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ABSTRACT 

The purpose of this research was to determine the effectiveness of using corn burning 

heating appliances as an alternative to more traditional natural gas or electric heat.  Two 

models of different sizes and outputs were purchased for the test.  The appliances were 

operated through the winter and into the spring to evaluation their performance. 

 

The equipment was operated following the manufacturer’s suggestion.  Parameters such 

as gas composition, ash production and temperature profiles were obtained in order to 

quantitatively describe the performance of the appliances. 

 

While many natural gas furnaces available to consumers these days reach efficiencies of 

greater than 95%, solid-fuel appliances remain significantly lower.  Observed efficiencies 

ranged from 10% to 50%, depending on fuel source, method of combustion, and design.  

Because of the fledgling nature of this industry, performance is not as high as well 

developed technology, such as gas furnaces, can achieve.  However, with enough 

sustained interest in alternative energy, the application of burning corn for heat shows 

promise. 
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1. INTRODUCTION 

With the quickly increasing costs of oil and gas, Americans have been searching for new and 

innovative means of cutting costs where possible.  Perhaps this is most evident in the 

automotive industry, where hybrid vehicle sales have skyrocketed in the last two years.  

People are anxious for promising new technology, often without regard to whether or not it 

has been proven to be the most economic choice. 

 

The heating industry has made great strides in increasing the efficiency of heating with 

natural gas.  It is not uncommon to find furnace systems with efficiencies upwards of 95%.  

Even so, there are alternatives to using conventional utilities.  Burning wood for heat has been 

in existence for as long as fire has existed.  But since then, there have been some 

improvements in the design.  Wood pellets made from waste wood are now a common fuel 

source for people looking for a more natural or green heating fuel; and many products are 

available that are designed to utilize these pellets.  Within the last few years, there has been an 

increasing interest in using corn. 

 

One of the attractions of using corn is that the processing infrastructure is already in place to 

make shelled corn readily available.  Since the corn does not need to be pelletized, it can be 

easily fed into an auger system without significant processing.  Though, removal of fines is 

sometimes required, as excess particulate in the corn will cause augers to bind. 
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An initially apparent problem with using corn is that corn is not the easiest fuel to ignite, and 

there is not a general consensus among the manufacturers of corn-burning appliances on the 

best method for combustion.  As a result, there are dozens of models on the market, each 

toting a different feature that sets attempts to be the best at what it does.  Some of these 

innovations work better than others, and currently, it is not always easy to effectively pick and 

choose what options make for the best design. 

 

In order to make an informed decision, the consumer requires information.  However, most 

information is available only through manufacturers and their dealers.  There is no overseeing 

body that evaluates these appliances to determine their strengths and weaknesses.  This is 

partly because these products are relatively new to the market and not well known to the 

average consumer. – The mechanization of an appliance specific for burning corn has only 

been around since the mid 1990’s.  The other reason is that these products are simply too 

expensive.  Joining the league of owners of corn-burning appliances will easily cost $2,000, 

making them an intimidating purchase. 

 

With the generous assistance of the Iowa Energy Center, a pilot research program was 

undertaken at Iowa State University to see if all the buzz about corn heat was all it was 

worked up to be. 
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2. BACKGROUND AND LITERATURE REVIEW 

2.1. Drive For Alternative Heat 

Wood has been burned for centuries for warmth and cooking.  Over the years, the formula for 

using wood for fire hasn’t changed much: find an ignition source, keep fuel supplied, and 

don’t smother the fire.  Since then, there have been advances in keeping the fire contained as 

well as adding amenities such as forced air heat exchangers and the like. 

 

However, having chopping wood is a tedious task.  The wood must be manually fed into the 

fire since the diversity in shape and size of wood makes using an automated feed system 

difficult.  After the development of using compressed sawdust or other fine bits of wood to 

form pellets, an opportunity opened to use a pellet feeding system, such as augers or 

conveyors.  Since the creation of wood pellets, a large number of models of pellet stoves, 

central heating furnaces and other appliances have emerged since the early 1990’s. With the 

price surge of fossil fuels in the early 2000’s, the demand has increased all over Europe and 

the United States, and a sizable industry is emerging. 

 

2.2. Current Status of Solid Fuel Appliances 

As of today, there is a small but increasing market for solid-fuel furnaces.  Prior to the 

hurricane season of 2005, the industry was slowly growing in the U.S., but was viewed by 

many as a novelty.  Many owners of such devices were farmers and others that readily had 

inventories suitable for burning and were content with a small stove heating a part of the 

house while saving money by not having to run the gas furnace as often.  Some urban areas 
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saw use of this equipment as either a functional décor item, such as a fireplace would fulfill or 

as an environmental/political statement.  In fact, many users boast their freedom from foreign 

oil.  But with high efficiency (greater than 95%) gas furnaces on the market, there was not a 

large drive to consider alternative sources of heat. 

 

The attitude toward solid-fuel heat changed significantly following the hurricanes of 2005.  

Following the destruction of many refining operations in the gulf coast, the price of petroleum 

dramatically increased – most noticeably was gasoline.  As the price of natural gas was 

already making marked increases, there was a large amount of concern that this would 

significantly raise the cost of heating one’s home.  Soon, many people were researching 

alternatives to their older gas furnaces.  All options were considered, from electric heat pumps 

to geothermal machines.  Even those without agricultural ties were not long on flooding the 

solid-fuel appliance manufacturers and distributors with endless queries and purchases.  As it 

would turn out, 2005 was a major sales year for solid-fuel.  In fact, many sold out and waiting 

lists of a year were not uncommon as the cold season emerged. 

 

Unsurprisingly, in the Midwest, the appliances getting a disproportionate amount of attention 

were the corn stoves and furnaces.  Since corn is in a form similar to currently available wood 

pellets, it was an obvious choice to evolve towards.  The main differences from wood are that 

since corn burns hotter than wood and creates more problems with sustaining combustion, the 

corn burning appliances had to be built as more aggressive machines.  The body and 

components near the flame had to be built out of thicker, heavier gauge metal.  Also, there 
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had to be more creative ways of maintaining airflow and keeping the fire hot because of a new 

variable with burning corn: clinkers. 

 

Clinkers are a product of a phosphorus-rich fuel.  They are formed as the starch burns out of 

the corn and partially melts, flowing over the burning embers and carrying mineral deposits 

along.  As the starch is burned away and the flame cools, the viscous liquid cools and hardens, 

forming a structure that looks and feels similar to a coral reef, but consists of phosphates 

(mostly P2O5) and other ash constituents.  The size of clinker is dependent on the size of the 

burn pot and temperature of the fire, but they can range from the size of a few centimeters to 

as much as 20 cm.  Because of their irregular shape, they can be a hindrance to both air flow 

and fuel flow.  Below are some example pictures of clinkers. 

 

Figure 1: A large clinker formed by burning corn 
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Figure 2: An abundance of clinker from using a corn furnace 

 

The manufacturers of corn burners have a few options for dealing with clinkers. 

• Let them be – One option is to just let them collect.  At the end of the day, allow 

the stove to cool and manually remove the clinker afterwards or before the next burn.  If the 

burn pot is large enough, quite a few days of operation can pass before it is necessary to 

remove them.  If heat is not constantly required, leaving the clinkers sit in a cold stove for a 

few days can make disposing of them easier.  Since the clinker is water soluble, leaving it 

exposed to room air will soften it up and it will crumble to the touch, which can then be 

vacuumed out. 

• Grind them up – Many stoves utilize this option.  Since air is passed up to the fire 

through a slotted or mesh grate, if the ash and clinker are fine enough, they will pass through 

these holes into the ash pan.  In order to reduce the clinker to manageable size, there is a 
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stirrer rod or grinding axle that will break up the clinker and allow it to pass through to be 

removed with the rest of the ash. 

• Expel them from the burn pot – Currently, only the largest corn furnaces use this 

option.  This method involves using the direction of the fuel flow to cause the clinker and ash 

to be passed into the ash pan.  This can be caused by an upwards flowing fuel stream that 

spills over the top of the burn pot or by a conveyor system that will dump the waste materials 

at the end. 

 

Due to the large number of independent manufacturers, there are a large number of options 

that can be explored as different models are examined.  However, it should be mentioned that 

the scope of this project will only examine representative models 

 

2.3. Current Regulations Regarding Solid-Fuel Appliances 

In the United States, there is a large amount of legislation regarding the usage and 

performance of large scale heat sources such as those present in power plants.  However, as 

the scale decreases, so does the regulatory oversight accompanied with operating a solid-fuel 

appliance.  In general, one would hardly know that these stoves and furnaces would be under 

any regulation at all.  However, due to popularity of wood stoves in rural communities, the 

EPA drew out codes to regulate the use of small scale stationary appliances.  This is covered 

in Code of Federal Regulations (CFR) Title 40 – Protection of the Environment, Part 60 – 

Standards of Performance for New Stationary Sources, also referred to as 40CFR60 [18]. 
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In all of 40CFR60, the section of interest in small scale appliances is Subpart AAA (§60.530-

§60.539a) – Standards of Performance for New Residential Wood Heaters.  The first part of 

which dictates the jurisdiction of the article based on the size of burn pot, the fuel input rate, 

the overall weight of the appliance and so on.  However, one will note that the key word 

“wood” is present.  This means that if corn, soybeans, grass, or any other such plant matter is 

burned, 40CFR60 does not apply.  In fact, unless a local code governing the generation of 

excess smoke or noise is violated, there is virtually no regulation of corn-fired stoves or 

furnaces.  However, due to the selling power of having a “certified” appliance, many 

manufacturers will self-impose the standards laid out in 40CFR60-AAA. 

 

Most people are unaware that the characteristics that 40CFR60-AAA regulates are only with 

respect to particulate generation [3].  There is a formula that relates the fuel input to 

particulate output, but because of the differences between corn and wood, this correlation is 

not applicable.  But the other means by which an appliance can be certified is to qualify under 

an exemption. 

 

Exceptions for 40CFR60 are quite a few, but most will cause the appliance to be governed 

under another article of the CFR code.  The most common exemptions that wood burning 

stoves utilize are burn rate and air-to-fuel ratio [5].  Small appliances require a fuel feed rate 

of less than 5 kg/hr.  Since wood burns so readily, it is not difficult to design a stove that uses 

well more than 5 kg/hr, however with corn, this is not often the case because corn has a much 

higher energy density than wood.  The other option a manufacturer would have is to dilute the 
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air flow.  Having an air-to-fuel ratio of greater than 35:1 will cause the exhaust to be diluted 

such that even poorly burning fires will not create a significant smoke signature. 

