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ABSTRACT 

Recent technological advances have made it cost effective to utilize massive, heterogeneous 

sensor networks. To gain appreciable value from these informational systems, there must be 

a control scheme that coordinates information flow to produce meaningful results. This paper 

will focus on tools developed to manage the coordination of autonomous construction agents 

using stigmergy, in which a set of basic low-level rules are implemented through various 

environmental cues. Using VE-Suite, an open-source virtual engineering software package, 

an interactive environment is created to explore various informational configurations for the 

construction problem. A simple test case is developed within the framework, and 

construction times are analyzed for possible functional relationships pertaining to 

performance of a particular set of parameters and a given control process. Initial experiments 

for the test case show sensor saturation occurs relatively quickly with 5-7 sensors, and 

construction time is generally independent of sensor range except for small numbers of 

sensors. Further experiments using this framework are needed to define other aspects of 

sensor performance. These trends can then be used to help decide what kinds of sensing 

capabilities are required to simultaneously achieve the most cost-effective solution and 

provide the required value of information when applied to the development of real world 

sensor applications. 
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CHAPTER 1. INTRODUCTION 

Developments in microelectromechanical systems, high-speed microprocessors, low-voltage 

logic devices, and high-capacity memories have encouraged the production of small, low-

cost, multifunctional sensor nodes that create microsystems to sense and control an 

environment. These sensor nodes generally consist of a processor, external memory, 

receiver/transceiver, power source, and one or more sensors and are capable of processing 

data, gathering various types of sensory information, and communicating with other nodes in 

a network. Their small size and low cost makes it feasible to deploy vast numbers of sensors 

that can provide large amounts of information. However, there are considerable challenges in 

coordinating and processing this information. 

At first glance, it seems logical that a large number of sensors will give a more 

reliable and relevant picture of the sensed environment, but there are problems associated 

with processing ever-increasing bits of data. Given massive numbers of sensor devices, how 

will data, be efficiently and effectively merged and processed to effectuate real-time 

outcomes? What kinds of sensors and capabilities are required? How many sensors need to 

be deployed and at what location? The real value in information production comes in refining 

what is useful to the end user. If a quantity of information is no longer useful, then it is not 

cost effective to increase sensing resolution for the system. Ultimately, these questions will 

be determined by the problem trying to be solved and the consequences of not making an 

optimal decision. 

Traditionally, sensors have been administered with a top-down approach in which 

information is sent from each sensor to a central control unit where data fusion and 

processing are carried out. The resulting information is then used to decide some type of 
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control response for the system. This approach works well when the number of sensors is 

relatively small and the data packets being transferred are not large. However, when the 

number of sensors increases to hundreds or thousands, this centralized approach does not 

scale. The time frame in which data fusion/processing can take place will tax central 

processing units and may produce transient delays for desired control responses. This can 

quickly lead to degradation in system performance. Being able to effectively handle this 

flood of data to produce meaningful results will require new data distribution methods for 

sensor networks that are scalable, robust, and more efficient in resource consumption. 

One way to distribute the work load is through the use of localized algorithms. A 

localized algorithm is a unique set of simple rules where coordination is achieved through 

local interactions of the individual agents. These interactions of the system’s components do 

not rely on external control and are self-organizing. In this case, a sensor node can be thought 

of as an autonomous agent with some level of decision-making potential for the system. 

There are two distinct kinds of interactions for these types of systems: direct transfer of 

information between individuals and indirect information exchanges through the 

environment. The latter type of communication is termed stigmergy and was originally used 

to describe the natural behavior in coordinated swarm systems, e.g., societies of ants, bees, 

wasps, and termites. Stigmergy is a very interesting bio-inspired concept that might prove to 

be a useful control model for sensor swarms; however, constructing a rule-set that will 

produce consistent global behavior can be very challenging. 

Localized algorithms are hard to design because of the inverse problem of producing 

a desired global behavior using agents that only have local knowledge. In addition, different 

choices of algorithm parameters can lead to unexpectedly varied results for the system. This 
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task becomes particularly complex with the lack of suitable test beds to run trials prior to 

field implementation. In these situations, a virtual framework can help facilitate the 

development of conceptual algorithms. Simulation provides an artificial environment that can 

be used to test, evaluate, and visualize algorithms in a cheap and efficient manner compared 

to traditional methods. In this way, many parameters can quickly be examined to determine 

the value of a prospective control algorithm for a given application. 

At this time, there are no simulated sensor frameworks that can be easily adapted into 

custom applications. There are, however, many emerging robot software applications that 

enable virtual experimentation in robot and sensor systems. Actual sensor implementations in 

these frameworks are limited and usually only useful in robotic type applications. 

Nevertheless, benefit can be gained from examining the structure of these software APIs and 

how they incorporate sensor devices for parallel use in our simulation framework. 

Combining both sensor nodes for gathering information and actuator nodes for 

manipulating the environment, multi-robot systems are a good surrogate for large sensor 

networks. A multi-robot system is fundamentally a sensor swarm with the added capability of 

actuation. Of particular interest to this project are robot applications that make use of 

distributed and autonomous control schemes. 

To gain a better understanding of self-managing systems, this paper will focus on 

techniques that use autonomous construction agents to build two-dimensional structures. 

These techniques are based on an extended concept of stigmergy, in which environmental 

elements are used to coordinate swarm groups [Werfel and Nagpal, 2006]. Our interest in 

multi-sensor control for the deployment of potentially large numbers of sensors is the 

motivation for the design of this experimental framework. The goal is to create a generalized 
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virtual sensor framework that can easily be extended for use in a broad range of engineering 

applications. Information gained from this research will be used to create a set of software 

tools in VE-Suite, a virtual engineering software package, to assist in the development of 

complex sensor networks and controls. 
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CHAPTER 2. BACKGROUND 

In engineering, having access to a broad range of information is vital in making decisions for 

complex systems. Sensor networks have been an important provider, collecting many 

different types of data over a broad range of applications. With current technological 

advances, the availability of small, low-cost sensors will revolutionize sensing parameters. 

2.1 Sensor Networks 

Scientific advances have always made a difference in warfare, and military applications have 

historically been a driving force behind R&D in sensor networks. Early sonar acoustic 

sensors, the Sound Surveillance System (SOSUS), were used to detect, classify, and track 

quiet nuclear submarines during the Cold War [Chong et al., 2003]. More sophisticated 

networks have been developed since the Cold War for submarine surveillance, and SOSUS is 

now used by NOAA to monitor seismic and animal activity in the ocean—an example of 

wartime technology transferring to peacetime objectives. 

Another Cold War innovation that has undergone technological evolution is radar. 

Networks of air defense radars defended the continental U.S. and Canada during the Cold 

War. The modern day counterpart defends not only the perimeter, but the interior United 

States from acts of terrorism and war, as well as being able to deploy mobile ground and sea 

units to hot spots around the world. Today’s radar capabilities include mobile ground radar 

units that employ forward-based sensors such as the Forward Based X-Band Transportable 

(FBX-T) Radar. “The radar will have a direct interface with the BMDS (Ballistic Missile 

Defense System) command and control system. The radar will perform surveillance 

autonomously or as cued by other sensors, and it will acquire, track and discriminate threat 
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missiles and missile components, and pass this information to other BMDS tracking, 

discrimination, and fire control radars downstream” [FBX-T, 2008]. 

