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ABSTRACT 

Medical imaging technology has changed the way doctors and surgeons diagnose 

and operate in the last 100 years. Since the discovery of the X-ray, doctors and surgeons 

have successfully utilized the ability to “see” inside a patient to further improve patient 

care. The advancement of computed tomography and magnetic resonance technology 

with faster and higher resolution scans has improved the analysis and visualization of 

patient data. As technology continues to accommodate the need for higher quality 

medical imaging, there is a continuing need for additional research in efficient ways of 

extracting crucial information from these vast amounts of data. This dissertation presents 

the framework for analyzing and visualizing digital medical images. Two new 

segmentation methods have been developed: a probability based segmentation algorithm, 

and a segmentation algorithm that uses a fuzzy rule based system to generate “similarity” 

values for segmentation. A visualization software application has also been developed to 

effectively view and manipulate digital medical images on a desktop computer as well as 

in an immersive environment. 

For the probabilistic segmentation algorithm, image data are first enhanced by 

manually setting the appropriate window center and width, and if needed a sharpening or 

noise removal filter is applied. To initialize the segmentation process, a user places a seed 

point within the object of interest and defines a search region for segmentation. Based on 

the pixels’ spatial and intensity properties, a probabilistic selection criterion is used to 

extract pixels with a high probability of belonging to the object. To facilitate the 
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segmentation of multiple slices, an automatic seed selection algorithm was developed to 

keep the seeds in the object as its shape and/or location changes between consecutive 

slices.  

The second segmentation method, a new segmentation method using a fuzzy rule 

based system to segment tumors in a three-dimensional CT data was also developed. To 

initialize the segmentation process, the user selects a region of interest (ROI) within the 

tumor in the first image of the CT study set. Using the ROI’s spatial and intensity 

properties, fuzzy inputs are generated for use in the fuzzy rules inference system. Using a 

set of predefined fuzzy rules, the system generates a defuzzified output for every pixel in 

terms of similarity to the object. Pixels with the highest similarity values are selected as 

tumor. This process is automatically repeated for every subsequent slice in the CT set 

without further user input, as the segmented region from the previous slice is used as the 

ROI for the current slice. This creates a propagation of information from the previous 

slices, used to segment the current slice. The membership functions used during the 

fuzzification and defuzzification processes are adaptive to the changes in the size and 

pixel intensities of the current ROI. The proposed method is highly customizable to suit 

different needs of a user, requiring information from only a single two-dimensional 

image. 

Segmentation results from both algorithms showed success in segmenting the 

tumor from seven of the ten CT datasets with less than 10% false positive errors and five 

test cases with less than 10% false negative errors. The consistency of the segmentation 

results statistics also showed a high repeatability factor, with low values of inter- and 

intra-user variability for both methods.  
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The visualization software developed is designed to load and display any 

DICOM/PACS compatible three-dimensional image data for visualization and interaction 

in an immersive virtual environment. The software uses the open-source libraries 

DCMTK: DICOM Toolkit for parsing of digital medical images, Coin3D and SimVoleon 

for scenegraph management and volume rendering, and VRJuggler for virtual reality 

display and interaction. A user can apply pseudo-coloring in real time with multiple 

interactive clipping planes to slice into the volume for an interior view. A windowing 

feature controls the tissue density ranges to display. A wireless gamepad controller as 

well as a simple and intuitive menu interface control user interactions. The software is 

highly scalable as it can be used on a single desktop computer to a cluster of computers 

for an immersive multi-projection virtual environment. By wearing a pair of stereo 

goggles, the surgeon is immersed within the model itself, thus providing a sense of 

realism as if the surgeon is “inside” the patient.  

The tools developed in this framework are designed to improve patient care by 

fostering the widespread use of advanced visualization and computational intelligence in 

preoperative planning, surgical training, and diagnostic assistance. Future work includes 

further improvements to both segmentation methods with plans to incorporate the use of 

deformable models and level set techniques to include tumor shape features as part of the 

segmentation criteria. For the surgical planning components, additional controls and 

interactions with the simulated endoscopic camera and the ability to segment the colon or 

a selected region of the airway for a fixed-path navigation as a full virtual endoscopy tool 

will also be implemented. 
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1 INTRODUCTION 

1.1 Medical Imaging 

 

Figure 1: The first X-ray of the human body by William Rontgen in 1895 
(http://inventors.about.com/library/inventors/blxray.htm) 

In 1895, William Conrad Rontgen was experimenting with cathode ray tubes, 

discovering the X-ray, and created the first medical image of the human body. He took an 

x-ray of his wife’s hand, shown in Figure 1. This event marked a significant milestone in 

medical examination, which paved the way for the research and development of modern 

medical imaging technology such as Computed Tomography (CT) scans, ultrasound 

imaging, and Magnetic Resonance Imaging (MRI). Despite being over a hundred years 

old, the X-ray remains a common and widely used form of medical imaging. 
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Figure 2: Illustration of a CT scanning process, and generation of a three-
dimensional representation from two-dimensional medical image data. 

CT scans are cross-sectional images obtained from different angles of the 

patient’s body, using an x-ray tube [1]. As the patient slides into the rotating x-ray tube, 

consecutive 2D slices of image data are generated. These slices can then be joined 

together to form a 3D representation of the tissues and organs studied as shown in Figure 

2. Sir Geoffrey Hounsfield introduced the first CT scanner in 1972, which was capable of 

scanning images at 80 x 80 pixels resolution and each image slice took approximately 5 

minutes to complete. Comparable improvements have been made in the last few decades 

with the latest generation of CT scanners scanning at 1024 x 1024 pixels and completing 

a single slice scan at approximately 30 milliseconds. CT may be enhanced by use of 

contrast agents containing elements of a higher atomic number than the surrounding flesh 

(iodine, barium). 

The first MRI scanner was introduced in 1977 by Paul Lauterbur and Peter 

Mansfield and unlike the CT scanner, which uses ionizing radiation (x-ray) to obtain the 

image data, MRI imaging is based on the emission and absorption of electro-magnetic 

energy in the radio frequency (RF) range of the electrostatic spectrum [2]. The scanned 

object will absorb and emit different variations in the phase and frequency of the RF 

2D CT 
Slices 

3D Study 
Set 
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range. These spatial variations form the basis of producing MRI images. A bone will 

absorb and emit a unique set of RF phase and frequency, while tissues will have a 

different set. Contrast agents for MRI are those that have paramagnetic properties and an 

example is gadolinium. Figure 3 shows examples of the output from both CT and MR 

imaging scans. 

 

  
CT image of abdomen MR image of head 

Figure 3: Example images of CT (left) and MR (right) scans. 

CT and MRI scans both enable the physician to “see” inside a patient, non-

invasively. These medical images help physicians discuss and examine a patient’s 

condition, and aid them in making critical medical decisions and conclusions. CT and 

MRI scans are widely used in medical facilities to produce digital images of a cross-

section of a patient’s body tissues and internal organs. Typically, multiple 2D cross-

sections are taken during an MRI or CT session, and collectively are called a study. 
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1.1.1 The Digital Imaging and Communications in Medicine (DICOM) Format 

Most digital medical imaging data is stored in the Digital Imaging and 

Communications in Medicine (DICOM) format [3]. DICOM is a standard created and 

approved by the National Electrical Manufacturers Association (NEMA). The DICOM 

standard format facilitates the distribution and viewing of medical images created from 

MRI, CT, angiographs, and ultrasound scans. The DICOM standard format enables the 

storage of both medical image information and pertinent patient’s information into a 

single file for easy exchange of medical information.  

 

 

Figure 4: An illustration of a DICOM file structure, containing multiple data 
elements, each representing a particular value and type. 
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A DICOM formatted file composes of multiple DICOM data elements that can be 

of any type, length, and value, as shown in Figure 4. Common elements available in all 

DICOM files are information such as: patient’s names, sex, age, scan type (CT/MRI), 

image resolution, and the image data. The information structure of a DICOM data 

element block consists of a unique identifier tag code, an optional value representation, 

the length of the data stored (in bytes), and finally the data itself. 

When reading in each data element, the identifier tag is referenced with the 

DICOM ‘dictionary’, a list of over 1000 tags with its corresponding meaning. The 

identifier tags are descriptive of what the information in the data element contains. 

Examples are ‘DCM_PatientsName’ for the patient’s name, ‘DCM_PatientsAge’ for the 

patient’s age, ‘DCM_Manufacturer’ for the manufacturer of the scanner, and 

‘DCM_AcquisitionDate’ for the date the image data was acquired. The second field is the 

optional value representation, which represents the data type of the data store and 

indicates whether the data is floating point (float or double), integer (unsigned or signed), 

or character. This field is optional because the data type can be inferred from the 

identifier tag. For example, if the data element is for a patient’s name it will be a string 

data type and if it is storing the image resolution it will be an integer data type. The next 

field stores the length of the image in bytes, useful for allocating memory before reading 

the actual data stored in the fourth and final field. Depending on what the data element 

stores, the data field can be as short as just a few character bytes to as large as a 512 x 

512 data array for image data. 
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1.1.2 Windowing 

Unlike conventional computer images where the image data are stored as pixel 

intensities, CT image data are stored as Hounsfield Units (HU), which is a measure of 

tissue density relative to the density of distilled water. Standard CT scans have a range 

between -1000 to +1000 HU [1], although recent CT scanners now have the capability of 

scanning at ranges between -1000 to +3000, for a higher resolution. Each number in this 

range represents a shade of grey, with +1000 HU being white and -1000 HU being black. 

Table 1 shows some typical ranges for some common tissue types of the human body. 

Since the HU is a comparison of density, water is assigned a HU of zero while heavier 

tissues like bone will have HU in the positive range, and tissues less dense than water 

such as fat will have HU in the negative range. 

Table 1: Typical values of Hounsfield Units (HU) for common tissue types. 

Type HU 

Bone +400 to +1000 

Soft Tissue +40 to +80 

Water 0 

Fat -60 to -120 

Air -1000 

 

In order to format the HU into regular intensity values for proper viewing and 

display, a process called ‘windowing’ is performed. This is because the human eye 

cannot accurately distinguish between 2000 or more different shades of grey. Therefore, 

only a limited number of HU are displayed for easy viewing and interpretation. A 
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grayscale image is achieved by setting the window center (C) and the window width (W) 

to a suitable range of Hounsfield units, depending on the tissue being studied. 

 

 

Figure 5: Illustration of the windowing process, converting Hounsfield Units (HU) 
to 8-bit pixel intensities. 

A simple illustration of how the HU in a CT image can be converted to regular 8-

bit grayscale pixel intensities to target a specific tissue type is shown in Figure 5. The 

window center represents the central Hounsfield unit of all the numbers within the 

window width, and the window width covers the HU of all the tissues of interest and 

these are displayed as various shades of gray. Tissues with CT numbers outside this range 

are displayed as either black or white. Both the window center and width can be set 

independently and their respective settings affect the final displayed image. 
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(a) No windowing 

 
(b) Center: 50, Width: 150 

Figure 6: Examples of windowing effects, using different window center and width 
values on the same image to emphasize tissue different types and 
densities. 

Figure 6 illustrates an example of manipulating the window center and width to 

achieve different display effects of the same CT image data. Figure 6a displays the 

original CT image data with no windowing, leaving many structural details (i.e. organ 

edges, etc.) unclear. However, when windowing is applied in Figure 6b, with the center 

and width set for viewing soft tissues and muscle, the details of the internal organs appear 

to be clearer, with the tumor highlighted with a circle. In Figure 6a, the tumor is barely, if 

at all, discernable. 

1.2 Motivation 

With the recent introduction of high-resolution multi-slice medical imaging 

technology, methods of acquiring and visualizing high quality medical image data in a 

non-invasive manner are now commonplace. With this detailed information of the patient 

Tumor 
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body, doctors and surgeons can now effectively use this visual information to 

substantially improve patient diagnosis, treatment monitoring, and pre-operative 

planning. However, there is still a significant amount of analysis and examination on the 

surgeon’s part to properly identify unhealthy tissues such as tumors and individual 

organs. The ideal scenario would be when an automated process can intelligently identify 

if a tumor or lesion is present in the image data and simultaneously delineate that 

malignant region as well as the other healthy tissues and organs. Surgeons could then 

view any organ on its own or as a collection within the anatomy. An important factor is to 

properly segregate the tumor from the rest of the healthy organs in a patient. The ability 

to automatically segment a tumor could substantially improve the diagnosis as well as 

surgical planning for patients. Surgeons could analyze the shape and size of a tumor prior 

to surgery, or monitor the progress of a patient by comparing the segmented tumor 

through various stages of treatment.  

However, due to the complexity of the medical images, and the irregular shapes 

and sizes of tumors, this segregation process can be a difficult task. The edges of a tumor 

can be difficult to delineate from the other organs due to noise during the image data 

acquisition process, or part of the tumor having a similar tissue density as other 

surrounding organs. Manual segmentation of a tumor from individual images can be a 

daunting task, since partial body scans range from tens to hundreds to even thousands of 

slices. Even if a person could take between 2-4 minutes per image, it would take hours or 

even days to manually segment a tumor from a 500-slice dataset. 

There is a need for an automated process where a tumor can be properly identified 

with substantial accuracy using computerized segmentation algorithms. Automated 
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computer tumor segmentation works by having the user provide some form of a priori 

information about the tumor such as estimated tissue density and shape. The algorithm 

will then process the rest of the medical image dataset to extract the tumor based on the 

information provided. Chapter 2 provides a discussion on the various forms of medical 

image segmentation techniques currently available. The difficulty and complexity of 

automatic tumor segmentation can be loosely categorized at three different levels: 1) 

tumors with homogeneous tissue densities, 2) tumors with some inhomogeneity and 

fuzzy edges, and 3) tumors with heterogeneous tissue densities. Depending on the type of 

tumor, some tumors will have consistent tissue densities, while some will be highly 

calcified (calcium build-up in tissues) and intermixed with tissues of different densities, 

examples of all three categories are shown in Figure 7. 

 

  

Figure 7: Examples of the three different levels of tumor complexity for automatic 
segmentation: a homogeneous tumor (left), a tumor with some 
inhomogeneity and fuzzy edges (center), and a highly heterogeneous 
tumor with calcifications and mixed tissue density (right). Tumors are 
highlighted with red dashed lines. 

Due to the large scale of these image data, visualizing them in an effective and 

intuitive manner can be a challenging task as well. Medical image data are commonly 

stored as 512 x 512 pixels per image, while newer scanners are capable of producing 



 

 
 

11 

  

1024 x 1024 pixel slices. For a dataset of 400 slices, this means the amount of graphics 

data being processed is approximately 105 million voxels. Graphic processing technology 

has come to the point where it can be applied to efficiently visualize these large-scale 

medical image data. If this is combined with the current state of virtual reality 

technology, medical image data can be loaded into an immersive environment where 

doctors and surgeons will be able to interact and manipulate the 3D data in real time. 

Currently, there are several software packages available to radiologists for viewing and 

analyzing medical image data in three-dimensional visualization, as will be discussed in 

the next chapter. However, these applications are specifically designed for radiology and 

are very complicated for any non-radiology personnel such as a surgeon or doctor to use. 

Should a surgeon need to re-examine an image dataset, it is most likely he or she would 

have to make a trip to the radiology department and even then, manipulation control 

would be in the hands of the radiologist and not the surgeon. This tedious process wastes 

crucial time and efforts. Surgeons must have better tools to access and manipulate 

medical image data. Any such application will be beneficial as an assistive tool for 

medical diagnosis or surgical planning, which will ultimately lead to improved patient 

care. 

These requirements form the basis of the research presented. This dissertation will 

discuss the development of a framework for tumor segmentation and immersive 

interactive visualization of medical image data. 
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1.3 Dissertation Organization 

The remainder of this dissertation is organized as follows: Chapter 2 presents an 

in-depth literature review of research in medical image segmentation, current advances 

and uses of virtual reality in medicine, and the research issues identified. Chapter 3 

describes the probabilistic segmentation method in detail, while Chapter 4 describes a 

second segmentation method developed based on fuzzy logic. A framework that was 

developed to visualize medical image data in an interactive immersive virtual 

environment is discussed in Chapter 5. The results of the segmentation algorithms will be 

presented in Chapter 6, including statistical analyses of the segmentation errors incurred 

from both methods and performance statistics, such as frame rates and initialization time, 

of the developed visualization framework. Finally, the research presented in this 

dissertation is discussed and summarized, with conclusions formed and some future work 

defined in Chapter 7. 
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2 LITERATURE REVIEW 

2.1 Image Segmentation 

The complexity of medical image segmentation has encouraged many fields of 

research into improving automatic and adaptive segmentation algorithms. Current 

segmentation methods can be broadly categorized as: 1) classical approaches such as 

thresholding and region growing, 2) statistical or probability based classifiers, 3) learning 

algorithm approaches such as artificial neural networks and fuzzy clustering, 4) 

deformable models approaches, and 5) database or atlas guided approaches. Each of these 

methods will be discussed in detail. 

