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CHAPTER 1. OVERVIEW

With the increased use of virtual environments in analyzing science and engineering prob-

lems, methods for interaction with objects has become of utmost importance. While the

graphics used in such environments has greatly increased to near real-life quality in some ap-

plications, it is very important to give the user accurate tactile information about the objects

in the environment. These interaction are accomplished using haptic devices, one such being

the PHANTOM Omni (from here on to be referred to simply as the PHANTOM) made by

Sensable, Incorporated. This small desktop device has the ability to apply Cartesian forces (in

the x, y, or z directions) and also has an easy to use programmable interface utilizing C++.

1.1 Past methods

Many interactions programmed with the PHANTOM are created based in a graphical

nature, partly because the structure of the code for controlling the device is very close to the

structure of an OpenGL based graphical program. For example, a simple OpenGL program

can be created to draw a cube on the screen centered at (0, 0, 0) with a side length of one. In a

similar manner, the PHANTOM can be programmed to interperet walls where the edges of the

cube are, giving the user the sensation of either feeling a cube located in space or being stuck

inside a cube of a given size. When using both graphic and haptic interaction, it is important

to have the objects aligned in space. For example, if a cube is drawn centered at (0, 0, 0) and

the haptic interaction believes the cube is centered at (50, 0, 0), the resulting program will

confuse the user, since it sees one object but feels a completely different object.
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1.2 New methods

Instead of using the graphical method of using the PHANTOM to interact with objects,

a method using vector math and classical control theory will be explored. As an explanatory

example of this method, suppose an infinite cylinder exists in the virtual environment (perhaps

a post or support that extends beyond the important area of the environtment). In order to

explain where the cylinder is located, three pieces of information are needed: its diameter or

radius (a scalar), the direction in which the axis of the cylinder points (a vector) and a point

in space that lies on the axis of the cylinder (a vector). With these three quantities, all points

on the surface of the cylinder can be determined. The location of the haptic device is readily

determined, as can its position relative to the cylinder. Using a simple proportional controller,

an algorithm for moving the end of the PHANTOM to the nearest point on the surface can

be created. The PHANTOM will be able to move along the surface of the cylinder with no

resistance, but as soon as it is moved away from the surface, the controller will force it back

(similar to a spring force).

Even though this type of interaction is useful, it does not give a full range of tactile

experiences. The PHANTOM can sense six degrees-of-freedom—x-, y- and z-position as well as

its orientation about these same axes—but can only actuate on three of them (the positioning

degrees of freedom). The other measured degrees of freedom can be used to influence the

position of the PHANTOM. Two method will be looked at for accounting this. The first

method is a more graphical approach. Two points on the surface of the virtual object: the

closest physical point (which is what the previous constraint did) and the point that has the

same outward normal as the orientation of the tip of the PHANTOM. A Bezier curve is used

to connect these two points and by varying and “influence” factor, the point the PHANTOM

is forced toward a point somewhere in between the two calculated points. The second method

is a more general, control theory approach. By using the concept of a virtual manipulator, the

PHANTOM is force toward a virtual robot. For example, a planar circle constraint can be

thought of as a one revolute joint (a pivot/hinge) robot with a given arm length (the radius).

By applying adequate theory, the position of the virtual robot can be moved to the “closest”



3

point the physical robot. The “closest” point is not uniquely defined—it is a point that tries

to minimize the combination of position error and orientation error. These two errors can be

weighted to have one count more that the other, if desired.

1.3 Structure of this report

A basic knowledge of linear algebra is needed to understand most of this report. Not

in terms of theorems about vector spaces or special matrix properties, but simply addition,

subtraction, multiplation and other basic operations operations (dot product, cross product,

determinant, etc). In case some of these operations are not clear, consult Appendix A, contain-

ing a brief overview of these points. Since the main method of constraining the PHANTOM

uses classical control theroy, Appendix B contains a very simplified version of these concepts.

It discusses system response and basic controller structure.

In order to examine the PHANTOM as a robot, kinematics associated with robots are

presented. Next, an overview of the PHANTOM device itself is given, including the forward

kinematics (find the position and orientation of tip based on the joint angles), the inverse

kinematics (determine the joint angles based on the position and orientation of the tip) and an

overview of how to program the PHANTOM. The next section develops the spatial constraints

for various shapes (chosen to represent several possible robot configurations) and gives code

necessary to implement surface following. Finally, the constraints accounting for the three

un-actuated degrees-of-freedom are taking into account, both in the theory behind them and

the implementation into code.
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CHAPTER 2. ROBOT KINEMATICS

In order to adequately describe robots, a method for expressing robot displacements and

orientations is needed. The method used involves 4× 4 homogeneous transformation matrices.

Once a firm grasp of expressing positions and orientations is obtained, a convention for posi-

tioning reference frames on the robot is discussed. Once reference frames are established on

the robot, the forward kinematics of the robot can be determined—the set of equations that

relate the robot’s position and orientation to the values of joint angles/displacements. For a

more in depth look at kinematics, see [2]. For a more in depth look at the design of kinematic

systems (designing a linkage/robot to travel between desired points), see [7].

This section is intended as a review of the mathematical theory behind kinematic calcula-

tions

2.1 Expressing positions and orientations

Before robots can be understood, consider the simpler case of describing two arbitrarily

placed coordinate frames. Consider figure 2.1, depicting two sets of coordinate axes.

Figure 2.1 Two arbitrary frames
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To find the position of frame {B} relative to frame {A}, one must simply measure the

coordinates of the origin of {B} with respect to the unit-length axes of {A}. That is, the

location of the origin of {B} with respect to coordinate system {A} can be defined as

APBorigin =


AXB

AYB

AZB

 (2.1)

Where the quantities AXB, AYB, and AZB are the lengths along the axes in frame {A}.

In a similar manner, the orientation of frame {B} with respect to frame {A} can also be

determined with respect to the axes of frame {A}. In this case, each axis of frame {B} must

be specified with respect to the x, y, and z axes in frame {A}. The orientation of frame {B}

with respect to {A} can be written in matrix form as

ARB =


X̂b · X̂a Ŷb · X̂a Ẑb · X̂a

X̂b · Ŷa Ŷb · Ŷa Ẑb · Ŷa

X̂b · Ẑa Ŷb · Ẑa Ẑb · Ẑa

 (2.2)

The dot products in equation (2.2) obtain the length of the projection of each axis of frame

{B} on the axes of frame {A}. Instead of this representation, the orientation can be thought

of as the combination of rotations frame {B} undergoes about the three axes of frame {A} (x,

y and z) to achieve the desired orientation.

When rotating around a single axis, equation (2.2) simplifies considerably. For example, a

rotation about X̂a by an angle θ can be expressed as the matrix

Rz (θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (2.3)

Notice that the (3, 3) element of equation (2.3) is a 1, signifying that the z axis of frame

{B} is pointed in the same direction as that of frame {A}. In a similar manner, the orientations

when rotated about the x or y axes can be expressed as
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Rx (α) =


1 0 0

0 cosα − sinα

0 sinα cosα

 (2.4)

or

Ry (β) =


cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 (2.5)

In equation (2.4) is seen in the (1, 1) element, denoting that the x axis of {B} points in

the same direction as the x axis of frame {A}. Likewise in equation (2.5), the one in element

(2, 2) inplies that the y axis of {B} points in the same direction as the y axis of {A}.
The 3×3 rotation matrix presented in equation (2.2) can be thought of as a rotation about

X̂a by an angle α, then a rotation about Ŷa by an angle β followed by a final rotation about

Ẑa by an angle θ. This final rotation can be expressed as

A
BRXY Z (α, β, θ) = RZ (θ)×RY (β)×RX (α)

=


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




1 0 0

0 cosα − sinα

0 sinα cosα




cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ



=


cθcβ −sθcα− cθsβsα −sθsα+ cθsβcα

sθcβ cθcα− sθsβsα cθsα+ sθsβcα

−sβ −cβsα cβcα



(2.6)

Care must be taken when performing these multiplications, for matrix multiplication is not

communative, as demonstrated in equation (2.7)

A
BRZYX (θ, β, α) = RZ (α)×RY (β)×RX (θ)

=


1 0 0

0 cosα − sinα

0 sinα cosα




cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ




cos θ − sin θ 0

sin θ cos θ 0

0 0 1



=


cβcα −cβsα sβ

−sθsβcα+ cθsα sθsβsα+ cθcα sθcβ

−cθsβcα− sθsα cθsβsα− sθcα cθcβ



(2.7)

However, it should be noted that another rotation scheme is possible. Instead of rotating

about the fixed axes of frame {A}, it is possible to rotate about the axes of moving frame {B}.
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This is commonly referred to as an Euler angle move.

2.2 Operations on spatial representations

Now that it is known how to express one frame relative to another, it is important to be

able to make connections between frames. In order to understate the kinematics of robots, a

method must be used to account for a serial chain of frames (as is the case in robots). A widely

used method is that of the 4 × 4 homogeneous matrix transformation. This matrix accounts

for both the displacement of one frame relative to another (such as in equation (2.1)) and the

orientation (as in equation (2.2)). This information is combined into a single 4 × 4 matrix

which has the form

A
BT =

 A
BR

APB origin

0 0 0 1

 (2.8)

As a simple example, suppose frame {B} has the same orientation as frame {A} but is

transposed by
[
px py pz

]T
. The 4× 4 homogeneous transform for this translation would be

given by

A
BT =



1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1


(2.9)

As a comparable example, suppose the origin of frame {B} is coincident with the origin of

frame {A}, but is rotated 30o about the Za axis. This homogeneous transformation would be

given by

A
BT =



0.866 −0.5 0 0

0.5 0.866 0 0

0 0 1 0

0 0 0 1


(2.10)

In a similar manner, these two types can be combined, which would describe a frame located

at
[
px py pz

]T
and rotated 60o about the Xa axis:

A
BT =



1 0 0 px

0 0.5 −0.866 py

0 0.866 0.5 pz

0 0 0 1


(2.11)
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The 4×4 homogeneous transform provides a simple, easy to program method for performing

spatial manipulations. To illustrate this scenario, let frame {A} be fixed and let frame {B}
be moving with respect to {A}. Furthermore, suppose there is a point or vector BP in frame

{B} whose position is needed to be known with respect to frame {A}, such as shown in figure

2.2 below. This can be easily computed using

AP =



Apx

Apy

Apz

1


=

 A
BR

APB origin

0 0 0 1




Bpx

Bpy

Bpz

1


(2.12)

Figure 2.2 Two arbitrary frames and a vector

2.3 Kinematics of Serial Chains

A serial chain robot is simply a collection of coordinate frames that progress along the links

of a robot. That being the case, mapping vectors from the outter-most frame to the base of

the robot can be handled similarly to that of equation (2.12) For example, figure 2.3 shows a

serial robot consisting of three frames: a base, an intermediate and an outermost.

Suppose the components the vector ~CV , whose components are known in frame {C}, are

to be determined in frame {A}. This is identical to having arbitrary spatial in space, but they
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Figure 2.3 A generic serial chain robot

are just associated with links of a robot in this case. In order to perform this mapping, ~CV

must first be mapped into frame {B}, as seen in (2.13).

BV =



BVx

BVy

BVz

1


=

 B
CR

BPC origin

0 0 0 1




CVx

CVy

CVz

1


BV =B

CT
CV

(2.13)

Next, this vector in {B} can be mapped into frame {A}.

AV =



AVx

AVy

AVz

1


=

 A
BR

APB origin

0 0 0 1




BVx

BVy

BVz

1


AV =A

BT
BV

(2.14)
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The expression for ~BV from equation (2.13) can be substituted into equation (2.14).
AV =A

BT
B
CT

CV

AV =A
CT

CV

(2.15)

Notice that the frame designating subscripts and superscripts cancel from lower left to

upper right (i.e. The subscript ”‘B”’ of ABT cancels with the superscript ”‘B”’ of BAT ). If these

do not cancel out, the resulting calculation will not be in the desired frame. The resulting

transform A
CT describes the position and orientation of frame {C} in frame {A}.

2.4 Denavit and Hartenberg (DH) Notation

Once general spatial kinematics are understood, a method of consistency when describing

robots is needed. One of the most widely used methods is known as Denavit-Hartenberg

notation, named after two early researchers in analytic design of linkages in the 1950s and 60s

(see [4]). They created a standardized method of analyzing links of mechanisms (since robots

had not emerged yet) involving standandized measurements. Before these parameters can be

determined, frames must be fixed to the robot (or mechanism).

2.4.1 Frame attachement procedure and DH parameters

The number of frames required for a given robot (or mechanism) is easily found as the

number of joints plus one. This extra frame represents the base of the robot, in which all posi-

tions and orientations are ultimately found with respect to. Although its position is arbitrary,

it is usually helpful to place this base frame at the at-rest position of the first joint (i.e. when

the joint has zero displacement). For the intermediate (before the end of the robot) links in

the serial chain, frames are affixed such that the Ẑ axis of the frame is coincident with the

joint axis of the link. For revolute joints, this means Ẑ is along the axis of rotation, and for

prismatic joints this means Ẑ is along the direction of movement. The X̂ axis of the frame

points along the common normal between the two joint axes.

With these standardized frame attachments, the paramters describing them can be deter-

mined. Consider figure 2.4, depicting an arbitrary revolute linkage. Four parameters can be
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Figure 2.4 Arbitrary links in a serial chain

used to adequately describe the position and orientation of frame i with respect to i-1. These

four parameters are the link length (ai), the link twist (αi), the joint offset (di) and the joint

angle (θi).

