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ABSTRACT

Several fundamental questions about speech perception concern how listeners un-

derstand spoken language despite considerable variability in speech sounds across diUer-

ent contexts (the problem of lack of invariance in speech). This contextual variability is

caused by several factors, including diUerences between individual talkers’ voices, varia-

tion in speaking rate, and eUects of coarticulatory context. A number of models have been

proposed to describe how the speech system handles diUerences across contexts. Critically,

these models make diUerent predictions about (1) whether contextual variability is handled

at the level of acoustic cue encoding or categorization, (2) whether it is driven by feed-

back from category-level processes or interactions between cues, and (3) whether listeners

discard Vne-grained acoustic information to compensate for contextual variability.

Separating the eUects of cue- and category-level processing has been diXcult be-

cause behavioral measures tap processes that occur well after initial cue encoding and are

inWuenced by task demands and linguistic information. Recently, we have used the event-

related brain potential (ERP) technique to examine cue encoding and online categorization.

SpeciVcally, we have looked at diUerences in the auditory N1 as a measure of acoustic cue

encoding and the P3 as a measure of categorization. This allows us to examine multiple

levels of processing during speech perception and can provide a useful tool for studying

eUects of contextual variability.

Here, I apply this approach to determine the point in processing at which context

has an eUect on speech perception and to examine whether acoustic cues are encoded con-

tinuously. Several types of contextual variability (talker gender, speaking rate, and coartic-

ulation), as well as several acoustic cues (voice onset time, formant frequencies, and band-

widths), are examined in a series of experiments. The results suggest that (1) at early stages

of speech processing, listeners encode continuous diUerences in acoustic cues, independent
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of phonological categories; (2) at post-perceptual stages, Vne-grained acoustic information

is preserved; and (3) there is preliminary evidence that listeners encode cues relative to con-

text via feedback from categories. These results are discussed in relation to proposed models

of speech perception and sources of contextual variability.
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CHAPTER 1
INTRODUCTION

1.1 Lack of invariance in speech

Perceptual systems must build a model of the world from extremely noisy sensory

input. This problem is particularly apparent in speech perception. Language users rely

heavily on spoken language in their daily lives, and despite enormous variability in the

speech signal, they are remarkably adept at correctly recognizing speech sounds. Often,

listeners are not even aware of this variability, and the speech system handles it eUortlessly,

decoding the meaning of a spoken utterance even when speech is spoken extremely quickly,

by someone they have never heard before, or when adjacent sounds blend together (as they

normally do in conversational speech).

A basic question then is how listeners transform a highly variable, transient speech

signal into discrete linguistic units, like phonemes or syllables, during perception. This pro-

cess involves mapping continuous acoustic cues (i.e., information that distinguishes pho-

netic contrasts) onto categories (phonological features, phonemes, or words). As a minimal

description, this can be characterized as a two-stage process: (1) encoding acoustic informa-

tion and (2) categorizing that information.

The simplest way to do this would be to directly map speciVc cue-values onto spe-

ciVc phonological categories. For example, to distinguish stop consonant voicing categories

(/b,d,g/ vs. /p,t,k/), listeners can use voice-onset time (VOT; the timing between the release

of consonantal closure and the onset of glottal voicing), mapping short VOTs (below ≈20

ms in English) to voiced phonemes and long VOTs (>20 ms) to voiceless phonemes (Lisker

& Abramson, 1964).

However, there simply is no one-to-one mapping between acoustic cues and linguis-

tic categories (Repp, 1981). One of the main reasons for this is that speech sounds are heavily

inWuenced by context. VOT, for example, varies as a function of speaking rate with talkers
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producing shorter VOT-values when speaking quickly and longer VOT values when speak-

ing slowly. Thus, a given VOT-value is context dependent, and as a result, the boundary

separating the categories is also context dependent. Indeed, listeners will recognize a word

with an intermediate VOT-value as /p/ 90% of the time when it is spoken in a fast sentence

and as /b/ 70 % of the time when spoken slowly (Toscano & McMurray, 2011a).

This contextual variability has been described as the problem of lack of invariance

in speech: any given acoustic cue contains information about multiple phonemes and is

aUected by context (Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967; Fowler,

1984). Similarly, any given phoneme is determined by multiple acoustic cues (Repp, 1982;

Lisker, 1986; Jongman, Wayland, & Wong, 2000). Moreover, cues can be temporally asyn-

chronous within a word and can span adjacent words with intervening phonemes (Fowler,

1984). Thus, speech perception is organized around context-dependent cue-to-category

mappings that must be integrated over time. Understanding how listeners do this is criti-

cal for understanding language processing and for creating systems designed to accurately

recognize speech.

1.2 Approaches to handling contextual variability

Research in speech perception over the last 60 years has focused a great deal of eUort

on understanding three general sources of contextual variability: speaking rate, individual

talker diUerences, and coarticulatory context. A number of approaches for handling each

type of variability have been proposed. These proposals range from the idea that listeners

encode acoustic cues relative to context (Kluender, 2003; McMurray & Jongman, 2011; Lade-

foged & Broadbent, 1957; Lobanov, 1971), to those that propose that they take context into

account at later stages of processing (Oden & Massaro, 1978; Nearey, 1990; Smits, 2001b), to

those that suggest they rely on a small number of context-invariant cues (Stevens & Blum-

stein, 1978; Syrdal & Gopal, 1986; SummerVeld, 1981), to those that suggest they rely on a

massive number of context-sensitive cues (Goldinger, 1998; Johnson, 1997).
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All of these models generally agree that listeners must map continuous cue-values

onto categories and that context must be somehow taken into account. However, there

are several critical distinctions between diUerent approaches that rest at the level of cues

themselves. Are cues encoded independently of context, with listeners taking context in-

formation into account at a later stage of processing (e.g., during phoneme categorization)?

Or, is cue encoding context-relative, such that listeners encode cues diUerently in diUerent

contexts? If so, is this process driven directly by the acoustic properties of the context, or

by feedback from more abstract, category-level information?

These basic questions apply to all types of contextual variability, whether listeners

are compensating for speaking rate, talker-speciVc factors, or coarticulation. However, some

approaches make diUerent predictions for diUerent types of context eUects. Several propos-

als have been framed in terms that are speciVc to a particular type of eUect (e.g., timing

processes designed to deal with variation in rate; SummerVeld, 1981), while other accounts

are more general purpose (Nearey, 1990; Oden & Massaro, 1978). An open question is

whether there is a single process for dealing with diUerent sources of contextual variability

or whether there are multiple mechanisms used to compensate for talker, coarticulatory,

and speaking rate diUerences.

1.3 Measuring cue-level processing

DiUerentiating between these accounts requires us to assess cue-level encoding, that

is, the initial process of recognizing the relevant acoustic cues before mapping them onto

categories. However, this is diXcult to do for speech sounds, since listeners’ responses to

variation in sounds along continuous phonetic dimensions are inWuenced by categoriza-

tion (Massaro & Cohen, 1983; Gerrits & Schouten, 2004; Pisoni, 1973; Pisoni & Lazarus,

1974). Partially as a result of this, a great deal of early work suggested that speech percep-

tion is fundamentally categorical and that listeners do not encode continuous cue-values.

Even discrimination tasks, which should provide the best means of assessing cue encoding
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behaviorally (Pisoni & Lazarus, 1974), show eUects of listeners phonological categories: lis-

teners are better at discriminating sounds that span a category boundary than those within

a boundary, even if the acoustic distance between the sounds is the same (Liberman et al.,

1967). Moreover, behavioral responses occur well after initial perceptual processing, and

although online measures of speech processing, such as eye movements in the visual-world

task, demonstrate eUects of within-category phonetic diUerences (McMurray, Tanenhaus, &

Aslin, 2002), they reWect listeners’ categories.

Given this, it is unclear whether cue encoding is fundamentally categorical or whether

these measures simply do not reWect cue encoding. This is critically important since some

models of context compensation propose that listeners are highly sensitive to Vne-grained

acoustic detail (McMurray & Jongman, 2011; Johnson, 1997; Goldinger, 1998) while others

do not make such claims.

In order to obtain a better measure of cue-level processes and to examine whether

cue encoding is categorical or continuous, Toscano, McMurray, Dennhardt, and Luck (2010)

recently used the event-related brain potential (ERP) technique to look at electrophysiolog-

ical responses to speech sounds. We examined changes in the auditory N1 and P3 compo-

nents as a function of VOT and voicing category. An N1 is produced in response to a variety

of auditory stimuli and occurs late in perceptual processing but early in language process-

ing. This suggested that it may serve as a good measure of continuous cue encoding. The P3

component is related to later decision processes, and therefore, may be a good indicator of

categorization. Using auditory stimuli varying in VOT, we found that the amplitude of the

N1 varies linearly with changes in VOT and is not inWuenced by phonological categories or

listeners’ responses. The later-occurring P3 component also varies with VOT but depends on

the phonological category the listener is assigning the stimuli to (either voiced [e.g., beach]

or voiceless [peach]).

Two important conclusions can be drawn from these results. First, during cue en-
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coding, listeners are sensitive to acoustic diUerences in a way that is not related to phono-

logical categories (as seen in the N1 response). In addition, within-category sensitivity is

maintained even at post-perceptual stages (as seen in the P3). These results argue strongly

against categorical perception and indicate that listeners are highly sensitive to Vne-grained

acoustic information within a single phonetic category. This, in itself, has implications for

how listeners handle contextual variability, since a number of approaches have argued that

listeners discard acoustic information when compensating for contextual diUerences (see

Pisoni, 1993, for a discussion of this).

Second, these results suggest that we may be able to use the N1 as an index of

cue-level perceptual encoding, independent of the phonological categories of the language.

Thus, this technique may be useful for more closely assessing questions about contextual

variability in speech perception. By examining cue encoding, we can diUerentiate between

diUerent models of context compensation in a way that does not seem to be possible with

behavioral measures alone.

The experiments presented here follow the approach of Toscano et al. (2010), using

the auditory N1 to measure cue encoding and the P3 component to measure categorization,

in order to examine how listeners handle contextual variability. This is done using a vari-

ety of classic context eUects in speech perception, looking at contextual information from

speaking rate, talker gender, and neighboring phonemes (coarticulatory information).

1.4 Overview of dissertation

The present study evaluates a number of models of context compensation in speech

perception using the ERP paradigm developed by Toscano et al. (2010). In doing so, these

experiments provide additional details about what information is indexed by auditory N1

responses to speech sounds by looking at new phonological contrasts and acoustic cues.

SpeciVcally, I examined the eUect of preceding context on perceptual encoding (as

measured by the auditory N1) and categorization (measured by the P3) for three diUerent
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types of contextual variation: (1) talker gender, (2) speaking rate, and (3) coarticulatory con-

text. Each of these is a major source of the lack of invariance in speech, and, simultaneously,

each provides a predictable (though diUerent) source of information that listeners can use

to compensate for diUerences across contexts. In addition, several acoustic cues were used

to look at these context eUects, speciVcally, VOT and formant (F1, F2, and F3) frequencies

and bandwidths, allowing us to assess whether they are encoded continuously.

The goals of this study are to determine (1) whether cues are encoded relative to pre-

ceding context information in a way that preserves Vne-grained acoustic detail, (2) whether

feedback from higher-level stages aUects cue encoding, and (3) whether these eUects apply

similarly to diUerent types of context information. Together, this will allow us to uncover

the principles listeners use to overcome contextual variability in speech.

The organization of the rest of this dissertation is as follows. The next chapter

presents a core set of empirical Vndings describing context eUects in speech perception and

discusses the proposed accounts of how listeners deal with contextual variability. Chapter

3 addresses some general methodological issues that apply to the ERP technique used here

and two experiments examining N1 responses to the speech sounds used in subsequent

experiments.

Chapters 4-6 introduce each of the three sources of contextual variability and the

experiments designed to measure their eUects. Each starts with a brief overview of the

more-speciVc literature on the source of context information in question and then describes

a series of experiments examining its eUects. Chapter 4 focuses on talker variability, Chapter

5 examines speaking rate variability, and Chapter 6 addresses coarticulatory eUects. Finally,

Chapter 7 presents a summary and discussion of the results of the experiments.
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CHAPTER 2
CONTEXTUAL VARIABILITY IN SPEECH

Speech sounds are aUected by many sources of contextual variability. DiUerences in

speaking rate, talkers’ voices, and neighboring phonemes all produces changes in phonetic

cues in a given segment such that listeners must compensate for them during speech recog-

nition in order to correctly identify that segment. A number of models have been proposed

for handling particular context eUects or as more general solutions to the problem of lack

of invariance. These models diUer in two important respects that will be discussed in detail

below: (1) whether raw cue-values or context-relative cues are encoded during perception,

and (2) the direction of information Wow (e.g., feedforward vs. feedback) that drives context

compensation.

Here, I will review each of the accounts that have been proposed. First, I will present

a brief overview of the basic phenomena related to the three types of contextual variability

that will be examined in the experiments — speaking rate, talker, and coarticulatory infor-

mation. Second, I will describe the two features that diUerentiate models and the predictions

that they make about how listeners handle variability across contexts.

2.1 Sources of contextual variability

A brief overview of each source of contextual variability is given here in order to

introduce them. A more detailed review, particularly focusing on the eUects examined in

a speciVc set of experiments, are given in Chapters 4 (talker variability), 5 (speaking rate),

and 6 (coarticulation).

2.1.1 Talker identity

A number of acoustic cues in speech are inWuenced by diUerences between talkers’

voices, and several studies have speciVcally explored the eUects of talker gender, which

produces one of the most salient diUerences. Variation in acoustic cues between men and
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women occur both because of diUerences in the size and shape of the articulators (Peterson

& Barney, 1952; Hillenbrand, Getty, Clark, & Wheeler, 1995) and for sociophonetic reasons

(Strand & Johnson, 1996).

One well-studied example of this occurs in vowel production. Peterson and Barney

(1952) collected a large set of phonetic data on formant frequencies for vowels spoken by

a larger number of men, women, and children. They found considerable overlap between

vowel categories signaled by the frequencies of the Vrst two formants (F1 and F2) and large

diUerences in the size and shape of the vowel spaces for the three groups, such that formant

frequencies for women were higher than those for men, consistent with the diUerences in

the average size of the vocal tract for each group. These diUerences between talkers con-

tribute to a great deal of the variability seen in F1 and F2 values. Illustrating the importance

of this Cole, Linebaugh, Munson, and McMurray (2010) found that approximately 80% of

the variance in F1 and 40% of the variance in F2 in a corpus of /2/ and /E/ measurements

was attributable to talker-speciVc factors.

There are also phonetic diUerences between talkers that are due to learned socio-

phonetic variability. Women have higher spectral means than men for frication sounds,

which distinguishes fricative place of articulation in sibilant fricatives (Strand & Johnson,

1996), though it does not seem that this eUect is derived from physiological diUerences in

the vocal apparatus, suggesting that these eUects may be socio-phonetically driven. As with

diUerences that arise because of articulatory factors, listeners would need to compensate for

this variability in order to use spectral mean as a cue to fricative place, though models of

talker compensation may handle articulatory and sociophonetic eUects diUerently.

Listeners are also sensitive to these phonetic diUerences. Ladefoged and Broadbent

(1957) presented early evidence for this, demonstrating that listeners label vowels diUerently

as a function of talker-speciVc information in a preceding carrier phrase. They presented

listeners with the sentence “Please say what this word is” followed by a word of the form
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/bVt/ (e.g., bit, bat, etc.). Six versions of the sentence were synthesized by adjusting its for-

mant frequencies, creating the perception of six diUerent talkers. They found that listeners’

categorized a given vowel sound diUerently depending on the formant-values in the preced-

ing sentence. For example, if a sentence had lower overall F1 values, listeners treated F1 in

the target word as higher than it actually was.

Another approach for examining the perceptual consequences of talker variability

(as well as other context eUects) is to vary a phonetic cue along a continuous dimension

(e.g., F1 as a cue to vowel quality) and examine shifts in listeners’ category boundaries along

that dimension as a function of context. Johnson, Strand, and D’Imperio (1999) used this

technique to examine listeners’ responses to stimuli that varied along an F1 continuum from

hood to hud and were spoken by either a male or female talker. They found that listeners’

category boundaries shifted such that the boundary was lower for men (i.e., listeners made

more “hud” responses). Thus, listeners compensate for diUerences between talker’s voices

in a way that is consistent with the phonetic data.

Together, the phonetic and perceptual data on talker gender diUerences suggest that

listeners handle variability between men and women’s voices that aUects a variety of acous-

tic cues (formant frequencies, VOT, and spectral mean) and phonological features (vowel

quality, voicing, and place of articulation).

2.1.2 Speaking rate

Speaking rate, which can be signaled either by sentential rate (SR) in running speech,

or by vowel length (VL) in isolated words (though VL may actually be a weak phonetic

cue; see Toscano & McMurray, 2010, 2011a) is another source of contextual variability.

This also has an eUect on several phonological distinctions, particularly contrasts signaled

at least partially by temporal cues. These include vowel quality, voicing, and manner of

articulation (Miller, 1981). Because some acoustic cues to these distinctions are deVned as

time diUerences (e.g., VOT, formant transition durations), cue-values vary as a function of
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speaking rate. Thus, as with talker variability, listeners must compensate for rate diUerences

to accurately use these cues.

Phonetic data on VOT values spoken at diUerent rates illustrates this eUect. Recall

that VOTs near 0 ms typically indicate voiced sounds in English, while longer VOTs (50 ms)

indicate voiceless sounds. Allen and Miller (1999) found that, ignoring voicing category,

talkers produced longer VOT values at slower speaking rates, and shorter VOTs at faster

rates. Thus, VOT can be ambiguous when used as a cue by itself — a VOT of 25 ms may

indicate a voiceless sound in fast speech, and a voiced sound in slow speech.1

Perceptual data show that listeners are sensitive to these diUerences. SummerVeld

(1981) presented listeners with synthetic speech that started with either a voiced (/b/) or

voiceless (/p/) stop. He varied both the VOT of the stimuli and the length of the subse-

quent vowel and found that vowel length shifted the category boundary between voiced

and voiceless sounds, such that for longer vowels (i.e., slower speech), more sounds were

perceived as voiced, and for shorter vowels, more sounds were perceived as voiceless. Other

studies have found eUects of the preceding SR (Miller & Grosjean, 1981; SummerVeld, 1981),

and similar eUects of VL for listeners’ manner of articulation judgments based on formant

transition duration (Miller & Liberman, 1979).

Together, these results suggest that listeners compensate for rate diUerences indi-

cated by both SR and VL, similar to the compensation seen for talker gender diUerences.

2.1.3 Coarticulation

A third source of contextual variability in speech perception arises from coarticula-

tion. In running speech, the acoustic properties of most phonemes are heavily inWuenced

by coarticulation from surrounding phonemes (Liberman, Delattre, & Cooper, 1952), since,

at any point in time, the position of the articulators is inWuenced by both past and future

1This eUect is driven by diUerences in VOT values of voiceless stops, which have longer VOTs
than voiced stops and more within-category variability.
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segments (Fowler, 1984). As with talker and rate variability, listeners must compensate for

these diUerences to correctly identify speech sounds.

Coarticulatory eUects occur for a large number of cues and phonological distinctions

in speech. One well-studied example is the eUect of vowel context on stop consonant place

of articulation (/b,p/ vs. /d,t/ vs. /g,k/). Kewley-Port (1982) presented an extensive acoustic

analysis of the properties of voiced stop consonants (/b,d,g/) produced in the context of

diUerent vowels. She found that formant frequency transitions, despite being good cues to

place of articulation, were not independent of vowel context. For example, /d/ generally

has a lower F1 onset than /b/. However, F1 onset frequency for the syllable /bi/ is actually

much lower (310 Hz) than for the syllable /da/ (392 Hz). Thus, raw F1 onset frequency

cannot be used as a cue to place of articulation across diUerent vowel contexts. In order

to use formant transitions to distinguish stops, listeners must either compensate for these

diUerences, or compute formant onset frequencies relative to the formant frequency of the

neighboring vowel (i.e., use locus equations), which would presumably be invariant across

contexts (Sussman & Shore, 1996).

Listeners also compensate for these coarticulatory diUerences during perception

(Repp & Mann, 1981; Mann & Repp, 1981; Liberman et al., 1952). Liberman et al. (1952)

provides one of the earliest demonstrations of this. They presented listeners with synthetic

consonant-vowel syllables generated by noise bursts followed by periodic energy, producing

an initial sound was heard as a voiceless stop consonant (/p,t,k/). They found that listeners’

perception of the place of articulation of the initial consonant depended on not only the

frequency of the noise burst, but also the frequency of the periodic energy. That is, listeners

identiVed stimuli with the same noise burst diUerently depending on the subsequent vocalic

information (see also Repp & Mann, 1981; Mann & Repp, 1981).

These results demonstrate that, as with talker and rate variability, listeners adjust

for coarticulation and alter phonetic judgments accordingly during speech perception.
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2.1.4 DiUerences between sources of contextual variability

While each of these contextual factors produces predictable variation in phonetic

cues, they diUer in the nature of the information about the context that is available to

listeners. For example, talker identity is more-or-less categorical, while variation in speaking

rate is more continuous and does not support a Vxed number of discrete categories. In

addition, coarticulation diUers from the other two in that it reWects categorical information

(the identity of the neighboring phoneme) but is bidirectional (each phoneme serves as

context for the other).

In addition, these three types of context diUer in when the relevant context infor-

mation is available. Rate and talker information can be signaled by acoustic information

that occurs well-before the segment that must undergo compensation, as well as well-after.

These have been described as remote context eUects (Repp, 1982). In contrast, the eUects

of coarticulation are most evident for adjacent segments and have been described as local

context eUects. However, the distinction between remote and local context eUects is not

always clear, since eUects of coarticulation can span multiple phonemes (Alfonso & Baer,

1982), as well as word boundaries (Fowler, 1984; Cole et al., 2010), and rate eUects can be

seen in isolated words (Miller & Liberman, 1979). A number of models that have proposed

cue-level context compensation diUer depending on whether listeners can take advantage

of long-distance context information or only short-range information (Nearey, 1989).

Context information can also potentially aUect cue encoding in other ways. For

example, Bradlow, Toretta, and Pisoni (1995) examined eUects of speech intelligibility as a

function of several characteristics, including talker gender and speaking rate. They found

an overall eUect of gender, such that women were more intelligible than men. In contrast,

they did not Vnd an eUect of speaking rate; fast speech had a similar level of intelligibility

to slow speech. Thus, listeners may process speech in talker contexts diUerently because

of diUerences in intelligibility, rather than as a form of compensation for talker-speciVc
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diUerences. This, in turn, may have an eUect on cue encoding that is unrelated to context

compensation (e.g., listeners may do more work to process speech from one talker than

another in order to handle diUerences in speech intelligibility).

As discussed below, these diUerences are particularly relevant, since some of the

proposed explanations for how listeners handle contextual variation diUer in both what

information listeners need in order to compensate for context diUerences at diUerent levels

of processing and whether the mechanisms used to handle this variability would apply

similarly to all sources of context information.

2.2 Solutions to the problem of contextual variability

Several solutions for handling each of these eUects, as well as several models aimed

at explaining contextual variability in general, have been proposed. Figure 2.1 shows schemat-

ics of several types of models. There are two main characteristics that distinguish the diUer-

ent approaches: (1) whether cues are encoded in relation to context information or whether

listeners use raw cue-values, and (2) whether compensation (either at the level of cue encod-

ing or categorization) is performed via completely feedforward processes, via feedback, or

through lateral interactions. An overview of both of these characteristics and examples of

models illustrating them are given below. (A detailed discussion of speciVc models applied

to each of the three types of contextual variability is given in Chapters 4-6.)

Note that not all approaches to context compensation Vt neatly into a speciVc cate-

gory — some models have characteristics of multiple categories along the two dimensions.

For example, the computing cues relative to expectations (C-CuRE) approach (McMurray &

Jongman, 2011) uses both relative and raw-cue encoding. Similarly, some models do not em-

phasize diUerences along these two dimensions. Gestural parsing approaches (Fowler, 1984),

for example, focus on the idea of overlapping articulatory gestures and don’t Vt clearly into

this classiVcation system. Thus, these two dimensions (type of encoding and direction of

information Wow) are simply meant to capture the key properties of the majority of speech
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perception models that have been used to explain compensation for contextual variability.

2.2.1 Type of cue encoding

The Vrst of the two characteristics concerns whether listeners encode acoustic cues

relative to context or whether they encode raw cue-values, representing the incoming speech

signal veridically. Here, a “cue” refers to aspects of the speech signal that can be directly

measured (e.g., the steady-state frequency of the Vrst formant).

Most models can generally be divided along this dimension based on whether they

argue for intrinsic, extrinsic, or raw cue encoding (corresponding to diUerent columns in

Figure 2.1). Intrinsic approaches suggest that listeners encode cues in relation to each other

within a given segment (Syrdal & Gopal, 1986; Nearey, 1989; Christovich & Lublinskaya,

1979; Miller & Liberman, 1979; SummerVeld, 1981; Fujisaki & Kawashima, 1968). In contrast,

extrinsic approaches argue that listeners encode cues in relation to the broader context, that

is, that they use more abstract information or information from surrounding segments to

encode cues (Nearey, 1989; Ladefoged & Broadbent, 1957; Lotto & Kluender, 1998; Lobanov,

1971). Finally, a third class of models suggests that listeners do not encode cues in relation

to context at all, but rather, that they encode raw cues and compensate for context eUects

at later stages of processing (Smits, 2001b; Toscano & McMurray, 2010; Nearey, 1997). Note

that there are some models that combine aspects of both relative and raw-cue encoding

approaches (Oden & Massaro, 1978; Cole et al., 2010; McMurray & Jongman, 2011). The

way that both raw and relative cues are used in these models is discussed below.

2.2.1.1 Intrinsic encoding

One of the earliest solutions to the problem of contextual variability was centered

on the idea that listeners simply use information that is invariant across contexts. Many

models using this approach have been referred to as intrinsic (or compound-cue) models,

since they argue that listeners handle contextual variability using a small number of cues
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Figure 2.1: Schematic illustrations of models for context compensation based on their in-
formation processing pathways. Columns correspond to diUerent types of cue encoding
(extrinsic, intrinsic, or raw-cues), and rows correspond to diUerent approaches for how con-
text information and cues interact (lateral, feedforward, or feedback processes). Examples
of speciVc models that fall under each category are listed below the model schematics.
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that are deVned as relationships between auditory information within a phonetic segment

(left column in Figure 2.1). Thus, intrinsic models suggest that cues are encoded relative to

context at the earliest stages of perception. Note that, in some models (e.g., the fuzzy logical

model of perception [FLMP]; Oden & Massaro, 1978), the input may be deVned either in

terms of raw acoustic cues (see below) or in terms of intrinsic relationships between cues.

The need for compound cues was initially motivated by the lack of context-invariance

for many individual acoustic cues. There is empirical support for context-invariant cues

for at least some phonetic contrasts (Stevens & Blumstein, 1978; Stevens, 2002; Stevens &

Keyser, 2010; Port & Dalby, 1982). For example, Stevens and Blumstein (1978) presented

early evidence suggesting that spectral shape serves as an invariant cue that allows listeners

to identify place of articulation (e.g., /b/ vs. /d/ vs. /g/) across diUerent vowel coarticulatory

contexts. However, many researchers have concluded that a suXcient number of invari-

ant cues does not exist for all phonological distinctions (e.g., Ohala, 1996; Lindblom, 1996;

McMurray & Jongman, 2011).

Other researchers have deVned invariant cues in terms of relationships between

multiple, context-sensitive cues (Sussman, Fruchter, Hilbert, & Sirosh, 1998; Sussman &

Shore, 1996; Boucher, 2002; Pind, 1995). For example, Sussman and Shore (1996) suggested

that locus equations (deVned by formant transition slope and intercept) are suXcient for

identifying the place of articulation of a sound across diUerent manners of articulation (stops

vs. nasals), voicing, and vowel contexts, eUectively compensating for coarticulatory eUects.

These compound cues represent a form of intrinsic encoding in which contextual variability

is handled via relationships between acoustic information within the segment or syllable.

To use this approach to compensate for speaking rate diUerences, for example, lis-

teners could use a compound cue that is more invariant, such as the ratio between VOT

(or closure duration for word-Vnal consonants) and vowel length, rather than using VOT

itself. A lower VOT:VL ratio would be more indicative of a voiced sound, and a higher ratio
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would be indicative of a voiceless sound (Boucher, 2002). Talker variability provides another

well-known example of the use of intrinsic models. Several researchers have proposed so-

lutions that handle talker variability by relying on diUerences between formants (Syrdal &

Gopal, 1986) or formant ratios (Fujisaki & Kawashima, 1968). As with the use of VOT:VL

ratios to create rate-invariant cues, formant relationships provide a source of information

for intrinsic compensation of talker variability.

To summarize, intrinsic encoding models all predict that listeners encode cues rela-

tive to the immediate context, using information within a given phonetic segment to com-

pensate for contextual variability.

2.2.1.2 Extrinsic encoding

Extrinsic approaches (center column in Figure 2.1) oUer another class of solutions for

taking context into account during cue encoding. In contrast to intrinsic models, extrinsic

compensation models suggest that listeners compute cues relative to information outside the

immediate syllable, rather than via relationships between phonetic cues within a syllable

(though some researchers have argued for combining intrinsic and extrinsic approaches,

e.g., Nearey, 1989).2 Long-distance diUerences across context produce predictable changes

in upcoming acoustic cue-values (J. G. Martin & Bunnell, 1981). Thus, the eUect of preceding

context can be factored out of the cue, leaving a less context-sensitive source of information

available for speech recognition.

Using the example of speaking rate again, extrinsic compensation processes could

be used to compute VOT relative to the preceding sentence rate (Dupoux & Green, 1997).

At faster rates, VOT values tend to be shorter. Thus, a listener could recode a given VOT

2Here, I am referring to intrinsic and extrinsic compensation mechanisms, that is, ways contex-
tual variability can be handled at the level of cue encoding. The distinction between intrinsic and
extrinsic sources of information is also relevant, and these concepts could be applied to raw-cue en-
coding approaches as well. However, since most raw-cue models do not distinguish between the two
sources of information, the focus here is on intrinsic and extrinsic eUects as mechanisms for relative
cue encoding.
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as longer than it actually is in order to compensate. Similarly, at slow rates, that same

VOT would be recoded as shorter. This has a similar eUect to that of VOT:VL ratios used in

intrinsic approaches: listeners use relative cue-values, rather than raw ones, to make voicing

judgments independent of context.

Extrinsic approaches have also been widely applied to coarticulatory context eUects.

Fowler’s (1984) gestural parsing account seems to Vt within this category (since it suggests

listeners use information from adjacent segments), though it does not emphasize the dis-

tinction between intrinsic and extrinsic approaches. Gestural parsing models suggest that

speech is encoded in terms of a series of articulatory gestures for which diUerences due to

coarticulation are factored out. Although this diUers from the other models discussed so far

in that it suggests speech is processed in terms of articulatory gestures rather than acoustic

cues, the same principle of extrinsic compensation applies here as well. That is, in a gestural

parsing account, listeners use information from adjacent segments to recode the incoming

acoustic information as context-invariant gestures.

Other researchers have suggested similar processes that operate over acoustic cues

rather than gestures. These models emphasize general auditory principles, rather than

speech-speciVc ones, that allow listeners to compensate for contextual variability (Pisoni,

Carrell, & Gans, 1983; Diehl & Kluender, 1989; Lotto & Kluender, 1998; Kluender, 2003; Holt,

2005). These approaches suggest that listeners encode sounds relative to preceding context

in a contrastive way (i.e., sounds are encoded as a lower frequency in the context of a pre-

ceding high-frequency sound; they are encoded as shorter in the context of a preceding

sound that is longer). For example, third formant frequency (which provides a cue to the

/d/-/g/ distinction) would be coded as higher if it follows a low frequency sound and lower

if it follows a high frequency sound (Lotto & Kluender, 1998). This approach is based on

basic auditory principles, and is not speech-speciVc — a preceding pure-tone, for example,

is suXcient to alter speech perception (Lotto & Kluender, 1998; Holt, 2005).
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Along with intrinsic approaches, extrinsic compensation approaches have typically

been used as normalization procedures that discard Vne-grained acoustic information to

deal with contextual variability. However, listeners do not seem to do this when compensat-

ing for context diUerences (Pisoni, 1993). Some models allow for the possibility of extrinsic

encoding while preserving Vne-grained acoustic detail (e.g., FLMP; Massaro & Oden, 1980).

Recently, McMurray and colleagues (Cole et al., 2010; McMurray, Cole, & Munson, in press;

McMurray & Jongman, 2011) have proposed a speciVc computational framework for cue

compensation — computing cues relative to expectations (C-CuRE) — that Vts within the

class of models that use extrinsic encoding, as well as raw cues (see below), and argues that

listeners do not discard information when compensating for contextual variability.

In C-CuRE, cues are initially encoded as raw cue-values, which are heavily inWu-

enced by context. Then, as sources of context information are received, listeners set up

expectations for particular cue-values. This allows them to factor out variation due to con-

text from the raw cues via processes similar to linear regression. The residual (the dif-

ference between the actual cue-value and its expected value after context has been taken

into account) is then used as a new, less context-variable cue. This is similar to the audi-

tory contrast approach in that cues are computed relative to preceding context, and it is

similar to gestural parsing in that contextual variation is factored out of cue-values on the

basis of expectations about particular segments. Moreover, it suggests that listeners handle

context diUerences on the basis of the relationship between cues and context information,

which may not necessarily be contrastive (as suggested by auditory contrast models). This

approach is computationally very powerful and can greatly reduce variance due to both

coarticulation (Cole et al., 2010; McMurray et al., in press) and talker variability (McMurray

& Jongman, 2011).

In general, extrinsic encoding models all predict that listeners encode cues relative

to context. This is similar to intrinsic encoding models, but unlike those models, extrinsic
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approaches suggest that listeners use information from preceding and adjacent segments

rather than context information contained within a single segment.

2.2.1.3 Raw-cue encoding

The previous two approaches both suggest that cue-values are coded as relative

values. In contrast to this, raw-cuemodels (right column in Figure 2.1) suggest that listeners

do not compute relative cue-values at all. Rather, they argue that context compensation

occurs at later stages of processing. Thus, the distinction between extrinsic/intrinsic models

and raw-cue models is made apparent at the level of cue encoding.

Models that suggest listeners encode raw cue-values address the problem of contex-

tual variability by using context information as input to higher-level representations, such

as phoneme or lexical categories. This approach eUectively treats contextual variability

similarly to variability within typically-deVned phonetic cues like VOT: by mapping con-

text information onto a speciVc category. For example, long VLs could be mapped onto

the /b/ category, and short VLs onto the /p/ category, just as short VOTs are mapped to /b/

and long VOTs are mapped to /p/ (Toscano & McMurray, 2010). Thus, although VL is typi-

cally described as an indicator of speaking rate, it can also serve as a weak phonetic cue for

word-initial voicing distinctions. Indeed, Allen and Miller’s (1999) phonetic data showing

diUerent VL distributions for the two voicing categories shows that VL carries information

about voicing categories.

