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ABSTRACT

Prediction of colloidal nanoparticle aggregation is an important problem which needs to

be solved in an accurate and efficient manner. Thus, accurate modeling of physico-chemical

interactions is required. In addition, to have good aggregation statistics, large system sizes

should be considered, which can significantly increase computational cost and decrease code

efficiency. In ideal case model which is chosen to predict colloidal nanoparticle aggregation

should accurately describe physico-chemical interactions of relatively large physical systems,

and at the same time, simulate at low computational cost.

In this research, two simulation approaches, molecular dynamics (MD) and Brownian dy-

namics (BD), are analyzed and compared with a view to accurately predicting aggregation

of colloidal nanoparticles. Based on this comparison it was found that MD approach is not

feasible to simulate an aggregation of colloidal nanoparticles for systems of physical sizes but

can be used to simulate non-physical (model) systems. Thus, such coarse-grain approaches as

BD have to be used instead. Because the BD technique is essentially a reduction of the MD

method the accuracy requirements for BD simulations have been established.

Analysis of characteristic time scales for the BD approach justifies reduction of position

and velocity-Langevin equations to position-Langevin for physical system and is not justified

for model system.

A new method to match aggregation statistics obtained from MD and BD simulations is

proposed in this work. In this method the evolution of the second-order density for MD model

is derived. The average relative acceleration between nanopartilce pairs is identified as an

important link between MD and coarse-grain simulations such as BD.

Although BD is a coarse-grain model with fewer degrees of freedom, it gives reasonable
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predictions of nanoparticles aggregation. Also, because of its high computational efficiency

this method can be a useful tool to simulate nanoparticle aggregation in colloidal systems.
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CHAPTER 1. INTRODUCTION

Nanoparticles are widely used as building blocks in nanotechnology research. Because

the size of nanoparticles scales to tens of nanometers, new materials in nanoscale range can

be created. Moreover, properties of such materials differs from bulk material properties [1].

Mainly two high-rate synthesis methods are used in the industry: aerosol reactors in a gaseous

environment and colloidal reactors in a fluid environment [1, 2]. In most of the methods the

synthesis of the particles occurs due to the reaction of chemical precursors and the formation of

nuclei, which rapidly grow due to surface addition and/or aggregation. The next generation of

applications will require improvement in the quality of the monodispersity, purity, and uniform

surface chemistry of nanoparticles [2]. Because the aggregation of the colloidal nanoparticles

is the important part of this process, a better understanding of the aggregation process will

help to improve synthesis methods.

Prediction of colloidal nanoparticle aggregation is an important problem which needs to

be solved in an accurate and efficient manner. Thus, accurate modeling of physico-chemical

interactions is required. This can be achieved by developing the coarse-grained particle in-

teraction potentials derived from quantum mechanics calculations, that are suitable for large

scale nanoparticle aggregation simulations. In this case, the atomic models for surface mole-

cules of polystyrene nanoparticles can be developed to calculate surface-molecule, surface-

surface, and molecule-molecule interaction forces. These results can be validated by atomic

force microscopy (AFM) measurements of polystyrene-polystyrene nanoparticles, and used in

simulation of nanoparticles aggregation as a physical potential.

In addition, to have good aggregation statistics, large system sizes should be considered,

which can significantly increase computational costs and decrease code efficiency. Ideally the
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model which is chosen to predict colloidal nanoparticle aggregation should accurately describe

physico-chemical interactions of relatively large physical systems, and at the same time, simu-

late at a low computational cost. In reality this is hard to achieve. In many cases if the model

is very accurate it is usually not efficient and cannot be used to simulate a physical problem.

On the other hand, more efficient models usually are not very accurate in terms of representing

the physics, thereby limiting their applicability. Thus, a computational model which is chosen

to predict an aggregation of colloidal nanoparticles should maintain the balance between the

level of accuracy and computational efficiency.

An accurate description of the colloidal nanoparticle aggregation process can be done by

performing an accuracy analysis of the statistics which characterize aggregation. To completely

characterize aggregation statistics such as the extent of aggregation ξ, cluster size distribution

(CSD), and the radial distribution function g(r) need to be analyzed. The extent of aggrega-

tion, 0 ≤ ξ < 1 is defined as

ξ = 1 − M0(t)

M0(0)
(1.1)

where M0 is the zeros moment of the total concentration of clusters. This parameter represents

the relative mass of aggregates in the system at time t. Therefore, this variable approaches

unity when all the system mass accumulates in a single cluster. And ξ = 0 if monomers are

staying separate and do not form clusters at all time. Knowledge of this parameter allows us

to estimate the level of aggregation in a system. More detailed information about aggregation

statistics can be obtained by analyzing CSD data. In this case, the number of clusters and

their size distribution is obtained. This additional level of detail can be very important when

accuracy of the computational model is under investigation. Even though the CSD gives infor-

mation about cluster sizes, it does not give any information about cluster structure. Therefore,

the radial distribution function g(r) is introduced as an additional characteristic to provide

information about the structure of clusters. Together these three parameters provide complete

characterization of the aggregation process and all of them should be used when an accuracy

analysis is performed.

For aggregating systems some additional parameters are often calculated, such as the cluster
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radius of gyration Rg and the cluster fractal dimension Df [3, 4, 5, 6]. The cluster radius of

gyration defines the average size of the cluster, and the cluster fractal dimension is an indication

of how completely a cluster appears to fill space. The mass of the cluster scales with geometric

size as N ∼ R
Df
g and by plotting log(N) versus log(Rg); linear regression yields a slope equal

to Df . The advantage of this method is a simplicity of Df calculation. However, this method

can be only used for the ensemble of clusters of different sizes and is not applicable for cases

with fewer clusters in the system due to the statistical variation in the Rg values.

Light scattering analysis is proposed as another method for investigating aggregate struc-

ture [4, 5, 6]. This method allows measuring Df even for a single cluster from the slope of

the log-log plot of the structure factor of an aggregate S(q) versus qa, where q is the scatter-

ing wave vector and a is the particle diameter. The light scattering technique gives cluster

structure information for a wide range of scales: from monomer size to the geometric size of

a cluster. This feature allows us to discover any possible structure changes at different length

scales, especially for the relatively large clusters where it gives the most complete description

of the aggregate structure. Also, this technique is very useful when an aggregation of the

realistic physical system is investigated from an experimental and computational perspective.

In this case, the light scattering technique allows direct comparison of the cluster structures

for experimentally measured physical systems and computationally simulated systems. Thus,

the validation process of the computational model simplifies significantly.

A major difficulty in the simulation of colloidal nanoparticles is the wide range of time and

length scales which are present in the system. The wide range of time scales is introduced by the

presence of short-time Brownian motion and the long-time hydrodynamic behavior of solvent.

The wide range of length scales occurs due to the size separation of colloidal nanoparticles and

solvent molecules. There are many simulation techniques that are commonly used to describe

the dynamics of colloidal nanoparticle aggregation.

Molecular dynamics (MD) simulation is an established technique that can simulate colloidal

nanoparticle aggregation [7]. In the MD approach, solute and solvent particles interact through

a modeled, intermolecular potential, and the positions and velocities of these particles evolve in
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time according to Newton’s equations of motion. In most MD simulations, the intermolecular

potential energy is taken to be the sum of isolated pair interactions, which is called the pairwise

additivity assumption. The main difficulty with such an approach is that it can not be used

to model aggregation of a realistic system of colloidal nanoparticles. The requirements of

large size separation between nanoparticles and solvent molecules (dNP ∼ 40 nm, dsolv ∼ 0.3

nm and dNP /dsolv ∼ 100 at solvent molecules volume fraction λsolv ∼ 0.45), and the large

number of nanoparticles that are modeled to have good statistics of aggregated clusters lead

to an enormous number of solvent molecules in the system (on the order of 1010). Moreover,

calculation of intermolecular forces between solvent molecules in MD would require to resolve

time scales on the order of 10−15 s. Therefore, simulating any colloidal system even far from

realistic physical parameters is a challenging and sometimes even impossible task. Alternative

approaches are needed to resolve this problem. One alternative is to use approaches designed

for nanoparticle aggregation simulation.

Based on the off-lattice Monte Carlo (OLMC) simulation, several methods are frequently

used to model nanoparticle aggregation. These models include diffusion-limited aggrega-

tion (DLA), diffusion-limited cluster aggregation (DLCA), ballistic-limited aggregation (BLA),

ballistic-limited cluster aggregation (BLCA), reaction-limited aggregation (RLA), and reaction-

limited cluster aggregation (RLCA).

In DLA models, particles diffuse through a random-walk from distant points and finally

arrive and stick to the surface of the growing aggregate [8, 9]. In the DLCA model, the

particles and clusters move in random-walk trajectories, which represent the Brownian motion

of the particles and clusters in a dense fluid [10, 11]. According to this model, particles

and aggregates are moved randomly, and when the distance between centers of two particles

approach “cluster distance” rcl (the maximum distance between two neighbor particles which

belong to the same cluster) they irreversibly link. After this linking if the distance between any

pair of particles in two different clusters appears to be less than rcl, two clusters move apart

along their approach path until the separation is equal to the cluster distance. Thus, stickiness

probability pstick for these two approaches is unity. DLCA is the more appropriate model when
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simulating colloidal aggregation because in reality, aggregates grow not only due to cluster-

monomer interaction but also due to the cluster-cluster interaction. Both DLA and DLCA

models allow simulating the aggregation of systems with more than a million nanoparticles,

which gives good statistics of aggregates. However, these approaches can only be applied if the

interparticle interactions are smaller than kBTref , where kB is the Boltzmann constant and

Tref is the reference temperature. If the interactions are large compared with kBTref for some

length scale l, the structure of the resulting aggregates will be changed over this length scale,

and fractal dimensionality may be changed if the interactions are sufficiently strong [12].

In BLA models, particles and clusters are added to each other through linear paths. Each

path is chosen randomly from all possible paths that could result in a collision between the

particle and cluster [13]. Similarly, the BLCA approach models cluster-cluster collisions in

addition to the particle-cluster collision used in BLA [14]. BLA and BLCA approaches were

developed in the 1960s. These models were used because at that time it was not sufficiently

efficient to carry out simulations with random walk trajectories which are implemented in

DLA and DLCA models. The use of BLA and BLCA approaches for colloidal nanoparticle

aggregation modeling is limited due to the assumption of linear paths between collisions, which

can lead to incorrect cluster size distributions.

In RLA and RLCA models, particles and clusters (just particles in the RLA case) follow

random walk trajectories, but they do not form a new cluster each time they come into contact

[15]. Instead, they continue their random walk paths and many collisions are usually required

before a pair of clusters will join. This behavior is dictated by the presence of a repulsive

barrier in the particle-particle pair potential. Only when this barrier is overcome will the

short-range attractive force finally hold two clusters together. This process is identical to DLA

and DLCA models with a small sticking probability pstick. A disadvantage of this method is

the very large amount of computer time required if the sticking probability is small.

All the models represented above help to characterize complicity of aggregate structures

by extracting important characteristics, such as the size distribution of aggregating clusters,

dimensionality of the cluster structure, and local concentration of the particles in the sys-
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tem in very efficient way. However, there are several weak points in using these models for

nanoparticles aggregation:

i. With these models it is impossible to use interaction potentials which can be derived

from quantum mechanics calculations for a realistic physical system.

ii. All these models imply an irreversible linking of particle-cluster and cluster-cluster when

new clusters are formed. This prohibits rearrangement of nanoparticles within a cluster

as well as dissociation of one cluster into two or more. This will give incorect results

in aggregation structure, especially when nanoparticle aggregation with shear force is

simulated.

iii. A structure of clusters obtained with these models depends on model parameter such as

cluster distance rcl, which makes it impossible to implement any of these models for the

dynamic simulation of the colloidal nanoparticle aggregation.

To overcome these problems and keep simulation efficiency it is also proposed to use off-lattice

Dynamic Monte Carlo simulation (DMC) [16]. However, it can be used only for some limited

cases.

Another alternative to MD simulations are coarse-grained models. There is a wide variety

of coarse-grained simulation techniques to model the dynamics of colloidal suspensions. Among

these techniques the Brownian dynamics (BD) technique is the most frequently used to simulate

diffusion problems. On the other hand such techniques as dissipative particle dynamics (DPD),

and stochastic rotational dynamics (SRD) are most advanced one.

Dissipative particle dynamics [17, 18] is an alternative to standard MD techniques and

includes hydrodynamic and Brownian fluctuations. In DPD, fluid molecules themselves are

not represented, but instead, groups of molecules called dissipative particles are considered.

These dissipative particles are simulated to obtain a flow field. These dissipative particles

interact with each other dissipatively, exchange momentum, and move randomly like Brownian

particles. The main advantage of DPD is that in this method the multibody hydrodynamic

interactions among colloidal particles are automatically reproduced through the interactions
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with dissipative particles. However, even though the number of dissipative particles in DPD

is less than in MD, this method is still computationally expensive, because the dissipative

particles still interact through the pairwise potentials and the number of colloid nanoparticles

Np is much smaller than the number of dissipative particles Ndp.

In the SRD approach [19], all the space in SRD is partitioned using a rectangular grid.

