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ABSTRACT

A statistical description of multiphase flows is inevitable due to the inherent variability

observed in such systems. The theoretical foundation for the Eulerian–Eulerian (EE) statis-

tical representation of two–phase flows, which is the primary focus of the current study, is

established using a probability density function formalism. It is shown that this probabilistic

formalism leads naturally to the widely–used ensemble–averaged equations in the EE statistical

representation. The relationship between the Lagrangian–Eulerian (LE) statistical representa-

tion and the EE formalism is clearly established. In particular, it is shown that the EE and the

LE representations bear an exact relationship to each other only under restrictive conditions of

local homogeneity of the two–phase flow. The correspondence between unclosed terms in the

governing equations that are derived in the two statistical representations is presented. This

correspondence allows one to transfer information from one representation to the other at the

level of the means. A comparison of the two approaches reveals that the information content

in the two representations is indeed different. The interchangeability between Lagrangian and

Eulerian descriptions of the carrier phase is investigated. This exercise leads to the formulation

of a new statistical representation, namely the Lagrangian–Lagrangian (LL) representation. In

the LL formalism, it is shown that the only meaningful way to describe the carrier phase in a La-

grangian frame is through “surrogate” fluid particles. Together, the EE, LE and LL statistical

representations presented in this study form a complete framework for the consistent single–

point description of two–phase flows. Extension of the EE and LE statistical representations to

systems with three and more co–existing phases is outlined. A clearly established theoretical

foundation is indeed necessary; also essential is a concomitant improvement in the capability

to model unclosed terms in the governing equations of a two–phase flow. Particle dispersion
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and modulation of turbulent kinetic energy (TKE) by the dispersing particles are two impor-

tant coupled phenomena that are observed in two–phase flows. Direct numerical simulations

(DNS) of canonical homogeneous two–phase flows reveal that the timescales that govern these

phenomena behave differently with Stokes number, which is an important non–dimensional

quantity that characterizes the relative ease with which the dispersed phase responds to the

disturbances in the carrier phase. A new dual–timescale Langevin model (DLM), which is

essentially an LL model, is proposed. This model has the unique feature of simultaneously

capturing the disparate timescale trends of particle dispersion and interphase TKE transfer

with Stokes number. An important ingredient of DLM is a multiscale interaction timescale

which is proposed to capture the multiscale nature of particle–turbulence interaction. The

behavior of DLM in three canonical homogeneous particle–laden flows, namely freely–decaying

turbulence, artificially–forced stationary turbulence and homogeneous shear, is investigated.

The versatility of DLM is illustrated by its ability to capture the trends of important statis-

tics that are observed in DNS of the aforementioned canonical two–phase flows with varying

Stokes number and mass loading, which is another important non–dimensional quantity that

characterizes the relative mass of each phase in a two–phase system. DLM can be extended

to inhomogeneous flows with the help of the sound theoretical foundation for multiphase flows

that has been established in this work.
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CHAPTER 1. INTRODUCTION

1.1 Background

A multiphase flow is a physical system in which several thermodynamic phases (solid, liquid

or gas) coexist. Common examples of multiphase flows that occur in nature are rain, snowfall,

natural geysers, volcanoes and sandstorms. Multiphase flows find practical applications in a

range of industries such as energy production, medicine and pharmaceutics. Internal combus-

tion engines and gas turbines rely on a finely–atomized fuel spray injected into compressed air

for efficient combustion and subsequent power generation. Nasal drug–delivery systems deliver

a mist of life–saving medication either in the form of aerosols, or as a fine powder, to the deep

recesses of the pulmonary environment via the respiratory tract. Particles are pneumatically

conveyed over large distances in petrochemical industries. Emissions from automobiles and

industry can be inadvertently transported over large distances, thus affecting a wide section

of the population. The transport of bio–hazardous material either through the atmosphere or

through large water bodies finds relevance in homeland security.

Given the socio–economic importance and wide–ranging applications of multiphase flows,

there is a pressing need to gain a fundamental understanding of such flows in order to make

current applications more efficient and exploit such flows further. Great strides have been

achieved in probing multiphase flows (especially two–phase flows, which in the current context

consists of either solid particles, bubbles or drops in a liquid or gas) by means of computer

simulations and experiments. Interesting phenomena such as preferential concentration and

clustering of particles 1 (Krol et al., 2000; Squires and Eaton, 1991b), and hydrodynamic

interaction among droplets or particles – both of which affect macroscopic transport properties
1Hereafter, the word ‘particle’ can refer to both a solid particle or a droplet, unless specified in the context.
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of the system – add to the complexity in describing such flows. Such phenomena are generally

explained through an intuitive understanding of the factors that contribute to such phenomena.

In order to understand precise mechanisms that lead to the such phenomena even in simple

flows and extend this understanding to more complex industrial–size flows, there is a pressing

need for advances in the understanding of the fundamental mathematical description of a

multiphase flow.

Theoretical advances in the area of multiphase flows have been largely confined to a first–

order description of the system. A first–order description contains information only at a single

spatial location and time. However, the phenomena cited earlier are a manifestation of two–

point or second–order 2 interactions. A mathematical description of such a system would

require simultaneous information at two–points in the system. However, before embarking on

developing a theory for a second–order description of a multiphase flow, it is first necessary

to clearly understand the single–point description. Once a firm foundation for the single–

point description has been established, it is straightforward to proceed to the next level of

description. The absence of a unifying theoretical foundation for the single–point description

of multiphase flows, and a need thereof, is the primary motivation behind this study.

Two–phase flows 3 lend themselves to a statistical description owing to several reasons.

Firstly, the idea behind the use of a control volume, which is the starting point for a funda-

mental mathematical description of single–phase flows, cannot be extended in a straightforward

manner to a two–phase flow. Depending on where the control volume is located in a dispersed

two–phase flow, one can lose information of the other phase as the size of the control vol-

ume becomes arbitrarily small. Thus one cannot meaningfully characterize a two–phase flow

using a single realization of the flow. One can however perform several realizations of the

same two–phase flow. Since the initial conditions of the flow can only be specified nominally,

one can expect that for a fraction of these realizations, this arbitrarily small control volume
2The terminology “second–order” is used in point process theory and refers to quantities that require si-

multaneous information at two physical locations in the system. This phrase should not be misinterpreted as
referring to quantities whose effects are negligible compared to “first–order” quantities.

3In the rest of the document, the focus is on two–phase flows. The understanding gained from the study of
two–phase flows can, in principle, be straightforwardly extended to multiphase flows.
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is occupied by one phase and for the rest of these realizations, the same control volume is

occupied by the other phase. Thus, a two–phase flow can be meaningfully described only by

observing the same control volume across several realizations. This leads to the concept of

an ensemble average, which is an average of a quantity over several independent realizations

(see Figure 1.1). The fundamental starting point for a tractable mathematical description of

a two–phase flow is, therefore, an average! The second reason why a statistical description of

a flow is more reasonable is that engineers are seldom interested in how each particle behaves

in a two–phase flow, but only need information on macroscopic mean quantities that describe

such a flow. Although one could in principle adopt a simultaneous description of all dispersed

particles and all fluid points in a two–phase flow for all time, such a description would contain

much more information than is required for practical applications.

Existing statistical descriptions of two–phase flows can be classified into two broad cate-

gories: (i) Eulerian–Eulerian (EE) and (ii) Lagrangian–Eulerian (LE) representations. In the

EE representation (Drew, 1983; Kataoka and Serizawa, 1989; Drew and Passman, 1999), the

two phases are assumed to be interpenetrating continua. A continuum description is adopted

for both the carrier phase (which is usually the bulk of the two–phase flow) and the dispersed

phase. In the LE approach (Williams, 1958; Subramaniam, 2001c, 2000), although the con-

tinuum description of the carrier phase is generally assumed to be identical to that in the EE

representation, the dispersed phase is treated as composed of discrete entities in the system.

More precisely, the dispersed phase is described by means of an evolution equation for the

distribution function (analogous to kinetic theory, although there are important differences

between the kinetic treatment of gas–flows and two–phase flows), which is a function that

gives the expected number of particles in an infinitesimal interval in state space 4.

In the context of the EE description of two–phase flows Drew (1983) employed an indicator

function formalism to distinguish between the two–phases. Starting from the governing equa-

tions for a single–phase flow, he used the indicator function and ensemble averaging techniques

to arrive at the so–called averaged equations for a two–phase flow. The fundamental descrip-
4The state space is generally composed of position, velocity and radius co–ordinates, but can have other

variables like temperature, concentration, etc.
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tion of the dispersed phase by means of a droplet–distribution function (ddf) was introduced

by Williams (1958) and this theory forms the basis for the LE approach. Later, Subrama-

niam (2000, 2001c) established a firm mathematical foundation for the LE representation by

resorting to the theory of stochastic point processes. The LE description is superior to the EE

description for the dispersed phase due to the presence of an unambiguous radius phase space

in the former. Size distributions in the dispersed phase can easily be accounted for in the LE

approach. Moreover, as will be clearly shown in this work, insight into the unclosed terms in

the governing equations for mean mass, mean momentum and turbulent kinetic energy (TKE)

in the EE approach can be gained from the corresponding unclosed terms in the LE approach.

The issue of whether the Lagrangian and Eulerian descriptions of the carrier phase are

interchangeable as in single–phase flows (Pope, 1985) is investigated in this work. It is shown

that the carrier phase is represented consistently only by viewing it as a collection of “surrogate”

fluid particles. This viewpoint results in a new statistical description called the Lagrangian–

Lagrangian (LL) description of two–phase flows. The evolution equation for the carrier–phase

Lagrangian probability density is derived and shown to be consistent with the corresponding

Eulerian pdf equations.

The overarching goal of this work is to carefully develop the probability density function

formalism for each of the three statistical representations of two–phase flow viz., EE, LE and

LL. This involves clearly identifying fundamental events associated with a two–phase flow

and defining probabilities corresponding to each event. Note that ‘Eulerian’ and ‘Lagrangian’

are only frames of reference, and therefore the outcome of a statistical description of a two–

phase flow should not depend on the frame of reference. However, the level of information

embedded in each representation can be different, and one may require consistency conditions

to establish an equivalence between various representations. An equally important goal of

this study is to show that the EE and LE probabilistic representations lead to distinct sets of

governing equations for the two–phase flow.

The development of a fundamental and consistent mathematical description of two–phase

flows is important and necessary. Inevitably, terms that are unclosed appear in such a de-



5

scription and analogous to that in single–phase flows the notorious closure problem is observed

in the statistical description of two–phase flows. A mathematical theory for a physical phe-

nomenon is complete and useful only when tractable models are proposed for the unclosed

terms that arise from the mathematical description. In this work, we propose a new model

in the context of the LL representation of two–phase flows called the dual–timescale Langevin

model (DLM). This model has a unique feature that it can simultaneously capture certain

fundamental timescales seen in two–phase flows and their disparate trends with certain non–

dimensional quantities – a feature that is as yet unavailable in other two–phase models in

literature. A new multiscale interaction timescale is also proposed that captures the multiscale

nature of the particle–turbulence interaction in a two–phase flow.

Unclosed terms in the mathematical description of a two–phase flow usually shed light on

the physical phenomena that such terms describe or how such terms drive the evolution of a

physical quantity. However, the exact form of the models for these unclosed terms is not easily

evident from the functional form of the unclosed terms. One then has to resort to datasets from

carefully controlled computer simulations and experiments, where an attempt has been made

to quantify the unclosed terms, to arrive at a workable model. These findings when combined

with physical intuition yield simple and tractable models for the unclosed terms, yet possessing

the capability of correctly reproducing trends of key two–phase statistical quantities such as

phasic turbulent kinetic energy and velocity autocorrelations with non–dimensional quantities.

It is worth noting that DLM is in fact a fruitful result of such an exercise. Thus findings

from carefully constructed computer simulations and experiments form an integral part of the

development of a mathematical description for two–phase flows.

Experiments give the most realistic insight into the behavior of a two–phase flow (see

Poelma and Ooms (2006) for a recent review). Ensuring controlled ambient conditions, such

as excluding gravity to probe particle–laden isotropic turbulence, under which experiments are

performed is also important before attempting to derive conclusions from the study. Insight into

the behavior of unclosed terms in the governing equations for a two–phase flow can be gained

in simple experiments that isolate effects of gravity and flow inhomogeneities. Starting from
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the classic experiments of Snyder and Lumley (1971) to the recent experiments by Hwang and

Eaton (2006), important landmarks in understanding particle–laden flows such as the ability

to negate effects of gravity and achievement of large turbulent Reynolds numbers have been

realized. Recent experiments surmise that the local dissipation around particles contribute

significantly towards turbulence attentuation in a turbulent particle–laden flow (Hwang and

Eaton, 2006). Such refined experimental investigation would also further the development of

high fidelity computational models for two–phase flows.

Direct numerical simulations (DNS), on the other hand, offer an alternative means of

investigating a particle–laden turbulent flow. Speed and computer memory requirements are

the only limiting factors for such simulations. Several DNS techniques are available in literature

that can be classified broadly into those that solve for the flow around each particle (‘true’ DNS)

and those that do not. Among the techniques that do not solve the flow around each particle,

the point–particle (PP) approximation is the most popular and is valid only in simplified

two–phase flow regimes (Sundaram and Collins, 1999; Boivin et al., 1998; Mashayek et al.,

1997). In this approximation, the particles are evolved as per the particle velocity evolution

equation proposed by Maxey and Riley (1983), while the carrier phase is solved using the

full Navier–Stokes (NS) equations. The effect of the dispersed phase is taken into account

through source terms in the gas–phase NS equations (two–way coupling). However, since the

boundary layers around particles are not accounted for directly, its effect on the gas–phase

turbulence is usually modeled (Sundaram and Collins, 1999), or neglected, as in most PP

DNS. Hwang and Eaton (2006) conclude by means of their experiments that such PP DNS

cannot account for the increased dissipation around particles that is essential for accurately

quantifying the turbulence attenuation by particles. DNS techniques that do solve for the flow

around each particle, on the other hand, are the fictitious domain methods (Patankar et al.,

2000), discrete time immersed boundary methods (Yusof, 1996), continuous time immersed

boundary methods (D. Goldstein and Sirovich, 1993) and Lattice–Boltzmann methods (Ten

Cate et al., 2004). The benefit of such methods is that minimum modeling is involved in solving

for the flow past immersed bodies, and most importantly, the flow around each particle can be
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resolved accurately. The only modeling enters when the particles come close or collide. This is

when lubrication forces or spring–damper analogies are used to rebound the colliding particles.

Accurate estimates of the effect of the particles on the turbulence spectrum can be obtained

using such methods. Although attractive, such DNS are limited to large particles (particle

Reynolds numbers � 1). Body–fitted DNS, wherein the computational grid closely follows the

shape of the immersed body, also come under the classification of true DNS. However, moving

particles are very difficult to simulate using body–fitted grids and are computationally more

expensive than immersed boundary methods.

The paucity of carefully controlled experiments or computations that report information

useful and pertinent to the modeling community forces computational models to be based on

findings from available published data in literature. Models proposed in this work rely on

the findings from such experiments or computer simulations. Nevertheless, careful analysis of

these findings reveal important and fundamental phenomena that any two–phase flow model

must necessarily capture in order to be predictive in more complex flows.

Multiphase flows are sometimes referred to as multicomponent flows as in Drew and Pass-

man (1999). Multicomponent in the context of mass transport phenomena (Bird et al., 2002)

generally refers to the presence of several chemical species in a physical system which need

not necessarily have several phases in it. For instance, a system of water and steam is a

one–component two–phase flow, while a system of water and air bubbles is a two–component

two–phase flow. In this study the term multiphase flow refers to a system containing two or

more phases that have clearly identifiable boundaries or interfaces (at the continuum level of

description) separating them. Constant density and variable–density multiphase flows are con-

sidered in this study. The thermodynamic state of the multiphase system which is important

in evaporating droplet–laden flows is not discussed in this study. We also do not explicitly

carry a scalar composition vector for the sake of brevity. Inclusion of a scalar composition

vector into the theoretical development presented in this work is straightforward.
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1.2 Research Objectives

A need to develop a unifying theoretical foundation for the single–point description of

two–phase flows was identified earlier. A probabilistic formalism of the two–phase flow theory

has several advantages. Quantities that are unclosed at the level of the means (such as triple

velocity correlations, Reynolds stresses) are closed at the level of the pdf. The LL represen-

tation provides new insight into the description of the carrier phase. In this regard some of

the pertinent questions on the representation of a two–phase that this work will focus on and

attempt to answer are:

1. What are the fundamental events that characterize a two–phase flow in the EE and LE

statistical represenations? What are the probabilities corresponding to each one of these

events? What are the relations among these various probabilities? What is the minimum

set of events and probabilities that is required to completely characterize a two–phase

flow?

2. What are the consistency conditions that need to be satisfied in order to achieve a cor-

respondence between the EE and LE representations? What is the level of information

available in each representation? What is the ease or difficulty in going from one repre-

sentation to the other?

3. What are the advantages and disadvantages of the LL description of a two–phase flow?

At what level do the EE, LE and LL statistical representations correspond with each

other?

At the outset it will be noted that significant contributions to the EE and LE statistical rep-

resentations of a two–phase flow are available in literature (Drew, 1983; Drew and Passman,

1999). Rather than repeat the derivation of the governing equations for important two–phase

flow quantities such as the mean mass, mean momentum and second moment using Drew’s

formalism, the focus of this work is to unify the existing statistical representations, show their

correspondence with the LL representation and compare with existing statistical representa-
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tions (such as Drew’s formalism), all performed with the the fundamental probabilities as the

basis.

Once a framework for the events and probabilities associated with a two–phase flow in the

context of the EE, LE and LL statistical representations has been established, the next step

is to derive transport equations for these probabilities. From the transport equations of the

probabilities associated with the fundamental events, one can arrive at governing equations

for the phasic mean mass, mean momentum and second moment. In this context, pertinent

questions that this work will attempt to answer are:

1. What are the transport equations for the various probabilities corresponding to the fun-

damental events associated with a two–phase flow in the EE and LE representations?

2. What are important terms that drive the transport of these probabilities in phase space?

3. Can governing equations for the mean mass, mean momentum and TKE that are available

in literature be related to those derived from the transport equations for the probabilities?

An exact description of a two–phase flow system will inevitably lead to terms in the gov-

erning equations for the mean mass, mean momentum and TKE that are unclosed. After

careful identification of such terms, it is necessary that simple and tractable theoretical models

be proposed for these terms in order for the theory to be useful to the engineering commu-

nity. It is important to note that every such model in turn implies a modeled form of the

exact governing equations for the mean mass, mean momentum and TKE in a two–phase flow.

Determining appropriate models for unclosed terms is driven by the need to match predicted

trends of important two–phase quantities with non–dimensional parameters that character-

ize the two–phase flow system available from direct numerical simulations or experiments on

two–phase flows. Since in typical turbulent two–phase flows, the particles are influenced by a

range of time and lengthscales of the carrier–phase turbulence, it is important for two–phase

models that describe the evolution of mean quantities to capture this multiscale nature of

particle–turbulence interaction. Since the number of unclosed terms tends to increase with

the complexity of the system, the range of two–phase flows considered, as far as developing
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tractable models is concerned, are restricted to particle–laden homogeneous turbulence. In

this context, pertinent questions that this work will attempt to answer are:

1. Can tractable models that capture the multiscale nature of particle–turbulence inter-

action for a simple two–phase flow such as particle–laden homogeneous turbulence be

proposed?

2. What are the evolution equations implied by such models and can one identify a corre-

spondence between the exact and modeled governing equations?

3. How do model predictions match with datasets from direct numerical simulations or

experiments?

Highlights of this study on the probability density function formalism for two–phase flows in

terms of theory and modeling are shown pictorially in Figure 1.2. The carrier–phase description

in the EE and LE approaches are identical, however the dispersed phase is represented as a

random–field in the EE representation, while it is represented as a point process in the LE

representation. The EE and LE representations lead to distinct governing equations for a

two–phase flow, which in general cannot be simply related. The dispersed phase description

in the LL representation is identical to that in the LE representation. However, the carrier

phase is represented as a collection of “surrogate” fluid particles, in order to be consistent

with the point process description of the dispersed phase. Corresponding to LE modeling, a

new multiscale interaction timescale is developed to capture the multiscale interaction of the

dispersed phase with a turbulent carrier phase, while a new dual–timescale Langevin model

is proposed to simultaneouly capture the disparate timescales associated with dispersion and

dynamics (interphase TKE transfer) in a two–phase flow. These models are validated by

comparing with datasets from direct numerical simulations of canonical two–phase flows.

In summary, the principal objectives of this study are to:

1. Develop a unifying theoretical foundation for the statistical representation of two–phase

flows in the EE, LE and LL representations using the probability density function for-

malism
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2. Develop models for unclosed terms that are validated by studying their ability to reproduce

trends, observed in available DNS datasets, of important statistical quantities associated

with a two–phase flow with non–dimensional parameters.

1.3 Outline of the thesis

The thesis begins with a literature survey of the theoretical advances in the probabilistic

formulations of two–phase flows in Chapter 2. Some of the so–called probability density func-

tion methods available in literature fall under the EE statistical representation, while the rest

fall under the LE statistical representation of two–phase flows. There have been attempts to

relate the EE representation to the LE representation through the use of a EE probabilistic

formalism. The LE probabilistic formulation is based on the droplet distribution function

and has a sound mathematical basis in the theory of point processes. All these approaches

are reviewed in this chapter. Fundamental events and corresponding probabilities related to

the EE representation are introduced in Chapter 3. Transport equations for the fundamental

probabilities are derived in the same chapter. Evolution equations for the mean mass, mean

momentum and phasic Reynolds stresses are derived from the transport equations for the prob-

abilities. The LE probabilistic formalism is reviewed and the relation between the EE and LE

approaches is presented here. Chapter 4 introduces the new LL statistical representation and

investigates relationships with the EE and LE representations. Chapter 5 deals with modeling

in the context of the LE statistical representation. A new multiscale interaction timescale is

proposed to replace the particle response timescale which is generally used as a timescale for

interphase momentum and interphase TKE transfer in widely–used LE implementations. A

new dual–timescale Langevin model is proposed in Chapter 6 in the context of the LL represen-

tation of two–phase flows. The uniqueness of this model is in the existence of two timescales

in a single model that can capture two fundamental and disparate timescale trends of key

statistical quantities with non–dimensional parameters that characterize the two–phase flow

system. Predictions of the model in particle–laden freely–decaying turbulence and homoge-

neous shear are presented here. Predictions from DLM for non–evaporating and evaporating
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droplets in stationary turbulence are presented in Chapter 7. Chapter 8 presents the highlights

and principal conclusions of this work. Some ideas on future work are outlined in the same

chapter.
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Single realization

Multiple realizations

V

Figure 1.1 The top panel shows a snapshot of a single realization of
a two–phase flow that is enclosed by a circular control vol-
ume V . As the size of the control volume is decreased
(shown by the direction of the arrow) to an infinitesimal
size, the volume may either completely occupy the carrier
phase (as shown) or the dispersed phase. The lower panel
shows various snapshots of multiple realizations the same
two–phase flow. In this case, even if the volume is de-
creased to an infinitesimal size, it is not occupied entirely
by one phase for all realizations (not considering pathologi-
cal cases). Thus, meaningful statistics from the two–phase
flow can be inferred only by observing several realizations of
a two–phase flow. This observation leads to the concept of an
ensemble average.
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Figure 1.2 Pictorial overview of the thesis showing the principal outcomes
of this work.
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CHAPTER 2. LITERATURE REVIEW – PROBABILITY DENSITY

FUNCTION METHODS FOR TWO–PHASE FLOWS

A literature search reveals that only a handful of researchers have embarked on develop-

ing the probability density function (pdf) formalism for two–phase flows. Most of these pdf

methods can be grouped under the Eulerian–Eulerian (EE) statistical representation of two–

phase flows, while a few others can be grouped under the Lagrangian–Eulerian (LE) statistical

representation.

2.1 Eulerian–Eulerian statistical representation of two–phase flows

In this section, the following nomenclature will be adopted so that the notation is consistent

throughout. The velocity of the two–phase flow field will be denoted U, while the phasic

velocity will be denoted U(β). The indicator function that sifts the phase β from a two–phase

flow will be denoted Iβ(x, t) and defined as

Iβ(x, t) =


1 if x is in phase β at time t

0 if x is not in phase β at time t.
(2.1)

The volume fraction of the βth phase will be denoted αβ, which is given as the expectation of

the indicator function αβ(x, t) = 〈Iβ(x, t)〉. Here the expectation implies an ensemble average,

however, the exact meaning of the angled brackets will be clarified in each formalism.

2.1.1 Single–point pdf formalism

Zhu et al. (2000) proposed a single–time, single–point pdf for the gas and liquid phases.

The starting point of their formalism is the concept of a level surface (Libby, 1976; Sethian,
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Figure 2.1 A region of the two–phase flow field containing an interface
which is represented as a level surface γ. The region γ < γI

represents phase 1, γ > γI represents phase 2 while γ = γI

represents the interface. Also shown are the normals n1 and n2

pointing away from the phases 1 and 2, respectively.

1996) denoted γ(x, t) in this work. In a two–phase flow field, the interface between the two

phases is denoted γI with γ < γI representing the region occupied by phase 1 and γ > γI

representing the region occupied by phase 2 (see Fig 2.1). The unit vectors normal to the

interface are given as

n(1) =
∇γ
|∇γ|

and n(2) = −n(1) = − ∇γ
|∇γ|

.

At the level surface, the following governing equation for γ holds

∂γ

∂t
+ U

(β)
j

∂γ

∂xj
= (U I

j − U
(β)
j )n(1)

j |∇γ| (2.2)

Using the level surface γ, they define an indicator function Iβ(γ) as

If (γ) = H(γI − γ) (2.3)

Id(γ) = 1−H(γI − γ), (2.4)

where H is the Heaviside function, and so If + Id = 1. They derive an evolution equation for

Iβ as
∂Iβ
∂t

+ U
(β)
j

∂Iβ
∂xj

= −(−1)k(U I
j − U

(β)
j )n(1)

j |∇γ|δ(γ − γI) (2.5)
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where k = 1 if β = f and k = 2 if β = d. Further, they define the two–phase flow density as

ρ = If (γ)ρf + Id(γ)ρd (2.6)

and the two–phase velocity as

U = If (γ)U(f) + Id(γ)U(d). (2.7)

Multiplying Eq. (2.2) by Iβ and summing over β = {f, d} results in an alternate equation for

γ in terms of the two–phase velocity U as

∂γ

∂t
+ Uj

∂γ

∂xj
= (U I

j − U
(f)
j )n(1)

j |∇γ| − (U I
j − U

(d)
j )n(1)

j |∇γ|

= −(U (f)
j − U

(d)
j )n(1)

j |∇γ| (2.8)

They then derive an evolution equation for the pdf of the two–phase velocity field fUγ(V, γs;x, t)

using the procedure outlined in Pope (1985) as

∂fUγ

∂t
+ Vi

∂fUγ

∂xi
= − ∂

∂Vi
[〈Ai|V, γs〉 fUγ ]− ∂

∂γs
[〈B|V, γs〉 fUγ ] (2.9)

where V and γs are sample space variables corresponding to the random variables U and γ,

respectively, and B = −(U (f)
j −U (d)

j )n(1)
j |∇γ|. The probability that the phase β exists at point

x is given as

〈Iβ〉 =
∫∫

Iβ(γs)fUγ(V, γs)dVdγs (2.10)

while the mean velocity in phase β is given as

〈U(β)〉 =
1
〈Iβ〉

∫∫
Iβ(γs)VfUγdVdγs (2.11)

Velocity pdfs in each phase fUγ|Iβ
(V, γs|Iβ;x, t) are defined as

fUγ|Iβ
=

Iβ
〈Iβ(γ)〉

fUγ . (2.12)

The above velocity pdf evolves according to

∂fUγ|Iγ

∂t
+ Vi

∂fUγ|Iγ

∂xi
=− ∂

∂Vi

[
〈Ai|V, γs〉 fUγ|Iγ

]
− ∂

∂γs

[
〈B|V, γs〉 fUγ|Iγ

]
+ (−1)kδ(γ − γI) 〈B|V, γs〉 fUγ|Iγ

(2.13)
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Zhu et al. (2000) attempt to relate their dispersed phase Eulerian pdf to the droplet distribution

function (ddf) proposed by Williams (1958). They first integrate the earlier defined phase

velocity pdf over all γ space, after introducing an additional radius phase space, as

fUR|Id
(V, r|Iβ ;x, t) =

∫
fURγ|Iβ

(V, r, γs|Iβ;x, t)dγs (2.14)

and relate the ddf to the above pdf as

f(V,x, r, t) = fUR|Id
(V, r|Iβ;x, t)n(x, t). (2.15)

Implicit in the above relation is the assumption that the Eulerian pdf fUR|Id
is equal to the

conditional joint pdf of velocity and radius (Subramaniam, 2001c, 2000):

fUR|Id
(V, r|Iβ;x, t) = f c

VR(V, r|x, t). (2.16)

It is shown in Section 3 that this relationship is valid only under restrictive conditions of

homogeneous two–phase flow with monodisperse radius pdf, thereby rendering the work of

Zhu et al. (2000) applicable only to a certain class of two–phase flows.

2.1.2 Two–point pdf formalism

The starting point for the pdf formalism proposed by Peirano and Minier (2002) is a two–

point Lagrangian pdf defined such that (in the absence of scalars)

fL
fp(yf ,Vf ,yp,Vp; t) dyfdVfdypdVp

gives the probability of finding a pair of particles (one fluid point ‘f ′ and one ‘dispersed’ particle

‘p′) with positions in the range (yk,yk + dyk), velocities in the range (Vk,Vk + dVk), and a

so–called two–point Eulerian distribution function defined such that

fE
fp(Vf ,Vp;xf ,xp, t) dVfdVp

is the probability that at time t and at positions xf and xp, a fluid–point and a particle exist

with velocities in the range (Vk,Vk +dVk). This is not a pdf since one cannot guarantee with

probability 1 that there is a fluid point at point xf and a particle at point xp.
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Two marginal Lagrangian pdfs are defined as

fL
β (Vβ,yβ; t) =

∫
fL

fp(yf ,Vf ,yp,Vp; t) dyβcdVβc (2.17)

where βc is the complement of β (i.e. when β = f , then βc = p). Two marginal Eulerian

distribution functions can be defined as

fE
β (Vβ ;x, t) =

∫
fE

fp(Vf ,Vp;xf ,xp, t) dVβcdxβc . (2.18)

by taking the limit xf = xp = x. At the same point x, the marginal Eulerian distribution

functions satisfy a relation∫
fE

f (Vf ;x, t)dVf +
∫
fE

p (Vp;x, t)dVp = 1, (2.19)

and

αβ(x, t) =
∫
fE

β (Vβ;x, t)dVβ, (2.20)

which leads to the relation

αf (x, t) + αp(x, t) = 1, (2.21)

where αβ is the probability that the point x is occupied by the phase β. They further pro-

pose a relationship between the Eulerian and Lagrangian representations analogous to that in

single–phase flows, with the Lagrangian pdf serving as a transition density. Upon adopting

a trajectory point of view for the fluid and dispersed phases, they derive a Fokker–Planck

equation for the evolution of the Lagrangian joint fluid–particle pdf fL
fp. From this evolution

equation, they derive the mean field equations in each phase.

As far as the Lagrangian approach is considered, it is shown by Subramaniam (2000)

that in developing the Lagrangian description of the dispersed phase, the notion of a single–

droplet or particle is lost. This is due to an intermediate symmetrization of the Liouville pdf

corresponding to the dispersed phase that is essential to arrive at a unique single–particle pdf.

Therefore, the single–particle pdf does not characterize events associated with a single–particle

(or droplet), but events associated with surrogate particles. It is then unclear as to what events

the “Lagrangian” pdf for the dispersed phase in the two–point pdf formalism of Peirano and
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Minier (2002) characterizes. Moreover, a prescription for a Lagrangian description of the

dispersed phase should make a connection with the spray equation formalism which has a

sound foundation in the theory of point processes (Subramaniam, 2000). Such a connection is

not made in the work of Peirano and Minier (2002).

The relationship between the Eulerian joint pdf of velocity and radius in the dispersed

phase and the joint pdf of velocity and radius from the Lagrangian (spray equation) formalism

bear a complicated relationship with each other; these relationships are clearly laid out in this

work. It is therefore essential to revisit the formalism of Peirano and Minier (2002) in the

light of the observations made in this work.

In order to derive the mean field equations in the two–fluid formalism, Peirano and Minier

(2002) use a Fokker–Planck equation, which essentially implies that the starting point for

the derivation of the mean equations is a model. In this work, it is shown that no such

assumptions are required to derive the mean field equations in the Eulerian–Eulerian statistical

representation. Starting from an exact evolution equation for the single–point phasic Eulerian

pdf, the ensemble averaged mean equations are derived and these are shown to be identical to

the averaged equations of Drew (1983).

2.1.3 Kinetic equation formalism

A concise review of the kinetic equation formalism (see for instance, Derevich and Zaichik,

1988; Zaichik, 1999; Reeks, 1992) is available in Mashayek and Pandya (2003). The starting

point of the kinetic equation formalism is the Lagrangian equation of motion for a particle

suspended in a turbulent flow:

d

dt
Xp = Vp (2.22)

d

dt
Vp = Ap, (2.23)

where Xp, Vp and Ap are the particle position, velocity and acceleration, respectively. On

defining a fine–grained density as

f ′(x,v, t) = δ(x−X)δ(v −V),
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where δ is the Dirac delta (see Appendic C in Pope (2000)), the evolution equation for the

fine–grained density can be obtained, in the absence of collisions, as

∂f ′

∂t
+
∂(vif

′)
∂xi

+
∂(Aif

′)
∂vi

= 0 (2.24)

If Stokes drag is assumed for the particle, then a drag model of the form

d

dt
Vp = Ωp(Uf −Vp)

holds, where Ωp is the particle response frequency and Uf is the fluid–phase velocity. Decom-

posing the mean velocity of the fluid phase as Uf = 〈Uf 〉+u′f and substituting into Eq. (2.24)

results in, after ensemble averaging,

∂f

∂t
+
∂(vif)
∂xi

+
∂

∂vi

[
Ωp(〈Uf i〉 − vi)f

]
= − ∂

∂vi

[
Ωp〈u′if〉

]
, (2.25)

where f is the so–called ‘phase–space’ density which is defined as f = 〈f ′〉 and

−∂ [Ωp〈u′if〉] /∂vi is called the ‘phase–space diffusion current’ (Reeks, 1991). Much of the

effort in the kinetic equation formalism has been devoted to determining appropriate closures

for the term containing the correlation between the fluctuating velocity and the phase–space

density 〈u′if〉. An implicit assumption in this formalism is that the mean velocity in the

fluid–phase is known from a Reynolds–averaged solution.

Reeks (1992) employed the Lagrangian history direct interaction approximation due to

Kraichnan (1965) and proposed a general form for the phase space diffusion current as

Ωp〈u′if〉 = −
[
µji

∂

∂vj
+ λji

∂

∂xj
+ γi

]
f

that is invariant to a random Galilean transformation (Kraichnan, 1977), which amounts to

applying a random translational velocity (in magnitude) to the carrier phase velocity that

varies for each realization of the flow but is otherwise constant in space and time. The terms

λ, µ and γ are called the dispersion tensors and, for homogeneous flows, are given as

λji = 〈∆xj(x,v, t|t0)Ωpu
′
i(x, t)〉

µji = 〈∆vj(x,v, t|t0)Ωpu
′
i(x, t)〉

γi = −
〈

∆xj(x,v, t|t0)
∂

∂xj
Ωpu

′
i(x, t)

〉
,
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where

∆xj(v,x, t|t0) =
∫ t

0
eΩp(s−t)u′j(x,v, t|s) ds

∆vj(v,x, t|t0) = Ω−1
p

∫ t

0
(1− eΩp(s−t))u′j(x,v, t|s) ds

represent changes in position and velocity due to the fluctuations Ωpu
′
i along the particle

trajectory starting from time t0 and passing through the point (x,v) at time t.

If u′ is assumed to be a Gaussian random variate, the Furutsu–Novikov–Donsker formula

(FND) can be used to determine an analytical expression for the correlation 〈u′if〉. The FND

formula is given as:

〈u′if〉 =
∫
〈u′i(x, t)u′j(x′, t′)〉

〈
δf

δuj(x′, t′)dx′dt′

〉
dx′dt′

where 〈δf/(δuj(x′, t)dx′dt)〉 is the functional derivative of f with respect to u′. Derevich

(2000), Zaichik (1999) and Hyland et al. (1999a) use the FND formula to derive the closed

phase density transport equation. The final expression for the phase–space diffusion current

derived by Hyland et al. (1999a) using the FND formula is identical to that derived by Reeks

(1992). Details can be found in Hyland et al. (1999a) and Mashayek and Pandya (2003).

Predicted particle phase Reynolds stresses from the kinetic equation formalism have been

compared with a LES of two–phase flow in a simple shear with overall good agreement in Hy-

land et al. (1999a,b). In that study, the carrier phase mean quantities like the fluid Reynolds

stresses, turbulent kinetic energy and turbulent dissipation rate that are required in the dis-

persion tensors λ, µ and γ are all taken as input from the LES. Derevich (2000) uses the

fluctuating dispersed–phase velocity as the phase space variable and derives a closure for the

phase space diffusion current. Pozorski and Minier (1999) derive a closure for the same term

using the cumulant expansion method of Van Kampen (1992) for linear stochastic differential

equations. Since the original form of the kinetic equation contains information only at the level

of the dispersed phase, Pozorski and Minier (1999) propose an extension of the phase space by

including the fluid velocity ‘seen’ by the particles as an additional phase space variable. They
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propose a model similar to the generalized Langevin model (Haworth and Pope, 1986) for the

fluid velocity ‘seen’ by the particles. Pandya and Mashayek (2001, 2003) have extended kinetic

equation formalism to non–isothermal flows by including temperature as an additional phase

space variable.

The work done in the kinetic equation formalism is notable since this is an attempt to

connect kinetic theory with the theory of particle–laden flows. However, there are several

issues that need to be considered like the affect of ordering, finite number of particles and

the need for an intermediate symmetrization of the distribution function (see Subramaniam

(2000) for more details) that precludes a straightforward extension of the transport equation

for the distribution function used in kinetic theory to particle–laden flows. Although the

kinetic equation formalism is often referred to as a ‘probability density function’ method, no

information on the ensemble of events and fundamental probabilities corresponding to the

events associated with a particle–laden flow are presented.

2.2 Lagrangian–Eulerian statistical representation of two–phase flows

2.2.1 Spray equation formalism

The spray equation is an evolution equation for the droplet distribution function

f(x,v, r, t) (Williams, 1958), which is defined such that

f(x,v, r, t) dx dv dr

gives the expected number of droplets with positions in the range x,x + dx, velocities in the

range v,v+dv and radii in the range r, r+dr at time t. Williams noted that if the droplets have

a low velocity relative to the gas with small inter droplet collision duration times compared

to the time between collisions, droplets can be considered spherical and a single parameter –

radius r – can be used to characterize the size and shape of the dispersed phase. O’Rourke

(1981) extended the phase space over which the ddf is defined to include effects of sphericity,

droplet oscillation and temperature. In his seminal work, O’Rourke laid a detailed framework

for theory and computation of evaporating droplet–laden flows with chemical reactions based
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on the spray equation. The popular KIVA family of codes (Amsden et al., 1989) is based on

this work.

The mathematical foundation for the LE formalism based on the spray equation was rig-

orously derived by Subramaniam (2001c, 2000) using the theory of point processes. In this

dissertation, the LE formalism based on Williams’ spray equation is considered as a funda-

mental description of the dispersed phase. As such, a detailed description of this formalism is

deferred until Section 3.

As the name suggests, the spray equation formalism was originally proposed for sprays.

However, its theoretical development is general and is applicable to any particle-laden or bubbly

flows that satisfy certain restrictions of size on the dispersed phase elements.

2.2.2 Sectional method formalism

Based on Williams’ spray equation (Williams, 1958), the essence of the sectional method

is to divide the size distribution of the dispersed–phase elements (DPE) into several ‘sections’,

instead of representing the entire size distribution either through a particle method such as the

one used in the popular KIVA family of codes (Amsden et al., 1989). First proposed by Green-

berg et al. (1993), this method involves writing sectional conservation equations that govern

the evolution of the spray properties such as velocity, radius (or spray volume), vaporization

and coalescense in each section. This method is not a unique theory in itself, but relies on

the spray equation formalism for its foundation. It is essentially a means to efficiently seek

solutions to the spray equation. A brief synopsis of the sectional method follows.

Greenberg et al. (1993) begin with the spray equation proposed by Williams which is an

evolution equation for the droplet distribution function (ddf) given as

∂f

∂t
+
∂(Rf)
∂v

+
∂(uif)
∂xi

+
∂(Fif)
∂ui

= Ψ.

The notation used in the spray equation above is taken from Greenberg et al. (1993). According

to them, v is the volume corresponding to each DPE, R is the rate of volume change of the

dispersed–phase element, F is the ‘drag force’ exerted on the droplet and Ψ are source terms
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corresponding to vaporization, collision and coalescence1. The symbol u is used here to denote

velocity. They divide the DPE volume distribution into N sections such that

Section I = {v|vLI
≤ v ≤ vHI

}, I = 1, 2, . . . , N.

Instead of working on the ddf f(x,v, v, t), which contains a dependence on the velocity, they

integrate out the velocity dependence from the spray equation and define a number density in

position and volume phase space as

f̂(x, v, t) =
∫
f(x,u, v, t)dv.

Note that the radius phase space has been replaced by a volume phase space in the definition

of the ddf. The spray is characterized by means of the following general function

q(x, v, t) = αvξ f̂(x, v, t).

When ξ = 0 and α = 1, q is the number density defined earlier; when ξ = 1 and α = ρd, where

ρd is the thermodynamic density of the dispersed phase, and ξ = 1, q is the mass concentration

in phase space. Thus, the total spray property in any section can be computed as

QI(x, t) =
∫ vHi

vLi

q(x, v, t) dv for I = 1, 2, . . . , N

The evolution equation for the quantity QI is then derived as

∂Qi

∂t
+
∫ vHi

vLi

αvξ ∂(R̃f̂)
∂v

dv +
∂

∂xi

∫ vHi

vLi

W̃if̂αv
ξdv =

∫ vHi

vLi

αvξΨ̃dv

where

f̂ =
∫
u
f du

R̃ =
1
f

∫
u
Rf du

W̃ =
1
f

∫
u
uf du

Ψ̃ =
1
f

∫
u

Ψf du

1In Chapter 3, it will be shown that quantities such as the drag force and vaporization rate are conditional
expectations and are not as intuitive as is presented by Greenberg et al. (1993)
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Greenberg et al. (1993) make a series of assumptions such as invoking the d2 law for vaporiza-

tion, assuming that f̂ is uniform in each section, and that coalescence of two droplets results

in a new droplet, where the two droplets can be either from two different sections or from the

same section, resulting finally in the so called ‘spray sectional conservation’ equation. More

details are available in Greenberg et al. (1993).

2.3 Summary

Although several researchers have studied the pdf formalism for two–phase flows, it is

unclear from these attempts that there are essentially two distinct approaches in the EE and LE

formalism, respectively, to such a formalism. Some researchers attempt to make a connection

between their pdf formalism and the spray equation formalism, however, it is shown in this

work that such a connection cannot be established in general for a two–phase flow. A two–point

pdf formalism is intuitively attractive and can potentially provide a high–fidelity description

of a two–phase flow. However, in proposing a two–point pdf formalism, one has to ensure

that the single–point limit of such a formalism is correctly connected to established single–

point descriptions of two–phase flows. The kinetic equation formalism makes an important

connection between kinetic theory of gases and particle–laden flows. However, this connection is

based on several assumptions which are in general not satisfied by two–phase flows encountered

in reality. A rigorously–established LE description of a two–phase flow is the spray–equation

formalism, which has been derived starting from the theory of point processes and forms the

basis for the LE description proposed in this work.

Since the major emphasis of this work in on developing a consistent theoretical descrip-

tion of two–phase flows, a literature review of current modeling strategies in the LE and LL

formalism is deferred to the chapters on modeling viz., Chapter 5–7.

Also the modeling advances presented in this work are in the context of the LE and LL

statistical representations of two–phase flows. For currently–used modeling strategies in the

EE formalism, the reader is referred to reviews by Crowe et al. (1996); Shirolkar et al. (1996);

Drew (1983); Drew and Passman (1999). It is noteworthy that the LE and LL models proposed
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in this work also imply models in the EE formalism.



28

CHAPTER 3. PROBABILISTIC REPRESENTATION OF TWO–PHASE

FLOWS

This chapter is a manuscript in preparation titled “A comprehensive probability density

function formalism for multiphase flows” co–authored with S. Subramaniam.

A theoretical foundation for two widely–used statistical representations of multiphase flows,

namely the Eulerian–Eulerian (EE) and Lagrangian–Eulerian (LE) representations, is estab-

lished in the framework of the probability density function formalism. Consistency rela-

tionships between fundamental statistical quantities in the EE and LE representations are

rigorously established. It is shown that these fundamental quantities in the two statistical

representations bear a simple relationship with one another only under conditions of spatial

homogeneity. Transport equations for the fundamental probability densities in each statistical

representation are derived. Governing equations for the mean mass, mean momentum and sec-

ond moment of velocity are derived from these transport equations. In particular, for the EE

representation, the fundamental pdf formalism is shown to naturally lead to the widely–used

ensemble averaged equations for two–phase flows. Galilean invariant combinations of unclosed

terms in the governing equations which need to be modeled are clearly identified. The cor-

respondence between unclosed terms in each statistical representation is established, which

serves in transferring information from one representation to the other, and in proposing new

models in either representation. Advantages and limitations of each statistical approach are

identified. The results of this work can serve as a guiding framework for direct numerical sim-

ulations of two–phase flows, which can now be exploited to precisely quantify unclosed terms

in the governing equations in the two statistical representations.
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3.1 Introduction

Statistical models of multiphase flow are inevitable because of the statistical variability

inherent in most multiphase flow applications. Moreover, information from single realizations

of a multiphase flow contain information that far exceeds the amount required for engineering

purposes. Therefore, averaged statistics of multiphase flows are of interest to the engineer-

ing community. Widely–used statistical representations of two–phase flows 1 can be broadly

classified as Eulerian–Eulerian (EE) or Lagrangian–Eulerian (LE), depending on the reference

frames underlying their formulation.

Historically, the EE statistical representation refers to a statistical approach wherein the

two–phases are represented at the level of the means, such as the mean densities, volume

fractions, mean momentum and second moments in each phase, with source terms due to

interphase interactions. A lucid account of this approach is given by Drew (1983) (see also Drew

and Passman (1999)) and extensions have been developed by Kataoka and Serizawa (1989). A

notable example of an ensemble–averaged EE implementation for chemically reacting or inert

multiphase flows is CFDLib (Kashiwa and Rauenzahn, 1994; Kashiwa and Gaffney, 2003).

The LE statistical representation refers to a statistical approach that represents the dis-

persed phase in a Lagrangian frame by a number density based on the location of dispersed–

phase element (DPE) 2 centers. The origin of this representation can be traced back to Williams

(1958) who proposed the droplet distribution function (ddf) and derived the spray equation,

which is the evolution equation for the ddf, from physical principles. In numerical implementa-

tions of the LE statistical approach, the spray equation is indirectly solved using particle–based

methods. Generally, the two primary components of such a particle–method solution are (i)

Lagrangian particles, with modeled drag and vaporization terms, that represents the ddf, and

(ii) a single–phase Reynolds averaged Navier–Stokes (RANS) closure for the carrier phase with

additional source terms representing the effects of the dispersed phase. An example of such an
1For simplicity, only two–phases are considered in this study. However, extension to multiphase flows is

straightforward.
2In this work, the phrase ‘dispersed–phase element’ is a generic term used to denote either rigid particles,

drops or bubbles.
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approach is the KIVA series of codes (Amsden et al. (1989); Amsden (1993)) used widely in

the automotive industry.