These four parameters are known as the DH parameters and each measure is defined by

convention. The link length ai is defined as the distance from Ẑi to Ẑi+1 measured along X̂i.

This distance is the lenght along the common normal of the joint axes. The link twist αi is

the angle from Ẑi to Ẑi+1 measured along X̂i. Given a link, this parameter measures the angle

between the two joints connecting it to other links. The joint offset di is the distance from

X̂i−1 to X̂i masured along Ẑi—the distance along Ẑi the two frames are offset. Finally, the

joint angle θi is the angle between X̂i−1 and X̂i measured along Ẑi. The DH paramters can

be arranged into a table, as seen in the sample table 2.1 The number of rows in this table will

correspond with the number of joints in the robot (or mechanism).
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Table 2.1 Example DH parameter table

i αi−1 ai−1 di θi
1 0 0 0 θ1

2 90o 0 d2 0
3 0 0 L2 θ3
...

...
...

...
...

2.4.2 Link transforms

With the DH parameters determined, a transform must be determined to represent frame

i in terms of frame i-1. This transform can be thought of as the product of two separate

transforms: a link transform and a joint transform. Each of these transforms are classified as

screw transforms, since they contain a translation along and rotation about an axis. For the

case of the link transform, frame i is located a distance ai−1 along and rotated an angle αi−1

around axis X̂i−1. Expressing this as a 4× 4 homogenous transform

X (ai−1, αi−1) =



1 0 0 ai−1

0 cosαi−1 − sinαi−1 0

0 sinαi−1 cosαi−1 0

0 0 0 1


(2.16)

In a similar analysis, the joint transform can be a similarly described as a displacement

along Ẑi a distance di and a rotation about Ẑi an angle θi. In matrix form

Z (di, θi) =



cos θi − sin θi 0 0

sin θi cos θi 0 0

0 0 1 di

0 0 0 1


(2.17)
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The two expression in (2.16) and (2.17) can be combined into a single expression

T (αi−1, ai−1, di, θi) = X (αi−1, ai−1)Z (di, θi)

=



1 0 0 ai−1

0 cosαi−1 − sinαi−1 0

0 sinαi−1 cosαi−1 0

0 0 0 1





cos θi − sin θi 0 0

sin θi cos θi 0 0

0 0 1 di

0 0 0 1



=



cos θi − sin θi 0 ai−1

cosαi−1 sin θi cosαi−1 cos θi − sinαi−1 −di sinαi−1

sinαi−1 sin θi sinαi−1 cos θi cosαi−1 di cosαi−1

0 0 0 1



(2.18)

Because of the length of this transform, it is often written as

T (αi−1, ai−1, di, θi) =



cθi −sθi 0 ai−1

cαi−1sθi cαi−1cθi −sαi−1 −disαi−1

sαi−1sθi sαi−1cθi cαi−1 dicαi−1

0 0 0 1


(2.19)

where “s” stands for the sine function and “c” stands for the cosine function. At times, even

the “θ” is omitted, leaving just the index of which angle to use.

2.5 Inverse kinematics

Inverse kinematics is, like its name suggests, the opposite of the forward kinematics de-

scribed up to this point. In forward kinematics, the joint values of the robot were known and

the resulting position and orientation was to be determined. In inverse kinematics, the position

and orientation of the robot is known and the joint values must be determined. Since each

robot is created differently (different dimensions, different frame descriptions, etc), there is no

one method for determining the joint values.

One thing common to all inverse kinematic calculations is looking for terms to solve for a

given joint variable. For example, consider a simple, planar, one joint robot which has forward
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kinematics

T (θ) =



cos θ − sin θ 0 L1 cos θ

sin θ cos θ 0 L1 sin θ

0 0 1 0

0 0 0 1


(2.20)

When this transform is known, the angle θ can be found using a four quandrant arctangent,

called “atan2” the C++ and Matlab programming languages, using T11 and T21:

θ = tan−1 T21

T11
(2.21)

As the number of joints in the robot increases, the difficulty in finding a closed-form solu-

tion (one where general equations can be written, instead of using numeric approximations)

increases.
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CHAPTER 3. PHANTOM OMNI

The PHANTOM Omni is six degree-of-freedom haptic manipulator. Originally developed

as a thesis project at MIT, the PHANTOM was designed for use in “touching” and manipulat-

ing three-dimensional data. Besides being able to read the position values for it’s six revolute

joints, the PHANTOM also contains three motors attached to the first three joints, allowing

for spacial forces (forces controlling the position of the tip of the stylus in cartesian space).

It is because of this force application that researchers in virtual environments have used the

PHANTOM to interact with virtual objects.

Figure 3.1 The PHANTOM Omni

The important thing about this particular 6R robot design is the segmentation of position

and orientation—the first three joints are used to position the end stylus and the remaining

three joints are used solely for finding the orientation. These final three joints all intersect

at the same point, and can be interpretted as a spherical joint. This layout is similar to the

PUMA 560 robot, a 6R industrial robot developed by Unimation in 1978. The major difference

between these two robots (apart from their sizes) is that the PHANTOM contains only three
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drive motors. This means that only the position of the stylus can be set by the computer. The

PUMA, on the other hand, has motors on all of its joints, allowing for arbitary positioning

and orientating.

3.1 Kinematics

3.1.1 Forward

In order to describe the kinematics of the PHANTOM, the frames locations must be de-

termined. Figure 3.2 shows the PHANTOM with the frame axes fixed onto it.

Figure 3.2 The PHANTOM with frames axes

While it is useful to see where the frames fit on the actual robot, this can prove to be

cumbersome to analyze. Figure 3.3 shows just the axes with the respective DH parameters.

From figure 3.3, the DH parameters can be determined, as listed in table 3.1. The other

important quantity is to determine the transform between the workframe (“w”) and frame

zero. This is determined by observation and measurement

w
0 T =



0 1 0 0

0 0 1 30mm

1 0 0 −176mm

0 0 0 1


(3.1)
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Figure 3.3 The axes of the PHANTOM

Table 3.1 PHANTOM Omni DH table

i αi−1 ai−1 di θi
1 0 0 0 θ1

2 90o 0 0 θ2

3 0 127.508mm 0 θ3

4 90o 0 149.352mm θ4

5 −90o 0 0 θ5

6 90o 0 0 θ6

With the DH parameters and this relation to the workspace known, it is possible to formu-

late the forward kinematics. This begins by writing out the matrix equation for the position

of the end as a function of the six joint variables

w
6 T = w

0 T
0
1T

1
2T

2
3T

3
4T

4
5T

5
6T (3.2)

Because of the configuration of this device, it is possible to separate equation (3.2) into two

distinct parts: a portion which positions the end, and a portion which orients the end.

w
6 T = w

0 T

[
R (θ1, θ2, θ3)

] [
W (θ4, θ5, θ6)

]
(3.3)

In equation (3.3), R (θ1, θ2, θ3) is the position function and W (θ4, θ5, θ6) is the orientation

function (often called the wrist movement function). Each of these expressions also have the



18

other DH parameters (link length, link twist, joint offset) in them, but since they do not

change, they are internal elements.

In order to compute these matrices, a combination of link transforms and screw transforms

are used. The positioning function R needs to include both link lengths (a2 and d4) along

with the first three angles. The orientating function W must contain only the last three joint

angles. By separating the operations of the screw matrices (they are, after all, a combination

of a translation and a rotation), expressions can be determined

R (θ1, θ2, θ3) = 0
1T

1
2T

2
3TX (α3, a3)Z (d4, 0)

W (θ4, θ5, θ6) = Z (0, θ4)4
5 T

5
6T

(3.4)

In equation (3.4), what would have been 3
4T was broken into its screw matrix components,

allowing for θ4 to be separated from the position element d4. Substituting in the values from

the DH table into the expression yields the matrices

R (θ1, θ2, θ3) =



c1c2c3 − c1s2s3 s1 c1c2s3 + c1s2c3 − (−c1c2s3 − c1s2c3) d4 + c1c2a2

s1c2c3 − s1s2s3 −c1 s1c2s3 + s1s2c3 − (−s1c2s3 − s1s2c3) d4 + s1c2a2

s2c3 + c2s3 0 s2s3 − c2c3 − (−s2s3 + c2c3)L2 + s2L1

0 0 0 1


(3.5)

W (θ4, θ5, θ6) =



c4c5c6 − s4s6 −c4c5c6 − s4c6 c4s5 0

s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5 0

−s5c6 s5s6 c5 0

0 0 0 1


(3.6)

The complete forward kinematics are found as

w
6 T (θ1, θ2, θ3, θ4, θ5, θ6) = w

0 T R (θ1, θ2, θ3)W (θ4, θ5, θ6)

=



r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1


(3.7)
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where

r11 = (s1c2c3 − s1s2s3) (c4c5c6 − s4s6)− c1 (s4c5c6 + c4s6)− (s1c2s3 + s1s2c3) s5c6

r12 = (s1c2c3 − s1s2s3) (−c4c5s6 − s4c6)− c1 (−s4c5s6 + c4c6) + (s1c2s3 + s1s2c3) s5s6

r13 = (s1c2c3 − s1s2s3) c4c5 − c1s4s5 + (s1c2s3 + s1s3c3) c5

px = − (−s1c2s3 − s1s2c3) d4 + s1c2a2

r21 = (s2c3 + c2s3) (c4c5c6 − s4s6)− (s2s3 − c2c3) s5c6

r22 = (s2c3 + c2s3) (−c4c5s6 − s4c6) + (s2s3 − c2c3) s5s6

r23 = (s2c3 + c3s3) c4s5 + (s2s3 − c2c3) c5

py = − (−s2s3 + c2c3) d4 + s2a2 + 30

r31 = (c1c2c3 − c1s2s3) (c4c5c6 − s4s6) + s1 (s4c5c6 + c4s6)− (c1c2s3 + c1s2c3) s5c6

r32 = (c1c2c3 − c1s3s3) (−c4c5s6 − s4c6) + s1 (−s4c5s6 + c4s6) + (c1c2s3 + c1s2c3) s5s6

r33 = (c1c2c3 − c1s2s3) c4s5 + s1s4s5 + (c1c2s3 + c1s3c3) c5

pz = − (−c1c2s3 − c1s3c3) d4 + c1c2a2 − 176

(3.8)

3.1.2 Inverse

Computing inverse kinematics of the PHANTOM Omni, and serial robotic chains in gen-

eral, requires more work than simply evaluating single valued expressions (like in the forward

kinematics). As this method is examined, the possiblility for branch discontinuities occur. A

branch discontinuity arrises from the math functions being manipulated. An example of a

brach discontinuity is taking the arccosine of a number—it is possible to have two different

angles that yield the same cosine.

Before analysis can begin, the transform from workspace to frame {0} must be undone.

This is accomplished by multiplying by its inverse.

T = w
0 T
−1Tgiven (3.9)
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Furthermore, let this new matrix be labeled as seen in equation (3.10)

T (θ1, θ2, θ3, θ4, θ5, θ6) =



r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1


(3.10)

The first step is to determine the first three joint angles, which uniquely determine the

position, designated as the ordered triple (px, py, pz). By analyzing the forward kinematics an

expression for θ1 can be determined.

θ1 = atan2 (−px, py)± cos−1

(
d3√
p2
x + p2

x

)
(3.11)

Notice the ± in front of the arccosine term in equation (3.11). This means there are two

possible solutions for this angle, which then also help determine other values. This is the first

branch discontinuity of the inverse kinematics.

Using a similar method for finding θ1, an expression for θ3 can be determined

θ2 = atan2 (−L2, 0)± cos−1

(
A

2L1√
L2

2

)
(3.12)

where

A = p2
x + p2

y + p2
z − L2

1 − L2
1 (3.13)

Once again, the arccosine function has two solutions. Each of these solutions is not depen-

dent on the value for θ1, meaning that there are now four possible combinations of θ1 and θ3.

With θ1 and θ3 known, they can be substituted back into previous undetermined expressions

to help solve for θ2. First let

A = cos (θ1) px + sin (θ1) py

B = L1 − L2 sin θ3

C = L2 cos θ3

(3.14)

These expression come from the expression for px, py and pz in equation (3.8). From these

expressions, the unknown terms sin θ2 and cos θ2 can be solve for, giving

sin θ2 =
CA+Bpz
−A2 − p2

z

cos θ2 =
B

A
+
(pz
A

)(CA+Bpz
−A2 − p2

z

) (3.15)
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To get the singular value of θ2, use the four quadrant arctangent as before

θ2 = atan2 (sin θ2, cos θ2) (3.16)

Note that for a given combination of θ1 and θ3, there will be only one solution for θ2—

meaning there are still only four solutions to the inverse kinematics.

The next step in solving the inverse kinematics of the PHANTOM Omni is the isolation of

the wrist transform W (θ4, θ5, θ6). As shown in equation (3.7), the forward kinematics are a

product of a positioning transform and an orientation transform. By multiplying the inverse

of the positioning transform (which is a function of θ1, θ2 and θ3) by the given transform in

equation (3.10), just the wrist transform is left, as seen in equation (3.17).

