
Retrospective Theses and Dissertations

2008

Development of a multiblock solver utilizing the
lattice Boltzmann and traditional finite difference
methods for fluid flow problems
Aditya C. Velivelli
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/rtd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in
Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

Recommended Citation
Velivelli, Aditya C., "Development of a multiblock solver utilizing the lattice Boltzmann and traditional finite difference methods for
fluid flow problems" (2008). Retrospective Theses and Dissertations. 15862.
http://lib.dr.iastate.edu/rtd/15862

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F15862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd/15862?utm_source=lib.dr.iastate.edu%2Frtd%2F15862&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Development of a multiblock solver utilizing the lattice Boltzmann and traditional

finite difference methods for fluid flow problems

by

Aditya C Velivelli

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Mechanical Engineering

Program of Study Committee:

Mark Bryden, Major Professor

Richard Pletcher

Tom I-P. Shih

Richard Hindman

James Oliver

Iowa State University

Ames, Iowa

2008

UMI Number: 3296797

3296797
2008

Copyright 2008 by
Velivelli, Aditya C.

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

All rights reserved.

 by ProQuest Information and Learning Company.

ii

TABLE OF CONTENTS

ABSTRACT.. v

CHAPTER 1. INTRODUCTION .. 1
1.1 Objectives .. 4
1.2 Dissertation Organization .. 4

CHAPTER 2. BACKGROUND .. 6
2.1 Grid Generation ... 6

2.1.1 Cartesian Grid ... 7
2.1.2 Structured Body-Fitted Grid ... 9
2.1.3 Unstructured Grid ... 10
2.1.4 Semi-Structured or Prismatic Grid.. 11
2.1.5 Hybrid Grid ... 12
2.1.6 Grid Change corresponding to Geometry Changes 14

2.2 Numerical Solution of Fluid Flow Equations .. 16
2.2.1 Finite Difference Method.. 16
2.2.2 Finite Volume Method.. 16
2.2.3 Finite Element Method ... 17
2.2.4 Explicit and Implicit Methods .. 18

2.3 Fast Models for CFD ... 18
2.3.1 Low-Fidelity Models .. 19

2.3.1.1 Reduced-Basis Method ... 19
2.3.1.2 Bayesian Methods... 21

2.3.2 Fast High-Fidelity Models .. 22
2.3.2.1 Using First Order PDEs .. 23
2.3.2.2 Flow Network Model.. 24
2.3.2.3 Using Classical Analytical Techniques .. 25

2.3.3 Summary of the Fast Computational Methods ... 26
2.3.4 Lattice Boltzmann Method (LBM) ... 27

2.4 Multiblock and Multi-Solver Methods .. 28
2.4.1 Summary of the Multiblock and Multi-Solver Methods........................... 36

CHAPTER 3. THE LATTICE BOLTZMANN METHOD AND CACHE

OPTIMIZATION.. 38
3.1 Introduction to the LBM .. 38

3.1.1 Applying the Lattice Boltzmann Scheme ... 40
3.1.2 Ansatz Method .. 41
3.1.3 Lattice Boltzmann Algorithm ... 46
3.1.4 Initial and Boundary Conditions ... 47
3.1.5 Stability and Accuracy of LBM.. 48

3.2 Cache Optimization ... 50
3.1.1 Cache Blocking for the LBM.. 52

3.3 Parallel LBM.. 60
3.3.1 Domain Decomposition for Parallel Processing 60
3.3.2 Cache Blocking for the Parallel Lattice Boltzmann Algorithm................ 62

iii

3.3.3 Implementation ... 64
3.3.4 Results... 65
3.3.5 General Conclusions about the Cache Optimization 75

3.4 Comparison of Lattice Boltzmann and Traditional Methods 75
3.4.1 Test Problem ... 76
3.4.2 ADI Method .. 77
3.4.3 Parallel ADI Method... 80
3.4.4 ADI Algorithm and Cache Optimization.. 83
3.4.5 Results... 84

3.4.5.1 Accuracy ... 84
3.4.5.2 Parallel Speedup.. 85
3.4.5.3 Relative Speedup .. 87

3.4.6 Conclusions from the Comparison Study for Unsteady Burger’s
Equation .. 90
3.4.7 Test Case for a Steady Problem .. 91
3.4.8 Relative Performance of the LBM and the ADI Method.......................... 92

3.4.8.1 Accuracy ... 92
3.4.8.2 Parallel Speedup.. 93
3.4.8.3 Relative Speedup .. 93

3.4.9 Conclusions... 94

CHAPTER 4 IMPROVING THE PERFORMANCE OF THE LATTICE

BOLTZMANN METHOD FOR STEADY FLOW SIMULATION......................... 97
4.1 Improved LBM .. 98

4.1.1 Improved Stability .. 100
4.1.2 Cache Optimization and Parallelization.. 101
4.1.3 Results... 102
4.1.4 Conclusions... 107

4.2 Coupling LBM with the ADI Method for Solving the Two-Dimensional
Burger’s Equation. .. 109

4.2.1 Applying the Hybrid Scheme to Burger’s Equation with Multiblock
Grid ... 110
4.2.2 Coupling Procedure... 111
4.2.3 Parallel Implementation .. 115
4.2.4 Method for Comparison.. 115
4.2.5 Results... 116
4.2.6 Conclusions... 120

CHAPTER 5 COUPLED LBM-TRADITIONAL METHODS FOR

INCOMPRESSIBLE FLOW PROBLEMS .. 122
5.1 LBM for Navier-Stokes Equations ... 122

5.1.1 Relating the Lattice Boltzmann Equations to the Navier-Stokes
Equations... 123
5.1.2 Lattice Boltzmann Algorithm ... 125
5.1.3 LBM for Backward Facing Step Flow.. 126
5.1.4 Stability of LBM for Backward Facing Step Flow................................. 128
5.1.5 Cache Optimization of LBM for Navier-Stokes Equations 128

5.2 Vorticity-Stream Function Formulation .. 129
5.2.1 Numerical Solution ... 130
5.2.2 Boundary Conditions for the Stream Function and the Vorticity 132

iv

5.2.3 Vorticity-Stream Function Method and Cache Optimization................. 134
5.3 Numerical Performance ... 134

5.3.1 Accuracy ... 135
5.3.2 Compute Time .. 139

5.4 Coupling LBM and the Vorticity-Stream Function Method for Backward
Facing Step Flow .. 141

5.4.1 Applying the Coupled Scheme ... 143
5.4.2 Coupling Procedure... 144
5.4.3 Method for Comparison.. 148
5.4.4 Results... 149
5.4.5 Conclusions... 152

5.5 Flow Around Cylinder ... 152
5.5.1 Vorticity-Stream Function Solver... 156

5.5.1.1 Numerical Discretization .. 157
5.5.1.2 Initial and Boundary Conditions... 158

5.5.2 Lattice Boltzmann Solver.. 163
5.5.3 Results... 164

5.5.4 Conclusions for Flow Around Cylinder.. 167

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS........................... 168
6.1 Conclusions.. 168
6.2 Recommendations for Future Work .. 170

BIBLIOGRAPHY... 171

ACKNOWLEDGEMENTS.. 176

v

ABSTRACT

This dissertation develops the lattice Boltzmann method (LBM) as a strong alternative to

traditional numerical methods for solving incompressible fluid flow problems. The LBM

outperforms traditional methods on a standalone basis for certain problem cases while for

other cases it can be coupled with the traditional methods using domain decomposition.

This brings about a composite numerical scheme which associates the efficient numerical

attributes of each individual method in the composite scheme with a particular region in

the flow domain. Coupled lattice Boltzmann–traditional finite difference procedures are

developed and evaluated for CPU time reduction and accuracy of standard test cases. The

standard test cases are numerical solutions of the two-dimensional unsteady and steady

convection-diffusion equations and two-dimensional steady laminar incompressible flows

represented by the backward-facing step flow problem and the flow problem around a

cylinder. Multiblock Cartesian grids and hybrid Cartesian-cylindrical grid systems are

employed with the composite numerical scheme. A cache-optimized lattice Boltzmann

technique is developed to utilize the full computational strength of the LBM. The LBM is

an explicit time-marching method and therefore has a time step size limitation. The time

step size is limited by the grid spacing and the Mach number. A lattice Boltzmann

simulation necessarily requires a low Mach number since it relates to the incompressible

Navier-Stokes equations in the low Mach number limit. For steady state problems, the

smaller time step results in slow convergence. To improve the time step limitation

imposed by the grid spacing, an improved LBM that adopts a new numerical

vi

discretization for the advection term has been developed and the results were computed

for a convection-diffusion equation and compared with the original LBM. The

performance of traditional finite difference methods based on the alternating direction

implicit scheme for the convection-diffusion equation and the vorticity-stream function

method for the laminar incompressible flow problems is evaluated against the composite

numerical scheme. The composite numerical scheme is shown to take lesser CPU time

for solving the given benchmark problems.

1

CHAPTER 1.

INTRODUCTION

 The design and optimization process in various industries is dependent on results

from high-fidelity simulations such as computational fluid dynamics (CFD). However,

high-fidelity simulations by their very nature take up a significant amount of time.

Consequently, interactive engineering design or optimization of many practical systems

is currently not possible. Even with parallel computation, faster clock speeds on

processors, and increased memory, CFD simulations are yet to be completed within a

reasonable time span with regard to interactive design [1,2,3]. Because of this, there is a

significant need to develop new algorithms and methods within CFD that can aid in the

interactive design process. The requirements for such algorithms would be significant

reduction in computation time, sufficient accuracy to support decision making, and

appropriate simplicity to enable a non-CFD expert to use them. These new algorithms

must take advantage of improvements in computation hardware such as increased or

massive parallelization, increased cache memory, and increased clock speed on

processors.

 Recent advances in CFD have focused on providing more accurate models or

developing new models for the many complex flow problems. Advances have also been

made in developing efficient and accurate numerical discretization schemes as well as

robust solvers for the linear algebraic equation systems that result from discretization of

the flow equations. However, none of these advances has improved the wall-clock time

2

for computation [4], an important factor in reducing design costs. In addition,

parallelization of the traditional CFD methods has not brought about the required

decrease in turnaround time, as most of the methods do not possess locality in their

computational nature (which means there are dependencies that require considerable

communication between processors on the parallel computer). Several means of

achieving faster turnaround time have been developed. These include approximate,

reduced-order models, low-fidelity models based on Bayesian statistics, or

complementing CFD methods with classical analytical techniques. Each of these has

significant limitations within an interactive design environment and may not yield the

required accuracy and detail provided by high-fidelity models.

The engineering design process essentially consists of three stages: conceptual

design, preliminary design, and final/detailed design. Within each stage, an iterative

process takes place until the final design is produced. For instance, consider the

conceptual design stage for the exterior body of an automobile. The designer would be

interested in evaluating different conceptual designs of the exterior with the intention of

obtaining an eye-pleasing shape. At the same time, the designer would like the

automobile exterior to be aerodynamically efficient, leading to fuel savings. To achieve

this goal, information about the flow field is required. Because wind tunnel testing and

CFD are time-consuming, they generally are not able to support the large number of

options that are considered at the conceptual design stage [5]. Instead, generic design

principles (e.g., dominant design basis) are used, or if additional information and insight

are needed, low-order approximation methods are used to decrease the time and cost.

3

However, these methods may lead to grossly inaccurate results, which may only be

detected in the detailed design stage, leading to higher costs.

To reduce the CPU time cost for solving incompressible flow problems, this work

combines different levels of physical modeling and discretization using domain

decomposition. On different subdomains, the following are modeled and solved:

1. different partial differential equations (the discrete velocity Boltzmann equation

and the Navier-Stokes equations)

2. different grids (body-fitted, Cartesian)

3. different time step sizes

This thesis presents a new numerical scheme that couples the lattice Boltzmann

method (LBM) with traditional finite difference methods for solving incompressible flow

problems on hybrid multiblock grids, leading to a novel fluid flow solver that performs

faster computations. The LBM is a fast high-fidelity solver that makes full use of cache

memory, parallel computation, and increased processor clock speed. The relative

efficiency of the standalone LBM is restricted to simple flow geometries with Cartesian

gridding and to situations requiring small numerical time steps for any numerical method.

Due to these inherent limitations, the LBM is better utilised when coupled with

traditional methods. Using a hybrid multiblock grid brings about accurate and efficient

resolution of flow phenomena. The coupled scheme on multiblock grids has been

implemented for the two-dimensional Burger’s equation, flow across a backward facing

step, and flow around a cylinder.

4

1.1 Objectives

The previous paragraph explained the background for coupling LBM with

traditional methods. The main objectives of this study were to:

1. Develop the capabilities of the LBM using cache optimization, parallel

computing, and improved numerical discretization schemes

2. Combine LBM with traditional finite difference methods using domain

decomposition and show the resulting solver to be faster than efficient existing

schemes

3. Execute the composite solver for standard test cases such as the two-dimensional

Burger’s equation, flow across a backward facing step, and flow around a cylinder

1.2 Dissertation Organization

This chapter has mentioned the need for a faster high-fidelity solver and

introduced the background to a composite numerical solver.

In Chapter 2, a brief overview of numerical schemes, numerical grid types, and

their relative advantages are presented. Chapter 2 also lists the previous attempts at

developing fast solvers for predicting fluid flow and the drawbacks of these attempts.

In Chapter 3, the LBM is introduced with regard to the two-dimensional Burger’s

equation. A cache-optimization algorithm is developed to take advantage of the LBM’s

localized computational nature. The cache-optimized LBM is compared with the original

LBM and with efficient traditional finite difference methods on parallel processing

architectures.

5

Chapter 4 develops two methodologies to improve the performance of the LBM

for steady state problems. In the first methodology, a new spatial discretization is adopted

for the convection term to allow the LBM to assume bigger time steps. The second

methodology couples the LBM with the alternating direction implicit scheme for solving

the two-dimensional steady Burger’s equation on a multiblock grid. This approach is

significantly faster than using the alternating direction implicit method on the multiblock

grids on a standalone basis.

Chapter 5 evaluates the composite or coupled numerical scheme for the backward

facing step flow and for flow around a cylinder. The vorticity-stream function

formulation is used here as the traditional Navier-Stokes solver.

Chapter 6 presents the conclusions of this study and recommendations for future

work.

6

CHAPTER 2.

BACKGROUND

CFD is an interdisciplinary science that uses computers to solve the partial

differential equations (PDEs) describing the conservation laws applied to fluid dynamics.

Progress in CFD has been intractably linked to improvements in computer hardware. A

CFD simulation consists of the following stages:

• Reading a computer aided design (CAD) model of the flow domain

• Grid generation of the flow domain

• Applying numerical methods to solve the PDEs modeling the fluid flow in the

given domain

• Post-processing of the results through visualization

The need for improved interfaces to CAD systems or accurate representation of

geometry will not be addressed in this study. Geometry models that meet the

requirements of continuity and smoothness needed for flow simulation are assumed to be

available.

2.1 Grid Generation

The grid generation process decomposes the given flow field and geometrical

objects into discrete points and discrete volumes or elements. Present modes of grid

generation are:

• Cartesian

7

• Structured body-fitted

• Unstructured

• Semi-structured

• Hybrid

2.1.1 Cartesian Grid

Uniform Cartesian grids, which are essentially square grids, were the earliest and

also the simplest to be utilized in the grid generation process. However, uniform grids are

limited to mapping simple regions. Cartesian grids are used with local refinement (non-

uniform grids) to capture gradients in a flow field as well as curved boundaries of the

flow domain. The Cartesian grid methods with local refinement have enjoyed success

when applied to inviscid flows around complex geometrical configurations [6].

Cartesian grid generation is automatically generated, aligned with the Cartesian

axes, ignoring the complexity of the input geometry (this is the same as putting the

required geometries into their positions in a Cartesian grid). After the initial stage, the

grid generation process has to perform two kinds of refinement: geometry adaptive

refinement and solution-adaptive refinement. For both kinds of refinement, there is a

widely-used approach that is based on using quadtree or octree data structures [7]. An

adaptive octree approach adds spatial refinement to regions that require more

discretization to capture either irregular geometrical (body) surface or steep gradients in

the solution. The refinement procedure for geometry is implemented by spatial

subdivision of the grid cells (quadrilateral cells) near and across the body surface. A

8

spatial query operation is performed to determine cells that contain the body surface. The

spatial subdivision is performed by bisecting the cell in each of the coordinate directions.

This refinement procedure is applied recursively (i.e., on the newly formed cells) until the

minimum cell size becomes less than a specified value. The specified value is dependent

on the application of the octree and can be chosen to be proportional to the radius of the

curvature of the body surface. To retain smoothness in the grid, the grid cells should

become progressively smaller.

The next step is to address the problem of cells that intersect the body (since the

body boundary, or surface, is not necessarily located on the grid points). The cells that lie

completely inside the body are removed. Most Cartesian grid generation methods adopt

the cut-cells method [8] to take care of the cells containing the body surface. Using this

method necessitates the use of unstructured solvers such as finite volume methods. To

use a finite difference (structured) solver, other approaches should be used, such as the

“stair step” approach, which defines the body as aligned with cell edges. However, this

approach sacrifices the ability to represent the body surface accurately. Solution adaptive

refinement in the Cartesian grid can be performed by superposing a finer grid on the

initial coarse grid in a critical region. This method is recursive in that grid patches with

finer resolution can themselves be nested within other grid patches.

A different approach is to use a single Cartesian grid with spatially varying grid

resolution (a non-uniform rectangular grid where grid spacing monotonically increases or

decreases along a Cartesian coordinate direction). A third approach is to use multiblock

Cartesian grids. Here, the computational domain is discretized with a set of overlapping

9

uniform Cartesian grid components. Refinement can be performed with the adaptive

spatial partitioning and refinement method (ASPaR) [9]. This method can also be used

for resolving geometry of body boundary in the flow. To select one of these methods for

solution adaptive refinement and geometry adaptive refinement, it should be known

which of them would work best for the flow solver of choice on Cartesian grids.

Cartesian grids with local refinement are not sufficient to solve viscous flow problems at

a high Reynolds number, where occurrence of boundary layers requires high grid

resolution. Efforts to counter this problem include development of a Cartesian grid

method using local anisotropic refinement [10]. However, this method has only been

verified for low Reynolds number flows, and it requires the boundary to be aligned with

one of the principal coordinate directions.

2.1.2 Structured Body-Fitted Grid

Structured body-fitted grid generation involves mapping a logical space with a

Cartesian grid to the actual physical space, which may be non-rectangular and arbitrary.

The mapping can be interpreted as using a curvilinear coordinate system for the physical

space. This new coordinate system conforms to the boundary of the physical space unlike

the Cartesian system, where nodes of the grid may not coincide with the boundary.

Structured grid schemes have proven to be the best when dealing with high Reynolds

number flows, which have strong directional, flow gradients. This is because structured

grids allow a cell shape that is elongated in the flow direction; i.e., more grid points

appear in the direction normal to the flow than in the flow direction. The curvilinear

10

coordinate system transforms the governing equations and thus increases the complexity

of the problem, unlike the Cartesian system, where the governing equations remain

unaffected.

To generate a structured boundary-fitted grid, solving a PDE such as the Poisson

equation (elliptic grid generation) is usually required. The transformations and numerical

solution of PDEs involved in generating the structured boundary-fitted grids take up

considerable compute time when complex geometries are involved. It is difficult to

automate this kind of grid generation since it is usually necessary to decide the grid

topology, zoning, and grid-clustering locations manually. Multiblock structured grid

generation is utilized when treating very complex domains. In this procedure, grids are

generated separately in each block and patched at block faces or allowed to overlap [11].

2.1.3 Unstructured Grid

Unstructured grid generation involves decomposing the domain into tetrahedra.

The tetrahedra are generated through Delaunay triangulation, advancing front methods

and domain decomposition techniques. Unstructured grids include varying element

topology and size, unlike structured boundary-fitted grids and Cartesian grids, where all

grid elements are similar in shape (e.g., rectangles or hexahedra). However, surface

modeling requirements for unstructured meshes can be demanding and time-consuming

[12]. Unstructured grids require greater memory to provide connectivity and topology

information. For this reason, flow solvers based on unstructured grids are usually not as

efficient as their structured counterparts.

11

Isotropic tetrahedral grid generation has been automated for flow fields about

complex shapes, but when it comes to dealing with high Reynolds number flows with

thin boundary layers, unstructured grid generation faces the same problems as Cartesian

grid generation. It is very expensive computationally to generate tetrahedral cells with

high aspect ratios to resolve such boundary layers or other strong directional flow

gradients. New developments in unstructured grids involve polyhedral meshing [13],

where a control volume is allowed to possess as many polygonal faces as necessary. This

means that a control volume can possess any shape. The polyhedral meshing method is

an efficient way of specifying hexahedral cells in an unstructured grid. It provides

flexibility in generating grids in critical regions with complex geometry.

2.1.4 Semi-Structured or Prismatic Grid

The prismatic grid is generated from an unstructured triangular grid representation

of the body surface. Marching the body surface triangulation outward in distinct steps

results in the generation of prismatic cells in the marching direction. In two dimensions,

the line segments on the boundary are marched outward, giving rise to quadrilateral cells.

The marching direction is the same as the normal vector at each node. The normal vector

at each node is computed as the weighted average of the normals of the common faces.

Karman [14] uses an iterative procedure (smoothing) to further refine the node normals

using a linear combination of a weighted average of the normal vectors of the common

faces and a weighted average of the position vectors of the neighboring nodes. This

computation works well for many complex shapes. The marching step for advancing the

12

grid to the next layer is computed based on a user-specified value and can be equally

spaced. Constraints are imposed on the spacing increment for the marching to avoid a

stretched or skewed grid. Prismatic grids are usually used to discretize the boundary layer

region, so the total thickness of the prismatic grid will be slightly greater than the

boundary layer thickness. The rest of the domain is covered using Cartesian grids or

unstructured grids, which leads to hybrid grids.

2.1.5 Hybrid Grid

The problems encountered with the above grid generation strategies have given

rise to hybrid grids. Hybrid grid generation strategies consist of combining unstructured

grids or Cartesian grids with structured boundary-conforming grids. The region around

the body (boundary layer) as well as other high gradient regions such as wakes are

meshed with a semi-structured body-conforming scheme such as the prismatic grid. The

rest of the domain can be meshed either with Cartesian grids (Figures 2.1 & 2.2) or

unstructured tetrahedral grids. In this study, only hybrid Cartesian-prismatic grids are

considered. In such a hybrid grid, a prismatic grid covers the body surface and the

Cartesian grid overlaps (chimera type) into the outer layer of the prismatic grid. Without

overlapping, the Cartesian grid cannot accurately or smoothly represent the interface

between the two grids unless the cut-cells method is used. The Cartesian grid resolution

should match that of the prismatic grid in the overlap zone.

13

Figure 2.1. A hybrid chimera grid, Meakin [9]

Figure 2.2. An overlapping hybrid grid around an amphibious vehicle, Wang et al.

[16]

Interpolation will pass data between the nearest prismatic and Cartesian grid points

(solution exchanges at intergrid boundary points). For a given intergrid boundary point

associated with the Cartesian grid, the coordinate indices of the corresponding prismatic

14

grid point need to be identified. This is computed with an iterative search procedure

whose cost is proportional to the number of intergrid boundary points. Melton et al. [15]

suggest a procedure for locating the prismatic cell that contains the centroid of each

Cartesian cell to establish links between the innermost layer of Cartesian cells and the

prismatic grid and vice versa to establish links between the outermost layer of the

prismatic cells and the Cartesian grid.

2.1.6 Grid Changes Corresponding to Geometry Changes

From a design point of view, the surface of the body should be deformed to test

different body configurations. For example, with the hybrid grid, the prismatic grid that

exists near the body surface should move and deform with the boundary. The innermost

layers of the prismatic grid remain attached to the boundary during movement, while the

outermost layer of edges remains fixed. To do this, Wang et al. [16] treat the prismatic

grid as consisting of root cells that are subdivided using a quadtree structure. They then

perform transfinite interpolation on the geometry of the deformed root cell to compute

the deformation of cells (leaf cells in a root cell) in the prismatic layer. While the

prismatic grid deforms with the body surface and changes its resolution, the Cartesian

cells near to and overlapping the outermost layer of the prismatic grid also get refined or

coarsened to match the prismatic cell size. However, the prismatic grid is regenerated if

the deformation of the prismatic grid violates any of the quality criteria specified [16].

The solution from the previous grid can be interpolated onto the new grid to provide a

starting point for the ensuing computations.

15

The connectivity information in the hybrid grid remains the same, which saves

computation time that would otherwise have been spent on figuring out the new

connectivity relations. However, regenerating the prismatic grid multiple times can prove

expensive. Therefore, the ability to reuse the original hybrid grid for subsequent design

geometries would be desirable. Simulations performed on the new geometries can use the

solution from the previous design geometry as an initial condition.

McMorris and Kallinderis [17] developed a method to reuse a

prismatic/tetrahedral grid for the new geometry, which was obtained with slight changes

to the body surfaces of the original geometry. They assume that most changes during the

design process are relatively small and that the new geometry maintains the same

topology as the original geometry. Retaining the same topology means surfaces cannot be

split or added to the geometry. The procedure initially involves mapping the grid points

on the boundary of the original geometry onto the new geometry. Kallinderis utilizes the

points on the curves of the CAD geometry for mapping onto the new geometry, keeping

the same spacing along the curves. The next step maps those points on the boundary

surface that lie in the interior (not on the curves) according to the motion of the points on

the curve. After this, the points on the interior of the hybrid grid are moved according to

the weighted influence of one or more of the nearest boundary points. McMorris et al.

[17] used a tetrahedral/prismatic grid, whereas a Cartesian/prismatic grid will be used in

this study.

16

2.2 Numerical Solution of Fluid Flow Equations

To obtain a numerical solution to fluid flow problems, the differential

conservation laws represented by PDEs need to be discretized on the grids mentioned

above. This in turn gives a series of algebraic equations whose numbers are dependent on

the total number of grid points. The algebraic equations can be explicit or implicit in

nature depending on the discretization scheme. Explicit means that the algebraic

equations can be solved independent of each other. When implicit, they need to be solved

as a system of equations. The grid type and the formulation of the discretization

procedure are dependent on each other.