An advantage of these approaches is that they can be applied using the same learning

principles and categorization processes used to handle multiple phonetic cues (Toscano &

McMurray, 2010). Moreover, they Vt well with more general cue-integration models that de-

scribe how listeners use multiple acoustic cues for a given phonological distinction (Nearey,

1997, 1990, 1986; Oden & Massaro, 1978; Toscano & McMurray, 2010; Smits, 2001b). Cue-

integration models, such as hierarchical categorization (HICAT; Smits, 2001b) and weighted

Gaussian mixture models (WGMM; Toscano & McMurray, 2010), handle contextual vari-
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ability by encoding raw cues and compensating for context at later stages of processing.

Nearey and colleagues’ normalized a posteriori probability (NAPP) models (Nearey, 1997,

1990, 1986) use raw cue-values to encode the incoming stimulus and take context into ac-

count at the level of diphones. FLMP shares properties with both raw and relative encoding

approaches: it can use information from raw acoustic cues (Oden & Massaro, 1978), but it

also uses inputs that are normalized based on category prototypes (Massaro & Cohen, 1976)

and can use relative cue encoding (Massaro & Oden, 1980).

These models diUer in the level at which context information is combined with

phonetic categories, with some suggesting this occurs at the level of phonological features

(WGMM; Toscano &McMurray, 2010), others suggesting it happens at the level of diphones,

where weak biases between pairs of phonemes allow listeners to show apparent context

eUects when the information for one phoneme is ambiguous (NAPP; Nearey, 1997, 1990),

and other suggesting that boundaries along the cue dimension shift as a function of context

(HICAT; Smits, 2001b).

The number of cues used can also vary, with exemplar models (Johnson, 1997;

Goldinger, 1998) representing an extreme form of this type of model. In exemplar mod-

els, listeners store phonological categories (or words) as a large number of context-sensitive

cues. Crucially, cues for contextual factors, such as talker and rate, are stored along with

phonetically-contrastive cues. This means that they can also be used to activate exemplars

(of phonemes or words) as a way of handling contextual variability.

In general, raw-cue encoding Vts with the notion that both multiple cues and con-

text eUects produce shifts in listeners’ categorization functions along a cue dimension (illus-

trated in the examples in Section 2.1). However, a number of researchers have distinguished

between trading relations (i.e., shifts in listeners categorization responses producing equiv-

alent perceptual judgments for combinations of multiple cues) and context eUects. In his

review of trading relations and context eUects in speech perception, Repp (1982) makes the
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distinction between acoustic events caused by the way a particular speech sound is pro-

duced (cues) from events that are not (context eUects). He uses an example from Mann and

Repp (1980) in which listeners’ judgment of fricative place (/S/ vs. /s/) is aUected by both

formant transitions and the identity of the vowel in the vocalic portion. Here, the eUect of

formant transitions would be classiVed as a trading relation (since they are produced as a

consequence of which fricative the talker intended) and would not aUect listeners’ repre-

sentation of other cues, consistent with a raw-cue encoding approach. In contrast, the eUect

of vowel identity would be a context eUect (since it is not a consequence of which fricative

the talker intended) and would inWuence encoding of other cues, consistent with extrinsic

encoding. Raw-cue approaches to handling contextual variability challenge this distinction,

suggesting that context information does not aUect listeners encoding of acoustic cues.

Overall, raw-cue models predict that listeners do not compensate for contextual

variability at the level of cue encoding. Thus, this distinguishes them from the previous two

approaches in that they suggest context information is taken into account at later stages of

processing and that cue encoding should be the same in diUerent contexts.

2.2.2 Direction of information Wow

In addition to the distinction between relative encoding (intrinsic and extrinsic) and

raw-cue encoding, approaches to handling contextual variability can also be distinguished

in the basis of how context information is combined with phonetic cues (corresponding to

the diUerent rows in Figure 2.1). This can generally be implemented in three ways: (1) lat-

eral relationships at a single processing level between phonetic cues and cues related to con-

text, (2) feedback from higher-level category representations onto cues, and (3) completely

feedforward systems where lower-level context information aUects phoneme (or similar)

category-level representations. The characteristics of models that use feedforward, lateral,

and feedback processes are discussed below.

Note that the type of encoding and direction of information Wow are not perfectly
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separable dimensions. Intrinsic encoding implies lateral relationships, since context com-

pensation happens at the level of cue encoding via cue-cue interactions. Similarly, feedfor-

ward models necessarily all use raw-cue encoding, since no lateral or feedback processes can

be used to compute relative cues in those models. In addition, as with the type of encoding,

some models do not Vt neatly into a speciVc category along this dimension.

2.2.2.1 Lateral models

Lateral models (top row in Figure 2.1) generally suggest that acoustic information

from context is combined with phonetic cues at the level of cue encoding. All models of

intrinsic encoding are inherently lateral models (Syrdal & Gopal, 1986; SummerVeld, 1981;

Fujisaki & Kawashima, 1968; Sussman & Shore, 1996). In these models, multiple sources

of information are combined at the level of phonetic cues; no interaction with other levels

of processing, such as phoneme or indexical categories, is needed. In Syrdal and Gopal’s

(1986) model of talker compensation, context-independent vowel cues are computed as dif-

ferences between formant and pitch values. This process occurs entirely at the level of cue

encoding. Similarly, SummerVeld’s (SummerVeld, 1981) rate compensation model suggests

that rate-independent VOT estimates are computed from continuous estimates of VL. Rate

compensation approaches that subtract a continuous estimate of preceding sentence rate

from VOT values would also Vt into this category.

Several extrinsic encoding approaches also use lateral interactions to compensate

for contextual variability. In this type of model, cues are recoded via extrinsic informa-

tion, since listeners are compensating for context eUects at the level of cue encoding using

information from adjacent segments. The auditory contrast account of coarticulatory com-

pensation (Lotto & Kluender, 1998) is a clear example of this, since it factors out information

from preceding segments via interactions between diUerent cues.3

3Gestural parsing accounts (Fowler, 1984) may also fall under this category, but it is not clear
whether coarticulatory eUects are handled via direct interactions between continuous information



24

While raw-cue encoding models do not encode cues relative to context, some pre-

dict lateral relationships at higher levels of processing. For example, Nearey’s (1990) NAPP

model of coarticulatory compensation uses context information to bias decisions at the level

of diphones. In this model, raw cue-values are encoded and mapped onto phoneme cate-

gories, which are combined to form diphone representations. Biases to diphone responses

are applied at this level based on information about coarticulatory context. Nearey argues

against biases at the level of cue encoding, as they would make the models unnecessary

complex — diphone biases are suXcient to account for the eUects he describes.4 Similarly,

approaches using FLMP (Oden & Massaro, 1978) to handle context eUects have suggested

that context compensation could be performed at the level of categories via similar biases,

though it could also be implemented at the level of cues in a way that is more consistent

with other lateral models (Massaro & Oden, 1980).

Together, lateral models predict that only information at a particular stage of pro-

cessing is used to compensate for contextual variability. For intrinsic and extrinsic models,

this occurs at the level of cue encoding, and for raw-cue models it occurs at later stages.

2.2.2.2 Feedforward models

In contrast to lateral approaches, feedforward approaches (center row in Figure 2.1)

suggest that context information is only combined with phonetic information via informa-

tion Wow from lower levels of processing to higher levels. As such, all approaches that

posit feedforward explanations of context compensation are also raw-cue encoding models,

about gestures or via feedback from higher-level representations. Thus, along with the broader
framework of direct realist approaches (Fowler, 1986) and the motor theory of speech perception
(Liberman & Mattingly, 1985), these approaches are more diXcult to classify using the scheme pre-
sented here, since they diUer from previously discussed models in that the units of speech perception
are articulatory or gestural from the earliest moments of processing — there is no level of acoustic
cue encoding.

4Note that, because of this, NAPP diUers from the intrinsic and extrinsic lateral models in that it
encodes raw cues. Thus, a model classiVcation scheme with more dimensions might be better able
to classify NAPP relative to the other models. For simpliVcation, it is categorized here based on the
fact that it uses raw cue encoding and allows for lateral relationships at some stage of processing.
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predicting that initial cue encoding is unaUected by contextual variability.

Exemplar models (Johnson, 1997; Goldinger, 1998) take contextual variability into

account by integrating multiple cues via feedforward information to phonological feature

representations. General cue-integration models, like FLMP (Oden & Massaro, 1978) can

use a similar approach, though they can also handle contextual variability at the level of

cue encoding or categories via processes more similar to the lateral interactions described

for other models (Massaro & Oden, 1980). Similarly, C-CuRE, uses both raw-cue encoding

via feedforward activation, as well as extrinsic encoding via feedback (see next section).

Recently, Toscano and McMurray (2010) presented a WGMM to explain rate com-

pensation. In this model, phonetic categories are represented by Gaussian distributions

along acoustic cue dimensions (e.g., VOT). The model learns the number of categories for a

phonological contrast via an unsupervised, competitive learning process (McMurray, Tanen-

haus, & Aslin, 2009) that discovers clusters of cue-values along a given dimension. Cues are

weighted by their reliability (i.e., how distinct the categories along that dimension are), and

weighted cues are used as input to a mixture containing information from multiple cues.

This is used to create a continuous, but more abstract, representation of the phonological

contrast supported by the cues, similar to the phonological features in FLMP. The posterior

probability of the Gaussians in the combined mixture is used to estimate the likelihood of a

response (e.g., /b/ vs. /p/) for a particular combination of cues.

Finally, in Smits’ (2001b) HICAT model, raw-cues are encoded and mapped onto

categories. Unlike some versions of FLMP, separate representations based on each cue are

maintained until the likelihood of a particular category is computed. Also, unlike NAPP,

HICAT does not include a category bias term at the level of diphones; the likelihood of

responses for each segment are combined (via feedforward connections) to yield an overall

estimate. Thus, contextual variability is handled by modulating feedforward information
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from lower levels of processing using context information.5

To summarize, feedforward models all predict that information Wows from lower

levels of processing to higher ones. As a result, all of these are raw-cue encoding models,

which predict that listeners do not encode cues relative to context.

2.2.2.3 Feedback models

Finally, some models propose that feedback from higher levels aUects lower levels

of processing to handle contextual variability (bottom row in Figure 2.1). Most models of

extrinsic compensation fall into this category, though extrinsic models that rely on lateral

interactions have also been proposed (see above).

Examples of this type of model include Gerstman (1968) and Lobanov’s (1971) talker

compensation models, which use the range and mean formant frequencies for a given talker,

respectively, to recode formants into a normalized vowel space. Since information used for

compensation is based on the properties of a particular talker’s vowel space, these models

suggest a feedback mechanism from more abstract information onto cue encoding (though

these models were not described in terms of the direction of information Wow in the system).

C-CuRE (McMurray & Jongman, 2011) presents another example of an extrinsic

encoding model that uses feedback from category-level representations to compensate for

contextual variation. C-CuRE initially encodes raw cue-values, which can be used by them-

selves via feedforward activation. In addition, information about context can be factored

out of cue-level representations via feedback from knowledge about talkers and phonemes.

For example, if a listener hears an ambiguous vowel between /i/ (high F2) and /I/ (low F2)

and can identify the talker, they can use this information to overcome the ambiguity. If the

talker has higher F2 values on average, for example, they can then adjust their F2 estimate

5As with NAPP, the direction of information Wow is diXcult to classify in HICAT. Again, a more
complex classiVcation scheme would group these two models together given their diUerences from
the other approaches, but, for simpliVcation, it is discussed here as a feedforward, raw-cue encoding
model.
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do be lower than it actually is (compensating for that particular talker’s higher F2 values),

perceiving the previously-ambiguous sound as /I/. Thus, expectation about the talker’s voice

allows listeners to handle contextual variability in their estimates of formant frequencies.

Similar processes can be used to handle coarticulatory context: if a listener knows that the

vowel was preceded by a particular consonant, they can factor out the expected contextual

variability in the vowel that is due to that consonant.

This approach contrasts with other extrinsic encoding approaches (e.g., auditory

contrast) that directly compare cue-values (via lateral processes). Instead, C-CuRE uses

feedback based on expectations about cue-values. In addition, it diUers from gestural pars-

ing and auditory contrast approaches in that it does not make strong claims about the nature

of the cue-level information (i.e., whether it is a gesture- or acoustic-based representation).

Other types of models that use some form of feedback to update cue-level representations,

such as normalized recurrence networks (Spivey, 2007; McMurray & Spivey, 1999) or iter-

ative competitive learning networks (which use both raw and relativized cues as C-CuRE

does Mozer, 1990), could be applied in similar ways.

While raw-cue encoding approaches could use feedback to account for context ef-

fects above the level of cue encoding, these have not generally been applied to the problem

of contextual variability in speech. However, some models of spoken word recognition,

like TRACE (McClelland & Elman, 1986), Vt into this category. TRACE is an interac-

tive activation network with acoustic cue, phoneme, and lexical levels of processing. The

model encodes raw acoustic cue-values, but uses feedback from lexical representations on

to phonemes to recognize words. This feedback could conceivably be useful to compensate

for contextual variation at phoneme levels, though this has not been thoroughly examined.

Feedback models also suggest an interesting prediction about how diUerent types of

context information are handled. Recall that some types of contextual variability (e.g., talker

identity) are relatively categorical and that others (e.g., speaking rate) are more continuous.
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If contextual categories, such as whether a talker is male or female, are learned similarly

to phonetic categories (i.e., via unsupervised learning), listeners may not have distinct rep-

resentations at category levels for continuously-variable context information, like speaking

rate. Clustering algorithms used to discover phonetic categories work well for multi-model

cue distributions (McMurray, Aslin, & Toscano, 2009; Toscano & McMurray, 2010; Vallabha,

McClelland, Pons, Werker, & Amano, 2007), such as those that provide cues to talker gender,

and supervised learning approaches would be even more powerful at assigning abstract la-

bels to particular constellations of phonetic cues associated with phonemes or talkers. How-

ever, unsupervised learning models would fail to form distinct categories for information

from a unimodal or uniform distribution, such as those that indicate speaking rate. Thus, if

listeners use feedback to compute relative cue-values, we might expect diUerent eUects for

talker gender and speaking rate.6 This is directly tested in Chapters 4 and 5.

Overall, this class of models predicts that listeners use feedback from later stages of

processing to handle context eUects. This could be done either at the level of cue encoding

itself (suggesting relative encoding) or at an intermediate stage (suggesting raw-cue encod-

ing). Thus, both relative and raw cue encoding approaches, by themselves, are consistent

with feedback models.

2.3 Comparing proposed solutions

These three types of cue encoding (intrinsic, extrinsic, and raw-cues) and three di-

rections of information Wow (lateral, feedforward, and feedback) allow us to classify most

models of contextual variation, as well as general approaches to speech perception. DiUerent

approaches make diUerent predictions about the level of processing at which context com-

pensation occurs and the nature of the information listeners use for compensation. More

6Listeners could also compute a more abstract representation of speaking rate that is not based
on categories. EUects of this information could be considered a form of feedback, but they would not
be logically distinct from lateral interactions in this classiVcation scheme (since they reWect direct
interactions between continuous dimensions).



29

generally, each approach diUers in how those sources of information are combined. Thus,

we can compare them using a general information processing framework that uses the same

types of acoustic information but combines them in diUerent ways for particular models.

Figure 2.1 depicts schematics of several possible models in a grid with type of en-

coding in the diUerent columns and direction of information Wow in the diUerent rows. This

illustrates the diUerences in between the general approaches for handling contextual vari-

ability and notes where some speciVc models fall under this classiVcation system. Cells that

are not possible (e.g., intrinsic encoding via feedforward activation) are listed as “n/a”. Note

that some models may fall under multiple categories but are listed in the category that most

clearly emphasizes the key features of that model.

The top-left corner of the Vgure corresponds to lateral, intrinsic encoding models.

This includes the approaches that have been termed “invariance” (Stevens & Blumstein,

1978; Blumstein & Stevens, 1979) or “compound-cue” approaches. The top-center panel

depicts lateral, extrinsic encoding models, such as auditory contrast approaches (Lotto &

Kluender, 1998). The top-right panel illustrates lateral, raw-cue models, like NAPP (Nearey,

1990). The middle row shows feedforward approaches, all of which use raw-cue encoding.

This includesWGMM, HICAT, and some implementations of FLMP. The bottom row depicts

the two feedback approaches, including those that use extrinsic encoding (bottom-center),

like C-CuRE (McMurray & Jongman, 2011), and those that use raw cues (bottom-right), like

TRACE (McClelland & Elman, 1986).

2.3.1 Predictions

Given this classiVcation system, we can distinguish between most of the proposed

models on the basis of these two principles by examining how cues are encoded. First, the

three encoding approaches make diUerent predictions about when during speech processing

we should see eUects of context information. If listeners use either intrinsic or extrinsic

encoding, contextual variability should be handled at the level of cue encoding itself, such
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that cues are encoded relative to preceding context. In contrast, raw-cue models predict that

acoustic cues are encoded veridically and context information is only taken into account at

later stages of processing. Thus, if listeners use this approach, cue encoding should not

be aUected by context. By studying cue encoding in diUerent contexts we can distinguish

between the relative (intrinsic/extrinsic) and absolute (raw-cue) approaches.

Second, the three directions of information Wow may make diUerent predictions for

diUerent types of context information. If preceding contexts provides listeners with in-

formation about a particular category (e.g., the gender of the talker), feedback approaches

predict that this information can inWuence lower levels of processing, including cue encod-

ing. However, if context instead provides more continuous information (e.g., variation in

speaking rate), feedback from categories may not aUect cue encoding. Continuous informa-

tion could be used by lateral interaction and feedforward approaches, but feedback models

may not show an eUect of cue encoding in this case. Thus, by examining diUerent types of

context information (e.g., talker vs. speaking rate variability), we can distinguish between

feedback and lateral/feedforward approaches.

Assessing these diUerences requires us to look at cue encoding and categorization

during speech processing for diUerent types of context eUects. The next chapter presents

an ERP approach designed to measure processing at these two levels and presents initial

experiments examining responses to diUerent speech sounds to determine whether we will

be able to use them to measure cue encoding in subsequent experiments.
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CHAPTER 3
EVENT-RELATED POTENTIALS TO SPEECH SOUNDS

As stated in the introduction, the main goal of this dissertation is to simultaneously

examine eUects of various types of contextual variability (speaking rate, talker, coarticula-

tion) on cue-level and category-level responses. While many of the methodological details

of each experiment will be speciVc to these individual factors, the overall logic of the exper-

iments is quite similar, and the use of the ERP technique is largely the same. The approach

used here is similar to that used by Toscano et al. (2010) to examine whether VOT encoding

and categorization are sensitive to continuous acoustic diUerences: using the auditory N1

as a measure of cue encoding and the P3 as a measure of categorization and post-perceptual

processing. To do this, several experiments will examine acoustic variation along diUer-

ent cue dimensions, speciVcally VOT and formant dimensions, in the context of particular

sources of context information (talker, rate, or coarticulatory context).

The distinction between ERP responses that reWect cue encoding and those that re-

Wect categorization is similar to the distinction made by Picton and Hillyard (1974) for ERP

responses to nonspeech auditory stimuli. They presented listeners with click trains that con-

tained an occasional click that was either at a lower intensity (1-5 dB less) or was omitted

entirely. Participants were instructed to either detect and count the infrequent clicks or to

ignore the auditory stimuli. They found larger N1 and P3 components in the attended than

in the unattended condition, suggesting that attention operates as early as the time of the

N1. In addition, a smaller N1 was observed for the infrequent, lower intensity clicks relative

to the more frequent, louder ones, and no N1 was observed when the stimulus was omitted.

In contrast, the P3 was similar in both the lower-intensity and omitted conditions.

From these results, Picton and Hillyard suggested that the N1 and P3 may correspond

to two diUerent stages of processing: (1) an evoked sensory response during which the

auditory input can be compared to expectations (the N1), and (2) a decision process that
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is not dependent on the particular acoustic properties of the input but is aUected by the

properties of the task (the P3). This corresponds very closely to the proposal made by

Toscano et al. (2010) for speech sounds. They found that the N1 was dependent on the

VOT of the stimuli and did not vary as a function of the task-deVned target words. Larger

N1s were observed for short VOTs and smaller N1s for long VOTs, regardless of whether

listeners were monitoring for a voiced or voiceless word. In contrast, the size of the P3 was

determined by the distance of a given VOT from the task-deVned target word. That is, if

peach (which is consistent with a VOT of 40 ms) was the target, P3 was largest for the 40 ms

stimuli. In contrast if beach was the target, P3 was largest for the 0 ms stimuli.

These results map onto Picton and Hillyard’s (1974) indexing functions quite well,

and this suggests that we may be able to use the N1/P3 paradigm to measure cue encod-

ing and categorization for other speech stimuli also. However, there are several additional

methodological points that must be addressed to conVrm that this is the case. Thus, before

presenting each of the sets of experiments examining diUerent types of context eUects, I

will Vrst discuss several points here that relate to the overall study and present two exper-

iments designed to examine ERP responses to VOT and formant diUerences, which will be

examined in subsequent experiments.

First, I present a follow-up to the analyses of Toscano et al. (2010) to provide addi-

tional evidence demonstrating that the P3 component can be used as a measure of phono-

logical categorization. Second, I discuss the issue of overlapping ERP components that are

caused by temporally adjacent stimuli. This issue is relevant to the current study because

conclusions about context eUects depend on responses to a stimulus as a function of a pre-

ceding stimulus.

Finally, I discuss the phonetic contrasts that will be used in the experiments and

whether diUerences along those acoustic dimensions produce diUerences in the auditory N1.

Two experiments, one examining vowel diUerences and one looking at voicing contrasts, are
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presented to determine whether diUerences in the N1 can be seen for these stimuli.

3.1 Phonological categorization and P3 amplitude

In addition to measuring cue encoding, we would also like to measure category-

level processing. As discussed in Chapter 1, this is the level that most behavioral measures

of context compensation (e.g., phoneme identiVcation) have assessed. Thus, measuring this

using ERPs seems to serve primarily as a an additional way to measure these eUects. At the

same time, there has been little electrophysiological work examining this level of phonetic

categorization, so an ERP approach may oUer an important extension of these results.

One of the original goals of Toscano et al. (2010) was to use the P3 component to

measure categorization of speech stimuli. This was done using a target detection task in

which listeners categorize whether a given stimulus matched a target category. Targets

occur infrequently (≈25% of the time), producing a P3 component on target trials. The

results from Toscano et al. suggest that variation in P3 amplitude reWects phonological

category diUerences (rather than acoustic diUerences) — P3 amplitude varied with overall

distance from the target endpoint for the relevant stimulus continuum (e.g., the beach-peach

continuum if beach was the target) rather than with VOT itself. In addition, when the data

were recoded to account for diUerences in individual participant’s category boundaries, an

eUect of VOT within each voicing category was found.

To further establish that variation in P3 amplitude reWects diUerences in listeners’

phonological categories, an additional analysis was run on the data from Toscano et al.

(2010). If P3 amplitude reWects category information, distance from the target endpoint rel-

ative to participants’ individual category boundaries, should produce the greatest variation

in the size of the P3. In contrast, if the P3 reWects some other diUerence between the stimuli,

a larger eUect would be observed when the data are divided at a diUerent VOT step than the

participant’s category boundary.

To test whether this was the case, the data were recoded by shifting participant’s
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true category boundaries up to two VOT steps in either direction. This produced Vve data

sets from the original data: those grouped according to participants’ category boundaries

(relative VOT, or rVOT), those grouped based on their boundaries shifted one step toward

the voiced end of the continua (rVOT-1), two steps toward the voiced end (rVOT-2), one step

toward the voiceless end (rVOT+1), and two steps toward the voiceless end (rVOT+2).

These Vve data sets were analyzed with linear mixed-eUects models using the lme4

package (Bates & Sarkar, 2011) in R (R Development Core Team, 2011). Mixed-eUects mod-

els provide a more appropriate statistical analysis than ANOVA for these data, since they

allow continuous variables (like rVOT) to be coded correctly (see Jaeger, 2008). In this and

subsequent mixed-eUects models used in this dissertation, participant was entered as a ran-

dom eUect (on the intercept) and continuous variables were centered, but not normalized.

This means that the reported statistics are unstandardized (b) rather than standardized (β)

coeXcients, so the value indicates diUerences in the dependent variable as a function of

each level of the independent variable (e.g., coeXcients for P3 amplitudes, presented here,

reWect the size of the diUerence in µV per rVOT step).

In this model, participant was entered as a random eUect and the absolute value of

rVOT was entered as a Vxed eUect (the data were collapsed across the two VOT continua

used in the experiment).1 The results showed a signiVcant eUect for the data based on

participant’s true VOT boundaries (b = 0.167, pMCMC = 0.007) and for the rVOT+1 data set

(b = 0.138, pMCMC = 0.01). EUects for the other data sets were non-signiVcant. In addition,

the log likelihood of the rVOT model was higher than that of the other models (rVOT: -357.5;

rVOT-1: -361.7; rVOT-2: -363.0; rVOT+1: -358.2; rVOT+2: -361.4).

These results suggest that participants’ category boundaries produced the largest

variation in P3 amplitude, providing additional evidence that the P3 serves as an index of

categorization in this task. Given this, a target detection task will be used to assess whether

1Note that, unlike the analyses from Toscano et al., these data were not grouped by response.
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listeners’ categorization of other speech sounds, speciVcally formant frequency diUerences

(Experiments 5, 6 and 8) are graded in the same way categorization of VOT is.

3.2 Separating overlapping ERP components

A second general methodological issue is the problem of overlapping ERP compo-

nents. Unlike Toscano et al. (2010), the contextual variability experiments will examine

the inWuence of two acoustic events (e.g., the preceding sentence and a target word). This

raises the possibility that ERP responses to the target stimulus could be due to overlap from

components related to processing the preceding context, rather than context compensation

eUects. Because ERP components can occur several hundred milliseconds after a stimulus,

it is important to know that any diUerences in components to the target stimulus are not

actually due to overlapping components from the diUerent contexts. This is a particularly

relevant issue for examining eUects of local context (i.e., coarticulatory context), since the

onset of both stimuli occurs relatively close in time. For example, to examine coarticulatory

eUects, we can look at diUerences in N1 amplitude to the onset of the vocalic portion of a

fricative-vowel syllable as a function of the coarticulatory information in the frication. A

diUerence in the N1 to the vowel onset could be due to context-relative cue encoding (the

predicted eUect) or due to the acoustic diUerences between the two frication segments.

To rule out this possibility, the Adjar procedure (WoldorU, 1993; HopVnger & Man-

gun, 1998) will be used to separate ERP components to the context from components to the

target if overlap is observed (i.e., a non-zero baseline before the onset of the target stimulus).

Adjar involves iteratively estimating and removing overlap between components caused by

two temporally-adjacent events (e.g., two stimuli). This requires that the ISI between the

two stimuli (the sentence onset and target word onset) varies over some interval. This ISI

jitter by itself helps to reduce overlap by smearing out the components caused by one stim-

ulus in the ERP waveform to the other stimulus. However, if the stimuli are presented close

together, there can still be overlap between the components. This is particularly problematic
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for the second stimulus, as components from the Vrst can disrupt the baseline voltage.

To use Adjar to remove component overlap, the average ERP waveform time-locked

to the onset of the second stimulus (S2; e.g., the onset of the target word) is obtained. This

is used as the current best estimate of the ERP components due to S2. Next, this waveform

is shifted forward in time at each of the ISI steps. This produces an estimate of the overlap

from S2 on the Vrst stimulus (S1; e.g., the onset of the carrier sentence). This average is then

subtracted from the ERP to S1 to remove the overlap. The same procedure is used to remove

overlap from S1 on the S2 ERP, shifting the S1 waveform backward in time at each of the

ISIs and subtracting it from the original S2 ERP. This procedure is repeated until the change

in the overlap estimate is near zero (here, if the maximum absolute diUerence is < 1−4).

3.3 Auditory N1 response to speech sounds

Finally, in order to examine eUects on cue encoding, we must use stimuli that vary

along acoustic dimensions that produce observable diUerences in the N1. A wide range of

auditory stimuli generate a fronto-central N1 (Näätanen, 1987). The N1 varies as a function

of stimulus frequency (Antinoro & Skinner, 1968; Picton, Woods, & Proulx, 1978), intensity

(H. Davis & Zerlin, 1966; Picton et al., 1978), rate of stimulation for repeating stimuli (Butler,

1973; Picton et al., 1978), phonetic diUerences in speech sounds (Wood, 1971; Lawson &

Gaillard, 1981; Sharma & Dorman, 1999), and the signal-to-noise ratio of speech stimuli

(B. A. Martin, Sigal, Kurtzberg, & Stapells, 1997).

In addition, there are several non-auditory factors that aUect the N1. As discussed

above, the N1 is aUected by selective attention (Hansen & Hillyard, 1980; Öhman & Lader,

1972; Picton & Hillyard, 1974), with larger N1s observed when participants are attending to a

stimulus than when they are not. Similarly, the N1 is aUected by non-auditory but stimulus-

driven factors, such as the visual stimulus in audiovisual speech perception (Pilling, 2009;

van Wassenhove, Grant, & Poeppel, 2005; Besle, Fort, Delpuech, & Giard, 2004). Visual in-

formation conveys cues that listeners use during speech perception (McGurk & MacDonald,
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1976), and van Wassenhove et al. (2005) examined whether visual speech information has

an eUect on the auditory N1 by presenting listeners with audio-only, visual-only, and au-

diovisual speech samples. They found that the N1 response to a given syllable was smaller

in amplitude and earlier in the audiovisual condition than in the audio-only condition; no

N1 response was observed in the visual-only condition. This suggests that non-auditory

information can also aUect the N1.

Another issue pertinent to the present study is the eUect of speciVc acoustic diUer-

ences on the N1. Picton et al. (1978) observed changes in N1 amplitude for tones varying

in frequency. SpeciVcally, they found larger N1s are produced by lower-frequency stimuli.

They suggested that this frequency eUect could be due to the organization of the periph-

eral auditory system — the frequency mapping of the cochlea is warped such that lower

frequencies are disproportionately represented. They also suggested that the cortical neu-

rons that respond to higher frequencies may be oriented in such a way that their electric

Velds are not easily observable at the scalp. Studies using positron emission tomography to

localize activity in auditory cortex (Lauter, Herscovitch, Formby, & Raichle, 1985), as well

as ERP localization studies (Bertrand, Perrin, & Pernier, 1991), support this latter view —

neural populations the respond to high-frequency sounds are located posterior and deeper

than those that respond to low-frequency sounds. Thus, responses high-frequency sounds

would be more diXcult to observe at the scalp due to the orientation of their generators.

These results suggest that the N1 to high frequency speech stimuli might also be

small. Moreover, it suggests that the diUerences in stimuli along a continuum varying in

a high-frequency cue may be diXcult to assess. Tremblay, Friesen, Martin, and Wright

(2003) examined ERPs in response to an /s/-/S/ (“s” vs. “sh”) distinction and did not Vnd

any diUerences in the N1 (though they did Vnd a diUerence for this contrast at a later time

point). Similarly, our own pilot work examining ERP responses to /s/-/S/ stimuli also showed

no diUerences in the N1. Thus, it may be that not all diUerences in phonetic cues produce
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diUerences in N1 amplitude, even if listeners can perceive the diUerence between the sounds.

Several ERP experiments examining diUerences in the N1 to speech sounds have

focused on VOT (Sharma & Dorman, 1999, 2000; Sharma, Marsh, & Dorman, 2000; Frye et

al., 2007; Steinschneider, Volkov, Noh, Garell, & Howard, 1999; Toscano et al., 2010). VOT

is typically deVned as a temporal cue (i.e., the time between two events), and indeed some

studies show two N1 peaks for long VOTs, with the Vrst N1 corresponding to the release

burst and the second N1 to the onset of voicing. However, VOT may also be described

in terms of spectral information. Frequency diUerences between sounds with short and

long VOTs can be seen by looking at the short-term average spectrum over the beginning

of the syllable. This spectral measure of VOT shows large diUerences in low-frequency

information, since the short-VOT stimuli contain more voicing energy. Indeed, this is a

likely explanation for the linear eUect of VOT and lack of a double-peaked response in Frye

et al. (2007) and Toscano et al. (2010).

Given this, it seems logical to examine variation in VOT in the present set of exper-

iments. VOT provides a useful cue for examining the eUects of speaking rate: it is primarily

a temporal cue, it is profoundly aUected by the rate of the surrounding speech, and listeners

must compensate for speaking rate variability when interpreting VOT (Miller & Grosjean,

1981; Miller & Dexter, 1988; McMurray, Clayards, Tanenhaus, & Aslin, 2008; Toscano & Mc-

Murray, 2011a). In addition, VOT values also vary between male and female talkers, such

that women have longer VOTs than men (Swartz, 1992; Ryalls, Zipprer, & BaldauU, 1997;

Whiteside & Irving, 1998). Thus, talker context could also produce eUects on VOT encoding.

ERP responses to other phonetic cues, such as formant diUerences for vowels (Tremblay

et al., 2003), have also been found. Formants vary signiVcantly between talkers, and talker-

speciVc factors can account for up to 80% of the variance in formant frequency (Cole et al.,

2010). In addition, formant frequencies for vowels are also dependent on coarticulatory con-

text. Therefore, vowel diUerences may provide a useful phonological contrast for examining
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talker context eUects as well.

Given these results, vowel and voicing distinctions allow us to examine several types

of context eUects. Both VOT and formant frequency are aUected by talker gender, and VOT

is aUected by rate. This allows us to test alternative explanations for observed context eUects

on the N1, since, if listeners do compensate for contextual variability during cue processing,

we would expect an eUect on both types of cues for talker diUerences, but only an eUect on

VOT for rate diUerences.

In the next two sections, two experiments looking at diUerences in N1 responses to

stimuli varying in VOT (i.e., a voicing contrast) and formant frequency (a vowel contrast)

are presented. Experiment 1 examines diUerences between the vowels /æ/ and /E/, and

Experiment 2 examines diUerences between the consonants /b/ and /p/.

3.4 Experiment 1: N1 response to vowel diUerences

The purpose of this experiment is to establish that /æ/-/E/ vowel diUerences produce

diUerences in N1 amplitude. This will allow us to establish that this vowel distinction can be

used for subsequent ERP experiments. To test this, ERPs were recorded while participants

listened to natural recordings of the words axe, ex, had, and head made by one male and

one female talker (to see whether talker information interacted with listeners’ N1 responses

to the two vowels).

3.4.1 Methods

3.4.1.1 Participants

Nine people participated in the experiment. Participants were recruited from the

University of Iowa community according to University human subjects protocols, provided

informed consent, and were either compensated $15 per hour or received course credit for

participation. Participants reported English as their only native language, normal hearing,

and normal or corrected-to-normal vision.
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3.4.1.2 Design

Participants performed a 2AFC word identiVcation task. Note that this task should

produce an auditory N1, but not a P3 component. Stimuli contained two vowels (/E/ and

/æ/) and two word pairs (ex-axe and head-had), each of which was produced by two talkers

(one female, one male), for a total of eight stimuli. Each word pair was presented in diUerent

halves of the experiment, and the order of presentation was alternated between participants.

Within each half, stimuli were presented in random order. Each stimulus was repeated 45

times for a total of 360 trials. The experiment lasted approximately one hour and was run

in a single session with another experiment in our lab (which also lasted one hour).

3.4.1.3 Stimuli

Two talkers recorded the stimuli in a sound-attenuated room with a Kay CSL 4501.

Recordings were made using Praat (Boersma & Weenink, 2010) and were sampled at 44.1

kHz. Each talker recorded several tokens of the four words, and the token with the best

audio quality was selected for the experiment.

