
Graduate Theses and Dissertations Graduate College

2009

Massive model visualization: An investigation into
spatial partitioning
Jeremy S. Bennett
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Bennett, Jeremy S., "Massive model visualization: An investigation into spatial partitioning" (2009). Graduate Theses and Dissertations.
10546.
http://lib.dr.iastate.edu/etd/10546

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F10546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Fetd%2F10546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/10546?utm_source=lib.dr.iastate.edu%2Fetd%2F10546&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


Massive model visualization:  An investigation into spatial hierarchies 
 
 

by 
 
 

Jeremy Scott Bennett 
 
 
 

A thesis submitted to the graduate faculty 

 in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 
 

Major: Human Computer Interaction 
 

Program of Study Committee: 
James Oliver (Major Professor) 

Yan-Bin Jia 
Eliot Winer 

 
 
 
 
 
 
 
 
 

Iowa State University 
 

Ames, Iowa 
 

2009 
 

Copyright © Jeremy Scott Bennett 2009. All rights reserved. 
  



ii 
 
TABLE OF CONTENTS 

LIST OF FIGURES   IV

LIST OF TABLES   V

ABSTRACT   VI

1 INTRODUCTION   1
1.1 Product Lifecycle Management   1
1.2 Visualization Software   2
1.3 Motivation   3
1.4 Thesis Organization   4

2 BACKGROUND   5
2.1 Graphics Techniques   5

2.1.1 Culling   6
2.1.2 Spatial Hierarchies   8
2.1.3 Stand-Ins   9
2.1.4 Memory Management   11

2.2 Complete Systems   12
2.2.1 MMR   12
2.2.2 Far Voxels   14
2.2.3 Interviews3D   16

2.3 Research Issues   19

3 MMDR SYSTEM   21
3.1 Spatial Partitioning   22

3.1.1 Basic Approach   24
3.1.2 Data Gathering   24
3.1.3 Sub-division   25
3.1.4 Multi-Threading   26
3.1.5 File Format   27
3.1.6 Part Associativity   30

3.2 Rendering   30
3.2.1 Basic Approach   31
3.2.2 Multi-view Rendering Support   32



iii 
 

3.3 Memory Management   33
3.3.1 Basic Approach   33
3.3.2 Residency Request   33
3.3.3 Disposable Objects   35

3.4 Spatial Hierarchy   36
3.4.1 Basic Approach   36
3.4.2 Memory Conservation   36
3.4.3 Bounding Box Calculation   37

4 RESULTS AND DISCUSSION   40
4.1 Partitioning   41

4.1.1 Spatial Hierarchy Extraction Time   41
4.1.2 Multi-threaded Extraction time   44
4.1.3 Boeing 777 Extraction time   46

4.2 Rendering   47
4.2.1 Rendering Performance   47

4.3 Memory Management   51
4.3.1 Partitioning Memory   52
4.3.2 Rendering Memory   52

5 CONCLUSION AND FUTURE WORK   56
5.1 Summary and Conclusions   56

5.1.1 Partitioning   56
5.1.2 Rendering   57
5.1.3 Memory Management   57

5.2 Future Work   57
5.2.1 Partitioning   57
5.2.2 Rendering   59
5.2.3 Memory Management   60
5.2.4 Massive Model Visualization   61

5.3 Acknowledgments   62

REFERENCES   65
 



iv 
 
LIST OF FIGURES 

Figure 1: Growth in computational performance versus memory performance (1)   3

Figure 2: Diagram showing screen coverage, occlusion and view frustum culling   6

Figure 3: Billboard and reduced polygon count representation of the model on the left   10

Figure 4: Advanced features commonly seen in visualization software   19

Figure 5: Screenshot of MMDr   21

Figure 6: SJT File Segments   28

Figure 7: Original model (Left), Output (Center), Results of the occlusion query algorithm 
(Right)   32

Figure 8: IEEE 754 single precision float bit layout   38

Figure 9: Equation for calculating the min value along the axis for a cell bounding box   39

Figure 10: Total extraction time for various data sets   42

Figure 11: Serialize versus extract times for various data sets on the i7   42

Figure 12: Total spatial extraction time based on number of triangles   43

Figure 13: Comparison of serialize versus extract time based on number of triangles   44

Figure 14: Time to extract on n threads   45

Figure 15: Efficiency of extracting on n threads   45

Figure 16: Write versus extraction time   46

Figure 17: Rendering 11 instances of the corporate jet   47

Figure 18: Render performance with a minimum amount of screen coverage culling   49

Figure 19: Render performance with a moderate amount of screen coverage culling   50

Figure 20: Comparison of rendering when using minimal and moderate screen coverage 
culling with a spatial hierarchy   51

Figure 21: Memory usage when rendering with minimal screen coverage culling   53

Figure 22: Memory usage when rendering with moderate screen coverage culling   54

Figure 23: Memory usage when rendering   54



v 
 
LIST OF TABLES 

Table 1: Set of test machines   40

Table 2: Comparison of viewer features   48

 



vi 
 
ABSTRACT 

The current generation of visualization software is incapable of handling the 

interactive rendering of arbitrarily large models.  While many solutions have been proposed 

for Massive Model Visualization, very few are able to achieve the full capabilities needed for 

a computer visualization solution.  In most cases this is due to overly complex approaches 

that, while achieving impressive frame rates, make it virtually impossible to implement 

features like part manipulation.  What is needed is a simple approach with rendering 

performance bounded by screen complexity not model size, with primitive traceability to the 

original model to facilitate part manipulation, and capability to be modified in near-real-time. 

This thesis introduces MMDr, a simple system to achieve interactive frame rates on 

extremely large data sets, while retaining support for most if not all the features required for 

a computer visualization solution. 

 

 



1 
 
1 INTRODUCTION 

1.1 Product Lifecycle Management 

Product lifecycle management (PLM) is a set of software tools and processes by 

which a product is managed throughout its lifecycle; it is used by the Best-In-Class 

companies in order to achieve a high level of innovation.  PLM focuses on designing the 

right product at a higher quality with reduced design, manufacturing, and maintenance costs.   

PLM accomplishes this by enabling globalization, ensuring that best practices are re-used 

from one product to the next, and enhancing the engineering design process. 

The product lifecycle can be described in as a series of phases efficient and high 

quality product development.  For most products this can be summarized into 6 phases: 

Inception, Requirements, Design, Manufacture, Support, and Retirement. 

The product is first conceived in the inception phase.  It could spawn from a 

“Eureka!” moment, brainstorming session, or a customer request.  It is quite simply taking an 

idea and deciding to turn it into a product.   

The requirement phase focuses on defining the product.  Usually this requires talking 

with a customer and finding out what their needs are and then translating these into the set of 

the features that the product must contain.  It is very important to ensure that the 

requirements are complete since it has been shown time and again that changing 

requirements in later phases is significantly more expensive than getting them right the first 

time. 

In the design phase a solution is developed to satisfy the requirements.  Many 

alternatives may be explored before a final one is chosen to be implemented.  Further, a 



2 
 
prototype may need to be built in order to prove feasibility or to solicit customer feedback in 

order to ensure proper understanding of the requirements. 

The manufacturing phase defines the processes by which the design is realized as a 

physical product.  This encompasses everything from setup, fabrication, assembly, and 

shipping. 

The support phase occurs once a product has been released and is in hands of the 

customer.  Mechanisms must be put in place that allow customers reported issues and for any 

issues deemed severe enough to be addressed.  As long as the product is manufactured 

support must be provided.   

The retirement phase is the point at which a product is no longer manufactured or 

supported. The factory is closed or transitioned to a new product and any support 

mechanisms that were put in place are disabled.  If it has not already been done, the company 

will take stock of what went well and what did not during the design process. 

1.2 Visualization Software 

Visualization software is a very important component of the PLM toolset, especially 

since it provides many opportunities for companies to reduce costs.   The ability to visualize 

and analyze a product throughout the design phase means that the expensive physical 

prototypes of the past may not be necessary.  Analysis routines that previously had to wait 

until after a physical prototype was manufactured can now be executed as soon as the 

required components are complete allowing for issues to be identified much sooner.  

Visualization allows for companies to transition to a paperless design and manufacturing 

process.  Components are now capable of being designed in context.  This reduces the 



3 
 
chances that they might accidentally interfere with one another, while simultaneously 

achieving much tighter integrations of components.   Product manufacturing information like 

machining tolerances can easily be displayed in context.   Complex assembly instructions can 

be implemented in full 3D with markups representing trouble areas or special instructions. 

1.3 Motivation 

The current generation of visualization software was designed for "Large Model 

Visualization" (LMV), or models on the order of magnitude of millions of triangles.  While 

the implemented techniques were more than adequate for data of this size, it is quickly 

becoming apparent that these brute force techniques will not be able to keep up with the 

increases in model complexity. As illustrated in Figure 1, the problem stems from the fact 

that the computational power of both GPUs and CPUs is increasing at a far greater rate than 

memory bandwidth and data access speeds. 

 

Figure 1: Growth in computational performance versus memory performance [1] 

This means that while model complexity may be quickly approaching arbitrarily large 

sizes, the amount of data that the memory sub-system can handle is not approaching large 

sizes.  "Massive Model Visualization" (MMV) is the term used to encompass the research 



4 
 
and techniques that address this problem and therefore it is of extreme interest to those in the 

field of computer visualization.  

1.4 Thesis Organization 

This thesis focuses on the use spatial hierarchies to facilitate Massive Model 

Visualization via a rendering approach called MMDr that is dependent upon output 

sensitivity and not model complexity.  More specifically, it focuses on what can be achieved 

through a bare minimum approach to establish a better understanding and a framework by 

which more advanced research into MMV can be accomplished.  Chapter 2 presents three 

different systems for handling arbitrarily large data sets, and briefly covers some of the more 

common techniques for accelerating rendering.  Chapter 3 explains the algorithmic choices 

and implementation of the MMDr proof of concept.  Chapter 4 presents the performance 

characteristics of MMDr and, where applicable, compares it against the highly optimized and 

commercially available DirectModel Toolkit from Siemens PLM Software.  Finally, Chapter 

5 summarizes the results and details many opportunities for future work within MMDr in 

particular, and MMV in general. 



5 
 
2 BACKGROUND 

Research in massive model visualization, i.e., interactive rendering of arbitrarily large 

models on commodity hardware, builds on a relatively old and voluminous body of research 

in computer graphics. Many basic computer graphics techniques have been in continuous 

development for many years and have undergone significant enhancement to keep pace with 

the increases in data size, hardware acceleration, and other complimentary technological 

advances.  However, no single graphics performance technique is capable of solving the 

problem of rendering arbitrarily-large models on commodity hardware and therefore these 

techniques are often grouped together.  Thus, massive model visualization research typically 

focuses on grouping these fundamental graphics techniques to form complete systems that 

enable interactively frame rates to be achieved on the current and future generations of 

models. 

2.1 Graphics Techniques 

As stated earlier no single computer graphics technique is capable of achieving 

interactive frame rates on arbitrarily large models.  Therefore it is necessary to take a broad 

look at the available methods presently in use in order to gain better understanding of their 

strengths, weaknesses, and why they may be included in a specific massive model 

visualization method.  Below culling, spatial hierarchies, stand-ins, and memory management 

will be briefly introduced since they are the most commonly used techniques throughout the 

computer graphics literature.  