2.1.1 Classical Approaches 

Classical approaches like thresholding and region growing are simple and 

common segmentation algorithms that perform by inspecting the intensity properties of 

each pixel of an image slice. In thresholding segmentation, a threshold value is selected 

by the user and every pixel in the image is classified as either having intensities less than 

the threshold or having intensities greater than or equal to the threshold [4]. The region 

growing algorithm performs in the same manner but only adjacent pixels with similar 

(within a small tolerance) pixel intensities are grouped together as a region, creating 

multiple regions within the image [5]. Unfortunately, while these methods are easy to 

implement, they are not effective enough to segment complex medical image data as 
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pixel intensity alone is not sufficient to accurately distinguish organs and/or tumors. This 

limitation of classical approaches spurred research and development for more robust and 

adaptive segmentation algorithms. 

2.1.2 Statistical and Probability Based Approaches 

These methods perform by analyzing the pixels in an image and generating a 

statistical histogram or a probability map. Statistical histograms are generated based on 

the pixel intensities values and will incorporate statistical properties such as mean 

intensity, the distribution of intensity values, and/or the homogeneity of the pixel 

intensities. Similarly, probability maps are generated based on predefined criteria set by 

the user. In most cases, probabilities of a pixel being the object of interest are generated 

for each pixel based on its intensity and location [6-8]. 

For example, Vincken et al. [9] and Kupinski et al. [10] developed methods of 

using probability as a means to merge regions for segmentation. Vincken’s method 

divides a three-dimensional image data representation created from slices into a voxel 

data tree structure, and links adjacent voxels based on a parent-child voxel probability 

linking scheme. Kupinski’s method performs a statistical analysis on the pixel intensity 

histogram using a small-variance Gaussian function on previously defined partitions of 

the image data, to generate a probability distribution for these partitions. Based on these 

probability distributions, the partitions are evaluated and the partition with the maximum 

probability is selected as the region of interest.  

Even though the current probabilistic segmentation methods available for use 

have shown success in segmenting the required object of interest, these current 
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implementations usually require large amounts of computer memory and processing 

resources. This is because these methods perform a first-pass inspection of the entire 

medical study in order to generate statistical histograms or probability maps. Loading the 

entire image study in 3D for this processing requires immense computational resources. 

Thus, very few methods are able to generate and calculate probabilities for segmentation 

in real-time.  

In addition to the methods discussed, several early methods that used the Monte 

Carlo probability simulation for image segmentation have also been investigated [11-17]. 

Examples include early work done Zhang et al. [18,19] developed a segmentation 

algorithm that implements the Monte Carlo algorithm to create a stochastic 

approximation model. This model is later used in conjunction with a Markov Random 

Field (MRF) to perform image segmentation. Chou et al. [20] proposed an image 

segmentation procedure that uses MRF to generate likelihood values within an image for 

region labeling using a Bayesian inference system. 

More recently, many methods have implemented Markov Random Fields (MRF) 

as a prior model building for image segmentation [21-31]. Melas et al. [32] used MRF as 

a model estimation tool to generate likelihood values based on texture information within 

the image, which was later segmented using a Bayesian approach. Zhang et al. [33] used 

hidden MRF models with model fitting performed using the Expectation-Maximization 

(EM) algorithm, to extract features from brain MR images. 

Based on the detailed review of the methods discussed, probability based 

segmentation algorithms have been a prevalent concept in image segmentation. It is 

based on the success of these methods that a probabilistic algorithm is implemented in the 
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proposed segmentation method for generating pixel selection probabilities. The 

formulation of the probability calculations using a pixel’s spatial and intensity relations in 

this proposed method is a unique approach based on the literature review performed. 

2.1.3 Deformable Models 

Deformable models use closed parametric curves or surfaces to delineate a region 

of interest. These methods work by detecting region boundaries or edges and then 

deforming curves [34,35,36] or surfaces [37,38,39] to match them. In doing so, a smooth 

representation of the object of interest is obtained at the end of the segmentation process. 

Another development to deformable models is a technique called “live-wire” [40,41], 

which is a semi-automatic algorithm. This algorithm performs interactively with the user, 

locating optimal boundaries or edges as the user moves the mouse. When the mouse is 

moved close to an optimal edge the live-wire algorithm snaps the curve to that located 

edge. In addition, a priori information can be used to create a deformable model 

template. Montagnat and Delingette [42] built and used deformable surface templates of 

the liver and ventricles to segment the liver from CT scans and ventricles of the brain 

from MR images. A drawback of deformable surface methods is that they are usually 

laborious since they require additional post processing calculations to connect the curves 

from each slice into a surface. Also, the shape of the object segmented is limited to the 

order of the curve defining the shape. 
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2.1.4 Atlas Guided Approaches 

These methods create a compiled atlas of correctly segmented images from 

previous experiments as a reference to segment new but similar images [43-46]. For 

example, Lorenzo-Valdes et al. [47] proposed a method that built a digital probability 

distribution map or atlas based on manual segmentations of the left and right ventricle, 

myocardium, lungs, liver, stomach and skin on 3D cardiac MRI image sets of 14 subjects. 

Segmentation was performed by comparing the generated maps to other similar datasets, 

and then individually segment the left and right ventricles, and the myocardium with 85% 

- 91% accuracy. 

Atlas-guided approaches are better suited for brain imaging where the object of 

interest to be segmented (i.e. cerebral cortex of the brain) does not differ greatly in size, 

shape or location from slice to slice within the same dataset. Due to the method’s 

dependence on familiar and similar data, atlas-based methods are at a disadvantage when 

segmenting a rare or unique data set. Furthermore, they require an extensive database of 

accurately segmented results either from previous experiments or from manual 

segmentations, which can be very time consuming to create and query. 

2.1.5 Learning Algorithms in Image Segmentation 

Researchers have also investigated the use of learning algorithms derived from 

the field of artificial intelligence for medical image segmentation. Examples are methods 

using data mining [48,49], artificial neural networks [50] and developing a digital atlas 

from previous experiments for use as training data [51,52,53]. These algorithms simulate 
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a biological process to “learn” the properties of the object to segment. For example, an 

artificial neural network (ANN) [54] consists of a parallel network of nodes to simulate a 

network of neurons such as the brain, where each node has a corresponding weight 

assigned to it. Through a training process, these weights are computed. Then, the ANN 

can then be used to segment a new data set. In order to properly train and implement a 

segmentation algorithm using an ANN, a significant amount of a priori knowledge of the 

data set is required. This can take significant time and resources to complete and can be a 

disadvantage when trying to segment a unique or rare data set.  

Some methods will use a priori information combined with a learning algorithm 

such as an ANN to perform segmentation on medical image data. For example, Ma et al. 

[55] developed a classifier that incorporates the probabilities computed based on set 

features of the voxel data. Self Organizing Maps (SOM) and Neural Networks are then 

used to analyze these probabilities and further simplify them to classify the voxel dataset 

into multiple groups. Another method that combines multiple forms of learning 

algorithms was proposed by Reddick et al. [56] where the ANN is first trained in a two-

stage approach using Self Organizing Maps (SOM) to classify white matter and grey 

matter from multi-spectral MR images.  

2.1.6 Fuzzy Segmentation Algorithms 

In addition to the discussed learning algorithms, fuzzy logic has also been used as 

a primary tool for image segmentation algorithms. Fuzzy logic [57,58] is applied to 

determine the similarities and/or correlation between pixels, voxels, or regions in the 
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image data and to group or classify these voxels/regions appropriately. A brief discussion 

on fuzzy logic and fuzzy rule based systems is presented in Chapter 4. 

One approach is to measure the similarity of adjacent voxels/regions (fuzzy 

connectedness) based on pixel intensity. Developed by Udupa and Samarasekera in 1996 

[59,60], the original implementation of this approach performs a statistical analysis on the 

tissue density information prior to using region growing methods to join adjacent pixels. 

Fuzzy logic is used to evaluate the degree of “connectedness” between pixels during the 

region growing process. Further improvements have been made to the method to work on 

connected regions and incorporate information such as size, shape, and texture. Fuzzy 

connectedness or fuzzy region growing as it is sometimes known, has been successfully 

implemented in methods such as the separation of arteries and veins in magnetic 

resonance angiograms via an iterative process of connectedness checking [61], as well as 

in the estimation of brain tumor volume from MR images [62]. Other implementations of 

fuzzy connectedness include [63,64,65]. However, methods that implement some form of 

fuzzy connectedness checking incur excessive computational requirements. To improve 

computational speeds, Nyul et al. [66] utilized tree-graph searching algorithms as a pre-

processing step prior to fuzzy connectedness checking, reducing computational time by 

almost 34%. 

Another approach to using fuzzy logic for segmentation is to group similar 

voxels/regions based on a set of criteria, known as fuzzy clustering. However, unlike 

fuzzy connected methods, clustering does not take into account the location of the voxel 

(unless location is set as part of the criteria) or require that the voxels/regions are adjacent 

to each other. Thus, two disconnected voxels far apart from each other could be in the 
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same cluster or group, if the criteria were non-spatial. A popular implementation of fuzzy 

clustering is the fuzzy C-means clustering, developed by Dunn in 1973 [67]. In the 

original implementation, a single piece of data can belong to two or more clusters, 

creating a cross membership, and is based on the minimization of difference between any 

new data point to the overall mean of the cluster. If a minimum difference is met, then 

this new data point is accepted into the cluster. Since then, there have been many 

variations and improvements to the original implementation and thus remains a widely 

used classification method. Methods such as [68-72] are where pixels/regions were 

grouped using fuzzy clustering. 

Yao et al. [73] developed a method combining a priori knowledge, fuzzy 

clustering and deformable models to segment colonic polyps from computed tomography 

images. The pixels were first clustered based on the algorithms estimation if they were 

air, polyp tissue, or non-polyp tissue. Then an initial deformable shape is placed within 

the centroid of a polyp cluster and the model is driven until it forms a closed shape that 

resembles the polyp cluster. Pham and Prince [74] developed an adaptive fuzzy C-means 

(AFCM) segmentation algorithm that adapts to inhomogeneities within an image using a 

bias gain field with AFCM. The gain field smoothes out any sudden intensities variations 

within MR images and has proven effective in simulated cases of corrupted images. 

Various other methods such as [75,76,77] also implemented the use of fuzzy sets to 

determine pixel intensity and/or spatial relations within an image. 

Some of the strengths in these methods are that users can now devise fuzzy rules 

based on observations as segmentation criteria, and the fuzziness nature allows the 

algorithms to segment pixels/voxels that would otherwise have been discarded, especially 
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in cases when there is high inhomogeneity in the region of interest. However, this could 

lead to over segmentation or region leaks when the algorithm accepts more pixels than 

needed, resulting in a segmented region that is far larger than the actual object. For fuzzy 

clustering methods, there is also a high dependency on the number of classes or clusters 

defined during initialization. 

2.1.7 Mixed/Hybrid Approaches 

There are methods that will incorporate approaches from more than one of the 

categories discussed. Tolias and Panas implemented an AFCM method by building a 

probability vector based on inter-pixel correlations [78]. Colliot et al. [79] integrated 

fuzzy subsets to represent spatial relations within the image when performing 

segmentation using deformable models and has been successful in segmenting brain sub-

cortical structures in MR images. Toledo et al. [80] introduced the idea of a new 

deformable model called eigen-snakes to segment vessels in angiographs based on a 

probabilistic framework that performed with encouraging results. These methods try to 

combine the best of various methods, such as the flexibility of a fuzzy segmentation 

method with the shape information available in deformable curves, but usually at the 

expense of additional computation resources and longer computation time. Hybrid 

methods are also usually more complex to implement. 
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2.2 Medical Image Data Visualization 

The constant advancement in medical imaging technologies has allowed newer 

multi-slice CT or high-gradient MR scanners to scan at higher resolutions and faster 

times than ever before. Soon these scanners will be delivering thousands of image slices 

for a single patient to medical personnel. While this level of detail will usher in new 

advances it will also present new challenges such as storing, processing, and visualizing 

these large amounts of data. It has become evident that the light boxes (examples shown 

in Figure 8) used to view the conventional medical image on film will become 

insufficient and obsolete, they can typically only display between 40-60 images. This is 

where the use of three-dimensional (3D) visualization techniques can be used as a more 

intuitive and efficient way of representing large scale medical image data. 3D 

visualization combines multiple sequential slices of two-dimensional medical image data 

to generate a three-dimensional volume render of the dataset.  

 

   

Figure 8: Examples of multi-slice films (left), a conventional light box viewing 
station (center), and a digital “light box” on LCD monitors (right). 
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In a 3D representation, data can be represented as either a surface or a solid. 

When drawn as a solid representation, the data points are converted to voxels. Four pixels 

from a single slice create the “front” face of the voxel and another group of four pixels 

from the next slice create the “back” face of the voxel. Linear interpolation is performed 

to fill in the gaps between these two faces, generating a three-dimensional representation 

as illustrated in Figure 9. 

 

 

              

Figure 9: Illustration of how multiple consecutive 2D slices are combined to 
generate a 3D volume representation of the patient data. 

 

 The second form of 3D visualization is through surface representations known as 

isosurfacing. To generate an isosurface, a voxel set is searched for a particular intensity 

value related to a specific tissue type (e.g., bone, skin, etc).  The result of this search is a 

collection of 3D points that represent where the desired tissue type exists in the volume.  

The isosurface is drawn using this set of points, creating a 3D graphical representation of 

CT/MRI data. The advantage of this type of representation is that it uses much less 

computing and graphical processing resources compared to a solid volume rendering 
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representation. However, the tradeoff is that when the model is simply a surface 

representation, it contains no interior information. 

The Visible Human Project [81] is one of the early attempts at addressing the 

need for research into visualizing and registration of medical image data. Initiated in 

1989 by the National Library of Medicine (NLM); cadavers of a female and a male were 

scanned in using CT, MRI, and X-ray, with the resulting data stored on a clustered 

database. After almost two decades, this project is still in progress with its objective to 

build an atlas of the human body that will completely and correctly identify every organ 

in the human anatomy. 

Since then, various implementations have been developed to visualize complex 

medical data. Amira [82], Vitrea [83], OsiriX [84] and KitWare’s VolView [85] are 

examples of desktop applications catered for medical image data visualization. These 

software packages all have built-in features such as windowing, surface and volume 

rendering, and pseudo-coloring via Color Look-Up Tables (CLUT), all which enhance 

the visualization process. Recent research has already shown that the use of 3D 

representations of medical image data can be beneficial and increase efficiency in 

providing additional information to medical professionals [86]. OsiriX is available as an 

open-source freeware on Apple Mac OS computers, while VolView is available on the 

Microsoft Windows OS platform as shareware with a limited number of features 

available for free and additional advanced features available with purchase. With these 

freely available tools, it is now possible for non-radiological specialists such as surgeons 

to load in a medical image dataset and view it on a personal computer. However, the 
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aforementioned software packages still require a significant learning curve since they are 

designed with the radiologist as the targeted end user. 

Most currently available visualization software applications prefer isosurface 

representations compared to a full volume rendered representation to save on graphics 

and processing resources. Surface or contour representations assumes that the voxel data 

in CT/MRI to be discrete when in fact the opacity and voxel intensity transitions between 

air and other tissue densities are continuous and usually span between three to five 

voxels, depending on the resolution of the original image data. Thus, in order to 

accurately represent large-scale medical image data, a volume rendered representation is 

preferred [87], which is the method used in this research. 

2.3 Virtual Reality in Medicine 

Virtual reality (VR) has been successfully utilized in many fields such as 

engineering design, drug design, military simulations, and now medicine. When used in 

medicine, applications such as virtual colonoscopy, virtual endoscopy, and laparoscopic 

simulation and training have all proven to be great assets to medical professionals. 

Current research on these applications will be reviewed and discussed in this section. 

2.3.1 Virtual Colonoscopy 

Colorectal cancer is the third most diagnosed type of cancer and the second 

leading cause of death in the United States [88]. Despite this fact, most people choose not 

to participate in the screening process because of the associated discomfort, high risk, and 
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high cost. In order to encourage a higher screening rate, much research has gone into 

improving the accuracy and validating the use of virtual colonoscopy (VC) as an 

alternative to the more common conventional optical colonoscopy (CC) procedure. 

Virtual colonoscopy is performed by taking spiral CT scans of the patient’s abdomen 

after the colon has been thoroughly cleansed and inflated with either room air or CO2. 

During 30-40 seconds of a single breath-hold, several hundred high resolution CT scans 

are taken to form a 3D volumetric representation of the abdomen, after which a model of 

the inner colonic surface is generated and inspected for polyps (abnormal tissue growth), 

as shown in Figure 10. 

 

a) Polyp as viewed from an 
optical colonoscopy. 

b) Polyp generated from a 
virtual colonoscopy. 

(c) Polyp virtually 
“marked” 

Figure 10: Conventional colonoscopy and virtual colonoscopy. 
(http://www.rsna.org/rsna/media/pr2005/Summers-
Colonoscopy/summers.cfm) 

The accuracy of VC compared to CC has been the focus of many recent case 

studies. The majority has stated that despite being less invasive, the accuracy of VC is 

still relatively low to that of CC but shows great promise. Studies conducted by Pescatore 

et al. in 2000 [89] and by Cotton et al. in 2004 [90] concluded that VC is not yet ready 
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for widespread use to replace CC. This is due to the low sensitivity rates when using VC, 

which is a measure of the detection of polyps or lesions on the colon. The results of both 

studies showed low sensitivity rates of 36%-38% for small polyps (smaller than 5mm) 

and 63%-69% for large polyps (larger than 10mm) when using VC, while CC showed 

sensitivity rates as high as 99% for small polyps and 100% for large polyps. The low 

reported sensitivity rates are due to inefficient polyp identification algorithms in VC. 