It is natural to seek a probability density function (pdf) formalism to describe two–phase

flows, given their statistical variability. There have been recent studies by several authors (see

for instance, Pozorski and Minier, 1999; Zhu et al., 2000; Peirano and Minier, 2002) to extend

pdf methods, which have been successful in single–phase turbulent reactive flows (Lundgren,

1969; Libby and Williams, 1980; Pope, 1985), to two–phase flows. In particular, Zhu et al.

(2000) derive an evolution equation for the Eulerian joint pdf for velocity and radius in the

dispersed phase, and show that this is identical to the evolution of the joint pdf of velocity and

radius in Williams’ spray–equation formalism. The so–called “kinetic equation” formalism for

the pdf of the dispersed–phase velocity has been studied by several researchers (see for instance,

Derevich and Zaichik, 1988; Zaichik, 1999; Reeks, 1992). Reeks (1992) used the pdf kinetic

equation formalism to arrive at continuum equations that describe the dispersed phase in

dilute particle–laden flows. In this approach, the acceleration term in the pdf kinetic equation

is simplified by assuming Stokes drag and the resulting phase–space “diffusion current” (Reeks,

1991) is closed using elaborate techniques (see Mashayek and Pandya (2003) for details on the

techniques used by various researchers to close this diffusion–current term). Simonin (1996)

proposed a kinetic equation for the probable number of particles in an infinitesimal volume in

position and velocity phase space (Lagrangian approach) that is similar to the spray equation.

He derives mean equations from the transport equation, while making an assumption that the

dispersed–phase volume fraction can be simply related to the number density, and refers to

these mean equations as “Eulerian” closures. Although the mean equations derived from the

spray equation are Eulerian quantities, his approach implicitly does not take into account of

the fact that there is a distinct EE approach to deriving “Eulerian” mean equations for the

two–phase flow.

It is noteworthy that researchers who studied the kinetic equation formalism attempt to

make an important connection between kinetic theory and particle–laden flows. However, the

several assumptions that the kinetic theory of gases is based upon fail to hold in almost all
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two–phase flows that are encountered in reality. There are several considerations unique to

particle–laden flows, such as (i) finite number of particles, (ii) non–negligible fluctuations of

particle number about the mean, (iii) non–identical distributions of particle positions that

results in ordering–dependent Liouville densities, and (iv) symmetrization of the Liouville pdf

to arrive at unique single–particle densities (Subramaniam, 2001c), that preclude a straight-

forward extension of kinetic theory to such flows.

It is also not clear from the aforementioned studies that there are two approaches – one in

the EE and the other in the LE statistical representation – to a pdf formalism for two–phase

flows. Yet, since the EE and LE statistical representations are essentially the description of

a two–phase flow in two reference frames, it is natural to expect that these representations

are related. A major challenge in describing two–phase flows, therefore, is to establish the

precise relationship between these two modeling approaches. Furthermore, the conditions

under which such a relationship holds, and conditions under which they do not, need to be

clearly established.

Establishing the exact form of the relationship between the two statistical representations

has far–reaching implications. Subramaniam and O’Rourke (1998) noted that computations

of some two–phase applications such as fuel sprays can potentially benefit by using the EE

modeling approach in the near–nozzle region, and the LE approach in the dispersed spray

region. Figure 3.1 shows a schematic for one such recipe for handover from a EE representation

to a LE representation in a typical spray. A pertinent question that arises in this context is

how would one transfer information from one representation to the other. The answer lies

in the exact relationship between these two approaches which will allow a consistent transfer

of flow information at the common boundary of the two regions. Some recent studies on

sprays in which the liquid core is represented using a Refined Level Set Grid method while the

atomized droplets are modeled using Lagrangian DPEs have been pursued (Kim et al., 2006).

In such calculations, if the consistency between the liquid core and the Lagrangian DPEs is

enforced at the level of the means, then the transfer of information from one representation

to the other will be dictated by the relationships between the EE and the LE representations.
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Figure 3.1 Schematic of a typical spray indicating the region where a han-
dover between the EE and the LE description is appropriate.
This handover requires consistency conditions to be satisfied be-
tween the two statistical representations at the common bound-
ary of the two regions.
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Ning et al. (2007) has proposed a new spray model using the Eulerian–Lagrangian Spray and

Atomization (ELSA) model after Blokkeel et al. (2003) in which an Eulerian description of the

spray for the region close to the injector and a Lagrangian description in the dilute regions of

the spray is used. The transfer of information from the Eulerian to the Lagrangian description

in such computations will require the knowledge of the relationships between corresponding

mean quantities and unclosed terms in the two representations.

More importantly, the exact form of such a relationship also enables us to address several

important, but hitherto unresolved, modeling issues such as:

(i) How can model predictions from both approaches be compared with one another? If

the EE and LE modeling approaches are employed to describe the same two–phase flow,

then under what conditions can predictions of key two–phase flow statistics from either

approach be directly compared?

(ii) How, and under what conditions, are the modeled terms in both approaches related, and

how can this relationship be used to guide model development in both approaches?

The primary objective of this work is to address these fundamental issues related to the

theoretical underpinnings of two–phase flows. In order to achieve this objective, the foundation

for the EE and the LE representations is first established in the context of the pdf formalism

using fundamental events and corresponding probabilities. It is shown in this work that the EE

probabilistic formalism naturally leads to the ensemble–averaged equations of a two–phase flow.

Although the LE formalism also results in mean equations, these equations are not identical

to the averaged equations in the EE formalism. It is shown in this work that fundamental

quantities in the EE and LE representations bear a simple relationship with one another only

under restrictive conditions of spatial uniformity (or statistical homogeneity) of the two–phase

flow, thereby rendering the work of Zhu et al. (2000) and Simonin (1996) applicable only

to a certain class of flows. This work also identifies a correspondence between the unclosed

terms in the governing equations for the mean mass, mean momentum and second moment

equations in the two representations. This correspondence enables one to transfer information

seamlessly from one representation to the other. The relationship between modeled terms is
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also useful in constructing improved models for the unclosed terms using data from direct

numerical simulations (DNS) of two–phase flows. An important contribution of this work is

the identification of Galilean invariant (GI) combinations of unclosed interphase interaction

terms that need to be modeled. No attempt is made to propose models for the unclosed terms

in this study. Rather, the precise form of the unclosed terms is derived, thereby establishing a

framework for appraising existing two–phase models and guiding future modeling efforts.

The rest of the paper is organized as follows. The foundation for the EE statistical repre-

sentation of a two–phase flow is established in Section 3.2 by identifying fundamental events

and corresponding probabilities. An important highlight of this section is the definition of

the pdf of instantaneous velocity conditional on the presence of a particular phase in a two–

phase flow. The basis for the LE statistical representation is also presented and key equalities

in this representation that are useful in the rest of the work are summarized in this section.

Relationships between fundamental quantities in the EE and LE statistical representations

are developed in Section 3.3. Evolution equations corresponding to the pdf of instantaneous

velocity conditional on the presence of each phase in the EE representation, and the droplet

distribution function in the LE representation, are derived in Section 3.4. These evolution

equations are used to derive governing equations for the mean mass, mean momentum and

second moment of velocity in each representation in Section 3.5. In the same section, the cor-

respondence between various unclosed terms in the governing equatons is identified. GI forms

of the unclosed terms in the governing equations that need to be modeled are also identified.

The advantages and limitations of each approach are discussed in Section 3.6. Section 3.7

summarizes the achievements and conclusions of this work.

3.2 Statistical Representations of Two–Phase Flow

The statistical representation of a two–phase flow using the EE and the LE approaches is

described. In the EE approach, the two–phase flow field is represented as a random field (Drew,

1983; Zhang and Prosperetti, 1994) while in the LE approach the dispersed phase is represented

as a marked point process (Edwards and Marx, 1996; Subramaniam, 2001c) imbedded in a car-
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rier flow. While the ensemble–averaged equations in the EE representation have been reported

in literature, this work provides insight into the underlying pdf framework. Fundamental events

and corresponding probabilities associated with a two–phase flow in the EE and LE framework

are developed in this section.

3.2.1 Random–field representation

Consider a realization of a two–phase flow with two distinct thermodynamic phases: a

carrier phase and a dispersed phase. Each realization can be thought of as an element of a

sample space Ω, which is the space of all possible realizations. See Figure 3.2. In a single

realization, and at a single space–time location, the phases are distiguished using an indicator

function Iβ(x, t) for the βth phase, defined as

Iβ(x, t) =


1 if x is in phase β at time t

0 if x is not in phase β at time t.
(3.1)

In two–phase flows, the phase indicator functions satisfy the relation

∑
β={f,d}

Iβ(x, t) = 1, (3.2)

where f represents the carrier phase and d represents the dispersed phase, for all (x, t). The

instantaneous two–phase velocity field U(x, t), which is defined in all the phases is a vector

field that is defined at each point x in the flow domain in physical space D. Similarly ρ(x, t) is

the thermodynamic mass density field that is defined in all the phases. It is assumed that (i)

the density difference between the two phases is sufficiently large so that the density field can

be used to distinguish between the two phases (i.e., the thermodynamic state of the fluid is not

close to the critical point), and (ii) the characteristic length scale of the interface over which

this density change occurs is so small that in a continuum description the density changes

discontinuously at the interface.

Different events can be used to characterize the state of a two–phase flow at a single space–

time location (x, t), and each leads to different probabilities and pdf’s. A complete Eulerian
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Figure 3.2 Schematic of the sample space Ω of all possible realizations of
a two–phase flow from which three realizations {ω1, ω2, ω3} are
shown. The indicator function Iβ(x, t) at a point (x, t), where
β = {f, d}, as defined in Section 3.2.1 is shown for each of the
three realizations. Also, primitive variables U – velocity and
P – pressure at the DPE surface (subscript s) and in the bulk
(subscript b) are shown. As discussed in Section 3.4, a sin-
gle–point statistical representation cannot distinguish between
these two locations in a two–phase flow.
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single–point pdf description of the two–phase flow will require the knowledge of the event

E1 = [U ∈ (u,u + du), If (x, t) = 1] , (3.3)

which is the event corresponding to the joint occurence of U falling in the range (u,u+du) at a

point x and the fluid phase being present at the same point. Here u is the sample space variable

corresponding to the random variable U. Note that If (x, t) = 1 automatically precludes the

occurence of the dispersed phase at that same point (i.e., Id(x, t) = 0 at the same point x). It

is noteworthy that (Sundaram and Collins, 1994a,b) have explored the simultaneous two–point

description of a two–phase flow in the random–field representation. We focus on the single–

point representation in this study since single–point models are more tractable, although there

is a loss of scale information when moving from the two–point to the single–point description.

Corresponding to the joint event E1, two unconditional events are:

E2 = [U(x, t) ∈ (u,u + du)]

E
(β)
3 = [Iβ(x, t) = 1],

where E2 is the event that U(x, t) belongs to (u,u + du) regardless of whether the phase β is

located at x, while E(β)
3 is the event that the phase β exists at x. Two conditional events are

also important

E4 = [U(x, t) ∈ (u,u + du)|Iβ = 1] (3.4a)

E5 = [Iβ(x, t) = 1|U = u], (3.4b)

where E4 is the event that U(x, t) belongs to (u,u + du) conditional on the presence of phase

β at location x, while E5 is the event that the location x is occupied by phase β conditional

on U = u at the same location.

Let the Eulerian joint pdf of U be denoted fU(u;x, t), where x and t are parameter–space

variables. The probabilities corresponding to each of the above events are (Subramaniam,
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2005):

P [E2] = P [U(x, t) ∈ (u,u + du)] =fU(u;x, t)du

P [E5] = P [Iβ(x, t) = 1|U = u] =pβ(u;x, t)

P [E1] = P [Iβ(x, t) = 1|U = u]P [U(x, t) ∈ (u,u + du)] =pβ(u;x, t)fU(u,x, t)du

P [E(β)
3 ] =

∫
P [Iβ = 1|U = u]fU(u)du =

∫
pβfU(u)du =αβ(x, t)

P [E4] = P [U(x, t) ∈ (u,u + du)|Iβ = 1] =
pβ(u)fu(u;x, t)

αβ(x, t)
du,

where pβ(u;x, t) is a phase probability function. Note that P [E(β)
3 ] defines a probability field

αβ(x, t):

αβ(x, t) ≡ P [Iβ(x, t) = 1]. (3.6)

It is important to note that αβ(x, t) is not a probability density in x. However, αβ is a

probability mass function in Iβ , which takes values {0, 1}. Another property of Iβ is that

P [Iβ(x, t) = 1] = 〈Iβ〉

Since fU is a pdf it has to satisfy the normalization condition:∫
fU(u;x, t)du = 1.

Also, let the probability P [E4] be denoted fU|Iβ
du, so that the Eulerian joint pdf of velocity

conditioned on the presence of phase β at x, fU|Iβ
is given as:

fU|Iβ
=
pβ(u)fU(u)
αβ(x, t)

. (3.7)

One may define the following expectations:

〈U〉(x, t) =
∫

ufUdu

and

〈U(β)〉 =
∫

ufU|Iβ
du,

where 〈U〉 is the mixture mean velocity field and is related to the phasic mean velocity 〈U(β)〉

as

〈U〉 = αf 〈U(f)〉+ αd〈U(d)〉.
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Note that the following relations hold:

P [If = 1] + P [Id = 1] = 1

αf + αd = 1

pf (u;x, t) + pd(u;x, t) = 1.

Also, the phase probability function and the pdf fU can be written as (Subramaniam, 2005)

pf (u;x, t) =
αf (x, t)fU|If

αf (x, t)fU|If
+ αd(x, t)fU|Id

(3.8)

fU(u;x, t) = αf (x, t)fU|If
+ αd(x, t)fU|Id

, (3.9)

showing that the knowledge of one of αf or αd and the phasic probability pdfs fU|Iβ
for

β = {f, d} is sufficient for a complete one–point description of a isothermal non–reacting two–

phase system. This description corresponds to the minimal and complete single–point Eulerian

description (Subramaniam, 2005) of the two–phase system.

3.2.2 Point–process representation

The starting point for the point process or the LE description of a two–phase flow is the ddf

proposed by Williams (1958). The spray equation, which is the evolution equation of the ddf,

can be rigorously derived starting from the Lagrangian evolution equations of droplet position,

velocity and radius (Subramaniam, 2001c). Although the ddf was initially conceived to describe

a fuel spray in internal combustion engines (and hence the name ‘droplet’ distribution function),

it can be used to describe any two–phase flow wherein the dispersed phase can be modeled as a

collection of discrete entities. Thus, the LE representation is a valid statistical representation

of a two–phase flow. While the salient aspects of this statistical description that are relevant

to the current discussion are given here, details may be found in Subramaniam (2000, 2001c).

In the following, we consider the DPEs to be droplets, although the discussion is equally

valid for other DPEs. Consider a two–phase flow in a finite flow domain D in physical space

as an ensemble of droplets. It is assumed that one can associate a characteristic length scale

with each droplet, which is the radius in the case of spherical droplets. At time t the total
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number of droplets N(t) is a non–negative integer–valued random variable, which is finite

with probability 1. The ith DPE is characterized by its position vector X(i)(t) (which is

defined as the center of mass of the droplet), its velocity vector V(i)(t), and its radius R(i)(t)

(R(i)(t) > 0). The position, velocity, and radius of a droplet are called the droplet properties,

and the droplet property vector associated with each droplet is a 7–dimensional random vector

in this representation. Additional droplet properties may be included as required, but they

do not fundamentally alter the formulation, other than increasing the dimension of the space

of droplet properties. The properties associated with the ith droplet evolve by the following

equations:

dX(i)

dt
= V(i) (3.10)

dV(i)

dt
= A(i) (3.11)

dR(i)

dt
= Θ(i), (3.12)

where A(i) is the acceleration experienced by the droplet, and Θ(i) is the rate of radius change

due to vaporization.

The ensemble of droplets is characterized in the 7–dimensional position–velocity–radius

space [x,v, r] by its Klimontovich fine–grained density function f ′ which is defined as:

f ′(x,v, r, t) ≡
N(t)∑
i=1

δ(x−X(i)(t))δ(v −V(i)(t))δ(r −R(i)(t)). (3.13)

Note that [X(i),V(i), R(i)] are the Lagrangian coordinates of the ith droplet, whereas [x,v, r]

are the Eulerian coordinates. The Klimontovich fine–grained density function f ′ represents the

density of droplets in a 7–dimensional [x,v, r] space. If the number of droplets in any region

B+ in [x,v, r+] space 3 is denoted N(B+; t), it is obtained by integrating f ′ over the region

B+ such that:

N(B+; t) =
∫

B+

f ′(x,v, r, t) dx dv dr. (3.14)

Since f ′ is composed of delta functions it is not a smooth function in [x,v, r] space.
3Since only droplets with non–zero radius belong to the spray system, if for convenience of notation we

denote r+ to be the positive r–axis (r > 0), then it is sufficient to integrate over regions only in [x,v, r+] space.
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The statistical description of a spray in terms of f ′ contains far more information than is

necessary for engineering calculations. In order to obtain information concerning the average

properties of the spray, it is advantageous to consider the ensemble average of f ′. The ensemble

average of f ′ is denoted f(x,v, r, t), and it defines the ddf:

f(x,v, r, t) ≡
〈
f ′(x,v, r, t)

〉
=

〈
N(t)∑
i=1

δ(x−X(i)(t))δ(v −V(i)(t))δ(r −R(i)(t))

〉
. (3.15)

Since the ddf is defined to be the ensemble–average of f ′ (cf. Eq. (3.15)), it follows that if

the expected number of droplets in a region B+ of [x,v, r+] space is denoted 〈N(B+; t)〉, it is

obtained by integrating the ddf f(x,v, r, t) over the region B+ such that:

〈N(B+; t)〉 =
∫

B+

f(x,v, r, t) dx dv dr. (3.16)

The ddf is the fundamental quantity in the Lagrangian statistical representation. If 〈N(t)〉

represents the expected total number of spray droplets at time t, then the droplet distribution

function f(x,v, r, t) when integrated over the entire [x,v, r+] space, must yield 〈N(t)〉, such

that: ∫
[x,v,r+]

f(x,v, r, t) dx dv dr = 〈N(t)〉. (3.17)

Note that f does not possess the normalization property of a probability density function,

since it does not integrate to unity over the space on which it is defined.

If the droplet distribution function is integrated over only [v, r+] space, the density (in

physical space) of the expected number of spray droplets n(x; t) is obtained:

n(x; t) ≡
∫

[v,r+]
f(x,v, r, t) dv dr. (3.18)

If the multiphase flow is modeled as a marked point process, then the theory of point processes

can be used to express the ddf as the product of the number density in physical space n(x; t) and

f c
VR(v, r | x; t), the joint probability density function (jpdf) of velocity and radius conditional

on physical location x, such that (Subramaniam, 2001c):

f(x,v, r, t) = n(x; t) f c
VR(v, r | x; t). (3.19)
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Unlike the ddf, f c
VR(v, r | x; t) is a pdf, and when it is integrated over [v, r+] space it yields

unity.

In pdf modeling of constant–density turbulent flows the Lagrangian jpdf of fluid particle

position X+(t) and velocity U+(t) can be related to the Eulerian jpdf of the Eulerian velocity

field U(x, t) by using a conditioning argument as shown by Dreeben and Pope (1997b). There

the conditioning is on the position of the fluid particle being at the field location x, i.e., the

conditioning is on the event [X+(t) = x]. In contrast, the jpdf f c
VR(v, r | x; t) does not

correspond to conditioning on the event that a droplet’s position is at the field location x.

In other words, the jpdf f c
VR(v, r | x; t) is not an Eulerian jpdf since it does not characterize

the probability of an Eulerian event (in the sense of U(x, t) being an Eulerian event in a

random–field model of turbulent flow).

In the LE approach one cannot meaningfully associate a density with each droplet in the

spray, since information about individual droplets is lost in the course of the derivation of

the ddf (Subramaniam, 2001c). However, the ddf can be related to single–particle densities

associated with “surrogate” droplets as (Subramaniam, 2000):

f(x,v, r, t) =
∑
k≥1

qk f
(k)(x,v, r; t) =

∑
k≥1

k qk f
(k)
1s (x,v, r; t), (3.20)

where k is the integer value that N(t) takes with probability qk = P [N(t) = k], f (k) is the

density of expected number of droplets in phase space, conditional on the event [N(t) = k],

i.e., conditional on there being a total of k droplets in the ensemble, and f
(k)
1s (x,v, r; t) is

the single–particle density of identically–distributed surrogate droplets, conditional on the

event [N(t) = k]. The single–particle density of identically–distributed surrogate droplets

f
(k)
1s (x,v, r; t) is related to the droplet properties by the relation

f
(k)
1s (x,v, r; t) =

1
k
f (k)(x,v, r, t) =

1
k

〈
k∑

i=1

δ(x−X(i)(t))δ(v −V(i)(t))δ(r −R(i)(t))

〉
.

(3.21)

It is impossible to characterize events associated with a single droplet in the LE approach.

This is primarily because here one is dealing with a ddf that is the superposition of several

surrogate–droplet densities (cf. Eq. (3.20)). Nevertheless, even in the LE representation one
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Figure 3.3 A schematic of the region of integration in Eq. (3.22) given by
[x′, r : x′ ∈ b(x, r)]. The point x is the location where the
volume fraction αd is desired, x′ is the center of the DPE under
consideration, and r is the radius of the ball centered at x.

can characterize number–weighted statistical moments of the particle ensemble, and write

conservation equations for mean mass and momentum in an Eulerian reference frame (see

Section 3.5).

We have now established the foundation for the EE and LE statistical representations and

defined the necessary equalities required in the rest of this work. We now proceed to establish

a relationship between the two approaches.

3.3 Relationship Between the Eulerian–Eulerian and Lagrangian–Eulerian

Description

In order to establish a relationship between the two representations, we consider first–

order 4 quantities of the point–process (LE) and random–field (EE) statistical descriptions of

a two–phase flow. Since the volume fraction αd(x, t) and the phasic pdfs fU|Iβ
correspond to the

minimal and complete description of a two–phase flow in the EE representation (cf. Eq. (3.9)),

it is natural to seek expressions for the corresponding quantities in the LE representation.
4In this work, the phrase “first–order” is used to describe quantities that are defined at a single space–time

location. Second–order quantities, which simultaneously characterizes the state of the point field at two different
space–time locations (Stoyan et al., 1995), such as the pair–correlation function are not considered in this work.
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If we assume spherical DPE’s, then we can relate αd(x, t) to the fundamental description

as follows (Subramaniam, 2001a):

αd(x, t) =
∑
k≥1

qk k

∫
XR

∫
v
f

(k)
1s (x,v, r, t)dv dx′ dr

=
∑
k≥1

qk

∫
XR

∫
v

〈
k∑

i=1

δ(x′ −X(i)(t))δ(v −V(i)(t))δ(r −R(i)(t))

〉
dv dx′ dr, (3.22)

where the region of integration XR = [x′, r : x′ ∈ b(x, r)]. Here, b(x, r) is the disk of radius r

centered at x. See Fig. 3.3. The above equation states that the event E(d)
0 = P [Id(x, t) = 1]

can arise from all possible combinations of DPE location and radius that result in x being

covered by the DPE. For a constant number of DPEs n = N in the system, qk = δkn for k = N

otherwise. With the additional assumption of identically distributed monodispersed DPEs,

the above expression simplifies to

α(x, t) =
N∑

i=1

〈
H
(σ

2
−
∣∣x−X(i)(t)

∣∣)〉 , (3.23)

where H(x) is the Heaviside function defined as

H(x) =


1 if x ≥ 0

0 if x < 0,
(3.24)

and σ is the diameter of the DPE. Equation 3.23 is identical to the expression for the expected

indicator function available in literature (see for instance, Zhang and Prosperetti, 1994; Sun-

daram and Collins, 1994a). Equation 3.22 is more general compared to Eq. (3.23) because

(a) the total number of DPE’s is assumed to be a random variable (an assumption that ex-

tends previous analyses to physical problems in which the expected total number of DPEs can

change in time), (b) the important effect of polydispersity is considered, and (c) the effects of

statistical inhomogeneity are also considered.

It is convenient to express αd(x, t) in Eq. (3.22) in terms of the ddf using Eq. (3.20)

as (Subramaniam, 2001a)

αd(x, t) =
∫

[x′,r : x′∈ b(x,r)]

∫
v
f(x′,v, r, t) dv dx′ dr. (3.25)
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Figure 3.4 Schematic of a representative spherical DPE (dashed line) with
radius R(d) corresponding to the dispersed phase (shaded) in
the EE representation.

Using the decomposition in Eq. (3.19), expressing

f c
VR(v, r | x; t) = f c

V |R(v | r,x; t) f c
R(r | x; t) ,

and noting that f c
V |R(v | r,x; t) integrates to unity over all velocity space, we find as expected

that αd(x, t) depends only on the number density and the radius pdf (Subramaniam, 2001a):

αd(x, t) =
∫

[x′,r : x′∈ b(x,r)]
n(x′; t) f c

R(r | x′, t) dx′ dr. (3.26)

Later, we consider special cases where assumptions of statistical homogeneity in n(x, t) and

f c
R result in simpler forms of Eq. (3.26).

Next we relate the Eulerian events with the conditional jpdf of velocity and radius arising

from the ddf description of the spray. To this end, we write the event E2 as (Subramaniam,

2001a)

E2 = [U(x, t) ∈ (u,u + du), R(d)(x, t) ∈ (r, r + dr)],

where the event has been augmented with an additional radius phase space R(d) to allow for a

consistent comparison with the LE approach. It is implicitly assumed that the dispersed phase

is represented as equivalent spherical DPEs (see Fig.3.4). The phasic velocity pdf conditional
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on the presence of phase β, fU|Iβ
(cf. Eq. (3.7)) is now written as fE

UR|Iβ
such that

P
[
U(x, t) ∈ (u,u + du), R(d)(x, t) ∈ (r, r + dr) | Iβ(x, t) = 1

]
= fE

UR|Iβ
(u, r ;x, t) dv dr,

(3.27)

where fE
UR|Iβ

(u, r ;x, t) represents the Eulerian conditional joint pdf of velocity and radius 5.

An additional E superscript has been included compared to Eq. (3.7) to denote explicitly in

the subsequent comparisons with the LE approach that fE
UR|Iβ

(u, r ;x, t) arises from the EE

representation. We then define the probability of the event [E2
⋂
E

(d)
3 ] (Subramaniam, 2001a):

P
[
U(x, t) ∈ (u,u + du), R(d)(x, t) ∈ (r, r + dr), Id(x, t) = 1

]
=∑

k≥1

k qk

∫
[x′ : x′∈ b(x,r)]

f
(k)
1s (x′,v, r; t) dx′. (3.28)

Now using the definition of conditional probability, we can write

P
[
U(x, t) ∈ (u,u + du), R(d)(x, t) ∈ (r, r + dr) | Id(x, t) = 1

]
=
P
[
U(x, t) ∈ (u,u + du), R(d)(x, t) ∈ (r, r + dr), Id(x, t) = 1

]
P [ Id(x, t) = 1 ]

. (3.29)

Therefore the Eulerian jpdf of velocity and radius conditional on the dispersed phase,

fE
UR|Id

(u, r ;x, t) is given by (Subramaniam, 2001a)

fE
UR|Id

(u, r ;x, t) =
1

αd(x, t)

∫
[x′ : x′∈ b(x,r)]

f(x′,v, r, t) dx′

=
1

αd(x, t)

∫
[x′ : x′∈ b(x,r)]

n(x′, t)f c
VR(v, r | x′; t) dx′, (3.30)

which clearly shows that in general it is different from the jpdf of velocity and radius

f c
VR(v, r | x; t) obtained in the Lagrangian approach (cf. Eq. (3.19)). The relationships

given by Eq. (3.26) and Eq. (3.30) form the two fundamental equalities that relate two–phase

flow quantities across the EE and LE statistical representations.

3.3.1 Simplified relations under special conditions

In this subsection, we consider special conditions under which simple relations between the

EE and LE descriptions exist. This involves determining the conditions under which a simple
5For the carrier phase where R is always defined to be zero, this essentially reduces to a pdf of velocity, i.e.,

fE
UR |If

(v, r ;x, t) = fE
U|If

(v ;x, t) · δ(r).
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relation between αd(x, t) and n(x; t), and between fE
UR|Id

(u, r ;x, t) and f c
VR(v, r | x; t) exist,

and under what conditions such relationships are precluded. The simplest situation in which to

study these relationships is statistically homogeneous two–phase flow. In two–phase flows there

are two sources of statistical inhomogeneity. This is implicit in the decomposition expressed

in Eq. (3.19), which shows that spatial inhomogeneity of the ddf has two different sources:

namely, inhomogeneity can arise from either n(x; t) in physical space, or from f c
VR(v, r | x; t).

It is clear from Eq. 3.26 that only the statistical properties of the radius pdf f c
R(r | x; t) affect

the relation between αd(x, t) and the point–process quantities, whereas Eq. (3.30) shows that

the relationship between fE
UR|Id

(u, r ;x, t) and f c
VR(v, r | x; t) also depends on the statistical

properties of the jpdf f c
V |R(v | r,x; t).

With this in mind, the simplifications that result from a statistically homogeneous number

density with statistically homogeneous radius pdf and velocity–radius jpdf are considered,

details of which are given in Appendix B. The principal findings from these simplifications

are summarized below. Also given in Appendix B are considerations required to extend these

relations to inhomogeneous number density, radius and velocity–radius jpdf.

3.3.1.1 Statistically homogeneous cases

The simplified relationships arising from the cases corresponding to the statistically ho-

mogeneous cases are shown in Table 3.1. Two–phase flows with monodisperse DPE’s are

included as a special subset of the homogeneous radius pdf case. The principal findings are as

follows (Subramaniam, 2001a):

(i) The relation between αd(x, t) and n(x; t) for the case of statistically homogeneous number

density and statistically homogeneous radius pdf is

αd(x, t) = n(t)VD(t) = n(t)KD 〈RD(t)〉, (3.31)

where K1 = 2,K2 = π, and K3 = 4π/3, and K ′
D = DKD. The above expression reveals

that while αd(x, t) depends on the dimensionality D of physical space, n(x; t) does not 6.
6A detailed derivation of this relation is given in Appendix B.
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Statistically homogeneous number density n(t)
and point–process radius pdf f c

R(r; t)

Monodisperse Polydisperse

αd(t) = n(t)KDr
D
0 αd(t) = nKD〈RD(t)〉

fE
R (r) = f c

R(r) = δ(r − r0) fE
R (r; t) = rD f c

R(r; t)
〈RD(t)〉

Statistically homogeneous f c
V | R(v | r; t)

fE
UR | d(v, r; t) = f c

VR(v, r; t) fE
UR | d(v, r; t) =

rD f c
VR(v, r; t)
〈RD(t)〉

Table 3.1 Relationship between first–order statistics and velocity–radius
jpdf’s of point–process and random–field representations for the
statistically homogeneous cases. K1 = 2;K2 = π;K3 = 4π/3 .

This fact alone clearly shows that the LE and EE statistical representations contain

different information.

(ii) For the statistically homogeneous number density and statistically homogeneous

f c
R(r | x; t) m the following simplified relation between the EE and LE radius pdf’s

results:

fE
R | d(r; t) =

rD f c
R(r; t)

〈RD(t)〉
. (3.32)

(iii) If f c
V |R(v | r,x; t) is also statistically homogeneous then the velocity–radius jpdf’s satisfy

the following relation:

fE
UR | d(v, r; t) = f̃ c

VR(v, r; t) ≡
rD f c

VR(v, r; t)
〈RD(t)〉

, (3.33)

where f̃ c
VR(v, r; t) is the volume–weighted–pdf corresponding to f c

VR(v, r; t).

(iv) For a monodisperse size distribution with DPEs of radius r0, these relations further

simplify to

αd(x, t) = n(t)KD rD
0 (3.34)

fE
UR | d(v, r; t) = f c

V |R(v | r; t) δ(r − r0). (3.35)
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It has already been noted that the velocity–radius jpdf’s in each representation are not equal

in general. As noted earlier, Zhu et al. (2000) derive an evolution equation for f c
VR(v, r | x; t)

from the transport equation for fE
UR(v, r ;x, t) under an assumption that these two quantities

are equal for a general spray. However, it is shown here that only under rather restrictive

assumptions of spherical monodisperse DPE’s and a statistically isotropic and homogeneous

point process does a simple relationship between f c
VR(v, r; t) and fE

UR(v, r; t) exist.

3.3.2 Validity of assumptions necessary for exact relations

The exact equalities between first–order quantities in the LE and EE approach that are

derived in the earlier section hold only under certain conditions and assumptions that can

restrict the applicability of the exact equalities in general two–phase flows.

3.3.2.1 Spatial inhomogeneities in the two–phase flow

Spatial inhomogeneities in n(x; t) and f c
R(r | x; t) that exist either at initial time or develop

as a two–phase flow evolves could preclude the validity of the exact equalities. Two examples

of such flows are:

1. Fuel sprays: In the near–nozzle region of the fuel spray injector, the dispersed–phase

number density n(x; t) can have steep gradients. Also, f c
R(r | x; t) can be spatially in-

homogeneous due to a spatially varying size distribution of the dispersed phase. Under

such conditions, even assumptions of local homogeneity may cease to hold. Further-

more, in regions close to the injector, n(x; t) and f c
R(r | x; t) may remain inhomogeneous

even as time evolves. Under such conditions, the relationship between the EE and LE

representations have to be interpreted only as approximate relations.

2. Particle–laden mixing layers: Particle–laden mixing layers form an important class of

canonical problems studied by researchers through multiphase DNS and experiments (See

for eg. Lázaro and Lasheras, 1992a,b; Okong’o and Bellan, 2004). Consider a particle–

laden mixing layer with two monodispersed streams of particles, with each stream having

a different particle radius. The particle positions in the two streams are such that the
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initial number density is statistically homogeneous. The region near the centerline of the

mixing layer will have a locally inhomogeneous f c
R(r | x; t). Once the flow starts to evolve,

the number density may develop inhomogeneities as well. Again under such conditions,

the equalities presented in the earlier section between the EE and LE representations

have to be interpreted only as approximate relations.

3.3.2.2 Spherical shape assumption

An important assumption of spherical DPEs has been made in the development of the exact

equalities (see Appendix B). This is implicit in the assumption of an isotropic point process

for the DPE positions that results in Eq. (B.1). In general however, the DPE locations need

not form an isotropic point process and thus the exact inequalities may fail to hold.

3.3.2.3 Internal circulation in a droplet

Implicit in the representation of the spray in terms of a ddf is the assumption of uniform

velocity inside a DPE. This assumption is also implicit in the equations of motion for a droplet

given by Eqs. (3.10)–(3.12). In other words, the form of the Eulerian jpdf of velocity and

radius expressed in terms of the point–process representation given by Eq. (3.30) assumes that

the two–phase flow is composed of rigid DPEs, or DPEs in which the internal velocity field is

uniform. However, if the dispersed phase is a fluid (as in droplets or bubbles) then the velocity

field internal to the DPE need not be constant because of internal circulation effects. Under

these conditions, the Eulerian jpdf as defined in its general form by Eq. (3.27) is capable of

representing such internal circulation effects. However, its form in Eq. (3.30) as derived from

the point–process representation will not be equal to that given by Eq. (3.27) when the velocity

field is non–uniform inside the DPEs.

3.3.3 Example to show relationship between statistical representations

The difference between fE
UR|Id

(u, r ;x, t) in the EE representation and f c
VR(v, r | x; t)in the

LE representation is illustrated by means of a simple example (Subramaniam, 2001a). Also,
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a comparison between the information contained in the number density n(x, t) and αd(x, t) is

presented.

Consider an idealized two–phase flow comprising spherical DPEs in the unit interval in the

x–coordinate. The total number of DPEs N in the unit interval is deterministic and is always

equal to k∗, i.e., qk∗ = 1. For simplicity only the position and radius properties of DPEs are

considered. The two–phase flow can be interpreted as being composed of two streams of DPEs:

one stream has DPEs of radius r0, and the pdf of their position decreases linearly from unity

to zero with increasing x in the unit interval; while the other stream has DPEs of radius 10r0,

and the pdf of their position increases linearly from zero to unity with increasing x in the same

unit interval. The single–particle density for this example problem is given by (cf. Eq. (3.21))

f
(k∗)
1s (x, r; t) = δ(r − 10r0) · x+ δ(r − r0) · (1− x). (3.36)

Using Eq. (3.20) the ddf corresponding to this idealized problem is

f(x, r, t) = k∗ [δ(r − 10r0) · x+ δ(r − r0) · (1− x)] (3.37)

Integrating the ddf over all r+ space, results in a statistically homogeneous number density

n(x; t) = k∗ {x+ (1− x)} = k∗, (3.38)

which was the intent in constructing this example (see Figure 3.3.3).

In the LE approach, the pdf of radius conditional on physical location as obtained from

the ddf is given by

f c
R(r | x; t) = δ(r − 10r0) · x+ δ(r − r0) · (1− x), (3.39)

which is a simple linear combination of the two droplet streams. For instance at the mid–point

of the unit interval, it is composed of two delta–functions at r0 and 10r0 each weighted by 0.5,

i.e., on a number–basis there is equal probability of finding a droplet of radius r0 or 10r0.

In the EE representation, the probability that the dispersed phase is located at x as obtained

from its definition Eq. (3.22) (or, from Eq. (3.25)) is given by 7

αd(x, t) = k∗ 2r0 (9x+ 1), (3.40)
7The limit [x′, r : x′ ∈ b(x, r)] in Eq. (3.22) can be decomposed into two double integrals; one with limits

r = [0,∞) and x′ = [x, x− r], and the other with limits r = [0,∞) and x′ = [x + r, x].
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Figure 3.5 Variation of number density with position shown for an idealized
two–phase flow composed of two streams of droplets. Droplets
with radius r0 have a position pdf which decreases linearly from
unity to zero, while droplets with radius 10r0 have a position
pdf which increases linearly from zero to unity. The resulting
number density is homogeneous and equal to k∗.

which reveals that the probability of being in the liquid phase increases with x because the

larger DPEs are occurring more frequently. Substituting the above expressions for αd(x, t)

and f c
R(r | x; t) into Eq. (3.30), the Eulerian pdf of radius conditional on the liquid phase,

fE
R (r;x, t) is found to be

fE
R (r;x, t) =

{δ(r − 10r0) · 10x+ δ(r − r0) · (1− x)}
(1 + 9x)

. (3.41)

Clearly this Eulerian pdf of radius is different from its Lagrangian counterpart Eq. (3.39). For

instance at the mid–point of the unit interval it evaluates to

fE
R (r ;x, t) = {0.91 δ(r − 10r0) + 0.09 δ(r − r0)} ,

which reveals that the larger droplets are considerably more probable on the basis of presence

of liquid at that point. This simple example illustrates, as noted ealier, that αd(x, t) and

fE
UR(v, r ;x, t) depends on the dimensionality of the physical space defining the flow domain

(1–D in this example), whereas the radius pdf in the Lagrangian approach f c
VR(v, r | x; t)does
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not.

A related problem widely studied using two–phase DNS is that of monodispersed DPEs

whose number density can vary in space. A linear dependence of n(x, t) on x is the simplest

form of inhomogeneity that can occur in two–phase flows. Assuming that the dispersed phase

is composed of DPEs of size r0, and the number density is varying as a function of x as

n(x, t) = k∗x, then the single–particle density is given by

f
(k∗)
1s = δ(r − r0)x,

and the corresponding ddf is

f(x, r, t) = k∗δ(r − r0)x.

The pdf of radius conditional on location in the LE approach is

f c
R(r | x; t) = δ(r − r0).

Following the same procedure as earlier, the volume fraction αd corresponding to the inhomo-

geneous number density is

αd(x, t) = k∗ 2r0 x,

which shows that the volume fraction is also linear in x (and thus, inhomogeneous). The

above expression also shows that for simple integrable forms of the inhomogeneity in number

density (cf. Eq. (3.26)) and simplifying assumptions on the radius pdf, exact expressions for

the volume fraction can be derived. However, if the number density variation in space is a

complex non–integrable function of x, then the volume fraction cannot be expressed in terms

of a simple function of number density. Finally, the Eulerian pdf of radius fE
R (r;x, t) can be

derived:

fE
R (r;x, t) = δ(r − r0).

Note that for a linear number density and monodispersed size distribution, the pdf f c
R in the

LE approach is the same as the Eulerian pdf fE
R (r;x, t) in the EE approach.

Having established a clear foundation for the EE and the LE statistical representations,

along with an understanding of the relationship between the two representations, we now derive

the evolution equations corresponding to the densities in each approach.
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3.4 Evolution Equations for the Probability Densities

The primary objective of this section is to derive the evolution equations for densities

fU|Iβ
and f(x,v, r, t) that were introduced in Section 3.2 corresponding to the EE and LE

statistical representations. Evolution equations for the densities developed in this section form

the basis for the derivation of the governing equations for the mean mass, mean momentum

and second–moment of velocity in the two statistical representations.

3.4.1 Random–field statistical representation

Analogous to single–phase flows, it is convenient to work with mass–weighted or Fàvre

quantities in two–phase flows. The Fàvre fine–grained mass density conditional on the phase

β is defined as

F ′
U|Iβ

= ρ Iβδ(U− u)

Here, ρ is the instantaneous density of the two–phase flow at x. The expectation of the FU|Iβ

defines the Fàvre mass density conditional on phase β:

FU|Iβ
≡ 〈F ′

U|Iβ
〉, (3.42)

where the angled brackets 〈·〉 represents an expectation over all possible realizations in the U

space. Since the fundamental events defined in Section 3.2.1 are in terms of fU, the following

relations establish the connection between FU|Iβ
and the fundamental events:

FU|Iβ
= 〈ρIβδ(U− u)〉 =

∫ 〈
ρIβδ(U− u)|U = u′

〉
fU(u′)du′

=
∫
δ(u′ − u)

〈
ρIβ|U = u′

〉
fU(u′)du′

= 〈ρIβ|U = u〉 fU(u). (3.43)

Integrating FU|Iβ
over all velocity space results in∫

U
FU|Iβ

du = 〈ρIβ〉.

One can show that FU|Iβ
= 〈ρIβ〉f̃U|Iβ

. Density–weighted means can be defined as

˜〈Q(U)〉 =
1

〈ρIβ〉

∫
Q(u)FU|Iβ

du =
∫
Q(u)f̃U|Iβ

du, (3.44)
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where f̃U|Iβ
is analogous to the phasic pdf fU|Iβ

defined in Section 3.2.1. Likewise, unweighted

means can also be defined as

〈Q(U)〉 =
∫
Q(u)fU|Iβ

du =
∫
Q(u)

f̃U|Iβ

〈ρIβ|u〉
du. (3.45)

In the above development, the dependence on x and t has been omitted for the sake of brevity.

The evolution equation for the fine–grained mass density is obtained by forming the substantial

derivative of F ′
U|Iβ

as

D

Dt
F ′

U|Iβ
=

∂

∂t
F ′

U|Iβ
+ Ui

∂

∂xi
F ′

U|Iβ
, (3.46)

where U, the instantaneous two–phase flow velocity, is the convection velocity of the mass

density in x–space. Using a standard procedure of differentiating delta functions (Pope, 2000),

the temporal and spatial derivatives of F ′
U|Iβ

can be derived from the corresponding fine–

grained density as

∂F ′
U|Iβ

∂t
= − ∂

∂Vi

(
∂Ui

∂t
F ′

U|Iβ

)
+ F ′

U|Iβ

1
Iβ

∂Iβ
∂t

+ F ′
U|Iβ

1
ρ

∂ρ

∂t
(3.47)

and

∂F ′
U|Iβ

∂xi
= − ∂

∂Vi

(
∂Ui

∂xi
F ′

U|Iβ

)
+ F ′

U|Iβ

1
Iβ

∂Iβ
∂xi

+ F ′
U|Iβ

1
ρ

∂ρ

∂xi
. (3.48)

Substituting Eq. (3.47) and Eq. (3.48) into Eq. (3.46) and rearranging results in

D

Dt
F ′

U|Iβ
= − ∂

∂uk

[(
∂Uk

∂t
+ Ui

∂Uk

∂xi

)
F ′

U|Iβ

]
+
F ′

U|Iβ

Iβ

(
∂Iβ
∂t

+ Ui
∂Iβ
∂xi

)
+
F ′

U|Iβ

ρ

(
∂ρ

∂t
+ Ui

∂ρ

∂xi

)
, (3.49)

which can be rewritten as

D

Dt
F ′

U|Iβ
= − ∂

∂uk

[(
∂Uk

∂t
+ Ui

∂Uk

∂xi

)
F ′

U|Iβ

]
+
F ′

U|Iβ

ρIβ

(
∂(ρIβ)
∂t

+ Ui
∂(ρIβ)
∂xi

)
. (3.50)

The convective part of DF ′
U|Iβ

/Dt in Eq. (3.49) can been written as:

Ui
∂

∂xi
F ′

U|Iβ
=

∂

∂xi

(
UiF ′

U|Iβ

)
−F ′

U|Iβ

∂Ui

∂xi

= ui
∂

∂xi

(
F ′

U|Iβ

)
−F ′

U|Iβ

∂Ui

∂xi
,
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where the instantaneous two–phase velocity is not assumed to be solenoidal. The random

variable Ui in the first equality can be replaced by the sample space variable ui due to the

sifting property of the delta function in FU|Iβ
. The last term on the right hand side of the

above equation can be combined with the last term on the right hand side of Eq. (3.50) to give

∂FU|Iβ

∂t
+ ui

∂

∂xi

(
F ′

U|Iβ

)
= − ∂

∂uk

[(
∂Uk

∂t
+ Ui

∂Uk

∂xi

)
F ′

U|Iβ

]
+
F ′

U|Iβ

ρIβ

(
∂(ρIβ)
∂t

+
∂(ρIβUi)
∂xi

)
.

(3.51)

Since, the velocity field U is the instantaneous two–phase velocity field in the two–phase flow,

it satisfies the instantaneous continuity in each phase at every location x in the domain, as

long as this location does not fall on the interface. Thus, on each realization the following is

true away from the interface

∂ρ

∂t
+
∂(ρUi)
∂xi

= 0. (3.52)

In order to incorporate the effect of the interface, it is instructive to multiply both sides of the

above equation by Iβ, use the product rule and rearrange:

Iβ

[
∂ρ

∂t
+
∂(ρUi)
∂xi

]
= 0 (3.53)[

∂(ρIβ)
∂t

+
∂(ρIβUi)
∂xi

]
= ρ

[
∂Iβ
∂t

+ Ui
∂Iβ
∂xi

]
(3.54)

The material derivative of Iβ on the right hand side of the above equation can been simplified

as

∂Iβ
∂t

+ Ui
∂Iβ
∂xi

=
[
∂Iβ
∂t

+
(
Ui − U

(I)
i + U

(I)
i

) ∂Iβ
∂xi

]
=
[
∂Iβ
∂t

+ U
(I)
i

∂Iβ
∂xi

]
+
(
Ui − U

(I)
i

) ∂Iβ
∂xi

where U(I) is the velocity of the phasic interface, with the additional observation that the

topological equation (Drew, 1983) holds:

∂Iβ
∂t

+ U
(I)
i

∂Iβ
∂xi

= 0.

Thus, the instaneous mass conservation at any location in the two–phase flow is[
∂(ρIβ)
∂t

+
∂(ρIβUi)
∂xi

]
= ρ

[(
Ui − U

(I)
i

) ∂Iβ
∂xi

]
. (3.55)
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The above development shows that the instantaneous mass conservation in each phase has a

source term due to the difference between the interface velocity and the instantaneous two–

phase velocity which commonly occurs in two–phase flows with vaporization or interphase mass

transfer. An interesting observation from Eq. (3.54) is that in flows with zero interphase mass

transfer, the indicator function behaves like a conserved scalar:

D

Dt
Iβ =

∂Iβ
∂t

+ Ui
∂Iβ
∂xi

= 0.

