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Abstract 
 

The objective of this research is to develop an immersive interface and a design algorithm to 

facilitate the synthesis of compliant mechanisms from a user-centered design perspective. 

Compliant mechanisms are mechanical devices which produce motion or force through 

deflection or flexibility of their parts. Using the constraint-based method of design, the 

design process relies on the designer to identify the appropriate constraint sets to achieve the 

desired motion. Currently this ability requires considerable prior knowledge of how non-

linear flexible members produce motion. As a result, the design process is based primarily on 

the designer‟s previous experience and intuition.  

The contribution of this research is the creation of a user-centered methodology towards the 

design of compliant mechanisms where the interface guides the designer throughout the 

design process. This research combines a mathematical representation of the constraint-based 

compliant mechanism design process with an immersive interface to support active user 

interaction in the design process. A virtual reality (VR) immersive interface lets the user 

interact with the problem at hand in a natural way with hand gestures, head motion, etc. This 

enables the designer to input the intended motion path by simply grabbing and moving the 

object and letting the system decide which constraint spaces apply. The user-centered 

paradigm supports an approach that focuses on the designer defining the desired motion, the 

system generating the constraint sets, and the designer deciding which constraints to apply to 

complete the design. With this approach, the system produces a set of possible solutions and 

the designer completes the design process.  
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This research results in an intelligent design framework that will allow a broader group of 

engineers to design complex compliant mechanisms, giving them new options to draw upon 

when searching for design solutions to critical problems. 
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Chapter 1: Introduction 

 
 

This chapter provides an overview of the objective and the impact of the current research. It 

also gives a brief introduction on compliant mechanisms which allows the reader to develop 

an understanding of the topic at hand. 

1.1 Objective 
 
 

The objective of this research is to develop an immersive interface and a design algorithm to 

facilitate the synthesis of compliant mechanisms from a user-centered perspective. Currently, 

it is difficult to design these linkages because the non-linear motion of the components is 

easy to determine intuitively in the early design process; therefore, successful designs are 

achieved by only by highly skilled and experienced designers. A three-dimensional (3D) 

immersive intelligent interface is proposed which provides an abstract layer between the 

designer and the design process enabling the designer the ability to input the intended motion 

path, examine potential solutions and select candidate configurations for evaluation.. A user-

centered methodology towards the design of compliant mechanism is proposed which lets 

novice designers design a variety of compliant mechanisms where the computer takes care of 

the mathematics involved in the background. The approach coupled with VR technology lets 

the user interact with the problem at hand in a natural way with hand gestures, head motion, 

etc.  

1.2 Compliant mechanisms 
 
 

A mechanism is a mechanical device which is used to transfer or transform motion, energy or 

force. A rigid body mechanism consists of joints and rigid links. It is through these joints that 
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the force or motion is transferred. The mechanism shown in Figure 1 consists of four rigid 

links joined with pin joints or revolute joints that result in the transfer of motion and energy.  

 

Figure 1: A rigid link mechanism 

Compliant mechanisms [1], on the other hand, are mechanical devices which produce motion 

or force through deflection or flexibility of their parts instead of rigid links and joints. Figure 

2 shows a gripper that is a compliant mechanism. While most of the gripper is made from 

rigid components, the very thin member which is close to the gripper end provides the 

compliance and deflects to produce the gripper motion when the handles of the gripper are 

squeezed closed. Often compliant mechanisms achieve compliance through the careful 

placement of these thin, compliant, geometric elements in the final design. It is the placement 

and configuration of the rigid members with the compliant members to achieve a desired 

motion and force transfer that is the challenge in designing compliant mechanisms.  

 

 

 

 

 

 

Joints 
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Figure 2: Compliant mechanism 

 

 

 

 

 

 

 

 

 

1.2.1 Advantages and disadvantages of compliant mechanisms 

 

There are several advantages to using compliant mechanisms: 

 

1. The number of parts in a compliant mechanism is largely reduced as compared to a 

traditional rigid body mechanism. This simplifies manufacturing and reduces 

assembly costs. 

Figure 3: Rigid link (left) mechanism and compliant mechanism (right) 
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2. Compliant mechanisms can retain their precision for longer periods of use because 

there is little wear at the joints, compared to their rigid body counterparts. This 

characteristic makes them attractive solutions for applications in precision machinery 

where very accurate positioning is required.  

3. The weight of the overall mechanism is most often reduced. This aspect makes them 

attractive solutions in applications weight reduction is of primary importance such as 

airplanes.  

4. These mechanisms can be miniaturized easily because they are often manufactured in 

their final form with little or no assembly required. They are often used as actuators 

for other micro-mechanisms.  

Compliant mechanisms store energy as strain energy much the same way that springs store 

energy. This method allows for controlled release of this energy to produce actuation of 

components when needed. One of the disadvantages of compliant mechanisms is that they 

are more subject to material fatigue failure since the motion and force transfer comes from 

deflection of the material. In addition, it is difficult to design compliant mechanisms to 

transmit large forces. While it is possible to get large force magnification from compliant 

mechanisms, the absolute forces transmitted are limited compared to traditional rigid link 

mechanisms. Another disadvantage is that repair of compliant mechanisms results in 

complete replacement where in rigid body mechanisms, a single link or joint can be repaired 

or replaced without replacing the entire mechanism. 
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1.2.2 Challenges in compliant mechanisms 
 
 

The challenge in designing compliant mechanisms is in designing the linkage geometry to 

deflect under the applied load to provide the motion and force transfer. Large deflections 

introduce geometric nonlinearities into the analysis of the motion of compliant mechanisms, 

requiring non-linear modeling and analysis methods. An understanding of mechanism 

synthesis theory and non-linear mathematics is required to achieve a suitable design. Due to 

this, the design of such mechanisms has followed a trial and error approach in most cases. 

The research results presented in this thesis support the design of a user interface to aid in the 

design of compliant mechanisms. 

1.3 Thesis overview 
 
 

Chapter 2 discusses the state-of-the-art in compliant mechanism design and virtual reality. 