Non-military applications of sensor networks have evolved to include large-scale 

wireless networks with either mobile or immobile sensor nodes for habitat monitoring, 

environmental monitoring (volcanic and earthquake activity), vital sign monitoring, and 

agricultural monitoring (temperature and moisture variations within a field). Some examples 

of these networks include: 

 Leach’s Storm Petrel at Great Duck Island, Maine, [Romer and Mattern, 2008] 

Easily disturbed by humans, sensor nodes enable biologists to monitor: 

  Usage patterns of nesting burrows 

 Changes in environmental conditions inside and outside of burrows during 

breeding season 

 Variations of breeding sites and parameters of preferred breeding sites 

Sensor nodes are installed inside burrows and on the surface to measure humidity, 

pressure, temperature, ambient light level, and presence of birds 

 ZebraNet, Mpala Research Center, Kenya, [Romer and Mattern, 2008] 

Monitored behaviors of wild horses, zebras, and lions include: 

 Grazing patterns 

 Activity patterns 

 Interactions within a species and among different species 

 Impact of human development on the species 

Animals are equipped with sensor nodes to estimate position and speed of 

movement. Recorded data is collected by car or plane as it passes the animals. 
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 Glacier Monitoring, Briksdalsbreen, Norway, [Romer and Mattern, 2008] 

Sensor nodes are installed in drill holes at varying depths in the glacier ice and in the 

till under the glacier to measure pressure and temperature. A tilt sensor measures the 

orientation of the node. Sensor nodes communicate with a base station on top of the 

glacier. Radio communication through ice and water is a major problem. 

 Wind Farm off the Coast of England, [Romer and Mattern, 2008] 

Sensor nodes measure pressure, temperature, conductivity, current, and turbidity to 

monitor the influence of the wind farm on the structure of the ocean bed. Sensor 

nodes are deployed from a ship that secures their positions to the ocean bed via an 

anchor. A cable connects each sensor node to a buoy on the ocean surface that 

contains radio and GPS equipment to circumvent underwater radio communication 

difficulties. 

 Argo Ocean Monitoring, [Argo, 2008] 

Argo is an international collaboration to collect data year round from the ice-free 

global ocean through an array of profiling floats. The sustained observations aid in 

understanding and predicting climate models. Battery-powered autonomous floats 

drift most of the time at 1000 meters (to give a uniform velocity field). At 10-day 

intervals, the floats descend to around 2000 meters and then rise to the surface (an 

approximate 6-hour trip), taking about 200 measurements for temperature and salinity 

as they rise. Once they surface, satellites determine the position of the floats and 

receive the data transmitted by the floats. That information is shared with other users 

within 24 to 48 hours. The float then sinks back to its parking depth to repeat the 
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cycle again. The need for Argo observations is an ongoing one, but financial 

constraints are a concern. 

Applications for networked sensors are as varied as the imagination and technology will 

allow. Improvements in sensor technology and wireless communications have made it cost 

effective to deploy large numbers of sensors. Once standardization of common software 

platforms is addressed, extensive development in massive networks can be expected to 

follow—similar to the Internet boom with its standardized protocol (TCP/IP) for application 

implementation [Zhao and Guibas, 2004]. 

Areas that will benefit from these technological advances include wireless sensor 

networks that can be used to monitor the condition of equipment to warn of failure or need of 

maintenance [Zhao and Guibas, 2004] and future NASA missions using highly autonomous 

spacecraft that “will enable radically different missions with significant onboard decision-

making leading to novel science opportunities” with reduced risks and operations cost 

[Sherwood et al., 2006]. Sensor nodes will be built into walls, roads, and bridges remaining 

dormant until activated by a timer event, vibration event, or tilt event. Data can be analyzed 

after the event (i.e. after a building collapses) to build stronger earthquake-proof structures. 

[Haenselmann, 2006] 

2.2 Management and Control 

Adding additional sensors to a system does not necessarily lead to improvements in sensing 

performance. There must be an appropriate control scheme that coordinates information flow 

to produce meaningful results. Large sensor networks create considerable challenges for the 

management and control of data processing and communication. There are three main 
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classifications of management and control schemes applicable to sensor networks: 

centralized, distributed, and self-organized [Dressler, 2008]. The following sections give a 

brief description of these categories and their potential benefits and downfalls. 

2.2.1 Centralized Systems 

Systems that exhibit a well-defined central control process are said to be centralized 

[Dressler, 2008]. An example of centralized control in sensor networks might consist of a set 

of loosely-coupled sensors that continuously collect and transmit data to a central controller. 

Figure 1 depicts the basic principles of a centralized control system. Individual systems, Si, 

report information to a central control process, C, which then performs the necessary fusion 

of data to compute an outcome for the application. 

 

 

The control process is hardwired with all the properties of its subsystems, i.e. it 

knows about each of its subsystems and their respective capabilities. This trait leads to 

consistent and reliable behavior for centralized systems, but also makes it difficult to change 

the design of the system if certain parameters need to be reconfigured. Also, a centralized 

control process creates a single point of failure, which has the potential to incapacitate the 

Figure 1: Centralized control principle (C depicts the control process and Si the controlled systems, 
respectively) [Dressler, 2008, p. 11]. 
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entire system. The centralized approach has two major weaknesses in relation to control and 

management of large sensor networks: scalability and transparency [Dressler, 2008]. 

Scalability refers to the ability of a system to add an increasing amount of sensors while 

maintaining a certain level of performance. Transparency refers to the ability of the system to 

adapt to changing resource availability. Computational limits for a central control process 

can quickly be reached when large amounts of sensor data become available, and its lack of 

flexibility does not permit for transparency in the system. Despite these weaknesses, a 

centralized system implementation is often the most cost-effective and time-efficient method 

when dealing with small numbers of sensors. 

2.2.2 Distributed Systems 

Distributed systems consist of a collection of independent subsystems that appears to an 

application as a single coherent system [Dressler, 2008, p. 10-11]. In this way, differences 

between each subsystem and the way they interact are effectively hidden from the user. This 

allows an application to interact with subsystems in a consistent and uniform way. To create 

this uniform interface between the heterogeneous subsystems, a middleware is typically 

utilized. Middleware is software that is placed between the application and the operating 

systems of each node. The middleware provides a common interface for components of the 

system to access information in the network. Middleware can be considered to be the glue 

that binds a network and its subsystems together. Figure 2 depicts the basic principles of a 

distributed control system. A specific control process, C, is dynamically allocated to one of 

the subsystems, Si. This process maintains control until the resource request for the 

distributed system is complete. 
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Distributed control provides three distinct advantages over a centralized process: 

adaptability, robustness, and scalability [Dressler, 2008]. Using the interface that middleware 

provides, all available resources are easily accessible from the application as well as from 

every subsystem. This abstract layer creates flexibility in integrating new components, even 

those that were not available during the original design of the system. Robustness is achieved 

through the distributed nature of the system. If no response is received from a failed node, the 

control process will be reallocated to another node in the network and tasking will continue. 

Some level of scalability is possible using distributed networks, but the subsystems must be 

limited in their ability to access non-local information. This restriction is not easily 

implemented for a large number of subsystems. 

Research for large sensor networks typically focuses on distributed solutions for 

coordination due to the inherent dispersion of the sensors. Previous work includes distributed 

wireless ad hoc networks for tracking mobile targets [Chong et al., 2003], mobile agents as 

means to integrate data in distributed sensor networks [Qi et al., 1999], and various forms of 

distributed habitat monitoring [Romer and Mattern, 2008], [Mainwaring et al., 2002]. 