With the above simplifications, Eq. (3.51) becomes

∂FU|Iβ

∂t
+ ui

∂

∂xi

(
F ′

U|Iβ

)
= − ∂

∂uk

[(
∂Uk

∂t
+ Ui

∂Uk

∂xi

)
F ′

U|Iβ

]
+
F ′

U|Iβ

ρIβ

[
ρ
(
Ui − U

(I)
i

) ∂Iβ
∂xi

]
.

(3.56)

Taking the expectation of Eq. (3.56) and using the definition Eq. (3.42) leads to the evolution

equation for the phasic mass density in each phase β:

∂FU|Iβ

∂t
+ ui

∂FU|Iβ

∂xi
= − ∂

∂uk

[〈
ρIβ

DUk

Dt

∣∣∣u〉 FU|Iβ

〈ρIβ |u〉

]
+

FU|Iβ

〈ρIβ|u〉

〈
ρ
(
Ui − U

(I)
i

) ∂Iβ
∂xi

∣∣∣u〉
(3.57)

where 〈·|U = u〉 is abbreviated as 〈·|u〉. The description of each term in the above equation is

as follows: the two terms on the left hand side represent the unsteady and convective derivative

of the phasic mass density; on the right hand side, the first term represents the transport in

velocity space and the second term represents a source in the transport equation due to a

regressing interface (in case of evaporating sprays). This term leads to the interphase mass

transfer source term in the phasic mean mass conservation (see Eq. (3.77)), the contribution to

the mean momentum due to interphase mass transfer (see Eq. (3.89) and Eq. (3.90)) and the

contribution to the phasic Reynolds stresses due to interphase mass transfer (see Eq. (3.107)).

The terms representing transport in velocity space and the mass source in Eq. (3.57) are

unclosed, i.e., they are not known in terms of the phasic mass density. Since the mass density

transport equation is a one–point description of the two–phase flow, the unclosed terms are

also evaluated at a single location in space–time co–ordinates. However, closures for such terms

are almost always non–local in the sense that information at a particular location can depend
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on the state at other locations in the two–phase flow. For instance, as discussed in Sec. 3.5.3,

the drag experienced by a DPE depends on the pressure and state of fluid stress at its surface.

Such information is absent in the mass density transport equation given in Eq. (3.57), since

non–local information cannot be captured in a one–point description of the two–phase flow. In

fact, a one–point description cannot distinguish between a location on the surface of a particle

and one in the bulk (see schematic in Fig. 3.2). This has lead some researchers to propose

functions that represent the shortest distance to the nearest interface (Zhu et al., 2000) in

their single–point pdf formulation. To rigorously define such a distance function in a two–

phase flow, one should know the spatial locations of all the DPEs from a reference point and

the morphology of each DPE with respect to (say) its centroid. Such a description would

require, at a minimum, a two–point description of the system.

In order to gain insight into Eq. (3.57) in terms of the decomposition FU|Iβ
= 〈ρIβ〉f̃U|Iβ

,

we form

〈ρIβ〉
∂f̃U|Iβ

∂t
=
∂FU|Iβ

∂t
− f̃U|Iβ

∂〈ρIβ〉
∂t

,

to derive the evolution of fU|Iβ
. The second term on the right hand side is the evolution

equation of 〈ρIβ〉 obtained by integrating Eq. (3.57) over all velocity space (see Eq. (3.77)

in Section 3.5). Substituting Eq. (3.57) and Eq. (3.77) into the above equation, using the

decomposition u = u′′(β) + 〈U(β)〉 and rearranging, results in

∂f̃U|Iβ

∂t
+ ui

∂f̃U|Iβ

∂xi
=− ∂

∂uk

[〈
ρIβ

DUk

Dt

∣∣∣u〉 f̃U|Iβ

〈ρIβ |u〉

]
+

f̃U|Iβ

〈ρIβ |u〉

〈
ρ
(
Ui − U

(I)
i

) ∂Iβ
∂xi

∣∣∣u〉
− f̃U|Iβ

D

Dt
ln〈ρIβ〉, (3.58)

where
D

Dt
〈ρIβ〉 =

∂

∂t
〈ρIβ〉+ uk

∂〈ρIβ〉
∂xk

is the material derivative following the instantaneous two–phase velocity.

Defining

〈A(β)|u〉 =
1

〈ρIβ |u〉

〈
ρIβ

DU
Dt

∣∣∣u〉 ,
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as the acceleration conditional on velocity in phase β,

〈S(β)
ρ | u〉 =

〈
ρ
(
Ui − U

(I)
i

) ∂Iβ
∂xi

∣∣∣u〉 ,
as the source term due to interphase mass transfer conditional on velocity, Eq. (3.58) can be

rewritten as

∂f̃U|Iβ

∂t
+ ui

∂f̃U|Iβ

∂xi
+

∂

∂uk
〈A(β)

k |u〉f̃U|Iβ
=

f̃U|Iβ

〈ρIβ|u〉
〈S(β)

ρ | u〉 − f̃U|Iβ

D

Dt
ln〈ρIβ〉

One may verify using the above equation that f̃U|Iβ
satisfies normalization for all time. Inte-

grating both sides of the above equation over u space, we get

∂

∂t

∫
f̃U|Iβ

du +
∂

∂xi

∫
uif̃U|Iβ

du︸ ︷︷ ︸
a

+
∫

∂

∂uk
〈A(β)

k |u〉f̃U|Iβ
du︸ ︷︷ ︸

b

=
∫

f̃U|Iβ

〈ρIβ|u〉
〈S(β)

ρ | u〉 du︸ ︷︷ ︸
c

−
∫
f̃U|Iβ

D

Dt
ln〈ρIβ〉 du︸ ︷︷ ︸

d

(3.59)

Term a evaluates to
∂

∂xi

∫
uif̃U|Iβ

du =
∂

∂xi

〈̃
U

(β)
i

〉
.

Term b evaluates to zero, since the pdf f̃U|Iβ
has compact support. Term c evaluates to∫

f̃U|Iβ

〈ρIβ|u〉
〈S(β)

ρ | u〉 du = 〈S(β)
ρ 〉.

Term d evaluates to ∫
f̃U|Iβ

D

Dt
ln〈ρIβ〉 du =

D̃(β)

D̃(β)t
ln〈ρIβ〉.

Substituting these simplifications into Eq. (3.59) results in

∂

∂t

∫
f̃U|Iβ

du +
∂

∂xi

〈̃
U

(β)
i

〉
= 〈S(β)

ρ 〉 − D̃(β)

D̃(β)t
ln〈ρIβ〉. (3.60)

The phasic mean mass conservation, obtained by integrating Eq. (3.57) over u space, is

D̃(β)

D̃(β)t
ln〈ρIβ〉+

∂

∂xi

〈̃
U

(β)
i

〉
= 〈S(β)

ρ 〉.

Thus, Eq. (3.60) shows that the source term on the right hand side involving the material

derivative of ln〈ρIβ〉 ensures that f̃U|Iβ
retains its normalization property for all time.
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A note on the mean velocities in the EE representation

In the statistical representation of variable density two–phase flows, one can define a

density–weighted phasic mean velocity as

〈̃
U(β)

〉
=

1
〈ρIβ〉

∫
u FU|Iβ

du =
〈ρIβU〉
〈ρIβ〉

(3.61)

and a density–weighted mixture mean velocity as

˜〈U(m)
〉

=
1
〈ρ〉

(∫
uFU|If

du +
∫

uFU|Id
du
)

(3.62)

=
1
〈ρ〉

[〈ρIfU〉+ (〈ρIfU〉] , (3.63)

where

〈ρ〉 = 〈ρIf 〉+ 〈ρId〉 (3.64)

= 〈ρ|If = 1〉αf + 〈ρ|Id = 1〉αd (3.65)

is the mixture density.

We can gain insight into the nature of the above mean velocity fields by forming the mean

mass evolution equation by integrating Eq. (3.57) over u space to obtain

∂αβ〈ρ|Iβ = 1〉
∂t

+
∂

∂xi
(αβ〈ρ|Iβ = 1〉〈̃U (β)

i 〉) = 〈S(β)
ρ 〉, (3.66)

where

〈S(β)
ρ 〉 =

〈
ρ
(
Ui − U

(I)
i

) ∂Iβ
∂xi

〉
(3.67)

is the source term due to interphase mass transfer, and then summing the above equation over

β = {f, d} to obtain
∂ 〈ρ〉
∂t

+
∂

∂xi

(
〈ρ〉
〈̃
U

(m)
i

〉)
= 0. (3.68)

In the above development, the relation 〈ρIβQ(U)〉 = αβ〈ρQ(U)|Iβ = 1〉 has been used for

simplification. The conditioning Iβ = 1 imply that such terms are evaluated in phase β.

Rearranging the above equation shows that

∂

∂xi

〈̃
U

(m)
i

〉
= − D̃(m)

D̃(m)t
ln 〈ρ〉 ,
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where D̃(m)/D̃(m)t is the material derivative following the mixture mean velocity:

D̃(m)

D̃(m)t
=

∂

∂t
+
〈̃
U

(m)
i

〉 ∂

∂xi
.

In other words, the mixture mean velocity field is not solenoidal in variable density two–phase

flows.

Rearranging Eq. (3.66) result in the following expression for the divergence of the phasic

mean velocity field:

∂

∂xi
〈̃U (β)

i 〉 = − D̃(β)

D̃(β)t
lnαβ〈ρ|Iβ = 1〉+

1
αβ〈ρ|Iβ = 1〉

〈
ρ
(
Ui − U

(I)
i

) ∂Iβ
∂xi

〉
, (3.69)

where D̃(β)/D̃(β)t is the material derivative following the phasic mean velocity:

D̃(β)

D̃(β)t
=

∂

∂t
+
〈̃
U

(β)
i

〉 ∂

∂xi
.

Thus, the phasic mean velocity is also not solenoidal. Moreover, the divergence of the phasic

mean velocity field depends on a term that represents the interphase mass transfer.

Interesting simplifications result under assumptions of constant density two–phase flows.

Under this assumption,

〈ρ|Iβ = 1〉 = αβ ρβ

where ρβ is the thermodynamic density of phase β. Since ρβ is not a function of space or time

in this case, the evolution equation for αβ simplifies to

∂αβ

∂t
+

∂

∂xi
(αβ〈U

(β)
i 〉) = 0, (3.70)

where

〈U (β)
i 〉 =

〈IβUi〉
〈Iβ〉

= 〈̃U (β)
i 〉.

is the unweighted phasic mean velocity. Summing the above equation over the phases results

in the observation that the mixture mean velocity field is solenoidal:

∇ ·
〈
U(m)

〉
= 0.

However, the phasic mean velocity field is not solenoidal even in the case of constant density

two–phase flows:
∂

∂xi
〈̃U (β)

i 〉 = − D(β)

D(β)t
lnαβ , (3.71)

where D(β)/D(β)t is the material derivative following the unweighted phasic mean velocity.
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3.4.2 Lagrangian statistical representation

Starting from the Klimontovich fine–grained density Eq. (3.13), and using the droplet evo-

lution equations Eqs. (3.10)–(3.12), an evolution equation for the droplet distribution function

f(x,v, r, t), also widely known as Williams’ spray equation, can be derived (Subramaniam,

2001c):
∂f

∂t
+

∂

∂xj
[vjf ] +

∂

∂vj
[〈Aj |x,v, r; t〉f ] +

∂

∂r
[〈Θ|x,v, r; t〉f ] = 0. (3.72)

For the sake of brevity, a detailed derivation of the ddf evolution equation is not reproduced

here and can be found in Subramaniam (2001c). In Eq. (3.130), 〈A|x,v, r; t〉 is the expected

acceleration conditional on the location x, velocity v and radius r, and 〈Θ|x,v, r; t〉 is the

expected vaporization rate conditional on location, velocity and radius.These quantitites are

given as (Subramaniam, 2001c)

〈A | x,v, r; t〉 =
1

f(x,v, r, t)

∑
k≥1

qk

〈
A(k)

∣∣∣x,v, r, t)〉 f (k)(x,v, r, t)

 (3.73)

if f > 0, and zero otherwise; and

〈
Θ
∣∣∣x,v, r; t〉 =

1
f(x,v, r, t)

∑
k≥1

qk

〈
Θ(k)

∣∣∣x,v, r, t)〉 f (k)(x,v, r, t)

 (3.74)

q if f > 0, and zero otherwise. Furthermore, in the above expressions,〈
A(k)

∣∣∣x,v, r; t〉 =
1

f (k)(x,v, r, t)

{〈
k∑

i=1

A(i)f
′
i(x,v, r, t)

〉}
(3.75)

if f (k) > 0, and zero otherwise, and〈
Θ(k)

∣∣∣x,v, r; t〉 =
1

f (k)(x,v, r, t)

{〈
k∑

i=1

Θ(i)f
′
i(x,v, r, t)

〉}
(3.76)

if f (k) > 0, and zero otherwise.

As the above expressions suggest, 〈A|x,v, r; t〉 is not the acceleration corresponding to

a single DPE (cf. A(i) in Eq. (3.75)), but is the expected acceleration contribution at a

point x due to an ensemble of (infinite) realizations of the two–phase flow under consideration.

Similarly, 〈Θ|x,v, r; t〉 is not the vaporization rate corresponding to a single droplet (cf. Θ(i) in

Eq. (3.76)), but is the expected vaporization rate contribution at a point x due to an ensemble
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of (infinite) realizations of the same two–phase flow. Note that there are two intermediate

stages of averaging performed on the droplet acceleration and vaporization rate (cf. Eqs. (3.75)

and (3.73) for A(i), and Eqs. (3.76) and (3.74) for Θ(i)). Therefore, it is incorrect to refer to

〈A|x,v, r, t〉 and 〈Θ|x,v, r, t〉 as the droplet acceleration and the droplet vaporization rate,

respectively, for a general spray.

Using the decomposition f = nf c
VR and an analogous approach as in Sec.(3.4.1), we can

form the transport equation for f c
VR as (cf. Eq. (66) in Subramaniam (2001c)):

∂f c
VR

∂t
+

∂

∂xk
vkf

c
VR +

∂

∂vk
[〈Ak|x,v, r, t〉f c

VR] +
∂

∂r
[〈Θ|x,v, r, t〉f c

VR] = −f c
VR

D

Dt
lnn(x, t)

Analogous to the EE representation, the source term involving the material derivative of lnn

ensures that f c
VR retains its normalization property for all time.

Transport equations for the probability densities in the EE and LE statistical representa-

tions have now been established. It is now straightforward to derive the governing equations

for the mean mass and momentum, as well as second moment equations in each statistical

representation from these transport equations.

3.5 Governing Equations for a Two–Phase Flow

3.5.1 Mean mass conservation

3.5.1.1 Random field statistical representation

As noted earlier, integrating Eq. (3.57) over u space results in the mean mass conservation

in each phase:

∂αβ〈ρ|Iβ = 1〉
∂t

+
∂

∂xi
(αβ〈ρ|Iβ = 1〉〈̃U (β)

i 〉) = 〈S(β)
ρ 〉. (3.77)

3.5.1.2 Number–density based Lagrangian approach

If a constant thermodynamic density of the dispersed phase ρd is assumed, then the mean

mass conservation equation implied by the ddf evolution equation can be obtained using the
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following development. Multiplying Eq. (3.130) by (4/3)πr3ρd results in

∂(4/3)πr3ρdf

∂t
+

∂

∂xj
[vj(4/3)πr3ρdf ] +

∂

∂vj

[
(4/3)πr3ρd〈Aj |x,v, r; t〉f

]
+

∂

∂r

[
(4/3)πr3ρd〈Θ|x,v, r; t〉f

]
− (4/3)π3r2ρd〈Θ|x,v, r; t〉f = 0. (3.78)

Integrating over v, r+ space

∂

∂t

∫
v,r+

(4/3)πr3ρdfdvdr︸ ︷︷ ︸
a

+
∂

∂xj

∫
v,r+

vj(4/3)πr3ρdfdvdr︸ ︷︷ ︸
b

+
∂

∂vj

∫
v,r+

(4/3)πr3ρd〈Aj |x,v, r; t〉fdvdr︸ ︷︷ ︸
c

+
∫
v,r+

∂

∂r

[
(4/3)πr3ρd〈Θ|x,v, r; t〉f

]
dvdr︸ ︷︷ ︸

d

−
∫
v,r+

(4/3)π3r2ρd〈Θ|x,v, r; t〉fdvdr︸ ︷︷ ︸
e

= 0. (3.79)

Using the decomposition, f = nf c
VR and performing the integration, we get:

Term a

∂

∂t

∫
v,r+

(4/3)πr3ρdfdvdr =
∂

∂t

[
4
3
π〈R3〉ρd n

]
Term b:

∂

∂xj

∫
v,r+

vj(4/3)πr3ρdfdvdr =
4
3
πρd

∂

∂xj

[
n

∫
r+

r3
(∫

v
vjf

c
V|Rdv

)
f c

Rdr

]
=

4
3
πρd

∂

∂xk

[
n

∫
r+

r3〈Vk|R〉f c
R(r)dr

]
=

∂

∂xj

[
4
3
π〈R3〉〈Ṽj〉ρd n

]
,

where Ω = Θ/R and the volume–weighted average of any smooth function Q(v, r) is defined

as:

〈Q̃〉 ≡ 〈R3Q〉
〈R3〉

.

Term c:

∂

∂vj

∫
v,r+

(4/3)πr3ρd〈Aj |x,v, r; t〉fdvdr = 0.
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Term d:∫
v,r+

∂

∂r

[
(4/3)πr3ρd〈Θ|x,v, r; t〉f

]
dvdr =

∫
v,r+

∂

∂r

[
(4/3)πr3ρd〈Θ|x,v, r; t〉nf c

VR

]
dvdr

= (4/3)πρdn

∫
v,r+

∂

∂r

[
r3〈Θ|x,v, r; t〉f c

V|Rf
c
R

]
dvdr

= (4/3)πρdn

∫
r+

∂

∂r

[
r3
∫
v
〈Θ|x,v, r; t〉f c

V|Rdvf
c
R

]
dr

= (4/3)πρdn

∫
r+

∂

∂r

[
r3〈Θ|x, r; t〉f c

R

]
dr

= (4/3)πρdn

∫
r+

∂

∂r

[
〈ΘR3|x, r; t〉f c

R

]
dr

= −(4/3)πρdn〈R3〉〈Θ̃|x, r = 0+; t〉f c
R(r = 0+; t).

Term e: ∫
v,r+

(4/3)π3r2ρd〈Θ|x,v, r; t〉fdvdr =
∫
v,r+

(4/3)π3r3ρd

〈
Θ
R
|x,v, r; t

〉
fdvdr

=
∫
v,r+

(4/3)π3ρd

〈
R3Ω|x,v, r; t

〉
fdvdr

= (4/3)π3ρd〈R3〉
〈
Ω̃ | x; t

〉
Thus, the mean mass evolution equation in the dispersed phase using the LE statistical repre-

sentation is

∂

∂t

[
4
3
π〈R3〉ρd n

]
+

∂

∂xk

[
4
3
π〈R3〉〈Ṽk〉ρd n

]
=

n
4
3
πρd 〈R3〉

{
3〈Ω̃ | x; t〉+ 〈Θ̃ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}
, (3.80)

The source term on the right hand side of Eq. (3.80) contains two parts. One part corre-

sponds to a loss of mean mass due to evaporation. The other part represents the depletion of

number density due to a flux of droplets across the r = 0+ boundary, which corresponds to

the smallest radius below which a drop is considered evaporated.
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3.5.1.3 Correspondence for locally homogeneous flows

For statistically homogeneous number density (but inhomogeneous radius pdf), we have

shown that

αd(x, t) = n(t)
4
3
π〈R3(x, t)〉 (3.81)

fE
R (r;x, t) = r3f c

R(r;x, t)/〈R3(x, t)〉, (3.82)

where the last equality holds only for fluid–rigid particle two–phase flows, or for two–phase

flows with fluid dispersed phase elements where we neglect internal fluid motion of the fluid

DPE. Using the first of the above relations, Eq. (3.80) can be written as

∂

∂t
[αd ρd ] +

∂

∂xk

[
αd ρd 〈Ṽk〉

]
= αd ρd 3〈Ω̃ | x; t〉+ αd ρd 〈Θ̃ | x, r = 0+; t〉f c

R(r = 0+ | x; t) . (3.83)

If Eq. (3.82) holds, then it is true that

〈̃Uβ〉 = 〈̃V〉.

Then Eq. (3.83) can be directly compared with the constant thermodynamic density version

of the phase mass conservation equation arising from the random–field approach written for

the dispersed phase (β = d):

∂

∂t
[αdρd] +

∂

∂xk
[αdρd〈̃U

(β)
i 〉] = 〈S(d)

ρ 〉, (3.84)

thereby leading to the correspondence of the terms (Subramaniam, 2001a):

〈S(d)
ρ 〉 ⇐⇒ αd ρd

{
3〈Ω̃ | x; t〉+ 〈Θ̃ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}
.

If the number density retains spatial homogeneity as the flow evolves, then the above correspon-

dence becomes an equality. However, if the number density develops spatial inhomogeneities

as the flow evolves, then relation given by Eq. (3.81) no longer holds, and the correspondence

given above should be treated only as an approximation.
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3.5.2 Mean momentum conservation

3.5.2.1 Random field statistical representation

Multiplying Eq. (3.57) by ui and integrating over u space results in

∂〈ρIβ〉〈̃U
(β)
i 〉

∂t
+

∂

∂xj
〈ρIβ〉

˜〈U (β)
i U

(β)
j 〉 =

〈
ρIβ

DUi

Dt

〉
+
〈
ρUi

(
Uj − U

(I)
j

) ∂Iβ
∂xj

〉
(3.85)

If the fluctuation with respect to the Fàvre –averaged phasic velocity is defined as u′′(β) =

U− 〈̃U(β)〉 8, then the above expression can be simplified as

∂〈ρIβ〉〈̃U
(β)
i 〉

∂t
+

∂

∂xj
〈Iβρ〉〈̃U

(β)
i 〉〈̃U (β)

j 〉 = − ∂

∂xj

〈
Iβρ u

′′
i
(β)
u′′j

(β)
〉

+
〈
ρIβ

DUi

Dt

〉
+
〈
ρUi

(
Uj − U

(I)
j

) ∂Iβ
∂xj

〉
(3.86)

The above mean momentum equation is identical to that derived using the indicator function

formalism of Drew (1983).

The second term on the right hand side of Eq. (3.86) essentially evaluates to the divergence

of the stress tensor evaluated in the βth phase:〈
ρIβ

DUi

Dt

〉
=
〈
Iβ
∂τji
∂xj

〉
.

The mean momentum equations as given by Eq. (3.86) are not Galilean invariant (GI) forms.

One can rewrite Eq. (3.86) as:

∂

∂t
[αβ〈ρ | Iβ = 1〉〈̃U (β)

i 〉] +
∂

∂xj
[αβ〈ρ | Iβ = 1〉〈̃U (β)

i 〉〈̃U (β)
j 〉]

= − ∂

∂xj
[αβ〈ρ | Iβ = 1〉R̃(β)

ij ] +
〈

∂

∂xj
(Iβτji)

〉
+ 〈Iβρbj〉+ 〈S(β)

Mi〉 (3.87)

where

R̃
(β)
ij ≡

〈
Iβρ u

′′ (β)
i u

′′ (β)
j

〉
〈Iβρ 〉

is the Reynolds stress in the βth phase. We do not assume Gauss rule to hold for the second

term on the right hand side of Eq. (3.87), i.e., the expectation and derivative are not assumed

to commute.
8The reader is cautioned against confusing the fluctuation u′′

(β)
with the sample space variable u corre-

sponding to the random variable U. The choice of the fluctuating velocity is discussed in Sec. 3.5.3.
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It is convenient to decompose the interfacial momentum source term 〈S(β)
M 〉 into two part,

one attributable to interphase mass transfer arising from phase change 〈S(β)(PC)
M 〉, and the

other to the interfacial stress 〈S(β)(IS)
M 〉, that is nonzero even in the absence of interphase mass

transfer, and these are defined as (Subramaniam, 2001a):

〈S(β)(PC)
Mi 〉 ≡

〈
ρUi

(
Uj − U

(I)
j

) ∂Iβ
∂xj

〉
(3.88)

〈S(β)(IS)
Mi 〉 ≡ −

〈
τji
∂Iβ
∂xj

〉
. (3.89)

The one arising from interfacial stress 〈S(β)(IS)
Mj 〉 is in GI form, whereas 〈S(β)(PC)

Mj 〉, the term

arising from interfacial mass transfer, is not in GI form.

Substituting Eq. (3.77) into Eq. (3.86) results in:

αβ〈ρ | Iβ = 1〉
D̃β 〈̃U

(β)
j 〉

D̃βt
+

∂

∂xi
[αβ〈ρ | Iβ = 1〉R̃(β)

ij ]−
〈
∂

∂xi
(Iβτij)

〉
− 〈Iβρbj〉

= 〈S(β)(IS)
Mj 〉+

{
〈S(β)(PC)

Mj 〉 − 〈Ũ (β)
j 〉〈S(β)

ρ 〉
}

(3.90)

Each term on the left hand side of Eq. (3.90) is in GI form, and so is 〈S(β)(IS)
Mj 〉, therefore it

follows that the term
{
〈S(β)(PC)

Mj 〉 − 〈Ũ (β)
j 〉〈S(β)

ρ 〉
}

on the right hand side of Eq. (3.90) should

also be in GI form. Therefore, it is this term that should be modeled in the mean momentum

equation for two–phase flows with interphase mass transfer.

Evolution of mixture mean velocity

One can derive the evolution of the mixture mean velocity as defined in Eq. (3.63) by

summing Eq. (3.87) over all β phases as

∂

∂t
[
∑
β

αβ〈ρ | Iβ = 1〉〈̃U (β)
i 〉]︸ ︷︷ ︸

a

+
∂

∂xj
[
∑
β

αβ〈ρ | Iβ = 1〉〈̃U (β)
i 〉〈̃U (β)

j 〉]︸ ︷︷ ︸
b

= − ∂

∂xj
[
∑
β

αβ〈ρ | Iβ = 1〉R̃(β)
ij ]︸ ︷︷ ︸

c

+
∑
β

〈
∂

∂xj
(Iβτji)

〉
︸ ︷︷ ︸

d

+
∑
β

〈Iβρbj〉︸ ︷︷ ︸
e

+
∑
β

〈S(β)
Mi〉︸ ︷︷ ︸

f

(3.91)

Term a simplifies to

∂

∂t
[
∑
β

αβ〈ρ | Iβ = 1〉〈̃U (β)
i 〉] =

∂

∂t
〈ρ〉
〈
U

(m)
i

〉
.
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In order to simplify term b, we first define a velocity difference between the phasic mean velocity

and the mixture mean velocity as

〈̃V (β)
i 〉 = 〈̃U (β)

i 〉 − 〈̃U (m)
i 〉. (3.92)

The tilde on 〈V (β)
i 〉 reminds us that this velocity is derived from density–weighted mean ve-

locities. Using this definition, the product 〈̃U (β)
i 〉〈̃U (β)

j 〉 can be re–expressed as

〈̃U (β)
i 〉〈̃U (β)

j 〉 = (〈̃V (β)
i 〉+ 〈̃U (m)

i 〉)(〈̃V (β)
j 〉+ 〈̃U (m)

j 〉) (3.93)

= 〈̃V (β)
i 〉〈̃V (β)

j 〉+ 〈̃U (m)
i 〉〈̃V (β)

j 〉+ 〈̃U (m)
i 〉〈̃V (β)

j 〉+ 〈̃U (m)
i 〉〈̃U (m)

j 〉 (3.94)

Taking the summation over β = {f, d} of αβ〈ρ|Iβ = 1〉 times the right hand side of the above

expression is

∑
β

αβ〈ρ|Iβ = 1〉〈̃U (β)
i 〉〈̃U (β)

j 〉 =
∑
β

{
αβ〈ρ|Iβ = 1〉

(
〈̃V (β)

i 〉〈̃V (β)
j 〉 (3.95)

+〈̃U (m)
i 〉〈̃V (β)

j 〉+ 〈̃U (m)
i 〉〈̃V (β)

j 〉+ 〈̃U (m)
i 〉〈̃U (m)

j 〉
)}

(3.96)

One can show that

∑
β

{
αβ〈ρ|Iβ = 1〉

(
〈̃U (m)

i 〉〈̃V (β)
j 〉

)}
= 〈̃U (m)

i 〉
∑
β

{
αβ〈ρ|Iβ = 1〉

(
〈̃V (β)

j 〉
)}

= 0,

which follows from Eq. (3.92).x

Thus, term b simplifies to

∂

∂xj
[
∑
β

αβ〈ρ | Iβ = 1〉〈̃U (β)
i 〉〈̃U (β)

j 〉] =
∂

∂xj

∑
β

αβ 〈ρ|Iβ = 1〉
{
〈̃U (m)

i 〉〈̃U (m)
j 〉+ 〈̃V (β)

i 〉〈̃V (β)
j 〉

}
.

Term c can be combined with term b. To simplifiy term d we need to make the assumption that

Gauss’ rule, i.e., the expectation and derivative operator commute. This is a very significant

assumption since one can show using simple examples that, for instance, 〈∂Iβ/∂xi〉 6= ∂αβ/∂xi

in general Aplin and Subramaniam (2003). However, under assumptions of local homogeneity

and for conditions under which the dispersed phase is entirely inside the volume over which

local homogeneity is assumed, Gauss’ rule can hold.



70

Thus, invoking the Newtonian constitutive relation

∑
β

∂

∂xj
〈Iβτji〉 =

∑
β

∂

∂xj
〈Iβ(−pδji + λ

(
∂Uk

∂xk

)
δji + 2µSji)〉

= − ∂

∂xj

∑
β

〈Iβp〉+
∂

∂xj

∑
β

〈
λIβ

(
∂Uk

∂xk

)
δji + 2µIβSji

〉

= − ∂

∂xj
〈p(m)〉+ λ

∂

∂xi

∑
β

〈
Iβ

(
∂Uk

∂xk

)〉
+ 2µ

∂

∂xj
〈S(m)

ji 〉, (3.97)

where 〈p(m)〉 is the mean mixture pressure defined as

〈p(m)〉 = 〈Ifp〉+ 〈Ifp〉

and

〈S(m)
ji 〉 = 〈IfSji〉+ 〈IdSji〉

is the mean deviatoric part of the Newtonian stress tensor. In the above development, λ is the

bulk viscosity coefficient which is related to the shear viscosity through λ = (2/3)µ.

For a constant body force, which is usually the case, term e simplifies to 〈ρ〉bj . Term f is

summation of the interphase momentum transfer over the two phases, and since the interphase

momentum transfer is equal and opposite in a two–phase flow,

∑
β

〈S(β)
Mi〉 = 0. (3.98)

Substituting the above simplifications into Eq. (3.91), and rearranging we get

− ∂

∂xi
〈p(m)〉 =

∂

∂xj

∑
β

αβ 〈ρ|Iβ = 1〉 〈̃U (m)
i 〉〈̃U (m)

j 〉 − λ
∂

∂xi

∑
β

〈
Iβ

(
∂Uk

∂xk

)〉
− 2µ

∂

∂xj
〈S(m)

ji 〉

+
∂

∂xj

∑
β

αβ 〈ρ|Iβ = 1〉
{
〈̃V (β)

i 〉〈̃V (β)
j 〉+ R̃

(β)
ij

}
− ∂

∂t
〈ρ〉
〈
U

(m)
i

〉
− 〈ρ〉bi. (3.99)

Taking the divergence of both sides of the above equation results in

− ∂2

∂xi∂xi
〈p(m)〉 =

∂2

∂xi∂xj

∑
β

αβ 〈ρ|Iβ = 1〉 〈̃U (m)
i 〉〈̃U (m)

j 〉 − λ
∂2

∂xixj

∑
β

〈
Iβ

(
∂Uk

∂xk

)〉

− 2µ
∂2

∂xi∂xj
〈S(m)

ji 〉+
∂2

∂xi∂xj

∑
β

αβ 〈ρ|Iβ = 1〉
{
〈̃V (β)

i 〉〈̃V (β)
j 〉+ R̃

(β)
ij

}

− ∂

∂t

(
∂

∂xi
〈ρ〉
〈
U

(m)
i

〉)
− bi

∂

∂xi
〈ρ〉, (3.100)
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which is the Poisson equation for the mean mixture pressure in a two–phase variable density

flow.

3.5.2.2 Number–density based Lagrangian approach

The mean momentum conservation equation implied by the ddf evolution equation Eq. (3.130)

is obtained by multiplying Eq. (3.130) by (4/3)πr3ρdvj and integrating over all [v, r+]:

∂

∂t
[n

4
3
πρd〈R3〉〈Ṽj〉] +

∂

∂xk
[n

4
3
πρd 〈R3〉〈ṼjVk〉] = n

4
3
πρd 〈R3〉〈Ãj | x; t〉

+ n
4
3
πρd 〈R3〉

{
3〈ṼjΩ | x; t〉+ 〈ṼjΘ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}
.

(3.101)

where mass–weighted averages have been used as in Eq. (3.80). The last term on the right

hand side of the above equation corresponds to a loss of mean momentum due to evaporation,

and the depletion of mean momentum due to a flux of droplets across the r = 0+ boundary.

Substituting Eq. (3.80) into the Eq. (3.101) results in:

n
4
3
πρd〈R3〉

{
∂〈Ṽj〉
∂t

+ Ṽk
∂〈Ṽj〉
∂xk

}
=

n
4
3
πρd 〈R3〉〈Ãj | x; t〉 − ∂

∂xk

[
n

4
3
πρd 〈R3〉

〈
ṽ′′j v

′′
k

〉]
+ n

4
3
πρd 〈R3〉

{
3〈ṼjΩ | x; t〉+ 〈ṼjΘ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}

− n
4
3
πρd 〈R3〉

{
3〈Ṽj〉〈Ω̃ | x; t〉+ 〈Ṽj〉〈Θ̃ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}
. (3.102)

where 〈
ṽ′′j v

′′
k

〉
≡
∫

[v,r+]

(
vj − 〈Ṽj〉

)(
vk − 〈Ṽj〉

) r3f c
VR(v, r | x; t)
〈R3(x, t)〉

dv dr,

The following are the GI combinations of unclosed terms are:{
〈ṼjΩ | x; t〉 − 〈Ṽj〉〈Ω̃ | x; t〉

}
,

and {
〈ṼjΘ | x, r = 0+; t〉 − 〈Ṽj〉〈Θ̃ | x, r = 0+; t〉

}
.

Particle method solutions to the ddf equation that model 〈A|x,v, r; t〉 and 〈Θ|x,v, r; t〉 auto-

matically guarantee GI modeling of the above terms in the mean momentum equation.
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3.5.2.3 Correspondence for locally homogeneous flows

Under the assumptions of statistical homogeneity of n(x; t) and f c
VR(v, r | x; t), and spher-

ical DPE’s, we can substitute αd = (4/3)π〈R3〉n into Eq. (3.102) to obtain:

αd ρd

[
∂〈Ṽj〉
∂t

+ 〈Ṽk〉
∂〈Ṽj〉
∂xk

]
= αd ρd 〈Ãj | x; t〉 − ∂

∂xk

[
αd ρd

〈
ṽ′′j v

′′
k

〉]
+ αd ρd

{
3〈ṼjΩ | x; t〉+ 〈ṼjΘ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}

− αd ρd

{
3〈Ṽj〉〈Ω̃ | x; t〉+ 〈Ṽj〉〈Θ̃ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}
. (3.103)

This equation can be directly compared with the constant thermodynamic density version

of the phase mass conservation equation arising from the random–field approach written for

the dispersed phase (β = d):

αdρd

D̃d〈̃U
(d)
j 〉

D̃βt
= 〈S(d)(IS)

Mj 〉+ 〈Idρbj〉 −
∂

∂xi
[αdρdR̃

(d)
ij ] +

{
〈S(d)(PC)

Mj 〉 − 〈̃U (d)
j 〉〈S(d)

ρ 〉
}
,

(3.104)

where now the stress term drops out because the velocity field is uniform in the DPE (it being

a rigid particle, or a fluid DPE where internal flow is assumed uniform).

A comparison of Eqs. (3.103) and (3.104) leads to the correspondence of the terms (β =

d) (Subramaniam, 2001a):

〈S(β)(IS)
Mj 〉+ 〈Iβρbj〉 ⇐⇒ αd ρd 〈Ãj〉

R̃
(β)
ij ⇐⇒

〈
ṽ′′j v

′′
k

〉
〈S(β)(PC)

Mj 〉 ⇐⇒ αd ρd

{
3〈ṼjΩ | x; t〉+ 〈ṼjΘ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}

−〈Ũ (β)
j 〉〈S(β)

ρ 〉 ⇐⇒ −αd ρd

{
3〈Ṽj〉〈Ω̃ | x; t〉+ 〈Ṽj〉〈Θ̃ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}

If the number density retains spatial homogeneity as the flow evolves, then the above

correspondence becomes an equality. However, if the number density develops spatial inho-

mogeneities as the flow evolves, then relation given by Eq. (3.81) no longer holds, and the

correspondence given above should be treated only as an approximation.
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3.5.3 Second moment equations

3.5.3.1 Random–field based Eulerian approach

Prior to deriving second–moment evolution equations for velocity we need to define the

fluctuating velocity field. In single–phase turbulent flow there are two ways in which velocity

fluctuations can be defined: (1) the fluctuation defined with respect to the mean velocity, (2)

the Fàvre fluctuation velocity defined with respect to the density–weighted mean. The two

fluctuating velocity fields are identical for constant density flows, but for variable density flows

the equations are considerably simpler when written in terms of Fàvre fluctuating velocities

and associated second moments (Jones, 1980; Libby and Williams, 1993). Therefore Fàvre

averaging is the more general averaging approach, and is preferred for variable density flows,

in spite of the difficulties encountered in modeling the unclosed terms and comparison with

experimentally measured velocity moments.

In two–phase flows there are four ways in which velocity fluctuations can be defined (Sub-

ramaniam, 2001a): (1) the fluctuation defined with respect to the mean velocity of that phase,

(2) the Fàvre fluctuation velocity defined with respect to the density–weighted mean velocity

of that phase, (3) the fluctuation defined with respect to the mean velocity of the two–phase

mixture, and (4) the Fàvre fluctuation velocity defined with respect to the density–weighted

mean velocity of the two–phase mixture. It is preferable to adopt the more general definition

of fluctuation velocity with respect to mean velocity in a particular phase. The most useful

definition of fluctuating velocity is the Fàvre fluctuation in phase β:

u
′′ (β)
i ≡ Ui − 〈̃U (β)

i 〉, (3.105)

as was defined earlier. As in single–phase flows, the equations for second moments based on

Fàvre fluctuation velocity are considerably simpler than those based on other definitions.

The Fàvre –averaged Reynolds stress R̃(β)
ij in phase β is defined in terms of u′′ (β)

i as

R̃
(β)
ij ≡

〈
Iβρ u

′′ (β)
i u

′′ (β)
j

〉
〈Iβρ 〉

=
∫
U
v′′i

(β)
v′′j

(β) FU|Iβ
dV. (3.106)
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In order to derive the evolution equation for R̃(β)
ij , we multiply Eq. (3.57) by v′(β)

i v′
(β)
j and

integrate over u space, along with manipulations as detailed in Appendix A, to obtain:

〈Iβρ〉
D̃

D̃t
R̃

(β)
ij︸ ︷︷ ︸

1

+
∂

∂xk
〈ρIβu′′i

(β)
u′′j

(β)
u′′k

(β)〉︸ ︷︷ ︸
2

=

+

〈ρIβu′′i (β)
u′′k

(β)〉
∂〈̃U (β)

j 〉
∂xk

+ 〈ρIβu′′j
(β)
u′′k

(β)〉
∂〈̃U (β)

i 〉
∂xk

︸ ︷︷ ︸
3

+
〈
u
′′ (β)
i

∂ (Iβτkj)
∂xk

〉
︸ ︷︷ ︸

4

+
〈
u
′′ (β)
j

∂ (Iβτki)
∂xk

〉
︸ ︷︷ ︸

5

+
〈
u
′′ (β)
i

(
S

(β)
Mj − UjS

(β)
ρ

)〉
︸ ︷︷ ︸

6

+
〈
u
′′ (β)
j

(
S

(β)
Mi − UiS

(β)
ρ

)〉
︸ ︷︷ ︸

7

+
〈
u
′′ (β)
i u

′′ (β)
j S(β)

ρ

〉
− R̃

(β)
ij

〈
S(β)

ρ

〉
︸ ︷︷ ︸

8

. (3.107)

Term 1 above is the material derivative that convects at the Fàvre –averaged mean flow velocity,

term 2 is the triple velocity correlation, term 3 corresponds to production due to mean flow

gradients, terms 4 and 5 correspond to the fluctuating velocity–stress correlations, terms 6 and

7 correspond to the fluctuating velocity–interfacial force correlations, and term 8 is the source

in Reynolds stress equation due to phase change. The above equation has been written in GI

form; in particular, the GI forms of unclosed terms that need to be modeled (note that they

are also symmetric in indices i and j) are: term 4 and 5; term 6 and 7, and term 8.

3.5.3.2 Number–density based Lagrangian approach

In order to derive the second–moment equation in the LE approach, it is instructive to define

the volume–weighted (analogous to mass–weighting in the Fàvre average presented earlier) ddf
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of fluctuating velocity g̃(x,w, r, t) as (Subramaniam, 2001a, 2003)

g̃(x,w, r, t) = f̃(x, 〈Ṽ | x; t〉+ w, r, t)

= r3f(x,v, r, t) (3.108)

= 〈R3(x; t)〉n(x; t) f̃ c
VR(〈Ṽ | x; t〉+ w, r | x; t) (3.109)

= 〈R3(x; t)〉n(x; t) g̃c(w, r | x; t), (3.110)

where

w = v − 〈Ṽ | x; t〉,

where g̃c(w, r|x; t) is the r3–weighted or volume weighted pdf of fluctuating velocity.

The evolution equation of g̃ is can be derived from Eq. (3.130) (see Appendix C for a

derivation) (Subramaniam, 2001a, 2003):

∂g̃

∂t
+
(
〈Ṽk〉+ wk

) ∂g̃

∂xk
= wk

∂g̃

∂wl

∂〈Ṽl〉
∂xk

− ∂

∂wl

[
〈Al | x,v, r; t)〉g̃ − g̃

∂〈Ṽl〉
∂t

− g̃〈Ṽk〉
∂〈Ṽl〉
∂xk

]

− ∂

∂r
{〈Θ | x,v, r; t〉g̃}+ 3〈Ω | x,v, r; t〉g̃. (3.111)

The second moment equation can be obtained by multiplying the g̃ evolution equation by

wiwj and integrating over all [w, r+] space to obtain:

κn〈R3〉

{
∂〈ṽ′′i v′′j 〉
∂t

+ 〈Ṽk〉
∂〈ṽ′′i v′′j 〉
∂xk

}
︸ ︷︷ ︸

1

+κ
∂

∂xk

[
n〈R3〉〈ṽ′′i v′′j v′′k〉

]
︸ ︷︷ ︸

2

=

− κn〈R3〉

{
〈ṽ′′j v′′k〉

∂〈Ṽi〉
∂xk

+ 〈ṽ′′i v′′k〉
∂〈Ṽj〉
∂xk

}
︸ ︷︷ ︸

3

+ κn〈R3〉
{〈
Ãiv′′j

〉
+
〈
Ãjv′′i

〉}
︸ ︷︷ ︸

4

+ κn〈R3〉
[
3
〈
ṽ′′i v

′′
j Ω
∣∣∣ x; t

〉
+
〈
ṽ′′i v

′′
j Θ
∣∣∣ x, r = 0+; t

〉
f c

R(r = 0+ | x, t)
]

︸ ︷︷ ︸
5

− κn〈R3〉〈ṽ′′i v′′j 〉
{

3
〈

Ω̃
∣∣∣ x; t

〉
+
〈

Θ̃
∣∣∣ x, r = 0+; t

〉
f c

R(r = 0+ | x, t)
}

︸ ︷︷ ︸
6

, (3.112)

where additionally, the above equation has been multiplied throughout by κ = (4/3)πρd. The

description of each term is as follows: term 1 is material derivative (following the mass–weighted
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mean flow) of the dispersed–phase Reynolds stress, term 2 is the triple velocity correlation term,

term 3 is the production due to mean velocity gradients, term 4 is the fluctuating velocity–

acceleration correlation and terms 5 and 6 correspond to the net Reynolds stress change due

to interphase mass transfer. Note that the terms in the above equation are automatically in

GI form.

In homogeneous two–phase flows with neither production nor interphase mass transfer, the

only terms that remain in Eq. (3.112) are (i) the time derivative of the Reynolds stress and

(ii) the acceleration–fluctuating velocity correlations. The acceleration–fluctuating velocity

correlation can be written in terms of g̃c(w, r|x; t) as (Subramaniam, 2005)〈
Ãiv′′j

〉
=

1
〈R3(x, t)〉

∫
[v,r]

r3〈Ai|x,v, r; t〉wj g̃
c(w, r|x; t)dwdr,

where the expected acceleration 〈Ai|x,v, r; t〉 is completely determined by Eq.(3.10)–(3.11)

and the ddf. The center–of–mass acceleration of the DPE with radius r0 in turn depends on

the state of the stress τ at the DPE surface through the expression (cf. Eq. (3.75))

A(i)(x, t) =
1
m

∫
S
n(y)τ (y, t)dAs,

where y = x + err0 is a point on the surface, x is the DPE center, er is the unit vector

directed radially outward from x and dAs is the differential surface area of the DPE 9. Thus,

the acceleration–fluctuating velocity correlation 〈Ãiv′′j 〉 depends on two–point information: the

velocity at x, and the state of fluid stress at the DPE surface. This observation has important

implications in modeling two–phase flows. Unlike in single–phase flows, wherein single–point

models suffice to close unclosed terms in the governing equation for the Reynolds stress 10,

closures for terms such as the 〈Ãiv′′j 〉 in two–phase flows require two–point information. A

widely–used single–point closure for the DPE acceleration in particle–method solutions to the

spray equation (See for eg. Amsden et al., 1989) is of the form

Ap(t) =
dVp(t)
dt

=
Uf (Xp, t)−Vp

τp
Cd(Rep), (3.113)

9For a Newtonian fluid, τ (y, t) = −p(y, t)I + 2µD(y, t), where p is the mechanical pressure, I is the identity
tensor, µ is the absolute viscosity of the carrier phase and D is the deviatoric part of the stress tensor.

10This is true everywhere except near the walls where it is known that non–local closures for the conditional
acceleration are necessary to take wall effects into account correctly Dreeben and Pope (1997a).
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where Ap is a model for A(i) in Eq. (3.11), Vp is the modeled dispersed–phase velocity, Uf is

the carrier–phase velocity at the particle center Xp, τp is the particle response timescale and

Cd is the drag coefficient which is a function of the particle Reynolds number Rep. Clearly,

such models do not include surface statistics or two–point information in them, thereby making

them applicable only to a restricted class of flows wherein the point particle approximation is

valid.

3.5.3.3 Correspondence for locally homogeneous flows

Invoking the assumptions Eq. (3.81) and Eq. (3.82), a direct comparison of the equations

Eq. (3.107) and Eq. (3.112) leads to the following correspondence of the terms to be modeled

(β = d) (Subramaniam, 2001a):

∂

∂xk

〈
Iβρ u

′′ (β)
i u

′′ (β)
j u

′′ (β)
k

〉
⇐⇒ 4

3
πρd

∂

∂xk

[
n〈R3〉〈ṽ′′

i v
′′
j v

′′
k 〉
]

(3.114)〈
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∂ (Iβτkj)
∂xk

〉
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(β)
Mj − UjS

(β)
ρ
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3
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〈
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〉
(3.115)〈
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j

∂ (Iβτki)
∂xk

〉
+
〈
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′′ (β)
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(
S

(β)
Mi − UiS

(β)
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3
πρd n〈R3〉

〈
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′′)
i

〉
(3.116)〈

u
′′ (β)
i u

′′ (β)
j S(β)

ρ

〉
⇐⇒ 4

3
πρd n〈R3〉

[
3
〈
ṽ′′

i v
′′
j Ω
∣∣∣ x; t

〉
+
〈
ṽ′′

i v
′′
j Θ

∣∣∣ x, r = 0+; t
〉
fc

R(r = 0+ | x, t)
]

(3.117)

−R̃(β)
ij

〈
S(β)

ρ

〉
⇐⇒ −4

3
πρd n〈R3〉〈ṽ′′

i v
′′
j 〉×{

3
〈

Ω̃
∣∣∣ x; t

〉
+
〈

Θ̃
∣∣∣ x, r = 0+; t

〉
fc

R(r = 0+ | x, t)
}

(3.118)

This correspondence allows one to compare statistics from the EE statistical representation

with those in the LE statistical representation, or vice versa.