Nanoparticles and solvent particles move in continuous space according to Newton’s laws of

motion, excluding solvent-solvent interaction. This excluded interaction is modeled by col-

lision events at discrete times called collision time steps. At these collision events, solvent

particles inside each cell exchange momentum by rotating their velocity vector relative to the

center of mass velocity of the cell around a randomly chosen axis. This method is more ef-

ficient than MD because there is no direct computation of solvent-solvent interactions; but

instead this solvent-solvent collision is simulated at every collision step which is much greater

than the computational time step. This method successfully models aggregation of colloidal

nanoparticles [20].

In the BD approach, [21] it is assumed that the collisions of colloidal nanoparticles with

solvent molecules induce their random displacement. As a result, the positions and velocities

of the colloidal nanoparticles change accordingly. In BD the local momentum is not conserved;

however, it satisfies the average momentum conservation (ensemble average). This approach

is very attractive for simulation of colloidal nanoparticle aggregation due to its simplicity and

efficiency [22]. In the present work Brownian dynamics method will be described and analyzed

in detail with respect to the aggregation of colloidal nanoparticles.

The objective of this work is to:

1. Validate and verify a Brownian dynamics code,

2. Compare aggregation statistics for BD and MD simulations,

3. Propose a method to better match BD aggregation statistics with MD.

In Chapter 2, the MD model is described and its feasibility for simulation of realistic

physical systems is discussed. In Chapter 3, the validation of BD is discussed together with
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error analysis and aggregation regime map analysis. Chapter 4 describes the results from

the simulation of aggregating systems obtained from MD and BD models. Light scattering

analysis of the aggregate systems is introduced to extract aggregation statistics. In Chapter

5, an improved model of aggregating systems is represented and discussed. The conclusions of

this study and recommendations for future work are discussed in Chapter 6.
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CHAPTER 2. SIMULATION OF MOLECULAR DYNAMICS

In this chapter, the molecular dynamics method is described, and its applicability to the

modeling of aggregation of colloidal nanoparticles in physical systems is discussed.

2.1 Molecular Dynamics Model

Atomistic simulation methods such as MD can, in principle, provide the detailed informa-

tion concerning collision, aggregation, and breakage events that is needed to derive realistic

expressions for aggregation (and breakage) rate kernels, because they explicitly represent all

molecules in the system (both solute and solvent). The motion of these molecules is computed

using classical Newtonian mechanics [23]:

dri = vidt (2.1)

dvi =
1

mi
Fi({r})dt, i = 1, . . . , N (2.2)

where N = Ns + Np is the total number of particles in a system, Ns is the number of solute

particles, Np is the number of nanoparticles, mi is the mass of i-th particle, dt is the com-

putational time step, ri is the position of i-th particle, and vi is the velocity of i-th particle.

The force Fi({r}) is determined as the force which acts on i-th particle due to the remaining

(j = 1, . . . , N − 1) particles. By assuming pairwise additivity, this force is calculated as

Fi =
N
∑

j=1,j 6=i

Fij(rij) (2.3)

where rij is the pair separation between i-th and j-th particles, and Fij(rij) is the force that

acts on particle i due to presence of particle j. By considering the fact that the total number

of particles in a system consists of solvent particles and nanoparticles (N = Ns + Np), Eq.2.3
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can be rewritten as

Fβ
i =

Nγ
∑

j=1

Fβγ
ij (rij) +

Nβ
∑

k=1,k 6=i

Fββ
ik (rik) (2.4)

where β, γ = s, p are the indices for solvent and/or nanoparticles.

To compute forces in Eq.2.4 it is necessary to define force laws between each type of

molecule (e.g., nanoparticle-nanoparticle, nanoparticle-solvent, and solvent-solvent). Typically

these forces are obtained by differentiating presumed intermolecular potential energy functions

(such as the well-known Lennard-Jones potential) fitted to experimental data. These presumed

potential energy functions mimic the competition between near-range repulsions arising from

the overlap of electronic shells and long-range attractive Van der Waals forces. Hence, in-

teraction potentials typically display a potential energy minimum at intermediate distances

that arises from the balance of the longer-range attractive forces and short range repulsive

forces. More recently, there have been efforts to avoid the use of presumed interaction poten-

tials by instead using coarse-graining procedures to compute these interaction potentials with

information obtained from quantum mechanical calculations [24, 25].

Even when accurate pairwise interaction potentials are available, other problems with us-

ing the MD approach for simulation of aggregation of colloidal nanoparticles remain. For real

colloids there is a size separation of nanoparticles and solvent molecules. Due to this sep-

aration in scales between the sizes of the solvent molecules (typically 10−10 − 10−9 m) and

nanoparticle aggregates (usually 10−8 − 10−7 m), an enormous number of solvent molecules

is required for a simulation, especially for dilute systems. To investigate the influence of the

nanoparticle/solvent size separation on the calculation speed, a simple test is carried out.

In this test, two sets of MD simulations are carried out under identical conditions except for

the nanoparticle/solvent diameter ratio used (equal nanoparticle and solvent sizes in one case,

and nanoparticle’s diameter twice that of the solvent in the other case). Results of this test,

plotted in Figure 2.1, show that the CPU time required for each simulation time step as a

function of the number of molecules simulated using the MD simulation software LAMMPS

[26].

It is readily apparent that the CPU time scales approximately linearly with the number of
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Figure 2.1 Dependence of MD simulation CPU time on the total number

of Lennard-Jones particles, N , and the nanoparticle/solvent di-

ameter ratio, R for non-aggregating particles. All other simu-

lation parameters are identical in the two sets of simulations.

Nanoparticle volume fraction is 0.005.

molecules, but that the CPU time grows more rapidly with the increasing nanoparticle/solvent

size ratio. A typical realistic simulation would require nanoparticle/solvent size ratios on the

order of at least 10-100; therefore it is evident that MD simulation of aggregation, even when

using nano-scale primary particles, is computationally demanding. An estimation of the time

needed for the MD simulation of a system with nanoparticle/solvent size ratio equal to 14 and

containing only 31 nanoparticles is given in Table 2.1. These results clearly show that in

order to simulate just a few nanoparticles of 4 nm diameter on 20 processors will take more

than 100 days of CPU time. Furthermore, the dynamic range of the largest aggregates to

the primary nanoparticles can itself be two to three orders of magnitude in light-scattering

experiments [27]. Hence, to obtain a meaningful statistical distribution of aggregates, it is

clear that very large systems will need to be simulated. All these factors contribute to the

conclusion that MD simulation of aggregation with existing simulation packages and hardware

is computationally prohibitive. Therefore, coarse-grained models, such as Brownian dynamics
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Table 2.1 Estimation of MD simulation time for 31 non-aggregating

nanoparticles. All solvent and nanoparticle interactions were

modeled using Lennard-Jones potentials with well depth ε and

particle radius σ. The time increment is fixed at 5 × 10−15 sec.

Parameters Solvent Nanoparticles

σ (m) 2.85 × 10−10 4.0 × 10−9

m (kg) 1.33 × 10−26 3.686 × 10−23

ε (kg-m2/s2) 1.073 × 10−21 1.646 × 10−20

N 146,840 31

time steps/CPU sec 0.06

(1 processor)

CPU time for 107 steps 115 days

(20 processors)

must be used instead.
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CHAPTER 3. SIMULATION OF BROWNIAN DYNAMICS

Brownian Dynamics (BD) is a coarse-grained model that is successfully used to model

diffusion of solute particles in a solvent bulk [28]. In this model only Np nanoparticles are

considered with no implicit simulation of Ns solvent molecules which significantly speeds up

the simulations. Several investigators have employed the BD approach to simulate particle

aggregation [29]-[34]. However, there are no systematic efforts to establish the accuracy and

validity of this approach for the aggregation of colloidal nanoparticles. In this chapter, the

governing equations for the BD approach are analyzed and their numerical solutions for two

sets of parameters which correspond to modeling system and physical system are discussed.

For these systems, the applicability of reduction from position and velocity to the position-

Langevin equation is analyzed based on the relative magnitude of the characteristic times. In

addition, an analysis of parameters that have a significant influence onto colloidal nanoparticle

aggregation is performed. And finally, the requirements for numerical convergence and the

accuracy of the BD simulations for colloidal nanoparticle aggregation is established.

3.1 Position and Velocity-Langevin Evolution Equation

In the Brownian dynamics method, the nanoparticle-nanoparticle interactions are incorpo-

rated into Langevin equations for nanoparticles only with no need to track solvent molecules

explicitly. The position ri and velocity vi of the i-th nanoparticle are incremented over a time

step dt by position and velocity-Langevin equations:

dri = vidt (3.1)

dvi = −γvidt +
1

mi
Fi({r})dt + BdWi (3.2)
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In this equation, γ = σ2
v∞/D∞ is the friction coefficient, σ2

v∞ = kBTref/mi is the velocity

variance, mi is the mass of i-th particle, kB is the Boltzmann constant, Tref is the reference

temperature, and D∞ is the diffusion coefficient of a nanoparticle in the solvent in the infinite

dilution limit. B is the matrix of constants which is B = ΣvI for an isotropic system, I is 3×3

identity matrix, Σv =
√

2γσ2
v∞ is a constant, and dWi is the Wiener process increment. The

force Fi({r}) is the systematic net force on the i-th nanoparticle due to its interaction with all

other (Np − 1) nanoparticles. With pairwise additive assumption this force is calculated as

Fi =

Np
∑

j=1,j 6=i

Fij(rij) (3.3)

where rij is the pair separation between i-th and j-th particles, and Fij(rij) is the force that

acts on particle i due to presence of particle j, which is related to Fββ
ik (rik) in Eq.2.4 with

β = p. Frictional and random force components in Eq.3.2 represent Fβγ
ij (rij) in Eq.2.4 with

β, γ = s, p.

Langevin equations 3.1 and 3.2 do not describe a hydrodynamic effect. Hydrodynamic

effect can be introduced through the considering 6Np × 6Np diffusion tensor D around a point

particle subject to a force [35], where Np is the number of nanoparticles in a system. The

diffusion tensor can be partitioned into four 3Np × 3Np sub matrices:

D =







Dt DcT

Dc Dr






(3.4)

where Dt is the transitional matrix, Dr is the rotational matrix, and Dc is the coupling matrix

(T denotes the matrix transpose). The matrix D is related to the grand friction matrix γ by

the generalized Einstein equation:

D = kBTγ−1 (3.5)

The translational and rotational frictional coefficients for a spherically isotropic particle of

radius a are defined based on the stick or slip boundary conditions. Stick boundary conditions

are correct for large, solid, and impermeable particles immersed in a viscous medium. In this

case two scalar friction coefficients take the form

γt = 6πηa, γr = 8πηa3 (3.6)



15

where η is the Newtonian viscosity of the medium. In case of a smooth spherical particle, the

perfect slip occurs, and the friction coefficients are

γt = 4πηa, γr = 0 (3.7)

For a particle of infinite viscosity ηp immersed in an unbounded continuum of viscosity η0 the

value for the transitional friction coefficient can be estimated by

γt = 2πηa

[

3 +
2η0

ηp

] [

1 +
η0

ηp

]−1

(3.8)

According to Oseen formulation the translational diffusion is described as

Dii =
kBT

6πηa
I (3.9)

Dij =
kBT

8πηrij

[

I +
rij · rij

r2
ij

]

(3.10)

where rij = ri − rj is the separation of i-th and j-th particles. This formulation is appropriate

for stick boundary conditions with point sources of friction. In case of finite particle size the

equation of Rotne and Prager can be used

Dii =
kBT

6πηa
I (3.11)

Dij =
kBT

8πηrij

{[

I +
rij · rij

r2
ij

]

+
2a2

3r2

[

I − 3rij · rij

r2
ij

]}

(3.12)

Thus, by introducing hydrodynamic effect into BD model, the simulation time significantly

increases which can negate all the advantages of BD in comparison with MD approach. In many

cases hydrodynamic effects are not significant when modeling relatively large (∼ 10 − 40nm)

colloidal nanoparticles in fluid and may not be taken into account.

The advantage of using BD simulations instead of MD simulations in terms of computa-

tional cost is evident by comparing data in Table 2.1 and Table 3.1, where estimates of the

execution time for MD and BD simulations of identical system of nanoparticles are given.

In particular, a comparison of the number of simulation time steps executed per second of

CPU time demonstrates that there is more than three orders of magnitude speedup in the BD

simulations as a result of the fact that individual solvent molecules are not simulated, and
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Table 3.1 Estimation of BD simulation time for 31 non-aggregating

nanoparticles. All nanoparticle interactions were modeled us-

ing Lennard-Jones potentials with well depth ε and nanoparticle

diameter σ. The time increment is fixed at 5 × 10−15 sec.

Parameters Nanoparticles

σ (m) 4.0 × 10−9

m (kg) 3.686 × 10−23

ε (kg-m2/s2) 1.646 × 10−20

N 31

time steps/CPU sec 100

(1 processor)

Time for 107 steps 2 hrs

(20 processors)

positions and velocities are calculated only for the nanoparticles. This speedup is a necessity

for simulating aggregation in colloidal systems, where the number of nanoparticles and the

aggregate sizes are relatively large.

By analyzing a homogeneous system of nanoparticles which is described by the Langevin

equation (3.2), two characteristic time scales can be identified. One is a velocity relaxation

time τγ that is related to the frictional part, and the other time scale τF is related to the

systematic force. These time scales are

τγ =
1

γ
=

D∞

σ2
v∞

, (3.13)

and

τF =
mσσv∞

ε
. (3.14)

In these equations σ2
v∞ = kBTref/m is the velocity variance, σ is the nanoparticle diameter,

and ε is the well depth of the interaction potential between nanoparticles.