However, both studies have also stated that the sensitivity rates for VC did increase when 

radiologists and gastroenterologists performed a manual inspection of the generated 

model of the inner colonic surface. As CT scanning technology continues to evolve and 

become faster and more accurate, virtual colonoscopy will someday replace conventional 

colonoscopy as a noninvasive alternative.  

2.3.2 Virtual Endoscopy 

Virtual endoscopy expands this virtual exploration to view other anatomical 

structures such as the colon, airways, and joints. For example, air can be segmented from 

CT or MRI images to obtain outlines of inner airway walls. These outlines are then 

interpolated and joined to generate a three-dimensional representation with a fly-through 

path that a virtual camera can navigate. However, in the cases when a fly-through path is 

not available, a path can be created manually using two-dimensional slices from three 

separate views.  
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Figure 11: Example of manual navigation for a virtual endoscopy. 

Figure 11 shows a screen display for a manual navigation of a virtual endoscopy. 

There are three two-dimensional views and a three-dimensional camera view. The top left 

of the screen shows the axial (top-down) view, top right of the screen shows the front-

back view, and the bottom left of the screen shows the left-right view. The camera view 

is shown in the bottom right of the screen. By clicking the mouse pointer at a specific 

location in any of the three two-dimensional views, the camera shifts to the 

corresponding location in the three-dimensional camera view. Although this 

implementation provides sufficient information to the user, it can be a tedious process to 

use the mouse as a navigational input device as well as keeping track of each of the views 

simultaneously, with much ongoing research on improving the navigation interface [91]. 
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2.3.3 Laparoscopic Simulation/Training 

In the last decade, laparoscopic surgery has replaced open surgery for several 

procedures because of the benefits of minimally invasive procedures. Laparoscopic 

surgery is a modern technique of minimally invasive surgery in which procedures are 

performed through small incisions, usually between 0.5–1.0 inches. Through these 

incisions, trocars can be inserted into the patient’s body. Trocars are hollow cylinders and 

act as instrument ports during a laparoscopic surgery to introduce instruments such as 

scissors, graspers, or a laparoscope. The laparoscope is the key element in a laparoscopic 

surgery as it allows the surgeons to view the operative region inside the patient’s body. 

The laparoscope is a telescopic rod with a lens and light source connected to a video 

camera through a fiber optic cable. If possible, the area of the body is inflated with 

carbon dioxide to create a larger working space. Carbon dioxide is used because it is a 

gas that can be easily absorbed by tissues and it is a non-flammable, which is important 

since electrosurgical instruments are commonly used in laparoscopic surgery. Figure 12 

illustrates a laparoscopic procedure.  
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Figure 12: Illustration of a laparoscopic procedure. 
(Image from Laparoscopic Surgery by David Anaise, MD: 
http://www.danaise.com/laparoscopic_surgery_7-5.htm) 

A laparoscopic surgery procedure imposes a strain onto the surgeon since it 

requires a high degree of precision and psychomotor skills due to the two-dimensional 

video feedback interface. The manipulation of laparoscopic instruments in a three-

dimensional environment (inside the patient) based on a two-dimensional visual can be 

disorienting for the surgeon. A typical laparoscopic procedure is shown in Figure 13 

below. 
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Figure 13: A typical laparoscopic procedure using a two-dimensional video display. 
(Photo from VCU Medical Center, Minimally Invasive Surgery Center: 
http://www.vcu.edu/lesspainsurgery/fellowship_year_long.htm) 

Several applications have emerged for use as training platforms for laparoscopic 

surgery to improve the psychomotor skills of surgeons and recent research have placed a 

focus on improving and validating such training applications. The Virtual Laparoscopic 

Interface (VLI) by Immersion Corp. [92], LTS by RealSim Systems [93], Computer 

Enhanced Laparoscopic Training System (CELTS) by Simulation Group [94], 

LapMentor by Simbionix [95], and Minimally Invasive Surgical Trainer – Virtual Reality 

(MIST-VR) system by Mentice Corp. [96] are examples of laparoscopic 

simulators/trainers available in the market today, shown in Figure 14. Most of the 
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mentioned systems do provide the option of force feedback but have yet to be validated 

by experts and peers in the field. In a recent study published by Schijven and Jakimowicz 

[97] in 2003, the force feedback feature is an indispensable component to a realistic 

simulation environment. 

 
LapMentor by SimBionix 

 
LTS by RealSim Systems 

 
VLI by Immersion Corp. 

 
MIST-VR by Mentice 

Figure 14: Various minimally invasive surgery simulators/trainers. 

The MIST-VR system is a system that assesses the psychomotor skills of a 

surgeon while performing standardized laparoscopic procedures. Trainees or surgeons are 
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required to perform several basic laparoscopic procedures in the simulator, and criteria 

such as dexterity, length and number of movements, and total completion time are 

recorded and assessed. Despite lacking in haptic force feedback, this system is one of the 

foremost acceptable alternatives to box-trainers [98] and has been validated by many 

experts in this field. Its popularity could stem from its low cost of US$25,000 (as of 

October 2007) compared to other laparoscopic simulation systems, which could be as 

high as US$100,000. In 2004, Gallagher et al. [99] performed a study to evaluate the 

MIST-VR system and showed promising results as to the effectiveness and validity of the 

application. Surgical residents that were trained using MIST-VR were able to perform 

laparoscopic gallbladder dissection faster with fewer errors when compared to those who 

received standard surgical training. Additional studies by Ahlberg et al. [100], and 

Grantcharov et al. [101] also showed similar positive conclusions. 

2.4 User Interface and Interaction Design 

In their articles [102,103], Bowman et al. suggested that user interactions with a 

virtual environment can be generalized as four universal tasks: navigation, selection, 

manipulation, and system control. Navigation refers to the users changing their 

viewpoints in the environment, selection is the task of choosing and picking objects 

within the scene, and is often paired with the manipulation, which is to modify the 

properties of the selected object’s properties such as position or orientation. The final 

universal task, system control is defined as changing the state of the environment and is 

most commonly tied to input interfaces such as menus or device shortcuts.  
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2.4.1 Menu Interfaces 

Early attempts of menus in a virtual environment were very similar to the ones 

available in 2D desktop applications, floating menus within the virtual environment with 

pull-down options and “click-able” via a ray-casted selection by a 3D input device such 

as a wand [104]. 

a) Floating 2D menu with ray-casting for 
selection and manipulation 

b) Menus attached to a pinch-glove 

c) Tablet-pen menu interface 

Figure 15: Examples of different frequently used menu interfaces. 
(Images from http://people.cs.vt.edu/~bowman/pubs.html) 

Examples of these are shown in Figures 15a and 15b. However, these types of 

menus suffered from the inaccuracy of the ray-casting, using tracked movements for 
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selection (i.e. jitter), and occupying a large portion of the virtual scene if many sub-

menus were needed. Other early implementations include a tablet type interface 

[105,106] where buttons and menus were displayed on a tablet computer that could be 

physically carried by the user. A stylus allows the user to tap and select specific buttons, 

sliders, or icons. An advantage is that this is a 2D interface that users are already familiar 

with, and users have a physical surface and constraint to interact with. This interface is 

shown in Figure 15c. 

Recent research into virtual environment interface designs such as the 

development of the “Spin Menu” by Gerber and Bechmann [107], a contextual 

hierarchical 2D menu with sub-menus that are arranged either in a concentric manner or 

stacked on top each other in the virtual environment. Other implementations such as 

[108,109,110], also focused on modifying how 2D menus are displayed in a 3D virtual 

environment, trying to balance the number of menu features with usability. 

2.4.2 Designing a User Interface 

Interface design has always been a challenging task, especially when trying to 

balance functionality and advance features with a usable and intuitive control interface. 

When reviewing applications such as Amira, Vitrea, OsiriX, and VolView that 

incorporated advance radiology imaging utilities and features, their user interfaces can be 

very unintuitive and at times tricky to the unfamiliar user, as shown in Figures 16 and 17. 

This is because these applications are developed with the radiologist as the target user 

groups. Although these applications are packed with advance features, most of these 

features are those that a surgeon or non-radiology person might find unnecessary. 



 

 
 

36

  

 

Figure 16: Screenshot of Kitware’sVolview. 

 

Figure 17: Screenshot of open source Osirix radiological software application. 
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According to Don Norman in his book “The Design of Everyday Things” [111], in 

order for users to efficiently execute difficult and complex tasks as simple as possible, the 

interface has to satisfy seven basic principles: 

1. Use both knowledge in the world and knowledge in the head – The system needs to 

be able to provide the necessary knowledge and cues within the environment itself, 

but at the same time the operations and tasks performed should also be clear and 

appropriately match the mental model that the user already has. 

2. Simplify the structure of tasks – Mental aids, visual cues and feedback, and 

automating part of or all of the tasks (as long as it does not distract the user) are 

ways to simplify a task. However, it is also important that the simplification does not 

result in taking control away from the user. 

3. Make things visible – The interface should be clear of what the features are and what 

they do, and the effects of those features should be visible in the system.  

4. Get the mappings right – Users usually have a mental model of how certain things 

are implemented, thus it is important that these models and the user’s actions are 

clearly mapped to the system events. A small movement should have a small effect 

event, and a large movement should have a large effect event. 

5. Exploit the power of constraints – Constraints make it impossible to do anything else 

but the correct action in a correct way at a specific situation.  

6. Design for error – Designers should always expect the user to make a mistake and 

anticipate them, and should a mistake happen, the user should be able to recover 

from that. 
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7. When all else fails, standardize – If natural mappings are unable, it is important to 

standardize the controls so that users can learn them quickly and perform similar 

tasks within the system easily. 

 

Ben Shneiderman also provided his eight rules when it comes to designing a user 

interface [112], most of which closely parallels Norman’s: 

1. Strive for consistency in action sequences, layouts, terminology, and so on. 

2. Enable frequent users to use shortcuts or special key sequences and macros, to make 

frequently performed actions more accessible. 

3. Offer appropriate informative feedback for specific user actions, at appropriate times 

and levels that will not be distractive to the user. 

4. Design dialogs to yield closure, such as alerts or prompts for the user when the 

designated task or action has completed. 

5. Offer error prevention and simple error handling, so that ideally the users will not 

make any mistakes and when they do, they are offered clear and informative options 

to recover from those mistakes. 

6. Permit easy reversal of actions, similar to error prevention, but more towards 

encouraging the user to explore the system. A simple reset or state reversal option 

will help to relieve the anxiety that they might make a mistake. 

7. Support internal locus of control, so that the user is in control of the system and the 

system will respond appropriately to the user’s actions. 

8. Reduce short-term memory load by maintaining a simple and organized display to 

the user and providing sufficient time to learn the interface. 
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Both Norman and Shneiderman have very similar views on user interface design 

and both authors stress highly on consistency of interface controls, minimizing user’s 

ambiguity and errors, and to provide an appropriate amount of information feedback to 

the user. These will be the guidelines followed during the course of developing the 

interface discussed in this dissertation. 

2.5 Research Issues 

Based on the various literature review of current research in medical image 

segmentation and the use of virtual reality in medicine, three research issues have been 

identified. They are: 

 

1. To efficiently and accurately segment tumors within CT/MR image data. 

Most segmentation methods require significant amounts of computing and memory 

resources to implement or substantial a priori information. Segmentation algorithms 

that are efficient, accurate, and can perform with minimal a priori information to 

allow for processing of new or unfamiliar datasets would be very useful for medical 

personnel. These algorithms would allow a wider range of computational resources 

and software to exist without affecting the algorithm’s performance. 

 

2. To utilize virtual reality and visualization technology to assist in and improve 

tumor diagnosis and surgical planning for tumor removal. 
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The ability to examine and manipulate patient data in an immersive environment will 

provide surgeons with additional visual information to aid in the diagnosis procedure 

or as an invaluable aid in surgical planning. 

 

3. To develop an intuitive interaction scheme for manipulation of large medical 

studies within a virtual environment. 

When interacting with a vast amount of image data in an immersive environment, the 

interaction between the user and the system has to be intuitive and easy to 

comprehend. The volumetric representations generated from medical studies can be 

problematic to navigate and ultimately hinder the necessary exploration a surgeon 

may require. It is crucial that the interaction method be simple yet powerful to 

enhance surgical planning. 



 

 
 

41 

  

3 PROBABILISTIC SEGMENTATION OF TUMORS 

3.1 Introduction 

This chapter describes the first of two segmentation methods developed, which is 

a probability based segmentation algorithm. The flowchart in Figure 18 illustrates the 

steps of the segmentation process.  

 

 

 

 

 

 

 

 

Figure 18: Flowchart of segmentation process. 

The method begins with a pre-processing step that includes noise removal and 

performing a window center/width operation to increase the contrast between the object 

of interest and the background. To initialize the segmentation process, a user selects seed 

point(s) within the first slice in the study and defines a search region. For each remaining 

slice in the set, an automated algorithm is performed to automatically place the seed and 

redefine the search region for segmentation. Lastly, probabilities are generated for every 

Image pre-
processing 

If first slice, select 
seed point and 

defined search region 

If not first slice, 
perform automated 

seed and search 
region selection 

Probabilistic selection segmentation 

Repeat for each image in study 

Image pre-
processing 
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pixel in the search region, and pixels with high probabilities are segmented as the object 

of interest. The process is then repeated for every image slice in the data set.  

3.2 Image Pre-processing 

Before any segmentation is performed, the image data is pre-processed for 

improved visual quality. The first step in this pre-processing is to obtain the image data in 

terms of pixel intensities via windowing. The window center and width of the Hounsfield 

Units are set to improve the contrast between the object of interest and the background, 

converting the raw CT data to actual pixel representations for display. If needed, 

additional processing to remove image noise using a standard Gaussian smoothing filter 

is performed. The Gaussian filter was selected because of its simple implementation and 

effectiveness in reducing noise at a low computation cost. The kernel of the Gaussian 

filter is set to a default of 5x5 pixels, but is customizable to any desired setting. A larger 

kernel filter may be required for noisier images at the user’s discretion. These evaluations 

are all performed on the first image of the dataset, under the assumption that 1) the 

quality of the first image represents the quality of the dataset, and 2) any enhancements 

made to the first image will yield similar improvements for the remaining image slices. 

3.3 Automated Seed and Search Region Selection 

Most of the objects in a study do not remain consistent in terms of position and 

size from slice to slice, thus the location of the seed must change accordingly. A process 

to automatically re-position the seed and search region was developed to abstract this 
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process from a user. As each subsequent slice is processed for segmentation, the process 

ensures that the seed remains in the object of interest. This is accomplished by using 

information from the previous slice as well as the first slice of the study (where the user 

selects the original seed and search region). 

 

 

 

 

 

 

 

 

 

 

Figure 19: Flowchart for automatic seed relocation and search region selection 
procedure. 

To initialize the method, the user selects a seed, which is defined as a square 

region of pixels, within the target object on the first slice of the study as the seed region. 

The default area is a 5x5 grid square, but can be set to any size region. By using a seed 

region rather a single point, instances when pixels within the tumor or object of interest 

are not homogeneous are accounted for. The mean intensity of the group is used as the 

seed intensity referenced during the segmentation procedure. For the first slice of the 

study, the user will also be required to define a search region, which is a circle of a fixed 

Check mean intensity of current seed to be 
within standard deviation of original seed 

Use centroid to generate a search region based 
on smallest circle to encompass previous 

segmented region 

Resize search region based on size changes of 
previous slices’ segmented region 

Map centroid of segmented region from previous 
slice as seed centroid for current slice 

If not the same, search surrounding pixels 
for matching criteria 
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radius using the seed as the center. If this is not the first slice, the following method is 

applied. 

The centroid of the segmented region from the previous slice is used as the new 

seed region centroid in the current slice. If there are multiple regions (due to 

segmentation noise creating multiple smaller clusters of stray regions), only the biggest 

region will be considered. The centroid is calculated by averaging the x and y coordinates 

of all the pixels inside the region, shown in Equation (1). 

 centroid =
x1 + x2 + x3 + .....+ xn

n
,
y1 + y2 + y3 + .....+ yn

n

 

 
 

 

 
 
  (1) 

 where n is the number of pixels inside the region.
 

The mean intensity at this new seed region is then compared to the mean intensity 

of the original seed region from the first slice as well as the mean intensity of the 

segmented region from the previous slice. If they are not within a tolerance of one 

standard deviation of the mean intensity, the algorithm searches the neighboring pixels 

that make up a seed for a mean intensity within one standard deviation. If a group of 

pixels satisfies these criteria, it becomes the new seed. Otherwise, the algorithm reverts to 

the seed mapped from the previous slice to be used for segmentation.  

The new search region is defined based on the object segmented in the previous 

slice. In the previous slice, the smallest circle required to completely encompass the 

object segmented is calculated and used as the search region for the current slice. Then 

the running average of the change in size of the circle from the last three images is 

calculated and used to shrink or enlarge the new search region accordingly. The average 

size change is defined as: 
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C =
3C1 + 2C2 + C3

6
       (2) 

where C1, C2, and C3 are the change in segmented region size for the previous slice, 2nd 

previous slice, and 3rd previous slice respectively. This is done to accommodate for a 

change in size and location of the object in between slices, this also helps to reduce 

processing time since the algorithm will not have to evaluate the entire image. However, 

if desired, a user may select to search the entire image on each slice. This would be useful 

for the case where multiple disconnected tumors are located in the image slice. The 

drawback is the additional processing time needed to search every pixel in the image. 

