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ABSTRACT 

 Cerebrovascular endothelial cells play a key part in the inflammatory response of 

the blood-brain barrier in pathological conditions such as Alzheimer’s disease. 

Specifically, the NF-κB signaling pathway plays a central role. Better understanding of the 

factors in inflammatory disease progression can lead to more effective treatments for such 

devastating illnesses like Alzheimer’s, asthma, arthritis, cancer, diabetes and many more 

inflammatory diseases. The proposed approach analyzes spatial NF-κB distribution 

contained in multispectral stacked micrograph images of cerebrovascular endothelial cells 

indexed based on dose of the activating protein and the length of activation. Image analysis 

code identifies the location of nuclear boundaries and quantifies NF-κB in relation to the 

closest nuclear boundary. This information is used to develop a mathematical model that 

describes the time and concentration dependence of NF-κB in response to the activating 

proteins. The proposed method allows for analysis and modeling of previously unexplored 

spatial behavior of NF-κB. 
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CHAPTER 1 

INTRODUCTION 

1.1 NF-κB IN ALZHEIMER’S AND INFLAMMATION 

Alzheimer’s disease (AD) is a global public health burden as it is a major cause of 

mortality.1 Vascular dysfunction plays a significant role in the disease progression of AD. 

Impaired clearance of amyloid β-peptide (Aβ) and the accumulation of Aβ plaques on 

vessels of the blood-brain barrier (BBB) is a hallmark of AD pathology.2 Because of this 

phenomena, decades of research has focused on Aβ as a therapeutic target for the treatment 

of AD. 

Neuroinflammation occurs in Alzheimer’s patients, but was previously thought to 

be a response to pathophysiological events.3 However, recent studies show that the 

impaired clearance of Aβ can cause inflammation by potentially more than one mechanism, 

and could contribute largely to AD pathology.2–4  The inflammatory reaction observed in 

AD is thought to be caused mostly by the over-activity of microglia, which serve as 

immune cells that clear Aβ plaques.3 This activity leads to the release of inflammatory 

cytokines, including tumor necrosis factor α (TNF-α).2,3 Inflammatory cytokines activate 

signaling pathways with nuclear factor-κB (NF-κB), a dimeric transcription factor in the 

inflammatory response.5–7 In addition to inflammatory cytokines, Aβ aggregates have been 

shown to activate these same NF-κB pathways.4 In unstimulated cells, NF-κB exists in the 

cytoplasm, bound to the inhibitor of NF-κB, IκB. When a cell is stimulated, IκB is 

phosphorylated by the IKK complex and then ubiquitinated and degraded. This leads to 



2 

NF-κB nuclear translocation where it binds DNA fragments and induces expression of 

target genes.4,8 The presence of activated NF-κB leads to production of more IκB, 

therefore, this process is controlled by a negative feedback loop.9 

Activation of the NF-κB signaling pathways proves to be a major factor in the 

cerebrovascular endothelial dysfunction associated with AD.1–4 Unregulated and sustained 

activation of NF-κB plays a major role in sustained inflammation.8 In addition to AD 

pathology, NF-κB has also been associated with other disease states including asthma, 

arthritis, cancer, diabetes and others.3,7  NF-κB is also known to play a vital role in the 

development of innate and adaptive immunity. A therapeutic that modulates NF-κB 

signaling could prove to be effective at reducing the prolonged inflammation that 

influences AD.8,10 Understanding the dynamics of the transcription factor NF-κB in 

response to stimulus can lead to the development of better therapeutics for Alzheimer’s 

and other diseases.  

1.2 NF-κB MODELS 

Up to this point in time, various approaches have been taken to mathematically model 

the NF-κB signaling pathway.6,9,11,12 Because TNF-α is a primary inflammatory cytokine, 

the TNF-α mediated signaling pathway has been thoroughly investigated.9,13 Kinetic 

models to date focus primarily on ordinary differential equations to describe the chemical 

reactions.6,9,11,12,14 Dynamic behavior of NF-κB signaling has been more recently explored 

using theoretical models. Some models have concluded that NF-κB exhibits an oscillatory 

response.14–18 This proposed oscillatory response is thought to be a result of the negative 

feedback response combined with activation and nuclear translocation; however, this 

response has been difficult to reproduce experimentally.14–18 
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In modeling NF-κB kinetics, rate constants are dependent on the stimulus, species, 

tissue, and physiological state of the organism or cells, therefore, kinetic parameters are 

complicated to fully define.5 This leaves much more work to be done considering 

pathological conditions for the development of therapeutics. Also, there are few 

quantitative mathematical models that describe the spatial distribution of NF-κB.6,9,17 

Nuclear translocation is a known and significant phenomena in NF-κB signaling, so the 

spatial relationship between the NF-κB complex and the nucleus and cytosol is necessary 

to study and quantify in order to develop thorough models.5,18 Integrating spatial models 

from in vitro studies of NF-κB with kinetic models can provide additional information for 

the development of a mathematical model based on experimental data. By expressing the 

complex NF-κB signaling pathway as a mathematical model, preclinical development of 

therapeutics can be improved and potentially optimized through quantitative understanding 

of the signaling mechanisms.19 

1.3 BIOIMAGE INFORMATICS 

Bioimage informatics is a developing an area of research, as many wet-lab 

techniques for analyzing molecular data may be limited due to the lack of spatial 

information. The relationship between tissue/cellular structures and proteins cannot be 

captured when many wet-lab techniques require cell lysing. Imaging biological samples 

allows for additional understanding of proteins and the relationship between cell structure 

and function.5,20,21 For example, immunofluorescence labeling of multiple proteins in a 

single sample can be used to study localization patterns of proteins. Bioimaging techniques 

allow for quantitative analysis that includes spatial data.21–24  
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Currently, the standard analysis of biomedical images is manual evaluation 

combined with a basic computational method using a software such as ImageJ.4,22,24 

However, manual evaluation becomes less desirable due to increasing data volume, which 

has been enabled by faster preparation methods and higher resolution images.22,25 Fully 

automated modular image analysis techniques, using readily available software, can 

address this explosion of imaging data.23–25 In previous applications, automated techniques 

have proven to be more efficient and equally accurate when compared to manual evaluation 

methods.22,25,26  

While some computational methods have been used to analyze NF-κB, even the 

most recent software does not have a capabilities to study spatial distributions, and is not 

fully automated.23 Integrating automated image analysis into modeling of NF-κB signaling 

responses will allow for thorough analysis of the transcription factor’s spatial behavior.  