Chapter 3 focuses on the methodology adopted to solve the problem at hand from a user-

centered perspective. It highlights how the approach focuses on the mechanism designer by 

freeing him/her from the burden of complex mathematical calculations and from the need of 

hands on experience with compliant mechanism design. It also introduces a proposed step by 

step design process. Chapter 4 presents a case study and shows how the method could be 

adopted to solve problems. Chapter 5 summarizes the research and gives a road map for 

future work which needs to be done to expand the project scope.  
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Chapter 2: Background 
 

2.1 Compliant mechanism design methods 
 
 

In the mechanism design field much research has been done on applying computational 

techniques for the synthesis of compliant mechanisms to achieve a pre-decided user defined 

motion. The most often used approaches in the area are the pseudo rigid body model 

approach [2] and topological synthesis [3-8]. In the pseudo rigid body model a rigid body 

analysis method is used in the analysis of compliant mechanisms. This approach models a 

compliant mechanism as a rigid body which allows the rigid body theories and 

methodologies to be applied on compliant mechanisms [9-10]. As the approach is not directly 

related to the design of compliant mechanisms, validation and verification of the result 

becomes important.  

The topological synthesis method relies on optimization methods to arrive at an optimum 

structural topology to achieve specified motion requirements. It models the mechanisms as a 

series of several link members of different sizes which together perform the desired motion. 

In both of the above methods prior experience and mechanism design knowledge is needed 

for successful completion of the design. 

The third approach, on which this research is based, is the constraint-based design approach. 

This approach was introduced by Maxwell [11]. It is based upon the concept that the motion 

of a given body is controlled by the position and orientation of constraints applied to it at any 

given instance. This approach comes in useful as it helps the designer in visualizing motions 

and ultimately designing the desired mechanism. Recently this approach was revisited by 

Blanding [12] and by Hale, Awtar and Slocum at MIT [13 – 14]. The constraint-based design 

approach lies on the basic premise of constraints and freedom.  
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2.2 Maxwell’s theory 
 
 

The contribution of James Clerk Maxwell [15] forms of the basis of the constraint-based 

approach. He proposed a simple mathematical formula which stated that a non-redundant 

constraint when applied to a body removes one degree of freedom from it. A constraint 

restricts the motion of a body in a particular direction. The equation could be written as 

(Eqn.1) where C is the number of constraints and DOF is the degree of freedom 

 6 – C = DOF    (1) 

Equation (1) states that as a designer applies non-redundant constraints on a body, those 

many degrees of freedom are removed. For a free body in space, there are six degrees of 

freedom; i.e. three translations and three rotations. This is represented in Figure 4 where the 

straight arrows represent translation and the twisted ones represent rotation.  

 

Figure 4: Object's 6 DOF in space 

 

2.3 Blanding’s theory 
 
 

Douglas E. Blanding‟s research [16] is also very essential in the theory of constraints and 

how the object behaves when a constraint is applied. He presented theories which explained 

the use of constraints, exact constraints, over-constraints, and the theory of instant centers. 

All of these theories feed in to the basic concept of the constraint-based approach. We will 

discuss some of these theories in this section.  
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2.3.1 Constraint 
 

A body is said to be constrained when a physical connection is made between the object and 

a reference body such that the number of degrees of freedom of the object gets reduced. A 

constraint, applied to a body, has infinite compliance perpendicular to the constraint‟s line of 

action and infinite stiffness along its line of action. Figure 5 illustrates the concept of a single 

constraint.  

 

 

 

 

 

 

Figure 5: Constraint 

 

The number of reduced degrees of freedom is defined as the degree-of-constraint (doc) of the 

physical connection. A constraint that eliminates the translation along a line is called a 

translational constraint. A constraint that eliminates the rotation about a line is called a 

rotational constraint. A constraint, when applied to a body, is functionally equivalent to any 

other constraint acting upon the same body along the same constraint line.  

 

 

 

 

 

 

 

 

 
 

 

Figure 6: Functionally equivalent constraints 

 

Constraint line 

Infinitely compliant Infinitely stiff 

Body 

Constraint A 

Constraint B 

Constraint line of action 



9 

 

Figure 6 shows two constraints, Constraint A and Constraint B, which are functionally 

equivalent as they act along the same constraint line. In this arrangement, one of the 

constraints is redundant. This situation is referred to as being over-constrained. A body is 

said to be over-constrained when two or more constraints acting on the body control the 

same degree of freedom.  

2.3.2 Instant center of rotation 
 
 

Using the theory of instant centers Blanding stated that rotation can be achieved by placing 

two non-collinear constraints on the body. The body will rotate about an axis which is 

perpendicular to the plane containing the two constraints and at the location of the 

intersection of the two constraints. This is known as the “instant” center (Figure 7) and all 

points in the body will rotate about this center when examined during a very short 

“instantaneous” time.   

 

 

Figure 7: Instant center of rotation 

 

Blanding also observed that a translation could be represented as a rotation about a point 

located at infinity as shown in Figure 8. He stated that pure translation of a body in a plane 

could be represented as rotations about axes located at infinity with respect to the body.  

 

R 

C1 

C2 
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Figure 8: Translation equals rotation at infinity 

Blanding proposed a “Rule of complimentary patterns” which defined a relationship between 

an object‟s degree of freedom and the constraints applied to it. It states: 

When a pattern of constraint lines is applied to two bodies, there is a 

resultant and complementary pattern of freedom lines which exist between 

them. Every freedom line intersects every constraint line. Given one or the 

other of these patterns containing n lines without redundancy, the 

complementary pattern will contain 6-n lines. 

Blanding gives an example of the above rule as shown in Figure 9. The figure shows a 

pattern of four constraints (C1 – C4) applied on a body. The rule of complementary patterns 

explains that four constraints reduce the number of degrees of freedom by four leaving only 

two remaining degrees of freedom. The particular orientation and location of the constraints 

as applied to the body in Figure 9 result in allowing free movement of only two independent 

rotations. The two rotations will lie on the plane of C1, C2 and C3 and will intersect C4. It is 

to be noted that the two rotational degrees of freedom as drawn are not unique and could be 

selected from any two independent lines which lie in the plane of the top surface of the object 

and intersect at the indicated corner. Any pair of intersecting rotational degrees of freedom is 

equivalent to any other pair intersecting at the same point and lying in the same plane.  