Figure 2: Distributed control principle (C depicts the dynamically placed control process and Si the 
controlled systems, respectively) [Dressler, 2008, p. 13]. 
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2.2.3 Self-Organizing Systems 

Self-organization is a process in which structure and functionality emerge at the global level 

of a system due to the interactions among the lower-levels of a system [Dressler, 2008]. Each 

component in a self-organizing system has its own control process as shown in Figure 3. It is 

important to note that self-organization occurs solely based on the low-level interactions of 

the system and not by any external or central control process. The control scheme for this 

system can be compared to that of a centralized paradigm in that each component operates as 

its own system. The nodes of the system are completely self-dependent. 

 

 

Just as distributed systems provide advantages over a centralized process with respect 

to adaptability, robustness, and scalability, self-organized systems provide yet another level 

of performance for these properties. An intrinsic feature of self-organizing systems is the 

ability to adapt to changing conditions in the environment [Dressler, 2008]. Being able to 

make modifications in response to local environmental changes allows for regulation of the 

system’s behavior. Self-organizing systems can also be extremely robust. Because each 

Figure 3: Management and control in self-organizing systems (C depicts the local control processes and 
Si the controlled systems, respectively) [Dressler, 2008, p. 15]. 
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component has its own control process, the failure of any one component in the system will 

not affect the behavior or performance of other components in the system. Scalability occurs 

as a result of components acting autonomously. While there are many advantages to be had 

from using self-organizing concepts, one downside is the difficulty in designing a behavioral 

rule-set that will produce a desired global behavior from components that only have local 

knowledge. A common approach to designing these rule-sets is to look at the self-organizing 

behaviors in nature. 

Many principles of self-organization have been observed through the study of natural 

systems. These observations have inspired research for large sensor networks that mimic 

biological behavior, e.g., use of evolutionary algorithms [Das et al., 2006], artificial immune 

systems [Kim et al., 2001], and swarm intelligence [Di Caro et al., 2005]. Of particular 

interest to this research is the ability of swarms of social insects to behave collectively 

without any outside control. It is hoped that concepts derived from swarm intelligence will 

have potential use in coordinating information flow in large sensor networks. 

2.2.3.1 Swarm Intelligence 

Swarms of social insects can build exceptionally large and complex structures without a 

centralized control system and with seemingly limited perception. These swarms exhibit 

behavior on many levels above those of their constituent parts. For example, some species of 

termites can build nests 104 to 105 times larger than the size of an individual termite. (see 

Figure 4) [Bonabeau et al., 1988]. These nests display a high degree of regularity and contain 

complex regulatory systems, e.g., spiral cooling vents, nurseries, and fungus gardens. The 
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complexity of these types of systems is truly amazing and the underlying mechanisms are 

still not fully understood. 

 

 

2.2.3.2 Stigmergy 

Studies have shown that many of these structures are the result of a self-organizational 

process in which collective activities are coordinated through the environment [Theraulaz et 

al., 1999]. This principle was termed stigmergy by Pierre-Paul Grassé (1959) in an effort to 

explain his observations on the reconstruction of termite nests. Grassé observed that a 

particular configuration of the termite’s nest would stimulate a response in workers to modify 

the construction. These modifications in turn would stimulate even further progressive 

responses that eventually led to the completion of the structure. The overall concept of 

stigmergy was depicted by Grassé’s introduction to the term: “The worker does not direct his 

work, but is guided by it.” [Holland and Melhuish, 1999, p. 174] Individuals react to 

Figure 4: [Photo of Giant Termite Mounds in Litchfield National Park, 2008] 
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environmental variations that were produced by the previous actions of others. Information is 

stored implicitly within the environment and not directly transferred between agents. 

The concept of stigmergy has crossed over into other domains of research including 

swarm intelligence, robotics, and network communications. This has led to a number of 

interpretations from its original context. Collectively, however, it can be viewed as a general 

explanation of how simple systems can produce a wide range of apparently highly organized 

and coordinated behaviors with behavioral outcomes, by exploiting the influence of the 

environment [Holland and Melhuish, 1999, p. 174]. Current research in the field of swarm 

robotics has shown the use of an augmented conception of stigmergy, extended stigmergy, 

which can improve system performance by increasing the capabilities of the environment 

[Werfel and Nagpal, 2006]. Their work focuses on creating autonomous algorithms that 

enable multi-robot systems to simultaneously build 2-D structures. This construction setting 

makes use of extended stigmergy by giving building blocks different abilities in which they 

can store information, perform computations, and communicate with attached neighbors. In 

this way, robots communicate implicitly by manipulating their surroundings. They extract 

information from a progressing structure’s current configuration and use that information to 

decide upon new building actions. Extended stigmergy could be useful in coordinating multi-

sensor systems in a variety of engineering applications and is explored further in this research 

by extending the framework developed by Werfel and Nagpal, 2006. 
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2.3 Virtual Framework 

Through virtual simulation, many design parameters can be explored computationally 

without the cost and effort of building a physical model. Virtual reality presents three-

dimensional, complex data in an intuitive and interactive manner that can help engineers 

understand the information better and make effective decisions. In the case of large sensor 

network self-management, a framework needs to be built that can help engineers understand 

what the value of additional sensors for a system will be. This application needs to support 

massive numbers of sensors so that engineers may explore and understand at what point are 

there too many sensors; how does the cost of the components impact the total system; how 

much information is enough to actuate the wanted results; what type of decisions need to be 

autonomous based on preset parameters; which algorithms are applicable to a situation; and 

any other questions that may arise during the virtual testing. 

This research focuses on creating a virtual framework that will be helpful in gaining 

mathematical understandings for algorithms that support control and management of large 

sensor networks. This information can be used to identify which approaches are most likely 

to succeed when applied to the development of real world sensor applications. Algorithms 

that are proven to be applicable will be developed into reusable software tools that can be 

implemented in real sensing applications. Creating this open-source library will enable 

collaborative research to test, improve, and extend these tools. This investigative framework 

will be built within VE-Suite, an open-source virtual engineering software package being 

developed under the guidance of Professor Mark Bryden at Iowa State University. VE-Suite 

was chosen for its ability to create realistic environments and simple interfaces that can 

drastically reduce the turnaround time from a conceptual stage to functional system. 
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2.3.2 VE-Suite 

VE-Suite is being developed as a multi-purpose virtual engineering design and analysis tool. 

The goal of virtual engineering is to create an environment that enables engineers to design, 

analyze, and modify their ideas. Toolkits that are successful in their design and 

implementation will be available in open source libraries for use by other researchers to 

further develop and test. An important aspect of VE-Suite is its ability to integrate many 

engineering components that may be necessary for an effective analysis and design of a 

system. This flexibility allows an engineer to couple together a number of simulation and 

modeling packages they may wish to use in the design process. This is accomplished by 

using an open communication interface called VE-Open. VE-Open combines CORBA 

(Common Object Request Broker Architecture) and XML implementations to communicate 

data in a self-describing data structure [Xiao et al., 2005]. This allows each component in 

VE-Suite’s framework to query and access resources for the entire system in a consistent and 

uniform way. Differences between each component and the way they interact are effectively 

hidden from the user/application.  

In order to take full advantage of the wide range of hardware resources a system 

implementation might include, the design platform of VE-Suite is divided into two parts: 

servers and clients. This architecture allows each server to run on a number of computational 

platforms, such as a Linux cluster, to promote task parallelism within the framework. The 

core components of VE-Suite consist of 3 servers: VE-Xplorer (the graphical engine), VE-

Conductor (the user interface), and VE-CE (the computational engine) as shown in Figure 5. 

These core components interact with each other through the communication interface VE-

Open provides. 
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VE-Conductor is the graphical user interface (GUI) for VE-Suite. VE-Conductor 

provides a way for the user to interact with various parameters of the system to input and 

retrieve information for the system. VE-Xplorer is the graphics engine in VE-Suite’s 

framework. Its main task is to provide a visual experience for the user that conveys 

information in a 3-D virtual environment. This information can be anything that is useful to 

the design process, e.g., numerical models, CAD geometry, CFD data, and experimental data. 

