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ABSTRACT

Turbulent flows have the ability to transport momentum and mix species at a higher rate

than molecular diffusion alone, which is critical in reacting flows. Of importance to this research

is the mixing of liquid-phase high Schmidt number flows for applications in the chemical process

industry. Computational fluid dynamics (CFD) has the potential to be used as a tool to improve

reactor designs and examine the mixing characteristics but requires extensive validation of the

computational models. This research presents detailed analysis and validation of a nonreacting

turbulent flow for a confined rectangular jet with a co-flowing fluid using CFD. Large eddy

simulations (LES) for the incompressible filtered Navier–Stokes equations are performed on a

partially staggered finite difference grid. A second-order central difference scheme and sixth-

order compact scheme are employed for the spatial derivatives. A third-order low storage

Runge–Kutta method is used for the temporal derivatives. To reduce computational memory

and time requirements, message passing interface (MPI) is implemented and an efficient parallel

linear equation solver (Aztec) is utilized for solving the elliptical pressure Poisson equation.

Solutions for the momentum and non-reacting scalar transport are obtained for a Reynolds

number of 20,000 based on the average velocity at inlet and hydraulic diameter. Validation

is performed for the LES by comparing one-point and two-point statistics with particle image

velocimetry data for the velocity field and planar laser induced fluorescence measurements for

the scalar concentration. Such detailed validation with experiments is performed for the very

first time. The effect of different parameters such as grid resolution, numerical schemes and

subgrid models on the numerical solution are studied. For the scalar transport, numerical

schemes that preserve boundedness are tested and implemented. Overall, the LES compared

very well with the experiments and recommendations are made to extend the LES work toward

reacting flows.
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CHAPTER 1. INTRODUCTION

1.1 Motivation and objective

Turbulent flows have the ability to transport momentum and mix species at a higher rate

than molecular diffusion alone. The process of turbulent mixing in reacting flows becomes

important when the goal is to increase reaction rates by increasing surface area for molecular

contact. In the chemical process industry, proper mixing is necessary to control product for-

mation and therefore a well-designed reactor plays a key role. Computational fluid dynamics

(CFD) has the potential to be used as a tool to improve reactor designs and systematically

examine the mixing of reactants, since it is a relatively inexpensive approach compared to the

costs associated with experiments.

For modeling purposes, reacting flows are often classified based on the time scales for reac-

tion and turbulent mixing. The Damköhler number is a non–dimensional number which is used

to describe the ratio of mixing and reaction time scales. A high Damköhler number indicates

a process with fast reaction rates that is diffusion limited. A low Damköhler number indicates

slow reaction rates where the reactants are mixed homogeneously before any reaction occurs.

For slow reactions, often, assumptions of homogeneous mixing are made before the reaction

mechanism is taken into account. However, for processes in which the reaction time scale is

less than or on the same order as the mixing time scale (finite–rate reactions), both processes

are important. Examples include reactive precipitation and free–radical polymerization, which

involve fast and finite–rate chemical reactions whereby product distribution is affected by tur-

bulent transport. Currently, CFD models that can describe the physical interactions between

mixing and chemical reactions for finite–rate reactions have not been fully validated for liquid-

phase reactions. In such cases, models based on the moments of the concentration fields have
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been inadequate for predicting product selectivity1

To obtain numerical solutions for turbulent flow problems, the three main approaches are:

1. Direct numerical simulation (DNS), in which all scales of turbulence are resolved.

2. Large eddy simulation (LES), in which the large energy containing scales of motion are

solved, and the small unresolved (subgrid) scales and their interactions on the large scales

are modeled.

3. Reynolds-averaged Navier–Stokes (RANS) calculations, in which all scales of turbulence

are modeled.

The LES approach stands in between DNS and RANS methods. DNS is mainly used to

solve low Reynolds number flow problems where the range of scales present is small, and is

not feasible for practical flows at high Reynolds numbers. RANS is the method of choice for

most flows of practical importance where complex geometries and high flow rates are present

because the resolution requirements are low as compared to DNS and LES. However, when

compared to RANS, LES can provide much more accurate data. Flows in the chemical process

industry often involve large-scale, time-dependent phenomena which have significant influence

on turbulent transport, but which are not resolved at the level of one-point turbulence models.