R 

Translation Translation 

R Rotation  at ∞ 

 

Rotation  at ∞ 

 

Equivalent to 

Rotation  at ∞ 
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Figure 9: Disk of radial lines 

Blanding also asserted that two parallel lines in space intersect at infinity. Figure 10 shows 

two lines with constant distance (d) between them. It is shown that they would intersect at a 

point in infinity.  

 

 
  
 

 

 

Figure 10: Parallel lines intersect at infinity 

With the help of the above theory, Blanding gave another example for the rule of 

complementary patterns. In Figure 11, the object is constrained by four constraints oriented 

in a different pattern. All the four Cs are parallel to each other. Once again, the number of 

degrees of freedom has been reduced by four constraints resulting in only two degrees of 

freedom for the object. In this configuration, the two degrees of freedom are again two 

rotations but they consist of parallel lines, all of which lie in the same plane. The two lines of 

rotation intersect C4 and are parallel to the other Cs. Applying the rule of complimentary 

 

C2 C1 

R 

R 

C3 

C4 

d d 

intersect at ∞ 
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patterns, it can be seen that two rotations are not unique and could consist of any two 

independent lines from the infinite plane of parallel lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 

 

 
 
 
 
 
 
 

Figure 11: Plane of parallel lines 

 

2.4  Freedom space and constraint space 
 

The freedom space or freedom topology represents the allowable motion in space. The 

constraint space represents the restricted motions in space. Hopkins [17] extended Blanding‟s 

theory to come up with a series of geometric representations of possible freedom and 

constraint spaces. The design method based on these geometric representations is known as 

R2 

R1 

To ∞ 

 

To ∞ 
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FACT (Freedom and Constraint-based Topologies). This section reviews that work and its 

significance.  

FACT deals with the different constraint and freedom spaces by dividing them into different 

CASEs and TYPEs. The CASE in the FACT method defines the number of constraints 

applied on the body. For e.g. CASE # 1 denotes one constraint which means if the body is 

classified as a CASE 1, it has five degrees of freedom as only one constraint is applied. If the 

user has defined two independent motions, the CASE number (according to Maxwell‟s 

theory) becomes four.  The TYPEs within a CASE outline all possible ways to combine and 

orient constraint lines to produce the desired degrees of freedom. For every constraint space 

produced, there is a specific freedom space associated with it.  

 
2.4.1 CASE 1 TYPE 1 
 
 

As there are six degrees of freedom for a body in space, there were six CASEs defined. The 

TYPEs within each case encompass all of the possible ways each CASE can be implemented. 

For example CASE 1 (where one constraint could be applied on a body) had just one TYPE, 

as there is only one way in which one degree of freedom of a body could be blocked. A 

single constraint line applied to a body in space would produce the exact same freedom space 

as any other constraint applied to the body anywhere else. The freedom space produced 

might be different for differently oriented constraint lines but the basic motion that placing 

one constraint on a body would produce would be the same. The example is illustrated in 

Figure 12.  
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Figure 12: Object with one constraint 

Applying one constraint in a body results in five degrees of freedom.  

 

 

 

 

 

 

 

 

 

 

Figure 13: Freedom space for CASE 1 TYPE 1 

The freedom space illustrated in Figure 13 consists of three independent freedom 

configurations which combine to form a single freedom space for CASE 1 TYPE 1. The 

innermost geometric representations shown in Figure 13 are the spherical sets, each of which 

consists of an infinite set of infinitely long lines, all intersecting at the same point. The center 

point of each of these spherical sets lie on the single constraint line as defined in CASE 1. 

The next set of freedom lines consists of an infinite set of infinitely long lines all parallel to 

the single constraint. We have drawn this set of four perpendicular planes forming a square 

enclosure that is aligned with the single constraint line. The final set of freedom lines consists 

of a set of infinite hoops which intersect the single constraint line at infinity. We have drawn 

 

object 

constraint 
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these as a set of co-axial circles which intersect each other at points on the constraint line. In 

addition to this geometric representation of the freedom space, in this particular CASE, the 

space also consists of screws with non-zero finite pitch values. These screw representations 

will be explained later in the thesis.  

Hopkins and Culpepper have devised constraint and freedom set pairs for all of the six 

CASEs with different number of TYPEs in each. The FACT method is based on using a 

visual method to identify freedom and constraint spaces along with calculations in the design 

process.  

2.5 Screw theory 
 

In order to develop an immersive environment for user-centered compliant mechanism 

design, both visual representation and mathematical formulation is essential. The FACT 

method provides an excellent visual representation of the freedom and constraint spaces. We 

turned to screw theory to provide the mathematical underpinnings of the design approach. 

Screw theory is widely used in mechanism synthesis because it provides a compact 

mathematical formulation for motion in three-dimensional space. In this research screw 

theory can be used to describe both the constraint spaces and the freedom spaces of 

compliant mechanism design. 

 

2.5.1 Introduction 
 
 

In a rigid body motion, any displacement can be described using a screw. A screw 

mathematically represents rotation about a line in space and a translation about that line. This 

line is known as the screw axis. Screw motion can be defined using four parameters – the 

three components of a direction vector and the angle rotated about the screw axis.  
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2.5.2 Twists & Wrench 
 

There are two kinds of screws. The first kind is known as the “twist” and represents the 

kinematics of the motion of a body in three-dimensional space. These kinematics involve the 

velocities of the body - linear and angular - about the axis of translation, and the relationship 

between the two known as the pitch. The pitch represents the ratio of the linear velocity to 

the angular velocity. The second kind of screw is known as the “wrench” which represents 

the constraints/forces/torques acting on the body. These two concepts are often known as 

duality [18] in kinematics and statics.  