Within each word pair and talker gender condition, /æ/ and /E/ vowels were equated

for length to ensure that diUerences in ERP component latency were not due to diUerences

in the length of the stimuli. This was done by Vrst measuring the length of the vowel in

each token. Next, for the ex-axe word pair, the longer token from each talker was shortened

so that it had the same duration as the shortest token from that talker (ex was shorter than

axe in both cases). This was done by removing periodic energy from the onset of the longer

stimulus, cutting the sound at the zero-crossing closest to the desired time point. The same

procedure was applied to the head-had stimuli (head was shorter than had for both talkers).

The /h/ from the head token was also replaced by the /h/ from had to ensure that the

stimuli had the same /h/ for each talker. Similarly, the consonant following the vowel from

the /E/-tokens replaced the consonant from the /æ/-tokens. Stimuli were also normalized

for intensity to ensure that ERP diUerences would not be due to diUerences in sound level.
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3.4.1.4 Procedure

Participants were seated in an electrically-shielded, sound-attenuated booth. Stimuli

were presented over Sennheiser HD 555 headphones. This model of headphones was used

in all subsequent experiments also. Participants indicated their response using two buttons

mounted on a board placed in front of them that were connected to the stimulus presenta-

tion computer. An LCD projector outside the booth was used to present instructions and

visual stimuli to the participant on a screen inside the booth. Stimulus presentation and

recording of participants’ behavioral responses was handled using the Psychophysics Tool-

box (Brainard, 1997) and custom MATLAB scripts.

At the beginning of each trial, a Vxation point and the relevant word pair (“axe”

and “ex” or “had” and “head”) appeared on the screen. The words were located to the left

and right of the Vxation point and indicated which button corresponded to which sound

(i.e., if “axe” was on the left side of the screen, the left button was used to make an /æ/

response). The response-button mapping was held constant throughout the experiment and

was alternated between participants. 750 ms after the Vxation point and letters appeared,

the auditory stimulus was presented. Participants then indicated their response by pressing

one of the buttons, and the screen was cleared. If the participant waited more than 3000 ms

after stimulus onset to respond, they heard an error buzzer and the trial ended (this occurred

very infrequently).

To minimize ocular artifacts, participants were instructed to maintain their gaze

on the Vxation point while it was on the screen. The inter-trial interval varied randomly

between 1250 and 1750 ms, allowing participants suXcient time to blink between trials.

Trials were divided into blocks of 15 trials each, and participants were given the opportunity

to take a break between each block. Halfway through the experiment, the participants took

a longer break.
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3.4.1.5 EEG recording

ERPs were recorded from 11 electrode sites (International 10-20 System sites F3, F4,

Fz, Cz, P3, Pz, P4, PO3, and PO4; and two sites approximately 1 cm anterior and superior

to C3 and C4). EEG channels were referenced to the left mastoid during recording and re-

referenced to the average of the two mastoids after recording. Horizontal electrooculogram

(EOG) recordings were made using two electrodes located approximately 1 cm lateral to

the external canthus of each eye. Vertical EOG recordings were made using an electrode

located at FP2. Impedance was 5 kś or less at all sites. Recordings were made with an SA

Instrumentation bioamplifer with a low-pass Vlter at 100 Hz for all channels and a high-pass

Vlter at 0.01 Hz for the EEG channels, 0.3 Hz for the vertical EOG channel, and 0.1 Hz for

the horizontal EOG channels. Data was digitized at a sampling rate of 250 Hz and saved to

disk, along with information about stimulus conditions, event times, and responses, using a

custom-made program.

3.4.1.6 Data processing

Data were analyzed using the ERPLAB plugin (Luck & Lopez-Calderon, 2010) to the

EEGLAB toolbox (Delorme & Makeig, 2004) for MATLAB. Trials containing ocular artifacts

were rejected if the peak-to-peak voltage between -100 and 400 ms exceeded 74 µV for

either of the EOG channels or 150 µV for any of the EEG channels. Approximately 5% of

the trials were rejected for a given subject (similar artifact rejection levels were observed in

subsequent experiments also). The baseline for each epoch was the average voltage 100 ms

before the onset of the auditory stimulus.

3.4.2 Results

Listeners correctly categorized the vowel endpoints for both talkers and word pairs

(mean accuracy: 96.3%).

The acoustic diUerences between the two word pairs (i.e., ex/axe vs. head/had)
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are not directly comparable, since one has an /h/ at onset and the other does not and the

vowel diUerences between the two may not be the same magnitude or may be driven by

diUerent cues. Because of this, the two word pairs were analyzed separately. Figure 3.1

shows grandaverage ERP waveforms for each word pair and vowel collapsed across talker.

Overall, the /æ/ stimuli appear to have larger N1 amplitudes than the /E/ stimuli.

Mean N1 amplitude was computed as the average voltage across the three frontal

channels (F3, Fz, and F4) from 75 to 125 ms after the onset of periodic voicing (i.e., the onset

of the vocalic portion). This time range corresponded to 75-125 ms after stimulus onset for

the ex-axe stimuli and 223-273 ms after stimulus onset for the head-had stimuli (due to the

word-initial /h/). Figure 3.2 shows mean N1 amplitude as a function of talker gender, word

pair, and vowel.

For the ex/axe word pair, mean amplitude was -1.37 µV for the axe stimuli and -1.02

µV for the ex stimuli. A 2 (talker) x 2 (endpoint) within-subjects ANOVA showed that this

diUerence was signiVcant (F(1,8)=7.38, p=0.026). Neither the eUect of talker gender (F<1) nor

the interaction (F<1) were signiVcant.

For the head-had stimuli, mean amplitude was slightly smaller for had (-0.04 µV)

than for head (0.20 µV). This is the same pattern observed for the ex/axe stimuli, but there

is clearly considerable overlap from the preceding /h/, as evidenced by the lack of a Wat

waveform preceding the onset of the vocalic portion. A 2 (talker) x 2 (endpoint) within-

subjects ANOVA did not Vnd a signiVcant eUect of vowel (F(1,7)=1.24, p=0.302), but there

was a marginal eUect of talker gender (F(1,7)=4.71, p=0.067) with larger N1 responses for

the male talker than the female talker. The direction of this eUect is the same as that seen

for VOT stimuli (Toscano et al., 2010) and tones (Picton et al., 1978), with lower-frequency

sounds (i.e., the male talker, short VOTs, and low frequency tones) producing larger N1s.

The interaction was not signiVcant (F<1).2

2One participant was missing data for the had-head stimuli due to equipment problems and was
excluded from this analysis.
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Figure 3.1: Experiment 1 results — ERP waveforms. Grandaverage waveforms for the aver-
age of the three frontal channels as a function of word pair (ex/axe or head/had) and vowel
(/E/ or /æ/). Waveforms are time-locked to the onset of the word. Shaded areas indicate the
time range used to compute mean N1 amplitude for the vowel diUerences. This is later for
the head/had stimuli due to the word-initial /h/. Positive is plotted up; this is true of other
ERP Vgures as well. This Vgure, as well as subsequent Vgures showing experiment results,
were generated using the ggplot2 package in R (Wickham, 2009).
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Figure 3.2: Experiment 1 results — N1 amplitude. Mean amplitude as a function of word
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for each condition indicate standard error.

3.4.3 Discussion

These results demonstrate that diUerences in the N1 can be seen for the /E/-/æ/ dis-

tinction. Experiment 3 will examine this eUect more closely to determine whether it reWects

continuous variation in acoustic information, independently of listener’s phonological cat-

egories (as it does for VOT).

The results also suggest that variation in N1 amplitude may not correspond simply to

overall frequency diUerences, such that lower-frequency sounds produce larger N1s. Recall

that in Toscano et al. (2010) shorter VOTs (i.e., lower-frequency sounds) produced larger

N1s, and that similar results have been found for tones (Picton et al., 1978). However, in

the present experiment, this was not the case: the overall frequency diUerence between the

axe and ex stimuli was estimated by computing the center of gravity for each sound, and

the axe stimuli (which produced larger N1s) had a higher spectral mean than the ex stimuli.

These diUerences are mostly driven by the stimuli from the male talker who had a mean
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frequency of 1777 Hz for ex and 2205 Hz for axe. The female talker showed little diUerence

in mean frequency between the two vowels, but had a slightly lower mean frequency for

axe (1137 Hz) than for ex (1184 Hz). Thus, diUerences in N1 amplitude may reWect variation

in acoustic information within particular frequency bands or to variation along particular

cue dimensions, rather than simply varying with the overall frequency of the sound.

Regardless of the direction of the eUects though, the results of the present experi-

ment demonstrate that vowel sounds have an eUect on N1 amplitude. This suggests that

they may be a viable candidate for examining cue encoding and context compensation in

subsequent experiments.

3.5 Experiment 2: N1 responses to VOT diUerences

The second acoustic cue dimension that will be used to examine context eUects is

VOT, one of the main cues to voicing distinctions in English and a cue that is aUected by both

talker gender (Swartz, 1992) and speaking rate diUerences (Allen & Miller, 1999). The results

of Toscano et al. (2010) demonstrated that, for synthetic speech, diUerences in VOT produce

corresponding changes in N1 amplitude. Most previous work has also examined eUects of

VOT on the N1, Vnding eUects for both negative VOT (pre-voiced) diUerences (Sharma &

Dorman, 2000) and positive VOT diUerences (Sharma & Dorman, 1999; Tremblay et al., 2003;

Frye et al., 2007).

However, several researchers have found diUerences in N1 morphology for short

and long VOTs, in which short VOTs produce a single-peaked N1 and long VOTs produce a

double-peaked N1 (Sharma & Dorman, 1999; Sharma et al., 2000; Steinschneider et al., 1999),

and have suggested that this reWects auditory discontinuities in the processing of VOT. One

potential issue is that the range of VOTs used in these studies was much longer (0 to 80

ms) than the range of VOTs that reliably distinguishes voicing categories for bilabial stops

in English (0 to 40 ms). These studies found that the change in N1 morphology occurred

between 40 and 50 ms VOT, well beyond the typical voicing category boundary. Moreover,
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Sharma et al. (2000) observed that the presence of a single- or double-peaked N1 did not

predict listeners’ boundary between voiced and voiceless sounds. Finally, despite noting

changes in N1 morphology, Sharma and Dorman (1999) and Sharma et al. (2000) also found

that latency of the latest N1 peak was linearly correlated with VOT.

In contrast to these results, Toscano et al. (2010) found a single-peaked N1 across

their entire VOT continuum. This may have been because (1) they varied VOTs from 0 to 40

ms, and (2) they used stimuli with low-amplitude bursts. The two N1 peaks seen in previous

studies could be caused by two sudden changes in the acoustic properties of the stimuli, with

the Vrst peak corresponding to the release burst and the second peak to the onset of voicing.

Because these two events occur closer together at short VOTs, only a single N1 peak may be

observed in the ERP waveform. In addition, by using a low-amplitude burst, Toscano et al.

(2010) may have eliminated or minimized the N1 to that event.

Because naturally-produced stimuli are used in these experiments, it is more diXcult

to manipulate the amplitude of the burst. Thus, it is important to determine whether a

single-peaked N1 is observed for these stimuli. The goals of this experiment are (1) to see

if long-VOT stimuli produce a single- or double-peaked response, and (2) if a single-peak

is observed, to see if there are diUerences in mean N1 amplitude between long-VOT and

short-VOT conditions.

3.5.1 Methods

3.5.1.1 Participants

Six people participated in the experiment. Participants were recruited using the

same procedures used in Experiment 1, met the same criteria, provided informed consent,

and received course credit or $15 per hour for participating.
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3.5.1.2 Design

Participants performed a 2AFC word phoneme task in which they listened to spoken

words and indicated whether the word started with “b” or “p” while ERPs were recorded.

Stimuli consisted of six sets of /b/-/p/ minimal pair words (bath-path, beach-peach, beak-

peak, bet-pet, bike-pike, and buck-puck). Each stimulus was presented 45 times in random

order for a total of 540 trials. The experiment took approximately 60 minutes and was

completed in a single session.

3.5.1.3 Stimuli

Stimuli were recorded by a male talker in a sound-attenuated room using a Marantz

PMD670 recorder. Recordings were made at a sampling rate of 22.05 kHz and saved to a

computer. Several tokens of each word were recorded, and the tokens with the best audio

quality were selected for the experiment. Sound Vles were edited using Praat (Boersma &

Weenink, 2010).

VOT continua were created from these recordings for another experiment; only

the endpoint VOTs (approximately 0 and 40 ms) were used here. Continua were created

by cross-splicing the voiced and voiceless tokens (McMurray, Aslin, Tanenhaus, Spivey, &

Subik, 2008). Each token was marked at zero-crossings in approximately 5 ms steps from

the onset of the word to 40 ms after onset, and nine-step VOT continua were created. To

construct a given step in the VOT continua, the appropriate amount of (voiced) material

we excised from the beginning of each voiced token and replaced with a similarly long

(aspirated) portion from the voiceless.

3.5.1.4 Procedure, EEG recording, and data processing

The experimental setup, EEG recording, and data processing procedures were the

same as in Experiment 1. The task was also the same, except that participants identiVed the

Vrst letter of the word they heard as either “b” or “p”.
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Figure 3.3: Experiment 2 results — ERP waveforms. Grandaverage waveforms for the /b/
(≈0 ms VOT) and /p/ (≈40 ms VOT) stimuli, averaged across the six word pairs. N1 ampli-
tude is greater for the /b/ stimuli, and a single N1 peak is observed for both sets of stimuli.
Raw averages are plotted in this Vgure to illustrate the absence of a double-peaked N1.

3.5.2 Results

Participants accurately identiVed the stimuli as starting with a /b/ or /p/ for each

word pair (mean accuracy: 99.3%).

Figure 3.3 shows grandaverage ERP waveforms for the two VOT conditions. A single

N1 peak can be seen for both the short and long VOTs. Mean N1 amplitude was calculated

as the mean voltage across the frontal channels from 75 to 125 ms post-stimulus. Figure 3.4

shows mean N1 amplitude for each word pair and VOT endpoint.

Mean N1 amplitude was greater for the voiced condition (-0.84 µV) than for the

voiceless condition (-0.65 µV). A 2 (VOT step) x 6 (word pair) repeated-measures ANOVA

conVrmed this, showing a signiVcant eUect of voicing endpoint (F(1,5)=10.47, p=0.023). This

supports previous results showing that N1 amplitude is sensitive to VOT diUerences. Neither

the eUect of word pair (F(5,25)=1.65, p=0.185) nor the interaction (F<1) were signiVcant.
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3.5.3 Discussion

The results of this experiment demonstrate that VOT diUerences in natural speech

produce changes in N1 amplitude in the same direction seen with synthetic speech (larger

N1s for short VOTs). In addition, a single-peaked N1 is observed for both endpoints, sug-

gesting that the longer VOTs are not so long that they produce a double-peaked response

and that the amplitude of the bursts in the natural stimuli is small enough that an N1 to

the release burst does not obscure eUects of VOT diUerences. This extends the results of

Toscano et al. (2010) showing that similar eUects can be observed for natural speech.

Overall, these results suggest that we can observe diUerences in N1 amplitude as a

function of VOT for natural stimuli and demonstrates that they can be used in the experi-

ments examining talker and rate compensation.
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3.6 General discussion

The Vndings presented in this chapter provide the groundwork for examining the

eUects of context on cue encoding and categorization during speech perception. The anal-

yses of the P3 data from Toscano et al. (2010) show that variation in P3 amplitude reWects

diUerences in VOT relative to listeners’ individual phonological categories. This provides

additional support for the idea that the P3 can be used as measure of phonological catego-

rization in a target detection task.

In addition, the results of Experiments 1 and 2 provide evidence that the acoustic

diUerences of interest — formant frequency and VOT diUerences — produce measurable

changes in the auditory N1. Given these results, we can use these cues to examine diUerent

types of context information on cue encoding.

Together, the P3 and N1 responses in the target detection task, along with the use of

the Adjar procedure to remove component overlap, provide a set of tools that can allow us

to examine context eUects at the level of cues and categories. The next chapter presents a

series of experiments using this approach to look at listeners’ use of VOT and F1 as cues to

voicing and vowel contrasts as a function of talker gender context.



52

CHAPTER 4
TALKER IDENTITY

4.1 Background

The next set of experiments will examine eUects of talker context. As introduced in

Chapter 2, variation between talkers’ voices can produce large diUerences in many acoustic

cues (Jongman et al., 2000; McMurray & Jongman, 2011). In particular, one of the most

salient sources of such diUerences is whether the talker is a man or woman. This results in

a number of diUerences in acoustic cues, due to both articulatory factors and sociophonetic

diUerences between men and women’s speech. Moreover, these eUects can be quite large.

For example, gender accounted for approximately half of the variation in F1 frequency (one

of the main cues to vowel quality) in a corpus of /2/ and /E/ vowels spoken by 10 talkers

(Cole et al., 2010).

Variability due to talker gender is handled diUerently by the three types of cue en-

coding models. Raw-cue encoding approaches suggest that gender-speciVc acoustic diUer-

ences are associated with phonological information at category levels. That is, to handle

variation in vowel sounds across talker gender, listeners’ vowel categories may be diUeren-

tially activated depending on the gender of the talker. In contrast, the intrinsic and extrinsic

encoding approaches both suggest that listeners’ encode phonetic cues to vowels relative

to the gender of the talker. However, these two approaches diUer from each other in that

intrinsic approaches use the relationship between cues within a single segment (e.g., the

ratio between F1 and F2 Syrdal & Gopal, 1986), while extrinsic approaches use more global

information (e.g., the size of a talker’s vowel space Lobanov, 1971). Thus, speech perception

in the presence of diUerent talkers provides a platform for testing the predictions of these

approaches to cue encoding, though previous work has not examined context eUects at the

level of cue encoding itself. The key distinctions between the models being examined here

are illustrated in the diUerences between types of encoding in Figure 2.1.
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To examine compensation for talker variability, I looked at diUerences in how lis-

teners process VOT and F1, two cues that vary with talker gender. Both were examined as a

function of whether a preceding carrier phrase was spoken by a man or woman. To remove

the eUects of gender information in the target word, stimuli with an ambiguous gender

were used. Four experiments were conducted to determine how listeners compensate for

diUerences in talker context and to examine vowel encoding using the N1/P3 approach used

previously to examine encoding of a single cue, VOT, in the absence of context information

(Toscano et al., 2010), with the N1 giving us a measure of cue encoding and the P3 a measure

of categorization. In particular, an /E/-/æ/ vowel contrast and a /b/-/p/ voicing contrast are

used, since diUerences in talker gender aUect cues to both of these distinctions.

Before presenting the experiments, a brief review of the relevant phonetic and per-

ceptual data on talker identity eUects will be presented, along with how the proposed com-

pensation mechanisms have explained the data.

4.1.1 Phonetic data

As I introduced in Chapter 2, Peterson and Barney (1952) measured F1 and F2 values

for English vowels from 76 talkers. They recorded the ten monopthong vowels in English

in /hVd/ utterances (e.g., “hood”, “had”, “’hud”, etc.) and found signiVcant variation in

formant frequencies for vowels spoken by men and women, reWecting diUerences in the

size and shape of their articulators. Overall, women had higher F1 and F2 values than men.

Moreover, there was considerable overlap across talkers for pairs of vowels that are close in

F1xF2 space.

Hillenbrand et al. (1995) replicated the Peterson and Barney study and largely found

the same results. One key diUerence was the properties of the vowels /æ/ and /E/. Both

studies found a great deal of overlap in steady-state F1 and F2 values between these two

vowel sounds. However, Peterson and Barney found that /E/ had lower F1 and F2 values

than /æ/, while Hillenbrand et al. found lower F2 values for /æ/, and similar F1 values for
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the two vowels (/æ/ had a slightly lower value for women, and /E/ had a slightly lower

value for men). In contrast, Di Benedetto (1989) found results consistent with Peterson and

Barney’s. Thus, these diUerences may have been due to factors speciVc to the talkers in the

Hillenbrand et al. study, such as their dialect — they were mostly from southern Michigan

and had the predominant dialect of that region. Indeed, a number of other studies have

also found dialectical diUerences between vowel sounds (Clopper, Pisoni, & de Jong, 2005;

Clopper & Pisoni, 2004; Hagiwara, 1997).

Regardless of the diUerences between the two datasets, both suggest that /æ/ and

/E/ are highly overlapping acoustically. They show that diUerences between talkers create

situations in which the same vowel sound (as measured by F1 and F2) can be interpreted

as two diUerent vowels depending on whether it was spoken by a man or woman. For

example, a given sound may be perceived as the vowel /æ/ (as in “had”) when spoken by a

man, and as /E/ (as in “head”) when spoken by a woman. Thus, it may be particularly useful

for listeners to compensate for talker diUerences in these vowels.

The gender of the talker can also have eUects on other acoustic features such as F1

intensity (Huber, Stathopoulos, Curione, Ash, & Johnson, 1999), formant frequency range

(i.e., the size of the vowel space; Whiteside, 2001), and VOT. Swartz (1992) recorded men

and women producing voiced and voiceless stop consonants. He measured VOT values

for both groups and found that women have longer VOT values than men. As a result of

this diUerence, the voicing category of intermediate VOT values can be ambiguous. Given

gender information though, listeners may be able to compensate for this. Other studies have

found similar results (Ryalls et al., 1997; Whiteside & Irving, 1998), though Morris, McCrea,

and Herring (2008) found no eUect when talkers produced syllables in isolation.

In addition, some gender eUects are due to sociophonetic factors rather than artic-

ulatory diUerences. For example, spectral mean, one of the main acoustic cues for distin-

guishing place of articulation in English fricatives (e.g., /s/ vs. /S/) varies between men and
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women such that women have higher means than men (Strand & Johnson, 1996). Unlike the

vowel eUects discussed above, however, these eUects appear to be driven by socio-cultural

factors as a way to indicate the talker’s gender. However, there is some evidence that lis-

teners compensate for variation in this cue based on perceived vocal tract size (May, 1976),

which could suggest an articulatory basis, though perceived vocal tract size would be a

sociophonetic factor itself. Overall, the phonetic data suggest that a number of acoustic

cues are aUected by talker variability and that some kind of compensation for this during

perception would be beneVcial for listeners.

4.1.2 Perceptual data

Perceptual experiments suggest that listeners are sensitive to these phonetic relation-

ships. Johnson et al. (1999) presented subjects with words spoken by men and women with

either stereotypical or non-stereotypical voices (i.e., stereotypically-male for the men and

stereotypically-female for the women). Auditory stimuli were also presented in the context

of either a male or female face. They found that listeners’ category boundaries along an

F1 hood-hud vowel continuum shifted such that the boundary was lower in the context of

a male talker. In addition, there was an eUect of the visual face presented, again with a

lower F1 boundary in the (visual) context of a male talker. This shift is consistent with the

direction of compensation demanded by the phonetic data described above. Since men have

lower formant frequencies on average, listeners treat an intermediate frequency as higher

than it actually is, resulting in more /u/ responses and a lower F1 category boundary.

This result also demonstrates that compensation for talker gender need not be lim-

ited to auditory stimuli. Expectations driven by visual cues about the gender of the talker

can serve a similar function. This rules out purely cue-level interactions (i.e., lateral inter-

actions) as a source of the eUects. Similarly, other talker-speciVc factors, such as dialect

diUerences have an eUect on vowel perception. Listeners are less able to discriminate vowel

distinctions not present in their own dialect (e.g., pin vs. pen; Conrey, Potts, & Niedzielski,
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2005) and categorize the same sounds diUerently depending on the dialect they were told

the talker had (Niedzielski, 1999).

Talker gender also has perceptual eUects on other speech contrasts. Strand and John-

son (1996) examined listeners’ perception of fricative place of articulation (/s/ vs. /S/) as a

function of talker gender. Using a procedure similar to the one used by Johnson et al. (1999),

they examined listeners’ categorization along an /s/-/S/ continuum varying in spectral mean

as a function of whether the stimulus was spoken by a man or woman and whether a vi-

sually presented face was male or female. They found eUects of both auditory and visual

gender information, indicating that talker gender eUects apply to fricative perception (a

sociophonetic eUect) as well as vowels.

There is also evidence that preceding sentential context can aUect vowel judgments.

Ladefoged and Broadbent (1957) presented listeners with synthesized sentences varying in

the frequency range of their formants, simulating diUerences between talkers. Listeners

were asked to make judgments about the last word in the sentence, which were of the form

/bVt/ and diUered based on their vowel. They found that listeners’ responses to a given

target word were inWuenced by the formant ranges in the carrier sentence. This suggests that

compensation for talker variability occurs for temporally asynchronous stimuli in addition

to stimuli in which talker and vowel information are heard (or seen) at the same time. This

is relevant for the present study, since the eUect of preceding context information will allow

us to distinguish between diUerent models of context compensation.

Together, these results allow us to rule out some of the proposed models of con-

text compensation. SpeciVcally, lateral, intrinsic encoding models cannot account for all of

these results, since they do not predict eUects of non-auditory information, sociophonetic

diUerences, or vowel information in the preceding sentence. Thus, the main distinction the

present set of experiments will focus on is the diUerence between extrinsic and raw-cue

encoding models.
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4.1.3 Mechanisms for handling talker variability

Several researchers have proposed the listeners’ compensate for talker diUerences

using an intrinsic encoding approach. Early work by Potter (1950) suggested that vow-

els are perceived based on the relative relationship between energy in diUerent frequency

bands, rather than the absolute values of formants, within a given segment. Presumably,

this would allow listeners to handle diUerences between talkers’ vowel productions. Syrdal

(Syrdal, 1985; Syrdal & Gopal, 1986) implemented these ideas in a model of vowel cate-

gorization, and found that, across talkers, vowels clustered together better based on the

distance in bark-space between formants (F2-F1) and F0 (F1-F0) than based on raw formant

frequencies (F1 and F2). Fujisaki and Kawashima (1968) also found improved clustering

using formant ratios, and listeners are sensitive to these diUerences (Christovich & Lublin-

skaya, 1979; Delattre, Liberman, Cooper, & Gerstman, 1952). However, as noted above, these

models cannot account for previous results showing eUects of sociophonetic diUerences, vi-

sual information, and the preceding sentence.

Ladefoged and Broadbent’s (1957) results demonstrate that extrinsic information is

also used to account for variability across talkers. They showed that preceding context

can inWuence listeners’ judgments, which argues against a purely intrinsic (e.g., formant

ratio) account. Other researchers have suggested extrinsic normalization procedures based

on compression or expansion of each talker’s vowel space. Following up on Gerstman’s

(1968) early work using the range of formant frequencies for a given talker, Lobanov (1971)

demonstrated that an algorithm that normalized a talker’s vowel space based on the mean

formant frequencies of their vowels produced much better clustering of vowel categories

than raw formant frequencies. Since this relies on knowledge about a particular talker’s

vowel space (rather than the relationship between formants in an individual vowel), it Vts

into the category of extrinsic encoding via feedback models that suggest listeners recode

formants on the basis of information about a particular talker. Similar eUects are predicted
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by C-CuRE (McMurray & Jongman, 2011; Cole et al., 2010), which uses expectations from

various sources of context information to encode relative cues.

These accounts require highly-speciVc combinations of particular acoustic cues,

namely steady-state formants. However, there is evidence that listeners can perceive vowels

without steady-state formant cues at all. Strange, Jenkins, and colleagues (Strange, Jenkins,

& Johnson, 1983; Jenkins & Strange, 1999; Jenkins, Strange, & Miranda, 1994) demonstrated

this by presenting listeners with stimuli in which the steady-state vocalic portion had been

removed. With these “silent-center” stimuli, listeners are still above chance at recognizing

the correct vowel sound, even if the onset and oUset are spoken by two diUerent talkers

(Jenkins et al., 1994). This result is most consistent with a raw-cue encoding account in

which listeners are using cues other than steady-state formant frequencies (e.g., formant

transitions, vowel durations) as cues to vowel quality. It is inconsistent with a strict in-

trinsic account that speciVcally requires listeners to recognize vowels on the basis of the

relationships between formant frequencies or between formants and F0, though an intrin-

sic encoding process that incorporates changes over time may be able to account for these

eUects (Jenkins et al., 1994).

These studies suggest that both types of relative encoding, as well as raw-cue en-

coding approaches, can potentially play a role in vowel categorization, and some models

have attempted to combine aspects of multiple approaches. For example, Nearey (1989) and

Ainsworth (1975) demonstrate that both intrinsic and extrinsic factors can inWuence vowel

categorization in a single experiment and, therefore, that both need to be incorporated into

models of talker compensation. However, behavioral data alone make it diXcult to assess

whether this information is used at the level of cue encoding. Thus, the primary goal of this

set of experiments is to examine cue encoding as a function of talker context to see whether

listeners encode relative or raw cue-values.
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4.1.4 Experiment overview and predictions

The studies described above demonstrate that there are a number of acoustic dif-

ferences between talkers that listeners are sensitive to, particularly eUects of talker gender.

However, it is unclear which class of models ultimately underlies the way listeners deal

with variability between talkers. Although purely intrinsic approaches are ruled out by the

perceptual data, both extrinsic and raw-cue models, as well as those that incorporate aspects

of intrinsic and extrinsic encoding, are possible.

To evaluate each of these classes of models, we need to examine the eUect of pre-

ceding talker gender diUerences on cue encoding. This will allow us to contrast extrinsic

encoding approaches with intrinsic and raw-cue encoding approaches and separate ERP re-

sponses to the context from those to the target stimulus. In turn, in order to do this we need

to create stimuli in which the target word to be categorized has ambiguous gender infor-

mation. In addition, we need to assess whether the ERP approach can allow us to detect

encoding of other types of acoustic cues, such as formant frequencies. Thus, before exam-

ining the eUect of talker context, these issues will be addressed in a series of experiments.

First, stimuli must have an ambiguous gender (otherwise listeners could simply use

this information, rather than the sentence context, to make vowel judgments). The source-

Vlter approach (i.e., linear predictive coding [LPC] resynthesis; Fant, 1960) can be used to

generate stimuli that vary in pitch, formant frequency, and formant bandwidth to create

male-female continua. Experiment 3 uses such stimuli to determine where listeners’ cate-

gory boundary is for male and female talkers. The ambiguously-gendered stimuli will then

be used in subsequent experiments.

Second, we must establish that N1 amplitude can be used as an index of perceptual

encoding for vowel distinctions. Experiment 1 established that diUerences in /æ/ and /E/

have an eUect on the N1, but it did not assesses within-category diUerences. Previous work

has demonstrated, for voicing diUerences deVned along VOT continua (Toscano et al., 2010),
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N1 responses are continuous and do not reWect phonological diUerences. However, because

the N1 does not appear to index perceptual encoding in general, but rather encoding for

particular acoustic diUerences, we must establish that variation in N1 amplitude reWects

continuous changes in the acoustic properties of the stimuli used here. In Experiment 4,

the ambiguously-gendered stimuli from Experiment 3 will be varied along an F1 continuum

from /E/ to /æ/, and along a VOT continuum from /b/ to /p/. A target detection task will be

used to examine eUects of acoustic diUerences along the voicing and vowel continua on N1

and P3 amplitude.

Third, we must show that male and female carrier phrases will have an eUect

on listeners’ categorization of the ambiguously-gendered stimuli. In Experiment 5, the

ambiguously-gendered /E/-/æ/ stimuli from Experiment 4 will be added to the end of a

carrier phrase. By asking listeners to identify each stimulus we can examine the eUect of

talker context on vowel quality judgments. This allows us to test purely intrinsic approaches

against extrinsic and raw-cue approaches, since the only gender diUerences occur outside

the phonetic segments in the target words.

Finally, and most importantly, Experiment 6 addresses the primary question of in-

terest: whether eUects of talker context have an inWuence at the level of cue encoding or

categorization. The stimuli from Experiment 5 will be used here, and as in Experiment 4, a

target detection task will be used. Crucially, the target word will be preceded by a carrier

phrase spoken by either a man or woman to set up expectations about gender.

This experiment directly tests the predictions of two of the encoding approaches. In

particular, it allows us to compare the extrinsic approach (i.e., relative encoding from long-

distance context information) with raw-cue encoding approaches by examining whether N1

responses to the onset of the target word vary as a function of the preceding carrier phrase.

Since women have longer VOTs than men, listeners would compensate for this by

recoding a given sound as having a shorter VOT than it actually does. In addition, since the
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results of Toscano et al. (2010) show that N1 amplitude decreases with increasing VOT, this

would result in a larger N1 (i.e., consistent with a shorter VOT) in the context of a female

talker than in the context of a male talker. Thus, if preceding context aUects cue encoding,

we would predict a smaller N1 in the context of a male talker than a female talker for stimuli

varying in VOT.

The opposite pattern of results is predicted for the vowel stimuli. Since men have

lower F1 frequencies than women, listeners would compensate by encoding a given F1 value

as higher than it actually is when it is spoken in the context of a male talker. Given that

the /æ/ stimuli in Experiment 1, which have higher F1 values than the /E/ stimuli, produced

larger N1s, we would expect larger N1s in the context of a male talker. Thus, relative

encoding accounts predict that context should have diUerent eUects on N1 amplitude as a

function of the particular acoustic cue (VOT or F1). This will help us to rule out alternative

explanations based on overall diUerences in the N1 response to the diUerent talkers.

Larger N1 amplitudes in the context of a female talker for the VOT stimuli and in the

context of male talker for the F1 stimuli would demonstrate eUects due to extrinsic encoding

processes (i.e., the gender of the talker in the preceding sentence) and could not be accounted

for by intrinsic encoding, since the relevant information needed for intrinsic compensation

is constant across talker conditions. However, this result would also be consistent with ac-

counts that allow for both extrinsic and intrinsic encoding. Raw-cue encoding approaches,

in contrast, predict that cue encoding is not aUected by context, but that categorization is.

Thus, in this case, we would expect to see eUects of talker gender in the P3 component and

in listeners’ overt responses, but not in the N1.

4.2 Experiment 3: Gender-neutral stimuli

Experiment 1 demonstrated that variation in naturally-produced /E/-/æ/ sounds

shows measurable eUects on N1 amplitude. Given this, talker gender continua were cre-

ated for axe-ex and had-head contrasts. Although listeners primarily use F0 to identify



62

talker gender (Gelfer & Mikos, 2005), both F0 and formant parameters (frequencies and

bandwidths) were varied between male and female talkers to create natural-sounding end-

points. Vowel quality was also varied from /E/ to /æ/ in three steps (the two endpoints and

an ambiguous vowel) to see if listeners’ gender judgments varied as a function of vowel.

Listeners’ categorized the stimuli as either male or female, and their category boundaries

along each continuum were measured. In addition, ERPs were collected to see if diUerences

in vowel quality for the manipulated stimuli had an eUect on N1 amplitude (as the natural

recordings used in Experiment 1 did).

4.2.1 Methods

4.2.1.1 Participants

Seventeen people participated in the experiment. Participant recruitment, consent,

and compensation procedures were the same as in Experiment 1, and participants met the

same language, hearing, and vision criteria as in previous experiments.

4.2.1.2 Design

Participants performed a 2AFC task in which they indicated whether an auditory

stimulus was spoken by a male or female talker. Stimuli varied along two continua in nine

gender steps and two vowel quality steps. Each stimulus was presented 10 times for a total

of 540 trials. The experiment took approximately 60 minutes and was completed over the

course of a single session.