6 
 
2.1.1 Culling 

One of the best ways to accelerate rendering is to render only the geometry that will 

contribute to a given frame.  Thus, many methods have been proposed for culling data that 

does not significantly contribute to the current frame.  While these methods are effective at 

reducing the rendering data set size, they often do so at a high computational cost.  On large 

data sets these algorithms can become so expensive that it actually takes more time to cull the 

geometry than it does to render it.  A common solution for this issue is to use a separate 

thread to perform the culling for the next frame while rendering the current frame.  The 

problem with this approach is that the set of culled shapes between frames may be different 

enough that artifacts are introduced, such as the disocclusion or “popping” of shapes.  A 

better solution is the use one of the spatial indexing approaches that are described below in 

order to significantly reduce the amount data that must be processed by allowing for larger 

chunks of data to be culled with a single calculation. 

 

Figure 2: Diagram showing screen coverage, occlusion and view frustum culling 

One of the earliest and easiest to implement methods for culling data is view frustum 

culling (VFC).  The basic premise of VFC culling is that only the data that intersects or is 

contained within the current view frustum will likely contribute to the final image and 



7 
 
therefore it is safe to cull all other geometry.  While this premise may not be true for all 

rendering methods, for example if reflections are being rendered, it does provide for an 

efficient and effective way to cull a significant amount of geometry.  One of the earliest and 

most commonly referenced approaches was presented by Clark in 1976 and over the years 

there have been many enhancements with some being present as late as 1999 and 2000 by 

Assarsson and Mőller [2,3,4]. 

Another common method for culling data is screen coverage culling. Screen coverage 

culling is based on the fact that geometric data can only contribute to an easily-bounded 

fraction of the final image.  The premise is that the maximum contribution of any geometric 

data is relative to its size in world coordinates compared to the size of the view frustum and 

that it is safe to cull any geometry whose contribution is so small it would not make 

significant difference in the final image.  Screen coverage culling is not without its 

drawbacks.  There is no clear-cut definition of the parameters of a significant contribution; 

further, in a non-static scene there can be a significant amount of geometric data popping in 

and out as it transitions between being culled and not culled.  Screen coverage can also be 

referred to as adaptive, as further described by both Bartz et al and Zhang et al [5,6]. 

A more advanced method for culling is occlusion culling.  The basic premise is that 

geometric data can be occluded by other geometric data during the rendering process and will 

not contribute to the final output image.  In the past, methods like hierarchical z-buffers, 

occlusion switches, shadow frusta, and hierarchical occlusion maps were used to detect and 

cull occluded data [6,7,8].  However, the addition of hardware-based occlusion queries have 

made these algorithms all but obsolete, since replacing these approaches with ones that 

utilize the GPU almost always results in a higher level of performance [9,5]. 



8 
 
2.1.2 Spatial Hierarchies 

Most occlusion techniques require complicated calculations that are prohibitively 

expensive to calculate on the CPU.  In some cases, these techniques are actually more 

expensive to perform on a shape-by-shape basis than it is to render the individual shapes. In 

order for these algorithms to be effectively used, it is necessary to find a means by which a 

single calculation can be applied to a much larger subset of the data, or rather a larger 

grouping of shapes.   This is where spatial indexing data structures come into play [10,11].  

Spatial indexing data structures allow for the data to be subdivided into a hierarchy of sub-

regions such that when traversal stops at a region, it automatically results in all of its sub-

regions being culled[12].  Over the years, many spatial indexing structures have been 

proposed with octrees, kd-trees, and bounding volume hierarchies being the most commonly 

used within the realm of massive model visualization [13]. 

Octrees are an indexing data structure that subdivides each region of space into eight 

equal-size sub-regions.  This subdivision is recursively performed for each sub-region until a 

desired number of triangles are achieved within each region.  The uniform nature of octrees 

allow them to be implemented in a very compact manner, however this comes at the expense 

of having less flexibility in choosing how the data is sub-divided because of the fixed nature 

of the octree subdivision. 

KD trees are an indexing data structure that sub-divides a region of space into two 

sub-regions at a set distance along an axis.  Like octrees this can be recursively done for each 

region; however the distance and axis of sub-division is changed on a region-by-region basis 

in order to maintain approximately the same number of triangles within the sub-regions.  

This allows the sub-division to more accurately match the underlying data structure; however 



9 
 
it comes at the expense of having to store more information to identify sub-regions since both 

the axis and distance of subdivision is needed.  KD-trees are considered the data structure of 

choice within the realm of massive model visualization.  The most common used and widely 

accepted approach for generating optimized subdivision in a kd-tree is the surface area 

heuristic that minimizes model-ray intersections.  It was original proposed by Goldsmith and 

Salmon [14] in 1987  however it was further enhanced by MacDonald and Booth [15] in 

1990 and then again by Havran [16] in 2000 .   

Bounding volume hierarchies are a spatial indexing data structure that recursively 

sub-divides the data set into smaller and smaller bounding volumes.  Bounding volumes have 

to store the greatest amount of information per region; however they are less inclined to 

require breaking the original data apart since sub-regions are allowed to overlap. 

2.1.3 Stand-Ins  

While the use culling techniques can significantly reduce the amount of geometric 

data that needs to be rendered, often it is not enough.  In situations like this it is beneficial to 

replace highly complex geometric representations with a reduced representation for any 

geometric data that is considered to be far away from the viewer or is on the outer edge of the 

viewer’s perception [17]. 



10 
 

 

Figure 3: Billboard and reduced polygon count representation of the model on the left 

One early form of stand-ins is image replacement.  This goes back to the use of a 

billboard or textured quads to represent a complex object such as a tree [18].  As time 

progressed, these billboards were replaced with polygonal models in order to increase the 

realism; however it still made sense to use the original billboard in situations where the 

geometric data was far from the viewer.    

Image replacement has come a long way since these early approaches.  Rather than 

replacing single object, texture quads are now used to replace vast swaths of geometry.  They 

are commonly combined with spatial hierarchies such that images are created for each cell 

looking out each of its sides.  When rendering, only the geometry within the user cell needs 

to be rendered, the remaining geometry can be replaced by rendering the generated images.  

In order to avoid errors, the amount of rendered geometry can be expanded to neighboring 

cells.  Further texture quads can be replaced with a textured depth mesh, which helps to 

alleviate some of the "popping" that inevitably occurs when transition from rendered 

geometry to a texture [19,20].   

Another image replacement technique is splatting.  Rather than generate images that 

look out from a cell, reduced images are generated that approximate the geometry when 



11 
 
looking into the cell.  Early methods used an image for each of the sides, however more 

recent methods have come up with ways to use a single image shaders to generate the final 

result based upon the view direction.  This method accelerates rendering by replacing far 

geometry with the rendered splats [21].  

One of the biggest issues with almost all image replacement techniques is that they 

generally only work well with static scenes since the actual generation of the images can be 

prohibitively expensive. 

Another stand-in method is to generate a reduced-polygon count representation for 

each geometric object using approaches like those proposed by Hoppe [22].  When geometric 

objects are far from the viewer or towards the edges of their visual perception these 

alternative representations can be rendered instead in order to accelerate rendering.  Early 

methods would actually insert the alternative representation in to the scene graph as level of 

details (LOD) [3,23]; however this comes at the expense of having multiple representations 

in memory. The current generation of methods encodes efficient ways to generate new 

representations on-the-fly and therefore can create them at render time [13,22].   One of the 

more recent approaches Adaptive TetraPuzzles was able to clearly show that by utilizing the 

GPU this can even be accomplished in real time for even gigantic polygonal models [24].  

2.1.4 Memory Management 

Arbitrarily large models present a new set of challenges for managing memory since 

complete systems need to be more aggressive with the loading and unloading of memory in 

an adaptive manner.  This requires transitioning to approaches like that proposed in 

MMR[19,20] and Intervis3D [1,25] in which data is prefetched based upon whether or not a 



12 
 
cell is predicted to be rendered in the near future using the cell’s location relative to the 

current viewpoint and expected movement [19,1,26].  Further, lazy unloading of data will 

need to become proactive where only the cells that are expected to be used in the near future 

are kept in memory.  Memory intensive algorithms need to be implemented in a cache-

coherent manner in order to reduce the amount of memory thrash and maintain high 

performance [13].   The same holds true for how data is stored in memory, especially when it 

comes to storing meshes.   Cache-oblivious layouts need to be utilized to their fullest, such as 

those described by Yoon et al [27] for optimizing data layout within the system and Sander et 

al [28] for optimizing the triangle vertex cache locality. 

2.2 Complete Systems 

Individual performance enhancing techniques are only part of the massive model 

visualization solution.  Even the best techniques will fail if not used properly.  Complete 

systems are end-to-end approaches that effectively make use of techniques in order to 

achieve a goal.  In the realm of massive model visualization the goal is to achieve interactive 

frame rates on arbitrarily large models.  Below, three complete massive model visualization 

systems will be briefly introduced.  Although they may not all necessarily be the newest, 

each serves the purpose of demonstrating a different subset of the commonly used 

approaches and therefore is invaluable in terms of understanding the full scope of the 

problem.   

2.2.1 MMR 

MMR was designed and implemented as part of the Walkthru Project at the 

University of North Carolina at Chapel Hill [19,20,29].  MMR’s developers realized that 



13 
 
CAD model sizes are increasing at a much faster rate than the rendering capability of 

commodity hardware.  A new approach was needed to render these Massive Models that 

contain more than 1 million primitives at interactive frames of 20 fps frames per second or 

more.  MMR was built from the ground up to be an extensible platform for enabling further 

research into arbitrarily large model that easily scales with model size.  It is designed to 

allow researchers to interchange various techniques in order to facilitate interactive 

navigation (i.e., walking through) such massive models. 

The basic strategy employed by MMR is to not render any geometry the user will not 

see.  In order to facilitate this, a two-part technique is employed.  The first part eliminates 

any geometry that is far away from the viewer by using an image replacement technique.  

The second part optimizes the rendering of nearby geometry through the use of common 

acceleration techniques such as occlusion culling and level-of-detail [3].  In order to make 

use of these techniques, the input data must be pre-processed.    

The image replacement technique replaces faraway objects with textured depth 

meshes.  In order to determine which objects are considered far from the viewpoint, the 

model space is sub-divided into a set of viewpoint cells through the use of a view emphasis 

function.  The view emphasis function is a user-defined function, unique for each model, that 

returns a scalar importance measure for any point in the model space and therefore allows for 

the importance of any area to be easily determined.  Each viewpoint cell is given a large cull 

box that may overlap with the cull boxes of neighboring cells.  Any objects outside a cell's 

cull box are considered to be far from the viewer when they are standing inside the cell.  For 

each view point cell, a set of depth maps are created that contain the resulting color and depth 

values for the geometry outside the cull box when looking from the center of cell through 



14 
 
each of its sides.  This data is used to generate a simplified texture depth mesh for each of the 

sides that can serve as the necessary stand-in through the use of algorithms from Darsa and 

Sillion for the heavy reductions in complexity and Garland and Heckbert for the more fine 

tuning reductions [30,31,32]. 

In order to facilitate the use of the techniques required for rendering near-geometry, 

each object is processed such that large objects that intersect multiple viewpoint cells are 

split into a set of smaller objects. Further, alternate representations are created for each object 

using a slight variation of the method proposed by Erikson and Manocha [33].   Last, a list of 

all objects that are potential occluders is calculated for each cell. 

MMR uses a four-process approach to handle the rendering of arbitrarily large 

models.  The main process is devoted to rendering and handling any operations that need to 

occur between phases.  Two sub-processes are devoted to handling culling, one of which is 

purely devoted to occlusion culling.  The last process handles asynchronous I/O and attempts 

to pre-fetch any texture depth maps or tri-strips that will be needed in the following frames. 