The twist, T
^
, is formed by a pair of three dimensional vectors, Ω and V written as (Eqn.2) 

               (2)     

Where 

Ω : angular velocity 

V: linear velocity 

s:  vector denoting the direction of the twist axis 

c:  point on the twist axis 

ω: magnitude of angular velocity along the axis  

v: partial linear velocity along the axis 

p: pitch  

 

As special cases, a pure rotation and a pure translation in space are represented by a twist of 

zero pitch and a twist of infinite pitch respectively, written as (Eqn. 3-4):  

                                                                                  (3) 

                                                                                                   (4) 
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Similarly, wrenches represent moments or forces. These are written as a force F and a couple 

M acting on rigid bodies. It could be written as (Eqn. 5) 

                                         (5) 

Where 

 W
^
 = Wrench 

 u: direction of the wrench axis 

 r: point on the wrench axis 

 f: magnitude of the force applied 

 m: magnitude of the partial moment along the axis 

 q: pitch q = m / f 

As special cases, a pure force and a pure couple are represented as a wrench of zero and 

infinite pitch respectively (Eqn. 6-7).  

                                                                                                (6) 

                                                                                                      (7) 

2.5.3 Virtual power 
 
 

The virtual power of a wrench W
^
 acting on a moving body with motion T

^
 is given by the 

reciprocal product of the wrench and the twist. It is written as (Eqn. 8) 

Virtual power = T
^
  W

^
 = F V + M Ω                                                                           (8) 

                                             =  

                                             =                                       

A twist and a wrench are said to be reciprocal when the reciprocal product is zero. Reciprocal 

product is considered a linear operation on either twist or wrench separately. For instance, the 

reciprocal product of a twist T
^
 with a linear combination of two wrenches W

^
1 and W

^
2 can 
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be expressed the linear combination of the reciprocal product of T
^
 with each of the two 

wrenches, that is (Eqn. 9), 

                          T • ( a W
^

1 + b W
^

2 )  = a T
^
 • W

^
1 + b T

^
 • W

^
2                                                                (9) 

Where coefficients a and b are arbitrary constants. 

Irrespective to the magnitude of force f and angular velocity ω, the virtual power is zero if the 

following condition is satisfied (Eqn. 10), 

                                                             p + q = a tanα                                                            (10) 

where a is the perpendicular distance between the twist and the wrench and α is the angle 

between the twist and the wrench.  

The following statements can be developed:  

a) When two pitches have the same magnitude but with opposite sign p = -q 

(including the case p = q = 0), the two screws are reciprocal if either a = 0 or sin α=0. 

This situation occurs when the twist axis and wrench axis are coplanar, i.e., 

intersecting or parallel to each other. 

b) If one pitch is zero, e.g. q = 0, then the condition p + q = a tan α becomes p = a 

tan α. And if the other pitch is infinite p = ∞ the two screw axes must be 

perpendicular, i.e. α = 90° in order to be reciprocal. 

c) If both pitches are infinite, the screws are always reciprocal. The twist represents 

pure translation and the wrench represents a pure couple. In other words, a pure 

couple does no work on a pure translation. 

d) If the two screw axes are perpendicular then cos α = 0, and their reciprocity is 

independent of their pitches. This can only occur when a = 0, therefore the axes 

intersect. 
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e) A screw is reciprocal to itself if its pitch is either zero or infinite. 

2.6 Virtual reality 
 
 

Virtual reality is a technology which lets users interact with computer generated three 

dimensional environments. It is used in a wide variety of applications which support a user‟s 

direct interaction with geometry, CAD images, and environments as a whole. Users can 

interact with digital images using hardware devices like 3D mice, joysticks, haptic devices, 

wands, etc. Some common VR technology used for 3D dimensional displays are the HMDs 

(Head Mounted Displays) and the CAVE. A HMD is a helmet worn by the user where 

separate left and right eye images are projected on a CRT or LCD located inside the helmet 

to generate stereo images. The helmet is also connected to a position tracker which tracks the 

user‟s motion and adjusts the user‟s viewpoint in space. The CAVE environment supports 

visual displays by locating large projection screens in a surround screen environment. Figure 

14 shows a user in a CAVE environment. 

 

Figure 14: Virtual environment 

Compliant mechanisms, are potential applications suitable for such environments due to their 

sheer three dimensional nature. Design of a 3D mechanism in a 2D environment such as a 

computer monitor, mouse and keyboard is difficult due to the need to define and validate the 
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3D motion of the mechanism. We wish to give the user a natural way of interacting with the 

mechanism which could be attained by the use of such immersive environments.  

There have been efforts in designing such mechanisms via computer generated programs. A 

computer based tool known as CoMeT (Compliant Mechanism Tool) was developed by Kim 

and Culpepper [19] at the Massachusetts Institute of Technology. It used a GUI based 

approach with a MATLAB-based computational engine to aid the mechanism design process. 

These design steps include sketching the problem, defining the mechanism, specifying 

operation parameters and analyzing the resulting solution. While CoMeT proved to be a good 

tool, there were several drawbacks. It used a 2D interface to design a 3D mechanism which 

by its nature involved unintuitive interactions. It becomes difficult to make design 

alternatives while dealing with spatial mechanisms because the designer has to visualize and 

interact in 3D. The method was not user-centered and a novice mechanism designer could 

not use it efficiently.  

A need for a 3D environment is of utmost importance which CoMeT lacked. Virtual Reality 

Technology provides such an alternative to the traditional 2D computer interface. It allows 

the user to walk around the mechanism (as in real life), and interact with it by performing 

actions in 3D space. This is attained through the use of position trackers, position tracked 

input devices and stereo display. Much research has been done in using VR as an immersive 

environment for the synthesis and design of mechanisms.  

One of the first attempts in spherical mechanism synthesis to use Virtual Reality as a design 

interface was done by Osborn and Vance in 1995 [20]. Subsequent efforts included the 

development of VEMECS by Kraal and Vance [21] and ISIS by Furlong and Vance (1999) 
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[22]. In 2002 research expanded to explore the design of spatial mechanisms and VRSpatial 

was created [23].  