 

2.4. Stove research in other countries 

Some research has been performed on solid-fuel heating in two other regions of the world: 

Canada [14] and Scandinavia [6], [13].  Canada’s Ministry of Agriculture promotes burning 

shelled corn as alternative to wood.  Universities in Scandinavia have done research projects 

to determine the feasibility of using solar and bio-mass heating to lessen their need for fossil 

fuels and take on bio-renewable technologies.  However, many of these projects were 

completed on more of a macro-scale than the scope of this project. 

 

2.5. Stove and Furnace Operation 

The focus of the project was the appliances themselves.  Selecting the models to be tested 

would have a substantial impact on the outcome of the research.  The selection was intended 

to be done from a consumer standpoint taking into consideration apparent ease-of-use as well 

as low maintenance requirements.  Since there is not a standard means of burning corn, many 

manufacturers of corn-fired appliances are left to their own ingenuity to develop their stoves. 

 

The notation of “stove” and “furnace” in this industry is semi-ambiguous.  Generally, the term 

“stove” is used for a stand-alone unit.  Typically a stove is designed to heat a single room or 

possibly a whole floor, but is not tied into the residence’s central system.  Because of their 

exposed nature, aesthetics are more emphasized.  Glass doors to view the flame are common, 

as well as gold or chrome trim.  Heat outputs generally keep below 50,000 BTU/hr.  On the 
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other hand, furnaces are physically larger units designed to output significantly more heat.  

Typical outputs would be 80,000 BTU/hr and up.  The blower fans are more powerful as the 

heated air is normally routed through a building’s ductwork.  The appearance of furnaces is 

more comparable to a standard gas-fired furnace.  There are typically no glass viewing ports 

and except for the radiative heat and ash tray, there is not always evidence that there is 

combustion taking place. 

 

Many smaller units take their design from pellet stoves.  Pellet stoves have been around 

considerably longer and various designs have started to converge.  Typically, pellets are fed 

through an auger into a small burn pot that blows air either over or through the flames.  The 

primary difference between corn and pellet stoves is how strongly each is built.  Corn burns at 

a higher temperature than pellets and therefore corn burning stoves are built with this in mind, 

utilizing heavier gauge metal sheets and different temperature thresholds.  Beyond this, other 

options are simply amenities.  With stoves, trim is often put under consideration since the 

stove will frequently be the centerpiece of whatever room it is placed.  Controls for adjusting 

airflow and heat output are often standard and are available as dials or as digital panels.  

Additional equipment for handling clinker is often considered, though the effectiveness or 

necessity of such amenities is still up for debate.  This particular issue will be discussed 

further on. 

 

In comparison to stoves, there are also units being sold that are designed to heat whole 

buildings instead of a single room.  The larger units are marketed as furnaces, and as such are 

built in a way that will afford easy transition from gas-fired furnaces.  The air circulation is 
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done from the top and exhaust ports are located on the sides to assist in maneuvering chimney 

pipe around obstacles and out of the building.  This is where most of the similarities of corn-

burning furnaces end.  Unlike stoves, furnace makers do not have a comparable model to 

work from.  The actual burn method varies greatly across different manufacturers.  The 

varieties are too numerous to go into detail, but each method has to deal with four essential 

duties: 

 

• Adding fuel to the burn pot 

• Supplying air to the flame 

• Handling clinker 

• Power cycling 

 

The first three challenges are all common to stoves, but the last is significantly more 

important for furnaces than stoves.  While having the furnace run at full capacity the entire 

time is one possible option, it is usually not intended for it to be done that way. 

 

For stoves, thermostats are generally more of an option than a requirement.  But most, if not 

all, furnaces are designed to operate with a thermostat.  This means that when the air is colder 

than the thermostat’s set temperature, the furnace should put out significantly more heat than 

when the air has reached an adequate temperature.  Traditionally, home furnaces can 

compensate for this by keeping a pilot light lit or using an electronic ignition and turning the 

gas on and off as needed.  But as of this publication, only one stove on the market features an 

auto-ignition capability.  This means that the fire must not be allowed to extinguish, but yet 
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not burn at its full potential.  Many models use a method that utilizes a “high-fire” (hi-fire) 

and “low-fire” (lo-fire) system. 

 

Hi-fire is the more familiar mode which uses forced air to fan the flames.  Lo-fire is achieved 

by either reducing the forced air or eliminating it altogether and allowing natural convection 

to supply the air needed for combustion.  This results in less complete combustion of the fuel, 

thereby creating a dirtier exhaust, but it also reduces heat output.  The one means of auto-

ignition is available on the Harman PC45 stove.  Ignition of the corn is accomplished via a 

400 watt heating element embedded in the corn, designed to raise the temperature to over 900 

K for ignition.  Research and development is still being undertaken in this area and means of 

providing ignition sources as a common feature will likely be available within the next few 

years. 

 

The essence of a furnace or other heating appliance is transferring heat from a source into the 

environment.  The means that current technology accomplishes this is through the use of 

releasing heat energy through combustion and passing this heat on to a heat exchanger for 

use.  Most of the appliances on the market use a form of a cross-flow heat exchanger.  

Combustion products flow around the exchanger tubes and out through the chimney.  The 

room air is then circulated through these tubes to be warmed and sent out into the room.  The 

effectiveness of this heat exchanger is the arguably the most important operating feature of 

any heater.  As such, it will receive its due attention through the course of this research 

project. 
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3. EXPERIMENTAL METHOD 

3.1. Experimental Equipment 

3.1.1. Introduction 

The focus of this research is to characterize the performance of corn stoves through an 

experimental test program.  The following sections detail the equipment used in these 

experiments. 

3.1.2. Country Flame Harvester 

The model selected to represent stoves was the Harvester, produced by Country Flame 

Technologies of Marshfield, Missouri.  It was chosen as one of the most likely choices for 

consumer selection due to its simplicity and low maintenance.  Key features of this product 

are its digital control panel, thermostat compatibility and its clinker stirring feature. The 

digital control panel relays all pertinent information to the user while also facilitating virtually 

all functions from a single location on the stove.  Having a thermostat capability allows the 

user to regulate the temperature of the room in a more autonomous fashion as opposed to 

dialing in different settings on the stove based on how warm the room feels.  The clinker 

agitation system alleviates the user from having to manually remove clinker from the burn pot 

daily or semi-daily.  Instead, the clinker is ground up and allowed to pass into the ash pan 

along with the rest of the unburned material.  Overall, the operation of these stoves is 

typically not complicated.  Figure 3 is a photo of the Country Flame Harvester corn stove 

followed by a schematic diagram in Figure 4. 
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Figure 3: Country Flame Harvester stove 

 

 

Figure 4: Operational diagram of the Country Flame Harvester stove 

 

Corn is stored is stored in the onboard 75lb (1.3 bu) hopper.  At the bottom of the hopper is an 

auger for metering out the fuel.  This auger extends out of the hopper at an upwards angle 

towards a downward sloping chute.  This chute passes through a masonry and steel firewall 
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then empties into the burn put.  The burn pot consists of a rectangular, grated steel box with a 

cylindrical base similar to the illustration in Figure 5.  The cylindrical portion has numerous 

small holes drilled throughout.  The holes are small enough that whole kernel corn cannot 

pass through, but they allow for air to pass up through and for ash and ground clinker to fall 

into the ash pan.  Above, the heat exchanger tubes are heated as the fire and hot air pass by.  

Room air is then blown through the tubes and out through a vent in the front of the stove. 

 

 

Figure 5: Country Flame Harvester burn pot 

 

The Country Flame model uses 2 rows of small diameter (~0.75”) tubes arranged in a stacked 

8-7 pattern as shown in Figure 6.  The HX tubes are directly exposed to the flame burning 

below as shown in Figure 7.  However, due to the relatively small burn pot, the Country 
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Flame’s heat exchanger has a large variance of temperature across the face of the heat 

exchanger. 

 

 

Figure 6: Country Flame Harvester heat exchanger with thermocouples visible 

 

 

Figure 7: Country Flame Harvester in operation  

 

The burn zone is kept under slight positive pressure from the combustion fan; this forces the 

exhaust through internal channeling to the back of the stove to be sent out of the building 

through chimney piping. 
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3.1.3. LDJ Mfg. model 620-10 

The model chosen to represent furnaces is the model 620-10 and is built by LDJ 

Manufacturing of Pella, Iowa.  LDJ is one of the longer established manufacturers of corn-

fired furnaces, having been around since 1999.  The LDJ model was chosen for a variety of 

reasons, most notably for the proximity of the manufacturer, ease of use, and appropriateness 

for residential use.  Since furnaces require significantly more work to install than stoves, it 

may be necessary to consult the manufacturer more frequently.  Having a company that was 

in-state was invaluable during the installation process.  In addition, it seemed appropriate to 

choose a product built in Iowa as a tribute to the Iowa Energy Center’s goal of “invest[ing] in 

initiatives that help Iowa industries and businesses.” [1] 

 

LDJ’s goal is to “improve the furnace and boiler to the point of being as automatic as other 

heating products.” [11] This is a noteworthy cause, since many larger units are more 

reminiscent of steam locomotive boilers than of home appliances.  Other products seemed less 

intuitive, and therefore less likely to be chosen by consumers – further excluding them from 

selection.  However, when stripped down to the bare components, most corn-fired furnaces 

operate very similarly, but since this project focuses on the LDJ model, that is where 

discussion will focus.  Figure 8 is a photo of the LDJ A-Maize-ing Heat 620-10 furnace 

followed by a schematic diagram in Figure 9. 
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Figure 8: LDJ 620-10 furnace 

 

 

Figure 9: Operational diagram of the LDJ 620-10 furnace 

 

Corn is held in the external fuel hopper.  At the bottom of the fuel hopper, there is a slow-

speed screw conveyor or auger.  The purpose of this auger is to meter or dispense out the fuel 
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at a predetermined rate.  The metering auger empties into a second, higher-speed auger, also 

referred to as an injection auger.  If the fuel were to move too slowly into the burn zone, it is 

possible that combustion would begin outside of the designated area, possibly resulting in 

undesirable performance, excess smoke, or possible fire damage to the furnace components.  