R−1T = W

b11 b12 b13 0

b21 b22 b23 0

b31 b32 b33 0

0 0 0 1


=



c4c5c6 − s4s6 −c4c5c6 − s4c6 c4s5 0

s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5 0

−s5c6 s5s6 c5 0

0 0 0 1


(3.17)

In equation (3.17), it is clearly evident that cos θ5 = b33, meaning θ5 can take values of

θ5 = ± cos−1 b33 (3.18)

Since the original transform was multiplied by the inverse of the position transform (which

contained the first three angle values, and four possible solution sets), each angle set will

alter the values in the “B” matrix (see equation (3.17)). This means the value for b33 used

in computing θ5 in equation (3.18) will change depending on the solution, which doubles the

number of solution sets for the inverse kinematics to eight total.

The remaining two angles can be found easily. First, find θ4 by noticing the (1, 3) and

(2, 3) elements of the wrist transform W. Since θ5 is now known, the arctangent will return

the single value for θ4

θ4 = atan2

(
b23

− sin θ5
,

b13

− sin θ5

)
(3.19)

Similarly, elements (3, 1) and (3, 2) contain only θ6 and the known θ5

θ6 = atan2

(
b32

− sin θ5
,
b31

sin θ5

)
(3.20)
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With these last two angles, they are uniquely defined by the four quadrant arctangent.

By follwing all the possible branchs, there are eight possible solutions, detailed in figure 3.4.

Because of this many possible solutions, care must be taken when selecting the desired angle.

On the case of the actual device, there are limits the joints can rotate to, which reduce the

number of solutions available.

Figure 3.4 The eight solution sets for joint angles

3.2 Programming overview

The PHANTOM Omni can be programmed with the C++ language. There are two basic

program types: a console based application or a graphical, OpenGL-based application. In

either case, the code controlling the PHANTOM would be evaluated the same way. The

haptic interface to the PHANTOM can be interpretted as another object to be rendered by

the program, meaning that the computer will first process the haptic callback function and

then the graphic callback function. Because of this similarity in operation, a graphical based

program was chosen for development. Having graphical capabilities allows for expansion in

the future for manipulating objects and seeing what happens. As a starting point, one of the

included programs (which came bundled with the PHANTOM from Sensable Technologies)

was used as a shell into which all the desired functionality was included.
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The first thing to be done in the program is to initialize the haptic device. This involves

determining which type of haptic device is attached (Sensable makes several different models

in the PHANTOM line), enabling force output and adding the haptic rendering instance to

the flow of the program. This code is shown below, in the function called “initHD”. This

function is called from a general initialization function, which initializes the OpenGL graphical

interface.

Code 3.1 Haptic device initialization code
1 void initHD ()
2 {
3 // Bui lt−in c l a s s to s t o r e e r r o r messages
4 HDErrorInfo e r r o r ;
5
6 // Store the handle o f the dev i ce
7 ghHD = hdIn i tDev ice (HD DEFAULT DEVICE) ;
8
9 // Check to see i f the dev i ce i n i t i a l i z e d

10 i f (HD DEVICE ERROR( e r r o r = hdGetError ( ) ) )
11 {
12 // I f i t g e t s here , no dev i c e s found ( or can not be i n i t i a l i z e d )
13 // so e x i t program
14 e x i t (−1);
15 }
16
17 // Enable the a b i l i t y to output f o r c e s
18 hdEnable (HD FORCE OUTPUT) ;
19
20 // Reg i s t e r the hapt i c render ing ca l l ba ck func t i on ( ‘ ‘ touchScene ’ ’ )
21 // and g ive i t a high p r i o r i t y
22 hUpdateDeviceCallback = hdScheduleAsynchronous (
23 touchScene , 0 , HD MAX SCHEDULER PRIORITY) ;
24
25 hdStartScheduler ( ) ;
26
27 // Check to see i f the render ing in s tance was added to the s chedu l e r
28 i f (HD DEVICE ERROR( e r r o r = hdGetError ( ) ) )
29 {
30 // I f s chedu l e r can not be i n i t i a l i z e d , e x i t program ,
31 // s i n c e the hapt i c s w i l l not work
32 e x i t (−1);
33 }
34 }

Now that the PHANTOM Omni has been properly initialized, it is possible to integrate

haptic rendering into the program. Since a graphical program is being used, the function

which handles the drawing of the scene must have knowledge of the state of the device (po-

sition, transform, etc) so that it can interact with the graphical elements. Shown below is

the beginning of this drawing function. “HapticDisplayState” on line four is a defined data

structure which will store the current state of the device.

This next code showns the storing the device state for the use of the graphics portion of the

program. Depending on what the graphical portion of code is doing, other device parameters

can be stored. For example, if the program is to simply drawing a box with the position and
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Code 3.2 Integrating the device into OpenGL
1 void drawScene ( )
2 {
3 // Used to s t o r e the s t a t e o f the dev i ce
4 Hapt icDisp layState s t a t e ;
5
6 // Obtain a thread−s a f e copy o f the cur rent hapt i c d i sp l ay s t a t e .
7 hdScheduleSynchronous ( copyHapticDisplayState , &state ,
8 HD DEFAULT SCHEDULER PRIORITY) ;
9

10
11 g lC l ea r (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT ) ;
12 . . .
13 other OpenGL commands
14 . . .
15 }

orientation of the end of the PHANTOM, only the position and transform would be needed.

On the other hand, if the program is to showing time histories of the position, joint angles,

and velocity, those values would have to be stored for graphing.

Code 3.3 Storing the device state
1 HDCallbackCode HDCALLBACK copyHapt icDisp layState ( void ∗pUserData )
2 {
3 // Points to g l oba l v a r i a b l e that s t o r e s the s t a t e o f the dev i ce
4 Hapt icDisp layState ∗pState = ( Hapt icDisp layState ∗) pUserData ;
5
6 // Get the dev i ce pos i t i on , v e l o c i t y and transform and s t o r e i t
7 // more device values can be stored, as long as they are
8 // define in the data structure
9 hdGetDoublev (HD CURRENT POSITION, pState−>p o s i t i o n ) ;

10 hdGetDoublev (HD CURRENT VELOCITY, pState−>v e l o c i t y ) ;
11 hdGetDoublev (HD CURRENT TRANSFORM, pState−>transform ) ;
12
13 return HD CALLBACK DONE;
14 }

With the device integrated into the graphical portion of the code, the constraints on the

device must be accounted for. All of these are placed inside their own callback function. This

function behaves in much the same way as the display callback function for OpenGL: the main

program loops continually, refreshing the graphics and, in this case, the haptic interaction.

This function can be quite long, depending on what type of constraint is programmed, so only

the basic shell is shown in code 3.4
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Code 3.4 Haptic rendering
1 HDCallbackCode HDCALLBACK touchScene ( void ∗pUserData )
2 {
3 // Variables for the current and previous button values
4 in t currentButtons , l a s tButtons ;
5
6 // The force and then the control law gains
7 hduVector3Dd f o r c e ( 0 , 0 , 0 ) ;
8
9 // Control gains

10 hduVector3Dd kp (10 , 10 , 1 0 ) ;
11
12 // Depending on the constraint, a different number of variables will be needed
13 // At the very least, the current position and a desired position are needed
14 hduVector3Dd p o s i t i o n ;
15 hduVector3Dd des i redPos (0 , 0 , 0 ) ;
16
17 // Used to store the maximum continuous force capable of being produced, and any errors
18 HDdouble forceClamp ;
19 HDErrorInfo e r r o r ;
20
21 // All haptic rendering must be in a frame declaring which haptic device to use
22 hdBeginFrame (ghHD ) ;
23
24 // Get the current and previous button values
25 hdGetIntegerv (HD CURRENT BUTTONS, &currentButtons ) ;
26 hdGetIntegerv (HD LAST BUTTONS, &las tButtons ) ;
27
28 // Get the current position
29 hdGetDoublev (HD CURRENT POSITION, p o s i t i o n ) ;
30 // Other possible values to retrieve that might be useful include:
31 // HD CURRENT JOINT ANGLES, HD CURRENT GIMBAL ANGLES, and HD CURRENT VELOCITY
32
33 // Detect button state transitions
34 i f ( ( currentButtons & HD DEVICE BUTTON 1) != 0 &&
35 ( la s tButtons & HD DEVICE BUTTON 1) == 0)
36 {
37 // If something should be done when a button is first pressed, it can be done here
38 }
39 e l s e i f ( ( currentButtons & HD DEVICE BUTTON 1) == 0 &&
40 ( la s tButtons & HD DEVICE BUTTON 1) != 0)
41 {
42 // If something should be done when a button is first released, it can be done here
43 }
44
45
46 //Put contraints here
47
48 // Get the maximum continuous force possible for the device
49 hdGetDoublev (HD NOMINAL MAX CONTINUOUS FORCE, &forceClamp ) ;
50
51 // Limit force output to the maximum if it is exceeded
52 i f ( hduVecMagnitude ( f o r c e ) > forceClamp )
53 {
54 hduVecNormalizeInPlace ( f o r c e ) ;
55 hduVecScaleInPlace ( fo rce , forceClamp ) ;
56 }
57
58 // Set the force on the device
59 hdSetDoublev (HD CURRENT FORCE, f o r c e ) ;
60
61 hdEndFrame(ghHD ) ;
62
63 // Check for errors with haptic code
64 i f (HD DEVICE ERROR( e r r o r = hdGetError ( ) ) )
65 {
66 // If there is a problem with the force itself, stop the force
67 i f ( hduIsForceError (& e r r o r ) )
68 {
69 hdSetDoublev (HD CURRENT FORCE, ( 0 , 0 , 0 ) ) ;
70 }
71 e l s e
72 {
73 e x i t (−1); // This is likely a more serious error, so exit
74 }
75 }
76
77 return HD CALLBACK CONTINUE;
78 }
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With the device now set up to run correctly, some special functions have be created by the

manufacturers (Sensable, Inc.) to ease the programming. At any point during the program,

values of different device parameters can be accessed with various commands, depending on

the variable type being retreived. These commands were already used in Codess 3.1 through

3.4 without being described.

Code 3.5 hdGet commands
hdGetDoublev (parameter name ,variable to store value in )

hdGetIntegerv (parameter name ,variable to store value in )

hdGetLongv (parameter name ,variable to store value in )

Some of the possible parameter names and what they return are listed in table 3.2. In addi-

tion to the current values stored in these locations, the device also stores the previous value. An

example of this functionality would be to check whether a button has been just pressed or just

released, which could be used to start or end an effect on the PHANTOM. These past values are

referenced nearly the same way, but by replacing “CURRENT” with “LAST” in the parameter

name (for example, “HD LAST BUTTONS” instead of “HD CURRENT BUTTONS”). Care

must be taken to use the correct version of the “hdGet” command. For example, the values

stored in “HD CURRENT ENCODER VALUES” is a “long” variable and would then require

“hdGetLongv”.

Table 3.2 PHANTOM Omni “hdGet” parameters

Parameter name Value it returns
HD CURRENT POSITION device position in workspace coordinates, in millimeters

HD CURRENT VELOCITY device velocity in workspace coordinates, in millimeters per second

HD CURRENT TRANSFORM end effector transform

HD CURRENT JOINT ANGLES angles of first three joints in radians

HD CURRENT ENCODER VALUES the raw values returned from the digital encoders on all six joints

HD CURRENT BUTTONS which (if any) of the two buttons are pressed

Interestingly, only one of the angles returned by HD CURRENT JOINT ANGLES matches

the convection established in the development of the kinematics for the device. In the case of

θ1, the positive datum established ealier is actually the negative direction in the joint-space
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of the device. Of the three angles returned, θ2 is the same in both cases. Computations must

be done to determine the DH-defined angle θ3. Figure 3.5 shows the angle measures returned

by the device (designated with the subscript “p”) and the DH angles. Three things must be

done to find θ3. First, compute α = 90o − θ2p, determined from the right triangle formed by

with hypoteneus L1. Second, compute β = 180o − α− θ3p = 90o + θ2p − θ3p. Finally, compute

θ3 = 90o − β = θ3p − θ2p

Figure 3.5 Differences in angle conventions
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CHAPTER 4. PHANTOM SPATIAL CONSTRAINTS

As a starting point for controlling the PHANTOM Omni, different forms of constraints were

tested. Two different methods for controlling the PHANTOM are possible: a cartesian space

scheme and a joint-space scheme. In the cartesian method, the constraint can be established

in the work space of the device itself (in x, y, z coordinates). The joint-space scheme involves

working the inverse kinematics of the robot to detering the current joint values as well as

the desired values. A control loop is then applied around the joint itself, making it reach

its desired value. It is much easier to program in the cartesian space (the sample programs

supplied by the manufacturer use this method) because of the branch defects that might occur

when calculating the inverse kinematics.

All of these constraints are able to be used only simple proportional control. It is possible to

incorporate a derivative control loop into the controller design since the velocity of the stylus

tip can be read from the PHANTOM device interface. This can be problematic, however,

because there is no precise way of finding the derivative control gains for a desired operation

of the device.

This section covers the development of these equations and how they are generalized, along

with the C++ code needed to implement them. The information is organized by the constraint

type: theory and mathematics behind the constraint followed by the code and results of using

the constrant. As will be seen, the challenge with the constraints is determining the desired

point of the stylus. Once it is found, adding control is simple.
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4.1 Points

Theory

Constaining the stylus of the PHANTOM to a single point is by far the easiest type of

constraint. The type of contraint has zero degrees of freedom, but by using this type of

contraint, fixed springs can be modeled. Consider a three-dimensional case, as depicted in

figure 4.1 below. When the stylus is not located at the desired position, there will be an error

vector between the desired position and the current position, designated by the dashed line.