4.2.1.3 Stimuli

The same tokens from the recordings made for Experiment 1 were used as the basis

of the stimuli that were created for this experiment. For each selected word, a series of

measurements were made using Praat. First, the onset and oUset of steady-state energy in

the vowel was measured. Second, pitch (F0) during the vowel was measured using the auto-
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Male���
ex	


Male ⟶ Female (9 steps)	


Male���
axe	


Female���
ex	


Female���
axe	


/ε/ ⟶ /æ/ (3 steps)	


Figure 4.1: Schematic of Experiment 3 stimuli. For each word pair, stimuli varied from male
to female in nine steps and from /E/ to /æ/ in three steps.

mated pitch analysis tool in Praat with a time step of 0.01 s and a pitch Woor of 75 Hz. Third,

formants were measured using LPC with a time step of 10 ms, maximum formant frequency

of 22.05 kHz, window length of 80 ms, and pre-emphasis from 214 Hz. The number of LPC

poles used for each talker and word pair is given in Table 4.1. Mean formant frequencies

across the vowel were used to measure the Vrst four formants (F1-F4). Bandwidths for these

four formants (B1-B4) were measured at the midpoint of the vowel.1

After these measurements were made, gender and vowel (/E/-/æ/) continua were

created using the ex and head tokens as starting points. Gender continua were made by

gradually changing the parameters of the male token to match those of the female token.

Nine parameters (F0, F1, F2, F3, F4, B1, B2, B3, and B4) were varied in nine steps along

the gender continua and in three steps along the vowel continua. Figure 4.1 contains a

schematic of the 27 stimuli for each word pair. Table 4.1 contains the starting and ending

values for each parameter for the diUerent continua.

1For the ex recording of the female talker, a diUerent time point was chosen to measure the
bandwidth of F3 due to a decrease in energy at that frequency range at the midpoint of the vowel.
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Table 4.1: Endpoint values for Experiment 3 stimuli.

Gender Word LPC poles F0 F1 F2 F3 F4 B1 B2 B3 B4

Male axe 20 104 772 1831 2670 3245 195 269 436 869

ex 20 104 671 1941 2709 3461 71 186 275 321

had 17 104 733 1915 2807 3632 200 229 205 135

head 17 109 541 2001 2837 3706 104 168 163 140

Female axe 15 202 1056 1784 2853 4176 228 489 735 565

ex 15 223 989 1972 2872 4119 183 347 438 439

had 15 200 1065 1770 2983 4402 177 254 703 1065

head 15 222 878 2046 3173 4362 66 343 782 762

Note: Formant frequency (F1-F4) and bandwidths (B1-B4) are in Hz.

The vocalic portion of each token was extracted, and F0 and formant values were

varied using a two-stage procedure (thus, the vocalic portion was resynthesized twice).

First, F0 was manipulated by extracting the pitch track (using the same parameters used for

measurement), shifting it by the appropriate frequency for that step along the continuum

(e.g., up 10 Hz), and replacing the pitch track of the sound. The sound was resynthesized

using the pitch-synchronous overlap-add method (Moulines & Charpentier, 1990).

Next, LPC coeXcients for the vowel were computed using 17 poles and the same

parameters used for formant measurement. The sound source was then extracted from the

original sound using the LPC coeXcients. Formant frequencies and bandwidths were varied

along continua by modifying the LPC coeXcients, and the sound source was Vltered through

the modiVed formants to synthesize a new sound. The amplitude of the resynthesized sound

was scaled to 0.99, resulting in similar intensities for each formant step.

After this, the pre- and post-vowel portion of each word from the male and female
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tokens were sample averaged so that they had an ambiguous gender. That is, for head,

the /h/ and /d/ from each token were averaged, and for ex, the /ks/ from each token was

averaged. Prior to averaging, the sounds were equated for length by cutting the longer one

at the zero-crossing closest to the duration of the shorter token. They were also normalized

for intensity by setting the mean intensity of the lower-intensity sound to the mean intensity

of the higher-intensity sound.

Finally, the sample averaged pre- and post-vowel parts of the word (the consonants)

were then spliced onto the modiVed vowel. In order to remove high-frequency artifacts

produced by the LPC procedure, the Vnal stimuli were low-pass Vltered to 11.125 kHz using

a symmetric Hann Vlter with a smoothing width of 100 Hz.

4.2.1.4 Procedure, EEG recording, and data processing

The task was the same as in Experiment 1, except that participants categorized stim-

uli as male and female (indicated by the letters “M” and “F” on the screen). EEG recording

and data processing procedures were the same as in Experiment 1.

4.2.2 Results

4.2.2.1 Behavioral results

Listeners’ responses for both continua indicate that they reliably identiVed the stim-

uli as male or female at each endpoint (mean accuracy: 97.5%). Figure 4.2 shows partici-

pants’ categorization responses as a function of continuum. The step closest to the point at

which participants were equally likely to identify the stimuli as being spoken by a man or

woman was step 4 for the axe-ex continuum and step 5 for the had-head continuum.

Behavioral responses were analyzed with a logit mixed-eUects model with gender

step, vowel step, and stimulus continuum entered as Vxed eUects (rmax=-0.466).2 There was

2In the mixed-eUects models reported here, the maximum correlation between the main eUects
in the model (rmax) is given as a measure of whether the results can be uniquely attributed to the
relevant factors.
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Figure 4.2: Experiment 3 results — behavioral responses. Participants’ categorization re-
sponses as a function of gender step (male to female) for each vowel step (/E/ to /æ/). The
top panel shows listeners’ responses for the ex-axe stimuli, and the bottom panel shows
responses for the head-had stimuli.
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a main eUect of gender step (b=1.23, z=51.87, p<0.001) with more “female” responses at the

continuum endpoint consistent with a woman’s voice. There was also a main eUect of

continuum (b=-1.83, z=-25.18, p<0.001), which indicates that the category boundary diUered

between the two continua such that the boundary for the ex-axe continuum was closer to

the ex endpoint than for the head-had continuum. The eUect of vowel step was marginal

(b=0.020, z=1.84, p=0.066).

There was also a gender step x continuum interaction (b=-0.34, z=-7.63, p<0.001),

indicating that the ex-axe continuum had a steeper categorization function than the head-

had continuum. There was also a gender step x vowel step interaction (b=-0.021, z=-3.04,

p=0.002) and a gender step x vowel step x continuum interaction (b=0.040, z=2.95, p=0.003),

indicating that listeners’ gender categorization functions varied for the diUerent vowel steps

and that this eUect diUered for the two continua. This is not unreasonable, since the same

set of acoustic cues that determines gender also determines vowel quality, and the stimuli

were constructed to match the recorded tokens closely to make them as natural as possible.

Thus, there could be particular combinations of gender and vowel step that produce similar

response to other gender and vowel steps.

Finally, the vowel step x continuum interaction was signiVcant (b=0.071, z=3.25,

p=0.001). Separate models examining the eUect of vowel step for the two continua were

then run (ex-axe: rmax=-0.099; head-had: rmax=0.104). These revealed that that there was a

signiVcant eUect of vowel step for the head-had continuum (b=0.060, z=4.22, p<0.001), but

not for the ex-axe continuum (b=-0.017, z=-0.99, p=0.321). Listeners made more “female”

responses for the had endpoint than for the head endpoint. Again, since the same acoustic

cues signal diUerences in both vowel quality and gender, listeners may have used the overall

combination of cue-values to make gender judgments.

In order to more precisely identify the male-female boundary for subsequent experi-

ments, listeners’ responses were also Vt to four-parameter logistic curves, with the midpoint
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Table 4.2: Category boundaries for Experiment 3.

Continuum Vowel step Category boundary

ex-axe 1 4.3

5 4.4

9 4.3

head-had 1 5.4

5 5.8

9 5.4

Note: Values are steps along each continuum.

of the function providing an estimate of the category boundary. The proportion of female

responses as a function of gender step were Vt for each subject, vowel step, and continuum.

Overall, the mean boundary (averaged across the three vowel steps) was at step 4.3 for the

ex/axe continuum and at step 5.5 for the head/had continuum, corresponding closely with

the nearest steps where subjects’ responses crossed the 50%-point for male/female responses.

The mean boundaries for each continuum and vowel step are shown in Table 4.2.

4.2.2.2 ERP results

As in Experiment 1, ERP results for the two stimulus continua (ex/axe vs. head/had)

were analyzed separately. For the ex-axe continuum, N1 amplitude was larger for the male

endpoint than for the female endpoint along the gender continuum, and amplitude generally

varied consistently with gender step across the continuum (with the exception of step 4). In

addition, N1 amplitude was larger for the /æ/ endpoint than for the /E/ endpoint, which Vts

with the results of Experiment 1. Figures 4.3 and 4.4 show grandaverage ERP waveforms

for each word pair as a function of vowel step and gender step, respectively.

Mean N1 amplitude was measured for the average of the three frontal channels
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across the same time ranges after the onset of periodic energy used in Experiment 1 (75-125

ms for the ex-axe stimuli; 223-273 ms for the head-had stimuli). N1 amplitude as a function

of gender and vowel step is shown in Figure 4.5. The mean amplitudes mirror the pattern of

results in the waveforms. The Vgure also illustrates that the unusually large N1 amplitude

for step 4 along the gender continuum was driven primarily by the ambiguous (i.e., step 5)

/E/-/æ/ stimuli.

N1 amplitude was analyzed using a linear mixed-eUects model with gender and

vowel step entered as Vxed eUects (rmax=0) in order to see if either showed a linear rela-

tionship with the N1.3 There was a main eUect of gender step (b=0.039, pMCMC=0.009),

indicating that N1 amplitude decreased linearly with increasing gender step. Although

there was not a main eUect of vowel step(b=-0.01, pMCMC=0.307), this may have been due

to variability in the ambiguous vowel stimuli and overlap from the P1 component.

There was a marginal gender step x vowel step interaction (b=0.009, pMCMC=0.054),

suggesting that the eUect of gender diUered as a function vowel step, though no clear pat-

tern emerges from the data (see Figure 4.5). Given that variation in the same set of acoustic

cues signals both gender and vowel diUerences, it would not be surprising if particular com-

binations of gender and vowel step were acoustically similar to other conditions, producing

similar eUects on N1 amplitude. However, it is diXcult to determine precisely which cues

are driving the eUect in this case, since a large number were varied in an eUort to create

stimuli that sounded as natural as possible.

As in Experiment 1, there was little variation in N1 amplitude along the head-had

continuum. Again, this may be due to overlap from ERP components to the initial /h/ in

these stimuli. A linear mixed-eUects model examining N1 amplitude (rmax=0) did not Vnd

an eUect of gender (b=0.02, pMCMC=0.283) or vowel step (b=0.01, pMCMC=0.378), nor an

3In this and subsequent linear mixed-eUects analyses, the Markov chain Monte Carlo (MCMC)
procedure was used to estimate p-values (pMCMC ) for each eUect, with 10,000 simulations being run
in each case.
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interaction (b=0.003, pMCMC=0.483). Again, this is likely due to overlap from the preceding

/h/. Partially because of this, subsequent experiments used only the ex-axe continuum.

4.2.3 Discussion

The results of this experiment suggest that the LPC resynthesized stimuli can be

correctly perceived as being spoken by a man or woman, and more importantly, that by

manipulating pitch, formant frequencies, and formant bandwidths, we can create gender-

neutral stimuli. The parameters of the stimuli at the category boundaries in this experiment

will be used for Experiments 4-6.

The results also suggest that simultaneously manipulating multiple cues to vowel

quality can make it diXcult to observe changes in the N1 as a function of acoustic diUer-

ences. In the next experiment, only F1 will be manipulated along the /E/-/æ/ continuum.

This is one of the two cues (along with F2) that distinguished these two vowels in the

Peterson and Barney (1952) dataset. In addition, because neither this experiment nor Exper-

iment 1 found any large diUerences in N1 amplitude for the head-had continuum, only the

ex-axe continuum will be used in subsequent experiments.

4.3 Experiment 4: ERP responses to vowel continua

The results Toscano et al. (2010) suggested that N1 amplitude can be used as an index

of perceptual encoding, since it varies linearly with changes in VOT and is not inWuenced

by participant’s phonological categories. However, it is not clear whether this also applies to

other phonetic cues, such as the formant frequencies manipulated in this set of experiments.

To create stimuli that vary in only a single acoustic cue, F1 was manipulated for the /E/-/æ/

stimuli used here. Thus, it is important to conVrm that the same eUect can be observed for

diUerences in F1.

This experiment is designed to establish that N1 amplitude varies linearly and inde-

pendently of listeners’ phonological categories as a function of changes in F1 and to replicate
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Figure 4.5: Experiment 3 results — N1 amplitude. Mean amplitudes for the average of the
three frontal channels as a function of gender and vowel step. N1 amplitude was calculated
as the mean voltage 75-125 ms after the onset of the vocalic portion. For the ex-axe contin-
uum, this occurred from 75-125 ms post-stimulus, and for the head-head continuum, from
223-273 ms post-stimulus (accounting for the word-initial /h/).
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the results of Toscano et al. (2010) for VOT. Listeners’ heard stimuli varying in F1 along an

ex-axe continuum (increasing F1 from the /E/ to the /æ/ endpoint), as well as stimuli varying

in VOT along a bee-pea continuum (increasing VOT from the /b/ to /p/). These two con-

tinua will also be used in the experiment examining the eUect of preceding gender context,

since they make diUerent predictions about the direction of the eUect: relative encoding

approaches predict a larger N1 in the context of a male talker for the ex-axe stimuli, and a

larger N1 in the context of a female talker for the bee-pea stimuli.

The ERP data were analyzed using approaches similar to those described in Toscano

et al. (2010). Two criteria were used to assess whether N1 diUerences reWect cue encoding.

First, to examine the overall eUect of F1 and VOT on N1 amplitude, the data from each

stimulus continuum were analyzed using a linear mixed-eUects model with step and target

as Vxed eUects. A signiVcant eUect of step in this analysis would demonstrate a linear re-

lationship between the cue and N1 amplitude, providing the Vrst piece of evidence that it

reWects continuous cue encoding. Second, this analysis was repeated with the data grouped

by subjects’ responses to rule out the possibility that linear eUects in the Vrst analysis were

due to averaging across categorical diUerences in N1 amplitude. In this analysis, a main ef-

fect of subjects’ response with no eUect of continuum step or interaction would suggest that

diUerences in N1 amplitude reWect a categorical distinction between the stimuli rather than

a continuous eUect. Further, a signiVcant eUect of step would provide additional evidence

that the N1 reWects continuous cue encoding.

Next, to examine whether the P3 reWects variation within a phonological category,

two analyses were conducted. First, diUerences in P3 amplitude were analyzed as a function

of distance from the target endpoint. Stimuli at the endpoint should produce the largest P3

and within-category diUerences in P3 amplitude would suggest that listeners’ are sensitive

to acoustic diUerences within a phonological category at late stages of processing. Second,

to establish that these diUerences reWect eUects based on individual listeners’ categories, the
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data were analyzed as a function of distance from each listener’s category boundary for the

target-response trials along that cue dimension.

Together these analyses allow us to determine whether the N1 reWects encoding of

continuous acoustic diUerences and whether the P3 reWects category-level diUerences for

the two continua used here.

4.3.1 Methods

4.3.1.1 Participants

Twenty-seven people participated in the experiment. Participant recruitment, con-

sent, and compensation procedures were the same as the other ERP experiments, and partic-

ipants met the same language, hearing, and vision criteria as in previous experiments. One

participant was excluded from the analyses for the bea-pea stimuli, and four were excluded

from the ex-axe analyses due to poor performance (<50% correct) on the endpoints.

4.3.1.2 Design

The design of this experiment is similar to the one used by Toscano et al. (2010)

to measure the N1 and P3 components. Participants performed a target detection task in

which they identiVed whether stimuli matched a target word. Stimuli consisted of nine-

step continua varying in VOT from bee to pea and in F1 from ex to axe. Each word served

as the target in separate parts of the experiment. Each stimulus was repeated 15 times in

random order, for a total of 1140 trials.

Because the target detection task leads to diUerent category boundaries as a function

of the target category (Toscano et al., 2010), an additional 2AFC task was used to obtain

participants category boundaries for the target words in each stimulus continuum. This

was run after the EEG recording session. Stimuli were blocked by continuum, and the

order of the continua and mapping between the endpoints and left and right buttons was

randomized between participants. Participants heard Vve repetitions of each stimulus. The
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two parts of the experiment took approximately two hours and were run in a single session.

4.3.1.3 Stimuli

The ex-axe stimuli were based on the same set of recordings as in Experiment 3,

and the same procedures were used to create the vowel continua, except that nine steps

were used instead of three and only the F1 parameter was varied to create the vowel con-

tinuum. First, the acoustic parameters corresponding to the gender of the talker were set to

the ambiguous values obtained from the results of Experiment 3. Pilot categorization data

revealed that the F1 endpoint values based on the measurements of the original recordings

did not produce reliably correct responses at the continuum endpoints. Thus, the range of

values used was increased slightly so that the /E/ and /æ/ endpoints would be more clearly

identiVed; F1 values varied over a 163 Hz range across the continuum. Table 4.3 shows the

F1 values for each step along the /E/-/æ/ continuum.

For the bee-pea stimuli, a VOT continuum was generated using the same cross-

splicing procedure used for Experiment 2. Pilot data indicated that listeners reliably identi-

Ved the /b/ and /p/ endpoint steps correctly. VOT values are shown in Table 4.4.

4.3.1.4 Procedure

The experimental setup was the same as in Experiment 1. The Vxation point and

button labels on the screen were replaced by two lines of text indicating the target word

on the top line and the corresponding button on the bottom line. The target button (left or

Table 4.3: F1 values for Experiment 4 /E/-/æ/ continuum steps.

Continuum 1 2 3 4 5 6 7 8 9

ex-axe 727 749 773 797 817 833 851 868 890

Note: Values are in Hz.
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right) was constant for each participant and alternated between participants.

Each individual stimulus was equally likely. As a result, targets occurred on ap-

proximately 25% of the trials in each block (depending on where the participant’s category

boundary was for those stimuli), which should produce a P3 response. Target block order

was varied between participants with the restriction that words from the same stimulus

continuum (bee/pea or ex/axe) could not serve as the target in adjacent blocks.

4.3.1.5 EEG recording and data processing

EEG and data processing procedures were the same as in the previous experiments.

4.3.2 Results

4.3.2.1 Behavioral responses

Most participants correctly identiVed the stimulus endpoints in each target block.

Overall mean accuracy at the continua endpoints was 93.4% including all participants, and

95.8% including only those with greater than 50% correct responses on the endpoints. Fig-

ure 4.6 shows the these listeners’ responses for each stimulus continuum as a function of

continuum step and target. As expected, listeners’ categorization functions were shifted as

a function of which endpoint was the target (i.e., they showed a bias toward making more

target responses).

Logit mixed-eUects models were used to analyze listeners responses for each stimu-

lus continuum for the two target blocks relevant for that continuum (e.g., listeners responses

Table 4.4: VOT values for Experiment 4 /b/-/p/ continuum steps.

Continuum 1 2 3 4 5 6 7 8 9

bee-pea 0 5 12 19 20 24 30 32 39

Note: Values are in ms.
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to bee-pea stimuli when either bee or pea served as the target). Step and target were entered

as Vxed eUects. For the analysis, target/non-target responses were converted to responses

relative to the step-9 endpoint for each continuum. For example, for a /b/-/p/ stimulus

with pea as the target, a “target” response was coded as a /p/ and a “nontarget” response

was coded as a /b/; when bee was the target, a “target” response was coded as /b/ and a

“non-target” response was coded as /p/.

For the bee-pea stimuli, a model with VOT step and target word (bee vs. pea) was run

(rmax=0.36). There was a main eUect of step (b=1.09, z=49.00, p<0.001), indicating that lis-

teners responses varied as a function of VOT. There was also a main eUect of target (b=0.47,

z=14.98, p<0.001), which indicates that listeners produced more /p/ responses when pea

was the target than when bee was the target. The interaction was also signiVcant (b=-0.16,

z=-9.06, p<0.001), indicating that the slope of the categorization function was signiVcantly

greater for the pea target block than for the bee target block.

For the ex-axe stimuli, a model with F1 step and target word (ex vs. axe) was run

(rmax=0.13). There was also a main eUect of step (b=1.14, z=51.28, p<0.001), target (b=0.21,

z=4.60, p<0.001), and step x target interaction (b=-0.16, z=-6.03, p<0.001), the same pattern

of results seen with the bee-pea stimuli.

Listeners’ responses during the 2AFC task run after the ERP session also showed

standard categorization functions. As in Experiment 2, these data were Vt to four-parameter

logistic functions to determine participants’ category boundaries (these will be used in the

P3 analyses below). The mean boundary for both (9-step) continua was at step 5.4.

4.3.2.2 N1 amplitude

As in previous experiments, data from each stimulus continuum was analyzed sepa-

rately, since the two continua varied along two diUerent acoustic cue dimensions and ERPs

to diUerent steps along each continuum are not directly comparable. Figure 4.7 shows gran-

daverage ERP waveforms for the average of the three frontal channels as a function of
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continuum step for each of the two stimulus continua.

For the bee-pea continuum, the latency of the N1 was later and appeared to vary

more with VOT than in previous experiments. Because of this, the previous time range used

to compute mean N1 amplitude (75-125 ms) might correspond to the N1 for some VOTs

but not others. Thus, N1 amplitude was computed from the mean voltage 100 to 140 ms

post-stimulus, a time range that included the N1 across the VOT continuum. For the ex-axe

continuum, the same 75-125 ms post-stimulus time range used in previous experiments was

used. Figure 4.8 shows mean N1 amplitude as a function of step and target type (ex-axe vs.

bee-pea) for each of the stimulus continua.

For the bee-pea stimuli, short VOTs produced larger N1s than long VOTs, as in pre-

vious experiments. Mean N1 amplitude was analyzed using a linear mixed-eUects model

with VOT step and target type as Vxed eUects (rmax=0).4 The model showed a main eUect

of VOT step (b=0.028, pMCMC=0.014), which replicates the results of Toscano et al. (2010)

showing that N1 amplitude decreases linearly with increasing VOT. There was not an eUect

of target type (b=-0.083, pMCMC=0.157) nor an interaction (b=0.005, pMCMC=0.827).

Next, N1 amplitude was analyzed as a function of listeners’ responses. To look at

this for the bee-pea stimuli in this experiment, trials on which listeners made a “target”

response were analyzed as a function of whether the target was bee or pea. Because this

leads to many more trials for one condition than the other (i.e., there are very few trials

in which listeners responded “target” at the bee endpoint when pea was the target), each

condition was weighted by the number of trials in it. Figure 4.9 shows mean N1 amplitude

as a function of continuum step for the target-response trials for each stimulus continuum.

The weight (i.e., the number of trials) in each condition is indicated by the relative sizes of

the data points in the Vgure.

4Note that while we separated the data by stimulus continuum, the design of the experiment
was such that when the subject heard stimuli from the F1 (ex-axe) continuum, they would still be
monitoring for bee or pea on 50% of the trials
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A weighted linear mixed-eUects model with step and target (bee vs. pea) as Vxed

eUects was run (rmax=-0.737).5 The model showed a marginal eUect of VOT step (b=0.046,

pMCMC=0.083), and no eUect of target (b=0.073, pMCMC=0.748) or interaction (b=-0.047,

pMCMC=0.501). Thus, there is no indication that N1 amplitude varied as a function of which

endpoint served as the target, though the overall linear trend across the VOT continuumwas

not as strong as in the originally analysis. This may have been partially due to the reduced

number of trials in this dataset.

Mean N1 amplitude for the ex-axe stimuli were analyzed using the same approach.

First, a linear mixed-eUects model was used to examine N1 amplitude in the overall dataset.

F1 step and target type (ex/axe vs. bee/pea) were entered as Vxed eUects (rmax=0). The eUect

of F1 step was not signiVcant (b=-0.005, pMCMC=0.626). However, given that the eUect of

F1 on the N1 is relatively small, it may be diXcult to detect a linear trend for these stimuli.

The model did show a main eUect of target type (b=0.20, pMCMC<0.001), with the

bee/pea targets producing larger N1s than the ex/axe targets. The interaction between F1

step and target type was not signiVcant (b=0.02, pMCMC=0.470). The eUect of target type

could be due to diUerences in attention to the stimuli in the diUerent target conditions,

though increased attention typically produces larger N1s (Hansen & Hillyard, 1980), and it

is unclear how listeners’ are attending to the stimuli in the target detection task used here.

However, there are other conditions in which additional information that is relevant to the

speech produces smaller N1s (e.g., audiovisual speech, van Wassenhove et al., 2005). The

eUect of target type here may reWect a similar process.

Although an overall eUect of F1 step was not found, an eUect may be apparent if we

control for listeners’ responses. This analysis was not signiVcant for the VOT stimuli in this

experiment, but Toscano et al. (2010) did Vnd an eUect of VOT when listeners’ responses

5Because this model is highly unbalanced (e.g., since there are many more “target” responses to
the shorter VOTs when bee is the target), we would expect that the correlations between Vxed eUects
may be relatively large.
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were taken into account by looking at only the “target”-response trials. This suggests that

N1 amplitude is at least partially related to listeners’ ultimate responses. In addition, given

the variability in listeners’ responses to these stimuli, an eUect of F1 on N1 amplitude may

be more apparent for trials on which listeners made the same response.

Thus, as with the bee-pea stimuli, trials on which listeners made a “target” response

were analyzed as function of continuum step and target (ex vs. axe). A weighted linear

mixed-eUects model with F1 step and target (ex vs. axe) was run (rmax=-0.640). The model

showed a main eUect of F1 step (b=-0.059, pMCMC=0.024) such that N1 amplitude increased

with increasing F1 (i.e., closer to the /æ/ endpoint). This mirrors the results of Experiment

1 showing larger N1s for the /æ/ stimuli. There was also a main eUect of target (b=0.38,

pMCMC=0.002) with larger N1s when ex was the target than when axe was the target. The

interaction was also signiVcant (b=-0.10, pMCMC=0.047). A follow-up analysis examining

each target condition separately found a signiVcant eUect for the axe-target trials (b=-0.11,

pMCMC=0.006), but not for the ex-target trials (b=-0.001, pMCMC=0.969). This suggests that

the N1 is linearly sensitive to changes in F1, though the eUect was only apparent for the axe-

target trials. Critically, this did not interact with the eUect for the ex-target trials such that

the direction of diUerences in N1 amplitude varied depending on listeners’ responses (and

which word they were monitoring for). Thus, there is no evidence to indicate an inWuence

of phonological category information on the N1 response.

4.3.2.3 P3 amplitude

P3 amplitude was analyzed as a function of continuum step and target type for each

stimulus continuum. Because we expect the P3 to be largest for the (infrequent) target stim-

uli, it should be largest at the relevant continuum endpoint, and, if it is sensitive to variation

within a phonetic category, to decrease with distance from that endpoint. In addition, we do

not expect a P3 when one of the words from the opposite stimulus continuum is the target.

Figures 4.10 shows grandaverage waveforms for the average of the three parietal
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channels as a function of trial type (target vs. nontarget; e.g,. the ex and axe target blocks

are “target” trials for the ex-axe stimuli and “nontarget” trials for the bee-pea stimuli). The

Vgure illustrates that, as expected, P3 amplitude was larger for the target than the nontarget

trials. Figure 4.11 shows ERP waveforms for the target trials as a function of distance from

target endpoint. For both continua, P3 amplitude was largest at the relevant target endpoint

(e.g., the step 9 [high F1] endpoint when axe is the target), and a much smaller P3 was

elicited by the other endpoint (e.g., step 1). Figure 4.12 shows mean P3 amplitude (average

voltage from 300 to 700 ms post-stimulus) for the target trials from each stimulus continuum

as a function of target endpoint distance.

To examine whether the target trials produced larger P3s than the nontarget trials for

the bee-pea stimuli, a linear mixed-eUects model was run with trial type (target [bee/pea]

vs. nontarget [ex/axe]) as a Vxed eUect. The model showed a signiVcant eUect (b=0.99,

pMCMC<0.001), indicating that P3 amplitude was greater for the bee and pea target blocks

than for the ex and axe target blocks. Next, a model analyzing the target trials was run with

distance from the target endpoint as a Vxed eUect.6 There was also a main eUect of target

distance (b=-0.086, pMCMC<0.001), indicating that P3 amplitude decreased with increasing

distance from the target endpoint. This conVrms the prediction that listeners are sensitive

to within-category acoustic diUerences at post-perceptual stages.

The data were also analyzed as a function of each individual participant’s category

boundaries along the bee-pea continuum for trials in which they made a “target” response

on the bee and pea target blocks. This allows us to conVrm that P3 amplitude varies within

each listener’s phonetic categories for stimuli that were classiVed the same for a given target.

First, target endpoint distance was recoded relative to each participant’s category boundary

(computed from the 2AFC task run after the ERP session; see section 4.3.2.1 above) such

that negative values indicate steps in the non-target phonetic category, and positive values

6Two separate models (one examining the eUect of trial type, and one examining the eUect of
target distance) were run because target distance isn’t deVned for the nontarget trials.
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indicate steps within the target phonetic category. Because participants category boundaries

varied, these distances contained diUerent numbers of points. A few subjects with extreme

category boundaries had distances more than 5 steps from their boundary; for most subjects,

the target endpoint was 2-4 steps from their boundary.

Figure 4.13 shows grandaverage ERP waveforms and Figure 4.14 shows mean P3

amplitude as a function of distance from participants’ category boundaries. A linear mixed-

eUects model with relative target distance and target (bee vs. pea) as Vxed eUects (rmax=0.068)

showed a main eUect of target distance (b=0.14, pMCMC<0.001) with larger P3s for the steps

closest to the target endpoint. There was a marginal eUect of target (b=-0.25, pMCMC=0.062)

and the interaction was not signiVcant (b=-0.08, pMCMC=0.175).

This replicates the results of Toscano et al. (2010) showing that the P3 is sensitive

to acoustic diUerences within a single phonetic category, even when subjects’ responses are

controlled for. Moreover, because there were suXcient “target” responses across the range
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of VOT values, we can see that this eUect follows a linear trend even across participants’

category boundaries.

The same two analyses were also performed on the ex-axe data to assess whether

the P3 also shows eUects of within-category acoustic diUerences for these stimuli. As with

the bee-pea stimuli, a linear mixed-eUects model with target type entered as a Vxed eUect

showed that P3 amplitude was signiVcantly larger for the target (i.e., ex and axe) blocks

(b=0.93, pMCMC=0.002). Next, a model examining the target-block trials with target distance

as a Vxed eUect showed a main eUect (b=-0.042, pMCMC=0.012) such that P3 amplitude

decreased with increasing distance from the target endpoint.

Finally, target distance relative to participants’ category boundaries was computed

using the same procedure used for the ex-axe data. A linear mixed-eUects model for the

target-response trials was run with category boundary distance and target word (ex vs.

axe) as Vxed eUects (rmax=-0.029). The model showed a main eUect of boundary distance

(b=0.08, pMCMC=0.001), conVrming that P3 amplitude shows eUects of within-category

acoustic diUerences. The eUect of target (b=-0.01, pMCMC=0.795) and interaction (b=0.04,

pMCMC=0.278) were not signiVcant.7

4.3.3 Discussion

The results of this experiment are generally consistent with those of Toscano et al.

(2010) showing that the N1 reWects continuous cue encoding. This was seen in the overall

linear eUect of continuum step for the ex-axe stimuli when listeners’ responses were taken

into account, and in the eUect for the bee-pea stimuli in the overall dataset. However, the

results were not completely unambiguous as the bee-pea stimuli only showed a marginal

eUect of step in the response-grouped dataset, and the ex-axe stimuli only showed an eUect

of F1 step when the data were grouped by response.

7Two additional participants were excluded from this analysis due to poor category boundary
estimates obtained in the 2AFC task.
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Although there was no indication of category-level inWuences on the N1 for the F1

diUerences in the ex-axe stimuli, the eUects were smaller than those for VOT. There are

several possible reasons for this. First, N1 amplitude was smaller overall for these stimuli.

This Vts with data showing that N1 responses are smaller for tones in this frequency range

(Picton et al., 1978). Thus, it may have been more diXcult to detect a linear trend in the

N1 diUerences for theses stimuli. Second, unlike the stimuli in Experiment 1, the ex-axe

stimuli used here had an ambiguous gender. Given that gender may aUect how listeners’

process diUerences in F1 (one of the proposed context compensation mechanisms) and the

more variable N1 amplitudes observed for the ambiguously-gendered stimuli in Experiment

3, the lack of gender information here may have had an eUect on listeners’ N1 responses.

However, the eUect of F1 step on N1 amplitude seen in the response-grouped dataset does

suggest that we can measure continuous encoding of F1 information.

In addition, the direction of the eUect as a function of overall sound frequency varied

for the two stimulus continua. For the VOT stimuli, lower VOTs, which have a lower over-

all frequency, produced larger N1s. In contrast, stimuli with a lower F1, which also have a

lower overall frequency, produced smaller N1s. This suggests that N1 to speech sounds may

not simply reWect mean sound frequency, as it does for tones (Picton et al., 1978), and the re-

lationship between the acoustic signal and N1 amplitude may be more complex for diUerent

speech sounds (e.g., we may be measuring two diUerent frequency-based representations

for the two cues).

Finally, the P3 results replicate those of Toscano et al. (2010) and extend them to

show that within-category acoustic diUerences in vowels are maintained a post-perceptual

stages as well. In addition, because listeners responses were more variable in this experi-

ment, P3 amplitude could be examined across each continuum, demonstrating a linear ef-

fect even across participant’s category boundaries. This argues strongly against categorical

models of speech perception.
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Given this set of results, we can now ask whether preceding talker gender context

aUects listeners’ categorization of ambiguously-gendered stimuli. This will be addressed in

the next experiment.

4.4 Experiment 5: EUect of talker on vowel judgments

Extrinsic encoding approaches predict that listeners use preceding context infor-

mation to compensate for talker-induced acoustic variability, either via cue-level (lateral)

interactions or via feedback from more abstract representations about the talker. However,

it is unclear whether listeners will use such information if it is in a preceding carrier phrase

and target words have an ambiguous gender, since they may interpret the sentential context

and target word as being spoken by two diUerent talkers. While there is some evidence

from work on nonspeech context information suggesting that listeners still use this type of

extrinsic information in this situation (Lotto & Kluender, 1998; Holt, 2005), these eUects are

based on preceding information from tones rather than two diUerent talkers.

To test this, I presented listeners with a 2AFC word identiVcation task using the

vowel stimuli from Experiment 3 in the context of a carrier phrase spoken by either a man

or woman. Given the phonetic data on variation in /E/ and /æ/, we would expect listeners

to compensate for diUerences between men and women’s voices such that they show more

/æ/ (higher F1) responses in the context of a male talker (lower F1) and more /E/ (lower F1)

responses in the context of a female talker.

4.4.1 Methods

4.4.1.1 Participants

Eleven people participated in the experiment. Participant requirements, consent,

and compensation procedures were the same as in Experiment 1. One participant was ex-

cluded from the analysis because of a problem with data collection.



95

4.4.1.2 Design

Listeners performed a 2AFC word identiVcation task in which they heard the ex-axe

stimuli from Experiment 3 in the context of either a male or female talker. Stimuli were

presented in random order, and there were nine steps along the vowel continuum. Each

stimulus was repeated 15 times for a total of 270 trials (9 vowel steps x 2 talker contexts x 15

repetitions). The experiment took approximately 30 minutes, completed in a single session.