[19,20,29] 

2.2.2 Far Voxels 

Far Voxels [21] is a volumetric approach for rendering arbitrarily large models.  

Realizing that model size is quickly outpacing the graphics capability of most commodity 

hardware, Gobetti and Marton set out to create a method that would work on a larger subset 

of models then the currently available output-sensitive approaches. 

The approach uses a pre-processing step to generate a coarse volume hierarchy whose 

leaf nodes contains a fixed number of triangles and interior nodes contain a voxel 



15 
 
approximation of any underlying nodes. The hierarchy is generated using the surface 

heuristic approach defined by MacDonald and Booth to sub-divide the model into an axis-

aligned BSP tree [15].  In order to improve cache locality, the resulting tree is stored in a 

memory coherent order similar to one proposed by Harvan [16].  Once complete, the tree is 

combined with a coarse hierarchical data structure by first removing any empty nodes and 

then associating sub-trees containing a set number of triangles of the BSP tree to the leaf 

nodes of the hierarchy.  Once the data structures have been combined, the hierarchy is 

traversed to finalize each leaf node and immediately save it out to disk.  Leaf nodes are 

finalized by extracting the triangles from the associated BSP-tree, culling out triangle that are 

outside the nodes bounding box, tri-striping the resulting triangles, and performing 

optimizations to increase the cache coherency of the resulting data.  The interior nodes' view-

dependent voxels are generated by casting a large random set of rays against the BSP tree at 

each node in order to generate a set of pixels samples from approximately all un-occluded 

directions.  These samples are then fitted to a set of shader models in order to compress their 

size and allow for more efficient rendering.   

In order take advantage of the massive parallelism that exists within the subdivision 

approach, the input data set is split into chunks containing between 20 and 30 million 

triangles.  These chunks are then farmed out to a networked group of computers who 

generate a tree for their section of the model. 

Rendering occurs in breadth-first front-to-back order on a set of trees.  A priority 

queue is used to sort the current set of nodes to be potentially rendered in a front-to-back 

order, with the initial set of nodes for each frame being the root nodes of all trees.  While 

there are still nodes in the queue, the front node is removed and processed for rendering.  All 



16 
 
nodes are initially marked as invisible in the current frame, so during processing the active 

node can simply be discarded resulting in it and its whole sub-tree being culled from the 

current frame.  For example, if the active node's bounding box is completely outside the view 

frustum, it is discarded without going through the occlusion query machinery. The occlusion 

query machinery handles each node based upon the node’s state.  Nodes that were invisible 

in the previous frame are initially queried against their bounding box.  Leaf nodes determined 

to be below a certain screen coverage threshold, and nodes with children not yet loaded, are 

queried against their actual render.  For all other nodes, their children are pushed directly into 

the potentially-render queue.  The occlusion results are handled once they become available.  

Nodes whose queries result in zero visible pixels are immediately discarded.  All other nodes, 

and their ancestors, are marked as visible and their children are pushed into the queue.  

Further, any node whose bounding box was rendered is rendered normally. If the queue 

should become empty while there are still outstanding queries, the node associated with the 

top-most query is handled without waiting on the query to complete. 

Loading of nodes is handled through an asynchronous I/O mechanism.  The list of 

nodes to be loaded is processed at each frame.  Fetch requests are issued for as many nodes 

as can be handled in a given amount of time.  Nodes are pre-sorted based upon the estimated 

voxel size of their parent in order to give a higher priority to nodes that will potentially 

contribute to a much larger region of the screen.  [21] 

2.2.3 Interviews3D 

One of the most complete systems available for Massive Model Visualization is 

Interviews3D [1,25] supporting navigation, picking, manipulation, animation, and even 

collision detection.  It is described by its creators, 3D Interactive [34], as a digital mockup 



17 
 
system that is capable of handling data sets with millions if not billions of triangles on 

commodity hardware through the use of a visibility-guided rendering approach. 

Interviews3D was built around a set of pre-defined principles that helped to guide and 

influence its development.  Some key principles that all systems can make use of include: 

rendering performance should be determined by the output complexity and not the data size; 

data should load and unload automatically and should only exist in memory when needed; 

temporal coherence between frames should be exploited at every opportunity possible; it is 

better to update than to rebuild; and make use of current and future technologies whenever 

possible. 

In order to efficiently handle the visualization of an arbitrary large models Interviews 

3D uses a preprocessing step to generate an axis-aligned bounding box tree out of the input 

data through a top down approach that results in leaf cells that contain between 1000 and 

8000 triangles.  The exact algorithm used for subdivision is not provided, however some key 

features are explicitly called out.  The resulting tree can be selectively updated based upon 

changes in the original data set which can be shown to be much more efficient than 

rebuilding the whole tree.  The available memory is taken into account when processing the 

tree and if necessary, a multi-pass approach that works only on subset of the input data is 

used.  While splitting the side lengths of the cell, bounding boxes are kept as uniform in size 

as possible.  Individual triangles are never split or duplicated which means there may be 

some overlap between the bounding boxes of child cells. Subdivision is based upon a 

minimum number of polygons in a given cell, which is calculated for the whole input data set 

based upon a variety of factors. 



18 
 

The use of a spatial hierarchy allows Interviews3D to achieve an interactive frame 

rate through the use of nothing more than an occlusion algorithm and a simple LOD [3] 

mechanism.  The occlusion algorithm is very similar to the one presented in GPU Gems 2 

[9], making full use of modern GPU capabilities and taking into account the temporal 

coherence in the geometry rendered from one frame to the next [9].  In order to do this, each 

cell in the spatial hierarchy is labeled as being 'visible', 'invisible', or 'untested'.   Rendering 

uses these states to carry out a two-pass rendering approach.  In the first pass all shapes 

marked as visible are rendered in order to prime the depth buffer for occlusion queries.  In 

the second pass, the tree is recursively traversed in a front-to-back top-down manner using 

standard view frustum and occlusion tests.  When a cell labeled as 'invisible' or 'untested' is 

encountered, an occlusion query is immediately executed and the traversal is pruned.  

Obtaining the results of each occlusion query occurs in parallel to the tree traversal in order 

to prevent stalls in the graphics pipeline.  A post-render tree traversal propagates the 

visibility state up the graph.  A simple LOD mechanism determines the cells that would 

contribute a pixel or less to the screen, and renders a single point instead of the cell’s 

polygons.  

Data management occurs asynchronously within Interviews3D and is coupled tightly 

with the rendering approach. The main objective is to load as many leaf cells as possible into 

memory based upon their priority order (respectively from highest to lowest: visible, 

invisible but within view frustum, invisible, and finally single-pixel cells).  If cells should 

need to be removed from memory, the cells with lowest priority are removed first based 

which has been in memory longest. [1,25] 



19 
 
2.3 Research Issues 

Massive Model Visualization is not considered a solved problem.  Many advances 

have been achieved in trying to solve the problem of rendering arbitrarily large models at 

interactive frame rates on commodity hardware.  However, there are few solutions that can 

actually achieve the full capabilities required for PLM and other advanced visualization 

applications and none that can do it without requiring time intensive pre-processing executed 

on the input data set.  For a massive model visualization system to be considered complete, it 

must support advance features like part selection, part manipulation, advanced materials, 

shadows, and collision detection, while still maintaining interactive frame rates. 

 

Figure 4: Advanced features commonly seen in visualization software 

Systems like Far Voxels and MMR are capable of achieving rather impressive frame 

rates, however this comes at the cost of requiring an extremely time consuming pre-

processing step.    This primary cost is the generation of image-based stand-ins for most, if 

not all, of the cells.  This cost is extremely important because advanced features like part 

manipulation require the ability to be able to dynamically update the spatial data structure in 



20 
 
real time.  This is something that is not and may never be possible with image-based 

approaches.   Further systems like Interviews3D have shown that interactive frame rates can 

be achieved through far simpler means and with significantly less time spent preprocessing.  

It has even shown that part selection, manipulation, and collision detection can be 

implemented on top of a simple spatial hierarchy in real time.  However, Interviews3D does 

not support features like shadows or advanced materials and even though its preprocessing 

time is significantly less than other approaches it is still far from real time.  These key 

observations can be summarized as follows and should be used as a guide by which 

additional research into massive model visualization is pursued: 

• Complicated algorithms and highly specialized data structures are not needed in 

order to achieve interactive frame rates on extremely large datasets. 

• Proposed solutions should not preclude the implementation of advanced features 

that are already present in modern day visualization solutions. 

• Proposed solutions should not require an exorbitant amount of pre-processing time. 



21 
 
3 MMDR SYSTEM 

In order to better facilitate research into the different aspects of massive model 

visualization, the MMDr proof-of-concept was proposed, designed, and implemented on top 

of the DirectModel toolkit as provided by Siemens PLM Software.  MMDr consists of a 

simple MFC Viewer and a shared library that provides access to the classes and utilities that 

make massive model visualization possible.   

MMDr’s MFC Viewer provides a simple interface by which the capabilities of the 

shared library can be demonstrated and tested.   The main setup is oriented around three 

windows that can be used to provide different views into the various aspects of MMDr’s 

functionality.  When utilizing the standard DirectModel rendering approach all windows 

display the final output.  However, when utilizing the Spatial Hierarchy based rendering 

approach the right-hand window displays the final shaded output image while the upper left 

window displays rendered cells as green and culled cells as red.  The lower left window 

displays loaded cells as green and unloaded cells as red. 

 

Figure 5: Screenshot of MMDr 



22 
 

A simple toolbar provides a means for toggling between various modes.  The user can 

select whether rendering utilizes the DirectModel product structure or the spatial hierarchy.  

The user can also select whether occlusion culling is currently enabled.  Lastly, the user can 

select which of three supported optimizations are being used.   A second toolbar is provided 

to set how many threads of execution will be used when generating a spatial hierarchy.  The 

number of available threads defaults to, and is automatically capped, at the maximum 

number of concurrent threads supported on the current machine. 

The shared library, JtMMVis, provides the necessary functionality to build a 

visualization application based upon the use of a spatial hierarchy.  The functionality can be 

organized into three main components (Spatial Partitioning, Rendering, and Memory 

Management) and the underlying data structure that allows them to work.  It is proposed that 

when combined, these components form a complete system that should pave the way for the 

visualization of arbitrarily large models at interactive frame rates.  At the very minimum the 

components should allow for a product structure to be converted into a spatial hierarchy and 

demonstrate that even the most basic rendering approaches using a spatial hierarchy are still 

superior to one that is optimized for rendering around a product structure.  

3.1 Spatial Partitioning 

One key problem with arbitrarily large size models is that they are often so large that 

it is impractical if not impossible to load them completely into memory.  The use of product 

hierarchies helps to alleviate this issue by allowing for parts and assemblies to be 

dynamically loaded/unloaded and culled from what is actually rendered, however this 

scheme can go only so far.  The assemblies and components of a product structure are often 

organized around systems, which often have parts that interleave and wrap around one 



23 
 
another.   While this generally works well within the design process, it causes issues when 

trying to efficiently manage the data for interactive rendering.  Often times, only a small 

subsection of a given sub-assembly or part is actually visible within a frame while the rest is 

obscured.  This means that much of data loaded in memory is not being used.  Furthermore, 

the sub-assemblies and parts have no implicit relationship to one another when it comes to 

performing advanced culling techniques like view frustum, screen coverage, and occlusion.  