By simply multiplying this vector by corresponding elements of a proportional gain vector Kp

(by having a vector of gain values, it would be possible to have one dimension of motion—for

example, in the x direction—have a higher force applied than the others). This means the force

applied by the PHANTOM’s three motors will cause the stylus to move toward the desired

position, with force components as shown in equation (4.1).

F = Kp~e


Fx = Kpx (xd − x) +Kex (ẋd − ẋ)

Fy = Kpy (yd − y) +Key (ẏd − ẏ)

Fz = Kpz (zd − z) +Kez (żd − ż)

(4.1)

Figure 4.1 Point constraint
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Coding and results

Coding this constraint is as simple as the theory behind it, as can be seen in Code 4.1.

The proportional gain Kp was created as a vector to allow different directions to have different

control effects. This could be used, for example, if the PHANTOM was to be used to model

the feel of a material that has different compression ratios in different direction. As a test

of this functionality, the desired point was chosen to be (0, 0, 0). Figure 4.2 shows both the

distance the stylus is away from this point and the magnitude of the force applied to the stylus

in workspace coordinates.

Code 4.1 Point constraint code
1 f o r c e=kp∗( des i redPos−s t a t e . p o s i t i o n ) ; {optional : +ke ∗ (desiredV el− state.velocity)} ;

Figure 4.2 Results for point constraint

By examining the displacement and force in a single direction, in this case the x-direction

(see figure 4.3, it can be seen that the components of the force are acting in the correct direction.

Notice for a positive displacement, the force is negative, showing that the constraint is indeed

forcing the stylus back towards the desired point. This is similar in the other directions,

showing that the constraint is working as intended.
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Figure 4.3 Point constraint in the x-direction

4.2 Spheres

Theory

Constraining the PHANTOM’s stylus to a sphere closely follows from the analysis of a

point. A circle can be defined with two parameters: the center point (C = (xc, yc, zc)) and

the radius (R). In order to find the closest point on the surface of the sphere, a vector ~V must

be constructed connecting the center point C with the current stylus location P, as shown in

figure 4.4. Thus
~V = P − C (4.2)

The desired position Q=(xq, yq, zq) is seen to be a distance R from C along this vector. By

normalizing ~V and then multiplying by the radius, the point Q can be determined

Q = C +
R∣∣∣~V ∣∣∣ ~V (4.3)

With the desired position now calculated, the control law can be applied to the position

error between this point and the current stylus position:

F = Kp~e


Fx = Kpx (Qx − Px) +Kex (ẋd − ẋ)

Fy = Kpy (Qy − Py) +Key (ẏd − ẏ)

Fz = Kpz (Qz − Pz) +Kez (żd − ż)

(4.4)
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Figure 4.4 Sphere constraint

Coding and results

The coding of the spherical constraint follows closely from the theory and is, in actuality,

a simple modification of the point constraint code.

Code 4.2 Sphere constraint code
1 // compute distance from the current stylus position to the center of the sphere

2 posvect=s t a t e . po s i t i on−c i r c l e C e n t e r ;

3

4 // compute the magnitude of this vector

5 posvectmag=posvect . magnitude ( ) ;

6

7 // find the desired position

8 des i r edPos=c i r c l e C e n t e r+c i r c l eRad ∗ posvect /posvectmag ;

9

10 // calculate force as gain(s) times error(s)

11 f o r c e=kp∗( des i redPos−s t a t e . p o s i t i o n ) ; {optional : +ke ∗ (desiredV el− state.velocity)} ;

As a test of this constraint, a sphere located at (0, 0, 0) was created with a radius of 50mm.

Figure 4.5 shows the results of this test. Figure 4.6 show the time histories of the distance
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from (0, 0, 0) and the magnitude of the force applied. Note that this force is a magnitude and

does not indicate direction.

Figure 4.5 Results of the sphere constraint
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Figure 4.6 Results of the sphere constraint
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4.3 Lines

Theory

Securing the stylus to a line is another straight-forward constraint. A line can be thought

of a as single degree of freedom robot joint—a prismatic joint. Lines can be broken down into

three groups:

1. lines on the coordinate axes

2. lines parallel to one of the coordinate axes

3. lines not parallel to any of the coordinate axes (arbitary lines)

The goal is to develop a generic approach to constraining to any of these line types. In order to

adequately describe a line, only two quantities must be known: the direction a line travels and

a single point on the line. For example, the x-axis can be described by the point P0 = (0, 0, 0)

and the vector ~V = [1, 0, 0]. Note that the vector is not required to be of unit magnitude.

Addressing the third class of lines will also constrain the first two types as well.

Figure 4.7 Line constraint
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Consider figure 4.7. The point P0 is the point on the line. Any point on the line is simply

the addition of a scaled version of the line vector ~V to the point (P0). By varying the scaling

factor a from −∞ to ∞, all points on the line can be found.

Pon line = P0 + a ~V (4.5)

The distance between a point and a line is the length along an orthogonal line passing

through the point. In order to find the distance this desired point is away from the point on

the line, a triangle must be constructed. Connecting the point on the line P0 to the current

stylus position P forms the hypoteneus of this triangle, with the nearest point on the line (Q)

forming the third vertex. If 6 QP0P is said to equal θ, the distance along the line from P0 to

Q is a scalar multiple of the ~V from P0, which is also related to the hypoteneus P −P0 by the

cosine function.

|P0 −Q| ≡ a
∣∣∣~V ∣∣∣ = |P0 − P | cos θ (4.6)

Here, the || symbols denote magnitudes of vectors. The cosine can be found using the dot

product of ~V with P0 − P

~V · [P0 − P ] =
∣∣∣~V ∣∣∣ |P0 − P | cos θ → cos θ =

~V · [P0 − P ]∣∣∣~V ∣∣∣ |P0 − P |
(4.7)

Now, by substituting cos θ from (4.7) into (4.6) and solving for the unknown scaling factor a

a =
|P0 − P |∣∣∣~V ∣∣∣

~V · [P0 − P ]∣∣∣~V ∣∣∣ |P0 − P |

a =
~V · [P0 − P ]∣∣∣~V ∣∣∣2

(4.8)

Now, this factor can be substitued into (4.5)

Q = P0 +
~V · [P0 − P ]∣∣∣~V ∣∣∣2 ~V = (Qx, Qy, Qz) (4.9)

Now that the desired point has been determined, the control law can be applied to the

stylus position.

F = Kp~e


Fx = Kpx (Qx − Px) +Kex (ẋd − ẋ)

Fy = Kpy (Qy − Py) +Key (ẏd − ẏ)

Fz = Kpz (Qz − Pz) +Kez (żd − ż)

(4.10)
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Coding and results

The C++ code written for the line constraint is shown below. As with many programs, the

names of the variables used where created to be descriptive of the value being stored, instead

of matching the variable names used in the theory section.

Code 4.3 Line constraint code
1 // Vector from the p o s i t i o n to the po int on the l i n e

2 posvect=s t a t e . po s i t i on−p o i n t o n l i n e ;

3

4 // Dot product o f

5 AdotP=l i n e v e c t o r . dotProduct ( posvect ) ;

6

7 // Find magnitude o f the vec to r that i s the l i n e

8 l inevectormag=l i n e v e c t o r . magnitude ( ) ;

9

10 // Find the magnitude o f the p o s i t i o n vec to r

11 posvectmag=posvect . magnitude ( ) ;

12

13 // Solve f o r c o s i n e theta as dot product d iv ided by product o f magnitude

14 cos the ta=AdotP/( l inevectormag ∗posvectmag ) ;

15

16 // Compute the l i n e s c a l i n g f a c t o r f o r the nea r e s t po int

17 l i n e s c a l e=posvectmag∗ co s the ta / l inevectormag ;

18

19 // Compute the d e s i r e d ( nea r e s t ) po int on the l i n e

20 des i r edPos=l i n e v e c t o r ∗ l i n e s c a l e ;

21

22 // Force i s p r op o r t i o n a l to e r r o r

23 f o r c e=kp∗( des i redPos−posvect ) ;

As a test of the arbitary line, the point on the line line was chosen to be P0 = (0, 30, 0)

and the direction of the line was chosen to be ~V = [−1,−2, 1]. Figure 4.8 shows the collection

of all points the stylus travelled during a run of this constraint code. In addition to this data,

the point P0 and the line vector vecV were drawn on the plot for comparison. At the start of

the program, the data returned from the program have the stylus position as (0, 0, 0). After

this first sample, the position returned by the code becomes wherever the stylus actually is.
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As the force constraining the stylus is applied, the stylus moves toward the constraint, as can

be seen in the figure.

Figure 4.8 Results for arbitrary line

4.4 Planes

Theory

Planes serve as a meaningful application of arbitrarily oriented surfaces. Many objects

encountered in the world are a collection of planar faces. This type of constrant has two

degrees of freedom—for example, moving in the x and/or y direction in a plane—and can be

thought of as a 2P serial robot. To describe a plane, two parameters are needed: a point in the

plane, and the normal vector to the plane. Figure 4.9 depicts the general case of an arbitrarily

oriented (but infinite) plane.
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Figure 4.9 Plane constraint

In order to determine the desired point in the plane, the distance the stylus is from the

plane must be determined. This is accomplished using a similar to an arbitrary line. Begin by

constructing a vector connecting P and P0. By taking the dot product of this vector with the

normal, the angle between them can be determined:

~N · [P − P0] =
∣∣∣ ~N ∣∣∣ |P − P0| cos θ (4.11)

Next, a right triangle is constructed with points P , P0 and a third point P3 lying an unknown

distance along ~N . By using the definition of the cosine

|P3 − P0| ≡ a ~N = |P − P0| cos θ (4.12)

Now, substituting the cosine from (4.11) into equation (4.12) and then solving for the unknown

scaling factor a

a =
~N · [P − P0]∣∣∣ ~N ∣∣∣2 (4.13)

Now that the scalilng factor is known, the desired stylus location can be calculated

Q = P − a ~N (4.14)

With the desired point calculated, a control law can be used:

F = Kp~e


Fx = Kpx (Qx − Px) +Kex (ẋd − ẋ)

Fy = Kpy (Qy − Py) +Key (ẏd − ẏ)

Fz = Kpz (Qz − Pz) +Kez (żd − ż)

(4.15)
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Coding and results

The code for this constraint is shown below. As with the previous constriants, the code for

this contraints comes from simply coding the equations developed in the theory section.

Code 4.4 Plane constraint code
1 // Find the vector from the known point on the plane to the current position

2 posvect=s t a t e . po s i t i on−po in ton l i n e ;

3

4 // Compute dot product of new position vector and plane normal vector

5 AdotP=posvect . dotProduct ( l i n e v e c t o r ) ;

6

7 // Find magnitude of the normal

8 l inevectormag=l i n e v e c t o r . magnitude ( ) ;

9

10 // Compute desired position

11 des i redPos=s t a t e . po s i t i on −(AdotP/ l inevectormag )∗ l i n e v e c t o r ;

12

13 // Compute force from control law

14 f o r c e=kp∗( des iredPos−posvect ) ; {optional: +ke*(desiredVel-state.velocity);}

This constraint, as demonstrated in the theory section and the code, is defined by a point

on the plane and the planar normal. Because of the mobility of the PHANTOM, adequate

testing of this constraint is somewhat difficult. The point on the plane needs to be somewhat

near the origin and the normal must be oriented such that more than only a small portion of

the plane can be touched. Taking this into account, a test was created using the point (0, 0, 0)

and the normal [1, 1, 1]. There results are shown in figure 4.10

4.5 Circles

Theory

Another simple yet important constraint for the PHANTOM is a circle. A circle provides

a single degree of freedom to the user, in this case a revolute joint. There are two cases for

circles:

1. circle lies in in a plane parallel to one of the principle coordinate planes

2. circle lies in an arbitrarily oriented plane
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Figure 4.10 Results for arbitary plane

It is apparent that if a method can be created to fill the second case, it will satisfy the first.

In order to define a circle in space, three things must be known: where the center is located,

the radius of the circle, and the normal vector to the plane the circle is located it. This is

depicted in figure 4.11.

Figure 4.11 Circular constraint

In order to create this constraint, a few parameters must be defined. Let the center of the

circle be defined as C = (xc, yc, zc) and let its radius be R. The planar normal shall be defined

as ~N = [xn, yn, zn] Let the current position of the stylus be P = (x, y, z). The first thing to
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be determined is the in-plane projection of the point, Pin plane . The method for this begins by

finding the scaling factor of ~N , just like in the case of an arbitrary line. The angle between

vector [P − C] and ~N can be found using the dot product:

~N · [P − C] =
∣∣∣ ~N ∣∣∣ |P − C| cos θ (4.16)

Like with an arbitrary line, a scaling factor can be found such that

a
∣∣∣ ~N ∣∣∣ = |P − C| cos θ (4.17)

The value for cos θ from equation (4.16) can be substituted into equation (4.16), which can

then be solved for the scaling factor a:

a =
~N · [P − C]∣∣∣ ~N ∣∣∣2 (4.18)

With this scaling factor, the in plane point Pin plane can be found as;

Pin plane = P − a ~N (4.19)

Next, the coordinates of the desired point on the circle must be determined. To find this,

begin by forming vector ~V connecting points P and C. The point Q is a distance R along a

normalized ~V vector away from C:

Q = C +
R∣∣∣~V ∣∣∣ ~V (4.20)

Now that this desired point has be calculated, a control law can be applied.