3.4 Segmentation Procedure 

The segmentation process consists of steps that combine aspects of thresholding 

and region growing. The segmentation method processes the volume data’s two-

dimensional slices one at a time as opposed to processing the entire three-dimensional 

data to minimize memory usage and computing resources. Incorporating the use of the 

automated seed selection algorithm developed, these two-dimensional slices can be 

processed individually without compromising information from previous slices. 

Pixel selection is based on the probabilistic selection criterion used in the 

Simulated Annealing (SA) heuristic optimization method [113,114]. An optimization 

problem is a set of coupled equations where one is designated as the objective function. It 

is the aim to either minimize or maximize the objective function while not going over 

preset values on the other equations (i.e. the constraints of the problem). All the equations 

are composed of the same set of independent design variables. An optimization method 
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intelligently chooses design variable values to test as it moves to the optimal set of these 

values. The goal is to find the set of values that either minimizes or maximizes the 

objective function, satisfies all the constraints, in the fewest possible design variable 

combinations (i.e. iterations). 

In the SA method, a probability is responsible for deciding if a new design point 

(i.e. set of independent design variable values) is accepted to be the starting point for 

searches in subsequent iterations. This is done to facilitate the possibility that a temporary 

move to a less desirable design point might eventually lead to a better overall solution 

(i.e. moving out of a local minimum or maximum solution to eventually find the global 

one). The concept of accepting a less desirable point to eventually achieve the best 

overall solution can be thought of as analogous to accepting pixels that do not satisfy the 

similarity selection criterion but are needed to complete the object region in a 

segmentation process. In this manner, a formal optimization method can be mapped onto 

a medical image segmentation process. Most objects within a medical image do not have 

clearly delineated edges, and segmentation based purely on a specific range of intensity 

values does not produce a region that isolates the object completely. A method based on 

probabilities can address this issue very well. Like any heuristic method, the resulting 

region grown will not be 100% accurate, but will be significantly closer to completing the 

region when compared to deterministic methods such as conventional thresholding and 

region growing. 

The probability of a pixel being accepted into the object region depends on two 

factors: 1) the distance of a pixel from a seed (spatial properties) and 2) the difference 

between the intensities of a pixel to a seed (pixel intensity properties).  
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The distance of a pixel from a seed is computed by: 

rPIXEL (xPIXEL ,yPIXEL ) = (xSEED xPIXEL )
2

+ (ySEED yPIXEL )
2

 (3) 

where xSEED, and ySEED, are the coordinates of the seed, and xPIXEL and yPIXEL are the 

coordinates of the current pixel being processed. 

The maximum allowable value for r (x,y) is rMAX, which is the radius of the 

search region and defines the area of the image that will be inspected during the 

segmentation process.  

A ratio of the radiuses is defined as R: 

    (4) 

This ratio is calculated as the radius of the search region, r (x,y) divided by the 

maximum allowable search region, r . This ratio describes the properties of a pixel 

relative to the defined search space based on its location. A pixel close to a seed will have 

a value close to zero, while a pixel that is far away from a seed will have a value 

approaching one. 

Now that the spatial component of the probabilistic selection process is defined, 

the pixel intensity component is computed. The difference between the intensity of the 

seed, Iseed, and the intensity of the current pixel, I(x,y) is defined as, I(x,y): 

I (x,y) =1.0 ISEED I(x,y)       (5) 

From Equation (5), pixels with very similar intensities to the seed pixel will have 

a pixel intensity component value of 1.0, and this value will approach zero as the 

intensities continue to differ. 
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Using the relations for spatial and pixel intensity properties, the selection 

probabilities are calculated. Combining Equations (4) and (5), the probability Pr1 is 

defined as: 

Pr1(x,y) = e a
        (6) 

a = I (x,y)

R (x,y)
        (7) 

Pr1(x,y) is the selection probability and is modeled after the Monte Carlo 

acceptance probability used in SA [45]. The closer the value of Pr1 is to one, the higher 

the probability of the current pixel being selected into the region. When a equals zero, 

Pr1 has a value of one; and as a grows larger, Pr1 approaches a value of zero. For Pr1 to 

have a value of one (high probability of selection), either I is close to or equal to 1.0 

(minimal difference in intensities between seed and pixel), or R is close to or equal to 0.0 

(pixel is close to seed).  
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Figure 20: Values for Pr1 based on possible spatial and pixel intensity component 
values. 

Figure 20 shows the probability distribution for different combinations of spatial 

component and intensity component values. When the intensity difference is small or 

negligible ( I(x,y)  1.0) and the pixel being evaluated is further away from the seed pixel 

( R(x,y)  1.0), the probability Pr1 decreases to approximately 0.368. With this behavior, 

as long as the intensity of the pixel being evaluated is similar to the seed pixel, the value 

of Pr1 will never go to zero regardless of its location. This allows the algorithm to 

identify disconnected regions that are actually part of the object of interest. When a 

pixel’s intensity differs greatly from the seed pixel’s ( I(x,y)  0.0), the value for Pr1 

reduces to zero, regardless of its current pixel location within the search region. This 

ensures that pixels that are close to the seed are not selected as the object simply because 

High probability, 
Pr  1.0 

Spatial Component, R:  
0.0 – Closest to seed. 
1.0 – Furthest from seed. 

Intensity Component, I:  
0.0 – Intensity dissimilar to seed. 
1.0 – No intensity difference. 

Low probability, 
Pr  0.0 
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of their close proximity to the seed region. Conversely, if the pixel is at the seed location, 

Pr1 will equal to 1.0 regardless of the intensity difference, since any pixel at the seed’s 

location is essentially the seed itself. However, the value of Pr1 reduces rapidly as soon 

as the current pixel being evaluated is away from the seed location. This reduction in Pr1 

becomes more apparent when there is a significant difference in intensities ( I(x,y)  

0.0). Thus, using Equations (4) and (5) ensure that both properties are represented 

equally. In addition, the quantities are only dependent on the pixel being evaluated and 

the seed region, thus allowing discontinuous regions to be selected (e.g., multiple, 

disconnected tumors).  

Once Pr1 is computed, a second probability, Pr2, a random number between zero 

and one, is generated. The two probabilities, Pr1, and Pr2, are then compared as follows: 

R(x,y) =
1.0 Pr1 Pr2
0.0 Pr1 < Pr2

 
 
 

      (8) 

Pixels that are selected from the probabilistic selection criteria are allocated a value of 

one, indicating that they now belong to the segmented region. Pixels whose probabilities, 

Pr1, do not exceed the generated probability, Pr2, are allocated a value of zero. Since this 

step of the segmentation process is highly probabilistic, pixels that do not belong to the 

object will have a possibility to be selected as well. This is a tradeoff when applying 

probabilistic methods. However, as the test cases will demonstrate, this tradeoff does not 

affect the method’s capability to efficiently and accurately segment an object. The 

amount of pixels incorrectly chosen will be negligible compared to the correct ones. 

When viewed they will not distort or create an incorrect representation. 
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4 FUZZY SEGMENTATION OF TUMORS 

4.1 Fuzzy Logic 

In 1965, Zadeh [57] introduced a mathematical set theory to represent vagueness 

or fuzzy-ness in everyday life called fuzzy logic (also called fuzzy sets). Fuzzy sets were 

designed to be easy and natural to implement and setup. A good example would be when 

making a right turn in a car. Would you tell the driver to “turn the steering wheel at five 

degrees increment until 92 degrees to the right, starting at three meters from the 

intersection”? Or would the instructions be more like, “turn the steering wheel a little to 

the right when you get close to the intersection”? The former (a crisp instruction) would 

be too precise to be carried out by any person while the latter (a fuzzy instruction) is of a 

more natural and intuitive to be performed based on the driver’s interpretation. 

Fuzzy sets represent a degree of membership using membership functions. Inputs 

to the fuzzy inference system must first be fuzzified, a process of converting crisp inputs 

to fuzzy inputs. The output(s) from the fuzzy inference system must then be defuzzified, 

converting the fuzzy output into a crisp value. In a fuzzy set, a variable/object can have 

memberships to more than one fuzzy subset, with different degrees of membership [58]. 

For example, a car (object) at three meters from the intersection can have a high degree 

of membership (0.95) of the fuzzy subset veryCloseToIntersection and at the same time 

have a mid degree of membership (0.5) of the fuzzy subset quiteCloseToIntersection, and 

possibly even a third membership of the fuzzy subset notCloseToIntersection with a low 

degree of membership (0.1). 
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In order to convert these crisp inputs (distance in meters) to a fuzzy membership 

value, a process called fuzzification is used. After this, the fuzzy inputs are used in a 

fuzzy inference system consisting of a set of predefined fuzzy rules. Fuzzy rules operate 

based on an IF-THEN relation. Using the example of turning a car at an intersection, an 

appropriate fuzzy rule would be “IF carIsVeryCloseToIntersection THEN 

turnSteeringSlowlyToRight”. Using these fuzzy inputs and fuzzy rules, the fuzzy output 

can be calculated and then converted to a crisp output value using a defuzzification 

process, which converts the fuzzy output degree of membership to the fuzzy subset 

turnSteeringSlowlyToRight into an actual value in degrees to turn the steering wheel. This 

entire process from input fuzzification to using the fuzzy rules, and then defuzzification 

for output(s) can be collectively called a fuzzy inference system. 

4.1.1 Fuzzy Inference System Example 

The following is an example of the fuzzy inference system, where the situation is 

to calculate the tip for a meal. Figure 21 illustrates the fuzzification of crisp input values, 

the application of the fuzzy rules to generate a fuzzy output, and finally the 

defuzzification process to obtain a resulting crisp output value. The tip as a percentage of 

the total bill depends on two criteria, the service at the restaurant and the taste of the 

food. If the service is poor or the food is bad, then the tip will be cheap. If the service is 

great or if the food is delicious, then the tip will be great. Scores between 0 and 10 are 

assigned to each criterion. However, in order to quantify the definition of poor service or 

delicious food, a fuzzy inference system is used. 
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Figure 21: Fuzzy inference system for tip calculations based on service and food. 

  

Suppose the “score” for food is eight, to what extent is it delicious? The 

membership functions for great service and poor service, delicious food and bad food are 

in blue, at the first two columns respectively. In all membership functions, the x-axis 

represents the crisp input/output value and the y-axis represents the degree of 

membership. These membership functions will fuzzify the crisp input values. Using the 

membership functions, a score of eight for food is fuzzified to a 0.85 membership of 

being delicious. The same goes for the service, with a score of three can be fuzzified to a 

0.05 membership for great and also at the same time a 0.6 membership for poor.  
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The two fuzzy rules are defined as 1) IF service is poor OR food is bad THEN tip 

is cheap, and 2) IF service is great OR food is delicious THEN tip is generous. A logical 

operator (AND/OR) is applied to the multiple inputs, and in the case of this example, the 

logical operator is OR. Both inputs are evaluated and the OR operator applies the 

condition by taking the maximum degree of membership values for all inputs. The 

“implication” stage takes into account only the area of the output membership function 

below the maximum degree of membership. This is done for all the rules in the inference 

system and combined to generate an aggregated result output. The centroid of the output 

is calculated and the x-axis value of the centroid represents the crisp output value for the 

fuzz inference system. 

4.2 Introduction 

Figure 22 summarizes the second segmentation process which uses a fuzzy rule 

based system. The user initializes the process by selecting a region of interest (ROI), and 

inputs to the fuzzy system are generated based on properties of the ROI. The 

segmentation of the image is performed based on the output of the fuzzy system, and this 

process is repeated for every slice in the data set. 



 

 
 

55 

  

 

Figure 22: Flowchart of segmentation process using the fuzzy rule-based system. 

4.3 Pre-processing 

In order to convert the image data into actual pixel intensities, a windowing 

process is applied. Apart from formatting the image data into standard image pixels, this 

process also allowed for contrast and brightness adjustments to the image data to improve 

identification of the tumor. The windowing parameters used are as provided by the 

radiologist, but can be manually set if needed by the user. Once windowing of the image 

data is performed, pre-processing of the data is required if it is too noisy from acquisition 

imperfections. To remove noise from an image, a Gaussian filter with a 3 3 pixels mask 

was used as a smoothing filter. 

User selects region 
of interest (ROI) 

Fuzzy System 
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Use previous slice’s 
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Image pre-processing Image pre-processing 
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4.4 Initialization 

 

Figure 23: Illustration of the region of interest (ROI) selected by the user in the first 
slice of the image data set. 

The segmentation process is initialized by having the user select the ROI inside 

the tumor (object) on the first slice in the dataset, as shown in Figure 23. For optimal 

performance of the algorithm, the ROI selected should be as similar to the tumor as 

possible since this is the only a priori information provided to the algorithm. If the ROI 

selected by the user is too small, the resulting segmented region for the first slice will 

suffer from under segmentation where the edges of the tumor will not be segmented 

completely. If the ROI selected is too large, then over segmentation will occur where the 

segmented region will also include the non-tumor pixels surrounding the actual tumor. 

For subsequent slices in the dataset, the resulting segmented region from the 

previous slice is mapped as the current slice’s new ROI. By doing so, the method will be 

able to automatically update the shape and size of the ROI as the object changes its shape 

User selected ROI 
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and size in each consecutive slice. This allows segmentation of a three-dimensional 

dataset to be performed from user information based on only the first slice. 

4.5 Inputs and Output of the Fuzzy System 

 

Figure 24: Fuzzy system with three inputs and a single output. 

A Mamdani type fuzzy system [115] was constructed with three inputs, shown in 

Figure 24. A single output calculated is based on eight fuzzy rules. The three inputs are 

calculated from properties of the pixels inside the ROI. All inputs will be between 0.0 

and 1.0, where the extremes represent the least desirable value (0.0) and the most 

desirable value (1.0) and the degree of memberships are calculated using a set of 

membership functions that are adaptive to each different slice in the image dataset.  

The first input x1, is based on the intensity properties of the region, and is a 

measure of the difference in the current pixel’s intensity to the mean intensity of the 

pixels inside the ROI. Pixels with minimal intensity difference to the mean intensity will 

have x1 values close to 1.0, whereas pixels showing a significant intensity difference will 

have x1 values close to 0.0. This can be expressed as: 

x1 =1.0 ICURRENT IMEAN        (9) 
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where ICURRENT and IMEAN are pixel intensities of the current pixel and the mean of the 

ROI respectively, with values between 0.0 (black) and 1.0 (white). 

The second component x2 is based on the spatial properties of the pixel, where the 

distance from the current pixel to the centroid of the ROI is computed. The further a pixel 

is from the centroid of the ROI, the smaller the value of x2, and the closer the value to 

1.0. This relationship is expressed as: 

x2 =1.0
(xi xc )

2
+ (yi yc )

2

RMAX
2

 

 
 

 

 
       (10) 

where  (xi, yi):   coordinates of the current pixel 

(xc,yc):   coordinates of the ROI’scentroid 

RMAX:  maximum search radius 

RMAX is the radius of the search region and only pixels within the search region 

will be evaluated. Any pixels outside of this radius will have a distance component of 

zero. The new search region is defined based on the object segmented in the previous 

slice. In the previous slice, the smallest circle required to completely encompass the 

object segmented is calculated and used as the search region for the current slice. Again, 

the running average of the change in size of the circle from the last three images is 

calculated and used to shrink/grow the new search region. The average size change is 

defined as: 

C =
3C1 + 2C2 + C3

6
       (11) 

where C1, C2, and C3 represent the change in the segmented region size for the previous 

slice, 2nd previous slice, and 3rd previous slice, respectively. 
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The third and last input x3 is the similarity output, S, from the previous slice. Since 

there is no reference to a previous slice in the first slice of the dataset, a default value is 

assigned. So for the first slice only, based on the selection of the ROI by the user, pixels 

inside the selected ROI will have a similarity of 0.75, while pixels not selected (outside 

the ROI) will have a similarity of 0.25. This is based on the assumption that if a pixel was 

selected as the object in the previous slice or at least has a high similarity value, that pixel 

should be given some degree of advantage to be selected as part of the object in the 

current slice. This propagation system allows information from the previous slice to be 

passed on and used in the current slice. It should be noted that even if the pixel has a high 

similarity value in the previous slice, the resulting similarity output for that pixel in the 

current slice could be low if the other two inputs do not satisfy the requirements of the 

fuzzy rules. 

4.6 Fuzzification 

Based on these three inputs, the fuzzification process generates membership 

values from a set of adaptive membership functions. The three inputs are fuzzified in the 

fuzzy system using specific S-shaped spline membership functions. An example is 

illustrated in Figure 25. Fuzzification converts these crisp inputs to membership values 

within a fuzzy set. All three inputs’ fuzzy sets have the same subsets and are defined as 

{LOW, HIGH}, where the fuzzy subset LOW describes the particular input as having a 

low or insignificant value, while the fuzzy subset HIGH describes the input as having a 



 

 
 

60

  

high or significant value. The only difference between these fuzzy sets is the way the 

subsets’ membership functions are defined for each input. 

 

Figure 25: Example of a S-shaped membership function for a particular input. 

Referring to the membership function for the subset LOW (in red) in Figure 25, if 

input x is less than a, the membership value is constant at 1.0. The membership value 

starts to decrease when x is larger than a until x becomes greater than b. At this point 

onwards the membership value remains constant at 0.0. The case is the opposite for the 

membership function of the subset HIGH (in blue), where it starts out at 0.0 and increases 

to 1.0 between a and b.  