When using a product hierarchy, the run-time of these algorithms is therefore bounded by the 

size of the model, which means that as the model grows to an arbitrarily large size, so will 

the amount of time it will take to complete these algorithms.    

In order to move past these issues, the product must be transformed into a new data 

structure – one that helps limit the amount of loaded geometric data while at the same time 

bounding the culling algorithms to only those things that are currently visible.  This is where 

the use of a spatial hierarchy comes into play.  A spatial hierarchy is a way of organizing 

data such that two objects that are near to one another in space remain near one another in the 

data structure.  Having such a data structure greatly aids in quickly performing the 

aforementioned culling tasks because large swaths of the hierarchy can quickly be culled and 

the detailed processing can be limited to only those areas where it is truly needed.  Further, 

since the model is divided into spatial cells, the amount of data loaded into memory can be 

limited to only those cells that are visible and therefore exclude all the geometry that is not.  

Spatial partitioning is the process by which a model is sub-divided into a spatial 

hierarchy.  There are many different approaches for solving this problem; however they are 

not all equal.  The approach below allows for: 1) arbitrarily large models to be extracted into 

a spatial hierarchy that, 2) maintains connectivity information between individual triangles 



24 
 
and their original shapes while, 3) maintaining high performance and a low memory 

turnover. 

3.1.1 Basic Approach 

The approach used for creating a spatial hierarchy from any given set of data can be 

written in a rather straightforward manner.  While it may seem simple in nature, many 

considerations must be taken into account when executing each of the steps. 

 

Algorithm 1: Spatial Partitioning Approach 

3.1.2 Data Gathering 

The input data is typically organized in logical product hierarchy, which often 

contains more information than just the geometric information.  In order to facilitate efficient 

partitioning, it is necessary to gather a list of all the shapes(i.e., groups of triangles).  This 

operation can be expensive since it requires that all assemblies be opened and searched for 

their shapes and also carries the side effect of increasing the amount of memory in use; 

however this should be relatively minimal since the heavyweight shape data will not need to 

be loaded at this time.  Once all the shapes have been collected the spatial hierarchy can be 

sub-divided. 

 

1) Find all shapes contained within the model and add them to the root cell of a spatial tree 
2) For each unprocessed cell whose complexity would result in the memory limit being 

exceeded if the standard sub-division algorithm was used. 
a) Execute the secondary sub-division algorithm on the cell instead 
b) Write out the cell's geometric data unload it 

3) While there are still unprocessed cells 
a) Select as many cells as possible that can processed without exceeding the memory 

limit 
b) Execute the multi-threaded sub-division algorithm on the selected cells 
c) Write out each cells' geometric data and unload it 



25 
 
3.1.3 Sub-division 

Spatial hierarchies are powerful data structures because they allow a model be 

subdivided based upon the spatial locality of its data.  The splitting of a cell simply entails 

subdividing the region encompassed by the cell into smaller sub-regions that are stored as its 

children cells. The triangles and shapes associated with the current cell are then processed.  

Any shapes that do not fit within a single child cell are split into triangles and handled as 

such. Any triangles or shapes that can be contained by a child cell are automatically removed 

from the parent and are pushed to the child.  Triangles that do not fit into a single cell can be 

handled in many different ways depending upon the implementation of the spatial hierarchy.  

Some common approaches include splitting the triangles so that smaller triangles are added 

to each of the intersected cells, leaving the triangles on the current parent cell, and a hybrid 

where large triangles are left on the current parent cell and smaller triangles are added to all 

intersected cells.    

One thing that should be pointed out about the above approach is that shapes are only 

split into individual triangles when absolutely necessary, which helps to keep the memory 

usage low.  However when handling arbitrarily large models this may not be enough, 

especially if the number of shapes that need to be split is so large that it will result in the 

memory limit being exceeded.  A secondary approach is therefore needed while the 

complexity of any given cell is considered to be so large that splitting the cell in the normal 

manner would result in a preset memory limit being exceeded.  The main issue is that 

splitting a shape results in its heavyweight geometric data being loaded and copied 

throughout the children cells.  Loading is not so much an issue since the shape’s geometric 

data can be unloaded as soon as the algorithm is done with it; however the same is not true 



26 
 
about the triangles copied into the child cells.  The solution is to add intersecting shapes into 

the children cells and add only triangles into the current cell.  This approach is acceptable 

because the number of triangles that can potentially stay resident on the current cell is 

relatively small, and further, once the subdivision of the current cell is complete, its 

geometric data can be written to disk and unloaded.   

3.1.4 Multi-Threading 

In order to take advantage of modern computing resources, algorithms need to be 

designed and implemented to run in a multi-threaded fashion.  A good design will isolate 

core operations such that the available work can be easily distributed evenly over an 

unknown number of execution threads.  The spatial subdivision approach defined above 

takes this into account and thereby ensures that each cell in the spatial hierarchy can be 

processed independently of other cells during the splitting process once it has been initially 

set up.  In other words, once a collection of cells has been established, they can easily be 

farmed out amongst multiple threads for further splitting without risk of collision between 

cells.  In fact the only thing that will need to be taken into account is combining any resulting 

sub-cells into a common spatial tree data structure.  This cost is minute compared to the cost 

of actually generating the sub-cells. 

In order to facilitate multi-threading, the partitioning approach is designed to work on 

a spatial tree that is defined only by its root cell and bounding box.  The power of this 

approach is that each cell in a given spatial tree is the root cell of its own spatial tree.  This 

means partitioning only needs to split cells until it has a large enough pool of cells whose 

complexities are small enough that they can be effectively farmed out to the maximum 



27 
 
number of threads for processing as their own spatial trees. Once complete, the resulting trees 

from the processed cells can easily be combined back together into a single spatial tree. 

One key obstacle to this approach is ensuring the initial set of cells is split sufficiently 

so as to ensure that the workload is evenly balanced amongst the available threads.  The 

naive approach is to just split cells until the number waiting to be handled is greater than or 

equal to the number of available threads.  It is naive because it does not attempt to balance 

the workload and therefore, some threads are likely to finish their work long before the others 

are done.  One way to address this is to sort the cells in order of complexity so that different 

threads handle highly complex cells; however this can still result in some threads doing a lot 

more work than others.  The best approach for addressing this issue is to split any cell whose 

complexity is greater than the complexity of the spatial tree divided by the number of 

available threads before sorting them in order of complexity, and then ensuring that all 

threads will continue working while there are still cells waiting to be processed.  This ensures 

that even under a worst-case scenario of a thread spending its entire time handling a single 

cell that the others threads will have already handled or be handling the other cells.   

3.1.5 File Format 

In order to take full advantage of spatial hierarchy, one needs to create a file structure 

that allows for efficient loading and unloading of cell data based upon what is currently 

visible to the user.  Furthermore, since massive models often times are so large that they are 

incapable of fitting into memory, this file structure needs to be designed such that it can be 

created in streaming fashion, with cells being serialized and unloaded as soon as they are 

handled during the spatial partitioning process. 



28 
 

The above tasks are accomplished by making use of data model and structures 

associated with the JT file format [35].  JT is regarded as the de facto standard for 3D 

visualization, finding widespread usage throughout automotive, aerospace, and other 

industries [35,36].  It is a high-performance; extremely compact persistent storage 

representation that can be customized to be extremely lightweight, containing only facet 

information, or full-featured geometric models depending upon the users need.  Furthermore, 

JT natively supports the capability of being able to late-load both the facet information and 

heavyweight data as needed by the hosting application.  These mechanisms provide a solid 

base from which the Spatial JT (SJT) File formation can be created. 

SJT follows the same data model as the JT file format containing a header, table of 

contents (TOC), and multiple data segments, one of which is a logical scene graph (LSG).  

Segments are discrete data blocks that allow information that may not always be necessary to 

be loaded/unloaded as needed.  For example heavyweight information such as shape 

geometric data is stored in its own segment and is only actually loaded into memory if 

needed for processing or rendering. 

 

Figure 6: SJT File Segments 

The header provides access to the version information, the byte order of the file, and 

the offset to both the TOC and the LSG. 

Header 

Segment (Data) 

Segment (LSG) 

TOC 



29 
 

The table of contents contains a list of all the segments in the file.  The segment 

information is stored as TOC entries that contain a unique identifier, segment type, segment 

length, and the offset within the file to the segment.  When possible, the TOC is stored 

immediately after the header in order to improve performance when a server hosts files.  

However, this is not always possible, especially when streaming data into the file, so the 

TOC can also appear at the end of the file. 

The logical scene graph segment of an SJT file contains all the data required to 

reconstruct the spatial tree and dynamically load the other data segments.  The header points 

to the LSG so that it can be loaded immediately upon opening a file. 

The data segments in SJT file contain the geometric data associated with each cell.  

This data can be loaded or unloaded when needed by the application to conserve the amount 

of memory in use.  In order to minimize the file size and limit the amount of data that must 

be written to and read from the disk, geometric data is written using Topological 

compression techniques introduced in the JT v9.x file format[37]. 

The segment data structure allows for segments to be written to the file in any order.  

Further, once a segment is has been written, its payload can be unloaded from memory since 

it can easily be loaded at a later point in time.  This means that serialization can occur in an 

incremental fashion as cells are handled. Furthermore, by utilizing this capability to its fullest 

the amount of memory in use while partitioning can be minimized. 

 



30 
 
3.1.6 Part Associativity 

One of the key disadvantages to partitioning a product structure into a spatial 

hierarchy is that the triangles associated with any given part can potentially be dispersed 

across multiple cells.  This poses a potential problem since there are many common 

operations that must be supported in a spatial-hierarchy-based viewer that depend upon 

knowing part identity.  Thus, the spatial partitioner is implemented so that the originating 

part of any triangle within the spatial hierarchy can be easily identified. 

Each cell organizes its triangles into a number of sub-groups.  Each sub-group 

contains triangles only from one part.  (Note that multiple cells may contain different subsets 

of a given part's triangles)  Each of these sub-groups, in turn, has an associated unique part 

ID. This unique part ID corresponds to the part from which the triangles came.  Thus, any 

given triangle, anywhere in the spatial hierarchy can be quickly associated to its originating 

part. 

3.2 Rendering 

Another key problem when trying to handle arbitrarily large models is that the 

amount of geometric data available for rendering each frame is far greater than what could 

possibly be handled by the GPU while still achieving interactive frame rates.  Most modern 

GPUs are capable of handling only 500 million triangles per second. The established 

approach for dealing with this situation is to render only that which is visible from the user's 

point of view. Many algorithms have been proposed and implemented in order to cull non-

visible or barely-visible geometry in order to achieve this effect.  While effective, these-brute 

force methods often do not scale well as the size of the geometric data increases.   Often, 



31 
 
these methods require complicated calculations that actually take more time to compute than 

it takes to render the geometry in question – especially with the advances in modern GPUs.   

3.2.1 Basic Approach 

The rendering algorithm used by MMDr parallels the hardware occlusion algorithm 

presented in GPU Gems 2[9].  The basic approach is to interleave occlusion queries with 

standard rendering in such a way as to minimize both the amount of geometry rendered and 

number of queries executed on a given frame while avoiding stalls in the GPU rendering 

pipeline.   

This is accomplished by using a priority queue to handle the next closest cell that is 

considered to be active.  If the cell is labeled as being occluded in a previous frame, an 

occlusion query is executed on its bounding box and it is added to the FIFO queue of 

outstanding queries.  If the cell is not labeled as being occluded in the previous frame, then 

its children are added to the active priority queue if they are not culled for being outside the 

view frustum or contributing too little to the frame.  If it is an interior shape, it is rendered 

and marked as not being occluded in the previous frame.  If it is a leaf shape, an occlusion 

query is executed when it is rendered and it is added to the FIFO queue of outstanding 

queries.   