The injection auger is designed to quickly move the fuel from a cool, room-temperature state 

to the burn zone. 

 

In the LDJ furnaces, the fuel is forced into the burn pot from the bottom, creating an upward 

flowing combusting medium.  The flame is sustained on the topmost region of the burn pot.  

This top flame acts to keep the flame distanced from moving parts to avoid thermal damage.  

Also, the upwards motion assists in the removal of clinker.  As more fuel is added to the 

bottom of the burn pot, it forces the uppermost contents up and over the edge of the burn pot 

and into the ash pan.  By the time material has reached this point, it is mostly reduced to 

unusable clinkers. 
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Figure 10: LDJ 620-10 in operation - notice glowing clinkers surrounded by flames 

 

When it is called for, air is added to combustion through a double-wall system that vents 

through a set of holes encompassing the top portion of the burn pot.  The hot gases then flow 

upwards into a metal plate the acts to deflect ashes and soot back down towards the flame and 

ultimately, the ash pan.  However, there is space on the sides of the plate to allow the hot gas 

to pass up and around the heat exchanger tubes. 

 

The LDJ model uses 3 rows of large diameter (~1.5”) tubes arranged in a stacked 4-3-4 

pattern.  The heat exchanger (HX) tubes are not directly exposed to the flames; instead, there 

is a steel plate that partitions the flame pot from the HX.  Hot gases are allowed to pass 

around the plate and upwards towards the tubes. 
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Figure 11: Airflow diagram for the LDJ 620-10 furnace 

 

After the gas leaves the heat exchanger, it is collected into a single pipe that passes through 

the cold air draw to partially act as a preheater.  After this, it is piped out of the back of the 

stove to be channeled through the chimney ductwork as shown in the following figure. 
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Figure 12: Chimney diagram for the LDJ 620-10 furnace 

 

Something that is important to note about this particular model is the draft control that LDJ 

institutes.  The static pressure of the exhaust port is designed to not exceed 0.04” H2O 

vacuum.  A high draw will cause too much air to be drawn across the fire and could 

potentially extinguish the flame.  To maintain this pressure in the presence of high cross-

winds, there is a damper valve near the exit of the furnace to allow room air to be drawn into 

the chimney. 

 

3.1.4. Land Instruments LANCOM II Flue Gas Analyzer  

In addition to the two test appliances, two other pieces of equipment were employed in this 

project.  To measure gas composition, a LANCOM II Portable Flue Gas analyzer 
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manufactured by Land Instruments was used.  The LANCOM II measurement capabilities are 

summarized in Table 1. 

 

Table 1: LANCOM II gas detection profile 

 
Gas Name

CO2 : Carbon Dioxide ± 0.0001 %

CxHx : Hydrocarbons ± 0.0100 %

O2 : Oxygen ± 0.0100 %

CO : Carbon Monoxide ± 1.0 ppm

NO2 : Nitric Oxide ± 1.0 ppm

NO : Nitrous Oxide ± 1.0 ppm

SO2 : Sulfur Dioxide ± 1.0 ppm

H2S : Hydrogen Sulfide N/A

Resolution

 

 

A simplified diagram of the LANCOM II is shown below.  It consists of a main unit that 

houses all of the detectors as well as a control and display panel.  A sampling wand is then 

tied to the input port of the LANCOM II.  The sampling wand retrieves temperature through 

an imbedded thermocouple as well as gas samples that it draws through a sintered metal filter.  

To utilize this analyzer, the sampling wand was inserted deep into the chimney and allowed to 

draw from the passing flue gas. 

 

 

Figure 13: Land Instruments LANCOM II flue gas analyzer 
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The LANCOM II is equipped with an RS-232 connection and appropriate software for 

connecting it to a computer running Windows.  Using these capabilities, the analyzer permits 

for data collection at 1 Hz. 

 

3.1.5. Campbell Scientific CR10X Datalogger and Multiplexer 

In order to collect temperature information, a board capable of receiving thermocouple inputs 

is almost a necessity.  There was a Campbell Scientific CR10X datalogger on hand which 

would meet all the requirements.  It offered enough differential channels to allow monitoring 

of multiple thermocouples and various detectors.  The CR10X has an onboard non-volatile 

memory capable of storing 62,000 data points.  This allowed for over 20 hours of 

unmonitored data collection at a sampling frequency of twice per minute.  After these points 

have been filled, it is necessary to download the RAM in order to prevent over-writing of old 

data. 

 

3.2. Experimental Method 

3.2.1. Running the Stove/Furnace 

The program involved the operation the appliances according to the manufacturer’s 

instructions.  The directions for lighting and operating the appliances were followed from the 

user’s manual.  Instrumentation was added in such a fashion that it was believed to not have 

an impact on the normal operating characteristics. 

 

The Country Flame Harvester has 5 heat settings corresponding to various heat outputs.  

During thermostat operation, the stove would cycle between setting 1 (lowest) and a user 
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selected level (3 is default.)  Without a thermostat, the Harvester will maintain operation at a 

user defined output level.  Operations were to be carried out under all output levels to quantify 

performance over as broad a range as possible. 

 

The LDJ 620-10 furnace has a variable output setting ranging the feed rates from 80,000 

BTU/hr to 165,000 BTU/hr.  Operation of this stove was performed at the factory setting of 

100,000 BTU/hr, with occasional testing done at upper and lower output ranges. 

 

3.2.2. Temperature Measurements 

Owners of these appliances will want to know how well they will heat their home.  To be able 

to address their inquiries, a heat exchanger analysis can be performed.  There are four 

essential temperatures that must be known in order to complete the analysis.  However, only 

three inputs are required for measurement as long as all of the other information about the 

heat exchanger is known.  These three inputs can be any combination of the four essential 

heat exchanger temperatures: 

 

• Hot in (Exhaust gases leaving the burn pot) 

• Hot out (Exhaust gases exiting the heat exchanger) 

• Cold in (Room temperature) 

• Cold out (Heated room air) 

 

The reason only three of four temperatures must be measured is that the fourth can be solved 

later by finding the energy transfer of either the cold side or the hot side of the heat exchanger 
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and setting the heat transfer of the opposite side equal.  The procedure for performing this 

calculation is outlined below, with detailed calculations found in Appendix D.  The following 

nomenclature is employed in these calculations: 

 

: energy transfer

:mass flow rate

: volumetric flow rate

: density

: specific heat (constant pressure)

: heat capacity rate

: hot flow

: cold flow

: in flow

: out flow

p

h

c

i

o

q

m

V

c

C

ρ

&

&

 

Energy transferred is equal to the mass flow rate times the specific heat as well as the change 

in temperature 

(1) pq mc T= ∆&  

Since mass flow is not known, it can be substituted by the volumetric flow rate times the 

density 

(2) m V ρ= &&  

Thus yielding 

(3) pq V c Tρ= ∆&  

Using this equation, the energy transfer of the cold side can be found 

(4) ( ), , ,c c c p c c i c oq V c T Tρ= −&  
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Since an energy balance states that the energy leaving the hot flow must be accounted for by 

energy entering the cold flow, the same energy transfer equation can be used to find the hot 

inlet temperature, Th,i. 

(5) ( ), , ,c h h h p h h i h oq q V c T Tρ= = −&  

After the energy transfers and temperatures are established, efficiency can be calculated by 

finding the minimum heat capacity rate. 

(6) pC mc= &  

Depending on which value is smaller, Cc or Ch, will produce the maximum theoretical heat 

transfer. 

(7) ( )max min , ,h i c iq C T T= −  

Finally, q can be compared to qmax to find the effectiveness of the heat exchanger. 

(8) 
max

q

q
ε =  

 

Solving for the fourth temperature is sometimes necessary if one of the temperatures is highly 

variable.  In this case, due to the nature of a solid-fuel flame, the temperature can easily swing 

tens of degrees C in a matter of seconds. 

 

Also, knowing exactly where to measure the hot gas can be difficult, given the design of the 

burn pots.  In the larger furnace, there is a deflector plate that the hot gas must flow around, 

but because of the size of the flame below, the hot gas will frequently alternate which side of 

the deflector plate it passes.  Another challenge is presented in the smaller stove, where the 

size of the burn pot causes the flame to have at least a 90º viewing window of the heat 
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exchanger.  This causes the very outwards zone of the heat exchanger to be noticeably cooler 

than the central tubes of the exchanger.  However, because of the thermal mass of the heat 

exchanger and the mixing effects of the turbulent fluid, the other three temperatures are 

significantly more stable, especially over the course of hours.  After the appliance has reached 

stable operation, the first three temperatures can be used to solve for the remaining 

temperature, Th,i 

 

The thermocouples will be placed in key locations corresponding to a well-mixed, 

representative airflow.  Locations for the thermocouples are illustrated in the following 

Figures 8 and 9.  Additional temperatures may be taken as necessary and may include surface 

and outside temperatures. 
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Figure 14: Sensor placement for the LDJ 620-10 
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Figure 15: Sensor placement for the Country Flame Harvester 

 

The thermocouples are then connected to the CR10X and sampled at a rate of twice per 

minute.  This allows the CR10X to capture nearly 24 hours worth of data before the memory 

must be downloaded to avoid memory wrapping (overwriting of old data.) 

 

3.2.3. Sampling Exhaust 

When it comes to exhaust, most owners are only concerned with three things.  These can be 

summed up in three general frequently asked questions. 

 

• “Does it create a lot of smoke?” 

• “Does it smell bad?” 

• “Will I have to worry about carbon monoxide or other dangerous fumes?” 
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From an emissions standpoint, these can all be addressed by sampling the exhaust gases and 

doing physical studies using ones own senses. 

 

Empirically, the LANCOM II flue gas analyzer will be used to determine the components of 

the exhaust stream.  This information will be analyzed to determine the combustion efficiency 

 

Due to the non-regulation these stoves and the complications of installing a system to measure 

particulate from solid-fuel combustion, a quantitative analysis of particulate emissions will 

not be done. 