3.6 Comparison of Advantages and Limitations

The EE and LE probabilistic descriptions of two–phase flows contain different information.

In this section, the advantages and limitations of each approach are compared in terms of the

information contained in each statistical representation.
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3.6.1 Eulerian–Eulerian

1. The fundamental description of a two–phase flow in the EE statistical representation

starts from a phase probability field αβ(x, t) and pdf fE
UR|Iβ

(u, r ;x, t), where β = {f, d},

that are defined in both phases. The governing equations for the mean mass, momentum

and second–moment that are derived from the transport equation for the phasic pdf are

also defined in both phases. Thus, a coupling between the fluid dynamic equations in

both phases is clearly retained in the EE representation.

2. The complete single–point EE description in terms of phase probability fields and pdf

contains no explicit representation of shape or number of dispersed–phase elements. This

informs us that very different two–phase flows can have the same phase probability fields

αβ and pdf fE
UR|Iβ

(u, r ;x, t).

3. The EE representation is valid in each phase regardless of the size of the dispersed phase

element. Internal circulation effects inside a droplet or bubble can be captured by the

EE statistical description in terms of Eq.(3.27).

4. A noteworthy limitation of the pdf fE
UR|Iβ

(u, r ;x, t) is its inability to distinguish between

the flow at a point near the dispersed phase surface and the flow in the bulk. Experiments

and body–fitted grid simulations clearly indicate that velocity gradients very close to the

particle surface can be very different compared to those in the bulk. A one–point pdf

description of a two–phase flow does not possess the capability of capturing such velocity

gradients. Such velocity gradients can be captured using a two–point pdf formalism.

3.6.2 Lagrangian–Eulerian

1. Since the LE representation is primarily a description of the dispersed phase, no infor-

mation on the carrier phase is directly available in the ddf or the spray equation. Thus,

a coupling between the dispersed phase and the carrier phase in the LE approach is

not rigorously justified. However, one should note that terms such as 〈A|x,v, r, t〉 in

Eq.(3.130) need to be correctly interpreted as the expected acceleration of the dispersed
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phase conditional on position, velocity and radius and also the state of the carrier phase,

where the carrier phase information is assumed to be known.

2. The ddf contains both shape and number information of the dispersed–phase elements.

However, the shape of the dispersed phase elements is modeled (such as assuming that

a characteristic radius r describes the DPE).

3. The ddf cannot capture internal circulation effects since it assumes that a DPE can be

described by a single velocity, usually at the particle center–of–mass. As such, rigid

particles of any size, and drops and bubbles in which internal circulation effects are

not important can be modeled using the ddf. This implicitly imposes a restriction on

the size of droplets or bubbles that the ddf is capable of modeling. For instance, the

dispersed phase structures that peel off the solid core near the fuel injector during primary

atomization may not be amenable to a description by the ddf since such structures could

have significant internal circulation effects and may be insufficiently characterized by a

single velocity at their center of mass.

4. The implicit restriction on the size of the DPE (droplet or bubble) in (3) should not

be misconstrued as a limitation of the ddf to model dense flows. In fact, the ddf does

not rely on the assumption of diluteness (or denseness) of a two–phase flow in its defini-

tion (Subramaniam, 2001c). It is the models used in existing EE and LE formulations

that invoke the assumption of diluteness. The ddf is perfectly valid to model a dense

two–phase flow composed of droplets or bubbles in which (i) the DPEs do not have any

internal circulation effects (ii) the DPEs can be described by a characteristic length scale.

5. For two–phase flows where the LE statistical description is valid, unclosed quantities in

the EE governing equations can be estimated using the corresponding unclosed terms

in the LE approach. We invoke the following assumptions: (i) the model for the DPE

drag is given by Eq. (3.113) (ii) a constant number of DPEs N , (iii) no interphase mass

transfer, (iv) a monodispersed size distribution with radius R0, and (v) no body forces

such as gravity. Under these assumptions, we have for the interphase momentum transfer
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term

〈S(d)
M 〉(x, t) =

∫∫
4
3
πr3ρd 〈A|x,v, r, t〉 f(x,v, r, t) dv dr. (3.119)

Here

〈A|x,v, r, t〉 =
1
f

〈
N∑

i=1

A(i)δ(x−Xp(i))δ(v −Vp(i))δ(r −R0)

〉

=
1
f

〈
N∑

i=1

(
Uf (Xp(i), t)−Vp(i)

τp

)
δ(x−Xp(i))δ(v −Vp(i))δ(r −R0)

〉
.

Substituting in Eq. (3.119) results in

〈S(d)
M 〉(x, t) =

∫∫
4
3
πr3ρd

〈
N∑

i=1

(
Uf (Xp(i), t)− v

τp

)
δXp(i)

δVp(i)
δR0

〉
dv dr,

where δXp(i)
= δ(x−Xp(i)), δVp(i)

= δ(v −Vp(i)) and δR0 = δ(r −R0).

Thus,

〈S(d)
M 〉(x, t) =

∫∫
4
3
πr3ρd

〈
N∑

i=1

(
Uf (Xp(i), t)− v

τp

)
δXp(i)

δVp(i)
δR0

〉
dv dr,

=
∫∫

4
3
πr3ρd

(
〈U | x, t〉 − 〈V | x, t〉

τp

)
f(x,v, r, t) dv dr,

=
∫∫

4
3
πr3ρd

(
〈U | x, t〉 − 〈V | x, t〉

τp

)
n(x, t)f c

V|Rδ(r −R0) dv dr,

=
4
3
πR3

0 ρd n(x, t)
(
〈U | x, t〉 − 〈V | x, t〉

τp

)
, (3.120)

where 〈U | x, t〉 and 〈V | x, t〉 are the expected carrier phase and dispersed phase veloci-

ties, respectively, conditional on location x at time t. Thus, under the assumptions noted

earlier, a model for the particle drag in the LE framework implies a model for interphase

momentum transfer term in the EE representation. Interestingly, the right hand side of

Eq. (3.120) can also be extracted from DNS of particle–laden flows that are performed

under the same assumptions (also widely known as the point–particle approximation),

and thus EE models for the interphase momentum transfer term 〈S(d)
M 〉(x, t) can be eval-

uated using the above equality by comparing with DNS data. A significant observation

from the above development is that single–point models such as the one used for A(i)

do not contain any multiscale information. This has implications in accurately modeling

interphase TKE transfer in two–phase flows (see Chapter 7).
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3.7 Summary and Conclusions

Unlike for a single–phase flow, two distinctly different statistical representations, namely

the Eulerian–Eulerian and Lagrangian–Eulerian statistical representations, exist for a two–

phase flow. This work clearly shows that the EE and LE probabilistic representations of

two–phase flow bear a complicated relationship with each other, unlike the relatively simpler

relationship for single–phase flow (Pope, 1985). This work establishes the foundation for the

pdf approach to two–phase flows by unifying the EE and LE statistical representations. The

following summarizes the principal achievements and conclusions of this work.

1. Fundamental events and corresponding probabilities associated with a two–phase flow in

the EE statistical representation are established. Once this is done, it is then straight-

forward to derive an evolution equation for the fundamental single–point pdf for the

instantaneous velocity conditional on the presence of phase β, where β = {f, d}, for a

two–phase flow. Governing equations for the mean mass, mean momentum and second

moment that are derived from the evolution equation for the EE mass density are shown

to be identical to widely–used ensemble–averaged equations for two–phase flows. This

level of consistency is absent in two–phase flow pdf formulations available in literature.

2. Fundamental to the LE statistical representation is the droplet distribution function

whose evolution equation has been rigorously derived using the theory of point pro-

cesses (Subramaniam, 2000, 2001c). Based on the droplet distribution function, the pdf

of fluctuating velocity g̃ can be defined. The transport equation for g̃ forms the basis

for the derivation of mean mass, mean momentum and second–moment equations for the

dispersed phase in the LE representation.

3. Consistency conditions are established between the fundamental quantities in the EE (viz.

αβ and fE
UR|Iβ

(u, r ;x, t)) and the LE (viz. n(x, t) and f c
VR(v, r | x, t)) representations. It

is noteworthy that these quantities bear a simple relationship with one another only under

conditions of statistical homogeneity of number density and radius pdf. Example two–

phase flows where the exact relations between the EE and LE statistical representations
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fail to hold are enumerated.

4. By comparing unclosed terms in the governing equations for the mean mass, mean mo-

mentum and second–moment in each statistical representation, correspondence between

the unclosed terms is established. Galilean invariant forms of unclosed terms in the gov-

erning equations in both the statistical representations are identified. This work also

serves as a framework for comparing existing two–phase flow models with the Galilean

invariant forms of the unclosed terms presented in this work, and also as a guide for

proposing new models. The correspondence also aids in estimating unclosed terms in

the governing equations in the EE representation using corresponding terms in the LE

representation.

5. A comparison between the two statistical representations reveals that the information

content in the two approaches is indeed different. The inability of the ddf to capture

internal circulation effects in drops or bubbles imposes a restriction on the class of DPEs

that can be modeled by the ddf.

DNS of particle-laden flows can significantly benefit from the correspondence between the

EE and LE representations presented in this work. This work also provides the necessary

consistency relations that need to be satisfied in combined EE–LE formulations in which in-

formation is handed over from one representation to the other at a common boundary.

3.8 Extension to multiphase flows

The development of a statistical description for multiphase flows thus far was restricted

to two–phase flows. We now briefly outline the considerations that are essential to extend

this theoretical framework to multiphase flows. In particular, we consider the extension of the

EE and the LE statistical description to three–phase flows. This discussion should also lay

the foundation for the extension of the theoretical framework to multiphase flows with four

and more interacting phases. In the following we consider a carrier phase denoted f and two

dispersed phases denoted d1 and d2, respectively.
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3.8.1 Eulerian–Eulerian statistical representation

The definition for the indicator function given in Eq. (3.1) remains valid regardless of the

number of phases. At any location x, the sum of the indicator function over all the phases is

unity: ∑
β={f,d1,d2}

Iβ = 1 (3.121)

The fundamental joint event in the case of three phase flow is (cf. Eq. (3.3))

E1 = [U ∈ (u,u + du), Iβ = 1] (3.122)

Corresponding to this joint event, conditional and marginal events are identical to those de-

clared in Sec. 3.2.1. The definitions for the phase probability function pβ, volume fraction αβ

and the phasic velocity pdf fU|Iβ
are all identical to those defined earlier as well. The following

relations hold in the case of three phase flows:

∑
β={f,d1,d2}

αβ = 1 (3.123)

∑
β={f,d1,d2}

pβ = 1 (3.124)

fU =
∑

β={f,d1,d2}

αβfU|Iβ
(3.125)

The minimal and complete single–point description for a three–phase flow now refers to the

knowledge of two of the three αβ’s and the phasic velocity pdfs fU|Iβ
corresponding to all the

phases. The following relationships can be used to obtain the phase probability function from

the knowledge of fU|Iβ
and αβ:

pβ =
fU|Iβ

αβ∑
β={f,d1,d2} αβfU|Iβ

.

Note that only two of the three volume fractions αβ are independent.

The definition and evolution equation for the mass density FU|Iβ
are identical to those

presented in Sec.3.4.1 for β = {f, d1, d2} (cf. Eq. (3.42) and Eq. (3.57)). It is noteworthy that

for the carrier phase β = f , the source term due to interphase mass transfer in Eq. (3.57) now

represents the regression of the interface for the phases β = d1 and β = d2. While the mean
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mass conservation equation Eq. (3.77) remains valid for three–phase flow, note that since the

total mass in the closed three–phase system is conserved, the source terms due to interphase

mass transfer sum to zero:

∑
β={f,d1,d2}

〈
ρ
(
Ui − U

(I)
i

) ∂Iβ
∂xi

〉
= 0.

The mean momentum equation Eq. (3.87) is also valid for the three–phase system under

consideration. For the interphase momentum transfer term, we have the following relationship:

∑
β={f,d1,d2}

〈
ρUi

(
Uj − U

(I)
j

) ∂Iβ
∂xj

〉
−
〈
τji
∂Iβ
∂xj

〉
= 0, (3.126)

which follows since If = 1 − Id1 − Id2 . An interpretation of this result is that the sum of

the interphase momentum transfer associated with phase d1 and d2 is equal and opposite to

that associated with phase f . The second moment equation Eq. (3.107) also holds for the

three–phase system.

3.8.2 Lagrangian–Eulerian statistical representation

In the LE statistical representation, the ddf is the fundamental starting point for the

description of the dispersed phase. For two dispersed phases in a three–phase system, one

would have to define the two ddfs as

fd1(x,v, r, t) =
〈
f ′d1

(x,v, r, t)
〉

=

〈Nd1∑
i=1

δ(x−X(i)
d1

)δ(v −V(i)
d1

)δ(r −R
(i)
d1

)

〉
(3.127)

fd2(x,v, r, t) =
〈
f ′d2

(x,v, r, t)
〉

=

〈Nd2∑
j=1

δ(x−X(j)
d2

)δ(v −V(j)
d2

)δ(r −R
(j)
d2

)

〉
(3.128)

where the subscripts d1 and d2 distinguishes properties associated with each phase. Proceeding

in the same manner as in Sec. 3.4, one can derive two evolution equations, one for each ddf

defined above, as

∂fd1

∂t
+

∂

∂xj
[vjfd1 ] +

∂

∂vj

[
〈Ad1j |x,v, r; t〉fd1

]
+

∂

∂r
[〈Θd1 |x,v, r; t〉fd1 ] = 0 (3.129)

∂fd2

∂t
+

∂

∂xj
[vjfd2 ] +

∂

∂vj

[
〈Ad2j |x,v, r; t〉fd2

]
+

∂

∂r
[〈Θd2 |x,v, r; t〉fd2 ] = 0. (3.130)
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One should bear in mind that the conditional acceleration 〈Ad1j |x,v, r; t〉 for phase d1 is

implicitly conditional upon the presence of the other phase d2. A similar observation holds for

〈Ad2j |x,v, r; t〉 and the conditional evaporation rates. In this three–phase system containing

two dispersed phases, one may need to take into account collisions between the dispersed

phases. To account for such collisions (say, in dispersed phase d1), the conditional acceleration

〈Ad1〉 can be considered to be composed of three parts: (i) a part that is known in terms of

the ddf, (ii) a part that is unknown, but is modeled in terms of how the dispersed phase d2 is

spatially distributed with respect to d1, and (iii) a part that is also unknown, but is modeled

in terms of how the dispersed phase d1 is spatially distributed. The term (ii) accounts for

interphase collisions, while term (iii) accounts for intraphase collisions.

The mean mass, mean momentum and second–moment equations associated with each

dispersed phase can now be derived in a straightforward manner as presented for a single

dispersed phase in Sec.(3.5). Coupling between the dispersed phases is accounted through the

conditional acceleration terms and the conditional vaporization terms corresponding to the

evolution equation in each dispersed phase.

In a single–point description of a three–phase system, information is available only at

the level of the means (for instance, mean number density in each dispersed phase at each

physical location). Since there is no other means to distinguish between phases than using

mean information, the procedure to establish the relationship between the EE and the LE

representation is identical to that presented in Sec. 3.3. In particular, the volume fraction

associated with phase d1 can be related to the ddf fd1 and the volume fraction associated with

phase d2 can be related to the ddf fd2 using the method outlined in that section. Similarly, the

Eulerian phasic velocity pdf in each dispersed phase can be related to the conditional joint pdf

of velocity and radius corresponding to the ddf in each phase as outlined in the same section.
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CHAPTER 4. A NEW LAGRANGIAN–LAGRANGIAN

REPRESENTATION OF TWO-PHASE FLOWS

A new statistical representation for a two–phase flow called the Lagrangian–Lagrangian

(LL) description that is based on a Lagrangian description of both the carrier phase and the

dispersed phase is proposed. The description of the dispersed phase in terms of the droplet

distribution function is retained in this formalism. Since the droplet distribution function can

be expressed as a sequence of single “surrogate” droplet pdfs, the corresponding Lagrangian

description of the carrier phase is properly interpreted as describing the evolution of single

“surrogate” fluid particles. Such a Lagrangian interpretation of the carrier phase follows nat-

urally from an intermediate symmetrization done on the Liouville multi–particle pdf of the

dispersed phase (Subramaniam, 2000). Implicit in the symmetrization of the dispersed phase

Liouville pdf is an analogous symmetrization of the multipoint pdf description of the carrier

phase. The relationship between the new LL description and a recently formulated Eulerian–

Eulerian (EE) pdf formalism for two–phase flows is presented. In particular, it is shown that

in the context of two–phase flows the relationship between Eulerian and Lagrangian quantities

in the two phases is not as straightforward as in single–phase flows, but has to be interpreted

carefully. A framework for the consistent statistical representation of two–phase flows in the

EE, LE, and LL statistical representations is established.

4.1 Lagrangian representation in single–phase flows

Before we delve into developing a framework for the Lagrangian description of the car-

rier phase in a two–phase flow, it is instructive to review the Lagrangian representation in

single–phase flows. This section will help us appreciate the difference between the Lagrangian
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representation in single phase flows and that in two–phase flows.

In the context of low–Mach number gaseous flow (Pope, 1985), the state of the fluid at

any physical location is completely described by the velocity vector U and a composition

vector φ = {φ1, φ2, . . . , φσ}, which is composed of σ = s+ 1 scalars, where s is the number of

species corresponding to the species mass fractions, and the remaining scalar is the enthalpy.

Conservation equations of mass and momentum are

∂ρ

∂t
+
∂ρUi

∂xi
= 0 (4.1)

ρ
DUj

Dt
=
∂τij
∂xi

− ∂p

∂xj
+ ρgj (4.2)

while the evolution of the scalars can be succinctly written as

ρ
Dφα

Dt
= −∂J

α
i

∂xi
+ ρSα, α = 1, 2, . . . , σ, (4.3)

where Jα is the diffusive mass flux vector of species α and Sα is the mass rate of addition of

species α due to reaction. Given a reference pressure p0, the density and reaction source term

are completely determined by the composition vector ρ = ρ(φ) and Sα = Sα(φ). This has

implications in the definition of the Lagrangian joint pdf of velocity and scalar as a transition

density for the Eulerian pdf (see Eq. (4.12) and later).

The velocities and compositions form a 3+σ dimensional random vector in a turbulent flow.

The complete single–point description of the turbulent flow is characterized by the velocity–

composition joint pdf fUφ(V,φ). In term of the fine–grained density, fUφ can be written

as (Pope, 1985)

fUφ = 〈δ(U−V)δ(φ−ψ)〉 . (4.4)

where V and ψ are the sample space variables corresponding to the random variables U and

φ, respectively. One can define the density–weighted joint pdf f̃ as

f̃(V,ψ) =
ρ(ψ)
〈ρ〉

f(V,ψ) (4.5)

In the context of variable–density single–phase flows, it is instructive to define a mass density

function as (Pope, 1985)

F(V,ψ,x, t) = ρ(ψ) fUφ(V,ψ;x, t) = 〈ρ〉 f̃Uφ(V,ψ;x, t). (4.6)
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Using the expected mass of fluid M in a region of volume V , one can represent the mass density

discretely through N notional particles, each particle representing a mass ∆m = M/N . The

discrete mass density function FN is then defined by (Pope, 1985)

FN = ∆m
N∑

i=1

δ(U(i) −V)δ(φ(i) −ψ)δ(X(i) − x). (4.7)

The N particles are identically distributed and hence the expected mass density is (Pope, 1985)

〈FN 〉 = ∆m
N∑

i=1

〈
δ(U(i) −V)δ(φ(i) −ψ)δ(X(i) − x)

〉
. (4.8)

A consequence of the above development is that the position pdf of the notional particles is

proportional to the mean density:

h(x) =
〈ρ(x)〉
M

. (4.9)

If f∗(V,ψ|x) is the joint pdf of U(i) and φ(i) conditional on the particles being at position x,

then

f∗(V,ψ|x) =
F(V,ψ,x)
〈ρ(x)〉

= f̃(V,ψ;x). (4.10)

The above relation shows that the pdf of notional particle properties at a given location must

be equal to the density–weighted pdf of fluid properties for the relation 〈FN 〉 = F to hold.

The evolution of the mass density function F(V,ψ,x, t) is given as (Pope, 1985)

∂F
∂t

+ Vj
∂F
∂xj

= − ∂

∂Vj
[〈Aj |V,ψ〉 F ]− ∂

∂ψα
[〈Θα|V,ψ〉 F ], (4.11)

where

ρAj(x, t) =
∂τij
∂xi

− ∂p

∂xj
+ ρgj

ρΘα(x, t) = −∂J
α
i

∂xi
+ ρSα.

The expectations 〈A〉 and 〈Θ〉 are not random variables, and therefore Eq. (4.11) is a deter-

ministic equation. This brings forth an important observation that many different stochastic

systems can be described by the same mass density function evolution. Such stochastically

equivalent systems (in this case, the fluid particle system and the notional particle system form
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stochastically equivalent systems) form an important basis in the Lagrangian description of

the single–phase flow.

The concept of a fluid particle is the starting point for the Lagrangian description in single–

phase flows. Since the mass of a material element of fluid remains unchanged, the ratio of the

volume occupied by the material element at time t0 to the volume at t can be expressed as

dV (t)
dV (t0)

=
∂X+

∂Y
=

ρ(Y, t0)
ρ(X+(t,Y), t)

(4.12)

where X+ is the Lagrangian position of the fluid particle at time t, and Y is its initial posi-

tion. In augmented state space (Pope, 1985), the evolution of the state of a fluid particle be

represented as [V, ψ,x] = [U+, φ+,X+] given that the initial position of the particle is Y. In

a turbulent flow, the particle paths in augmented state space can cross each other, since the

state vector [U+, φ+,X+] does not uniquely determine the rate of change vector [A,Θ,U+].

The Lagrangian conditional joint pdf fL(V,ψ,x; t|V0,ψ0,x0) is the joint probability of

the event (Pope, 1985)

St ≡ {U+(t,Y) = V,φ+(t,Y) = ψ,X+(t,Y) = x}, (4.13)

conditional on the event

S0 ≡ {U+(t0,Y) = U(Y, t0) = V0, ,φ
+(t0,Y) = φ(t,Y) = ψ0}. (4.14)

The Lagrangian joint pdf fL is shown to be the transition density in that the mass density at

time t can be determined from its value at t0 through the relation (Pope, 1985)

F(V,ψ,x; t) =
∫∫∫

fL(V,ψ,x; t|V0,ψ0,Y) F(V0,ψ0,Y; t) dV0 dψ0 dY. (4.15)

The transition density fL evolves according to (Pope, 1985)

∂fL

∂t
+
∂[VifL]
∂xi

+
∂

∂Vi
[fL 〈Ai|St, S0〉] +

∂

∂ψα
[fL 〈Θα|St, S0〉] = 0. (4.16)

Using Eq. (4.15) the evolution of F can be derived to be

∂F
∂t

+
∂[ViF ]
∂xi

+
∂

∂Vi
[F 〈Ai|V,ψ〉] +

∂

∂ψα
[F 〈Θα|V,ψ〉] = 0. (4.17)
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Corresponding to the evolution equation of F , one can envisage a set of notional particles that

evolve according to a deterministic set of Lagrangian equations

∂

∂t


Û

φ̂

x̂

 =


〈A|V,ψ〉

〈Θ|V,ψ〉

〈U|V,ψ〉

 . (4.18)

These notional particles are referred to as “conditional particles” in Pope (1985). The quanti-

ties on the right hand side of Eq. (4.18) depend on the initial state V0,ψ0,x0, and since the

quantities on the right hand side of Eq. (4.18) are conditional expectations, the evolution of

a conditional particle is uniquely determined by its initial state. As such conditional particle

paths cannot cross. A computationally feasible method of solving the joint pdf equation is

possible through using the idea of conditional particles. Pope (1985) shows that if the mass

density F is represented discretely using a collection of N conditional particles at initial time,

then their evolution given by Eq. (4.18) ensures that the mass density can be approximated

by a large number of conditional particles for all time.

While the idea of conditional particles is beneficial to appreciate the fact that the fluid

particle system and the conditional particle system have the same pdf, the method of solution

through the evolution of Eq. (4.18) is not a satisfactory means to solve the pdf equation since in

general the right hand side is unknown. Using the principle of stochastic equivalence, systems

of stochastic particles can be constructed whose pdf evolves in the same way as that of the fluid

particles. It is important to note that unlike conditional particles, stochastic particle paths

can cross. Using a Markov process (Pope, 2000) as a stochastic model, the implied evolution

equations of the Lagrangian transition density and the mass density function can be derived.

For the mass density implied by the model at initial time to remain a valid mass density for

all time, essentially two conditions need to be satisfied (Pope, 1985): (i) realizability, which is

guaranteed if F > 0 and (ii) normalization∫∫
F(V,ψ,x; t) dV dψ = 〈ρ(x, t)〉

and consistency ∫∫
1

ρ(ψ)
F(V,ψ,x; t) dV dψ = 1,
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which are equivalent. Realizability is guaranteed if the model can be expressed in terms of

the evolution of the discrete mass density function FN (see Eq. (4.8)). The satisfaction of the

mean continuity equation is necessary and sufficient to satisfy the consistency condition, and

the mean continuity is satisfied for all time if and only if the mean pressure satisfies a Poisson

equation.

In summary, the Lagrangian description in single–phase flows has a clear physical meaning

in terms of fluid particles. The Eulerian pdf at time t is known in terms of the Eulerian pdf

at initial time t0 and the Lagrangian pdf. Hence the Lagrangian pdf serves as a transition

density for the Eulerian pdf. The principle of stochastic equivalence allows one to model the

fluid particles in terms of a collection of Lagrangian notional particles whose pdf evolves in the

same way as the pdf corresponding to the fluid particles. These notional particles must satisfy

certain constraints and consistency conditions in order for the implied mass density at initial

time to remain a valid mass density for all time.

connected 
material points

disconnected 
material points

DPE - A
DPE - B

Figure 4.1 Schematic showing two DPEs A and B taken from a snapshot of
a two–phase flow. Three material pointsm1,A, m2,A andmB, all
in the dispersed phase, are shown. A single–point Lagrangian
description based on material points in a two–phase flow cannot
distinguish between the connectedness of m1,A and m2,A, and
also the fact that mB is not connected to the DPE A.

It is natural to seek a straightforward extension of the Lagrangian treatment of single–phase
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flows to two–phase flows in terms of material points in the two phases. Consider a schematic of

a two–phase flow in Fig. 4.1 that contains, for simplicity, a solid dispersed phase. Let us follow

two material points m1,A and m2,A in the dispersed–phase element (DPE) denoted A and one

material point mB in the DPE denoted B each with a Lagrangian state [X+(t,Y),U+(t,Y)]

along with an indicator function I+
d (t,Y) to distinguish whether the material point is in the

dispersed phase or not. The material points m1,A and m2,A are connected since they form

a part of the same solid DPE, while the material point mB is not connected with either

m1,A or m2,A since it is in a different DPE. A single–point description of a two–phase flow

cannot capture the fact that m1,A and m2,A are connected, while mB is disconnected with

the other two material points. The issue of connectedness of material points that constitute a

DPE (such as a droplet, solid particle or bubble) in a 1–pt description of the two–phase flow

can be resolved by using topological information, such as characteristic radius of the DPE.

In other words, one needs to associate a characteristic radius to each DPE and a reference

center, in order to capture the connectedness between material points in a DPE. Topological

information such as the characteristic radius is important in closure models for the drag and

vaporization, since these phenomena predominantly occur at the surface of the DPE. However,

once one introduces the notion of a characteristic radius associated with each DPE center in

a Lagrangian description of the dispersed phase, the relationship between such a description

and the spray equation formalism (Subramaniam, 2001c) needs to be clearly established.

We therefore conclude that the only tractable single–point Lagrangian statistical descrip-

tion of the dispersed phase is the spray equation formalism. In this description (see Subrama-

niam (2001c, 2000) and also Section 3.2.2), we have already noted that using the ddf one cannot

meaningfully characterize single droplet events. However by performing a symmetrization of

the N–particle Liouville density and successive intergration over all N − 1 spaces, one can

indeed obtain a single–particle density of “surrogate” particles (Subramaniam, 2001c, 2000).

These considerations for the dispersed phase impose certain restrictions on the Lagrangian

description of the carrier phase in a two–phase flow.

In a single–point statistical description of a two–phase flow therefore, the statistics of a
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single fluid particle (or material point in the carrier phase) are lost in the symmetrization

process. Since in describing the carrier phase, one needs to condition on the state of the

dispersed phase, it is instructive to seek a joint description of the two–phases. It is worthwhile

to note that Edwards (2000) has explored such a simultaneous joint description of the fluid

and dispersed phase in the context of dense sprays. From such a joint description of the two–

phases, one can define an unambiguous initial state which forms the basis for the Lagrangian

description of the carrier phase.

In the following, we first briefly review the Lagrangian description of the dispersed phase,

and then establish the foundation for the Lagrangian description of the carrier phase.

4.2 Lagrangian description of the dispersed phase

The complete multiparticle description of the dispersed phase conditional on the presence

of N = k DPEs in the system is given by the Liouville probability density (Subramaniam,

2000)

f[N=k](x1,v1, . . . ,xk,vk, t) ≡

〈
N=k∏
i=1

δ(xi −X(i)(t))δ(vi −V(i)(t))

〉
, (4.19)

where X(i) and V(i) are the position and velocity of the ith DPE at time t. The Liouville

density is the joint multiparticle density which characterizes all joint (multiparticle) events

of the ensemble for a fixed total number of DPEs N = k. In kinetic theory, the N = k

Liouville density can be straightforwardly related to the single–particle Klimontovich density

by deriving a succession of marginal densities leading to the BBGKY hierarchy. However, the

Liouville density that characterizes the dispersed phase in a two–phase flow cannot be simply

related to the Klimontovich density owing to several reasons (Subramaniam, 2000): (i) this

Liouville density is ordering dependent (ii) fluctuations of the total number of particles about

the mean in realistic two–phase flows are non–negligible (iii) the total number of particles is

finite and can change in time (iv) dispersed–phase elements are not independently distributed

as large volume fractions in a two–phase flow preclude such an independence. As far as (iv)

is concerned, in the dense limit and in the context of monodispersed size distribution of the

dispersed phase, one could use the radial distribution function to account for spatial correlations
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between particle positions as employed in the theory of dense gases (Chapman and Cowling,

1990) .

In order to relate the Liouville density to the Klimontovich density associated with the

dispersed phase in a two–phase flow, or simply, to derive the single particle density from

the multiparticle Liouville density, an intermediate symmetrization of Eq. (4.19) needs to

be performed. Details on the symmetrization procedure applied to Eq. (4.19) are given in

Subramaniam (2000). The resulting symmetrized Liouville density is

f sym
[N(t)=k](x1,v1, . . . ,xk,vk; t) =

1
k!

∑
perm

f[N(t)=k](x1,v1, . . . ,xk,vk; t) (4.20)

From this symmetrized Liouville density, it is straightforward to derive a unique single–particle

probability density:

f
[N(t)=k]
1s (x1,v1; t) ≡

∫
f sym
[N(t)=k](x1,v1, . . . ,xk,vk; t)dx2dv2 . . . dxkdvk.

The droplet distribution function is related to the single–particle density through

f(x,v, t) =
∑
k≥1

qkkf
[N(t)=k]
1s (x,v; t) =

∑
k≥1

qkf
k(x,v; t) (4.21)

where qk is the probability that there are N = k DPEs in the system. Using Eq. (4.21), one

can show that

n(x, t) =
∑
k≥1

qkn
(k)(x, t), (4.22)

where n(k) is the number density conditional on the presence of k droplets in the system.

4.3 Framework for the Lagrangian description of the fluid phase

A prerequisite for the Lagrangian description of the fluid phase is the characterization of

the initial state of the two–phase system. In single–phase flows, the initial state is characterized

in terms of the fluid particle. The initial state vector S0 (cf. Eq. (4.14) and Eq. (4.13)) (Pope,

1985):

S0 =
{
U+(t0,Y) = U(Y0, t0)

}
,



95

where U+ is the velocity following the fluid particle, Y is the initial position of the fluid particle

and U is the Eulerian velocity at the location Y0 at time t0, uniquely characterizes (in the

absence of scalars) the initial state of the single–phase flow.

A straightforward extension of this idea to two–phase flows is not possible. This is primarily

because the presence of the dispersed phase adds complexity to the unique characterization of

the initial state in a two–phase flow. Given a physical domain containing a two–phase flow,

the carrier phase and dispersed phase each occupy a region of the domain whose measure

(or, volume) is itself a random variable. A meaningful statistical description of a two–phase

flow therefore will require an intermediate averaging, which is not required in the statistical

description of single–phase flows.

Another hurdle in extending the idea of the Lagrangian pdf in single–phase flows to two–

phase flows is the information content in the Lagrangian pdf associated with a fluid particle. In

single–phase flows, Dreeben and Pope (1997b) show that the Eulerian pdf can be inferred from

Lagrangian pdf by simply dividing the Lagrangian pdf by the position pdf of the fluid particles.

One can think of F as the unconditional, unnormalized Lagrangian pdf associated with a fluid

particle, and f̃Uφ as the Eulerian pdf corresponding to F . The mass density F contains all

the information required for its normalization 〈ρ〉 at any time. However, in the context of

two–phase flows, all the normalization information is not contained in the Lagrangian state of

a material point with the knowledge of its current phase information.

In single–phase flows, the ensemble of realizations can be thought of as a set of delta

functions, each corresponding to the state of a fluid particle. In two–phase flows, we could

extend the same idea and define the Lagrangian state of the fluid particle at initial time in

terms of a fine–grained Lagrangian density as

f ′L,f = I+
f δ(X

+(t0,Y)− x)δ(U+(t0,Y)− u).

Here I+
f is actually If (Y, t;ω), where ω is a realization from the sample space of all realizations

and signifies a particular configuration of the DPEs. However, one should note that in the

above definition Y is restricted to be in the carrier phase only in each realization ω. Since each

realization has a certain probability of ocurring, the only tractable method of obtaining useful
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information from the two–phase flow is to average information from individual realizations as∫
If (X, t;ω)dPω = 〈If 〉 = 〈αf 〉

where dPω is the probability measure associated with each realization. Since αf can occur

at any location in the two–phase flow, the concept of a fluid particle is no longer a tractable

means to describe the Lagrangian state of a two–phase flow. It is then useful to associate

a “notional” fluid particle with each location of the two–phase flow that corresponds to the

fluid–phase volume fraction field.

4.3.1 Multipoint description of the carrier phase

The earlier discussion suggests that it is imperative to account for the presence of a dis-

persed phase when seeking a Lagrangian description of the carrier phase in a two–phase flow.

It is instructive to start from a multipoint description of the carrier phase, conditional on the

presence of N = k DPEs. Such a multipoint description would require the knowledge of the

event [U(t), Ik
f (t)]. Here U(t) represents the random field of velocities at all points occupied by

the fluid phase (see Monin and Yaglom (1971) for a discussion on the simultaneous Nf point

description of the random velocity field in a turbulent flow). The random field corresponding

to the fluid indicator field is denoted Ik
f (t). Let the probability corresponding to the above

event be denoted P [N=k][U(t), Ik
f (t)].

This multipoint description of the fluid phase is analogous to the Liouville density for the

dispersed phase. Considerations of ordering–dependence impose a requirement of symmetriza-

tion on the Liouville density corresponding to the dispersed phase. A unique single particle

density is then obtained by successive integration of the symmetrized Liouville density over

k− 1 spaces (Subramaniam, 2000). The symmetrization of the dispersed–phase Liouville den-

sity imposes an analogous requirement on the multipoint description of the fluid phase. Thus

one can envision a corresponding symmetrized multipoint Eulerian probability description for

the fluid phase conditional on there being N = k DPEs as

P [N=k]
s [U(s)(t), Ik,s

f (t)]. (4.23)
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Analogous to the single “surrogate” particle density in the dispersed phase, a single point

“surrogate” Eulerian density can be defined for the carrier phase. Corresponding to the sym-

metrized multipoint Eulerian density conditional on the presence of k DPEs, the single–point

surrogate probability description is denoted

P
[N=k]
1,s [U(s)(x, t) ∈ (u,u + du), Ik,s

f (x, t) = 1], (4.24)

where u(s) is the sample space variable corresponding to the random variable U(s). The

probability density, if it exists, corresponding to the symmetrized probability description when

integrated over all Nf − 1 locations in the field results in the single–point surrogate fluid

indicator field. This surrogate indicator field no longer possesses the sharpness of the initial

fluid indicator field. This field is essentially the volume fraction α
(k)
f (x, t) at the location

x, conditional on N = k DPEs. Thus, P [Ik,s
f (x, t) = 1] = α

(k)
f (x, t). We believe that the

symmetrization of the multipoint description and successive integration over Nf − 1 locations

would require mathematical tools involving functionals (Monin and Yaglom, 1971). We do not

pursue the details of this mathematical procedure here, as this is not central to the discussion

and objective of this study, but provide only an outline.

The single–point surrogate density taking into consideration the fact that N(t) can be

random is therefore

P1,s[U(s)(x, t) ∈ (u,u + du), Ik,s
f (x, t) = 1]

=
∑
k≥1

qkP
[N(t)=k]
1,s [U(s)(x, t) ∈ (u,u + du), Ik,s

f (x, t) = 1], (4.25)

corresponding to which one may define the volume fraction αf as

αf (x, t) = P [Is
f (x, t) = 1] =

∑
k≥1

qkα
(k)
f (x, t).

Here qk is the probability that there are N(t) = k DPEs in the two–phase system.

4.3.2 Surrogate fluid–particles

The symmetrization procedure performed on the multipoint Eulerian density and the suc-

cessive integration leading to the definition of a single point “surrogate” Eulerian density
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Figure 4.2 Schematic showing several orderings of the dispersed phase in
a two–phase flow (top panel) and the corresponding surrogate
system (bottom panel) showing the surrogate fluid particles,
which can occupy any physical location, and the surrogate dis-
persed–phase elements. The above schematic corresponds to
a typical two–phase flow at initial time. See discussion in
Sec. 4.3.2 for details.

enables one to visualize the two–phase flow at initial time as a collection of surrogate fluid

particles with interspersed surrogate DPEs. See Fig. 4.2 for a schematic of the surrogate

two–phase system that is derived by performing a symmetrization over N orderings of the

two–phase flow. Since the surrogate fluid particles represent averaged information, they can

be present at any location in space – even coinciding with the location of the surrogate DPE.

Since the topological information contained in each realization of the two–phase system

is lost, and two–phase system is correctly viewed as an ensemble of surrogate fluid particles

and DPEs, no physical interpretation of the surrogate two–phase system is possible. As a

result, these notional particles can be thought of as analogous to computational particles in

the context of single–phase turbulent flows. In other words, the Lagrangian representation

corresponding to the carrier phase in a two–phase flow is essentially a modeled representation
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of the carrier phase.

4.3.3 Fluid–phase Lagrangian density

We now know that when a Lagrangian description of the fluid phase is required in the

context of a two–phase flow, it is futile to consider each realization and follow a Lagrangian

“fluid” particle. The fluid phase is correctly interpreted as a collection of surrogate fluid

particles. This brings us to an unambiguous definition of the Lagrangian pdf for the carrier

phase in terms of surrogate fluid particles: it is the probability density of the event

St = [U+,(s)(t,Y(s)) = u,X+,(s)(t,Y(s)) = x]

conditional on the event that

S0 = [U+,(s)(t0,Y(s)) = u0]

We denote this surrogate fluid–particle Lagrangian density as f (s)
L (u,x; t | u0,Y).

4.3.4 Consistency between Lagrangian and Eulerian descriptions of the carrier

phase

In single–phase flows, the concept of a physical fluid particle introduces the notion of a

Lagrangian transition density. The mass of a material element is conserved, and hence one can

determine the Eulerian pdf at any later time with the knowledge of Eulerian pdf at initial time

using the Lagrangian density. In each realization of a two–phase flow, the analogous definition

of the material element for the carrier phase of a two–phase flow remains valid. However, in the

light of the discussion thus far, the carrier phase is meaningfully represented as surrogate fluid

particles. Since these are notional particles, it is not necessary that they individually satisfy

any mass constraint. However, the statistical information represented by these surrogate fluid

particles need to satisfy certain constraints.

This leads us to an important consideration of whether the carrier–phase Lagrangian den-

sity in two–phase flows can function as a transition density of the Eulerian pdf in a manner
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Eulerian description 
of carrier phase

Lagrangian description 
of carrier phase

t t

Figure 4.3 Schematic showing the requirement for consistency between the
Lagrangian description of the carrier phase as an ensemble of
surrogate fluid particles and the corresponding Eulerian descrip-
tion. At initial time, the right panel shows a particular initial
condition in terms of αf and fU|If

. The notional particle en-
semble corresponding to this state should be consistent with αf

and fU|If
. As the notional particles evolve (shown using sur-

rogate particle trajectories), the consistency has to be enforced
at any future time instant t.

similar to that in single–phase flows. In other words, is a relation of the form

fU|If
(u|If ;x, t) =

∫
f

(s)
L (u,x; t | u0,Y) fU|If

(u0|If0;Y, t0)dYdu0 (4.26)

valid for two–phase flows?

It turns out that since the carrier phase is viewed as an ensemble of surrogate fluid particles

or notional particles, such a physical interpretation of f (s)
L as the transition density for the pdf

fU|If
is not meaningful. However, f (s)

L can be considered the transition density for the Eulerian

density implied by surrogate fluid particles.

The observation that f (s)
L is not a meaningful transition density for fU|If

does not imply

that the evolution of the surrogate fluid particles can be arbitrarily specified; the surrogate two–
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phase system must evolve in such a way that it is consistent with the corresponding statistical

description of the two–phase flow in the EE representation. Figure 4.3 shows a schematic of

the consistency requirement that needs to be satisfied by the Lagrangian system at all time.

At initial time, the surrogate fluid particles are initialized such that they imply a volume

fraction α∗f (t = 0) (the dependence on position is suppressed for brevity) and an Eulerian

phasic pdf f∗U|If
(u|If ; t0) (or the mass density F∗

U|If
(u|If ; t)). The same correspondence needs

to be respected at later time t. In the figure and in the rest of this work, modeled Eulerian

quantities are represented with a ∗ superscript. The paths traversed by the notional particles

can cross each other since the state of the particle at future time is not uniquely determined

by its state at initial time. As noted earlier in this study, these notional particles can occupy

any physical location in the two–phase system.

Another consequence of the above interpretation of f (s)
L is that there could be several

Lagrangian transition densities that can correspond to the Eulerian description of the carrier

phase. In other words, to any initial state S0 described by an Eulerian one–point pdf (at any

later time), there can correspond several Lagrangian densities of the surrogate fluid particles.

Thus, the correspondence viz., Lagrangian surrogate fluid particles −→ single–point Eulerian

pdf, is a many–to–one mapping.

4.3.5 Modeled mass density corresponding to Lagrangian notional fluid particles

We have noted that the Lagrangian surrogate particles are meaningfully viewed as com-

putational particles. Since the computational particles have to evolve in such a manner that

their implied mass density corresponds to the Eulerian mass density, we can think of a system

of N particles

F ′∗
s(u,x, t) =

N∑
i=1

µ(i)δ(u−U(i))δ(x−X(i)), (4.27)

where µ(i) is the mass associated with each notional fluid particle, and U(i) and X(i) are

the (Lagrangian) velocity and (Lagrangian) position associated with each notional particle,

respectively. The subscript s denotes surrogate and superscript ∗ denotes modeled quantities.

We could ideally require this mass density to be consistent with FU|If
. However, due to the
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presence of unclosed terms in the mass density evolution equation in the EE representation,

we can only require the modeled mass density implied by the Lagrangian notional particles to

be consistent with the modeled Eulerian mass density F∗
U|If

. In other words, we require

〈
F ′∗

s

〉
= F∗

s = F∗
U|If

. (4.28)

This implies that the mean mass represented by the computational particles must correspond

to 〈ρIf 〉∗, which is the modeled mean mass in the fluid phase:∫ 〈
F ′∗

s

〉
du =

∫
F∗

U|If
du (4.29)

or
N∑

i=1

〈
µ(i)δ(x−X(i))

〉
= 〈ρIf 〉∗ , (4.30)

where the expectation can be taken inside the summation since the notional particles are

independent and identically distributed. The left hand side of Eq. (4.30) can be written as

N∑
i=1

〈
µ(i)δ(x−X(i))

〉
= nc〈µ〉, (4.31)

where nc is the number density of computational particles corresponding to the carrier phase,

and 〈µ〉 is the mean mass associated with each computational particle.

Thus,

nc〈µ〉 = 〈ρIf 〉∗ (4.32)

nc

〈Ns〉
〈µ〉 〈Ns〉 = 〈ρIf 〉∗ (4.33)

fX,c =
〈ρIf 〉∗

〈µ〉 〈Ns〉
, (4.34)

where fX,c is the position pdf of the computational particles corresponding to the carrier phase.

The final relation above suggests that in a computational cell of the two–phase flow domain,

the position pdf of the surrogate fluid particles is given by the ratio of the modeled mean

mass as implied by the Eulerian mass density to the mean total mass corresponding to the

computational particles.
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Starting from the definition of the mass density implied by the surrogate fluid parti-

cles Eq. (4.27), one can derive the evolution equation for the F∗
s by the usual method of

taking the time derivative of Eq. (4.27) to give

∂F∗
s

∂t
+ uk

∂F∗
s

∂xk
+

∂

∂uk

[〈
∂

∂t
U

(i)
k

∣∣∣u,x〉 f∗s,U] = f∗s,U

〈
∂ lnµ(i)

∂t

∣∣∣u,x〉 , (4.35)

where f∗s,U is the instantaneous two–phase velocity pdf modeled by the surrogate fluid particles.

The above equation can be compared with a modeled form of the Eulerian mass density

∂F∗
U|If

∂t
+ uk

∂F∗
U|If

∂xk
+

∂

∂uk
[A∗kf

∗
U] = f∗U

〈
S∗ρ |u

〉
. (4.36)

Integrating Eq. (4.35) over velocity space results in the evolution equation for the implied mean

mass corresponding to the surrogate fluid particles:

∂nc〈µ〉
∂t

+
∂ 〈Uk〉s nc〈µ〉

∂xk
=

〈
∂ lnµ(i)

∂t

∣∣∣x〉 . (4.37)

Similarly, integrating Eq. (4.36) over velocity space results in the evolution equation for the

modeled mean mass:
∂ 〈ρIf 〉∗

∂t
+
∂ 〈U∗k 〉 〈ρIf 〉

∗

∂xk
=
〈
S∗ρ
〉

(4.38)

A comparison of the last two equations reveals that in order for the mean mass represented

by the surrogate fluid particles to correspond to the modeled mean mass, the mean velocity

〈U〉s should be equal to 〈U∗〉, and the mass corresponding to the surrogate fluid particles must

evolve such that 〈
∂ lnµ(i)

∂t

∣∣∣x〉 =
〈
S∗ρ
〉
. (4.39)

For constant density flows,
〈
S∗ρ
〉

= 0 and so the mass µ(i) corresponding to the surrogate fluid

particles must not evolve in time.

Although the carrier phase is represented as an ensemble of computational particles, one

would expect that an underlying pressure solution (in constant density flows) is necessary to

obtain the mean pressure fields. This mean pressure field is then used in the evolution of the

computational particles. One would then require a consistency between the mean pressure

Poisson equation implied by Eq. (4.35) and the pressure solution on an underlying grid (typ-

ically obtained from Eq. (4.36)). Details on this consistency condition will be presented as a

part of future work.