1.4 DEVELOPING A BIOIMAGE ANALYSIS TOOL TO STUDY NF-ΚB 

This work demonstrates a technique for the analysis of NF-κB in cerebrovascular 

endothelial cells using commercially available software, MATLAB™.  MATLAB™ can 

efficiently store and read large sets of images and also contains toolboxes to allow for a 

full range of modeling capabilities. MATLAB™ also can be used in conjunction with other 

imaging software. 

The proposed approach, termed Cerebrovascular Endothelial Micrograph Spatial 

Analyzer (CEMSA), analyzes information contained in multispectral stacked micrograph 

images of cerebrovascular endothelial cells. Images are acquired as a z-stack using 

confocal microscopy and complied into a single z projection. The images contain two 

channels: a DAPI stain layer and a fluorescently tagged NF-κB antibody layer. The images 
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are then indexed based on concentration of the activating protein and the time of treatment. 

MATLAB™ image analysis and optimization toolboxes are used to evaluate the 

transcription factor, quantified from the fluorescently tagged NF-κB antibody, in relation 

to the wall of the cell nucleus, identified by the DAPI stain. First, this image analysis 

method identifies the location of nuclear boundaries. Next, the method quantifies NF-κB 

in relation to the closest nuclear boundary. Finally, this quantitative information is used to 

develop a mathematical model that describes the time and concentration dependence of 

NF-κB cellular position in response to two activating proteins. 
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CHAPTER 2 

METHODS

This chapter presents the method of experimental preparation and the development 

of the automated CEMSA software for computational analysis of NF-κB in endothelial 

cells. Three experimental cases (A,B,C) with varying treatments were gathered and used 

in conjunction with CEMSA software in order to generate mathematical models of the 

system. Case A images were gathered from a previous publication.4 Case B and C images 

were gathered from cell culture performed by Lauren Wolf in the Moss Lab at the 

University of South Carolina. 

2.1 EXPERIMENTAL TREATMENT OF CELLS  

2.1.1 Cell culture and preparation of endothelial monolayers: Endothelial 

monolayers were comprised of ACBRI 376 primary human brain microvascular 

endothelial cells (HBMVECs) (Cell Systems, Kirkland, WA) were maintained in CSC 

Complete Medium with CultureBoost and Bac Off® on surfaces coated with Attachment 

Factor™ (Cell Systems, Kirkland, WA). For each experiment, HBMVECs within passages 

6 through 9 were seeded onto Attachment Factor™ coated glass coverslips (Corning, Inc.) 

in 6 well plates with CSC Complete Medium with CultureBoost and Bac Off® at a density 

of 5 × 105 cells/mL. Cells were fed after 24 hours with daily growth medium, and 

transitioned to Complete Serum Free Media with RocketFuel (Cell Systems, Kirkland, 

WA) at 48 hours post seeding. Cells remained in serum free media for 24 hours until 
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treatment; this total time of 72 hours post seeding allowed cells to reach confluence (37ºC, 

5% CO2, 95% air) prior to treatment. 

 2.1.2. Cell treatment, immunocytochemistry, and image acquisition: HBMVEC 

monolayers were treated with activating proteins. In Case B, cells were treated with Aβ 

aggregates in µM concentrations of: 2 µM, 1 µM, 0.5 µM, and 0.1 µM. Case C cells were 

treated with TNF-α (20 units/mL). For the 30 minute time interval concentration study, 

endothelial monolayers were also exposed to reduced strength TNF-α at 10% or 50% of 

full strength (i.e. 2 units/mL and 10 units/mL, respectively). Additionally in Case C, the 

impact of repeat exposure to TNF-α on NF-κB dispersion was investigated through a 

second treatment of HBMVECs initially exposed to TNF-α at 240 and 60 minutes with 

TNF-α and fixated 30 minutes following the second treatment. Untreated HBMVECs were 

used as the negative control.  

Post treatment, cells were quickly washed with Complete Serum Free Media with 

RocketFuel (Cell Systems, Kirkland, WA) and fixed to the coverslips with 4% 

paraformaldehyde for 10 minutes at 25ºC. Fixed cells were permeabilized (0.1% Triton X 

100, 0.01 M glycine in PBS) and rinsed again in PBS. Fixed monolayers were subsequently 

blocked with 5% BSA in DPBS, followed by 5% normal donkey serum in 1% BSA/DPBS 

to prevent non specific binding. The cells were then incubated overnight at 4ºC with the 

primary antibody, rabbit polyclonal anti NF-κB p65 (1:500) (Santa Cruz Biotechnology, 

Dallas, TX) in DPBS. After rinsing the next day with 1% BSA/DPBS to remove the 

primary antibody, monolayers were again blocked with 5% normal donkey serum in 1% 

BSA/DPBS and incubated with goat anti rabbit Alexa Fluor®488 secondary antibody 

(1:1000) (Life Technologies, Carlsbad, CA) for 2 hours at 25ºC to detect bound primary 
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antibody.  The prepared coverslips were subsequently rinsed 3X with 1% BSA, twice with 

DPBS, and were then mounted onto slides using Fluorshield with DAPI (Sigma Aldrich, 

St. Louis, MO) for visualization of nuclei.  

Slides were visualized under a Zeiss Confocal Laser Scanning Microscope (Carl 

Zeiss) through a Plan Apochromat 63X/1.4 oil DIC immersion objective (Carl Zeiss). For 

each slide, 4 different fields containing a minimum of 5 nuclei per field were sampled, and 

3 slice z stacks used to envisage the entire cell layer for each field. Each image was 

comprised of two channels, corresponding to the DAPI labeled nuclei and the Alexa 

Fluor®488 labeled NF-κB. ImageJ64 software (Schneider et al., 2012) was used to convert 

each z stack into a Z projection based on the maximum intensity within each channel to 

create the final images used for image analysis.  

2.1.3 Case A: In order to analyze the NF-κB within the endothelial cells over time, 

monolayers endothelial cells are treated with TNF-α and fixed at three different time 

points: 10 minutes, 15 minutes, and 30 minutes.  

2.1.4 Case B: In order to analyze the concentration dependency and time 

dependency of NF-κB activation within the endothelial cells in association with AD 

pathology, monolayers are treated with varying concentrations of Aβ aggregates: 2 µM, 1 

µM, 0.5 µM, and 0.1 µM and fixed at three different time points: 30 minutes, 45 minutes, 

and 60 minutes. Untreated cells and cells treated with buffer equivalent are used as negative 

controls. TNF-α, a known activator of NF-κB, is used as a positive control. 