Before popping the next cell off of the active priority queue, any occlusion queries 

that have completed are handled.  The head cell of the outstanding FIFO queue is checked to 

see if its occlusion query has completed.  If so, it is popped from the outstanding FIFO queue 

and the occlusion results are retrieved.  If the number of pixels contributed by the cell is so 

small that it is considered occluded, the cell is marked as such and discarded.  Otherwise, it is 



32 
 
marked as being not occluded.  If it was occluded in the previous frame, it is immediately 

rendered and its children are added to the active priority queue if they are not culled for being 

outside the view frustum or contributing too little to the frame. The cells with the outstanding 

FIFO queue will continue to be processed in this manner until it is either empty or the 

occlusion query of the current head cell is not yet done and the active priority queue is not 

empty.   

After all cells in the two queues have been handled, a post traversal is executed on the 

spatial hierarchy to mark as culled any interior nodes whose children are labeled as culled. 

 

Figure 7: Original model (Left), Output (Center), Results of the occlusion query algorithm (Right) 

3.2.2 Multi-view Rendering Support 

While currently not enabled, the lightweight tree data structure and the parallel 

rendering data structure provide an easy means by which independent views on the same 

spatial hierarchy can be implemented.  The obvious usage for this capability is to allow 

Massive Model Visualization in an immersive environment where it is necessary to render 

the scene from several independent viewpoints. Another application that is not quite as 

obvious is the ability to add real-time projected shadows. 



33 
 
3.3 Memory Management 

In order for rendering to reach its full potential, the problem of how to manage a 

model that does not fit into host memory must be addressed.  Culling techniques help by 

limiting the amount of data required at any given time for rendering, however this is only 

part of the solution.  The model needs to be stored in such a way that the heavyweight data, 

such as the geometric shapes, can be loaded or unloaded based upon the current rendering 

needs.  The loading of data should be prioritized and occur in such a way as to not impact 

rendering performance, and further the system should prefer unloading low-importance data 

first.  These processes should occur automatically and in such a fashion that they go 

unnoticed by the user. 

3.3.1 Basic Approach 

The SJT file used for storing the spatial hierarchy is based on the normal JT file.  This 

means that not only is heavyweight data already serialized out to its own segment that can be 

easily loaded, but also approaches for handling the loading and unloading of data that already 

exist within DirectModel can be readily adapted to work on the spatial hierarchy.  These lazy 

approaches, while not necessarily ideal, can form a foundation by which more advanced 

methods that utilize predictive algorithms can be implemented. 

3.3.2 Residency Request 

Retrieving data from disk is an expensive proposition and definitely not one that 

should occur haphazardly.  In order to coordinate data retrieval in DirectModel, a residency 

request manager (RRM) is implemented that allows for loading of heavyweight data to occur 

on an independent set of threads rather than always on the current one.  Whenever any 



34 
 
heavyweight data is required a "will need request" is made to the RRM in order to initiate the 

loading process.   

The residency request manager is implemented as a priority queue.  Each request 

contains a priority value that determines the overall importance for that particular request.  

Requests are therefore handled in their perceived order of importance with more important 

requests being handled first.  The biggest bottleneck with most requests is actually waiting on 

the I/O subsystem.  In order to reduce this performance impact and take advantage of multi-

core processors, the RRM manager supports running on multiple threads where several 

requests can be in flight at any given time.  This allows the I/O operations and processing of 

heavyweight data to be farmed out to secondary threads while the main thread needs to focus 

only on hooking up items to their respective data structure once loading is complete. 

In order to support loading heavyweight geometric data from the spatial hierarchy, a 

new derived class is implemented on top of the existing RRM.  This class adds support for 

new types of requests that are capable of loading geometric data associated with each cell 

and attaching it to the spatial hierarchy. 

Requests are currently issued as part of the rendering process.  For any non-culled 

cell whose geometric data is not currently loaded, a load request is made to the RRM with the 

priority value set to the area of the cell's bounding box.  This means that only the geometric 

data associated with render cells will ever be loaded.  Further, larger cells are more likely to 

be loaded before smaller cells since they are more likely to take up greater screen space. 



35 
 
3.3.3 Disposable Objects 

Unloading data is not as simple a task as loading it.  While it may be fairly obvious 

when data is needed, the same cannot be said about when it is no longer needed.  Even 

though the current thread may have not accessed a piece of data for a period of time there is 

no guarantee that other threads have not as well. 

In order to properly handle unloading of data that may be accessed at random, 

DirectModel implements a new type of smart pointer that allows its contents to be discarded 

at will if it is not currently in use.  All these so-called "disposable pointers” upon creation, 

register themselves with a global table.  Furthermore, every time their payload is accessed the 

table is updated to contain a new last access time.  This provides a mechanism by which 

heavyweight data can be easily unloaded starting with the oldest non-used data. 

The table of disposable objects integrates directly with the DirectModel memory 

allocation system in order to facilitate the unloading any data regardless of its origin.  This 

integration allows the disposable table to be automatically accessed and culled when a low 

memory condition is encountered during a memory allocation request.  While this approach 

is lazy in nature, it provides an easy catchall mechanism by which memory can be bounded 

to an upper limit. 

The spatial hierarchy takes advantage of this built-in feature by using disposable 

pointers to store its heavyweight geometric data.  The unloading mechanism therefore can 

easily unload the geometric data of cells that have not been rendered recently when low 

memory conditions are met.  



36 
 
3.4 Spatial Hierarchy 

A fast culling algorithm or clever rendering loop is nothing without an efficient and 

compact data structure for storing the spatial association information.  There are many 

different types of spatial hierarchies, each with its own strengths and weaknesses as 

described in section 2.1.2.  For the MMDr proof of concept, it was decided that the resulting 

spatial hierarchy should have a minimal memory footprint.  In order to accomplish this goal, 

an octree was selected as the primary storage data structure since its subdivision parameters 

are implicitly encoded in the data structure.  While this provides for a relatively small size, 

the tradeoff is the inability to precisely configure the spatial hierarchy for complex regions.   

In other words, the octree allows for the size of the tree to be kept at a minimum at the 

potential cost of having reduced rendering performance for non uniformly spaced scenes as 

shown by Meißner [38].   

3.4.1 Basic Approach 

In MMDr, the octree data structure is stored as a simple vector of cells that is always 

allocated in blocks of 8.  Having a block size of 8 is important since it allows for the children 

of a cell to easily be referenced by an offset into the vector.  Having pointers is important 

since it allows for empty cells to remain unallocated and easily identified.  In order to handle 

the common case of a cell not having any child cells the 0 block is always pre-allocated and 

guaranteed to contain NULL pointers. 

3.4.2 Memory Conservation 

Each cell within the octree is defined such that it contains the minimum amount of 

information required.    For cells that do not contain any heavyweight geometric data, this is 



37 
 
limited to a 32-bit state field, an integer offset to its children, and an integer reference count 

used by the auto pointers.  On 64-bit builds, this will result in a base size of 24 bytes per 

empty cell.  For cells that contain heavy geometric data, there is an additional disposable auto 

pointer data member that brings the size up to 40 bytes per shape cell.  Further, all cells are 

stored as pointers and therefore incur an additional 8 byte penalty that brings the grand total 

to 48 bytes for shape cells and 32 for empty cells. 

To put the size consideration into perspective, imagine an octree containing one 

billion triangles.  Assuming on average there are a thousand triangles per cell, the tree would 

therefore contain one million cells and require approximately 46 MB of memory.    Adding 

something as simple a bounding box would increase the size of each cell by only 24 bytes, 

however this would result in the same tree now requiring approximately 69 MB of memory.  

Of course, both of these numbers are miniscule when considering that the geometric data if 

fully loaded would, at a minimum, require over 27 GB of memory.  For the size of the octree 

to reach even 1.0% of the total amount of required memory, only 1.4% of the model can be 

loaded, and with the addition of a bounding box it increases to only 1.7% of the model.  This 

implies that while maintaining a small tree size is important, it is easily dwarfed by the 

heavyweight geometric data and therefore may not have been a good metric to base design 

decisions around. 

3.4.3 Bounding Box Calculation 

One key advantage of the octree data structure is that the bounding box of any cell is 

easily calculated from the path taken to reach the cell. This means that it is unnecessary to 

store the bounding box of each cell, since it can be easily calculated while traversing the tree.  

In MMDr, this accomplished by storing the current path within the octree iterator and then 



38 
 
exploiting the IEEE 754 floating-point number format to efficiently derive the bounding box 

of the current cell from the bounding box of the whole tree. 

For each sub-division of the octree there are 8 potential children.  Each child can be 

identified by whether the octree iterator remains at its current position at the “minimum” 

corner of the node, or steps along each of the axes.  As it continues to traverse down the 

graph, the path to any cell is therefore identified by whether or not, at each level, the iterator 

stepped along an axis.  This is easily encoded into a group of three-bit fields, one for each of 

the three primary coordinate axes.  When traversing to a child cell each of the bitfields are 

shifted to the left and further for each axis in which the minimum value changes a 1 is 

logically ORed into the path. 

 These resulting bit fields are powerful because they can be used to calculate the 

bounding box for any cell using 9 multiplies, 6 shifts, 6 additions, and 4 subtracts.  In other 

words operations like loops, conditional statements, and divides, that have an order-of-

magnitude longer execution time, are easily avoided.  This is accomplished by exploiting 

floating point storage and multiplication. 

 

Figure 8: IEEE 754 single precision float bit layout 

The basic principle is that the path along each axis can be used as the upper most bits 

of the mantissa of a denormalized float.  This float can then be multiplied by 2127 and the 

length of a bounding box along an axis, which is then added to the axis-minimum value in 



39 
 
order to obtain the current minimum value.  Adding one to the path and performing the same 

operations results in the maximum value for the same axis.  Combining the results from all 

axes will give the bounding box for the current cell. 

 �

�

 

Figure 9: Equation for calculating the min value along the axis for a cell bounding box 



40 
 
4 RESULTS AND DISCUSSION 

In order to validate the complete system, the performance characteristic of each 

individual component was evaluated independently.  A variety of machines were used when 

applicable during the measurement process in order to ensure that the performance 

characteristics of the individual machines do not bias the results. 

Table 1: Set of test machines 

Nickname Bensley i7 Nehalem 
Processor Intel Xeon X5355 Intel i7 920 Intel Xeon W5880 

Number 2 1 2 

Speed 2.66 GHz 2.66 GHz 3.2 GHz 

Ram 8 GB (DDR2) 12 GB (DDR3) 24 GB (DDR3) 

GPU Quadro FX 5600 Quadro FX 4800 
Geforce GTX 295 

Quadro FX 4800 

OS Win64 Win64 Win64 
  

To analyze the performance of the system various data sets were used.  For general 

testing this included everything from a fishing reel (15K triangles) to more complex models 

such as a formula car (860K triangles), cotton picker (16M triangles), and even a corporate 

jet (44.5M triangles).  The models used for general testing were selected from those sets 

available at Siemens that had either been generated for marketing purposes or provided by 

customers for testing of advanced features.  The point of this testing was demonstrate that the 

system performance is not drastically influenced by or limited to a specific type of input data 

which is often the case in proposed systems.  For more advanced testing that required larger 

data sets multiple instances of the corporate jet were used.  While not necessarily ideal, this 

provided a way of collecting data within the broad gap between the largest and second largest 

test models.  Finally, in order to truly test the massive model visualization capabilities of the 

MMDr proof of concept the Boeing 777 (437M triangles) was used since it is one of the 

commonly used models for demonstrating interactive frame rate for arbitrarily large datasets. 