VE-CE is the computational engine for VE-Suite. VE-CE handles the scheduling and 

synchronization of data sources that are being used for a particular application [McCorkle et 

al., 2007]. VE-CE is responsible for issuing commands from the application/user to a specific 

computational unit that processes its command and relays the information to the appropriate 

module. 

Figure 5: VE-Suite architecture 
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Other servers and clients that adhere to VE-Open’s communication specifications can 

also be “plugged” into VE-Suite’s framework to provide or access resources to/from the 

system. This allows each component in the software framework to be aware of other models 

for communication and retrieval of information [Xiao et al., 2005]. 

2.3.3 Software for the Support of Multi-Robot Systems 

Many software packages currently exist to facilitate experimentation in multi-robot systems. 

Some of the beneficial traits these packages may comprise are: commonly defined interfaces 

for software components that are frequently reused, a set of low-level drivers for robot 

hardware, a middleware library that allows local and networked communication efficiently 

between components, and a simulation environment to substitute when hardware is not 

necessary or available [Michael et al., 2008]. The following are some examples of open-

source distributed robot software frameworks. These libraries provide a similar framework to 

what is described in this research and will be investigated for their potential to support a large 

number of sensors in virtual simulation. 

2.3.3.1 Player/Stage/Gazebo 

Originally created at the University of Southern California for ActivMedia Pioneer 2 robots, 

open-source Player/Stage/Gazebo has evolved to support numerous robotic platforms, 

hardware devices, software systems, and algorithms [Gerkey et al., 2003]. Player is a widely-

used server that allows for the control of networked robots. Stage simulates a two-

dimensional environment for multiple robots to engage, and Gazebo is a three-dimensional 

multi-robot simulator for outdoor environments [The Player Project, 2008]. 
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With Player running on the robot, communication between Player and the client 

program takes place via a transmission control protocol (TCP) socket [Gerkey et al., 2001], 

[Gerkey et al., 2003]. Player allows data to be exchanged among drivers and control 

programs that are running on different machines and is designed to support any number of 

clients. A recent innovation is the development of abstract driver allowing users to create 

their own drivers instead of being confined to hardware-specific drivers [Gerkey et al., 2003]. 

Stage is designed to simulate a large population of robots, objects, and sensors—including 

sonar, scanning laser rangefinders, vision (color blob detection), odometry, and a differential 

steer robot base—in 2-D, but sacrifices fidelity. Gazebo is designed to simulate a small 

population in 3-D with high fidelity. Gazebo uses ODE (Open Dynamic Engine - a rigid 

body dynamics simulator) to compute interaction with objects [Koenig and Howard, 2004]. 

Player/Stage/Gazebo is a powerful robotics software package, but it relies on several 

complex components and has a steep learning curve. It also lacks the robustness, 

extensibility, and network capability needed for the test platform being built here. 

2.3.3.2 CARMEN 

The Carnegie Mellon Robot Navigation Toolkit (CARMEN) is an open-source collection of 

modular software for mobile robot control that communicates via a central server to navigate 

a robot or map new environments, but has been also used in applications such as health care 

robotics, person–tracking, and mine exploration [Carmen Robot Navigation Toolkit, 2008], 

[Montemerlo et al., 2003]. Communications between CARMEN executables use InterProcess 

Communication (IPC), which is a separate software package but is distributed with 
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CARMEN. Carmen was designed to encompass extensibility and robustness but its downfall 

is that it is very complex and is limited to mostly indoor robots/vehicles [Teller, 2005]. 

2.3.2.3 Orocos 

Frustration with the available commercial software for advanced robotic research was the 

motivation behind the idea for a free software project named Orocos, Open Robot Control 

Software. The sponsored project started in 2001 and lasted for two years focusing on 

industrial robotic real-time applications. Orocos was primarily developed by Katholieke 

Universiteit Leuven in Belgium, the Laboratory for Analysis and Architecture of Systems 

(LAAS) in France, and Kungliga Tekniska Hogskolan (KTH) in Sweden, with contributions 

continuing from various countries. Orocos is a modular framework that utilizes CORBA as a 

middleware, libraries for kinematics/dynamics, and Bayesian filtering. Applications include 

automation and robotics with components for sensor data processing, industrial machining, 

kinematics, control algorithms, and hardware access. The component-based robotic system 

spinoff was renamed Orca [The Orocos Project, 2008]. 

2.3.3.4 Miro 

MIRO (Middleware for Robots) was originally developed at the University of Ulm in 

Germany in 1999. MIRO is a CORBA-based framework for programming mobile robots. 

The CORBA interface allows for data exchange between modules written in different 

languages. MIRO also provides a Player interface so that MIRO software can be tested in 

Stage and Gazebo simulators. Like many multi-robot software packages the MIRO/ACE (a 

distributed programming library)/TAO toolchain has a fairly steep learning curve, but 

reduces software development time and expense by providing robot-specific data structures, 
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functions, communications protocols and synchronization mechanisms [Kuo and 

MacDonald, 2004], [Broten et al., 2006], [Kruger et al., 2006]. 

2.3.3.5 MARIE 

No mobile robotics standards exist. Linking applications having different communication 

protocols and communication mechanisms requires time, effort, and knowledge to assure that 

functionalities are not deteriorated or modified. MARIE (Mobile and Autonomous Robotics 

Integration Environment) is an open-source middleware framework that reuses software, 

APIs (Application Programming Interface), middlewares, and frameworks (such as Player 

and CARMEN) to avoid code duplication in robotic systems components. Developers are 

able to more quickly design prototypes when they can borrow ready-made components and 

integrate them for their specific requirements, [MARIE, 2008]. Unfortunately, MARIE’s 

scope is limited to robotics and is suffering from decreasing development activity—down to 

a single, active developer according to one website [Cote et al., 2004], [MARIE, 2008]. 
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CHAPTER 3. FRAMEWORK 

This research project is focused on developing a simple framework to manage coordination 

of autonomous construction agents. Central to this research framework is enabling the 

inclusion of stigmergy in which a set of low-level rules that controls the construction agents 

behavior are implemented through various environmental signals. In this research the 

construction agent problem serves as a surrogate problem in understanding information 

control schemes with virtual sensors. The goal is that through this framework, software tools 

will be developed for VE-Suite that will aid in the design of future sensor network 

applications. 

3.1 Design Implementation 

The basic framework being developed here for the construction problem is, to a great extent, 

the same as the original design (see Figure 6) developed by Werfel and Nagpal, 2006. 

Building blocks are unit cubes that can be attached to each other on sides corresponding to 

the desired two-dimensional structure. One building block is initially positioned to indicate 

where construction should begin. Mobile agents locate blocks, take them to the structure, and 

follow its perimeter until they find a valid attachment site. To prevent construction 

interference, unattached blocks are randomly placed a “safe” distance away from the 

structure. 

In this construction setting, the building blocks are the environmental elements that 

are given increased capabilities, i.e. extended stigmergy. They have the ability to store 

information, perform computations, and communicate with physically attached neighbors. 
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Later we will discuss the algorithm, Communicating Block, used to ensure constraints on 

block attachment. 