2.1.5. Case C: In order to analyze the concentration dependency and time 

dependency of NF-κB activation within the endothelial cells, monolayers are treated with 

varying concentrations of TNF-α: a maximum concentration, half maximum concentration, 
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and 0.1 times the maximum concentration (20 units/mL, 10 units/mL and 2 units/mL, 

respectively) and fixed at 7 time points: 0 minutes, 10 minutes, 20 minutes, 30 minutes, 45 

minutes, 60 minutes, 120 minutes, and 240 minutes. Untreated cells fixed at 30 minutes 

serve as the negative control. An additional experiment evaluates the response after a repeat 

exposure of TNF-α. Monolayers are initially treated 60 minutes and 240 minutes prior to a 

second exposure and then fixed 30 minutes after the second exposure. This second 

exposure is then compared to the single exposure results.  

The final TIFF images contain two channels: one with the DAPI nuclear stain and 

another with the antibody stain, which are shown in Figure 2.1 A and B respectively. 

 

Figure 2.1. Multispectral Staining of Endothelial Cells. A) The DAPI stain shows the 

location of cell nuclei. B) The antibody stain shows NF-κB.  
 

2.1.6. Image organization: To obtain data from the treated endothelial cells, the 

micrograph TIFFs are analyzed in MATLAB™. The number of TIFF images per sample, 

the number of different concentrations, and the number of time intervals are used for future 

sorting the images. Micrograph TIFF images are imported in order of time and 
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concentration. The imported images are compiled into a single collection of TIFF images. 

The program iterates through each time interval, each concentration, and each image. For 

each image iteration, the image channels are read from the original graphics file and two 

matrices are returned: one for the DAPI stain and the other for the antibody labeled NF-

κB. The image matrix from the DAPI stain and antibody labeled NF-κB are then assigned 

to 2D arrays containing the values of intensity. 

2.2 IMAGE PROCESSING USING MATLAB™ 

2.2.1 Identifying Nuclear Boundary: The DAPI stained channel is used to identify 

the location of the endothelial cell nuclei. First, the edges in the image are identified using 

the Sobel method, an edge detection algorithm used in computer vision. This method 

returns edges at the points where the intensity gradient is at a maximum. The Sobel method 

is used first to identify a threshold and then used with the adjusted threshold to define the 

edges of the nuclei. The result of this is shown in Figure 2.2 A. Due to the large amount of 

noise in the data, several steps are taken in order to reduce the effect of uncertainty when 

working to identify the nuclei within the image. After using the Sobel method to identify 

edges, the image is dilated and holes are filled in. Since MATLAB™ defines a hole as a 

set of pixels separated from the background of the image, filling in the holes differentiates 

the regions of interest within the image without including noise, as shown in Figure 2.2 B. 

Next, as seen in Figure 2.2 C, regions of interest that intersect with the border of the image 

are removed so only whole nuclei can be analyzed. In order to account for pixels added 

during previous morphological dilation, edges are eroded by a diamond structuring element 

the size of one pixel. The result can be seen in Figure 2.2 D. The specific MATLAB™ 

functions used are shown in Appendix A. 
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Figure 2.2. Image Processing of Nuclei. The DAPI stain is filtered to differentiate cell 

nuclei. A) The Sobel method is used first to identify a threshold and then used with the 

adjusted threshold to define the edges of the nuclei. B) The image is dilated and holes are 

filled in. C) Cells that intersect with the border of the image are removed. D) Edges are 

eroded by a diamond structuring element the size of one pixel. 
 

While much of the noise is removed by the previous steps, a size exclusion must be 

performed to completely differentiate the nuclei of the cells from the background noise. 

First, the indices of the regions of interest, shown in white and containing both nuclei and 

noise, are identified and labeled. For each labeled region of interest, the number of pixels 
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is determined and is considered to be the size of the region of interest. If the number of 

pixels is greater than a set threshold (determined initially by the user), the average intensity 

of the antibody labeled NF-κB within each region of interest, the size of the region, and the 

region label is determined. The mean size of all regions are calculated. A new minimum 

threshold is set at one standard deviation smaller than the mean element size, and a max 

threshold is set at four times the standard deviation of each element size. The thresholds 

are determined using this independent statistical algorithm so final regions of interest are 

whole cell nuclei, and any potential noise or dividing cells are removed from analysis. A 

final matrix of labeled regions is saved for future use. For visual assessment, returned 

regions of interested are identified by denoting the maximum DAPI stain intensity within 

each region of interest and shown in Figure 2.3. Using statistical methods to determine 

thresholds allows this program to be used with images containing varying size nuclei. 

2.2.2 Analyzing NF-κB intensity Inside and Outside Nuclei: Once the elements that 

are nuclei of cells are labelled, the antibody labeled NF-κB channel can be analyzed. By 

labeling the nuclei, the location of the nucleus can be used to differentiate cells within the 

antibody labeled NF-κB channel. The perimeter of the nucleus is defined and can be 

overlaid on the antibody stain for visual purposes, as seen in Figure 2.4. 

Using the perimeter, the antibody labeled NF-κB intensity inside the nuclei is 

compiled and averaged per sample. The antibody labeled NF-κB intensity outside the 

nuclei is also be compiled and averaged per sample. The stain intensity of the fluorescently 

labeled NF-κB is compared to a TNF-α control and correlates to the level of NF-κB 

activation. The data collected provides a platform for statistical analysis by to identifying 

cell count, nuclei location, and antibody labeled NF-κB intensity within the image. 
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Figure 2.3. Nuclei Differentiated. The blue asterisk indicates the pixel with the maximum 

DAPI stain intensity within the differentiated nuclei. 
 

2.2.3 Spatial Analysis: Because the cell edges are not stained, and NF-κB is known 

to exhibit nuclear translocation upon activation, quantifying the stain intensity as function 

of distance from the nuclear boundary can provide a new platform for analysis. To begin 

analyzing antibody labeled NF-κB intensity as a function of distance from the nuclear 

boundary, a range of distance (set by user as number of pixels) from the nuclear wall was 

set. Next, pixels were analyzed iteratively and data for each pixel was stored with the 

distance from the nearest cell wall and the corresponding antibody labeled NF-κB intensity. 