2.2.1 Finite Difference Method

The function of continuous arguments representing the dependent variable in the

given PDEs is defined at discrete points, such as the nodes of the grid. The derivatives

present in the PDE and the boundary conditions are approximated by difference

expressions, transforming the PDE into a system of algebraic equations. The relation

between the derivative and the difference expression is obtained through a Taylor series

expansion. The finite difference method requires the use of a Cartesian or a structured

body-fitted grid.

2.2.2 Finite Volume Method

Finite volume methods discretize PDEs by transforming them so that they

resemble the conservation laws in an integral form applicable to a region in space

17

(control volume). This region in space can be represented by hexahedral cells in a

structured grid or tetrahedral cells in an unstructured grid. The integral form can also be

obtained by applying the balance equations, known from first principles, to a control

volume. Both approaches, when applied over cells in a given grid, give rise to a system of

algebraic equations.

2.2.3 Finite Element Method

The finite element method divides the domain to which the PDE applies into

simple pieces (polygons) known as “elements.” The solution (dependent variable in the

PDE) is then approximated by extremely simple functions on these elements. For

instance, the elements can be triangles and the simple functions can be linear. The

domain is divided into a finite number of triangles with, for example, N interior vertices.

N trial functions can be picked, one for each vertex, such that the trial function is non-

zero only at its specified vertex. Inside the triangle, each trial function is a linear function

with different sets of coefficients for each triangle. The global solution is approximated

as a linear combination of these trial functions. The coefficients of this linear

combination are obtained as the solution of an energy minimization problem, which

involves solving a system of linear or non-linear algebraic equations. The finite element

method is especially suited to handle curved or irregularly shaped domains. It can be used

on any type of grid, like the finite volume method.

18

2.2.4 Explicit and Implicit Methods

PDEs with a time-dependent term are marched in time to solve for the dependent

variable. Stationary or time-independent PDEs can also be solved in a time-marching

manner by starting the calculation from some initial approximation. The stationary PDE

is considered to be a limit of its corresponding non-stationary PDE with stationary

boundary conditions. Explicit difference schemes give rise to algebraic equations that can

be solved independent of each other. The explicit difference schemes have a strong

numerical time step limitation. Certain explicit schemes such as higher order Runge-

Kutta schemes and those with local time stepping have been used to improve the time

step limitation. To avoid the time step limitation, implicit methods that are

unconditionally stable are used. Implicit difference schemes lead to a system of algebraic

equations that need to be solved simultaneously. For this, a number of solvers have been

developed such as alternating direction implicit (ADI) schemes, Gauss-Seidel schemes

(with successive overrelaxation), and acceleration techniques such as multigrid

procedures. It is more difficult to parallelize these solvers than those belonging to explicit

schemes. Explicit schemes perform more efficiently (better parallel speedups) when

parallelized than their implicit counterparts.

2.3 Fast Models for CFD

Despite the advances in CFD theory and computer hardware, designers are still

demanding faster models for performing analysis in the conceptual design stage. A

number of models have been developed for obtaining fluid flow simulation results with

19

less wall clock time than before. They include both low-fidelity models with improved

accuracy and fast high-fidelity models.

2.3.1 Low-Fidelity Models

Low-fidelity models have been used in the conceptual design stage since the

1970s. However, these models either simplified flow physics by solving for potential

flow or they reduced the accuracy by using two-dimensional models and coarse grids. To

make headway toward the goal of faster and accurate design, low-fidelity models that

extract information from high-fidelity models have been and are being developed. They

go by various names such as reduced-order or reduced-basis models, Bayesian models,

etc. [18,19].

2.3.1.1 Reduced-Basis Method

Reduced-basis methods are reduction methods that reduce the degrees of freedom

in the problem of interest. To do so, they construct a low-order approximation space

composed of solutions of the PDE (or problem of interest) at selected points in the

parameter/design space. The solution for the PDE at other arbitrary points in the

parameter/design space is treated as a linear combination of the basis vectors from the

low-order approximation space. To determine the coefficients of the linear combination,

a finite element calculation is performed. Since this results in a dense system of

equations, the reduced-basis method is efficient only if a small number of basis vectors

are specified. The reduced-basis method works well in an interpolatory setting. If the

20

basis vectors do not represent all the features (e.g., dynamics of the states encountered in

the design process), then the reduced-basis method may fail; i.e., it will not work for an

extrapolatory setting.

Peterson [18] has applied the reduced-basis method to compute steady

incompressible flow solutions for high Reynolds numbers. Normally, for a given

Reynolds number, solutions to the steady Navier-Stokes equations are obtained by

applying an iterative method such as Newton’s method. The Newton method requires a

very good starting estimate for convergence at a high Reynolds number, so the usual

solution method involves calculating flow solutions at a lower, but increasing, sequence

of values of Reynolds numbers, with each new flow solution used as the starting estimate

for the Newton iteration at the next Reynolds number. Such a procedure can become

highly expensive for high Reynolds numbers. Peterson’s reduced-basis method uses flow

solutions at lower Reynolds numbers obtained through the Newton method as the basis

vectors to obtain a solution for higher Reynolds numbers. This solution is then used as

the starting guess for the Newton method to solve the Navier-Stokes equations at high

Reynolds numbers. The reduced solution is usually a good enough initial guess and

Newton’s method takes very few iterations to converge. Peterson has shown that for a

Reynolds number as high as 5000, only 5 reduced-basis vectors were required. The cases

solved include a two-dimensional cavity flow and the forward-facing step flow.

One limitation to applying these models for interactive design is that the reduced-

basis methods may be based on high-fidelity solutions for just a few different geometries.

This may provide insufficient information to explore the entire design space. For

21

instance, a certain design/geometry change may bring about a steep gradient or shock in

the solution, which may not exist in the solution corresponding to other closer geometric

variants. If the reduced-basis model were a linear combination of prior solutions to such

variants, the gradient would not be predicted.

2.3.1.2 Bayesian Methods

A Bayesian approach [19] can be used to predict the output for complex computer

codes that have simpler analogues. The simpler code runs much faster, but is less

accurate. For instance, the simpler code could be a finite difference or finite element code

that uses a coarse grid to model the problem at hand, unlike the complex code that uses a

high-resolution grid. The Bayesian approach models the difference between the two

codes as another unknown function, and learns about it using data comprising a small

number of runs of the slow complex code together with a much larger number of runs of

the fast code. This builds an emulator of the slow code that can be used to predict its

output when the fast code is executed. The Bayesian approach assumes that different

levels of the same code are correlated in some way. This is a disadvantage when the

complex code does not possess a simpler analogue. For instance, a numerical method

operating on a coarse grid can resolve only some features of the flow and may not have

any correspondence with the same numerical method operating on a high-resolution grid

and resolving all scales existing in the flow. The Bayesian approach also assumes that

each level of code (simple or complex) provides output values that are reasonably close

for similar inputs. This limitation is similar to those of reduced-basis methods that require

22

an interpolatory setting to work well. Again, the disadvantage is the number of runs of

the high-fidelity code to model the anticipated design changes. The Bayesian approach

has been successfully implemented with two codes that simulate oil pressure at a

hydrocarbon reservoir well. Both codes use finite element analysis and differ in the

resolution of the grid.

2.3.2 Fast High-Fidelity Models

The need for fast high-fidelity models was discussed in Chapter 1 and is obvious

due to the drawbacks of current low-fidelity models. According to Bram Van Leer [20],

for a high-fidelity model, the ideal computational cost for a problem with N unknowns (N

corresponds to the total number of grid points) should be a O(N) operation count (order

of N floating point operations). This property implies linear scalability with regard to the

number of unknowns or the grid size. Solution of elliptic equations using multigrid

techniques leads to convergence in O(N) operations. Steady solutions to Euler equations

can also be obtained with O(N) operations [20]. However, the solutions to the stationary

Navier-Stokes equations have not reported such a convergence so far (operation count is

O(N
2
) or worse) [20]. Present-day CFD tries to accelerate computations of high-fidelity

models using parallel computers. However, parallelization does not provide scalability

with regard to increasing grid size. A few high-fidelity models that may have O(N)

convergence are described below.

23

2.3.2.1 Using First Order PDEs

The Navier-Stokes equations are essentially a system of second-order PDEs. They

can, however, be reduced to a system of first-order PDEs without sacrificing their ability

to model flow physics accurately [20]. Such PDEs consist of advection terms, local, and

stiff source terms, and are called hyperbolic-relaxation equations. The first-order system

of equations is always larger than the parent system of PDEs. For instance, the diffusion

equation can be reduced to a first-order two-equation system called the hyperbolic heat

equation and the five three-dimensional Navier-Stokes equations can be rewritten as a

first-order system of fourteen equations. Some advantages of using a first-order system of

PDEs as listed by Bram van Leer [20] are:

• First-order PDEs require the smallest possible discretization stencil. This reduces

communication in parallel computations.

• Local implicit integration can treat local source terms that are stiff.

• Functional decomposition can be applied to large systems of first-order PDEs.

Functional decomposition allots each PDE or group of PDEs to separate

processors, while at the same time domain decomposition can be applied to solve

the PDEs simultaneously on all the available processors. This allows a larger

number of processors to be used without losing linear scalability. For both kinds

of decomposition to work together, a distributed memory machine consisting of

clusters of memory-sharing processors is required.

24

The hyperbolic-relaxation system approach has been successfully applied in gas

dynamics and requires less CPU time than methods based on solving Navier-Stokes

equations. However, the hyperbolic-relaxation approach has not been developed to solve

the unsteady Navier-Stokes equations or to obtain solutions to flows involving

turbulence.

2.3.2.2 Flow Network Model

The flow network model was originally developed for pipe flow networks, where

it is required to calculate changes in static pressure across any branch or element in the

network. In the context of CFD, the flow network model (specified as vectorized flow

network model or VFNM) treats fluid flow regions as a resistance/flow network. The

directional flow network consists of pipes (branches) that join at nodes to make a whole

pipe network. The magnitude of velocity inside these pipes is constant and changes only

at the nodes. Mass conservation is automatically satisfied at each node (flow into and out

of each node is equal). The conservation of momentum law controls the flow rate in a

pipe. Kim et al. [21] verified the VFNM using two-dimensional cavity flow as an

example. Horizontal and vertical pipes that are equidistant from each other and enjoined

at nodes represent the flow domain. The nodes are indexed with Cartesian coordinates.

Flow is one-dimensional in each pipe, with the positive direction being associated with

those of the Cartesian axes. Mass conservation is applied at the nodes in terms of the

horizontal and vertical velocities. Conservation of momentum is considered along the

25

pipes and is applied in terms of shear stresses and pressure differences. The shear stresses

are expressed in terms of velocities.

Momentum conservation is also applied along closed loops (a loop starts from a

node, passes through some closed branches, and returns to the original node). Changes in

the flow domain (geometry) will require changes in the flow network topology

(connectivity of the nodes caused by different piping configurations). An automatic

scheme for loop equation generation based on topology analysis and a network search

algorithm has been developed for this purpose [22]. The VFNM has demonstrated good

accuracy in the two-dimensional cavity flow for low Reynolds numbers [21]. It is not

known if this method can predict solutions with steep gradients and turbulence. Kim et al.

have claimed enormous enhancements in the computation speed compared to traditional

methods; however, there has been no study about the scalability with regard to number of

unknowns. The VFNM is expected to have O(N) convergence based on the equations

given. An advantage in using this method is that changes in geometry can be easily dealt

with by changing the flow network topology. The disadvantage is that this method is

limited to modeling low Reynolds number flows and steady state phenomena.

2.3.2.3 Using Classical Analytical Techniques

Michal et al. [23] suggest coupling complementary analytic methods and

numerical methods to reduce the overall number of grid points and to incorporate more

physics into the solution algorithm. The flow domain is partitioned so that the traditional

CFD method solves for complex phenomena such as shocks in one partition, while

26

efficient analytic methods model the flow field in the remaining partitions. Analytic

solutions are developed by using efficient analytic techniques appropriate to each

partition. This strategy reduces the number of grid points considerably. The analytic

model is derived from analytic solutions of an asymptotic form of the three-dimensional,

steady state Euler equations. Viscous effects are included by coupling the above-defined

scheme with an interactive boundary layer method [24]. This approach has good potential

for aerodynamic design optimization since the analytic solutions can be differentiated to

provide direct estimates of aerodynamic design sensitivities. Airfoil design optimization

methods that use the analytic methods coupled with traditional numerical methods have

shown reductions in computational cost by two orders of magnitude when compared to

traditional CFD methods. The coupled scheme has not been tested for solving the full,

unsteady Navier-Stokes equations.

2.3.3 Summary of the Fast Computational Methods

The low-fidelity methods described in Section 2.3.1 can work well in an

interpolatory setting; i.e., they can interpolate between a set of previous solutions and

find new solutions. They may not find solutions that lie outside the space formed by the

previous solutions. Although the reduced-basis method seems to work well for predicting

flow fields at higher Reynolds numbers using solutions at lower Reynolds numbers, there

is no guarantee that it will work well for geometry changes. The fast high-fidelity models

that were described in Section 2.3.2 do not face similar drawbacks.

27

Bram Van Leer’s method of reducing the Navier-Stokes equations to first-order

PDEs has not been developed for many practical flows that require the solution to the

unsteady Navier-Stokes equations. The vectorized flow network model works for simple,

low Reynolds number flows and has yet to be validated for practical flows.

Complementing numerical methods with analytic methods has worked well for inviscid

flows and for viscous flows, through coupling with the interactive boundary layer

method. Again, this scheme has not been tested for unsteady Navier-Stokes equations.

This scheme can be improved by replacing the numerical methods used here with more

efficient methods, which will be discussed later in this document.

2.3.4 Lattice Boltzmann Method

The lattice Boltzmann method (LBM) is a numerical method for solving problems

involving fluid flow. Unlike finite difference, finite volume, and finite element methods

that solve macroscopic conservation laws in the form of PDEs, the lattice Boltzmann

approach is based on solving the discrete velocity Boltzmann equation from statistical

mechanics. The discrete velocity Boltzmann equation is a set of PDEs that describe the

evolution of particle distribution functions. Particle distribution functions define the

probability of finding a particle at a certain location with a certain velocity and at a

certain time. Traditionally, the LBM has been an explicit finite difference approach

towards solving the discrete velocity Boltzmann equation.

The LBM possesses some of the positive aspects of the fast high-fidelity methods

mentioned previously. For instance, the equations that need to be solved are first-order

28

hyperbolic PDEs, which bestows on the numerical method that attempts their solution all

the advantages listed by Bram van Leer [20]. The LBM is very well-suited for Cartesian

grids, which are the fastest and easiest to generate. The localized and explicit nature of

lattice Boltzmann computations provides them with a distinct advantage over other

methods when computations are performed on parallel computers.

2.4 Multiblock and Multi-Solver Techniques

Section 2.1 described different grid types while Section 2.3 focused on various

fast high-fidelity numerical methods or their approximations. This section will detail

numerical schemes that are implemented on multiblock grids. Many flow problems

consist of complex geometries, leading to difficulty in generating a single grid to cover

the entire flow domain. The multiblock method of grid generation results in individual

grid blocks corresponding to particular regions of the flow domain. The grid components

adjacent to walls and obstacles in the flow domain can be fitted to the boundary of those

geometries, as discussed in the section on hybrid grids. Therefore, the grid blocks can be

of completely different types and can overlap at their interfaces. The multiblock

arrangement leads to efficient grid refinement, since local grid refinement can be

performed over certain regions of the flow domain by simply covering those regions with

high-resolution or fine grid blocks and the rest of the domain with low-resolution or

coarse grid blocks. The fundamental principle behind the multiblock technique is to split

the flow domain into two or more overlapping subdomains (blocks). The equations of

motion or their equivalents are solved on each subdomain subject to specified boundary

29

conditions. Conditions at inter-subdomain boundaries depend on the respective solutions

in neighboring subdomains. Information can be exchanged using interpolation that relates

the values of variables at the interface nodes of different grid blocks covering the

subdomains.

Perng and Street [25] use a volume-averaged formulation to solve a weak form of

the two-dimensional Navier-Stokes equations in primitive variables on a staggered

overlapping grid system in Cartesian (yx,) coordinates. The equation for pressure is

obtained by substituting the Cartesian velocity components into the discretized continuity

equation. In a staggered grid, the two velocity components and the pressure are located at

different positions in the grid cell. The pressure variable is located in the center of the

grid cell, while the velocity components are located on the edges of the grid cells (Figure

2.3).

Figure 2.3

30

The time-explicit integration scheme used for the momentum equations allows

them to be solved separately on each subdomain or grid block. This is because the

information required to solve the momentum equations at the next time level, tn ∆+)1(is

available from previous calculations at time tn∆ . After the computation of the

momentum equations on each subdomain (block), the relevant information is

incorporated into the source terms of the pressure equation.

 Unlike the momentum equation, the solution to the pressure equation on each

grid block requires the velocity (normal to flow boundaries and/or interior boundaries) or

pressure (at the boundaries) at time tn ∆+)1(. To specify 1+np or 1+n
v on non-physical

boundaries of subdomains inside the flow domain, the information available in the

overlapping zones can be used; i.e., the pressure or normal velocity on the interior

boundary of the grid block can be obtained from the solution field in the adjacent

subdomain. This overlapping places the non-physical boundary of a subdomain in the

interior of the adjacent subdomain. This technique essentially connects the individual

pressure fields into a global one. The pressure field obtained in this way is globally

consistent over the entire flow domain. Therefore, the resulting velocity profiles in the

overlapping zones of different subdomains match exactly. The multigrid method is used

to solve the pressure equation on each subdomain. The global solution for pressure is

obtained by solving the pressure problem on each subdomain, sequentially cycling

through them until convergence on all subdomains is obtained. Perng and Street tested

their method for solving isothermal flow in a lid-driven square cavity with a square insert

31

at the lower left corner and isothermal flow in a two-dimensional channel with abrupt

expansion and contraction at two 90-degree bends

Brakkee et al. [26] also utilize a finite volume solver on staggered grids. They use

an implicit time discretization for the momentum equations, giving rise to a domain

decomposition problem for the momentum as well. Brakkee et al. solve the momentum

and pressure equations separately over the composite domain, instead of solving these

equations simultaneously in the subdomains. They achieve global discretization accuracy

by enforcing the discretized momentum and pressure equations across subdomain

boundaries. The GMRES method is used to solve the discretized equations.

Brakkee et al.’s scheme is equivalent to applying a block Gauss-Seidel or Jacobi

iteration to the global discretization matrix. Their method is limited to matching grid

blocks; i.e., the grids must match at the subdomain boundaries. Brakkee et al. tested their

scheme for flow over a backward facing step and for flow around a cylinder in a wall-

bounded shear flow.

Strikwerda and Scarbnick [27] solve the Stokes equations on overlapping

subdomains that are discretized with either Cartesian grids or polar grids. For

conservation of mass, they assume an integrability condition for the boundary data

(represented by b
r

) of the composite domain

 0=⋅∫ nb
rr

 (2.1)

It is difficult to impose this condition explicitly for each subdomain since the

finite difference method obtains some of the boundary data for a subdomain using

interpolation from other subdomains. Therefore, the authors assign a constant to the

32

divergence of the velocity field in each subdomain. Instead of the continuity equation, the

following equation is solved

 iii du Ω=⋅∇ on
rr

 (2.2)

The constant id is determined by the integrability condition for the subdomain; i.e.,

 ∫ =⋅ ii dnu
rr

 (2.3)

The Stokes momentum equation is similar to the Poisson equation, and therefore

is discretized with the standard second-order accurate five-point Laplacian. The Stokes

momentum equation and the modified velocity divergence equation are solved on each

subdomain, using an iterative solution procedure. The (inner) iterative method used on

the Cartesian domain is based on point-successive overrelaxation, while the iterative

method used on the polar domain is based on line-successive overrelaxation. The inner

iteration step consists of updating the velocity using the successive overrelaxation to

solve the momentum equation and then updating the pressure at the interior point of the

subdomain based on the local velocity divergence equation. The pressure at the

boundaries of the subdomain is set by quadratic extrapolation of the interior values.

Unlike the previous methods, the pressure on one subdomain does not directly interact

with the pressure on the other subdomains. In fact, specifying the pressure as a boundary

condition along with velocity results in an overdetermined boundary value problem on

the given subdomain.

An outer iteration consists of a single inner iteration on each subdomain with

velocity boundary data obtained from the other subdomain. The values of 1d and 2d are

33

updated at each step using the integrability conditions. These outer iterations are

performed until convergence is obtained. The solution is determined as converged when,

on each subdomain, the changes in velocity are small and the changes in pressure are

constant. After the convergence, a unique solution for velocity exists while the pressure is

determined to within an additive constant. The deviation of the velocity fields from being

divergence-free and the deviation from a constant of the difference of the two pressure

fields on the overlap is used to indicate the accuracy of the final solution.

The above-mentioned methods dealt with a single numerical scheme operating on

multiblock grids. Using multiple solvers on a multiblock grid can be efficient since

certain solvers are more suited for computing certain regions of the flow domain and

because certain solvers are computationally efficient on fine grid blocks while others are

efficient on coarse grid blocks on account of the numerical time step size. It is possible to

have different time steps on different grid blocks because the overlapping allows

decoupling of the time step.

Mendu et al. [28] divided the computational domain into several blocks and

applied different turbulence models (such as standard and low Reynolds number k-e

models) in different regions (blocks). They applied their multiblock, multi-model method

to the backward facing step flow and obtained more accurate results than conventional

single-model computations.

Ikegawa et al. [29] implemented a finite element / finite difference (FEM/FDM)

composite scheme for two-dimensional incompressible flow problems. This scheme

combines the finite element method, which, according to the authors, is more useful for

34

computing flow in an arbitrarily shaped geometry with the finite difference method that is

advantageous in saving computing time and memory. The two methods are combined on

an overlapping grid system, where the FEM computes on the near-body grid, while the

FDM computes on the outer grid that partially overlaps the near-body grid. The authors

solve the momentum equation using the arbitrary boundary marker and cell (ABMAC)

method [29], which is an explicit, two-step predictor-corrector type scheme. The finite

element mesh is made up of quadrilateral elements, and the velocity components are

interpolated within an element using bilinear functions of local coordinates of that

element. The pressure is assumed to be constant in each element. The finite difference

computations are performed using the ABMAC method on a staggered grid. The

variables on the interior boundary of each grid are obtained using the computed values

from the other grid system. The interpolation from the FEM grid to the FDM grid can be

performed using the bilinear functions of the FEM grid points surrounding the given

FDM interior boundary grid point. Ikegawa et al. verified their method for both flow

around a cylinder and the backward facing step flow.

Nakahashi [30] implemented an FDM-FEM approach for compressible viscous

flows over multiple bodies. In this approach, an implicit finite difference method is

applied at the near-body region with structured body-fitted grids, and the remaining flow

region is computed using an explicit finite element method. A flow region with multiple

bodies is divided into several zones that cover the highly viscous flow fields near the

bodies and the connecting zones between the viscous zones. The connecting zones may

have complex geometry; therefore, FEM on an unstructured grid is well-suited for them.

35

The FDM and FEM zones overlap with each other. The unstructured nature of the FEM

grid allows the interior boundary points for both FDM and FEM grids to coincide with

each other, precluding the need for interpolation treatment at the interior boundary points.

The connecting regions for the FDM zones are assumed to be inviscid and, therefore, a

finite element method for the Euler equations is considered. The combined approach was

tested for a problem where an airfoil was located parallel to a flat plate and for turbine

cascade flow.

References [31], [32], and [33] have coupled finite difference and vortex methods

for incompressible flow computations. In an inviscid fluid, vorticity is neither created nor

destroyed. It can undergo only convection and diffusion. Vorticity is, however, produced

at a solid boundary in a viscous fluid and is then carried away by convection and

diffusion. The flow field is determined by these processes and, in turn, controls the

production of vorticity. Vortex methods are basically discretized representations of these

aforementioned processes. Vortex methods involve introducing isolated line vortices,

vorticity blobs, vortex balls, or toroidal vortices into the flow field and tracking them

numerically using Lagrangian or a mixed Lagrangian-Eulerian scheme. The vortex

methods cannot accurately predict the flow field near a solid surface, where viscous

effects are dominant. Assigning boundary conditions near a solid surface is not easy. The

vortex method, however, is relatively efficient in terms of computation time and accuracy

for modeling flow regions where convection effects are dominant. Figure 2.4 shows a

representation for the coupled finite difference and vortex method scheme. 1Ω and

2Ω are the finite difference and vortex domains. Vortex methods are used in flow regions

36

where the vorticity is confined to areas of small dimension, while the finite difference

methods are used near solid walls due to their flexibility in handling boundary conditions.

Figure 2.4

2.4.1 Summary of the Multiblock and Multi-Solver Methods

The multiblock methods have implemented traditional numerical methods on the

subdomains comprising the flow domain. The multiblock methods provide a single

numerical solver for the overlapping grid systems that discretize flow domains consisting

of complex geometries. These numerical solvers may not be faster than other available

solvers and they do not take into consideration the local attributes of each subdomain or

the grid block covering that subdomain. The multi-solver methods aim to provide

37

different solvers such that each individual solver in the multi-solver system is suited for a

particular subdomain or the grid block discretizing that subdomain.

38

CHAPTER 3.

THE LATTICE BOLTZMANN METHOD AND CACHE

OPTIMIZATION

The purpose of this research is to develop computationally efficient multi-solver

or composite solver methods for multiblock Cartesian grids and hybrid Chimera grids.

The Lattice Boltzmann method (LBM) has been selected to function as one part of the

composite fluid flow solver due to being a comparatively fast high-fidelity solver on

Cartesian grids. Floating-point operations in the LBM involve local data and therefore

allow easy cache optimization and parallelization. This chapter presents the LBM and

compares it with traditional finite difference methods for solving the two-dimensional

Burger’s equation on parallel computers.