The fuzzy range highlighted is where the value of b for LOW is greater than the 

value a for HIGH. This forms an overlap between the two subsets and it is because of this 

overlap that the fuzzy inputs can have both LOW and HIGH membership with different 

degrees of membership (non-zero). For example, based on the membership function 

illustrated in Figure 25, if input x has a value of 0.65, it is LOW with 0.125 degree of 

membership, but at the same time, it is also HIGH with 0.875 degree of membership. The 

membership functions for each fuzzy subset can be expressed as follows: 

x 

FUZZY RANGE 

HIGHa 

LOWa HIGHb 

HIGH 

LOWb 

LOW 
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     (12) 

     (13) 

By making the values of a and b variable at every slice, the membership functions 

are then adaptive to the changes in the properties of the object being segmented (such as 

pixel intensity, size, shape, and location) within the current image. The values for a and b 

are defined in Table 2. 

Table 2: Fuzzy range limits of membership functions. 

Membership Function a b 

μμLOW(x1) 1.1 min(x1) 1.1 mean(x1) 

μHIGH(x1) 0.9 mean(x1) 0.9 max(x1) 

μLOW(x2) 0.1 0.5 

μHIGH(x2) 0.25 0.9 

μLOW(x3) 1.1 min(x3) 1.1  mean(x3) 

μHIGH(x3) 0.9 mean(x3) 0.9  max(x3) 
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Two membership functions control the fuzzification of the first input, μLOW(x1) for 

the fuzzy subset LOW and μHIGH(x1) for the fuzzy subset HIGH. From Table 2, μLOW(x1) 

has the limit a defined as the minimum of the previous slice’s x1 values with an additional 

10% buffer, and the limit b is defined as the mean of previous slice’s x1 values, also with 

an additional 10% buffer. The value of a 10% buffer is an ad-hoc default value 

determined through the test cases run, but can be set to any value. The other membership 

function, μHIGH(x1) has the limit a defined as the mean of the previous slice’s x1 values 

with a reduction of a 10% buffer, and the limit b is defined as the maximum of the 

previous slice’s x1 values, also with a reduction of a 10% buffer. This ensures a fuzzy 

range with a width of 20% of the mean, centered at the mean. The fuzzy range for x2 is 

defined as between 0.75 of RROI and 1.25 of RROI. The fuzzy subset LOW membership 

function, μLOW(x2) has limits a and b at 0.1 and 0.5 respectively and the fuzzy subset 

HIGH membership function μHIGH(x2) has limits a and b at 0.25 and 0.9 respectively. The 

limits for x2 are constant because x2 is already defined in terms of RMAX, which changes 

based on the size of the current ROI. The fuzzy range of the third input x3 is defined in a 

similar fashion to the fuzzy range of the first input x1, using a 10% buffer.  

4.7 Fuzzy Rules 

With three inputs (x1, x2, and x3) and each input having two possible descriptions 

(LOW or HIGH), this gives us eight possible input combinations and hence eight rules to 

address each combination. These rules are listed in Table 3. 
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Table 3: Fuzzy rules for the fuzzy inference system. 

Rule IF x1 AND x2 AND x3 THEN y 

1 High High High Object 

2 High High Low Object 

3 High Low High Object 

4 High Low Low Background 

5 Low High High Object 

6 Low High Low Background 

7 Low Low High Background 

8 Low Low Low Background 

 

 

The output fuzzy set, y, is defined as either BACKGROUND or OBJECT}. From 

the rules defined in Table 3, if at least two of the inputs are HIGH, then the output will be 

the OBJECT, otherwise the output will be the BACKGROUND. These rules also ensure 

that even if a pixel has a high similarity value in the previous slice, it will be assigned a 

low similarity value in the current slice if both its intensity and distance components are 

low. 

Based on the inputs to the fuzzy inference system, an output fuzzy set μ(yi) is 

generated, where i represents the rule number defined. Using the general approach of 

MIN-MAX aggregation, all of these output fuzzy sets are aggregated into a single output 

fuzzy set μ(y). 

4.8 Defuzzification 

A defuzzification process is performed to convert the output fuzzy set into a crisp 

output of similarity values, S. This is done by using the general center-of-area method 
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shown in Equation (14), to calculate the centroid of the area defined by the single output 

fuzzy set μ(y). 

S =
μ(y) y dy

μ(y) dy        (14) 

4.9 Tumor Segmentation  

The segmented region, R, is obtained by evaluating the entire image, determining 

the maximum similarity value, SMAX, and selecting pixels with similarity values equal to 

SMAX. 

R(x,y) =
1

0

,     

,      

S(x,y) = SMAX
S(x,y) SMAX

 
 
 

      (15) 

Where x and y are the coordinates of the current pixel being evaluated. 

 

As shown in Equation (15), only pixels with similarity values equivalent to the 

maximum similarity value detected in the current image are segmented to be the object. 

A specific value is not defined since the similarity value obtained will differ in every 

image of the study due to the adaptive nature of the method. By only accepting pixels 

with the maximum similarity value, the method assures that only pixels that best describe 

the object of interest are segmented. 
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4.10 Post-processing 

Additional post-processing steps using basic morphological operations are 

performed to eliminate segmentation noise such as disconnected pixels from the object 

that create stray pixels and unselected pixels that create ‘gaps’ within the segmented 

object. Stray pixels are first removed by the morphological process of pixel erosion and 

then gaps are filled to be part of the object using the morphological process of pixel 

dilation.  

By default, these post-processing morphological routines are performed using a 

3 3 pixel mask. The process of erosion operates by evaluating each pixel (the center) and 

the surrounding eight other pixels. If all of the surrounding eight pixels are not selected, 

then the center pixel will be set as the background. The process of dilation is the opposite 

of erosion, where if all of the surrounding eight pixels are selected as the tumor, then the 

center pixel is selected and set as a tumor pixel as well. Both these processes are 

performed for every pixel in the 2D image. Thus, any stray pixels and gaps in the 

segmented object smaller than the mask will be eliminated. In addition to making the 

final segmented result more visually presentable, this process also helps to reduce the 

classification error of the results. 

4.11 Multi-Window Segmentation 

In addition, the method described can also be run on multiple window settings. 

Different tissue densities may appear more pronounced under different window settings. 

Thus, in order to capture a wider range of tumor tissues, the same segmentation 
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procedure is performed multiple times under different window settings. The user, 

selecting windowing settings where the tumor is visually identifiable at varying 

intensities, determines the variation in the window settings manually. The segmented 

regions based on three different window settings are combined to generate a final 

segmented region, R. 

RTotal = RWindow1 + RWindow2 + RWindow3     (16) 

RFinal =
1,

0,

 
 
 

RTotal 2

RTotal < 2        (17)
 

where RWindow1, RWindow2, and RWindow3 are the segmentation results of using three different 

windowing settings, and RFinal is the resulting segmented region. Additional 

morphological routines to remove any noise artifacts such as stray pixels are then 

performed.  
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5 ISIS: INTERACTIVE IMMERSIVE VISUALIZATION OF 

MEDICAL PATIENT DATA 

5.1 Introduction 

Isis, named after the Egyptian goddess of healing, is an interactive application 

developed to visualize patient medical data in a virtual environment. The principle during 

the development of Isis is that it will be a medical image data viewer designed for non-

radiologists with a low learning curve.  

The outline of the software framework is illustrated in Figure 26. The input of 

medical image data can be in two different formats: 1) any DICOM standard formatted 

medical image data or 2) any three-dimensional volume image data stored as 8-bit pixel 

intensities (between 0 and 255). The latter format is to accommodate the visualization of 

non-DICOM formatted image data, such as the segmented tumor results from the 

segmentation methods discussed. 

Interactive Immersive Medical Image Data Visualization 
System 

Clustered Computer Network 

 
VRJuggler 

 

Graphics Display System 

Coin3D 

SimVoleon 

DCMTK 

 

Medical Image Data Input Wireless Gamepad Input 

Figure 26: Software framework for the interactive immersive visualization system. 
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The input DICOM formatted medical image data is processed using the open 

source library DCMTK: DICOM Toolkit [116]. Based on the information in the DICOM 

headers, the slice location of each slice and the pixel spacing values are obtained. This 

will ensure a correct representation of the image data in accurately scaled proportions. In 

order to display the image data on a scalable platform, from a single desktop display to a 

multi-tiled immersive display, VRJuggler [117] was utilized for immersive visualization. 

Coin3D [118] was used for scenegraph handling of objects/models in the virtual 

environment, while SimVoleon [119] performs the volume rendering of the medical 

image data. User interaction with the system is handled using a wireless gamepad, where 

the joysticks are used for rotation and translation of the objects, while the button presses 

perform different functions depending on the current mode of the system.  

 

Figure 27: Outline of the features of the Isis immersive visualization system. 
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The software may be used in either examiner or surgical planning mode as shown 

in Figure 27. The examiner category contains features that will allow the user to explore 

the dataset using the gamepad as an interaction input device. Here the user can rotate and 

translate the 3D model of the image data. Pseudo-coloring allows the user to change the 

color scheme of the volume model to highlight different details within the dataset. Users 

can perform windowing on a DICOM formatted image dataset to focus on tissues of a 

desired density range and the multiple clipping planes allow the user to slice into the 3D 

model at any angle for an unobstructed view of a specific region of interest. The surgical 

planning mode allows inclusion of multiple simulated trocars that the user can manipulate 

and a simulated endoscope view for use in minimally invasive procedure planning. 

5.2 Gamepad and Menu Interface 

The main input device to interact with the application is a wireless gamepad. The 

gamepad controls are showed in detail in Figure 28, where the gamepad interface consists 

of two joysticks, a directional pad (with up/down, left/right arrow buttons), and four 

buttons on the right side of the gamepad. There are four additional buttons on the front of 

the gamepad, shown in Figure 28b. Buttons #5 and #7 are located at the left front side of 

the gamepad, while buttons #6 and #8 are located at the right front side of the gamepad. 
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a) Top view 
 

 
 
 
 
 

 
 

 
 
 
 
 

 
 

b) Front view 
 

Figure 28: Buttons and joystick layout of wireless gamepad. 

 

The joysticks handle the rotation and translation of objects, while the buttons 

perform specific functions based on the current mode that the application is in. For 

example, button #2 will turn on clipping planes when the application is in clipping mode, 

but will recalculate the pixel values based on the set windowing parameters in windowing 

mode. Figure 29 shows a user interacting with the application in a four-wall VR 

projection system with multiple patient data sets loaded. 

 

Buttons 5 and 7 
(back of gamepad) 

Buttons 6 and 8 
(back of gamepad) Left Joystick Right Joystick 

Directional Pad Buttons 1-4 

Buttons 9 and 10 
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Figure 29: Application in a four-walled VR projection system with wireless gamepad 
as interaction device (inset). 

The features have been categorized into four separate modes: 1) default/standard 

mode, 2) windowing mode, 3) clipping mode, and 4) surgery planning mode. The 

different modes of the system are outlined in this chapter, discussing the system controls 

where some button presses will perform different actions depending on the current mode 

that the system is in. The left joystick, directional pad, and Buttons #2, #7, #8, and #9 are 

the only controls that change depending on the current mode that the application is in and 

unless stated otherwise, the buttons/joysticks will perform as defined for the 

standard/default mode when the application is in any of the four defined modes. 

With so many different features and functionalities, there are several ways that a 

user can interact with Isis. A menu interface has been designed to ensure that the user has 

a smooth experience when navigating and controlling the application. In addition, 
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shortcut buttons have also been programmed into the application for the more 

experienced users who are familiar with the controls. During the entire interface design 

process, much effort has gone to incorporate Norman’s and Shneiderman’s rules of 

interface design such as standardized controls with natural mappings, informative 

feedback, and several automated sequences to minimize user errors.  

There are currently four menu tabs available: 1) Windowing, 2) Clipping, 3) 

Surgery planning, and 4) Information, and each menu corresponds to a specific mode 

within the application. Table 4 lists the corresponding menu tab that will appear 

depending on what mode the application is in when the menu is activated.  

Table 4: Mapping of application features to a specific menu tab. 

Feature Corresponding menu tab 

Default/standard Information 
Windowing Windowing 

Clipping Clipping 
Surgery planning Surgery planning 

 

The general layout of a menu is explained in Figure 30. On the top of the menu is 

the title of the current menu, and directly below it are the titles of the menu before and 

after the current menu. The red arrow icon for the previous menu corresponds to how that 

menu can be accessed by pressing the red button on the gamepad, and the green arrow 

icon represents that the next menu can be accessed by pressing the green button. This 

gives the user a sense of order for the various menus for fast access. For each specific 

menu, an information box at the bottom of the menu provides the user with a brief 

description of the current menu or instructions on how to activate specific actions. The 
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majority of the real estate of the menu interface consists of option lines with the current 

limit being seven. A maximum of nine lines could be fitted on the menu if needed. Each 

option line will have a description and an action button, and the options will change 

according to the current menu displayed. 

 

 

 

 

 

Figure 30: Layout of menu interface. 

 

 
Information box 
with description 
or instructions 

 
Control
/Action 
buttons  

Descriptions of 
specific action  

Title of current menu, 
and previous and next 
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5.3 Default Mode 

Table 5: Gamepad controls for the standard/default mode. 

Gamepad controls Function 

Left Joystick Translate model (forward/backward, left/right) 
Right Joystick Rotate model 
Directional Pad Translate model (up/down, left/right) 

Button #1 Go to previous mode 
Button #2 N/A 
Button #3 Go to next mode 
Button #4 Hide/unhide current selected model 
Button #5 Go to previous transfer function 
Button #6 Go to next transfer function 
Button #7 Select previous model 
Button #8 Select next model 
Button #9 Reset position of current selected model 
Button #10 Exit 

 

When in the standard/default mode, the gamepad controls are as shown in Table 

5. The joysticks and the directional pad will allow the user to rotate and translate the 

current selected model (if more than one dataset is loaded). Buttons #1 and #3 will cycle 

between the four modes mode of the application, while Button #4 hides or unhides the 

current selected model. Button #2 is reserved for activating specific functionalities such 

as recalculating the voxel values based on new windowing parameters when in 

windowing mode, or turning the clipping planes on and off when in clipping mode. 

Button #2 in default mode is just a dummy button which does nothing since there are no 

special functionalities when in default mode, but will serve as the “activation button” in 

other modes. Buttons #5 and #6 cycles between the different transfer functions loaded 

into the application to change the color scheme used for pseudo-coloring. Buttons #1 - #6 
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are the only buttons that will perform the same functionality regardless of the current 

mode that the application is in. 

Buttons #7 and #8 have been designated as the “selection buttons” to cycle 

between the objects (dataset models, clipping planes, or trocars). In default mode, these 

buttons will simply cycle between the dataset models loaded into the system. Button #9 

serves as the “reset button” and will reset specific parameters to its initial state, and in 

default mode this button resets the position and rotation of the current selected model to 

the origin. And finally, Button #10 quits the application. 

5.3.1 Information Menu 

When the menu is activated in “Default” mode, it presents the user with selected 

information about the patient and the dataset read in directly from the DICOM file as 

shown in Figure 31. Since there is a variety of information embedded in the DICOM file, 

only selected pertinent information is displayed, such as: 

• Patient’s information: Age and sex (Name is not displayed) 

• Modality of dataset (CT or MRI) 

• Dataset’s resolution (number of rows  number of columns  number of slices) 

• Dataset’s acquisition date 

• Manufacturer of scanning machine 

• Attending institution (hospital or clinic name) 

• If segmented tumor model (from segmentation methods) is available or not 
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Figure 31: Displaying selected information about the patient and the image dataset. 

 

 The number of slices in the dataset and whether a tumor model is available or not 

are input parameters to the application, while all other information is obtained at runtime 

and read in directly from the DICOM dataset.  
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5.4 Windowing and Pseudo-coloring 

 

Figure 32: Windowing and pseudo-coloring features, settings of these features 
(circled in red) are viewable to the user within the system. 

 

Figure 32 shows the values of the window center and width displayed to the user 

(left) and the current color scheme in use (right). As discussed in Chapter 1, CT/MRI data 

are stored in terms of tissue densities and windowing is a process that converts a specific 

range of these densities into 8-bit pixel data. This process has been implemented into the 

visualization system with direct user interaction via the wireless gamepad. Windowing 

parameters can be set using directional (arrow) buttons on the gamepad. The up arrow 

increases the window center value and the down arrow decreases the window center 

value, while the left arrow decreases the window width value and the right arrow 

Windowing 
parameters 

Pseudo-coloring 
scheme 

information 
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increases the window width value. Once the windowing parameters are set, the 3D 

representation can be regenerated based on the new windowing parameters, and 

depending on the size of the image dataset processed, regeneration of the displayed data 

can take between 1-5 seconds. 