Different algorithms can be used to integrate Eqs. (3.1) and (3.2) based on the relative

magnitudes of the characteristic time scales and the computational time step ∆t. A velocity

relaxation time scale τγ characterizes a momentum relaxation in the system, when τF char-

acterizes a configuration relaxation. When the velocity relaxation time is smaller than the
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configuration relaxation time (τγ < τF ), then the algorithms proposed by Allen [36] and Van

Gunsteren [37] can be used. When the velocity relaxation time and the configuration relaxation

time are of the same order of magnitude (τγ ∼ τF ), then the algorithm proposed by Turq et

al. [38] is applicable. And finally, if the configuration relaxation time is much greater than the

velocity relaxation time (τγ � τF ), then the algorithm, proposed by Ermak and McCammon

[39] can be applied. For all these cases the computational time step ∆t is determined solely

by the value of the frictional time scale such that (∆t < τF ) [28].

For the last case, where the momentum relaxation time is short in comparison with the

configuration relaxation time (which includes most of the cases for particles suspended in

liquids), the system of equations (3.1)-(3.2) can be reduced to one position-Langevin (PL)

equation [39]:

dri =
F({ri})

miγ
dt +

Σv

γ
dWi. (3.15)

Such a reduction of position and velocity-Langevin equations into one position-Langevin

equation significantly simplifies the BD model where only the position of nanoparticles is

tracked.

3.2 BD Simulation of Model and Physical Systems

Accurate and efficient simulation of the aggregation of colloidal nanoparticles for systems

of realistic sizes is the goal of this work. Therefore, there is an interest in simulation of physical

systems with BD. On the other hand, for the purpose of code verification there is a need for

comparison of the BD simulation with MD. Because MD cannot simulate systems of realistic

sizes (which is discussed in the previous Chapter), for the purposes of comparison of MD and

BD simulation results, model systems are also used with BD approach. Therefore, both model

systems and physical systems are considered.

In all the simulations, the dimensional quantities are scaled to correspondent non-dimensional

counterparts. This approach allows direct comparison of different physical systems. Thus, it

is quite possible that systems with different physical parameters will have the same non-
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dimensional form which is a sign of a self-similarity of two different systems. Table 3.2 lists all

the characteristic parameters which are used in the present work.

Table 3.2 Characteristic dimension and reduced parameters used in the

present work.

Parameter Dimension Description

σ Length Particle size

ε Energy Interaction potential well depth

m Mass Particle mass

T∞ Temperature Reference temperature

α N/A Volume fraction

d N/A Dimension of physical space

r̂ =
r

σ
N/A Reduced distance

t̂ = t
σv∞

σ
N/A Reduced time

λ̂ = λσd N/A Reduced number density

ε̂ =
ε

kBT∞
N/A Reduced interaction potential well depth

Â = A
σm

ε
N/A Reduced acceleration

When introducing model and physical systems into BD simulations, a self similarity ques-

tion arises, because it is not clear if physical systems can be treated as model ones in BD

simulation. Also, the question of possibility of PVL to PL reduction for model and physical

systems should be answered. To clarify all of these questions, two sets of parameters which

correspond to the model system and physical system are generated and represented in Table

3.3. Parameters for the physical system are chosen to be as close as possible to the real exper-
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Table 3.3 Model system and physical system parameters

Model system Physical system

σ(nm) 0.34 4.00

m (kg) 3.32E-24 3.52E-23

ε̂ 8.0 8.0

α 0.005 0.005

Np 10,000 35,000

imental setup, whereas parameters for the model system are chosen to be suitable for use in

MD simulation.

In Table 3.3, ε̂ is the non-dimensional well depth, which is defined in Table 3.2, α is

the volume fraction of nanoparticles, and Np is the number of nanoparticles in the system.

The main difference between model and physical systems is in the diameter and mass of the

nanoparticles, the diameter of nanoparticles being 12 times larger for the physical system.

Based on the parameters given in Table 3.3, the characteristic time scales were calculated

using Eqs. 3.20 and 3.21. The results of these calculations for the model system and the

physical system are given in Table 3.4.

Table 3.4 Characteristic times for model and physical systems

Model system Physical system

τ̂γ 0.800 0.003

τ̂F 0.125 0.125

τ̂F /τ̂γ 0.156 41.7

From Table 3.4 it can be seen that the model system τ̂γ ∼ τ̂F , does not allow a PVL to

PL reduction. At the same time, the non-dimensional timescales for the physical system are

related as τ̂γ � τ̂F , which validates the PVL to PL reduction. Therefore, from an analysis of

characteristic timescales for model and physical systems it is possible to conclude that PVL to

PL reduction is prohibited for the model system. At the same time, for the physical system,

the PVL to PL reduction is allowed.
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3.2.1 Comparison of Computational Data for Model and Physical Systems

In order to make definitive conclusions about the applicability of the PVL to PL reduction

for model and physical systems, the results obtained from the time scales analysis are verified

by performing computational tests. For this purpose, both model and physical systems are

simulated with BD by using PVL (Eqs. 3.1 and 3.2) and PL (Eq. 3.15) approaches with

parameters described in Table 3.3 and Table 3.4.

If then PL is applicable for a particular system it should yield the same aggregation statis-

tics (such as radial distribution function (RDF), mean square displacement (MSD), and cluster

size distribution (CSD)) as PVL. Thus, to have a right aggregation, both the radial distribu-

tion function g(r) and the mean square displacement 〈r2〉 should be described correctly and

simultaneously. Also, one more parameter such as cluster size distribution is used to perform

an additional control for the aggregation structure. So, these aggregation statistics are com-

puted from PVL and PL BD simulations to conclude whether these approaches are equivalent

for model and physical systems.

The radial distribution function is calculated according to the expression

g(r) =
N(r,∆r)

1
2λNV (r,∆r)

. (3.16)

where N(r,∆r) is the number of particles found in a spherical shell (in 3-d case) of radius

r and thickness ∆r, V (r,∆r) is the volume of spherical shell, and λ is the number density.

N(r,∆r) is defined as

N(r,∆r) =
N
∑

i

N
∑

i<j

δ(r − rij)∆r. (3.17)

The mean square displacement is calculated as

〈r2(t)〉 =
1

N

N
∑

i=1

(ri(t) − ri(0))
2 . (3.18)

According to the analysis of characteristic time scales, the PVL to PL reduction for the

model system is not justified. This conclusion is completely verified by the computational

results. Even though the g(r) is the same for PVL and PL for model system (Figure 3.1), the
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mean square displacement (Figure 3.2) and cluster size distribution (Figure 3.3) are signifi-

cantly different.

However, when the same simulations are performed for the physical system for which,

according to the analysis, the PVL to PL reduction is justified, there is a perfect match of

PVL and PL results for all three quantities, as is shown on Figures 3.4, 3.5, and 3.6.

The major results from the BD verification test are that

i. For the physical system, there is a sufficient separation of time scales exists (τ̂F /τ̂γ ∼ 42)

which allows the PVL to PL reduction. At the same time, for the model system, no

time-scale separation exists (τ̂F /τ̂γ ∼ 0.2), and therefore the PVL to PL reduction is not

justified.

ii. Introduction of the other terms in (3.1) and (3.2) (such as shear force, etc.), will intro-

duce an additional timescale which should be taken into account when the PVL to PL

reduction is considered.
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Figure 3.1 Radial distribution functions computed from PVL and PL BD

simulations for the model system at t̂ = 329.8.



22

t

<
r2 >

0 5 10 15 20
0

10

20

30

40

50

60

70

PL
PVL

∧

∧

Figure 3.2 Mean square displacements computed from PVL and PL BD

simulations for the model system.
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Figure 3.3 Cluster size distributions computed from PVL and PL BD sim-

ulations for the model system at t̂ = 329.8.
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Figure 3.4 Radial distribution functions computed from PVL and PL BD

simulations for the physical system at t̂ = 675.8.
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Figure 3.5 Mean square displacements computed from PVL and PL BD

simulations for the physical system.



24

particles/cluster

cl
us

te
rs

0 5 10 15
0

500

1000

1500

PL
PVL

Figure 3.6 Cluster size distributions computed from PVL and PL BD sim-

ulations for the physcical system at t̂ = 675.8.

3.3 Aggregation Regime

In principle, given sufficient computational power and memory, converged BD simulations

of aggregation can be executed if pair wise particle interaction potentials are known. However,

it is not necessarily the case that significant aggregation will always occur in these systems,

depending upon the system parameters. In this section, two important non-dimensional pa-

rameters are used to characterize clustering outcomes and thereby delineate a criterion for

aggregation to occur in BD simulations.

In the BD model there are three parameters that play an important role in the aggregation,

such as reduced potential well depth ε̂, described in Table 3.2, reduced diffusivity D̂∞, and

the nanoparticle volume fraction α (see Appendix A for details). The reduced diffusivity is

defined as

D̂∞ =
D∞

σ

√

m

kBT∞
=

D∞

σσv∞

. (3.19)

The particle volume fraction is considered to be very low for the systems of interest in this

study (< 1% by volume), so the variation in this parameter is neglected. The product ε̂D̂∞
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can be interpreted as the ratio of the frictional and systematic force time scales. This can

be shown by rewriting frictional and systematic force time scales (Eqs. 3.20 and 3.21) in a

non-dimensional form according to Table 3.2

τ̂γ =
D∞

σ2
v∞

σv∞

σ
=

D∞

σσv∞

= D̂∞, (3.20)

and

τ̂F =
mσσv∞

ε

σv∞

σ
=

mσ2
v∞

ε
=

mkBT∞

m

ε
=

kBT∞

ε
=

1

ε̂
. (3.21)

Thus,

ε̂D̂∞ =
τ̂γ

τ̂F
. (3.22)

Therefore, if ε̂D̂∞ � 1 (as is the case for nanoparticles suspended in liquids) there is

sufficient separation in time scales such that the BD simulations can be carried out using a PL

Langevin scheme obtained by integrating Eq. 3.2 [39].

In order to quantify the clustering of particles, we calculate the extent of aggregation,

0 ≤ ξ < 1, defined as

ξ = 1 − M0(t)

M0(0)
. (3.23)

where M0 is the zeros moment or total concentration of clusters. Hence ξ is an aggregation

progress variable that approaches unity as the system mass accumulates in a single cluster

and equal to zero when nanoparticles are staying separate and do not form clusters at all

time. Three-dimensional Brownian dynamics simulations were carried out using our in-house

BD code to evolve 10, 000 primary particles with random non-overlapping initial positions.

Particle-particle interactions were modeled by Lennard-Jones potentials, and simulations were

continued until the clustering index ξ approached steady state. Other simulation details are

provided in Table 3.5. Simulations were carried out for several fixed values of ε̂D̂∞, and

the results are shown in Figure 3.7. It is evident that the extent of aggregation depends

most sensitively on the value of the reduced interaction potential well depth, ε̂, and in fact

ε̂ > 2 is a necessary condition for significant aggregation to occur. Hence, for sufficiently

small values of ε̂ corresponding to high temperatures or shallow interaction potential well
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Table 3.5 Simulation parameters used to produce Figure 3.7. Particle

interactions were modeled using Lennard-Jones potentials and

simulations were carried out using in-house BD code.

Parameter Description Value

Np Number of Particles 10000

fv Particle Volume Fraction 0.005

σ Particle Diameter 3.4 × 10−10 m.

T Temperature 121 K

σγ

σv∞

Dimensionless Friction Coefficient 1.31
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Figure 3.7 Clustering index (see color legend) as a function of reduced

interaction potential well depth, ε̂ and reduced diffusivity, D̂∞.

Each curve represents constant ε̂D̂∞. The region bounded by

ε̂D̂∞ � 1 represents the regime of validity of the position and

velocity Langevin to PL reduction.
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depths, colliding particles have a low probability of sticking because thermal fluctuations are

large enough for the particles to overcome the potential energy barrier that otherwise would

keep them together. Therefore ε̂ controls how “sticky” the particles are and it must play a

major role in the aggregation process. In contrast, ξ is relatively insensitive to the value of the

reduced diffusivity. This latter observation is consistent with the fact that the Gibbs stationary

solution of the Fokker-Planck equation corresponding to Eqs. 3.1 and 3.2 yields a Boltzmann

distribution of particle coordinates independent of diffusivity [40].

3.4 Convergence of Brownian Dynamics Simulations

The convergence of Brownian dynamics simulations can be established by analyzing errors

which occur when solving Eqs. 3.1 and 3.2 numerically. There are two main errors for numerical

simulations of aggregation of colloidal nanoparticles (the round off error is not taken into

account because it is not significant when simulating with double precision): one is the error

which is related to the computational time step ∆t and has a deterministic nature, when the

other error is related to the number of independent simulations and has a statistical nature.