 

3.2.4. Measuring Bottom Ash 

Apart from supplying the fuel to the furnace or stove, the other regular maintenance task a 

user must perform is disposing of the leftover soot or “bottom ash.”  After the conclusion of a 

test, the remaining ash was collected, weighed, and further oxidized in an ashing oven to 

determine the amount of carbon that was initially present.   In conjunction with the exhaust 

components, the bottom ash will complete the picture of carbon conversion efficiency. 

 

3.2.5. Determining Volumetric Flow Rates 

In order to complete the heat exchanger solution, it is necessary to know the mass flow rate of 

the fluids passing through the heat exchanger.  In order to find the mass flow rate, a 

combination of volumetric flowrate and equivalent density can be used instead. 
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The means of obtaining flow rates of a gas in ducting are numerous and can consist of such 

options as using a hot-wire anemometer or pitot tube readings.  The downside for many of 

these methods is that the gas must be relatively clean to obtain a usable measurement.  The 

hot side of the heat exchanger in these appliances is the product of combustion; this means 

that it carries soot and tar along the fluid stream.  These contaminates make finding an 

alternate means of determining flow rate necessary.  The option that was chosen was to mix 

additional CO2 into the gas flows and measure the changes in CO2 concentrations that 

accompany the added gas. 

 

The LANCOM II flue gas analyzer was used in determining CO2 concentrations within gas 

streams.  The time-constant for the CO2 detector is approximated at 20 seconds.  To account 

for this, the first 60 seconds after changing concentrations was discarded to allow for the 

concentration levels to stabilize. 

 

In order to complete a data point for volumetric calculation, a low concentration (initial 

baseline) was sampled, followed by a high concentration, and then concluded the point with 

an additional concentration (final baseline) to confirm the baseline.  As shown below, the 

difference in CO2 concentration is directly proportional to the volumetric flowrate. 

 

A volumetric balance on the mixing of a stream of carbon dioxide with the flue gas gives: 

(9) 0 0 1 1 2 2V C VC V C+ =& & &  
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where C is the concentration of CO2, V is the total volumetric flow rate at standard conditions 

of a gas stream and subscripts 0, 1, and 2 denote baseline flue gas stream, injected CO2 gas 

stream, and mixed gas stream respectively.  Note that: 

(10) 0 1 2V V V+ =& & & 

All quantities are known through measurement except for V1, which can be solved for. 

(11) 1 2
0 1

2 0

C C
V V

C C

−
=

−
& & 

 

On the non-combustion side, the data points were then averaged to determine the cold airflow 

flow rate.  After knowing the two flowrates and three temperatures, the fourth temperature 

(Th,i) can be solved by performing an energy balance. 

 

3.2.6. Measuring Fuel Consumption 

It is also of use to know how much fuel is being consumed to produce a given amount of heat.  

To this effect, a known amount of fuel is used for each test and the time required to expend 

this fuel is noted at the end of the test. 

 

3.3. Assumptions 

In order to effectively manage the calculations required for the quantification of this project, it 

is necessary to make a certain number of assumptions.  These are addressed below. 

 

3.3.1. Average Fuel Homogeneity 

While each load of corn may appear to be homogeneous, corn from different locations, even 

different parts of a field can be significantly different.  Because it is not practical to test every 
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piece of fuel is burned, the composition of the corn will be assumed to be consistent with 

results provided in Appendix A. 

 

3.3.2. Thermodynamic Properties of Air 

In order to do certain volumetric flow calculations, it will be necessary to know the density as 

well as the specific heat of the exhaust gas.  This is not a difficult task when it concerns the 

room air, since there are already property tables for air.  But there is not readily available table 

that describes the mix of gases that comprise the exhaust.  Since air is used as the source of 

oxygen for combustion, the exhaust gas has a similar composition profile, consisting of 80% 

N2, 12% O2, 8% CO2, and trace amounts of other gases.  Taking advantage of the similarities, 

the data for density or specific heat of air were used when doing calculations requiring the 

density or specific heat of the exhaust gases.  These correlations can be seen in Appendix F. 

 

3.3.3. Turbulent Mixing 

In order to assume that the gas composition being sampled is representative of the rest of the 

flow stream, it is useful to assume that the gases passing by the gas probe are being 

turbulently mixed so that there is no localized region of high concentrations.  The standard 

method of measuring turbulence for the sake of mixing is the Reynolds number (ReD). 

(12) Re m
D

u Dρ
µ

≡  

Where 

: Diameter of the duct

: Density of the fluid

:Mean Velocity of the fluid

: Dynamic Viscosity

m

D

u

ρ

µ
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Indeed, the velocities existing in these systems place the Reynolds number well into the 

thousands.  Also, because of the amount of corners and cross-sectional areas that the gases 

encounter, it is safe to assume that the gases being sampled are adequately mixed. 
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4. EXPERIMENTAL RESULTS AND DISCUSSION 

4.1. Experiment Design 

The experiments were performed in a manner that would provide useful data related to 

consumers and regulatory bodies.  These involve the description of the gas composition of the 

exhaust as well as the effectiveness of the heat exchanger in moving the heat from the fire into 

the immediate environment. 

 

4.2. Emissions 

Since combustion is a chemical reaction that liberates energy, there will be substances left 

over known as the products of reaction.  Some of these are well known like carbon monoxide 

and carbon dioxide.  In order to study the quality of a combustion process, it is useful to know 

what the components of the exhaust stream are. 

 

As the corn is burned, most of the fuel is converted into gases, hydrocarbons, and various 

oxides.  Since the furnaces use air as its source of oxygen, most of the exhaust gas consists of 

nitrogen (N2).  The next most abundant are oxygen (O2) and carbon dioxide (CO2), with 

minute amounts of carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), 

hydrocarbons (HxCx) and water vapor (H2O). 
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4.2.1. Flue Gas Composition 

4.2.1.1. LDJ 620-10 Stove 

The following table provides a summary of tests conducted on the LDJ 620-10 at the 100,000 

BTU/hr setting.  Each test was run under the same operational settings, with weather and 

variances in fuel being the uncontrollable variables.  A 95% confidence interval is provided to 

demonstrate the stability of the system.  The N2 column is a balance value as N2 was not able 

to be measured. 

Table 2: Summary of Flue Gas Composition for LDJ 620-10 Stove 

CO SO2 NO2 NO CxHx CO2 O2 N2

ppm ppm ppm ppm % % % %

Test A mean 17.4 14.4 9.4 533.4 0.0 9.7 9.2 81.1

± 0.6 0.3 0.1 2.0 0.0 0.0 0.0

Test B mean 729.0 3.7 1.2 156.9 0.0 5.9 15.7 78.4

± 11.5 0.3 0.1 1.1 0.0 0.2 0.1

Test C mean 81.4 31.3 0.0 490.2 0.0 8.0 12.7 79.3

± 4.7 0.3 0.0 2.1 0.0 0.0 0.0

Test D mean 31.8 0.0 15.0 471.8 0.0 8.2 12.4 79.4

± 22.7 0.2 1.3 76.8 0.0 1.2 1.6

Test E mean 311.8 11.0 9.0 329.8 0.0 8.3 12.7 78.9

± 250.3 12.6 2.9 88.0 0.0 3.2 2.2

Test F mean 80.2 4.5 16.4 416.5 0.0 10.9 11.4 77.7

± 4.6 0.2 0.2 3.7 0.0 0.1 0.1

Test G mean 45.0 0.7 13.6 394.9 0.0 8.5 12.1 79.4

± 2.5 0.1 0.3 2.7 0.0 0.0 0.1

Test H mean 167.6 0.1 17.2 312.7 0.0 7.9 12.1 80.0

± 5.8 0.0 0.2 1.5 0.0 0.0 0.0

Average 183.0 8.2 10.2 388.3 0.0 8.4 12.3 79.3  

These results demonstrate that the LDJ 620-10 is fuel efficient, as reflected by the relatively 

low CO emissions.  On many occasions, it was not uncommon for carbon monoxide to remain 

in the low double-digit ppm’s.  Occasionally, due to poor burn conditions such as damp fuel, 

or poor fuel circulation in the burn put, the CO level will spike.  The LANCOM II has a peak 
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CO detection limit of 2000 ppm, so the amount of skewing is somewhat minimized, but the 

variability of the flame produced certain spikes that reached the maximum of the analyzer.  

The 95% confidence interval aids in spotting tests where there was a large amount of 

variability in the test.  It is evident that tests B and E have substantially higher CO emissions 

than the other tests.  It is not precisely known what caused these higher emissions.  What is 

known is that test E was plagued with abnormally high incidents of auger binding, where the 

corn will cause the metering augers to become stuck, depriving the burn pot of fresh fuel and 

causing the fuel to be consumed without replacement..  The poorer combustion environment 

could arise from combustion air not reaching the zone where corn is actually burning, 

resulting in higher CO emissions.  Test B is consistently high and it is supposed that this was 

due to poor quality fuel due to either much higher starch content or inadequate drying. 

 

Despite the low CO concentrations, it is difficult to ignore the high outputs of NOx.  NO 

readings exceeded 500ppm, far above federal regulations, discussed below.  Because of the 

higher combustion temperature, the generation of NO is quite prominent.  This quality may be 

flagged if this type of appliance is ever scrutinized by an organization such as the EPA. 