.

3.1 Introduction to the LBM

The LBM has been used for simulating incompressible turbulence, multiphase

and multicomponent fluid flows, particles suspended in fluids, heat transfer, and reaction-

diffusion [34]. As discussed in Chapter 2, finite difference, finite volume, and finite

element methods are based on discretizations of PDEs derived from continuum laws such

as conservation of mass, momentum, and energy. In contrast, the LBM is based on the

discrete velocity Boltzmann equation [35] and recovers the macroscopic continuum

equations (i.e., the PDEs describing the conservation laws) by using a multi-scale

expansion. The discrete velocity Boltzmann equation describes a system of particles

39

statistically in terms of the particle distribution function, ()tvxf i ,,
rr

, where index i

represents a specific velocity. The discrete velocity Boltzmann equation with the

Bhatnagar-Gross-Krook (BGK) approximation [35] is

 ()eq

iiii

i fffc
t

f
−−=∇⋅+

∂

∂
ωv

 (3.1)

where if represents the particle distribution functions, eq

if is the equilibrium distribution

functions, ω is the collision frequency, and ic
v

 is used to represent the velocities

associated with the distribution functions. To discretize Equation 3.1 on a grid, upwind

discretization is applied to the advection term, forward Euler discretization is applied to

the time derivative, and downwind discretization is applied to the collision term (right-

hand side of the above equation). This discretized version on a uniform lattice or grid is

called the lattice Boltzmann equation. When the velocity equals the spatial differential

over the time step, the lattice Boltzmann equation written in an explicit form is

 () () () ()()txftxftxftttcxf
eq

iiiii ,,,,
rrrrr

−−=∆+∆+ ω (3.2)

where i represents velocity index. A four-speed lattice Boltzmann model is shown in

Figure 3.1.

cc

cc

cc

cc

−=

−=

+=

+=

 0,

0 ,

 0,

0 ,

4

3

2

1

r

r

r

r

 (3.3)

There are four links per node, each link having length x∆ .

 txc ∆∆= / (3.4)

where t∆ is the numerical time step.

40

x∆x L

y

L

∆y=∆x

1

2

3
4

Figure 3.1. Square lattice with the four speeds shown at a node

3.1.1 Applying the Lattice Boltzmann Scheme

In this section and the following sections, the solution to the two-dimensional

Burger’s equation is chosen to demonstrate the capabilities of the LBM. The two-

dimensional unsteady Burger’s equation is studied as it contains non-linear convective

terms and diffusion terms as well as a time-dependent term. The Burger’s equation has

been extensively used as a model for testing the efficiency and accuracy of various

numerical schemes [36]. The Burger’s equation acts as an adequate model for the

convection-diffusion equation occurring in energy transport and for the vorticity-stream

function approach for solving the incompressible Navier-Stokes equations.

41

The LBM will be applied to the time-dependent two-dimensional Burger’s

equation to demonstrate its ability to recover macroscopic equations through a multiscale

expansion.

 








∂

∂
+

∂

∂
=

∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

y

u

x

u

y

u
u

x

u
u

t

u
µ (3.5)

The dependent variable u in Burger’s equation is defined as the sum over the distribution

functions),(txf i

v
.

 () () () 4,3,2,1 ,,, === ∑∑ itxftxftxu
i

eq

i

i

i

vvv
 (3.6)

A local conservation law; i.e., the conservation of mass, is inherent in the LBM. The

conserved quantity is ()∑
i

i txf ,
v

. This would mean

 () ()∑ ∑=∆+∆+
i i

iii txftttcxf ,,
vvv

 (3.7)

The equilibrium distributions eq

if depend on the conserved macroscopic quantity, u. The

ansatz method described by Wolf-Gladrow [35] will be used to establish the relation

between u and the equilibrium distributions.

3.1.2 Ansatz Method

The equilibrium distributions for simulating the two-dimensional diffusion

equation on a two-dimensional lattice with four speeds at each node [35] were shown to

be 4/u , u being the dependent variable in the diffusion equation. From the lattice

Boltzmann model for the Navier-Stokes equations [35], terms quadratic in u in the

equilibrium distributions were noticed to yield the nonlinear advection term. Therefore,

42

terms quadratic in u will have to be added to the terms in the equilibrium distributions for

the diffusion equation to yield the nonlinear advection term in the Burger’s equation. This

suggests the following ansatz:

 2

11 uBuAf
eq

i += 2,1=i (3.8)

 2

22 uBuAf
eq

i += 4,3=i (3.9)

A multi-scale expansion, the relationship specified by Equation 3.6, and the equation for

conservation of particle distribution functions (Equation 3.7), will recover the Burger’s

equation. The free parameters of the ansatz will be adjusted after the multi-scale analysis

such that the Burger’s equation is obtained.

Substituting Equations 3.8 and 3.9 into Equation 3.6, the following is obtained:

 () () () 2

2121 22, uBBuAAtxfu
i

eq

i +++== ∑ v
 (3.10)

This suggests the following constraints:

2

1
21 =+ AA (3.11)

 12 BB −= (3.12)

The multi-scale expansion [35] involves the following: expand the distribution functions

if around the equilibrium distributions eq

if using ε as the expansion parameter. This is

 () ()21 εε Offf i

eq

ii ++= (3.13)

The left-hand side (LHS) of the lattice Boltzmann equation (Equation 3.2) is expanded

using a Taylor series expansion. This is

43

() ()
() [] ()iixxiiixtiitt

itixiiii

fOfccfcf
t

ftftctxftttcxf

3

2

2
2

,,

∂+∂∂+∂∂+∂∂
∆

+

∂∆+∂∆+=∆+∆+

βαα

α

βαα

α

rrr

 (3.14)

Equation 3.14 can be simplified to

 () () () ()2,, ε
αα Oftftctxftttcxf itixiiii +∂∆+∂∆+=∆+∆+

rrr
 (3.15)

Comparing the right-hand side (RHS) of Equation 3.15 with the RHS of the lattice

Boltzmann equation (Equation 3.2) and using the expansion (Equation 3.13), an

approximation of ()1

if is obtained,

 () () ()21 11
ε

ωω
ε

αα Oftftcf itixii +∂∆−∂∆−= (3.16)

Wolf-Gladrow [35] adopted the following scaling for deriving the two-dimensional

diffusion equation from the LBM:

()

()1

22

αα
ε

ε

xx

tt

∂→∂

∂→∂
 (3.17)

Since Burger’s equation can be realized by adding a nonlinear convective term to the

diffusion equation, the same scaling as above (Equation 3.17) is adopted for deriving the

two-dimensional Burger’s equation from the LBM.

From the definition of lattice velocities (Equation 3.3)

 ∑ =
i

ic 0
r

 (3.18)

 ∑ =
i

ii ccc αββα δ22 (3.19)

44

where αβδ is the Kronecker delta. Substituting Equations 3.14 and 3.17 into the

conservation relation given by Equation 3.7, and followed by further simplification using

Equations 3.13 and 3.16 results in:

 () () () () ()∑ 




 +∂∂
∆

+∂+∂=
i

eq

ixxiiixiit Ofcc
t

fcf
3112122

2
0 εεεε

βαα βαα (3.20)

where the first term on the RHS of the above equation is

 () uf t

i

it ∂→∂∑ 22ε (3.21)

Substituting the expansion (Equation 3.13) into the second term on the RHS of Equation

3.20 and simplifying using Equation 3.16 results in:

 () () () () ()311211 εε
ω

εε βααα βααα
Ofcc

t
fcfc

i i

eq

iiixx

eq

iixi

i

xi +∂∂
∆

−∂=∂ ∑ ∑∑ (3.22)

for the two-dimensional four-speed lattice with x, y directions

() () () () ()
() () ()eq

yy

eq

yyyy

eq

xx

eq

xxxx

i

eq

iiixx

fccfcc

fccfccfcc

444222

112

333111

112112

+∂∂+

+∂∂=∂∂∑
ε

εε βαβα

 (3.23)

Substituting the equilibrium distributions (Equations 3.8, 3.9) into the above equation and

taking into account the constraints given by Equations 3.11, 3.12 will result in:

 () () () () () ()() 








∂

∂
+

∂

∂
→∂∂+∂∂=∂∂∑ 2

2

2

22
112112

2
112

22 y

u

x

uc
uu

c
fcc yyxx

i

eq

iiixx εεε βαβα
(3.24)

It is now obvious that the nonlinear terms in Burger’s equation will be obtained from the

first term in the RHS of Equation 3.22. Considering it:

 () () () () () eq

yy

eq

yy

eq

xx

eq

xx

i

eq

iix fcfcfcfcfc 44

1

22

1

33

1

11

11 ∂+∂+∂+∂=∂∑ εεεεε αα
 (3.25)

45

Substituting the equilibrium distributions (Equations 8, 9) into the above expression gives

us

() () () () ()

() () () () 21

21

1

21

21

21

1

21

1

uBBcuAAc

uBBcuAAcfc

yy

xx

i

eq

iix

∂−+∂−+

∂−+∂−=∂∑
εε

εεε αα

 (3.26)

This leads to

() () ()

() () 2

2121

2

2121

1

uBBcuAAc

uBBcuAAcfc

yy

xx

i

eq

iix

∂−+∂−+

∂−+∂−→∂∑ αα
ε

 (3.27)

To obtain the nonlinear part of Burger’s equation from this, the following constraints are

required in the above expression:

 021 =− AA (3.28)

c

BB
2

1
21 =− (3.29)

Solving Equations 3.11, 3.12, 3.28 and 3.29 simultaneously gives

4

1
21 == AA ,

c
B

4

1
1 = and

c
B

4

1
2 −= (3.30)

The equilibrium distributions are therefore:

c

uu
f

eq

i
44

2

+= 2,1=i (3.31)

c

uu
f

eq

i
44

2

−= 4,3=i (3.32)

Using Equations 3.24 and 3.27, the second term in the RHS of Equation 3.20 is

simplified to

46

 ()









∂
∂

+
∂
∂∆

−
∂
∂

+
∂
∂

→∂∑ 2

2

2

22
1

2 y

u

x

utc

y

u
u

x

u
ufc i

i

xi ω
ε

αα (3.33)

The third term in RHS of Equation 3.20 can be simplified to:

() () ()










∂
∂

+
∂
∂∆

=∂∂
∆

∑ 2

2

2

22
112

42 y

u

x

utc
fcc

t

i

eq

ixxii βα
εβα (3.34)

Substituting Equations 3.21, 3.33, and 3.34 into Equation 3.20 yields

 








∂

∂
+

∂

∂







 −∆=
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2
2

2

11

2

1

y

u

x

u
tc

y

u
u

x

u
u

t

u

ω
 (3.35)

When the diffusion coefficient is

 






 −∆=
2

11

2

1 2

ω
µ tc (3.36)

Equation 3.35 becomes the two-dimensional Burger’s equation (Equation 3.5). Based on

this, the LBM can be used to numerically simulate the two-dimensional Burger’s

equation by specifying the appropriate values for ,, tx ∆∆ andω .

3.1.3 Lattice Boltzmann Algorithm

To implement an explicit time-marching lattice Boltzmann solver for the two-

dimensional Burger’s equation, the following substeps are executed at each time step:

1. Using the initial u, calculate the equilibrium distributions

c

uu
f

eq

i
44

2

+= 2,1=i (3.37)

c

uu
f

eq

i
44

2

−= 4,3=i (3.38)

47

 and set eq

ii ff = for the first time step.

2. Compute the RHS (also known as the collision substep) of the lattice Boltzmann

equation (Equation 3.2) and propagate the result to the nearest neighbor nodes

obtaining ()tttcxf ii ∆+∆+ ,
rr

 (also known as the propagation substep).

3. Update ()txu ,
r

 from the new distributions according to the definition

() ()∑=
i

i txftxu ,,
rr

 (Equation 3.6).

Start the next time step with the calculation of new equilibrium distributions using the

new ()txu ,
r

 and proceed to Step 2 of the algorithm. Follow this procedure until the final

time.

3.1.4 Initial and Boundary Conditions

In fluid dynamics problems, the initial and boundary conditions are specified in

terms of the macroscopic variable. To obtain the initial and boundary conditions in terms

of the distribution functions, two different approaches can be adopted. One is an inverse

mapping between the distribution function and the macroscopic variable (a direct

mapping being Equation 3.6). Here, the distribution functions are made equal to the

equilibrium distributions (shown as the initial condition above) or to the sum of

equilibrium distributions and a non-equilibrium term such as:

 neq

i

eq

ii fff += (3.39)

48

For the four-speed lattice Boltzmann model for the two-dimensional Burger’s equation

without the
y

u

∂
∂

 term on the LHS:

0

4

4

42

3

1

==









∂
∂

⋅−⋅
∆

−=









∂
∂

⋅⋅
∆

−=

neqneq

neq

neq

ff

x

uct
f

x

uct
f

ω

ω

 (3.40)

The non-equilibrium distributions were obtained with a multiscale expansion similar to

the manner in which Skordos [37] obtained them for the incompressible Navier-Stokes

equations. The second approach for obtaining boundary conditions is similar to that of

Palmer et al. [38]. For instance, the 3f distribution function at the right boundary is

expressed as:

 4213 fffuf −−−= (3.41)

3.1.5 Stability and Accuracy of LBM

The numerical solution for LBM is obtained via a time-marching method. The

four-speed model of the discrete velocity Boltzmann equation (Equation 3.1) used to

simulate the Burger’s equation is:

49

()

()

()

()eq

eq

eq

eq

ff
y

f
c

t

f

ff
x

f
c

t

f

ff
y

f
c

t

f

ff
x

f
c

t

f

44

44

33

33

22

22

11

11

−−=
∂

∂
−

∂

∂

−−=
∂

∂
−

∂

∂

−−=
∂

∂
+

∂

∂

−−=
∂

∂
+

∂

∂

ω

ω

ω

ω

 (3.42)

As shown above, the discrete velocity Boltzmann equation consists of first-order

hyperbolic PDEs. For a first-order hyperbolic PDE such as the one-dimensional linear

advection equation,

 0=+ xt cuu (3.43)

the stability of an upwind and forward Euler numerical discretization (same as the

numerical discretization in the LBM) is defined by the Courant-Friedrichs-Lewy (CFL)

condition [39]:

 1≤
∆
∆

=
x

t
cCFL (3.44)

The above condition holds for a one-dimensional linear advection equation. The LBM

has four one-dimensional linear advection equations, two in each dimension, with source

terms that couple the four equations. In the LBM, advection speed is assumed to be equal

to the spatial discretization over the time step, which should satisfy the CFL condition for

the advection part of the equations shown below. But computer experiments by this

author have shown that the time step is limited to a little over one-half the spatial

discretization when solving the Burger’s equation. For low-viscosity cases (occurrence of

boundary layer), this limitation is pronounced. When viscosity is not too low, the time

50

step size can be bigger. This would mean that the CFL condition is more limited than

that given in Equation 3.44. The reason for this is the non-linearity in the RHS of

Equation 3.42 that comes about from the equilibrium distributions. That is, local

gradients in the solution field influence the time step size. When simulating the two-

dimensional diffusion equation [40], there is no limitation on the time step other than the

CFL condition (Equation 3.44), because the equilibrium distributions do not contain any

non-linear terms.

A linear stability analysis of the Lattice Boltzmann scheme shows that the

collision frequency is limited to 20 << ω [41]. As ω approaches 2, the scheme

becomes unstable. This is equivalent to the viscosity approaching zero or becoming

negative (refer to Equation 3.36). Sterling and Chen [41] have shown the lattice

Boltzmann discretization (Equation 3.2) to result in second-order accuracy both in space

and time. This is also shown by the results in Section 3.3.1.

3.2 Cache Optimization

To achieve the scalability and speed potential of the lattice Boltzmann technique,

the issues of data reusability in cache-based computer architectures must be addressed.

This section examines cache optimization for the LBM in both serial and parallel

implementations. The lattice Boltzmann algorithm does not approach peak performance

for problem sizes in which the data needed to solve each time step does not fit into the

cache memory. In these cases, this data must be obtained from the main memory. Access

to the main memory is much slower than access to the cache memory. As a result, to

51

obtain the best possible performance on cache-based computer architectures, problem

blocking at various levels is required to match the information flow within the algorithm

to the machine’s memory hierarchy [42].

Cache-based algorithms block large problems into smaller pieces that fit into the

cache. The goal is to create small blocks that can be moved into the cache. Once in the

cache, the elements in the blocks can be repeatedly used. The original lattice Boltzmann

algorithm operates on contiguous elements in the whole of the computational domain (the

whole array). A cache-based lattice Boltzmann algorithm operates on subarrays of the

whole array of data. The implementation of the LBM cache optimization algorithm is

shown for the two-dimensional diffusion equation,)(yyxxt TTT += µ since it is easier to

represent the LBM pseudocode for this equation. The LBM algorithm for the two-

dimensional diffusion equation is different from that of the two-dimensional Burger’s

equation in the form of the equilibrium distribution functions. For the two-dimensional

diffusion equation mentioned above, all four equilibrium distribution functions are

defined as
4

T
f

eq

i = .

The Fortran implementation of the LBM algorithm for a single time step is shown

in Figure 3.2. The first line of the code is the time stepping loop; the rest of the code is

executed during each time step. The four distribution functions are represented using

two-dimensional arrays, f1(i,j), f2(i,j), f3(i,j), and f4(i,j). The

index i goes from 1 to nx horizontally and j goes from 1 to ny vertically. Within

the code for the collision substep, the value of the equilibrium distribution functions,

52

feq(i,j), is replaced with T(i,j)*0.25. The next part of the code describes the

propagation substep, the implementation of the boundary conditions, and the update of

T(i,j) based on the newly computed distribution functions f(i,j).

3.2.1 Cache Blocking for the LBM

As grid size increases, the data handled for computation at each time step can

become larger than the cache size. As a result, the data cannot stay cache-resident for

repeated use. For instance, when using the LBM to solve the two-dimensional diffusion

equation, the largest grid size that can be accommodated within an 8 MB-size cache for a

square grid is 512×512. Remembering that there are four distribution functions, each

requiring a two-dimensional array,

 MB8elementper bytes 8elements 512arrays 4 2 =×× . (3.45)

The LBM is well suited to optimize cache utilization because several time steps can be

performed separately on a subsection of the given domain. This can be achieved because

the collision substep is completely local, and the propagation substep is almost local

(between neighboring grid points). A large domain is divided into subsections. This

division of the domain into subsections is termed “block division” in this dissertation.

The subsections are updated separately in sequence. The first update accesses data from

the main memory and therefore is slow, but for the subsequent updates, the subsection

data is cache resident.

53

do time_iter = 1, Niter

 : :

 : :
!-- Perform the collision substep; feq has been replaced with T(i,j)/4.

 do j = 1,ny

 do i = 1,nx

 f1(i,j) = f1(i,j) * (1.0d0 - omega) &

 + omega * T(i,j)*0.25d0

 f2(i,j) = f2(i,j) * (1.0d0 - omega) &

 + omega * T(i,j)*0.25d0

 f3(i,j) = f3(i,j) * (1.0d0 - omega) &

 + omega * T(i,j)*0.25d0

 f4(i,j) = f4(i,j) * (1.0d0 - omega) &

 + omega * T(i,j)*0.25d0

 enddo

 enddo

!—Perform the propagation substep

 do j = ny,2,-1

 do i = 1, nx

 f2(i,j) = f2(i,j-1)

 enddo

 enddo

 do j = ny,1,-1

 do i = nx,2,-1

 f1(i,j) = f1(i-1,j)

 enddo

 enddo

 do j = 1,ny-1

 do i = nx,1,-1

 f4(i,j) = f4(i,j+1)

 enddo

 enddo

 do j = 1,ny

 do i = 1,nx-1

 f3(i,j) = f3(i+1,j)

 enddo

 enddo

!-- Boundary conditions are implemented.

 do j = 2, ny-1

 f1(1,j) = -(f2(1,j) + f3(1,j) + f4(1,j))

 f3(nx,j) = -(f2(nx,j) + f1(nx,j) + f4(nx,j))

 enddo

 do i = 2, nx-1

 f2(i,1) = -(f1(i,1) + f3(i,1) + f4(i,1))

 f4(i,ny) = -(f1(i,ny) + f3(i,ny) + f2(i,ny))

 enddo

!-- Calculate new temperature distribution (T)

 do j = 1,ny

 do i = 1,nx

 T(i,j) = (f1(i,j) + f2(i,j) + f3(i,j) + f4(i,j))*0.25d0

 enddo

 enddo

Figure 3.2. Fortran code used for implementation of a single time step of the non

cache-based LBM.

54

These subsections are horizontal strips of dimension 1mN x × , where xN is the number of

grid points in the horizontal direction (yx NN =), and 11 / pNm y= , where p1 is the

number of strips and is chosen such that the data size will not exceed cache memory size

(Figure 3.3). The assignment of physical direction associated with the first index in an

array is arbitrary. In this dissertation, the x -direction (horizontal direction) in the

physical domain is represented by the first index of the array and therefore has greater

stride-one access. The y -direction (vertical direction) is represented by the second index

in the two-dimensional array. The domain is divided into horizontal strips because they

give greater stride-one access to the elements in the arrays than if the domain was divided

into vertical strips.

m1

2*m1

Nx

Ny

1

1

Figure 3.3. Domain decomposition for the cache-blocked serial implementation of

the LBM

55

The time loop is partitioned into tiles (blocks). The number of time steps

performed (tdiv) on the subsections is the tile size. The choice of tile size significantly

impacts the performance of the algorithm. As noted earlier, the propagation substep uses

information from the neighboring grid points during each time step. Therefore, data

dependencies will arise when the respective subsections are updated separately. Consider

a horizontal strip decomposition of the domain (Figure 3.3). The subsections are updated

in a bottom–up sequence; i.e., the bottommost subsection is updated tdiv times, and then

the next lowest subsection is updated and so on until the topmost subsection is updated

tdiv times. During the propagation substep of each time step, 4f at a node is assigned the

value of 4f at the node directly above it. Therefore, to get the correct value for 4f , each

time step must include the same number of nodes directly above the node under

consideration as the tile size.

With this block division and update sequence, the propagation of the distribution

function 4f at the upper boundary of a subsection depends on the value of 4f at the lower

boundary of the upper subsection. This data dependency becomes explicit when the

subsections are updated separately for tdiv time steps. To handle this data dependency

when updating each subsection separately, the following strategy is adopted. In this

discussion, the subsection being updated is termed the “current subsection.” The collision

and propagation substeps are performed on the current subsection 1mN x × plus a section

of size tdivN x × above the upper boundary of the current subsection. For this reason, the

original values of the additional tdivN x × elements (which belong to the upper

subsection) included in the computation are saved in a temporary array and then written

56

back (restored to the original values) once the computations with the current subsection

are finished.

There are four temporary arrays of size tdivN x × , one for each of the distribution

functions. The extra computations on the tdivN x × elements are an overhead cost that

places a limit on tdiv . From experiments performed on an SGI Onyx2™ with 8 MB

cache (described later), tdiv was found to have optimum values between 4 and 15

depending on the size of 1m (e.g., for 801 >m , tdiv can be as high as 15, and for

261 <m , tdiv should be 6 or less). The propagation of 2f also creates explicit data

dependencies when subsections are updated from the bottom up. To take care of these

data dependencies, the distribution function 2f at the top boundary of a subsection is

saved in a temporary array at each time step for use in computing the next subsection.

The size of the arrays to be used repeatedly in the cache includes the four

distribution functions for a subsection, the array containing the saved 2f values (xN

elements), and the saved tdivN x × elements of the four distribution functions. For

practical purposes (and also validated through experiments), it is assumed that the arrays

can be kept in only one-half of the cache. When the arrays exceed one-half of the cache,

performance declines because of other data competing for space in the cache.

The Fortran implementation of the cache-based serial lattice Boltzmann algorithm

for a single time step for the bottommost subsection is shown in Figure 3.4. The time

loop is partitioned into blocks of size tdiv . Within the time loop, the first section of the

code saves the original values of the four distribution functions for the additional

tdivN x × elements in the temporary arrays ff1(i,j), ff2(i,j), ff3(i,j),

57

and ff4(i,j), where i corresponds to the horizontal direction and j corresponds to

the vertical direction. The secondary time loop with index tt performs tdiv time steps

on the bottommost subsection. Each time step involves the collision substep and

propagation substep. Before f2(i,m1) is updated at each time step, it is saved in the

array ftemp2. After the completion of the secondary time loop, the additional tdivN x ×

elements that were saved in the temporary arrays are restored back to the arrays holding

the values of the four distribution functions. As shown in Figure 3.4, a subsection that fits

into the cache is repeatedly used tdiv times. The propagation of 2f for the next

subsection is shown in Figure 3.5. 2f at the lower boundary of the second subsection

(j=m1+1) is assigned values from the array ftemp2 for the corresponding time step. 2f

at the upper boundary of the second subsection is saved in ftemp2 before being

updated.