To establish convergence of BD simulations, a numerical test for the problem with known

analytical solution is performed. From this test the computational time step ∆t and the number

of multiple independent simulations (MIS) required for accurate solution are determined. For

this purpose a simple one-dimensional system of a single particle under the influence of a

ramp-well potential is used. In this case the Langevin equations Eqs. 3.1 and 3.2 have the

form

dx = vxdt (3.24)

dvx = −γvxdt +
F (x)

m
dt + ΣvdW

The ramp-well potential is defined as

U(x) =



























∞, 0 < x < σ

−ε
x − xa

σ − xa
, σ ≤ x ≤ xa

∞, x > L

(3.25)
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where (xa − σ) is the width of the well, and xa is related to the cut-off distance as shown in

Figure 3.8. For such potential, if x < xa then the particle is considered to be in a trapped

state, which corresponds to the case when a particle belongs to a cluster.

σ xa L

-ε

0

U
(x

)

Figure 3.8 Representation of the ramp well potential.

Klyatskin [40] has shown that for the Hamiltonian system with a linear friction term

(Eqs. 3.1 and 3.2) a steady-state probability distribution exists. In the one-dimensional case,

the corresponding steady-state probability distribution has the form

P (x, vx) = CxP (x)CvxP (vx), (3.26)

where

P (x) = Cx exp

{

− 2γ

mΣ2
v

U(x)

}

(3.27)

P (vx) = Cvx exp

{

− 2γ

mΣ2
v

K(vx)

}

(3.28)

where U(x) is the potential energy, and K(vx) is the kinetic energy.
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Constants Cx and Cvx are found by integrating these equations over all values of x and vx

and equaling those integrals to one, thus

Cvx =

√

γ

π

1

Σv

Cx =

[

Σ2
vm(σ − xa)

2γε

(

1 − exp

{

2γε

Σ2
vm

})

+ (L − xa)

]−1

(3.29)

From the above equations it can be shown that the probability of the particle to lie in the

interval σ < x < xa is equal to

pa = p(σ < x ≤ xa) =
1 − exp

{

2γε
Σ2

vm

}

1 − exp
{

2γε
Σ2

vm

}

+ 2γε(L−xa)
Σ2

vm(σ−xa)

(3.30)

After analytical definition of the PDF solution, a set of numerical tests was then performed

to identify the dependence of error on computational time step ∆t and MIS number. For

this purpose the system with such parameters is setting up: σ = 1, m = 1, ε = 1, γ = 1,

(xa − σ) = 1, (L − xa) = 0.6, and σ2
v∞ = 1. This set of parameters yelds the analytical value

for the probability for particle to be in the trapped state as pa = 0.741.

As it was discussed above, at least two sources of error are represented in the current test.

One is the deterministic error Dp which occurs due to the presence of the finite time step ∆t

when integrating Langevin equations. Statistical error Sp occurs due to the fact that a finite

number of the multiple independent simulations (MIS) can be computed. Thus, the total error

is calculated as

e = {p}∆t,M − pa = ({p}∆t,M − 〈p〉∆t,∞) + (〈p〉∆t,∞ − pa) = Sp + Dp (3.31)

where {p}∆t,M is the ensemble average for M independent simulations at computational

timestep ∆t, pa is the analytical value of being in trapped state, and 〈p〉∆t,∞ is the expected

value of the trapping probability for an infinite MIS at given computational time step ∆t. In

this expression, statistical error is defined as

Sp = {p}∆t,M − 〈p〉∆t,∞, (3.32)

and the deterministic error is defined as

Dp = 〈p〉∆t,∞ − pa. (3.33)
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In Eqs. 3.32 and 3.33 the value 〈p〉∆t,∞ is not defined and it needs to be estimated. In the

present test, 〈p〉∆t,∞ is estimated by taking M = 1× 107 for different values of computational

time step ∆t.

It is expected that the deterministic error scales linearly with ∆t as Dp ∼ ∆t. This

dependence is expected because the deterministic error is defined as a difference of the first

moments of p, and this scaling is expected for weak convergence [41]. This prediction was

verified by computing deterministic error at different ∆t values and by plotting Dp versus ∆t

(Figure 3.9). Also it was found that to keep Dp below 0.001, the computational time step

should be ∆t̂ < 0.004, where t̂ = tσv∞/σ. The statistical error Sp depends on the number

of independent simulations M as Sp ∼ M−0.5. Figure 3.10 represents a dependence of the

statistical error on M , which completely verifies analytical expectations. From this figure, by

extrapolating to the value of M = 1, the statistical error for a single independent simulation

is found to be equal up to 30%. Also at least 100 independent simulations are needed in order

to reduce statistical error to the range of deterministic error Dp.

The main conclusions from the convergence of BD simulation tests are

i. The convergence test for a single particle in the ramp-well potential defines values for the

computational time step ∆t̂ < 0.004 and the number of multiple independent simulations

M > 100 in order to keep values of statistical and deterministic errors below 0.1% for

such a simple system.

ii. Computational results reproduce analytically predicted behavior for probability and the

scaling of statistical and deterministic errors which verifies that implementation of BD

is correct.

iii. Since the convergence test is done for a single particle, the number of simulations required

to reach the same level of errors for the system of many nanoparticles which are involved

in the aggregation process can be very large due to the large number of possible states

for such a system. In this case other methods should be used which will reduce the

statistical error more rapidly.



31

log10(∆t)

lo
g 1

0(
D

p)

-4 -3.5 -3 -2.5 -2 -1.5
-4.5

-4

-3.5

-3

-2.5
linear fit
computed data

∧

Figure 3.9 Deterministic error Dp versus computational time step. The

slope of the linear fit is 0.96.
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Figure 3.10 Statistical error Sp versus number of independent simulations

at computational time step ∆t̂ = 0.002. The slope of the linear

fit is −0.54.
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CHAPTER 4. RESULTS FROM THE SIMULATION OF

AGGREGATIVE SYSTEMS

Although the Brownian dynamics method has been used by many investigators to simulate

aggregation processes, little consideration has been given to the accuracy of such simulations

even if statistically converged results can be obtained. Here the word “accuracy” is used in

reference to how well the BD simulation predictions of aggregation reproduce those obtained

from corresponding MD simulations, since the BD technique is essentially a reduction of the

MD method. Because this reduction is obtained by eliminating the explicit representation of

solvent molecules and replacing nanoparticle-solvent interactions with a mathematical model

consisting of a stochastic fluctuating force and a deterministic frictional term, any discrepancies

between predictions of the two methods are likely due to breakdowns in the assumptions and

approximations implicit in these terms.

4.1 Comparison of Aggregation Statistics for MD and BD Simulations

The accuracy of BD simulations for dilute non-aggregating systems has previously been

considered by Giro et al. [28]. These investigators considered the situation in which the

nanoparticles are identical to the solvent molecules, and they showed that the BD simulations

closely reproduce the equilibrium nanoparticle-nanoparticle radial distribution function, g(r).

However, they also found that the BD-computed nanoparticle diffusivities are larger than

those predicted by the MD method, and they attributed this discrepancy to the fact that

the frictional coefficient γ in the Langevin equation 3.2 is assumed to be constant, whereas

a more realistic description (particularly for liquids) requires that the frictional coefficient be

replaced by a time-dependent memory function. The fact that the BD method can accurately
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compute the equilibrium nanoparticle-nanoparticle radial distribution function and yet incur

noticeable error in the calculation of diffusivity is perhaps to be expected for reasons mentioned

in the previous chapter - namely that the stationary solution of the Fokker-Planck equation is

independent of the diffusivity. Hence, one expects that in general, BD predictions of system

dynamics will not match the predictions of corresponding MD simulations, but that equilibrium

quantities can be well-predicted by BD simulations. If follows, therefore, those BD simulations

of the early stages of an aggregation process far from equilibrium may differ substantially from

corresponding MD calculations. In spite of this observation (and the fact that MD simulation

of systems with large aggregate-solvent size scale separation is not feasible), MD simulations

with no size separation of nanoparticles and solvent particles are performed.

For such a test for MD simulations, a system of nanoparticles and solvent particles interact-

ing by Lennard-Jones potential is chosen. The nanoparticle-nanoparticle interaction potential

well depth, ε, was chosen such that nanoparticle aggregation was favored (as was discussed in

the previous chapter). Additionally, the ratio of the mass of a single nanoparticle to a solvent

molecule, msolute/msolvent = 50, is chosen to be relatively large to ensure that the nanoparticles

has lower mobility than the solvent molecules, despite the fact that they have equal size. All

MD simulations are carried out using the LAMMPS [26] software package on an IBM eServer

Blue Gene which consists of 1024 dual-core PPC440 CPUs running at 700Mhz, with 512MB

of RAM per node. Each run on the Blue Gene take up to 5 hours on 1024 CPUs. Other

simulation details are listed in Table 4.1. In the case of BD simulations, the position and

velocity equations are used because the position-only reduction is not applicable for this set of

parameters.

In order to determine the accuracy of the BD simulations for aggregating systems, in

Fig. 4.1 the extent of aggregation ξ is compared (as defined in 3.23) with that obtained from

MD simulations for the system described in Table 4.1 for ε̂ = 8. It is clear that on the

basis of the dimensionless time used to compare the two methods, the BD calculation predicts

significantly more aggregation than does the MD simulation. Hence, in order to provide a

better basis of comparison for the two methods, the predicted cluster size distributions at the
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Table 4.1 Simulation parameters used to produce Figure 5.6. Particle

interactions are modeled using Lennard-Jones potential. MD

simulations are carried out using the LAMMPS [26] software

package, BD simulations are carried out with in-house code.

Parameter Description Value (MD) Value (BD)

Nsolvent Number of Solvent Particles 809,787 N/A

Np Number of Nanoparticles 10,000 10,000

ε/kBT∞ Reduced Well Depth 4/8 4/8

fv,solvent Solvent Volume Fraction 0.44 N/A

fv,nanop Nanoparticle Volume Fraction 0.005 0.005

σ Particle Diameter 3.4 × 10−10 m. 3.4 × 10−10 m.

D∞/σσv∞ Dimensionless Diffusion Coefficient N/A 0.262

σtstop/σv∞ Dimensionless Simulation Time 329.8 329.8
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same extent of aggregation, ξ is compared for ε̂ = 8. This approach is applied in case

t

ξ
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Figure 4.1 Extent of aggregation as a function of dimensionless time,

t̂ = σt/σv∞ , for BD and MD simulations described in Table

4.1 for ε̂ = 8.

when the radial distribution functions are similar for the longest simulation time (Figure 4.2a)

and is not applied for the case when the g(r) values are significantly different (Figure 4.2b).

Results for the radial distribution function, represented in Figure 4.2 clearly identify different

regimes of aggregation process for MD simulations at different values of reduced well depth

ε̂. When ε̂ is high (which is related to the higher probability of two nanoparticles to stick),

a diffusion-limited aggregation is dominant. However, with smaller ε̂, stickiness probability

decreases to the level that a reaction-limited aggregation becomes dominant. Thus, in MD by

varying value of the ε̂, a different aggregation processes can be observed.

Figure 4.3a shows a direct comparison of the cluster size distributions computed using

corresponding MD and BD simulations at ξ = 0.89 and ε̂ = 8. The agreement between the

MD and BD simulations is very poor for the monomer frequency (471 monomers in the MD

simulation and only 97 in the BD simulation); however the BD simulations predict a similar

number average cluster size (8.3 particles/cluster versus 8.5 particles/cluster for MD). If the
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Figure 4.2 Comparison of the g(r̂) from MD and BD simulations: a)

simulations are done with ε̂ = 8, data is represented at time

t̂ = 329.8; b) simulations are done with ε̂ = 4, data is repre-

sented at time t̂ = 329.8.

monomers are de-emphasized by computing the mass-average cluster size (ratio of the second to

first moment of the cluster size distribution), the mean particle size is 20.2 particles/cluster for

the MD simulations and 12.3 for BD simulations. The larger mass-average particle size in the

MD simulations (despite the fact that the MD simulations produce a much larger population

of monomers) is a reflection of the fact that the tail of the cluster size distribution (at the large

size) for the MD case decays more slowly than in the BD case. For ε̂ = 4 there is no agreement

for the cluster size distributions between MD and BD (Figure 4.3b) which is expected due to

a significant difference in their radial distribution functions (Figure 4.2b). Further analysis of

the case with ε̂ = 4 is not performed due to the significantly large difference in aggregation

statistics for MD and BD.

An alternative method for comparing the cluster size distributions computed using the MD

and BD simulation methods is to employ a dynamic scaling relation (see Appendix B for the

definition of a CSD). In particular, it has been observed for a very wide range of aggregation

processes that cluster size distributions can be collapsed by employing the following scaling
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Figure 4.3 Comparison of cluster size distributions obtained from MD

and BD simulations: a) simulations are done with ε̂ = 8, at the

same extent of aggregation ξ = 0.89; b) simulations are done

with ε̂ = 4, data is represented at time t̂ = 329.8.

parameter [42]:

Nk = s−2(t)φ(k/s(t)), (4.1)

where Nk is the concentration of clusters containing k monomers, s(t) is the mass-averaged

particle size, and φ is a scaling function. If Eq. 4.1 is valid, then a plot of s2Nk vs. k/s

should collapse the cluster size distributions for all sufficiently large values of t such that the

self-preserving regime has been reached. Figures 4.4 and 4.5 show such plots for the MD

and BD cases, respectively for ε̂ = 8. Despite the relatively large statistical error associated

with only carrying out a small number of independent simulations, in both cases the cluster

size distributions do appear to fall on universal curves when plotted using Eq. 4.1. However,

comparison of Figures 4.4 and 4.5 demonstrates that the shape of the scaling functions

are clearly different for the MD and BD cases. Consequently, it can be concluded that the

BD simulations produce different cluster size distributions than the MD simulations, indepen-

dent of any difficulties in comparing them due to a lack of information concerning the proper

time scaling to be used. In particular, we see that the MD simulations generate cluster size
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Figure 4.4 Scaled cluster size distributions for MD simulations at ε̂ = 8.
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Figure 4.5 Scaled cluster size distributions for BD simulations at ε̂ = 8.
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distributions that decay monotonically in size, whereas the BD simulations produce cluster

size distributions that exhibit a maxima in Nk.