41 
 
4.1 Partitioning 

Partitioning of a product structure into a spatial hierarchy is one of the key 

components required for making the visualization of arbitrarily large models a reality.  The 

process should be optimized to be as fast as possible and grow at most linearly as the model 

size increases.  It should make full use of the available hardware resources, multi-threading 

where ever possible, and properly manage memory so as to ensure the available memory is 

not exceeded. 

4.1.1 Spatial Hierarchy Generation 

One of the key abilities of the MMDr proof of concept is its ability to translate a 

logically defined product structure into a spatial hierarchy to achieve a higher level of 

rendering performance.  This process needs to be computationally efficient, regardless of the 

layout or size of the dataset, if it is to be incorporated into modern visualization software.  In 

order to show that MMDr achieves a high level of performance, the extraction time was 

measured for a variety of datasets of various sizes.  Further, these time measurements were 

broken out into the two main components, spatial hierarchy extraction and serialization to 

disk, in order to identify if either component acts as a bottleneck for the total performance.                                                                                                                                          

The extraction performance was measured on a variety of data sets ranging from very 

small containing only 200K triangles to fairly large containing over 44M triangles. As shown 

in Figure 10, plotting the number of triangles against the total extraction it easy to see the 

amount of time required to extract a spatial hierarchy grows linearly as the data set size 

increases.  Further, a comparison of the extraction time verses the time required to serialize 



42 
 
the data to disk is shown in Figure 11. On average, an equal amount of time is spent during 

each of the stages of the extractions time. 

 

Figure 10: Total extraction time for various data sets 

 

Figure 11: Serialize versus extract times for various data sets on the i7 

0

20

40

60

80

100

120

140

0 10 20 30 40 50

Ti
m

e 
(s

)

Triangles (Millions)

Total Extraction Time for Various Data Sets (i7)

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Ti
m

e 
(s

)

Triangles (Millions)

Serialize/Extract Time for Various Data Sets (i7)

Serialize

Extract

Serialize

Extract



43 
 

The initial measurements while informative do not fully stress the system since none 

of the data sets are individually large enough to cause a low memory condition to be 

encountered in the test. To address this concern, another set of runs where executed on 

multiple instances of the largest model, a corporate jet, arranged spatially in a non uniform 

manner.  Under these conditions a different pattern starts to emerge.  As shown in Figure 12 

the same linear trend is maintained for up to five instances of the model, however after the 

number of models increases beyond this point the slope of the trend increases dramatically.  

This is not unexpected since at six instances and above extraction requires so much memory 

that it actually causes the machine to start using swap space.   

 

Figure 12: Total spatial extraction time based on number of triangles 

What is interesting about this scenario is that the serialization and extracting phases 

no longer continue to run in parallel when this starts to occur.  In fact, as shown in Figure 13, 

the serialization time continues along the same trend line regardless of whether or not swap 

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350

Ti
m

e 
(s

)

Triangles (Millions)

Spatial Hierarchy Total Extraction Time  (i7)



44 
 
space is being used, and the increase is actually limited to only the extracting phase.  This 

means that under the current approach, arbitrarily large models will eventually be bound 

solely by the extraction time and not by the serialization of the resulting data.  

 

Figure 13: Comparison of serialize versus extract time based on number of triangles 

4.1.2 Multi-threaded Extraction time 

Extraction time versus data size is not the only interesting phenomenon.  In order to 

make use of the of growing trend towards multi-core and multi-processor systems the 

extraction process should support running on as many threads as possible. Thus it is usefully 

to explore how the number of threads used influences the extraction time.   Figure 14 plots 

the effects of multiple threads compared to the amount of time it takes to fully extract the 

corporate jet.  This graph shows that there is a discernable performance enhancement up to 

six threads; however the benefit begins to tail off rather quickly.   Figure 15 translates the 

time for extraction into an efficiency value when running on a variable number of threads.  

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350

Ti
m

e 
(s

)

Triangles (Millions)

Serialize Versus Extract Time (i7)

Serialize

Extract



45 
 
This shows the benefit of adding more threads quickly decreases such that after 14 threads 

performance actually begins to degrade.   

 

Figure 14: Time to extract on n threads 

  

Figure 15: Efficiency of extracting on n threads 

0

100

200

300

400

500

1 2 3 4 5 6 7 8

Ti
m

e 
(s

)

Threads

Spatial Hierarchy Total Extraction Time

Bensley

i7

Nehalem

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8

Ef
fic

ie
ny

Threads

Spatial Hierarchy Total Extraction Efficiency

Bensley

i7

Nehalem



46 
 

Splitting the analysis so that extraction and serialization are plotted independently of 

each other as in Figure 16 shows that the performance gains in extraction tail off faster than 

the gains in serialization.  This shows that any performance gains to be had in terms of thread 

performance are in the extraction logic. 

 

Figure 16: Write versus extraction time 

4.1.3 Boeing 777 Extraction time 

The first implementation of the MMDr proof of concept was only able to extract the 

777 model on the Nehalem machine.  While disappointing, since the low memory 

management scheme should have allowed it to extract on any machine, it does provide a data 

point for comparison against the 1920 seconds extraction time reported by Intervis3D for the 

same model on a 2.0 GHz Core 2 Duo with only 2 GB ram [1].  At 5143 seconds using 8 

threads on a significantly higher end machine MMDr appears to be completely missing the 

mark.  Investigation of why this is the case is still ongoing, however the initial assessment is 

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15

Ti
m

e 
(s

)

Threads

Serialize/Extract Time (Nehalem)

Serialize

Extract



47 
 
pointing a finger at memory thrash and the high cost of using topological compression during 

serialization. 

4.2 Rendering 

A key objective of the MMDr proof of concept is to demonstrate that interactive 

frame rates can be achieved on arbitrarily large data sets through the use of a spatial 

hierarchy and occlusion query-based rendering techniques.  This is not something that can 

easily be shown.  What can be shown is that the rendering performance of a spatial hierarchy 

based approach is either equal to or substantially greater than that of a highly optimized 

product structure approach. 

4.2.1 Rendering Performance 

In order to compare the rendering performance of a nominal product structure-based 

rendering algorithm and MMDr’s spatial hierarchy enhanced technique, the frame rate was 

measured on a series of data sets that contain an increasing number of instances of the 

corporate jet. 

 
Figure 17: Rendering 11 instances of the corporate jet 

The basic approach was to open the data set, ensure only the required data is loaded, 

and then measure the average frame rate achieved when rotating the model 360 degrees at 1 



48 
 
degree increments.  For the product structure-based method measurements the DirectModel 

framework test viewer GDr was used on the original JT files.  For the spatial hierarchy 

measurement, MMDr was use on the spatial JT files that were generated from the original JT 

files with a max cell complexity of 5000 triangles. Since the spatial hierarchy based renderer 

does not support materials they were disabled when rendering with GDr.  This left the only 

difference between MMDr and GDr to GDr using a separate strategy thread for shape culling 

and making use of the level of details that are present within the product structure and MMDr 

making use of hardware assisted occlusion culling.  A full list of the features for each of the 

viewers is shown in Table 2. 

Table 2: Comparison of viewer features 

 GDr MMDr 
Window Size 953x446 953x446 
Rendered Shapes The shapes that are to be rendered are 

determined in a separate strategy pass 
that executed over the product structure 
on its own thread.   

The shapes that are to be rendered are 
determined during the actual render pass. 

Level of Detail LOD selection is allowed to occur with 
the strategy pass. 

LOD was not implemented with the spatial 
hierarchy. 

Screen Coverage 
Culling 

Shapes that do not meet the specific 
screen coverage value are culled as part 
of the strategy pass. 

Cells that do not meet the specified screen 
coverage value are culled as part of the 
render pass. 

Hardware 
Assisted 
Occlusion Culling 

Not used since the cost of making the 
queries exceeds the savings from not 
rendering the culled shapes. 

Makes use of the hardware assisted 
occlusion algorithm as defined in GPU 
Gems 2. 

Materials Shapes' materials are overridden to be 
the same color in order to ensure a fair 
comparison against the spatial hierarchy. 

Shape materials are currently not persisted 
into the spatial hierarchy. 

 
Figure 18 demonstrates the difference in performance when a minimum amount of 

screen coverage culling is applied.  When running with a screen coverage value of 1e-5, GDr 

and MMDr cull any shapes or cells whose bounding box denotes it would contribute to 4 

pixels or fewer on the screen.  When this value is reduced to 1e-6, the culled shapes and cells 

are reduced to only those whose bounding box denotes it would contribute to 1 pixel or fewer 



49 
 
on the screen.  The data shows that a spatial hierarchy will almost always achieve a higher 

frame rate than the nominal product structure approach.  The performance difference is most 

pronounced for small shapes; however at around 270 million triangles the spatial hierarchy 

shows a higher capacity for maintaining its frame rate even if briefly.   Of further is the fact 

that that there is minimal performance difference between culling objects that contribute up 

to 1 pixel and objects that contribute up to 4 pixels when rendering over 340 million 

triangles. 

 

Figure 18: Render performance with a minimum amount of screen coverage culling 

Figure 19 plots the difference in performance when a moderate amount of screen 

coverage is applied.  For both of the runs, any shape or cell whose bounding box denotes it 

would contribute to 42 pixels or fewer on the screen is culled.   The data clearly shows that 

the spatial hierarchy is capable of achieving a significantly higher frame rate at this level of 

screen coverage culling.  This is most likely due to the existence of many more small cells 

0

5

10

15

20

25

30

35

40

45

44 94 144 194 244 294 344

FP
S

Triangles (Millions)

FPS OpenGL DisplayList Rendering (i7)

GDR73 (1e-5)

GDR73 (1e-6)

MMDr (1e-5)



50 
 
within the spatial hierarchy than there are small shapes within the product structure.  Note 

also that the spatial hierarchy frame rate seems to stabilize between roughly 180 million 

triangles and 270 million triangles at a respectable 35 fps.  This is promising since it hints 

that a stable frame rate might be possible on arbitrarily large models, and it will be well 

above the values that are often considered interactive. 

 

Figure 19: Render performance with a moderate amount of screen coverage culling 

Figure 20 demonstrates the difference between rendering with minimal and moderate 

screen coverage culling when using a spatial hierarchy. This comparison is important 

because it shows that same curve is followed regardless of the amount of screen coverage 

that is used.  In other words, screen coverage only seems to influence the maximum frame 

rate achieved and not how the performance will behave when increasing the number of 

triangles. 

0

10

20

30

40

50

60

70

80

44 94 144 194 244 294 344

FP
S

Triangles (Millions)

FPS OpenGL DisplayList Rendering (i7)

GDR73 (1e-4)

MMDr (1e-4)



51 
 

 

Figure 20: Comparison of rendering when using minimal and moderate screen coverage culling with a 
spatial hierarchy 

Overall, rendering using a spatial hierarchy seems to show promise, especially when 

compared to rendering using a product structure alone.  While the data does not show that 

interactive frame rate will necessarily be maintained as the data size increases, it does show 

promise towards actually being able to reach that goal. 

4.3 Memory Management 

In order to visualize arbitrarily large data sets at interactive frame rates, the amount 

memory required for partitioning and rendering must be kept to a minimum and safeguards 

put in place to effectively handle the condition where more memory is required than is 

currently available. 