 

4.2.1.2. Country Flame 

The following table is similar to the previous table for the LDJ 620-10 and provides a 

summary of tests conducted on the Country Flame Harvester.  Each test result consists of a 

mean and 95% confidence interval.  The tests were conducted on the 4th intensity setting (out 

of 5), estimated at 30,000 BTU/hr. 
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Table 3: Summary of Compositions (Country Flame Harvester) 

CO SO2 NO2 NO CxHx CO2 O2 N2

ppm ppm ppm ppm % % % %

Test A mean 638.4 30.9 0.0 148.1 0.0 4.3 16.4 79.3

± 12.8 0.4 0.0 1.1 0.0 0.0 0.0

Test B mean 494.3 0.1 7.0 122.4 0.0 3.8 16.7 79.5

± 3.6 0.0 0.1 0.6 0.0 0.0 0.0

Test C mean 447.3 0.0 10.9 105.2 0.0 3.2 17.5 79.3

± 5.3 0.0 0.2 1.1 0.0 0.0 0.0

Test D mean 454.5 0.0 11.0 110.2 0.0 3.7 16.9 79.4

± 4.5 0.0 0.1 0.8 0.0 0.0 0.0

Average 508.6 7.7 7.2 121.4 0.0 3.8 16.9 79.4

Summary of Compositions (Country Flame Harvester)

 

Due to the mixing of the fuel as it burns, the Harvester (CFH) is able to avoid hot and cool 

spots and burns more uniformly.  Unfortunately, despite its more uniform burn, it also 

produces a slightly more inefficient combustion.  The lower concentration of CO2 and higher 

CO levels indicates that the Harvester utilizes fuel less efficiently than LDJ 620-10.  Carbon 

monoxide levels are at least twice as high, and it could be argued that they are actually 4 or 5 

times as much.  On the other hand, carbon dioxide levels are only half as much as seen in the 

LDJ 620-10.  It is unlikely this is caused by less combustion air being available, because the 

exhaust products in the Harvester have a higher concentration of oxygen (25% more) than the 

620-10.  The poorer combustion is likely due to the low amount of “thermal mass” available 

in the burn pot at any given time.  The CFH deposits a small amount of corn into the burn pot, 

estimated at 1 ounce twice per minute.  This corn is ignited by corn already burning in the 

burn pot, however unless operating at or near its maximum output, the CFH does not output 

enough corn to supply the flame at the rate that the fuel is being consumed.  This results in 

fresh fuel often being barely ignited in time before the current fuel is expended.  Because of 

this process, the carbon monoxide emissions are more than double of the LDJ furnace, even 

though there as about twice as much excess air being delivered. 
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Alternately, the CFH operates about half as hot as the LDJ.  The lower combustion 

temperature does not create an environment that produces as much NOx emissions, making 

this stove a possibly better environmental choice. 

 

4.2.2. Comparison to Regulated Sources 

To demonstrate the effectiveness of these appliances and how far technology could be pushed, 

it would be useful to compare this technology to something of the same nature.  Although 

they may be larger, coal-fire power plants operate on the same principle as these smaller 

appliances.  However, unlike small solid-fuel burners, the EPA regulates how much pollution 

power plants can release. 

 

Two closely watched products of combustion are sulfur dioxide (SO2) and nitrogen oxides 

(NOx), both causes of acid rain and other undesirable atmospheric effects.  For typical 15% 

excess air, power plant production of SO2 is limited to less than 250 ppm and NOx, less than 

100-150 ppm (EPA 40CFR60).  This is the generally the same range of excess air that these 

solid-fuel appliances operate.  The results of sampling the test equipment is summarized in the 

following table 

 

Table 4: Emission Limits 

SO2 NOx 

Power Plant Limits <250 <100-150

Country Flame Stove <30 100-150
LDJ 620-10 Furnace <30 150-500  

 

As shown, the Country Flame performs within the prescribed limits.  However, the LDJ’s 

NOx production is significantly higher.  This is likely caused by a much higher flame 
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temperature (estimated 1000 K hotter) as well as the method LDJ uses to supply air to the 

flame.  The LDJ furnace blows air across the flame as opposed to up through it, such the 

Country Flame model does. 

 

4.2.3. Combustion Efficiency 

As referred to in this text, combustion efficiency is a term that describes the amount of actual 

energy extracted from combustion relative to maximum amount of energy available from 

carbon conversion. 

 

Carbon conversion efficiency is a function of consumed carbon relative to total available 

carbon.  Carbon left unburned is still considered a usable fuel source.  In order to determine 

how much carbon there was to begin with and what the mole ratios of the products are, a 

reaction balance must be done. 

(13) 
[ ] [ ] [ ] [ ] [ ]Fuel  + Air  = Products  + Water  + Unburned Carbonα β γ ζ

 

For this balance, each of the coefficients, α, β, γ and ζ must be solved to match the moles of 

carbon, hydrogen, oxygen and nitrogen on each side of the reaction.  An account of the 

elements in each component must be made on each side of the reaction (=) with the 

corresponding coefficients. 

Fuel: carbon, hydrogen, oxygen, and nitrogen 

Air: oxygen and nitrogen 

Products: carbon, oxygen, and nitrogen 

Water: hydrogen and oxygen 

Unburned carbon: carbon 
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The coefficients γ and ζ can be solved by virtue of their accounting for a single unbalanced 

element: hydrogen and carbon, respectively.  Since the air used in combustion and the exhaust 

gases contain similar constituents (oxygen, carbon, nitrogen), a simultaneous solution must be 

employed to solve α and β while keeping the other variables balanced.  An in-depth 

discussion of this solution method is demonstrated in Appendix E. 

 

As stated above, most of the products of combustion result in a gaseous mixture that is vented 

into the atmosphere.  However, not all of the fuel that is fed into the burn pot is converted into 

gases.  Some of the fuel remains after the combustion reaction takes place.  These remnants 

are char, soot and ash – known as bottom-ash.  After combustion, the remnants were collected 

from the ash pan and weighed.  For every 100 lbs of corn burned, there are 2 pounds of 

bottom ash remaining.  This means that the other 98% of the fuel gets converted into 

constituents of the exhaust gas.   

 

The bottom ash was the simpler of the two to perform conversion calculations upon.  After 

being collected from individual tests and it was then allowed to oxide in a high temperature 

oven at 600 C.  After oxidization, the crucible contained about half the weight of the original 

sample, indicating about 50% of the bottom ash is still usable carbon and the remainder (1% 

of the total fuel input) comprises unusable mineral deposits.  Typical constituents of this ash 

are reported in Appendix A. 

 

After determining the quantity of carbon left in the ash, the carbon conversion efficiency can 

be calculated.  The carbon conversion efficiency for the combustion reaction is found by 
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comparing the mass of the carbon left in the ashes to the total mass contained within the fuel.  

The presence of unburned carbon in the ash indicates inefficiencies leading to lower carbon 

conversion. 

(14) fuel ash

fuel

carbon carbon

carbon

carbon

m m

m
η

−
=  

As shown in Appendix E, the carbon conversion efficiency is very high for these appliances.  

The amount of carbon left in the form of unburned carbon residue is less than 1% of the 

amount of carbon originally in the fuel.  This yields carbon conversion efficiencies between 

98 and 99%.  This will be used to describe the combustion (net) efficiency covered in a later 

section. 

 

4.3. Heat Exchanger 

4.3.1. Performance 

Both appliances utilize a simple cross-flow heat exchanger system to move the heat from the 

flame to the room air.  This is accomplished by a series of parallel tubes that the cold room air 

is channeled through while the hot combustion gases pass around the tubes.  The effectiveness 

is determined by amount of energy the heat exchanger can transfer to the cold fluid (room air) 

relative to the ideal conditions.  Typically this is done through a high surface-area device, and 

true enough, both of the tested stoves have a dozen or more tubes that are used to transfer 

heat. 

 

However, due to the nature of the fuel, the heat exchanger can not begin to approach ideal.  

This is due to the particulate and hydrocarbons entrained in the exhaust flow.  While there is 

not a high concentration of hydrocarbons/tars being exhausted, if the gas was to cool too 
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quickly within the heat exchanger, a small amount of tar would accumulate on the tubes, 

hindering its ability to transfer heat.  This, in turn, would cause a buildup of the particulate 

matter as it stuck to the collected tars.  Because of this, the exchangers are purposefully built 

slightly less efficient to keep the tars in vapor phase until they can be vented outdoors.  In 

addition, many appliances are equipped with a device that effectively scrapes the heat 

exchanger tubes to keep accumulation to a minimum. 

 

4.3.1.1. LDJ 620-10 Furnace 

Because of its larger size and heavier construction, the LDJ 620-10 can produce high burn 

temperatures.  As demonstrated in Appendix F, calculations of the temperature of the gases 

coming off of the burn pot are estimated to be around 2,000 K at the 100,000 BTU/hr setting 

and are produced in the range of 25-30 SCFM (found from CO2 volumetric studies explained 

previously).   

 

Because of this high temperature, the 620-10 can take advantage of a large temperature 

differential across the heat exchanger.  It is because of the high difference in temperature and 

large cold airflow (approx 200 SCFM), that the heat transfer from the hot exhaust gases to the 

room air can be as high as 6 kW, heating the room air by 50 K.  The maximum heat transfer 

obtainable between room temperature and 2000K is just over 5.8 kW.  However, keep in mind 

that this value does not directly correlate to the effectiveness of the heat exchanger.  This will 

be discussed in the section following the overall efficiency.  The reason for this organization 

is that complexity of calculating the heat exchanger effectiveness is beyond the scope of this 

project.  Analyzing radiative view factors, boundary layers, turbulence, and conduction 
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through complex geometries would be another project in and of itself.  Instead, since the net 

efficiency is found as a product of the carbon conversion and heat exchanger efficiency, the 

performance of the heat exchanger can be back-calculated from the net efficiency. 

 

4.3.1.2. Country Flame Harvester (CFH) Stove 

Because of the smaller size of the CFH, a much cooler flame is produced.  Hot gas 

temperatures above 1000K are atypical. Also, the heat exchanger stretches over 16” wide over 

a small (6”) fire pot.  Because of this, the outermost portion of the heat exchanger is not 

exposed to as high a temperatures as the central portion.  Temperatures can be as much as 5 

degrees (C) cooler towards the outside than the center.  As a result, the Country Flame 

Harvester has an output temperature near 900K with a total heat transfer of 1.2 kW.  A 

derivation of this value can be found in Appendix D. 

 

4.3.2. Combustion deposits 

When corn is ashed, a large portion (70%+) remains as K2O and P2O5 (see Appendix A)  

Because of the high potassium and phosphorus concentrations of the corn, there is sticky soot 

that is produced as a result of combustion.  As mentioned previously, tars and particulate will 

collect on the HX tubes regardless of how hot the exhaust is.  This problem is compounded by 

the fine, sticky ash that accompanies the exhaust.  To counteract this effect, a scraper bar is 

often found protruding from the side of the heat exchanger.  In order to keep the tubes 

operating near full capacity, the scraper bar must be used about once a day.  Less frequently 

will result in lower output temperature. 
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4.4. Overall Efficiency 

Overall efficiency is also known as net or combustion efficiency.  This is an end value 

describing the amount of usable heat extracted from the fuel when compared to the heat input 

supplied to the burning device.  When considering net efficiency for this scenario, the heat 

output is only in the form of heated room air.  To determine the net efficiency, the change in 

energy change associated with the change in temperature of the heated room air is divided by 

the chemical energy of combustion of the fuel. 

