uniaxial compression using the mechanism in 

Figure 26.  The cube was placed first placed on a rigid base.  A 2.54cm thick acrylic plate 

was attached to a vertical support with a low-friction joint.  Loading was performed by 

adding weights to the side of the plate farthest from the joint. 

 

Figure 26: Schematic of truth cube uniaxial experiment, where L is the distance between the loading points to the 

center of the cube and m is the mass of the counter weights [59] 

 Three uniaxial loading conditions were performed: 4mm (5% strain), 10mm (12.5% 

strain), and 14.6mm (18.25% strain) displacement.  CT scans were taken of the unloaded 

cube and of the three loading conditions using a General Electric LightSpeed CT scanner 

with a voxel size of 0.37x0.37x1.25mm, creating four datasets of 99 512x512 DICOM 

images.  The 5% and 18.25% strain conditions were chosen to evaluate the proposed method.  

A single DICOM image was used for the evaluations.  The image used is of the center 

vertical plane of the truth cube (the “center slice”).  The original and deformed DICOM 

images of the center slice of the dataset under 5% strain are shown in Figure 27. 
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Figure 27: Truth cube undeformed center slice (left) and slice with 5% strain applied (right) 

 

Parameter selection 

 Although the generalized ChainMail parameters have a foundation in material 

properties, experimentation is necessary in order to find accurate values.  Two different sets 

of parameter values, shown in Table 2, were tested.  Scheme A was selected after qualitative 

analysis of the resultant deformations for several different constraint values.  A quantitative 

analysis comparing the predicted deformations to the measured deformations was performed.  

This analysis revealed excessive uniaxial displacement and not enough displacement 

perpendicular to the axis of strain.  Constraint scheme B increased the strain constraint and 

utilized a basic boundary condition that did not allow the last row of elements or their 

neighbors in the classified tissue to be displaced.  This was done to provide a more accurate 

representation of the tissue properties than scheme A.   
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Table 2: Constraint schemes 

  Scheme 

Tissue Classification Constraint A B 

Soft tissue αmin
 0.98 0.98 

Soft tissue αmax 1.05 1.05 

Soft tissue β 0.01 0.03 

Rigid tissue αmin
 1.0 1.0 

Rigid tissue αmax 1.0 1.0 

Rigid tissue β 0.0 0.0 

 

Single DICOM slice truth cube deformation 

 The algorithm was partially evaluated using a manually classified DICOM image of 

the center slice and scheme B.  The results of this are shown in Figure 28.  The classifications 

for tissue and the deformations are drawn on top of the grayscale DICOM image.  The 

original DICOM image remains visible through the tissue classifications for comparison with 

the deformed image.   

Figure 28 (a) shows the original classification for the image when it was first loaded.  

The default classification is automatically air, shown in blue over the grayscale image.  The 

truth cube was then manually classified as soft tissue (red) and bone/rigid tissue (white) as 

shown in Figure 28 (b).  This classification was performed using the interface discussed in 

the previous chapter in under five minutes.  5% strain was then applied to the classified 
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tissue.  The resultant deformation is shown in Figure 28 (c).  The regions of the image 

classified as air have not been deformed by the algorithm.  The rigid and soft tissues have 

been displaced, and the rigid spheres have moved their relative position yet maintained their 

shape during the deformation, which is the expected result for priority queue processing of 

deformation points.  The soft tissue, represented in red, displaces more relative to its 

neighbors and “cracks” appear where the gray cube of the original DICOM image in the 

background shows between the classified tissues.   This apparent cracking is a result of the 

widening space between the soft tissue neighbors and the visualization of the continuous 

material using discrete elements.   The large gaps between the soft tissue elements are a 

result of the ChainMail algorithm; each deformed neighbor is only analyzed for constraint 

violation with its sponsor point, not all surrounding points.  This allows a classified tissue 

element to move far from its neighbors as long as it is still within the bounding box defined 

by its constraints and its sponsor point’s position.   
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    (a)      (b) 

 

    (c) 

Figure 28: Center slice image default air classification (a), classified as soft tissue and bone (b), deformed with 5% 

strain using scheme B (c) 
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Deformation application and queue building 

As can be seen in the deformed image in Figure 28 (c), the solution predicts less 

deformation in the upper right corner as opposed to the upper left.  It is hypothesized that this 

is a result of the order in which elements are processed during deformations.  In the uniaxial 

deformations tested, deformation was applied from left to right on the top row of tissue 

elements, and each of those elements’ neighbors were added to the priority queue from upper 

left to lower right.  Although the priority queue standard does not require FIFO processing of 

elements with the same priority, the order of addition to the queue resulted in the sponsor 

points generally being those to the above and to the left of the candidate for deformation.  It 

was the displacement of those sponsor points that then determined the valid region for the 

deformation candidate point. 