4.4.1.3 Stimuli

The same ex-axe stimuli used in Experiment 3 were used here. The target words

were spliced onto the end of carrier phrases (“On this trial, the word is...”) spoken by the

two talkers used for the original recordings. Recordings were made using the same using the

same equipment used in Experiment 1, and the two talkers recorded the sentences with a

similar prosodic structure, speaking rate, and with the word “did” at the end of the sentence

to minimize coarticulation with the end of the carrier phrase. The highest-quality token

from each talker was selected for the experiment, and the Vnal word was removed from the

sentence to create the carrier phrase used in the experiment.

The carrier phrases were equated for duration using the pitch synchronous overlap-

add method (Moulines & Charpentier, 1990) by shortening the longer sentence (the token

from the female talker) to match the duration of the shorter sentence. Next, they were

low-pass Vltered to 11.125 kHz using the same Vlter used with the target words (see Section

3.5.1.3). They were then equated for intensity and set to a level close to that of the target

words. Finally, the target words were spliced onto the end of the carrier phrase. There was

150 ms of silence after the end of the carrier and before the onset of the target word.

4.4.1.4 Procedure

Participants were seated comfortably in front of a computer attached to a 19" CRT

monitor in a sound-attenuated room. Participants responded by pressing one of two un-
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marked buttons on the keyboard. During the experiment, the words “axe” and “ex” were

displayed on the screen on the side corresponding to the button for that response. Response

side was alternated between participants and the mapping between the words in the display

and the keys on the keyboard was constant for each participant. On each trial, the two

words appeared on the screen, followed the auditory stimulus 600 ms later. After making

their response, the screen was cleared. Participants were oUered a break every 45 trials.

4.4.2 Results

As in Experiment 2, listeners’ responses reWected standard categorization functions,

and they accurately identiVed both vowel endpoints (mean accuracy: 94.1%). There was

also a shift in the mean number of /E/-/æ/ responses as a function of talker context, such

that there were more /æ/ responses in the context of a male talker than in the context of

a female talker. This is consistent with the prediction from the phonetic data. Since men

have lower formant values than women, listeners should shift their responses toward the

/E/ (lower F1) endpoint to compensate. Figure 4.15 shows listeners responses as a function

of F1 step and talker gender.

The data were analyzed using a logit mixed-eUects model with F1 and talker gender

as Vxed eUects (rmax=-0.129). As expected, there was an eUect of F1 step (b=0.83, z=27.36,

p<0.001), demonstrating that listeners’ categorized the ambiguously-gendered stimuli on the

basis of F1. There was also an eUect of talker gender (b=-0.45, z=-3.94, p<0.001), indicating

that the talker context had an eUect on listeners’ responses. The size of the eUect appears

similar at each F1 step, though it is diXcult to assess whether or not this is actually the

case since the data are binomial. The talker gender x F1 step interaction was not signiVcant

(b=0.05, z=0.90, p=0.369).
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Figure 4.15: Experiment 5 results — categorization responses. Proportion of /æ/ responses
as a function of F1 step and gender of the talker in the preceding carrier phrase. Listeners’
made more /æ/ responses in the context of a male talker than in the context of a female
talker.

4.4.3 Discussion

These results demonstrate that preceding talker gender inWuences listeners’ vowel

judgments, even when the vowel sound is presented with an ambiguously-gendered voice.

This Vts with previous work showing that talker gender can be signaled by auditory infor-

mation within the target word itself (Strand & Johnson, 1996), as well as by information

outside the phonetic segment that indicates gender (e.g., visual information ; Johnson et al.,

1999). In addition, it extends the results of (Ladefoged & Broadbent, 1957) showing that

talker variability in the preceding sentence can aUect vowel judgments, by showing that

this is the case even when talker diUerences are removed from the target word.

The next experiment examines the locus of this eUect using the ERP paradigm from

Experiment 4 and the carrier phrases from the present experiment.
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4.5 Experiment 6: EUect of talker on cue encoding

The Vnal experiment in this series examines the eUect of talker context. Listeners

heard the carrier phrases from Experiment 5 spliced onto the target words from Experiment

4, and the eUect of talker on N1 and P3 amplitude was examined.

If listeners compensate for talker diUerences on the basis of preceding talker context

by encoding relative cue-values, as predicted by extrinsic approaches, we would expect

diUerences in N1 amplitude as a function of talker gender. SpeciVcally, for F1 diUerences,

we would expect larger N1s in the context of a male talker if listeners recode F1 relative

to the preceding talker information. That is, because men have lower F1-values overall,

listeners would compensate by recoding F1 values as higher than they actually are.

Similarly, because VOT also varies as a function of talker, extrinsic approaches pre-

dict diUerences in N1 amplitude to stimuli varying in VOT as a function of talker gender.

Because women have longer VOTs than men, and because N1 amplitude decreases with in-

creasing VOT, we would expect listeners to show larger N1s in the context of female talkers

for VOT distinctions if they encode VOT values relative to talker gender. Thus, relative en-

coding approaches to context compensation predict that eUects of talker gender for the two

stimulus continua will occur in opposite directions.

There are other ways that talker gender could aUect N1 amplitude that would not

reWect relative cue encoding processes. For example, there could be an overall diUerence in

N1 amplitude for one talker gender than the other. One diUerence between male and female

talkers that could drive such an eUect is diUerences in speech intelligibility between the two

groups. Recall that men have lower intelligibility scores than women (Bradlow et al., 1995).

Because of this, listeners may show enhanced attention to the speech signal in the context of

a male talker in order to extract as much information as possible. Since increased attention

leads to enhancement of the N1 (Hansen & Hillyard, 1980), we would expect a larger N1 in

the context of a male talker for both stimulus continua.
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Thus, together, the two continua allow us to test this hypothesis, along with the

diUerent context compensation mechanisms. If both continua show the same eUect of talker

gender, it would suggest there is a general eUect of talker gender on how listeners process

cues in the target word. In contrast, if N1 amplitude is larger in the context of a male talker

for the ex-axe continuum and smaller for the bee-pea continuum, it would suggest that

listeners encode cues relative to context, supporting extrinsic encoding proposals. If context

has no eUect on N1 amplitude, it would be consistent with raw-cue encoding accounts.

4.5.1 Methods

4.5.1.1 Participants

Twenty-four people participated in the experiment. Participant recruitment, con-

sent, and compensation procedures were the same as the previous experiments, and par-

ticipants met the same language, hearing, and vision criteria as in previous experiments.

Three participants were excluded for having less than 50% correct responses on at least one

endpoint for both stimulus continua, and three additional participants were excluded from

the ex-axe analyses for having less than 50% correct responses at one of the endpoints along

that continuum.

4.5.1.2 Design

Participants performed a target detection task, similar to Experiment 4. Stimuli con-

sisted of the sentences from Experiment 5, with the duration of the carrier phrase modiVed

to vary over a 312 ms range in six steps. This reduces overlap from ERP components associ-

ated with the carrier phrase on the ERP components to the target word, and it allows us to

use Adjar to remove additional overlap (see Section 3.2 for details of the Adjar procedure).

Each stimulus was repeated once at each carrier duration in the four target blocks, for a

total of 864 trials.

As in Experiment 4, participants also performed a 2AFC categorization task (with
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Vve repetitions of each stimulus) after the ERP session to obtain estimates of their category

boundaries. The experiment took approximately two hours, completed in a single session.

4.5.1.3 Stimuli

As in Experiment 1, the overlap-add method was used to vary the duration of the

carrier phrase used in Experiment 5, creating diUerent ISIs between the onset of the sentence

and onset of the target word. ISIs varied in six steps from 1836 to 2148 ms.

4.5.1.4 Procedure, EEG recording, and data processing

The experiment setup was the same as the previous ERP experiments, and partic-

ipants performed the same target detection task used in Experiment 4. Participants re-

sponded with whether the word they heard was the target or not, and each word (axe, ex,

had, and head) served as the target in a separate block. EEG recording and data processing

procedures were the same as those used in Experiments 1-4.

4.5.2 Results

4.5.2.1 Behavioral responses

The participants included in the Vnal dataset correctly categorized the stimulus end-

points in each target block (mean accuracy: 97.3%). As in previous experiments, responses

varied with target block such that listeners were more likely to indicate that a stimulus

belonged to the target category.

Figure 4.16 shows listeners’ responses as a function of step and talker gender for the

carrier phrase. As in Experiment 4, there were more axe responses in the context of a male

talker than in the context of a female talker. In addition, there were more /p/ responses in

the context of a male talker. This Vts with phonetic data showing that women have longer

VOTs than men and suggests that listeners compensated for diUerences in men and women’s

VOT values when making voicing judgments.
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These observations were evaluated statistically using logit mixed-eUects models for

each stimulus continuum. For the bee-pea stimuli, VOT step, target (bee vs. pea), and talker

gender were entered as Vxed eUects (rmax=0.385). As expected, the model showed a main

eUect of VOT step (b=1.56, z=30.51, p<0.001). There was also a main eUect of target (b=1.57,

z=12.23, p<0.001), which Vts with the observation from previous experiments that listeners’

made more target than nontarget responses. In addition, there was a main eUect of talker

gender (b=0.55, z=4.42, p<0.001), with listeners making more /p/ responses in the context

of a male talker than a female talker. This demonstrates that listeners compensate for VOT

diUerences between men and women. Finally, there was a signiVcant VOT step x gender

interaction (b=-0.26, z=-2.87, p=0.004), indicating that the VOT categorization function was

steeper in the context of a male talker than in the context of a female talker.

A corresponding model was run for the ex-axe continuum (rmax=0.348). There was

a main eUect of F1 step (b=.17, z=32.94, p<0.001), as well as a main eUect of target (b=1.35,

z=12.16, p<0.001), with a similar pattern of results to the bee-pea stimuli (i.e., more responses

for the endpoint that served as the target). There was also a main eUect of gender (b=0.40,

z=3.64, p<0.001), replicating the results of Experiment 4 and showing that listeners com-

pensated for diUerences in gender in their vowel categorization responses. There was a

marginal F1 step x target interaction (b=0.13, z=1.89, p=0.059) and a signiVcant F1 step x

target x gender interaction (b=0.29, z=2.13, p=0.033), indicating that the slope of listeners’

categorization functions varied depending on the speciVc combination of talker gender and

target. Other interactions were nonsigniVcant.

Listeners responses during the 2AFC task run after the ERP session also showed

normal categorization functions. As in Experiment 3, the data were Vt to four-parameter

logistic curves to obtain each participant’s category boundary. The mean category boundary

for the bee-pea continuum was at step 5.2, and the mean boundary for the ex-axe continuum

was step 5.5 (with steps ranging from 1 to 9).
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Figure 4.16: Experiment 6 results — behavioral responses during target detection task. Cat-
egorization responses as a function of continuum step and talker gender in the preceding
carrier phrase. Listeners made more /p/ responses in the context of a male talker for the
bee-pea stimuli (top panel) and more /æ/ responses for the ex-axe stimuli (bottom panel).
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4.5.2.2 N1 amplitude

Before examining N1 responses, the Adjar procedure was used to remove overlap

between ERPs to the carrier phrase and those to the target word. Recall that the ISI between

the onset of the carrier phrase and the onset of the target word varied over a 312-ms in-

terval. Examination of ERPs time-locked to the onset of the carrier phrase did not reveal

any systematic variation in the time period prior to the onset of the target word. This isn’t

surprising since the carrier phrases were relatively long (1836 to 2148 ms). However, there

did appear to be overlap from the carrier in the pre-stimulus baseline period for the target

word. This appeared to be due to ERPs produced by the oUset of periodic energy in the

carrier phrase, which occurred 140 to 160 ms before the onset of the target word. Indeed,

time-locking the ERPs to that event revealed that the overlap seen in the pre-stimulus period

appeared to be related to it. Although the ISI time range between the oUset of the carrier and

the onset of the target word was relatively small (20 ms), the Adjar procedure was applied,

and it converged on a stable estimate of the overlap. Figure 4.17 shows the ERP waveforms

for the two talker gender conditions time-locked to the onset of the target word before and

after Adjar. As the Vgures shows, the amount of overlap in the pre-stimulus period was

reduced by the Adjar procedure.

N1 responses as a function of continuum step and context gender were then exam-

ined. Figure 4.18 shows grandaverage ERP waveforms for the average of the frontal channels

as a function of step, and Figure 4.19 shows waveforms as a function of talker gender dur-

ing the carrier phrase. Overall N1 latency was later than in Experiment 4, which presented

these stimuli in isolation. As such, the time window used to compute mean N1 amplitude

was adjusted to capture the majority of the component for each stimulus continuum. For

the bee-pea stimuli, mean N1 was computed from 130 to 170 ms post-stimulus, and for the

ex-axe stimuli, mean N1 was computed from 115 to 165 ms post-stimulus. Figure 4.20 shows

mean N1 amplitude for the two stimulus continua.



104

Time (ms)

V
ol

ta
ge

 (
µV

)

−2

−1

0

1

−2

−1

0

1

−200 0 200 400

Target before A
djar

Target after A
djar

Context
gender

female

male

Figure 4.17: Experiment 6 results — eUectiveness of Adjar procedure. Grandaverage ERP
waveforms for the average of the three frontal channels time-locked to the onset of the
target word before (top panel) and after (bottom panel) application of the Adjar procedure.
For both talker gender conditions, the amount of overlap in waveforms was reduced after
the Adjar technique was used.



105

The same set of analyses used in Experiment 3 was used here, with the addition

of talker gender as an additional factor. First, to evaluate eUects of continuum step and

talker gender on N1 responses to the bee-pea stimuli, a linear mixed-eUects model was run

with VOT step, talker gender, and target type (bee/pea vs. ex/axe) entered as Vxed eUects

(rmax=0). There was a main eUect of talker gender (b=-0.29, pMCMC<0.001) with larger N1s

in the context of the female talker. This Vts with the prediction of the relative encoding

hypothesis which suggests that listeners’ compensate for VOT diUerences between talkers

by treating VOTs as shorter than they actually are (hence, a larger N1) in the context of a

female talker (since they have longer VOTs), and as longer than they are (smaller N1) in the

context of a male talker (since they have shorter VOTs).

Despite this result, however, a main eUect of VOT step was not observed (b=0.016,

pMCMC=0.198). This could be due to overlap from later ERP components, especially given

the longer latency N1s observed in this experiment, or it could reWect a diUerence in lis-

teners’ processing of VOT in running speech. Finally, there was a marginal eUect of target

type (b=-0.12, pMCMC=0.060). All interactions were nonsigniVcant (VOT x target type: b=-

0.023, pMCMC0.357; VOT x gender: b=0.0033, pMCMC=0.911); target type x gender: b=0.036,

pMCMC=0.772; VOT x target type x gender: b=0.047, pMCMC=0.352).

Next, target-response trials were analyzed as a function of VOT step, talker gender,

and target (bee vs. pea). Figure 4.21 shows mean N1 amplitude for these trials as a function

of continuum step, and Figure 4.22 shows mean N1 amplitude as a function of talker gender.

In both cases, data points are weighted by the number of trials in each condition. A linear

mixed-eUects model with those factors entered as Vxed eUects (rmax=-0.710) found a main

eUect of talker gender (b=-0.43, pMCMC<0.001), supporting the result seen in the overall

data. There was a marginal eUect of VOT step (b=0.046, pMCMC=0.052) with N1 amplitude

decreasing with increasing VOT. This suggests that listeners’ may be encoding continuous

VOT diUerences in the context of the diUerent talkers. Neither the main eUect of target
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nor any of the interactions were signiVcant (target: b=0.10, pMCMC=0.390; VOT x target:

b=-0.037, pMCMC=0.434; VOT x gender: b=-0.012, pMCMC=0.809; target x gender: b=0.17,

pMCMC=0.473; VOT x target x gender: b=0.067, pMCMC=0.475).

Overall, these results are consistent with the proposal that listeners’ encode cues

relative to context. However, it may be that the N1 is simply larger in the context of a

female talker for some other reason. If that is the case, we would expect the same pattern

of results for the ex-axe stimuli. In contrast, if the gender eUect observed for the bee-pea

stimuli reWects relative cue encoding, we would expect the opposite pattern of results: larger

N1s (reWecting higher F1 frequencies) in the context of a male talker than in the context of

a female talker.

To test this, mean N1 amplitude for the ex-axe stimuli was examined using the same

two analyses. First, a linear mixed-eUects model with F1 step, talker gender, and target

type was run on the overall dataset (rmax=0). This showed a main eUect of target type

(b=0.38, pMCMC<0.001), with larger N1s for the bee/pea target blocks than for the ex/axe

target blocks (consistent with the results of Experiment 4), but no eUect of F1 (b=0.0086,

pMCMC=0.480), gender (b=0.0018, pMCMC=0.982), or any interactions (F1 x target type: b=-

0.0045, pMCMC=0.859; F1 x gender: b=-0.0013, pMCMC=0.954; target type x gender: b=-0.022,

pMCMC=0.850; F1 x target type x gender: b=-0.021, pMCMC=0.666).

Next, N1 amplitude was analyzed for the target-response trials, since this showed a

more robust eUect of F1 in Experiment 4. The model included F1 step, target (ex vs. axe),

and gender as Vxed eUects (rmax=-0.691). There was a signiVcant eUect of target (b=0.26,

pMCMC=0.022), but no other signiVcant eUects (F1: b=0.0001, pMCMC=0.989; gender: b=-

0.030, pMCMC=0.796; F1 x target: b=-0.033, pMCMC=0.503; target x gender: b=-0.0078,

pMCMC=0.956; F1 x target x gender: b=-0.026, pMCMC=0.786).

Although there were no eUects of talker gender, the lack of an eUect in these analyses

suggests that the eUect observed for the bee-pea stimuli not was purely driven by an over-
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all eUect of talker gender caused by diUerences between listeners’ processing of men and

women’s voices. Moreover, if there is an overall eUect of talker gender for both continua,

such that N1s are larger in the context of a female talker, any context compensation eUects

for the F1 stimuli may have been cancelled out and compensation eUects in the VOT stimuli

may have been ampliVed. Indeed, this Vts the pattern of results seen here: a signiVcant

eUect in the predicted direction for the VOT stimuli and a null eUect for the F1 stimuli.

4.5.2.3 P3 amplitude

To see whether eUects of talker context and gradiency along the acoustic cue con-

tinua could be observed at post-perceptual processing stages, mean P3 amplitude was ana-

lyzed similarly to Experiment 4. Figure 4.23 shows grandaverage waveforms for the parietal

channels as a function of trial type (target vs. nontarget), showing that a large P3 is ob-

served for the target trials. Figure 4.24 shows ERPs for the target trials as a function of
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target distance, showing that P3 amplitude decreases with distance from the target end-

point, replicating the results of previous experiments.

To examine the eUect of talker context, talker gender was coded as a function of

whether it provides information that is either more or less consistent with the target end-

point. For example, in the context of a female talker, listeners produce more “bee” responses

on average (compensating for longer VOT values). Thus, for the female talker context, we

would expect larger P3s when bee is the target word, since, on average, perceived VOT val-

ues are shorter or listeners are biased to make “bee” responses. Conversely, in the context of

a male talker, we would expect larger P3s when pea is the target. These two combinations of

conditions were coded as “consistent”. The opposite combinations (male talker, bee target;

female talker, pea target) were coded as “inconsistent”. Figure 4.25 shows grandaverage ERP

waveforms for target trials as a function of whether the preceding context was consistent

or inconsistent with the target endpoint.

Mean P3 amplitude was computed for the average of the three parietal channels

from 300 to 700 ms post-stimulus. Figure 4.26 shows mean P3 amplitude as a function of

target distance and context for each continuum.

A linear mixed-eUects model with target type as a Vxed eUect was run on the bee-

pea stimuli, and found a main eUect (b=-0.85, pMCMC<0.001) with larger P3s for the target

(bee and pea) blocks than for the nontarget (ex and axe) blocks. Next, a model examining P3

amplitude on the target trials with target distance and context consistency as Vxed eUects

was run (rmax=0). There was a main eUect of target distance (b=-0.14, pMCMC<0.001) with

P3 amplitude decreasing with distance from the target endpoint. Neither the eUect of con-

text consistency nor the interaction were signiVcant (context: b=0.047, pMCMC=0.593; VOT

x context: b=-0.019, pMCMC=0.601).

Next, P3 amplitude was analyzed as a function of distance from each participants’

VOT boundary using the same procedure used in Experiment 4. Figures 4.27 and 4.28 show
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Figure 4.23: Experiment 6 results — ERP waveforms for parietal channels by trial type. For
the ex-axe stimuli (top panel), the ex and axe target blocks correspond to the “target” trials,
and the bee and pea target blocks correspond to the “nontarget” trials. For the bee-pea
stimuli (bottom panel), ex and axe blocks are “nontarget” trials, and bee and pea blocks are
“target” trials. For both continua, larger P3s were found for the target trials. Shaded areas
indicate time range used to compute mean P3 amplitude.
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Figure 4.25: Experiment 6 results — ERP waveforms for parietal channels by context. Pre-
ceding context is coded based on whether it is consistent with the target endpoint. For
example, in the context of a male talker, listeners make more “axe” responses. Thus, P3
responses for the axe target block are expected to be larger in the context of a male talker
than a female talker and are coded here as “consistent”. Shaded areas indicate time range
used for P3 amplitude.
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ERP waveforms for the target-response trials as a function of distance from the participants’

category boundary and preceding context; Figure 4.29 shows mean P3 amplitudes for these

data. A linear mixed-eUects model with boundary distance, context consistency, and target

(bee vs. pea) as Vxed eUects (rmax=-0.060) found a main eUect of boundary distance (b=-0.17,

pMCMC<0.001), but no other signiVcant eUects (target: b=0.073, pMCMC=0.543; context: b=-

0.14, pMCMC=0.199; distance x target: b=0.0005, pMCMC=0.978; distance x context: b=0.045,

pMCMC=0.467; target x context: b=0.069, pMCMC=0.782; distance x target x context: b=0.14,

pMCMC=0.260). Thus, although an eUect of talker gender was found for listeners’ overt

responses and in the N1 data, this eUect was not seen in the P3.

The same two analyses were used to examine the ex-axe data. As expected, a linear

mixed-eUects model with target type as a Vxed eUect was signiVcant (b=-0.91, pMCMC=0.004)

with larger P3s for the target than for the nontarget conditions. P3 amplitude for the target

trials was examined using a model with target distance and context consistency as Vxed ef-

fects (rmax=0). There was a main eUect of target distance (b=-0.076, pMCMC<0.001) with P3

amplitude decreasing with distance from the target endpoint. The main eUect of context was

not signiVcant (b=-0.024, pMCMC=0.778), but there was a target distance x context interac-

tion (b=-0.074, pMCMC=0.026). A follow-up analysis found that the eUect of target distance

was signiVcant when the context was consistent with the target (b=-0.11, pMCMC<0.001),

but not when it was inconsistent (b=-0.040, pMCMC=0.108). Thus, talker gender had diUer-

ent eUects depending on distance from the target.

As in the earlier P3 analyses, steps along the F1 continuum were coded relative to

each participant’s F1 boundary, and a linear mixed-eUects model with boundary distance,

target (ex vs. axe, and context consistency was run for the target-response trials (rmax=

-0.166). The model showed a main eUect of boundary distance (b=0.13, pMCMC<0.001) with

P3 amplitude decreasing with distance from the relevant target endpoint. There was also a

main eUect of target (b=-0.37, pMCMC=0.002) with larger P3s for axe, as well as a bound-
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Figure 4.27: Experiment 6 results — ERP waveforms for parietal channels by category
boundary distance on target-response trials. The top panel shows ERPs for the ex-axe stim-
uli, and the bottom panel shows ERPs for the bee-pea stimuli. Positive step numbers indicate
steps on the target side of each participant’s category boundary. Shaded areas indicate time
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ary distance x target interaction (b=-0.13, pMCMC=0.021). A follow-up analysis found a

signiVcant eUect of boundary distance for both targets (ex: b=0.080, pMCMC=0.045; axe:

b=0.20, pMCMC<0.001). The main eUect of context and the other interactions in the original

model were nonsigniVcant (context: b=0.0025, pMCMC=0.999; distance x context: b=-0.050,

pMCMC=0.362; target x context: b=0.16, pMCMC=0.498; distance x target x context: b=0.026,

pMCMC=0.821). Overall, these results are consistent with previous experiments showing

sensitivity to within-category acoustic information.

4.5.3 Discussion

The results of this experiment provide tentative support the hypothesis that listeners

encode cue-values relative to expectations. This was observed for gender diUerences as a

function of VOT, but not for F1. Thus, this suggests that listeners’ compensate for contextual

variability in talker gender at the level of cue encoding: in the context of a female talker,

VOT values were treated as shorter, compensating for the fact that women have longer

VOTs than men. This provides a possible mechanism for the behavioral eUects observed in

listeners’ categorization responses for the VOT stimuli in the context of the two talkers.

This conclusion is somewhat tentative, however, since a corresponding eUect was

not found for the F1 continuum. For these stimuli, the relative encoding hypothesis predicts

that N1 amplitude should be larger in the context of a male talker than in the context of

a female talker (since men have lower F1s than women and previous experiments showed

that N1 amplitude increases with increasing F1). An eUect on the N1 was not observed, even

though listeners’ compensated for the gender diUerence, as seen in their overt responses.

There are several reasons why an eUect of talker gender may not have been seen in

the N1. First, listeners may encode some cues relative to context (e.g., VOT) but not others

(F1). However, this explanation seems unlikely given the considerable overlap between

formant frequencies for diUerent vowels (compared to the small amount of overlap in VOT

for stops) and the fact that talker variability accounts for a large proportion of the variance
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in F1 (Cole et al., 2010), both of which suggest a greater need for context compensation.

A second possibility is that, because the eUects of F1 diUerences on N1 amplitude

are weaker than those for VOT, we may not have had enough power to see a context eUect.

This is supported both by the weaker eUects seen for F1 in Experiment 4 and the lack of any

eUect of F1 in this experiment. Given that we were unable to observe encoding of F1 in this

experiment, we would not necessarily expect to observe context eUects on F1 either.

Third, there could be an overall eUect of talker gender that aUected listeners’ pro-

cessing of both cues similarly. SpeciVcally, if N1 amplitude is larger overall in the context of

a female talker than a male talker, regardless of the stimulus continuum, the eUect of context

compensation in the F1 stimuli may have been negated, since it predicts larger N1s for the

male talker. In contrast, larger N1s for the female talker would not cancel out the eUects of

context compensation for the VOT stimuli — both produce larger N1s for the female talker.

Indeed, this Vts with the pattern of results that was observed. An eUect of talker gender

was found for VOT, but no eUect was found for F1 diUerences. Thus, the properties of the

stimuli and direction of N1 diUerences may have masked eUects of relative encoding of F1.

This experiment also provides additional evidence that listeners are extremely sen-

sitive to small acoustic diUerences during category-level processing, as seen in the results of

the P3 response for both stimulus continua. This replicates our earlier ERP results (Toscano

et al., 2010) and extends behavioral and eye-tracking results, which have primarily been

shown for voicing diUerences (McMurray et al., 2002), to vowel continua. In addition, there

is some evidence indicating the preceding context aUects P3 amplitude, though the eUect

was only observed for the F1 continuum (even though both continua had an eUect on listen-

ers’ responses) and was not consistent across the entire range of F1 values. Thus, although

diUerences in P3 amplitude may provide an additional measure of context compensation at

later stages of processing, it may be diXcult to observe these relatively small eUects.

Overall, these results provide preliminary evidence in favor of relative cue encoding
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based on extrinsic context information. In the section below, the predictions of the context

compensation models are evaluated in terms of the results of this experiment and the other

three experiments in this chapter.

4.6 General discussion

The results of these experiments allow us to distinguish between several models of

context compensation. First, Experiments 5 and 6 argue against purely intrinsic accounts

of talker compensation (Syrdal & Gopal, 1986; Christovich & Lublinskaya, 1979). Despite

the fact that the relationships between formants (the source of information for intrinsic

talker compensation for vowels) were constant in the target words, listeners still showed an

eUect of talker gender based on information in the preceding carrier phrase. Moreover, an

eUect on voicing for the bee-pea stimuli provides even stronger evidence against intrinsic

approaches. Thus, these results rule out completely intrinsic accounts, thought they would

still allow for models that combine extrinsic and intrinsic approaches (Nearey, 1989).

Second, Experiment 6 provides some evidence in favor of an extrinsic encoding pro-

cess for handling talker variability. This is seen in the N1 diUerences to the bee-pea stimuli

varying in VOT, where larger N1s are observed in the context of a female talker, and smaller

N1s are observed in the context of a male talker, consistent with eUect of VOT on N1 am-

plitude seen previously and the shifts in listeners categorization responses for these stimuli.

However, a corresponding eUect was not found for the F1 stimuli. This may have been due

to the relatively small amount of variation in the N1 for these stimuli. Thus, the conclusion

that listeners encode cues relative to preceding context is still tentative.

These experiments also replicate the results of Toscano et al. (2010) showing a linear

eUect of VOT on N1 amplitude that does not reWect categorical diUerences. In addition,

they suggest that we can see eUects of formant frequency diUerences on N1 amplitude.

Experiments 1 and 4 show an eUect of vowel diUerences on the N1, with /æ/ showing larger

N1s than /E/. Experiments 4 and 6 speciVcally varied these stimuli along an F1 continuum
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to see if an eUect of F1 encoding independent of listeners’ phonological categories could be

found. There was an overall linear eUect for the F1 stimuli in isolation (Experiment 4), such

that N1 amplitude is larger for higher frequency F1-values (i.e., consistent with an /æ/).

Moreover, there was no evidence to indicate an eUect of listeners’ phonological categories.

Thus, these results suggest that N1 amplitude can serve as an index of cue encoding for F1

diUerences as well as VOT diUerences, though the results are not particularly strong.

Overall, these results are most consistent with an extrinsic encoding process for

handling talker variability. However, they do not provide information about the precise

mechanism by which context information inWuences cue encoding. Models like C-CuRE

(McMurray & Jongman, 2011) and the results of experiments using abstract, non-auditory

talker information (Strand & Johnson, 1996) predict that this occurs via feedback from

higher-level representations. In contrast, accounts like auditory contrast (Lotto & Kluen-

der, 1998) suggest that lateral interactions between cue-level representations (in this case,

continuous acoustic information about the talker from the carrier phrase) explains this ef-

fect. The next set of experiments examines this distinction by looking at speaking rate

diUerences, which provide listeners with continuous acoustic information from context and

could be used in a lateral model, but do not activate distinct categories, which would be

necessary for some types of feedback models.
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CHAPTER 5
SPEAKING RATE

5.1 Background

The next set of experiments examines the eUect of speaking rate context on voicing

judgments (e.g., /b/ vs. /p/). Along with talker variability, speaking rate has long been dis-

cussed as a major source of the lack of invariance in speech. Various models for handling

speaking rate eUects have been proposed, and while these draw on the same general classes

of approaches used to handle talker variability, they are typically designed speciVcally for

speaking rate. Again, these models can be distinguished based on the type of encoding they

propose and how context information is combined with acoustic cues for voicing. However,

unlike talker eUects, variability in rate does not give listeners information about distinct

categories (e.g., male vs. female). If feedback from categories is used for compensation, we

would not expect an eUect of continuous context information, like rate, on cue encoding.

In contrast, models that encode relative cues using direct interactions between context in-

formation and phonetic cues (e.g., auditory contrast approaches) would predict eUects of

rate on cue encoding, in addition to eUects of talker. Thus, some models make diUerent

predictions for rate context than for talker context.

The present set of experiments will test the predictions of these models, evaluating

the proposals given by intrinsic, extrinsic, and raw-cue encoding approaches, and focusing

more closely on the predictions given by lateral and feedback approaches. Before presenting

the experiments, I will present an overview of phonetic and perceptual data on rate eUects,

as well a discussion of the compensation approaches that have been proposed to account

for this data. Crucially, the available data does not address the eUects of rate during cue

encoding, motivating a need for work using the ERP paradigm presented here.
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5.1.1 Phonetic data

Most languages distinguish between stop consonants using two or three voicing

contrasts (Lisker & Abramson, 1964; Cho & Ladefoged, 1999). In English, voiced (or unaspi-

rated) sounds like /b/ and /d/ are distinguished from voiceless (or aspirated) sounds like

/p/ and /t/. A large number of acoustic cues that distinguish these sounds have been iden-

tiVed. Lisker (1986), for example, identiVes 16 cues for word-medial voicing distinctions

in English, including vowel duration, closure duration, F0, release burst intensity, and F1

transition duration, among other cues.

In syllable-initial position, voice onset time (VOT) is an extremely reliable cue that

distinguishes voicing categories in most languages (Lisker & Abramson, 1964). VOT is de-

Vned as a time diUerence between two articulatory events (the release of the closure and the

onset of glottal voicing). As a temporal cue, it is highly aUected by factors like speaking rate,

such that at fast speaking rates, VOT values tend to be closer to zero than at slow speaking

rates (Allen & Miller, 1999; Kessinger & Blumstein, 1997; Beckman, Helgason, McMurray, &

Ringen, 2011). In English and other languages that use aspiration, speaking rate primarily

aUects the voiceless category (/p/) which is marked by both longer and more variable VOTs

than the voiced (/b/) category (Allen & Miller, 1999; Kessinger & Blumstein, 1997). For ex-

ample, Allen and Miller (1999) found that when subjects were asked to speak quickly, they

produced shorter VOTs than when asked to speak slowly. Other studies have also found

diUerences in VOT as a function of speaking rate (Beckman et al., 2011; Kessinger & Blum-

stein, 1998; Miller, Green, & Reeves, 1986; Pind, 1995). These diUerences in VOT produce

changes in the boundary between voiced and voiceless sounds, something listeners must

compensate for to accurately recognize stop consonant voicing.

Speaking rate has eUects on cues in both the same syllable as the consonant and

other syllables, suggesting that both extrinsic and intrinsic rate compensation processes

may be engaged by listeners. Extrinsic information comes primarily from the preceding
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sentence rate (SR; SummerVeld, 1981; Wayland, Miller, & Volaitis, 1994). The primary

intrinsic cue is the length of the subsequent vowel, which covaries with speaking rate in the

same sense and can be used for intrinsic encoding in the same way that that formant ratios

are used for intrinsic compensation in vowel sounds. For example, the ratio between VOT

and vowel length (VL) may oUer a more invariant cue to voicing than raw VOT (Boucher,

2002). VL may also simply serve as a secondary cue for voicing, allowing feedforward

accounts to explain these eUects (McMurray, Clayards, et al., 2008; Toscano & McMurray,

2011a, 2010). There has also been debate about the relationship between VOT and VL in

phonetic measurements (Kessinger & Blumstein, 1998; Allen & Miller, 1999), partly due to

diUerences in the deVnition of VL (Turk, Nakai, & Sugahara, 2006). For the present set of

experiments, I will focus on variation in preceding SR, rather than VL, since the eUects of

interest concern the initial encoding of VOT.

5.1.2 Perceptual data

A number of studies have demonstrated that rate, including both the eUect of speak-

ing rate in running speech and the eUect of VL in individual words, has an eUect on phono-

logical judgments (Miller & Liberman, 1979; SummerVeld, 1981; Miller & Dexter, 1988; Pind,

1995; Boucher, 2002; Miller & Volaitis, 1989; McMurray, Clayards, et al., 2008; Miller &Way-

land, 1993; Toscano & McMurray, 2011a; Repp & Lin, 1991). SummerVeld (1981) examined

both eUects of preceding sentence rate (SR) and length of the following vowel on listeners

voicing judgments. As expected, listeners consistently identiVed stimuli with VOTs near 0

ms as voiced and VOTs near 40 ms as voiceless. Crucially, he also found a shift in listeners’

VOT boundary as a function of diUerences in SR and VL. In both cases, faster rates pro-

duce more /p/ responses and slower rates produced more /b/ responses. However, the eUect

of VL was much larger than the eUect of SR, leading SummerVeld conclude that intrinsic

compensation may be more important.