(15) 

,air p air coldair
net

fuel fuel

m c TE

Fuel Energy m E
η

∆∆
= =

&

&
 

Table 5 depicts the performance of the two tested appliances.  The heat output is the 

calculated values obtained from the previous section.  The fuel input column is a function of 

the caloric value of the fuel multiplied by the feed rate of the stove or furnace.  Finally, the net 

efficiency is the output divided by the input. 

 

Table 5: System Efficiencies 

Fuel Input Heat Output Net Efficiency

BTU/hr BTU/hr
County Flame 30,000    4,000          13%

LDJ 100,000  20,000        20%  

 

As depicted, the net efficiencies are not very large numbers.  The amount of heat that escapes 

from the system is quite significant and will be explored further in the following section. 

 

 

4.5. Heat Exchanger Efficiency 
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Heat exchanger analysis is a complicated component of any research and can be a daunting 

task in itself.  Heat exchangers are subject to conduction, convection and radiation effects; 

and each of these is a separate, often complicated, calculation in itself.  Fortunately, since 

burning applications are primarily driven by combustion and heat exchanger effects, the 

effective heat exchanger efficiency can be back-calculated from the previous two efficiencies.  

In other words, overall or net efficiency is the product of the efficiencies of all of the various 

components and subsystems of the whole system.  In these appliances, the only components 

of significance are the combustion process and the heat exchanger effectiveness.  The product 

of these two will produce the net efficiency. 

(16) net HX combustionη η η= ×  

Since net efficiency is a product of the combustion efficiency and the heat exchanger 

efficiency, the net efficiency can be divided by the combustion efficiency to obtain the heat 

exchanger efficiency. 

 

In order to find the combustion efficiency, the lost energy from incomplete reactions must be 

identified.  This can be found by looking at the energy released during combustion process, 

also known as the heat of reaction (HR), of the carbon-bearing products and comparing it to 

the chemical energy available within the fuel when fully consumed. 

(17) 
1

fuel carbon CO

fuel

carbon CO
combustion R R R

fuel fuel R

m m
H H H

m m H
η

 
= − + 

  
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As shown in the conclusion of Appendix E, the combustion efficiency (ηcarbon) is very high – 

between 98 and 99%, this means that the heat exchanger efficiency is nearly the same value as 

the system efficiency – ηHX = 20% for the furnace and ηHX = 13% for the stove. 

η combustion η HX η net

Country Flame Harvester : 98.6% x 13.2% = 13.0%

LDJ 620-10 : 98.7% x 20.3% = 20.0%  

These numbers are noticeably low for a heat exchanging product.  This is due to various 

factors, most of them related to under-engineering – such as thick-walled heat exchanger 

pipes and poorly circulated hot-fluid media.  With some redesign, these stoves and furnaces 

have great potential to reach a much higher net efficiency.  Any increase in heat exchanger 

efficiency would be realized quickly since the combustion process produces such high 

efficiencies. 

 

 

4.6. Economic Analysis 

Ultimately, the bottom line is operating cost.  If the new technology is not going to save users 

any money or make life more convenient, many people will not give it a second thought.  To 

illustrate how the cost corn burning actually falls into the spectrum of heating options, Table 6 

has been provided. 

Table 6: Fuel Price Table 

 

Fuel Type

Units 

required for 

MMBTU 
Fuel price 

per unit

Total cost 

to produce 

MMBTU 
Average 

Efficiency

Total Cost
$/MMBTU 

Dry Shelled Corn 8,000 per pound 125.0 $0.027 $3.35 90 $3.72

(as received) 7,500 per pound 133.3 $0.089 $11.90 80 $14.88

Wood Pellets 8,500 per lb 117.6 $0.075 $8.82 80 $11.03

Fuel Oil 139,000 per gal 7.2 $1.400 $10.07 80 $12.59

Natural Gas 1,000 per ft 3 1000.0 $0.013 $12.50 95 $13.16

LP Gas 92,000 per gal 10.9 $1.250 $13.59 90 $15.10

Electricity 3,400 per kWH 294.1 $0.080 $23.53 100 $23.53

BTU value per unit
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This table has been compiled with the most recent data available from the US Dept. of Energy 

[6] regarding standard utilities and a compilation of other sources to fill in the rest.  The first 

column described the heating fuel and as the table is read to the opposite end, the prices can 

be compared to establish how much it costs to heat with that particular fuel.  Natural gas has 

been marked since it is the heating fuel most familiar to most people. 

 

The first two rows comprise the effective cost of burning corn for heat.  The topmost row is 

an ideal case.  This is the cost most often publicized by dealers to emphasize the cost 

advantage of using corn.  The rated heating value for this supply of corn is 8,000 BTU/lb, 

which is not unreasonable if dried down to 13-14% moisture.  This number is not up for 

dispute.  The number that is most overlooked is the price per unit.  Current market price for 

corn at local Iowa Co-ops is about $1.40 per bushel.  However, many Co-ops have 

stipulations about the minimum amount that must be purchased and what kind of container or 

vehicle that they can load with their corn.  This can present obstacles to who will be able to 

effectively purchase corn at that price.  Also, the cleanliness of the corn can present issues, as 

most corn burning appliance require that the corn be relatively clean with a low abundance of 

fines and other particulate. 

 

The other option is to buy corn that has been pre-bagged and can be found in farm-and-fleet 

type venues.  However, this corn can be substantially higher priced.  The price paid for the 

fuel used in this research project was purchased at $4.80/bushel.  This price is displayed as the 

2nd row of the table, which displays this project’s experimental data – “as received.”  Since 

bagged corn is almost 3 times more expensive and experimental data places efficiencies about 
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10% less than advertised values, the effective cost of heating with corn jumped fourfold, 

placing the cost of heating with corn more than the cost of heating with natural gas. 
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5. CONCLUSIONS 

As a general summary of issues that can be addressed by multiple options, there are a few 

concerns that appear to be reoccurring. 

 

The smaller stoves suffer from sometimes inadequate amounts of burnable material in their 

burn pot.  This is caused either by a poor feed rate or by an over abundance of clinkers, or 

sometimes both.  Dealing with clinkers is a significantly larger problem for stoves than for 

furnaces and as of yet, there is no clear winner between grinding them up or allowing them to 

collect until the stove is cooled off.  In one way, this means that the stoves that do have 

methods for dealing with clinker can be run for longer periods of time than those without.  

But at the same time, the device that eliminates clinker also eliminates a small amount of 

corn.  When disposing of the ash from the stove, it is not uncommon to see numerous flecks 

of yellow from kernels that had been ground up.  This results in a small, but lower, fuel 

utilization efficiency.  But one large benefit of a stove, is that its placement is much more 

versatile than a furnace.  The environment with a stove is under positive pressure, allowing it 

to forcefully push exhaust out of a short exhaust pipe.  This means that the stove can be 

vented out of the side of a wall using less than 10’ of pipe.  Furnaces do not always get this 

luxury. 

 

Because of their higher fuel consumption, the small scale issues that plague the stoves are not 

as evident or completely non-existent.  One major issue that would make using corn furnaces 

more convenient is the matter of exhaust.  The LDJ 620-10 uses a natural draft to produce the 
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right pressure conditions within the burn zone.  But in order to produce this draft, the chimney 

must clear the roof of the building.  This cannot be done through the exhaust piping of a 

traditional gas furnace, as furnaces need wide exhaust stacks.  So a whole new chimney must 

be installed.  This can be both tedious and expensive.  A direct vent system would make 

installing a furnace much more user-friendly. 

 

But more of an issue than the current installation and operating conditions of stoves and 

furnaces is what lies in their future.  There are at least four issues that threaten their 

advancement and proliferation. 

 

• Cost Effectiveness 

As indicated previously, buying a corn burning appliance is not a cheap investment, but the 

prices are not unbearably different than the cost of a natural gas furnace which range in prices 

from $3000 to $4000 after installation.  What makes corn burning attractive is the fuel cost.  

From an ideal standpoint, corn is about ¼ the cost of natural gas when used for heating.  But 

in order to keep this cost advantage, there needs to be the means for consumers to effectively 

obtain and transport corn at a low price.  This is typically not an issue for farmers and many 

others in rural communities, but if corn burning technology is ever to appeal to the urban 

environment, there will need to be a way to buy inexpensive corn. 

 

• Usability 

Not addressed in the actual research project was the subject of the usability of these 

appliances.  Accompanied with installing and turning it on, there is the matter of supplying 
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the stove or furnace with fuel and then disposing of the ash that accumulates as well as the 

seasonal cleaning.  Depending on the model, one could expect to burn through more corn than 

one would think in order to produce a substantial amount of heat.  For example, running at 

setting 4 (out of 5), the Country Flame Harvester uses approximately 40-50 pounds of corn in 

24 hours of operation.  This would mean that if used during the 16 waking hours of the day, 

the expected corn usage could easily be 200 lbs a week.  But even this amount can pale in the 

amount of corn a furnace can use.  The LDJ 620-10 has a variable heat output that is initially 

set at 100,000 BTU/hr.  This setting causes the furnace to auger in over 12 lbs per hour in 

order to satisfy its required heat output.  Granted, it is unlikely that the furnace will be running 

constantly, but during the winter, 60% operation isn’t unreasonable.  Even this level of 

operation will consume half a ton of corn per week.  Despite its 14 bushel hopper, this means 

that refills will have to occur more often than once a week.  This is a significantly more 

involved task than turning on the furnace or plugging in an electric heater. 

 

A less involved task is disposing of the ash that remains after combustion.  Since roughly 2% 

of the fuel weight remains after combustion as ash, the ash pans can fill quickly.  However, 

the ash pans are typically sized so that the task of emptying the ash pan can be relegated to 

once every other day.  Even so, it becomes apparent that owning and operating a corn stove is 

a task that presents formidable chores in and of itself.  Perhaps a more innovative way of 

bringing corn into the house or a better way of disposing the ash would be in order to make 

the sometimes burdensome task of tending to your furnace a less daunting activity. 

 

• Innovation 
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As these devices become more popular from oil price hikes or other reasons, designers will 

find better ways to hook more customers or just to make their products operate better.  This 

will likely cause more people to seriously take a look at these appliances and whether it would 

be worth while to own a stove either as a compliment to their existing system or as a complete 

replacement. 