 

 

3.1.1 Virtual Environment 

An important element of creating a realistic virtual environment is providing an effective 

visual interface for the user. The construction problem framework implements this interface 

by using VE-Suite [VE-Suite, 2008]. VE-Suite can create a fully immersive virtual 

environment in which decision-making processes can take place or simply provide a two-

dimensional virtual workspace. Through this interactive graphical interface, visual 

Figure 6: Construction problem framework implemented using VE-Suite. The virtual construction world 
consists of mobile agents (red), building blocks (white), and a block-sized marker to designate 
the starting point for construction (black) [Werfel and Nagpal, 2006]. 
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recognition of data and information flow gives the user an enhanced connection and 

understanding of the environment. For the study at hand, this may allow innovative 

adjustments to the informational control schemas. VE-Suite provides “plugins” to each of its 

core components so that custom applications can be designed on top of VE-Suite’s default 

capability. The framework developed in this research makes use of VE-Suite’s graphical 

plugin interface to VE-Xplorer. The graphical plugin provides access to VE-Xplorer’s toolset 

for developing a virtual environment. 

3.1.2 Physics Engine 

The open-source physics package Bullet [Bullet Physics Library, 2008], a fully capable 

collision detection and rigid body dynamics library, is integrated into VE-Suite for the 

purposes of this framework. Through this interface, an initial step is taken towards 

reproducing the dynamic environment an agent may encounter, including its physical 

attributes such as mass, velocity, and friction. In the current physics implementation, 

elements are constrained in their “degrees of freedom” to ensure alignment with the grid 

structure and still retain continuous valued positions. Other forces are being simulated for the 

agents as they move over the two-dimensional ground plane, including those created by 

obstacle avoidance algorithms and gravity. 

3.1.3 The Construction World 

Certain assumptions were made in the original framework developed by Werfel et al., 2006, 

pertaining to the capabilities of the agents. It was assumed the agents could perform the 

following tasks: 
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1) They are able to move in any direction and avoid collisions even while holding a 

block. 

2) They are able to follow beacons to get to the building site and to block locations. 

3) They are able to perimeter follow the building site and perceive turning a corner. 

4) They are able to pick up blocks from caches and attach them to the structure. 

Many of these assumptions are addressed for the current framework to create a realistic 

simulation environment. While it is not completely necessary to simulate all aspects of the 

construction problem, adding these details to the system would make the environment more 

interactive and at the same time enable more diverse informational configurations in the 

framework. This endeavor initially incorporates the integration of collision detection and 

rigid body dynamics, virtual sensors, and simplistic obstacle avoidance algorithms for the 

agents. Following is a brief description of each general component involved in creating the 

complete simulation. 

3.1.3.1 Models 

A model is any object that represents a physical entity. There are three types of models in this 

framework representing the construction agents, the building blocks, and the construction 

environment. All models in this framework consist of a geometric shape and at least one rigid 

body. A rigid body is the physics representation of the model and is used in calculating 

physical forces by the physics engine. Each rigid body has associated physics properties 

including mass, friction, and restitution while geometric bodies contain rendering properties 

such as material color, texture, and opacity. 
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The boundaries of the construction world consist of a ground plane that the agents 

and building blocks rest upon and surrounding walls that are used to confine the dimensions 

of the construction environment. Gravity is the working force that keeps the agents and 

building blocks held against the floor, while an obstacle avoidance algorithm is implemented 

by agents to avoid hitting the walls. This ensures that the components of the system will 

occupy a space that is relevant to the construction task at hand. The ground plane and walls 

represent static models because they are stationary in the environment. They are not affected 

physically by any other models in the scene. Therefore, forces are not calculated for these 

bodies. 

Building blocks are simple box-shaped geometries. The blocks represent a dynamic 

model because they can be affected by physical forces in the environment. These may 

include gravity, collision with other objects in the environment, or a user induced force 

through the virtual interface that VE-Suite provides. 

Agents are also simple box-shaped geometries, but, unlike the building blocks, agents 

contain virtual sensors to gather information in the construction world. They use this 

information to decide upon their behavior for the construction task. The agents are 

dynamically represented and have the added ability to move across the ground plane. This 

movement is simulated in the virtual environment by applying small forces through the 

physics API. 

3.1.3.2 Sensors 

Important environmental information needed to direct mobile agents can be obtained from 

sensor devices such as cameras, infrared and ultrasonic sensors. For this application, the 



 28 

 

agents require a way to find the blocks and the construction site and simultaneously avoid 

unnecessary obstacle collisions. To enable this behavior, different types of virtual sensors are 

created to aid the agents in these tasks. To simplify their implementation, sensors are not 

given any physical representation in the framework. They are an abstract class whose sole 

purpose is to collect data for the agents. This design keeps the interface between the agent 

and each of its sensors simple and allows for reuse of code among the different types of 

sensors. Since sensors only collect data and do not represent a physical entity, they are not 

included in the physics simulation. The framework initially incorporates three different types 

of sensors—including ray proximity, sonar, and color detection. 

The ray proximity sensor returns the distance from the closest contact point of an 

object along the ray’s path. This sensor is meant to emulate the large number of range finders 

available for robotic experiments. This sensor is fairly easy to implement in code using a 

basic ray intersection test with the geometry in the environment. 

The color detection sensor collects various color information from the scene. To 

permit the agents to sense this information, a virtual camera implementation is simulated in 

code to give the agent color feedback of its environment. To allow the agents to differentiate 

between blocks that are attached to the structure and blocks that are unattached, the blocks 

are colored different depending on their current state of attachment. In this way, the color 

detection sensor can be used to direct an agent towards building blocks and then back to the 

construction site. This may not be realistic behavior for an actual building block, but it serves 

its purpose for the testing of the framework. 

The sonar sensor detects possible obstacles that the agents may encounter as they 

perform tasks. A real sonar sensor functions by emitting sounds and waiting for a return 
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echo. By keeping track of the time it takes for a signal to return, a distance can be calculated 

for each obstacle hit. To keep our agents relatively uncomplicated, a simplified concept of 

the sonar sensors is simulated in code by creating a circular pattern of ray intersection tests. 

If a ray contains multiple intersections, only the first intersection is used as would be seen in 

a sonar reading. These readings are then fed into various real-time obstacle avoidance 

algorithms that calculate a total repulsive force in a direction away from the highest 

concentration of obstacles. 

3.1.3.3 Obstacle Avoidance 

Navigation in autonomous systems implies that agents have no prior knowledge about 

potential obstacles in their path. In this framework, agents will need to successfully navigate 

other moving agents as well as blocks that are scattered throughout the environment. This 

will require a dynamic obstacle avoidance system that can detect moving and static objects 

and use this information to calculate a direction of motion that allows an agent to complete 

its tasks. Obstacle avoidance algorithms adapted from Borenstein and Koren, 1989, employ 

the idea of obstacles conceptually exerting forces onto the mobile agents as they approach. 

This repulsive force is then combined with a target force, representing an agent’s goal 

position, to produce a resultant vector of desired travel for the agent. 

There are two obstacle avoidance algorithms implemented in this application: Virtual 

Force Field Method (VFFM) and Wall-Following Method (WFM) [Borenstein and Koren, 

1989]. Readings are continuously taken from the sonar sensors while an agent is moving. As 

the agent comes in range of an obstacle, its sonar sensors register a detection and record the 

distance information for the reading. In this way, a repulsive vector can be calculated with 
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respect to the agent. This information is then sent to the VFFM algorithm where it is merged 

with the target vector to produce a resultant vector. If the resultant vector points in a direction 

90o away from the target, the WFM algorithm is invoked to prevent the agent from getting 

caught in a local trap. This allows an agent to actively adjust its path to avoid collisions and 

does not require an agent to stop while it performs tasks. An unattended side-effect of these 

repulsive forces is the distributed coverage that naturally occurs as the agents operate. Being 

repulsed from each other keeps agents from occupying the same space and limits redundant 

sensor readings. A full mathematical description of the obstacle avoidance algorithms can be 

seen below. 