This accuracy comes at a higher computational cost, however, with an increase in computational

power and parallel computing techniques, LES solutions can be obtained in a reasonable amount

of time. LES has achieved success in turbulent flow predictions due to the fact that large scales

are the rate controlling process in a flow and small scale interactions can be approximated

by models. This advantage of LES is questionable for reacting flows, since reactions occur at

the molecular level (subgrid scales). For liquid phase reactions, where the molecular diffusion

occurs in a thin region (as compared to gases), the subgrid scalar variance can be large and

LES fails to give a good prediction since all subgrid information is lost. Closure models similar

to those in RANS calculations must therefore be used for LES and the development of subgrid

scale closures for macroscopic simulations of turbulent reacting flows are therefore important.

1For reactions that produce more than one byproduct, product selectivity is the formation of a favorable

product instead of an unwanted one.
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Closures based on moment methods, conditional moment methods and probability density

function (PDF) methods, although well understood (Baldyga and Henczka, 1997; Baldyga and

Bourne, 1999; Pipino and Fox, 1994; Tsai and Fox, 1996), have not been fully validated for

liquid–phase reacting flows. For simple reactions, the presumed PDF approach has shown

success in LES for modeling the subgrid scalar variance. For more complex reactions, the only

known form of complete closure for the chemical source term is based on the transported PDF

approach, where a transport equation is solved for the joint scalar PDF. Such a PDF code

has been developed and validated at Iowa State University (Raman et al., 2004). However,

validation of subgrid models has not been performed for liquid-phase reacting flows due to lack

of experimental data. The main motivation of this research is the detailed validation of subgrid

models for liquid–phase (low molecular diffusion) chemical reactions.

A reactor configuration has been designed and built at Iowa State University to obtain

measurements of the turbulent flow field and the concentration fields inside a liquid-phase

chemical reactor. Figure 1.1 shows a photograph of the reactor along with a schematic. Al-

though the configuration is not common for industrial applications, the design is kept simple

for ease of measurements and CFD simulations. Common industrial reactor designs include

stirred tanks (Patterson, 1990) and tubular designs (Brodkey, 1974; Forney et al., 1996).

Figures 1.2-1.4 are schematics of reactor designs for non–premixed inlet conditions, each repre-

senting different ways of introducing reactants into the reactor (A and B represent the reactants

and P the final product). A continuously stirred tank reactor (CSTR) is shown in Fig. 1.2 and

is used for non–corrosive applications. If the reactants have a corrosive effect on the mixer,

this configuration cannot be used. Industrial gas–phase chlorination processes typically use

coaxial, jet–stirred reactors as shown in Fig. 1.3. Forney et al. (1996) find the configuration

of a turbulent jet in a cross-flow or tee-mixer (Fig. 1.4) to be the most efficient passive design

for fast reactions that require short residence times. The rectangular reactor (Fig. 1.1) in the

present research is 1.0 m long and has a cross–sectional dimension of 0.06 m by 0.1 m. The

inflow to the reactor is separated by two splitter plates. The lengths of splitter plates are 0.08

m within the test section. The three inlet streams are denoted in Fig. 1.1 by A, B and C.

Measurements are obtained using particle image velocimetry (PIV) for the flow (velocity field)
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Figure 1.1 Photograph and schematic of confined rectangular jet reactor.
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A B

P

Figure 1.2 Schematic of a continuously stirred tank reactor with

non–premixed feeds.

PB
A

Figure 1.3 Schematic of a coaxial jet stirred tubular reactor.

B

PA

Figure 1.4 Schematic of a mixing–tee reactor.
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and planar laser induced fluorescence (PLIF) techniques for the concentration field (Feng et

al. 2005).

Given the scope and extent of the research required for model validation of liquid-phase

reacting flows, the present work aims at the following:

1. Develop a stable LES solver and test the performance of the numerical scheme and the

subgrid model.

2. Implement message passing interface (MPI) routines into the LES solver and couple an

external parallel linear equation solver for the pressure solution.

3. Implement an inflow turbulence generation technique to mimic experimental conditions.

4. Implement and study the effect of different subgrid models on LES solutions and validate

with PIV measurements.

5. Implement a numerical scheme that preserves scalar boundedness for non-reacting scalar

transport and validate solutions with PLIF measurements.

1.2 Thesis organization

A summary of literature on the study of mixing layers and LES is presented in chapter 2.