The morphology of the aggregates generated by MD and BD simulations can be compared

by computing the volume fractal dimension, Df . The volume fractal dimension can be related

with the number of nanoparticles in cluster Ncl, the average size of the cluster (called the

radius of gyration Rg), and the nanoparticle radius a as following [3, 5]

Np = k0

(

Rg

a

)Df

(4.2)

where k0 is a prefactor of order unity. According to this expression, by plotting log(Np) versus

log(Rg) and by interpolating it with linear function, the slope of the obtained line must be Df .

The radius of gyration is calculated as [3]

R2
g =

1

Ncl

∑

i

(ri − rcm)2 (4.3)

where ri is the position of a i-th particle in a cluster, and rcm is the position of the center of

mass of a cluster. Figures 4.6 and 4.7 illustrate the results of the volume fractal dimension

calculation for MD and BD simulations at ξ = 0.89 and ε̂ = 8. Both types of simulations

produce clusters with Df ≈ 2.5 for MD, and Df ≈ 2.0 for BD which are relatively large values

indicating that the clusters are quite compact. Indeed, this fractal dimension is comparable to

the value produced in processes with diffusion-limited growth by monomer addition [8]. Hence

one could infer that the collisions between small clusters and large clusters are more important

than are the collisions between two large clusters in both the MD and BD simulations, even

at large extents of aggregation. The structure of the clusters can be also analyzed with the

powerful tool of light scattering analysis.

4.2 Light Scattering Analysis

Light scattering analysis (LS) is proposed as a direct method for investigation of aggregate

structure [3, 5, 6, 43]. This method allows measurement of Df even for a single cluster. In

addition, the light scattering technique gives cluster structure information for the wide range

of scales: from monomer size to the geometric size of a cluster. This feature provides for
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Figure 4.6 Number of monomers as a function of radius of gyration, Rg for

MD simulations described in Table 4.1 at ε̂ = 8. The slope of

the linear fit is the volume fractal dimension, Df .
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Figure 4.7 Number of monomers as a function of radius of gyration, Rg for

BD simulations described in Table 4.1 at ε̂ = 8. The slope of

the linear fit is the volume fractal dimension, Df .
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the discovery of any possible structure changes at different length scales, especially for the

relatively large clusters. This gives the most complete description of the aggregate structure.

For the system of N nanoparticles, the intensity of elastically scattered light can be repre-

sented as

I(q) = NF (q)S(q) (4.4)

where q is the scattering wave vector, which is defined as

q = |q| =
4π

λl
sin(θ/2) (4.5)

where θ is the scattering angle, λl is the wavelength of light, S(q) is the static structure factor,

where

S(q) =
1

N

N
∑

k

N
∑

l

exp[iq · (rk − rl)] (4.6)

Due to a spherical shape of nanoparticles with uniform density, Eq. 4.6 can be reduced to

S(q) =
1

N

∣

∣

∣

∣

∣

N
∑

k

exp[iq · rk]

∣

∣

∣

∣

∣

2

=
1

N

∣

∣

∣

∣

∣

N
∑

k

[cos(q · rk) + i sin(q · rk))]

∣

∣

∣

∣

∣

2

(4.7)

and F (q) → F (q) is the form factor for a sphere,

F (q) =

[

3
sin(qa) − qa cos(qa)

(qa)3

]2

(4.8)

Because all modeled systems are isotropic in cluster position and orientation it is valid to

perform a spherical averaging by selecting over 200 different q values of constant magnitude,

so S(q) → S(q). This was done by creating the set of angles (θ, φ) according to a uniform

differential solid angle dΩ, and q is calculated from:

q = |q|(sin(θ)cos(φ)e1 + sin(θ)sin(φ)e2 + cos(θ)e3) (4.9)

where ei is the i-th Cartesian unit vector.

In case of a self-similar fractal aggregate with a fractal dimension Df , I(q) has the following

three regimes: the first regime is for small values of q (the so-called Rayleigh regime), where

I(q) = N the number of monomers per cluster. The second regime is for intermediate values
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of q, where I(q) ∼ q−Df . The third regime is for very large q when Porod’s law can be applied,

so I(q) ∼ q−4 [4].

To validate the in-house LS code, a system of 100,000 nanoparticles where distributed in

a 3-d square lattice with period dl = 2. Positions of the light scattering peaks in the crystal

lattice must be distributed according to Bragg’s law

2dl sin(θ/2) = nλl (4.10)

where λl is the wavelength of an incident light, n is the integer corresponding to the order of

intensity peak, and θ is the angle between incident light and the scattering panels. The value

for the wavelength is chosen arbitrarily to be λl = 0.251.

Table 4.2 Validation of LS code

n 1 2 3 4

θ 7.201 14.431 21.719 29.097

(Bragg’s law)

θ 7.197 14.435 21.719 29.094

(LS code)

For such a system, an LS analysis is performed and correspondent positions of peaks are

computed and compared with analytically expected ones(Table 4.2). The excellent match of

computational data with analytical values verifies the LS code and allows us to use it for

systems with unknown structures.

In BD (as well as in MD) the conservative force is not calculated for all the possible pair sep-

arations between nanoparticles. Instead, such parameter as a cut-off distance rc is introduced.

In this way, force is calculated for the particles separated by a cut-off distance or smaller. All

other separations do not influence the force calculations. This approach significantly decreases

simulation time without interfering with computational accuracy. Such an approach is ap-

plicable for a monotonically decaying interaction potential which is very close to zero value at

r > rc. Therefore, it would be interesting to see how LS results depend on the rc value. For
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this purpose BD simulations of the aggregation of colloid nanoparticles which interact through

the Lennard-Jones potential were performed for rc = 2.5σ = 5a and rc = 1.5σ = 3a, where a

is the nanopartile radius. All the parameters for these simulations are described in Table 4.3.

Figure 4.8 represents LS analysis of the largest clusters obtained from these BD simulations.

The largest clusters consist of N = 8, 900 and N = 8, 717 nanoparticles for rc = 3a and rc = 5a

Table 4.3 Simulation parameters used to produce Figure 4.8. Particle

interactions are modeled using Lennard-Jones potentials.

Parameter Description Value

Np Number of Nanoparticles 108,882

ε/kBT∞ Reduced Well Depth 4

fv,nanop Solute Volume Fraction 0.035

σ Particle Diameter 3.4 × 10−10 m.

D∞/σσv∞ Dimensionless Diffusion Coefficient 0.524

σtstop/σv∞ Dimensionless Simulation Time 32.98

σ∆t/σv∞ Dimensionless Computational Time Step 0.0025

correspondingly. The positions of cut-off distances are marked by a dashed line and labeled

correspondently. According to the previous work [5], in the interval a/Rg,G < qa < 2 structure

factor S(q) should be ∼ q−Df , where Df = 1.78 is the fractal dimension, and Rg,G is the ideal

gel point radius of gyration, and its defined as

Rg,G = a



k−1
0

(

Df + 2

Df

)d/2

α





1/(Df−d)

(4.11)

where k0 ' 1.3, d is the space dimension, and α is the nanoparticle volume fraction. However,

in this case Df ' 3 for the range (a/rc < qa < 2) for both cut-off distances. Such behavior

can be explained that by implementing Lennard-Jones potential into BD, the structure of
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Figure 4.8 Structure of the largest cluster for 3-D BD simulation

with implemented LJ potential for rc = 5.0a and rc = 3.0a

the aggregate cannot be described correctly for the scale of a potential’s range. At the same

time, by setting up the cut-off distance rc → ∞ the LS results should be similar to those

obtained for rc = 5a, because for LJ potential as r > 5a, the interaction potential U → 0.

Thus, the only part of the LS curve with qa < a/rc can be taken into account for further

analysis. In the LS plot there are two ranges for qa that can be clearly defined. In the range

(Rg,G < qa < a/rc), results are similar with the well-known results for DCLA where Df ∼ 1.8,

when for (qa < Rg,G) the results are close to the DLA, where Df ∼ 2.5 [4]. However, it is hard

to make a final decision about fractal dimension values because of a very short dynamic range

where Df can be measured. An increase of dynamic range can be reached in a different ways.

The first is to decrease the cut-off distance rc. In this case, the dynamic range will increase,

however the simulation accuracy reduces significantly due to a loss of accuracy during force

calculations (even LS results look similar for both values of rc in Figure 4.8). Therefore,

the first approach cannot be accepted. The second way is to shift the ideal gel point radius of

gyration to the left. This can be done by decreasing the nanoparticle volume fraction. However,

the aggregation process takes longer for systems with a lower volume fraction. Moreover, the
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number of nanoparticles in the system should be increased to maintain a high possibility of large

cluster formation. For example, by reducing the nanoparticle volume fraction to α = 0.015, and

increasing the number of nanoparticles in a system to N = 500, 000, the computational time

for BD simulation would be 50-70 hours on a single processor in order to obtain the maximum

cluster containing up to 50, 000 nanoparticles. For even larger systems, a single processor BD

simulation cannot be done in a reasonable computational time and some additional steps to

speed up BD calculations are required. Thus, to speed up BD simulations the BD code must

be parallelized.
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CHAPTER 5. IMPROVED MODELING OF AGGREGATING

SYSTEMS

When aggregation occurs in the system of colloidal nanoparticles with no external forces,

the dynamics of such an aggregation process is usually controlled by several statistics. The first

statistic is the self-diffusion coefficient of nanoparticles, which defines how fast two nanopar-

ticles can reach each other to form a cluster. A second important statistic is the surface

chemistry of the nanoparticles which controls the nanoparticle stickiness. This statistic corre-

sponds to the attractive part of the interaction potential and potential well depth ε̂ for a model

system. This second parameter controls the aggregation regime (diffusion-limited aggregation

vs. reaction-limited aggregation).

Analysis of only these statistics will be sufficient to simulate aggregation of colloidal

nanoparticles with such models as DLA, RLA, etc, because in these models a nanoparticle

or cluster (in case of DLCA, etc.) is introduced into the system and it diffuses and attaches to

the steady cluster with stickiness probability pstick. However, when modeling the dynamic of

aggregation of colloidal nanoparticles with MD or BD approaches, considering only these two

statistics may be not enough to describe the aggregation process in the correct way. This is true

because in the case of dynamic aggregation, all of the nanoparticles and clusters are moving

and the relative dispersion of pair diffusion (which is related to the pair correlation function)

is the parameter which plays an important role and should be considered when describing the

aggregation process.

Because the radial distribution function g(r) describes only the pair separation statistic

and does not describe any other aggregation statistics such as cluster size distribution etc., it

is questionable if g(r) is a sufficient statistic to describe aggregating structures. To answer this
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question it is important to answer another question: Is it possible to construct two different

aggregating systems with the same cluster size distribution (CSD), but different g(r)? If the

answer is negative, than g(r) is a sufficient statistic to describe an aggregating structure, but if

the answer is positive, the g(r) is not a sufficient statistic. The answer to this question can be

easily found by considering a system with an arbitrary distribution of cluster sizes. For such

a system g(r) can be computed. Then, let us rescale all the positions of nanoparticles in this

clustering system by a factor of 0.98. In this case the distances between pairs of nanoparticles

will slightly decrease but the CSD will not change at all. It is obvious that g(r) for this

new system will be different than for the original one because the size separation statistic is

changed. Thus, if two systems have the same CSD they may have different g(r). Therefore,

the CSD statistic should be analyzed as well, because g(r) is not sufficient but only necessary

statistic for accurate description of an aggregating system.

In the context of accurately computing nanoparticle aggregation statistics, there is the need

for BD to accurately reproduce the pair correlation function, in addition to the diffusion coef-

ficient. This leads to the derivation of the evolution of the second-order density (unnormalized

radial distribution function) corresponding to the MD and BD dynamical equations.

In the early work Giro et al. [28] have shown that for systems at equilibrium (with no

aggregation occurs) the g(r) from MD and BD simulations is significantly different if the

same Lennard-Jones potential is implemented in both approaches. However, in case of the

aggregation of colloidal nanoparticles, the g(r) values for MD and BD simulations depend on

the aggregation regime. As it was shown in the previous chapter, when aggregation occurs

due to the DLA regime there is no significant difference in the g(r) (Figure 4.2a) and there is

no need for a second-order density analysis. At the same time, when aggregation occurs due

to the RLA regime there is a significant difference in the g(r) for MD and BD (Figure 4.2b).

In this case a second-order density analysis can be used to match the g(r) from MD and BD

simulations.
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5.1 Evolution of the Second-Order Density

Second order density is an important quantity when clustering systems are considered.