Virtual Force Field Method (VFFM): As an agent approaches an obstacle, it is pushed away 

by a repulsive force proportional to its distance from the obstacle. The magnitude of the sum 

of all the repulsive forces from the environment gives a total repulsive force, rF


, for the 

agent as shown in Equation 1 [Borenstein and Koren, 1989, p. 4]: 
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where 
crF


 Force repelling constant 
),( jid  Distance between an obstacle detection and the agent 
00 , yx  Agent’s present coordinates 
ji yx ,  Coordinates of an obstacle detection with respect to the agent 
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A constant-magnitude attracting force, tF


, can be implemented if the agent has a 

target point and its coordinates are known with respect to the agent as shown in Equation 2 

[Borenstein and Koren, 1989, p. 5]: 
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where 
ctF


 Force attraction constant 
)(td  Distance between the target and the agent 
00 , yx  Agent’s present coordinates 
tt yx ,  Coordinates of the target with respect to the agent 

 
The vectorial sum of all these forces produces a resultant force vector, R


, in Equation 3 

[Borenstein and Koren, 1989, p. 5]: 

 rt FFR


  (3) 

Wall-Following Method (WFM): A potential downfall of the VFFM algorithm is the 

possibility of an agent to get trapped as it performs tasks (see Figure 7a). To compensate, a 

different algorithm is employed when an agent detects that it is in a trapped state. This 

algorithm is known as the wall-following method (see Figure 7b). 
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An agent recognizes it’s in a trapped state if the resultant force vector calculated by 

the VFFM algorithm takes the agent in a direction 90o away from the target. Once this 

occurs, the agent switches to WFM mode. The WFM algorithm first calculates the sum of all 

repulsive forces, rF


, in the same manner as the VFFM algorithm. Next, the WFM algorithm 

rotates an angle 90o < α < 180o away from the total repulsive vector, and a virtual attractive 

force, tF


, is projected in this new direction. The resultant force, R


, will now point and 

eventually converge in a direction parallel to the wall boundary as shown below in Figure 8. 

Once the agent escapes the trap and is headed back in a direction within 90o of the target, 

VFFM mode is resumed. 

Figure 7: (a) The agent gets caught in a local trap. (b) As the agent finds itself in a direction 90o off 
target, it switches to the WFM algorithm. Once the agent’s heading is back within 90o, the 
VFFM algorithm is reinstated. 
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3.1.3.4 Behaviors 

Agents are now able to gather information from their environment through use of virtual 

sensors. In addition to this, some behaviors need defined to encompass tasks an agent can 

perform. These behaviors are based on the simple rules determined by the governing control 

algorithm. Collectively these components will form the basis of a behavior control scheme 

for our agents. This scheme is adapted from a research application pertaining to collective 

construction in autonomous mobile robots [Wawerla et al., 2002]. 

The information that each virtual sensor gathers, pertains to a primary response for 

the agents. Also, each sensor has the ability to influence other behaviors in a secondary role. 

Later, a flowchart for the control scheme will be discussed in more detail, but for now a brief 

description of the sensor/behavior relationship can be seen below in Figure 9. 

Figure 8: The wall-following method used by the agents to avoid local traps [Borenstein and Koren 1989, 
p. 12]. 
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Sensors 

 Site Sensor - returns distance and direction information when the site is in view 

 Block Sensor - returns distance and direction information for blocks in view 

 Hold Block Sensor - tells the agent if it is holding a block 

 Obstacle Sensor - returns distance and direction information from detected obstacles 

Behaviors 

 Go to Site Behavior - directs an agent towards the construction site 

 Go to Block Behavior - directs an agent towards a block 

 Pick Up Block Behavior - directs an agent to pick up a block 

 Build Behavior - causes the agent to perimeter follow the construction site and 

connect blocks at valid attachment sites 

 Ovoid Obstacle Behavior - implements obstacle avoidance algorithms to prevent 

obstacle collision with blocks and other agents 

Figure 9: Simple model of the behavior-based control scheme for the agents [Wawerla et al. 2002]. 

Block Sensor 

Hold Block Sensor 

Obstacle Sensor Build Behavior 

Go to Block Behavior 

Pick Up Block Behavior 

Avoid Obstacle Behavior 

Site Sensor Go to Site Behavior 

Primary Response 

Secondary Response 
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CHAPTER 4. SENSOR TEST CASE 

To test the framework, a series of experiments will be performed to demonstrate the 

successful construction of a structure in virtual simulation. A stigmergic algorithm will be 

implemented as the control scheme to organize the behavior of the agents. The variables for 

this test case are: a) the number of agents that participate in the construction task and b) the 

distance in which agents can “see” the building blocks. To enable performance analysis, the 

time it takes to successfully complete the structure will be recorded. 

4.1 Algorithms 

In Werfel and Nagpal, 2006, three algorithms that make use of extended stigmergy are 

described and analyzed. For our initial work, we will focus on the one termed 

Communicating Blocks. 

4.1.1 Communicating Blocks Algorithm 

This algorithm makes use of a decentralized controller by embedding a processor in each 

building block. Blocks maintain a copy of the desired shape (an occupancy matrix), 

information about their location in the shared coordinate system, and side state based on 

bordering attachments. Once a block is attached to the structure, it can communicate with its 

immediate neighbors through the physical connection they share. This new block gets a copy 

of the desired shape and its location from its neighbors, and sets its side states according to 

theirs. The other blocks then update their side states based on this new attachment. This 

design allows the structure to enforce desired restrictions on block attachment (see Figure 

10). 
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4.1.1.1 Separation Rule 

To ensure the desired structure is built properly, a partial ordering on block attachment (the 

separation rule) is set forth for the Communicating Blocks algorithm. The separation rule 

states that separated blocks must never be attached in the same row (that is, with the same x- 

or y-coordinate) if all sites between them are ultimately meant to be occupied [Werfel and 

Nagpal, 2006, p. 22]. The need for this rule arises from the fact that we are dealing with rigid 

building materials (the blocks). For example, it would be difficult for an agent to fit a 

building block into a space that is exactly one block wide. The separation rule also prevents 

long narrow tunnels from forming in which it is impossible for two agents to pass each other 

while perimeter following. Undesirable situations like these can be seen in Figure 11. 

Figure 10: (a) Blocks form a data-line to communicate to agents where they can attach a new block 
(green) or sites that are unavailable for attachment (red). (b) A new attached block sets its 
side states based on its neighbors, and they update theirs accordingly [Werfel and Nagpal, 
2006]. 
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It follows that if we wished to build a structure with the physical traits shown above, 

this would not be possible using the separation rule. Therefore, suitable structures using this 

approach must be free of intentional holes and concavities must be two blocks wide to allow 

perimeter following by the agents. These provisions prevent situations in which agents 

physically cannot reach sites meant to be occupied. 

Figure 11: It is assumed impossible for an agent to insert a block into a tight opening like (A). To avoid 
this situation, separated blocks must never be placed in the same row if all sites between 
them are meant to be occupied (D). Following the separation rule prevents other situations 
like (B) and (C) [Werfel and Nagpal, 2006, p. 25]. 
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4.2 Experimental Design 

All simulation experiments are performed in VE-Suite. An environment consists of a ground 

plane measuring 51ft. x 51ft. with surrounding walls that are the same dimension in height. 