These results have been replicated a number of times using synthetic speech (Miller
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& Dexter, 1988; Pind, 1995; Miller & Volaitis, 1989; McMurray, Clayards, et al., 2008; Miller

& Wayland, 1993; Toscano & McMurray, 2011a; Repp & Lin, 1991). However, there has been

debate about whether rate information also aUects voicing judgments in natural speech.

Shinn, Blumstein, and Jongman (1985) examined the eUect of speaking rate on a manner

of articulation (/b/-/w/) distinction that generally shows rate eUects similar to VOT (Miller

& Liberman, 1979). They modiVed the /b/-/w/ stimuli from Miller and Liberman (1979) by

varying additional cues to manner in order to create more natural-sounding speech. They

found that this eliminated the eUect of rate on listeners’ manner judgments and suggested

that, under realistic listening conditions, listeners do not use rate information. Miller and

Wayland (1993) demonstrated that when these natural-sounding stimuli are presented in the

presence of background noise (presumably creating more natural conditions), an eUect of

rate is observed, suggesting that rate may be used in natural speech under more challenging

listening conditions.

There has been less work examining eUects of VOT in natural speech, but Utman

(1998) examined listeners’ responses to natural speech and found no evidence of rate ef-

fects (indicated by VL) on voicing judgments. However, recent studies using more sensitive

paradigms have been able to Vnd small eUects of VL on voicing in natural speech (Boucher,

2002; Toscano & McMurray, 2011a) Thus, although the eUect of rate may be smaller in

natural speech, listeners are sensitive to VL and can use it to make phonological judg-

ments.1. However, previous studies have not demonstrated an eUect of preceding SR in

natural speech. Given that this distinguishes extrinsic and intrinsic compensation accounts,

and the debate about whether there are any rate eUects at all in natural speech, an important

goal of this set of experiments is to establish that there are eUects of preceding SR in natural

speech and then to examine whether such eUects are driven by cue-level or category-level

compensation.

1See Toscano and McMurray (2010) for a discussion of why rate eUects would be smaller in
natural speech than in synthetic speech.
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5.1.3 Mechanisms for handling rate variability

Similar to formant ratios used for talker variability compensation, several researchers

have suggested that the ratio between VOT and VL is invariant across rate contexts (Port

& Dalby, 1982; Kessinger & Blumstein, 1998; Boucher, 2002), and can serve as a source of

information for intrinsic rate encoding. Some phonetic data supports this. Kessinger and

Blumstein (1998) found that the VOT:VL ratio remained constant for voiceless stops across

diUerent speaking rates for a given vowel context. Similarly, Boucher (2002) found that the

ratio boundary between voiced and voiceless stops was constant across speaking rates.

A number of perceptual studied have also suggested listeners compute context-

independent ratios between cues. Port and Dalby (1982) replicated the early results of

Denes (1955) and suggested that the ratio between the vocalic and frication portions of a

vowel-fricative syllable serves as an invariant cue to word-Vnal fricative voicing. Similarly,

Boucher (2002) found that boundaries computed from VOT:VL ratios in his production data

predicted listeners responses in a categorization task in which the ratio was varied by hold-

ing VOT constant at an ambiguous value and changing VL.

However, results of other studies challenge VOT:VL ratios as a mechanism for han-

dling variability in VOT caused by rate. Pind (1995) collected production and categorization

data from Icelandic speakers and found that the ratio boundary predicted from produc-

tion data did not match listeners’ perceptual boundaries, challenging this approach and the

cross-linguistic generality of earlier results.

Other work has argued against an intrinsic VOT:VL ratio model by demonstrating

that listeners show independent eUects of VOT and VL. Crucially because word-initial cues,

like VOT and formant transition durations, and VL are separated in time, intrinsic models

suggest that listeners would have to wait until both VOT and VL arrive before they can make

a voicing judgment. Therefore, these models predict that the eUect of context information,

like VL, and a primary phonetic cue, like VOT, should occur at the same point in time, since
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the relevant cue for phonological distinctions is the ratio between the primary phonetic

cue and VL. Thus, phoneme and lexical categories cannot be activated until listeners have

information from both that cue and VL. In contrast, raw-cue encoding models predict that

VL serves as a weak phonetic cue. In this case, the eUect of VOT would precede the eUect

of VL (since VOT precedes VL information in time).2

Miller and Dexter (1988) Vrst looked at this by examining listeners’ earliest responses

in a speeded-response task. They found that listeners’ could make word-initial voicing judg-

ments on the basis of VOT without information about VL. Recently, several experiments

using the visual world eye-tracking paradigm (VWP; Tanenhaus, Knowlton, Eberhard,

& Sedivy, 1995; McMurray et al., 2002) have extended this using a more online measure

(McMurray, Clayards, et al., 2008; Toscano & McMurray, 2011a). In VWP tasks, listeners

hear spoken words or sentences corresponding to pictures on a computer screen or real

objects, while their eye-movements are recorded. Listeners will make eye-movements to

an object before moving the cursor to it (in the case of a computer display) or manipu-

lating it with their hand (in the case of real objects). The proportion of eye-movements

to each item provides a measure of how strongly the participant is considering that item

(Allopenna, Magnuson, & Tanenhaus, 1998; Dahan, Magnuson, & Tanenhaus, 2001; Dahan,

Magnuson, Tanenhaus, & Hogan, 2001; Dahan & Gareth Gaskell, 2007; Magnuson, Dixon,

Tanenhaus, & Aslin, 2007) and has been used to show eUects of both VOT (McMurray et al.,

2002) and VL (Salverda, Dahan, & McQueen, 2003). Importantly, listeners’ eye-movements

at a given point in time only reWect processing up until that point, allowing us to directly

assess whether VOT and VL are being processed together (i.e., at the same point in time) or

independently (at diUerent points).

McMurray, Clayards, et al. (2008) tested this by presenting listeners with /b/-/p/ and

2Note that this only applies to models in which compensation is required at the time of initial cue
encoding. Models that allow for initial encoding of raw cues could still show independent eUects of
VOT and VL.
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/b/-/w/ minimal pair words varying in VOT (for /b/-/p/) or formant transition duration (for

/b/-/w/) and VL. They found that the eUect of VOT or FTD occurred approximately 100

ms before the eUect of VL. Thus, listeners can use VOT independently of VL. This argues

against intrinsic compensation models and suggests listeners do not use the ratio between

VOT and VL to make voicing judgments. Toscano and McMurray (2011a) replicated this

result using natural speech.

Based on these results, Toscano and McMurray (2010) suggested that rate compen-

sation could be accomplished in a purely feedforward model if VL is simply treated as a

secondary cue to voicing. They simulated speaking rate eUects using a weighted Gaus-

sian mixture model (WGMM; a feedforward, raw-cue encoding model). The model was

trained on distributions of VOT and VL values for voiced and voiceless sounds in English

and showed that, as with human listeners, the model’s responses reWected eUects of both

VOT and VL on voicing judgments. In addition, this was accomplished without encoding

VOT relative to VL. Rather, in this model, both cues simply bias voicing categorization (al-

beit with less bias due to weaker information provided by the distributional statistics of VL).

Simulations with the model also replicated diUerences in the size of the VL eUect seen be-

tween natural and synthetic speech for human listeners, suggesting that even this apparent

reweighting of cues can be accomplished in a purely feedforward system without changes

in cue weights. Thus, it is possible to treat VL as a phonetic cue rather than as a context

eUect, and raw-cue encoding via feedforward activation may be able to account for at least

some rate eUects.

These results provide information about how listeners compensate for diUerences

in VL, but they do not address the contributions of preceding SR. Listeners did not have

information about preceding SR in these experiments, so the results could not be attributable

to extrinsic cue encoding. Given this, and the independent eUects for VOT and VL, the

results so far are most consistent with a raw-cue encoding approach, though it is unclear
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whether a similar approach would work for SR — it seems unlikely that speciVc SRs are

directly associated with voiced and voiceless categories. Moreover, it is unclear whether

an extrinsic rate compensation approach could take advantage of feedback from category-

level information (which can be used for talker compensation). Because rate diUerences

are continuous, listeners may not have distinct categories against which they can compute

relative phonetic cues. In contrast, talker gender does give listeners categories that can be

used to adjust cues. In addition, the results of work on talker compensation suggest that

relatively abstract information about talker gender (such as a picture of a face; Johnson et

al., 1999) can serve as a source of information for compensation via feedback to cue-level

encoding. Thus, if listeners encode cues relative to context using a feedback mechanism, we

may not expect to see an eUect of SR on cue-level representations. Rather, if listeners encode

cues relative to SR, it would suggest they use a lateral, extrinsic compensation approach.

5.1.4 Experiment overview and predictions

The various compensation approaches make diUerent predictions about whether and

how SR aUects cue encoding. Purely intrinsic compensation and raw-cue encoding ac-

counts, predict that SR has no eUect on VOT encoding, and thus no eUect on the N1. Intrin-

sic compensation approaches suggest that VOT is processed in relation to VL rather than SR

(thus, SR should have no eUect). Results like those of SummerVeld (1981) rule out such mod-

els for synthetic speech, but, given previously observed diUerences in rate eUects between

natural and synthetic speech, it is not clear if these results extend to natural speech. Raw-

cue encoding approaches allow for the possibility of SR eUects at later stages of processing,

but also predict no eUect on cue encoding. In both cases, these two approaches predict that

VOT will be encoded veridically when VL is held constant but preceding SR varies. Thus,

they make the same predictions that they made for the talker identity experiments.

Extrinsic compensation accounts make diUerent predictions about whether VOT is

encoded relative to preceding rate. Models that use feedback from category-level repre-
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sentations to compute relative cue-values do not predict eUects of rate on VOT encoding,

since variation in rate does not activate speciVc categories (unlike variation in talker gen-

der). Thus, we can likely rule out such models as plausible accounts of compensation for

rate. In contrast, models that compute relative cues solely from information at the level of

cue encoding (lateral models) do predict an eUect of preceding SR on VOT encoding. Thus,

if we see an eUect of context compensation on the N1, it is most likely due to lateral interac-

tions. As a result, while the talker identity experiments allowed us to distinguish between

extrinsic encoding and other approaches, this set of experiments will allow us to distinguish

between these two extrinsic encoding approaches.

Before directly assessing the question of whether SR aUects VOT encoding, we must

Vrst determine that the SR in naturally-produced stimuli has an eUect on listeners’ voicing

judgments as there has been debate in the literature about whether listeners compensate for

rate diUerences in natural speech (Shinn et al., 1985; Miller & Wayland, 1993; Utman, 1998).

Experiment 7 will address this point by presenting listeners with sentences varying in SR,

VOT, and VL. If SR does have an eUect, the phonetic data predict that listeners will show

more voiceless responses in the context of fast speech. This result would rule out a purely

intrinsic compensation account (since an extrinsic factor [SR] has an eUect), but would be

consistent with models that combine extrinsic and intrinsic compensation (Nearey, 1989), as

well as raw-cue encoding models (e.g., feedforward models that combine SR with phonetic

cues at later stages of processing).

Next, Experiment 8 tests the predictions made by diUerent types of context com-

pensation accounts by presenting listeners with stimuli varying in VOT and preceding SR,

and measuring N1 and P3 responses using the same approach as Experiment 6. If SR has an

eUect on VOT encoding (i.e., N1 responses), it would support a lateral, extrinsic encoding

model. If SR does not have an eUect on VOT encoding but does have an eUect on listen-

ers’ responses, it would support raw-cue encoding approaches, though it would not rule out
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an additional extrinsic compensation process that uses feedback from categories to handle

other types of context eUects (since feedback from categories simply could not be used in

this situation). Finally, if SR does not have an eUect on VOT encoding or overt responses, it

would support a purely intrinsic compensation approach or a raw-cue approach that does

not use SR.

5.2 Experiment 7: EUect of rate on voicing judgments

In this experiment, the eUect of SR on listeners’ voicing judgments in natural speech

was examined. Several studies have suggested that listeners do not use rate information for

voicing or manner judgments in natural speech (Shinn et al., 1985; Miller & Wayland, 1993;

Utman, 1998). However, it may be that these eUects are simply smaller than in synthetic

speech. Toscano and McMurray (2010, 2011a) demonstrated that this was the case for rate

information cued by VL, but this has not been examined for SR. Thus, before examining

context eUects in an ERP experiment, we must Vrst establish that variation in SR inWuences

voicing in natural speech.

Data from this experiment were collected as part of a larger project examining listen-

ers’ use of rate information during online spoken word recognition using an eye-movement

measure of lexical activation (Toscano & McMurray, 2011b). Both eye-movement measures

and listeners’ categorization responses were collected, but only the categorization responses

are reported here since they are suXcient for determining whether SR has an eUect on voic-

ing judgments in natural speech. We are primarily interested in the eUects of SR here, but

VL was included to determine if other eUects of rate could be observed.

5.2.1 Methods

5.2.1.1 Participants

Twenty people participated in the experiment. Participants were recruited from the

University of Iowa community according to University human subjects protocols, provided
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informed consent, and were either compensated $40 or received course credit for partici-

pation. Participants reported English as their only native language, normal hearing, and

normal or corrected-to-normal vision.

5.2.1.2 Design

Participants performed a 4AFC picture identiVcation task. Auditory stimuli con-

sisted of the six sets of /b/-/p/ minimal pair target words used in Experiment 2 (bath-path,

beach-peach, beak-peak, bet-pet, bike-pike, and buck-puck) preceded by one of Vve carrier

sentences (Table 5.1). Target words varied along nine-step VOT continua and across two

vowel length (VL) conditions, with the carrier sentence spoken at either a fast or slow rate.

Each minimal pair was grouped with two unrelated words starting with /l/ and /S/. For each

participant, an /l/ and /S/ item was randomly assigned to a particular minimal pair with

the requirement that semantically related words (e.g., pet and leash) could not be paired

together. /l/ and /S/ items also varied in VL and were preceded by the carrier sentences

varying in SR. Stimuli were presented in random order, each target stimulus was repeated

three times, and there were 540 unrelated trials for a total of 1080 trials. The experiment

was conducted over the course of two days and lasted approximately 90 minutes each day.3

5.2.1.3 Stimuli

Stimuli were created from recordings used in Experiment 2, along with recordings

of carrier phrases made during the same session. Carriers were recorded with a neutral

word at the end (“tongue”) to avoid coarticulation.

VOT continua were created using the procedures described in Experiment 2 (see

Section 3.5.1.3). VL and SR conditions were created using the pitch-synchronous overlap-

add method to lengthen and shorten the sounds. For the two VL conditions, the onset and

3Due to an error in the experiment presentation code, participants only ever heard either the /S/
or /l/ item in a given item-set. Although this aUected their eye-movements to objects in the display,
it does not appear to have had any eUect on their mouse-click responses to the /b/ and /p/ words.
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Table 5.1: Carrier phrases used in Experiment 7.

Carrier Phrase

1. On this screen, click on the. . .

2. In this display, choose the. . .

3. On this screen, select the. . .

4. In this display, pick the. . .

5. On this screen, please choose the. . .

oUset of the vowel was marked for each sound, and VLs were increased or decreased by 40%

of their original duration. Carrier sentences were increased and decreased by 15% of their

original duration to create the slow and fast SR conditions, respectively. These diUerences

in sentence length produced speaking rates in a similar range to those reported by Miller,

Grosjean, and Lomanto (1984). Finally, each carrier sentence was spliced onto each target

and unrelated stimulus.

Visual stimuli were clipart images that were selected and processed using standard

lab procedures that have been used for several prior studies (e.g., McMurray, Samelson, Lee,

& Tomblin, 2010). For each word, several pictures were downloaded from a clipart database.

A team of researchers selected the picture that depicted the most canonical representation

of the word and edited it if needed (e.g., to remove objects in the background).

5.2.1.4 Procedure

Participants were seated in the same room used in Experiment 5 and wore an SR

Research Eyelink II head-mounted eye-tracker. The eye-tracker was calibrated using the

standard 9-point calibration grid, and, after calibration, participants began the experiment.

First, two sets of training trials were presented to familiarize participants with the pictures

and words. In the Vrst part of training, participants saw each picture in the center of the



137

screen. The written word corresponding to the picture appeared below the image 500 ms

later. After viewing the picture and reading the name, participants clicked the mouse button

to continue to the next trial. Each picture was presented once in random order.

In the second part of training, four pictures (one set of /b/, /p/, /l/, and /S/ items)

appeared in the four corners of the display, and the written word corresponding to one of

the pictures appeared in the center of the display 500 ms later. Participants clicked on the

picture corresponding to the written word to go onto the next trial (only clicking the correct

picture allowed them to continue). Each picture set was presented twice in random order,

and the arrangement of the pictures in the display was randomized.

After training, the experimental trials began. Each trial proceeded similarly to the

second part of training. One set of four pictures appeared in each corner of the display,

and a blue circle appeared in the center. After 500 ms, the circle turned red, participants

clicked on it, an auditory stimulus was played over the headphones, and participants made

their response by clicking on the picture corresponding to the instruction they heard. The

arrangement of the pictures was randomized such that, within an experimental condition,

each relative arrangement of minimal pair items (i.e., adjacent horizontally, adjacent verti-

cally, or diagonal) occurred equally often.

5.2.2 Results

Listeners correctly identiVed the stimuli at the endpoints of the VOT continua (mean

accuracy: 99.2%) and showed standard categorization functions. Figure 5.2 shows the pro-

portion of /p/ responses as a function of VOT and SR. There were more voiced responses

in the slow SR condition than in the fast SR condition, consistent with the prediction that

preceding rate inWuences voicing judgments.

Responses were analyzed using a logit mixed-eUects model with subject and word

pair entered as random eUects and VOT, VL, and SR as Vxed eUects (rmax=-0.224). The re-

sult showed a main eUect of VOT(b=1.80, z=50.32, p<0.001) with more voiceless responses
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for long VOTs. There were also main eUects of VL (b=-0.85, z=-11.45, p<0.001) and SR (b=-

0.35, z=-4.77, p<0.001), such that listeners made more voiceless responses in the context of

short vowels and fast sentences than in the context of long vowels and slow sentences.

Thus, SR has an eUect on voicing in natural speech. These results Vt with the predictions

from the phonetic data, showing that listeners produce more voiceless responses in in the

context of fast speech (compensating for the overall shorter VOTs). Finally, there was a VOT

x SR interaction (b=-0.12, z=-2.02, p=0.043), indicating that the slope of the categorization

function diUered between the two SR conditions. None of the other interactions were sig-

niVcant (VOT x VL: b=-0.068, -1.19, p=0.232; VL x SR: b=0.01, z=0.07, p=0.945; VOT x VL x

SR: b=0.15, z=1.36, p=0.175).

5.2.3 Discussion

These results show that SR has an eUect on voicing in natural speech. This Vts with

the results of Toscano and McMurray (2011a) which showed that, in contrast to previous

studies, eUects of rate or weak secondary phonetic cues for voicing judgments can be seen

in natural speech, though these eUects may be smaller than in synthetic speech. Critically,

for the present series of experiments, these results demonstrate that natural stimuli varying

in SR can be used to examine speaking rate eUects on VOT encoding and categorization.

Moreover, these results argue against purely intrinsic approaches that suggest listen-

ers compensate for rate using within-word duration contrasts (like VOT and VL). Indeed,

since both extrinsic (SR) and intrinsic (VL) information was available in this experiment,

listeners could have relied solely on VL information to compensate for diUerences in rate.

Instead, we found eUects of both SR and VL. While this rules out completely intrinsic mod-

els, it is consistent with accounts that incorporate both extrinsic and intrinsic informa-

tion (Nearey, 1989). Thus, along with the results of McMurray, Clayards, et al. (2008) and

Toscano and McMurray (2011a) which show that VOT and VL are used independently, these

results support extrinsic and raw-cue encoding approaches to handling rate eUects.
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Figure 5.1: Experiment 7 results — categorization responses by sentence rate. Participants’
mouse-click responses as a function of VOT for each SR condition. The fast SR condition
produced more voiceless responses than the slow SR condition, indicating an eUect of rate
compensation on listeners’ voicing judgments.
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mouse-click responses as a function of VOT for each VL condition. The short VL condition
produced more voiceless responses, consistent with compensation for rate diUerences.
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5.3 Experiment 8: EUect of rate on cue encoding

Together, the previous experiment and Experiment 2, which examined N1 responses

to naturally-produced VOT diUerences, demonstrate that (1) preceding SR aUects voicing

judgments in natural speech, (2) diUerences in N1 amplitude can be observed for voiced and

voiceless endpoints, and (3) a single N1 peak is observed for both. This experiment now tests

the predictions of the two compensation mechanisms (feedback from categories vs. lateral

interactions) by examining whether VOT is encoded relative to preceding SR. To do this, we

measured ERP responses to words varying along a VOT continuum that were preceded by

carrier phrases spoken at either a fast or slow rate.

Stimuli consisted of two continua: (1) a /b/-/p/ VOT continuum varying from beach

to peach (the pair of words that produced the largest diUerences in N1 amplitude in Ex-

periment 2), and (2) an /i/-/u/ vowel continuum varying from ease to ooze. This vowel

distinction was chosen because it should produce diUerences in N1 amplitude along the

continuum (based on pilot data) but should not be aUected by rate, since vowel cues that

are aUected by rate (e.g., VL) do not reliably distinguish these sounds. The mean durations

of /i/ and /u/ in English are 282 ms and 273 ms, respectively (Hillenbrand et al., 1995).

If preceding rate context aUects VOT encoding, we would expect to see diUerences

in N1 amplitude to the /b/-/p/ stimuli as a function of SR. SpeciVcally, we would expect

that VOTs in the slow SR condition (where the sound would be more likely to be perceived

as voiced) would show a larger N1 (i.e., a response closer to those of the voiced end of the

continuum). In contrast, if context does not aUect cue encoding, we would not expect to

see any diUerences in N1 amplitude for the SR conditions, but we may see an eUect at later

stages of processing (i.e., as variation in P3 amplitude). SpeciVcally, we would expect that,

for voiced targets, /b/-/p/ stimuli in the slow SR condition would show a larger P3, and, for

voiceless targets, they would show a smaller P3. For the fast SR condition, P3 amplitude

would be larger for voiced targets and smaller for voiceless targets. In addition, we do not
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expect diUerences in N1 or P3 amplitude as a function of preceding SR for the /i/-/u/ stimuli,

since rate does not aUect the primary cues used to distinguish those vowels.

5.3.1 Methods

5.3.1.1 Participants

Twenty people participated in the experiment. Participant recruitment, consent, and

compensation procedures were the same as Experiment 4, and participants met the same

language, hearing, and vision criteria as in previous experiments.

5.3.1.2 Design

Participants performed a target detection task in which they identiVed whether stim-

uli matched a target word. Words were presented in the context of a carrier phrase that had

either a slow or fast rate. In order to reduce overlap between ERPs to the carrier phrase and

target word and to allow us to use the Adjar technique, the ISI between the onset of the

carrier phrase and target word was varied over a 234 ms range in 10 steps by manipulating

the duration of the carrier phrase within each SR condition. All of the ISIs in the fast SR

condition were shorter than the ISIs in the slow SR condition. Each combination of contin-

uum, VOT, SR, and ISI within the SR conditions was presented once in random order. Each

of the four words served as the target in a diUerent block, for a total of 864 trials.

As in Experiments 4 and 6, participants performed a 2AFC categorization task after

the ERP session in order to get estimates of their category boundaries for each stimulus

continuum. The procedure was the same as the one used in previous experiments. The

experiment took approximately two hours and was completed in a single session.

5.3.1.3 Stimuli

New recordings were made for each continuum as well as the carrier sentences. The

/b/-/p/ VOT continuum was created in the same way as Experiment 1. VOT values are listed
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in Table 5.2. The mean diUerence between the actual cross-spliced VOT and the expected

VOT for a given step along the continuum was less than 1 ms.

The /i/-/u/ continuum was created by changing the second and third formant fre-

quencies (F2 and F3) and their bandwidths (B2 and B3) of the /i/ token to those of the /u/

token. Formants were measured and adjusted using linear predictive coding (LPC, Burg

method; Andersen, 1974) with a time step of 10 ms, maximum formant frequency of 22.05

kHz, window length of 80 ms, 20 poles, and a pre-emphasis from 214 Hz. Table 5.3 lists the

formant frequency and bandwidth values for the endpoints. Each step in the continuum

used the same frication at the end of the word. This was created by sample averaging the

frication from each token in order to minimize potential coarticulatory information. The V-

nal intensities of the frication and vocalic portions were set to 65 and 75 dB SIL, respectively,

to produce a natural-sounding syllable. Finally, the words were low-pass Vltered to 4410 Hz

using a symmetric Hann Vlter with a smoothing width of 2000 Hz to remove artifacts caused

by LPC resynthesis.

The carrier sentences were changed from those used in Experiment 7 so that the

instruction was consistent with the task in this experiment (“On this trial, the word is...”).

SR of the carrier sentences was manipulated in Praat using the pitch-synchronous overlap-

add method (Moulines & Charpentier, 1990). Within each SR condition, the sentence length

varied over a 234 ms range to create 10 diUerent ISIs relative to the onset of the target word.

Fast SRs varied from 1419 to 1653 ms, and slow SRs varied from 1961 to 2194 ms.

Table 5.2: VOT values for Experiment 8 /b/-/p/ continuum steps.

Continuum 1 2 3 4 5 6 7 8 9

beech-peach 0 6 12 16 20 25 29 36 40

Note: Values are in ms.
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5.3.1.4 Procedure, EEG recording, and data processing

The experimental setup and data processing procedures were the same as in Experi-

ment 4. The task was also the same but used the target words from the current experiment.

5.3.2 Results

5.3.2.1 Behavioral results

The Vrst set of analyses examined listeners’ overt responses to determine if an eUect

of SR could be seen for the /b/-/p/ continuum. Listeners’ behavioral responses during the

ERP session were converted from target/nontarget responses to responses corresponding

to particular words (as in Experiments 4 and 6). For both continua, participants showed

typical categorization functions and were highly accurate at the continuum endpoints (mean

accuracy: 98.1%). However, there did not appear to be any diUerences due to SR for the VOT

stimuli. Figure 5.3 shows listeners’ responses for each stimulus continuum and SR.

Logit mixed-eUects models were run for each continuum with step (VOT step for the

beach-peach stimuli, formant frequency step for the ease-ooze stimuli), SR, and target (the

two targets relevant to that continuum) as Vxed eUects (rmax=0.143). For the beach-peach

stimuli, there was a main eUect of VOT step (b=2.42, z=25.22, p<0.001). The eUect of SR was

not signiVcant (b=0.15, z=0.81, p=0.417), suggesting that SR did not have an eUect on their

voicing judgments. This contrasts with the results of Experiment 7, though there are several

diUerences between the two experiments that may have caused this (see discussion below).

Table 5.3: Formant values for Experiment 8 /i/-/u/ continuum endpoints.

Word F2 F3 B2 B3

ease 2494 3473 86 497

ooze 899 2395 236 393

Note: Values are in Hz.
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There was a main eUect of target (b=0.58, z=3.16, p=0.002), such that listeners made more

“peach” responses when peach was the target and more “beach” responses when beach was

the target, consistent with the previous target detection experiments. There was a marginal

VOT x SR interaction (b=0.31, z=1.78, p=0.076) and a marginal VOT x target x SR interaction

(b=-0.59, z=-1.68, p=0.094); all other interactions were nonsigniVcant (VOT x target: b=0.11,

z=0.66, p=0.512; target x SR: b=-0.23, p=0.532).

A corresponding model was run for the ease-ooze stimuli (rmax=-0.136. There was a

main eUect of formant frequency (b=1.33, z=31.04, p<0.001), but no eUect of SR (b=-0.15, z=-

1.14, p=0.255) or formant frequency x SR interaction (b=0.062, z=0.88, p=0.377). This isn’t

surprising, since SR does not provide useful information for distinguishing these vowels.

There was a main eUect of target (b=0.59, z=4.52, p<0.001), again showing that listeners

made more target responses than nontarget responses. None of the other interactions were

signiVcant (formant frequency x target: b=-0.032, z=-0.45, p=0.653; target x SR: b=-0.077,

z=-0.30, p=0.766; formant frequency x target x SR: b=-0.23, z=-1.63, p=0.103).

As in Experiments 4 and 6, participants’ category boundaries for each continuum

were estimated by Vtting their responses from the 2AFC categorization task that was run

after the ERP session to four-parameter logistic functions. The mean category boundary for

the beach-peach continuum was at step 4.8 (≈19 ms VOT), and the mean boundary for the

ease-ooze continuum was at step 4.7.

5.3.2.2 N1 amplitude

As in Experiment 6, the Adjar procedure was used to reduce overlap between ERP

components to the carrier phrase and those to the target words. As before, examination

of waveforms for each ISI suggested that oUset of the carrier phrase generated ERPs that

occurred during the pre-stimulus baseline period for the target word. For the fast SR, ISI

between carrier oUset and word onset ranged from 130 to 142 ms. For the slow SR, ISI

ranged from 176 to 196 ms. The Adjar procedure was applied and converged on a stable
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estimate of the overlap for each SR condition (Figure 5.4).

Figure 5.5 shows grandaverage ERP waveforms as a function of continuum step, and

Figure 5.6 shows waveforms as a function of preceding SR. As in previous experiments, N1

amplitude decreased with increasing VOT. In addition, there appeared to be an eUect of SR

on the N1 with larger N1s for fast SRs and smaller N1s for slow SRs.

N1 latency was later than for words in isolation, a result also seen in Experiment 6.

Mean N1 amplitude was calculated for the average of the three frontal channels between

125 and 165 ms post-stimulus for the beach-peach stimuli and from 170 to 210 ms for the

ease-ooze stimuli. Figure 5.7 shows N1 amplitude as a function of VOT and SR for each

stimulus continuum.

To assess the eUects of VOT and SR on the N1, mean amplitudes for the beach-

peach stimuli were examined with a linear mixed-eUects model with VOT step, SR, and

target type as Vxed eUects (rmax=0). The model showed a signiVcant eUect of VOT (b=0.073,

pMCMC<0.001) with N1 amplitude decreasing with increasing VOT, replicating the same

pattern observed in previous experiments.

There was a marginal eUect of SR (b=-0.14, pMCMC=0.064) with larger N1s for the

fast SRs than for the slow SRs. This suggests there may be an eUect of rate on VOT encoding,

but it is not in the direction predicted by relative encoding models. Since N1 amplitude

generally decreases with increasing VOT, and listeners would compensate for fast speech by

computing VOT values as longer, we would expect a larger N1 in the context of a slow SR

and a smaller N1 in the context of a fast SR. Thus, this eUect may be due to an overall eUect

of SR on speech processing that is not speciVc to the acoustic cues being encoded.

The eUect of target type was signiVant (b=-0.22, pMCMC=0.005) with larger N1s

when ease or ooze was the target. This is similar to the eUect of target type observed

in the previous experiments in which the nontarget trials produced larger N1s. None of

the interactions were signiVcant (VOT x target type: b=-0.033, pMCMC=0.284; VOT x SR:
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b=-0.004, pMCMC=0.886; target type x SR: b=0.16, pMCMC=0.296; VOT x target type x SR:

b=-0.076, pMCMC=0.229).

Next, N1 amplitude was analyzed as a function of listeners’ responses for trials on

which they made a “target” response. Figures 5.8 and 5.9 show mean N1 amplitude for these

data as a function of step and SR, respectively.

A linear mixed-eUects model with VOT step, SR, and target (beach vs. peach) as Vxed

eUects (rmax=-0.8304) did not Vnd any signiVcant eUects (VOT: b=0.040, pMCMC=0.286; tar-

get: b=-0.053, pMCMC=0.774; SR: b=-0.12, pMCMC=0.526; VOT x SR: b=-0.024, pMCMC=0.732;

target x SR: b=-0.007, pMCMC=0.986; VOT x target x SR: b=-0.13, pMCMC=0.424), though

there was a marginal VOT x target interaction (b=0.14, pMCMC=0.067). This is similar to the

pattern of results observed in Experiment 4, where an eUect of VOT was seen in the overall

dataset but only a marginal eUect was observed for the target-response trials.

The same analyses were performed to examine N1 responses to the ease-ooze stimuli.

A linear mixed-eUects model with formant frequency step, SR, and target type entered as

Vxed eUects (rmax=0) showed a main eUect of step (b=0.087, pMCMC<0.001), with N1 ampli-

tude decreasing with decreasing formant frequency, that is, larger N1s for the /i/ endpoint

than for the /u/ endpoint. This demonstrates that variation in F2 and F3 along an /i/-/u/

vowel continuum produces linear changes in N1 amplitude, similar to the eUects observed

for the other phonological contrasts and acoustic cue dimensions studied. The direction of

the eUect is the same as the one seen for the /E/-/æ/ F1 continuum in Experiment 4.

There was also a main eUect of SR (b=-0.28, pMCMC<0.001) with larger N1s for the

fast SRs than for the slow SRs. This is the same pattern of eUects seen for the beach-peach

VOT stimuli. Given that variation in rate does not produce changes in /i/ and /u/, it seems

likely that this is due to an eUect other than context compensation. Moreover, it suggests

that the SR eUect observed for the beach-peach continuum may have been due to the same

4As in Experiment 6, we expect rmax to be high for these models because the data are grouped
by listeners’ responses (resulting in an unbalanced model).
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process. That is, N1s appear to be larger in the context of fast speech overall, regardless of

the acoustic properties of the particular speech sounds.

Neither the eUect of target type nor any of the interactions were signiVcant (target

type: b=0.023, pMCMC=0.773; formant frequency x target type: b=0.045, pMCMC=0.136;

formant frequency x SR: b=-0.004, pMCMC=0.906; target type x SR: b=0.030, pMCMC=0.869;

formant frequency x target type x SR: b=0.072, pMCMC=0.236).

A linear mixed-eUects model examining N1 amplitude on the target-response trials

was run with formant frequency step, target (ease vs. ooze), and SR as Vxed eUects (rmax=-

0.750). There was a main eUect of formant frequency (b=0.095, pMCMC=0.009) with larger

N1s for higher F2 and F3 frequencies (the /i/ endpoint; the same pattern seen in the initial

analysis). Other eUects were nonsigniVcant (target: b=0.038, pMCMC=0.774; SR: b=-0.012,

pMCMC=0.914; formant frequency x target: b=-0.12, pMCMC=0.127; formant frequency x SR:

b=0.085, pMCMC=0.215; target x SR: b=-0.296, pMCMC=0.456; formant frequency x target



154

x rate: b=-0.10, pMCMC=0.516). These results suggest that the linear eUect seen in the

overall analysis was not an artifact of averaging across categorical N1 responses, providing

additional evidence that N1 amplitude reWects cue encoding for formants.

5.3.2.3 P3 amplitude

P3 amplitude was assessed similarly to Experiment 6. Figures 5.10 shows grandaver-

age ERP waveforms for the parietal channels as a function of trial type (target vs. nontarget),

and Figure 5.11 shows ERPs as s function of distance from the target endpoint, demonstrat-

ing that P3 amplitude is larger for target trials than for nontarget trials and decreases with

distance from the target endpoint.