58

!-- The main time loop is partitioned into blocks/tiles of size tdiv

do time_iter = 1, Niter, tdiv

 : :

 : :

!-- Save original values of the bottom tdiv rows of subsection 2.

do j = 1, tdiv

 do i = 1, nx

 ff1(i,j) = f1(i,m1+j)

 ff2(i,j) = f2(i,m1+j)

 ff3(i,j) = f3(i,m1+j)

 ff4(i,j) = f4(i,m1+j)

enddo

enddo

!— Perform tdiv time steps on the bottommost subsection

 do tt = 1, tdiv

!-- Perform the collision substep -- feq has been replaced by T(i,j)*0.25

 do j = 1,m1+tdiv

 do i = 1,nx

 f1(i,j) = f1(i,j) * (1.0d0 - omega)+ omega * T(i,j)*0.25d0

 f2(i,j) = f2(i,j) * (1.0d0 - omega)+ omega * T(i,j)*0.25d0

 f3(i,j) = f3(i,j) * (1.0d0 - omega)+ omega * T(i,j)*0.25d0

 f4(i,j) = f4(i,j) * (1.0d0 - omega)+ omega * T(i,j)*0.25d0

 enddo

 enddo

!-- f2 at the top boundary (m1) is saved for each time step (tt).

 ftemp2(1:nx,1,tt) = f2(1:nx,m1)

!-- Perform the propagation substep

 do j = m1+tdiv,1,-1

 do i = nx,2,-1

 f1(i,j) = f1(i-1,j)

 enddo

 enddo

 do j = 1, m1+tdiv

 do i = 1,nx-1

 f3(i,j) = f3(i+1,j)

 enddo

 enddo

 do j = m1+tdiv,2,-1

 do i = 1, nx

 f2(i,j) = f2(i,j-1)

 enddo

 enddo

 do j = 1, m1+tdiv

 do i = nx, 1, -1

 f4(i,j) = f4(i,j+1)

 enddo

 enddo

Figure 3.4. Fortran code used for implementation of a single time step of the

cache-based LBM for the bottommost subsection

59

 !-- Boundary conditions are implemented.

 do j = 2, m1+tdiv

 f1(1,j) = -(f2(1,j)+f3(1,j)+f4(1,j))

 f3(nx,j) = -(f2(nx,j)+f1(nx,j)+f4(nx,j))

 enddo

 do i = 2, nx-1

 f2(i,1) = -(f1(i,1)+f3(i,1)+f4(i,1))

 enddo

 enddo

!! end of the time step tile (tt) for 1st subsection

!—write back the original values

 do j = 1, tdiv

 do i = 1, nx

 f1(i,m1+j) = ff1(i,j)

 f2(i,m1+j) = ff2(i,j)

 f3(i,m1+j) = ff3(i,j)

 f4(i,m1+j) = ff4(i,j)

 enddo

 enddo

Figure 3.4. continued

ftemp2(1:nx,2,tt) = f2(1:nx,2*m1)

do j = 2*m1+tdiv, m1+1+1, -1

f2(1:nx,j) = f2(1:nx,j-1)

enddo

f2(1:nx,m1+1) = ftemp2(1:nx,1,tt)

Figure 3.5. Fortran code used for propagation of the distribution function 2f for

the second subsection

60

3.3 Parallel LBM

In Sections 3.1 and 3.2, the LBM was implemented on a single processor for non

cache-based and cache-based versions, respectively. In Section 3.3.1, a parallel version of

the LBM is implemented. The parallel version is then optimized for cache utilization in

Section 3.3.2. Parallelization of the LBM is carried out using domain decomposition.

3.3.1 Domain decomposition for Parallel Processing

The parallelization is done for a distributed computing environment. The domain

is decomposed into subdomains and each subdomain is computed on a separate

processor. Type A domain decomposition decomposes the domain into horizontal strips

(Figure 3.6a). Type B domain decomposition decomposes the domain into vertical strips

(Figure 3.6b). In this discussion, the parallelization is explained in terms of Type A

(horizontal strip) decomposition. Type B (vertical strip) decomposition can be performed

in a similar manner. The domain is decomposed into p horizontal strips (subdomains), p

being the number of processors. The LBM algorithm discussed in Section 3.1.3 is

performed on each processor with the data being the subdomain assigned to it. As before,

each time step is divided into two substeps, collision and propagation, which are

performed on each subdomain. The collision substep is the most compute-intensive. This

work is completely performed in-processor with no need for data communication

(completely parallel). In the propagation substep, each processor must communicate the

outgoing/ingoing particle distributions if streaming across the subdomain boundaries.

As discussed earlier, the propagation substep requires nearest-neighbor communication.

61

Y

X

1

2

3

4

(a)

1 2 3 4

(b)

X

Y

Figure 3.6. Domain decomposition for parallelization: (a) Type A domain

decomposition (b) Type B domain decomposition

62

Although four distribution functions are placed on each node for the square lattice model,

only two variables need to be sent across each subdomain boundary. In the case of Type

A decomposition, these are f2 across the top boundary and 4f across the bottom

boundary.

 With these changes, the algorithm for parallel implementation of the LBM is:

1. Initially, the equilibrium distributions are calculated (Eqs. 3.31, 3.32)

simultaneously on each processor.

2. The RHS of the lattice Boltzmann equation (Equation 3.2) is computed

simultaneously on all processors for their respective subdomains―the collision

substep.

3. The if data at the subdomain boundaries is communicated between processors;

the propagation substep is then executed simultaneously on all processors.

4. The new ()txT ,
r

 is calculated in parallel on all processors from the updated

distributions if .

5. The new ()txT ,
r

 is used to update eq

if on all processors, and the process is

repeated from Step 2 until the final time is reached.

3.3.2 Cache Blocking for the Parallel Lattice Boltzmann Algorithm

The cache-blocking algorithm described in the single processor case (Section

3.2.1) is executed on each processor in the multi-processor case. The data that needs to be

blocked for cache optimization is the subdomain belonging to a processor. It is assumed

that the subdomain size is greater than the cache memory size. As discussed in Section

3.2.1, the required computations are performed on a subsection of the subdomain for

63

blocks of time steps (block size being tdiv). The parallel algorithm given in the above

section is implemented in every time step of a block of time steps. It follows that the

boundary data is communicated during the start of every time step in a block of time

steps. In the serial cache-based LBM, the subsections were created by dividing the

domain into horizontal strips (block division) because this gave contiguous and greater

stride one-access to the arrays. In the parallel LBM, the type of block division depends on

the decomposition used for parallelization.

When the domain is decomposed into vertical strips (each meant for a separate

processor-Type B decomposition), the block division used for a subdomain is the same as

for the domain in the serial case; i.e., the subdomain on each processor is divided into

horizontal strips. In this case, the cache-blocking algorithm used on each processor is the

same as in the serial case, as shown in Figure 3.7. When the parallelization involves

partitioning the domain into horizontal strips (Type A decomposition), these subdomains

should be divided into vertical strips for cache blocking. The subdomains cannot be

divided into horizontal strips because then the data dependencies would not be local. For

the same reason, for Type B decomposition, the subdomains cannot be divided into

vertical strips. For Type B decomposition, the size of a subdomain residing on a

processor will be yNm× , where pNm x /= , p being the number of processors. Similar

to the serial case, in the parallel cache-blocking algorithm, a subdomain (on a processor)

is divided into horizontal strips of dimension 1mm× , where 11 / pNm y= , 1p being the

number of strips. This is chosen to keep each strip within cache memory limits.

64

m1

2*m1

m 2*m1

1

Nx

Ny

Subdomain decomposition

B
lo

c
k
 d

iv
is

io
n

P
ro

c
e

s
s
o

r
1

P
ro

c
e

s
s
o

r
2

P
ro

c
e

s
s
o

r
3

P
ro

c
e

s
s
o

r
4

Figure 3.7. Domain decomposition for the cache-blocked parallel LBM

3.3.3 Implementation

The cache optimization study considered uniform grid sizes from xN = 1200 to

7200. The computations were performed for 50 time steps. The machine used for both

serial and parallel cases is an SGI Onyx2
™

. It is a shared-memory multiprocessing

architecture (S2MP). The S2MP architecture uses distributed shared memory (DSM) to

enable read and write access into the main memory. This shared memory is accessible to

all processors through the NumaLink™ interconnect. The Onyx2™ system has a number

of processing nodes linked together by the NumaLink™ interconnect. Each node contains

two R12000 microprocessors with 32 KB each of integral instruction and data cache, 8

65

MB of secondary cache, and 512 MB of main memory per microprocessor. The

interconnect bandwidth is 1600 MBps [43]. The program is written in Fortran90 and MPI

is used as the message-passing library.

3.3.4 Results

To assess the performance of the cache-blocked LBM for the two-dimensional

diffusion equation, the following performance measurements were made:

1. speedup and CPU time obtained through cache optimization of the LBM for

single processor and multiple processors,

2. speedup and CPU time obtained through parallelization for both Type A and Type

B decomposition of the non-cached LBM, and

3. speedup and CPU time obtained through parallelization for both Type A and Type

B decomposition of the cache-optimized LBM.

The number of lattice nodes or grid points was varied from 1200×1200 to 7200×7200.

The computations were performed for 50 time steps. In this paper, cache-based speedup

is defined as:

algorithm based cachefor time

algorithm based cachenon for time
 speedup based cache = (3.46)

The accuracy of the results was a function of grid size only, and the results of non cache-

based serial, cache-based serial, non cache-based parallel, and cache-based parallel

implementations were numerically equivalent.

Table 3.1 shows the results obtained through cache optimization for various grid

sizes in the single processor case. As the grid size increases from 1200×1200 to

7200×7200, the number of nodes increases by a factor of 36, from 1.4×10
6
 to 52.0×10

6
.

66

Over the same span in grid size, the CPU time for the non-cached serial lattice Boltzmann

algorithm increases from 20 s to 880 s, a factor of 44. This occurs because of the

additional cost of transferring data between the memory and the CPU. The CPU time for

the cache-based version increases by a factor of 57, from 8.1 s to 464 s. The average

cache-based speedup for grid sizes from 1200×1200 to 3600×3600 is ~2.4. In contrast,

the average cache-based speedup of grid sizes from 4800×4800 to 7200×7200 is ~2.0.

The cache-based speedup of the serial lattice Boltzmann algorithm degrades as grid size

increases because with increasing grid size, 1m (number of rows in a subsection) must

decrease to ensure that the xNm ×1 elements of the subsection stay within the cache size

limit. For example, in the 1200×1200 case 1m is 80, and in the 7200×7200 case 1m is 15.

As discussed earlier, this reduction in 1m requires a corresponding reduction in the

number of time steps that can be completed within the cache, tdiv . As tdiv decreases,

the number of cache reuses decreases significantly. Hence, the comparative performance

of the cache-optimized lattice Boltzmann algorithm decreases as grid size increases.

Table 3.2 shows cache-based speedup for the parallel LBM for Type A and Type

B decomposition. For the 1200×1200 cases with four processors, the cache-based

speedup is lower because the subdomains nearly fit into the cache, reducing the

improvement in performance available from cache optimization. For the 1200×1200 case,

when the number of processors is greater than four, the subdomains fit entirely into the

cache. For the 2400×2400 case with 24 processors, the subdomains again fit entirely into

the cache on each processor. In these cases the impact of cache optimization is negligible.

When the number of processors is 12, 16, and 20 for the 2400×2400 grid, the subdomains

are larger than the 4 MB cache size limit. However, they still stay within the actual cache

67

size (8 MB). In these cases, there is speedup due to cache optimization but not as much as

in larger grids, which do not fit in the cache. In the case of the 3600×3600, 4800×4800,

and 6000×6000, the cache-based speedup is lower on four processors. Additionally, it is

lower for four and eight processors on the 7200×7200 grid. This occurs for the same

reason as the reduced cache-based speedup for the 7200×7200 grid size in the serial case.

As the size of the subdomain on each processor increases, the tile size must decrease,

reducing the cache reuse and thus limiting the cache-based speedup.

Table 3.1. CPU time and cache-based speedup on a single processor

Nx

CPU time for serial non-
cached lattice Boltzmann

method (s)

CPU time for serial cached
lattice Boltzmann method

(s)

Cache-based
speedup

1200 20.0 8.1 2.47

2400 83.6 35.3 2.37

3600 190 82.0 2.31

4800 356 175 2.03

6000 586 282 2.07

7200 880 464 1.90

68

Table 3.2. CPU time and cache-based speedup on multiple processors

Number of
Processors

CPU time for
non-cached

Type A
decomposition

(s)

CPU time for
non-cached

Type B
decomposition

(s)

CPU time for
cached Type A
decomposition

(s)

CPU time for
cached Type B
decomposition

(s)

Type A
cache-based

speedup

Type B
cache-based

speedup

NX=1200

4 5.25 4.75 2.80 1.96 1.88 2.42

8 * * 1.10 0.82 * *

12 * * 0.73 0.55 * *

16 * * 0.55 0.41 * *

20 * * 0.44 0.34 * *

24 * * 0.38 0.30 * *

NX=2400

4 33.3 33.3 12.3 8.85 2.71 3.76

8 15.6 15.7 5.95 4.35 2.62 3.61

12 7.76 7.90 3.72 3.12 2.09 2.53

16 5.27 5.16 2.72 2.16 1.94 2.39

20 2.56 2.60 1.95 1.57 1.31 1.66

24 * * 1.62 1.33 * *

NX=3600

4 79.3 76.7 37.0 20.2 2.14 3.80

8 38.3 38.9 13.8 10.0 2.78 3.89

12 26.5 26.1 8.90 6.70 2.98 3.90

16 18.7 19.8 6.62 5.20 2.83 3.81

20 13.5 14.6 5.30 4.10 2.55 3.56

24 11.9 13.0 4.45 3.57 2.67 3.64

NX=4800

4 137.3 136.6 59.0 42.0 2.33 3.25

8 71.7 69.4 25.2 19.5 2.84 3.56

12 47.4 46.0 16.3 12.0 2.90 3.83

16 34.7 34.9 12.0 9.16 2.89 3.81

20 27.0 28.0 9.56 7.48 2.82 3.74

24 22.3 22.5 8.00 6.35 2.79 3.54

NX=6000

4 213.3 211.0 104.5 61.0 2.04 3.46

8 106.3 106.9 43.2 28.5 2.46 3.75

12 71.0 72.2 26.5 18.5 2.68 3.90

16 52.7 54.3 19.5 14.0 2.70 3.88

20 42.2 43.6 15.5 11.5 2.72 3.79

24 35.7 37.7 12.8 9.70 2.80 3.89

NX=7200

4 309.0 306.6 228.0 133.0 1.36 2.30

8 154.0 153.2 87.5 44.5 1.76 3.44

12 102.2 103.3 56.7 27.0 1.80 3.83

16 76.4 77.2 38.6 21.5 1.98 3.59

20 60.8 64.2 23.0 18.4 2.64 3.50

24 52.8 55.5 19.0 13.5 2.78 4.11

69

The cache-based version of Type B decomposition shows better performance than the

cache-based version of Type A decomposition. This is because, to fit the distribution

functions into cache, the arrays representing them in Type A decomposition are broken

down into blocks in the first index of the array (the first index represents the x-direction

or the horizontal direction; refer to Section 3.2.1). The first index is contiguous in

memory. Because of this array division, the contiguity in array access is broken and this

forces cache misses. With Type B decomposition, the arrays have contiguity in access

even when broken into blocks for fitting in cache. This is because they are blocked in the

second index, which is not contiguous in memory. Because of this, Type A

decomposition shows an average cache-based speedup of 2.6 to 2.8, whereas Type B

decomposition shows an average cache-based speedup of 3.6 to 3.8.

Figures 3.8 and 3.9 show parallel speedup for grid sizes 2400×2400 to 7200×7200

for non-cached Type A and Type B domain decomposition, respectively. Parallel

speedup is defined as:

case parallelfor timeCPU

case serial for the timeCPU
 speedup Parallel = (3.47)

Parallel speedup for the 1200×1200 grid and the 24-processor 2400×2400 grid is not

shown because the entire subdomain fits (or nearly fits) into the cache. As shown,

without cache blocking parallel speedup for all grids is sublinear except for the

2400×2400 grid when the number of processors is greater than or equal to 12.

Additionally, the speedup is not a function of grid size except in the case of the

2400×2400 grid when the number of processors is greater than or equal to 12.

70

Figure 3.8. Parallel speedup for non-cached Type A domain decomposition

1 4 8 12 16 20 24

1

4

8

12

16

20

24

28

32

36

6000x6000

4800x4800

3600x3600

2400x2400
7200x7200

S
p

e
e

d
u

p

Number of Processors

71

Figure 3.9. Parallel speedup for non-cached Type B domain decomposition

1 4 8 12 16 20 24

1

4

8

12

16

20

24

28

32

36

3600x3600
4800x4800

6000x6000

7200x7200

2400x2400

S
p

e
e

d
u

p

Number of Processors

72

In this case, the subdomains on each processor are not small enough to fit within a 4 MB

cache size limit but are within an 8 MB cache size limit. As discussed previously, this

allows some cache reuse; thus, significantly improved parallel speedup is observed.

Figures 3.10 and 3.11 show parallel speedup for grid sizes 1200×1200 to

7200×7200 for cached Type A and Type B domain decomposition, respectively. Parallel

speedup for the 1200×1200 grid is shown, although cache blocking is not required for

more than four processors since the entire subdomain fits into the cache (natural cache

blocking). As shown in Figure 3.10, with four processors Type A decomposition is not

quite linear. The speedup is a factor of 2 or 3. This occurs because of the initial overhead

cost associated with the implementation of the parallel algorithm. Following this, with 4

to 24 processors, the speedup is nearly linear for Type A domain decomposition. The

increase in parallel speedup for the 7200×7200 grid between 16 and 24 processors occurs

because of the reduced performance of the cached serial case discussed earlier. For both

Type A and Type B domain decomposition, the speedup of the 7200×7200 grid is

initially lower because the reduced tile size results in fewer cache reuses. For both Type

A and Type B domain decomposition, the 3600×3600 grid generally has lower parallel

speedup than the rest of the grids. This occurs because it falls between the smaller grids

in which the subdomains fit completely into the cache and the larger grids in which the

serial cache-based lattice Boltzmann code has reduced tile sizes relative to the parallel

cases. The cached Type B domain decomposition has better parallel speedup than the

cached Type A domain decomposition because of improved stride-one access. As shown

in Figure 3.11, for 1 to 4 processors, speedup for Type B domain decomposition is

approximately linear.

73

.

Figure 3.10. Parallel speedup for cached Type A domain decomposition

1 4 8 12 16 20 24

1

4

8

12

16

20

24

28

32

36

7200x7200

6000x6000

4800x4800

1200x1200

2400x2400

3600x3600

S
p

e
e

d
u

p

Number of Processors

74

Figure 3.11. Parallel speedup for cached Type B domain decomposition

1 4 8 12 16 20 24

1

4

8

12

16

20

24

28

32

36

7200x7200

4800x4800

1200x1200

6000x6000

2400x2400

3600x3600

S
p

e
e

d
u

p

Number of Processors

75

For greater than four processors, the speedup is generally superlinear with speedup being

approximately 28 for 24 processors. This superlinear behavior occurs in the larger grids

because the larger tile sizes permitted with the smaller subdomains are able to more than

compensate for the additional overhead associated with an increasing number of

processors. As in the Type A decomposition, the jump in the speedup for the 7200×7200

grid between 20 and 24 processors occurs because of the reduced performance of the

cached serial 7200×7200 case.

3.3.5 General Conclusions about the Cache Optimization

Speedups due to cache optimization were found to be 2.0 to 2.4 for the serial case

and 3.6 to 3.8 for the parallel case in which the domain decomposition was optimized for

stride-one access (Type B decomposition). Additionally, the cache-optimized LBM in

which the domain decomposition was optimized for stride-one access displayed

superlinear scalability on all problem sizes as the number of processors was increased.

The implementation of the basic lattice Boltzmann algorithm is the same for solving any

partial differential equation (PDE) on a uniform grid. The variables that change with each

case are the equilibrium distribution functions and the number of speeds (distribution

functions) associated with a node on the lattice.

3.4 Comparison of Lattice Boltzmann and Traditional Methods

To evaluate the LBM, it is compared to traditional finite difference methods with

regard to accuracy and compute time (on both serial and parallel machines). Both the

LBM and traditional methods are compared using the two-dimensional Burger’s

76

equation. Traditional explicit methods that solve convection-diffusion equations suffer

from a severely restricted time step on account of both convection and diffusion-related

stability criteria [36]. Therefore, their computational performance is not on par with

traditional implicit methods. The superiority of the alternating direction implicit (ADI)

scheme over traditional explicit schemes such as the DuFort-Frankel scheme for solving

the unsteady Burger's equation has already been demonstrated [44]. For this reason, the

LBM is compared to the ADI scheme. The LBM does not have as stringent a limitation

on time step size as the traditional explicit methods because LBM solves an advection

PDE without any diffusion terms (although nonlinear source terms are present). Both

implicit finite difference methods and the LBM have a similar time step size limitation

when solving unsteady flow problems. When solving steady flow problems with a time

marching method, traditional implicit finite difference methods such as the ADI scheme

outperform the LBM for low Reynolds number cases as they can take comparatively

large time steps. Both unsteady and steady flow cases have been tested in this study. The

results for the unsteady Burger’s equation will be presented first, followed by the results

for the steady two-dimensional Burger’s equation.

3.4.1 Test Problem

The two-dimensional Burger’s equation

 








∂

∂
+

∂

∂
=

∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

y

u

x

u

y

u
u

x

u
u

t

u
µ (3.48)

is solved on a square computational domain

 () () ()1,1,0,0 ≤≤ yx (3.49)

77

The exact solution is specified by the following equation:

 () ()
µ21

1
,,

tyx

e

tyxu
−+

+

= (3.50)

The above equation at 0=t specifies the initial condition. The boundary conditions are

also specified by the above equation and change with time. With this particular case, the

solution has a severe gradient close to the boundary (near left-bottom corner of the

computational domain; i.e., near (0,0)) for low-diffusion coefficients or high Reynolds

numbers)/1(Re µ= .

3.4.2 ADI Method

The ADI method for the two-dimensional Burger’s equation [36] is a time-

splitting scheme consisting of two substeps in a single time step. Consider an NN ×

square grid: for the first half time step N independent tridiagonal equations systems,

each system containing N unknowns in the horizontal direction, are solved using

Gaussian elimination. The second half time step solves for unknowns in the vertical

direction. The ADI scheme has second-order accuracy in both space and time [36]. Time

step size needs to be taken such that the truncation error will not be dominated by the

temporal component and so that accuracy will not decrease with every time step.

To implement an ADI solver for the two-dimensional Burger’s equation, the

following substeps are implemented at each time step. The computations are performed

on a grid of size NI × NJ with NI = NJ (uniform grid).

• Compute n

jiu , according to the given initial condition

• j = 1, 2, …, NJ (vertical direction)

78

• i = 1, 2, …, NI (horizontal direction)

• Compute the tridiagonal coefficient matrix (NI × NI) for each j (NJj ,...,1=) in

grid 1 (Figure 3.12a), and solve for the NI unknowns (includes boundary data)

using forward and backward elimination obtaining NJju
n

j ,...,1,2/1

*, =+ .

• Switch to grid 2 (Figure 3.12b), and compute the tridiagonal coefficient matrix

(NJ × NJ) for each i (NIi ,...,1=) and solve for the NJ unknowns (includes

boundary data) using forward and backward elimination obtaining

NIiu
n

i ,...,1,1

,* =+

• Replace 1+= nn
uu

Repeat the above steps in the time loop until final time is reached.

79

Figure 3.12. The Step 1 and Step 2 grids

80

3.4.3 Parallel ADI Method

In Section 3.4.2, the ADI method was implemented on a single processor. In this

section, a parallel version of the ADI method is implemented for distributed memory

systems. Parallelization of the ADI method is carried out using domain decomposition

[45]. The domain decomposition when four processors are utilized is shown in Figure

3.13.

The domain or grid size is NI × NI, with NI chosen to be divisible by the number

of processors p. With the given domain decomposition, the NI number of independent

linear equation systems are divided into p groups and the tridiagonal matrix from each

linear equation system is split vertically into p equal parts. Figure 3.13 shows the

subdomains associated with each processor. To solve for the unknowns, the processor

holding the topmost part of a tridiagonal matrix starts the forward elimination, and upon

completion, passes on the last equation or last row of the augmented matrix (coefficient

matrix + right-hand side vector) to the succeeding processor. The succeeding processor

continues the forward elimination. With the results of forward elimination obtained (an

upper triangular matrix), backward elimination for each tridiagonal matrix starts from the

processor holding the bottommost part of the tridiagonal matrix. Here, too, once a

processor finishes the backward elimination in the subdomain allotted to it, it passes the

last unknown variable computed to its preceding processor to continue the backward

elimination process. With this domain decomposition, each processor will stay busy

eliminating different parts in different groups of equation systems (Figure 3.14).

81

I

J

1

2

3

4

1

2

3

3

1

2

4

4

2

31

4

NI

NJ

Figure 3.13 Domain decomposition for parallel processing

82

1
I

J

2

3

4

1

2

3

3

1

2

4

4

2

31

4

Group 1 1

Group 2

Group 3

Group 4

4 procs 1st part 2nd part 3rd part 4th part

Processor 2

Forward elimination

Backward elimination

1st part of G2 3rd part of G4 4th part of G32nd part of G1

Figure 3.14. Parallel forward and backward elimination

83

After the first half step (Step 1), new data is available to form the equations for the

second half step (Step 2). The computation for the second half step proceeds in the same

way. With this division of the domain, only local communication between the left-right

(first half step) and top-bottom (second half step) neighbors is required. Communication

is required when a processor receives the last equation from the preceding processor or

when it sends its last equation to the succeeding processor during forward elimination

and when it sends or receives the computed unknown variable with the neighboring

processors. Also, communication is required at the beginning of each step for setting up

the tridiagonal coefficient matrices for the equation systems at the boundaries of the

subdomains (ghost regions).

3.4.4 ADI Algorithm and Cache Optimization

Using the ADI scheme, the largest square grid size that can be accommodated

within an 8 MB size cache is around 700×700. The ADI method is not suited for cache

optimization because of the global or non-local nature of the scheme. During each time

step, tridiagonal matrices are inverted using elimination along the length of the whole

domain. This precludes updating any single subsection of the domain separately, which

means data cannot be called from the cache repeatedly. For the parallel ADI scheme,

cache optimization can occur for the 1200×1200 grid size, since data involved in

computation fits into the cache when the number of processors is greater than 12.

84

3.4.5 Results

To test the computational efficiency, performance, and accuracy of the LBM

versus the ADI method, the following measurements are considered:

• Accuracy of both methods for various Reynolds numbers

• Speedup obtained through parallelization of both methods

• Ratio of compute times of the cache-optimized LBM and the ADI method on both

single and multiple processors

The results were computed on an SGI Onyx2
TM

, which is a shared memory

multiprocessing architecture with 24 processors, an 8 MB cache, and 512 MB of main

memory per processor. MPI was used as the message-passing library.