None of the above mentioned efforts focused on compliant mechanism synthesis.  

This research focuses on novice as well as experienced designers by giving them a natural 

way of interaction through VR technology and also a user-centered design paradigm for the 

design of compliant mechanisms.  

 
2.7 Application of screw theory in constraint-based design approach 
 

Constraint-based compliant mechanism design has proven to be a viable approach to use to 

design compliant mechanisms; however, the scope of the constraint-based approach has been 

limited to designers with extensive prior hands-on experience. The design rules which the 

approach presents are very subjective in nature which poses limitations on the part of the 

designer to design and optimize compliant mechanisms.  

Ball [24] was the first to formulate screw theory in a systematic way. Hunt [25] and Phillips 

[26, 27] later developed the geometrical and mathematical representation of screws and 

screw systems. They used the screw theory for the synthesis and analysis of mechanisms. 

Since then, screw theory has also been applied topology synthesis [28].  

2.7.1 Motions as twists 
 
 

As stated earlier, constraints and freedom are the key concepts of the constraint-based design 

approach. To tie this to screw theory, we note that any motion (degree of freedom) of a body 

could be represented as a twist with a pure rotation or a pure translation. Any free body in 

space has six degrees of freedom – three rotations and three translations.  

These six motions can be represented by 6 × 1 vectors as outlined in Table 1.  
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Table 1: Movement and twist representation 

 

Movement 

 

Twist Vector 

 

 

X Rotation 

 

 

 

 

Y Rotation 

 

 

 

 

Z Rotation 

 

 

 

 

X Translation 

 

 

 

 

Y Translation 

 

 

 

 

Z Translation 

 

 

 

 

The work of Su [25] et al. is of significance in the application of screw theory to freedom and 

constraint spaces. He has presented a screw theory based approach to represent freedom 
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spaces in a twist vector representation. He states that a freedom space could be defined by a 

twist matrix given by (Eqn. 11) 

                                                    ΠT =  =                                                                               (11) 

Where 

 f: dimension of the freedom space 

 Tj: Basis twist that span the freedom space 

Su also states that any motion in the freedom space can be denoted by a linear combination 

of the basis twists given by (Eqn. 12) 

                                                            T
^
 =                                                             (12) 

Where 

 kj: arbitrary constant 

If the rank of the matrix is less than f, twists are said to be redundant which means that some 

twists can be written as the linear combination of others.  

As an example, the parallel line freedom space introduced by Blanding can be written as two 

parallel rotational twists (Eqn. 13-14)
 

                                                                                                              (13) 

                                                                                                              (14) 

Because of the linearity property of twists, any parallel line can be represented by a linear 

combination of these two twists (Eqn. 15): 

                                              (15) 

 



24 

 

The approach taken in this research is based on the user-centered design paradigm. This 

system focuses on the user as he/she defines the desired motion and selects from a set of 

potential solutions to pick the final design configuration. The interface incorporates several 

interface design principles and theories to support the user in the design process. The next 

chapter introduces the methodology and solution to the problem.  
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Chapter 3: Methodology 
 

This chapter introduces the methodology behind solving the compliant mechanism design 

process from a user-centered perspective. The approach as explained in the following 

sections shows how the design process could focus on the designer by abstracting the 

mathematical process in the background to support design decision making.  

 

3.1 Screw theory  
 

As explained above, screw theory provides a mathematical approach for defining motions 

and eventually freedom spaces as twist vector representations. Desired motions must be 

defined mathematically as twists and wrenches. Although much work has been done to 

provide a mathematical approach to the design of compliant mechanism, this approach is not 

user-centered as it requires a deep understanding of complex mathematics to define the 

problem before reaching a final solution.  

 

3.2 FACT 
 

The FACT theory gives a detailed geometrical representation of all the freedom spaces and 

their associated constraint spaces. The theory is very helpful at the end of the design process 

once it is determined in which of the CASE and TYPE the user motion falls into. The issue 

with the FACT design method lies when the user is in the process of defining the motion and 

deciding which CASE and TYPE it falls into. The approach asks the designer to follow a 

visual based process where a user has to analyze the defined motion visually and see what 

freedom or constraint space it falls into. This approach is not easy for novice designers or the 

ones who don‟t have much experience with the approach. The designer needs to know the 
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intricacies as to what the freedom and constraint spaces mean and how have they been 

developed, before he/she could go forward to decide one of them for a given motion.  

 

3.3. Proposed approach 
 

A gap exists in the current design process such that the two existing approaches to designing 

compliant mechanisms have different advantages and disadvantages, but neither of them are 

integrated or follow a user-centered approach. The proposed approach tries to bridge this gap 

by using both the above methodologies and providing the user a 3D immersive interface to 

design compliant mechanisms. The interface helps the user during the design process through 

its intuitive UI. This approach supports novice designers to enter the compliant mechanism 

design domain as it abstracts the complex mathematical calculations from screw theory and 

provides an environment where the designer both defines the desired motion and selects from 

alternate solutions to pick the final design. The user is presented with an immersive interface 

where he/she defines the desired motion by simply grabbing and moving the object or by 

selecting one of the pre-defined presets. All the mathematical calculations are done by the 

system and the algorithm selects the appropriate constraint space. Once the constraint space 

is determined, it is displayed in front of the user to allow the user to explore multiple design 

solutions within the feasible design space.  

The method begins with the establishment of a catalogue of the twist vector representations 

of all the freedom spaces which is pre-calculated and stored. The freedom spaces define the 

allowable motions for a body. Next, the user defines a three dimensional motion and the twist 

vector representations of the motion is calculated. At this point, the system contains the twist 

vector representations of the desired motion and also the description of the freedom spaces. 
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The algorithm checks for linear independence between the desired motion and the catalog of 

freedom spaces. When linear independence is achieved, the system identifies the appropriate 

CASE and TYPE for this design. The system identifies and displays the corresponding 

constraint space in front of the user to let the user explore the set of potential constraints and 

iterate to the final solution.  