SR conditions were coded in a way similar to the one used for talker gender diUer-

ences in Experiment 6, that is, whether the SR was consistent with the target endpoint or

not. Thus, for the beach-target trials, slow SRs were coded as consistent (since listeners’

voicing estimates should be shifted toward the voiced [target] endpoint in the context of

slow speech if they are compensating for its eUects) and fast SRs were coded as inconsis-

tent (since listeners voicing estimates should be shifted toward the voiceless [nontarget]

endpoint). Similarly, for the peach-target trials, fast SRs were coded as consistent and slow

SRs were coded as inconsistent. Because context consistency is undeVned for the ease-ooze

stimuli (which do not vary as a function of rate), these eUects were only examined for the

beach-peach stimuli. Figure 5.12 shows ERPs as a function of preceding SR.

Mean P3 amplitude was analyzed by computing the mean voltage for the average of

the three parietal channels from 300 to 700 ms after the onset of the target word. Figure 5.13

shows P3 amplitude for target trials as a function of target distance (for both continua) and

context (for the beach-peach stimuli). P3 amplitude appears to decrease with distance from

the target endpoint, though there does not appear to be a systematic diUerences between

the consistent and inconsistent context conditions for the beach-peach stimuli.

To examine whether VOT and SR showed eUects on the P3, mean amplitudes for the
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Figure 5.12: Experiment 8 results — ERP waveforms for the parietal channels by context.
Preceding SR is coded as either consistent or inconsistent with the relevant target endpoint
(e.g., when beach is the target, the slow SR condition is coded as “consistent” since it should
produce more “beach” responses). Only ERPs for the beach-peach stimuli are shown here,
since context consistency is undeVned for the ease-ooze stimuli. Shaded areas indicate time
range for P3 amplitude.

beach-peach stimuli were Vrst analyzed using a linear mixed-eUects model with target type

(beach/peach vs. ease/ooze) as a Vxed eUect. The model showed a signiVcant eUect (b=-

0.86, pMCMC=0.003) with larger N1s for the target blocks than the nontarget blocks. Mean

amplitude for the target blocks was then examined using a model with target distance and

context consistency entered as Vxed eUects (rmax=0). The model showed a main eUect of

target distance (b=-0.10, pMCMC<0.001) with larger N1s near the target endpoint. The eUect

of context consistency (b=0.029, pMCMC=0.783) and interaction (b=0.020, pMCMC=0.615)

were not signiVcant.

P3 amplitude was then analyzed as function of distance from listeners’ VOT bound-

aries. Figure 5.14 shows grandaverage ERP waveforms as a function of boundary distance,

and Figure 5.15 shows ERPs for the beach-peach stimuli as a function of whether the pre-

ceding SR was consistent with the target endpoint. Figure 5.16 shows mean P3 amplitudes
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Figure 5.13: Experiment 8 results — P3 amplitude by target distance and context. Mean
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areas indicate standard error.
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for these data. A linear mixed-eUects model for the target-response trials with boundary

distance, context consistency, and target (beach vs. peach) as Vxed eUects (rmax=-0.094)

found a main eUect of boundary distance (b=0.22, pMCMC<0.001) with larger N1s near the

target endpoint. None of the other main eUects or interactions were signiVcant (target: b=-

0.024, pMCMC=0.871; context: b=0.020, pMCMC=0.884; boundary distance x target: b=0.041,

pMCMC=0.355; boundary distance x context: b=-0.068, pMCMC=0.464; target x context:

b=0.091, pMCMC=0.768; boundary distance x target x context: b=-0.054, pMCMC=0.796).

The same analyses were run on the ease-ooze data (except that the context con-

sistency factor was not included, since it is not deVned for these stimuli). An initial linear

mixed-eUects model with target type as a Vxed eUect was signiVcant (b=-0.70, pMCMC=0.006).

A model for the target trials with target distance as a Vxed eUect also found a signiVcant

eUect (b=-0.146, pMCMC<0.001), showing that P3 amplitude decreased with distance from

the target endpoint.

Next, target distances relative to each listeners’ category boundary along the ease-

ooze continuum were computed and a linear mixed-eUects model with boundary distance

and target (ease vs. ooze) for the target-response trials was run (rmax=-0.166). The model

showed a main eUect of boundary distance (b=0.142, pMCMC<0.001), again with P3 am-

plitude decreasing with distance from the target endpoint. The eUect of target (b=0.078,

pMCMC=0.590) and interaction (b=-0.009, pMCMC=0.944) were not signiVcant. Overall,

these results are consistent with the previous experiments demonstrating linear eUects of

acoustic diUerences within individual phonological categories on P3 amplitude.

5.3.3 Discussion

These results do not provide any evidence indicating that SR has an eUect on N1

amplitude to the onset of the target word. However, there was an overall eUect of SR for

the ease-ooze continuum and a marginal eUect for the beach-peach continuum, though not

in the direction predicted for compensation. Thus, while these results support raw-cue
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Figure 5.14: Experiment 8 results — ERP waveforms for the parietal channels by category
boundary distance on target-response trials. The top panel shows ERPs for the ease-ooze
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Figure 5.15: Experiment 8 results — ERP waveforms for the parietal channels by context
on target-response trials. Context conditions are plotted as a function of whether the they
were consistent or inconsistent with the target endpoint. Only data from the beach-peach
continuum are shown here, since context consistency is undeVned for the ease-ooze stimuli.
Data are averaged across the four rStep conditions shown in Figure 5.14 (-1, 1, 2, and 3).
Shaded area indicates time range for P3 amplitude.

encoding models, which predict no rate eUects during cue encoding, this conclusion must

be considered in light of other results. Indirectly, these results also suggest a compensation

model that uses extrinsic encoding via feedback. Here, since category-level information

about context is not available, it may be that the information needed to encode cues relative

to context is not present.

The overall eUect of SR, with fast rates producing larger N1s regardless of the acous-

tic cues in the target word, could be indicative of increased work being done during cue

encoding for fast speech. This would be a relatively straightforward explanation if fast

speech was also more diXcult to understand, however, speech intelligibility is not aUected

by speaking rate (Bradlow et al., 1995). Thus, this may reWect some other process active

during cue encoding.

The behavioral results also did not show any evidence of compensation for rate
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the average of the two SR conditions is shown). The size of each data point is proportional
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variability. This is potentially problematic for the interpretation that rate does not have an

eUect on cue encoding — it may be that it has no eUect at all on listeners’ voicing judgments.

However, previous work (SummerVeld, 1981; Wayland et al., 1994), as well as Experiment

7, suggest that SR does has an eUect on voicing judgments. There are several diUerences

between Experiment 7 and the present experiment that could have contributed to the lack

of an eUect in this experiment. The most likely candidates are that (1) the new set of stimuli

used in this experiment, and (2) the target detection task that used instead of a 2- or 4AFC

task. Given that the range of SR values used is similar for the two experiments, it seems

that the task may have masked eUects of SR.

To test this, several participants were run in a 2AFC task with the beach-peach

stimuli from this experiment. The experimental procedure was the same as in Experiment

5 — listeners indicated whether the word the heard at the end of the sentence was beach

or peach. Figure 5.17 shows listeners responses in this task as a function of VOT step and

SR. The results conVrmed that an eUect of SR, approximately the same size as that seen

in Experiment 7, can be seen with these stimuli (b=-0.51, z=-2.32, p=0.020, rmax=-0.091).

Listeners made more “peach” responses in the context of a fast carrier phrase, and more

“beach” responses in the context of a slow carrier. Thus, it appears that the target detection

task simply masked the eUects of SR in the present experiment.

The pattern of N1 diUerences for VOT at the continuum endpoints (i.e., shorter VOTs

produce larger N1s) in previous experiments was similar for both 2AFC (Experiment 2) and

target detection (Experiment 4) tasks. Thus, it does not seem that the task would aUect

listeners’ N1 responses to the two SR conditions either, though indexing functions for ERP

components may be speciVc to the task used (MordkoU & Grosjean, 2001). If N1 responses

are the same across tasks, the overall results are best explained by raw-cue encoding models

in which SR serves as a weak phonetic cue (Toscano & McMurray, 2010) or inWuences the

mapping between cues and categories (Smits, 2001b) via feedforward processes.
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Figure 5.17: Experiment 8 — results of 2AFC follow-up task. Listeners’ categorization re-
sponses for the stimuli from Experiment 8 but in a 2AFC task, showing that preceding rate
has an eUect on their voicing judgments.

5.4 General discussion

Along with the results of the experiments on talker variability, the results of this set

of experiments suggest that relative cue encoding is mediated by feedback from category-

level representations, but that continuous information from context can still inWuences lis-

teners’ decisions. This combines aspects of feedback-driven, extrinsic encoding models (e.g.,

C-CuRE) with feedforward, raw-cue encoding models (e.g., HICAT, WGMM). In fact, C-

CuRE uses both raw and relative cue encoding to handle contextual variability. However,

the way raw cues are used, by directly providing information about diUerent phonological

categories, seems unusual for eUects like SR. Using SR in this way would suggest that lis-

teners simply activate voiced categories more in the context of slow speech and voiceless

categories more in the context of fast speech. There are ways to measure SR other than the

global speaking rate that may be more sensible under this approach. For example, listeners

could use VL information from the preceding sentence to bias phonological categories. This
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seems more reasonable, and it Vts with the results showing that VL acts as a weak phonetic

cue (McMurray, Clayards, et al., 2008; Toscano & McMurray, 2011a) and those showing that

rate information occurring close in time to the stop consonant has larger eUects (Repp &

Lin, 1991; SummerVeld, 1981).

The lack of an eUect here also suggests that, when cue-level context eUects are ob-

served, they are driven by category-level information. Indeed, a feedback model that uses

information from higher-level, but continuous, estimates of rate could have shown an eUect

of SR on VOT encoding in Experiment 8. This would have been indistinguishable from a

lateral model in this case, and both types of models are logically quite similar. However,

given that compensatory eUects of rate on VOT encoding were not found, both a lateral and

a continuous-information feedback account seem implausible. Instead, these results suggest

that, if listeners do use feedback to compute relative cues, they do so based on feedback

from speciVc categories.

The two secondary goals of these experiments also support the conclusions above.

First, we observed a single N1 peak at both ends of the voicing continuum (seen here in

Experiment 8, as well as in Experiments 2 from Chapter 3). This provides additional ev-

idence that listeners process continuous changes in VOT. Second, eUects of preceding SR

were observed in natural speech (Experiment 7 and the follow-up to Experiment 8). This

supports previous results and provides evidence against purely intrinsic encoding. Although

this eUect wasn’t observed in the target detection task used in Experiment 8, this seems to

be the result of the task used rather than the stimuli, as shown by the presence of an eUect

in the follow-up to Experiment 8.

Together, the results of the talker and rate variability experiments help to distin-

guish between diUerent models of speech perception that have been proposed to deal with

contextual variability. We next ask how listeners compensate for the third main source of

variance in speech, coarticulation. The Vnal experiment addresses this.
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CHAPTER 6
COARTICULATORY CONTEXT

6.1 Background

The Vnal experiment examines the eUects of coarticulatory context. The fundamen-

tal issue here is that the acoustic-phonetic instantiation of a phoneme is never independent

of neighboring phonemes. As in the previous chapters on talker and rate compensation,

the two principles that distinguish models of context compensation (type of encoding and

direction of information Wow) also apply here, and several models that vary along these

dimensions have been proposed. However, one diUerence between coarticulatory eUects

and the eUects we have looked at previously is that coarticulation potentially provides two

sources of anticipatory context information that listeners can take advantage of. The Vrst

corresponds directly to the type of contextual variability discussed for talker and rate dif-

ferences: the eUect of the preceding context can alter the acoustic properties of subsequent

cues, leading to ambiguity and diXculty assigning the correct phonological category. Lis-

teners could handle these eUects in the same ways they handle talker and rate eUects, by

compensating for diUerences due to preceding phonemes at the level of cue encoding (i.e,

using relative cue values) or categorization (using raw cues).

However, unlike talker and rate eUects, coarticulation about the identity of subse-

quent phonemes is also present in the preceding context. For example, the syllable /si/,

consists of a period of frication followed by a period of vocalic energy. Information about

the fricative will carry over into the vocalic portion (creating a context eUect on the vowel

similar to the way talker and rate can aUect the acoustic form of the vowel). In addition,

information about the vowel is present during the frication which can lead to modiVcations

of the same cues that identify the fricative (e.g., an /s/ can be more /S/-like in some con-

texts). These modiVcations in the frication can serve as an additional source of anticipatory

information about vowel identity, or they could alter fricative categorization. Critically, if
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listeners treat these frication diUerences as anticipatory cues to the vowel (which they are),

listeners may not compensate for diUerences in the vowel due to the fricative, as they may

do for other sources of context information in vowel identiVcation. That is, because this

information directly cues vowel categories, we would not expect listeners to factor it out

of their estimates of cue-values for the subsequent vocalic portion. If, however, they treat

vowel information in the frication as contextual variability (i.e., variation in the talker’s

production of the fricative), we would expect compensation of a form similar to that seen

for other sources of contextual variability.

Here, Repp’s (1982) distinction between trading relations and context eUects be-

comes apparent. The eUect of preceding information caused by other phonemes (e.g.,

whether the fricative is an /s/ or /z/ in a fricative-vowel syllable) on subsequent acoustic

cues (information in the vocalic portion) would be considered a context eUect. In contrast,

coarticulatory information that is present in one segment, but attributable to another (e.g.,

diUerences during the frication between the syllables /si/ and /su/), would be a source of

information for a trading relation between the cues to the relevant phonological distinc-

tion (/i/ vs. /u/). However, there are multiple ways this information can have an eUect on

listeners cue encoding (if it has any eUect at all). Since information in the frication could

be treated as either an additional cue (information about the vowel) or as an eUect of con-

textual diUerences (information about the fricative) we would expect diUerent eUects on

listeners’ encoding of subsequent vocalic information.

If listeners treat this coarticulatory information as a cue to the vowel, we would

expect that they use it to either facilitate recognition of the vowel or prime activation of

cue-values associated with a particular vowel category. This would be similar to the types

of eUects seen in audiovisual speech perception (van Wassenhove et al., 2005), where N1

responses have shorter latencies in the context of audiovisual speech (which provides similar

anticipatory cues) than in the context of audio-only speech.
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Alternatively, if listeners treat this information as a source of contextual variability

(i.e., diUerences in how the talker produced an /s/ or information indicating diUerent frica-

tives), we would expect eUects on cue encoding that are similar to other types of context

eUects. For example, if the coarticulation in the frication causes it to be identiVed (even

partially) as a diUerent phoneme, this may cause listeners to treat the information in the

vowel diUerently.

Thus, whether listeners treat anticipatory coarticulation as an additional cue (about

the vowel) or as context information (about the fricative) can be determined by looking at

how they encode cues in diUerent coarticulatory contexts.

This was examined in a single, somewhat exploratory experiment that used a slightly

diUerent design than the prior studies. Before presenting the experiment, I will review

the phonetic and perceptual data on coarticulatory eUects, with a particular emphasis on

fricative-vowel coarticulation, which is examined in the present experiment. In addition,

evidence for and against proposed models of coarticulatory compensation, and how they

may diUer for trading relations and true context eUects, are discussed.

6.1.1 Phonetic data

A large number of phonetic studies have examined coarticulatory eUects of diUer-

ent phonological contrasts, including those that aUect vowels (House & Fairbanks, 1953;

Stevens, House, & Paul, 1966; Magen, 1997; Cole et al., 2010), stop consonants (Öhman, 1966;

Kewley-Port, 1982; Repp, 1982), and fricatives (Fujisaki & Kunisaki, 1978; Soli, 1981). Over-

all, coarticulation has similar consequences across diUerent phonological contrasts, such

that the acoustic properties of the Vrst segment reWect properties of how the upcoming and

prior segments are produced (and vice versa).

Here, I will focus on coarticulatory eUects of fricative-vowel pairs, since these two

classes of sounds will be examined in the present experiment. Fricative-vowel syllables are

characterized by a segment of aperiodic energy (frication; which may also contain periodic
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energy, particularly for voiced fricatives) followed by a segment of periodic energy (the

vocalic portion). Both fricatives and vowels are distinguished by spectral cues. As discussed

in Chapter 4 F1 and F2 value serve as primary cues to vowel quality (Peterson & Barney,

1952; Hillenbrand et al., 1995). Formant frequencies at vowel onset also distinguish fricative

place of articulation (Jongman et al., 2000), but there are substantial spectral changes within

the frication that are much more robust cues to place of articulation (Forrest, Weismer,

Milenkovic, & Dougall, 1988; Jongman et al., 2000). These are usually captured in terms of

broad spectral measures, such as the overall spectral mean and variance.

DiUerences in fricative place of articulation and voicing also exert coarticulatory

eUects on several types of surrounding segments, including vowels. House and Fairbanks

(1953) examined the coarticulatory eUects of a large number of consonants, including frica-

tives, on vowel sounds. They found that the preceding consonant has eUects on vowel

duration, fundamental frequency, and relative intensity. Similarly, Stevens, Blumstein,

Glicksman, Burton, and Kurowski (1992) found that diUerences in fricative voicing aUect

F1 transitions into subsequent vowels. Repp (1982) reported similar coarticulatory eUects of

fricatives for combinations of fricatives (/s,S/), stops (/t,k/), and vowels (/a,u/) in FCV and

VFCV contexts. They found that formant values, which provide acoustic cues to stop place

of articulation as well as vowel quality, were higher at the onset of the stop after /s/ than

after /S/, consistent with the formant diUerences for those two fricatives and demonstrat-

ing a coarticulatory eUect of the fricative. These results demonstrate true context eUects

of preceding fricatives on subsequent vowels. Crucially, they also suggest that in order to

accurately identify the vowel, a listener would need to compensate for diUerences due to

fricative context.

Vowels also create coarticulatory eUects on neighboring phonemes, including stops

(Stevens et al., 1966) and vowels in adjacent segments (Cole et al., 2010), and several studies

have examined the acoustic properties of fricatives when followed by diUerent vocalic con-
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texts (Hughes & Halle, 1956; Heinz, 1961; Fujisaki & Kunisaki, 1978; Soli, 1981). The quality

of the subsequent vowel, in particular, whether the vowel is rounded or not, has been shown

to have large eUects on preceding fricatives (DaniloU & Moll, 1974). Fujisaki and Kunisaki

(1978) used the analysis-by-synthesis approach (Lewis, 1936)1 to develop a model of frica-

tive production that captured diUerences in the acoustic properties of Japanese /s/ and /S/

depending on vowel context. They found that energy in the frequency region of F1 during

frication, one of several cues distinguishing these fricatives, is inWuenced by the following

vowel (e.g., lower for rounded vowels than for unrounded vowels). Soli (1981) found sim-

ilar eUects of lip rounding, as well as an independent eUect of vowel backness in a set of

phonetic data for /s/, /z/, /S/, and /Z/ spoken in the context of /a/, /i/, and /u/ vowels.

Overall, the phonetic data demonstrate that there is considerable information dur-

ing the frication about upcoming vowels in FV segments and, simultaneously, considerable

changes in vowel formants that are due to the frication. This is particularly true for the dis-

tinction between rounded and unrounded vowels. As a result, listeners can use information

in the frication to predict the category of the upcoming vowel, treating it as an additional

cue to the identity of the vowel. However, they could also treat it as information about the

fricative context. DiUerences in lip rounding for vowels produce eUects in the frication that

are similar to the eUects of fricative place of articulation (e.g., /S/ vs. /s/). Rounded vowels

have a lower spectral mean during the frication than unrounded vowels, and similarly, /S/

has a lower spectral mean than /s/ (Jongman et al., 2000). As a result, an /s/ that has under-

gone anticipatory lip rounding can be ambiguous between /s/ and /S/. Given that listeners

compensate for coarticulatory diUerences due to fricative place, they might also compen-

sate for the lower spectral mean in the frication caused by a rounded vowel by treating the

subsequent vocalic portion as having a higher frequency. The phonetic data alone, however,

do not tell us whether one, both, or neither of these processes aUects cue encoding.

1Don Lewis of the Iowa Psychology Laboratory was one of the Vrst to use the analysis-by-
synthesis technique, describing it in an early report on vowel sounds produced by singers.



171

6.1.2 Perceptual data

There have been a large number of perceptual studies showing that listeners are

sensitive to and compensate for coarticulatory eUects (Liberman et al., 1952; Mann & Repp,

1981, 1980; Mann, 1980; Whalen, 1981; Yeni-Komshian & Soli, 1981; Repp & Mann, 1981). In

terms of the contrasts used in the present experiment, several previous studies have found

eUects of fricative-vowel coarticulation on listeners’ perceptual judgments.

Mann and Repp (1981) investigated this by presenting listeners with stimuli consist-

ing of CV syllables with a frication and vocalic portion. Frication varied along a formant

continuum from /s/ to /S/. The formant transitions into the vocalic portion were consistent

with the vowels /a/ and /u/, spoken in the context of each of the fricatives. Listeners heard

each combination of frication step and vocalic segment and were asked to make judgments

about the identity of the fricative. Along with the overall eUect of formant frequency during

the frication, there were large eUects of whether the vocalic segment matched an /s/ or /S/,

demonstrating that listeners are sensitive to the eUects of fricative information in the vocalic

portion. There were also eUects of the vowel, such that unrounded vowels (e.g., /a/), which

have higher formant frequencies, produced more /S/ responses than rounded vowels (/u/),

which have lower formant frequencies. Similar eUects were observed by Johnson (1991) for

these vowels and by Whalen (1981) for the vowels /i/ (unrounded) and /u/ (rounded). These

results are consistent with the idea that listeners are compensating for diUerences in the up-

coming vowel by treating a fricative as having a lower frequency in the context of a vowel

with a higher frequency. However, it is not clear what sort of compensation model listen-

ers use to handle this, and these results are consistent with both cue- and category-level

compensation.

EUects on listeners’ vowel judgments as a function of the preceding fricative have

also been observed. Ostreicher and Sharf (1967) found that listeners are above-chance at

identifying vowels when given only the frication portion of a fricative-vowel segment, in-
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dicating that they are able to use some anticipatory vowel information in the frication.

Similarly, Yeni-Komshian and Soli (1981) examined listeners identiVcation of vowel sounds

based on information from a preceding frication segment. They recorded utterances of sev-

eral fricative-vowel pairs (/s,z,S,Z/ and /a,i,u/), and isolated the frication portion of each

recording. Listeners’ were presented with these stimuli and asked to identify the vowel (/a/,

/i/, or /u/) that the frication came from. They were above chance at identifying the vowels,

though /i/ and /u/ were more accurately identiVed than /a/. In addition, listeners’ accuracy

varied as a function of the vowel the fricative was coarticulated with (an anticipatory vowel

cue) and interacted with the place of articulation of the fricative (a standard context eUect).

These studies indicate that listeners are perceptually sensitive to both types of con-

textual variability introduced by coarticulation. They show compensation for variability

caused by the identity of the phoneme in the preceding segment (a context eUect; Yeni-

Komshian & Soli, 1981), and they show eUects of anticipatory cues to the later phoneme

that are present in the earlier sound, as evidenced by fricative judgments (Mann & Repp,

1981). Given this, we can now ask how diUerent context compensation mechanisms would

account for these results and what predictions they make about how listeners encode the

later vocalic information in FV syllables.

6.1.3 Mechanisms for handling coarticulatory variability

Several models of context compensation have been proposed to deal speciVcally with

coarticulatory eUects. Notably, Fowler’s (Fowler, 1984, 1986, 2006) gestural parsing account

provides a general approach for handling coarticulation. Fowler observes that speech seg-

ments overlap in time rather than as temporally discrete units. Given this, she argues that

listeners perceive speech in terms of overlapping articulatory gestures and assign particular

patterns of acoustic information to the appropriate gesture in order to handle contextual

variability. For example, to correctly recognize fricatives that are coarticulated with subse-

quent vowels, listeners assign variation in the frication that is due to the following vowel
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to the vowel. Removing this variability allows the listener to more accurately identify the

fricative (and, subsequently, the vowel).

Other researchers have challenged this account, arguing for auditory-based models

of coarticulation compensation (Lotto & Kluender, 1998; Diehl, Lotto, & Holt, 2004; Klu-

ender, 2003; Holt, 2005). Under these approaches, coarticulatory eUects are explained by

auditory contrasts (e.g., spectral contrasts) between the Vrst and second segment. That is,

in the context of a preceding high-frequency sound, a given sound is perceived as having

a lower frequency than it actually does, and vice versa. To illustrate this idea, Lotto and

Kluender (1998) describe a study by Mann (1980) in which she demonstrated that listen-

ers compensate for F3 coarticulation from liquids (/l,r/) such that they are more likely to

perceive a stop consonant as /ga/ when it is preceded by /al/, and as /da/ when preceded

by /ar/. (Lotto & Kluender, 1998) demonstrated that similar eUects are obtained when the

preceding context is a nonspeech sound with energy in the frequency range corresponding

to /al/ or /ar/. They argue that these results do not Vt with a gestural parsing account in

which listeners are attempting to recover the conVguration of the talker’s articulators (since

there is no talker and no phoneme information for nonspeech sounds).

Recently, however, Viswanathan, Magnuson, and Fowler (2010) presented evidence

against the general auditory hypothesis by examining a coarticulatory contrast that does

not demonstrate spectral contrast. Listeners still showed compensation for coarticulation,

and Viswanathan et al., argued that this result supports a gestural account over a general

auditory account. Although the distinctions between these two approaches are critical to

overall theories of speech perception, for the purposes of this experiment, both accounts

would be characterized similarly along the two main dimensions used to classify the models,

though, as noted in Chapter 2, it is diXcult to compare gestural parsing accounts with

the other models. The auditory contrast account would be classiVed as a lateral, extrinsic

encoding model, since it handles coarticulation via interactions at a single level of processing
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based on information from adjacent segments.

A feedback mechanism is also suggested by C-CuRE. Cole et al. (2010) used C-CuRE

to capture eUects of vowel-to-vowel coarticulation, a phenomenon in which coarticulatory

information from an upcoming vowel is present in a preceding vowel (Cho, 2004; Öhman,

1966). They collected phonetic data from a number of talkers and measured formant fre-

quencies for vowels in a variety of consonant and vowel contexts. They found that by fac-

toring out expected acoustic variation based on coarticulatory context (the consonant and

subsequent vowel), as well as information about the talker, they could greatly reduce the

amount of overlap between between vowel categories in F1xF2 space. Using this approach,

they were able to account for 95% of the variation in F1 and F2 values for these vowels. Thus,

this provides a potentially powerful approach for handling coarticulatory eUects. Like ges-

tural parsing and auditory contrast accounts, C-CuRE uses extrinsic information (e.g., talker

identity and the identity of neighboring phonemes) to encode cue-values relative to context

(see also McMurray & Jongman, 2011, for a demonstration of this in fricatives). However,

C-CuRE diUers from the auditory contrast account in that it eUectively uses category-level

information, rather than cue-cue interactions, to adjust cue-values. This places it as a feed-

back, extrinsic encoding model in the classiVcation system used here.

Another line of research has examined the question of what units (e.g., phonemes vs.

syllables) are used to perceive coarticulated speech, which has led to debates between sev-

eral raw-cue encoding models designed to account for coarticulatory eUects. Mermelstein

(1978) presented data suggesting that listeners do not use coarticulatory information from

adjacent phonemes in a compensatory way. That is, they do not identify the preceding seg-

ment (that creates the coarticulation) as a precursor to identifying the target segment (that

undergoes coarticulation). He found that when adjacent consonants and vowels were sig-

naled by the same information (duration of the vocalic portion), listeners made independent

judgments about the identity of the consonant and vowel, using the duration information
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to make decisions about both and suggesting that they do not compensate for duration

information attributed to one phoneme in their estimates of the other. Whalen (1989) at-

tempted to replicate Mermelstein’s (1978) study with more power and experimental control

and found evidence in favor an interaction between consonant and vowel judgments. In

addition, he extended these results to examine FV syllables (/si/, /Si/, /su/, and /Su/) sig-

naled by diUerences in the frication (similar to the acoustic diUerences used in the present

experiment) and found similar results.

Whalen’s results contradict Mermelstein’s earlier claims and suggest that listeners

compensate for coarticulatory eUects. However, Nearey (1990) analyzed Whalen’s results

using a NAPP model and found that a diphone bias, which is applied at later decision

stages, can produce the same eUects, even when the fricatives and vowel are categorized

independently. Smits (2001a) also examined Whalen’s results using HICAT, and suggested

that it could better account for the compensatory eUects observed using a scheme in which

decisions about the preceding segment condition judgments on the target segment. In terms

of the distinctions being made here, the results from both models suggest that feedforward,

raw-cue encoding approaches are suXcient for explaining compensation for coarticulation.

Overall though, the most signiVcant diUerence between these approaches and others (e.g.,

auditory contrast, C-CuRE) is that they predict that initial cue encoding is not aUected by

coarticulatory context. Rather, any compensatory eUects of coarticulation are handled at

categorization or later stages.

Each of these accounts also allows for the possibility that anticipatory information

about upcoming phonemes can aUect listener’s phonological judgments in feedforward way.

However, their predictions diUer depending on whether listeners treat this information as

a cue to the vowel or as contextual variation related to the fricative (or both). If listeners

use it as a vowel cue, both types of models predict there will be no eUect on listeners’

encoding of later vowel information (since they are not compensating for diUerences in
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fricative context). If, however, listeners treat this information as a sources of contextual

variability (i.e., a cue to the fricative), the two types of models make diUerent predictions

about how listeners encode later vowel information. Raw-cue encoding models predict that

this information would not aUect encoding of the subsequent vocalic information, but would

be taken into account at a later stage of processing. In contrast, relative encoding models

suggest that listeners compensate for vowel-derived diUerences in frication at the level of

cue encoding, just as they would compensate for eUects of talker, rate, or true contextual

diUerences in the fricative produced by the talker.

6.1.4 Experiment overview and predictions

Following the logic of the previous experiments, the current experiment examined

listeners’ responses to a vowel sound following context information, in this case, a preceding

fricative. The context compensation models described above make diUerent predictions

about how listeners encode vowel cues in FV segments and what eUects we should see on

N1 responses to the onset of the vocalic period. Consider the vowels /i/ and /u/ spoken in

the context of an /s/ such that there is coarticulatory information about the vowel during

the frication. Because /i/ has higher frequency F2 and F3 values than /u/ (Hillenbrand et al.,

1995), spectral information in the /s/ will be higher frequency and unambiguously /s/-like.

Therefore, /s/ sounds produced in the context of an /i/ will be referred to using the notation

/sH/ (indicating a Higher frequency /s/). Similarly, since /u/ coarticulation leads to lower

frequencies in the frication (producing a partially /S/-like sound), /s/ sounds produced in the

context of an /u/ will be referred to as /sL/ (Lower frequency).

This produces diUerences in frication frequency similar to those produced by the

diUerences between /s/ and /S/. Thus, this leads to a situation in which listeners can use the

coarticulatory information in the frication as either a vowel cue (i.e., /sL/ indicates an /u/

is arriving next) or as fricative place information (/sL/ is more consistent with an /S/). In

addition, by cross-splicing the sounds, we can create mismatching stimuli in which /sH/ is
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followed by /u/ or /sL/ is followed by /i/.

There are three possible eUects that such anticipatory coarticulation can have on

subsequent cue encoding. The Vrst possibility is that the information about the vowel in

the frication does not aUect later encoding at all, though it may be used at a later stage of

processing. This is consistent with the predictions of raw-cue encoding models that either

do not use coarticulation in the frication or use it as evidence for the vowel. This predicts

that N1 responses to sounds spoken in diUerent contexts should be the same.

The second possibility is that listeners treat diUerences in the frication (between /sL/

and /sH/) as cues to the fricative and compensate for them when encoding of the vocalic

portion. Thus, when spoken in the context of /sH/, which has higher-frequency spectral in-

formation, listeners would treat the onset of the vocalic portion as having a lower frequency

that it actually does. Conversely, when spoken with /sL/, listeners would treat the vocalic

onset as having a higher frequency. This is analogous to the context compensation eUects

predicted for talker and rate diUerences and could quite clearly be accounted for by auditory

contrast (lateral, extrinsic encoding models) via spectral contrast. It could also be accounted

for by a model like C-CuRE (feedback, extrinsic encoding) if the frication diUerences led to

diUerential activation of fricative categories, such as partial activation for /S/ based on the

/sL/ stimulus. In this case, both approaches lead to the same prediction: listeners encode

vowel onset cues relative to these coarticulatory diUerences in the frication. SpeciVcally,

these models predict that N1 responses in each context should show the opposite pattern of

results to N1 responses to diUerences in the vocalic portion. Given the results of Experiment

8 showing larger N1s for /i/ than for /u/, we would expect larger N1s for /sL/ than for /sH/.

A third possibility is that listeners treat this information as an anticipatory vowel

cue and use it to prime potential cue-values. If this is the case, coarticulation in the frication

is not treated as contextual variability identifying the fricative, but can still aUect encoding

of the subsequent vocalic information (via priming rather than compensation for context).
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This would be similar to the type of eUect seen in audiovisual speech, where visual infor-

mation can enhance processing of acoustic cues, as evidenced by shorter N1 latencies for

audiovisual speech than for audio-only speech (van Wassenhove et al., 2005). This could

have one of two eUects. First, if listeners use a strategy similar to the relative encoding

models proposed for other types of context eUects, we would expect the cues in the frication

to prime particular vowel categories. In this case, we would expect larger N1s for /sH/ than

for /sL/ (the same pattern seen for /i/ [higher frequency] and /u/ [lower frequency]). Sec-

ond, facilitatory eUects could also produce a diUerence in the N1 as a function of whether

the information in the frication and vocalic portions matched. This would be similar to the

results seen for audiovisual speech. SpeciVcally, we would expect larger N1s when the two

sounds mismatched than when the matched.

To test these three predictions, I ran an experiment in which I examined ERP re-

sponses to the vowels /i/ and /u/ in FV syllables. Two fricatives, /s/ and /z/, were used to

see whether the eUects generalize to multiple coarticulatory contexts.

6.2 Experiment 9: Coarticulatory context eUects

In this experiment, listeners heard stimuli consisting of the syllables /si/, /su/, /zi/,

and /zu/. In these syllables, coarticulatory eUects of vowel rounding produce changes in the

frication. This provides listeners with an anticipatory cue about the vowel, allowing us to

examine a type of context eUect that we haven’t looked at in the previous experiments. In

addition, we can examine the eUect of a standard context eUect, the diUerence between /s/

and /z/ (though the cues to fricative voicing are not likely to lead to strong context eUects

for /i/ and /u/).

This experiment used a 2AFC task in which each response choice is equi-probable

rather than the target detection task used in Experiments 6 and 8. Since the eUects of

interest relate to the N1 component, a 2AFC task was chosen as it was simpler and we were

not concerned with categorization. In addition, Adjar was also used here to help remove
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overlap between ERP components to the frication and those to the vocalic portion.

For each fricative-vowel combination, stimuli were cross-spliced to create condi-

tions in which the coarticulatory information in the fricative is either the same or diUerent

from the vowel. This allows us to examine several conditions that may aUect N1 ampli-

tude. First, we can examine the eUect of vocalic diUerences (/i/ vs. /u/) to see which vowel

produces a larger N1. This can then be compared to other eUects to look for evidence of

context compensation (i.e., if listeners attribute diUerences in the frication to the fricative)

or facilitation (if they attribute them to the vowel).