104

4.4 Summary

In the following a summary of the development of the Lagrangian description of the carrier

phase in a two–phase flow is presented.

1. In a Lagrangian statistical description of the carrier phase, it is not tractable to follow a

fluid particle as is done in single–phase flows.

2. The statistical description of dispersed phase in terms of the Liouville density requires

an intermediate symmetrization to be performed. A unique single–particle surrogate

density is then obtained by successive integration of the symmetrized Liouville density.

Analogous to the multiparticle Liouville description of the dispersed phase, a multipoint

description of the fluid phase is sought. The symmetrization of the dispersed–phase Liou-

ville density implies an analogous requirement on the carrier phase multipoint pdf. The

unique single–point surrogate pdf obtained by successive integration of the symmetrized

multipoint pdf characterizes the state of the carrier phase in a two–phase flow.

3. During the course of the symmetrization and successive integration, the carrier phase

loses its identity as being composed by a continuum of fluid particles. The end result

is that the carrier phase is envisaged as being composed of surrogate fluid particles. In

the light of this observation, it is fruitful to visualize the carrier phase as composed of

notional particles or computational particles.

4. The Lagrangian description in terms of the initial state and the state of the carrier phase

at a future time is written in terms of the surrogate fluid particles. A Lagrangian pdf is

defined in terms of the surrogate particles. However, this pdf cannot be thought of as a

transition density corresponding to the Eulerian pdf analogous to single–phase flows; it

is a transition density corresponding to the surrogate fluid particles.

5. Since the Lagrangian density is defined in terms of notional particles, several different

Lagrangian densities can correspond to the same Eulerian one–point pdf or mass density.

Herein lies the important distinction from the Lagrangian density in single phase flows:
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in single phase flows, the Lagrangian density corresponding to an Eulerian one–point pdf

is unique.

6. The mass density implied by the Lagrangian notional particles has to satisfy certain

consistency conditions both at initial time and at any future time. At future time,

Lagrangian densities of surrogate fluid particles that satisfy this consistency condition

can be related to the Eulerian pdf corresponding to the state at that time. Thus, the

mapping between the Lagrangian densities and the Eulerian pdf is many–to–one.

7. The mass of a computational particle corresponding to the carrier phase has to evolve

such that the mean mass implied by the computational particles is consistent with the

mean mass corresponding to the modeled Eulerian mass density.

In summary, in two-phase flows, one cannot go from the Lagrangian to the Eulerian description

of the carrier phase as is easily done in the context of single-phase flows. In fact, the Lagrangian

description of the carrier phase depends on the EE description for its definition and evolution.

4.4.1 Consistent statistical representation of two–phase flows

The Lagrangian statistical representation of the carrier phase was presented. With this a

statistical description connecting the EE, LE and LL representations has been established. The

connection between the EE and the LE representations was presented in Chapter 3. Advantages

and limitations of each representation were reviewed in the light of the relationship between the

two representations. In this chapter the connection between the LL and the other two statistical

representations was presented. In particular, the Lagrangian description of the dispersed phase

in terms of the droplet distribution function is retained in the LL formalism, primarily because

we believe that spray equation formalism has been rigorously analyzed and its theoretical basis

established based on sound physical principles. The Eulerian description of the carrier phase

is identical in both the EE and LE formalisms. In this chapter, the Lagrangian description of

the carrier phase is shown to be connected to the Eulerian description. However, it is shown

that the Lagrangian description of the carrier phase is not tractable in terms of physical fluid
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particles, but is correctly interpreted in terms of surrogate fluid particles or notional particles.

It is noted that the mass density implied by the notional particles has to be equal to the

Eulerian description of the carrier phase, in order for the evolution of the notional particles to

be consistent with the evolution of the two–phase flow.

The theory behind the LL representation motivates one to seek a particle–method solution

to the governing equations for the carrier phase in a two–phase flow. One such recipe is

proposed in Chapter 6 in the form of a dual–timescale Langevin model. This model is a

system of two stochastic differential equations (SDE) for the fluctuating velocities, one in the

carrier phase and the other in the dispersed phase. The Fokker–Planck equation corresponding

to the carrier–phase SDE can be considered to be a model of the type given by Eq. (4.36).

The remaining chapters are devoted to modeling in the context of the LE and LL statistical

representations of two–phase flows.



107

CHAPTER 5. AN IMPROVED TURBULENCE MODEL FOR

LAGRANGIAN–EULERIAN COMPUTATIONS

In this chapter on modeling in turbulent multiphase flows, a new multiscale interaction

timescale for particle–turbulence interaction is proposed that can capture the multiscale inter-

action of particles and the carrier–phase turbulence.

A significant part of this chapter has appeared in ‘M. G. Pai and S. Subramaniam, Modeling

Interphase Turbulent Kinetic Energy Transfer in Lagrangian-Eulerian Spray Computations,

Atomization and Sprays, vol. 16. pp. 807–826, 2006.’

Modeling turbulent multiphase flows is a major challenge owing to droplet (or solid–

particle) interactions with a wide range of turbulence length and timescales. In a broad class

of Lagrangian–Eulerian models, the instantaneous Lagrangian dispersed phase velocity evolves

on a timescale that is proportional to the particle response time τp = ρdd
2/18µf . Numeri-

cal simulations of a model from this class reveal a non-monotonic and unphysical increase of

the TKE in the dispersed phase kd that is not seen in direct numerical simulations (DNS) of

decaying, homogeneous turbulence laden with solid particles. Analysis of this class of mod-

els shows that for a linear drag law corresponding to the Stokes regime, the entire class of

models will predict an anomalous increase in kd for decaying turbulent flow laden with solid

particles or droplets. Even though the particle response time is the appropriate time scale

to characterize momentum transfer between sub–Kolmogorov size dispersed phase particles

and the smallest turbulent eddies (for droplet/particle Reynolds number less than one), it is

incapable of capturing the range of time and length scale interactions that are reflected in

the evolution of kd. A new model that employs a timescale based on a multiscale analysis is

proposed. This model succeeds in capturing the dispersed phase TKE and fluid phase TKE
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evolution observed in DNS. The model also correctly predicts the trends of TKE evolution in

both phases for different Stokes numbers.

5.1 Introduction

Turbulence in the ambient gas is important in determining the evolution of a spray. It affects

the rate of entrainment of ambient gas into the spray cone, which in turn strongly influences the

spray angle and other global characteristics like the spray penetration length. The turbulent

two–phase flow at the edge of a spray is a very complex physical phenomenon involving high

shear rates, large fluctuations in instantaneous liquid volume fraction and interphase mass

transfer (in the case of vaporizing sprays). It is recognized that statistical models of sprays

must represent the evolution of velocity fluctuations in the gas as well as the droplets in order

to predict global spray properties, but current models for these quantities are still in need of

improvement.

This study focuses on a considerably simpler turbulent two–phase flow problem of sub–

Kolmogorov size solid particles evolving in zero–gravity, constant–density, decaying homoge-

neous turbulence. The goal is to understand and assess current Lagrangian–Eulerian (LE)

models and to propose model improvements. The choice of this simple problem is motivated

by two reasons. One is that this problem isolates two important flow processes: (i) the in-

terphase transfer of turbulent kinetic energy (TKE), and (ii) the dissipation rate of TKE in

the carrier fluid, which enables a detailed evaluation of existing models. The second reason is

that direct numerical simulation (DNS) datasets are available from carefully controlled studies

of this flow in decaying turbulence (Sundaram and Collins, 1999). Although turbulent flows

laden with solid particles will behave differently from droplet–laden turbulent flows in general,

all features of the models we consider are identical in the limit of sub–Kolmogorov size non–

vaporizing droplets evolving in zero–gravity, constant–density, homogeneous turbulence. While

in the more general case spray models must account for phenomena like droplet vaporization

and its effect on turbulence, we find that there is considerable scope for model improvement

even in non–vaporizing cases like the simple flow considered here.
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The LE approach is based on Williams’ spray equation (Williams, 1958), which is an evo-

lution equation for the droplet distribution function (ddf) the theoretical foundations of which

are now rigorously established and understood (Subramaniam, 2000, 2001c). The evolution

equation for the second moment of dispersed phase velocity in the LE approach has also been

derived from the spray equation by Subramaniam (2003), and forms the theoretical basis of

this investigation. In this work, the focus is on testing and evaluating specific models in a sim-

ple flow to determine whether the predicted evolution of the TKE in each phase is physically

consistent with DNS results. Based on these findings we propose an improved model.

It is important to note that all the LE models considered here are first–order models based

on the average number density. This is of course a direct consequence of their being a solution

approach to the spray equation. A first–order model cannot represent certain physical phenom-

ena like preferential concentration of droplets (or solid particles) in homogeneous turbulence.

The proper description of such phenomena will require the consideration of second–order statis-

tics like the pair–correlation function. This is not to imply that second–order effects such as

preferential concentration are not important, but rather that our current modeling capabilities

are still in need of further development before they can represent these phenomona.

The rest of the chapter is organized as follows. A model problem involving particles (or

non–evaporating droplets) evolving in homogeneous turbulence is described in Section 5.2. The

evolution equation for the dispersed phase TKE simplifies for the homogeneous problem, and

depends solely on the particle acceleration-velocity covariance, which needs to be modeled.

Details of DNS results available from a homogeneous particle–laden turbulent flow that are

used to assess model predictions are given in Section 5.3. A drag model based on the particle

response time that is widely used in LE implementations is presented in Section 5.4. Evolution

equations for the dispersed phase TKE as implied by this drag model, and the modeled evolu-

tion equation for the TKE in the fluid phase are derived. Model predictions for freely decaying

particle–laden turbulence are reported in Section 5.5. A theoretical analysis reveals that the

particle–response time is not an appropriate timescale for interphase TKE transfer. A multi-

scale interaction timescale is then proposed that improves model predictions for the decaying
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turbulence case. The implications of the study are discussed in Section 5.8 and conclusions

are drawn in the final section.

5.2 Homogeneous two-phase flow model problem

A canonical problem that is useful in assessing the behavior of turbulent two–phase flow

models is now described. The problem consists of sub–Kolmogorov size particles evolving in

zero–gravity, constant–density, homogeneous turbulence. If gravity is neglected then the mean

pressure gradient must also be zero and the mean momentum equation admits a trivial solution

of zero mean velocity in each phase, which in turn implies a zero mean slip velocity. The

evolution of TKE in each phase can then be studied independent of the mean flow quantities.

Exact governing equations for the second moment of dispersed phase velocity for an inho-

mogeneous system of evaporating droplets with no coalescence, collisions or break–up is given

in Eq. (3.112). The equation for the dispersed phase TKE is then obtained by contracting the

second–moment equation. With the assumptions of zero interphase mass transfer, constant

density, and statistical homogeneity, Eq. (3.112) simplifies to

∂〈̃v′′i v
′′
j 〉

∂t
=
[
〈̃Aiv

′′
j 〉+ 〈̃Ajv

′′
i 〉
]
, (5.1)

where 〈̃Ajv
′′
i 〉 is the acceleration–fluctuating velocity correlation. In the canonical homogeneous

problem the evolution of the second moment of particle velocity is solely determined by the

model for the acceleration–fluctuating velocity covariance (the right hand side of Eq. (5.1)).

Taking one half the trace of Eq. (5.1) results in the evolution equation for the TKE in the

dispersed phase k̃d = (1/2)〈ṽ′′i v′′i 〉 as

∂k̃d

∂t
= 〈̃Aiv

′′
i 〉. (5.2)

The tilde in the above equations represent mass weighting (or volume weighting for constant

thermodynamic density in the dispersed phase)1. Mass–weighting of terms is necessary to

consistently account for the interphase TKE terms that appear in the evolution equation for the

TKE and dissipation in the gas phase (cf. Eq. (5.13) and Eq. (5.14)). Moreover, mass–weighted
1See Appendix D for the definitions of mass weighting and number weighting
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governing equations from the LE approach have a direct correspondence with their counterparts

in the Eulerian–Eulerian or two–fluid approach. Since the dispersed–phase thermodynamic

density is constant, the distinction between volume weighting and mass weighting is not needed

in the rest of the paper. Furthermore, since this study focuses on monodispersed particles with

no evolution of their radii in time, number-weighted quantities are the same as their weighted

counterparts. Hence, the tilde can be dropped in Eqs. (5.1)–(5.2), and in the equations in the

rest of the paper.

5.3 DNS results for the homogeneous model problem

Several researchers (Sundaram and Collins, 1999; Mashayek et al., 1997; Boivin et al., 1998)

have performed DNS of particle–laden homogeneous turbulence. These DNS results can be

used to validate two–phase turbulence models. Sundaram and Collins (1999) have performed a

study on particle–laden freely decaying turbulence in the absence of gravity for several Stokes

numbers. The Stokes number Stη is defined as the ratio of the particle response timescale

τp to the Kolmogorov timescale τη, and characterizes the tendency of a particle to follow

the turbulent fluctuations of the carrier phase. The particle response timescale is defined as

τp = (ρdd
2)/(ρf18νf ) and the Kolmogorov timescale is given by τη = (νf/εf )1/2. The system

is volumetrically dilute, with particles in the sub–Kolmogorov size range and collisions among

particles, if any, are assumed to be elastic. Particles are assumed to be point sources/sinks and

the simulation is two–way coupled, i.e., the effect of the particles on fluid phase momentum

conservation is also accounted for. Parameters of the homogeneous model problem are given

in Tables 5.1-5.2. In Table 5.1 u′ is the initial turbulence intensity in the fluid phase and v′

is the initial turbulence intensity in the dispersed phase. These intensities are related to the

respective TKE in each phase at initial time through u′ 2 = (2/3)kf (0) and v′ 2 = (2/3)kd(0).

The following section describes LE models that can be used to model this turbulent two–phase

flow.
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5.4 Lagrangian models for particle velocity

LE models indirectly solve the ddf evolution equation using a particle method for reasons of

computational efficiency and ease of modeling. In this approach, an ensemble of N identically

distributed computational particles is used to indirectly represent the modeled ddf. With each

computational particle we associate a position vector X(i)
p , velocity vector V(i)

p , radius R(i)
p and

a statistical weight w(i)
p .2 The evolution equation for the particle velocity implies a modeled

evolution equation for the ddf of fluctuating velocity and the second moment Eq. (3.112). The

particle velocity evolution equation

A∗ =
dV∗

p

dt
= Ω∗

p

(
U∗

f −V∗
p

)
+ g (5.3)

defines a class of Lagrangian models that subsumes the vast majority of models (Sundaram

and Collins, 1999; Amsden et al., 1989; Ormancey and Martinon, 1984; Brown and Hutchinson,

1979; Gosman and Ioannides, 1983) in the literature. In Eq. (5.3), A∗ is the modeled particle

acceleration, U∗
f and V∗

p are the modeled gas phase and dispersed phase instantaneous veloci-

ties respectively, g is the acceleration due to gravity and Ω∗
p is a characteristic particle response

frequency3. The particle response frequency depends the drag coefficient CD, which is a func-

tion of particle Reynolds number Rep. Models proposed in literature for Ω∗
p (see Amsden et al.

(1989) for example) can be cast in the following form:

Ω∗
p =

1
τp
f(Rep), (5.4)

where f(Rep) represents a functional dependence of the model for CD on Rep. This form (cf.

Eq. (5.3)) of the particle acceleration model is based on the equation of motion of a sphere in

a fluid under the influence of only drag and body forces Maxey and Riley (1983). The models

in this class differ only in terms of the particle response frequency model, and the model for

the gas phase velocity.
2The definition of the statistical weight w

(i)
p is not unique, but the sum of weights over all computational

particles must sum to unity:
PN

i=1 w
(i)
p = 1. In KIVA Amsden et al. (1989), the statistical weight is defined as

w
(i)
p = n

(i)
s /〈Ns〉, where n

(i)
s is the number of droplets represented by each computational particle and 〈Ns〉 is

the mean total number of droplets represented by the ensemble.
3The superscript ‘*’ in Eq. (5.3), and in the rest of this work is used to denote modeled quantities, which

are only approximations to their exact unclosed counterparts. For example, A∗ in Eq. (5.3) is a model for A in
Eq. (3.130).
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The instantaneous gas phase velocity is decomposed into a mean component 〈Uf 〉∗, and a

fluctuating component u′f
∗, which are related by

U∗
f = 〈Uf 〉∗ + u′f

∗
. (5.5)

In the Lagrangian–Eulerian approach, the solution to the averaged Eulerian equations in the

gas phase yields a mean gas phase velocity 〈Uf 〉∗ while the fluctuation in the gas phase velocity

u′f
∗ is modeled. Together the mean and fluctuating gas phase velocities form a model for the

instantaneous gas phase velocity U∗
f .

The particle–velocity evolution model implemented in KIVA (Amsden et al., 1989) also

belongs to the general class of Lagrangian models considered here. The particle acceleration

A∗ in KIVA (Amsden et al., 1989) is modeled as

dV∗
p

dt
=

3
8
ρf

ρd

|〈Uf 〉∗ + u′f
∗ −V∗

p|
Rp

(〈Uf 〉∗+u′f
∗ −V∗

p)CD

+ g. (5.6)

The drag coefficient CD is given by,

CD =


24
Rep

(
1 +

Re
2/3
p

6

)
Rep < 1000

0.424 Rep > 1000,

(5.7)

where the particle Reynolds number

Rep =
2ρf |〈Uf 〉∗ + u′f

∗ −V∗
p|Rp

µf
(5.8)

and µf is the dynamic viscosity of the gas. The limit of Stokes drag results in CDRep = 24

corresponding to a particle Reynolds number Rep � 1. Note that Stokes drag is a remarkably

good approximation even for Rep ∼ 1 since at this particle Reynolds number, the Stokes law

predicts a drag that is only 10% in error (see (Bird et al., 2002), pg. 61).

Models for fluctuating gas phase velocity

The fluctuating gas phase velocity u′f
∗ is usually sampled from a joint–normal probability

density with zero mean and covariance equal to (2kf/3)δij under the assumption that the
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turbulence is isotropic. This velocity is kept constant over a time interval, called the turbulence

correlation time, which is taken to be the minimum of an eddy traverse time tR and an eddy–

life time tE . At the end of the time interval the renewal time is reached, and a new value of

fluctuating velocity u′f
∗ is sampled. This is intended to capture the effect of crossing trajectories

as a particle shoots across successive eddies. Such models for the fluctuating gas phase velocity

are commonly known as eddy life time models (ELT). Brown and Hutchinson (1979), and

Gosman and Ioannides (1983) used a linearized form of the equation of motion of a droplet to

arrive at an eddy traverse time tR = −τp ln(1.0− le/(τp|U∗
f −V∗

p|)), where the characteristic

length scale of the eddy le = C
1/2
µ kf

3/2/εf . They also proposed a model for the eddy life time as

tE = le/|u′f
∗|. Ormancey and Martinon (1984) proposed that the time intervals over which u′f

∗

remains constant be exponentially distributed (Poisson model), with the mean time interval

equal to the Lagrangian integral time scale of turbulence TL. Amsden et al. (1989) used a model

similar to Hutchinson’s but with tE = kf/εf and tR = Cps(kf
3/2/εf )|〈Uf 〉∗ + u′f

∗ − V∗
p|−1,

where Cps is a model constant equal to 0.16432 (= C
3/4
µ ). This model has been incorporated

into the popular KIVA family of codes (Amsden et al., 1989).

Implied evolution of dispersed phase TKE

The velocity covariance evolution implied by the class of particle velocity evolution models

discussed in the previous section (including the KIVA model) can be analyzed for the homoge-

neous model problem. With assumptions of statistical homogeneity 4 and a monodisperse size

distribution of solid particles (or droplets), the mean and second–moment equations implied

by such drag models are considerably simplified.

From Eq. (5.6) one can infer an instantaneous particle response frequency Ω∗
p as

Ω∗
p =

3
8
ρf

ρd

|〈Uf 〉∗ + u′f
∗ −V∗

p|
Rp

CD. (5.9)

The evolution equation for the second moments of the dispersed phase velocity as implied by

Eq. (5.6) can be derived to be
4The assumption of statistical homogeneity implies that the position property need not be retained.



115

d〈v′i
∗v′j

∗〉
dt

= 〈v′i
∗
ω∗〉〈Uf j〉

∗ + 〈v′j
∗
ω∗〉〈Uf i〉

∗

− 〈v′i
∗
ω∗〉〈Vp

∗
j 〉 − 〈v

′
j
∗
ω∗〉〈Vp

∗
i 〉

− 〈v′i
∗Ω∗

pv
′
j
∗〉 − 〈v′j

∗Ω∗
pv
′
i
∗〉

+ 〈v′i
∗Ω∗

pu
′
j
∗〉+ 〈v′j

∗Ω∗
pu

′
i
∗〉 (5.10)

where ω∗ ≡ Ω∗
p − 〈Ω∗

p〉 is the modeled fluctuating response frequency of the dispersed phase

defined with respect to the mean particle response frequency 〈Ω∗
p〉, and v′j

∗ ≡ Vp
∗
j − 〈Vp

∗
j 〉 is

the modeled fluctuating velocity of the dispersed phase defined with respect to the number–

weighted mean velocity 〈Vp
∗
j 〉 in the dispersed phase. The modeled evolution equation for k∗d

is then obtained by contracting indices Eq. (5.10):

dk∗d
dt

=〈v′∗iω∗〉
[
〈Uf i〉

∗ − 〈Vp
∗
i 〉
]
− 〈v′∗i Ω∗

pv
′∗
i 〉

+ 〈v′∗i Ω∗
pu

′
i
∗〉. (5.11)

For the case of zero mean slip, which is the case under consideration, Eq. (5.11) simplifies to

dk∗d
dt

= −〈v′∗i Ω∗
pv
′∗
i 〉+ 〈v′∗i Ω∗

puf
′
i
∗〉. (5.12)

Comparing Eq. (5.12) with Eq. (5.2), one can infer that if Eq. (5.6) is used as a particle velocity

evolution equation, then the implied model for the acceleration-fluctuating velocity correlation

〈Aiv
′′
i 〉 is −〈v′∗i Ω∗

pv
′∗
i 〉 + 〈v′∗i Ω∗

puf
′
i〉. We can also expect that k∗d in Eq. (5.12) could either

decay or increase depending on the relative magnitudes of the terms on the right hand side

of Eq. (5.12). Since these terms involve triple correlations among fluctuating quantities, it is

hard to enforce any physical constraint on them such that k∗d evolves according to trends seen

in DNS or experiments.

Evolution of fluid–phase TKE

In the LE approach a modified k-ε model is used to evolve the turbulent kinetic energy and

dissipation in the gas phase. The modeled equation for k∗f (for the statistically homogeneous,
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zero mean–slip case) used here is (Subramaniam, 2003; Amsden et al., 1989),

d(ρfαfk
∗
f )

dt
= −ρfαfε

∗
f +

[
ρdαd

{
〈uf

′
j
∗Ω∗

pv
′∗
j 〉 − 〈uf

′
j
∗Ω∗

puf
′
j
∗〉
}]

. (5.13)

The term in square brackets on the right hand side of Eq. (5.13) arises from a model that

represents the rate at which the turbulent eddies do work in dispersing the spray droplets.

This term represents the TKE transfer between the dispersed phase and the gas phase. The

modeled equation for the dissipation (Subramaniam, 2003; Amsden et al., 1989) in the fluid

phase εf is

d(ρfαfε
∗
f )

dt
= −Cε2ρfαf

ε∗f
2

k∗f
+

[
Cs

ε∗f
k∗f
ρdαd

{
〈uf

′
j
∗Ω∗

pv
′∗
j 〉 − 〈uf

′
j
∗Ω∗

puf
′
j
∗〉
}]

. (5.14)

The term in square brackets on the right hand side of Eq. (5.14) represents the contribution

to the evolution of the modeled dissipation from the interphase TKE transfer.

It is important to note that most LE models (including KIVA) assume a volumetrically

dilute spray αd � 1, and because αf = 1 − αd, it follows that αf ≈ 1. On this basis, volume

displacement effects are neglected (Amsden et al., 1989), and both Eq. (5.13) and Eq. (5.14)

are solved with αf = 1, but with αd 6= 0.

5.5 Model predictions for the homogeneous problem

Predictions of normalized TKE in the fluid phase k∗f , as a function of scaled time t/Tref,

are shown in Figs. 5.1 for increasing Stokes numbers Stη. These predictions are for the homo-

geneous problem using the KIVA drag model. Here Tref = u′/LE is the large eddy turnover

timescale (Sundaram and Collins, 1999). Also shown on the same plot is the evolution of k∗f

from the DNS (Sundaram and Collins, 1999) for increasing Stokes number. For a constant

mass loading, it is expected that increasing Stokes number quickens the decay of TKE in the

fluid phase, and hence the trend depicted by the DNS appears plausible. The predicted trend

of k∗f from KIVA for varying Stokes number does not match the trend depicted in the DNS.

Model prediction of normalized TKE in the dispersed phase k∗d, as a function of scaled time

t/Tref, are shown in Figs. 5.2 for increasing Stokes numbers Stη, alongside results from DNS.
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In KIVA, the dispersed phase TKE at the end of every time step is computed as

k∗d =
1
2
〈v′i

∗
v′i
∗〉. (5.15)

Again, for a constant mass loading, it is expected that the decay of TKE in the dispersed

phase is more rapid for larger Stokes numbers. The model predictions for the evolution of k∗d

for varying Stokes numbers do not match the trends seen in the DNS.

One can make two important observations from the model predictions presented in Fig. 5.1

and 5.2. Firstly, the timescale of decay of k∗f and k∗d using the KIVA drag model is signifi-

cantly lesser than that observed in the DNS. Secondly, an anomalous increase at t/Tref = 0.1,

(although slight, for the initial kd/kf ratio of unity used in this study), after an initial steep

decrease, is seen in the evolution of kd for Stη = 1.6. Later it will be shown that this anoma-

lous increase is accentuated at larger initial kd/kf ratios. This behavior is deemed unphysical

since the flow under consideration does not possess any mechanism to increase the TKE in the

dispersed phase, and hence kd should exhibit a monotonic decrease. On the other hand, the

results from DNS show a monotonic decay in the TKE in the gas phase and dispersed phase,

which is consistent with the flow physics.

Lagrangian-Eulerian model predictions can exhibit statistical variability due to randomness

in initializing the particle properties (in this case, particle velocities). For different initial

ensembles, model predictions of k∗f and k∗d can be different. Multiple independent simulations

are performed with the model and it is observed that the statistical variability in the model

predictions due to randomness in the initial conditions is less than 0.2% of the mean. Statistical

variability in the model predictions is found to be insignificant compared to the differences

observed due to the changing Stokes numbers Stη. It is found that the 95% confidence intervals

corresponding to each Stη do not overlap in the model predictions shown in Figs 5.1 and 5.2.

Since these confidence intervals are extremely small, they have been omitted in these figures.

5.6 Reason for the anomalous behavior in kd

The unphysical increase in the kd evolution can be explained by an exact analysis of the

model equations that requires a few simplifying assumptions.
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The analysis assumes that: (i) the particle response frequency (cf. Eq. (5.9)) is constant,

and (ii) the fluctuating fluid–phase velocity (cf. Eq. (5.6)) is constant (this is true if the decay

in the TKE of the fluid phase k∗f is small over the time for which the analytical predictions

are valid). A constant particle response frequency corresponds to a linear drag model. It is

observed in the current simulations that a significant number of particles have Rep < 1, a

range wherein the Stokes drag is accurate (Bird et al., 2002). It must however be borne in

mind that in the KIVA model, Ω∗
p does not remain constant and changes with V∗

p.

Let the particle velocity V∗
p be distributed joint normally with mean 〈V∗

p〉 = 0 and covari-

ance (2/3)kd(0)δij . For constant Ω∗
p, the particle velocity evolution equation Eq. (5.6) can be

solved to give an expression for the particle velocity V∗
p(t) at any time t as,

Vp
∗
j (t) = u′f

∗
j
(0)− [u′f

∗
j
(0)− v′j

∗(0)]e−Ω∗
pt (5.16)

where u′f
∗
j
(0) and v′j

∗(0) are evaluated at initial time t = 0. The mean particle velocity 〈Vp
∗
i 〉

at any time t can be computed from Eq. (5.16) as,

〈Vp
∗
i 〉(t) =

〈
u′f

∗
i
(0)− [u′f

∗
i
(0)− v′p

∗
i
(0)]e−Ω∗

pt
〉

= 0, (5.17)

showing thereby that the mean particle velocity remains zero at all time.

Using Eq. (5.16), one can compute the dispersed–phase TKE k∗d(t) at any time t as

k∗d(t) = 〈v′i
∗
v′i
∗〉

=
1
2
〈(
Vp

′
i
∗(t)− 〈Vp

′
i
∗(t)〉(t)

) (
Vp

′
i
∗(t)− 〈Vp

′
i
∗(t)〉(t)

)〉
=

1
2
〈[u′f

∗
i
(0)− (u′f

∗
i
(0)− v′i

∗(0))e−Ω∗
pt][u′f

∗
i
(0)− (u′f

∗
i
(0)− v′i

∗(0))e−Ω∗
pt]〉

=
1
2
〈u′f

∗
i
(0)u′f

∗
i
(0)(1− e−Ω∗

pt)2 + v′i
∗(0)v′i

∗(0)e−2Ω∗
pt + 2u′f

∗
i
(0)(1− e−Ω∗

pt)v′i
∗(0)e−Ω∗

pt〉

= kf (0)(1− 2e−Ω∗
pt + e−2Ω∗

pt) + kd(0)e−2Ω∗
pt (5.18)
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The last equality follows from the following relations,

〈u′f
∗
i
(0)u′f

∗
i
(0)〉 = 2kf (0)

〈v′∗i (0)v′∗i (0)〉 = 2kd(0)

〈u′f
∗
i
(0)v′∗i (0)〉 = 0.

We know that the samples u′f
∗
i
and v′∗i are independent at initial time, so the last relation follows

from the fact that their covariance is equal to zero. We now have an analytical expression for the

evolution of k∗d in Eq. (5.18) that is applicable until the first renewal of u′f
∗. Using Eq. (5.18),

it is straightforward to compute the slope of the k∗d evolution curve at time t = 0 that can

explain the reason for the unusually steep initial descent in the evolution of kd. Differentiating

Eq. (5.18) with respect to time,

dk∗d
dt

= kf (0)(2Ω∗
pe
−Ω∗

pt − 2Ω∗
pe
−2Ω∗

pt)− 2kd(0)Ω∗
pe
−2Ω∗

pt, (5.19)

At t = 0,
dk∗d
dt

= −2Ω∗
pkd(0) (5.20)

Thus, k∗d decays initially over a timescale that scales like the inverse of the particle response

frequency Ω∗
p
−1 and is the reason for the steep decay not seen in the DNS results (Sundaram

and Collins, 1999). It is worthwhile to note that Eq. (5.18) has an inflection point at tinfl given

by

tinfl =
1
Ω∗

p

ln
(

1 +
kd(0)
kf (0)

)
. (5.21)

The decay in normalized k∗d as predicted by Eq. (5.18) is shown in Fig. 5.3 alongside the

evolution of predicted k∗d from the KIVA drag model for Stη = 1.6 and two different initial

kd/kf ratios. As the initial kd/kf ratio is decreased the reversal in the evolution of k∗d is more

prominent. The analytical point of inflection is close to the inflection point on the evolution

curve of k∗d from the KIVA drag model. The difference between the analytical and the numerical

results until the point of inflection is because Ω∗
p and u′f

∗ are not constant in the numerical

simulations. The analytical expression predicts the initial steep decay very accurately, thereby

illustrating that the unphysical model behavior is not an artifact of the numerical simulation.
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Improved particle velocity evolution equation

We have shown that LE models for two–phase turbulence that are based on the particle

response time (cf. Eq. (5.3)) result in anomalous evolution of averaged quantites like k∗d. It is

interesting therefore to understand why such particle velocity evolution equations when used in

DNS of sub–Kolmogorov size particle–laden turbulent flows Sundaram and Collins (1999) yield

plausible results. The answer simply lies in the fact that in the DNS, the particles interact with

a range of time and length scales, where U∗
f appearing in Eq. (5.3) is no longer modeled but

is an adequately resolved solution to the Navier–Stokes equation, with additional momentum

source terms due to the presence of the particles (Sundaram and Collins, 1999). The particle

response timescale is an appropriate timescale for the interphase momentum transfer terms

that are added to the Navier–Stokes equations. Unfortunately, in LE models (Amsden et al.,

1989; Ormancey and Martinon, 1984; Brown and Hutchinson, 1979; Gosman and Ioannides,

1983), the quantity u′f
∗ represents a model for the fluctuating fluid–phase velocity that does

not represent all the velocity scales that are captured in the DNS velocity field. Thus, the

particle velocity evolution equation in LE computations needs modification to the interaction

timescale in order to achieve results comparable with DNS.

5.7 Multiscale interaction timescale 〈τint〉

The fact that particles interact with a range of turbulence length and timescales—and that

such a complex interaction cannot be adequately characterized by the particle response time

alone in LE computations—motivates the development of a mean multiscale interaction time

〈τint〉 in place of (1/Ω∗
p) in Eq. (5.3). The angled brackets represent an interaction timescale

averaged over all eddies, details of which follow. The fluctuating particle velocity relaxes to

the local modeled fluctuating fluid velocity on the multiscale interaction timescale 〈τint〉 as

dv′∗

dt
=

u′f
∗ − v′∗

〈τint〉
. (5.22)

The fluctuating gas phase velocity is modeled as in the original KIVA proposal (Amsden et al.,

1989) by sampling from a Gaussian distribution with zero mean and variance (2/3)kf . In
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the homogeneous problem under consideration, the mean velocity in either phase is zero for

all time. Hence, there is no need to evolve the mean velocities in this case. However, if the

mean velocities are non–zero with non–zero mean slip, we hypothesize that the mean velocity

in either phase would evolve over a timescale 1/〈Ω∗
p〉 derived from Eq. (5.9) and CD would

depend on a mean particle Reynolds number.

The multiscale interaction timescale 〈τint〉 was introduced by Pai and Subramaniam (2004)

and has been successfully employed in the context of Eulerian–Eulerian two–phase turbulence

modeling by Xu (2004) and Xu and Subramaniam (2005). This timescale is derived from the

gas phase velocity field by first defining a Stokes number valid in the inertial range as

Stl =
τp
τl
, (5.23)

where τl is computed as

τl =
|u′f

∗|2

ε∗f
. (5.24)

Let us assume that u′f
∗ obeys a joint normal distribution with zero mean and covariance σ2

fδij ,

where σ2
f = (2/3)kf . With this assumption, the pdf of |u′f

∗| is

f(z) =

√
2
π

1
σ3

f

z2 exp−z2/2σ2
f , (5.25)

where z is the sample space variable corresponding to |u′f
∗|. It is evident from Eq. (5.23) and

(5.24) that

Stl ∼
1

|u′f
∗|2
. (5.26)

A mean timescale of interaction 〈τint〉 is derived from the pdf of |u′f
∗| as

〈τint〉 =
∫ ∞

|u′f
∗|T

τintf(z)dz +
∫ |u′f

∗|T

0
τpf(z)dz, (5.27)

where the timescale τint is hypothesized to be of the form

τint = Stl (τp − τ) + τ (5.28)

for |u′f
∗|T ≤ |u′f

∗| ≤ ∞. Here τ = k∗f/ε
∗
f is the large eddy turnover timescale. The significance

of the limit |u′f
∗|T and the rationale behind the choice of a weighted–average timescale 〈τint〉

in Eq. (5.27) is now discussed.
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Equation (5.24) is based on an inertial sub–range scaling for eddies with a characteristic

lengthscale l. The Stokes number Stl defined in Eq. (5.23) using the characteristic timescale τl

determines how the droplets respond to these eddies. For a value of Stl > 1, it is hypothesized

that the droplet responds slowly to the eddies and the timescale of energy transfer is influenced

more by the particle response time τp. On the other hand, if Stl < 1, it is hypothesized that

the droplet responds immediately to the flow, and the timescale of energy transfer is influenced

more by the the eddy turnover timescale τ . Thus, the pdf of |u′f
∗| (See Fig.5.4) can be divided

into two regions: one that represents Stl > 1 and the other that represents Stl < 1 with |u′f
∗|T

representing the transition between the two regions at Stl = 1. Therefore, |u′f
∗|T is uniquely

determined by the relation (|u′f
∗|T )2 = τp ε

∗
f .

It is interesting to note that Eq. (5.27) has the correct behavior under limiting conditions

of Stl and |u′f
∗|T . In the limit |u′f

∗|T → 0, there are no eddies in the system with Stl > 1.

The droplets are simply convected by the flow and the correct timescale for interphase TKE

transfer in this limit is τ . In the limit |u′f
∗|T → ∞, practically all the eddies in the system

satisfy Stl > 1, which implies that there are no eddies energetic enough to convect the droplets.

The correct timescale for interphase TKE transfer in this limit is the particle response timescale

τp.

For a polydispersed droplet size distribution, each droplet has a different τp. Since the

timescale τint in Eq. (5.28) depends on τp, each droplet can have a different interaction timescale

τint. So, a multiscale interaction timescale 〈τint〉 can be calculated for each droplet based on its

particle response timescale. However, in the calculations presented in this work (see Chapter 7)

we use the mean value of τp computed from the polydispersed droplet ensemble, in place of τp,

to compute τint in Eq. (5.28) to avoid prohibitively large computational run times.

5.7.1 Implementation of the multiscale interaction timescale in LE computations

The following algorithm outlines the procedure that can be used to implement the multiscale

interaction time scale 〈τint〉 in LE computations of particle–laden flow.

1. An ensemble of N computational particles with velocity and radius {V(i)
p , R

(i)
p , i =
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1, . . . , N} is sampled from a specific initial joint pdf of velocity and radius. The TKE kf

and dissipation rate εf in the fluid phasse are initialized.

2. The particle response time scale τp for each particle is computed using τp = (ρdd
2
p)/(ρf18νf ).

For a monodispersed ensemble, all particles will have an identical particle response time

scale.

3. The transition value |u′f
∗|T =

√
τpε∗f is computed for each particle. All particles will

have an identical value of |u′f
∗|T for a monodispersed ensemble.

4. The multiscale interaction time scale 〈τint〉 is computed by numerically integrating Eq. (5.27).

5. Each particle’s velocity is evolved in time using Eq. (5.22).

6. Quantities k∗d, k
∗
f and ε∗f are calculated at the new timestep, and steps (2)-(5) are re-

peated.

Note that for a polydispersed ensemble of particles, and for a spray with drop radii that is

changing in time (as in the case of an evaporating spray), τp changes in time. In either case,

|u′f
∗|T will be different for each particle. Note also that if ε∗f evolves in time, |u′f

∗|T will also

change in time.

5.7.2 Model results with multiscale interaction timescale

Predicted evolution of normalized k∗f and k∗d is shown in Figs. 5.5 and 5.6 respectively for

KIVA drag model with 〈τint〉, along with results from DNS. It can be inferred that the timescale

of decay has improved significantly compared to the results using the KIVA drag model with

τp (cf. Figs. 5.1 and 5.2). The decay trends of k∗f and k∗d with increasing Stokes number are

also in the same direction as those depicted in the DNS, and the anomalous reversal in the

evolution of k∗d is also absent. A simple modification to the existing particle velocity evolution

equation (Eq. 5.6) to incorporate a multiscale interaction timescale derived from the model

for the fluctuating velocity has improved the decay characteristics of the TKE in the gas and

dispersed phases significantly.
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5.8 Discussion

The new multiscale interaction timescale correctly reproduces the trends in the decay of

TKE in the fluid phase and dispersed phase, as observed in DNS of a homogeneous particle–

laden turbulent flow. Implicit in the above statement is the assumption that the DNS data

is itself an accurate representation of the problem physics. The point–particle assumption for

the particle drag in such DNS is justified in a limited flow regime where particle Reynolds

numbers Rep � 1, dispersed phase to gas density ratios ρd/ρf are O(1000), and particles are

sub–Kolmogorov size with negligible wake effects. Volume–displacement effects are neglected

in such DNS and the gas phase velocity field is assumed to be solenoidal.

The homogeneous problem that forms the basis of the investigation in this work, and for

which DNS datasets exist, corresponds to a flow regime where the assumptions mentioned

earlier are valid. However, it is important to note that a good approximation to the particle

drag in the DNS does not necessarily guarantee accurate calculation of the fluctuating velocity–

acceleration correlation (cf. Eq. 5.2) or the fluid phase dissipation in the presence of particles.

In the point–particle approximation, particle–particle interaction effects are not accounted

for, and the effect of the point–particle approximation on the true pressure field is also not

quantified. The only way to test these approximations is to perform true DNS where the

flow around each particle is fully resolved and exact boundary conditions are imposed on each

particle surface. Solenoidality of the gas phase (which in turn affects the fluid pressure field),

and neglect of particle–particle interaction effects, can be tested in a true DNS. Recent studies

by Moses and Edwards (2005) are emerging which seek to assess the consequences of the

point–particle approximation. However, their study is in 2–d for considerably large cylinders

(Reynolds number based on the diameter of cylinder = 26), with an emphasis on evaluating

the effects of filtering the velocity field. Their study is relevant to examining the validity of

LES based on the point–particle assumption. Similar studies are needed for DNS, although

such simulations are still limited by computational expense. Therefore, the DNS datasets

performed with the point–particle approximation that are used in this study are the best

data available for model testing and validation. It appears very likely that the existing DNS
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datasets do capture the major trends of the TKE variation with important non–dimensional

parameters like Stokes number and mass loading. It is possible that true DNS might lead to

revision in the exact quantitative predictions. Nevertheless, since our principal conclusions

concern qualitative trends rather than an exact quantitative match between model predictions

and DNS, it is reasonable to assert that the incorporation of the new multiscale interaction

timescale leads to a better representation of the problem physics.

It is worthwhile to examine whether any experimental data can be used for model valida-

tion. Experimental investigations of nearly isotropic particle–laden turbulence include work by

Friedman and Katz (2002) and Fallon and Rogers (2002). While, the former report only rise

rate of droplets in the presence of two levels of turbulence intensity in the carrier phase, and

the latter report preferential concentration of particles for varying Stokes numbers, both do not

report kinetic energy in either phase that is required for model validation. While the data they

report is useful for models that involve buoyancy effects and predict preferential concentration,

information on the second moments of fluid and particle velocities is not reported.

5.9 Summary and Conclusions

Particle–turbulence interaction occurs over a range of length and timescales. DNS of ho-

mogeneous particle–laden turbulence report that the rate of decay of TKE increases with

increasing Stokes number, with mass loading kept constant. A simple turbulent two–phase

flow model problem that consists of monodispersed sub-Kolmogorov size solid particles (or

non–evaporating droplets) evolving in zero–gravity homogeneous decaying turbulence is used

to assess a class of particle velocity evolution equations in the LE modeling approach. LE tur-

bulence models that use the particle response timescale as the timescale for interphase energy

transfer fail to reproduce the correct trend of energy decay in both the fluid phase and the

dispersed phase as observed in DNS. When the particle response timescale is replaced with

a multiscale interaction timescale derived from an assumed representation of the gas phase

turbulence, the trend of decay of fluid phase and dispersed phase TKE match those seen in

DNS. This lends to support the hypothesis that the particle response timescale is inadequate
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Figure 5.1 Evolution of normalized kf for the homogeneous model problem
(i) KIVA with Ω∗

p (ii) DNS of particle–laden freely decaying
turbulence (Sundaram and Collins, 1999). Not only is the decay
rate fast compared to the DNS result, but also the trend of
decay in kf is opposite to that seen in the DNS result. Arrow
indicates direction of increasing Stokes number.

to represent the multiscale effects inherent in a two–phase flow system.

The principal conclusions of this study are:

1. LE models based on the particle response timescale do not capture the correct trends of

decay in TKE with varying Stokes number in freely decaying particle–laden turbulence.

The KIVA drag model with the particle response timescale also predicts an unphysical

increase of dispersed phase energy in freely decaying turbulence. A simplified analysis

assuming a constant particle response time reproduces the unphysical behavior, thereby

illustrating that the non–monotonic behavior is not an artifact of the numerical simula-

tion.

2. LE models with an improved multiscale interaction timescale predict the correct trends of

decay in TKE with varying Stokes number in freely decaying particle–laden turbulence.

Predictions from the LE model with the multiscale interaction timescale can be assessed

in other canonical flows like droplet–laden homogeneous shear and mixing layers.
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Dispersed phase volume fraction αd 1.8× 10−4

Fluid phase thermodynamic density ρf (kg/m3) 1.1616

Dispersed phase thermodynamic density ρd (kg/m3) 1045.44

Acceleration due to gravity g (m/s2) 0.0,0.0,0.0

Initial mean slip (m/s) 0.0,0.0,0.0

(kd/kf ) ratio at initial time 1

Table 5.1 Parameters of the particle–laden decaying turbulence test case.

Stη = τp/τη u′ (m/s) v′ (m/s) εf (m2/s3)
1.6 0.80245 0.77250 0.36273

3.2 0.79371 0.73812 0.40309

6.4 0.79254 0.74360 0.43834

Table 5.2 Particle–laden decaying turbulence test case: Initial values of
the turbulence intensities u′ and v′ in the fluid phase and dis-
persed phase, respectively, and dissipation rate in the fluid phase,
for different Stokes numbers.
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Figure 5.2 Evolution of normalized kd for the homogeneous model problem
(i) KIVA with Ω∗

p (ii) DNS of particle–laden freely decaying
turbulence (Sundaram and Collins, 1999). The decay in kd as
predicted by the KIVA model is significantly faster than the
DNS result. An unphysical cross–over in the predictions from
KIVA is seen. Arrows indicate direction of increasing Stokes
number.
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Figure 5.3 Results from a simple analysis assuming constant Ω∗
p (dot–dash

lines and subscript ‘a’ in the legend) are shown alongside pre-
dictions from KIVA (solid lines) for two initial kd/kf ratios and
a Stokes number of 1.6. The inset shows a blow–up of the region
where the reversal in the decay of k∗d (indicated by A and B)
occurs. For a constant Ω∗

p, a decrease in the initial kd/kf ratio
tends to aggravate the unphysical behavior.
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Figure 5.4 A schematic probability density function of |u′f
∗| used in the

derivation of the multiscale interaction timescale 〈τint〉. Here, z
is the random variable corresponding to |u′f

∗|. The transition
value of |u′f

∗| – |u′f
∗|T – is also indicated.
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Figure 5.5 Evolution of normalized kf for the homogeneous model prob-
lem (i) KIVA with 〈τint〉 (for clarity 〈τint〉 is written as 〈τi〉
in the figure) (ii) DNS of particle–laden freely decaying turbu-
lence (Sundaram and Collins, 1999). Not only has the timescale
of decay in the evolution of kf improved, but also the trend of
decay with increasing Stokes number matches the DNS result.
Arrow indicates direction of increasing Stokes number.
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Figure 5.6 Evolution of normalized kd for the homogeneous model prob-
lem (i) KIVA with 〈τint〉 (for clarity 〈τint〉 is written as 〈τi〉
in the figure) (ii) DNS of particle–laden freely decaying turbu-
lence (Sundaram and Collins, 1999). The timescale of decay
with increasing Stokes numbers has improved significantly and
is now closer to DNS results, and the trend of decay matches
the DNS result. Arrows indicate direction of increasing Stokes
number.
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CHAPTER 6. A NEW DUAL-TIMESCALE LANGEVIN MODEL

(DLM) FOR TWO–PHASE FLOWS

6.1 Desirable features for a two–phase model

Turbulent two–phase flows are characterized by the presence of multiple physical time and

length scales. Models for a two–phase flow need to incorporate these fundamental time and

length scales in their formulation in order to capture the essential physics of the fluid–particle

interaction. Time and length scales in a homogeneous tubulent two–phase flow can be classified

into (i) those related to fluid or carrier phase, and (ii) those related to the dispersed phase.