For each image set, the function of NF-κB versus the distance from the nuclear wall was 
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fit to an exponential model using optimization techniques. In order to account for varying 

pixel counts, the average antibody labeled NF-κB intensity within distance intervals for all 

images in a sample was then fit to an exponential model using optimization techniques. 

 

 

Figure 2.4. Nuclear Border Overlay. The border of nuclei can be overlaid on the antibody 

stained image to show NF-κB inside nucleus and outside nucleus. Areas of high NF-κB 

concentration close to the nuclear border are evident.  

 

2.2.4 Parameter Concentration Dependency Analysis: It was hypothesized that the 

concentration of TNF-α or Aβ aggregates affects the cellular localization of NF-κB, 
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therefore, a model with concentration dependent parameters can be fit to the experimental 

data. This model could potentially be used to predict future responses. The function of NF-

κB versus the distance from the nuclear wall can be fit to a modified exponential model 

(Equation 1). 

(1)  𝐼(𝑥) = 𝐴𝑒−𝑘𝑥 + 𝐵 

The modified exponential model contains three constants: A, k, and B. The 

intensity, I, is modeled as a function of distance from the nuclear wall is defined as x. A is 

the quantity of NF-κB stain intensity at the nuclear border. The rate at which the antibody 

labeled NF-κB intensity decreases is quantified by scalar constant k. The constant B serves 

as an offset to account for non-zero minimum of stain intensity within the set distance 

threshold. Congruent with the hypothesized concentration dependent response, the 

constant parameters are anticipated to vary as a function of the concentration of TNF-α or 

Aβ aggregates. As a result of the oscillatory response of NF-κB, it is expected that 

parameters will also vary as a function of time.
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CHAPTER 3 

RESULTS

3.1 APPLYING CEMSA TO CASE A 

Case A consisted of endothelial cell monolayers treated with a single 

concentration of TNF-α. In order to analyze the NF-κB within the endothelial cells over 

time, micrographs are taken at three different time points: 10 minutes, 15 minutes, and 30 

minutes. 

These high resolution images yield a large amount of data points that are difficult 

to distinguish. Figure 3.1 shows a plot of data from two images taken from the 15 minute 

time point in Case A.  

  

Figure 3.1. Case A: Raw Data from 15 minute Image Set. The NF-κB stain intensity is 

plotted versus the calculated distance from the nucleus. This set consisted of two images 

with 1.048x106 pixels in each image. 
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The average antibody labeled NF-κB intensity outside the nucleus and inside the 

nucleus for each image set is averaged per sample set for comparison to previous analyses, 

seen in Figure 3.2. While previous analysis reports nuclear optic density of NF-κB, the 

total average NF-κB intensity is shown to compare the inside an outside of the nucleus, 

since the optical density of NF-κB outside the nucleus cannot be calculated with the image 

sets that do not have a stained cellular membrane.4 

 
Figure 3.2. Case A: Average NF-κB Intensity Outside and Inside Nucleus. The average 

intensity of the NF-κB stain outside the nucleus (black) and inside the nucleus (blue) is 

plotted at each time point with standard deviation.  

 

After averaging data within distance interval sections to normalize and fitting the 

exponential model, trends in the model and parameters can be observed. Figure 3.3 shows 

the model on the left with the plotted parameters on the right. There is a clear trend with 

the total NF-κB at the border of the nucleus (parameter A) that decreases over time up to 
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30 minutes. This decrease of antibody labeled NF-κB intensity at the border is expected to 

correlate to an increase in NF-κB transport in the nucleus. This clear decrease in A from 15 

minutes to 30 minutes is consistent with previous hypotheses that show NF-κB reaching a 

maximum activation at 45 minutes post treatment. Parameter k increases and plateaus, 

while there is no apparent trend in parameter B.  

 
Figure 3.3. Case A: Model fit of NF-κB as function of Distance from Nuclear Border. 

The exponential model is fit for the TNF-α treatment over time (left). Parameters are 

shown as function of time (right). 

 

3.2. APPLYING CEMSA TO CASE B 

Case B consisted of monolayers treated with varying concentrations of Aβ 

aggregates: 2 µM, 1 µM, 0.5 µM, and 0.1 µM and fixed at three different time points: 30 

minutes, 45 minutes, and 60 minutes. Untreated cells and cells treated with buffer 

equivalent are used as negative controls. TNF-α, a known activator of NF-κB, is used as a 

positive control. Because 45 minutes has been hypothesized as the point of peak NF-κB, it 

is the only time point shown. 
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The average antibody labeled NF-κB intensity outside the nucleus and inside the 

nucleus for each image set is averaged for comparison, shown in Figure 3.4. The TNF-α 

and control group show more total NF-κB intensity. 

 

Figure 3.4. Case B: Average NF-κB Intensity Outside and Inside Nucleus. The average 

intensity of the NF-κB stain outside the nucleus (black) and inside the nucleus (blue) is 

plotted at each concentration point with standard deviation.  

 

After averaging data within distance interval sections to normalize and fitting the 

exponential model, trends in the model and parameters can be observed in Figure 3.5. This 

decrease of antibody labeled NF-κB intensity at the border is expected to correlate to an 

increase in NF-κB transport in the nucleus. There is a trend with the activated NF-κB at 

the border of the nucleus (parameter A) that decreases with increasing Aβ aggregate 

concentration up to 1 µM, which is congruent with previous hypotheses correlating 

increasing Aβ aggregate concentration with increased NF-κB translocation at low 
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concentrations. There is no apparent trend with parameters k and B and changing Aβ 

aggregate concentration. 

 

Figure 3.5. Case B: Model fit of NF-κB intensity as function of Distance from Nuclear 

Border at 45 minutes. The exponential model is fit for the Aβ aggregate treatment as a 

function of concentration (left). Parameters are shown as function of concentration (right). 

 

3.3 APPLYING CEMSA TO CASE C 

Case C consisted of monolayers are treated with varying concentrations of TNF-α: 

a maximum concentration, half maximum concentration, and 0.1 times the maximum 

concentration (20 units/mL, 10 units/mL and 2 units/mL, respectively) and fixed at 7 time 

points: 0 minutes, 10 minutes, 20 minutes, 30 minutes, 45 minutes, 60 minutes, 120 

minutes, and 240 minutes. Untreated cells fixed at 30 minutes serve as the negative control. 

An additional experiment evaluates the response after a repeat exposure of TNF-α. 