3.4.5.1 Accuracy

Accuracy has been measured using both 2L -norm error and infL or supremum-

norm error. These errors are calculated using the following formulas:

()

max

max

1

2

2
i

uu

NormL

i

i

exact∑
=

−

=−

vv

 (3.51)

 () max to1 max ,inf iiuuNormL iexacti =−=−
vv

 (3.52)

where max i is the total number of grid points. Accuracy is measured for results

computed at time = 0.216. The maximum value in the solution at time = 0.216 is unity.

The time step size for both methods was chosen to prevent temporal errors from

dominating the overall error. For the LBM, the time step size meets the stability criteria

(as specified in Section 3.1.5) in all cases. The ADI method requires the same time step

size as the LBM to maintain accuracy.

85

 Table 3.3 shows that the error increases progressively with an increasing

Reynolds number (inverse of diffusion coefficient) for both the lattice Boltzmann and

ADI methods. This is because the solution gradient becomes larger with an increasing

Reynolds number. The error for the ADI scheme is slightly lower than that for the LBM.

The errors for both methods appear to be converging to the same value as the viscosity

decreases. Another pattern that can be observed in Table 3.3 is that the time step size

required to maintain accuracy decreases with a decreasing Reynolds number. The LBM

uses first-order upwind differencing for the convection term of Equation 3.1, which

should result in first-order accuracy. However, second-order accuracy is obtained since

the first-order terms in the truncation error have been included as negative viscosity into

the overall viscosity (or diffusion coefficient) [41]. The overall order of accuracy

estimated using Ferziger’s [46] formula was around 1.95 for the numerical solution of

both methods.

3.4.5.2 Parallel Speedup

To assess the performance of the parallel LBM and parallel ADI methods, the

parallel speedup was measured. The number of grid points varied from 1200×1200 to

7200×7200. The computations were performed for 216 time steps. The parallel speedup

is defined as:

caseparallelfortimeCPU

caseserialfortimeCPU
SpeedupParallel

 = (3.53)

86

Table 3.3. L2-norm error and L-infinity or supremum norm error for LB and ADI

methods at different viscosities and grid sizes at time = 0.216

Reynolds number Final time

50 0.216

Grid Size Time step LB_L2_error ADI_L2_error LB_sup_error ADI_sup_error

1200 0.00004 5.93E-05 1.30E-05 5.05E-04 1.09E-04

2400 0.00001 1.48E-05 3.26E-06 1.26E-04 2.73E-05

Reynolds number Final time

500 0.216

Grid Size Time step LB_L2_error ADI_L2_error LB_sup_error ADI_sup_error

1200 0.0001 2.34E-04 1.86E-04 5.26E-03 4.17E-03

2400 0.00004 1.44E-04 7.48E-05 3.23E-03 1.68E-03

3600 0.00002 8.04E-05 3.75E-05 1.81E-03 8.43E-04

4800 0.00001 3.59E-05 1.88E-05 8.05E-04 4.21E-04

Reynolds number Final time

5000 0.216

Grid Size Time step LB_L2_error ADI_L2_error LB_sup_error ADI_sup_error

2400 0.0002 1.36E-03 1.07E-03 8.89E-02 6.74E-02

3600 0.0001 7.36E-04 5.77E-04 4.87E-02 3.70E-02

4800 0.00006 4.62E-04 3.57E-04 3.12E-02 2.35E-02

6000 0.00004 3.17E-04 2.41E-04 2.14E-02 1.62E-02

7200 0.00002 1.23E-04 1.23E-04 8.34E-03 8.24E-03

Reynolds number Final time

50,000 0.216

Grid Size Time step LB_L2_error ADI_L2_error LB_sup_error ADI_sup_error

3600 0.0001 3.40E-03 2.61E-03 0.37 0.31

4800 0.00008 2.17E-03 1.79E-03 0.23 0.213

6000 0.00006 1.36E-03 1.05E-03 0.187 0.138

7200 0.00004 1.06E-03 7.50E-04 0.14 0.1

87

Figure 3.15 shows the parallel speedup for the ADI method for grid sizes 1200×1200 to

7200×7200 respectively. The parallel ADI method approaches linear speedup for the

1200×1200 grid size, when the number of processors is greater than 12 and the grid size

for all cases is 7200×7200. As mentioned in Section 3.4.4, when grid size is 1200×1200

and the number of processors is greater than 12, the data on the processors fits into cache.

Hence, better speedup is obtained. With regard to the 7200×7200 case, speedup is good

because of poor performance of the single processor case. Figure 3.16 shows the parallel

speedup of the cache-optimized LBM. These speedups are super-linear in almost all

cases. The 1200×1200 case is an exception because there is not much computation to be

performed when number of processors increases.

3.4.5.3 Relative Speed

The compute time comparison for both the LBM and the ADI method is based on

the time taken to compute 216 time steps. Such a comparison is possible since both

methods obtain best possible accuracy with the same time step size (i.e., they take the

same number of time steps to reach the final time). Figure 3.17 shows the relative speed

of the cache-optimized LBM versus the ADI scheme. The LBM computation time is less

than the ADI computation time by a factor 8 to 8.5 for grids from 2400×2400 onwards

when the number of processors is greater than or equal to 8. For the single-processor

case, the relative speed varied from 4 to 6 for grid sizes from 1200×1200 to 6000×6000.

The 1200×1200 grid proved to be an exception when the number of processors is greater

than or equal to 12 because, as mentioned in Section 3.4.4, the subdomains in the parallel

88

ADI scheme could be accessed from the cache. Hence, the ADI method performed better

than usual.

1 4 8 12 16 20

1

4

8

12

16

20

24

28

32

36

7200x7200

4800x4800

1200x1200

6000x6000

2400x2400

3600x3600

S

p
e

e
d

u
p

Number of Processors

Figure 3.15. Parallel speedup of the ADI method

89

1 4 8 12 16 20

1

4

8

12

16

20

24

28

32

36

7200x7200

6000x6000

4800x4800

1200x1200
2400x2400

3600x3600

S
p

e
e

d
u

p

Number of Processors

Figure 3.16. Parallel speedup LBM

90

1 4 8 12 16 20

1

2

4

6

8

10

7200x7200

6000x6000

4800x4800

1200x1200

2400x2400

3600x3600
R

e
la

ti
v
e

 S
p

e
e

d
 (

A
D

I/
L

B
M

 -
 f

o
r

2
1

6
 t

im
e

 s
te

p
s
)

Number of Processors

Figure 3.17. Relative speed of LBM versus the ADI method

3.4.6 Conclusions from the Comparison Study for Unsteady Burger’s Equation

The LBM takes significantly less compute time (by a factor 8) for the unsteady

simulation when it can take the same time step as traditional finite difference methods

and not violate any stability criteria. It is expected that the LBM will perform far better

for time-marching Navier-Stokes simulations because conventional methods are required

to solve a Poisson equation at every time step for computing pressure, whereas the LBM

can explicitly calculate pressure from the density (sum of distribution functions).

91

However, to solve the Navier-Stokes equations, the LBM requires nine distribution

functions [35] at each grid point, which would mean greater memory requirements.

3.4.7 Test Case for a Steady Problem

The two-dimensional Burger’s equation

 








∂

∂
+

∂

∂
=

∂
∂

+
∂
∂

2

2

2

2

y

u

x

u

x

u
u

t

u
µ (3.54)

is solved on a square computational domain

 () () ()1,1,0,0 ≤≤ yx (3.55)

with the following initial and boundary conditions:

 () 0at
3

2
1,, =×







−= txtyxu (3.56)

 () 1,0at
1

exp2

1
exp2

,, ==
















 −
+
















 −
−

= yy
x

x

tyxu

µ

µ
 (3.57)

The analytical solution to the two-dimensional steady Burger’s equation with the above

boundary conditions is

 ()
















 −
+
















 −
−

=

µ

µ

1
exp2

1
exp2

,,
x

x

tyxu (3.58)

92

When the diffusion coefficient µ is small (< 0.002), a steep boundary layer is formed

along the right boundary.

3.4.8 Relative Performance of the LBM and the ADI Method

To evaluate the relative performance of the LBM and the ADI method, their

accuracy and compute times are compared for a Reynolds number of 5000. The results

were computed on an SGI Onyx2
TM

, which is a multiprocessing architecture with 24

processors, an 8 MB cache, and 512 MB of main memory per processor. MPI was used

as the message-passing library and Fortran 90 was the programming language.

3.4.8.1 Accuracy

The numerical solution is compared with the known analytical solution and,

therefore, accuracy has been measured using the 2L -norm error. The steady-state solution

was obtained through marching the equations of both methods in time until convergence.

The convergence criteria utilized with both methods would allow them to converge when

the absolute difference between the current time iteration’s L2-norm error and the

previous time iteration’s L2-norm error is less than 10e-6. For the LBM on a 4800×4800

grid, absolute difference was increased to 10e-7 to obtain better accuracy. From Table

3.4, it can be observed that the LBM has slightly better accuracy than the ADI method.

Increasing the grid size reduces the error in both cases. The increasing grid size or

decreasing grid spacing causes the LBM time step size to go down to keep the scheme

numerically stable. For a Reynolds number of 5000, the ADI time step size is 0.004 for

93

all grid sizes. Taking bigger time steps than 0.004 will not allow the ADI method to

converge or would require many more time iterations to converge.

3.4.8.2 Parallel Speedup

To assess the parallel performance of both methods, the parallel speedup was

measured. Here, the parallel speedup is defined as:

caseprocessorfortimeCPU

caseprocessorfortimeCPU
SpeedupParallel

 4

 4

>
= (3.59)

Table 3.5 shows the parallel speedup for the LBM and the ADI method for grid sizes

2400×2400 to 6000×6000, respectively. The parallel speedups of both methods are linear

to superlinear (for bigger grids), thus demonstrating the efficiency of the parallel

implementations. The superlinear speedup is achieved since the 4-processor case

performs poorly when data size increases to the level of the processor memory size.

3.4.8.3 Relative Speed

The relative speed is defined as the ratio of the computation times of the two

methods. Table 3.5 compares the computation times of the LBM with those of the ADI

method and Figure 3.18 represents the relative speed graphically. ADI computation time

is less than the LBM computation time by a factor 1.7 to 4.8 for grids ranging from

2400×2400 to 6000×6000. This is because the ADI scheme has a time step of 0.004 for

all grid sizes, whereas the LBM’s time step decreases with increasing grid size (shown in

Table 2). Therefore, the LBM takes more time iterations to converge. For grid sizes

2400×2400 to 6000×6000, the number of time iterations taken by the LBM is 6 to 30

94

times the number of iterations taken by the ADI scheme. This is reflected in the results

for relative speed.

3.4.9 Conclusion

From the above comparison, it is obvious that the ADI method outperforms the

LBM for solving steady state problems. The LBM performs poorly for steady state

problems mainly because it is an explicit method. This leads to small time steps and

slower convergence since information transfer across the whole domain does not occur

for a single time step.

Table 3.4. L2-norm error for Reynolds number 5000

Reynolds number

5000

Grid Size LBM time step LBM_L2_error ADI time step ADI_L2_error

2400x2400 0.0003 4.29E-04 0.004 2.83E-03

3600x3600 0.0002 1.98E-04 0.004 1.08E-03

4800x4800 0.00015 1.17E-04 0.004 5.65E-04

6000x6000 0.0001 6.39E-05 0.004 3.53E-04

95

Table 3.5. Parallel speedup for the LBM and the ADI method

CPUs LBM time step LBM CPU time LBM speedup ADI time step ADI CPU time ADI speedup

2400x2400 0.0003 0.004

4 650.67 1.00 385.47 1.00

8 314.24 2.07 186.46 2.07

12 218.00 2.98 121.82 3.16

16 157.10 4.14 91.20 4.23

20 128.61 5.06 76.15 5.06

3600x3600 0.0002 0.004

4 2201.60 1.00 892.07 1.00

8 1088.84 2.02 427.40 2.09

12 714.30 3.08 274.75 3.25

16 544.75 4.04 211.91 4.21

20 434.09 5.07 163.84 5.44

4800x4800 0.00015 0.004

4 5525.38 1.00 1660.33 1.00

8 2640.85 2.09 784.78 2.12

12 1688.02 3.27 507.03 3.27

16 1270.91 4.35 372.23 4.46

20 1004.00 5.50 308.76 5.38

6000x6000 0.0001 0.004

4 14799.98 1.00 3005.25 1.00

8 5881.04 2.52 1255.62 2.39

12 3990.84 3.71 806.91 3.72

16 2966.75 4.99 618.13 4.86

20 2325.58 6.36 493.52 6.09

96

4 8 12 16 20

1

2

3

4

5

6

6000x6000

4800x4800

2400x2400

3600x3600

R
e

la
ti
v
e

 S
p

e
e

d
 (

L
B

M
 C

P
U

 t
im

e
/A

D
I

C
P

U
 t

im
e

)

Number of Processors

Figure 3.18. Relative speed

97

CHAPTER 4.

IMPROVING THE PERFORMANCE OF THE LATTICE BOLTZMANN

METHOD FOR STEADY FLOW SIMULATION

When solving unsteady flow problems, both explicit and implicit time

discretization methods have a similar time step size limitation to maintain accuracy. This

contributes to the computational superiority of the lattice Boltzmann method (LBM) over

traditional methods for simulating unsteady flow fields since the LBM is an explicit

method and does not have to solve systems of simultaneous algebraic equations at each

time step, unlike the implicit finite difference methods. When solving steady flow

problems with a time marching method, traditional implicit finite difference methods

such as the alternating direction implicit (ADI) scheme outperform the LBM as they can

take comparatively large time steps. The explicit nature of the lattice Boltzmann

discretization limits the time step size, which is also limited by the Courant-Friedrichs-

Lewy (CFL) condition and local gradients in the solution, the latter limitation being more

extreme. Therefore, this chapter describes:

1. A new explicit discretization for the LBM that can perform simulations with

larger time step sizes

2. A coupled LBM-ADI scheme to solve the time-independent, two-dimensional

Burger’s equation

98

4.1 Improved LBM

In order to improve the time step size over the limits specified in the previous

section, a new explicit discretization will be employed on the discrete velocity Boltzmann

equation. In this discussion, the advection speed will not be constrained to equal space

discretization over time discretization. Using the explicit Euler/upwind discretization as

before (Chapter 3), the lattice Boltzmann equation would now be:

 () () () () () ()txftxfCFLtxxfCFLttxxf
eq

iiii ,,,1,
vvvvvv

⋅+⋅−+∆+⋅−=∆+∆+ ωω (4.1)

It is obvious that the computer implementation of this scheme would not be as efficient as

that of the original lattice Boltzmann scheme where CFL = 1. The CFL condition

(Equation 3.44) holds for the above equation as well. In the derivation of the CFL

condition, it was assumed that the finite difference stencil should cover the point B

(Figure 4.1) as well as the domain of dependence. Zhou et al. [47] proposed a method for

the one-dimensional advection equation where the above assumptions were discarded and

it was perceived that it was not important for the stencil to cover B , but for it to cover

B ’s domain of dependence (X). Determining the relative position of the stencil with

respect to B becomes the important issue.

99

Figure 4.1. Domain of dependence

It is important for the finite difference stencil to cover the point X , representing

the domain of dependence of B for a given time step size, to retain stability for the

discretized equations. To predict the relative location of the finite difference stencil with

respect to B , the following line of reasoning is used. In the case of the linear advection

equation, the solution translates with advection speed c without a change in shape.

Therefore, if X is the domain of dependence of B for a time step t∆ , the distance

between X and B in terms of grid units would be xtc ∆∆⋅ , which is the CFL number.

Considering that X would be between two grid points 1−j and j , and to predict the

grid point j for a given CFL number, the following steps are followed [47]:

 () ()CFLtruncCFLfracCFLtrunckj −=−= , (4.2)

100

where k represents the grid index of point B . The trunc function returns the integer part

of the CFL number and frac represents the fractional part of the CFL number.

 ()()
() n

j

n

j

n

j

n

j

n

j

n

X

n

k

ufracufrac

uufracu

uu

−+⋅=

−−+=

=

−

−−

+

1

1

1

11

1

 (4.3)

Xu is approximated by interpolating 1−ju and ju as shown above. With this scheme, the

finite difference stencil covers the domain of dependence.

The discrete velocity Boltzmann equation can be said to be composed of two

different parts, the advection part (left side) and the relaxation part (right side). By

splitting the discrete velocity Boltzmann equation into these two parts, we can apply the

above special discretization to the advection part and obtain the improved lattice

Boltzmann equation. The improved lattice Boltzmann equation is shown below for the 1f

distribution function, with jk , representing the respective indices (related to Equations

4.2 and 4.3) in the horizontal direction:

 () () () () () ()()tkftkftjffractjffracttkf eq ,1,1,1,1, 11111 −−−⋅−−⋅+⋅−=∆+ ω (4.4)

When CFL≤ 1, the above equation will be the same as the equation for the 1f distribution

function derived from Equation 4.1.

4.1.1 Improved Stability

The time step size and CFL number for the improved LBM (ILBM) go over their

previously defined limits. The results have shown that the maximum time step that can be

taken is twice as large as the time step taken by the previous implementation. This would

decrease by half the number of time iterations required to reach steady state. The CFL

101

number can go up to 1.75 compared to the previous implementation, where it was limited

to 1. Large local gradients inhibit the maximum time step size and CFL number for the

ILBM. Zhou et al. [47] performed a stability analysis of the new discretization when

applied to the one-dimensional advection equation.

4.1.2 Cache Optimization and Parallelization

The new implementation reduces computational efficiency per time step

compared to the original lattice Boltzmann implementation, because there are now five

two-dimensional arrays: the four distribution functions, and the macroscopic variable.

This will reduce the amount of data that is updated in the cache-based algorithm during

each time iteration. Extra communication is required in the parallel version to

communicate the macroscopic variable (u) values at the subdomain boundaries. An

expanded ghost region is also required for the distribution functions that need to be

communicated. The expanded ghost region arises because of the domain of dependence

lying within the neighboring subdomain, which requires the finite difference stencil to

cover grid points on the boundary as well as their near neighbors. For instance, when

21 << CFL , updating the ()ykf ,1 distribution function would require ()ykf ,11 − and

()ykf ,21 − . In the original LBM, the ghost region included only points on the subdomain

boundary; i.e., the updating of ()ykf ,1 distribution function required just ()ykf ,11 − and

therefore the parallel version required only near-neighbor communication.

Previously, the computation of the right side of the lattice Boltzmann equation

was of a local nature and, therefore, the right sides of all four equations were computed in

the same do-loop; this allowed all of the floating-point operations to be performed in a

single do-loop. However, now the computation of the right side involves adjacent grid

102

points as well. Therefore, the computations for each distribution function are performed

in separate do-loops. One other disadvantage is that the number of floating point

operations increase in ILBM computations.

4.1.3 Results

To test the computational efficiency, performance, and accuracy of the ILBM

versus the original LBM, the following measurements are considered:

1. Compute times and compute times ratios of the cache-optimized and parallel

versions of both methods, the ILBM and the original LBM

2. Speedup obtained through parallelization of the cache-optimized version of both

methods

3. Accuracy of both methods with their maximum possible time steps for certain

viscosities

4. Maximum time step and CFL number possible for various grid sizes using the

ILBM when the maximum local variation in the macroscopic field increases

The convergence criteria utilized on the ILBM would allow it to converge when the

absolute difference of the current time iteration’s L2-norm error and the previous time

iteration’s L2-norm error is less than 10
-6

. L2-norm error was calculated using the

following formula:

()

max

max

1

2

2

i

uu

NormL

i

i

exact∑
=

−

=−

vv

 (4.5)

where imax is the total number of grid points (imax = nx*ny). The original LBM usually

reaches convergence for the given criterion of 10
-6

 around the same or greater final time

103

as the ILBM. While computing the computation time results, the original lattice

Boltzmann algorithm has been executed for the same final time as required by the ILBM

algorithm to reach its convergence.

Table 4.1 compares the computation times of the ILBM with those of the original

LBM. The cases considered are grids ranging from 2400×2400 to 4800×4800, with a

Reynolds number of 500 (the Reynolds number here is the inverse of the given viscosity),

and the grid size 6000×6000 with a Reynolds number of 2000. The comparison has been

performed with cache-based, parallel algorithms. The number of processors ranges from

4 to 20. The ILBM can take a maximum time step that is twice as large as that allowed

for the original LBM with the same viscosity. For all cases, the ILBM was on average 1.7

times faster than the original LBM. The ILBM was not twice as fast as the original

method despite having a time step that was twice as large because of the extra memory,

message passing communication, and floating point operations associated with the ILBM,

as discussed in Section 4.1.2. Using 20 or more processors for the 2400 grid case does

not result in a comparable increase in performance because of less computational work

per processor. This results in a much lower relative speed than the average value. Another

cause for this is that the arrays belonging to the original LBM fit into cache for the 20-

processor case without any need for cache optimization (Chapter 3). This allows superior

performance as recorded by its superlinear speedup, which is not shared by its ILBM

counterpart, since it has more arrays that cannot fit into cache unless cache optimization

is utilized.

Table 4.2 shows the error associated with both methods. The first column

specifies the L2-norm error part I (the error associated with a convergence criterion of

104

10
-7

) of the original LBM. The second column represents the L2-norm error part II (the

error associated with a convergence criterion of 10
-6

) of the original LBM. This is the

error associated with having the same final time as the ILBM. The results shown for the

ILBM are the final converged results; i.e., the results will not change even with further

time iterations. The ILBM is less accurate than the original LBM. The modified lattice

Boltzmann equation has reduced the ILBM results to first-order accuracy.

105

Table 4.1. Relative performance of the ILBM versus original LBM

Grid LBM time step
LBM compute time

(seconds) ILBM time step
ILBM compute time

(seconds) LBM time / ILBM time

Re = 500

Nx = 2400 0.0003 0.0006

4 processors 640.97 363.85 1.76

8 processors 342.84 190.59 1.80

12 processors 223.93 128.08 1.75

16 processors 176.73 97.29 1.82

20 processors 124.41 85.99 1.45

Nx = 3600 0.0002 0.0004

4 processors 2211.16 1285.18 1.72

8 processors 1092.80 679.64 1.61

12 processors 738.10 442.46 1.67

16 processors 576.86 351.50 1.64

20 processors 447.36 275.00 1.63

Nx = 4800 0.00015 0.0003

4 processors 5559.69 3266.25 1.70

8 processors 2703.50 1550.04 1.74

12 processors 1711.07 1027.23 1.67

16 processors 1309.88 759.37 1.72

20 processors 1057.67 623.85 1.70

Re = 2000

Nx = 6000 0.0001 0.0002

4 processors 16546.68 10062.00 1.64

8 processors 5897.80 3469.89 1.70

12 processors 3834.37 2226.39 1.72

16 processors 2941.03 1741.27 1.69

20 processors 2435.38 1440.00 1.69

106

Table 4.2. L2-norm error for both methods

Table 4.3 shows the parallel speedup defined as:

caseprocessorfortimeCPU

caseprocessorfortimeCPU
SpeedupParallel

 4

 4

>
= (4.6)

The parallel speedup is linear or just under linear for the 2400×2400 and 3600×3600

grids for both the original LBM and ILBM cases with one exception: the 2400×2400 grid

on 20 or more processors. The cause for this is that the arrays on each processor

completely fit into cache without any need for cache optimization. The 4800×4800 and

6000×6000 grids show superlinear speedup for both the original LBM and ILBM cases.

The reason for the superlinear speedup is poor performance of the four-processor case,

since it has a greater amount of data per processor. This can be corroborated with the fact

that the 6000×6000 case has a higher superlinear speedup than the 4800×4800 case.

Table 4.4 lists the maximum CFL number and time step size allowed for the given

grids with the given Reynolds numbers. Higher Reynolds numbers result in greater local

gradients that do not allow the ILBM to succeed. The original LBM can still resolve these

greater local gradients.

Grid Size LBM_L2_error - I LBM_L2_error - II ILBM_L2_error

Re = 500

2400 5.07E-05 3.10E-04 3.85E-03

3600 4.52E-05 2.35E-04 2.18E-03

4800 4.38E-05 2.10E-04 1.63E-03

Re = 2000

6000 1.73E-05 1.71E-04 2.36E-03

107

4.1.4 Conclusions

The results indicate that the ILBM performs better than the original LBM method

for the given cases. For grids smaller than 6000×6000, the ILBM performs well only for

cases with Reynolds numbers less than or equal to 500. For the 6000×6000 grid, the

ILBM can perform well for Reynolds numbers up to 5000. The accuracy has been

reduced to first order for the ILBM.

108

Table 4.3. Parallel speedup of original LBM and ILBM

Grid LBM compute time ILBM compute time LBM speedup ILBM speedup

Re = 500

Nx = 2400

4 processors 640.97 363.85 1.00 1.00

8 processors 342.84 190.59 1.87 1.91

12 processors 223.93 128.08 2.86 2.84

16 processors 176.73 97.29 3.63 3.74

20 processors 124.41 85.99 5.15 4.23

Nx = 3600

4 processors 2211.16 1285.18 1.00 1.00

8 processors 1092.80 679.64 2.02 1.89

12 processors 738.10 442.46 3.00 2.90

16 processors 576.86 351.50 3.83 3.66

20 processors 447.36 275.00 4.94 4.67

Nx = 4800

4 processors 5559.69 3266.25 1.00 1.00

8 processors 2703.50 1550.04 2.06 2.11

12 processors 1711.07 1027.23 3.25 3.18

16 processors 1309.88 759.37 4.24 4.30

20 processors 1057.67 623.85 5.26 5.24

Re = 2000

Nx = 6000

4 processors 16546.68 10062.00 1.00 1.00

8 processors 5897.80 3469.89 2.81 2.90

12 processors 3834.37 2226.39 4.32 4.52

16 processors 2941.03 1741.27 5.63 5.78

20 processors 2435.38 1440.00 6.79 6.99

109

Table 4.4. Maximum time step and CFL number

4.2 Coupling LBM with the ADI method for solving the two-dimensional

Burger’s equation

Section 3.4.8 showed the ADI method to be superior to the LBM when solving

the steady Burger’s equation. As the grid resolution increases, the performance of the

LBM progressively decreases since the time step size decreases with grid spacing.