0

10

20

30

40

50

60

70

80

44 94 144 194 244 294 344

FP
S

Triangles (Millions)

FPS OpenGL DisplayList Rendering (i7)

MMDr (1e-4)

MMDr (1e-5)



52 
 
4.3.1 Partitioning Memory 

The MMDr proof-of-concept does not report the maximum amount of memory used 

when partitioning a dataset.  This was an oversight in implementing data statistics.  MMDr 

was designed to ensure that the total amount of memory used does not result in swapping.  It 

is intended to cap its memory usage just below the amount of memory available in the 

machine; however this was not working correctly at the time of testing.  This was most 

evident when trying to extract the Boeing 777 model on the i7.  Memory would quickly 

approach almost twice the amount available in the machine before MMDr would crash.  In 

order to work around this issue the Nehalem with 24GB of memory had to be used, which is 

not practical for most users. 

4.3.2 Rendering Memory 

The amount of memory used by the spatial hierarchy and product structure was also 

recorded when collecting the frame rate information for a variety of data sets.  Therefore, it is 

also possible to look at the amount of memory required as the number of triangles in the 

dataset increases.  

Figure 21 shows the amount memory used for rendering when a minimal amount of 

screen coverage culling is applied.  The use of the spatial hierarchy does not seem to fare 

well under this scenario, since it practically always uses a significantly greater amount of 

memory than the product structure alone.  For some reason, it seems to recover at 350 million 

triangles, however, this may just be a fluke in the data collection since there does not appear 

to be a good reason for this to occur.  One encouraging observation can be made from this 

data is that even though the rendering performance as shown in Figure 18 did not increase 



53 
 
much between 1 and 4 pixels, the amount of memory used actually decreases substantially as 

a large number of triangles are rendered. 

 

Figure 21: Memory usage when rendering with minimal screen coverage culling 

Figure 22 shows the amount memory used for rendering with a moderate amount of 

screen coverage culling.  The spatial hierarchy in MMDr seems to fare better under this 

scenario.  Up until about 210 million triangles it seems to match the performance of the 

product hierarchy at which point it drastically shifts towards using much less memory, but 

then still continues to increase at about the same rate as it was previously.  While not 

necessarily desirable, it is worth pointing out that the amount of memory used increases 

linearly as the number of triangles increases.  This is not totally unexpected, considering that 

the data set uses instances of the same dataset, rotated across 360 degrees.  In other words, 

each new data point should result in roughly the same amount of geometry being loaded.   

0

1

2

3

4

5

6

7

8

9

10

44 94 144 194 244 294 344

Ta
sk

 M
an

ag
er

 M
em

or
y 

(G
B)

Triangles (Millions)

Memory Usage with OpenGL DisplayList Rendering (i7)

GDR73 (1e-5)

GDR73 (1e-6)

MMDr (1e-5)



54 
 

 

Figure 22: Memory usage when rendering with moderate screen coverage culling 

Figure 23 shows that moderate screen coverage culling results a significant reduction 

in the amount of memory used for rendering when compared to minimal screen coverage 

culling especially as the number of triangles increases. 

 

Figure 23: Memory usage when rendering 

0

1

2

3

4

5

44 94 144 194 244 294 344

Ta
sk

 M
an

ag
er

 M
em

or
y 

(G
B)

Triangles (Millions)

Memory Usage with OpenGL DisplayList Rendering (i7)

GDR73 (1e-4)

MMDr (1e-4)

0

1

2

3

4

5

6

7

8

9

10

44 94 144 194 244 294 344

Ta
sk

 M
an

ag
er

 M
em

or
y 

(G
B)

Triangles (Millions)

Memory Usage with OpenGL DisplayList Rendering (i7)

GDR73 (1e-4)

GDR73 (1e-5)

GDR73 (1e-6)

MMDr (1e-4)

MMDr (1e-5)



55 
 

Overall, the amount of memory used by the spatial hierarchy based viewer was 

disappointing.  The biggest issue with arbitrarily large data sets is that it is impossible to load 

them completely in memory.  The linear increase in memory usage means that eventually a 

point will be reached at which rendering performance will fall off precipitously due to 

required memory exceeding that which is physically present on the machine in question.  

This effect could probably be demonstrated on the current data if run on a machine with less 

memory than the i7. 



56 
 
5 CONCLUSION AND FUTURE WORK 

5.1 Summary and Conclusions 

The MMDr proof-of-concept shows that there are gains to be had even with a 

minimal transition from current brute force rendering methods to those that make use of 

spatial hierarchies.  Furthermore, a simple three-component system is all that is needed to 

achieve interactive frame rates on relatively large models, and can easily be expanded to 

work on arbitrarily large models. 

Whereas most Massive Model Visualization approaches utilize complicated 

algorithms and highly specialized data structures to achieve interactive frame rates, MMDr 

shows that similar results can be achieved by far simpler means which are far more 

conducive to being able to achieve a complete visualization solution.   

5.1.1 Partitioning 

Partitioning a product structure into a spatial hierarchy can be achieved in a 

reasonable amount of time.  While it cannot be done on the fly, especially for arbitrarily large 

models, it is well within the reasonable limits of what an average user would be willing to 

tolerate. 

A general algorithm for sub-dividing an arbitrarily large dataset into any one of many 

different types of spatial hierarchies has been shown.  While there is definitely room for 

improvement, this algorithm shows that managing memory consumption while being able to 

fully utilize all available threads is realizable. 



57 
 
5.1.2 Rendering 

The use of nothing more than a simple spatial hierarchy combined with occlusion 

queries is shown to far surpass the rendering performance of an ordinary product structure 

renderer.  This was the case even when comparing against the highly optimized rendering 

pipeline of the well established and commercially available DirectModel toolkit 

5.1.3 Memory Management 

Lazy memory management is sufficient to load and unload heavyweight geometric 

data; however it is adequate at best.  By only loading data whenever it is needed, there is a 

greater chance that lag or artifacts will be introduced into the system while waiting for the 

data to load.  This is a tradeoff since processing activities will stall while waiting on the data 

to load, whereas rendering may contain artifacts in areas for the frames rendered between the 

time when the data is first requested and the frame in which it is finally loaded. 

5.2 Future Work 

There are many paths that are open for pursuit in this area of research especially when 

it comes to enhancing the capabilities of the MMDr proof of concept. 

5.2.1 Partitioning 

Partitioning has been shown to utilize the capabilities of multi-core and multi-

processor systems, however the performance gains quickly tail off as the number of threads 

increase.  It is suspected that this is due to a large amount of memory allocation contention 

between the threads as well as significant amount of serial preprocessing that must occur in 

order to ensure the proper balancing of work between threads. 



58 
 

The memory contention issue can best be handled by further isolating memory 

allocations and limiting the frequency at which they occur.  A good place to start would be 

eliminating unnecessary object creation and tear down that can occur on a per-cell basis, 

however this alone is probably not enough.   Memory analysis tools will have to be applied to 

identify, analyze, and resolve the bottlenecks.    

Implementing a multi-threaded method for splitting of single cells will optimize the 

serial preprocessing.  While in the long run it is more efficient to process cells independently 

of one another, a level of parallelization can still be achieved on the early-generated cells due 

to the large number of shapes that will need to be processed.  This would allow the initial 

processing of multi-thread single cell extraction until there are sufficient cells waiting to be 

handled so that the processing of individual cells can be efficiently farmed out to all of the 

threads.  

While spatial partitioning has been shown to work on some impressively large data 

sets, it was barely capable of handling arbitrarily large data sets.  The problem stems from the 

partitioner not correctly handling the scenario in which the input data set is so large that it 

causes the amount of available memory to be exceeded.  Logic was inserted to preprocess 

cells until it was possible to handle groups of the remaining cells in main memory; however 

this appears to not to work as intended.  The issue here is twofold. The prediction algorithm 

for the amount memory that is going to be required does not accurately predict the maximum 

amount of use.  Second, analyzing the resulting data after performing an extraction hints at a 

severe memory leak that is causing the amount of memory use to be significantly larger than 

it should be.  Effort needs to be expended to first track down the memory leak and then 



59 
 
memory usage analysis must be conducted in order to come up with a more accurate 

prediction algorithm.   

The current partitioning scheme sub-divides any cell whose complexity, or number of 

triangles, exceeds the maximum complexity number set on the underlying spatial tree.  While 

this approach is efficient for ensuring that the spatial hierarchy is sufficiently spread out, it 

can easily result in an arbitrary number of small cells being created.  This not only increases 

the overall memory size, but also has the potential for causing a decrease in performance due 

to needing to render extra cells.  An extra step should be added to the partitioning to 

automatically merge relatively small child cells with their parent cell.  Performance 

measurements will need to be gathered before and after merging small child cells in order to 

determine if this approach improves memory usage and performance and if so, conduct 

further tests on a variety of models to determine when this approach is appropriate. 

5.2.2 Rendering 

One of the biggest shortfalls of the MMDr rendering is that it currently does not 

maintain the material colors from the original data set.  Future versions should be enhanced 

to include this.  This will have impact on both the partitioning and rendering logic.  

Partitioning will need to be enhanced to support attaching a material to triangles associated 

with each part contained within the cell.  Further the triangles will need to be sorted so that 

triangles with the same material are next to one another.  This is needed to ensure that the 

number of state changes when rendering the triangles of each cell is kept to a minimum.  

Testing within the DirectModel rendering system has shown that forgoing this optimization 

can easily result in over a 20 percent reduction in rendering performance.   The shape 



60 
 
rendering logic will need to be enhanced to support rendering multiple sets of triangles with a 

different material being applied to each.   

Rendering performance for the spatial hierarchy is quite impressive, however it can 

optimized further.  Currently, it does not scale as well as expected when the size of the data 

set increases.  This is believed to be an artifact of far too much geometric data being 

rendered, such that even with occlusion query and screen coverage culling it cannot keep up, 

therefore the addition of further culling methods will need to be considered.  

One option is to consider enforcing a fixed frame rate, which is nothing more than 

providing a means for the rendering loop to terminate early in order to ensure that each frame 

does not exceed a maximum allocated time.  Usually this involves calculating the duration of 

the last frame rendered and its associated number of triangles, then extrapolating the number 

triangles that can be rendered in the next frame while still rendering at the desired frame rate.  

Since cells are always rendered front to back the cells that are culled by this method will 

almost always be far away from the user and therefore may not contribute much to the 

quality of the frame. 

5.2.3 Memory Management 

Memory management is currently the weakest link in the MMDr proof of concept.  

The lazy loading of data often results in artifacts during rendering due to the necessary 

geometric data for a cell being available.  A more active approach would predict the cells that 

will be needed next, and ensure that they are loaded before they are actually needed.  Further, 

this approach can be adapted to remove cells that will no longer be necessary. 



61 
 

Another deficiency is the current mechanism for setting a cell’s loading priority based 

solely upon its area.  This is based upon the misguided premise that a larger cell will always 

contribute more to the screen that a smaller cell.  This is not case, especially when the larger 

cell is significantly farther away from the view location than a smaller cell.  The loading 

priority of each cell therefore needs to be adjusted based upon a combination of its size and 

distance.  

5.2.4 Massive Model Visualization 

In order to fully enable massive model visualization, there are key technologies that 

need to be developed and integrated in the MMDr proof of concept. 

The spatial partitioner and its underlying data structure need to be enhanced to 

support the dynamic updating of the spatial hierarchy based upon changes in either the 

original product structure or spatial hierarchy.  Intervis3D showed that is much more efficient 

to update only a small portion of tree than having to constantly update the whole tree.  