Important time scales in such a flow are (i) the Kolmogorov timescale τη, which is the timescale

corresponding to the smallest length scale of the eddy – the Kolmogorov length scale η given

as τη = (νf/εf )1/2, where νf and εf are the kinematic viscosity and the dissipation rate in

the carrier phase, respectively, (ii) the eddy turnover timescale τ = kf/εf , where kf is the

TKE in the carrier phase, and (iii) particle response timescale τp = (ρd/ρf )d2/(18νf ), where

ρd and ρf are the densities of the dispersed phase and the carrier phase, respectively, and d is

the particle diameter. Important length scales in the same two–phase flow are (i) η, (ii) eddy

length scale l = k
3/2
f /εf and (iii) the particle diameter d. In addition to these easily apparent

physical timescales, there are other timescales that govern the evolution of two–phase flows.

DNS of canonical two–phase flows report that TKE in each phase and the particle velocity

autocorrelation evolve on timescales that behave differently with Stokes number Stη, defined

as Stη = τp/τη. In particular, the TKE in the carrier and dispersed phase decays faster

with increasing Stη in particle–laden freely decaying homogeneous turbulence (Sundaram and

Collins, 1999), while the particle velocity autocorrelation decays slower with increasing Stη in

droplet–laden, artificially forced stationary turbulence (Mashayek et al., 1997). A two–phase
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flow model that is designed to be predictive in a range of two–phase flows must necessarily

possess the capability to capture these disparate timescales in simple canonical two–phase

DNS. It is noteworthy that two–phase models used in LE implementations (for instance, see

Amsden et al. (1989)) that evolve the dispersed–phase velocity as

dVp

dt
=

Ug −Vp

τp
Cd(Rep), (6.1)

where Vp is the dispersed–phase velocity, Ug is the carrier–phase velocity, Cd is the drag

coefficient which is a function of the particle Reynolds number Rep, are incapable of capturing

the observed trends in the decay of TKE with Stη noted earlier when tested in the canonical

problem. The reason for the inability of such models to capture these trends observed in two–

phase DNS was traced to the use of the particle–response timescale τp in Eq. (6.1). When τp

was replaced by a multiscale interaction timescale, predicted trends of TKE decay from the

LE model matched with DNS results (Pai and Subramaniam, 2006).

A two–phase model should also respect important limiting values of Stη and mass loading

φ, which in this context is defined as φ = (ρdαd)/(ρfαf ), where αf and αd are the carrier phase

and dispersed–phase volume fractions. In the limit of Stη → 0, the dispersed particles behave

as fluid tracers since in this limit the particles possess negligible inertia. In this limit, predicted

statistics such as TKE and velocity autocorrelation from a two–phase model corresponding to

the dispersed phase must match those corresponding to the fluid phase. The limit of Stη →∞

is also important in that the particles are unaffected by the motion of the carrier phase. Such

flows are collision dominated and are generally described by completely neglecting the presence

of the fluid phase (eg. granular flows). Although the ability to capture this limit is a desirable

feature of a two–phase flow model, the physics of the two–phase flow corresponding to this

collision–dominated regime is not completely understood. In the limit of φ→ 0, the fluid phase

momentum source term becomes negligible. In this limit of one–way coupling, a two–phase

model for the fluid phase must have neglible influence from the dispersed phase. On the other

hand, as φ → ∞, two–way coupling effects become important and a two–phase model must

possess the capability to capture the effects of two–way coupling in this limit.
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6.2 General form of a coupled Langevin model for two–phase flows

Lagrangian models based on stochastic differential equations (SDE) have been successfully

used in single–phase turbulent flows to model the velocity following a fluid particle (Pope,

1985). SDEs are amenable to analysis since properties of the Weiner process that appear in

such equations are rigorously defined. We therefore extend models that have been successful

in single–phase turbulent flows to two–phase flows.

In the most general form, a model for the fluctuating velocities in the fluid phase and

dispersed phase in a two–phase flow system can be written as a matrix system of vector SDEs

as

d

 u

v

 =

 aff afd

adf add


︸ ︷︷ ︸

1

 u

v

 dt+

 bff bfd

bdf bdd


︸ ︷︷ ︸

2

 dWf

dWd

 ,

where

1. u and v are modeled fluctuating velocities in the fluid phase and dispersed phase, re-

spectively,

2. the matrix denoted 1 is the the drift matrix whose elements have dimensions [T−1].

Four submatrices viz. aff , afd, adf and add give the interaction timescales between

combinations of carrier–f and dispersed–d phase,

3. the matrix denoted 2 is the diffusion 1 matrix whose elements have dimensions [LT−3/2].

Four submatrices viz. bff , bfd, bdf and bdd represent the rate of change of TKE in each

phase due to interphase TKE transfer and dissipation, and

4. dWf and dWd are independent Wiener processes. The usual properties of the Wiener

process hold:

〈W〉 = 0 〈WtWs〉 = min(t, s)

and at any time t and time step ∆t, the increment Wt+∆t −Wt is a Gaussian random

variable with mean zero and variance ∆t.
1The terms ‘drift’ and ‘diffusion’ are used in the sense of stochastic differential equation theory.
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The fluid phase and particle phase fluctuating velocities can be coupled through the drift and

diffusion coefficients. In general, the drift and diffusion coefficients can be functions of the mean

velocity gradients in either phase, TKE and viscous dissipation in either phase, in addition to

non–dimensional quantities, such as particle Reynolds number, mass loading, volume fraction,

particle to fluid density ratio. In summation convention, the above system can be rewritten as

dui =
(
aff

ik uk + afd
ik vk

)
dt+ bff

ik dWf k + bfd
ik dWdk (6.2)

dvi =
(
adf

ikuk + add
ik vk

)
dt+ bdfik dWf k + bdd

ik dWdk (6.3)

6.3 Dual–timescale Langevin model

We explore one possible specification of the general form of the coupled Langevin model

given by Eq. (6.2)–(6.3) with isotropic drift and diffusion coefficients, and with afd = adf =

bfd = bdf = 0. For a homogeneous turbulent two–phase flow, the proposed form for the new

model is:

dui = −
(
A(t)δij +

∂〈Ui〉
∂xj

)
ujdt+B(t)δijdWf j (6.4)

dvi = −
(
C(t)δij +

∂〈Vi〉
∂xj

)
vjdt+D(t)δijdWpj , (6.5)

where

A(t) =
[

1
2τ1

+
(

1
2

+
3
4
C0

)
εf
kf

]
,

B(t) =
[
C0εf +

2
3
kf

τ1
+

2
3

(
ke

f − kf

τ2

)]1/2

,

C(t) =
1

2τ3
,

D(t) =
[
2
3
kd

τ3
+

2
3

(
ke

d − kd

τ4

)]1/2

.

Here, τ1 and τ3 are timescales that appear in the drift coefficients, while τ2 and τ4 are timescales

that appear in the diffusion coefficients of each SDE. We refer to the above model as the Dual–

timescale Langevin model (DLM) in the rest of this work. The TKE in the dispersed phase is

denoted kd with a superscript ‘e’ to denote ‘equilibrium’ values (the same holds for the TKE
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in the fluid phase kf ). The gas–phase dissipation enhanced by the presence of the dispersed

phase is denoted εf . Reasons for this particular choice of the drift and diffusion coefficients,

and the reason for the use of the phrase ‘equilibrium’ will become clear in due course. Mean

velocity gradients in the fluid phase ∂〈Ui〉/∂xj and dispersed phase ∂〈Vi〉/∂xj are incorporated

into the drift coefficients, analogous to models in single–phase flows.

The fluid–phase SDE can be viewed as an extension of the simplified Langevin model

(SLM) (Pope, 2000; Haworth and Pope, 1986) to two–phase flows, but with an important

difference being the introduction of drift and diffusion timescales that are different from each

other. Additional terms that represent interphase interactions have been added. In this model,

the coupling between the two phases is only through mean fields like TKE (kf and kd) and εf ,

and not explicitly through ui and vi.

The reason to choose SLM as a basis for DLM is manifold. The simplified Langevin model

performs well in the context of single–phase flows (Pope, 2000). In particular, in single–phase

stationary turbulence the Lagrangian integral timescale matches well with DNS results (Yeung

and Pope, 1989). The form of the second–order structure function as implied by SLM is

linear in time separation, which is consistent with Kolmogorov’s hypotheses. In single–phase

homogeneous shear flows, SLM is a reasonable model for the Lagrangian velocity of a fluid

particle (Pope, 2002). However, in homogeneous shear flows when the Reynolds stresses and

the Lagrangian integral time scale from DNS (Sawford and Yeung, 2001) are employed to arrive

at the implied diffusion coefficient in SLM, Pope (Pope, 2002) does find that this coefficient

is significantly anisotropic; although it is not clear if the anisotropy is an effect of the low

Reynolds number regime studied in the DNS. A value of C0 = 3.4 has also been used by Pope

in the same study with better agreement of model predictions with DNS results, than with

C0 = 2.1.

In this study, the primary emphasis is to match trends of important two–phase statistics in

canonical two–phase flows with varying non–dimensional parameters, such as Stokes number

and mass loading, with those observed in DNS. We also do not seek an exact quantitative match

between model predictions and DNS data for reasons discussed in Section 6.8. Therefore, we
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use the simplest form of the single–phase Langevin model in this study with C0 = 2.1. It is

expected that the ideas proposed in this paper on extending single–phase models to two–phase

flows can be incorporated into recent model developments and recommendations in the context

of single–phase flows (Lamorgese et al., 2007).

6.3.1 Implied evolution equation for the Reynolds stresses

The evolution equations of key statistics in a two–phase flow as implied by DLM are now

derived. From Eqs. (6.4)–(6.5), the evolution equations for the Reynolds stresses implied by

DLM can be derived in the usual manner (Pope, 2000) to be

d

dt
〈uiuj〉 = −2A(t)〈uiuj〉 −

(
〈ukuj〉

∂〈Ui〉
∂xk

+ 〈uiuk〉
∂〈Uj〉
∂xk

)
+B(t)2δij (6.6)

d

dt
〈vivj〉 = −2C(t)〈uiuj〉 −

(
〈vkvj〉

∂〈Vi〉
∂xk

+ 〈vivk〉
∂〈Vj〉
∂xk

)
+D(t)2δij . (6.7)

6.3.2 Implied evolution equations for the TKE

Contracting like indices in Eq. (6.6) and Eq. (6.7) results in the evolution equations for the

TKE in the fluid phase, defined as kf = (1/2)〈uiui〉, (where the averaging is performed over

an ensemble of realizations) and the TKE in the dispersed phase, defined as kd = (1/2)〈vivi〉,

respectively:

dkf

dt
= −2A(t)− 〈ukui〉

∂〈Ui〉
∂xk

+
3
2
B(t)2 (6.8)

dkd

dt
= −2C(t)− 〈ukui〉

∂〈Vi〉
∂xk

+
3
2
D(t)2 (6.9)

Simplfying the above equation using the prescribed form of the drift and diffusion coefficients

in Eqs. (6.4) and (6.5) results in

dkf

dt
= −

kf − ke
f

τ2
− 〈ukui〉

∂〈Ui〉
∂xk

− εf (6.10)

dkd

dt
= −

kd − ke
d

τ4
− 〈ukui〉

∂〈Vi〉
∂xk

(6.11)

The first term on the right hand side of the above equations represents the modeled interphase

TKE transfer term. For the case of particle–laden homogeneous turbulence with no mean
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velocity gradients, the evolution equations for the TKE in each phase given by Eq. (6.10) and

Eq. (6.11) simplify to

dkf

dt
= −

kf − ke
f

τ2
− εf (6.12)

dkd

dt
= −

kd − ke
d

τ4
. (6.13)

6.3.3 Implied Lagrangian velocity autocorrelation

The Lagrangian velocity autocorrelation in phase β, denoted ρβij(t, s), is defined as

ρβij(t, s) =
〈γi(t)γj(t+ s)〉

(〈γi(t)γi(t)〉)1/2〈γj(t+ s)γj(t+ s)〉1/2
(6.14)

(no summation is implied over repeated indices) where γ stands for either u or v. Here

β indicates the phase: f for the fluid phase or d for the dispersed phase. The Lagrangian

autocorrelation is simply a normalized autocovariance and gives a measure of how quickly the

phase velocity loses correlation with its value at some earlier time. In stationary 2 particle–

laden turbulence, ρβij depends only on the separation time s, and not on t:

ρβij(s) =
〈γi(t0)γj(t0 + s)〉

(〈γi(t0)γi(t0)〉)1/2〈γj(t0 + s)γj(t0 + s)〉1/2
(6.15)

where t0 can be any initial time after the system reaches stationarity. In decaying turbulence,

the velocity autocorrelation also depends on the time t0.

Assuming stationarity, the evolution equations for the fluid–phase velocity autocovariance

and the dispersed–phase velocity autocovariance derived from Eq. (6.4) and Eq. (6.5) are

d

dt
〈ui(t0)uj(t)〉 = −

[
1

2τ1
+
(

1
2

+
3
4
C0

)
εf
kf

]
〈ui(t0)uj(t)〉 −

∂〈Uj〉
∂xk

〈ui(t0)uk(t)〉 (6.16)

and
d

dt
〈vi(t0)vj(t)〉 = − 1

2τ3
〈vi(t0)vj(t)〉 −

∂〈Vj〉
∂xk

〈vi(t0)vk(t)〉, (6.17)

respectively.
2Stationarity in particle–laden flows can be ascertained by observing the evolution of statistics such as TKE

in either phase.
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For homogeneous particle–laden turbulence without any mean velocity gradients the evolu-

tion equations for the velocity autocovariance in each phase given by Eq. (6.16) and Eq. (6.17)

simplify to

d

dt
〈ui(t0)uj(t)〉 = −

[
1

2τ1
+
(

1
2

+
3
4
C0

)
εf
kf

]
〈ui(t0)uj(t)〉 (6.18)

d

dt
〈vi(t0)vj(t)〉 = − 1

2τ3
〈vi(t0)vj(t)〉, (6.19)

where for stationary turbulence, the half in paranthesis in Eq. (6.18) is dropped.

A striking feature of DLM is that in each of the four equations Eqs. (6.8), (6.9), (6.18),

(6.19), only one of the four timescales τ1, τ2, τ3 and τ4 appear. Each of these timescales

can be constructed in such a way that they behave independently from each other. Thus in

DLM, the evolution of TKE can be constructed to behave differently from the evolution of

the velocity autocovariance. It is therefore possible to incorporate the capability of capturing

the disparate timescale trends observed in two–phase DNS into DLM. It is noteworthy that

in model proposals based on the generalized Langevin model (Pozorski and Minier, 1999)

the implied TKE and the velocity autocorrelation evolve over a single timescale, namely the

Lagrangian integral timescale.

The equilibrium energies ke
f and ke

d in Eqs. (6.4) and (6.5) are related to one another as

shown next, and so the evolution of kf and kd are coupled through these terms. The proposed

form of the TKE evolution equations Eqs. (6.10) and (6.11) and the relation between the

equilibrium energies is based on an underlying model for the interphase TKE transfer. We

briefly review this model next.

6.4 Equilibration of Energy concept

To explain the EoE concept, which was proposed recently by Xu and Subramaniam (2006),

the following model system of equations for the evolution of TKE in a dilute homogeneous two–
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phase flow system are assumed to hold:

def
dt

= Πkf
− ρfαfεf (6.20)

ded
dt

= Πkd
, (6.21)

where Πkf
= (eef − ef )/τπ and Πkd

= (eed − ed)/τπ are the interphase TKE transfer terms 3.

Here, τπ is the interphase TKE transfer timescale, ef = ρfαfkf and ed = ρdαdkd are the specific

carrier phase and dispersed phase energies, respectively and eef = ρfαfk
e
f and eed = ρdαdk

e
d are

the equilibrium specific TKEs in the carrier phase and dispersed phase, respectively. Collisions

among particles are assumed to be elastic and hence no dissipation is considered in the dispersed

phase.

The EoE concept states that if

dem
dt

= −ρfαfεf + Ff = 0, (6.22)

where Ff is the external artificial forcing required to balance the dissipation in order to main-

tain dem/dt = 0, then the specific dispersed phase TKE and specific fluid phase TKE evolve

to their respective equilibrium values. In the above equation, em = ρmkm = ef + ed =

ρfαfkf + ρdαdkd is the mixture energy in the two–phase flow system and ρm is the mixture

density defined as ρm = ρdαd + ρfαf . Note that the dissipation in the carrier phase is the

sum of the single–phase dissipation rate and an additional dissipation due to the presence of

boundary layers around the dispersed particles. Implicit in the above expression is that as-

sumption that Πkf
= −Πkd

, which implies that the interphase TKE transfer is conservative.

This assumption is valid for rigid particle–laden turbulent flows (Xu and Subramaniam, 2007).

Equilibrium values of the specific fluid–phase TKE eef and specific dispersed–phase TKE

eed are determined by a model constant Ck which is defined as

eed
em

= Ck, or
eef
em

= 1− Ck. (6.23)

Since Ck represents the fraction of the specific mixture energy present in the dispersed phase

at equilibrium, it must lie between zero and unity.
3There is an implicit assumption of sub–Kolmogorov size particles in the above equations. This is because

large particles can shed wakes that can in turn lead to production in the carrier phase. Production due to
particle wakes is considered negligible in this study.
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An implicit dependence of Ck on mass loading φ of the two–phase system can be ascertained

by rewriting Eq. (6.23) as

Ck =
ρdαdk

e
d

ρmkm
=

ρdαdk
e
d

ρfαfk
e
f + ρdαdk

e
d

=
φ

ke
d

ke
f

1 + φ
ke

d
ke

f

, (6.24)

where φ = ρdαd/(ρfαf ) is the mass loading of the two–phase system. The constant Ck can

also depend on other non–dimensional quantities such as Stokes number Stη, particle Reynolds

number Red, initial kd/kf ratio, the ratio of the droplet diameter dp to Kolmogorov length

scale η, and dispersed–phase volume fraction αd.

For a constant mass loading φ, decreasing Stokes number should drive the dispersed–phase

equilibrium TKE closer to the fluid phase equilibrium TKE, and in the limit of zero Stokes

number, the two equilibrium energies should match. This observation imposes a constraint on

Ck in the limiting case of zero Stokes number and from Eq. (6.24) we get

Ck|Stη=0 =
φ

1 + φ
. (6.25)

The EoE concept can be extended to the case where the turbulence decays in time (no

artificial forcing of the mixture energy in the two–phase flow system). However, a model for

the dissipation rate needs to be added to the system of equations (cf. Eqs. (6.20)–(6.21)),

which now reads

def
dt

= Πkf
− ρfαfεf

ded
dt

= Πkd

dεf
dt

= −Cε2

ε2f
kf

+ Cs
εf
kf

(
ke

f − kf

τπ

)
− Cε1〈uiuj〉

∂〈Ui〉
∂xj

εf
kf
, (6.26)

where εf is the fluid–phase dissipation evolving according to a modified single–phase ε equation

(Xu and Subramaniam, 2006) with the production term due to mean velocity gradients. The

model constants Cε2 and Cε1 are proposed to be 1.92 and 1.44, respectively. The constant

Cs is chosen to be 3.0 in this work, compared to 1.2 in Xu and Subramaniam (2006), as

this value gave a better agreement of model predictions with DNS results in this case. A

detailed discussion on the extension of the EoE concept to inhomogeneous flows in the context
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of Eulerian–Eulerian statistical representation of two–phase flows can be found in Xu and

Subramaniam (2006).

6.5 Model constants in DLM

6.5.1 Specification of Ck

The EoE model constant Ck defined in Eq. (6.24) represents the ratio of specific TKE in

the dispersed phase to that in the two–phase mixture. As noted in Section 6.4, Ck can depend

on the mass loading φ, Stokes number Stη, particle Reynolds number Red, initial kd/kf ratio

and the dispersed–phase volume fraction αd. The droplet Reynolds numbers considered in this

study are of O(1), dispersed–phase volume fractions are of O(10−3) and the initial kd/kf ratio

is of O(1). Hence, dependence of Ck on these parameters is neglected in this study. However,

if the above non–dimensional parameters vary by an order of magnitude across the test cases

considered, we expect that the dependence of Ck on these parameters will need to be taken

into account.

The dependence of Ck on mass loading and Stokes number Stη 4 is accounted for in this

study. Since the ratio of the equilibrium TKEs ke
d/k

e
f (cf. Eq. (6.24)) is not known a priori, a

model for Ck is required. The following model for Ck is proposed:

Ck =
φ

1 + φ+ Stη
. (6.27)

Note that this specification obeys the correct limiting behavior of Ck as Stη → 0 (cf. Eq. (6.25).)

In order to improve the model for Ck, datasets from carefully controlled DNS of particle–laden

turbulent flows that report the fraction of the mixture energy in each phase are required. Also,

the DNS should quantify the effect of non–dimensional parameters in a two–phase flow sys-

tem, as noted earlier, on the fraction of specific TKE in each phase. To the knowledge of the

authors, no such DNS datasets are as yet available in the literature.
4Henceforth, “Stokes number” refers to Stη, the Stokes number based on the Kolmogorov timescale, unless

mentioned otherwise.
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6.5.2 Drift timescales in DLM

The form of the drift timescales τ1 and τ3 in Eqs. (6.4)–(6.5), respectively, is now developed

depending on how we expect the system of SDEs to behave in limiting cases.

Zero Stokes number limit

As noted earlier in Sec.6.1, in the limit of zero Stokes number the dispersed particles respond

immediately to the surrounding fluid. In this limit, the fluid–phase velocity autocovariance

and the dispersed–phase velocity autocovariance must match. Therefore we require that, in the

limit of vanishing Stokes number, the timescale τ3 in Eq. (6.17) should tend to the evolution

timescale of the velocity autocovariance in Eq. (6.16).

A simple specification for τ3 is

1
τ3

= 2
[

1
2τ1

+
(

1
2

+
3
4
C0

)
1
τ

]
1

1 + StηC3
, (6.28)

where C3 is a model constant (C3 = 0.1). Although there is no explicit dependence of the

timescale τ3 on mass loading φ, we shall show next that the dependence on φ does appear

through the timescale τ1.

The timescale obeys the limiting behavior as Stη → 0 viz.

lim
Stη→0

{[
1

2τ1
+
(

1
2

+
3
4
C0

)
1
τ

]
1

1 + StηC3

}
=

1
2τ1

+
(

1
2

+
3
4
C0

)
1
τ
.

Currently, particle velocity autocorrelation data for large Stokes number (say, Stη > 10) is not

available from DNS or experiments that can help determine the behavior of τ3 in the large Stη

limit. Furthermore, there is an limit to which datasets from DNS that use the point–particle

approximation can be used for model validation. It can be shown that if the density ratio ρd/ρf

is of O(1000), then the maximum value of Stη for which the point–particle approximation is

valid is around 10. (See the analysis in L’vov et al. (2003)). It is surmised that this limit of

Stη can also be taken to be the upper limit for the validity of DLM, although this claim needs

to be validated by comparison with DNS.
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Zero mass loading limit

In the limit of zero mass loading, the effect of the dispersed–phase on the fluid–phase mo-

mentum is negligible, which leads to the concept of one–way coupling (See Sec.6.1). Regardless

of the Stokes number, the fluid timescales remain unaffected by the presence of the dispersed

phase and are identical to those seen in a single–phase flow. In this limit, the timescale τ1,

which essentially represents the modification to the fluid velocity autocorrelation timescale due

to the presence of dispersed phase, should tend to zero. Therefore, we require that the drift

timescale in Eq. (6.4) should approach the specification for the single–phase SLM (Pope, 2000).

Using available data from DNS of particle–laden flows (Truesdell and Elghobashi, 1994;

Ahmed and Elghobashi, 2001) we propose the following form of τ1:

1
τ1

=
C1φStη

τ
,

where C1 is a model constant (C1 = 2.5). This specification obeys the correct limiting behavior

as φ→ 0 viz.

lim
φ→0

[
1

2τ1
+
(

1
2

+
3
4
C0

)
1
τ

]
=
(

1
2

+
3
4
C0

)
1
τ
.

For a constant mass loading, and in the limit Stη → 0, the dispersed phase velocity autocorre-

lation behavior is identical to that of the fluid phase. In this limit, the timescale for the decay

of velocity autocorrelation is the single–phase velocity autocorrelation decay timescale. Hence,

the above specification of τ1 ensures that as Stη → 0, the timescale 1/τ1 → 0.

6.5.3 Diffusion timescales in DLM

The timescales τ2 and τ4 govern the evolution of TKE in each phase (cf. Eq. (6.12) and

Eq. (6.13)). In accordance with the EoE concept, and to introduce the capability to capture

the multiscale nature of a turbulent two–phase mixture into DLM, the timescales τ2 and τ4

are chosen to be equal to τπ = 〈τi〉/Cπ, where 〈τi〉 is a multiscale interaction timescale for

interphase TKE transfer first proposed by (Pai and Subramaniam, 2006). It was shown in

that study that the new timescale accurately captures the dependence of the interphase TKE

transfer on Stη. This timescale has been successfully employed in the context of EE two–
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phase turbulence modeling by (Xu and Subramaniam, 2006). The constant Cπ is chosen to

be 1.0 in this study. Details of the derivation relevant to the DLM timescale specification are

reviewed here for the sake of completeness. The development of the timescale is given in Pai

and Subramaniam (2006) and Xu and Subramaniam (2006), and is not repeated here for the

sake of brevity. Only important results are reviewed here.

Details of the derivation of the multiscale interaction timescale was presented earlier in

Chapter 5, Section 5.7. Using DLM the pdf of absolute fluctuating velocity in the multiscale

interaction timescale can be computed from the simulation. However, we retain the analytical

form for the pdf of absolute value of fluctuating velocity as in Section 5.7.

6.5.4 Model summary and comparison with desirable features

Based the discussion heretofore DLM possesses the following desirable features of two–phase

models:

1. The ingredients of DLM and Equilibration of Energy concept are important non–dimensional

parameters for two–phase flows, such as Stη, mass loading φ and volume fraction αd. Im-

portant time and length scales observed in a two–phase system are incorporated into the

formulation of the multiscale interaction timescale 〈τint〉.

2. DLM possesses the capability of capturing the disparate timescale trends of TKE and ve-

locity autocorrelation decay with Stη that are observed in DNS of particle–laden decaying

and particle–laden stationary turbulence.

3. DLM has the correct limiting behavior as Stη → 0 and φ → 0, and also in the limit

φ → ∞. DLM may not perform well in the limit Stη → ∞ since the validity of DLM

is restricted to the range over which the point–particle approximation is valid. More-

over, as the Stη number increases, it is expected that the physics of the particle–carrier

phase interaction will not be identical to that when Stη → 0, primarily due to enhanced

collisions as Stη →∞.
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In summary, DLM along with the Equilibration of Energy concept possesses some of the

necessary features desirable of two–phase models for the parameter range considered in this

study.

6.6 DNS datasets for model validation

Several researchers (Sundaram and Collins, 1999; Mashayek et al., 1997; Boivin et al., 1998)

have performed DNS of particle–laden homogeneous turbulence. However, such DNS are not

true DNS, where the flow around each particle is accurately resolved, but are based on the

point–particle assumption. This assumption holds for density ratios of ρd/ρf ∼ O(1000) and

d/η < 1, where η is the Kolmogorov length scale of turbulence – conditions which are satisfied

by the test cases investigated in this study. In this parameter range, the only significant

contribution to the particle acceleration is through particle drag. Although such DNS cannot

capture the additional dissipation due to the boundary layers around the paricles, we do expect

that they qualitatively capture the correct trends in key statistics, such as TKE, with varying

Stokes number and mass loading.

‘True’ DNS of particle–laden flows are becoming commonplace thanks to the advances in

numerical techniques and computational power. Recent advances in numerical techniques have

the capability of accurately quantifying the increased dissipation in the carrier phasse due to

the presence of the particles, and the modulation of the carrier–phase TKE by the dispersed

particles. However, no such DNS datasets are available to validate DLM in the parameter

range explored in this study.

In this study, two important test cases are considered. Particle–laden freely–decaying

turbulence is an important canonical two–phase problem and a necessary test for two–phase

models, especially since models based the momentum–response timescale fail to capture accu-

rate trends of TKE decay with varying Stokes number that are observed in DNS, when tested

in this problem (Pai and Subramaniam, 2006). It will therefore be interesting to ascertain

if DLM can capture these trends. Since dispersion and dynamics (interphase TKE transfer)

are two coupled phenomena in any two–phase flow, it will also be interesting to check if DLM
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Dispersed phase volume fraction αd 1.8× 10−4

Fluid phase thermodynamic density ρf (kg/m3) 1.1616
Dispersed phase thermodynamic density ρd (kg/m3) 1045.44

Kinematic viscosity of fluid νf (m2/s) 6.761× 10−3

Table 6.1 Parameters of the test case corresponding to particle–laden de-
caying turbulence used in this study. Acceleration due to gravity
and initial mean slip between phases is zero for all cases.

can capture trends of velocity autocorrelation with varying particle inertia. Another impor-

tant test case is particle–laden homogeneous shear wherein there is an interplay of production

due to mean velocity gradients, interphase TKE transfer and carrier–phase dissipation. Al-

though particle–laden stationary turbulence is also an important canonical problem, we direct

the reader to Chapter 7 (also, Pai and Subramaniam (2007)) where DLM has been validated

against DNS datasets of evaporating and non–evaporating droplet–laden flow in stationary

turbulence. In that study DLM was shown to capture trends of TKE and particle velocity

autocorrelation with varying Stη depicted in DNS.

6.6.1 Decaying turbulence: Turbulence modification and dispersion statistics

Sundaram and Collins (1999) have performed a study on particle–laden freely decaying

turbulence in the absence of gravity for several Stokes numbers. The system is volumetrically

dilute, with particles in the sub–Kolmogorov size range and collisions among particles, if any,

are assumed to be elastic. Two–way coupling is assumed, i.e., the effect of the particles on

fluid–phase momentum conservation is also accounted for. Parameters of the homogeneous

model problem are given in Tables 6.1-6.2. In Table 6.1, u′ is the initial turbulence intensity in

the fluid phase and v′ is the initial turbulence intensity in the dispersed phase. These intensities

are related to the respective TKE in each phase at initial time through u′ 2 = (2/3)kf (0) and

v′ 2 = (2/3)kd(0). Initial conditions for the particles are given in Table 6.2 and are taken from

the DNS dataset at T = 0.8. This test case is hereafter referred to as SC.

Truesdell and Elghobashi (1994) (hereafter referred to as TE) have performed DNS of

particle dispersion in freely decaying turbulence with two–way coupling effects included. The
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Stη = τp/τη u′ (m/s) v′ (m/s) εf (m2/s3)
1.6 0.80245 0.77250 0.36273

3.2 0.79371 0.73812 0.40309

6.4 0.79254 0.74360 0.43834

Table 6.2 Particle–laden decaying turbulence test case: Initial values of
the turbulence intensities u′ and v′ in the fluid phase and dis-
persed phase, respectively, and dissipation rate in the fluid phase,
for different Stokes numbers.

Stη ρd/ρf d αd φ

1.27 909 9.295× 10−5 2.5× 10−4 0.23
2.54 1818 9.295× 10−5 2.5× 10−4 0.45
5.09 3636 9.295× 10−5 2.5× 10−4 0.91

Table 6.3 Particle–laden decaying turbulence test case to inves-
tigate particle dispersion (Truesdell and Elghobashi,
1994). For this test case, the following (unscaled)
parameter values are chosen: initial dissipation:
εf = 0.03713 m2/s3; initial TKE in both phases: kf = kd =
8.62×10−3 m2/s2; kinematic viscosity νf = 1.634×10−5 m2/s.

range of Stokes numbers Stη considered in this study were from 1.27 to 5 and the mass loading

was 2.5 × 10−4. Initial conditions for the model comparison are taken from the DNS dataset

at the time when the particles are introduced into the simulation. Parameters of the DNS

dataset are given in Tables 6.3. TE report evolution of the velocity autocorrelation of the

dispersed phase and the fluid in the vicinity of the dispersed phase. Information on the fluid

velocity autocorrelation in the vicinity of the dispersed particle is not available from the one–

point description of the two–phase flow pursued in this study. More importantly, a one–point

description of a two–phase flow cannot distinguish between a point in the vicinity of a particle

and in the bulk; such affects could be captured however by using information from a two–point

model. Furthermore, the velocity autocorrelation of the fluid in the vicinity of the particle is

not the same as the fluid–particle velocity autocorrelation given by Eq. (6.16)), and therefore

we do not compare this result with model predictions.
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Figure 6.1 Schematic of the DNS of turbulent homogeneous shear laden
with particles (Ahmed and Elghobashi, 2000)

6.6.2 Homogeneous shear: Turbulence modification

Ahmed and Elghobashi (2000) have performed DNS of homogeneously sheared turbulence

laden with rigid particles. Of the several test cases analyzed in that study, only the test

cases involving varying mass loading and varying particle inertia, in the absence of gravity, are

considered here. A constant shear rate given by ∂〈U1〉/∂x3 = ∂〈V1〉/∂x3 = S is imposed on

the fluid phase and the dispersed phases, respectively. The point–particles are evolved as per

the equation due to Maxey and Riley (1983), with an additional contribution due the mean

shear. For the varying mass loading test case, parameters of the DNS datasets are given in

Table 6.5 and for the varying particle inertia test case, parameters are given in Table 6.4. This

test case is hereafter referred to as AE–1.

6.7 Model predictions

This section summarizes model predictions from DLM for the canonical test cases cited

earlier. Comparison of model predictions are performed with DNS results.
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d ρd/ρf Stη d/η αd φ

C 6.0× 10−4 525 0.233 0.0887 1.9× 10−4 0.1
I 1.0× 10−3 472.5 0.583 0.1479 2.1× 10−4 0.1
H 1.0× 10−3 945 1.165 0.1479 1.0× 10−4 0.1
F 1.0× 10−3 1890 2.33 0.1479 5.0× 10−5 0.1

Table 6.4 Particle–laden homogeneous shear test case: Varying particle
inertia

d ρd/ρf Stη d/η αd φ

B 1.0× 10−3 1890 2.33 0.1479 5.0× 10−4 1
G 1.0× 10−3 1890 2.33 0.1479 2.5× 10−4 0.5
F 1.0× 10−3 1890 2.33 0.1479 5.0× 10−5 0.1

Table 6.5 Particle–laden homogeneous shear test case: Varying mass load-
ing

6.7.1 CASE I: Decaying turbulence

6.7.1.1 Prediction of TKE in particle–laden decaying turbulence

For the case of homogeneous decaying turbulence, the implied evolution equations for the

TKE in the fluid phase and dispersed phases are given by Eq. (6.12) and Eq. (6.13), respectively.

The only two terms that govern the evolution of the TKE in the fluid–phase are the interphase

TKE transfer term Πkf
and the fluid–phase dissipation εf .

Figure (6.2) shows the predicted evolution of the fluid–phase TKE by DLM for varying

initial Stokes numbers Stη. Shown alongside are corresponding results from DNS data SC.

In this particle size range and in the absence of production, the higher the particle inertia,

the faster is the decay of energy in the carrier and dispersed phases. This behavior is clearly

depicted by the DNS results, implying that the timescale of decay of TKE decreases with

increasing Stokes number. DLM accurately reproduces the trend of TKE evolution for varying

Stokes number. The evolution of the dispersed–phase TKE is shown in Fig. (6.3), which again

illustrates that DLM accurately captures the trends of TKE evolution with Stokes number.
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The reason why DLM successfully captures this trend correctly is due to incorporation of the

multiscale interaction timescale τπ as the timescale for interphase TKE transfer. As mentioned

earlier, drag models based on the particle–response timescale fail to capture this trend of TKE

decay with increasing Stokes number (Pai and Subramaniam, 2006).

6.7.1.2 Prediction of particle velocity autocorrelation in particle–laden decay-

ing turbulence

Figure (6.4) shows the predicted evolution of the particle velocity autocorrelation in de-

caying turbulence given by Eq. (6.15) for a range of Stokes numbers for the test case TE. Also

shown on the same plot are corresponding results from DNS (Truesdell and Elghobashi, 1994).

With increasing particle Stokes number, the decay in particle velocity autocorrelation is slower

since particles with larger inertia lose correlation with their earlier velocities slower. This im-

plies that the timescale of decay of particle velocity autocorrelation increases with increasing

Stokes number. DLM accurately captures this trend of decay of particle velocity autocorrela-

tion with varying Stokes numbers. Interestingly, the particle velocity autocorrelation behaves

in an identical manner in stationary turbulence (Pai and Subramaniam, 2007), where DLM is

again successful in reproducing trends observed in DNS.

It is noteworthy to recapitulate at this point that two–phase turbulence models in which the

interphase TKE transfer evolves on the particle response timescale τp (see Pai and Subrama-

niam (2006)) do not possess the capability to simulaneously capture the decay trend in the TKE

and the decay trend in particle velocity autocorrelation with varying Stokes number. Models

employed in LE statistical implementations of two–phase flows fall in this category (Amsden

et al., 1989).
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6.7.2 CASE II: Homogeneous shear

6.7.2.1 Prediction of TKE in particle–laden homogeneous shear

For a uniformly imposed mean shear in the 1–3 direction as ∂〈Ui〉/xj = ∂〈Vi〉/xj = Sδi1δj3,

the implied evolution equations given in Eq. (6.8) and Eq. (6.9) can be written as

d

dt
〈uiuj〉 = −2A(t)〈uiuj〉 − (〈ukuj〉Sδ1iδk3 + 〈uiuk〉Sδj1δk3) +B(t)2δij (6.29)

d

dt
〈vivj〉 = −2C(t)〈uiuj〉 − (〈vkvj〉Sδ1iδk3 + 〈vivk〉Sδj1δk3) +D(t)2δij , (6.30)

which simplify to

dkf

dt
= −

kf − ke
f

τ2
− 〈ukui〉Sδ1iδk3 − εf (6.31)

dkd

dt
= −

kd − ke
d

τ4
− 〈ukui〉Sδ1iδk3 (6.32)

in the case of DLM. The dissipation equation Eq. (6.26) simplifies to

dεf
dt

= −Cε2

ε2f
kf

+ Cs
εf
kf

(
ke

f − kf

τπ

)
− Cε3〈u1u3〉S

εf
kf
. (6.33)

The computations are initialized at time St = 1 when, as per the DNS (Ahmed and Elghobashi,

2000), the carrier–phase turbulence is fully developed. At this time, the stochastic particles that

represent the fluid and the dispersed phases are initialized with mean zero and covariance given

by 〈uiuj〉 = 2kf [bij + (1/3)δij ] and 〈vivj〉 = 2kd[bij + (1/3)δij ], respectively. The components

of the initial anisotropic tensor bij , which is the same for both the phases, are b11 = 0.036186,

b22 = −0.044069, b33 = 0.007883 and b13 = b31 = −0.121595 at St = 1. The fluid–phase

dissipation εf at this scaled time is 0.00057678, and the fluid kinematic viscosity νf is 0.000105.

Test cases investigated in this study are the denoted B, G, F, C, I, H and F, and parameter

corresponding to these test cases are given in Tables 6.5 and 6.4.

Figure (6.5) shows the predicted evolution of the fluid–phase TKE by DLM for varying

Stokes numbers (particle inertia) and constant mass loading of φ = 0.1. These test cases

correspond to cases C, I, H and F in the DNS AE–1. It is difficult to predict the evolution of

the TKE based on intuition as is possible in CASE I for particle–laden homogeneous decaying

turbulence. This is primarily because there are competing effects of fluid–phase dissipation
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and production due to the mean shear, coupled with interphase TKE transfer. It appears from

the DNS that with increasing particle inertia and for a constant mass loading, the increase in

the fluid–phase TKE is slower, a trend that is accurately captured by DLM. This trend with

increasing particle inertia is identical to that observed in CASE I for homogeneous decaying

turbulence. It is interesting to note that EE drag models based on the particle–response

timescale are unable to capture this trend in particle–laden homogeneous shear flow (See Fig.

(16) of Xu and Subramaniam (2006)), thereby supporting the need to ascertain the behavior

of two–phase models in the freely–decaying turbulence canonical problem. Figure (6.6) shows

that the trend of fluid–phase dissipation predicted by Eq. (6.33) for varying Stokes numbers

matches with DNS results, although there is slight cross over at initial time.

Figure (6.7) shows the predicted evolution of the fluid–phase TKE by DLM for varying

mass loading and constant particle response time τp = 1.0. These test cases correspond to the

cases B, G and F in the DNS AE–1. For increasing mass loading the DNS depicts a slower

increase in kf . DLM predicts the trends accurately after scaled time t/Tref = 1.2, but predicts

a cross over at initial time. Close inspection of the DNS results (see Figure (46) in AE–1)

in fact reveals a similar cross over, although not as conspicuous as predicted by DLM. The

fluid–phase dissipation as predicted by Eq. (6.33) for this test is also close to the DNS results

as is depicted in Fig. (6.8). The initial increase in the dissipation for φ = 1.0 that is observed

in the DNS results is also predicted well by the dissipation model.

To quantify the contribution to each term in the fluid–phase TKE evolution equation, the

budgets of each term on the right hand side of Eq. (6.31) are shown in Fig. (6.9) for the case

where τp = 1.0 and φ = 1.0 (case B in AE–1). In the figure, Πkf is the interphase TKE

transfer (first term on the right hand side of Eq. (6.31)). The general trend in the evolution of

the budgets agree with the DNS results. However, the predicted magnitude of the interphase

TKE transfer term Πkf
is different from the DNS results. In Xu and Subramaniam (2006),

a similar plot for the EEM model predictions (see Fig. (13) in that reference) shows a much

smaller magnitude of Πkf
. The difference in the magnitude of Πkf

between this study and Xu

and Subramaniam (2006) can be traced to two sources: (i) the expression for Ck is Ck = 0.6φ
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in Xu and Subramaniam (2006), which does not contain an explicit dependence on Stη, and

(ii) the model for 〈u1u3〉 is different from that implied by DLM (compare Eqs. (28)–(29) in Xu

and Subramaniam (2006) and Eqs. (6.29)–(6.30)).

6.8 Discussion

In all the test case presented above, DLM is able to capture trends of important statistics

in particle–laden freely–decaying turbulence and homogeneous shear. In particular, the ability

of DLM to capture the trends of TKE decay in freely–decaying turbulence for varying Stokes

number is noteworthy since drag models based on the particle response timescale are incapable

of capturing this trend (Pai and Subramaniam, 2006). DLM also has the capability to capture

the correct behavior of the dispersion timescale in particle–laden freely decaying turbulence,

thereby illustrate the ability to capture the disparate timescale associated with dispersion

and dynamics of a two–phase flow. In particle–laden homogeneous shear, DLM is able to

capture the correct evolution of fluid–phase TKE. In such flows, there are competing effects of

production due to mean velocity gradients, interphase TKE transfer, and dissipation. Although

the dissipation is modeled, it appears that DLM performs well in predicting the production

〈u1u3〉S and the interphase TKE transfer.

The reasons for the emphasis in this study on predicting only the trends correctly rather

than seeking an exact quantitative match are manifold. In DNS of particle-laden flow (Sun-

daram and Collins, 1999; Mashayek et al., 1997; Squires and Eaton, 1991a), although the gas

phase is treated accurately by solving the full Navier–Stokes equations, the no–slip condition

on the surface of each particle is not enforced. Also, since the flow around each particle is not

resolved, a drag model of the form derived by Maxey and Riley (1983) is used to evolve particle

velocities in time. The influence of the particle on the fluid–phase momentum equation is in-

cluded by means of a modeled source term. It is important to recognize that the point–particle

assumption for the particle drag in such DNS is justified in a limited flow regime where particle

Reynolds numbers Red are O(1), dispersed phase to fluid density ratios ρd/ρf are O(1000),

and particles are sub–Kolmogorov size with negligible wake effects. The homogeneous prob-
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lem that forms the basis of the investigation in this work and for which DNS datasets exist

corresponds to a flow regime where the assumptions mentioned earlier are valid.

However, volume–displacement effects are neglected in such DNS and the carrier–phase

velocity field is assumed to be solenoidal. Also, particle–particle (or drop–drop) interaction

effects are not accounted for in such DNS, and the effect of the point–particle approximation on

the true pressure field is also not quantified. The only way to test whether these approximations

are justified is to perform true DNS where the flow around each particle is fully resolved

and exact boundary conditions are imposed on each particle surface. The assumption of

solenoidality of the gas–phase velocity (which in turn affects the fluid pressure field), and

neglect of particle–particle interaction effects, can only be tested in a true DNS. Recent studies

by Ten Cate et al. (2004) are emerging which seek to assess the consequences of the point–

particle approximation. They perform fully resolved simulations of particle–laden stationary

turbulence in the same particle Stokes number and particle mass loading range as in the DNS

study by Boivin et al. (1998) which uses a point–particle approximation for the dispersed phase.

Ten Cate et al. (2004) find that the decrease in the rate of energy dissipation at the large scales

is of the same order as that found by Boivin et al. (1998). However, one should note that the

particle diameter is smaller than the Kolmogorov length scale, particle to fluid density ratios

are O(1000) and the particle Reynolds numbers are O(1) in the DNS performed by Boivin

et al. (1998). On the other hand, the particle diameters are larger than the Kolmogorov length

scale, particle to fluid density ratios are O(1) and particle Reynolds numbers are O(10) in the

fully resolved DNS performed by Ten Cate et al. (2004) and their simulations do not fall in

the regime of two–phase flows investigated in this study.

Therefore, the DNS datasets performed with the point–particle approximation that are

used in this study are the best data available for model testing and validation. It appears very

likely that the existing DNS datasets do capture the major trends of the TKE variation and

autocorrelation evolution with important non–dimensional parameters like Stokes number and

mass loading. It is possible that true DNS such as the one performed by Ten Cate et al. (2004)

might lead to revision in the exact quantitative predictions. Owing to all the reasons cited
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above, our principal conclusions concern qualitative trends predicted by DLM, rather than an

exact quantitative match with available DNS data.

6.9 Conclusions

Direct numerical simulations of particle–laden flow confirm the existence of two disparate

timescales, one governing particle dispersion and the other governing the interphase TKE

transfer, that behave differently with Stokes number. In this context, the principal conclusions

and achievements of this study are:

1. Two–phase flow turbulence models should possess the capability to capture these dis-

parate timescales observed in simple two–phase flow DNS. They should also possess the

capability to capture the trends of these timescales with varying Stokes number in these

simple flow configurations in order to be predictive in more complex spray computations.

2. A new Dual–timescale Langevin Model, based on the Equilibration of Energy concept is

proposed. A novel feature of the proposed model is the incorporation of dual timescales,

which can be specified to match the disparate trends in the evolution of TKE and velocity

autocorrelation with varying Stokes number and mass loading.

3. DLM predicts the evolution of TKE and particle dispersion in freely–decaying turbulence

which are in good agreement with DNS data.

4. DLM predicts the evolution of TKE in particle–laden homogeneous shear, wherein there

is an interplay between interphase TKE transfer, dissipation and production due to mean

velocity gradients.

In summary, a new model that can simultaneously capture important two–phase flow phenom-

ena is proposed. Such a feature is as yet unavailable in two–phase flow models in literature.

The next chapter will investigate the behavior of DLM in predicting dynamics and dispersion

in evaporating and non–evaporating droplet–laden stationary turbulence.
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Figure 6.2 Evolution of TKE in the fluid phase (CASE I). Arrow indicates
direction of increasing Stokes number.
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Figure 6.3 Evolution of TKE in the dispersed phase (CASE I). Arrow
indicates direction of increasing Stokes number.
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Figure 6.4 Evolution of dispersed–phase velocity autocorrelation for vary-
ing Stokes number Stη in particle–laden decaying turbulence
alongside results from DNS Truesdell and Elghobashi (1994).
Arrow indicates direction of increasing Stokes number.
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Figure 6.5 Evolution of fluid–phase TKE for varying particle inertia and
constant mass loading φ = 0.1 (CASE II). Arrow indicates di-
rection of increasing particle inertia.
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Figure 6.6 Evolution of fluid–phase dissipation for varying particle inertia
for constant mass loading. Arrow indicates direction of increas-
ing particle inertia.
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Figure 6.8 Evolution of fluid–phase dissipation for varying mass load-
ing. Arrows indicate direction of increasing mass loading for
the DLM predictions and DNS results.
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CHAPTER 7. MODELING DROPLET DISPERSION AND

INTERPHASE TURBULENT KINETIC ENERGY TRANSFER USING

DLM

A significant part of this chapter has appeared in ‘M. G. Pai and S. Subramaniam (2007).