 

• Practicality 

This aspect is partially tied to usability.  Unless you have a truck at your disposal, transporting 

the amount of corn needed for an entire winter north of I-80 is quite an effort.  Bags provide a 

more convenient method of purchasing and moving corn, but bagged corn is typically 2-4 

times more expensive than bulk corn, but bulk corn is not exactly something that transports 

well in a minivan.  In order to encourage corn heat and at the same time make it a viable 

prospect, some communities are experimenting with a local service that delivers corn door to 

door for a reasonable fee.  This method could potentially be extended into widespread use, but 

the logistics of using large amounts of corn is not an issue that can easily be ignored. 

 

It could be argued that these four points are not relevant to a scientific report, but it is difficult 

to talk about the operating characteristics of these appliances without addressing the reasons 

people would be interested in using this equipment in the first place.  Given that the users are 

aware of the level of involvement and willing to take a closer look at what makes one stove 

better than another, then they should continue in seeking out the best option for what they are 

looking for. 
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After running tests on these appliances, it is readily evident that they are more efficient than a 

fireplace to heat a room.  For one, they are designed with the notion of delivering forced heat 

in mind.  Fireplaces are primarily designed for display purposes and allow most of their heat 

to escape through the chimney.  Only about 10-15% of the heat from a fireplace is transferred 

into the room.  So now for every dollar that is spent on fuel energy, about 80 cents worth is 

utilized.  There are certain advances that could be made in one model or another, but overall, 

there is not a firm set of recommendations to make to manufacturers as a whole.  As the 

designers and builders of these appliances get more experience, better designs will ultimately 

arise. 
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APPENDIX A - ULTIMATE ANALYSIS OF IOWA CORN 

as provided by: 

Hazen Research, Inc. 

Golden, CO 80403 

 

Test date: April 25, 2002 

Reporting Basis As Rec'd Dry Air Dry

Proximate (%)

Moisture 16.50 0.00 5.22
Ash 1.01 1.21 1.15
Volatile 71.55 85.68 81.21

Fixed C 10.94 13.11 12.42
Total 100.00 100.00 100.00

Sulfur 0.10 0.12 0.11

Btu/lb (HHV) 6689 8011 7592
MMF Btu/lb 6762 8116

MAF Btu/lb 8109
Air Dry Loss (%) 11.90

Ultimate (%)

Moisture 16.50 0.00 5.22
Carbon 40.70 48.74 46.20

Hydrogen 5.08 6.08 5.77
Nitrogen 1.09 1.31 1.24

Sulfur 0.10 0.12 0.11
Ash 1.01 1.21 1.15
Oxygen 35.52 42.54 40.31

Total 100.00 100.00 100.00

Chlorine 0.03 0.03 0.03

Elemental Analysis of Ash (calcined at 600C)

SIO2 11.07
AL2O3 2.59
TIO2 0.37

FE2O3 0.97
CAO 1.65

MGO 11.3
NA2O 0.46

K2O 28.6
P2O5 41.39

SO3 0.73
CL 0.01
CO2 0.72

Total 99.86  
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APPENDIX B - SAMPLE FLOWRATE CALCULATION 

 

To calculate volumetric flowrate, the CO2 concentration of the gas stream was initially 

measured to obtain a baseline.  After a stable baseline had been established, CO2 was vented 

at a known rate into the line upstream of the analyzer.  Data was collected during the CO2 

venting as well as after the CO2 had been turned off in order to reconfirm the baseline. 

CO2 Concentration Test
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In the preceding figure, section (a) gives the initial baseline period, section (b) denotes the 

period of added CO2, and section (c) is the used to reconfirm the baseline. 

 

When analyzing the data, all of the data points within the allocated time frame are averaged 

together.  For example, the figure indicates the following data: 
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To obtain the baseline (low), the preceding and following values are averaged.  The high (or 

mixed) value is just the value of the middle (b) data set. 
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As discussed in section 3.2.5 – Determining Volumetric Flow Rates, the low and high value 

equations can be written as relationships between the existing amount of CO2 and the added 

value of CO2. 

1 2
0 1

2 0

C C
V V

C C

−
=

−
& & 

where C is the concentration of CO2, V is the total volumetric flow rate at standard conditions 

of a gas stream and subscripts 0, 1, and 2 denote baseline flue gas stream, injected CO2 gas 

stream, and mixed gas stream respectively.  Note that: 

0 1 2V V V+ =& & & 

1 100%C =  

 

In order to complete this solution, the amount of CO2 added must be known.  The recorded 

value was observed from a flowmeter calibrated for air.  A coefficient must be applied to 

compensate for differences in density. 
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Solving the relationship equations, the value for V0 can be found. 
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APPENDIX C - FUEL INPUT CALCULATION 

To determine how the manufacturer’s claims and the fuel metering correlated, a fuel input 

calculation could be done.  This method calculates the energy density of the corn based on the 

amount of time a known amount of corn will supply heat, based on the metering speed of the 

furnace. 

 

Furnace set point: 100,000 BTU 

Amount of fuel consumed: 300 lb 

Burn duration: 25 hr 

100,000
8000

300

24

BTU

BTUhr
lb lb

hr

=
 
 
 

 

Manufacturer suggested heating value for corn is confirmed at 8000 BTU/hr  

 



 

 

63 

APPENDIX D - GAS DATA 

Properties of Air
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APPENDIX E - CARBON CONVERSION EFFICIENCY 

Carbon conversion analysis is a combination of the reaction balance of the gaseous materials 

as well as determining how much remains behind in the ashes and soot. 

 

The more straightforward of the two is the analysis of ashes and soot.  This involves the use 

collection of the remains of a fire and determining the carbon content of this “bottom ash.”  

The bottom ash is collected and then further oxidized in an ashing oven at a temperature 

around 900K to drive off any remaining carbon. 

 

For the smaller stove, approximately 1.8% of the fuel is left in the ash pan.  Of this, about half 

is usable carbon.  The larger furnace has slightly better utilization, leaving 1% of the fuel 

unused.  However, not only was less left behind, what was left has a lower carbon 

concentration than the stove.  In the end, they both have the same Ash/Fuel ratio of 0.8%-

0.9%, which is expected since they are using the same corn. 

Crucible Empty Filled Dried Ashed Filler

%

water

%

remaining Sum Bucket

Total

Collected Fuel Fuel

Total

Soot

Total

Ash

Soot/

Fuel

Ash/

Fuel

(g) (g) (g) (g) (g) (g) (g) (g) (lb) (g) (g) (g)

3 CFH 20060210 19.63 20.88 20.85 19.99 1.25 2.8% 29% 601.0 205.4 395.6 50 22680 384.5 112.7 1.7% 0.5%

9 CFH 20060201 20.48 21.93 21.88 21.21 1.45 3.0% 52% 615.6 205.8 409.8 50 22680 397.3 207.9 1.8% 0.9%

2 CFH 20060310 20.01 22.45 22.30 21.32 2.45 6.5% 57% 674.9 205.9 469.1 50 22680 438.8 251.7 1.9% 1.1%

1 CFH 20060203 19.33 22.63 22.59 21.35 3.30 1.2% 62% 586.3 205.7 380.6 50 22680 376.1 232.3 1.7% 1.0%

1.8% 0.89%

5 LDJ 20060310 17.19 21.33 21.09 19.89 4.14 5.7% 69% 1552.2 205.8 1346.4 300 136078 1269.9 878.1 0.9% 0.6%

7 LDJ 20060201 18.17 23.58 23.37 21.98 5.42 4.0% 73% 1164.1 205.8 958.2 200 90718 920.4 675.2 1.0% 0.7%

6 LDJ 20060222 18.96 25.81 25.57 23.95 6.85 3.6% 76% 1368.0 205.3 1162.7 300 136078 1120.4 846.9 0.8% 0.6%

4 LDJ 20060210 19.55 25.74 25.55 24.61 6.19 3.1% 84% 1684.5 205.7 1478.8 300 136078 1433.4 1208.9 1.1% 0.9%

8 LDJ 20060203 18.64 31.64 31.62 30.79 13.00 0.2% 94% 1477.6 205.8 1271.8 200 90718 1269.4 1188.3 1.4% 1.3%

1.0% 0.84%

Sample

 

After the analysis on the solids is complete, the data from the emission monitors must be 

analyzed.  Data obtained from the ultimate analysis (see Appendix A) gives the starting point 

for the reaction equation.  The starting reaction coefficients are found using the equation: 
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[ ] [ ]
[ ]
%Comp

Coeff
Mol.wt.

=  

%

Composition

Molecular

Weight Coefficient

C 48.74% 12.01 4.06E-02

H2 6.08% 2.02 3.01E-02

O2 42.54% 32 1.33E-02

N2 1.31% 28.02 4.68E-04

Ash 1.33%

100.00%

Reactants

 

From the emission monitor, the following composition is known. 

%

Composition

CO2 8.25%

CO 0.01%

NO 0.04%
O2 11.64%

N2 77.07%

C 3.00%

100.01%

Products

 

However, knowing the contents of the products is not enough.  To determine the carbon 

conversion efficiency, the chemical reaction equation must first be known.  To determine the 

stoichiometric equation for a chemical reaction, the reactants and products must be known.  In 

a combustion reaction, fuel and an oxidizer combine to form set of products.  In a typical 

combustion situation, a hydrocarbon fuel combines with air in the environment to product a 

variety of gaseous products and water. 

 

For the reaction set being investigated in this research project involves the combustion of corn 

in an atmospheric environment. 

Reactants + Air  Products +Water⇒  
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The chemical constituents of corn, as reported by an independent testing facility reports the 

makeup of corn as follows: 

( )
( )
( )
( )

Carbon C : 49%

Hydrogen H : 6.1%

Oxygen O : 43%

Nitrogen N :1.3%

Ash :1.3%  

This is burned in the presence of air, composed primarily of oxygen and nitrogen. 

2

2

O : 21%

N :79%
 

The exhaust gas created through this reaction was sampled by a gas analyzer and the major 

components of exhaust consist of the following gases, in order of abundance based on mass 

percent. 