However, the LBM outperforms the ADI method and other traditional methods when

solving unsteady flows using Cartesian grids because the time step size is decided by

accuracy requirements and is usually lower than the time step size required for numerical

stability. The results from Section 3.4.5 showed the LBM to be faster than the ADI

method by a factor of 8 to 8.5 when solving the two-dimensional unsteady Burger’s

equation, where both methods possessed the same numerical time step size. Most fluid

flow problems possess rapid change in solution in narrow regions of the flow domain

Grid size Reynolds number Max CFL Max time step

2400 500 1.75 0.0006

 2000 1.5 0.0005

3600 500 1.75 0.0004

 2000 1.5 0.0003

 5000 1.4 0.0003

4800 500 1.75 0.0003

 2000 1.5 0.0002

 5000 1.4 0.0002

6000 5000 1.6 0.0002

110

(such as boundary layers). These singular layers can be localized in space by dividing the

computational domain into subdomains.

To adapt the grid to the behavior of the exact solution, greater grid resolution

(fine grids) is required in the subdomains containing the singular layers while the rest of

the subdomains can be discretized with coarser grids. This brings about an opportunity to

use explicit methods on the coarse grid region and an implicit method on the fine grid

region. The coarse grid allows the explicit method to take on bigger time steps that can be

equal to those of the implicit method. Based on these observations, a hybrid LBM-ADI

method is developed in this section to harness the computational efficiency of the LBM

and the faster convergence properties of the ADI method for solving steady flow

problems.

4.2.1 Applying the Hybrid Scheme to Burger’s Equation with Multiblock Grid

The steady two-dimensional Burger’s equation with the initial and boundary

conditions mentioned in Section 3.4.7 will be used as the test problem. In this problem,

there exists a steep gradient or boundary layer along the right boundary. A multi-block

Cartesian grid will be used to discretize the domain. A high-resolution grid block will

cover the region along the right boundary and a coarse grid block will cover the rest of

the domain as shown in Figure 4.1. The LBM will be applied on the coarse grid block

and the ADI method will be applied on the fine grid block. To enable transfer of

information between the two methods, the two grid blocks overlap at the interface.

111

4.2.2 Coupling Procedure

The coupling procedure should enable the matching of the solution between

adjacent subdomains. The Schwarz alternating method [48] is used as the coupling

procedure on overlapping subdomains. This leads to the following method for

communicating information between adjacent subdomains:

1. The variables on the coarse grid block are updated using the LBM. The

distribution functions on the interface boundary of the coarse grid are computed

from the macroscopic variable (u) at the corresponding position in the

neighboring fine grid block.

2. The ADI solver computes the macroscopic variable in the fine grid region

covering the boundary layer. The interface boundary conditions are specified

using the macroscopic variables computed in Step 1 at the corresponding coarse

grid locations. Since the grid spacing for both blocks is different, linear

interpolation is performed to obtain the interface boundary conditions at the fine

grid points that do not have a corresponding coarse grid point.

As outlined in the above two steps, the coupling procedure essentially consists of

solving two Dirichlet problems on overlapping subdomains. With the traditional Schwarz

alternating method, Steps 1 and 2 have to be executed alternately until the difference

between the current solution and the solution from the previous iteration on the interface

boundary of each grid block is less than a given tolerance. This procedure occurs at very

time step. But to make full use of the cache-efficient nature of the LBM, both Steps 1 and

2 need to be executed separately for a certain number of time steps with the same

112

interface boundary conditions. There are two strategies that can be adopted for making

use of the LBM’s cache-efficient nature. One strategy is to separately execute Steps 1 and

2 for tdiv number of time steps (Section 3.2), and then update the interface boundary

conditions before proceeding to the next installment of tdiv time steps until the

convergence criteria for the Schwarz alternating method is achieved. This procedure will

be carried on until the steady state conditions are reached. A high-level description of this

strategy (termed Strategy 1) is given below.

1Ω
2Ω

1Γ2Γ

0 1

overlap region

Figure 4.1. Overlapping grids

Let 1Ω , 2Ω represent the two overlapping grid blocks (or subdomains), and 1Ω∂ , 2Ω∂

represent their boundaries. The part of 1Ω∂ lying in 2Ω is represented with 1Γ (artificial

113

boundary or internal boundary or interface boundary of 1Ω). Likewise, 2Γ represents the

interface of 2Ω .

1. Initialize the distribution functions on 1Ω and the macroscopic variable on 2Ω

2. Loop for all time steps (until final time or until steady state conditions are reached

in the whole domain)

2.1. Loop for Schwarz iterations (to update interface boundary conditions until

they do not change significantly)

a. Distribution functions| 1Γ are computed using u| 2Ω near 1Γ

b. Loop for tdiv number of time steps (for LBM cache optimization)

c. Update distribution functions on 1Ω using LBM (boundary conditions

remain unchanged)

d. End loop for tdiv time steps

e. Compute u| 2Γ from the distribution functions| 1Ω near 2Γ

f. Loop for tdiv number of time steps (so that 2Ω will have the same final

time as 1Ω)

g. Perform ADI computations to update u on 2Ω (boundary conditions

remain unchanged)

h. End loop for tdiv time steps

2.2. Loop ends for Schwarz iterations when the solution on both interface

boundaries does not change significantly with the next iteration

3. End loop for all time steps when steady state solution is reached

114

The second strategy is to execute Steps 1 and 2 independently without updating

the interface boundary conditions or communicating any information between the

subdomains until steady state conditions are reached in the respective subdomains. After

this, the Schwarz alternating method is applied so that Steps 1 and 2 are executed

alternately and the interface boundary conditions are updated accordingly until the

solution at both interface boundaries does not change significantly with new Schwarz

iterations or updates. A high-level description for this strategy (termed Strategy 2) is

given below.

1. Initialization of the distribution functions on 1Ω and the macroscopic variable on

2Ω

2. Loop for time stepping until steady state conditions are reached in 1Ω (keeping the

same boundary conditions)

3. Loop for time stepping until steady state conditions are reached in 2Ω (keeping the

same boundary conditions)

4. Loop for Schwarz iterations (to update interface boundary conditions until they do

not change significantly)

a. Distribution functions| 1Γ are computed using u| 2Ω near 1Γ

b. Update distribution functions on 1Ω using the LBM (boundary conditions

remain unchanged)

c. Compute u| 2Γ from the distribution functions| 1Ω near 2Γ

d. Perform ADI computations to update u on 2Ω (boundary conditions remain

unchanged)

115

5. Loop ends for Schwarz iterations when the solution on both interface boundaries

does not change significantly with the next iteration

4.2.3 Parallel Implementation

The coupled LBM-ADI method is implemented on a parallel computer with the

parallel LBM and the parallel ADI method being executed alternately using the Schwarz

method. Figure 4.2 shows the parallel domain decomposition for the respective solvers.

At the beginning of each Schwarz step, information needs to be transferred from one grid

block to the other. This requires global communication using mpi_scatter when

transferring information from the lattice Boltzmann grid block to the ADI grid block or

mpi_gather when transferring information from the ADI grid block to the lattice

Boltzmann grid block.

4.2.4 Method for Comparison

The LBM-ADI method is a coupled explicit-implicit method. To quantify its

computational performance and accuracy, it should be compared with traditional finite

difference methods that are applied over the whole domain. The LBM-ADI method is

compared with the ADI method implemented on the multiblock grid (ADI-ADI method).

The ADI-ADI procedure implements the ADI method separately on all grid blocks in the

domain. The coupling procedure described in Section 4.2.2 is therefore also applied here.

In the parallel implementation, the communication between the two subdomains is non-

global, unlike the coupled LBM-ADI method.

116

4.2.5 Results

The computations were performed on an SGI Onyx 2 using 20 processors. The

results were computed for a Reynolds number of 50,000. The gradient covers the region

from x = 0.9996 to x = 1.0. The region x = 0.9875 to x = 1.0 along the right boundary

was meshed with a 480 × 38401 grid block and the rest of the domain was meshed with a

2380 × 2401 grid block. The refinement factor between the two grid blocks is 1:16; i.e.,

grid spacing for the coarse grid block (LBM) is 16 times the grid spacing for the fine grid

block (ADI method).

1 2 3 4

3

1

2

4 1

2 3 4

4

4

2

3

1

1

2 3

1Ω 2Ω

Figure 4.2. Domain decomposition for the parallel LBM and parallel ADI methods

At a Reynolds number of 50,000, the biggest time step that the ADI method can take is

0.0002. Computational experiments found that using a time step greater than 0.0002 for

the ADI scheme at Re = 50,000 makes it take considerably longer to converge, if it

117

converges at all. The LBM can take a time step of 0.0002 since the grid spacing for the

coarse grid block is 0.000416 (Section 3.1.5). Table 4.5 shows the 2L -norm error and

computation time for the LBM-ADI method and the ADI-ADI method. The error in the

fine grid block covering the boundary layer subdomain is the same for both methods,

since the ADI method is solving this region. The error differs slightly for the two

strategies. The results for Strategy 1 will be outlined first.

 For Strategy 1, the total ADI-ADI CPU time when using 20 processors is 6634

seconds. The LBM-ADI CPU time is 5387 seconds. Here, the time spent on parallel

communication is included with the CPU time. The total number of grid points

discretizing the whole domain is 24.1 million (Table 4.5). The coarse grid has 23.66% of

the total number of grid points. This percentage will provide an estimate of the CPU time

appropriated to the coarse grid block and the fine grid block for computations of the ADI-

ADI method using Strategy 1. The CPU time spent on the coarse grid is 1570 seconds

(23.66% of 6634). Therefore, CPU time for the fine grid block is 5064 seconds.

118

Table 4.5. Results using Strategy 1

Since the LBM-ADI method completes the same number of iterations for convergence as

the ADI-ADI method, both methods will share the same CPU time for the fine grid block

(the difference in parallel communication times between the subdomains for the two

methods is neglected). This allows an estimate of the CPU time spent on the coarse grid

block for the LBM-ADI method, where the LBM is in operation. This estimate is 323

seconds. This shows that although the LBM-ADI method reduces the overall computation

time by a factor 1.23, the coarse grid block is reduced by a factor 4.86. It is expected that

an increase in the subdomain size covered by the coarse grid block relative to the fine

grid block will reduce the overall computation time by a bigger factor because there will

be an increase in the percentage of the computation performed by the LBM. The overall

CPU time reduction factor is small (1.23) because the distribution functions are updated

alternately with the variables in the ADI method when using Strategy 1. Therefore, the

Grid points (total) Coarse grid block points Fine grid block points

2.41E+07 5.71E+06 1.84E+07

ADI-ADI CPU time CPU time on coarse grid CPU time on fine grid

6634 seconds 1570 seconds 5064 seconds

ADI-ADI error L2-norm error on coarse grid L2-norm error on fine grid

 3.32E-08 2.59E-03

LBM-ADI CPU time CPU time on coarse grid CPU time on fine grid

5387 seconds 323 seconds 5064 seconds

LBM-ADI error L2-norm error on coarse grid L2-norm error on fine grid

 1.48E-09 2.59E-03

119

LBM is unable to realize its full computational efficiency, which is possible if the

distribution functions were the only data being updated.

Using Strategy 2, the LBM-ADI method is 4.5 times faster than the ADI-ADI

method; i.e., CPU time reduction factor is 4.5 (refer to Table 4.6) This increase in the

reduction factor relative to Strategy 1 is mainly due to the LBM being allowed to update

the information on the coarse grid subdomain until steady state conditions are achieved in

that region without communicating with the neighboring subdomain; i.e., the LBM no

longer alternates with the ADI method for the majority of the computations.

120

Table 4.6. Results using Strategy 2

Table 4.6 shows the total number of iterations for convergence to steady state on the two

subdomains and the number of Schwarz iterations for convergence on the interface

boundaries. The LBM-ADI method reduces the CPU time spent on the coarse grid by a

factor of 7.8 relative to the ADI-ADI method (Table 4.6). This is to be expected since the

LBM is 8 times faster than the ADI method when the number of iterations is similar

(Section 3.4).

4.2.6 Conclusions

From the results for both strategies, it is expected that an increase in the size of

the region represented by the LBM will result in increased reduction in the CPU times

Grid points
(total) Coarse grid block points Fine grid block points

2.41E+07 5.71E+06 1.84E+07

ADI-ADI
Method Coarse grid iterations Fine grid iterations Schwarz iterations

 4679 111 311

Total CPU
time CPU time on coarse grid CPU time on fine grid CPU time for Schwarz iterations

1888.32
seconds 1355.72 seconds 121.08 seconds 411.19 seconds

ADI-ADI error L2-norm error on coarse grid L2-norm error on fine grid

 7.90E-06 3.06E-03

LBM-ADI
Method Coarse grid iterations Fine grid iterations Schwarz iterations

 4968 121 98

Total CPU
time CPU time on coarse grid CPU time on fine grid CPU time for Schwarz iterations

419.31
seconds 173.07 seconds 132.12 seconds 113.64 seconds

LBM-ADI
error L2-norm error on coarse grid L2-norm error on fine grid

 1.14E-06 2.59E-03

121

relative to traditional methods. The results presented here were for steady state problems.

The methods outlined above can also be used for numerical solution of unsteady flow

fields. In certain cases where very high grid resolution is required in resolving boundary

layers, the time step size for the LBM may be below the time step size required for time

accuracy. Therefore, an implicit method can be used in the boundary layer subdomain,

while the LBM can be used in the outer subdomain for unsteady flows. When using the

coupled LBM-ADI method for unsteady flows, Strategy 1 is the viable choice.

122

CHAPTER 5.

COUPLED LBM–TRADITIONAL METHODS FOR INCOMPRESSIBLE

FLOW PROBLEMS

From Chapter 4, it can be seen that using multiple solvers on a multiblock grid is

efficient since certain solvers are more suited for computing certain regions of the flow

domain. This chapter presents a multiblock, multi-solver technique for solving

incompressible flow problems. The lattice Boltzmann method (LBM) and traditional

finite difference methods are coupled to solve the backward facing step flow problem and

the flow-around-cylinder problem.

In the backward facing step flow problem, the region near the corner or separation

point requires a high-resolution grid to identify/resolve the recirculating eddies near the

bottom of the step. The LBM is computationally efficient relative to traditional methods

when solving time marching problems given that the time step size is similar for both

methods. When using a multiblock arrangement, the LBM can possess the same time step

size as traditional finite difference methods over some grid blocks. This means that the

LBM is a better choice for solving in those grid blocks. In grid blocks where the LBM

time step size is significantly less compared to traditional methods, the latter should be

used as the solver.

5.1 LBM for Navier-Stokes Equations

The previous chapters used the LBM for two-dimensional Burger’s equation to

prove its computational superiority. Here, the LBM for Navier-Stokes equations will be

123

formulated. The LBM for the two-dimensional Navier-Stokes equations uses nine

distribution functions at each point in the grid (Figure 5.1). One of the nine distribution

functions possesses a zero velocity.

ccc

ccc

ccc

ccc

cc

cc

cc

cc

c

−+=

−−=

+−=

++=

−=

−=

+=

+=

=

 ,

 ,

 ,

 ,

 0,

0 ,

 0,

0 ,

0 ,0

8

7

6

5

4

3

2

1

0

r

r

r

r

r

r

r

r

r

 (5.1)

 txc ∆∆= / (5.2)

where t∆ is the numerical time step and x∆ is the spatial discretization.

5.1.1 Relating the Lattice Boltzmann Equation to the Navier-Stokes Equations

The incompressible Navier-Stokes equations can be derived from the lattice

Boltzmann equation (Equation 3.2) using a multiscale expansion [35]. The two-

dimensional incompressible Navier-Stokes equations are presented in vector form:

 () upuuu

u

t

vvvv

v

21

0

∇+∇−=∇+∂

=⋅∇

ν
ρ

 (5.3)

The dependent variables in the Navier-Stokes equations are defined in terms of the

distribution functions),(txf i

v
 and the viscosity is related to the collision frequency. The

density is defined as

 () () 8,...0 ,, == ∑ itxftx
i

i

vvρ (5.4)

124

The pressure can be computed using the density as

ρ2

scp =

Where sc is the speed of sound and is given by
3

c
cs =

Figure 5.1. Schematic of a nine-speed lattice Boltzmann model

The momentum density is defined as follows:

 () () () 8,...0 ,,, == ∑ itxfctxutx
i

ii

vvvvvρ (5.5)

The equilibrium distributions have been defined as follows [35]:

125

()

()
8,7,6,5

2

3

2

9
31

36

1

4,3,2,1
2

3

2

9
31

9

1

0
2

3
-1

9

4

2

2

4

2

2

2

2

4

2

2

2

2

=











−

⋅
+

⋅
+=

=











−

⋅
+

⋅
+=

=







=

i
c

u

c

uc

c

uc
f

i
c

u

c

uc

c

uc
f

i
c

u
f

iieq

i

iieq

i

eq

i

vvvvv

vvvvv

v

ρ

ρ

ρ

 (5.6)

For more accurate computation of steady flows, the equilibrium distribution functions

have been modified slightly [49].

The kinematic viscosity is defined as

 






 −∆=
2

11

3

1 2

ω
ν tc . (5.7)

5.1.2 Lattice Boltzmann Algorithm

To implement an explicit time marching lattice Boltzmann solver, the following

substeps are required at each time step:

1. Using the initial u
v

, calculate the equilibrium distributions (Equation 5.6) and set

eq

ii ff = for the first time step

2. Compute the right-hand side (RHS) of the lattice Boltzmann equation (Equation

3.2), called collision substep, and propagate the result to the nearest neighbor

nodes obtaining ()tttcxf ii ∆+∆+ ,
rr

. The unknown distribution functions at the

boundary are computed using non-equilibrium distribution functions or

bounceback conditions (specified in the next section)

3. Update the density and the momentum density from the new distributions

according to the given definitions (Equations 5.4 and 5.5)

126

Start the next time step with the calculation of new equilibrium distributions using the

new macroscopic variables (Equation 5.6) and proceed with Step 2 of the algorithm.

Follow this procedure until the final time is reached.

5.1.3 LBM for Backward Facing Step Flow

The backward facing step flow geometry is shown in Figure 5.1. The figure

shows solid walls at boundary B1, the step wall, and at B2 and B3, the base wall and the

upper wall. The no-slip boundary conditions at the walls are imposed through the

bounceback boundary conditions [35]. Here, the collision step is not performed at the

walls, whereas the propagation step is still implemented. The implementation of the

propagation step for some of the distribution functions on the walls requires information

from outside the domain and therefore they remain unknown. Following the propagation

step, these unknown if are assigned the value of the if of the opposite direction. For

instance, at a point on the upper boundary, the unknown distribution functions are 4f ,

7f , and 8f . Therefore, on the upper wall:

() ()
() ()
() ()jifjif

jifjif

jifjif

,,

,,

,,

68

57

24

=

=

=

 (5.8)

127

Reattachment point

Recirculation zone

Umax

Xr

h

H

B1

B2

B3

B5

B4

Figure 5.2. Schematic of backward step flow geometry; Xr is the re-attachment

length and h is height of the backward step.

Assigning the inflow and outflow boundary conditions in the lattice Boltzmann algorithm

requires a different methodology. In traditional CFD methods, the initial and boundary

conditions are specified in terms of the momentum or pressure variables. To obtain the

initial and boundary conditions in terms of the distribution functions, an inverse mapping

between the distribution function and the macroscopic variable (a direct mapping being

Equations 5.4 and 5.5) is required. The distribution functions at the inflow and outflow

are defined as the equilibrium distributions or the sum of equilibrium distributions and a

non-equilibrium term such as:

 neq

i

eq

ii fff += (5.9)

Skordos [37] obtained the non-equilibrium distributions for a seven-speed LBM using a

multiscale expansion. For the nine-speed lattice Boltzmann model for the Navier-Stokes

equations, these can be given in tensor form as:

128

0 0

8,6
12

1

7,5
12

1

4,3,2,1
3

1 2

2

==

=










∂

∂
⋅

∆
=

=










∂

∂
⋅

∆
−=

=








∂

∂
⋅

∆
−=

if

i
x

ut
f

i
x

ut
f

i
x

u
c

c

t
f

neq

i

neq

i

neq

i

i

neq

i

β

α

β

α

α

α
α

ω

ω

ω

 (5.10)

Equation 5.10 can also be used for specifying boundary conditions at the walls. The

density at the outlet (B5) is fixed, whereas the density at the inlet (B4) is extrapolated

from density values within the flow domain. The velocity at the inlet is given by the

problem-specified parabolic profile and it remains constant throughout the time marching

to steady state conditions. The velocity at the outlet is defined such that there is zero

velocity gradient at the outlet.

5.1.4 Stability of LBM for Backward Facing Step Flow

Computer experiments have shown that the time step is limited to a little over

one-fourth of the spatial discretization when solving the backward facing step flow for

the given parameters. The reason for this is the requirement to have a low Mach number

(cu
r

) for the simulation. A high Mach number results in compressibility errors since the

multiscale expansion that relates the LBM to the Navier-Stokes equations assumes a

small Mach number.

5.1.5 Cache Optimization of LBM for Navier-Stokes Equations

The LBM for the two-dimensional incompressible Navier-Stokes equations uses

nine distribution functions, each requiring a two-dimensional array. Considering an 8 MB

129

cache on a single processor, the biggest square grid size that can be accommodated

within the cache for repeated use is around 250×250, since

 MB4.4elements/bytes 8elements 250arrays 9 2 =×× . (5.11)

On a single processor, grid sizes that are larger than 250×250 can be accommodated in

the cache by dividing the grid into subsections that can fit in cache and applying the

cache optimization algorithm mentioned in Section 3.2.

5.2 Vorticity-Stream Function Formulation

The vorticity-stream function method is a simple and efficient traditional

procedure for solving two-dimensional incompressible flow problems [50]. It consists of

a vorticity transport equation and a Poisson equation for the stream function that allows

the stream function to automatically satisfy the conservation of mass constraints:

 








∂

∂
+

∂

∂
=

∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

yxy
v

x
u

t

ζζ
ν

ζζζ
 (5.12)

 ζ
ψψ

−=
∂
∂

+
∂
∂

2

2

2

2

yx
 (5.13)

The vorticity is defined as:

y

u

x

v

∂
∂

−
∂
∂

=ζ (5.14)

and the velocity components are defined in terms of the stream function as:

x
v

y
u

∂
∂

−=

∂
∂

=

ψ

ψ

 (5.15)

The solution for these equations is computed using a time marching procedure [50]:

130

1. Assign initial and boundary values to ψ , and ζ at all grid points

2. A finite difference analog of the vorticity transport equation is used to calculate

the vorticity at the next time level, tt ∆+

3. The Poisson equation is solved using a cyclic reduction technique with the new

interior values of the vorticity in the source term of the equation

4. The new velocity components are calculated from the stream function

5. The final step is to update the boundary values of the vorticity from the new ψ at

the neighboring interior points

This computational procedure is repeated from step 2 onwards until the convergence

criteria are met.

5.2.1 Numerical solution

The diffusion terms on the RHS of Equation 5.12 were discretized using central

differences. The spatial derivatives in the convection terms of the vorticity transport

equation were initially discretized using central differences. However, this discretization

was numerically unstable for higher grid resolution and higher Reynolds numbers due to

loss of diagonal dominance in the matrix obtained from the discretization. Consequently,

a first-order upwind difference scheme was adopted for the convection terms. To obtain a

tridiagonal representation of the matrix resulting from applying the discretization at all

grid points, a time splitting technique (the alternating direction implicit scheme or ADI

scheme) was implemented. The forward Euler discretization of the time derivative was

split into two parts; i.e., two half-steps are performed to advance one time step. The finite

difference analog is given below:

131

() ()

() () 










∆
+

∆
=

∆

∇
+

∆

∇
+

∆

−












∆
+

∆
=

∆

∇
+

∆

∇
+

∆

−

++++++

+++

2

1

,

2

2

21

,

21

,

,

21

,

,

21

,

1

,

2

,

2

2

21

,

2

,

,

21

,

,

,

21

,

2

 :2 Step

2

 :1 Step

yxy
v

x
u

t

yxy
v

x
u

t

n

jiy

n

jix

n

jiyn

ji

n

jixn

ji

n

ji

n

ji

n

jiy

n

jix

n

jiyn

ji

n

jixn

ji

n

ji

n

ji

ζδζδ
ν

ζζζζ

ζδζδ
ν

ζζζζ

(5.16)

The operators x∇ and y∇ represent backward differencing while 2

xδ and 2

yδ represent

central differencing. The upwind differencing will be a backward difference if the

advection coefficients are positive or a forward difference if the advection coefficients

are negative. Considering positive jiu , and jiv , , the operators are defined as follows:

1,,1,,

2

,1,,1,

2

1,,,

,1,,

2

2

−+

−+

−

−

+−=

+−=

−=∇

−=∇

jijijijiy

jijijijix

jijijiy

jijijix

ζζζζδ

ζζζζδ

ζζζ

ζζζ

 (5.17)

 Applying step 1 and step 2 in equation 5.16 to all the grid points in the flow domain

results in tridiagonal systems of linear algebraic equations. First, the equations resulting

from step 1 are solved to obtain the vorticity at time level 2/1+n . To do this, a

tridiagonal matrix is solved for each j row of points. The vorticity at time level 2/1+n is

used in the discretization of step 2. During step 2, a tridiagonal matrix is solved for each i

row of grid points, obtaining the vorticity at time tt ∆+ for all interior grid points. On an

NN × square grid, both half time steps consist of Gaussian elimination computations for

solving N independent tridiagonal equation systems, each system containing

N unknowns.