Second-order density ρ(2)(x1,x2,v1,v2, t) is defined as [44]

ρ(2)(x1,x2,v1,v2, t) = 〈f ′
1f

′
2〉 (5.1)

where f ′
k =

∑N
i=1 δ(vk −V(i))δ(xk −X(i)), {X(i),V(i), i = 1, ...N} are the position and velocity

of the N nanoparticles in the ensemble, the product 〈f ′
1f

′
2〉 is formed over distinct pairs (j 6= i)

over all realizations of the multiparticle system. The evolution of the second-order statistics

ρ(2) is derived from Eq. 5.1, when the i-th particle evolves according to dX(i)/dt = V(i),

and dV(i)/dt = A(i), where A(i) is the acceleration experienced by the particle. Thus, after

differentiation of Eq. 5.1 with additional assumptions of statistical homogeneity in both the

position space as well as velocity space the following expression is obtained (see Appendix C

for details) [45],

∂ρ(2)(r,w, t)

∂t
+ ∇r ·

(

wρ(2)
)

+ ∇w ·
(

〈∆A|r,w, t〉ρ(2)
)

= 0 (5.2)

where r = x2 − x1 is the relative separation, w = v2 − v1 is the relative velocity, and

〈∆A|r,w, t〉 = 〈A(2)|r,w, t〉 − 〈A(1)|r,w, t〉 is the average relative acceleration. This quan-

tity evolves by a transport equation that contains two terms: one is a transport term in the

relative pair-separation space that contains the pair relative velocity, and the other is a trans-

port term in the pair relative velocity space that contains the conditional expectation of pair

relative acceleration.

Analogous equation for the evolution of the second-order density can be derived for Langevin

equations 3.1 and 3.2. Thus, understanding the behavior of the pair relative velocity and pair

relative acceleration terms for both the MD and BD approaches can provide insight into the

development of coarse-grained potentials for BD. An average relative acceleration is the third

order statistic, which involves arbitrary nanoparticles 1, 2, and probe particle p. Simultaneous

statistical description of two pair separations (|r| = |x2 −x1|, |r′| = |x1 −xp| for particle 1 and

|r| = |x2 − x1|, |r′′| = |x2 − xp| for particle 2) is required.
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The total average relative acceleration can be decomposed into two parts: direct relative

acceleration 〈∆Ad|r〉 and indirect relative acceleration 〈∆Ai|r〉

〈∆A|r〉 = 〈∆Ad|r〉 + 〈∆Ai|r〉 (5.3)

Direct relative acceleration occurs due to the direct interaction of the nanoparticles 1 and 2, and

indirect relative acceleration occurs due to the interaction of particle 1 with the probe particle

p, and particle 2 with the probe particle p, excluding interaction between nanoparticles 1 and 2.

It is convenient to make such a decomposition because an indirect average relative acceleration

is the point of our interest, but in many cases its magnitude is lower than the magnitude of the

direct average relative acceleration. Also, a direct average relative acceleration is independent

of the radial distribution function g(r), when an indirect average relative acceleration depends

on the g(r).

An average relative acceleration can be represented as follows, by assuming a pair-additive

interaction between nanoparticles

〈∆A(2)(1)(r′, r′′)〉 =

∫

〈∆A|r〉ρ(2)(r)dr = (5.4)

=

∫

A(2)(r′′, r)ρ(3)(r′′, r)dr′′dr−
∫

A(1)(r′, r)ρ(3)(r′, r)dr′dr

A third-order density term ρ(3) is unknown. It is determined by applying ρ(3)(r′, r) = λ3h(r′, r).

This relation is defined by analogy with the definition of the second-order density term ρ(2)(r) =

λ2g(r), where λ is the number density of the particles for which an average relative acceleration

is calculated. The third-order correlation function h(r′, r) can be expressed in terms of the

pair correlation function:

h(r′, r) = h(r′|r)g(r) (5.5)

and therefore ρ(3)(r′′, r) = λh(r′′|r)ρ(2)(r). By substituting all these expressions into Eq. 5.4

an expression for the average relative acceleration is

〈∆A|r〉 = λ

∫

A(2)(r′′, r)h(r′′|r)dr′′ − λ

∫

A(1)(r′, r)h(r′|r)dr′ (5.6)

To verify a code for the average relative acceleration calculations, a simple test is con-

structed where computational and analytical data are compared.
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5.2 Test Calculations

For the analytical calculations of the average relative acceleration, a static test with parti-

cles placed along the line (1-d case) and particles on the plane (2-d case) are considered. All

the particles interact through the Lennard-Jones potential

U = 4ε

(

(

σ

r

)12

−
(

σ

r

)6
)

(5.7)

where ε is the well depth of the potential, and σ is the particle diameter. Particles are

distributed according to the Matérn process [47] with hard-core distance equal to the particle

diameter (hard-core distance defines the minimum possible distance between two neighbor

particles). This choice of system allows for use of an analytical expression for the acceleration

and radial distribution function g(r) (Figure 5.1), as well as giving a simpler expression for the
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Figure 5.1 Analytical Matern g(r̂) at λ̂m = 0.1 (left axis), and dimension-

less acceleration (right axis): a) 1-d case, b) 2-d case.

integral for the relative acceleration calculation Eq. 5.6. Table 3.2 lists all the characteristic

parameters which are used in the present study, where the acceleration is calculated from the

Lennard-Jones potential U by the following expression

A(r) =
F(r)

m
= − 1

m
∇rU (5.8)
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For a 1-d case, by calculating the expectation of an indirect relative acceleration between

arbitrary particles 1 and 2 due to the presence of the probe nanoparticle p (interaction between

particles 1 and 2 is excluded), Eq. 5.6 can be rewritten in a scalar form. To estimate the h(r|r)

value, the following assumptions are applied

h(r′|r) ∼= g(r′) (5.9)

h(r′′|r) ∼= g(r′′) (5.10)

and

〈∆A|r〉 ∼= λ

∫

A(r′′, r)g(r′′)e2p · e21dr′′ − λ

∫

A(r′, r)g(r′)e1p · e21dr′ (5.11)

where e21 = r/|r|, e1p = r′/|r′|, and e2p = r′′/|r′′| are the unit vectors.

Based on the relative positions of particles 1, 2, and p, scalar products in Eq. 5.11 will have

different values. For a 1-d case there are three unique cases represented in Figure 5.2 which

should be considered. In this figure, gray areas correspond to the prohibited values for the r̂′

and r̂′′. In Case 1, p nanoparticle is placed between particles 1 and 2, so e2p · e21 = 1, and

e1p · e21 = −1. In Case 2, p nanoparticle is placed on the left side from particles 1 and 2, thus

e2p ·e21 = 1, and e1p ·e21 = 1. In Case 3, p nanoparticle is placed on the right side from particles

1 and 2, and e2p · e21 = −1, and e1p · e21 = −1. A schematic for Case 3 is not represented

because the pattern will be exactly the same as in Case 2 but for the negative values of r̂′ and

r̂′′. After considering all these cases, the final expression for the average relative acceleration

in the 1-d case is

〈∆A|r〉 ∼= −2

∫ r+h

r−h
A(u)g(u)du (5.12)

where h = σ is the hard core distance, and σ is the particle diameter. Similar analysis is

performed for a 2-d case which is much more complicated due to increasing of dimensionality.

Analytical expression for a 3-d case is not considered due to dramatic complications during

analytical integrations. The results of these analytical calculations for 1-d and 2-d cases are

represented in Figure 5.3. Thus, after obtaining an analytical solution, an in-house code which

is written to extract the average relative acceleration from the experimental data can be verified

by simulating a set of simple tests.
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Figure 5.2 Schematic of all possible values of r̂′ and r̂′′ in 1-d case with

prohibited gray area.

In the first test, the indirect average relative acceleration of identical particles is computed.

In this case 150,000 identical particles in the 1-d case and 823,000 identical particles in the 2-d

case were generated according to the Matérn process with h = σ, and with reduced number

density λ̂m = 0.1. Then, for each of N(N − 1)/2 particle pair, separated by r̂, the indirect

relative acceleration on this pair due to all other N − 2 particles is calculated (an interaction

between particles in the pair is excluded). After this, obtained data are averaged over all pairs

separated by the same distance r̂. The results of these computations are represented in Figure

5.3. A good agreement between analytically calculated and computed data for λ̂m = 0.1 is

observed even by taking into account that analytical data is not exact (Eq. 5.11) and obtained

after applying crude approximation. Generally, a good matching of computational and ana-

lytical results is observed for λ̂m ≤ 0.1, when for λ̂m > 0.1 the approximation represented in

Eq. 5.11 does not hold.

In the 1-d case (Figure 5.3a) a negative value for the average relative acceleration at 1 < r̂ <
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Figure 5.3 Indirect average relative acceleration (computed and analyti-

cally calculated) at λ̂m = 0.1: a) 1-d case, computed data is

obtained for 150,000 identical particles and is averaged over

3,000 MIS, b) 2-d case, computed data is obtained for 823,000

identical particles and is averaged over 240 MIS.

2 is observed which corresponds to the attraction between the particles. Further, at r̂ = 2.15

a strong repulsion peak between particles is observed which is decaying to 0 at larger r̂ values.

This behavior can be explained by considering a geometrical place of test particles 1, 2, and

probe particles p in 1-d. In this case when test particles are separated by r̂ < 2, probe particles

p can be placed anywhere except between the test particles 1 and 2 (nanoparticle overlapping

is prohibited). In this case, on average, probe particles p “pushes” the test particles from the

left and right and as a result, test particles move toward each other. This corresponds to the

nanoparticle attraction. However, when the distance between test nanoparticles is large enough

to fit a probe particle between them (r̂ ≥ 2), a strong repulsion occurs. And at large separation

of the test particles, an acceleration of nanoparticle 1 and 2 due to p becomes close to 0 as

g(r̂) = 1 (Figure 5.1). These results confirm that an indirect average relative acceleration for

the identical particles is computed correctly. However, in most real applications a mixture of

at least two types of molecules is considered. Because of this, a second test for extraction of

an indirect average relative acceleration from a mixture is conducted.
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For this test, the same system as in the previous case is considered with only the difference

that 29.5% of all the particles are called A-type particles (nanoparticles) and the rest of the

particles are called B-type solvent molecules. The size and the mass of A-type and B-type

particles is the same, but the well-depth of the pair interaction potential for A − A, A − B,

and B − B type interaction is different and is defined as ε̂AA/ε̂BB = 8.0 and according to

Lorentz-Berthelot mixing rule ε̂AB = (ε̂AA · ε̂BB)1/2 =
√

8.0. An analytical expression for the

average relative acceleration of A − A particles due to both A-type and B-type particles can

be derived from Eq. 5.6 by substituting

A(1)(r′, r) = A
(1)
AA(r′′, r) + A

(1)
AB(r′′, r) (5.13)

A(2)(r′′, r) = A
(2)
AA(r′′, r) + A

(2)
AB(r′′, r)

Computational data is obtained for 44,000 A-type particles and 106,000 B-type particles

in the 1-d case and for 243,000 A-type particles and 580,000 B-type particles in the 2-d case.

Then, the calculations are done in a similar manner as for the previous case, with the only

difference that the relative acceleration between only A-type particles pairs due to the effect of

both A-type and B-type particles is calculated. A comparison of analytical data and compu-

tationally extracted data represent good agreement (Figure 5.4) with the larger spreading of

the computational data around analytical data than is observed in the previous case (Figure

5.3). This large spreading is caused by a significant reduction of the number of pairs which

are involved in the relative acceleration computations.

Test runs for indirect average relative acceleration extractions validate an in-house code

for the pure solvent system of identical particles as well as for the mixture of different types

of particles. When the relative acceleration is extracted from the mixture of molecules, an

additional number of independent simulations should be done to compensate loss of the preci-

sion. Good agreement between analytical calculations and computationally extracted data is

observed for both 1-d and 2-d cases. This is a good sign that the same algorithm should work

for a 3-d case as well. Direct comparison of analytical data with computational data in the

3-d case is not represented in this work because analytical calculations of the average relative

acceleration for a 3-d case is a challenging task.
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Figure 5.4 Indirect average relative acceleration (computed and ana-

lytically calculated) of A-type particles in a mixture with

λ̂A+B = 0.1 and ε̂AA/ε̂BB = 8.0: a) 1-d case, computed data

is obtained for 44,000 A-type particles and 106,000 B-type par-

ticles. Data is averaged over 3000 MIS, b) 2-d case, computed

data is obtained for 243,000 A-type particles and 580,000 B–

type particles. Data is averaged over 240 MIS.

5.3 Relative Acceleration in an Equilibrium System

Calculation of the relative acceleration for dynamic systems is the point of interest for the

relative acceleration problem. One of the simplest 3-d systems is a system of identical non-

aggregative particles at an equilibrium state. To generate such a system the MD simulation

of a 3-d system of 823,218 identical particles with well depth of the Lennard-Jones potential

ε̂ = 1.0 and the volume fraction α = 0.45 is performed. Computation stops when the system

reaches a steady state. In the present case t̂stop = 5.94 in σ/σv∞ units, where σ is the particle

diameter, σ2
v∞ = kBT∞/m is the velocity variance, kB is the Boltzmann coefficient, T∞ is the

reference temperature, and m is the particle mass. All MD simulations were carried out using

LAMMPS [26] software package on an IBM eServer Blue Gene which consists of 1024 dual-core

PPC440 CPUs running at 700Mhz, with 512MB of RAM per node.