Ideal image generation 

An ideal segmentation scenario was created from the pre-deformed center slice 

information from the truth cube experiments.  The ideal slice used the known dimensions of 

the cube, the radius of the spheres, and the center positions of the spheres before compression 

to create an image.  The silicone cube was then classified as soft tissue and the spheres were 

classified as bone.   

To evaluate the influence of image size on the accuracy and performance of the 

algorithm, datasets were created using seven different element spacing values.  The element 

spacing from the original image was 0.37 mm.  This original spacing was used to generate 
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coarser datasets that ranged from 2 mm to 0.44 mm element spacing. A summary of the 

generated datasets is shown in Table 3.   

   

Table 3: Generated ideal segmentation data sets 

Element Spacing (mm) Elements per Row and Column  Total Elements 
2.00 40 1600 
1.33 60 3600 
1.00 80 6400 

0.80 100 10000 
0.57 140 19600 
0.44 180 32400 
0.37 216 46656 

 

Displacement error results 

 The predicted and actual displacements of the center of the spheres in the dataset’s 

center slice were compared for the 5% and 18.25% uniaxial strains order to examine the 

performance of the method.  The accuracy of the method was evaluated using the root mean 

squared error analysis performed by the truth cube experimenters [59].  The average, 

minimum, and maximum root mean squared error for intra-slice displacement was found for 

the sphere center locations.  These are shown in Tables 4-6.  For comparison, the root mean 

squared error resultant from a FEA analysis performed on the center slice data by the truth 

cube experimenters for 18.25% strain is shown in Table 7. 

 A comparison of the results for constraint schemes A and B in Table 4 and 5 reveals 

that, while constraint scheme B provided a decreased average and minimum root mean 

squared error for most element spacings, it also resulted in greater maximum errors. 
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 The algorithm was also run with constraint scheme B for 18.25% deformation in 

order to compare its accuracy under larger strains to that of an FEA performed in the truth 

cube experiment.  Examination of the ChainMail deformation results in Table 6 with those of 

the FEA in Table 7 reveals far greater errors for the ChainMail deformation, with average 

RMS errors greater than 8 ½ times that of the FEA average RMS error and minimum of more 

than 40 times larger than that of the FEA.  This reveals that the algorithm still needs to be 

improved in order to model large displacements with comparable accuracy to FEA. 

 

Table 4: Root mean square error for 5% strain, constraint scheme A 

Number of 
Elements 

Element 
Spacing (mm) 

Strain 
(%) 

Constraint 
Scheme 

RMSave  
(mm) 

RMSmin 
(mm) 

RMSmax 
(mm) 

1600 2 5 A 2.123 0.032 4.920 
3600 1.3 5 A 1.807 0.194 3.543 
6400 1 5 A 1.821 0.182 3.422 

10000 0.8 5 A 1.919 0.342 3.806 
19600 0.57 5 A 1.790 0.534 3.426 
32400 0.44 5 A 1.678 0.180 3.429 
46656 0.37 5 A 1.692 0.206 3.450 

 

Table 5: Root mean square error for 5% strain, constraint scheme B 

Number of 
Elements 

Element 
Spacing (mm) 

Strain 
(%) 

Constraint 
Scheme 

RMSave 
(mm) 

RMSmin 
(mm) 

RMSmax 
(mm) 

1600 2 5 B 1.838 0.100 4.164 
3600 1.3 5 B 1.589 0.116 4.075 
6400 1 5 B 1.616 0.233 3.879 

10000 0.8 5 B 1.460 0.143 3.641 
19600 0.57 5 B 1.883 0.128 4.274 
32400 0.44 5 B 1.666 0.104 4.182 
46656 0.37 5 B 1.612 0.155 4.519 
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Table 6: Root mean square error for 18.25% strain, constraint scheme B 

Number of 
Elements 

Element 
Spacing (mm) 

Strain 
(%) 

Constraint 
Scheme 

RMSave 
(mm) 

RMSmin 
(mm) 

RMSmax 
(mm) 

1600 2 18.25 B 10.405 6.675 14.365 
3600 1.3 18.25 B 10.659 6.747 14.074 
6400 1 18.25 B 10.071 6.697 13.635 

  

Table 7: Root mean square error for 18.25% strain for truth cube FEA analysis 

Element Spacing (mm) Strain (%) RMSave (mm) RMSmin (mm) RMSmax (mm) 

0.37 18.25 1.174 0.159 2.523 

 

 The undeformed ideal 0.37 mm element spacing image and the deformations 

resultant from 5% strain is shown in Figure 29. Deformations for other ideal image sizes 

were similar.  As in the visualization of the truth cube slice in Figure 28, the original ideal 

slice is drawn behind the partially transparent tissue classifications.  Once again, soft tissues 

classifications are shown in red and bone classifications are shown in white.  The ideal 

images did not include any air classifications.   