As noted above, the method requires a catalogue of the twist vector representations of all the 

freedom spaces defined in the FACT theory. This catalogue should be defined before the 

design process starts. For the proof of concept, we have developed the catalogue for CASE 3 

TYPE 1, 4 and 5 freedom spaces. This thesis presents a demonstration of this method with a 

case study using a ball joint example. The following section explains how to come up with a 

twist vector catalogue of the freedom spaces.  

 

It is to be significantly noted that the freedom spaces, as explained by Hopkins, are not 

associated with any coordinate system. They show no information about their orientation and 

location in space. To come up with a twist vector of them, we need to put the freedom spaces 

in a coordinate system. The freedom spaces could be attached to the coordinate system in 

three different ways where they could lie in any of the x-y, y-z or z-x planes. Therefore, there 

would be three twist representations of each freedom space.  

The following section explains freedom space TYPE 1, 4 and 5 within CASE 3 with their 

diagrammatic representation. Analysis of individual freedom spaces is done and the possible 

motions they represent are calculated mathematically in a twist vector form. The diagrams 

shown in red represent the freedom spaces. The constraint spaces will be shown in blue.   
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3.3.1 CASE 3 TYPE 1 
 
 

The freedom space for CASE 3 TYPE 1 is displayed in Figure 15. CASE 3 is defined by 

having three constraints and three degrees of freedom. This particular type in CASE 3, i.e. 

TYPE 1, allows two rotational degrees of freedom along two axes lying in a plane and 

perpendicular to each other and one translational degree of freedom perpendicular to the 

plane. This freedom space is represented geometrically by a hoop and a square. The hoop 

representation allows one translational degree of freedom along the line passing 

perpendicular to the plane of the hoop and through its center. The square shape represents 

rotation in two directions: around an axis parallel to either side of the square.   

 

 

 

 

 

 

Figure 15: Original freedom space, CASE 3 TYPE 1 

 

In order to couple the geometric representation with the screw mathematics, we need to place 

the geometric freedom space within a coordinate system in order to define the twist vectors. 

Table 2 shows the three orientations, the allowed motions and the resultant twist 

representations for the CASE 3 TYPE 1 freedom space.  
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Table 2: CASE 3 TYPE 1 with three orientations 

 

Freedom space in three 

orientations 

Allowed motions Twist representations 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

3.3.2 CASE 3 TYPE 4 
 
 

The CASE 3 TYPE 4 freedom space is represented as shown below. CASE 3 again consists 

of three constraints and allows three degrees of freedom. TYPE 4 consists of three rotational 

degrees of freedom along an arbitrary set of axes and no rotations. It is represented 

geometrically as a set of infinite lines all intersecting in one point (Fig. 16).  
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Figure 16: Original freedom space, CASE 3 TYPE 4 

This freedom space is axially symmetric so that it does not have any one orientation. 

Therefore, a coordinate system can be attached in any orientation and it would produce the 

same twist representation (Figure 17). The twist vector representation is shown in Equation 

16. 

 

                                                          

 

 

 

 

 

 

 

 

 
Figure 17: Freedom space with axis, CASE 3 TYPE 4 

 

 

                                     Twist vector representation     =                                              (16) 

 
 
 

 

 

 

y 
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3.3.3 CASE 3 TYPE 5 
 
 

The CASE 3 TYPE 5 freedom space once again allows three degrees of freedom (CASE 3). 

TYPE 5 allows two translations and one rotation. It is represented geometrically in Figure 18 

and consists of a series of hoops, from which two translations can be produced and an infinite 

set of parallel lines representing the one rotational degree of freedom. Table 3 presents the 

various twist vectors associated with CASE 3 TYPE 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Original freedom space, CASE 3 TYPE 5 

 

 

 

 

Table 3: CASE 3 TYPE 5 with three orientations 

 

Freedom space in three 

different orientations 

 

Allowed motions 

 

Twist representations 
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Table 3. (continued) 

 

Freedom space in three 

different orientations 

 

Allowed motions 

 

Twist representations 

 

 
 

  

 

 

 

  

 

 

 
 

  

 

 

 

At this point we have the user‟s motion in a twist vector form and also the freedom space 

representations in twist vector form.  

Once the system knows how many independent motions the user wants, the CASE number is 

automatically known. The CASE in the FACT (Freedom and Constraint-based Topologies) 

method defines the number of constraints applied on the body. For e.g. CASE # 1 denotes 

one constraint which means if the motion falls into CASE 1, it has five degrees of freedom as 

only one constraint is applied. From the above example, if the user has defined two 

independent motions, the CASE number becomes CASE 4.  
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3.4 Proposed solution 
 
 

Now that the relationship between screw theory and compliant mechanism design has been 

developed, a tool can be developed for the design and analysis of compliant mechanisms. 

The solution proposed here follows a user-centered design paradigm where several interface 

design principles and theories have been followed to give an intuitive GUI to the user.  

3.4.1 Scenario 
 
 

The entire design process is outlined in Figure 19. A user gets into the immersive virtual 

reality environment and sees a virtual object in front. The user has a pre-defined goal for the 

desired motion path. The user grabs the object with a 3D input device and defines the desired 

motion by rotating or translating the object. She/he marks every independent motion by 

explicitly telling the system about each one of them. This task is supported through the use of 

a floating menu in the immersive environment. Once the user is finished with defining the 

path, he/she selects the “Finish” option in the menu to let the system do the processing. The 

system then identifies the appropriate constraint spaces, which support the defined motion 

path. The user selects appropriate constraints from the space (guided by design principles) 

which then results in a final mechanism design.  
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Figure 19: Proposed method 

 

3.5 Steps explained 
 
 

This section contains more detailed description of the design steps. 