The Poisson equation for the stream function is solved using FISHPACK [51].

FISHPACK uses a five-point finite difference approximation to the stream function

equation (Equation 5.13) and solves the resulting algebraic equations using the cyclic

132

reduction techniques. The FISHPACK solver allows the specification of both Dirichlet

and Neumann boundary conditions.

5.2.2 Boundary Conditions for the Stream Function and the Vorticity

The stream function is taken as zero for the step wall and the base wall (B1 and

B2); i.e., 1Bψ and 2Bψ = 0. The stream function at the inlet (B4) is specified such that a

parabolic velocity profile is obtained for the horizontal velocity component, u , while the

vertical velocity component is zero. The following analytical expression is used for the

stream function at the inlet:

 () 







+−+−=

6

5
2

2

3

32

23

4,1 y
yyK

Bj ν
ψ (5.18)

where K is a constant, ν is viscosity and y is the vertical distance from the base.

Equation 5.18 is applied only at the beginning of the time marching procedure. For

subsequent time step computations, the stream function at the inlet is defined as follows

to avoid instability:

 () ()
3

4 ,3,2

4,1

jj

Bj

ψψ
ψ

−
= (5.19)

The above expression states that the horizontal gradient of the stream function is zero,

which means the vertical velocity component is zero at the inlet. The stream function for

the upper boundary (whose j grid index is ny) is taken as equal to the stream function

value at the inlet, thereby indirectly stating that the vertical velocity component is zero on

B3 since the horizontal gradient in the stream function on B3 is zero:

 nynyi ,1, ψψ = (5.20)

133

The stream function at the outlet, B5 (whose i grid index is nx), is extrapolated from the

interior points so as to provide outflow boundary conditions that have zero horizontal

gradient for the vertical velocity component.

 ()
jnxjnxjnx

B
x

,2,1,

5

2

2

2or 0 −− −==








∂

∂
ψψψ

ψ
 (5.21)

The wall vorticity conditions are defined using the stream function values at and near the

wall. The vorticity boundary conditions at the step wall are:

 () ()
() ()2

,2

2

,2,1

1,1

22

xx

jjj

Bj
∆

−=
∆

−
=

ψψψ
ζ (5.22)

The vorticity at the separation point or corner point (grid indices, jcji == ,1) is

specially handled [50]

() ()2

,2

2

1,1

,1

22

xy

jcjc

jc
∆

−
∆

−= + ψψ
ζ (5.23)

The vorticity conditions at the base wall and the upper wall are given as:

()
()

()
()2

1,,

,

2

2,1,

1,

2

2

y

y

nyinyi

nyi

ii

i

∆

−
=

∆

−
=

−ψψ
ζ

ψψ
ζ

 (5.24)

The vorticity at the inlet, B4 is defined as:

()

()
()

()y
K

yy

u

xxx

v

y

u

x

v

BB

jjj

BB

BB
Bj

23
2

2

4

2

2

4

2

,3,2,1

4

2

2

4

44
4,1

−=








∂
∂

=








∂
∂

∆

+−
−=









∂
∂

−=







∂
∂










∂
∂

−







∂
∂

=

ν
ψ

ψψψψ

ζ

 (5.25)

The vorticity outflow conditions are:

134

 jnxjnx ,1, −= ζζ (5.26)

5.2.3 Vorticity-Stream Function Method and Cache Optimization

The largest square grid size that can be accommodated within an 8 MB size cache

(where only 4 MB is available for repeated use) is around 450×450. This is because there

are only three two-dimensional arrays in this method: the vorticity arrays at the two time

levels and the stream function array. For bigger grids, the vorticity-stream function

method is not suited for cache optimization due to the global nature of the Gaussian

elimination computations for the vorticity transport equation and the cyclic reduction

technique for the Poisson equation. During each time step, tridiagonal matrices are

inverted using elimination along the length of the whole domain. Due to this, sections of

the domain cannot be updated separately, which means data cannot be called from the

cache repeatedly.

5.3 Numerical Performance

To compare the performance of the LBM and the vorticity-stream function

method, the computation time and accuracy of both methods is evaluated. The results are

computed on an SGI Onyx2
TM

 with 8 MB cache and 512 MB main memory per

processor. Fortran 90 was the programming language.

The maximum velocity 1max =U , the step height = h , the downstream channel

width is H , resulting in an expansion parameter hHr = , and the recirculation length of

the primary vortex, or in other terms the reattachment length, is rX . The downstream

boundary is located at hx 30= . Two cases were evaluated for the computation times of

135

both methods. In the first case, computations were performed for a Reynolds number of

150. The second case was for a Reynolds number of 500 and step height. The expansion

ratio for both cases was 1.96. The Reynolds number is defined as:

ν3

4
Re max hU

= (5.27)

5.3.1 Accuracy

To ascertain the accuracy of the LBM and the vorticity-stream function method,

the reattachment length behind the step is used as a reference. Increasing the Reynolds

number leads to an increase in the reattachment length. To show this relationship, Figure

5.3 plots the (normalized) reattachment length divided by the length of the domain on the

vertical axis against the Reynolds number on the horizontal axis. These results were

obtained from Armaly et al. [52].

For test case 1, the grid sizes that were tested and the resulting reattachment

length are given in Table 5.1. For the lower grid resolution case where the grid spacing is

05.0=∆x , the reattachment length for the vorticity-stream function method (represented

as VSM in the table) is lower than the experimental values that give a reattachment

length near 4 [52]. This is due to the first-order upwind discretization of the spatial

derivatives, which leads to results of first-order accuracy. The 05.0=∆x grid spacing is

unable to resolve the secondary vortex or recirculating eddy at the bottom of the step

since the region containing this structure is from 0 to 0.1 in the x direction and 0 to 0.1

in the y direction (Figure 5.4). The next two higher-grid resolutions for the vorticity-

stream function method give accurate reattachment length results and also capture the

structure of the secondary vortex at the bottom of the step. The vorticity-stream function

136

computations were performed until a final time of 76.0 (the term “final time” here is the

total number of iterations multiplied by the numerical time step and is, therefore,

dimensionless) was reached. The flow structure remained unchanged with further

iterations. For the grid size 3001×201 (01.0=∆x), 19000 iterations were performed to

reach the final time since the time step size is 0.004.

The largest grid spacing (05.0=∆x) in Table 5.1 gives an LBM reattachment

length that is the same as experimental results [52]. The reattachment length given by the

LBM increases slightly with increasing grid resolution. The LBM resolved the primary

recirculating region and gave the correct reattachment length at a final time 76.0, but

failed to resolve the secondary vortex at the bottom of the step at this final time.

However, with further iterations up to a final time of 156.0 (which is equivalent to a total

number of iterations of 39000 for 01.0=∆x), the LBM was able to resolve this

secondary vortex. The reason for the LBM taking up more iterations than the vorticity-

stream function approach, despite both approaches possessing the same time step size,

presumably lies in the LBM’s explicit computational nature. The explicit computational

nature precludes obtaining information from the whole computational domain as done by

implicit methods.

Table 5.1. Re = 150, reattachment length

grid spacing grid size Xr for LBM Xr for VSM

0.05 601x41 4.2 3.6

0.02 1501x101 4.25 4.05

0.01 3001x201 4.30 4.0

137

Test case 2 consists of results for Reynolds number 500 (Table 5.2). Armaly et al.’s

results (Figure 5.3) show the reattachment length to be closer to 10 for a Reynolds

number of 500. The reattachment length resulting from LBM computations is closer to

experimental values than that given by the vorticity-stream function method. The results

obtained by the vorticity-stream function method deteriorate for a Reynolds number of

500 as compared to the results for Reynolds number 150 for the same grid spacing. This

is due to the first order upwind spatial discretization. Steady state conditions are attained

when the computed reattachment length is close to the experimental results [52] and

when the secondary vortex at the bottom of the step is resolved. The vorticity-stream

function method attained steady state conditions at a final time 213.0. Although LBM

does not reach steady state (requiring resolution of bottom secondary vortex) at final time

213.0, it gives a reasonably accurate reattachment length. Therefore, further iterations are

performed and the accuracy of the LBM increases; i.e., there is an increase in the

reattachment length with a greater final time along with resolution of the secondary

vortex at the bottom of the step. Table 5.2 shows the LBM reattachment length for a final

time 264.0 when it was able to resolve the secondary vortex at the bottom of the step. The

secondary vortex at the bottom of the step covered the region from 0 to 0.14 in the x

direction and 0 to 0.14 in the y direction. For Reynolds number 500, a secondary vortex

also appears on the upper wall. The horizontal starting location for this vortex is near the

horizontal end location of the primary recirculating region (at the base wall).

138

Table 5.2. Re = 500, reattachment length

Figure 5.3. Experimental reattachment length versus Reynolds number [52]

grid spacing grid size Xr for LBM Xr for VSM

0.05 601x41 9.3 7.0

0.02 1501x101 9.45 8.15

0.01 3001x201 9.5 7.8

139

5.3.2 Compute Time

To compare the computational performance of both methods, the CPU time was

measured. The CPU time is measured until steady state conditions are reached. Steady

state conditions are reached according to the criteria specified in the previous section.

The “CPU time” is different from the “final time” (t∆ multiplied by the number of

iterations required for steady state conditions). The CPU time is specified as seconds in

wall-clock units. It should be noted here that even with similar time step sizes for both

methods, the LBM took considerably more iterations than the vorticity-stream function

method. For Re = 150, the LBM final time was 156.0, which is twice as large as the final

time for the vorticity-stream function method. For Re = 500, the LBM final time is 264,

while the final time for the vorticity-stream function method is 213.0. Tables 5.3 and 5.4

show the CPU time for the LBM and the vorticity-stream function method for grid sizes

601×41 to 3001×201 corresponding to grid spacing from 05.0=∆x to 01.0=∆x ,

respectively. For the 601×41 grid (the largest grid spacing in the tables), the LBM final

time is taken as the final time for the vorticity-stream function method since this grid size

does not resolve the secondary vortex at the step bottom.

The CPU time for the vorticity-stream function method is less than the LBM CPU

time by a factor 3.2 for 05.0=∆x at Re = 150 and a factor 2.89 at Re = 500. The

vorticity-stream function method is more efficient due to possessing a much bigger time

step for 05.0=∆x . Increasing grid resolution places a restriction on the time step size for

the vorticity-stream function method to retain numerical stability. This is due to the

geometry of the backward facing step flow. Previous works have reported that small grid

spacing and the existence of high wall-normal velocity in the corner region introduces a

140

severe time step limitation. The LBM’s time step size decreases because it is a time-

explicit scheme and also due to the increasing Reynolds number. This is obvious from

Table 5.3 and Table 5.4, where the LBM time step size is 0.008 for a grid spacing of 0.02

and Reynolds number 150, whereas the time step decreases to 0.006 for the same grid

spacing at Reynolds number 500.

With grid spacing 0.02 (or grid size 1501×101), the vorticity-stream function

method has a bigger time step size 01.0=∆t than the LBM. However, the LBM CPU

time is less than that of the vorticity method by a factor of 1.28 for Reynolds number 150

and by a factor 1.6 for Reynolds number 500. This is due to the computational efficiency

of the LBM afforded by cache optimization. For grid spacing 0.01 (grid size is

3001×201), both methods possess the same numerical time step size. Here, the LBM

(with cache optimization) is about 1.89 times faster than the vorticity-stream function

method for Re = 150 and 3.16 times faster for Re = 500. The CPU time reduction factor

is less for Re = 150 due to the considerable difference in final times of the two methods at

this Reynolds number (in other words, a greater number of iterations are required by the

LBM to reach steady state conditions).

141

Table 5.3. Re = 150, CPU time in seconds

Table 5.4. Re = 500, CPU time in seconds

Grid spacing grid size
LBM time step
(and iterations)

VSM time step
(and iterations)

LBM CPU time
(seconds)

VSM CPU time
(seconds)

0.05 601x41 0.0125 (21120) 0.09 (2933) 133 46

0.02 1501x101 0.006 (44000) 0.01 (21300) 2114 3392

0.01 3001x201 0.003 (88000) 0.003 (71000) 18816 59469

5.4 Coupling LBM and the Vorticity-Stream Function Method for

Backward Facing Step Flow

The results and discussion from the previous section show the vorticity-stream

function method to be superior to the LBM when solving on coarse grids, where the

vorticity-stream function method possesses a much bigger time step size than the LBM.

However, the LBM outperforms the vorticity-stream function method and other

traditional methods when it possesses the same numerical time step as the latter methods.

Most fluid flow problems involve flow structures, whose resolution requires small grid

spacing. For example, the step region of the backward facing step flow problem consists

of secondary recirculating eddies or vortices. One such secondary recirculating eddy or

vortex lying at the bottom of the step is shown in Figure 5.4. To resolve this eddy, a grid

Grid spacing grid size
LBM time step
(and iterations)

VSM time step
(and iterations)

LBM CPU time
(seconds)

VSM CPU time
(seconds)

0.05 601x41 0.0125 (12480) 0.1 (1560) 48 15

0.02 1501x101 0.008 (19500) 0.01 (7600) 938 1204

0.01 3001x201 0.004 (39000) 0.004 (19000) 8397 15901

142

spacing of at least 02.0=∆x is required. For better resolution and accuracy, the grid

spacing in this region should be 01.0=∆x . The flow regions consisting of such structures

are therefore discretized with high-resolution grids (fine grids), while the remaining flow

regions are discretized with coarser grids. The LBM can be used as the solver for those

flow regions where the time step of the LBM and the vorticity-stream function method

are the same. In regions where the LBM’s time step is significantly smaller than that of

the vorticity-stream function method, the latter will be used as the solver. A coupled

LBM/vorticity-stream function method holds the promise of harnessing the

computational efficiency of the LBM and the faster convergence properties of the

vorticity-stream function method for solving the backward facing step flow problem.

143

Figure 5.4. Tecplot diagram showing flow and secondary vortex at the bottom of

the step for Reynolds number 500

5.4.1 Applying the Coupled Scheme

A high-resolution grid block with a grid spacing of 01.0=∆x will cover the

region near the step, and a coarse grid block with a grid spacing of 05.0=∆x will cover

the rest of the domain (schematic given in Figure5.5). This gives a grid refinement factor

equal to 5. Section 5.3 shows that the LBM and the vorticity-stream function method

possess the same time step for a grid spacing of 01.0=∆x . Therefore, the LBM will be

applied on the fine grid block and the vorticity-stream function method will be applied on

the coarse grid block since it can possess as big a time step as 1.0=∆t for grid spacing

144

05.0=∆x . To enable transfer of information between the two methods, the two grid

blocks overlap at the interface.

Reattachment point

LBM Vorticity - Stream
function

2Γ 1Γ

2Ω1Ω

Figure 5.5. Schematic of multiblock grid used for the coupled solver

5.4.2 Coupling Procedure

The coupling procedure should enable information transfer between the adjacent

grid blocks. Both the LBM and the vorticity-stream function method are completely

separate non-primitive formulations. However, the velocity vector can be computed from

both formulations. Hence, the velocity variable will be used to transfer information

between both grid blocks. This leads to the following method for communicating

information between the grid blocks:

145

1. The variables on the fine grid block are updated using the LBM. The distribution

functions on the interface boundary of the fine grid are assigned the equilibrium

distribution function values. To compute the equilibrium distributions (Equation

5.6) at the interface, the velocity vector at the interface is required. This velocity

vector is computed from the stream function values in the neighboring coarse grid

block using finite difference representations of Equation 5.15. The following is

the computation of the velocity vector.

At interior points on the interface boundary 1Γ , the horizontal component of the

velocity is given by:

 () () ()
y

jkjk
jku

∆
−−+

=
2

1,1,
,

ψψ
 (5.28)

At the base:

 () () () ()
y

kkk
ku

∆
−+−

=
2

3,2,41,3
1,

ψψψ
 (5.29)

At the top:

 () () () ()
y

nyknyknyk
nyku

∆
−+−−

=
2

2,1,4,3
,

ψψψ
 (5.30)

The vertical component of the velocity at the interface is given by:

 () () ()
x

jkjk
jkv

∆
−−+

=
2

,1,1
,

ψψ
 (5.31)

In the above equations, k represents the horizontal direction grid index number of

the interface while j represents the vertical direction grid index number. The grid

resolution is different for both grid blocks and the fine grid’s interface boundary

has five grid points for every coarse grid point on that boundary. Since the grid

spacing for both blocks is different, interpolation is performed to obtain the

146

interface boundary conditions at the fine grid points that do not have a

corresponding coarse grid point. The interface boundary is assumed to lie on a

grid line of the neighboring grid block because the grid refinement factor is an

integer. Two types of interpolation were performed and both gave the same final

results:

Linear interpolation is shown here for the horizontal velocity component at a fine

grid point lying between two coarse grid points given by jk , and 1, +jk :

 () () () ()()
y

jkujku
yjkujjkulb ∆

−+
+=

,1,
,, (5.32)

y is the vertical distance between the fine grid point jjk , and the coarse grid

point jk , . y∆ is the coarse grid spacing and lbu is the velocity value at the fine

grid point.

Quadratic interpolation is shown here for the horizontal velocity component

() () () ()() () () ()()
()2

2

2

1,,21,

2

1,1,
,,

y

jkujkujku
y

y

jkujku
yjkujjkulb

∆

−+−+
+

∆
−−+

+=

 (5.33)

2. The vorticity-stream function solver computes the vorticity and the stream

function variables in the coarse grid region. The interface vorticity and stream

function boundary conditions are specified using the velocities computed in Step

1 at the corresponding fine grid locations. Equation 5.5 is used to compute the 2Γ

interface velocities (u , v) from the distribution functions. After the velocities are

obtained, the stream function at the interface is obtained through numerical

integration of the horizontal velocity component (u) along the vertical direction

(y):

147

()

() ()

() () () 2 2,21,,

2,
2

1
2,

01,

>−+∆⋅−=

∆⋅=

=

jjiyjiuji

yiui

i

ψψ

ψ

ψ

 (5.34)

The vorticity is obtained from the fine grid velocity components using the

definition given by Equation 5.14 and applying finite differences.

As seen above, the coupling procedure essentially consists of solving two Dirichlet

problems on overlapping subdomains. Steps 1 and 2 are executed alternately until the

difference between the current solution and the solution from the previous iteration in the

fine grid block is less than a given tolerance. This procedure occurs at very time step. To

make full use of the cache-efficient nature of the LBM, Step1 is executed separately for a

certain number of time steps (tdiv) keeping the same interface boundary condition. A

high-level description of this strategy is given below.

Let 1Ω , 2Ω represent the two overlapping grid blocks (or subdomains), and 1Ω∂ ,

2Ω∂ represent their boundaries. The part of 1Ω∂ lying in 2Ω is represented with 1Γ

(artificial boundary or internal boundary or interface boundary of 1Ω). Likewise, 2Γ

represents the interface of 2Ω .

1. Initialize the distribution functions on 1Ω and the vorticity and stream function on

2Ω

2. Loop for all time steps (until final time or until steady state conditions are reached

in the whole domain)

i. Distribution functions| 1Γ are computed using ψ | 2Ω at 1Γ

j. Loop for tdiv number of time steps (for LBM cache optimization)

148

k. Update distribution functions on 1Ω using the LBM (boundary conditions

remain unchanged)

l. End loop for tdiv time steps

m. Compute ψ | 2Γ and vorticity| 2Γ from the distribution functions| 1Ω at 2Γ

n. Perform the vorticity-stream function computations to update ψ and the

vorticity on 2Ω (boundary conditions remain unchanged)

3. End loop for all time steps when steady state solution is reached

5.4.3 Method for Comparison

To quantify the computational performance and accuracy of the coupled

LBM/vorticity-stream function method, it should be compared with traditional finite

difference methods that are applied over the whole domain. The vorticity-stream function

method is applied over the whole domain using multiblock gridding. Here, the vorticity-

stream function method is implemented separately on all grid blocks in the domain.

Unlike the coupled LBM/vorticity-stream function method, there is no requirement to

introduce a primitive variable such as velocity to transfer information between

neighboring grid blocks. The coupling procedure for the multiblock vorticity-stream

function method is shown below.

1. Initialize vorticity and stream function on both 1Ω and 2Ω

2. Loop for all time steps (until final time or until steady state conditions are reached

in the whole domain)

a. Perform computations using vorticity-stream function solver on 1Ω and

update both vorticity and stream function for one time step

149

b. Compute the interface boundary values for 2Ω from the variables

belonging to 1Ω ; i.e., ψ | 2Γ and vorticity| 2Γ are computed from ψ | 1Ω

and vorticity| 1Ω near 2Γ

c. Perform computations using vorticity-stream function solver on 2Ω and

update both vorticity and stream function for one time step

d. Compute the interface boundary values for 1Ω from the variables

belonging to 2Ω ; i.e., ψ | 1Γ and vorticity| 1Γ are computed from ψ | 2Ω

and vorticity| 2Ω near 1Γ

3. End loop for all time steps when steady state solution is reached

It has been observed from computational experiments that both multiblock

methods; i.e., the coupled LBM/vorticity-stream function solver and the multiblock

vorticity-stream function solver, take the same number of iterations to converge to the

steady state conditions. However, when the solver on the fine grid is repeated for a

certain number of time steps before communicating with the neighboring solver, fewer

overall iterations are required for convergence. To utilize the cache-optimization

properties of the LBM, it is repeated for a certain number of time steps (tdiv) as shown

in the high-level description. The same is not performed for the vorticity-stream function

solver operating on the fine grid block, because the CPU time is more than that for the

high-level strategy given above.

5.4.4 Results

The computations were performed on an SGI Onyx 2. The results were computed

for Reynolds numbers 150 and 500. For case 1 (Re=150), the fine grid block covers the

150

region from x = 0.0 to x = 7.5. The overlap region is from x = 6.5 to x = 7.5. The

coarse grid block covers the region from x = 6.5 to x = 30.0. The grid spacing for the

fine grid block is 0.01. Therefore, the size of this grid block will be 751×201. The grid

refinement factor is 5. This results in a coarse grid block of size 471×41 corresponding to

grid spacing 0.05. Local time stepping was performed by assigning a time step size of

0.003 to the fine grid block and a time step size of 0.1 to the coarse grid block. Table 5.5

shows the reattachment length, CPU time, and number of time iterations for both

multiblock methods at Reynolds number 150. Both methods were executed until they

reached steady state conditions.

For case 2, computations were performed for Reynolds number 500. Here, the

fine grid block extends to x =10.0, so that the reattachment zone falls within the fine grid

region. The overlap distance is taken as 2.0. Therefore, the coarse grid block covers the

region from x = 8.5 to x = 30.0. Table 5.6 shows the reattachment length, CPU time, and

total number of time iterations for the two methods at Reynolds number 500.

Table 5.5. Re = 150, reattachment length, CPU time, and total number of time

iterations (Case 1)

 grid spacing time step

fine grid block 0.01 0.004

coarse grid block 0.05 0.1

 coupled method VSM

Xr 4.3 4

CPU time (seconds) 1465 4295

time iterations 2100 19000

151

Table 5.6. Re = 500, reattachment length, CPU time and total number of time

iterations (Case 2)

 grid spacing time step

fine grid block 0.01 0.003

coarse grid block 0.05 0.1

 coupled method VSM

Xr 9.6 8.35

CPU time (seconds) 6155 17560

time iterations 7300 71000

For Reynolds number 150, the coupled LBM/vorticity-stream function method results in

a reattachment length of 4.3, which is similar to the result obtained for the standalone

LBM. The multiblock vorticity-stream function method results in a reattachment length

of 4, which is the same as that obtained by the standalone vorticity-stream function

method. The coupled LBM/vorticity-stream function solver was used without any cache

optimization to check for the number of iterations. In this case, the coupled

LBM/vorticity-stream function solver was able to resolve the secondary vortex at the

bottom of the step for Reynolds number 150 after executing the same number of time

iterations (19000) as the multiblock vorticity-stream function method. However, the

cache-optimized version of the coupled solver takes only 2100 iterations. The number of

iterations is reduced because the LBM performs 12 time steps within every computational

cycle as mentioned in Section 5.4.2. The CPU time for the coupled LBM/vorticity-stream

function method is less than the CPU time for the multiblock vorticity-stream function

method by a factor 2.93.

152

 For case 2 (Re = 500), the fine grid extends up to x =10.0, thus covering the

reattachment zone. Here the accuracy of both methods is slightly better than the

standalone versions. This is due to faster transfer of information across the domain due to

part of the domain being covered with a coarse grid. The coupled LBM/vorticity-stream

function method is about 2.85 times faster than the multiblock vorticity-stream function

method in this case. Since the fine grid covers a greater region than in case 1, the

multiblock vorticity-stream function method performs computations at a greater number

of grid points and takes a comparatively higher number of iterations.

5.4.5 Conclusions

From the results for both multiblock methods, the coupled LBM/vorticity-stream

function method is the clear winner in terms of both CPU time and accuracy. It is

expected that an increase in the region represented by the fine grid block and the LBM

will result in a greater factor for reducing CPU time. It is also expected that parallelizing

the algorithms will result in a more efficient coupled LBM/vorticity-stream function

solver relative to the multiblock vorticity-stream function solver.

5.5 Flow around Cylinder

The results of the multi-solver, multiblock technique for the backward facing step

flow show its strength in solving laminar incompressible flows. To further validate the

coupled solver, it is implemented for solving the flow around a cylinder. In this case, two

dissimilar grids will be used to discretize the flow domain. As discussed in Chapter 2,

using a body-fitted grid (a cylindrical grid in this case) near the surface of the body

153

results in accurate and efficient geometry resolution as well as accurate specification of

boundary conditions. The Cartesian grid is used to discretize the region away from the

cylinder, since it is comparatively easy to generate, especially in flows containing

complex geometries. Both grids overlap each other since it is not easy to blend them into

each other at the interface. The LBM has demonstrated its superior computational

performance on Cartesian grids. However, the LBM cannot be implemented efficiently

on cylindrical grids since it loses its local nature due to interpolation [53]. Therefore, a

traditional finite difference method (the vorticity-stream function approach) is

implemented on the body-fitted grid.