The walls are detectable by the agents’ ray proximity and sonar sensors as would be the case 

in a real environment. Agents and blocks are both unit cubes measuring 1ft. x 1ft. x 1ft. The 

size of these elements remains constant for the entire study at hand. The desired shape being 

built is stored as an occupancy matrix—a Boolean map—and can be seen below in Figure 12. 

The occupancy matrix can be any shape, but this particular shape is chosen for its symmetry 

with respect to the environment. In this way, the space around the structure is consistent, and 

the effects on an agent’s obstacle avoidance system are minimized. 

 

 

Twenty-four spaces are to be occupied to complete the structure as can be seen in 

Figure 12. An initial block is placed at (0, 0), the center of the ground plane, as a marker to 

designate the starting point for construction. The start block is given the occupancy matrix, 

and its location and side states are updated accordingly. For each agent and block, the 

Figure 12: The occupancy matrix used in this test case. 
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physical properties mass, coefficient of friction, and coefficient of restitution are set to 1.0kg, 

0.5, and 0.0 respectively. Since the ground plane and walls are static, only their friction is set 

at a value of 0.5. The 23 blocks left to complete the structure and the agents are randomly 

placed in the environment a “safe” distance away from the structure so as to not interfere 

with construction. Finally, the range is set for the agents’ sensors to limit what they perceive 

in the environment. 

The agents have absolutely no prior knowledge about the environment they are placed 

in. Agents are identical and unperceptive to the status of the construction task in which they 

participate. They build structures by moving blocks, coordinating their actions solely through 

the progressing structure. This implicit communication eliminates the dependence upon other 

agents and enables a single agent to complete the construction task by itself demonstrating 

(reflecting) robustness of the system. 

The flowchart, shown in Figure 13, represents a simplified behavior scheme for the 

agents. There are two sets of conditionals in this design. The first set of conditionals decides 

the construction tasks an agent should perform. While this occurs, the obstacle sensor 

continually monitors for obstacles in the path of the agent. If obstacles are detected, a 

repulsive force is calculated and combined with the target force produced in the first set of 

conditionals. If no target or obstacle is present for the algorithm, the agent will move in its 

current direction until either an obstacle or target causes it to change. A brief description of 

the thought process an agent goes through is discussed. 
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Figure 13: Simplified flowchart of the behavior-based control scheme for the agents. 
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As an agent is placed in its new environment, the first task it addresses is whether or 

not it is holding a building block. Given that the agent has not yet had time to find a block, 

the hold block sensor registers false. Based on this information, the agent knows it needs to 

locate a block for the construction task. It then queries its block sensor for information about 

the successful return of color data matching a construction block. If a block is not in site, the 

block sensor is swept continually as the agent moves until a successful detection is 

registered. The agent identifies the direction of the block with respect to its own coordinate 

system and moves in the target’s direction. As the agent approaches the block, the block 

sensor updates distance information so the agent can make a proper proximity analysis. Once 

sufficiently close to the block, the agent will pick it up. 

Now that the agent is holding a block, the hold block sensor registers true. This 

information then directs the agent to find the construction site. The site sensor is queried in 

the same fashion as the block sensor until the site is successfully located. Again, the agent 

identifies the direction of its target and moves towards the site. Once the block sensor 

informs the agent it is close to the construction site, the build behavior is initiated. The build 

behavior is inherently more complex than other behaviors and is a cooperative process 

between the agents and blocks. Both procedures are summarized in the pseudocode below in 

Figure 14: 
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To illustrate Figure 14, once an agent enters build mode, it docks the construction site 

and queries blocks for valid attachment sites. If permission is not granted, the agent begins to 

perimeter follow in a counterclockwise manner. The agent will continue to perimeter follow 

the structure until either a block gives permission to attach or an obstacle is detected (such as 

another agent trying to dock). For the latter case, the agent will halt its build behavior and 

switch to obstacle avoidance behavior to safely avoid a collision. Once the collision is 

averted, the agent will try to locate the construction site again. As was stated before, when a 

Figure 14: Pseudocode encapsulating the build behavior between the agents and the blocks [Werfel et al. 
2006] 

B: Robots 
 
while (structure not complete) do 

if (holding a block) and 
    (obstacle is not detected) then 

ask adjacent structure blocks if block can be attached here 
if (structure block answers yes) then 

attach block here 
else 

follow perimeter counterclockwise 
else 

exit build mode 

A: Blocks 
 
loop 

for sides S do 
if (robot asks to attach a block to S) then 

if (occupancy matrix specifies a block there) and 
   (separation rule specifies a block there) then 

allow attachment 
else 

forbid attachment 
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new block is attached to the structure, it sets its side states based on those of its neighbors, 

and they update theirs based on this new attachment. The separation rule is invoked while 

setting the side states to ensure the completion of the structure. 

4.3 Simulations 

Numerous two-dimensional structures are built using the Communicating Blocks algorithm to 

get a reasonable statistical base for each simulation. The number of agents and the range in 

which they can “see” building blocks are varied throughout the experiments to evaluate 

performance based on sensor capability and multi-agent tasking. The number of agents varies 

from 1 to 24 while the block sensor range varies from 10ft. to 70ft. 

The maximum number of agents is limited to 24 to represent the total number of 

blocks in the environment. It is presumed that adding more agents will only hinder overall 

performance for the system since not all agents will participate in the construction task. Also, 

calculations are handled in series for the agents on a single CPU since the framework is 

lacking a parallel implementation. This quickly overloads most computers when simulations 

are run for more than 20 agents. Future research will focus on integrating parallel interfaces 

in which devices can be hooked into VE-Suite’s framework. 

The maximum block sensor range of 70ft. is chosen because it represents the longest 

distance a building block can be from an agent in a 51ft. x 51ft. environment. The block 

sensor range starts at 10ft. and is incremented by 2ft. for each set of simulations. This gives a 

total of 30 different test lengths for the block sensors. 

For each combination of the number of agents and block sensor range, 40 simulations 

are taken. In all, this gives a combined total of 28,800 total simulations for the test case (see 
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Appendix. Statistical Results). The time it takes to complete the structure is measured by the 

number of rendered frames, which assumes that all agents perform a behavior in the same 

amount of time each frame. This effectively normalizes the computation speed on processors 

with differing capabilities to allow for multiple simulations to be run on a number of 

computers. A complete simulation run for one of these structures is shown below in Figure 

15. 

 

 

Figure 15: A predefined structure under construction using the Communicating Blocks algorithm. 
Lightly shaded regions show the desired shape of the structure to be built. 
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CHAPTER 5. RESULTS 

The Communicating Blocks algorithm is analyzed for possible functional relationships to 

classify its performance for the construction task. This information may be useful in gaining 

mathematical understandings for particular classes of autonomous algorithms. These trends 

can also be used to identify which approaches are most likely to be successful when applied 

to a particular engineering application. 

5.1 Algorithm Effectiveness 

One way to validate the performance of a large number of swarm elements is to first examine 

the effectiveness of a single agent to complete the task. It is expected that the value of 

additional capability for the system will initially rise as more agents are added to the swarm. 

Eventually though, performance gains will diminish, as additional agents will no longer add 

significant contribution to the system. This all depends on the task at hand and the controlling 

mechanisms for the swarm. 

This trend is shown in NASA research that enables bio-inspired sensor swarms to 

detect, isolate, and repair atmospheric pressure leaks in the International Space Station 

[Fronczek and Prasad, 2007]. These leaks occur when space debris collides with the space 

station. They rationalize if a leak is large, less swarm sensors are needed to detect the 

pressure drop associated with the turbulent flow of escaping air. In this case, a large number 

of sensors cannot add any additional value to the task of finding the leak. But if the leak is 

small, the dynamics of the air-flow will not easily be detected and will therefore require a 

larger number of swarm sensors to locate and isolate the fault. In this case, it is beneficial to 

deploy more sensors. Figure 16 illustrates the functional relationship for the time it takes N 
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number of swarm individuals to successfully locate a leak source of a certain size. The 

exponential decay in performance eventually leads to diminished returns for the sensor 

system. This trend coincides with results from the experiments for this test case. 