F = Kp~e


Fx = Kpx (x− xd) +Kex (ẋd − ẋ)

Fy = Kpy (y − yd) +Key (ẏd − ẏ)

Fz = Kpz (z − zd) +Kez (żd − ż)

(4.21)
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Coding and results

The code for this constraint, as the theory shows, can be essentially divided into two parts.

First, the nearest in-plane point must be determined (the plane constraint code) and then the

vector from this position to the center of the circle is determined. The desired point is located

along this vector, a distance of the radius away from the center. This code is shown in Code

4.5.

Code 4.5 Circle constraint code
1 // Vector from current position to circle center

2 posvect=s t a t e . po s i t i on−c i r c l e C e n t e r ;

3

4 // Magnitude of this vector

5 posvectmag=posvect . magnitude ( ) ;

6

7 // linevector is the planar normal. Find its magnitude

8 l inevectormag=l i n e v e c t o r . magnitude ( ) ;

9

10 // Dot product of the position vector and the planar normal

11 AdotP=l i n e v e c t o r . dotProduct ( posvect ) ;

12

13 // Find the scaling factor of the normal vector

14 l i n e s c a l e=AdotP/( l inevectormag ∗ l inevectormag ) ;

15

16 // Find the nearest point in the same plane as the circle

17 newP=s t a t e . po s i t i on−l i n e s c a l e ∗ l i n e v e c t o r ;

18

19 // Compute vector beween the in-plane point and the circle center

20 e r r v e c t=newP−c i r c l e C e n t e r ;

21

22 // Find magnitude of this distance

23 errvectmag=e r r v e c t . magnitude ( ) ;

24

25 // Compute the desired position in relation to the circle center

26 des i redPos=c i r c l e C e n t e r +( c i r c l eRad / errvectmag )∗ e r r v e c t ;

27

28 // Calculate force as gain(s) times error(s)

29 f o r c e=kp∗( des iredPos−s t a t e . p o s i t i o n ) ; {optional: +ke*(desiredVel-state.velocity);}

As a test of this contraint, the center was chosen to be C = (10, 20, 30), the radius R = 40

and the axis ~A = [−1, 1,−1]. These results are shown in figure 4.12.
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Figure 4.12 Circular constraint results

4.6 Cylinders

Theory

As with some of the line constraint, a cylinder can be classified into one of three groups:

1. cylinders whose axis lies on one of the coordinate axes

2. cylinders whose axis is parallel to one of the coordinate axes

3. cylinders whose axis lies along an arbitrary line in space

As with deriving the arbitrary line constraint, the third type of cylinder will cover the first

two types. The difficult thing when developing this constraint is to allow the stylus to slide

along any part of the cylinder. Part of the constraint is part of an arbitrary circle constraint

to figure out which direction the cylinder is pointing and a second part is an arbitrary line

constraint, allowing the stylus to move up and down the infinite length of the cylinder. In this

regard, this constraint can be thought of as the collection of all lines parallel to the axis of the

cylinder at a fixed distance (the radius).

In order to define a cylinder in space, three quantities are needed: the center of the circular

portion of the cylinder, its radius and a vector describing the direction of the axis of the
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cylinder (this can be thought of as the planar normal of the arbitrary circle constraint). Figure

4.13 shows this general setup. The cylinder is defined by C, the center, ~A, the axis, and R,

the radius. The ultimate goal of the constraint is to find the nearest point on the surface

of the cylinder. First, however, the closest point on the defined circle must be found (like

already mentioned, this constraint can be described as the arbitary circle constraint with no

force applied in the direction of the planar normal). This is identical to finding the off-plane

distance in the planar constraint or arbitrary circle constraint. This involves first using the

dot product, where θ is defined as the angle between ~N and [P − C].

Figure 4.13 The arbitrary cylinder constraint

~A · [P − C] =
∣∣∣ ~A∣∣∣ |P − C| cos θ (4.22)

Next, the properties of right triangles give rise to the next equation in determining the

off-plane distance

a
∣∣∣ ~A∣∣∣ = |P − C| cos θ (4.23)
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Equation (4.23) can be solved for cos θ and substituted into equation (4.23). Solving for

the unknown scaling factor a

a =
~A · [P − C]∣∣∣ ~A∣∣∣2 (4.24)

With this scaling factor, the nearest point on the axis of the cylinder can be found as

U = C + a ~A (4.25)

Next, a vector from P to U can be constructed as ~E = [P − U ]. This vector is in the

plane of the circular portion of the cylinder. By normalizing this vector and multiplying by

the radius of the cylinder, the nearest point on the surface of the cylinder can be found.

Q = U +
R∣∣∣ ~E∣∣∣ ~E

= C + a ~A+
R∣∣∣ ~E∣∣∣ ~E

(4.26)

Coding and results

At this point, it has been seen that coding the constraints simply involves naming quantities

derived in the theory section of a constraint to variable names and then doing the required

operations. The code for the cylinder constraint was developed in a similar way.

To test this constraint, the point on the axis was chosen to be C = (30, 0, 30), the radius

R = 30 and the vector of the axis A = [−1, 1,−1]. These results are shown in figure 4.14.
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Code 4.6 Cylinder constraint code
1 // Vector from known point on axis to current stylus position
2 posvect=s t a t e . po s i t i on−po in ton l i n e ;
3
4 // Magnitude of this vector
5 posvectmag=posvect . magnitude ( ) ;
6
7 // Magnitude of the axis vector
8 l inevectormag=l i n e v e c t o r . magnitude ( ) ;
9

10 // Dot product of position vector and the axis vector
11 AdotP=posvect . dotProduct ( l i n e v e c t o r ) ;
12
13 // Find cosine of the included angle
14 cos the ta=AdotP/( posvectmag∗ l inevectormag ) ;
15
16 // Find the line scaling factor
17 l i n e s c a l e=posvectmag∗ cos the ta / l inevectormag ;
18
19 // Compute the nearest point on the axis of the cylinder
20 point1=po in ton l i n e+l i n e s c a l e ∗ l i n e v e c t o r ;
21
22 // Calculate error vector from current stylus position to nearest point on axis
23 e r r v e c t=s t a t e . po s i t i on−point1 ;
24
25 // Find the magnitude of the error
26 errvectmag=e r r v e c t . magnitude ( ) ;
27
28 // The desired position is a distance of the radius away from the axis along the error vector
29 des i redPos=point1+e r r v e c t ∗( c i r c l eRad / errvectmag ) ;
30
31 // Compute the force from the control law
32 f o r c e=kp∗( des iredPos−s t a t e . p o s i t i o n ) ; {optional: +ke*(desiredVel-state.velocity)};

Figure 4.14 Results for an arbitrary cylinder
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CHAPTER 5. ADVANCED SPATIAL CONSTRAINTS

In the previous section, constraints were developed for the PHANTOM Omni based solely

on the sensed position at the end of the device. While following contours serves an important

purpose, it is not using the PHANTOM Omni to its full potential—these constraints only use

three of the six degrees of freedom the PHANTOM is capable of determining. Consider the

case of constraining to a planar circle, as shown in figure 5.1. Three stylus position orientation

combinations are shown. Using the previous constraints, the stylus would move to the nearest

point on the curve.

Figure 5.1 Circle constraint

Instead, the orientation can be used in determining the desired point of the stylus. By in-

corporating these other degrees of freedom into the constraint, the PHANTOM can be used to

allow the user to “feel” different things not normally felt with the PHANTOM. As a demonstra-
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tion of this functionality, a planar circle has been used. As opposed to the previous constraints,

two desired locations are calculated: the closest physical point to the stylus position (this is the

previously developed constraint), and the point that has the same orientation. An “influence”

factor is used to determine the weighting each of these plays in determining that actual point

the stylus is drawn to. By setting ranging this value between zero and one, the desired point

of the stylus is determined. This new constraint can be thought of in two ways: a Bezier curve

connecting the two points and secondly a virtual robot setup. Both are explained below.

5.1 Constraint as Bezier curve

Consider figure 5.2, showing the current stylus position (P) as well as two other points: Po

showing the point on the circle whose normal has the same orientation angle as the stylus and

Pp being the closest point on the circle to the stylus position (this is where the stylus would go if

the previously developed constraints were used). Po can be envisioned as having 0% orientation

error and 100% position error. In a similar manner, Pp can be said to have 0% position error

and 100% orientation error. Suppose it is desired for the stylus to move somewhere between

these two points (for example, to the point with 50% position error and 50% orientation error).

As an added constraint on this movement, the desired point will represent the shortest of the

two distances between the points (for example, if α = 0o and β = 90o, the resulting angle will

be 0o ≤ θ ≤ 90o instead of 90o ≤ θ ≤ 360o).

To begin determination of this constraint, the angles α and β must be determined. For

this development, the circle to be rotated about is assumed to be in the XY plane (similar

development can be done if the circle is in other planes). To determine both angles, the current

transform of the PHANTOM is needed. The direction the stylus is pointing (the stylus is the

Z axis in frame six) can be found by examining the transform of the device, as seen in equation

(5.1). When the stylus is close to being in the XY plane, the w
6 Ẑz component will be close to

zero. This is also true if the circle to follow is in another plane (if the circle was in the XZ
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Figure 5.2 Depicting position- and orientation-based angles

plane, the w
6 Ẑy component would be close to zero).

w
6 X̂x

w
6 X̂y

w
6 X̂z

w
6 Ŷx

w
6 Ŷy

w
6 Ŷz

w
6 Ẑx

w
6 Ẑy

w
6 Ẑz

Px

Py

Pz

0 0 0 1


(5.1)

With the orientation of the stylus known, the two angles α and β can be determined. The

orientation angle α can be found as

α = atan2
(
w
6 Ẑy,

w
6 Ẑx

)
(5.2)

The angle β is found in a similar way. For this angle, the location of the center must be

known.

β = atan2 (Px − Cx, Py − Cy) (5.3)

Since the “atan2” function is begin used for both of these angles, the angle returned will be

on the interval −π < θ ≤ π. The maximum magnitude the difference of these two angles can

take is 180o (if the difference between the two is greater than 180o, rotating in the opposite

direction will be less than 180o, which is desired. To control where the desired point is, let

there be an “influence” factor called t. The angle of this new point can be found as
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θ = α+ t (β − α)

θ = (1− t)α+ (t)β
(5.4)

5.2 Constraint as virtual manipulator

Consider the planar setup as shown in 5.3. In this case, the PHANTOM Omni is assumed

to be operating in a plane where the first joint angle θ1 is held constant at zero degrees. This

means that the PHANTOM is already constrained to the YZ plane.

Figure 5.3 Planar virtual manipulator setup

Now, a slight difference in naming convention will be made. Instead of calling this the YZ

plane, a coordinate system will be established calling this the XY plane, which will follow the

normal pictorial description of the plane (positive x axis to right, positive y axis is up), as seen

in figure 5.4. This is new coordinate system can be converted to the operating space of the

PHANTOM by using a desired transform. When looking at 5.4, system also can be analyzed

as a planar four-bar mechanism. The “ground” link connecting the frame of the real robot to

the frame of the virtual robot is known (in fact, the location of the virtual frame is hard-coded

in the code relative to the position of the frame of the real robot)

First, the kinematics of the real world robot can be determined. The results are with
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Figure 5.4 Planar virtual manipulator schematic

respect to the first joint of the real robot.
x

y

θ

 =


L1 cos θ1 + L2 sin (θ1 + θ2)

L1 sin θ1 + L2 cos (θ1 + θ2)

θ1 + θ2 + θ3

 = Φ (θ1, θ2, θ3) (5.5)

Next, the Jacobian of this robot configuration will be calculated. The Jacobian expresses

the Cartesian velocity of the robot in terms of the joint velocities or, in a similar manner,

relates the joint torques to the force exerted by the robot in Cartesian space (or the force

resisted by a given set of torques). Begin by taking the derivative of the kinematic equations

presented in (5.5). 
ẋr

ẏr

θ̇r

 =


−L1 sin θ1θ̇1 + L2 cos (θ1 + θ2)

(
θ̇1 + θ̇2

)
L1 cos θ1θ̇1 − L2 sin (θ1 + θ2)

(
θ̇1 + θ̇2

)
θ̇1 + θ̇2 + θ̇3

 (5.6)

Next, arrange equation (5.6) into matrix form


ẋr

ẏr

θ̇r

 =


−L1 sin θ1 + L2 cos (θ1 + θ2) L2 cos (θ1 + θ2) 0

L1 cos θ1 − L2 sin (θ1 + θ2) −L2 sin (θ1 + θ2) 0

1 1 1



θ̇1

θ̇2

θ̇3


= JR (θ1, θ2, θ3) Θ̇R

(5.7)
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In a similar manner, the kinematics of the virtual robot can be determined
xv

yv

θv

 =


Lv cos θv

Lv sin θv

θv

 (5.8)

Taking the derivative of the kinematics in equation (5.8) and factoring out the one angle

θV gives the Jacobian


ẋv

ẏv

θ̇v

 =


−LV sin θV

LV cos θV

1

 θ̇v
= JV (θV ) ΘV

(5.9)

The idea behind this constraint is to position the virtual manipulator such that that its

position represents the “nearest” position to the real robot. Since three degrees of freedom are

be measured in this planar case (x position, y position and orientation angle θ), the “nearest”

position is not simply defined—there exists the point that has the least position error (the

nearest point from the previous constraints) and there is a point that has the least orientation

error (in actuality, it will have zero orientation error since the virtual manipulator can have

any orientation in the operational plane).

When thinking about this constraint as a virtual robot, the idea of the force exertion of

the robot comes to mind. Suppose the stylus of the PHANTOM is being pushed downward,

as shown in figure 5.5.