As observed from this discussion and from the section on the flow across a step, a

coupled LBM/vorticity-stream function method is efficient on two counts. One is for

reasons of geometry and the other is for efficient time stepping (due to multiblock

gridding) that improves numerical performance. The coupling procedure is similar to the

one given in Section 5.4.2; i.e., the solution procedures on both grids are alternated until

steady state conditions are achieved throughout the flow domain. The subsequent sections

describe the solution procedures adopted in each subdomain and the interface boundary

conditions for each subdomain. Figure 5.6 shows a representation of the decomposed

flow domain around the cylinder. The cylinder is represented in black, while 1Ω

represents the subdomain assigned to the vorticity-stream function method, 1Γ , the outer

boundary of this subdomain. The LBM solves on the 2Ω subdomain whose inner

boundary is represented by 2Γ . Figure 5.7 shows the gridding applied across the flow

domain.

154

overlap region

1Γ

2Γ

2Ω

1Ω

Figure 5.6 Domain decomposition around a cylinder

155

Figure 5.7 Multiblock gridding for flow around cylinder

156

5.5.1 Vorticity-Stream Function Solver

The vorticity transport and the stream function equations for an incompressible,

two-dimensional, unsteady laminar flow around a cylinder can be written as

() ()










∂

∂
+








∂
∂

∂
∂

=
∂

∂
+

∂

∂
+

∂
∂

2

2

2

1111

θ
ωω

ν
ω

θ
ωω θ

rr
r

rrr

rV

r

V

rt

r (5.35)

 ω
θ
ψψψ

−=
∂
∂

+
∂
∂

+
∂
∂

2

2

22

2 11

rrrr
 (5.36)

In the above equations, ω is the vorticity, ψ is the stream function, and θV , rV are the

velocity components in the θ and r directions respectively and are defined as

r
V

r
Vr

∂
∂−

=

∂
∂

=

ψ
θ
ψ

θ

1

 (5.37)

The vorticity is defined as

()







∂

∂
−

∂

∂
=

θ
ω θ rV

r

rV

r

1
 (5.38)

The following log-polar transformation simplifies the above equations and allows the use

of a regular rectangular mesh for the numerical treatment of the equations.

θθ
a

xax

r
a

zer
az

1
 ;

ln
1

 ;

==

==
 (5.39)

This transformation will allow a regular rectangular mesh with uniform spacing to

represent a polar grid that is exponentially stretched in the radial direction (Figure 5.8).

The transformed equations are

157

ω
ψψ

ωωψωψωω

z

z

E
xz

xzzxxzt
E

−=
∂
∂

+
∂
∂










∂
∂

+
∂
∂

=
∂
∂

∂
∂

−
∂
∂

∂
∂

+
∂
∂

2

2

2

2

2

2

2

2

Re

2

 (5.40)

where az

z eaE 22= .

Using the new transformation, the radial and tangential velocity components are

computed as follows

z

EV
x

EV zzr ∂
∂

−=
∂
∂

= −− ψψ
θ

2/12/1
 , (5.41)

5.5.1.1 Numerical Discretization

To discretize the vorticity-transport equation on a rectangular mesh, second-order

accurate central differences are applied to the diffusion and convection terms. The

alternating direction implicit method will be used to perform time discretization. This is

similar to the discretization used for the vorticity transport equation in the backward

facing step flow case. The finite difference analog of the vorticity transport equation is

given below

() ()

() () 










∆
+

∆
=

∆








∂
∂

+
∆









∂
∂

−
∆

−












∆
+

∆
=

∆








∂
∂

+
∆









∂
∂

−
∆

−

++++++

+++

2

1

,

2

2

21

,

21

,

,

21

,

,

21

,

1

,

2

,

2

2

21

,

2

,

,

21

,

,

,

21

,

Re

2

22
2

 :2 Step

Re

2

22
2

 :1 Step

zxzxxzt
E

zxzxxzt
E

n

jiy

n

jix

n

jiz

n

ji

n

jix

n

ji

n

ji

n

ji

z

n

jiy

n

jix

n

jiz

n

ji

n

jix

n

ji

n

ji

n

ji

z

ωδωδωδψωδψωω

ωδωδωδψωδψωω

 (5.42)

158

The operators xδ , yδ represent central differencing for the first-order spatial derivatives

and 2

xδ , 2

yδ represent central differencing for the second-order derivatives in the

diffusion term. They are defined as

1,,1,,

2

,1,,1,

2

1,1,,

,1,1,

2

2

−+

−+

−+

−+

+−=

+−=

−=

−=

jijijijiy

jijijijix

jijijiy

jijijix

ωωωωδ

ωωωωδ

ωωωδ

ωωωδ

 (5.43)

The matrices resulting from the application of the above discretization are solved using

Gaussian elimination. Figure 5.9 shows a representation of the cylindrical mesh and its

corresponding rectangular mesh with the finite difference indices and the boundary

conditions specific to the vorticity-stream function method.

5.5.1.2 Initial and Boundary Conditions

The initial conditions are specified as a potential flow solution:

ji

ji
r

Ur
,

2,

1
1sin 















 −−= θψ (5.44)

where the free stream velocity U = 1. The vorticity ji ,ω is taken as zero throughout the

subdomain.

The boundary conditions for the vorticity and the stream function will be

specified for the wall boundary and the cylindrical grid interface boundary (1Γ) that lies

within the Cartesian grid subdomain. The wall or surface boundary conditions are given

as follows:

159

2

2,

1,

1,

2

0

z

i

i

i

∆
−=

=

ψ
ω

ψ
 (5.45)

Figure 5.8 Polar grid

160

Z

i,j

i,j+1

i,j-1

θ

r=1

i+1,j

i-1,j

θ

ψω

ψ

 allfor 0 at

2

,0

2

2,

=

∆−=

=

z

zi

z allfor

2 0,at

0 ,0

πθ
ωψ

=

==

i,j i+1,ji-1,j

i,j+1

i.j-1

Z

X

x∆

xz ∆=∆

π2=x0=x

0=z

)_log(adiradz =

Figure 5.9 Cylindrical mesh and its corresponding rectangular mesh

161

The outer or interface boundary conditions are specified using values from the lattice

Boltzmann computations in subdomain 2Ω . First the Cartesian velocity components at

the outer boundary points on the cylindrical grid are computed from the Cartesian grid

values using bilinear interpolation. To do this, the Cartesian grid cell containing the

cylindrical grid boundary point is located and the velocity values at the four grid cell

corners are utilised for interpolation (Figure 5.10).

Figure 5.10 Interpolation points

162

The required radial and tangential velocity components are then computed from the

interpolation-obtained Cartesian velocity components. The stream function at the outer

boundary points is obtained through numerical integration of the just-computed radial

velocity component in the θ direction (refer to Equation 5.34). Initially, the integration

was applied from θ =0 to θ =360. However, this resulted in loss of symmetry. Since there

is no matching of grid lines between the two grids, interpolation errors are introduced,

affecting the numerical integration. Therefore, the numerical integration was performed

separately for θ =0 to θ =180 and for θ =360 to θ =180. At θ =180, the result from the

two previous integrations was averaged. To obtain the vorticity at the boundary, two

different approaches were used. In the first approach, the vorticity was interpolated from

the vorticity values on the Cartesian grid. These Cartesian grid vorticity values are

obtained by using the velocity values at the Cartesian grid points (Equation 5.14). The

second approach obtains the vorticity at the outer boundary points in terms of the

cylindrical coordinate system using the following definition:

()







∂

∂
−

∂

∂
=

θ
ω θ rV

r

rV

r

1
 (5.46)

Translated into finite difference terms on the transformed mesh, this would appear as

() () () ()

xE

VV

zE

VV

z

MirMir

z

MiMi

∆

−
−

∆

−
= −+−+

2/1

,1,1

2/1

1,1,

22

θθω (5.47)

Here Mj = represents the z direction index at the outer boundary. The values for

()
MirV

,1+ and ()
MirV

,1− have already been computed as specified above for the numerical

integration of the stream function. Both ()
1, +Mi

Vθ and ()
1, −Mi

Vθ are computed in a manner

similar to the computation of the tangential velocity at the outer boundary, ()
Mi

V
,θ ; i.e.,

163

they are obtained from the interpolation of the velocity components on the corresponding

Cartesian grid cells. Both approaches for computing vorticity were tested and whichever

gave more accurate results was finally utilized.

5.5.2 Lattice Boltzmann Solver

The LBM applied to the flow around a cylinder is similar to that applied for the

backward step problem. The difference between the two problem cases lies in the

boundary conditions to be applied. In this case, since the LBM operates on an outer

Cartesian grid, there is no requirement to apply wall boundary conditions. The Cartesian

grid is uniformly spaced as shown in Figures 5.7 and 5.10. The inner boundary of the

Cartesian grid approximates a circular contour (2Γ) using the stair-stepped representation

(Figure 5.10). The distribution functions at the inner boundary of the Cartesian grid are

taken equal to the equilibrium distribution functions at those locations. The computation

of the equilibrium distributions at the grid points lying on the inner or interface boundary

(Figure 5.10) of the Cartesian grid requires velocity components at those grid points.

These velocity components are computed using linear interpolation (in the θ direction)

of the radial and tangential velocity components at the cylindrical grid points that are

closest to the circular contour approximated by the inner Cartesian grid boundary.

Computational experiments showed that using bilinear interpolation produced a greater

error than simple linear interpolation along the θ direction on the approximated circular

contour.

The far field boundary is specified at a radius of 90 from the center of the

cylinder. The far field or outer boundary conditions for the Cartesian grid subdomain

(2Ω) are specified as free stream conditions; i.e., the horizontal velocity component u = 1

164

and the vertical component v = 0. The distribution functions are specified as equilibrium

distributions, which are computed using Equation 5.6.

5.5.3 Results

The results portray the accuracy of the coupled method using the parameters

shown in Figure 5.11. These parameters are the length of the recirculating eddy region

behind the cylinder (L), the height of the eddy region (b) and the location of the center of

the eddy (a). The results have been specified for two cases that differ in grid spacing and

location of the interface boundaries for both grids. The results were computed for the

cases shown in Table 5.9. The term rad_lb specifies the radius of the circular contour

(2Γ) that is approximated using the stair-stepped approximation of the inner boundary of

the Cartesian grid. The term rad_adi specifies the radius of the outer boundary (1Γ) of the

cylindrical grid.

The computations were performed for Reynolds number 40, at which steady state

results are obtained. Beyond this Reynolds number, the results are unsteady since vortex

shedding will occur. For case 1, the inner boundary of the Cartesian grid lies within the

recirculation zone (rad_lb = 4.0). The Cartesian grid spacing is 0.25 throughout the

domain. For case 2, the inner boundary of the Cartesian grid lies outside the recirculation

zone (rad_lb = 8.0) and the grid spacing is 0.4. The experimental results from Coutanceau

and Bouard [54] are represented as CB1977 in Table 5.10. The comparison between the

present results and CB1977 shows the coupled method to be quite accurate for the two

cases that were computed.

165

Figure 5.11 Parameters for flow around cylinder

166

Table 5.9 Parameters for case 1 and case 2

Table 5.10 Comparison between CB1977 and case 1 and case 2

 dx_vort dx_lb rad_lb rad_adi

case 1 Pi/50 0.25 4 9

case 2 Pi/70 0.4 8 12

 L a b

CB1977 4.26 1.52 1.19

Present/case 1 4.5 1.45 1.2

Present/case 2 4.3 1.35 1.14

167

5.5.4 Conclusions for Flow around Cylinder

The interpolation errors arising from the transfer of information between the Cartesian

grid and the cylindrical grid are greatly amplified through using velocity as the

interpolating variable. This is because neither individual solver in the coupled method

computes velocity as the primary variable. For cases where the outer boundary of the

cylindrical grid lies within the recirculating zone for Reynolds number 40, inaccurate

results are obtained on the cylindrical grid due to the vorticity information being

inaccurately conveyed. Therefore, for both the cases shown here, the outer boundary of

the cylindrical grid lies at a radius that is outside the recirculating region. Therefore, the

computations for flow around the cylinder have been limited to Reynolds number 40,

since shedding will occur beyond this vortex and accurate results cannot be expected due

to interpolation errors.

168

CHAPTER 6.

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Chapter 1 introduces the need for a faster high-fidelity solver for reducing the

turnaround time for design using CFD. From the discussion in Chapter 2, it is clear that

using Cartesian grids or hybrid Cartesian-prismatic (or Cartesian-cylindrical) grids aids in

reducing the cost of grid generation corresponding to changes in design. Therefore, the

conclusion is to have the fast high-fidelity solver operate on Cartesian or hybrid

Cartesian-prismatic grids.

In Chapter 3, a cache-optimization algorithm was developed to extract the

computational strength of the lattice Boltzmann method (LBM). This is possible due to

LBM’s locally based floating point operations. The comparison performed with standard

finite difference methods such as the alternating direction implicit (ADI) method showed

the LBM to be about eight times faster for solving the unsteady Burger’s equation, while

the ADI scheme outperformed the LBM for the steady Burger’s equation. The time-

explicit nature of the LBM limits the time step size and also speed of information transfer

across the domain when solving steady state problems.

In Chapter 4, an improved version of the LBM called the ILBM that was

developed to increase the time step size was described. The ILBM was developed by

adopting a new spatial discretization for the convection term. The ILBM allowed a time

step twice as big as the time step for the original LBM. The CPU time reduction factor

was, however, only 1.7 due to the ILBM taking more floating point operations and losing

169

the locality of the floating point operations. A different strategy was adopted to use the

LBM for steady state problems, wherein it was coupled with the ADI scheme. The

coupled LBM-ADI scheme solved the steady Burger’s equation by discretizing the

computational domain with two overlapping grid blocks of different resolution. On the

coarse grid block, the LBM was able to take the same time step size as the ADI method

on the fine grid block. The elliptical nature of the problem allowed the LBM to iterate

separately over the coarse grid region, thereby utilizing its computational properties. A

comparison between the LBM-ADI solver and the standalone ADI solver computing on

the multiblock grid showed the former to be about 4.5 times faster.

Chapter 5 utilized the conclusions from Chapter 4 to build a coupled solver for

two-dimensional incompressible fluid flow problems. The vorticity-stream function

method was selected to represent the traditional CFD methods because there are only two

partial differential equations (PDEs) that need to be solved for the vorticity-stream

function formulation. Traditional methods based on the primitive form of the Navier-

Stokes equations need to solve at least three PDEs and usually require staggered meshes

to compute pressure correctly. The coupled LBM/vorticity-stream function solver was

implemented for solving flow across a backward facing step. The coupled method

reduced the computation time by a factor of 3 when compared to the standalone vorticity-

stream function solver. Parallel computation is expected to significantly increase this

factor due to the parallel efficiency of the LBM. The coupled solver was implemented for

solving flow around a cylinder. However, interpolation errors that were introduced due to

transferring information between the cylindrical and Cartesian grids were further

amplified due to a lack of common variables between the methods operating on the two

170

grids. Both the LBM and the vorticity-stream function formulation had to use the velocity

vector to transfer information, but the velocity vector was not a dependent variable in

either method and had to be computed separately from the given dependent variables.

6.2 Recommendations for Future Work

The vorticity-stream function formulation is useful for only two-dimensional

incompressible flows. For three-dimensional computations of fluid flows, the primitive

form of the Navier-Stokes equations would be more efficient. The flow-around-cylinder

problem has shown that using completely separate formulations with no common

dependent variable results in interpolation errors when using a hybrid grid. Therefore,

using a primitive formulation of the Navier-Stokes equations as the traditional method in

the coupled solver for problems involving hybrid grids in two-dimensional computations

is suggested.

171

BIBLIOGRAPHY

1. Jameson A. Re-engineering the design process through computation. AIAA Paper

No. 97-0641 1997.

2. Raj P. Aircraft design in the 21
st
 century: implications for design methods. AIAA

Paper (Invited) 1998.

3. Peace AJ. Maximising the impact of CFD in the design office: ARA’s role. The

Aeronautical Journal 2002; 106:675-685.

4. Rubbert PE. On the pursuit of value with CFD. Frontiers of Computational Fluid

Dynamics 1998; World Scientific, Singapore: 417-427.

5. Krajnovic S, Davidson L. Large-eddy simulation of the flow around simplified

car model. SAE Paper No. 2004-01-0227 2004.

6. Berger M, LeVeque R. An adaptive Cartesian mesh algorithm for the Euler

equations in arbitrary geometries. AIAA Paper No. 89-1930-CP 1989.

7. Charlton EF, Powell KG. An octree solution to conservation-laws over arbitrary

regions (OSCAR). AIAA Paper No. 97-0198 1997.

8. Aftosmis MJ, Melton JE, Berger MJ. Adaptation and surface modeling for

Cartesian mesh methods. AIAA Paper No. 95-1725-CP 1995.

9. Meakin RL. On adaptive refinement and overset structured grids. AIAA Paper No.

97-1858 1997.

10. Ham FE, Lien FS, Strong AB. A Cartesian grid method with transient anisotropic

adaptation. Journal of Computational Physics 2002; 179:469-494.

11. Chen HC, Yu NJ. Development of a general multiblock flow solver for complex

configurations. 8
th

 GAMM Conference on Numerical Methods in Fluid Mechanics

1989.

12. Aftosmis MJ. Emerging CFD technologies and aerospace vehicle design. NASA

Workshop on Surface Modeling, Grid Generation and Related Issues in CFD

1995.

13. Oaks W, Paoletti S. Polyhedral mesh generation. 13
th

 International Meshing

Roundtable – Virginia, USA 2004.

172

14. Karman SL. SPLITFLOW: A 3D unstructured Cartesian/prismatic grid CFD code

for complex geometries. AIAA Paper No. 95-0343 1995.

15. Melton JE, Pandya SA, Steger JL. 3D Euler solutions using unstructured

Cartesian and prismatic grids. AIAA Paper No. 93-0331 1993.

16. Wang ZJ, Bayyuk SA. An automated, adaptive, unstructured, Cartesian-prism-

based technique for moving-boundary simulations. 6
th

 International Conference

on Numerical Grid Generation in Computational Field Simulations 1998.

17. McMorris H, Kallinderis Y. A hybrid mesh movement strategy for design

optimization. 7
th

 International Conference on Numerical Grid Generation in

Computational Field Simulations 2000.

18. Peterson J. The reduced basis method for incompressible flow calculations. SIAM

Journal on Scientific and Statistical Computing 1989; 10:777-786.

19. Kennedy MC, O’Hagan A. Predicting the output from a complex computer code

when fast approximations are available. Biometrika 2000; 87:1-13.

20. Van Leer B. Computational fluid dynamics: Science or toolbox. 15
th

 AIAA

Computational Fluid Dynamics Conference, AIAA-2001-2520 2001.

21. Kim WT, Jhon MS, VanOsdol John. Vectorized flow network model. 29
th

International Technical Conference on Coal Utilization and Fuel Systems –

Florida, USA 2004.

22. Ma Z, Jeter SM, Abdel-Khalik SI. Flow network analysis in fuel cells. Journal of

Power Sources 2002; 108:106-112.

23. Michal T, Verhoff A. Hybrid computational fluid dynamic algorithms based on

analytic and finite volume methods. AIAA Paper No. 97-0645 1997.

24. Verhoff A, Chen HH, Cebeci T, Michal T. An accurate and efficient interactive

boundary layer method for analysis and design of airfoils. AIAA Paper No. 96-

0328 1996.

25. Perng CY, Street RL. A coupled multigrid–domain-splitting technique for

simulating incompressible flows in geometrically complex domains. International

Journal for Numerical Methods in Fluids 1991; 13:269-286.

26. Brakkee E, Wesseling P, Kassels CGM. Schwarz domain decomposition for the

incompressible Navier-Stokes equations in general co-ordinates. International

Journal for Numerical Methods in Fluids 2000; 32:141-173.

173

27. Strikwerda JC, Scarbnick, CD. A domain decomposition method for

incompressible viscous flow. SIAM Journal on Scientific Computing 1993; 14:49-

67.

28. Mendu LN, Parameswaran S. Multi block and multi model based computation of

turbulent fluid flow and heat transfer. American Society of Mechanical Engineers,

Heat Transfer Division, (Publication) HTD, v 318, Heat Transfer in Turbulent

Flows, 1995, p 99-109.

29. Ikegawa M, Kaiho M, Kato C. FEM/FDM composite scheme for incompressible

flow analysis around moving bodies. American Society of Mechanical Engineers,

Fluids Engineering Division (Publication) FED, v 129, Multidisciplinary

Applications of Computational Fluid Dynamics, 1991, p 83-89.

30. Nakahashi K, Obayashi S. FDM-FEM zonal approach for viscous flow

computations over multiple bodies. AIAA Paper No. 87-0604 1987.

31. Ould-Salihi ML, Cottet GH, El Hamraoui M. Blending finite-difference and
vortex methods for incompressible flow computations. SIAM Journal on Scientific

Computing 2000; 22:1655 1674.

32. Ling G, Wang Y, Ling G. Domain decomposition hybrid method combining
finite difference and vortex methods for numerical simulation of bluff body flows.
2

nd
 International Offshore Polar Engineering Conference 1992; p 237-244.

33. Guermond JL, Huberson S, Shen W-Z. Simulation of 2D external viscous flows

by means of a domain decomposition method. Journal of Computational Physics

1993; 108:343-352.

34. Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annual Review of

Fluid Mechanics 1998; 30:329-364.

35. Wolf-Gladrow DA. Lattice-Gas Cellular Automata and Lattice Boltzmann

Models: An Introduction. Springer: Berlin, 2000.

36. Tannehill JC, Anderson DA, Pletcher RH. Computational Fluid Mechanics and

Heat Transfer. Taylor and Francis: Philadelphia, 1997.

37. Skordos PA. Initial and boundary conditions for the lattice Boltzmann method.

Physical Review E 1993; 48:4823-4842.

38. Palmer BJ, Rector DR. Lattice Boltzmann algorithm for simulating thermal flow

in compressible fluids. Journal of Computational Physics 2000; 161:1-20.

39. LeVeque RJ. Numerical Methods for Conservation Laws. Birkhauser-Verlag:

Basel, 1990.

174

40. Velivelli A, Bryden KM. Parallel performance of lattice Boltzmann and implicit

finite difference approaches to the approximation of two-dimensional diffusion

equation. IMECE Paper No. 2003-41280, 2003 ASME International Mechanical

Engineering Congress 2003.

41. Sterling JD, Chen S. Stability analysis of lattice Boltzmann methods. Journal of

Computational Physics 1996; 123:196-206.

42. Velivelli A, Bryden KM. A cache-efficient implementation of the lattice

Boltzmann method for the two-dimensional diffusion equation. Concurrency and

Computation: Practice and Experience 2004; 16:1415-1432

43. Silicon Graphics, Inc. Onyx2
TM

 Owners Guide. SGI: Mountain View, CA, 1998.

44. Radwan SF. On the fourth-order accurate compact ADI scheme for solving the

unsteady nonlinear coupled Burgers’ equations. Journal of Nonlinear

Mathematical Physics 1999; 6:13-34.

45. J. Zhu, Solving Partial Differential Equations on Parallel Computers, World-

Scientific, Singapore, 1994.

46. Ferziger JH, Peric M. Computational Methods for Fluid Dynamics. Springer:

Berlin, 2002.

47. Zhou, M.H., Mascagni, M., and Qiao, A.Y., 1998, “Explicit finite difference

schemes for the advection equation,” Preprints on Conservation Laws,

Norwegian University of Science and Technology, Trondheim, Norway.

48. Smith BF, Bjorstad PE, Gropp WD. Domain Decomposition: Parallel Multilevel

Methods For Elliptic Partial Differential Equations. Cambridge University Press:

New York, 1996.

49. Zou Q, Hou S, Chen S, Doolen GD. An improved incompressible lattice

Boltzmann model for time-independent flows. Journal of Statistical Physics,

1995; 81:35-48.

50. Roache PJ. Fundamentals of Computational Fluid Dynamics. Hermosa:

Albuquerque, 1998.

51. Swarztrauber P, Sweet R. Efficient FORTRAN subprograms for the solution of

elliptic partial differential equations. Proceedings of the SIGNUM meeting on

Software for partial differential equations 1975; p 30.

52. Armaly BF, Durst F, Pereira JCF, Schonung B. Experimental and theoretical

investigation of backward-facing step flow. Journal of Fluid Mechanics 1983;

127:473-496.

175

53. He X, Doolen G. Lattice Boltzmann Method on Curvilinear Coordinates System:

Flow around a Circular Cylinder. Journal of Computational Physics 1997;

134:306-315.

54. Coutanceau M, Bouard R. Experimental determination of the main features of the

viscous flow in the wake of a circular cylinder in uniform translation. Part 1.

Steady flow. Journal of Fluid Mechanics 1977; 79:231-256.

176

ACKNOWLEDGMENTS

I would like to express my sincere appreciation towards my advisor Professor Mark

Bryden for his constant guidance and support. I am grateful to him for having given me

the opportunity to work with him and for providing the financial support for this work. I

am greatly thankful to my committee members Professor Richard Pletcher, Professor

James Oliver, Professor Tom I-P. Shih and Professor Richard Hindman for the

knowledge I gained from the courses I took under them and for answering many of my

research related queries. Special thanks to Dr. James Coyle and Professor Glenn Luecke

for taking interest in my work and for helping me resolve some research problems.

I would like to thank all members of the Bryden research group, for taking interest in my

work and for their constant encouragement. There are many other people who helped me

during the course of this thesis, by providing their work, examples, images etc. Thanks to

all of them.

Finally I would like to thank my mother and brother for their support and encouragement

to complete my work faster.

	2008
	Development of a multiblock solver utilizing the lattice Boltzmann and traditional finite difference methods for fluid flow problems
	Aditya C. Velivelli
	Recommended Citation

	Microsoft Word - 113569-1205213617-Thesis_latest_now.doc