 

 
a) Window (200,300) with 

GECOLOR scheme 

 
b) Window (200,300) with 

CARDIAC scheme 
  

 
c) Window (280,250) with MUSCLE-

BONE scheme 

 
d) Window (500,250) with BONE 

scheme 

Figure 33: Windowing for display of specific tissue densities and pseudo-coloring 
using Color Look-up Tables (CLUT) 
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A set of Color Look-up Tables (CLUT) is created to enable pseudo-coloring of 

the image data. The application will be able to assign different coloring schemes based on 

the original pixel intensity after windowing. These features help enhance details within 

the image data. Different colors and opacities can highlight organs or tissues that are of 

interest to the user. Examples of the windowing pseudo-coloring process are shown in 

Figure 33. When assigning pseudo-colors to the model, the system reads in a text file 

containing the values for the CLUT, which is a 256 x 4 array containing the red, green, 

blue, and transparency (RGBA) values for every possible 8-bit intensity value. Based on 

these values, a voxel of a specific intensity (between 0 and 255) will be assigned its 

corresponding color and transparency value. 

5.4.1 Windowing Menu 

 

Figure 34: Windowing menu, editing current windowing parameters for manual 
input. 



 

 
 

80 

  

Users can have access to the windowing feature via the menu interface as well as 

shortcut button presses. Figures 34 and 35 show the menu interface for windowing, with 

a variety of preset values for bone, muscle and bone, and skin and muscle. 

Figure 35: Predefined bone window available as an option in menu. 

 By using the directional pad (up/down), users can select a specific windowing 

preset (highlighted by a yellow outline). Pressing Button #2 (activation button) will 

prompt the application to recalculate and redraw the voxels using the selected windowing 

preset values. Users can also revert to the default value of windowing parameters as set in 

the DICOM file or manually edit the current values. When Button #2 is pressed the “edit” 

function is activated, the up and down arrows on the directional pad will increase or 

decrease the window center value, while the left and right arrows on the directional pad 

increases or decreases the window width value. Pressing Button #2 again will apply the 

new windowing values. 
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5.4.2 Gamepad Controls and Shortcuts for Windowing Feature 

When the application is in windowing mode and the menu is not active, the 

shortcut controls of the gamepad changes to those shown in Table 6. Similar to manually 

editing the windowing values in the menu, the directional pad changes the values for the 

window center and width. Pressing Button #2 recalculates the voxels displayed based on 

the set window center and width values, while Button #9 resets the windowing 

parameters to the default values as obtained from the DICOM file. The left joystick, 

Button #7, and Button #8 remain the same as their functionality in default mode. 

Table 6: Gamepad controls for the windowing mode. 

Gamepad controls Function 

Left Joystick Translate model (forward/backward, left/right) 
Directional Pad (up/down) Change window center 
Directional Pad (left/right) Change window width 

Button #2 Regenerate voxels based on window values 
Button #7 Select previous model 
Button #8 Select next model 
Button #9 Reset windowing center and width 

 

5.5 Multiple Clipping Planes 

Multiple clipping planes can be activated to ‘slice’ into the patient data for a 

detailed view ‘inside’ the patient as shown in Figure 36. By default, three clippings will 

be loaded when the clipping mode is activated. The number of clipping planes can be 

increased or decreased at runtime of the software. Using button presses on the gamepad 

interface, the user can cycle between all three clipping planes and the joystick allows the 

user to rotate the clipping plane to any desired angle. A red border identifies the selected 
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clipping plane, while unselected (but still active) clipping planes are represented by a 

gray and semi-transparent border. Once at a specific angle, the clipping plane can also be 

translated along its own normal axis using the up and down arrow buttons on the 

gamepad. 

 

  

  

Figure 36: Interactive multiple clipping planes to slice into the 3D volume at any 
angle. 
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5.5.1 Clipping Menu 

Figure 37: Toggling a specific clipping plane on/off via the option menu. 

 

 The menu interface allows the user to toggle a specific clipping plane, as shown 

in Figure 37. In cases when multiple clipping planes are active in the scene, the clipping 

plane selected in the menu is highlighted with a red outline while the other clipping 

planes will have a grey outline. This provides the user with a clear indication as to which 

clipping plane will be affected by the menu actions.  
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Figure 38: Resetting a specific clipping plane from within the menu. 

The user can also reset a specific clipping plane to its initial position, which is in 

the X-Y plane relative to the volume. The “reset” button on the menu can be selected by 

pressing the “right” button on the directional pad, and pressing Button #2 resets the 

selected clipping plane. Pressing “left” on the directional pad selects the toggle button in 

the menu again. The “All” option will affect all the clipping planes in the scene, whether 

it is active or not. As the number of clipping planes increase, this option will be a 

convenient way to globally manage them. 

5.5.2 Gamepad Controls and Shortcuts for Clipping Feature 

Table 7 outlines the changes to the gamepad controls when in clipping mode. 

When in clipping mode, the left joystick now rotates the current selected clipping plane, 

while the up and down arrows on the directional pad moves the clipping plane up and 

CP2 CP1 
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down its normal axis. Button #2 turns all clipping planes on or off, acting as the 

activation button for the clipping mode. Instead of cycling between the different models 

loaded, Buttons #7 and #8 now cycles between the clipping planes, while Button #9 

resets the current selected clipping plane to its default location, which is at the center of 

the model. When the clipping mode is turned off, all gamepad controls will revert to the 

controls for default mode. 

Table 7: Gamepad controls for the clipping mode. 

Gamepad controls Function 

Left Joystick Rotate current selected clipping plane 
Directional Pad Move clipping plane along normal axis 

Button #2 Turn clipping planes on/off 
Button #7 Select previous clipping plane 
Button #8 Select next clipping plane 
Button #9 Reset position of selected clipping plane 

 

5.6 Surgery Planning 

In a real endoscopic surgery, the trocars are inserted via an incision made on the 

patient’s body. However, once the incision is made and the trocar is inserted, it is crucial 

that this placement is accurate, since the repositioning of a poorly placed trocar would 

require additional incisions causing further shock and distress to the patient’s body and 

increasing recovery time. Recent studies based on 1215 minimally invasive surgeries 

(endoscopic) performed on small infants [120] showed that 11% of those surgeries 

resulted in complications and as high as 14.8% had to be converted to open surgery due 

to inexperience and poor planning. Another study based on 180 robotic (endoscopic) 
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surgeries performed infants and small children [121] also showed that 6.6% of the cases 

resulted in a conversion to open surgery while 4.4% required re-operations due to poor 

initial trocar positioning. Thus, there is a need for an effective three-dimensional 

visualization tool to aid surgeons in the decision making process for surgical planning. 

 

  

Figure 39: Trocar placement simulator for endo-surgery planning (trocars highlighted 
in circles). 

Graphical simulated trocars are included in the application for use in endoscopic 

surgery planning. Figure 39 shows multiple trocars (highlighted in circles) positioned 

within the three-dimensional representation of a patient data. Using this feature, surgeons 

can accurately plan trocar placement prior to performing a surgical procedure, on the 

actual patient data. This provides the surgeon crucial information outside the operating 

room during preparation for surgery. By positioning the trocars at various locations on 

the patient’s body, the surgeon can get an estimate of how far the laparoscopic 
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instruments can reach inside the body and if these instruments will be in contact with any 

sensitive organs or blood vessels. 

5.6.1 Surgery Planning Menu 

Figure 40: Toggling specific trocars on/off from within the option menu. T1 and T3 
represent the first and third trocars that are turned on and currently visible. 
T1, which is in blue, is the trocar selected from the menu. 

 
The menu interface for the surgery planning feature is similar to the menu 

interface for managing the clipping planes. There are by default four trocars available in 

the scene and each trocar is numbered in the menu as shown in Figures 40 and 41. The 

number of trocars was obtained through discussions from various endoscopic surgeons. 

As a line corresponding to the trocar is highlighted in the menu, the trocar is highlighted 

in blue as well, giving a clear indication to the user as to which trocar will be affected by 

a menu action. Trocars can be toggled on or off using by pressing Button #2 on the 

T1 

T3 
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gamepad, or the user can press “right” on the directional pad to highlight the “reset” 

button on the menu to reset the selected trocar’s position. 

 

Figure 41: Resetting a specific trocar from within the menu. T1, T2, and T3 represent 
the first, second, and third trocars that are currently turned on and visible. 
T2, which is in blue, is the selected trocar from the menu. 

Table 8: Gamepad controls for the endo-surgery planning mode. 

Gamepad controls Function 

Left Joystick Pivot selected trocar 
Directional Pad Move selected trocar 

Button #2 Turn trocars on/off 
Button #7 Select previous trocar 
Button #8 Select next trocar 
Button #9 Reset position of current selected trocar 

 

The gamepad controls in the endo-surgery planning mode are shown in Table 8. 

The left joystick now pivots the trocar at a fixed location, while the directional pad 

repositions the trocar along the body. Similar to turning clipping planes on and off, 

T1 
T2 

T3 
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Button #2 now turns the endo-surgery planning mode on and off, either showing or 

hiding all the trocars. When the endo-surgery planning mode is off, the gamepad controls 

revert to those for the default mode. Buttons #7 and #8 cycle between the four trocars, 

and Button #9 resets the location of the current selected trocar to the center of the model. 

The endoscopic camera mode option in the menu allows the user to view the 

patient data from the point of view of a simulated endoscopic camera. The joystick 

controls correspond to the controls of most of today’s video games, where the left 

joystick moves the “player” front/back and left/right, while the right joystick controls the 

player’s viewpoint, rotating it up/down and left/right. With a short learning curve, 

surgeons can focus on the examination of the patient model instead of struggling to 

understand the navigational controls of the software. 

 
a) Endoscope 

 

 
b) Endoscopic camera at 

end of endoscope 

 
c) View digestive system from 

endoscope 

Figure 42: Examples of a) an endoscope, b) the camera at the end tip of the 
endoscope, and c) a screenshot of the video output from an endoscope 
inserted into the digestive system. 

An endoscope and a screenshot from an endoscope inserted into the digestive 

system are shown in Figure 42. As seen from Figure 42c, the view from an endoscope has 

a limited field of view, restricting the amount of visual information available to the 
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surgeon. When viewed in a virtual reality environment, this software framework puts the 

surgeon inside the patient model, thus removing the “soda-straw” effect when viewing 

through a standard camera. This representation is extremely useful as a planning tool to 

determine optimal placement of an endoscope and other laparoscopic instruments. A case 

example is provided in the results chapter. 

5.6.2 Tumor Inspection 

 
Dataset #1 

 
Dataset #2 

Figure 43: Viewing of automatically segmented tumors in context of patient data. 

Tumors segmented using the segmentation methods discussed can also be loaded 

and viewed in context with the original patient data, for use in diagnostics or surgery 

planning. When viewed in context with the original patient data, any user interactions 

such as translation and rotation will affect both models using a “linking” feature 

implemented into the system. Since the segmented tumor is a 3D model on its own, the 

user can also choose to “unlink” the models and examine only the tumor. This feature can 

be used as an effective tool for a surgeon to examine the shape and size of the tumor for 

Tumor 
Tumor 
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surgical planning or as a diagnosis tool to track the progress of a patient who is 

undergoing treatment. Datasets that have been processed using the fuzzy segmentation 

algorithm discussed and the tumors extracted are highlighted as shown in Figure 43. 
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6 RESULTS AND DISCUSSION 

6.1 Information and Properties of Test Datasets 

The developed segmentation methods were tested on 10 distinct sets of contrast 

enhanced CT data, from seven individual patients. Test case #1 is a cystic teratoma, #2 is 

a mucinouscystadenoma, and #3 is an immature teratoma tumor (courtesy of Dr G. 

Miyano from Juntendo University School of Medicine, Tokyo, Japan). Test cases #4-#10 

are of neuroblastic tumors (courtesy of Dr R.M. Rangayyan from University of Calgary, 

Alberta, Canada). The CT sets are of varying number of slices and the tumors of interest 

to be segmented are also of varying difficulty, in terms of being segmented automatically. 

The difficulty and complexity of automatic tumor segmentation can be loosely 

categorized at three different levels: tumors with homogeneous tissue densities (category 

A), tumors with some inhomogeneity and fuzzy edges (category B), and tumors with 

heterogeneous tissue densities (category C). Tumors with calcifications (calcium build up 

inside the tumor tissues) can be categorized as either B or C, depending on the degree of 

calcifications. Tumors from categories C are very challenging segmentation problems 

since the computer algorithms used for automatic segmentation will be unable to properly 

identify the tumor tissues without additional intervention from the user. In most cases, 

even tumors from category C can be difficult to be manually segmented by a human who 

is not medically trained. Table 9 summarizes the properties and the information about the 

test cases presented. 
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Table 9: Summary of information and parameters for the test cases presented. 

# Patient Tumor description 
# of 

slices 

Windowing 

parameters 
Cat 

1 P1 Cystic Teratoma on left ovary 38 C:95, W:250 A 
2 P2 MucinousCystadenoma on right ovary 301 C:120, W:200 A 
3 P3 Immature Teratoma 132 C:110, W:230 A 
4 P4 Neuroblastoma, small and diffuse 48 C:110, W:200 B 
5 P5 Neuroblastoma 75 C:90, W:280 B 
6 P5 Neuroblastoma 70 C:90, W:280 C 
7 P6 Neuroblastoma, some calcification 54 C:95, W:220 B 
8 P6 Neuroblastoma, some calcification 75 C:90, W:210 C 
9 P6 Neuroblastoma, highly calcified 71 C:90, W:210 C 
10 P7 Neuroblastoma 69 C:90, W:280 C 

 

Radiologist Dr J.L. Friese from Brigham and Women’s Hospital, Boston, 

Massachusetts provided manual segmentations for test cases #1-#3, and radiologist Dr 

G.S. Boag from Alberta Children’s Hospital, Calgary, Canada provided manual 

segmentations for test cases #4-#10. The manually segmented region of the tumors will 

be the gold standard used for comparison with the results obtained from the automatic 

segmentation algorithm. 

To evaluate the accuracy and performance of the developed methods, 10 users 

performed segmentation of the test cases, with each user performing the procedure four 

times for every dataset. To ensure medical accuracy when performing these test cases, the 

users are shown the image of the first slice that the tumor appears with the radiologist’s 

outline of the tumor for use as reference when placing the seed for the probabilistic 

segmentation method and when selecting the region of interest for the fuzzy segmentation 

method. 

In this chapter, the segmentation results from for the test cases both methods will 

be presented and discussed. Selected two-dimensional and three-dimensional volume 
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representations of tumors segmented using both methods will be presented and compared. 

This is followed by detailed numerical analyses of the segmentation accuracy and 

repeatability factor of both proposed segmentation methods. 

6.2 Hardware and Software 

The segmentation method was executed on an Intel Core2 Quad 3.0 GHz 

processor with 3 GB of memory and 256 MB NVidia 8300GTS graphics card, running 

Windows Vista Business Edition. The programming of the segmentation method was 

done in MATLAB v7.4, utilizing its fuzzy logic toolbox and the image processing 

toolbox. 

The immersive viewer was tested on the C6, Iowa State University Virtual Reality 

Applications Center’s six-sided virtual reality projection system. The performance data 

was obtained by running the application in stereo on the mentioned system, with frame 

locking on, to sync the multiple graphics threads seamlessly. The C6 VR system is 

powered by a cluster of 48 computers with Dual AMD Opteron 250 2.4GHz processors 

and 4GB of memory, each with dual 512 MB NVidia Quadro FX4500 graphics cards 

configuration, running Linux Red Hat Enterprise 64 bit edition. 

6.3 Probabilistic Segmentation of Tumors 

In this section, the segmentation results for probabilistic segmentation method 

will be presented and discussed. In addition, selected two-dimensional and three-

dimensional volume representations of the tumors segmented will also be presented and 
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discussed. This is followed by a detailed numerical analysis of segmentation accuracy 

and repeatability factor of the proposed segmentation method. Based on the discussion in 

Chapter 3, refinements were made to the segmentation method and the results from both 

versions of the probabilistic segmentation method are included in this chapter. Table 10 

summarizes the differences between the two versions. 

Table 10: Summary of the improvements made to the probabilistic segmentation 
method. 

Version 1 Version 2 

Seed is a single pixel Seed is a 5x5 grid of pixels 
  

Between slices, seed from previous 
slice is mapped to current slice 

Between slices, the centroid of the 
segmented region from previous slice is 

used as the seed for current slice 
  

Search region is grown at 10% by 
default 

Rate of change for search region is 
calculated based on the rate of change 

for the last two slices 

6.3.1 Segmentation Results 

When the segmentation algorithm was applied to a well-defined tumor as in test 

case #1, a Cystic Teratoma tumor on the left ovary, the algorithm performed well as 

shown in Figure 44. There are misclassification errors, as indicated by the circle in slice 

#0045, when pixels of non-tumor tissues were selected. These misclassifications are due 

to the proximity and similarity in surrounding tissue densities. Despite this problem, the 

method was still successful in segmenting a majority of the tumor pixels and defining the 

overall shape of the tumor. 
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Slice #0035 Original Slice #0035 Segmented 

  
Slice #0045 Original Slice #0045 Segmented 

Figure 44: Segmentation results for Test Case #1. 

 

A three-dimensional volume representation of the segmented tumor as well as the 

manually segmented tumor is presented in Figure 45 for comparison. Segmentation of 

tissues with similar density as the tumor is circled in the figure. Despite this interference 

in the segmentation process, the overall shape of the segmented tumor using the 

probabilistic segmentation method is very much in agreement with the shape obtained 

from manual segmentation.  
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Manual Segmentation Probabilistic Segmentation 

Figure 45: Three-dimensional volume renders of the segmented tumor from Test 
Case #1, from manual segmentation and probabilistic segmentation. 