Free body diagrams were constructed of both the virtual and real robots. As seen on the

free body diagram for the virtual manipulator, the external force (i.e. the force applied from

the real robot, which is the force applied by the user) can be broken into radial and angular

components about the single degree of freedom of the virtual robot. In order for the virtual

robot to resist the external force, only the radial component of the force must be balanced.

Using basic trigonometry, this can be found to be Fvθ = F sin θ. By summing the moments

about the pivot, the virtual robot torque can be found as
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Figure 5.5 Free body diagrams of the virtual and real robots

∑
M = τv − Fvθ

= τv − F sin θ

(5.10)

For the static case,
∑
M = 0 and the virtual torque is seen to be equal to the angular

component of the external force. Now, remembering an expression from the analysis of robots,

a relation between the joint torque and the Cartesian force is found to be

τv = JTv F (5.11)

Remember, the Jacobian Jv is a function of θv. In order to determine the force that a

given virtual manipulator is capable of withstanding, equation (5.11) must be solved for F.

In the general case, this is not an easy feat—in this simple case, F is a 3 × 1 column vector

representing Cartesian forces, the dimensions of τv depend on the number of joints in the robot,

and Jv is probably not a square matrix. In order to accomplish this, a Moore-Penrose matrix
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inverse can be used (also referred to as a pseudo-inverse). This method finds the least-squares

fit for F . By applying this method to equation (5.11), F can be found as

F = Jv
(
JTv Jv

)−1

τv (5.12)

This give a Cartesian force in the range space of the virtual manipulator (it accounts only

for the forces provided by the joint torques/forces and not forces provided by the structure of

the virtual manipulator). To help make the calculation in equation (5.12) account for these

type of effects, a weighting matrix can be included, resulting in the general form

F = WA Jv
(
JTv WA Jv

)−1

τv (5.13)

In order to continue this analysis, consider the error experienced by the system: e = XV −

XR. Both positions XV and XR are functions of the respective joint angles. A linearization of

these terms can be found using a Taylor sears expansion

Xv = Φv0 +
∂Φv
∂θv1

∣∣∣∣
θv=θv0

∆θv1 +
∂Φv
∂θv2

∣∣∣∣
θv=θv0

∆θv2 + · · ·+ higher order terms

Xr = Φr0 +
∂Φr
∂θr1

∣∣∣∣
θr=θr0

∆θr1 +
∂Φr
∂θr2

∣∣∣∣
θr=θr0

∆θr2 + · · ·+ higher order terms

(5.14)

By neglecting the higher order terms of equation (5.14), it is noticed that the partial

derivative terms represent simply the Jacobian of the manipulator. It is then possible to solve

this equation to find the necessary changes in the current position of the virtual manipulator

to minimize the error.

e ≈ Φv0 + Jv∆θv − Φr0 − Jr ∆θr︸︷︷︸
do

not

move

(5.15)

In order to minimize the error, the virtual manipulator will be moved. This is easier to

accomplish than moving the PHANTOM, since the virtual manipulator is only software. This
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means that the ∆θr term in equation (5.15) will be zero. Also, by definition, this method drives

the error to zero, resulting in an equation that relates the error to the movement required of

the virtual manipulator.

0 = Φv0 + Jv∆θv − Φr0 = Xr −Xv + Jv∆θv

Xr −Xv = −Jv∆θv

(5.16)

Since there might not be a single “nearest” position of the virtual manipulator when using

this setup, the weighted pseudo-inverse is used once again.

∆θ∗v =
(
JTv0 We Jv0

)−1

JTv0 We (Xr −Xv0) (5.17)

This small change is then added to the current joint variables of the virtual manipulator,

giving θv new = θv0 + ∆θ∗v . The new position of the virtual manipulator is then found as Xv =

Φv (θv). By iterating this procedure until the error is small enough, the virtual manipulator

can be position as close as possible.

For the simple case already presented in figure 5.3, a closed form solution can be found.

The Jacobian for the virtual manipulator was already found as

Jv =


−L sin θv

L cos θv

1

 (5.18)

This can be substituted into equation (5.17), along with choosing a weighing matrix of We

as

We =


0 0 0

0 0 0

0 0 w3

 (5.19)

Substituting:

∆θ
∗
v =

(
J
T
v0WeJv0

)−1
J
T
v0 (Xr −Xv)

=

[−Lv sin θv Lv cos θv1
] 

0 0 0

0 0 0

0 0 w3



−Lv sin θv

Lv cos θv

1



−1 [
−Lv sin θv Lv cos θv1

] 
0 0 0

0 0 0

0 0 w3



xr − xv

yr − yv

θr − θv


∆θ

∗
v = θr − θv

(5.20)
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With this specific choice for We, the error of the system is all located in the angle portion

of the virtual manipulator (e =
[
0 0 θr − θv

]T
).

The next step is to develop the control law to be used by the PHANTOM. Since three

errors are known (x-position, y-position, and angular orientation), a classic controller can be

created using proportional control (and derivative control if more damping is desired in the

system). Looking at equation (5.13), the cartesian force provided by the virtual manipulator

is known. Suppose a force FH (the hand force provided by the user) is applied, the sum of

these forces gives the motion-producing force on the system:

fmotion = FH − F

= FH − Jv
(
JTV Jv

)−1

JTv FH

=

(
I − Jv

(
JTV Jv

)−1

JTv

)
FH

(5.21)

Now, letting FH be governed by Kpe+Kdė, the control law takes the form

τh = JTr

(
I − Jv

(
JTV Jv

)−1

JTv

)
(Kpe+Kdė) (5.22)

Overall, the equation of the system looks like

Heq θ̈ + Ceq θ̇ =

(
I − Jv

(
JTV Jv

)−1

JTv

)
(Kpe+Kdė)− JTr fH (5.23)

where Heq is an equivalent inertia of the system and Ceq is an equivalent damping of the

system. The PHANTOM was designed to have low inertia and damping so Heq = Ceq ≈ 0.

Equation (5.23) can then easily be rearranged (ignoring the derivative portion of the control

law) into equation (5.24). Notice the conversion to the weighted pseudo-inverse calculation

and the omission of the derivative control.

fH =

(
I −WAJv

(
JTVWAJv

)−1

JTv

)
(Kpe) (5.24)
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For the specific case developed, a weighing matrix must be chosen:

WA =


w1 0 0

0 w2 0

0 0 0

 (5.25)

Now that all the quantities are known, they can be substituted into equation (5.24). Being

sure to take the appropriate transposes and inverses of the virtual manipulator Jacobian, the

equation results in

fH =


fx

fy

Mz

 =


1− w1 sin2 θv

w1 sin2 θv+w2 cos2 θv

w1 sin θv cos θv
w1 sin2 θv+w2 cos2 θv

w1 sin θv
Lv

(
w1 sin2 θv+w2 cos2 θv

)
w2 cos θv sin θv

w1 sin2 θv+w2 cos2 θv
1− w2 cos2 θv

w1 sin2 θv+w2 cos2 θv

w2 cos θv
Lv

(
w1 sin2 θv+w2 cos2 θv

)
0 0 1



ex

ey

eθ

 (5.26)

Now, for a simple example of the weighing, let w1 = w2 = 1. By substituting these weights:
fx

fy

Mz

 =


1− sin2 θv

sin2 θv+cos2 θv

sin θv cos θv
sin2 θv+cos2 θv

sin θv
Lv(sin2 θv+cos2 θv)

cos θv sin θv
sin2 θv+cos2 θv

1− cos2 θv
sin2 θv+cos2 θv

cos θv
Lv(sin2 θv+cos2 θv)

0 0 1



ex

ey

eθ

 (5.27)

Next, several trigonometric identities can be substituted to simplify this even further,

namely

sin2 (θ) + cos2 (θ) =1

2 sin (θ) cos (θ) = sin (2θ)

(5.28)

resulting in equation (5.29)


fx

fy

Mz

 =


cos2 (θv) kpex + 1

2
sin (2θv) kpey + sin(θv)

Lv
kpeθ

1
2

sin (2θv) kpex + sin2 (θv) kpey + cos(θv)
Lv

kpeθ

0

 (5.29)

The proportional gains (the Kp’s) can be chosen somewhat arbitrarily—the gains for the

cartesian (x- and y-errors) were set the same, but the angle gain was set much larger (500

times larger). With only a small gain, twisting the stylus in the plane had very little effect,
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so by increasing its gain, the slight number computer will correspond to a much larger force

acting on the stylus.

5.3 Coding and Results

Bezier Curve Method

The first step in coding this constraint is to determine the angles associated with the points

Pp and Po. As explained previously, the orientation of the stylus can be determined by noticing

that the z-axis of frame 6 points along the stylus. Because of this, the transform returned by the

device query gives the three components of the z-axis in the workspace. By using the desired

elements of the returned array (the returned array is stored as a one-dimensional data variable,

so by using equation (5.30), the correct elements can be determined), the orientation angle can

be determined. In the example of working in the XY plane, the elements needed are T [8] and

T [9]. Using the notation of before, this angle is α, and can be found as α = atan2 (T [9], T [8]).



w
6 X̂x

w
6 X̂y

w
6 X̂z

w
6 Ŷx

w
6 Ŷy

w
6 Ŷz

w
6 Ẑx

w
6 Ẑy

w
6 Ẑz

Px

Py

Pz

0 0 0 1


=



T [0]

T [1]

T [2]

T [4]

T [5]

T [6]

T [8]

T [9]

T [10]

T [12]

T [13]

T [14]

T [3] T [7] T [11] T [15]


(5.30)

The second angle is determined by the vector formed by the center of the circle and the

current stylus position, as described earlier. Because “atan2” is a four quadrant arc-tangent,

correct signs of the angles are returned. However, there is still the possibility that the two

angles are separated by more than 180o. This can only occur is one of the angles is negative

(since atan2 returns angles from −π < θ ≤ π, one angle would have to be negative for the

difference between the two angles to be greater than 180o or π radians). This can be checked

easily and if it is the case, 360o (2π radians) can be added to the small angle, leaving the angle

located at the same location on the unit circle, but larger so that the correct desired angle can

be computed. As example of this, consider figure 5.6.

In this example, α = −5π
6 , β = π

2 , and the “influence factor t = 0.4. The distance from α to
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Figure 5.6 Choosing the right angle for combination constraint

β is π
2 + 5π

6 = 4π
3 , which is greater than π radians. If the angle θ was to be computed without

altering α, it would give

θ = α+ t (β − α)

θ =
−5π

6
+

4
10

(
π

2
− −5π

6

)
=
−5π

6
+

4
10

(
8π
6

)
=
−5π

6
+

8π
15

=
−3π
10

(5.31)

This angle, as already seen in figure 5.6 to be on the incorrect (i.e. long) path from α to

β. By adjusting α by 2π, this will adequately adjust the resultant angle θ
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θ = α+ t (β − α)

θ =
7π
6

+
4
10

(
π

2
− 7π

6

)
=

7π
6

+
4
10

(
−4π

6

)
=

7π
6
− 4π

15

=
9π
10

(5.32)

So, by simply checking if the angular difference between the two angles is greater than 180o

(π radians) the correct angle is easily determined. The actual code used for this constraint is

shown in Code 5.1. As already mentioned, this code can be altered to allow for other principle

planes with ease. For these cases, the correct components must be used when computing the

arctangents (for example, if the XZ plane is being using, the first angle “phi” would need to

be computed as “phi=atan2(state.transform[10],state.transform[8])”).

Figure 5.7 shows three time histories for a trial set of data. The top line is the angle

α, representing the angle that corresponds to the point on the circle with the same outward

normal has the same orientation of the stylus. The bottom line represents the angle β, the

angle from the positive x-axis to the nearest point on the circle. On this particular plot, the

middle line (denoted with the many small “x” marks) represents the calculated position based

a Bezier parameter value of 0.5 (incidentally halfway between α and β). During time when

all three lines are close to each other, the stylus of the PHANTOM is oriented normal to the

circle (most predominantly between eight and nine seconds).