 

3.5.1 Step 1: User defines motion 
 
 

The user grabs the object and locates it to a position by translating or rotating it. This defines 

the first motion. The user makes a menu selection to declare the first independent motion. As 

the user does that, the object snaps back to the original position to let the user start from the 

beginning in case he/she wishes to define another motion. Once the user is finished, the 

system has n + 1 number of matrices („n‟ number of positions and 1 starting position where n 

≤ 6).  

 

 

1. User inputs 

the motion path 

 

2. The position 

transformation 

matrices are 

converted to 

twist vector 

representations 

 

3. The freedom 

space 

corresponding 

to the user 

motion is 

determined 

 

4. The 

corresponding 

constraint space 

is displayed for 

the user 

 

5. User selects 

desired 

constraints 

 

6. Virtual 

constraint lines 

converted to 

physical 

constraints 
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Once the user is finished with defining the motion path, the relative transformation matrices 

for the motions have been defined. These matrices are 4 x 4 GMTL (Generic Math Template 

Library) matrices. The user interaction in this step is natural as he/she uses a 3D interaction 

device to define the object motion.  

 
3.5.2 Step 2: Twist vectors calculated 
 
 

Once the system has the transformation matrices, they are converted to their twist vector 

representation.  

3.5.3 Step 3: Freedom space determined 
 
 

After the completion of the second step, the system has the twist representations of the 

individual motions defined by the user. The next step involves determining the CASE and 

TYPE of the freedom space in which this user defined motion falls into. The CASE number 

is determined from the number of desired independent motions. Once the CASE number is 

known, the next step is to determine the TYPE within that CASE.  

a. There are two ways in which the user motions could be matched to an appropriate 

freedom space. If the user motions are defined along orthogonal axes, a simple 

comparison of the generated twist vector with the stored twist vectors in the catalog 

would identify the TYPE.  

b. If the user motions are not defined along orthogonal axes, then the generated twist 

vector would have to be checked for linear independence with all other twist vector 

representations in the specific CASE to determine the correct freedom space.  
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3.5.4 Step 4: Constraint space displayed 
 
 

Once the appropriate freedom space is determined, the corresponding constraint space is 

displayed. A database of all the freedom spaces and the   constraint spaces is already known 

by the system. Those constraint spaces are determined by Blanding‟s rule of Complimentary 

patterns. The constraint space is displayed as an overlay on the object. This gives the user the 

understanding of the constraint space with respect to the object and makes the selection of 

constraints clear 

3.5.5 Step 5: User selects constraints 
 
 

The user now sees the constraint space overlaid on the object. The user selects 6 – n 

constraints from the constraint space where n is the number of motions defined by the user. 

As the user selects the virtual constraint lines, the color of the line changes to indicate it has 

been selected. The user selects “Done” from the menu once he/she is satisfied from the 

selection. Because there are generally sets of infinite numbers of constraint lines in each 

geometric constraint space set, the software provides the user with the ability to select from 

the displayed constraints or any of the infinite number of consistent constraints.  

The ability of the user to select the final constraints from the complete viable constraint set 

allows the user to apply design knowledge to the process. There are several considerations 

which the designer should keep in mind while picking constraints from the constraint space. 

Some of them as explained by Blanding, are explained below.  

 Avoid over-constraints: When the condition of over-constraint occurs, two or more 

constraints control the same degree of freedom of a body thus resulting in redundant 

constraints.  
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 Angle between two constraints: When selecting two constraints, according to 

Blanding, the designer should not be concerned about the angle between the two 

constraints as long as their point of intersection remains the same. Any two 

constraints lines are functionally equivalent to any other pair in the same plane whose 

constraint lines intersect at the same point.  

 Parallel constraints: When the designer needs to apply two constraints parallel to 

each other in a plane, any two parallel constraint lines from that plane could be picked 

and they would be functionally equivalent. The condition of over-constraint should 

definitely be avoided.  

 Designing for thermal expansion: A designer should also keep in mind the 

expansion of the material which could happen as a result of thermal expansion. The 

design should be such that the constraints applied on the body still hold true in the 

event of thermal expansion of the body.  

3.5.6 Step 6: Final constraints appear 
 
 

As the user selects “Done” from the menu option, the constraint space disappears. The 

constraint lines selected by the user are displayed as the final design constraints.  
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Chapter 4: Case study 
 

This chapter demonstrates the theory behind designing a compliant mechanism as applied to 

a spherical ball-joint example.  

Ball joints are useful elements in mechanism design. They allow full rotations around an 

infinite number of axes, but no rotations. Ball joint consists of a stud and a socket enclosed in 

the casing. The joint has a protective casing which prevents dirt from entering the joint. A 

typical example of a ball joint is shown in Figure 20.  

 
 

Figure 20: A ball joint 

In this example, the user defines rotation motions in three independent axes and the system 

automatically comes up with the corresponding constraint spaces.  

 
4.1 Step 1 

 
The user grabs the object and defines rotational motions along each of the three axis. After 

every rotation motion, the object snaps back to its original position to let the user start to 

define the next motion.  

stud 
socket 
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4.2 Step 2 

 
The 4 x 4 rotation matrices are converted to twist vector representation, which is a 6 x 1 

vector. The twist vector stores the velocity of a body. It has six components: three of to 

define the linear velocity and three to define the angular velocity.  

The equivalent twist representations of the above matrices are listed in Table 4.  

Table 4: Orthogonal rotation and their twist vector representations 

 

Rotations along axis 

 

 

Twist vector representations 

 

 

Rotation along X axis 

 

 

 

 

 

 

Rotation along Y axis 

 

 

 

 

 

 

Rotation along Z axis 

 

 

 

 

 

The twist vectors are combined into a resultant twist vector (Eqn. 17):   

                                     TR =                                               (17) 

 
Where TR is the resultant twist vector 
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4.3 Step 3 

 
The software identifies this as a CASE 3 situation since three motions were input. The next 

step is to identify the TYPE within CASE 3.  The match is found by comparing the twist 

representation of the user motion with those of the freedom spaces.  

The table below shows how the comparison will take place and the results associated with it. 

Note that each instance of a type represents a difference coordinate system location. 