Obtained from MD simulation data are post-processed and an indirect average relative
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Figure 5.5 Indirect average relative acceleration, computed from MD sim-

ulation of 823,218 identical nanoparticles in 3-d case with vol-

ume fraction α = 0.45 (left axis) and the radial distribution

function g(r̂) for the same system (right axis), with ε̂ = 1.

acceleration between particles i and j due to all other N −2 particles is extracted (Figure 5.5).

In the dynamic case, an amplitude for the indirect average relative acceleration is similar to

the amplitude of the direct average relative acceleration (Figure 5.1), when for static systems

(Figure 5.3), an amplitude of indirect average acceleration is negligible. A periodic oscillation

of the indirect relative acceleration with a decreasing of the peaks magnitude as r̂ increases is

an interesting result. It would be expected that as r̂ increases an acceleration of i-th should

decrease to 0 (Figure 5.1). However, because the indirect average relative acceleration is

defined as integral over indirect acceleration and the radial distribution function g(r̂) (Eq. 5.6),

therefore if g(r̂) does not monotonically decrease, it is possible that this integral does not equal

0 even when an indirect acceleration is very small. In the present case the radial distribution

function is not a monotonic function (Figure 5.5), and a correlation between 〈∆Âi〉 and g(r̂)

is observed. Thus, an oscillation of the indirect average relative acceleration occurs due to the

oscillation of the radial distribution function g(r̂).
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Figure 5.6 Total average relative acceleration computed from MD sim-

ulation of 823,218 identical particles in 3-d case with volume

fraction α = 0.45 (left axis) and the radial distribution function

g(r̂) for the same system (right axis), with ε̂ = 1.

For the same MD simulation a total relative acceleration is calculated according to Eq. 5.3

which is represented on Figure 5.6. These data show an oscillation around 0 when the analytical

direct acceleration monotonically increases to a 0 after reaching a minimum (Figure 5.1). And

a correlation between 〈∆Â〉 and g(r̂) is observed in a similar way as in the case of the indirect

average relative acceleration (Figure 5.5).

5.4 Relative Acceleration in a Mixture

5.4.1 Equilibrium System

In the case of a mixture of two kinds of particles at equilibrium, the system for MD simu-

lations is similar to the one used for equilibrium simulations of uniform particles with the only

difference that 10, 000 randomly selected particles are called A-type particles (nanoparticles)

and the rest of the 813,218 particles are called B-type solvent molecules. Also the mass ratio
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Figure 5.7 Indirect average relative acceleration, computed from MD sim-

ulation of 10,000 A-type particles and 813,218 B-type particles

in 3-d case, with mA/mB = 50 and ε̂AA/ε̂BB = 1.

of A-type particles to B-type particle is mA/mB = 50. In this case, the total volume fraction

of the system is α = 0.450, the volume fraction of A-type particles is αA = 0.005, and for

B-type particles αB = 0.445. An indirect average relative acceleration between the pair of

A-type particles due to the presence of A-type and B-type particles is extracted from MD

simulation of mixture of particles and is represented in Figure 5.7. The shape and magni-

tude of the indirect average relative acceleration in this case is very similar to the case of an

equilibrium system with uniform particles (Figure 5.6). A radial distribution function g(r̂)

is similar for the mixture of particles and for the uniform particles case because interaction

between particles remains the same. In the case of a mixture, due to the very low volume

fraction of A-type particles, some spreading of the relative acceleration data is observed, when

for the uniform particles case where the volume fraction is high the relative acceleration curve

is relatively smooth. Thus by going from the ideal system to a more realistic one, the number

of independent simulations should be increased to keep the same confidence interval for the
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average relative acceleration data.

5.4.2 Aggregating System

Characteristics of an aggregating system are totally different from characteristics of an

equilibrium one. In the equilibrium case, after reaching equilibrium, any state of the system in

the future is statistically independent. Therefore, to improve statistical results, time averaging

over different time steps can be applied. In the case of aggregation, the system does not

reach an equilibrium state and to improve statistics an averaging over different independent

simulations is required. This significantly increases the cost of computations.

To analyze the indirect average relative acceleration in case of aggregation, both MD and

BD applications are used to generate aggregation systems. To simulate an aggregation with

MD, the same initial system, as in the equilibrium case, is chosen with well-depth potentials

corresponding to the aggregation case. Two aggregation systems are simulated with such

reduced well-depth potentials: System 1 ε̂AA = 4.0, ε̂BB = 1.0, and ε̂AB =
√

4.0, and System

2 ε̂AA = 8.0, ε̂BB = 1.0, and ε̂AB =
√

8.0. To simulate aggregation with BD, the same system

as in the MD case is used with no simulation of solvent molecules.

In the BD case the relative acceleration of A-A type particles due to the effect of A-type

particles can be only computed. By the contrast in the MD case the relative acceleration of

A-A type particles due to the effect of A-type particles, or B-type solvent molecules, or both

A and B-type particles can be computed. Therefore, when the relative acceleration results are

compared for MD and BD approaches, only the relative acceleration of A-A type particles due

to effect of A-type particles can be directly compared.

Indirect average relative acceleration of A-A type particles by effect of both A-type and

B-type particles is extracted from MD simulations for both systems (Figure 5.8). It is observed

that indirect average relative acceleration data oscillates around zero for both systems. How-

ever, because these two systems generate different cluster structures (Figure 4.3) the indirect

relative acceleration data are also different. Thus, for a system with ε̂AA = 4 the relative ac-

celeration data (Figure 5.8a) decays to zero at a much smaller length scale than in the case of
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Figure 5.8 Indirect average relative acceleration of A-A type particles

by effect of both A-type and B-type particles (10,000 A-type

nanoparticles and 813,218 B-type nanoparticles) in 3-d case at

time t̂ = 329.8, with mnanop/msolvent = 50: a) ε̂AA/ε̂BB = 4.0;

b) ε̂AA/ε̂BB = 8.0.

ε̂AA = 8 (Figure 5.8b) which is related to the different scales of aggregates. Also, the number

of oscillation cycles is significantly bigger for a system with a larger reduced well-depth value.

These oscillations of an indirect average relative acceleration of A-A type particles identify

that an attraction between pairs of A-A type particles occurs at some pair separation for the

aggregating system. This provides the driving force for an aggregation to occur. This attrac-

tion can occur due to the effect of A-type particles and/or the effect of B-type particles. To

identify which interaction is most significant, an indirect average relative acceleration of A-A

type particles by effect of only A-type particles and due to effect of only B-type particles is

computed for both systems. Data for the indirect average relative acceleration due to A-type

particles only for both MD and BD simulations are represented in Figure 5.9. It can be seen

that the indirect average relative acceleration calculated from MD simulations is significantly

different for systems with different reduced well-depth values, while in the case of BD simula-

tions such difference is minimal. Such different results obtained for MD and BD simulations

can be explained by difference in the radial distribution function (Figure 4.2). By comparing
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Figure 5.9 Indirect average relative acceleration of A-A type particles

by effect of only A-type particles from MD simulation (10,000

A-type nanoparticles and 813,218 B-type nanoparticles) and

BD simulation (10,000 A-type nanoparticles) in 3-d case with

mnanop/msolvent = 50 at time t̂ = 329.8: a) ε̂AA/ε̂BB = 4.0;

b) ε̂AA/ε̂BB = 8.0.

acceleration data for MD and BD simulations a very good matching of indirect acceleration

data is observed for System 2 with ε̂AA/ε̂BB = 8, when for System 1 (ε̂AA/ε̂BB = 4) results

are totally different. This behavior is related to the different aggregation regime for MD sim-

ulations. In the case of System 1 this is the RLA regime, and in System 2 this is the DLA

regime.

To complete investigation of the indirect relative acceleration, an indirect relative accel-

eration between A-A type of particles due to the effect of only B-type particles is calculated

(Figure 5.10). The magnitude of relative acceleration due to the effect of B-type particles is

much smaller than due to the effect of A-type particles for System 2 (Figures 5.10b, 5.9b)

when the DLA regime is dominant. However, when the RLA aggregation regime is dominant,

A-type interaction and B-type interactions are both equally important (Figures 5.10a, 5.9a)

and should be considered when improving aggregation modeling. Also, these results show that

in case when the DLA regime is dominant (Figure 5.10b) the dependence of an indirect average



62

(a) (b)

r

<
∆A

i
>

1 2 3 4 5 6
-4

-2

0

2

4

A-A due to B

∧

∧
r

<
∆A

i
>

1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

A-A due to B

∧

∧

Figure 5.10 Indirect average relative acceleration of A-A particles by effect

of only B particles (MD simulation of 10,000 A-type nanopar-

ticles and 813,218 B-type nanoparticles) in 3-d case, with

mnanop/msolvent = 50 at time t̂ = 329.8: a) ε̂AA/ε̂BB = 4.0;

b) ε̂AA/ε̂BB = 8.0.

acceleration on the particle separation for the length scale of r̂ < 5 is observed, when in case

of the RLA regime (Figure 5.10a) there is no dependence on r̂.

From the analysis of an indirect average relative acceleration for aggregating systems the

following conclusions can be made:

1. When the DLA regime is dominant in MD simulations, good match of the radial distri-

bution function computed from the MD and BD simulations is observed (Figure 4.2b),

which leads to good match of an indirect average relative accelerations (Figure 5.9b). As

result, no improvement in the interaction potential is needed. However, the dependence

of an indirect average relative acceleration on the separation distance r̂ is observed for

MD simulations (Figure 5.10b). Thus, to improve a BD model the dependence on r̂

should be introduced into frictional and random terms in Langevin equation 3.2.

2. In case of the RDA regime, there is no dependence of the indirect average acceleration

on r̂ is observed (Figure 5.9). However, the radial distribution function does not match
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for MD and BD simulations (Figure 4.2a), and therefore an indirect average acceleration

does not match as well (Figure 5.9a). In this case an interaction potential should be

modified to improve a BD model.
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CHAPTER 6. CONCLUDING REMARKS

Two simulation approaches, molecular dynamics (MD) [7] and Brownian dynamics (BD)

[21], are analyzed and compared with a view to accurately predicting aggregation of colloidal

nanoparticles. The principal findings of this study are:

1. Molecular dynamics approach is not feasible to simulate an aggregation of colloidal

nanoparticles for systems of physical sizes due to presence of very large number of solvent

particles in such systems.

2. MD and BD comparison is possible only for model non-size separated systems and cannot

be done for physical systems.

3. Reduction of position and velocity-Langevin equations to position-Langevin can be ap-

plied for physical system and is not justified for model system.

4. To satisfy accuracy requirements when simulating aggregation processes, a significant

number of multiple independent simulations (MIS) is needed. The reason for this is that

the aggregation process is evolving in time and it is impossible to improve statistics by

performing time averaging as can be done for equilibrium systems. Therefore, accurate

simulation of the aggregation process is computationaly demanding.

5. The extent of aggregation ξ, cluster size distribution (CSD) and radial distribution func-

tion g(r) are important statistics which should be considered when analyzing the aggrega-

tion structure. The aggregation of colloidal nanoparticles in the BD approach is mainly

controlled by the potential well-depth ε̂, which identifies aggregation regimes, such as

diffusion-limited aggregation, or reaction-limited aggregation. While the self-diffusion

coefficent D∞ just varies at the rate at which aggregation occures.
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6. Light scattering analysis (LSA) is a powerful tool for analyzing the aggregate structure

which allows us to extract such aggregation characteristics as the fractal dimension Df for

a range of aggregate length scales. The application of this tool is limited by requirements

of a large dynamic range for precise measurements of Df . This leads to requirements of

large cluster sizes and small nanoparticles volume fraction (in order to shift the ideal gel

point radius of gyration). Thus, a significant speed up of BD simulations is required.

7. For model systems with equal sizes of nanoparticles and solvent molecules, both MD

and BD approaches predict similar aggregate structures with similar ξ, CSD, and g(r)

with high reduced well-depth potential (ε̂ = 8). For the same model systems but with

ε̂ = 4, the aggregate structures predicted by BD do not match MD. The reason for this

difference is that in both MD and BD approaches, the aggregation process depends on

the ε̂ value, which is related to the probability of two particles sticking together. Thus,

with (ε̂ = 8) the DLA regime dominates for both MD and BD approaches, when with

(ε̂ = 4) the RLA regime dominates in the MD approach and the DLA regime dominates

in the BD approach.

8. A new method to match aggregation statistics obtained from MD and BD simulations

is proposed. In this method the evolution of the second-order density for MD model is

derived. The average relative acceleration between nanoparticle pairs is identified as an

important link between MD and coarse-grain simulations such as BD in both DLA and

RLA regimes.

Future work is suggested as follows:

1. It is important to perform a deep investigation of the g(r) statistics with respect to the

question if a g(r) is a sufficient statistic to characterize the aggregation process. Also

it is important to identify if a CSD is a sufficient statistic to characterize aggregation.

These questions can be answered by finding the answers to the following questions: If

g(r) is given, can we compute CSD? And if CSD is given can we compute g(r)?
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2. For more realistic cases, the systems with size separation of nanoparticles and solvent

molecules should be simulated and compared for MD and BD. In this case the aggregation

processes can change even if all other parameters will be the same due to changes in

the self-diffusion coefficient of nanoparticles. Careful consideration of the model system

is required in order to perform MD simulations; thus it will be hard to perform MD

simulations with large size separation and a large number of nanoparticles.