 

 

Referring to Figure 16 a functional relationship of the form shown in Equation 4 can be 

realized: 

 KNeTANT  1)(  (4) 

where 
1T  The time it takes for one sensor to perform the task of leak detection 
N  The number of swarm sensors 
K  A swarm effectiveness constant based on the parameters within the system 
A  The asymptotic time it takes a large number of swarm sensors to detect a leak 

Figure 16: Time it takes N number of swarm sensors to locate a leak source [Fronczek and Prasad 2007, 
p.1]. 
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5.2 Data Analysis 

By changing the number of agents in the environment and the distance in which they sense 

blocks, these three characteristics of the system can be changed: 

1. The number of agents simultaneously working to complete the structure 

2. The available space in the environment for the agents to perform tasks 

3. The time agents spend searching for blocks vs. the time agents spend building the 

structure 

One of the key questions trying to be answered is at what point does adding 

additional agents no longer greatly benefit the construction time. By gradually increasing the 

number of agents, the time to complete the structure is reduced as shown in Figure 17 and 

Figure 18. It can be seen that completion time for the structure decreases rapidly up to a point 

of about 10 agents. After this point, returns for additional agents begin to diminish and the 

completion time for the structure approaches an asymptotical limit. It might be rationalized 

that the usefulness of additional agents is directly related to both the size of the environment 

and the size of the structure that is being built. Eventually, the agents should tax the available 

space for the environment and completion time for the structure should go up. But, this limit 

is never reached for the test case due to computing constraints and lack of a parallel 

implementation. It is expected this behavior will occur after the number of agents exceeds the 

number of building blocks in the system. 
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Figure 17: (Top) Contour plot for the sensor test case. (Bottom) Contour plot with mesh data for the 
sensor test case. 
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Figure 18: (Top) Side view of “Blocks Sensor Range vs. Time”. (Bottom) Side view of “Number of 
Agents vs. Time”. 
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The second parameter varied is the range of the block sensor for the agents. From 

Figure 17 and Figure 18, it is evident that range capability is much more important to the 

performance of the system when the number of agents is small. As the number of agents 

increase, the range of the block sensor becomes less influential. This makes sense due to the 

distributed nature of the agents. An interesting observation for the experiments dealing with 

3, 4, and 5 agents is that an initial increase in sensing capability actually reduces the overall 

performance of the system (see Figure 18). Analysis such as this could be useful in finding 

idiosyncrasies that are not inherently obvious for a particular control scheme and application. 

The functional relationship discussed in section 5.1 represents an exponential decay 

function. This function was fit to the experimental data from one set of simulations for the 

sensor test case. The two curves for both are shown below in Figure 19. It can be seen, the 

control effectiveness for the Communicating Blocks algorithm is very similar to that for the 

swarm system analysis in [Fronczek and Prasad, 2007]. 

 

 
Figure 19: Possible functional relationship for the construction system. 
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This test case shows the possibility of a virtual simulation in VE-Suite to explore 

different performance parameters for a given control algorithm. This will allow many 

algorithms to be tested and classified based on the mathematical relationships they exhibit. 

Such a functional relationship for control algorithms would be highly valuable when 

designing new sensor systems. An engineer would be able to decide what kinds of sensing 

capabilities are required to simultaneously achieve the most cost-effective solution and 

provide the required value of information for the system. 
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CHAPTER 6. CONCLUSIONS 

As sensors become more widely available, a methodology will be needed to address the 

following questions: Where should the next sensor be located? What is the value of the 

information the next sensor will provide? How will the sensors be controlled to work on a 

collective task? How will the sensor data fidelity be verified? How will the sensor data 

facilitate the decision making process? 

There is still much work that needs to be completed for linking multiple disparate 

data streams: human interaction, sensor data, and model data. Specifically, control algorithms 

that process this massive amount of information for a system need to be developed so they 

can be analyzed in conjunction with real engineering systems. This paper discusses the 

creation of a virtual framework in VE-Suite and its application to the development of control 

schemes for large sensor networks. A test case is created to validate the usefulness of a 

simulated environment in determining potential control algorithms for autonomous sensor 

networks. Although there are still many aspects of interactive design this framework has not 

addressed, it is shown this design architecture can be effective in developing the 

mathematical understandings, algorithms, and control strategies needed to utilize massive 

sensor systems. Further experiments using this framework are needed to define other aspects 

of sensor performance. 

6.1 Future Research 

The construction setting discussed will be used to investigate different informational 

algorithms, like Communicating Blocks, to find what control schemes work well for 

autonomous systems. Other relationships need to be explored in the framework using 
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different structures and environmental configurations. In particular, it might be interesting to 

create a heterogeneous mix of agents with different capabilities and control schemes to see 

what types of emergent behavior can be accomplished. 

Other work will focus on different approaches to the problem. As the mathematical 

understandings and algorithms are developed, an open-source library of tools will need to be 

developed that can implement these algorithms in software and hardware components. These 

components can then be hooked into VE-Suite using the VE-Open specification to create a 

real sensing application. VE-Open provides the middleware necessary that will allow for 

both distributed and self-organizational schemes to be implemented. Algorithms will run on 

local hardware for each component creating an autonomous node that is intelligent and aware 

of other models in the data structure.  

The overall goal is to create a collection of tools that can synergistically be used to 

facilitate the process of designing new sensing systems. The framework can then be applied 

to create novel solutions in effective data management and flow for distributed sensing and 

control systems. 

6.1.1 Sensor Network of 48 Sensors 

The construction of a sensor network has begun that includes 6 compute nodes (Apple’s Mac 

Minis) with 2 processors per node and 8 channels of sensor data per node. The nodes have 

been networked together to allow communication of local information from the 8 channels of 

sensor data. With the sensor network running and measuring data, the sensor data will be 

displayed real-time in VE-Suite.  
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The compute nodes will have streaming sensor data from common and different 

spatial locations, which will require self-organization algorithms to be employed to process 

the sensor data. With the processing power available with each node, parallel computation is 

possible. 

6.1.2 Hybrid Fuel Cell Power Generation Facility 

The tools developed to explore the surrogate autonomous construction agent problem will be 

applied to controlling information from a hybrid fuel cell power generation facility (see 

Figure 20) [Tucker et al., 2005]. Although the facility has relatively few sensors (40–100), 

the platform will provide a pragmatic application to explore the information control schemas 

developed with the construction agents. In this plant, with 40-100 sensors, it will be possible 

to explore “what if” scenarios with the live streaming data and the frameworks described in 

the research by sending the information from the plant to the agents to access. The 

information streaming from the hybrid plant will then be displayed in the virtual environment 

based on the control schema implemented. Using the surrogate problem should allow many 

more information control patterns to be explored before working directly with the power 

facility. In addition, the surrogate problem can prevent costly failures that may result from 

using the experimental power facility for exploring information control schemes. 
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Figure 20: Real-time rendering in VE-Suite of the experimental hybrid fuel cell turbine power generation 
facility. 
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APPENDIX. STATISTICAL RESULTS 

Sensor Test Case Simulation Results. The average amount of time in frames to successfully 

complete the structure for each variation of “Number of Agents” and “Block Sensor Range” 

during the simulation runs 
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