Modeling droplet dispersion and interphase turbulent kinetic energy transfer using a new dual-

timescale Langevin model, Intl. J. Multiphase Flow, 33(3):252–281.’

Dispersion of spray droplets and the modulation of turbulence in the ambient gas by the

dispersing droplets are two coupled phenomena that are closely linked to the evolution of global

spray characteristics, such as the spreading rate of the spray and the spray cone angle. Direct

numerical simulations (DNS) of turbulent gas flows laden with sub–Kolmogorov size particles,

in the absence of gravity, report that dispersion statistics and turbulent kinetic energy (TKE)

evolve on different timescales. Furthermore, each timescale behaves differently with Stokes

number, a non–dimensional flow parameter (defined in this context as the ratio of the particle

response time to the Kolmogorov timescale of turbulence) that characterizes how quickly a

particle responds to turbulent fluctuations in the carrier or gas phase. A new dual–timescale

Langevin model (DLM) composed of two coupled Langevin equations for the fluctuating veloc-

ities, one for each phase, is proposed. This model possesses a unique feature that the implied

TKE and velocity autocorrelation in each phase evolve on different timescales. Consequently,

this model has the capability of simultaneously predicting the disparate Stokes number trends

in the evolution of dispersion statistics, such as velocity autocorrelations, and TKE in each

phase. Predictions of dispersion statistics and TKE from the new model show good agreement

with published DNS of non–evaporating and evaporating droplet–laden turbulent flow.
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7.1 Background

The evolution of a fuel spray in an internal combustion engine is strongly influenced by

its interaction with the rapidly changing turbulent gas phase in the combustion chamber.

Turbulence in the ambient gas directly affects the spreading rate of a spray which in turn

affects the spray penetration length and spray cone angle. Dispersing droplets in turn amplify

or suppress the turbulence in the ambient gas, thereby coupling the effects of turbulence and

droplet dispersion.

Direct numerical simulations (DNS) of particle–laden decaying turbulence performed in

the absence of gravity report that the timescale for interphase turbulent kinetic energy (TKE)

transfer is different from the timescale associated with particle dispersion, and that the trends

of these timescales are also different for varying Stokes numbers. Particles with high Stokes

number lose energy faster than particles with low Stokes number in freely decaying turbu-

lence (Sundaram and Collins, 1999). On the other hand, particles with high Stokes number

lose correlation with their initial velocities slower than particles with low Stokes number in

stationary turbulence (Mashayek et al., 1997; Squires and Eaton, 1991a). The disparate be-

havior of the velocity autocorrelation and TKE timescales affects the dispersion characteristics

of a spray. Turbulence models for spray computations (or particle–laden turbulent flows, in

general) must be capable of simultaneously capturing these disparate timescale trends with

Stokes number, in order to be predictive.

Experimental evidence for the dependence of the evolution timescales of velocity auto-

correlation and interphase TKE transfer on Stokes number is available in literature (Snyder

and Lumley, 1971; Wells and Stock, 1983; Groszmann and Rogers, 2004). However, unlike

in the DNS studies, it is difficult to isolate physical mechanisms that affect these timescales

in experiments. Snyder and Lumley (1971), in their particle–laden grid–generated turbulence

experiments in gravity, report a particle–velocity autocorrelation timescale that shows a trend

that is opposite to that reported in the DNS (Sundaram and Collins, 1999; Mashayek et al.,

1997; Squires and Eaton, 1991a). They find that particles with higher inertia lose correlation

with their initial velocities faster than particles with lower inertia. However, they acknowledge
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that the observed trend in the autocorrelation timescale with Stokes number may be due to the

predominant effect of crossing trajectories in their experiments. They also report that particles

with larger inertia lose TKE faster than particles with lower inertia. Wells and Stock (1983)

used two sets of charged particles evolving in an electric field to control the effects of particle

drift in their experiments of particle–laden grid–generated turbulence. Based on the size of the

95% confidence intervals one may conclude that the reported long time dispersion coefficient

of the higher–inertia particles are around the same as that for particles with lower inertia.

Thus, one cannot infer a dependence of the autocorrelation timescale on Stokes number from

this observation. While they acknowledge the presence of experimental uncertainty in their

results, they mention that the higher inertia particles had a lower fluctuating velocity than

the lower inertia particles which appears to agree with the DNS results cited earlier. In order

to negate the effects of gravity, Groszmann and Rogers (2004) have performed experiments

in microgravity and reported mean squared displacements for Stokes numbers 1, 50 and 100.

However, due to limitations in observation time during microgravity experiments, it is difficult

to extract velocity autocorrelations and long–time diffusion coefficients from such experiments

for a range of Stokes numbers for valid conclusions to be made. They also acknowledge the

presence of sampling errors in the results for Stokes numbers around unity.

Given the uncertainty involved in experiments in extracting velocity autocorrelations and

TKE in dispersed two–phase flows, the canonical DNS cited earlier are of intrinsic value to

the modeling community for two principal reasons. Firstly, crossing trajectory effects due

to particle drift, and particle inertia effects are easily isolated in numerical computations.

Secondly, models for individual terms in the governing equations for dispersed two–phase

flows, like the interphase TKE and mass transfer, can be tested in isolation by comparing with

corresponding terms extracted from DNS. The same is not possible with experiments. Thus,

reproducing results from such canonical two–phase DNS constitutes an important first step in

validating multiphase flow turbulence models.

In the Lagrangian–Eulerian (LE) representation of two–phase flows, the dispersed phase

is modeled using computational particles whose velocities evolve according to a drag model of
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the form
dVp

dt
=

Uf −Vp

τp
Cd(Red) + Fadd, (7.1)

and whose positions evolve according to

dXp

dt
= Vp, (7.2)

where Vp is the instantaneous particle velocity, Uf is the instantaneous gas–phase velocity 1,

τp = (ρdd
2
p)/(ρf18νf ) is the particle response timescale, Xp is the particle position and Fadd

represents additional terms that include lift and body forces. The instantaneous gas–phase

velocity Uf is decomposed into a mean 〈Uf 〉 and a fluctuating component u′f ). Here, ρd and

ρd are the thermodynamic densities of the dispersed phase and fluid phase, respectively, dp is

the particle or droplet diameter and νf is the kinematic viscosity of the fluid phase. A drag

coefficient Cd that depends on the droplet Reynolds number Red is generally included as shown.

The major research effort in modeling turbulent two–phase flows using the LE representation

has been directed towards arriving at a suitable model for Uf . The principal LE modeling

studies that are relevant to dispersion and TKE evolution are reviewed here.

Lu (1995) uses a time–series analysis involving fluid–phase temporal and spatial Eulerian

velocity correlations to arrive at a stochastic model for the fluid velocity at the particle location,

in the limit of one–way coupled turbulence. Spray droplet interactions with the gas phase are,

however, strongly two–way coupled. Nevertheless, testing the behavior of a two–phase model in

the limit of one–way coupled spray configurations is indeed necessary. Lu reports good agree-

ment between model results and theoretical results of Csanady (1963), and particle–laden

grid–generated turbulence results of Snyder and Lumley (1971) in predicting particle diffusion

coefficients and velocity autocorrelations. Mashayek (1999) used Lu’s time–series approach

to predict particle–velocity autocorrelation functions and asymptotic diffusion coefficients for

non-evaporating and evaporating droplets laden in one–way coupled stationary turbulence,

again reporting overall reasonable agreement with DNS data (Mashayek et al., 1997). An

extension of the time–series model has been tested by Gao and Mashayek (2004b) in com-

pressible homogeneous shear flows with interphase mass transfer due to evaporating droplets.
1Also sometimes referred to as the gas–phase velocity “seen” by the particles.
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They report good agreement of predicted droplet velocity correlations and droplet–fluid ve-

locity cross correlations with DNS of evaporating droplets in a low Mach number turbulent

shear flow (Mashayek, 1998). Pozorski and Minier (1999) modified the Lagrangian integral

timescale in the generalized Langevin model proposed by Haworth and Pope (1986) to arrive

at the fluid velocity “seen” by the particles. To our knowledge, no validation tests are available

in literature that quantify the predictive capability of this model in canonical particle–laden

flows. Chagras et al. (2005) employ a Langevin–type equation that uses the Lagrangian in-

tegral timescale of the fluid “seen” by the particles and the fluid–phase Reynolds stresses to

arrive at a model for u′f . They analyze several cases of two–way coupled gas–solid pipe flow

with large mass loading reporting overall agreement of temperature profiles and instantaneous

velocities with experimental results. Chen and Periera (1997) use an assumed probability den-

sity function (pdf) for the spatial distribution of the particles whose variance evolves in time

by an ordinary differential equation containing an assumed fluid–phase Lagrangian autocor-

relation of the Frenkiel form (Gouesbet and Berlemont, 1999). They report good match of

predicted dispersed–phase velocities from their two–way coupled simulations with results from

experiments conducted on particle–laden planar mixing layers and co–flowing planar jets.

With the exception of Mashayek (1999), there is no evidence in literature of tests conducted

with the aforementioned models in simple canonical two–phase flows (like stationary or freely

decaying particle–laden turbulence) to test their capability in simultaneously capturing the

energy and dispersion timescales as observed in DNS. However, the time series model (Lu,

1995) used by Mashayek (1999) relies on statistics of the fluid phase that are valid only in the

limit of one–way coupled two–phase flows. Extending the time series model to two–phase flows

with significant two–way coupling effects will require the knowledge of the Eulerian spatial

correlation of gas–phase velocity which is a non–trivial quantity to measure or model in such

flows. Also, the extension of the time–series model proposed by Gao and Mashayek (2004a,b)

involves correlations among the velocity components, temperature and mass fraction, with the

assumption that all these correlations evolve on the same Eulerian fluid integral timescale.

Another common feature of the LE models cited above is the use of the particle response
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time τp as the timescale for both interphase momentum and TKE transfer. Recently, a repre-

sentative LE model (Amsden et al., 1989) was tested in freely decaying turbulence laden with

sub–Kolmogorov size particles (Pai and Subramaniam, 2006). It was shown in that study that

LE models based on the particle response timescale fail to accurately capture trends in the

evolution of TKE in both phases with varying Stokes numbers, when tested in the canonical

problem. This observation pointed to a need for improvement in the predictive capability of

existing LE models. A multiscale interaction timescale was proposed (Pai and Subramaniam,

2006), to replace τp, that captured trends in the evolution of TKE with varying Stokes number

as seen in the DNS.

The primary objective of this work is to propose a new model called the Dual–timescale

Langevin model (DLM). In this model we adopt a Lagrangian–Lagrangian description of both

the fluid and dispersed phases. Unlike the models cited earlier, we do not use Eq.(7.1) to

evolve the particle velocities, and also the implied TKE in either phase evolves on a timescale

derived by taking into account the multiscale nature of droplet–turbulence interaction (Pai

and Subramaniam, 2006). Furthermore, the novel feature of this model is the existence of dual

timescales in a single model that enables the model to simultaneously capture the disparate

Stokes number trends in the evolution of TKE and also particle dispersion characteristics in

both phases. It is important to note that although Langevin models have been successful in

predicting turbulent reactive flows (Pope, 2000, 1985), extending these models to two–phase

flows is not straightforward. This is because single–phase Langevin models are based on a

single timescale and such models are clearly incapable of simultaneously capturing the disparate

timescales of TKE and autocorrelation observed in two–phase DNS. However, Langevin models

have the advantage that they are more amenable to analysis than existing LE models based on

stochastic white noise (Gosman and Ioannides, 1983; Amsden et al., 1989). A second objective

of this work, and a guiding principle for the model development, is to clearly identify terms in

the governing equations of the dispersed phase that require modeling.

The rest of the paper is organized as follows. The new stochastic model is introduced and

implied evolution equations for the statistics of the fluid and dispersed phases are derived in
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Section 7.2. A new hypothesis for modeling the interphase TKE transfer called the Equili-

bration of Energy (EoE) concept is presented in Section 7.3. The rationale underlying the

specification of model constants is explained in Section 7.4. Test cases for which DNS data

are available from Mashayek et al. (1997) for both non–evaporating and evaporating droplet–

laden stationary turbulence are described in Section 7.5. Model predictions for these test cases

are reported in Section 7.6. An assessment of the model and the DNS data is presented in

Section 6.8. The final section presents the principal conclusions of the study.

7.2 Dual–timescale Langevin model (DLM)

A new stochastic model called the Dual–timescale Langevin model (DLM) is proposed

for homogeneous turbulent two–phase flows. This model consists of a system of stochastic

differential equations (SDE) for the modeled fluctuating Lagrangian gas–phase velocity u and

fluctuating Lagrangian dispersed–phase velocity v. The proposed system of SDEs is

dui = −
[

1
2τ1

+
(

1
2

+
3
4
C0

)
εf
kf

]
uidt+

[
C0εf +

2
3
kf

τ1
+

2
3

(
ke

f − kf

τ2

)]1/2

dW u
i (7.3)

dvi = − 1
2τ3

vidt+
[
2
3
kd

τ3
+

2
3

(
ke

d − kd

τ4

)]1/2

dW v
i , (7.4)

where τ1, τ2, τ3 and τ4 are timescales that appear in the drift and diffusion coefficients2 of each

SDE, while dW u
i and dW v

i are independent Wiener processes (Kloeden and Platen, 1992). The

subscript i denotes the Cartesian components. The TKE in the dispersed phase is denoted kd

and the TKE in the gas phase is denoted kf , with a superscript ‘e’ to denote their ‘equilibrium’

values (the concept of ‘equilibrium’ is explained in Section 7.3)3. Also, εf is the gas–phase

dissipation enhanced by the presence of the dispersed phase. The constant C0 = 2.1, which is

identical to that used in the Simplified Langevin model (SLM) (Pope, 2000). Mean velocity

and, hence mean slip in either phase is assumed to be zero for simplicity, although this is

not an inherent limitation of DLM. The fluid–phase SDE can be viewed as an extension of

the SLM (Pope, 2000; Haworth and Pope, 1986) to two–phase flows, but with an important

difference being the introduction of drift and diffusion timescales that are different from each
2The terms ‘drift’ and ‘diffusion’ are used in the sense of stochastic differential equation theory.
3The subscript f stands for the gas phase or fluid phase, and the subscript d stands for the dispersed phase.
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other. Also, additional terms involving ke
f and ke

d (in parentheses) that represent interphase

interactions have been added. The coupling between the two phases is only through moments

of the velocities in each phase like TKE (kf and kd) and the dissipation εf , and not explicitly

through the instantaneous values of ui and vi.

One can derive the implied evolution equations for the TKE in the fluid phase, defined

as kf = (1/2)〈uiui〉, (where the averaging is performed over an ensemble of realizations) and

the TKE in the dispersed phase, defined as kd = (1/2)〈vivi〉, from Eq.(7.3) and Eq.(7.4),

respectively, to be

dkf

dt
=
(
ke

f − kf

τ2

)
− εf (7.5)

dkd

dt
=
(
ke

d − kd

τ4

)
. (7.6)

Of the four timescales present in Eq.(7.3) and Eq.(7.4), only τ2 and τ4 appear in the above

equations. The equilibrium energies, ke
f and ke

d, are related to each other as will be shown later,

and so the evolution of kf and kd are coupled through these terms. It has to be emphasized

here that the interphase TKE transfer timescales τ2 and τ4 are not equal to τp, although they do

depend on this timescale. Note that for widely–used LE models, the interphase TKE transfer

evolves on the particle response timescale τp, which was found to be inadequate to capture the

multiscale nature of particle–turbulence interaction (Pai and Subramaniam, 2006). The exact

form of these timescales will be presented in Section 7.4.

Stationary turbulence limit

In the context of two–phase flows, an important canonical problem is homogeneous turbu-

lence in which the fluid phase turbulence is artificially forced to remain stationary, while the

dispersed phase evolves to its stationary state. Several studies have been performed in this

important limiting case using DNS (Squires and Eaton, 1991a; Mashayek et al., 1997), making

it an ideal case for model validation.

In the limit of stationary turbulence, the drift coefficient in the fluid phase SDE in Eq.(7.3)

is modified along the lines of the SLM proposed for single–phase stationary turbulence (Pope,
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2000) as

dui = −
(

1
2τ1

+
3
4
C0
εf
kf

)
uidt+

[
C0εf +

2
3
kf

τ1
+

2
3

(
ke

f − kf

τ2

)]1/2

dW u
i . (7.7)

With this modification, the fluid phase dissipation drops out of the implied evolution equa-

tion for the TKE in the fluid phase, which now reads

dkf

dt
=
(
ke

f − kf

τ2

)
. (7.8)

In the limit of two–way coupled homogeneous particle–laden stationary turbulence, Eq.(7.8)

and Eq.(7.6) form the modeled governing equations for the TKE in the fluid and dispersed

phases, respectively. The only term appearing on the right hand side of these equations is the

TKE transfer due to inter–phase interactions.

Equation(7.8) is a physically consistent model for kf in an artificially forced two–phase flow

system where energy is added at the large scales to exactly balance the viscous dissipation,

which now includes additional dissipation due to the presence of the particles in the fluid phase.

DLM predicts that, in the case of stationary turbulence, the TKE in the fluid phase would

evolve to an equilibrium value ke
f over a timescale τ2. Statistics related to dispersion of spray

droplets, as implied by DLM, are derived next.

7.2.1 Implied Lagrangian velocity autocorrelation

In stationary isotropic turbulence, which is the main focus of this study, the Lagrangian

velocity autocorrelation denoted Rβij(s) is given as (Hinze, 1975):

Rβij(s) =
〈γi(t0)γj(t0 + s)〉
〈γi(t0)γj(t0)〉

, (7.9)

where t0 can be any initial time after the system reaches stationarity and s is the separation

time. No summation is implied over repeated indices. Here, γ stands for either u or v. The

Lagrangian autocorrelation is simply a normalized autocovariance and gives a measure of how

quickly the fluid–particle or droplet loses correlation with its velocity at some earlier time.

Note that for isotropic turbulence, Rβij = 0 for i 6= j, and Rβii = Rβjj for i, j ∈ {1, 2, 3}.
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The evolution equation for the fluid velocity autocovariance implied by DLM for the sta-

tionary case is
d〈ui(t0)uj(t)〉

dt
= −

(
1

2τ1
+

3
4
C0
εf
kf

)
〈ui(t0)uj(t)〉, (7.10)

while the evolution equation for the dispersed–phase velocity autocovariance is

d〈vi(t0)vj(t)〉
dt

= − 1
2τ3

〈vi(t0)vj(t)〉, (7.11)

where t = t0 + s.

A striking feature of DLM is that Eqs.(7.5)–(7.6) depend on the timescales τ2 and τ4, respec-

tively, while Eqs.(7.10)–(7.11) depend on timescales τ1 and τ3, respectively. In DLM, therefore,

the evolution of TKE can be constructed to behave differently from the evolution of the veloc-

ity autocovariance. In model proposals that use the generalized Langevin model (Pozorski and

Minier, 1999), however, the implied TKE in the fluid phase and the velocity autocorrelation

evolve over the same timescale, namely the Lagrangian integral timescale.

The dispersion of droplets or fluid particles is characterized by the diffusion coefficient

tensor associated with phase β, denoted αβij . In the isotropic case, the diagonal components

of the diffusion coefficient tensor are all identical viz. αβ11 = αβ22 = αβ33 = αβ . In the

stationary case, the diffusion coefficient tensor and the Lagrangian velocity autocorrelation

tensor are related by

αβij(t) = 〈γi(t0)γj(t0)〉
∫ t

0
Rβij(t

′)dt′ (7.12)

(again, no summation is implied over repeated indices) 4.

7.3 Equilibration of Energy (EoE) concept

The right hand sides of Eq. (7.8) and Eq. (7.6) are models for the interphase TKE transfer,

and are based on the EoE concept that was proposed by Xu and Subramaniam (2006). This

concept is briefly reviewed here for the sake of completeness.
4 In order to be consistent with the published journal article (Pai and Subramaniam, 2007), the diffusion

coefficients corresponding to the fluid phase and dispersed phase are denoted αf and αd, respectively, in the
rest of this chapter, while the volume fraction is denoted θ.
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In order to explain the EoE concept, the following system of model equations for the

evolution of TKE in a dilute homogeneous two–phase flow system (with no interphase mass

transfer) is proposed:

def
dt

= Πkf
− ρfθfεf (7.13)

ded
dt

= Πkd
, (7.14)

where Πkf
= (eef−ef )/τπ and Πkd

= (eed−ed)/τπ are the interphase TKE transfer terms. Here,

τπ is the interphase TKE transfer timescale, while ef = ρfθfkf and ed = ρdθdkd are the specific

fluid phase and dispersed phase energies, respectively, and eef = ρfθfk
e
f and eed = ρdθdk

e
d are

the equilibrium specific TKEs in the gas phase and dispersed phase, respectively. The volume

fractions of the fluid phase and dispersed phase are denoted θf (see Footnote 4) and θd = 1−θf ,

respectively. Collisions among particles are elastic and hence no dissipation is considered in

the dispersed phase.

Adding Eqs.(7.13) and (7.14) results in

dem
dt

= −ρfθfεf ,

where em = ρmkm = ef + ed = ρfθfkf + ρdθdkd is the mixture energy in the two–phase

flow system and ρm is the mixture density defined as ρm = ρdθd + ρfθf . It is assumed

that Πkf
= −Πkd

, which implies that the interphase TKE transfer is conservative. This

assumption is valid for rigid particle–laden turbulent flows. However, as will be shown later,

this assumption can be extended to the droplet–laden turbulent flow considered in this study.

The EoE concept states that if

dem
dt

= −ρfθfεf + Ff = 0, (7.15)

where Ff is the external artificial forcing required to balance the dissipation in order to main-

tain dem/dt = 0, then the specific dispersed phase TKE and specific fluid phase TKE evolve to

their respective equilibrium values. Note that the modeled dissipation in the carrier phase is

the sum of the single–phase dissipation rate and the additional dissipation due to the presence

of boundary layers around the dispersed particles.
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Equilibrium values of the specific fluid–phase TKE eef and specific dispersed–phase TKE

eed are determined by a model constant Ck defined as,

eed
em

= Ck

eef
em

= 1− Ck. (7.16)

Since Ck represents the fraction of the specific mixture energy present in the dispersed phase

at equilibrium, it must lie between zero and unity.

An implicit dependence of Ck on mass loading φ of the two–phase system can be deduced

by rewriting Eq.(7.16) as

Ck =
ρdθdk

e
d

ρmkm
=

ρdθdk
e
d

ρfθfk
e
f + ρdθdk

e
d

=
φ

ke
d

ke
f

1 + φ
ke

d
ke

f

, (7.17)

where φ = ρdθd/(ρfθf ) is the mass loading of the two–phase system. The constant Ck can also

depend on other non–dimensional quantities that characterize this homogeneous turbulent two–

phase flow system such as Stokes number Stη = τp/τη (where τη is the Kolmogorov timescale),

particle Reynolds number Red, initial kd/kf ratio, dp/η ratio (where η is Kolmogorov length

scale of turbulence) and θd.

For a constant mass loading φ, decreasing Stokes number should drive the dispersed–phase

equilibrium TKE closer to the fluid–phase equilibrium TKE and in the limit of zero Stokes

number, the two equilibrium energies ke
f and ke

d should match. This observation imposes a

constraint on Ck in the limiting case of zero Stokes number and from Eq.(7.17) we find

Ck|Stη=0 =
φ

1 + φ
. (7.18)

The EoE concept can be extended to the case where the turbulence decays in time (no

artificial forcing of the mixture energy in the two–phase flow system). However, a model for

the dissipation rate needs to be added to the system of equations (cf. Eqs.(7.13)–(7.14)), which

now reads

def
dt

= Πkf
− ρfθfεf

ded
dt

= Πkd

dεf
dt

= −Cε2

ε2f
kf

+ Cs
εf
kf

(
ke

f − kf

τπ

)
,
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where εf is the fluid–phase dissipation evolving according to a modified single–phase ε equation

(Xu and Subramaniam, 2006). The model constant Cs is chosen to be 1.5 and Cε2 is 1.92.

7.3.1 Applicability of the EoE concept to droplet–laden turbulent flows

7.3.1.1 Non–evaporating droplets

Certain assumptions, like conservative interphase TKE transfer and zero dissipation in the

dispersed phase, that are used in arriving at the model equations Eqs.(7.13)–(7.14) for flows

with rigid solid particles need to be revisited and carefully understood when applied to non–

evaporating droplet–laden flows. For this we take as reference the exact evolution equation

for the dispersed–phase TKE using the Eulerian–Eulerian (EE) approach Eq. (D.4) presented

in the Appendix (see Xu (2004) for more details) for a homogeneous two–phase flow. The

important terms that appear in this equation are:

(a) the interphase TKE transfer 〈u′′di(SMdi −UiSρd)〉, where SMdi is the interphase momen-

tum transfer given by Eq. (D.6) in Appendix D, Ui is the instantaneous velocity in the

two–phase flow system, and Sρd is the interphase mass transfer given by Eq. (D.7) in

Appendix D,

(b) contribution to the dispersed phase TKE due to interphase mass transfer

(1/2)〈u′′diu
′′
diSρd〉− k̃d〈Sρd〉, where k̃ is the density–weighted TKE in the dispersed phase

given by Eq. (D.3), and

(c) the term 〈u′′di∂(Idτki)/∂xk〉 that contains the dissipation in the dispersed phase, where u′′di

is the fluctutating velocity with respect to the volume–averaged velocity in the dispersed

phase given by Eq. (D.5) in Appendix D, Id is the indicator function (Drew, 1983) which

is unity in the dispersed phase and zero in the fluid phase and Idτki is the stress tensor

in the dispersed phase.

The reader is referred to Appendix D for more details on these terms. For non–evaporating

droplets, Sρd is zero.
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The system is assumed to be dilute so that collisions and coalescence of droplets are ne-

glected. Break–up of droplets is also neglected. Since the focus of this study is on droplets

that are smaller than the Kolmogorov length scale, dissipation inside the droplet can be con-

sidered negligible as the flow in the interior of such droplets is in the laminar regime. One

could, on the other hand, consider a Hill’s vortex (Batchelor, 1971; Clift et al., 1978) inside the

droplets to get an estimate of the dissipation. If the velocity inside the droplet is assumed to

be composed of only fluctuations, then one can estimate the dissipation εd,in inside the droplet

using εd,in = 2νf 〈sijsij〉, where sij is the fluctuating strain rate tensor, using the prescribed

stream–function for the Hill’s vortex (Batchelor, 1971; Clift et al., 1978). It can be shown that

the dissipation inside the droplet scales like r2, where r is the radius of the droplet, implying

that dissipation is small for small droplets. Thus, the term 〈u′′di∂(Idτki)/∂xk〉 in Eq. (D.4) is

assumed to be negligible for non–evaporating droplets in the two–phase flow regime considered

here.

Experiments on single droplets in quiescent (Greene et al., 1993; Warnica et al., 1995a)

and turbulent gas fields (Warnica et al., 1995b) have reported that, for droplet Reynolds

numbers in the range 10−3 to 100, and in the absence of drop oscillation or deformation,

the drag on droplets is not different from drag on solid spheres in quiescent conditions. The

droplet Reynolds numbers in the current study are O(1) and well within the range of Reynolds

numbers explored in the experiments. Under such conditions, the term SMdj , representing the

instantaneous interphase momentum transfer, is equal and opposite in both the phases. Under

conditions of zero mean slip velocity in either phase, the fluctuating velocity at the droplet

surface u′′di is the same as the fluctuating gas–phase velocity u′′f i
at the same location. These

arguments allow us to assume that conservative interphase TKE transfer, and hence the EoE

hypothesis, is valid for the class of flows laden with non–evaporating droplets analyzed in this

study.
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7.3.1.2 Evaporating droplets

To understand the contribution to the TKE in either phase due to interphase mass trans-

fer in evaporating droplet–laden flows, we again resort to the dispersed–phase TKE evolution

equation derived using the EE approach Eq. (D.4) in the Appendix. The term (SMdi−UiSρd)

in the second term on the right hand side of Eq. (D.4) essentially works out to a stress contri-

bution, namely −τij ∂Id
∂xj

, at the interface. One can decompose the fluctuating velocity in the

dispersed phase u′′di into a part that is equal to u′′f i
and a stochastic part ξi (which we assume

to be an isotropic Wiener process). Substituting this decomposition into the dispersed–phase

TKE evolution equation (cf. Eq. (D.4)), we get

θdρd
d

dt
k̃d =

〈
u′′di

∂(Idτki)
∂xk

〉
− 〈(u′′f i

+ ξi)τij
∂Id
∂xj

〉

+ (1/2)〈u′′diu
′′
diSρd〉 − k̃d〈Sρd〉. (7.19)

We assume that the correlation 〈ξiτij ∂Id
∂xj
〉 in the second term on the right hand side of Eq. (7.19)

is zero for the droplet–laden isotropic turbulence considered in this study. With this simplifi-

cation, the interphase TKE transfer term in the fluid–phase TKE evolution equation is equal

and opposite in sign to that in the dispersed–phase TKE evolution equation(cf. Eq. (D.4)),

since

−〈u′′f i
τij
∂Id
∂xj

〉 = 〈u′′f i
τij
∂If
∂xj

〉.

Thus, the interphase TKE transfer is conservative for this two–phase system. Again, based

on a similar argument as for non–evaporating droplets, the dissipation inside an evaporating

droplet is assumed to be negligible. The other two terms remaining on the right hand side of

the above equation are the interphase mass transfer terms. No special treatment is required

for these terms because in DLM or other Lagrangian models for droplets, a model for the

droplet vaporization rate in turn implies a model for the interphase mass transfer terms (see

Appendix D for more details).
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7.4 Model constants in DLM

7.4.1 Specification of Ck

The test case chosen in this study is particle–laden one–way coupled stationary turbulence.

DLM is a model primarily constructed for the limit of two–way coupling. We noticed that the

model constants need to be changed slightly compared to Section 6.5 in order to give good

agreement with the one–way coupled DNS used in this study. This should not be misinterpreted

as a failure of DLM to model a range of two–phase flows with the same model constants.

Models for Ck and timescales τ1, τ3 (and even τπ) can be improved only by resorting to

carefully controlled DNS datasets that provide information on these quantities. We believe

that a more refined model of Ck and the timescales could lead to more accurate estimates

of model constants. These model constants will hopefully be the same for a wide class of

two–phase flows that can be modeled by DLM.

In this study, the following model for Ck is proposed:

Ck =
φ(1− 0.1Stη)

1 + φ(1− 0.1Stη)
. (7.20)

Note that this specification obeys the correct limiting behavior of Ck as Stη → 0 (cf. Eq.(7.18)).

Other functional forms of Ck were also considered but the above specification gave the best

agreement with the DNS dataset used in this study.

7.4.2 Drift timescales in DLM

A novel feature of the proposed DLM is the presence of two different timescales in each SDE

for the drift and diffusion terms. The form of the drift timescales τ1 and τ3 in Eqs.(7.3)–(7.4),

respectively, is now developed. For a discussion on the procedure to derive the drift timescales

in DLM, the reader is directed to Section 6.5. The model constant C3 is chosen to be 0.1 in

this case.

We neglect the dependence of τ1 on Stη and prescribe τ1 to be

1
τ1

=
C1φ

τ
,

where C1 is a model constant (C1 = 0.5) and τ is the fluid–phase eddy turnover timescale.
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7.4.3 Diffusion timescales in DLM

For a discussion on the procedure to arrive at a diffusion timescale, the reader is directed

to Section 6.5. We noticed that a constant Cπ = 2.5 gives the best results in this study.

Table 7.1 summarizes the model constants and timescales used in DLM.

7.5 Test cases for model validation

Direct numerical simulations of non–evaporating and evaporating droplets in stationary

turbulence have been performed by Mashayek et al. (1997). Simulation parameters used in

the DNS are summarized in Table 7.2. We compare predictions from DLM against this DNS

dataset since the DNS reports both TKE in each phase, and statistics related to droplet dis-

persion. In addition, since a simplified evaporating droplet regime is simulated, the behavior of

DLM with temporally–evolving droplet radii can be ascertained. The DNS (Mashayek et al.,

1997) has been performed under the following assumptions:

Non–evaporating droplets:

1. Droplets are in the sub-Kolmogorov size range

2. The point–particle approximation is employed to represent the droplets in the system.

3. The droplets do not affect the fluid–phase momentum equation which implies that the

simulations are one–way coupled.

Evaporating droplets:

In addition to the assumptions for non–evaporating droplets, the following assumptions hold

for the evaporating droplets.

Spherically–symmetric droplet vaporization is assumed, and constant–temperature droplets

are assumed to vaporize in an infinite, isothermal gas phase. It is also assumed that the

vaporizing droplets do not significantly alter the density of the surrounding gas, and all fluid–

phase transport properties are assumed to be constant.
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The d2–law of vaporization is assumed wherein the rate of change of droplet surface area

is a linear function of time (Faeth, 1977):

d2
p(t) = d2

p0 − κt, (7.21)

where dp(t) is the droplet diameter at time t, dp0 is the droplet diameter at some initial time

t0, and κ is the evaporation rate given by relation (Faeth, 1977)

κ = 8Γf ln(1 +BM )CRe. (7.22)

Here Γf is the fuel–vapor diffusivity coefficient (Lewis number of unity is assumed) and BM is

the Spalding transfer number. The correlation factor CRe of the form

CRe = 1 + 0.3Re0.5
d Sc0.33

d (7.23)

proposed by Ranz and Marshall (1952) accounts for convective effects.

The droplet Reynolds number Red is defined as

Red =
|Uf (Xd, t)−Vd|dp

νf
, (7.24)

where Uf is the gas–phase velocity at the location Xd, Vd is the droplet velocity and Scd =

νf/Γf is the droplet Schmidt number (Faeth, 1977). The evaporation constant κ varies in time

only due to change in CRe, which in turn depends on the temporal variation in Red.

Incorporating the d2–law into the expression for the particle time constant defined as

τp(t) =
ρd

ρf

d2
p

18νf
(7.25)

results in

τp(t) = τp0 − τet, (7.26)

where the initial particle time constant

τp0 =
ρd

ρf

d2
p0

18νf
. (7.27)

The non–dimensional quantity τe can be related to the momentum response time by

τe =
ρdκ

ρf18νf
=
τp(t)κ
dp(t)2

=
τp(t)
τevap

. (7.28)
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Thus, τe is the ratio of the mechanical response time of the particle to the remaining droplet

lifetime τevap = dp(t)2/κ, if the droplet evaporated at a constant vaporization rate from time

t. A value of τe < 1 implies that the time taken by the droplet to equilibrate with the flow is

larger than the droplet lifetime. The ratio τe can be expressed in terms of CRe as

τe = CReτe0, (7.29)

where

τe0 =
ρd

ρf

4Γf

9νf
ln(1 +BM ) =

ρd

ρf

κ

18νfCRe
. (7.30)

Mashayek et al. (1997) report initial vaporization rates in terms of a parameter τec that

they relate to τe0 by the relation

τe0 = 0.29τec/τ. (7.31)

More details on the parameter τec and the reason for the coefficient 0.29 can be found in

Mashayek et al. (1997). The initial evaporation rate is reported by specifying τec in multiples

of the Kolmogorov timescale τk. For a given value of τec, τe0 and κ are found using Eq.(7.31)

and Eq.(7.30), successively.

The non–evaporating test case is denoted TNE. Of the several test cases reported in the

DNS with evaporating droplets, only three representative test cases are chosen in this work for

the sake of brevity:

1. Varying initial vaporization rates, constant initial particle response time, constant CRe

(TE1)

2. Varying initial vaporization rates, varying initial particle response time, varying CRe by

changing Red, keeping Scd = 1 (TE2)

3. Varying initial vaporization rates, varying initial particle response time, varying CRe by

changing both Red and Scd (TE3)

The other two cases analyzed in the DNS are (a) the effect of spray size and (b) the effect

of initial drop size distribution. Since we restrict our study to a homogeneous evaporating

spray, we do not analyze the effect of initial spray size. Additional terms including the change
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in mean velocity along and transverse to the axis of the spray need to be taken into account

to study an inhomogeneous spray completely. Since such information is not reported in the

DNS (Mashayek et al., 1997), we do not analyze this test case. Although the DLM is capable

of considering effects of initial spray size, for the sake of brevity, we do not analyze the test case

involving varying drop size distributions. Also, drift effects due to gravity are not investigated

in this study.

7.5.1 DLM in the limit of one–way coupling

If the mass loading φ → 0 in a two–phase flow system, then it is reasonable to assume

one–way coupling. At the edges of an evolving spray, where the volume fraction of the liquid

θd � 1, the limit of one–way coupling could be achieved and it is important for a two–phase

flow turbulence model to behave reasonably well in the one–way coupled limit. In this limit,

the TKE in the fluid phase can be assumed to remain unaffected by the presence of the

dispersed phase. Thus, terms representing interphase interaction in the evolution equation for

the fluid–phase TKE Eq. (7.13) can be neglected.

An interesting feature of DLM is that, by virtue of the EoE hypothesis, it has the correct

one–way coupled limiting behavior as the mass loading φ → 0. The interphase TKE transfer

term in Eq.(7.8) turns out to be negligible in this limit. In other words, no additional treatment

is necessary to introduce the physics governing the two–phase flow mixture in the one–way

coupled limit into DLM. This observation can be explained as follows.

The specific equilibrium TKE in the fluid phase eef defined in Eq.(7.16) can be rewritten

as

ke
f = (1− Ck)

ρmkm

ρfθf

= (1− Ck)(kf + φkd).

From Eq.(7.17), one can infer that for φ→ 0 (limit of one–way coupling), Ck = φke
d/k

e
f (since

ke
d/k

e
f is finite). This results in

lim
φ→0

ke
f = kf ,
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which essentially implies that dkf/dt ∼ 0 in Eq.(7.8).

7.6 Model predictions

In this section, details of the numerical implementation and integration of the SDEs given

by Eqs.(7.3)–(7.4) are first presented. Next, predictions from DLM are compared with DNS

results for the test cases TNE, TE1, TE2 and TE3. It is noted at the outset that we do not

seek an exact match between predicted results and the DNS dataset used in model validation,

rather we assess the capability of the new model in capturing trends of important two–phase

flow statistics with varying Stokes number. A more detailed discussion is presented in Section

6.8.

7.6.1 Initialization of the computational ensemble

The fluid–phase turbulence simulated in the DNS (Mashayek et al., 1997) is isotropic at

initial time, and owing to one–way coupling, remains isotropic in time. Corresponding to

this initial condition, in DLM the initial velocity of a stochastic particle that represents the

fluid phase is sampled from a joint normal distribution with zero mean and covariance matrix

(2/3)kfδij . In the DNS, the droplets are introduced into the fluid phase with the same velocity

as the surrounding fluid. This fact affects the evolution of statistics like droplet Reynolds

number that depend on velocities in both phases at the same position and time. However, since

in DLM the particle Reynolds number calculation procedure (see next) randomly reorders the

stochastic particles at every time step, it does not matter if particles with like indices across

the phases have identical velocities at initial time or not. Nevertheless, we do ensure that

kf (t = 0) = kd(t = 0).

7.6.2 Computational details for the system of SDEs

An Euler–Maruyama (EM) scheme (Kloeden and Platen, 1992), which is the stochastic

equivalent of the deterministic Euler scheme, is used to evolve the system of vector SDEs (cf.

Eq.(7.3) and (7.4)) in time. Since we are interested in mean quantities in this study, and
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because the weak order of convergence of the EM scheme is unity (Kloeden and Platen, 1992),

we choose this scheme to integrate the SDEs in time. Twenty multiple independent simulations

(MIS) are performed for each case, and statistics are obtained by averaging over these MIS to

reduce statistical error. The number of stochastic particles that represent each phase is the

same, and equal to 10000. The statistical variability in the moments of the velocity, like TKE in

the fluid phase kf and dispersed phase kd, and velocity autocorrelations in the both phases (cf.

Eq. 7.10 and 7.11), across the twenty MIS is less than 3%. The time step required for accurate

numerics is determined by performing a series of simulations with successively decreasing time

steps. It is observed that for ∆t ≤ 0.002 min(τp, τ), the predicted moments did not change

in a statistical sense. Therefore, this value of ∆t is chosen for all the simulations. The runs

for the evaporating cases are stopped when the minimum of the particle response times of all

droplets is (1/20)th of the initial particle response time, in order to avoid prohibitively large

computational times.

We estimate the droplet Reynolds number from the ensemble of stochastic particles in the

following manner. The computational particles that represent the fluid phase are randomly

paired with those that represent the dispersed phase at the beginning of each time step (note

that the number of stochastic particles that represent each phase is the same). The Reynolds

number estimate for themth stochastic particle that represents the dispersed phase is computed

as

Red,(m) =
|u(m) − v(m)|dp,(m)

νf
, (7.32)

where dp,(m) is the diameter property associated with the mth stochastic particle. The mean

droplet Reynolds number is calculated by averaging Eq. (7.32) over the stochastic particles

that represent the dispersed phase as5

〈Red〉 =
1
Np

Np∑
m=1

Red,(m). (7.33)

where Np = 10000. We adopt this procedure to calculate 〈Red〉 since each stochastic particle

represents only a realization of a stochastic process (cf. Eqs.(7.3)–(7.4)). Moreover, in the
5In inhomogeneous computations, the same procedure can be applied to the computational particles in each

phase that occupy the same Eulerian grid cell.
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homogeneous ensemble of particles considered, each particle that represents the dispersed phase

is equally likely to be next to a particle that represents the fluid phase.

7.6.3 Test case TNE

Mashayek et al. (1997) perform a test for stationarity in the non–evaporating case by

reporting the evolution of the mean droplet Reynolds number 〈Red〉 (see Eq.(7.24) for the

definition of Red). In the DNS, the angled brackets represent an averaging done over all

droplets.

Predicted evolution of droplet Reynolds number for increasing Stokes number using DLM

is shown in Fig. 7.1 against scaled time t/Tref. Here Tref = l/u′, where l is the Eulerian integral

length scale and u′ is the initial turbulence intensity in the fluid phase, both reported in the

DNS (Mashayek et al., 1997)6. From the figure it can be observed that the system reaches

stationarity after t/Tref = 3.0. As a result of the random pairing of particles to determine 〈Red〉,

the initial evolution of 〈Red〉 does not start from zero as in the DNS. Although the trend with

increasing Stokes number is predicted accurately, DLM overestimates the stationary value of

〈Red〉. To check whether this overestimation is a problem of numerical resolution, an analytical

expression for 〈Red〉 as implied by DLM is derived in Appendix 7.9 where it is shown that

the predictions from DLM are consistent with the analytical results (the analytical stationary

value of 〈Red〉 is shown in Fig. 7.1 for each Stokes number).

Scaled equilibrium dispersed–phase TKE predicted by DLM is compared in Fig. 7.2 with

results from DNS for increasing Stokes number. Since the turbulence in the fluid phase is

forced to remain constant, the stationary TKE of the fluid phase is identical to the initial

TKE kf (t0). With decreasing Stokes number, the equilibrium TKE in the dispersed phase

should approach the equilibrium TKE in the fluid phase, a trend observed in the DNS. From

the figure one can conclude that predictions of dispersed–phase equilibrium energies from DLM

agree well with the DNS results.
6An alternative scaling of the time coordinate is the Eulerian integral timescale τE estimated by

(C5/C6)(u
′2/ε), where C5 = 0.212 and C6 = 0.36 (See Lu (1995),Hinze (1975)). It turns out that τE ∼ Tref.

However, the emphasis in this study is to match trends rather than seek an exact quantitative match with DNS
results. Therefore, Tref is retained as an appropriate scaling of the time co-ordinate.
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Predicted droplet–velocity autocorrelations from DLM using Eq. (7.9) are presented in

Fig.7.3 against scaled time t/Tref. With increasing Stokes number, a droplet takes more time

to lose correlation with its initial velocity resulting in larger timescales of droplet–velocity

autocorrelation decay. Predicted trend in the autocorrelation decay with increasing Stokes

number by DLM matches well with corresponding results from DNS.

Predictions from DLM for the asymptotic dispersed–phase diffusion coefficients αd(∞)

computed using Eq.(7.12), scaled by the product of the initial turbulence intensity u′ and

the Eulerian integral length scale l, are reported in Fig.7.4. Although DLM overestimates the

asymptotic diffusion coefficient of the dispersed phase, the trend with increasing Stokes number

matches DNS results. Also, shown on the same figure is the fluid–phase asymptotic diffusion co-

efficient αf (∞) computed using DLM. As predicted by theoretical calculations (See G. Goues-

bet and Picart (1984) for a discussion on Tchen’s analysis (Chen, 1947)), the dispersed–phase

asymptotic diffusion coefficient matches with that of the fluid–phase as Stη → 0. Again, to

see if the overestimation of αd(∞) is a problem of numerical resolution, an analytical estimate

of the asymptotic diffusion coefficient as implied by DLM is given in Appendix 7.10. It is seen

that DLM predictions are consistent with the analytical estimates.

7.6.4 Test case TE1

In this test case, the radii of initially monodispersed droplets evolve according to the d2–

law given by Eq.(7.21). All droplets evolve by a constant vaporization rate such that each

droplet’s radius reduces by the same amount in time. This is accomplished by assuming that

CRe remains at unity (or Scd = 0, which implies infinitely fast diffusion of the fuel vapor in

the gas). The initial particle response time is the same across all the runs. As the droplet

radii decrease in time their Stokes numbers Stη decrease and the droplets respond faster to

the flow disturbances, thereby losing correlation with their initial velocity faster. Thus, when

vaporization is included, droplet–velocity autocorrelations decay faster compared to the case

with no evaporation (τec = 0). The faster decay in autocorrelations is accentuated at higher

initial vaporization rates.
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Predicted evolution of droplet–velocity autocorrelations for different initial vaporization

rates and for an initial particle time constant τp0 = 5τη (Stη = 5) using DLM is shown

in Fig. 7.5. DLM shows a reasonable match with the autocorrelations from DNS and also

matches the trend with increasing vaporization rate.

7.6.5 Test case TE2

Droplet vaporization rates, which were constant in time for each droplet in test case TE1,

are allowed to change in this test case by allowing for a non–zero Scd (in this case Scd =

1). The dependence of vaporization rate on Red through the assumed correlation Eq. (7.23)

results in a radius evolution that is different for each droplet. Consequently, an initially

monodispersed ensemble of droplets becomes polydispersed in time. Evolution of particle

response time normalized by its initial value averaged over all the particles is shown in Fig. 7.6.

A linear decay in the scaled particle response time is observed in DLM which is consistent with

the DNS results.

The d2–law predicts that, for constant vaporization rate κ, droplets with smaller radii

evaporate faster than ones with larger radii. Since κ depends on Red through the correlation

for CRe in Eq. (7.23), each droplet has different initial vaporization rates at initial time due

to different droplet Reynolds numbers arising from the initial distribution of droplet velocities

(cf. Eq. (7.24)). As dp decreases, Red decreases which slows down the vaporization rate. Once

a droplet starts to evaporate, a competition between the d2–law and the vaporization rate

is observed. The DNS predicts that the standardized pdf of dp becomes more Gaussian as

τp increases. A negative value of skewness in the standardized pdf of dp is expected, since

owing to the d2–law, the probability of finding large particles in the computational domain

is higher than finding smaller ones at long time 7. From Fig. 7.7 one can infer that in the

DNS the skewness of the standardized pdf of dp remains largely on the negative side, becoming

more negative towards the end. Also, the DNS shows that the kurtosis is closer to Gaussian,
7The skewness and kurtosis of the standardized pdf of the particle diameter dp characterizes the polydis-

persity of the spray droplets. Skewness measures the degree of asymmetry of a distribution (Abramowitz and
Stegun, 1964). Skewness for a Gaussian random variable is 0. The kurtosis characterizes the peakedness of the
distribution. Kurtosis for a Gaussian random variable is 3.
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especially in between t/Tref = 1 and t/Tref = 2.