Further, this capability is required in order to support advance features such as manipulating 

parts on the fly. 

The spatial tree also needs to be enhanced to support picking.  Further picks against 

the tree should automatically be translated into picks against the parts in the original product 

structure such that the user feels as though they are working against the product structure. 

A key component to any visualization application is the ability to manipulate the 

location and orientation of any part within the product structure.  In order for any massive 

model visualization solution to be considered complete it needs to be able to support this 

feature.  The MMDr proof of concept was designed with this in mind and therefore has 



62 
 
already started to lay the ground work needed to make this possible.  Further enhancements 

will need to occur including those listed above, however unlike previous solutions, being 

able to support manipulation is definitely within the realm of possibilities for proposed 

solution. 

5.3 Acknowledgments 

The work contained within would not be possible without the countless support and 

involvement of many individuals.  My gratitude and thanks go to the many individuals who 

have made this possible. 

I would like to recognize my committee, Dr. James Oliver, Dr. Yan-Bin Jia, and Dr. 

Eliot Winer.  Thank you for understanding that I am both a graduate student and a full-time 

engineer and being so supportive of me doing my own independent research.  I would 

especially like to thank my advisor Dr. Oliver for all the guidance he has provided over the 

years.  I have learned a lot from him as undergraduate research assistant, as an engineer, and 

as graduate student and I suspect I will continue to learn a lot more.  When it came time for 

me to go back to graduate school, there was no doubt about who I wanted to be my major 

professor. 

I would thank Dr. Adrian Sannier.  It takes an amazing professor to put up with a 

student asking every class for an entire semester to be hired as undergraduate research 

assistant.  I am forever grateful that he was willing to take chance on me and even more so 

for the countless opportunities that has presented to me. 

I would like to thank the many group members that I have had the opportunity to 

work with throughout my classes.  An extra handful of gratitude goes Adam Faeth, Mike 



63 
 
Oren, and Eric Marsh for all the hard work they put into our project.  I would especially like 

to thank Adam for his friendship and the countless hours he has spent with me working on 

course work and for not giving up when given the task of proof reading my thesis.  I would 

also especially thank Adam's wife for putting up with me for constantly stealing her husband 

for hours on end. 

I would like to thank my countless colleagues at Siemens PLM software.  Thank you 

so very much for putting up with both my crazy schedule and me being an Oscar the Grouch 

from being tired all the time.  I would like recognize Tony DeLuca, Brett Harper, Andreas 

Johannsen, and Mike Carter for their bountiful support as went I went back to graduate 

school.  I would like to thank the members DirectModel team Sashank Ganti, Jianbing 

Huang, and Bo Xu, who bore the brunt and had to pick up the slack when I could not.  I 

would like to especially thank Mike Carter for being my manager and my friend.  This would 

not have been possible without his full and undying support.  I am forever grateful for his 

willingness to put up with my crazy schedule, the countless discussion we have had about 

Massive Model Visualization, and the endless hours he spent proofreading this thesis. 

I would like to thank Samuel Gateau from NVIDIA and David Kasik from Boeing.  

This would not have possible without their willingness to provide technical expertise and 

data. 

I would like to give my express gratitude to Mike Brockert.  For being my coach, my 

teacher, and my first true mentor especially in the area of CAD.  I wouldn't be where I am 

now if wasn't for all the things that he has taught me. 



64 
 

I would also like to thank my family and friends for their endless support and for 

putting up with being so unresponsive at times do to the craziness of my schedule.  A person 

is only as strong as the people standing behind them. 



65 
 

REFERENCES 
 

[1] D. Kasik, "Visibility-guided rendering to accelerate 3D graphics hardware 
performance," , San Diego, California, 2007. 

[2] Ulf Assarsson and Tomas Moller, "Optmized View Frustum Culling Algorithms," 
Technical Report 99-3, 1999. 

[3] J.H. Clark, "Hierarchical geometric models for visible surface algorithms," vol. 19, no. 
10, pp. 547-554, 1976. 

[4] Ulf Assarsson and Tomas Moller, "Optmized View Frustum Culling Algorithm for 
Bounding Boxes," Journal of Graphics Tools, vol. 5, no. 1, pp. 9-22, September 2000. 

[5] M. Meibner, and T. Huttner. D. Bartz, "Opengl assisted occlusion culling for large 
polygonal models.," vol. 23, no. 3, pp. 667-669, 1999. 

[6] Hansong Zhang, Dinesh Manocha, Tom Hudson, and Kenneth E Hoff III, "Visibility 
Culling using Hierarchical Occlusion Maps," , Nice, 1997. 

[7] Naga K Govindaraju, Avneesh Sud, Sung-Eui Yoon, and Dinesh Manocha, "Interactive 
visibility culling in complex environments with occlusion-switches," 2003. 

[8] T Hudson et al., "Accelerated Occlusion Culling using Shadow Frusta," , 1997, pp. 1-10. 

[9] Michael Wimmer and Jiri Bittner, "Hardware Occlusion Queries Made Useful," in GPU 
Gems 2.: Pearson Education, March 2005. 

[10] Hanan Samet, The Design and Analysis of Spatial Data Structures.: Addison-Wesley, 
1989. 

[11] Hanan Samet, Foundations of Multidimensional and Metric Data Structures.: Morgan 
Kaufmann, 2006. 

[12] B., DeRose, T., Lischinski, D., Salesing, D., Snyder, J. Chamberlain, "Fast rendering of 
complex environments using a spatial hierarchy.," pp. 132-141, 1996. 

[13] Enrico Gobetti, David Kasik, and Sung-eui Yoon, "Technical Strategies for Massive 
Model Visualization," in Proceedings of the 2008 ACM symposium on Solid and 
physical modeling , New York, 2008, pp. 405-415. 



66 
 
[14] J Goldsmith and J Salmon, "Automatic cration of object hierarchies for ray tracing," 

IEEE Computer Graphics and Applications, vol. 7, no. 5, pp. 14-20, 1987. 

[15] J D MacDonald and K S Booth, "Heuristics for ray tracing using space subdivision," 
The Visual Computer, vol. 6, no. 6, pp. 153-165, 1990. 

[16] V Harvan, "Analysis of cache sensitive representations for binary space partitioning 
trees," Informatica, vol. 29, no. 3, pp. 203-210, 1999. 

[17] Kimberly Weaver, "Design and evaluation of a perceptually adaptive rendering system 
for immersive virtual reality envrionments," Ames, 2007. 

[18] Tomas Akenine-Moller, Eric Haines, and Naty Hoffman, Real-Time Rendering.: AK 
Peters, 2008. 

[19] Daniel Aliaga et al., "A framework for real-time walkthroughs of massive models.," 
1998. 

[20] Daniel Aliaga et al., "MMR: an interactive massive model rendering system using 
geometric and image-based acceleration.," , 1999, pp. 199-206. 

[21] Enrinco Gobbetti and Fabio Marton, "Far Voxels: A Multiresolution Framework for 
Interactive Rendering of Huge Complex 3D Models on Commodity Graphics 
Platforms.," , vol. 24, 2005, pp. 878-885. 

[22] Hugues Hoppe, "View-Dependent Refinement of Progressive Meshes," , 1997, pp. 189-
198. 

[23] Dirk Bartz et al., "Jupiter: A Toolkit for Interactive Large Model Visualization," in 
Proceeding of the IEEE 2001 symposium on parallel and large-data visualization and 
graphics, Piscataway, NJ, 2001, pp. 129-134. 

[24] Paolo Cignoni et al., "Adaptive tertrapuzzles: efficient out-of-core construction and 
visualization of gigantic multiresolution polygonal models," , New York, 2004, pp. 796-
803. 

[25] Beat Bruderlin, Mathias Heyer, and Sebastian Pfutzner, "Interviews3D: A Platform for 
Interactive Handling of Massive Data Sets," vol. 27, no. 6, pp. 48-59, 2007. 

[26] Wagner T Correa, James T Klosowski, and Claudio T Silva, "Visibility-Based 
Prefetching for Interactive Out-of-Core Rendering," in Proceedings of the 2003 IEEE 
Symposium on Parallel and Large-Data Visualization and Graphics, Washington, DC, 



67 
 

2003, p. 2. 

[27] Sung-Eui Yoon, Peter Lindstrom, Valerio Pascucci, and Dinesh Manocha, "Cache-
Oblivious Mesh Layouts," , 2005. 

[28] Perdro V. Sander, Diego Nehab, and Joshua Barczak, "Fast triangle reordering for 
vertex locality and reduced overdraw," , New York, 2007, p. 89. 

[29] The Walkthrough Group. (2001, March) The Warlkthru Project. [Online]. 
http://www.cs.unc.edu/~walk/ 

[30] L Darsa, B Costa, and A Varshney, "Navigating Static Environments Using Image-
Space Simplification and Morphing," , Providence, 1997, pp. 25-34. 

[31] Francois Sillio, George Drettakis, and Benoit Bodelet, "Efficient Imposter Manipulation 
for Real-Time Visualization of Urban Scenery," vol. 16, no. 3, pp. 207-218, 1997. 

[32] M Garlan and P Heckbert, "Surface Simplification using Quadratic Error Bounds," 
1997. 

[33] C Erikson and D Manocha, "GAPS: General and Automatic Polygonal Simplication," 
1998. 

[34] 3Dinteractive. (2009) 3Dinteractive. [Online]. 
http://www.3dinteractive.de/products/products.html 

[35] (2009) JT Open. [Online]. http://www.jtopen.com/ 

[36] "Jt File Format Reference Version 8.1 Rev-B," Plano, 2008. 

[37] Michael B Carter, Andreas Johannsen, Michael C. McCarty, Jeremy S. Bennett, and Bo 
Xu, "SYSTEM AND METHOD FOR LIGHTWEIGHT POLYGONAL TOPOLOGY 
REPRESENTATION," Software 11/837,236, August 10, 2007. 

[38] M., Bartz, D., Hüttner, T., Müller, G., Einighammer, J. Meißner, "Generation of 
Subdivision Hierarchies for Efficient Occlusion Culling of Large Polygonal Models," , 
1999. 

 

http://www.cs.unc.edu/~walk/�
http://www.3dinteractive.de/products/products.html�
http://www.jtopen.com/�

	2009
	Massive model visualization: An investigation into spatial partitioning
	Jeremy S. Bennett
	Recommended Citation


	Introduction
	Product Lifecycle Management
	Visualization Software
	Motivation
	Thesis Organization

	Background
	Graphics Techniques
	Culling
	Spatial Hierarchies
	Stand-Ins
	Memory Management

	Complete Systems
	MMR
	Far Voxels
	Interviews3D

	Research Issues

	MMDr System
	Spatial Partitioning
	Basic Approach
	Data Gathering
	Sub-division
	Multi-Threading
	File Format
	Part Associativity

	Rendering
	Basic Approach
	Multi-view Rendering Support

	Memory Management
	Basic Approach
	Residency Request
	Disposable Objects

	Spatial Hierarchy
	Basic Approach
	Memory Conservation
	Bounding Box Calculation


	Results AND DISCUSSION
	Partitioning
	Spatial Hierarchy Generation
	Multi-threaded Extraction time
	Boeing 777 Extraction time

	Rendering
	Rendering Performance

	Memory Management
	Partitioning Memory
	Rendering Memory


	Conclusion and future work
	Summary and Conclusions
	Partitioning
	Rendering
	Memory Management

	Future Work
	Partitioning
	Rendering
	Memory Management
	Massive Model Visualization

	Acknowledgments