( )
( )

( )
( )

( )

2

2

2

x

Nitrogen N :79%

Oxygen O :12-16%

Carbon Dioxide CO :4-8%

Carbon Monoxide CO :<0.05%

Nitrogen Oxides NO :<0.01%
 

The remainder of the stoichiometric equation is balanced by the presence of water (H2O). 

 

To balance the chemical equation, mole percent, not mass percent must be used.  Converting 

mass percent to mole percent only requires knowing the molecular weight of the chemical of 

interest. 
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gas

-1

gas gas

lb
mass % = 

lb

lb
molecular weight = 

lb-mol

lb lb lb-mol
mole % = ×  = 

lb lb-mol lb

 
 
 

 

After this conversion is done, the formula can now be written, using the initial composition, in 

the traditional form.   

( ) -3

fuel

lb-mol
40 C + 60 H + 27 O + 1 N 10

lb
× ⇒L

 

However, after the products are written out, it becomes apparent that the corresponding 

coefficients are not equal.  There maybe 40 carbons on the products side, but only 1 carbon on 

the reactants side.  This is due to a change in mass percent caused by the additional reactants.  

To account for this fact, various coefficients are added to correlate the amount of products to 

the amount of reactant. 

( ) ( ) ( ) ( )Reactants + α Air β Products  + Water  + Ashγ ζ⇒
 

Where α is in units of moles of air per moles fuel and so on.  These factors have to be solved 

in order to obtain a balance. 

 

Solving stoichiometric coefficients 

 

Using the sample data provided before, the reaction equation can be written as follows: 

( ) ( )

( )

-3 air

2 2

fuel fuel air

gas -6

2 2 2

fuel gas

lb-mollb-mol lb-mol
40 C + 60 H + 27 O + 1 N 10  +  1 O  + 3.76 N  

lb lb-mol lb

lblb-mol lb-mol
 1000 CO  + 21 CO + 5 NO + 5000 O  + 28000 N 10  + 

lb-mol lb

α

β γ

   
× ⇒   

   

 
× 

  

L

( ) ( )2H O C

fuel fuel

-mol lb-mol
 2 H + O  +  ζ  1 C

lb-mol lb-mol

   
   

    
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The elements on either side of the reaction can now be summed to determine the reaction 

coefficients. 

 

The first coefficient that can be solved is γ.  Since hydrogen only exists in the reactants and in 

the water component, γ can be fixed.  In this instance, γ = 0.03, creating a total of 0.06 lb-

moles of hydrogen per pound of fuel on both side of the equation. 

 

Next, due to the co-dependence upon oxygen and nitrogen, α and β must be solved 

simultaneously.  The constraints on the equation are that total atoms of O and N must be equal 

on both sides of the reaction.  Using a solver algorithm, it can be found that α = 0.010 and β = 

1.4, matching oxygen at 47 fuel

lb-mol

lb  and nitrogen at 77 fuel

lb-mol

lb .  Lastly, the coefficient for unburned 

carbon, ζ, is balanced to complete the reaction equation – ζ = 0.5. 

 

This gives the final form of the reaction equation as: 

( ) ( )

( )

-3 air

2 2

fuel fuel air

gas -6

2 2 2

fuel gas

lb-mollb-mol lb-mol
40 C + 60 H + 27 O + 1 N 10  + 0.01  1 O  + 3.76 N  

lb lb-mol lb

lb-mol lb-mol
1.4  1000 CO  + 21 CO + 5 NO + 5000 O  + 28000 N 10  

lb-mol lb

   
× ⇒   

   

 
× 

  

L

( ) ( )2H O C

fuel fuel

lb-mol lb-mol
+ 0.03  2 H + O  +  0.5  1 C

lb-mol lb-mol

   
   

    

Giving the final balance on each side as 

-3

fuel

40 C

60 H lb-mol
×10

47 O lb

77 N






  
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After the reaction equation is solved, the combustion energies can be solved.  Specifically, 

calculating how much energy is left unconverted after the combustion process is finished.  

These calculations will be used to solve for the carbon conversion efficiency. 

 

Products of incomplete combustion, carbon monoxide, hydrogen and unburned carbon, 

contribute to combustion inefficiencies.  To solve combustion efficiency, one must know the 

amount of chemical energy leaving the system. 

fuel incomplete products

combustion

fuel

E  - E

E
η =

 

For corn, the fuel energy is also known as the caloric value or the heating content.  The 

heating content for corn was obtained from an independent lab.  The heating value for dry 

corn is 8000 Btu/lb.  Under optimal conditions, all carbon will convert to carbon dioxide and 

hydrogen into water.  Hydrogen is easily consumed, but carbon has higher activation energies. 

 

In this system, carbon monoxide and unburned carbon contain additional chemical energy that 

is not liberated for use in the thermal system.  Carbon monoxide’s lost energy is equivalent to 

the change in the enthalpy of formation between carbon dioxide and carbon dioxide.  The 

number of moles of carbon in carbon monoxide can be directly correlated to a lost number of 

moles of carbon dioxide. 

 

In the previous example, the carbon atoms in the gas stream are split at a ratio of 1000:21.  

This leaves 3e-5 moles of carbon per pound of fuel.  The enthalpy of formation for CO is 

47,500 Btu/lb-mol.  Multiplying together, CO releases 1.4 Btu/lbfuel. 
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52.92 10 47540 1.386
COfuel fuel

lb mol Btu Btu

lb lb mol lb

− −
× ⋅ =

−
 

However, CO2 has an enthalpy of formation of 170000 Btu/lb-mol.  If the same number of 

carbon atoms were converted to CO2 instead, more energy would be released. 

2

52.92 10 169300 4.937
COfuel fuel

lb mol Btu Btu

lb lb mol lb

− −
× ⋅ =

−
 

The difference between the enthalpy of formation for CO and CO2 is one source of lost 

chemical energy. 

( )4.937 1.386 3.551
fuel fuel

Btu Btu

lb lb
− =

 

The other evidence of significant reduction in carbon conversion efficiency is leftover carbon 

in the ashes of the fuel.  The average amount of unburned carbon left after combustion was 

0.75% by weight.  The lost energy due to unburned carbon can be calculated in one of two 

ways – using the higher heating value (HHV) or calculating the lost enthalpy from not 

converting carbon to carbon dioxide. 

 

Using the HHV method  

0.0075 14100 106C

fuel C fuel

lb Btu Btu

lb lb lb
⋅ =

 

Using the enthalpy of reaction method 

1

0.0075 12.01 169300 106C C

fuel fuel

lb lb Btu Btu

lb lb mol lb mol lb

−  
⋅ ⋅ =  − −     
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When considered over the given heating value of corn, 8000 Btu/lb, the lost chemical energy 

is a small contribution.  Using the equation stated before for combustion efficiency: 

( )8000 106
98.6%

8000 fuel

Btu

lb
η

−
= =  

And since the system efficiency has been shown to be such a low number, the culprit must lie 

in the heat exchanging system. 

 

Following is a table depicting the results of this solution: 

 

Fuel

C H O N Ash

%mass lb 48.74% 6.08% 42.54% 1.31% 1.33%

lb_fuel

Mol wt. lb 12.01 1.01 16.00 14.00

lb_mol

Coeff. lb_mol 40.6E-3 60.3E-3 26.6E-3 935.7E-6

lb_fuel

Air

O2 N2

Coeff. lb_mol 1 3.76

lb_air

Products

CO2 CO NO O2 N2 C

%mass lb 4.30% 0.06% 0.01% 16.42% 79.21% 100.00%

lb_gas

Mol wt. lb 44.01 28.01 30.01 32.00 28.01 12.01

lb_mol

Coeff. lb_mol 977.1E-6 21.4E-6 4.9E-6 5.1E-3 28.3E-3 83.3E-3

lb_gas

xβ 1.3E-3 29.2E-6 6.7E-6 7.0E-3 38.5E-3 xζ 39.2E-3

Water

H20

Coeff. 1

xγ 0.03015

mol_air mol_gas mol_H20 mol_C

mol_fuel React. mol_fuel mol_fuel mol_fuel Prod.

[Fuel] + αααα * [Air] TOTALS = ββββ * [Prod.] + γγγγ * [Water] + ζζζζ * [U.B.C.] TOTALS

0.010 1.361 0.030 0.471

C 40.6E-3 1 0.0406 998.5E-6 83.3E-3 2 0.0406

H 60.3E-3 1 0.0603 2.0E+0 1 0.0603

O 26.6E-3 2.0E+0 2 0.0468 12.2E-3 1.0E+0 2 0.0468

N 935.7E-6 7.5E+0 2 0.0770 56.6E-3 1 0.0770  
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APPENDIX F - ENERGY BALANCE ACROSS HEAT EXCHANGERS 

 

In order to understand the effectiveness of a heat exchanger, it is necessary to know 4 

essential temperatures: Hot inlet, cold inlet, hot outlet, cold outlet.  Unfortunately, due to the 

fluctuations within the firepot, it is difficult to take a steady temperature.  However, this 

temperature can be back-calculated from knowing the other 3 temperatures as well as the 

associated mass flow.  The following set of data is from the LDJ 620-10. 

 

3
1

,0

,

,

,

1.06 10

: Initial Volumetric Cold Flow Rate

295

: Temperature of Cold Inlet

345

: Temperature of Cold Outlet

320

: Average Temperature of Cold Flow

c

c i

c o

c avg

m
V

s

T K

T K

T K

−= ×

=

=

=

&

 

( )

3
1

3

: Energy Transfer of the Cold Flow

: Volumetric Flow Rate

: Density of the Fluid

: Specific Heat

: Temperature Difference

1.06 10 1.089 1.007 50

5790

c p

c

p

q V c T

q

V

c

T

m kg kJ
K

s kg Km

W

ρ

ρ

−

= ∆

∆

 
= × × × ×  ⋅ 
≈

&

&
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( )( ) ( )

( ) ( )( )

3
2

,0

3
2

, , ,

,

1.27 10

: Initial Volumetric Hot Flow Rate

5790

: Equal to the Cold Flow Heat Transfer

1.27 10 560

2040

: Solved Hot Inlet Temperature

h

h

p

h avg p h avg h i

h i

m
V

s

q W

V T c T T

m
T c T T K

s

T K

ρ

ρ

−

−

= ×

=

= ∆

 
= × × − 

 
=

&

&  
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