Monolayers are initially treated 60 minutes and 240 minutes prior to a second exposure, 

fixed 30 minutes after the second exposure, and then compared to the single exposure 

results.  
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The average antibody labeled NF-κB intensity outside the nucleus and inside the 

nucleus for each image set is averaged for comparison, shown in Figure 3.6. There is no 

apparent change with changing TNF-α concentration. 

 

Figure 3.6. Case C: Average NF-κB Intensity Outside and Inside Nucleus for 

Concentration Study. The average intensity of the NF-κB stain outside the nucleus (black) 

and inside the nucleus (blue) is plotted at each concentration point with standard deviation.  

 

For the concentration dependency study, the model shown in Figure 3.7 shows the 

total NF-κB at the border of the nucleus (parameter A) decreases with decreasing 

concentration of TNF-α. This indicates increased NF-κB translocation at lower 

concentrations of TNF-α. There is an evident increase in B with increasing TNF-α 

concentration, however, there is no apparent trend with k.  
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The average NF-κB intensity outside the nucleus and inside the nucleus for each 

time point in the time-course study is averaged for comparison, shown in Figure 3.8.  

 
Figure 3.7. Case C: Model fit of NF-κB intensity as function of Distance from Nuclear 

Border for Concentration Study. The exponential model is fit for the varying TNF-α 

concentration cell treatment. Parameters are shown as function of concentration fraction of 

TNF-α. 

 

Figure 3.8. Case C: Average NF-κB Intensity Outside and Inside Nucleus for Time-Course 

Study. The average intensity of the NF-κB stain outside the nucleus (black) and inside the 

nucleus (blue) is plotted at each time point with standard deviation.  
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After averaging data within distance interval sections to normalize and fitting the 

exponential model, trends in the model and parameters can be observed in Figure 3.9. For 

the time course study treated with 20 units/mL TNF-α, a possible oscillating trend can be 

observed over time. The minimum value of the total NF-κB at the border of the nucleus 

(parameter A) occurs at 45 minutes, consistent with previous hypotheses that show NF-κB 

reaching a maximum activation at 45 minutes post treatment. Potential oscillations in 

parameters B and k are observed. 

Figure 3.9. Case C: Model fit of NF-κB intensity as function of Distance from Nuclear 

Border for Time-Course Study. The exponential model is fit for the 20 units/mL TNF-α 

treated response over time. Parameters are shown as function of time. 

 

The average NF-κB intensity outside the nucleus and inside the nucleus for each 

time point in the repeat exposure study is averaged for comparison, shown in Figure 3.10.  

The model of the repeat exposure study is shown in Figure 3.11. The untreated cells 

showed the highest NF-κB intensity at the border of the nucleus (parameter A). The total 

NF-κB at the border of the nucleus is also higher in the second exposure than in the first 
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exposure, possibly due to a dampened cellular response. There are no apparent trends with 

parameters k and B when analyzing repeat exposure. 

 

Figure 3.10. Case C: Average NF-κB Intensity Outside and Inside Nucleus for Repeat 

Exposure Study. After being treated with 20 units/mL of TNF-α, the average intensity of 

the NF-κB outside the nucleus and inside the nucleus is plotted at each point with standard 

deviation.  

 

 
Figure 3.11. Case C: Model fit of NF-κB intensity as function of Distance from Nuclear 

Border for Repeat Exposure Study. The exponential model is fit for the repeat exposure 

cell treatment. Parameters are shown as function of time.
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CHAPTER 4 

CONCLUSIONS

To fully understand the molecular function of a cell, spatial data must be analyzed. 

The proposed technique, CEMSA, can be used in order to gather relevant spatial 

distribution data from cellular images. This automated process allows for rapid extraction 

of data from large image sets, making studies more efficient. Because CEMSA requires 

only a few inputs to be adapted for each experimental set, it can easily be used by 

researchers with little computational experience. CEMSA also stores image data in easily 

accessible data structures for easy mathematical model generation. 

In summary, CEMSA identifies and stores the nuclear boundaries, and the NF-κB 

intensity in relation to the nearest nuclear boundary. By capturing this data, it is possible 

to analyze the transcription factor behavior in relation to its location over time and in 

response to various stimulus concentrations. This technique also utilizes readily available 

software to circumvent manual evaluation, while also allowing the user to customize the 

analysis depending on the application.  

Various hypotheses regarding NF-κB predict its behavior to partition into the 

nucleus. These can be analyzed further by using CEMSA to study spatial distributions 

within the cytoplasm. Trends in NF-κB behavior as a function of concentration and time 

were observed in the test sets used. NF-κB at the border of the nucleus (parameter A) was 

shown to decrease with decreasing concentration of TNF-α, indicating increased NF-κB 

translocation at lower concentrations of TNF-α. Also, the oscillating behavior was 
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potentially observed. The dampened cellular response of NF-κB with repeat exposure to 

inflammatory cytokines was observed in Case C. 

Further testing of CEMSA and further enhancements can be done to ensure 

reliability and efficiency of the program. Quantitative comparisons to manual methods can 

be done in order to ensure the consistency of gathered data. Run-time optimization will 

accelerate the program and allow for more efficient analysis of larger data sets. CEMSA 

can also be used to analyze more test cases with varying treatment methods and more time 

points. Additionally, CEMSA analysis can be used in conjunction with kinetic modeling 

methods to develop a thorough model of NF-κB based on experimental data. 

CEMSA is the one of the first mathematical models to quantify the spatial 

distribution of NF-κB. It is also one of few models based on spatial experimental data. By 

modeling the NF-κB response, this work may provide a better understanding of the 

physiology of inflammation and its role in diseases like AD. This overall method of 

generating a mathematical model from experimental data can be used to generate 

mathematical models of various biological systems. This research can open doors for 

computational modeling of cell signals and the integration of computer models with 

therapeutic research. Computational models can allow researchers to predict responses 

within the cell signaling network while also expediting cell image analysis, data analysis, 

and optimization in therapeutic techniques. Understanding of the factors in inflammatory 

disease progression can lead to more effective treatments for such devastating illnesses like 

AD, asthma, arthritis, cancer, diabetes and many other inflammatory diseases. 
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APPENDIX A: CEMSA MODULE 1

Module 1 is shown as adapted to Case A. Image input, time inputs, and sample inputs are 

adjusted for each experimental set.  