Virtual Manipulator Method

Since the coding of the Bezier curve method was already performed, applying the virtual

manipulator code is fairly straight-forward. A closed form solution for the desired problem was

computed, so this was coded instead of an iterative solution. As already described, the z-axis

of frame {6} is along the stylus and is used to determine the orientation of the stylus. The

code for this constraint can be seen in code 5.2. The third component of the the force vector
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Code 5.1 Orientation based XY planar circle code
1 // find orientation angle based on current transform
2 f l o a t phi=atan2 ( s t a t e . transform [ 9 ] , s t a t e . transform [ 8 ] ) ;
3
4 // Calculate point on the sphere that has the same normal orientation
5 point1 [0 ]= c i r c l e C e n t e r [0 ]+ c i r c l eRad ∗ cos ( phi ) ;
6 point1 [1 ]= c i r c l e C e n t e r [1 ]+ c i r c l eRad ∗ s i n ( phi ) ;
7 point1 [2 ]= c i r c l e C e n t e r [ 2 ] ;
8
9 // Compute the vector from the current stylus position to the center of the circle, then find its magnitude

10 posvect=s t a t e . po s i t i on−c i r c l e C e n t e r ;
11 posvectmag=sqr t ( ( ( f l o a t ) posvect [ 0 ] ) ∗ ( ( f l o a t ) posvect [0 ] )+
12 ( ( f l o a t ) posvect [ 1 ] ) ∗ ( ( f l o a t ) posvect [ 1 ] ) ) ;
13
14 // Compute desired point, manually set z-dimension to where ever the circle lies
15 des i redPos=c i r c l eRad ∗posvect /posvectmag ;
16 des i redPos [2 ]= c i r c l e C e n t e r [ 2 ] ;
17
18 // find angle of same oriention from positive x-axis
19 f l o a t alpha=atan2 ( ( point1 [1]− c i r c l e C e n t e r [ 1 ] ) , ( po int1 [0]− c i r c l e C e n t e r [ 0 ] ) ) ;
20
21 // find angle of the nearest point from positive x-axis
22 f l o a t beta=atan2 ( ( des i redPos [1]− c i r c l e C e n t e r [ 1 ] ) , ( des i redPos [0]− c i r c l e C e n t e r [ 0 ] ) ) ;
23
24 // Adjust to get0 < θ < pi
25 i f ( abs ( beta−alpha)>PI )
26 {
27 alpha=alpha+2∗PI ;
28 }
29
30 // Introduce the influence factor. Ranges from 0 to 1
31 // r2=0 - just orientation, r2=1 - just position
32 f l o a t r2 =0.5;
33
34 // Compute the desired angle as combination of the two previous angles with the influence factor
35 f l o a t theta=alpha+r2 ∗( beta−alpha ) ;
36
37 // Compute the desired position as the point on the circle with the desired angle
38 des i redPos [0 ]= c i r c l e C e n t e r [0 ]+ c i r c l eRad ∗ cos ( theta ) ;
39 des i redPos [1 ]= c i r c l e C e n t e r [1 ]+ c i r c l eRad ∗ s i n ( theta ) ;
40 des i redPos [2 ]= c i r c l e C e n t e r [ 2 ] ;
41
42 // Calculate force
43 f o r c e=kp∗( des iredPos−s t a t e . p o s i t i o n ) ; {optional: +ke*(desiredVel-state.velocity);}

(“force[2]”) simply pulls the stylus to the plane where the virtual manipulator is operating.

Figure 5.8 shows the results of using this code. As can be seen in the code, the proportional

gains associated with error in the x- and y-directions are only 0.5 whereas the gain associated

with the angular error is 250. The image shows the desired circle of rotation (the pivot of

the virtual manipulator is at the center of this circle). Also shown are the stylus (small, thick

circle and thick line), the nearest point on the circle (the square), the tangent at that location

(dashed line) and a representative force vector (traveling in the direction of the tangent, not

to scale).
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Figure 5.7 Bezier curve method angle histories

Code 5.2 Virtual manipulator in XY plane code
1
2 thetaR=atan2 ( s t a t e . transform [ 9 ] , s t a t e . transform [ 8 ] ) ;
3 thetaV=atan2 ( s t a t e . p o s i t i o n [ 1 ] , s t a t e . p o s i t i o n [ 0 ] ) ;
4
5 Perror [0 ]=( pivotLoc [0 ]+Lv∗ cos ( thetaV))− s t a t e . p o s i t i o n [ 0 ] ;
6 Perror [1 ]=( pivotLoc [1 ]+Lv∗ s i n ( thetaV))− s t a t e . p o s i t i o n [ 1 ] ;
7 Perror [2 ]= thetaV−thetaR ;
8
9 fx =(( cos ( thetaV ) )∗ ( cos ( thetaV ) )∗0 . 5∗ Perror [0 ]+( s i n ( thetaV ))∗

10 ( cos ( thetaV ) )∗0 . 5∗ Perror [1 ] )+(250∗ Perror [ 2 ] ∗ s i n ( thetaV )/Lv ) ;
11 fy =(( cos ( thetaV ) )∗ ( s i n ( thetaV ) )∗0 . 5∗ Perror [0 ]+( s i n ( thetaV ))∗
12 ( s i n ( thetaV ) )∗0 . 5∗ Perror [1])+(−250∗ Perror [ 2 ] ∗ cos ( thetaV )/Lv ) ;
13
14 f o r c e [0 ]= fx ;
15 f o r c e [1 ]= fy ;
16 f o r c e [2]=−kp [ 2 ] ∗ s t a t e . p o s i t i o n [ 2 ] ;
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Figure 5.8 Virtual manipulator results
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5.4 Orientation based cylinder

A simple extension of the Bezier curve-based constraint is to extend it to a cylinder. In

actuality, this constraint is very simple to code. Given a simple planar cylinder in the XY

plane, for example, the force component in the z-direction should be zero (just as was the

case in the regular cylinder constraint developed earlier). This means the only real difference

between coding this cylinder and circle above is to change the force component along the axis

of the cylinder

Code 5.3 Orientation based XY planar cylinder code
1 // find orientation angle based on current transform
2 f l o a t phi=atan2 ( s t a t e . transform [ 9 ] , s t a t e . transform [ 8 ] ) ;
3
4 // Calculate point on the sphere that has the same normal orientation
5 point1 [0 ]= c i r c l e C e n t e r [0 ]+ c i r c l eRad ∗ cos ( phi ) ;
6 point1 [1 ]= c i r c l e C e n t e r [1 ]+ c i r c l eRad ∗ s i n ( phi ) ;
7 point1 [2 ]= c i r c l e C e n t e r [ 2 ] ;
8
9 // Compute the vector from the current stylus position to the center of the circle, then find its magnitude

10 posvect=s t a t e . po s i t i on−c i r c l e C e n t e r ;
11 posvectmag=sqr t ( ( ( f l o a t ) posvect [ 0 ] ) ∗ ( ( f l o a t ) posvect [0 ] )+
12 ( ( f l o a t ) posvect [ 1 ] ) ∗ ( ( f l o a t ) posvect [ 1 ] ) ) ;
13
14 // Compute desired point, manually set z-dimension to where ever the circle lies
15 des i redPos=c i r c l eRad ∗posvect /posvectmag ;
16 des i redPos [2 ]= c i r c l e C e n t e r [ 2 ] ;
17
18 // find angle of same oriention from positive x-axis
19 f l o a t alpha=atan2 ( ( point1 [1]− c i r c l e C e n t e r [ 1 ] ) , ( po int1 [0]− c i r c l e C e n t e r [ 0 ] ) ) ;
20
21 // find angle of the nearest point from positive x-axis
22 f l o a t beta=atan2 ( ( des i redPos [1]− c i r c l e C e n t e r [ 1 ] ) , ( des i redPos [0]− c i r c l e C e n t e r [ 0 ] ) ) ;
23
24 // Adjust to get0 < θ < pi
25 i f ( abs ( beta−alpha)>PI )
26 {
27 alpha=alpha+2∗PI ;
28 }
29
30 // Introduce the influence factor. Ranges from 0 to 1
31 // r2=0 - just orientation, r2=1 - just position
32 f l o a t r2 =0.5;
33
34 // Compute the desired angle as combination of the two previous angles with the influence factor
35 f l o a t theta=alpha+r2 ∗( beta−alpha ) ;
36
37 // Compute the desired position as the point on the circle with the desired angle
38 des i redPos [0 ]= c i r c l e C e n t e r [0 ]+ c i r c l eRad ∗ cos ( theta ) ;
39 des i redPos [1 ]= c i r c l e C e n t e r [1 ]+ c i r c l eRad ∗ s i n ( theta ) ;
40 des i redPos [2 ]= c i r c l e C e n t e r [ 2 ] ;
41
42 // Calculate force
43 f o r c e=kp∗( des iredPos−s t a t e . p o s i t i o n ) ; {optional: +ke*(desiredVel-state.velocity);}
44 f o r c e [ 2 ]=0 ; // Set z-force to zero since it is along the axis of the cylinder

Because of the complexity of attempting to create meaningful figures of three-dimensional

objects (not to mention the time varying nature of the user input to the PHANTOM’s stylus),

a plot of this constraint is not provided.



66

CHAPTER 6. SUMMARY AND DISCUSSION

In this report, the PHANTOM Omni was explored as a robot instead of a three-dimensional

data analysis tool. The basic, position-based constraints presented in Chapter 4 provided a

basic stepping stone into the world of haptic interactions. These interactions were expanded

to include the unactuated degrees of freedom (the degrees responsible for spatial orientation),

allowing for more complex interactions and a “springy” feel for the stylus.

The first use of these other degrees of freedom used the theory of a Bezier curve to determine

the desired position of the stylus. Two angle were calculated based on the user’s input via the

stylus: the in plane orientation angle of the stylus and the angle along the desired circle to the

nearest point. By finding the shortest angle between those two angles, the desired point can

be placed anywhere along the arc connecting them. While this provided some interaction not

normally found on the PHANTOM, it is not simple to adjust this to other scenarios (consider

expanding this to a sphere where two points are found, once again the nearest physical point

and the point with the same outward normal as the stylus). These other interactions would

require complex math analysis and programming.

The next method explored was the use of a virtual manipulator. The virtual manipulator

model for interaction provides a more powerful framework for more advanced haptic interac-

tions. By integrating an iterative method to find the “nearest” position of a given virtual

manipulator, nearly any constraint system can be determined. Since this method only re-

quires the input of the Jacobian of the virtual robot, no additional math would have to be

performed, allowing more complicated systems to be constructed (consider again the sphere

described before—this represents a 2R robot with an easy to calculate Jacobian). In theory,

this method of control does not need an underactuated robot like the PHANTOM. Robots
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like the higher end PHANTOM Desktop (a six degree-of-freedom sensing and actuating robot

made by Sensable) or even a PUMA 560 should be able to be constrained with this method.

For future work, it would be interesting to implement the iterative method for the virtual

manipulator and to try several of the more advanced constraints. Another further step in this

research would be to calibrate the interaction so that a given sensory response can be approx-

imated. This type of calibration would allow the user of the device to differentiate between

multiple inputs (as an example, suppose the PHANTOM is used to model the flexibility of

several different cantilever beams), allowing for more interactive engineering design.
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APPENDIX A. REVIEW OF LINEAR ALGEBRA

This appendix is intended as a brief refresher of linear algebra, particularly vector and

matrix operations. For a more complete discussion of linear algebra, see [1].

Defining vectors and matrices

A vector is an ordered sequence of numbers. In this regard, a vector can be thought of as

one–dimensional representation of data. In many branches of sciences and engineering, vectors

have three components — corresponding to the three priciple spatial axes. A vector represents

a magnitude and direction of a given quantity. Examples of vectors include: displacements,

velocities, accelerations, forces, fluid flow, among many others. Vectors are different from

scalar quantities in the regard that a scalar is just the number (for example, a speed of 3ms )

and a vector contains a direction (compared to 3ms along the x-axis). A vector can be defined

as shown in A.1.

~a =

[
ax ay az

]
(A.1)

The magnitude of the vector can be calculated as

|~a| =
√
a2

1 + a2
2 + a2

3 (A.2)

On the other hand, a matrix is a collection of data arranged into rows and columns, making

the matrix a two–dimensional representation of data. These matrices can have arbitrary size,

as demonstrated in (A.3). This is said to be an m× n matrix.

b =



b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n

...
...

. . .
...

bm,1 bm,2 · · · bm,n


(A.3)
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Adding, subtracting and scalar multiplication

Adding and subtracting

When performing addition or subtraction of vectors, the lengths of the two (or more)

vectors must be the same — that is, they contain the same number of elements. In the simple

case of two three-element long vectors a and b, their sum is found as

~a =

[
ax ay az

]
~b =

[
bx by bz

]
~a + ~b =

[
ax + bx ay + by az + bz

] (A.4)

The processe of matrix addition or substraction closely follows the rule for vector addition

or subtraction. Since the dimension of the one–dimensional vectors must match in order to

add/subtract, both dimensions of the two–dimensional matrices must match to be able to

add/subtract them, as demonstrated in equation (A.5).

A =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3


B =

b1,1 b1,2 b1,3

b2,1 b2,2 b2,3


A + B =

a1,1 + b1,2 a1,2 + b1,2 a1,3 + b1,3

a2,1 + b2,1 a2,2 + b2,2 a2,3 + b2,3



(A.5)

Scalar multiplication

Scalar multiplication of a vector or matrix involves multiplying each element within the

vector or matrix by the scalar factor, as shown in (A.6), a simple example of a scalar multiplying

a vector.

~a =

[
ax ay az

]
c~a =

[
cax cay caz

] (A.6)
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A scalar multiplying a matrix is handled similarly, where the scalar multiplies every element

of the matrix.

B =

b1,1 b1,2 b1,3

b2,1 b2,2 b2,3


cB =

cb1,1 cb1,2 cb1,3

cb2,1 cb2,2 cb2,3


(A.7)

Vector and matrix multiplication

The dot product

The first method of multiplying two vectors is known as the dot product (or the inner

product, depending on the text consulted). Like with adding vectors, the dot product requires

that the dimension of the vectors are the same. The dot product is then defined as

~x =

[
x1 x2 · · · xn

]
~y =

[
y1 y1 · · · yn

]
~a · ~b = x1y1 + x2y2 + · · ·+ xnyn =

n∑
i=1

xiyi

(A.8)

An alternate way of defining the dot product has a more geometric interpretation:

~x · ~y = ‖~x‖ ‖~y‖ cos (θ) (A.9)

where θ is the angle between the two vectors

The cross product

In contrast to the dot product, the cross product of two vectors returns a vector instead of

scalar. This vector, it happens, is orthogonal to the two initial vectors — that is, the resultant

vector is the normal to the plane formed by the initial vectors. The cross product can be

defined as

~x⊗ ~y = ‖~x‖ ‖~y‖ sin (θ) (A.10)



71

Like with the dot product, θ is the in-plane angle between the two initial vectors. For the

case of two three-dimensional vectors, the cross product can be written in two other ways. But

first, these different operations must be discussed.