 

When the probabilistic segmentation algorithm was applied to some of the more 

diffuse and partially heterogeneous tumors such as test cases #5 and #7, the results have 

more errors as illustrated in Figure 46. The surrounding healthy tissues and the tumor 

have very similar densities, thus causing a region leak during the segmentation procedure. 

In test case #5, the tumor tissues have very similar densities to the tissues around it and in 

test case #7 the calcifications in the tumor have very similar densities to the bone tissues 

on the vertebrae. 
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Test Case #5 – Radiologist segmented 

tumor 

 
Test Case #5 – Tumor from probabilistic 

segmentation method 

 
Test Case #7 – Radiologist segmented 

tumor 

 
Test Case #7 – Tumor from probabilistic 

segmentation method 

Figure 46: Probabilistic segmentation results for tumors with mixed tissue densities 
that are slightly heterogeneous. Actual tumors outlined by radiologist are 
shown in red dashed lines. 
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Test Case #9, slice #35 – Radiologist 

segmented tumor 

 
Test Case #9, slice #35 – Tumor from 

probabilistic segmentation method 

 
Test Case #9, slice #41 – Radiologist 

segmented tumor 

 
Test Case #9, slice #41 – Tumor from 

probabilistic segmentation method 
  

Figure 47: Probabilistic segmentation results for tumors that are highly heterogeneous 
with calcifications. Actual tumors outlined by radiologist are shown in red 
dashed lines. 

For test case #9, the calcifications in the tumor as well as the mixed tissues caused 

difficulty for the segmentation method, shown in Figure 46. The segmentation method 

only managed to segment about half of the tumor, which is expected since the 

probabilities generated are based on pixel intensities and the intensities defining the 
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tumor is very heterogeneous. Even for an untrained person without any medical 

experience, this test case would prove to be difficult to identify and manually segment. 

The average time take to process a single slice was approximately 5-11 seconds, 

depending on the size of the search region. For the smallest test case of 38 slices, the 

processing time took 3.4 minutes, while the largest test case of 301 slices took 45.2 

minutes. 

6.3.2 Segmentation Accuracy 

In order to evaluate the accuracy of the proposed probabilistic segmentation 

method, the misclassification rates were calculated for each test case. A pixel classified 

as part of the tumor when it was not in the gold standard is a False Positive (FP), and a 

pixel identified as tumor based on the gold standard but not selected by the method is a 

False Negative (FN). Both error rates are calculated as: 

      (18) 

FN =
V (R) V (A R)

V (R)
100%      (19) 

where V(R) is the volume segmented by the radiologist, and V(A) is the volume 

segmented by the algorithm.  

The false positive error rates evaluate the algorithm’s ability to correctly classify 

tumor tissues and ignore healthy tissues. A low FP rate demonstrates that the algorithm is 

not sensitive to healthy tissues with intensity values similar to the tumor’s intensity 

values, causing classification errors. These errors usually occur when tumor is diffuse 
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with blurred and poorly defined edges. The false negative error rates evaluate how 

accurately the algorithm performs in classifying tumor tissues, especially tumors that are 

highly heterogeneous and/or with calcifications. 

Based on the multiple runs performed by 10 users, the average of these 

classification errors are calculated as the Mean False Positive (MFP) and the Mean False 

Negative (MFN) and are shown in Table 11. 

Table 11: Accuracy evaluation of the probabilistic segmentation algorithm. Mean False 
Positive (MFP) when non-tumor pixels were selected and Mean False 
Negative (MFN) when tumor pixels were not selected for all 10 test cases. 
The results for “Version 1” are for the probabilistic method using the original 
seed relocation algorithm, while “Version 2” is with the new revised seed 
relocation and search region algorithm. 

Version 1 Version 2 
# Patient Cat Tumor description 

MFP MFN MFP MFN 

1 P1 A Cystic Teratoma on left ovary 3.9% 1.7% 3.1% 1.8% 

2 P2 A 
MucinousCystadenoma on 

right ovary 
2.4% 3.6% 2.2% 3.6% 

3 P3 A Immature Teratoma 5.3% 4.1% 4.6% 4.3% 

4 P4 B 
Neuroblastoma, small and 

diffuse 
6.3% 5.6% 5.8% 4.7% 

5 P5 B Neuroblastoma 14.4% 19.8% 13.1% 19.9% 
6 P5 C Neuroblastoma 15.8% 21.3% 13.6% 21.8% 

7 P6 B 
Neuroblastoma, some 

calcification 
10.8% 13.1% 9.1% 12.6% 

8 P6 C 
Neuroblastoma, some 

calcification 
28.9% 55.3% 25.2% 53.9% 

9 P6 C 
Neuroblastoma, highly 

calcified 
8.3% 39.8% 7.1% 40.2% 

10 P7 C Neuroblastoma 16.5% 12.3% 15.4% 12.1% 

 

Based on the results for the revised probabilistic segmentation method, six of the 

test cases had MFP errors less than 10%; and three of the test cases had MFP errors 

between 13% and 16%, and one test case with 25% MFP error. Five of the test cases had 
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MFN errors less than 6%; three had MFN errors between 12% and 22%; and two had 

MFN error of more than 40%. Comparing the results for Version 1 and Version 2 of the 

method, there is a significant improvement where the error rates for MFP is reduced in all 

10 test cases. This reduction in false positives is from the use of the rate of change 

parameter, which significantly eliminates the processing of unnecessary pixels. There are 

also some improvements observed in for some test cases with lower false negative error 

rates, but a statistical analysis showed that this reduction is not significant. For the rest of 

this chapter, the discussion of the results will be focused on Version 2 of the probabilistic 

segmentation method. 

The results obtained were compared to a recently published tumor segmentation 

method by Deglint et al [122] to further evaluate the performance of the probabilistic 

segmentation algorithm. The comparison was possible due to the same test cases used for 

both methods. Deglint’s method removes known structures such as bone, fat, and skin 

from the image data prior to performing fuzzy connected segmentation on the tumor. 

Eight of their ten test cases had less than 12% MFN error, while the remaining two test 

cases had MFN between 20% and 30%. For MFP error rates, Deglint’s method was able 

to successfully segment the tumors on three test cases with less than 20% MFP errors, 

five test cases had MFP errors between 35% and 50%, and the remaining two test cases 

had MFP errors of more than 50%. Comparatively, the probabilistic segmentation method 

had a lower MFP error rate on more test cases and with the worst MFP error rate at only 

25%, less than half of what Deglint’s worst result (>50%) produced. This demonstrates 

the probabilistic segmentation algorithm was able to better differentiate between tumor 

tissues and healthy tissues, even when the dataset is diffuse with blurred edges. The 
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probabilistic segmentation method did comparatively well on most of the test cases, with 

MFN error rates similar to Deglint’s, except for two test cases with MFN error rates that 

are between 40% and 54%, 24% more false negatives than the worst results from 

Deglint’s method. However, Deglint’s method took a longer time to complete, taking 

between 1-2 minutes per slice while the probabilistic segmentation method only required 

5-11 seconds per slice. 

Overall, the method performed well, successfully segmenting the tumor from the 

healthy tissues in most of the test cases. The low MFN for most of the test cases 

demonstrated that the method was able to perform without mistaking healthy tissues as 

tumor tissues. The high MFP for test case #8 meant that more healthy tissues were 

mistaken as tumor tissues for that one case. This high false positive error rate is most 

likely a result of poor delineation between the tumor and the surrounding tissues leading 

to a region leak. Calcification and the inhomogeneity of the tissue density within the 

tumor caused some pixels to be unselected during the segmentation procedure, resulting 

in a high MFN values for two test cases.  

6.3.3 Inter- and Intra-User Variability 

This section discusses the repeatability factor of the developed segmentation 

algorithm. Two factors were considered, the inter-user variability and the intra-user 

variability. Inter-user variability compares the variability in the segmentation results 

when performed by multiple users, and intra-user variability compares the variability in 

the segmentation results when a single user performs the method multiple times.  
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A paired t-test was performed to determine if the inter- and intra-user variations 

are significant. The paired t-test is used to evaluate the significance of the differences 

between two observations, represented by D. The hypotheses used are: 

     Ho:  D = 0  (there is no significant difference) 

     Ha:  D > 0  (there is significant difference) 

To either reject or accept the null hypothesis (Ho), a t value and its associated p-value is 

calculated using the following equation: 

 t = (X Y )
n(n 1)

( ˆ X i ˆ Y i)
2

i

n        (20) 

where  X  and Y  are the mean values of both observation group, n is the number of items 

in each observation group (equal for both since this is a paired test) and  

ˆ X i = Xi X i
ˆ Y i = Yi Y i

         (21) 

The p-value associated with the calculated t value can be inferred from a standard t-

distribution table. If the p-value is low (< 0.05), then there is evidence to reject the null 

hypothesis. Thus, there is a difference in means across the paired observations. 

To test if there is significant inter-user variation, the differences in the segmented 

tumors for all ten test cases produced by a pair of users were analyzed for statistical 

significance. For example, User1’s segmented tumor volume for test case #1 will be 

subtracted from User2’s segmented tumor volume for the same test case. Any remaining 

voxels will be the difference in the segmentation result between the two users. This is 

repeated for all 10 test cases. Since we have 10 test cases and each was performed four 
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times, n=40. If there is no statistically significant difference in the results of a specific 

pair of users, then the p-value will be greater than 0.05. 

Table 12: Statistical analysis of inter-user variability for probabilistic segmentation 
method. 

Testing Pairs p-value (n=40) 

User1-User2 0.2609 

User2-User3 0.2897 

User3-User4 0.3192 

User4-User5 0.3184 

User5-User6 0.2425 

User6-User7 0.2926 

User7-User8 0.2501 

User8-User9 0.1844 

User9-User10 0.2255 

User10-User1 0.2792 

 

The pairing of the users for comparison is listed in Table 12, along with the 

corresponding t-test p-value result. The results show that all pairs have a p-value > 0.05, 

which indicates that there is no significant difference between the pairs of users in terms 

of the segmentation results obtained.  

Testing for the intra-user variation is done in a similar fashion, but instead of 

pairing different users, the different runs performed by each user are paired and tested, 

i.e. for User1, run #1 is paired with run #2, run #2 is paired with run #3, and so forth. The 

statistical analysis to test for intra-user variability also produced a p-value > 0.05, 

indicating that there is no significant difference between the multiple segmentation 

results of the same dataset as performed by the same user. 
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6.4 Fuzzy Segmentation of Tumors 

The same test cases were also segmented using the fuzzy logic method. In this 

section, the segmentation results for these test cases will be presented and discussed and 

selected two-dimensional and three-dimensional volume representations of the tumors 

segmented using the fuzzy rule-based segmentation method will be presented and 

discussed. This is followed by a detailed numerical analysis of segmentation accuracy 

and repeatability factor of the proposed segmentation method. Table 13 summarizes the 

modifications made to the fuzzy segmentation method. 

Table 13: Summary of the modifications made to the fuzzy segmentation method. 

Version 1 Version 2 

Search region grows by 50% at every slice 
Search region grows based on a weighted 

average of the last two slices’ rate 
  

Segmentation performed once for a 
specific window setting 

Segmentation performed three times on 
different window settings 

 

6.4.1 Multi-Window Fuzzy Segmentation Results 

As mentioned in Chapter 4.11, the three windowing parameters are defined 

manually by the user using the preset values provided by the radiologists as a starting 

point. Table 14 lists the different windowing parameters used during the runs performed 

to test the multi-window fuzzy segmentation method. 
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Table 14: Summary of information and parameters for the test cases presented. 

# Windowing parameter 1 Windowing parameter 2 Windowing parameter 3 

1 C:65, W:130 C:95, W:250 C:110, W:180 
2 C:90, W:150 C:120, W:200 C:135, W:160 
3 C:110, W:90 C:110, W:230 C:140, W:160 
4 C:76, W:90 C:110, W:200 C:135, W:150 
5 C:75, W:70 C:90, W:280 C:115, W:130 
6 C:75, W:70 C:90, W:280 C:115, W:130 
7 C:88, W:100 C:95, W:220 C:120, W:175 
8 C:68, W:85 C:90, W:210 C:105, W:160 
9 C:68, W:85 C:90, W:210 C:105, W:160 
10 C:75, W:90 C:90, W:280 C:110, W:180 

 

Figure 48 shows the different segmentation results when changing the windowing 

settings and the final merged segmented region after morphological operations. This new 

implementation reduced most of the errors due to inhomogeneity in the tissue density. 

For the rest of this chapter, all the results discussion will be focused on the results 

produced by the modified version of the fuzzy segmentation method. 
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Center: 45, Width: 95 Center: 78, Width: 72 Center: 110, Width: 250 

Segmentation result for 
Center: 45, Width: 95 

Segmentation result for 
Center: 78, Width: 72 

Segmentation result for 
Center: 110, Width: 250 

Final segmented region after 
morphological operations 

Segmented region overlaid on original slice 

Figure 48: Segmentation results from three different windowing settings of the same 
slice and the final merged segmented region. 
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6.4.2 Segmentation Results 

The object segmented in Test Case #1 is a Cystic Teratoma tumor on the left 

ovary, spanning 19 slices. The slice thickness is 5 mm, making the object being 

segmented approximately 95 mm in length. The results for test case #1 are presented in 

Figure 49. 

  
Slice #0038 

  
Slice #0043 

Figure 49: Selected results of the fuzzy segmentation for Test Case #1 

A three-dimensional volume representation of the segmented tumor from manual 

segmentation as well as the results from the proposed fuzzy segmentation method is 

presented in Figure 50. Segmentation of tissues with similar density as the tumor is 

circled in the figure. Despite this interference in the segmentation process, the overall 

Misclassified 
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shape of the segmented tumor using the fuzzy segmentation method is very much in 

agreement with the shape obtained from manual segmentation. Compared to the results 

from the probabilistic segmentation method, the fuzzy segmentation method performed 

better by not misclassifying as much healthy tissue as the probabilistic method. 

 

 

 

Manual Segmentation (left view)  Fuzzy Segmentation (left view) 

Figure 50: Three-dimensional view of the segmented tumor from Test Case #1 using 
manual segmentation (left) and from the fuzzy segmentation method 
(right). 

Based on the results in Figures 49 and 50, the method was able to successfully 

determine the pixels that define the tumor. The shape and size of the tumor were visually 

defined, even though there are some misclassified pixels, as indicated in slice #0043, 

when pixels of non-tumor tissues were selected as tumor. This misclassification is due to 

the similarity in tissue densities and also these tissues are in close proximity to the tumor, 

resulting in a high similarity value output from the fuzzy inference system. 
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Test Case #5 – Radiologist segmented 
tumor 

Test Case #5 – Tumor from fuzzy 
segmentation method 

Test Case #7 – Radiologist segmented 
tumor 

Test Case #7 – Tumor from fuzzy 
segmentation method 

Figure 51: Fuzzy segmentation results for tumors with mixed tissue densities that are 
slightly heterogeneous. Actual tumors outlined by radiologist are shown in 
red dashed lines. 

The fuzzy segmentation algorithm was applied to some of the more diffuse and 

heterogeneous tumors and the results are shown in Figure 51. The results are better than 

those produced by the probabilistic segmentation method, getting almost all parts of the 

tumor shown in slice #18 of test case #7. For test case #5, there are some noticeable false 



 

 
 

112 

  

positive errors, when the healthy tissues surrounding the tumor are segmented. The 

method also did not segment some tissues inside the tumor since they were of a different 

tissue density, shown as darker pixels. 

 

Test Case #9, slice #35 – Radiologist 
segmented tumor 

Test Case #9, slice #35 – Tumor from 
fuzzy segmentation method 

Test Case #9, slice #41 – Radiologist 
segmented tumor 

Test Case #9, slice #41 – Tumor from 
fuzzy segmentation method 

Figure 52: Segmentation results for tumors that are highly heterogeneous with 
calcifications. Actual tumors outlined by radiologist are shown in red 
dashed lines. 
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As with the probabilistic segmentation method, the calcification in the tumor for 

test case #9 also caused some difficulty for the fuzzy segmentation method. The method 

only segmented the calcified part of the tumor, missing most of the non-calcified tissues 

that also define part of the tumor, shown in Figure 52. Compared to the results obtained 

from the probabilistic segmentation method, the resulting segmented tumor is more 

complete, selecting most of the tumor tissues that the probabilistic method missed.  

The average time take to process a single slice was approximately 13-38 seconds, 

depending on the size of the search region. For the smallest test case of 38 slices, the 

processing time took 8.6 minutes, while the largest test case of 301 slices took 154 

minutes. This increased processing time was due to the three different window settings on 

which the fuzzy segmentation method operated. 

6.4.3 Segmentation Accuracy 

Overall, the modifications made to the fuzzy segmentation method showed 

improvements to the results. Both the MFP and MFN errors were lower and a paired 

statistical t-test measuring the difference between the two versions had a p-value < 0.05, 

thus demonstrating that this improvement is significant. 

Seven of the test cases had MFP errors less than 10%; two test cases had MFP 

errors between 10% and 15%; and the remaining test case had an MFP error of 22%. Six 

of the test cases had MFN errors less than 10%; two had MFN errors between 13% and 

16%; and the remaining two had MFN errors over 35%. 
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Table 15: Accuracy evaluation of the fuzzy segmentation algorithm. Mean False 
Positive (MFP) when non-tumor pixels were selected and Mean False 
Negative (MFN) when tumor pixels were not selected for all 10 test cases. 
The results for “Version 1” are for the fuzzy method using a single window 
setting, while “Version 2” uses three window settings to generate a merged 
region.  