 
%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

%  Kasey Catalfomo 

%  1/12/2016 

%  Reading Cell Images 

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

  

%Endothelial cells treated with TNF-α 

%First layer nuclei stain 

%Second layer NFkB stain 

%Each slide was evaluated at 63x  

  

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

%                      Import Images with TNF-α Max Dose 

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

  

tifs=[]; 

  

%Images in each testing group 

numtifs=2; 

  

%Times 

numtimes=3; 

  

%10 min tif import 

%Treated with TNF-α 

tif10=dir('TNF10_10min*'); 

  

%15 min tif import 

tif15=dir('TNF10_15min*'); 

  

%30 min tif import 

tif30=dir('TNF10_30min*'); 

  

tifs=[tif10(1) tif10(2) tif15(1) tif15(2) tif30(1) tif30(2)]; 

  

%Initialize counts and structs 

count=0; 

  

timecount=0; 

  

intensities={}; 

distances={}; 

outmean={}; 



 

32 

inmean={}; 

outstd={}; 

instd={}; 

  

for q=1:numtimes 

    timecount=timecount+1; 

    outactmean=[]; 

    tifcount=0; 

    for w=1:numtifs 

             

            count=count+1; 

            tifcount=tifcount+1; 

            fprintf('Reading Image %d \n', count) 

             

            %Read TIF layers 

            imstr=(tifs(count).name); 

            img = imread(imstr); 

            red = img(:,:,1); % Red channel = NFkB Stain 

            green = img(:,:,2); % Green channel = cellular structure 

stain 

            blue = img(:,:,3); % Blue channel = DAPI nuclear stain 

             

            intensities{q,w}=red; 

             

            cell_mean_samp=[]; 

  

            

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%

%                    Image Processing of Nucleus 

            

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

            [~, thresholdmin] = edge(blue, 'sobel'); 

            fudgeFactor = .5; 

            BWs = edge(blue,'sobel', thresholdmin * fudgeFactor); 

%             figure; 

%             imshow(BWs) 

  

            se95 = strel('line', 3, 90); 

            se0 = strel('line', 3, 0); 

  

            BWsdil = imdilate(BWs, [se95 se0]); 

  

            BWdfill = imfill(BWsdil, 'holes'); 

%             figure; 

%             imshow(BWdfill) 

  

            %Clears cell boundaries that intersect border 

            BWnobord = imclearborder(BWdfill, 4); 

%             figure; 

%             imshow(BWnobord) 

  

            seD = strel('diamond',1); 

            BWfinal = imerode(BWnobord,seD); 

%             figure; 

%             imshow(BWfinal) 

  

            BWfinal = imerode(BWfinal,seD); 
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            BWoutline = bwperim(BWfinal); 

             

             

             

            nuc_im=imoverlay(red,BWoutline,[0 1 0]); 

%             figure; 

%             imshow(nuc_im) 

             

             

             

            %Outline in Color: 

            SegoutR = blue; 

            SegoutG = blue; 

            SegoutB = blue; 

            %set color: "Cool Green" 

            SegoutR(BWoutline) = 0; 

            SegoutG(BWoutline) = 200; 

            SegoutB(BWoutline) = 150; 

            SegoutRGB = cat(3, SegoutR, SegoutG, SegoutB); 

  

            bw=BWfinal; 

  

            L = bwlabel(bw); 

  

            %title('Label matrix-Jet') 

             

             

            %figure; 

            %nuc_im2=imoverlay(red,L,[0 1 0]); 

            %imshow(nuc_im2) 

  

            %'PixelList' — p-by-Q matrix specifying the locations of 

pixels in the region 

            s = regionprops(L, 'PixelIdxList', 'PixelList'); 

            %figure, imshow(blue) 

            %hold on 

  

            

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

            %                         Remove Noise 

            

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%. 

  

            %Set threshold of number of pixels to make cell 

            thresholdmin1=500; 

  

            %Number of pixels in each "cell", regardless size 

            cellpix1=[];  

            %Cell labels 

            cell_labels1=[]; 

            %Cell size: number of pixels in each cell 

            cell_size1=[]; 

            %Average instensity of each cell 

            cell_mean1=[]; 

  

            for k = 1:numel(s) 

                idx = s(k).PixelIdxList; 
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                pixels_in_region_k = blue(idx); 

                number_pixels=size(pixels_in_region_k); 

                numpix=number_pixels(1); 

                cellpix1=[cellpix1 numpix]; 

                if numpix>thresholdmin1 

                    cell_labels1=[cell_labels1 k]; 

                    cell_size1=[cell_size1 numpix]; 

                    cell_mean1=[cell_mean1 (mean(pixels_in_region_k))]; 

                end 

            end 

            %hold off 

  

            

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

            %                  Remove Partial/Overlapping Cells 

            

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

  

            meancellsize=mean(cell_size1); 

            deviation=std(cell_size1); 

  

            %Narrow Cell size 

            %Set threshold of number of pixels to make cell 

            thresholdmintest=(meancellsize-1.5*deviation); 

            if thresholdmintest<0 

                fprintf('ERROR: Cell min size below zero. Image %d \n', 

count) 

                thresholdmin=thresholdmin1; 

            else 

                thresholdmin=thresholdmintest; 

            end 

            thresholdmax=(meancellsize+4*deviation); 

  

  

            %'PixelList' — p-by-Q matrix specifying the locations of 

pixels in the region 

            s = regionprops(L, 'PixelIdxList', 'PixelList'); 

            ss= regionprops(red, 'PixelIdxList', 'PixelList'); 

            out= regionprops(BWoutline, 'PixelIdxList', 'PixelList'); 

            figure, imshow(blue) 

            hold on 

  

            %Number of pixels in each "cell", regardless size 

            cellpix=[];  

            %Cell labels 

            cell_labels=[]; 

            %Cell size: number of pixels in each cell 

            cell_size=[]; 

            %Average instensity of each cell 

            cell_mean=[]; 

             

%              

%             figure, imshow(blue) 

            hold on 

            for k = 1:numel(s) 

                idx = s(k).PixelIdxList; 

                pixels_activation=red(idx);  
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                pixels_in_region_k = blue(idx); 

                pixels_perim=BWoutline(idx); 

                number_pixels=size(pixels_in_region_k); 

                numpix=number_pixels(1); 

                cellpix=[cellpix numpix]; 

                if numpix>thresholdmin & numpix<thresholdmax 

                    cell_labels=[cell_labels k]; 

                    cell_size=[cell_size numpix]; 

                    cell_mean=[cell_mean (mean(pixels_activation))]; 

                    [max_value, max_loc] = max(pixels_activation); 

                    max_location = s(k).PixelList(max_loc, :); 

                    plot(max_location(1), max_location(2), '*') 

                end 

            end 

             