Skewness and kurtosis predictions from DLM are shown in Fig.7.7. DLM predicts a larger

particle Reynolds number compared to the DNS (see Fig.7.1 for the stationary case), thereby

overestimating the vaporization rate. This results in a larger negative skewness compared to

the DNS results. The effect of an overestimated vaporization rate is also seen in the kurtosis

predicted by DLM showing a value much larger than 3. This implies that the pdf of dp predicted

by DLM is more peaked than that seen in the DNS. However, the approximate flattening of

the kurtosis in between t/Tref = 0.5 and t/Tref = 1.5 illustrates that DLM does capture the

competing effects of vaporization rate and the d2–law as the droplets evolve. DLM predicts

a trend of an increasing kurtosis and decreasing skewness towards the end of the simulation,

similar to that seen in DNS, although the trends are more pronounced in the DLM predictions.

Droplets with smaller initial vaporization rate and Stokes number tend to remain longer in the

DNS, a trend that is captured by DLM. A comparison of the pdf of τ (1/2)
p (or dp) for an initial

Stη = 5 and τec = 5τη with that from the DNS results is shown in Fig. 7.8 for different scaled

times 8. As suggested by the higher (positive) kurtosis and a negative skewness of τ1/2
p from

DLM (cf. Fig.7.7) compared to the DNS, the pdf of τ1/2
p is more peaked with longer left tails

than the corresponding DNS results.

7.6.6 Test case TE3

The effect of changing Scd for different initial vaporization rates and particle response times

is now considered. Mashayek et al. (1997) present two sets of results in this test case depending

on how the simulation is initialized: in the first case, the relative velocity between the droplets

and the surrounding fluid is zero (non–stationary initial state) and in the second case, the

initial state of the droplet–laden turbulent flow is stationary. The value of 〈CRe−1〉 is tracked

in these cases which for a constant Scd measures how 〈Re1/2
d 〉 (cf. Eq. (7.23)) evolves in time.

For the non–stationary initial state, the droplet Reynolds number at initial time is zero
8The exact scaling of the ordinate for the pdf plot reported in the DNS is not clear, since the pdf from the

DNS does not appear to integrate to unity. So we make a qualitative comparison of the pdf of τ
(1/2)
p from DLM

with that from the DNS on the same plot with different ordinates.
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in the DNS. Once the droplets start to evolve the Reynolds number increases due to a finite

relative velocity. At the same time, the droplet diameter is decreasing due to vaporization.

A maximum value in the evolution of Reynolds number is reached, analogous to that seen in

case TNE (see Fig.7.1). In time, the effect of the decreasing diameter offsets the increase in

the relative velocity and the particle Reynolds number starts to decrease. As is evident from

the DNS results presented in Figs. 7.9 and 7.10 for initial Stokes numbers Stη = 0.5 and 5,

respectively, increasing Scd increases the rate of evolution of 〈CRe−1〉 although the maximum

is reached at almost the same scaled time.

Figure 7.9 shows the predicted trend in the evolution of 〈CRe − 1〉 by DLM for Stη = 0.5.

As observed in the non–evaporating case, the droplet Reynolds number is overestimated by

DLM in this case. This results in an overestimate of 〈CRe−1〉. Again as a result of the random

pairing of particles to determine 〈Red〉 in DLM, 〈CRe − 1〉 does not start from zero as in the

DNS. However, the trend with increasing Scd is identical to that seen in the DNS. The same

behavior is seen in the predicted trends of 〈CRe − 1〉 for initial Stη = 5 in Fig. 7.10.

For the stationary initial condition and a value of Scd = 1, the droplets have a attained

stationary mean Reynolds number and the flow has reached a stationary state prior to the

start of vaporization. Once vaporization is initiated, the particle Reynolds number begins to

decrease due to a decrease in the diameter. Fig. 7.11 shows that the predicted trend for the

two initial particle response times from DLM matches with DNS results.

7.6.7 Interphase mass transfer terms in the dispersed–phase TKE evolution equa-

tion

With no interphase mass transfer, as in the test case TNE, the only term that governs

the evolution of the dispersed–phase TKE is the interphase TKE transfer term 〈̃Aiv′′i 〉 (cf.

Eq. (D.1) in the Appendix). However, in the presence of interphase mass transfer, as in the

test cases TE1–TE3, additional terms appear in the evolution equation for the dispersed–phase

TKE. These additional terms, namely, 3n〈R3〉
〈
ṽ′′i v

′′
i Γ|t

〉
and 6n〈R3〉k̃d

〈
Γ̃|t
〉

in Eq.(D.1) in

the Appendix, represent the contribution to the dispersed–phase TKE due to interphase mass
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transfer. It has to be borne in mind that two–phase models may give correct predictions for

the dispersed–phase TKE in flows with mass transfer even if the individual contributions in the

TKE evolution equation (cf.Eq. (D.1)) are not accurately modeled. DNS of evaporating two–

phase flows possess the capability to quantify these terms. However, to our knowledge the DNS

datasets available in literature do not report budgets of the interphase mass transfer terms.

Therefore, we do not quantify these terms from DLM since we do not have any datasets to

compare with. If available, model predictions of these individual terms can be compared with

DNS data, thereby resulting in a more rigorous validation of any two–phase flow turbulence

model.

7.7 Discussion

In all the test cases presented above, it is clear that DLM captures the correct trend in the

evolution of certain key statistics related to both non–evaporating and evaporating droplet–

laden two–phase turbulent flow. It is fair to conclude that even though DLM has been derived

taking two–way coupling into consideration, it has performed reasonably well in predicting

droplet dispersion characteristics and TKE in the limit of one–way coupled droplet–laden

turbulence.

The one–way coupled case considered is a simplified test case, applicable only in certain

dilute spray regimes. Nevertheless, the one–way coupled limiting behavior of a two–phase flow

turbulence model can be analyzed and also the behavior of certain important model constants

can be ascertained through this comparison.

The reasons for the emphasis in this study on predicting only the trends correctly rather

than seeking an exact quantitative match have been discussed in Section 6.8.

7.8 Conclusions

In addition to the conclusions presented in Section 6.9, principal conclusions and achieve-

ments of this study on the behavior of DLM in stationary turbulence are:
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1. DLM predicts correct trends in stationary dispersed–phase TKE, dispersed–phase veloc-

ity autocorrelation decay and asymptotic droplet diffusion coefficients in droplet–laden

stationary turbulence for a range of Stokes numbers.

2. In the evaporating–droplet test case, DLM predicts pdf and moments of the droplet

diameter that are in reasonable agreement with DNS results. Thus, DLM performs well

in the simplified evaporating droplet regime accessed by the DNS.

Important terms in the evolution equation of the dispersed–phase TKE are identified in both

the LE and EE statistical representations of two–phase flow. This exercise can serve as a

guiding framework for generating datasets from future DNS of evaporating droplet–laden flow

that are helpful to the two–phase flow modeling community.

7.9 Mean droplet Reynolds number estimate from DLM

Using standard methods to solve a time–dependent Ornstein–Uhlenbeck process (Gardiner,

1983) one can show that for a stochastic differential equation of the form

dU(t) = −A(t)U(t)dt+B(t)dW (t), (7.34)

where A(t) and B(t) are the drift and diffusion terms, respectively, and dW (t) is a Wiener

process, the pdf of U(t) is Gaussian with the mean and variance evolving according to

〈U(t)〉 = µ exp[−
∫ t

0
A(t′)dt′] (7.35)

Var[U(t)] = σ2 exp[−2
∫ t

0
A(t′)dt′] +

∫ t

0
exp[−2

∫ t

t′
A(s)ds]B2(t′)dt′, (7.36)

for an initial Gaussian velocity field U(t) with mean µ and variance σ2. Note that Eqs.(7.3)–

(7.4) are of the same form as Eq. (7.34).

One can then derive the probability density function of the absolute value of the relative

velocity W = |u− v| as

fW (w) =

√
2
π

(
2
3
S

)−3/2

w2 exp
(
−w2/[

4
3
S]
)
,
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where

S = kf (t) + kd(t)− 2ρ(t)
√
kf (t)kd(t)

and

ρ(t) =
〈u(t)v(t)〉√
〈u(t)2〉〈v(t)2〉

=
〈u(t)v(t)〉

2
3

√
kf (t)kd(t)

is the correlation coefficient between like components of velocities u and v9. The mean of the

absolute relative velocity W at any time t is

〈W 〉(t) =
4√
3π

√
S.

So, the analytical mean droplet Reynolds number as implied by DLM for the non–evaporating

case is

〈Red〉(t) =
〈W 〉dp

νf
=

4√
3π

√
S
dp

νf

=
4
√

6√
π
Stη

√√√√( τ
τp

)(
1 +

kd(t)
kf (t)

− 2ρ(t)

√
kd(t)
kf (t)

)(
ρf

ρd

)
. (7.37)

The above expression shows that 〈Red〉 can be written as a function of Stokes number Stη,

ratio of τ (= kf/εf ) and particle response time τp, and the kd/kf ratio. The same expression

is true when a system reaches stationarity, where kf (t) = ke
f and kd(t) = ke

d. It can be shown

that the correlation coefficient ρ(t) decreases exponentially to zero for DLM.

Using the analytical expression for the variance Eq. (7.36), one can compute the ratio

ke
d/k

e
f for various Stokes numbers, which are in fact close to the DLM predictions reported in

Fig. 7.2. For a Stokes number Stη = 5, the ratio ke
d/k

e
f ∼ 0.52. Substituting this value in the

expression for 〈Red〉 above, along with kf = ke
f = 1.5u′2 and the other non–dimensional ratios,

the magnitude of 〈Red〉 ∼ 1.97, which matches with DLM predictions. Thus, predictions from

DLM are consistent with analytical results.

7.10 Asymptotic diffusion coefficient estimate from DLM

For the droplet–laden stationary turbulence case considered in this study, an analytical

solution to the evolution of the dispersed phase velocity autocovariance given by Eq.(7.11)
9Since the turbulence is isotropic, ρ(t) is the same for all the three like components of velocities.



190

can be derived as follows. If we assume that the fluid–phase TKE kf and the fluid–phase

dissipation εf remain constant in artificially forced turbulence, then the eddy turnover time

τ remains constant. Owing to the constant τp in the non–evaporating case and constant τη,

the Stokes number Stη remains constant. Consequently, τ3 remains constant in time. The

analytical solution to Eq.(7.11) is thus (dropping the subscripts i for brevity)

〈v(ts)v(t)〉 = 〈v(ts)v(ts)〉e−t/(2τ3)

where t > ts and ts is the time at which the system reaches stationarity. Substituting the

above expression into Eq.(7.12) and in the limit t→∞

αd(∞) = 2〈v(ts)v(ts)〉τ3 =
4
3
kd(ts)τ3 =

4
3
ke

f

(
ke

d

ke
f

)
τ3.

The substitution kd(ts) = ke
d has been made in the above development. Using the expression

for analytical variance derived in Appendix 7.9, one can compute the ratio of equilibrium TKE

ke
d/k

e
f . For Stη = 5, it is found that τ3 = 56.9 and ke

d/k
e
f = 0.57, for which scaled αd = 1.15.

For Stη = 0.4, it is found that τ3 = 44.8 and ke
d/k

e
f = 0.97, for which scaled αd = 1.54. Both

these values for analytical αd are close to predictions from DLM.

The reason for the large magnitude of αd compared to DNS results, especially at small

Stokes numbers, lies in limiting value of τ3 reached as Stη → 0. In this limit, τ3 evaluates

to [(3/2)C0(εf/kf ]−1, since 1/τ1 → 0 in the one–way coupled limit assumed in this study.

In this limit and for the parameters used in this study, the magnitude of τ3 = 43.2 and

the corresponding dispersion coefficient αd(∞) = 1.536. These results are consistent with

the predictions from DLM. It is noteworthy that in the limit Stη → 0, 2τ3 evaluates to the

Lagrangian integral timescale (LIT) in the gas phase (Pope, 2000), and αd(∞) = αf (∞) (cf.

Fig. 7.4). It has been verified in the DNS of Yeung and Pope (1989) (see also Pope (2000)) that

the SLM specification of the drift coefficients gives reasonable estimates for the LIT in the range

of Reλ = 40–60, which is the range of Reλ studied in the DNS. However, no information on

the LIT is reported by the DNS (Mashayek et al., 1997) used in this study for any quantitative

comparisons of this timescale to be made.
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Model constant Stationary case Decaying case
Ck

φ (1−0.1Stη)
1+φ (1−0.1Stη) same

1/τ1 C1φ/τ same
1/τ2 = 1/τ4 = 1/τπ Cπ/〈τint〉 same

1/τ3 2
[

1
2τ1

+
(

3
4C0

)
1
τ

]
1

1+StηC3
2
[

1
2τ1

+
(

1
2 + 3

4C0

)
1
τ

]
1

1+StηC3

Table 7.1 Specification of model constants that appear in DLM for homo-
geneous particle–laden decaying and stationary turbulence. The
constants C1 = 0.5, Cπ = 2.5 and C3 = 0.1.

Volume fraction 5.5× 10−5

Fluid–phase thermodynamic density 1.00

Dispersed–phase thermodynamic density 1000.00

Acceleration due to gravity 0.0

Initial mean slip 0.0,0.0,0.0

Turbulence intensity in fluid phase 0.019

Dissipation rate in fluid phase 3.98× 10−6

Kinematic viscosity of fluid 2.692× 10−4

Taylor scale Reynolds number 41

Table 7.2 Parameters used in the DNS
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Figure 7.1 Evolution of particle Reynolds number for the test case TNE (i)
DLM (ii) DNS results (Mashayek et al., 1997). Arrow indicates
direction of increasing Stokes number. The letter ‘(A)’ in the
legend denotes analytical values computed using Eq. (7.37).
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Figure 7.2 Trend of equilibrium dispersed–phase turbulent kinetic energy
ke

d scaled by equilibrium fluid–phase turbulent kinetic energy
ke

f with increasing Stokes number Stη for the test case TNE
(i) DLM (ii) DNS results (Mashayek et al., 1997).
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Figure 7.3 Evolution of dispersed–phase veloc-
ity autocorrelation Rd given by
Eq. (7.9) for the test case TNE (i) DLM (ii) DNS re-
sults (Mashayek et al., 1997). Arrow indicates direction of
increasing Stokes number.
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Figure 7.4 Trend of asymptotic diffusion coefficient αd(∞) in the dispersed
phase with increasing Stokes number Stη for the test case TNE
(i) DLM (ii) DNS results (Mashayek et al., 1997). Also shown is
the trend of asymptotic fluid–phase diffusion coefficient αf (∞)
as predicted by DLM for this range of Stokes numbers.
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Figure 7.5 Evolution of dispersed–phase veloc-
ity autocorrelation Rd given by
Eq. (7.9) for a constant initial Stokes number Stη = 5.0
and varying vaporization rates for test case TE1 (i) DLM (ii)
DNS results (Mashayek et al., 1997). Arrow indicates direction
of increasing initial vaporization rate.
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Figure 7.6 Predicted trend of scaled particle response time for varying ini-
tial vaporization rates and varying initial particle response time
for for the test case TE2 (i) DLM (ii) DNS results (Mashayek
et al., 1997). Arrow indicates direction of increasing initial
Stokes number Stη and initial vaporization rate.
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Figure 7.7 Evolution of skewness and kurtosis of droplet diameter dp for
varying initial vaporization rates and varying initial particle
response time for the test case TE2 (i) DLM (ii) DNS results
(Mashayek et al., 1997).
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Figure 7.8 Predicted evolution of the probability density function of τ1/2
p

for Stη = 5, τec = 5τη and Scd = 1 for the test case TE2 (i)
DLM (ii) DNS results (Mashayek et al., 1997). The right hand
side ordinate is taken from the DNS results while the left hand
side ordinate is from DLM.
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Figure 7.9 Predicted trend of 〈CRe − 1〉 for varying Scd and τp0 = 0.5τk,
τec = 0.5τk evolving from a non–stationary initial state, for
TE3 (i) DLM (ii) DNS (Mashayek et al., 1997). Arrow shows
direction of increasing Scd.
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Figure 7.10 Predicted trend of 〈CRe − 1〉 for varying Scd and τp0 = 5τk,
τec = 5τk evolving from a non–stationary initial state, for TE3
(i) DLM (ii) DNS (Mashayek et al., 1997). Arrow shows di-
rection of increasing Scd.
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Figure 7.11 Predicted trend of 〈CRe−1〉 for Scd = 1 with two initial values
of particle response time and vaporization rates, evolving from
a stationary initial state, for TE3 (i) DLM (ii) DNS (Mashayek
et al., 1997). Arrow shows direction of increasing initial Stokes
number Stη.
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK

The foundation for the fundamental probability density function that forms the basis of

the Eulerian–Eulerian (EE) and Lagrangian–Eulerian (LE) statistical representations has been

presented in this work. A new statistical representation based on the Lagrangian description

of the fluid phase namely the Lagrangian–Lagrangian (LL) representation is proposed. A

multiscale interaction timescale in the context of the LE representation and a new dual–

timescale Langevin model in the context of the LL representation are proposed. In this context,

the highlights and principal conclusions of this work are enumerated below. Following the

conclusions, some possible extensions of the current study are identified.

A comprehensive mathematical framework for the pdf formalism of multiphase flows is

essential to further our understanding of this complex and challenging physical system. This

disseration is an attempt to provide a single reference for such a complete theoretical framework

for the single–point description of multiphase flows. This goal has been achieved by synthesizing

existing work, and completing several missing pieces in the framework. The missing pieces from

the framework that form an original contribution of this dissertation are enumerated below:

1. Definition and evolution of the mass density FU|Iβ
, along with the subsequent derivation

and verification of the consistency of the mean equations with the ensemble–averaged

EE equations.

2. Definition of the density–weighted phasic mean and mixture velocities, and the nature

of their fields.

3. Derivation of the mean mixture pressure evolution.

4. Identification of advantages and limitations of the EE and LE statistical representations.
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5. Theory underlying the new Lagrangian–Lagrangian statistical representation.

6. Multiscale interaction timescale in the context of modeling two–phase flows.

7. New Dual–timescale model Langevin model in the context of modeling two–phase flows.

In addition to the above, the original contribution of this dissertation also comprises the other

theoretical details that surface during the process of synthesis.

Nevertheless, the summary and conclusions of the work are now enumerated as an organic

whole which includes the aforementioned original contributions of this dissertation. Inter-

spersed in these conclusions the reader would find references to the work already done.

8.1 Summary and Conclusions

8.1.1 Theoretical description

1. Fundamental events associated with an EE description of a two–phase flow are pre-

sented in Chapter 3. A clear understanding of the fundamental events associated with

a two–phase flow is essential in order to propose a rigorous probability density function

formalism. The mininimal and complete single–point Eulerian description of a two–phase

flow (Subramaniam, 2005) is identified; it is shown that the phasic pdfs and one of the

volume fractions of either phase constitute such a description. The knowledge of funda-

mental events and corresponding probabilities provides a convenient framework to derive

the evolution equation for the mass density corresponding to a particular phase of the

two–phase flow.

2. The droplet distribution function (ddf) which forms the basis for the description of the

dispersed phase in the LE representation (Subramaniam, 2001c, 2000) is presented in

Chapter 3. It is important to note that the ddf is correctly interpreted as a summation

over a sequence of surrogate droplet densities (Subramaniam, 2000). The notion of a

single droplet is lost in the process of the derivation of the ddf. A unique single–particle

pdf corresponding to the symmetrized Liouville density can be obtained, however, this
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pdf has to be interpreted as corresponding to “surrogate” particles, not droplets (Subra-

maniam, 2000).

3. The relationship between phasic joint pdf of velocity and radius in the EE representation

and the conditional joint pdf of velocity and radius in the LE representation is pre-

sented (Subramaniam, 2001b,a). In particular, the two pdfs are not equal in general, but

are simply related only in the case of monodispersed size distribution and homogeneous

number density. The relationship between the volume fraction and the number density

is presented, and again a simple relationship between these quantities exists only for

integrable forms of number density fields and homogeneous radius pdfs (Subramaniam,

2001b,a).

4. The phasic mass density evolution equation in the EE representation contains terms

that represent its evolution in position space and velocity space. Source terms that

represent interphase mass exchange appear in this equation that are required to ensure the

normalization property of the phasic pdf corresponding to the mass density. Governing

equations for the mean mass, mean momentum and second–moment of velocity in each

phase are straightforward to derive in each phase. It is shown that these mean equations

are identical to the widely–used ensemble–averaged equations for a two–phase flow that

are derived using the indicator–function formalism. Galilean invariant forms of unclosed

terms that need to be modeled are identified (Subramaniam, 2001a).

5. The evolution equation of the ddf, which is the spray equation, is presented (Subrama-

niam, 2001c) in Chapter 3. Important terms in the spray equation are the expected

conditional acceleration and expected conditional vaporization rate, which is different

from the “single” droplet or particle acceleration and vaporization rate (Subramaniam,

2001c). Evolution equations for the mean mass and mean momentum corresponding to

the dispersed phase are derived from the spray equation. In order to derive the second–

moment equations, the volume–weighted ddf of fluctuating velocity is defined (Subrama-

niam, 2001a, 2003).
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6. The correspondence between unclosed terms in the governing equations in the EE and

LE representations is established. Such a correspondence ensures a seamless and unam-

biguous transfer of statistical information from the EE to the LE representation (Subra-

maniam, 2001a).

7. A description of the carrier phase in the Lagrangian reference frame results in a new

representation called the Lagrangian–Lagrangian (LL) statistical representation. The

symmetrization of the multiparticle Liouville density in the dispersed phase implies a

corresponding symmetrization of the multipoint Eulerian density. In the process, the

notion of a “fluid” particle is lost. Thus, the carrier phase is correctly viewed as being

composed of “surrogate” fluid particles. Since these notional particle paths can cross, it

is useful to view these particles as computational particles. The modeled mass density

implied by these computational particles is presented, and conditions that ensure that

these notional particles evolve consistently with the Eulerian mass density in the EE

representation are derived.

In essence, the theoretical contribution of this dissertation can be summarized as follows.

The Eulerian description of the carrier phase in the EE description and the Eulerian description

of the carrier phase in the LE description are identical. The Eulerian description of the dis-

persed phase in the EE description is different from the Lagrangian description of the dispersed

phase in the LE description, and are related only under restrictive conditions of spatial homo-

geneity. The Lagrangian description of the dispersed phase in the LL description is identical

to the Lagrangian description of the dispersed phase in the LE representation. However, the

Lagrangian description of the carrier phase is in terms of “surrogate” fluid particles and serves

as the theoretical basis for constructing Lagrangian models for the carrier phase in two–phase

flows.

8.1.2 Modeling

1. Particle turbulence interactions are multiscale in nature. In widely–used LE implementa-

tions, the drag model and the interphase turbulent kinetic energy (TKE) transfer evolve
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over the particle response timescale. It is illustrated in Chapter 5 through compari-

son with datasets from DNS of freely–decaying turbulence that this timescale fails to

capture the multiscale interaction of particles and turbulence. A multiscale interaction

timescale is proposed, which when used in place of the particle response timescale, is

shown to capture the trends of important two–phase statistics in DNS of freely–decaying

turbulence.

2. Particle dispersion and modulation of the carrier phase turbulence by the dispersing

particles are two important phenomena that govern the evolution of a two–phase flow.

DNS of canonical two–phase flows reveal that these two phenomena evolve on timescales

that behave differently with Stokes number, an important non–dimensional quantity in

a two–phase flows. Thus, any two–phase model must be able to capture these disparate

timescales in a two–phase flow. A new dual–timescale Langevin model (DLM) is proposed

in Chapter 6 which possesses the unique capability of being able to simultaneously capture

the disparate timescales corresponding to particle dispersion and interphase TKE trans-

fer. DLM is tested in the following canonical particle–laden flows: (i) freely–decaying

turbulence, (ii) homogeneous shear, and (iii) stationary turbulence (in Chapter 7). DLM

is shown to be able to capture the trends of important two–phase flows statistics with

Stokes number and mass loading that are observed in the DNS of the canonical two–phase

flows. This level of versatility of a two–phase flow model has not been demonstrated in

literature.

In summary, new multiscale models that can capture the evolution of fundamental phenomena

in a two–phase flow are proposed in this work to complement the theoretical contributions.

8.2 Future work

8.2.1 New class of hybrid EE-LE computations of two–phase flows

Recently, several researchers have been studying various hybrid EE–LE computations that

represent a certain region of the two–phase flow using a EE representation, while the remaining
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two–phase flow region is represented using the LE formalism. A clear understanding of the

details underlying a consistent transfer of information from one representation to the other

at the boundary of the two regions is absent in these studies. It is in such simulations that

the work presented in this thesis is poised to make a significant impact, primarily because

this work clearly brings out the necessary relations that are required in such an information

transfer (See Chapter 3 and Subramaniam (2001a) for more details). As a part of the future

work, one could explore such an implementation and probe its advantages and limitations in

terms of accuracy in the description of a two–phase flow and computational requirements. The

success of such an implementation will inevitably rest on the numerical techniques adopted to

implement the hybrid scheme. Nevertheless with the advent of improved numerical techniques,

such as particle number density control in two–phase flow computations, it is expected that

hybrid EE–LE computations along with the modeling advances proposed in this work will be

able to describe phenomena that cannot be captured by using solely a EE, or solely a LE

description of the two–phase flow.

8.2.2 Sub–grid modeling of velocity in LES of two–phase flows

There is a huge thrust towards developing Large Eddy Simulations (LES) of two–phase

flows, primarily owing to the prohibitive computational expense of direct numerical simula-

tions, and inaccuracies involved in current Reynolds–averaged Navier–Stokes compuations. A

principal unknown in such computations is the sub–grid scale carrier phase velocity contri-

bution to evolution of the dispersed phase. It is known that the instantaneous carrier–phase

velocities are characterized by spatial velocity correlations. Thus, one may expect that the

filtered carrier–phase velocity field and the sub–grid velocity fluctuations also have spatial

correlations associated with them. However, such sub–grid velocity fluctuations are currently

modeled using single–point closures available from single–phase flow theory. A popular single–

point closure for the sub–grid scale velocities seen by the particles is the Generalized Langevin

model (GLM) usually employed in the same form as given in Haworth and Pope (1986). In

this form, GLM does not contain scale information. Moreover, such closures for the sub–grid
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scale velocity do not contain any dependence on the Stokes number and mass loading of the

two–phase flow. Particles dispersed in a turbulent velocity field are affected by the spatial

correlations of the underlying velocity field. A priori DNS of two–phase flows reveal that

Stokes number has a non–neglible effect on the sub–grid scale velocity. It is thus interesting to

investigate if DLM is a good model for the sub–grid scale velocity fluctuations in LES of two–

phase flows. Although DLM is essentially based on GLM, its form as presented in this work

contains modeled contributions due to interphase TKE transfer, Stokes number, mass loading

and a multiscale interaction timescale. In particular, the multiscale interaction timescale is

derived from a timescale associated with eddies of a characteristic length scale, and implicitly

has modeled length scale information in it.

8.2.3 Incorporating scale information in moment closures

Moment equations presented in Chapter 3 contain unclosed terms that need non–local clo-

sures. Such terms can be quantified using “true” direct numerical simulations of particle–laden

flows. In this work, a multiscale interaction timescale was proposed to capture the effect of the

non–local interaction of particles and turbulence on the timescale governing interphase TKE

transfer. In order to efficiently model these unclosed terms in inhomogeneous two–phase flows,

however, one may need to resort to models that contain “second–order” information (Stoyan

et al., 1995), or information on the spatial location of particle centers. Statistics of simple

point fields can be used to incorporate scale information into existing single–point models for

the unclosed terms, or new models proposed. Such second–order models are poised to make a

significant impact on the ability to model particle–laden flows, especially in the dense regimes.
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APPENDIX A. DERIVATION OF THE SECOND-MOMENT

EQUATION FROM THE PHASIC PDF

In order to derive the evolution equation for R̃(β)
ij , we multiply Eq. (3.57) by v′

(β)
i v′

(β)
j ,

where v′′ (β)
i ≡ ui − 〈̃U (β)

i 〉 , and integrate over u space to obtain

v′
(β)
i v′

(β)
j

∂FU|Iβ

∂t︸ ︷︷ ︸
1

+ v′
(β)
i v′

(β)
j uk

∂FU|Iβ

∂xk︸ ︷︷ ︸
2

= − v′(β)
i v′

(β)
j

∂

∂Vk

[〈
ρIβ

DUk

Dt

∣∣∣u〉 FU|Iβ

〈ρIβ|u〉

]
︸ ︷︷ ︸

3

+ v′
(β)
i v′

(β)
j

FU|Iβ

〈ρIβ |u〉

〈
ρ
(
Ui − U

(I)
i

) ∂Iβ
∂xi

∣∣∣u〉︸ ︷︷ ︸
4

(A.1)

The first term simplifies to

v′
(β)
i v′

(β)
j

∂FU|Iβ

∂t
=
∂v′

(β)
i v′

(β)
j FU|Iβ

∂t
−FU|Iβ

∂v′
(β)
i v′

(β)
j

∂t
(A.2)

The second term simplifies to

v′
(β)
i v′

(β)
j uk

∂FU|Iβ

∂xk
=
∂v′

(β)
i v′

(β)
j ukFU|Iβ

∂xk
− ukFU|Iβ

∂v′
(β)
i v′

(β)
j

∂xk︸ ︷︷ ︸
a

Taking term a in the above expression

ukFU|Iβ

∂v′
(β)
i v′

(β)
j

∂xk
= −ukFU|Iβ

{
v′′i

(β)∂〈U
(β)
j 〉

∂xk
+ v′′j

(β)∂〈U
(β)
i 〉

∂xk

}
Part 3 above simplifies to

v′
(β)
i v′

(β)
j

∂

∂Vk

[〈
ρ
DUk

Dt

∣∣∣u〉 FU|Iβ

〈ρIβ|u〉

]
=

∂

∂Vk

[
v′

(β)
i v′

(β)
j

〈
ρIβ

DUk

Dt

∣∣∣u〉 FU|Iβ

〈ρIβ|u〉

]
−
{〈

ρIβ
DUk

Dt

∣∣∣u〉 FU|Iβ

〈ρIβ |u〉

}
∂

∂Vk

[
v′

(β)
i v′

(β)
j

]
=

∂

∂Vk

[
v′

(β)
i v′

(β)
j

〈
ρIβ

DUk

Dt

∣∣∣u〉 FU|Iβ

〈ρIβ |u〉

]
−
{
v′′i

(β)
〈
ρIβ

DUj

Dt

∣∣∣u〉+ v′′j
(β)
〈
ρIβ

DUi

Dt

∣∣∣u〉} FU|Iβ

〈ρIβ|u〉
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The last term on the right hand side of Eq. (A.2) simplifies to

FU|Iβ

∂v′
(β)
i v′

(β)
j

∂t
= FU|Iβ

∂

∂t

[
(Vi − 〈̃U (β)

i 〉)(Vj − 〈̃U (β)
j 〉)

]
= FU|Iβ

∂

∂t

[
ViVj − Vj 〈̃U (β)

i 〉 − Vi〈̃U (β)
j 〉+ 〈̃U (β)

i 〉〈̃U (β)
j 〉

]

= FU|Iβ

−Vj
∂〈̃U (β)

i 〉
∂t

− Vi

∂〈̃U (β)
j 〉
∂t

+
∂〈̃U (β)

i 〉〈̃U (β)
j 〉

∂t


When integrated over all u space, the term in square brackets evaluates to zero.

The second moment equation is then

∂

∂t
〈Iβρ〉R̃

(β)
ij +

∂

∂xk
〈ρIβu′′i

(β)
u′′j

(β)
u′′k

(β)〉+
∂

∂xk
〈ρIβ〉R̃

(β)
ij 〈̃U

(β)
k 〉 =

+

〈ρIβu′′i (β)
u′′k

(β)〉
∂〈̃U (β)

j 〉
∂xk

+ 〈ρIβu′′j
(β)
u′′k

(β)〉
∂〈̃U (β)

i 〉
∂xk


+
〈
ρIβu

′′
i
(β)DUj

Dt

〉
+
〈
ρIβu

′′
j
(β)DUi

Dt

〉
(A.3)

The second term on the right hand side can be written as follows:〈
ρIβu

′′
i
(β)DUj

Dt

〉
=
〈
ρu′′i

(β)∂(Iβτkj)
∂xk

〉
−
〈
ρu′′i

(β)
τkj

∂Iβ
∂xk

〉
The same treatment can be applied to the last term on the right hand side of Eq. (A.3). Using

the product rule on the temporal derivative, and the spatial derivative (third term on left hand

side), rearranging and using the mean mass conservation equation, we obtain Eq.(3.107).
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APPENDIX B. SIMPLIFIED RELATIONS BETWEEN THE EE AND

LE REPRESENTATIONS

In this section, details of the simplified relationships between αd(x, t) and n(x; t), and

between fE
UR|Id

(u, r ;x, t) and f c
VR(v, r | x; t), that were presented in Section 3.3 are given.

Combinations of statistically homogeneous number density, statistically homogeneous radius

pdf and statistically homogeneous f c
V |R(v | r,x; t) are considered. Two–phase flows with

monodisperse DPE’s are included as a special subset of the homogeneous radius pdf case.

The assumption of spherical DPE’s implies an isotropic point process 1 and leads to the

following isotropic form of Eq. (3.26) that is convenient for simplification under special condi-

tions:

αd(x, t) =
∫ ∞

r=0+

∫ r

r′=0
K ′

D r′
D−1

n(x + e r′; t) f c
R(r | x + e r′, t) dr′ dr, (B.1)

where e is the unit vector in the radial direction. The above expression has been written in a

general form for D–dimensional space (1 ≤ D ≤ 3) with K ′
1 = 2,K ′

2 = 2π, and K ′
3 = 4π.

Similarly, the assumption of an isotropic point process in Eq. (3.30) results in the simplifi-

cation:

fE
UR|Id

(v, r ;x, t) =
1

αd(x, t)

∫ r

r′=0
K ′

D r′
D−1

n(x + e r′; t) f c
VR(v, r | x + e r′, t) dr′. (B.2)

1Non–spherical shapes could still result in an isotropic point process but those are not considered here.
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HNHP: Homogeneous number density and homogeneous, polydisperse radius pdf

If the number density is homogeneous (n(x′; t) = n(t)), but the DPE’s have a statistically

homogeneous size distribution represented by f c
R(r; t), then Eq.(B.1) simplifies to

αd(x, t) =
∫ ∞

r=0+

∫ r

r′=0
K ′

D r′
D−1

n(t) f c
R(r; t) dr′ dr

= n(t)KD

∫
[r+]

rDf c
R(r; t) dr

= n(t)VD(t), (B.3)

where VD(t) is the average volume occupied by a DPE in D–dimensional space given by

VD(t) = KD 〈RD(t)〉 = KD

∫
[r+]

rDf c
R(r; t) dr, (B.4)

where 〈RD(t)〉 is the Dth moment of the radius pdf. The above expression has been written

in a general form for D–dimensional space (1 ≤ d ≤ 3) with K1 = 2,K2 = π, and K3 = 4π/3,

and K ′
D = DKD. In R3 this reduces to the well–known result

αd(t) = n(t)
4
3
π〈R3(t)〉. (B.5)

If f c
V |R(v | r,x′; t) is also statistically homogeneous then the expression (Eq. B.2) for

the Eulerian jpdf of velocity and radius conditional on the dispersed phase, fE
UR|Id

(v, r ;x, t)

simplifies in this case to

fE
UR | d(v, r; t) =

1
αd(t)

∫ r

r′=0
K ′

D r′
D−1

n(t) f c
R(r; t) f c

V |R(v | r ; t) dr′

=
1

〈RD(t)〉
rDf c

VR(v, r; t)

= f̃ c
VR(v, r; t), (B.6)

where the expression for αd(x, t) from Eq.(B.3) has been substituted and f̃ c
VR(v, r; t) is the

(DPE) volume–weighted–pdf corresponding to f c
VR(v, r; t) defined as

f̃ c
VR(v, r; t) ≡

rD f c
VR(v, r; t)
〈RD(t)〉

. (B.7)

Integrating both sides of Eq. (B.6) over v space results in

fE
R | d(r; t) =

1
〈RD(t)〉

rDf c
R(r; t), (B.8)
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which provides a relationship between the Eulerian radius pdf conditional on the dispersed

phase and the size distribution in the LE approach.

HNHM: Homogeneous number density and homogeneous, monodisperse radius

pdf

If the number density is homogeneous then n(x′; t) = n(t), and if the DPE’s are monodis-

perse then they all have the same radius r0, so that f c
R(r | x′; t) = δ(r−r0). Substituting these

simplifications into Eq. B.1 results in the following expression for αd(x, t):

αd(x, t) =
∫ ∞

r=0+

∫ r

r′=0
K ′

D r′
D−1

n(t) δ(r − r0) dr′ dr,

= n(t)
∫ ∞

r=0+

KD rDδ(r − r0) dr

= n(t)KD rD
0 , (B.9)

This yields the result

αd(t) = n(t)
4
3
πr30 (B.10)

in R3. Note that αd(x, t) in both Eqs.(B.5) and (B.10) depends on the dimensionality D of

physical space, whereas n(x; t) does not. This alone is evidence that the point–process and

random–field statistical representations contain different information.

Although the relation between αd(x, t) and n(x; t) only requires assumptions concerning

the number density and the radius pdf f c
R(r | x; t) because αd(x, t) does not depend on the

statistical properties of the velocity of the DPE’s, further assumptions are needed to relate

fE
UR(v, r ;x, t) and f c

VR(v, r | x; t). If f c
V |R(v | r,x′; t) is also assumed to be statistically homo-

geneous, then the expression (Eq. B.2) for the Eulerian jpdf of velocity and radius conditional

on the dispersed phase, fE
UR|Id

(u, r ;x, t) simplifies in this case to

fE
UR|Id

(v, r; t) =
1

αd(t)

∫ r

r′=0
K ′

D r′
D−1

n(t) δ(r − r0)f c
V |R(v | r; t) dr′

=
1

αd(t)
n(t)KD rD f c

V |R(v | r ; t) δ(r − r0)

= δ(r − r0)f c
V |R(v | r; t), (B.11)

where the simplified expression for αd(x, t) given by Eq.(B.9) has been substituted above.
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Thus, for the case of statistically homogeneous number density and statistically homoge-

neous radius pdf, the following relations hold:

αd(t) = nVD (B.12)

VD = KD〈RD〉 (B.13)

fE
UR|d(v, r ; t) =

rD

〈RD〉
f c
VR(v, r ; t) (B.14)

αd(t)fE
UR|d(v, r ; t) = KDr

Df(v, r, t) (B.15)

fE
X (t) =

1
〈Vd(t)〉

αd(t) (B.16)

fE
UR|d(v, r ; t)fE

X (t) =
rD

〈RD(t)〉〈Ns(t)〉
f(v, r, t), (B.17)

where fE
X (t) is the position pdf of the dispersed phase, 〈Vd(t)〉 is the volume occupied by the

dispersed phase and 〈Ns(t)〉 is the mean number of DPEs in the domain.

It is not enough to just define αd or fE
R independently in terms of n and f c

R, but rather they

must jointly form a consistent definition so that a quantity like mean momentum in a control

volume makes sense. Although one might be tempted to write αd(x, t) ≈ n(x; t) VD(x, t) and

fE
UR|Iβ

(u, r ;x, t) ≈ rDf c
VR(v, r | x; t) /〈RD(x, t)〉 under conditions of local homogeneity of the

number density ln > Rmax and lfc
R(r | x;t) > Rmax, such relations are only approximate and

useful for scaling purposes. They cannot hold as strict equalities simultaneously, and therefore

unlike the statistically homogeneous cases presented earlier, they cannot form a consistent

basis for comparing the two statistical representations. In the inhomogeneous case we must

conclude that the two statistical representations are indeed different, and cannot be related.
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APPENDIX C. EVOLUTION EQUATION FOR THE

VOLUME–WEIGHTED DDF OF FLUCTUATING VELOCITY

The evolution equation for the volume–weighted ddf of fluctuating velocity g̃ that was

introduced in Section 3.5.3 is derived in this section. Using the chain rule, we first form the

time and spatial derivatives of the r3–weighted ddf f̃ :

∂f̃

∂t
=
∂g̃

∂t
+

∂g̃

∂wj

∂〈̃Vj〉
∂t

(C.1)

∂f̃

∂xk
=

∂g̃

∂xk
+

∂g̃

∂wj

∂〈̃Vj〉
∂xk

(C.2)

The above two expressions can be combined as follows:

∂f̃

∂t
+
(
〈̃Vk〉+ wk

) ∂f̃

∂xk
=
∂g̃

∂t
+
(
〈̃Vk〉+ wk

) ∂g̃

∂xk
+

∂g̃

∂wj

[
∂〈̃Vj〉
∂t

+
(
〈̃Vk〉+ wk

) ∂〈̃Vj〉
∂xk

]
.

(C.3)

Multiplying Eq. (3.130) on both sides by r3, the evolution equation for f̃ = r3f can be derived:

∂f̃

∂t
+ vk

∂f̃

∂xk
= − ∂

∂vk

[
〈Ak|x,v, r; t〉f̃

]
− ∂

∂r

[
〈Θ|x,v, r; t〉f̃

]
+ 3r2〈Θ|x,v, r; t〉. (C.4)

Note that since vk is a sample space variable, it can be taken outside the derivative in the

second term on the left hand side. Equating the right hand sides of Eq. (C.3) and Eq. (C.4),

and rearranging results in the transport equation for the r3–weighted ddf of fluctuating velocity

Eq.3.111.
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APPENDIX D. EXACT EQUATION FOR THE DISPERSED–PHASE

TKE IN THE LE APPROACH

The primary objective of this section is to identify unclosed terms in the evolution equation

for the dispersed–phase TKE that need to be modeled. The connection between DLM and the

LE approach will also be explained here.

The droplet distribution function f(x,v, r, t) and the corresponding r3–weighted ddf of

fluctuating velocity g̃(x,w, r, t) was presented in Chapter 3. From g̃, the evolution equation

for the Reynolds stresses in the dispersed phase can be derived (cf. Eq. (3.112)).

In particle method solutions to the ddf evolution equation (see for example Amsden et al.

(1989)) and in DLM, the triple velocity correlation in Eq. (3.112) is in closed form. If there is

no interphase mass transfer, then the terms representing the change in the velocity covariance

due to interphase mass transfer are zero, and the only remaining term to be modeled in the

LE approach is the correlation of acceleration with fluctuating velocity.

Contracting indices in Eq. (3.112) and dropping terms involving the spatial gradients (as-

suming spatial homogeneity) results in an evolution equation for the r3–weighted TKE in the

dispersed phase k̃d = (1/2)〈̃v′′i v′′i 〉 as

2n〈R3〉 ∂
∂t
k̃d = 2〈R3〉n〈̃Aiv

′′
i 〉+ 3n〈R3〉〈 ˜v′′i v

′′
i Γ|t〉 − 6n〈R3〉k̃d〈Γ̃|t〉. (D.1)

With no interphase mass transfer, as in non–evaporating or solid particle-laden turbulent flow,

and mono–dispersed particles, the terms involving Γ are zero. Also, volume–weighted quantities

are the same as their number–weighted counterparts. The above equation then simplifies to

∂

∂t
kd =

〈
Aiv

′′
i

〉
.
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Thus, in a homogeneous two–phase flow with no interphase mass transfer, the evolution of the

dispersed–phase TKE is governed only by the acceleration–fluctuating velocity covariance.

Relationship between the ddf and DLM

Subramaniam (2001c) has shown that the ddf can be related to the single surrogate–droplet

density f (m)
1s (x,v, r; t) as

f(x,v, r, t) =
∑
m≥1

pmmf
(m)
1s (x,v, r; t), (D.2)

where pm is the probability that the number of droplets in the system at any time t is equal tom.

The single surrogate droplet–density is the density of identically distributed surrogate droplets

in phase space. This density has important implications in particle method solutions, like the

one used in this study, of the spray equation where each computational particle is assumed to

be an identically distributed realization of the spray. The Lagrangian joint probability density

function of velocity and radius implied by a stochastic model like DLM can be identified with

f
(m)
1s , and hence every model for the particle velocity in turn implies a modeled spray equation.

Models for particle velocity and droplet vaporization in turn imply models for 〈Ai〉 and 〈Θ〉.

In particle–based LE approaches like DLM ( also Amsden et al. (1989)), the terms on the right

hand side of Eq. (3.112) are closed and can be determined from the solution.

Correspondence between the governing equations in the EE and LE statistical

representations

For a homogeneous two–phase flow, there is a correspondence between the governing equa-

tions for the dispersed–phase TKE derived using the LE and Eulerian–Eulerian (EE) repre-

sentation of two–phase flow. This correspondence allows one to estimate an unclosed term on

the EE side using the corresponding term on the LE side.

Under assumptions of statistical homogeneity, one can derive the evolution equation for

the density–weighted dispersed–phase TKE, defined as

k̃d = 〈Idρu′′diu
′′
di〉/〈Idρ〉, (D.3)
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in the EE representation as (Drew, 1983; Subramaniam, 2003; Xu, 2004) as

θdρd
d

dt
k̃d =

〈
u′′di

∂(Idτki)
∂xk

〉
+ 〈u′′di(SMdi − UiSρd)〉+ (1/2)〈u′′diu

′′
diSρd〉 − k̃d〈Sρd〉, (D.4)

where Ui is the instantaneous velocity in the two–phase system. The dispersed–phase fluctu-

ating velocity u′′di is defined with respect to the density–weighted mean as

u′′di = Ui − 〈Ũi,d〉. (D.5)

Here, the density–weighted mean velocity in the dispersed phase is given as

〈Ũi,d〉 =
〈IdρUi〉
〈Idρ〉

,

where ρ is the density of the two–phase flow field. The corresponding equations for the fluid

phase are obtained by replacing d by f . In the above equations, Id is the indicator function

which is unity in the dispersed phase and zero in the fluid phase. The interphase momentum

transfer SMdi is (Subramaniam, 2003; Xu, 2004)

SMdi = ρUi(Uj − U
(I)
j )

∂Id
∂xj

− τji
∂Id
∂xj

, (D.6)

where U (I)
j is the interface velocity (for example, the regression velocity of the droplet surface)

and τji is the stress tensor in the dispersed phase. The presence of ∂Id/∂xj in the terms on

the right hand side imply that such terms are defined only at the interface. The interphase

mass transfer term Sρd can be written as (Subramaniam, 2003; Xu, 2004)

Sρd = ρ(Ui − U
(I)
i )

∂Id
∂xi

. (D.7)

With no interphase mass transfer, Eq.(D.4) simplifies to

θdρd
d

dt
k̃d =

〈
u′′di

∂(Idτki)
∂xk

〉
+ 〈u′′diSMdi〉. (D.8)

The correspondence between the dispersed–phase TKE evolution equation in the LE and EE

representations is given below by comparing the the right hand sides of Eq. (D.1) and Eq. (D.4):

2
〈
u′′di

∂(Idτki)
∂xk

〉
+ 2〈u′′di(SMdi)〉 ⇐⇒

4
3
πρdn〈R3〉2

〈
Ãiv′′i

〉
〈u′′diu

′′
diSρd〉 ⇐⇒

4
3
πρdn〈R3〉

(
3
〈
ṽ′′i v

′′
i Γ|t

〉)
−2k̃d〈Sρd〉 ⇐⇒ −4

3
πρdn〈R3〉〈ṽ′′i v′′i 〉

(
6〈Γ̃|t〉

)
.
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where ⇐⇒ denotes the correspondence between the terms. For the case with zero interphase

mass transfer, the correspondence simplifies to〈
u′′di

∂(Idτki)
∂xk

〉
+ 〈u′′di(SMdi)〉 ⇐⇒

4
3
πρdn〈R3〉

〈
Ãiv′′i

〉
.

Using DLM, the terms on the right hand side involving Γ are in closed form since such terms

can be easily computed from the solution. The above development enables one to estimate

from the LE representation the corresponding unclosed term in the EE representation.
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