 

Table 5: CASE 3 TYPE matching 

 

 

User motion 

 

 

Type instance 

 

Result 

 

 

              EQUALS 

 

 

 

 

 

 

 

 

 

 

 

Type 1 Instance 1  

 

FALSE 

 

Type 1 Instance 2  

 

 

 

 

 

FALSE 
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Table 5. (continued) 

 

User motion  

 

 

Type instance 

 

Result 

 

 

 

 

 

 

 

 

 

 

 

 

              EQUALS 

 

 

 

 

 

Type 1 Instance 3  

 

FALSE 

 

Type 4 Instance 1  

 

TRUE 

 

Type 5 Instance 1   

 

FALSE 

 

Type 5 Instance 2  

  

FALSE 

 

Type 5 Instance 3   

 

FALSE 

 

It is to be noted that the algorithm will not go beyond TYPE 4 Instance 1 as a correct match 

is found at that point.  

4.4 Step 4 

 
Once the exact TYPE is found, the constraint space corresponding to the freedom space is 

displayed for the user to manipulate. The corresponding constraint spaces for CASE 3 TYPE 
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4 is shown in Figure 21. The lines in blue represent constraint lines and the lines in red 

represent freedom lines.  

 

 

 

 

 

 

 

 

Figure 21: Constraint and freedom space for CASE 3 TYPE 4 

 

Figure 22 shows the constraint space located in the coordinate system and attached to the 

object to be manipulated.  

 

 
 

Figure 22: Constraint space applied on the shaded object 
 

 

 

 

 

 

 

4.5 Step 5 
 

Once the constraint space is displayed, the user select from the desired constraints to define 

the final solution. The system prompts the user to select no more or less than three 

constraints as this motion belongs to CASE 3. As the user selects the desired three 

y 

x 

z 
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constraints, the system gives a feedback to the user by changing the color of those constraints 

(orange in the diagram below). Once the user is satisfied with the selection, he/she could 

click “Done” from the Menu.  

 
Figure 23: Constraints selected while the object is displayed 

 
4.6 Step 6 

 
One the user clicks on “Done” from the menu; the constraint lines selected from the space 

above are turned into the final design constraints.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Final mechanism   
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The final mechanism is shown in Figure 24 and consists of a design with three constraints 

that limit all translational motion and provide for free rotation about any axis. This design has 

achieved the initial design objectives. 
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Chapter 5: Conclusion and Future work 
 
 

Currently, significant experience is required to design compliant mechanisms using the 

constraint-based methods because of the non-intuitive motion of the compliant members. The 

motions made by the compliant members of the mechanism are non linear and therefore are 

difficult to understand intuitively. Using the current design method, significant knowledge 

and hands-on experience is required on the part of the designer to successfully design such a 

mechanism.  

The approach presented in this thesis combines two methods of compliant mechanism design 

within an immersive VR interface. The FACT approach, developed at the Precision 

engineering lab at MIT, is a constraint-based approach which provides a geometric 

representation of all the constraint and freedom spaces. This approach requires the user to 

have a deep understanding of the geometrical representations of the spaces before applying 

them to the design process. The mathematics of screw theory provides a mathematical 

background for the design of compliant mechanisms that is independent of the visual design 

representation. According to this approach freedom spaces are represented mathematically 

using twist and wrench vectors. Here the user solves mathematical equations which are 

removed from any visual representation.  

The approach integrates the above methodologies and provides a user-centered approach for 

the design process. A VR immersive interface is presented to the user which gives a natural 

way to design 3D mechanisms. Before the design process starts, a catalogue of twist vector 

representations of all the freedom spaces is prepared. When the user defines the desired 

motion, the system calculates the twist vectors for the motions and matches them with the 

catalogue to come up with the appropriate constraint and freedom space. The user is then free 
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to select the individual constraints from the possible set to complete the design process. This 

research results in an intelligent design framework that will allow a broader group of 

engineers to design complex compliant mechanisms, giving them new options to draw upon 

when searching for design solutions to critical problems. The user-centered strategy followed 

in this research is novel in that it combines purely visual representations with mathematical 

representations and allows the designer the freedom to select from the solution set to arrive at 

the final design. This method uses the power of mathematics combined with visual and 

interactive methods to support compliant mechanism design. The research supports novel 

mechanism solutions for manufacturing and product design which have fewer movable 

joints, are more robust, and are easily scaled to meet the needs of micro-products. 

A case study was presented which demonstrates the proposed approach. The six step design 

process presents a detailed description of how to proceed with the mechanism design. 

Although the proof of concept has been presented, much work still needs to be done to 

expand the scope. As of now, only the user motions which belong to CASE 3 TYPE 1, 4 and 

5 will be recognized by the software.  

 

There are several promising areas for future work:  

1. Catalogue expansion: The current catalogue of freedom spaces contains twist vector 

representations for CASE 3 TYPE 1, 4 and 5. This restricts the user motion to be 

identified only when it falls within those categories. In the future, the catalogue could 

be expanded so that it has the twist vector representations of all the CASEs and 

TYPEs in order to accommodate any arbitrary input motion.  

2. Support for motions not defined at orthogonal axis: The current implementation 

does not support motions which are not defined on orthogonal axis. A linear 
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independence check needs to be placed when the motions are not defined along 

orthogonal axis so that the correct freedom spaces are calculated in accordance to the 

defined user motion.  

3. Verify motion: The current system does not verify that the compliant mechanism 

moves along the direction defined by the user. Mathematically we are confident that 

the results can be verified, however, there is no visual feedback to the user. Once the 

mechanism has been designed and the final design constraints appear, there should be 

a way where the user could verify the object‟s motion. Deflection calculations based 

on material properties are needed to verify the design. 

In conclusion, this research resulted in a promising method to support user-centered 

design of compliant mechanisms through the combination of mathematical and geometric 

representations and an immersive virtual design environment. Future work will result in 

even greater impact of this design tool on the designer‟s ability to design compliant 

mechanisms. 
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