3. Other coarse-graining methods such as dissipative particle dynamics (DPD) and sto-

chastic rotational dynamics (SRD) can be implemented and compared with MD and BD

results with respect to the accurate prediction of aggregation.



67

BIBLIOGRAPHY

[1] Roco, M. C. Nanoparticles and nanotechnology research. J. Nanop. Rec., 1:1–6, 1999.

[2] Friedlander, S. K. Nanoparticles and their structures: the next generation. J. Nanoparticle

Rec., 1:159–160, 1999.

[3] Oh, C., and Sorensen C. M. The effect of overlap between monomers on the determination

of fractal cluster morphology. J. Colloid & Interf. Sci., 193:17–25, 1997.

[4] Oh, C., and Sorensen C. M. Structure factor of diffusion-limited aggregation clusters:

Local structure and non-self-similarity. Phys. Rev. E, 57(1):784–790, 1998.

[5] Fry, D., Chakrabarti, A., Kim, W., and Sorensen C. M. Structural crossover in dense

irreversibly aggregating particulate systems. Phys. Rev. E, 69:061401, 2004.

[6] Lattuada, M., Wu, H., Sandkuhler, P., Sefcik, J., and Morbidelli, M. Modelling of aggre-

gation kinetics of colloidal systems and its validation by light scattering measurements.

Chem. Engin. Science, 59:1783–1798, 2004.

[7] Ulberg, D. E., Churaev, N. V., Ilyin, V. V., and Malashenko, G. L. Molecular-dynamics

simulation of the aggregation of colloidal particles. Colloids & Surfaces A Physicoch. &

Engin. Aspects, 80:93–102, 1993.

[8] Witten, T. A., and Sander, L. M. Diffusion-limited aggregation, a kinetic critical phenom-

enon. Phys. Rev. Lett., 47:1400–1403, 1981.

[9] Meakin, P., and Vicsek, T. Internal structure of diffusion-limited aggregates. Phys. Rev.

A, 32(1):685–688,1985



68

[10] Meakin, P. Formation of fractal clusters and networks by irreversible diffusion-limited

aggregation. Phys. Rev. Lett., 51:1119–1122, 1983.

[11] Kolb, M., Botet, R., and Jullien, R. Scaling of kinetically growing clusters. Phys. Rev.

Lett., 51:1123–1126, 1983.

[12] Meakin, P. A historical introduction to computer models for fractal aggregates. J. Sol-Gel

Sci. & Tech., 15:97–117, 1999.

[13] Vold, M. J. Computer simulation of floc formation in a colloidal suspension. J. Colloid &

Sci., 18:684–695, 1963.

[14] Sutherland, D. N. A theoretical model of floc structure. J. Colloid & Inter. Sci., 25:373–

380, 1967.

[15] Jullien, R., and Kolb, M. Hierarchical model for chemically limited cluster-cluster aggre-

gates. Journal of Physics, A17:L639–L643, 1984.

[16] Salazar, R., and Gelb, L. D. Off-lattice Dynamic Monte Carlo simulations of aggregation

in one dimension. Physica A, 365:190–195, 2005.

[17] Hoogerbrugge, P. J., and Koelman, J. M. V. A. Simulating microscopic hydrodynamic

phenomena with dissipative particle dynamics. Europhys. Lett., 19:155–160, 1992.
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APPENDIX A. Buchingham Pi Theory

Buchingham Pi Theory relies on the identification of variables involved in a process. Several

steps shoul be procedeed to perform a nondimensional analysis.

1. List all the variables that govern the process.

In our case we have: potential well depth ε, nanoparticle diameter σ, nanoparticle po-

sition r, nanoparticle velocity v, nanoparticle mass m, nanoparticle diffusion coefficient

D∞, kBTref where kB is Boltzmann constant, reference temperature Tref , time t, and

particle number density λ. Thus all together there are n = 9 variables.

2. Between all variables in the system mark a few of them as “Repeating Variables”. This

step is most difficult in a dimensional analysis.

In our case these are: σ, m, kBTref and k = 3

3. Define how many non-dimensional numbers is in system. In this case it is n − k = 6.

Our problem has four non-dimensional numbers: Π1, Π2, Π3, Π4, Π5, and Π6.

4. Define the non-dimensional numbers by grouping the variables into n−k groups. So each

group has all the repeating variables and one non-repeating variable. For our problem

we have:

Π1 = Π1(σ,m, kBTref , ε) (A.1)

Π2 = Π2(σ,m, kBTref ,D∞) (A.2)

Π3 = Π3(σ,m, kBTref , t) (A.3)

Π4 = Π4(σ,m, kBTref , λ) (A.4)
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Π5 = Π5(σ,m, kBTref , r) (A.5)

Π6 = Π6(σ,m, kBTref ,v) (A.6)

Let

Π1 = σamb(kBTref )cε (A.7)

Π2 = σdme(kBTref )fD∞ (A.8)

Π3 = σgmh(kBTref )it (A.9)

Π4 = σjmk(kBTref )lλ (A.10)

Π5 = σmmn(kBTref )or (A.11)

Π6 = σpmq(kBTref )rv (A.12)

5. Express each variable in terms of its dimensions.

Variable ε σ r v m D∞ kBTref t λ

Dimension ML2/T 2 L L L/T M L2/T ML2/T 2 T 1/L3

Substituting these dimensions into Π1−6 at the previous step:

Π1 = (L)a(M)b(ML2/T 2)c(ML2/T 2) (A.13)

Π2 = (L)d(M)e(ML2/T 2)f (L2/T ) (A.14)

Π3 = (L)g(M)h(ML2/T 2)i(T ) (A.15)

Π4 = (L)j(M)k(ML2/T 2)l(1/L3) (A.16)

Π5 = (L)m(M)n(ML2/T 2)o(L) (A.17)

Π6 = (L)p(M)q(ML2/T 2)r(L/T ) (A.18)

or

a + 2c + 2 = 0; b + c + 1 = 0; −2c − 2 = 0

d + 2f + 2 = 0; e + f = 0; −2f − 1 = 0
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g + 2i = 0; h + i = 0; −2i + 1 = 0

j + 2l − 3 = 0; k + l = 0; −2l = 0

m + 2o + 1 = 0; n + o = 0; −2o = 0

p + 2r + 1 = 0; q + r = 0; −2r − 1 = 0

Solving these equations yields,

a = 0; b = 0; c = −1

d = −1; e = 1/2; f = −1/2

g = −1; h = −1/2; i = 1/2

j = 3; k = 0; l = 0

m = −1; n = 0; o = 0

p = 0; q = 0.5; r = −0.5

Non-dimensional numbers become:

ε̂ =
ε

kBTref
(A.19)

D̂∞ =
D∞

σ

√

m

kBTref
(A.20)

t̂ =
t

σ

√

kBTref

m
(A.21)

λ̂ = λσ3 (A.22)

r̂ =
r

σ
(A.23)

v̂ = v

√

m

kBTref
(A.24)

By introducing the velocity variance σ2
v∞ = kBTref/m these equations reduce to

ε̂ =
ε

kBTref
(A.25)

D̂∞ =
D∞

σσv∞

(A.26)

t̂ = t
σ

σv∞

(A.27)
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λ̂ = λσ3 (A.28)

r̂ =
r

σ
(A.29)

v̂ =
v

σv∞

(A.30)

It is clear that there are only three parameters that characterise the system (except position,

velocity, and time), such as scaled particle number density λ̂ (a particle volume fraction α can

be used instead), a scaled nanoparticle diffusion coefficient D̂∞, and a scaled potential well

depth ε̂.
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APPENDIX B. Cluster Definition

In the present work clusters are defined by setting a clustering separation distance rcl.

Typical values for rcl = 1.2 ÷ 1.5σ, where σ is the nanoparticle diameter. In the present work

rcl = 1.2σ is chosen. The following algorithm for the definition of clusters in system of N

nanoparticles is used:

1. Particle 1 is added to the list of the first cluster. Then, calculate a separation between

particle 1 and the rest of j = 2, . . . , N particles. All the j particles which are separated

by the distance r1j ≤ rcl are added to the list of the first cluster.

2. The separations between second particle in the list of the first cluster and the rest of

particles in the system is calculated (except particles which already belong to the cluster).

If separation is equal or smaller than rcl then particle is added to the list of the first

cluster. This procedure repeats untill all the particles in the list of the first cluster are

checked.

3. The next particle after particle 1 which does not belong to the first cluster picked up

and is added to the list of the second cluster. After this, procedure described in 1 and 2

repeats untill all the particles in the system will belong to clusters.

This is an easy and relatively fast method which allows to get a cluster size distribution

(CSD) of N nanoparticles in the system. The main disadvantage of this method is dependence

of the cluster size distribution on such external parameter as rcl. Also, in this method a

snapshot of system is analyzed which can give a different CSD than by analyzing a system in

dynamic.
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APPENDIX C. Evolution of the Second-Order Density for MD Model

Differentiating Eq. 5.1 with respect to time results in

∂ρ(2)(x1, x2, v1, v2, t)

∂t
=

〈−
N
∑

i=1

N
∑

j=1

V
(i)
k

∂

∂x1k
δ(v1 − V(i))δ(x1 − X(i))δ(v2 − V(j))δ(x2 −X(j))

−
N
∑

i=1

N
∑

j=1

A
(i)
k

∂

∂v1k
δ(v1 − V(i))δ(x1 − X(i))δ(v2 − V(j))δ(x2 − X(j)) (C.1)

−
N
∑

i=1

N
∑

j=1

V
(j)
k

∂

∂x2k
δ(v1 − V(i))δ(x1 − X(i))δ(v2 − V(j))δ(x2 −X(j))

−
N
∑

i=1

N
∑

j=1

A
(j)
k

∂

∂v2k
δ(v1 − V(i))δ(x1 − X(i))δ(v2 − V(j))δ(x2 − X(j))〉

where V
(i)
k and V

(j)
k represent the velocity of i-th and j-th nanoparticles correspondently

along Cartesian coordinate k, and A
(i)
k and A

(j)
k represent the acceleration of i-th and j-th

nanoparticles correspondently along Cartesian coordinate k. By substituting the relation

a · δ(a − b) = b · δ(a − b), (C.2)

an expression is changing to

∂ρ(2)(x1, x2, v1, v2, t)

∂t
= (C.3)

〈− ∂

∂x1k
(v1k〈f ′

1f
′
2〉) −

∂

∂v1k

N
∑

i=1

N
∑

j=1

(A
(i)
k δ(v1 − V(i))δ(x1 − X(i))δ(v2 − V(j))δ(x2 − X(j)))

− ∂

∂x2k
(v2k〈f ′

1f
′
2〉) −

∂

∂v2k

N
∑

i=1

N
∑

j=1

(A
(j)
k δ(v1 − V(i))δ(x1 −X(i))δ(v2 − V(j))δ(x2 − X(j)))〉

By defining the following function in phase space:

〈A(i)
k |x1, x2, v1, v2, t〉ρ(2)(x1, x2, v1, v2, t) = (C.4)
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N
∑

i=1

N
∑

j=1

(A
(i)
k δ(v1 − V(i))δ(x1 − X(i))δ(v2 − V(j))δ(x2 − X(j)))

An expression for the second-order density is

∂ρ(2)(x1, x2, v1, v2, t)

∂t
= − ∂

∂x1k

(

v1kρ
(2)(x1, x2, v1, v2, t)

)

(C.5)

− ∂

∂x2k

(

v2kρ
(2)(x1, x2, v1, v2, t)

)

− ∂

∂v1k

(

〈A(i)
k |x1, x2, v1, v2, t〉ρ(2)(x1, x2, v1, v2, t)

)

− ∂

∂v2k

(

〈A(j)
k |x1, x2, v1, v2, t〉ρ(2)(x1, x2, v1, v2, t)

)

Now, by changing variables in the following way r = x2 − x1 and w = v2 − v1, the final

expression can be written in the vector form as

∂ρ(2)(r,w, t)

∂t
+

∂

∂r

(

wρ(2)(r,w, t)
)

(C.6)

− ∂

∂w

(

〈A(i)|r,w, t〉ρ(2)(r,w, t)
)

+
∂

∂w

(

〈A(j)|r,w, t〉ρ(2)(r,w, t)
)

= 0

And finally,

∂ρ(2)(r,w, t)

∂t
+ ∇r ·

(

wρ(2)(r,w, t)
)

+ ∇w ·
(

〈∆A|r,w, t〉ρ(2)(r,w, t)
)

= 0 (C.7)

where r represents the pair separation vector, w represents the relative velocity vector, and

〈∆A|r,w, t〉 represents the expected relative acceleration ∆A = A(j) − A(i) conditional on

relative velocity and pair separation.

In Molecular Dynamics case, an acceleration, experienced by i-th particle is

A
(i)
MD =

dV(i)

dt
=

F
(i)
MD

m
(C.8)

where F
(i)
MD is the force that i-th particle experienced due to an interaction with all other

particles.

Thus, in MD case an expression for the evolution of the second order density is

∂ρ
(2)
MD(r,w, t)

∂t
+ ∇r ·

(

wρ
(2)
MD(r,w, t)

)

+ ∇w ·
(

〈∆AMD|r,w, t〉ρ(2)
MD(r,w, t)

)

= 0 (C.9)

where ∆AMD = A
(j)
MD − A

(i)
MD.
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