Version1 Version2 
# Patient Cat Tumor description 

MFP MFN MFP MFN 

1 P1 A Cystic Teratoma on left ovary 3.3% 1.8% 2.9% 1.6% 

2 P2 A 
MucinousCystadenoma on 

right ovary 
2.8% 3.5% 2.1% 3.0% 

3 P3 A Immature Teratoma 5.2% 3.7% 4.5% 2.9% 

4 P4 B 
Neuroblastoma, small and 

diffuse 
6.9% 5.6% 5.1% 4.7% 

5 P5 B Neuroblastoma 10.3% 8.2% 8.6% 7.5% 
6 P5 C Neuroblastoma 12.7% 18.4% 10.2% 15.7% 

7 P6 B 
Neuroblastoma, some 

calcification 
9.3% 9.6% 8.7% 7.2% 

8 P6 C 
Neuroblastoma, some 

calcification 
23.5% 50.2% 21.9% 48.3% 

9 P6 C 
Neuroblastoma, highly 

calcified 
5.7% 38.1% 4.1% 35.7% 

10 P7 C Neuroblastoma 14.9% 14.2% 14.3% 13.8% 

 

The high MFP for test cases #8 and #10 meant more healthy tissues were 

mistaken as tumor tissue. The false positives are most likely a result of the poor 

delineation between the tumor and the surrounding tissues leading to a region leak as 

seen in some of the graphical representation of the test case results (notably in test case 

#8). The high MFN means that some tumor tissues were not segmented as part of the 

tumor. Calcification and the inhomogeneity of the tissue density within the tumor 

produced low similarity values for some pixels during the segmentation procedure.  

Once again, the segmentation results obtained were compared to the tumor 

segmentation method developed by Deglint et al [120] to evaluate the performance of the 

fuzzy segmentation algorithm. As mentioned in the results discussion on the probabilistic 
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segmentation method in Chapter 6.3.2, eight of their ten test cases had less than 12% 

MFN error, while the remaining two test cases had MFN between 20% and 30%. For 

MFP error rates, Deglint’s method was able to successfully segment the tumors on three 

test cases with less than 20% MFP errors, five test cases had MFP errors between 35% 

and 50%, and the remaining two test cases had MFP errors of more than 50%. As with 

the probabilistic segmentation results, the fuzzy segmentation method also had a lower 

MFP error rate on more test cases and with the worst MFP error rate at 22% on one test 

case, which is less than half of what Deglint’s worst result  (>50%) produced. The fuzzy 

segmentation method did just as well as Deglint’s method on the MFN error rates for 

most of the test cases. For the fuzzy segmentation, eight test cases had MFN errors below 

16%, while Deglint had eight test cases with error rates less than 12%. In the two test 

cases for the fuzzy segmentation, the MFN error rates are between 35% and 48%, 14% 

more false negatives than Deglint’s method. Similar to the probabilistic segmentation 

method, the time taken to process a single slice using the fuzzy segmentation method is 

also significantly faster than the time taken by Deglint’s method. 

Based on the statistical results and the comparison with an established method, 

the fuzzy segmentation method performed very well, successfully segmenting the tumor 

from the healthy tissues in most of the test cases. The high MFP for test case #6 meant 

that more healthy tissues were mistaken as tumor tissues for that one case. This high false 

positive error rate is most likely a result of poor delineation between the tumor and the 

surrounding tissues leading to a region leak. The low MFN for most of the test cases 

demonstrated that the method was able to perform without mistaking healthy tissues as 

tumor tissues. Calcification and the inhomogeneity of the tissue density within the tumor 



 

 
 

116 

  

caused some pixels to be unselected during the segmentation procedure, resulting in a 

high MFN values for two test cases.  

6.4.4 Inter- and Intra-User Variability 

This section discusses the repeatability factor of the fuzzy segmentation 

algorithm. Similar to the statistical testing of variability for the probabilistic segmentation 

method, the segmentation results of selected pairs were compared. The results in Table 

15 show that all pairs have a p-value > 0.05, indicating that there is no significant 

difference between the pairs of users in terms of the segmentation results obtained. The 

statistical analysis to test for intra-user variability also produced a p-value > 0.05, 

indicating that there was no significant difference between the multiple segmentation 

results of the same dataset as performed by the same user. 

Table 16: Statistical analysis of inter-user variability for fuzzy segmentation method. 

Testing Pairs p-value (n=4) 

User1-User2 0.2319 

User2-User3 0.3157 

User3-User4 0.3792 

User4-User5 0.2904 

User5-User6 0.1625 

User6-User7 0.3933 

User7-User8 0.3271 

User8-User9 0.3614 

User9-User10 0.3735 

User10-User1 0.2912 
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6.5 Comparison of Both Segmentation Methods 

Both methods discussed in this dissertation have some common similarities in that 

both are based on the spatial and intensity features to segment tumors. The difference lies 

in how both methods utilize this feature information to generate values for the 

segmentation process.  

 

Figure 53: Performance comparison of both segmentation methods: MFN and MFP 
errors for probabilistic segmentation method, and MFN and MFP errors 
for fuzzy segmentation method. 

The results of these two methods are also very different and the chart in Figure 53 

shows that for most of the test cases, the fuzzy segmentation method performed with 

better accuracy when compared to the probabilistic segmentation method. The MFP 

errors for every test case were either slightly or significantly lower, the MFN errors also 
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demonstrate the same behavior, except for test cases #6 and #10 where the MFN errors 

for the fuzzy segmentation method were higher than that of the probabilistic 

segmentation method. 

   
Test case #4: Radiologist Test case #4: Probabilistic Test case #4: Fuzzy 

   
Test case #6: Radiologist Test case #6: Probabilistic Test case #6: Fuzzy 

Figure 54: Comparison of both segmentation results with radiologist’s manual 
segmentation for test cases #4 (category B) on the top row and #6 
(category C) on the bottom row. 

Figure 54 compares the visual results of both segmentation methods with the 

manually segmented results by a radiologist. For test case #4 shown in the top row of the 

figure, there are minor improvements shown by the fuzzy segmentation algorithm with 

approximately 1% improvement in both MFP and MFN error rates. The segmentation 

results for both methods agree with the manually segmented tumor by a radiologist 

visually as all three volume renders are very similar in both shape and size. The 

improvements demonstrated by the fuzzy segmentation algorithm (shown in the bottom 

row of the figure) is more apparent for test case #6, which is a category C tumor, with 
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approximately 4% improvements in the MFP error rate and 7% improvement in the MFN 

error rate. In the volume renders of the probabilistic and fuzzy segmentation results, the 

result of the fuzzy segmentation was able to segment the tumor more completely. The 

overall shape and size of the segmented tumor is very similar to that segmented by the 

radiologist, except for some false negative errors on the top of the tumor, where parts of 

were not segmented properly. Automatic segmentation on a category C tumor is a 

challenging problem but the improvements demonstrated by the fuzzy segmentation show 

promising results for further investigation and research. 

6.6 Surgery Planning in Isis 

6.6.1 Tumor Inspection 

As previously mentioned, tumors segmented using the segmentation methods 

discussed can also be loaded and viewed in context with the original patient data for use 

in diagnostics or surgery planning. Dr Thom Lobe, a pediatric surgeon from Blank 

Children’s Hospital at Des Moines, Iowa, was invited to qualitatively evaluate the 

functionality of the software application. 

Combined with the other features built into Isis, multiple three-dimensional views 

of the tumor can be obtained and examined. In Figure 54, the location of the tumor 

relative to the spinal cord and pelvic bone can be clearly seen, which can be crucial visual 

information for surgeons.  
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Figure 55: Tumor volume and patient data viewed separately (left), and tumor 
model linked to a windowed patient model (right). 

 When viewing the tumor model on its own, Dr Lobe was able to inspect the 

approximated shape and size of the tumor. For example, Figure 55 shows how linking a 

tumor to a patient model that has been windowed down to bone and muscle tissues 

allowed Dr. Lobe to examine the aortic valves and vascular structure in close proximity 

to the tumor, which he said would be a critical part to a surgical procedure on this patient. 

This information would otherwise be extremely difficult to conceptualize in a two-

dimensional slice of the patient dataset. Viewing this tumor-patient combination model in 

a three-dimensional environment provides the surgeon with multiple vantage points and 

spatial information. Dr. Lobe’s response was enthusiastic that Isis could become an 

invaluable resource for surgical planning. Based on the meeting, plans for planning actual 

surgeries using Isis are currently being developed. 

6.6.2 Simulated Endoscope Camera View 

Figure 56 shows a patient model as viewed from the simulated endoscopic camera 

mode, where the surgeon can navigate using the gamepad controls for a close-up view 

inside the patient model. This view is designed to simulate an endoscopic camera view, 
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where the surgeon can rotate the “camera” around a fixed position for a 360° view or 

reposition the camera anywhere inside the patient model. Figure 55 shows the camera 

placed in the abdomen, pointed towards the aortic bifurcation and spine.  

  

Figure 56: Simulated endoscopic camera inside the patient model. 

The joystick controls correspond to the controls of most of today’s video games, 

where the left joystick moves the “player” front/back and left/right, while the right 

joystick controls the player’s viewpoint, rotating it up/down and left/right. With a short 

learning curve, surgeons can focus on the examination of the patient model instead of 

struggling to understand the navigational controls of the software. 

When viewed in a virtual reality environment, this software framework puts the 

surgeon inside the patient model, thus removing the “soda-straw” effect when viewing 

through a standard camera. This representation is extremely useful as a planning tool to 

determine the optimal placements of an endoscope and other laparoscopic instruments. If 

camera placement is not correct, the critical organs may not be in the field of view of the 

surgeon, requiring additional incisions and more time for the procedure. Using Isis, 
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surgeons can virtually test out different endoscopic camera positions on actual patient 

data to better ensure correct placement. 

6.7 Performance Evaluation of Isis 

To evaluate the performance of the Isis visualization software, two measures were 

considered: 1) loading time based on different dataset sizes, and 2) frame rate measures 

relative to dataset size for user interaction. These measures represent the speed and 

efficiency of the application in handling the complex and large amounts of medical image 

data during interaction and visualization. 

 

 

Figure 57: Loading time of different volume sizes. 
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The average load time for datasets of varying sizes were obtained and shown in 

Figure 57. These timings shown only measure the time it takes for the application to read 

in the DICOM files and generate a three-dimensional volume model on a single desktop 

machine. As the size of the dataset increases, the loading time increases linearly as well. 

For the largest dataset (460 slices) tested, the average load time was approximately 7.84 

seconds. The application will take longer to launch on a clustered computer system 

because many 48 processors require time to cache the entire volume dataset onto 

memory. The bottleneck of the cluster network connection increases the loading time 

since large amount of data are being transferred. 

 

 

Figure 58: Plot of the frame rate (in stereo) as the number of slices being loaded 
increases. Minimum requirement for user interaction shown as dashed red 
line at 14 frames per second. 
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Figure 58 presents a graph of the frame rates when data of different sizes are 

loaded into the application and viewed in stereo. As expected, there is a tradeoff in effect 

when the frame rate decreases as the size of the data increases. According to Burdea and 

Coiffet [123], users will start to experience discomfort when the frame rate drops below 

14 frames per second in an interactive immersive environment, indicated by the red 

dashed line in Figure 58. This threshold is crossed when approximately 230 slices are 

loaded into the application. The frame rate continues to decrease at a steady rate as the 

size of the dataset increases and when the largest dataset was loaded, at 460 slices 

(approximately 120 million voxels), the frame rate decreased to 9.93 frames per second. 

At a refresh rate below 10hz, a user will experience “jitter” when interacting with the 

model in a virtual environment [124]. 
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7 CONCLUSIONS AND FUTURE WORK 

7.1 Summary and Conclusions 

A new framework for improving patient diagnosis and treatment has been 

developed, which includes:  

• A probabilistic tumor segmentation algorithm, with automatic seed relocation. 

• A fuzzy logic based tumor segmentation algorithm, with adaptive membership 

functions and fuzzy rules. 

• A visual system for examining and manipulating large-scale medical image 

data in an immersive virtual environment, with full interaction using a 

wireless gamepad. 

 

The first segmentation method is a probabilistic segmentation process to allow 

tumor extraction from a CT medical study. The segmentation process implements a 

probabilistic selection process developed using the selection process from the Simulated 

Annealing optimization algorithm as a foundation. This process allows pixels to be 

segmented as the object of interest based on a probability formulation. In addition, an 

automated seed and search region selection process was developed to allow processing of 

multiple image slices automatically as an object’s size, shape, and location changes 

between subsequent slices. Apart from the first slice in the dataset, where the user 

manually selects the seed and search region for segmentation, the method performs 

automatically for all other slices. From the test cases presented, the automated seed 
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selection process was efficient in searching for new seed locations, as the object changed 

size, location, and orientation in each slice of the study. From the results, the resulting 

objects segmented were successfully identified and selected. Furthermore, the method 

requires information from only a two-dimensional image data at a time to accommodate 

performance on a regular personal computer.  

The second segmentation method developed is based on a fuzzy logic system, 

which successfully extracted tumors from three-dimensional CT image data 

automatically. This method required input from the user only for the first slice of the 

dataset, where a region of interest was selected to initialize the segmentation process. For 

subsequent slices in the set, the method automatically updates the ROI for the current 

slice based on the segmented region of the previous slice to segment the tumor from the 

current slice. The membership functions used for fuzzy inference were set up to adapt to 

changes in the size and intensity of the tumor being segmented, between consecutive 

slices within the dataset. The method segments the dataset three times, using three 

different window settings and the results are then combined to generate a final merged 

segmented region. Based on the results obtained, the extracted object is visually 

acceptable with the shape and size of the tumors clearly defined.  

Analysis of the segmentation results showed that both algorithms were successful 

in segmenting the tumor from seven of the ten CT datasets with less than 10% false 

positive errors and five test cases with less than 10% false negative errors. The 

consistency of the segmentation results statistics also showed a high repeatability factor, 

with low values of inter- and intra-user variability for both methods. Using information 

based on spatial and intensity features alone was sufficient to accurately segment some of 
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the more circumscribed tumors with relatively homogeneous tissue densities. Although 

both methods had more than 40% false negative errors on two test cases, this was 

comparable to the results obtained from current published methods. In addition, these two 

test cases are very difficult to segment due to the mixed tissue densities within the tumor 

and the presence of calcifications. When compared to current segmentation methods, the 

developed methods performed faster with comparable accuracy in segmentation results. 

The efficiency from only segmenting the data one slice at a time allows a user to run both 

segmentation algorithms on any current laptop and desktop computers. 

Based on the current research reviewed, the developed interactive immersive 

visualization system is unique and new. The ability to interact and visualize actual patient 

data in an immersive virtual environment can be used as an effective tool for information 

gathering prior to surgery, an aid in diagnostics, or patient education. The ease of use of 

the gamepad controls provides an intuitive interaction between the user and the virtual 

environment and a menu system provides sufficient information to any new to properly 

operate Isis. Pre-programmed shortcut buttons are also available for the experience users. 

Combined with the segmentation results obtained from either one of the proposed 

segmentation methods, this framework will be a valuable tool in assisting surgeons 

during diagnosis as well as pre-operative planning of tumor removal procedures. The 

ability to inspect the patient data, segmented tumor, or both in an immersive environment 

will be advantageous from a visual information standpoint. 
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7.2 Future Work 

For future development of the segmentation methods, the focus will be on 

improving the algorithm to reduce the error rates when the methods are used on tumors 

that have mixed tissues and those that are highly heterogeneous with fuzzy edges. One 

approach would be to first exclude organs and structures that could potentially interfere 

with the segmentation procedure, thus reducing the errors caused by region leaks [120]. 

By first segmenting and removing commonly known structures such as bone, skin, and 

air from the dataset improves the delineation of the tumor and prevents these structures 

from interfering with the segmentation procedure. Connectivity properties between 

pixels, such as fuzzy connectedness methods, to influence the segmentation process could 

also be explored. These connectivity properties will help reduce the false negative error 

rates from under-segmentation of tissues inside the tumor due to mixed tissue densities. 

The use of level set or deformable methods to include shape information will help define 

the resulting segmented tumors better, especially on tumors that have blurred edges and 

are heterogeneous. Another possible improvement would be to convert the process to 

perform in a parallel computing environment to reduce computational time so that 

multiple pixels could be examined simultaneously. 

The visualization application is still currently in the development stage, with 

several additional features and functionalities planned. Current development work 

includes improvements to the surgical planning components, such as additional controls 

and interactions with the simulated endoscopic camera and the ability to segment the 

colon or a selected region of the airway for fixed-path navigation as a full virtual 
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endoscopy tool. User studies will also be performed to evaluate the effectiveness and 

usability of the gamepad controls and the menu interface. In addition, the usability of Isis 

compared to similar desktop medical image data visualization applications such as OsiriX 

and VolView will also be performed and evaluated. Currently, there are plans and 

discussions with Dr Thom Lobe, pediatric surgeon from Blank’s Children Hospital in 

Des Moines, Iowa, to use Isis as an aid to his surgical planning. This application is 

intended to foster the widespread use of advanced visualization in preoperative planning, 

surgical training, and diagnostic assistance. 
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