            %hold off 

             

            cells=length(cell_labels); 

            cell_mean_normal=cell_mean/(cells);  

  

            cell_mean_samp=[cell_mean_samp (cell_mean)]; 

             

  

    %.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

    %             Activation Outside and Inside Nuclei            % 

    %.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

  

            II2=uint8(L==0); 

            II=uint8(L>1); 

            outmeanb=mean(mean(red.*II2)); 

            outstdb=std(std(double(red.*II2))); 

            inmeanb=mean(mean(red.*II)); 

            instdb=std(std(double(red.*II))); 

             

            outmean{q,w}=outmeanb; 

            outstd{q,w}=outstdb; 

            inmean{q,w}=inmeanb; 

            instd{q,w}=outstdb; 

             

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

%           Function of Activation Outside Cells 

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

            outact=[]; 

            sumval=0; 

            countval=0; 

            disp('starting loop') 

             

            CS=1024; 

            FS=100;   % Filter size, row+- FS 

            get_all=0;% Do you need the distance for all cells or just 

the ones < FS? 

            output=1; % do some reporting as you run 

  

            II2=ismember(L,cell_labels)-1; %0 at cells, -1 otherwise 

             

            %contour(II2) 

            pause(.1) 
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            MM2=II2*0;  % Pre-set resulting matrix to 0s 

            tic; 

            c1=0;  % Cases where inside FS range 

            c2=0;  % Cases where outside of FS range 

            tt=0;  % Total time (s) doing main calc 

            tot=cputime; 

            for row=1:size(II2,1) 

%                 if (output) 

%                     disp(['Minute estimate: ' 

num2str(CS*toc/60,'%0.5f') ' ' num2str(row,'%05d')]) 

%                 end 

%                 tic; 

%                 if ((mod(row,10)==0)&output) 

%                     % disp(row); 

%                     contour(MM2+II2*10); 

%                     pause(.1) 

%                     tic; 

%                 end  % print something every 10 iters 

  

                for col=1:size(II2,2) 

  

                    clow=max([1 col-FS]); 

                    chi=min([CS col+FS]); 

                    rlow=max([1 row-FS]); 

                    rhi=min([CS row+FS]); 

                    t=cputime; 

                    [rows,cols]=find(II2(rlow:rhi,clow:chi)==0);  % 

need distances for these in filtered image 

                    dist=sqrt( (row-rows-rlow+1).^2+(col-cols-

clow+1).^2);  % Vectorized distance calc 

                    tt=tt+cputime-t; 

                    if (~isempty(dist)) %% only add if cell within 

range 

                        MM2(row,col)=min(dist); 

                        c1=c1+1; 

                    elseif (get_all==1) 

                        [rows,cols]=find(II2==0);  % need distances for 

the overall image 

                        dist=sqrt( (row-rows).^2+(col-cols).^2); 

                        MM2(row,col)=min(dist); 

                        c2=c2+1; 

                    end 

                end   % End for each column 

            end  % End for each row 

  

            disp(['Total time run is: ' num2str(cputime-tot)]) 

            disp(['Time spent in calc: ' num2str(tt)]) 

  

            distances{q,w}=MM2; 

             

  

        end 

  

end 

hold on 
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save('distintA2.mat','distances','intensities','outmean','inmean','outs

td','instd'); 

  

     

  

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%. 

  

 

% Kasey Catalfomo 

% 11/30/2015 

  

%Load distance and intensity matrices from outsideNFkB_003 

fprintf('Loading Image Data \n') 

load('distintA2.mat'); 

  

%Images in each testing group 

numtifs=2; 

  

%Times 

numtimes=3; 

  

timecount=0; 

count=0; 

  

intmeanset={}; 

devset={}; 

  

  

for q=1:numtimes 

    timecount=timecount+1; 

    sampcount=0; 

    tifcount=0; 

        for w=1:numtifs 

             

            count=count+1; 

            tifcount=tifcount+1; 

             

            fprintf('Reading Image %d \n', count) 

             

            MM2=distances{q,w}; 

            II2=double(intensities{q,w}); 

            steps=10:10:150; 

             

            maxvals=max(II2); 

            minvals=min(II2); 

             

             

            intmeanmat=[]; 

            dev=[]; 

  

             

            %Distance intervals of 10 pixels 

            for step=10:10:150; 

  

                fprintf('Reading Distances between 0 and %d \n', step) 
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                %Set all pixels to 0 except for distances between step 

and 

                %step-10 

                MSTEP=MM2.*(MM2<step).*(MM2>(step-10)); 

                [r,c]=find(MSTEP>0); 

  

                intval=[]; 

                for ro=1:length(r) 

                    %Find intensity values at coordinates in distance 

                    %interval 

                    RO=r(ro); 

                    CO=c(ro); 

                    intval=[intval II2(RO,CO)]; 

                end 

                %Average intensity within interval 

                intmean=sum(intval)/length(intval); 

                intmeanmat=[intmeanmat intmean]; 

                dev=[dev (std(intmeanmat))]; 

       

            end 

            intmeanset{q,w}=intmeanmat; 

            devset{q,w}=dev; 

             

  

             

        end 

end 

  

save('intmeandataA2.mat','intmeanset','devset') 

 

 



 

39 

APPENDIX B: CEMSA MODULE 2

Module 2 is shown as adapted to Case A. Image input, time inputs, and sample inputs are 

adjusted for each experimental set.  

 

  
%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

%           Plots Intensity as Function of Distance & fit 

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

%Load distance and intensity matrices from outsideNFkB_TNF-α01 & mean 

data 

%from outactplot_001 

fprintf('Loading Image Data \n') 

load('distintA2.mat'); 

load('intmeandataA2.mat') 

  

%Images in each testing group 

numtifs=2; 

  

%Times 

numtimes=3; 

  

timecount=0; 

count=0; 

  

estimate={}; 

figure; 

  

line={('.-r') ('o-b') ('--g') ('--k') ('m') ('y') ('r') ('b')}; 

  

for q=1:numtimes 

    timecount=timecount+1; 

        tifcount=0; 

         

        X=[]; 

        Y=[]; 

        XX=[]; 

        YY=[]; 

        Xx=[]; 

        Yy=[]; 

         

        for w=1:numtifs 

             

            count=count+1; 

            tifcount=tifcount+1; 

            steps=10:10:150; 

             

            fprintf('Reading Image %d \n', count) 
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            XX=double(distances{q,w}); 

            YY=double(intensities{q,w}); 

            [estimates, model] = fitcurveexp(steps,intmeansetB{q,w}); 

  

        end 

         

  

  

        fprintf('Time %d \n', timecount) 

  

%         subplot(4,2,q) 

%         plot(steps,intmeanset{q,k},'*') 

        hold on 

        [sse, FittedCurve] = model(estimates); 

        plot(steps, FittedCurve, line{q}) 

        xlabel('Distance intervals'); 

        ylabel('Intensity'); 

        axis([0 100 0 30]); 

        hold on 

  

             

        estimate{timecount}=estimates; 

        save('estimatematA2.mat','estimate'); 

         

  

         

    end 

    hold on 
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APPENDIX C: CEMSA MODULE 3 

Module 3 is shown as adapted to Case A. Image input, time inputs, and sample inputs are 

adjusted for each experimental set. 