Matrix multiplication

As seen above, vector multiplication requires that both vectors have the same length. When

multiplying matrices, only the inner dimension of the matrices must match. For example, if a is

a (2× 4) matrix and b is a (4× 3) matrix, the multiplication is possible because (2× 4)×(4× 3)

has the same inner dimension. This also allows the size of the result to be seen — (2× 3) —

because the inner dimesions cancel each other out. Generally, matrix multiplication can be

defined as Am,n×Bn,p = Cm,p whose (i, j)th entry is the dot product of the ith row of A with

the jth column of B.

As example of this multiplication consider the following

A =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

 B =


b1,1 b1,2

b2,1 b2,2

b3,1 b3,2



AB =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3



b1,1 b1,2

b2,1 b2,2

b3,1 b3,2


AB =

a1,1b1,1 + a1,2b2,1 + a1,3b3, 1 a1,1b1,2 + a1,2b2,2 + a1,3b3, 2

a2,1b1,1 + a2,2b2,1 + a2,3b3, 1 a2,1b1,2 + a2,2b2,2 + a2,3b3, 2



(A.11)

Looking at multiplication in this manner allows a generalization of the vector operations

described. If a vector is horizontal, it can be thought of as a (1× n) matrix. Likewise, if a

vector is aligned vertically, it can be thought of as (n× 1) matrix. With this new knowledge,

the vector cross product can be rewritten as the multiplication of a (3× 3) matrix with a

(3× 1) vector, resulting in a (3× 1) vector, as follows in equation (A.12)
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~x =

[
x1 x2 x3

]
~y =

[
y1 y2 y3

]

~x⊗ ~y =


0 −x3 x2

x3 0 −x1

−x2 x1 0



y1

y2

y3



~x⊗ ~y =


x2y3 − x3y2

x3y1 − x1y3

x2y1 − x1y2



(A.12)

Other useful operations

The determinant

Without going into too much theoretical linear algebra, the determinant of a matrix relates

a singular value (or expression) to a matrix. Given a matrix A, the determinant has several

different notations:

detA = |A| (A.13)

As a simple example, consider the 2× 2 matrix

A =

a1,1 a1,2

a2,1 a2,2

 (A.14)

The determinant of this can be found as

detA =

∣∣∣∣∣∣∣
a1,1 a1,2

a2,1 a2,2

∣∣∣∣∣∣∣ = a1,1a2,2 − a1,2a2,1 (A.15)

As a more complex example, consider the 3× 3 matrix

B =


b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

 (A.16)
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In order to find the determinant of this matrix, a co-factor expanion is used

detB =

∣∣∣∣∣∣∣∣∣∣
b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

∣∣∣∣∣∣∣∣∣∣
= b1,1

∣∣∣∣∣∣∣
b2,2 b2,3

b3,2 b3,3

∣∣∣∣∣∣∣− b1,2
∣∣∣∣∣∣∣
b2,1 b2,3

b3,1 b3,3

∣∣∣∣∣∣∣+ b1,3

∣∣∣∣∣∣∣
b2,1 b2,2

b3,1 b3,2

∣∣∣∣∣∣∣
= b1,1 (b2,2b3,3 − b2,3b3,2)− b1,2 (b2,1b3,3 − b2,3b3,1)

+ b1,3 (b2,1b3,2 − b2,2b3,1)

(A.17)

The result of equation (A.17) is remarkable similar to the result of equation (A.12). With

a small alteration, the cross product can then be written as:

~x =

[
x1 x2 x3

]
~y =

[
y1 y2 y3

]

~x⊗ ~y = det


i j k

x1 x2 x3

y1 y2 y3


= i (x2y3 − x3y2) + j (x3y1− x1y3) + k (x1y2 − x2b1)

(A.18)

which then can be written in standard vector form as

~x⊗ ~y =

[
x2y3 − x3y2 x3y1− x1y3 x1y2 − x2b1

]
(A.19)

The transpose

The last operation covered in this review is the transpose. The transpose is used to reorder

the elements of a vector (or matrix). As an example of using the transpose, a column vector

can be transposed to become a horizontal vector. Given a vector (or matrix) A, the transpose

is denoted AT . A general formula for the transpose states that the
(
ith, jth

)
element of A

becomes the
(
jth, ith

)
element of AT . Equation (A.20) shows how to use the transpose on a

vector and a matrix.
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A =

[
ax ay az

]
B =

b1,1 b1,2 b1,3

b2,1 b2,2 b2,3



AT =


ax

ay

az

 BT =


b1,1 b2,1

b1,2 b2,2

b1,3 b2,3


(A.20)

Vector normalization

The process of vector normalization involves the scaling of the vector such that its magni-

tude is unity. A scaled version of this vector is simply the original divided by its magnitude

~a =

[
ax ay az

]
|~a| =

√
a2
x + a2

y + a2
z

â =
~a

|~a|

(A.21)

The ”‘hat”’ notation is usually adopted to denote vectors of unit length.
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APPENDIX B. REVIEW OF CONTROL THEORY

This section provides a brief review of the concepts of classical controls theory. Main

concepts will be system modeling in time and s-domains, time domain specifications and basic

control structure. For a more in-depth look at classical control theory, see [8].

System modeling

The first step in modeling a system is to find the equation of motion. These exact equations

depend on the system in question, but generalities can be developed. Many systems of practical

importance can be approximated by either first or second order systems (that is, function of

at most the first or second derivative of the desired variable). If the equations do not fall into

these categories, it is possible to use approximations and simplifications to get the system into

a first or (more likely the case) second order system. If certain modes of movement behave

much faster than the others, their part of the response can be neglected to the slower ones.

First order systems

A first order system is characterized by a first order differential equation, such as (for

example) seen in equation (B.1) (the reason for the “a” before the forcing function f (t) will

become apparent it a bit).

ẋ+ ax = a f (t) (B.1)

With many control applications, the Laplace transform is used to analyze systems. The

Laplace transform is defined as

L [f (t)] = F (s) =

∫ ∞
0−

f (t) e−stdt (B.2)
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Ignoring the initial conditions of the system, a transfer function for the system shown in

equation (B.1) can be found

L [ẋ+ ax] = L [a f (t)]

X (s+ a) = aF (s)

T (s) =
X (s)

F (s)
=

a

s+ a

(B.3)

When analyzing transfer functions, the final value theorem can be used. This states that

the steady state value the system approaches can be found by setting “s” to zero in the transfer

function. In mathematical symbols

lim
t→∞

f (t) = lim
s→0+

F (s) (B.4)

By applying the final value theorem to equation (B.3), the system is seen to become one at

steady state. This is easily verified by simulating the systing, shown in figure B.1.

Figure B.1 First order system response

If the system equation is changed slightly from (B.1) to a slightly different:

ẋ+ ax = f (t) (B.5)
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Taking the Laplace transform gives a new transfer function

L [ẋ+ ax] = L [f (t)]

X (s+ a) = F (s)

T (s) =
X (s)

F (s)
=

1

s+ a

(B.6)

Notice the only difference between equations (B.1) and (B.5) is the term “a” multiplying

the forcing function. This will cause the output to reach 1
a instead of reaching one. Likewise,

if the “a” multiplying the forcing function in (B.1) was changed to “3a”, the output would

reach a magnitude of three. These cases are easily seen using equation (B.4).

Second order systems

A second order system consists of a system with the second derivative of a desired variable,

as demonstrated in equation (B.7)

aẍ+ bẋ+ cx = f (t) (B.7)

As with the first order system, the Laplace transform can be taken (once again ignoring initial

conditions) to give a transfer function

L [aẍ+ bẋ+ cx] = L [f (t)]

X
(
as2 + bs+ c

)
= F (s)

T (s) =
X (s)

F (s)
=

1

as2 + bs+ c

(B.8)

The denominator of this equation is called the characteristic equation of the system—it

contains the dynamics of the physical system as shown in equation (B.7) From this equation,

a slight generalization can be created to describe an arbitrary second order system. The two

parameters that adequately describe a second order system are the natural frequency (ωn)

and the damping ratio (ζ). A damping ratio of zero represents an un-damped system (it will

oscillate forever). A damping ratio of one is considered critically damped. Damping ratios

from zero to one are classified as under-damped, and damping ratios above one are classified

as over-damped A general equation can be formed as

T =
Cω2

n

s2 + 2ζωns+ ω2
n

(B.9)
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In equation (B.9), the factor “C” is the steady state gain of the system, determined using

the final value theorem. A plot of this general function, for a variety of damping ratios, is

shown in figure

Figure B.2 Generic second order responses

Higher order simplification

As previously mentioned, higher order systems can often be simplified to a second order

system. As an example, consider a third order transfer function given by

T (s) =
5

(s+ 1) (s+ 2) (s+ 30)
(B.10)

In this form, the roots of the characteristic equation are easily seen as -1, -2 and -30. The

root of -30 is greatly larger (and thus, faster) than the other two roots, that it is desired to see

its effect on the overall dynamics. Employing a partial fraction expansion of equation (B.10)

gives

T (s) =
− 5

29

s+ 1
+

5
28

s+ 2
+

5
812

s+ 30
(B.11)
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From equation (B.11), the fast root of -30 can be easily neglected, leaving just a second

order system, as seen in equation (B.12).

T (s) =
− 5

29

s+ 1
+

5
28

s+ 2
(B.12)

By simulating both of these systems, the results can be seen in figure B.3. It is seen that

the error between these two systems is very small (at most 3 × 10−3). Because of this, it is

seen that the fast root of the system can be neglected to simplify the model. It is also possible

to isolate different dynamic modes in the equations for a system. When dealing with control

systems in state space (matrix) form, operations could be performed to cause the different

modes to be isolated from each other. For example, it is might be possible to isolate the

second order dynamics governing the roll angle (side-to-side) of an automobile from the second

order dynamics governing the pitch angle (front-to-back) of the same automobile.

Figure B.3 Comparing third and second order responses
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Time domain specifications

One of the common inputs to a system is a step input. Such an input occurs when something

is applied to a system starting at one time and remaining “on” for the rest of time (there is

much theory about classical control systems as linear, time-invariant systems). Examples of

such an input would be turning a voltage source on at a given time in an electrical system or

by adding mass to a mechanical system. First and second order systems can be generalized.

First order systems

Consider again the system found in equation (B.5). When applying a step input, the

response of the generic system can be seen in figure B.4. A first order system experiences an

exponential increate to its final value. Two parameters have been drawn on the figure that

help to characterize the response: the rise time (Tr) and the settling time (Ts). The rise time

is the time it takes the system to move from 10% of its final movement to 90% of its final

movement (these values vary depending on the text consulted). The settling time is the time

when the system is within 2% of its final value (once again, this number changes with the text

used).

Figure B.4 First order system step response
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Second order systems

There are several time-bases characteristics important to the analysis of a second order

system. An example response is shown in figure B.5. As with the first order system, a second

order system has a rise time and a settling time. For the most part, the definitions are the

same as for first order systems with one slight difference. Because of the oscillatory nature of

a second order system, it is possible that the system approaches the steady state value from

either above or below (unlike just below, as depicted earlier in figure B.4 for the first order

system). Both of these boundaries need to be watched to determine if the system stays within

them. In addition to rise and settling times, the second order system has the peak time and

the overshoot. Peak time, like its name implies is the time at which the system reaches its

maximum value. The overshoot is the ammount above steady state the system reaches at the

peak. This value is often expressed as a percentage (figure B.5 has roughly 38% overshoot).

Figure B.5 Second order system step response

Basic control structures

There are many types of control structures. They range from the easily implemented

proportional controller, to the phase lag and phase lead controllers used in frequency response
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(see [9]), and ultimately to the difficult observer-based full-state feedback of state-space systems

(see [3]). While the more advanced controllers do allow better control of complex systems, only

three simple cases will be discussed here: proportional control, proportional plus derivative

control and finally proportional, integral and derivative control. With all controllers, the input

to the system input is to be defined by some sort of error in the measure of the system as

compared to some reference signal. The examples presented will use mechanical systems,

using position as the variable of interest.

Proportional (P)

The easiest control structure to use is a simple proportional controller. This controller

looks at the difference between the position and a desired position. The input to the system

is, like its name implies, proportional to this difference, as seen in equation (B.13).

Finput = Kp (xdesired − xmeasured) (B.13)

Proportional and derivative (PD)

PD control begins with the basic structure of the proportional controller but adds a deriva-

tive term, as seen in equation (B.14). This term often acts to slow the system down as it

approaches the desired system (that is, the ẋdesired term is zero, since the system is to be at a

given position at rest). Likewise, if the system is moving away from the desired position, this

term will work to slow the system down.

Finput = Kp (xdesired − xmeasured) +Ke (ẋdesired − ẋmeasured) (B.14)

Proportional, integral and derivative (PID)

The PID controller is perhaps one of the most implemented controllers. It combines the

proportional and derivative elements of the previous two with an integral term. This term looks

at the cumulative error of the system. This integral element is especially useful to correct for
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steady state errors—if the system normally reaches only 0.8 when trying to reach 1.0, this

integral term will grow large with time, causing the system to eventually reach the desired

value.

Finput = Kp (xdesired − xmeasured) +Ke (ẋdesired − ẋmeasured) +Ki

∫ t

0

(xdesired − xmeasured) (B.15)
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