Second, we can examine the eUect of the particular fricative (i.e., /sH/ vs. /sL/ or /zH/

vs. /zL/). This allows us to look for evidence of anticipatory eUects due to coarticulation

from the vowel. If listeners use this information as a cue to the category of the upcoming

vowel, we would expect the coarticulatory context to either reinforce the N1 diUerences

observed for the diUerent vocalic portions via priming (i.e., larger N1s in the context of an

/i/). In contrast, if they treat diUerences in the frication as a source of contextual variability

(i.e., a cue to the fricative) and compensate for this eUect at the level of cue encoding, we

would expect their N1 responses to reWect such compensation (larger N1s in the context of

an /u/). Finally, if coarticulatory information has no eUect on vocalic encoding, regardless

of how the listener uses that information, we would expect N1 responses to be the same

across coarticulatory contexts.

Third, we can examine the eUect of whether the coarticulatory information in the

fricative matched or mis-matched the vowel (the interaction of the two main eUects above).

This would not reveal the eUects of relative encoding based on coarticulatory context (since

they would cancel each other out). Instead, it allows us to see whether listeners detect the

match between the frication and vocalic portions, independent of the acoustic characteris-

tics of the stimulus, at this early stage of processing. This would be indicative of facilitation

of the N1 where listeners used the information in the frication as a cue to the upcoming
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vowel. In addition, this may be informative for further establishing the N1 as an index of

cue-level encoding.

6.2.1 Methods

6.2.1.1 Participants

Twenty-four people participated in the experiment. Participant recruitment, con-

sent, participation criteria, and compensation procedures were the same as the other ERP

experiments.

6.2.1.2 Design

Participants performed a 2AFC vowel identiVcation task. Each combination of frica-

tive (/s/ or /z/), coarticulation (match or mis-match), and vowel (/i/ or /u/) was presented

45 times, for a total of 360 trials. The experiment took approximately 60 minutes and was

completed in a single session.

6.2.1.3 Stimuli

The male talker recorded for the talker variability experiments recorded the stimuli

for this experiment as well. Several tokens of each of the four syllables (/si/, /su/, /zi/, and

/zu/) were recorded. Recordings were made with the same equipment and in the same

sound-attenuated room as in previous experiments.

The talker was asked to pronounce each word slowly. This was done to obtain

tokens of each fricative that were long enough that they could be shortened by 250 ms (in

order to use the Adjar procedure) while still allowing listeners to clearly identify the word.

Several tokens of each word were recorded, and the highest-quality token was selected for

the experiment.

The length of the frication portions were Vrst adjusted so that they were equal. This

was done by Vrst measuring the length of each frication portion to determine which was
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the shortest. Then, the other three stimuli were shortened by cutting from the end of the

sound at zero-crossings closest to the duration of the shortest stimulus. /zi/ had the shortest

frication in the set (699 ms), and the /si/, /su/, and /zu/ tokens were cut by 266, 369, and

128 ms, respectively. The same procedure was used to equate the length of the vocalic

portions. Again, /zi/ had the shortest length (508 ms), and the /si/, /su/, and /zu/ tokens

were cut by 63, 28, and 77 ms, respectively. Next, the stimuli were cross-spliced to create

the coarticulatory mismatch conditions between the fricative and vowel. Finally, the pitch-

synchronous overlap-add method was used to shorten each fricative in 10 steps over a 250

ms range so that the ISI between the onset of the fricative and the onset of the vowel varied.

The ISIs ranged from 450 to 700 ms.

6.2.1.4 Procedure, EEG recording, and data processing

The procedure was the same as Experiment 1, except that participants indicated

whether the word they heard had an /i/ or /u/ in it. EEG recording and data processing

procedures were the same as previous ERP experiments, and the Adjar procedure was used

to reduce component overlap.

6.2.2 Results

Listeners’ behavioral responses indicated that they identiVed each of the vowels

highly accurately (mean accuracy: 98.9%).

Before analyzing N1 amplitude to vocalic onsets, the Adjar procedure was applied

to reduce overlap from ERP components to the frication. Adjar was run on each of the

four frication segments (/sH/, /sL/, /zH/, and /zL/) and converged on a stable estimate of

the overlap in each case. However, the pre-stimulus baseline after Adjar was not Wat in

every case, suggesting some overlap from preceding components was still present. Figure

6.1 shows ERP waveforms for each frication segment time-locked to the onset of the vocalic

portion. The amount of overlap was reduced for each segment, but the pre-stimulus baseline
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was not Wat for the two /z/ segments. Because of this, comparisons made with the /z/ stimuli

may reWect processing related to the frication rather than the vocalic portion. Thus, to

examine the eUect of vowel coarticulation (from information in the frication) on encoding

of vocalic information, the /z/ stimuli were not included in the analyses.

Figure 6.2 shows grandaverage ERPs waveforms for the average of the frontal chan-

nels as a function of the vocalic portion, time-locked to its onset. The /i/ segments appeared

to produce larger N1s that the /u/ segments, consistent with the Vndings for the /i/-/u/

stimuli in Experiment 8.

Figure 6.3 shows ERPs as a function of the coarticulatory information in the frication

(i.e., /sH/ vs. /sL/). Here, N1s appear to be larger for /sL/ than for /sH/. This reversed pattern

of results suggests a context compensation eUect: listeners compensate for higher frequency

sounds produced in the context of an /i/ by treating subsequent sounds as lower than they

actually are (producing smaller N1s). This indicates that the cues in the frication were

processed as contextual information.

Figure 6.4 shows ERPs as a function of whether the information in the frication and

vocalic portions matched. That is, if the frication was /sL/, the matching vocalic portion

would be /u/ (lower formant frequencies) and mismatching vocalic portion would be /i/

(higher frequencies). This allows us to examine eUects of facilitation from information in

the frication on the N1 (i.e., a smaller N1 for the match condition). There does not appear

to be much of a diUerence in the N1, though there does appear to be a large eUect in the P2.

To assess these observations statistically, mean N1 amplitude was calculated from

90 to 140 ms after the onset of the vocalic portion. Mean N1 amplitude as a function of

vowel and frication context are shown in Figure 6.5. A 2 (vowel) x 2 (coarticulatory context)

within-subjects ANOVA was run to evaluate diUerences in N1 amplitude. There was a main

eUect of coarticulatory context (F(1,23)=4.41, p=0.047) with /sL/ sounds producing larger

N1s to the vowel than /sH/ sounds. This supports the hypothesis that listeners treat the
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Figure 6.1: Experiment 9 results — eUectiveness of Adjar procedure. Grandaverage ERP
waveforms time-locked to the onset of the vocalic portion for the average of the three frontal
channels before (top panels) and after (bottom panels) the Adjar procedure was applied.
Adjar was run separately on each of the four frication segments (/sH/, /sL/, /zH/, and /zL/).
For the two /s/ sounds (left panels), the majority of the overlap was removed, but for the /z/
sounds (right panels) there was still considerable overlap from the preceding frication after
running Adjar.
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for the average of the three frontal channels to the /i/ and /u/ vocalic stimuli preceded by
an /s/. Shaded area indicates time range used to compute mean N1 amplitude.
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Figure 6.3: Experiment 9 results — ERP waveforms by coarticulatory context. Grandaverage
ERPs for the average of the three frontal channels as a function of preceding coarticulatory
context (/sH/ vs. /sL/). N1 amplitude was greater for the /sL/ stimuli than for the /sH/
stimuli. Shaded area indicates time range used for mean N1.
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portion (/i/ vs. /u/) and preceding context (/sH/, /sL/, /zH/, and /zL/). Note that N1 ampli-
tude for the /z/ stimuli should be interpreted with caution, since the Adjar procedure was
not eUective at reducing component overlap for those stimuli.
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coarticulatory information as cues to fricative context, compensating for these diUerences

when processing the vocalic portion. In addition, it suggests that this eUect occurs during

cue encoding, supporting a relative encoding model.

The eUect of vowel was not signiVcant (F(1,23)=1.14, p=0.299). This suggests that the

overall vowel diUerence did not produce a change in N1 amplitude and appears to contradict

the results of previous experiments, particularly Experiment 8, which examined the same

vowel distinction and found large eUects. There may have been insuXcient power to detect

a vowel eUect with only the /s/ stimuli. Indeed, an analysis including the /z/ stimuli as well,

does show a signiVcant eUect of vowel (F(1,23)=8.61, p=0.007). However, this result should

be interpreted with the caveat that the /z/ stimuli likely also contained overlap from the

fricative (though this comparison averages across the two fricatives, so any overlap should

be the same in both conditions).

The interaction was also non-signiVcant (F(1,23)=1.15, p=0.295). This suggests that

N1 amplitude was not sensitive to the overall eUect of whether the frication and vocalic

portions matched or mismatched. That is, in this case, the diUerences in the N1 we observed

reWect how cues are encoded, not higher level processes that reWect categorization. This also

argues against the idea that coarticulatory information is being used to facilitate later cue

encoding for these stimuli.

6.2.3 Discussion

The results of this experiment suggest that listeners treated the coarticulatory infor-

mation as a source of contextual variation, that is, as a cue to the identity of the fricative.

This indicates that both sources of anticipatory information in earlier segments (i.e., in-

formation due to the intended fricative and anticipatory information due to the upcoming

vowel) are used similarly by listeners. In addition, this context information was factored

out of listeners subsequent cue estimates, supporting relative encoding models. Thus, it

does not appear that listeners treat context eUects and additional phonetic cues diUerently,
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though the coarticulatory information about the vowel could have also been used for vowel

categorization via feedforward mechanisms.

Fricative context (i.e., /s/ vs. /z/) also provided a source of context information

in this experiment, though overlap in ERP components precluded an extensive analysis of

the /z/ stimuli. This diUerence could similarly lead to context compensation. Fricative

voicing contrasts vary in F0 and F1 transitions (Stevens et al., 1992), which could provide

listeners with coarticulatory information that can be factored out of their vowel estimates.

SpeciVcally, the /z/ syllables should have lower F0 and F1 values at the onset of the vocalic

portion than the /s/ syllables, and /i/ should have lower slightly F0 and F1 values than /u/.

Thus, if listeners compensate for the eUect of fricative voicing during cue encoding, we

would expect more /u/-like (higher F0 and F1) responses in the context of a /z/ and more

/i/-like responses (lower F0 and F1) in the context of an /s/. Indeed, this is exactly the

pattern of results that was observed, providing additional support for the relative encoding

hypothesis (see mean amplitudes for /z/ in Figure 6.5). However, the large amount of overlap

from ERPs to the preceding frication in the /z/ stimuli prevents any strong conclusions from

being made here.

Overall, these results Vt with the predictions of relative encoding models, partic-

ularly auditory contrast approaches (Lotto & Kluender, 1998; Diehl et al., 2004; Kluender,

2003; Holt, 2005). At a very basic level, when the spectral mean of a fricative is low, subse-

quent formant frequencies appear to be treated as higher (as predicted by Lotto & Kluender,

1998). However, considering these results along with those of the previous experiments, a

model that uses feedback to compute relative cues, like C-CuRE (McMurray & Jongman,

2011; Cole et al., 2010), may be more consistent with the overall pattern of results for talker,

rate, and coarticulatory context eUects. In this sense, the reduced spectral mean of the

/u/-conditioned fricatives may have led listeners to partially mis-categorize stimuli as /S/,

resulting in diUerences in how the vowel was interpreted.
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The Vnal chapter evaluates these and the other proposed models in light of the re-

sults of each set of experiments and discusses what the results suggest about how listeners

handle contextual variability during speech perception.
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CHAPTER 7
GENERAL DISCUSSION

The search for invariance has been central to research in speech perception (Perkell

& Klatt, 1986), and debate about whether listeners have access to context-invariant infor-

mation continues. A growing consensus is that there is unlikely to be a suXcient set of

simple, context-invariant cues that serve as the basis of speech perception. More complex

processes for compensating for contextual variability are required. The primary purpose

of this dissertation was to evaluate proposed accounts of how listeners handle contextual

variability in speech using a novel ERP approach for measuring cue encoding.

Here, I will brieWy review the key results of the experiments as well as the predic-

tions made by the general classes of models, discussing how a complete model of speech

perception might be able to account for context eUects. In addition, I will review the results

suggesting that the auditory N1 can be used as an index of cue encoding and the P3 as an

index of categorization, and discuss future work using these approaches.

7.1 Summary of results

First, the results of these experiments demonstrated that listeners compensate for

variability across diUerent types of context. Experiment 6 found that listeners compensate

for diUerences in talker gender when making voicing judgments, and Experiments 5 and 6

found compensation eUects for vowel judgments. In addition, Experiment 7 and the 2AFC

task in Experiment 8 both found that listeners compensate for diUerences in speaking rate

when making voicing judgments.

The primary empirical question addressed by these experiments was whether par-

ticular types of context information (talker, rate, and coarticulation) aUect perception at a

cue level (indicated by changes in the auditory N1) or at a category level (indicated by a

change in the P3). Experiment 6 examined listeners’ responses to diUerences VOT and F1
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cues as a function of talker gender, Vnding diUerences in the N1 for VOT that were consis-

tent with context compensation, but no diUerences for F1. Experiment 8 examined listeners’

responses to diUerences in VOT and a collection of vowel cues (F2, F3, B2, and B3) as a func-

tion of speaking rate. An overall eUect of rate on both continua was found in the N1, but not

in the direction predicted for rate compensation for VOT. Finally, Experiment 9 examined

N1 responses to vowel sounds in the context of diUerent coarticulatory information, Vnding

a diUerence in the N1 that indicates context compensation.

A secondary question was whether N1 and P3 amplitude varied linearly with various

acoustic cues and phonological distinctions. Experiments 4 and 6 found some evidence

for linear eUects of F1 and VOT on the N1, though the eUects for F1 were only seen in

Experiment 4 and the eUect of VOT was marginal when the data were grouped by response.

Both experiments found strong evidence for eUects on the P3 (relative to listeners’ category

boundaries). Experiment 8 found additional evidence for VOT eUects on the N1 (again,

when not grouped by response) and eUects of a set of formant cues (F2, F3, B2, and B3) on

the N1. This experiment also found strong evidence for eUects on the P3 for both types of

acoustic cues.

7.2 Evaluating proposed models

Given these results, we can evaluate the classes of models that have been proposed

for handling contextual variability. Recall that the two main dimensions that these models

diUer along are (1) the type of encoding they propose (intrinsic, extrinsic, and raw-cue

encoding), and (2) the mechanism by which context information interacts with phonetic

cues or categories (feedforward, feedback, or lateral information Wow). The experiments

presented here allow us to distinguish between models along both of these dimensions.
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7.2.1 Intrinsic, extrinsic, and raw-cue encoding

Several of the experiments provide evidence arguing against purely intrinsic ap-

proaches. These models suggest that listeners process cues within a phonetic segment in

relation to each other (e.g., formant ratios or VOT:VL ratios). However, we saw eUects of

preceding context, even when these cues were held constant. Experiments 5 and 6 demon-

strated this in the case of talker variability for both VOT (as seen in the auditory N1 and in

the behavioral responses) and F1 frequency (seen in the behavioral responses). With respect

to speaking rate, Experiment 7 and the follow-up to Experiment 8 demonstrated compensa-

tion for rate in listeners’ behavioral responses. The only case where an argument for purely

intrinsic models could be made is in the target detection task of Experiment 8, where SR

was varied, but VL was not, and no context eUect was observed. However, this seems to be

a result of the task, since the same stimuli do show an eUect of SR in a 2AFC version. Thus,

there is no evidence to support purely intrinsic encoding approaches.

The remaining approaches, extrinsic and raw-cue encoding, suggest two diUerent

ways that preceding context information can inWuence listeners’ responses. The distinc-

tion between these two approaches lies at the level of cue encoding, where the extrinsic

approach predicts that cues are encoded relative to context, while the raw-cue approach

predicts they are not. The talker variability and coarticulation experiments addressed this

distinction directly, Vnding support for a relative encoding account, though the results are

mixed. Listeners’ N1 response to stop consonants varied as a function of whether the pre-

ceding carrier phrase was spoken by a man or woman, such that larger N1s (consistent with

voiced responses) were seen when the carrier was spoken by a woman. While only a weak

eUect of VOT was seen in that experiment, clearer eUects of VOT were seen in experiments

Experiments 4 and 8. Similarly, coarticulatory context had a compensatory eUect on listen-

ers encoding of subsequent vowel information, though the overall eUect of the vowel was

not signiVcant, even though such eUects were seen in another experiment (Experiment 8).
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In addition, no eUects of talker were seen in F1 responses. There are a number of possible

reasons for this, including the relatively weak eUect of F1 in general and the possibility that

eUects were obscured by an overall eUect of talker gender in the opposite direction. Thus,

the results only provide tentative support for a relative encoding process.

Intriguingly, the rate experiments did not provide evidence for relative cue encoding.

Those results are more consistent with raw-cue encoding models in which speaking rate

has an eUect on listeners’ phonetic judgments at later stages (e.g., phoneme categorization).

Thus, a complete model would need to account for both relative and raw-cue encoding.

7.2.2 Feedforward, feedback, and lateral information Wow

Although the coarticulatory results and some of the talker gender results suggest

that cues are encoded relative to context information, by themselves, they do not distin-

guish between lateral and feedback models. However, the speaking rate experiments may

lend insight into these issues. First, speaking rate is an extremely likely domain in which

we would be able to observe eUects of lateral interactions (e.g., via durational contrast).

However, we found no compensatory eUect of rate on listeners’ VOT encoding. This leaves

us with feedback models. Feedback from more-abstract, but continuous estimates of rate

could have also had an eUect on VOT encoding, but again, the results do not support this.

Therefore, this suggests models that use feedback from categories. These models

do not predict an eUect of rate on cue encoding, which is consistent with the observed

results. Because feedback in these models requires discrete categories and rate does not

provide listeners with such information (in contrast to talker gender and coarticulatory

context), listeners would not have had the information necessary to encode cues relative

to speaking rate. Indeed, unsupervised clustering algorithms used to learn phonetic cate-

gories (McMurray, Tanenhaus, & Aslin, 2009) would not predict that listeners have multiple

categories for a unimodal or uniformly-distributed dimension, and there is evidence that

listeners use this type of learning to acquire categories (Maye, Werker, & Gerken, 2002).
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More powerful supervised learning algorithms may be able to carve such dimensions into

arbitrary categories, but it is not clear what those arbitrary categories correspond to for

rate. Since the rate variability experiment found no evidence of relative cue encoding, this

supports a model that uses feedback from categories.

As noted above, however, an eUect of SR on listeners’ behavioral responses was

observed. Thus, relative cue encoding cannot be the sole mechanism by which listeners

compensate for contextual variability. This is consistent with feedforward models, where

SR could be integrated with other acoustic cues directly at the level of phonological features.

(This possibility is discussed in more detail in the next section.) Thus, as with the evidence

for the type of encoding, the results of these experiments suggest multiple pathways that

context information can take during speech perception.

7.3 Building a complete model of speech perception

Together, the results of these experiments support two diUerent approaches to the

problem of lack of invariance. Of the existing models, C-CuRE seems to provide the closest

explanation for all of the eUects observed. It can account for relative cue encoding in the

context of diUerent talkers and coarticulatory contexts via feedback. It can also account

for rate eUects via feedforward mechanisms that treat context information as additional

phonetic cues. However, the rate eUects seen here are not due to diUerences in vowel length

within a word (which seems like a plausible candidate for a weak phonetic cue to voicing

Toscano & McMurray, 2011a), and it seems odd to conclude that sentences spoken quickly

cause listeners to simply activate voiceless phonological categories more.

Given this, it may be that listeners do not use an overall estimate of running speaking

rate to make phonetic decisions. Instead, they may use durational cues that occur close in

time to the phonetic segment (i.e., the initial stop consonant in the target words). This

Vts with the idea that phonetic segments overlap in time (Fowler, 1984), and it provides

an explanation for why vowel length eUects would be so much larger than the eUects of
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running speaking rate. Indeed, SummerVeld (1981) and Repp and Lin (1991) both found that

preceding rate diUerences that are temporally adjacent to the stop consonant produce larger

eUects. Thus, speaking rate may not be a context eUect at all. Rather, it may simply be a

proxy for the set of durational diUerences that occur in both the preceding and following

vowels that listeners use to distinguish voicing categories (Toscano & McMurray, 2011a).

Evaluating this idea will require careful phonetic measurement work as well as further

empirical work. However, this seems like a promising way of maintaining the simplicity

of feedforward models given that lateral and feedback models do not seem to describe the

observed speaking rate eUects.

This leads to a model that combines aspects of relative and raw-cue encoding mod-

els. Figure 7.1 depicts a possible model that could account for all of these eUects. Feedback

between levels of processing would allow the model to account for the talker and coartic-

ulation results, while rate eUects are handled by bottom-up feedforward activation from a

number of cues. This model can handle the results described in the present set of experi-

ments, though it cannot account for all data on context eUects in speech perception, such as

the inWuence of nonspeech sounds (Lotto & Kluender, 1998; Holt, 2005).

This type of model could be implemented in a recurrent neural network. For ex-

ample, normalized recurrence networks (NRN ; Spivey, 2007), can be used to capture the

mapping between continuous cue encoding and phoneme categories (McMurray & Spivey,

1999) as well as the eUects of multiple cues (or cues and context eUects ; Toscano & Mc-

Murray, 2008; Clayards & Toscano, 2010). These networks use feedback from category- to

cue-level representations to allow activations in the network to settle. Thus, this feedback

provides a mechanism for encoding cues relative to expectations from category-level pro-

cesses. Other models with similar architectures, such as iterative competitive learning (ICL)

networks (Mozer, 1990) are functionally similar and could also be used to compute rela-

tive cues from category-level information. This relative encoding, along with feedforward
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Figure 7.1: Schematic of proposed model of speech perception in context. For context in-
formation that provides categorical distinctions (e.g., talker identity, coarticulatory context),
information from context categories feeds back to aUect encoding of phonetic cues, which
is highlighted in the left panel. For context information that provides more continuous
estimates, phonetic categories are directly biased, indicated in the right panel.

processes that combine continuous context and cue estimates, suggests that these types of

models provide a basic architecture that could be used to implement the general information

processing framework outlined above.

7.4 Indexing functions for ERP components

A secondary goal of this dissertation was to provide additional evidence that the

auditory N1 can be used as an index of acoustic cue encoding and that the P3 serves as an

index of categorization. This distinction is similar to the one made by Picton and Hillyard

(1974) for nonspeech sounds and by Toscano et al. (2010) for speech sounds. The experi-

ments in this study extend previous Vndings by looking at eUects of additional acoustic cue

dimensions and phonological distinctions. Here, I discuss what these results suggest about

the information provided by the N1 and P3.
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7.4.1 The auditory N1 as an index of cue encoding and work

7.4.1.1 Cue encoding

Although it is well-documented that the N1 varies with a variety of auditory stim-

ulus properties (Näätanen, 1987), there are also reports that it reWects discontinuities in the

processing of speech sounds (Sharma & Dorman, 1999). Moreover, although it was origi-

nally proposed that discontinuities in the N1 response to diUerent VOTs may provide a neu-

ral basis for diUerentiating voiced and voiceless sounds (Steinschneider, Schroeder, Arezzo,

& Vaughanjr, 1994), more recent evidence suggests that these discontinuities do not map re-

liably onto listeners’ perceptual categories (Sharma et al., 2000) and other researchers have

found equal-sized changes in the M100 (N1m) across a VOT continuum (Frye et al., 2007).

Further, Toscano et al. (2010) found no evidence of discontinuities along VOT continua with

low-amplitude bursts, nor any inWuence of listeners’ phonological categories. This suggests

that variation in N1 amplitude reWects continuous acoustic diUerences in the stimulus.

The results of the current set of experiments provide additional evidence that this

is the case for VOT (Experiments 2, 4, and 8), and they show that this applies to naturally-

produced speech in addition to synthetic speech. DiUerences along other acoustic cue di-

mensions, namely formant frequencies and bandwidths (Experiments 1, 4, 6, 8, and 9), sug-

gest that the N1 also measures encoding of these cues, though the results for F1 were not as

robust as those for other cues. Variation between the vowels /E/ and /æ/ produced changes

in N1 amplitude in Experiment 1, and variation in F1 along an /E/-/æ/ continuum found

a signiVcant linear trend for the target-response trials in Experiments 4. The overall eUect

was smaller than that for VOT, which is likely due, at least in part, to the small amount of

overall variation in N1 amplitude for these stimuli. However, there was no evidence though

that variation in N1 amplitude instead reWected categorical diUerences along that dimen-

sion. Linear eUects were seen for changes along the F2/F3/B2/B3 continuum from /i/ to /u/

in Experiment 8, suggesting that the N1 reWects encoding of diUerences in formants more
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generally. In addition, there was no evidence that these eUects were the result of averaging

across categorical responses.

Interestingly, the overall direction of the eUects did not correspond to the mean fre-

quency in the sounds. This is seen most clearly in Experiment 8, where the largest N1s

were produced by short (i.e., lower frequency) VOTs and high F2 and F3 frequencies. Thus,

diUerences in N1 amplitude do not seem to simply reWect overall changes in acoustic fre-

quency, providing further evidence that the N1 may track diUerences along speciVc acoustic

cue dimensions. This suggests that variation in the N1 as a function of diUerences along

these continua may correspond to diUerent neural populations that code for sounds in dif-

ferent frequency ranges (Lauter et al., 1985; Bertrand et al., 1991; Picton et al., 1978). This

suggests that the basis of the acoustic cues in speech may fundamentally correspond to dif-

ferences in speciVc frequency bands. Indeed, many successful approaches to speech coding

in automatic speech recognition and communication systems are based on spectral diUer-

ences in particular frequency bands (e.g., Mel-frequency cepstral coeXcients; S. Davis &

Mermelstein, 1980).

7.4.1.2 Amount of work

In addition to these eUects, it is clear that the N1 indexes more than acoustic dif-

ferences in the stimulus. This is demonstrated by eUects of attention on the N1 (Hansen &

Hillyard, 1980; Öhman & Lader, 1972; Picton & Hillyard, 1974), as well as eUects of visual

information in audiovisual speech perception (Pilling, 2009; van Wassenhove et al., 2005;

Besle et al., 2004). Decreases in the amplitude and latency of the N1 for audiovisual speech,

for example, may reWect facilitation of speech processing given additional information (van

Wassenhove et al., 2005). In addition, the present set of experiments suggests that preceding

context has an eUect on N1 amplitude and that this eUect is due to feedback from higher-

level stages of processing. These results also indicate that the N1 reWects processes that are

relevant for speech perception.
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Recently, many researchers have begun to characterize later ERP components (e.g.,

the P3 and N4 [N400]) as indices of the amount of work the system is doing for a particular

cognitive process. For example, the N400 provides a measure of the amount of work being

done to determine the semantic properties of a visual or auditory stimulus. Thus, the N400

is larger for stimuli that violate the subject’s semantic expectation (e.g., when reading a

sentence like “Look both ways before crossing the hat”; Kutas & Hillyard, 1980).

We may be able to characterize the auditory N1 in a similar way. Indeed, the at-

tentional and audiovisual speech eUects described above Vt with this description. In ad-

dition, some of the eUects of contextual information Vt as well. For example, larger N1s

were observed in the context of fast speech, regardless of the particular stimulus, suggesting

that listeners may be doing more work to encode acoustic information when a talker speaks

quickly. Thus, context can potentially have multiple eUects on the N1: in some cases leading

to compensation for contextual variability when encoding particular stimuli, and in other

cases leading to diUerences in the overall amount of work done to encode the stimulus.

Although the amount of work being done provides an explanation for some eUects

on the N1, it seems unlikely that it can account for the eUects of the acoustic properties of

the stimulus as well. Such an explanation would suggest that listeners do more work to

encode voiced sounds (shorter VOTs), as well as back and closed vowels (higher formant

frequencies). However, listeners are equally good at categorizing these stimuli and stim-

uli that produce smaller N1s, and there is no evidence that acoustic information in these

frequency ranges is more or less diXcult to encode.

7.4.1.3 Summary

As the discussion above illustrates, the data suggest that the N1 reWects both the

acoustic properties of the stimulus and the inWuence of other factors related to auditory

processing. Thus, the N1 is best described as an index of both (1) the representation of

incoming acoustic information, and (2) the amount of work done to encode that information,
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reWecting eUects of attention and information from other stages of processing. This Vts with

the results of previous studies (Picton & Hillyard, 1974; Toscano et al., 2010) as well as the

present experiments.

7.4.2 The P3 as an index of categorization

Several of the experiments presented here also measured the P3 component in re-

sponse to diUerent speech sounds (Experiments 4, 6, and 8), demonstrating that a P3 is

consistently produced in response to speech sounds corresponding to a target word with a

low probability of occurrence and that the amplitude of the P3 decreases with the acous-

tic distance from that target word. This extends the results of Toscano et al. (2010), which

showed an eUect of the P3 for /b/-/p/ and /d/-/t/ distinctions, Vnding eUects for /E/-/æ/ and

/i/-/u/ continua as well.

These results Vt with the proposal that the P3 serves as an index of categorization or

decision-related processes (Picton & Hillyard, 1974; Toscano et al., 2010). P3 amplitude is not

directly related to the acoustic properties of the stimulus, but rather is determined by param-

eters of the task, which are ultimately based on the phonological and lexical categories of

interest in the experiment. DiUerences in the P3 as a function of how well the acoustic stim-

ulus supports the phonological category of the target further suggest that the P3 responds

to diUerences in phonological information, since phonological categories are well-known to

be similarly graded (Andruksi, Blumstein, & Burton, 1994; Miller, 1997; Miller & Volaitis,

1989; McMurray et al., 2002). This suggests it can be used as a measure of phonological cate-

gorization, similar to discrimination measures (Pisoni & Lazarus, 1974) and eye-movements

(McMurray et al., 2002), which also reWect acoustic diUerences within a phonological cat-

egory. Overall, these results suggest that the P3 reWects task-deVned decision processes,

which, in the present experiments, corresponds to phonological categorization.

This is made more apparent by taking diUerences in individual subjects’ category

boundaries and responses into account. In addition, since listeners sometimes produced
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“target” responses for stimuli that corresponded to the opposite phonetic category for them

(i.e., responding “target” for a stimulus with a VOT of 10 ms [corresponding to /b/] when

peach was the target), we were able to look at diUerences in P3 amplitude across entire

acoustic continua when stimuli were all classiVed as belonging to a single phonological

category. A linear eUect of the acoustic cue dimension was found in every case (VOT, F1, and

F2/F3/B2/B3 diUerences). This indicates that listeners are sensitive to acoustic diUerences

within a category, even for sounds that cross their category boundary. This argues strongly

against models of categorical perception and Vts with the view that speech perception is

better characterized as continuous (Carney, Widin, & Viemeister, 1977; Pisoni & Lazarus,

1974; McMurray, Aslin, et al., 2008; Miller, 1997; Andruksi et al., 1994; Massaro & Cohen,

1983; McMurray et al., 2002; Toscano et al., 2010; Gerrits & Schouten, 2004).

Interestingly, strong evidence of context compensation was not seen in P3 responses,

even when it was observed in the N1 and in listeners’ overt responses. An interaction

between talker gender context and distance from the target endpoint along the F1 continuum

was observed in Experiment 6, suggesting that P3 amplitude may be greater for stimuli close

to the target endpoint when the context leads to responses consistent with that endpoint.

However, similar eUects were not observed for the other acoustic cue dimensions.

This suggests that the P3 may not completely reWect listeners’ categorization of the

stimulus, since they clearly take context information into account when recognizing speech.

An alternative possibility is that we may have been unable to observe these relatively small

context eUects in the P3. Indeed, for the stimulus combinations where context eUects are

expected to be largest (i.e., near category boundaries), our P3 measure is the least sensitive.

This suggests that the P3 may serve as a complement to other online measures of categoriza-

tion, like eye-movements (Tanenhaus et al., 1995; McMurray et al., 2002) and identiVcation

tasks, that are more sensitive to diUerences near category boundaries and do show context

eUects (McMurray, Clayards, et al., 2008; Toscano & McMurray, 2011a).
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Overall, the data suggest that the P3 is closely related to diUerences in listeners’

phonological categories. Thus, the P3 serves as an index of categorization and reWects vari-

ation within a category. However, it may not show (or it may be diXcult to observe) eUects

of all factors that inWuence listeners’ behavioral responses.

7.5 Future work

In addition to the eUects of talker, rate, and coarticulatory variability that were

examined here, other sources of preceding information in spoken language processing can

be used by listeners to predict upcoming acoustic information. This includes prosodic cues

(Cole, Kim, Choi, & Hasegawa-Johnson, 2007) as well as semantic information (Bicknell,

Elman, Hare, McRae, & Kutas, 2010). Expectations from semantic context can also aUect

speech perception (Connine, 1987). Do these eUects occur at the level of cue encoding?

Feedback from abstract semantic representations would be a potential source of information

for this, though here, information from feedback could lead to priming eUects rather than

the compensatory eUects observed for contextual diUerences.

Feedback has been a hotly debated topic in work on spoken word recognition as

well. Completely feedforward models of word recognition (e.g., Merge; Norris, 2000) allow

for veridical perception and prevent “hallucinations” from top-down information on the

input signal. Models with feedback (TRACE; McClelland & Elman, 1986), however, allow

preceding information to constrain interpretation of the input and improve recognition. The

key diUerence between these types of models lies at the level of either cue encoding or inter-

mediate stages of processing. In a feedforward system, lower-level representations would

not be inWuenced by preceding information, though this information may still have an ef-

fect on lexical processing. In a systemwith feedback, lower-level representations themselves

could be aUected by lexical information.

Feedback to cue-level representations represents the strongest test of these two ap-

proaches. This could be addressed using semantic priming. Listeners would be presented
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with a visual prime (a picture of an object) followed by a semantically-related auditory

stimulus varying along a single acoustic cue dimension. For example, if the visual prime

is a picture of a peach, the auditory stimulus would be drawn from a beach-peach contin-

uum. The subject would then be presented with an instruction to respond whether either

the visual or auditory stimulus started with a /b/ or /p/. If N1 amplitude varies as a function

of the preceding visual prime, it would suggest that feedback has an eUect on encoding.

SpeciVcally, if feedback is used to constrain the interpretation of the incoming signal, we

would expect N1 amplitude to show more /b/-like responses (i.e., larger amplitude) when

preceded by a /b/ prime, and more /p/-like responses (smaller amplitude) when preceded by

a /p/ prime. Future experiments are planned to study these eUects.

7.6 Conclusions

Together, the results of this study demonstrate that listeners’ compensate for contex-

tual diUerences in talker gender, speaking rate, and coarticulation. We found preliminary

evidence suggesting that acoustic cues are encoded relative to context via feedback from cat-

egories (e.g., diUerences in talker gender), even if those diUerences are incorrectly attributed

to contextual variability (as in the case of coarticulatory context). Moreover, listeners seem

to treat continuous sources of context information (like speaking rate) diUerently, suggest-

ing that context eUects observed in these situations may ultimately reWect listeners use of

multiple acoustic cues via feedforward activation.

In addition, we found new evidence for continuous cue encoding and graded cate-

gorization, building on a growing consensus that speech perception is fundamentally con-

tinuous and that listeners do not discard acoustic information in the process of recognizing

speech. This also allowed us to further develop the ERP techniques used to assess cue encod-

ing and phonological categorization. Overall, these Vndings point towards models that are

highly sensitive to Vne-grained acoustic information and factor out contextual variability

during cue encoding using feedback from category-level information.
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