 

             

% Kasey Catalfomo 

% 11/30/2015 

  

  

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

%           Plots Intensity as Function of Distance & fit 

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

  

%Load distance and intensity matrices from outsideNFkB_TNF-α01 & mean 

data 

%from outactplot_001 

fprintf('Loading Image Data \n') 

load('distintA2.mat'); 

load('intmeandataA2.mat'); 

load('estimatematA2.mat'); 

  

%Images in each testing group 

numtifs=2; 

  

%Times 

numtimes=3; 

  

timecount=0; 

count=0; 

  

estimate={}; 

figure; 

  

line={('-or') ('-sb') ('-dk')}; 

sets={'10 minutes' '15 minutes' '30 minutes'}; 

  

for q=1:numtimes 

    timecount=timecount+1; 

        tifcount=0; 

         

        X=[]; 

        Y=[]; 

        XX=[]; 

        YY=[]; 
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        Xx=[]; 

        Yy=[]; 

         

         

        for k=1:numtifs 

             

            count=count+1; 

            tifcount=tifcount+1; 

            steps=10:10:150; 

             

            fprintf('Reading Image %d \n', count) 

             

            XX=double(distances{count}); 

            YY=double(intensities{count}); 

            [estimates, model] = fitcurveexp(steps,intmeanset{q,k}); 

             

%             Xx=reshape(XX,1,[]); 

%             Yy=reshape(YY,1,[]); 

             

        end 

         

%         X=[X Xx]; 

%         Y=[Y Yy]; 

%         XY=[X; Y]; 

%         [x1,x2]=sort(XY(1,:)); 

%         XY=XY(:,x2); 

%         xxx=XY(1,:); 

% %         yyy=XY(2,:); 

%          

%         [estimates, model] = fitcurveexp(steps,yyy); 

  

        fprintf('Time %d \n', timecount) 

  

%         subplot(4,2,q) 

%         plot(steps,intmeanset{q,k},'*') 

        hold on 

        subplot(1,2,1) 

        [sse, FittedCurve] = model(estimates); 

        plot(steps, FittedCurve, line{q},'LineWidth',2) 

        xlabel('Distance intervals (pixels)'); 

        ylabel('Intensity'); 

        legend(line,sets); 

        axis([0 150 0 100]); 

         

        hold on 

  

%          

     

   

    hold on 

         

    end 

    hold on 

  

%Load distance and intensity matrices from outsideNFkB_TNF-α01 & mean 

data 

%from outactplot_001 
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fprintf('Loading Estimate Data \n') 

load('estimatemat.mat'); 

  

%Images in each testing group 

numtifs=2; 

  

%Times 

numtimes=3; 

  

timecount=0; 

count=0; 

  

A=[]; 

k=[]; 

B=[]; 

  

for q=1:numtimes 

    timecount=timecount+1; 

    tifcount=0; 

    fprintf('Parameters for Time Interval %d \n', timecount) 

    param=estimate{timecount} 

    AA=param(1); 

    kk=param(2); 

    BB=param(3); 

     

    format short e 

     

    A=[A AA]; 

    k=[k kk]; 

    B=[B BB]; 

     

end 

  

TimeInts=[10,15,30]; 

  

for q=1:numtimes 

     

    subplot(1,2,2) 

    plot(TimeInts(q),.1*A(q),'or','LineWidth',2); 

  

    %xlabel('Distance intervals'); 

    %ylabel('Parameter A'); 

    axis([0 45 -10 55]); 

    hold on 

     

    subplot(1,2,2) 

    plot(TimeInts(q),1000*k(q),'sb','LineWidth',2); 

  

    xlabel('Time (minutes)'); 

    %ylabel('Parameter k'); 

    %axis([0 250 0 .05]); 

    hold on 

     

    subplot(1,2,2) 

    plot(TimeInts(q),B(q),'dk','LineWidth',2); 

  

    %xlabel('Distance intervals'); 
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    %ylabel('Parameter B'); 

    %axis([0 250 0 6]); 

     

    legend('A x 0.1','k x 1000','B'); 

    hold on 

     

end 

hold on 

  

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

%           Average Intensity Inside and Outside 

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

lines={('-ok') ('-sb')}; 

set={'Outside Nucleus' 'Inside Nucleus'}; 

figure; 

for q=1:numtimes 

        outavgg=[]; 

        hold on 

         

        for k=1:numtifs 

            OUT=outmean{q,k}; 

            outavgg=[outavgg OUT]; 

        end 

        inavgg=[]; 

        hold on 

         

        for k=1:numtifs 

            IN=inmean{q,k}; 

            inavgg=[inavgg IN]; 

        end 

       

        

errorbar(TimeInts(q),mean(outavgg),std(outavgg),lines{1},'LineWidth',2) 

        

errorbar(TimeInts(q),mean(inavgg),std(inavgg),lines{2},'LineWidth',2) 

        xlabel('Time (minutes)'); 

        ylabel('Average NFkB Intensity'); 

        axis([0 40 0 70]); 

        legend(lines,set); 

        hold on 

         

end 

  

  

  

  

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

%              Raw Data Plots                 % 

%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.% 

  

% lines={('.r') ('.b')}; 

%  

% for q=1:numtimes 

%     figure; 

%     for w=1:numtifs 

%          

%         plot(distances{q,w},intensities{q,w},lines{w}) 
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%         xlabel('Distance from Nucleus'); 

%         ylabel('NFkB Intensity'); 

%  

%         axis([0 100 0 300]); 

%          

%         hold on 

%     end 

%     hold on 

%          

% end 

%     hold on 
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