The general behavior of the classified tissues in the ideal slices was similar to that of 

the classified DICOM image in Figure 28.  The elements classified as bone displaced while 

maintaining their same relative positioning to neighboring “bone” elements, while the soft 

tissues showed greater displacement relative to their neighbors as seen by the “cracked” 

appearance of the final deformation.  Overlapping soft tissues appear as red lines bright red 

lines.   
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Comparing results for the A and B parameters show that although constraint scheme 

B results in a smaller average displacement error of the sphere centers when compared 

numerically, both schema result in a similar deformation when compared qualitatively.  In 

addition to large displacement between some soft tissue elements, both schemes fail to 

accurately represent the boundary conditions and the deformed tissues move down to below 

the cube base rather than bow on the sides like the real cube.    
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   (a)      (b) 

 

   (c) 

Figure 29: Element spacing 0.37 mm undeformed ideal slice (a), deformed with A constraints (b), deformed with B 

constraints (c) 



58 

 

 

Single slice processing time 

 The time to deform a single slice was monitored for parameter set A when the 

algorithm was run on a on a Windows XP Pro desktop with 4GB of RAM and a Core2 

X6800 CPU using ideal images and constraint scheme A for 5% strain.  The results are 

shown in Figure 30.  As the number of elements in the image increased, the computation time 

increased at a greater than linear pace.  The processing time ranged from less than 15 seconds 

for the coarsest spacing (2mm) to over 3 ½ hours for the same element spacing as in the 

original DICOM image (0.37 mm). 

 

Figure 30: Single slice processing times 
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Although the computation time for full-resolution ideal images were still far from 

real-time, decreasing the number of elements greatly increases the process speed by reducing 

the length of the priority queue. The qualitative and quantitative analysis of the deformations 

also revealed that the elements were being deformed excessively.  Modifying the algorithm 

to allow for more flexibility of the soft tissues would be expected to both increase the 

accuracy of the deformations and reduce the size of the queue by only moving elements that 

will truly be deformed. 
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CONCLUSIONS 

Summary and conclusions 

 A new software application was created which enabled users to interactively deform 

medical images through the use of a generalized ChainMail algorithm with a priority queue 

based on tissue classifications.   The algorithm was evaluated for computation time and 

accuracy for two constraint schemes and seven image fidelities. 

 The difference in RMS error between the two schemes suggests that, with finer 

parameter tuning, the accuracy of the displacement could be increased. 

 Although the single slice computation time was more than three hours for the highest 

fidelity ideal data set, the drastic time decrease for decreasing element numbers suggests that 

decreasing the number of elements might provide better computation time with similar 

accuracy.  Because the deformation algorithm also depends on the constrains to evaluate 

which elements should be deformed, better parameter tuning also holds promise in 

minimizing computation time by decreasing queue size. 

Future work 

 Currently, a straightforward conversion from material properties to ChainMail 

constraints does not exist.  A thorough analysis of the tie between ChainMail constrains and 

material properties, leading to a development of guidelines for parameter selection, would 

allow more accurate displacement predictions within the ChainMail algorithm.  This may 

also decrease computation time by eliminating unnecessary deformations caused by 

unrealistic parameters. 
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Another limitation to the current method is the reliance on manual user tissue 

classification.  This represents a significant time investment when analyzing entire images.  

Investigation and implementation of image segmentation algorithms would increase the 

usability of the software by automating the most intensive task. 

Analysis can also be performed to determine the minimum number of elements to 

accurately represent a high-fidelity image.  Decreasing the number of elements in the mesh 

and tying the elements’ deformations to a texture has the possibility to decrease computation 

speed while improving the image quality of the visualization. 

As the execution time is reduced by modifying parameters, automating segmentation, 

and reducing the mesh size, it would be appropriate to expand the algorithm to represent the 

interactions between slices in addition to the current intra-slice interactions.   

The accuracy of the method may also be improved by increasing the number of tissue 

classifications to better represent the variations in properties if soft tissues. 

 Finally, the method will be modified to include more accurate boundary conditions.  

This will ensure better displacement propagation through the tissues. 
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