In chapter 3, details of the numerical scheme and LES subgrid models are presented. Chap-

ter 4 illustrates benchmark simulation results that validate the numerical solution procedure,

the subgrid model and performance study of the parallel solver. Chapters 5 and 6 present

LES solutions for the reactor configuration for the momentum and scalar transport, respec-

tively. Validation of one-point and two-point velocity and scalar statistics are performed using

experimental data. Summary and future work of the project are presented in chapter 7.
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CHAPTER 2. LITERATURE REVIEW

In this chapter, past studies on mixing layers and subgrid models are reviewed. The increase

in computational power in the last thirty years has been a motivating factor in building and

improving models to describe turbulent flows. Some of these LES models are discussed in the

context of the present study.

2.1 The mixing layer

Turbulent mixing has been the focus of research for over three decades. A mixing layer is

formed when two fluids of unequal velocity flow parallel to each other and interact. Turbulent

mixing layers have been the subject of extensive experimental, numerical and theoretical studies

due to their common occurrence and significant importance in mixing processes, often combined

with chemical reactions and combustion.

The classical picture of turbulence was one of chaos and was therefore surprising when

shadow graphs of flow forming a shear layer revealed the presence of well-defined large structures

with the appearance of rollers or vortices (Winant and Browand, 1974; Brown and Roshko, 1974;

Roshko, 1976; Browand and Weidman, 1976; Dimotakis and Brown, 1976; Ho and Huang,

1982; Browand and Ho, 1983; Dimotakis, 1986; Koochesfahani and Dimotakis, 1986; Slessor et

al., 1998). The mean flow is controlled by these large and organized structures, which are not

affected by the small-scale turbulence appearing at high Reynolds numbers. The measured mean

properties of the flow, velocity and density profiles, spreading rate, etc. do not vary much over a

wide range of Reynolds numbers. The vortex size and spacing are related to the thickness of the

mixing layer. Pairing is the dominant mode of vortex interaction and the principal mechanism

of growth. In pairing, neighboring vortices rotate around each other and coalesce into a larger

structure (Roshko, 1976). A fundamental property of turbulent shear flows is entrainment:
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the incorporation of non-turbulent, irrotational fluid into the turbulent region. Continuous

repetition of the pairing process is responsible for the entrainment of the surrounding fluid,

controlling the growth of the mixing layer (Browand and Weidman, 1976). The structures

derive energy directly from the velocity difference between the two streams and pairing is

a result of the instability of vortical structures (Winant and Browand, 1974). Existence of

vortical structures for Reynolds numbers as high as 3 × 106 proves that the structures persist

at high Reynolds number flows and are not just at transition from the well-defined periodicity

of the laminar instability region (Dimotakis and Brown, 1976). Reynolds-stress production is

associated with the pairing interaction of vortices (Browand and Weidman, 1976) and half of

the turbulent kinetic energy is associated with the vortices (Browand and Ho, 1983). Vortex

interactions are thus responsible for the cross-stream momentum transfer. An important feature

of the mixing layer that was discovered is asymmetric mixing of the two fluids in the mixing layer

(Koochesfahani et al., 1983; Mungal and Dimotakis, 1984; Grinstein et al., 1985; Koochesfahani

and Dimotakis, 1986; Masutani and Bowman, 1986), that is, there is more high-speed fluid than

low-speed fluid entrained and mixed in the coherent structures.

In addition to the primary two-dimensional vortical structures, it has been observed that

the plane free shear layer also contains a well organized array of streamwise vortices that

superimpose onto spanwise eddies (Bernal and Roshko, 1986; Lasheras et al., 1986). Results

have shown that the streamwise structures first form in the braided region, a region connecting

adjacent spanwise vortices that lacks significant spanwise vorticity and are dominated by large-

scale strain (Bernal and Roshko, 1986; Lasheras et al., 1986; Rogers and Moser, 1992). The

existence of counter-rotating streamwise vortices connecting the primary spanwise rollers were

found. Lasheras et al. (1986) provide an explanation for the qualitative evolution of the layer.

The most extensive set of direct numerical simulations of temporally evolving mixing layers

have been reported by Rogers and Moser (Rogers and Moser, 1992; Moser and Rogers, 1993).

These simulations have yielded complete details of the mixing layer structure and dynamics,

starting from the formation of the initial spanwise vortex rollup leading into the evolution of

the mixing layer up to the third pairing.

The bulk of research effort on the mixing layer has been primarily experimental. The



9

progress in computational power, such as memory and high-speed processors, has provided

greater opportunities to investigate high Reynolds number turbulent flows using direct numer-

ical simulations and large eddy simulations. Some methods used to simulate the mixing layer

are outlined to demonstrate the progress in this area.

1. Flux-Corrected Transport (FCT), a nonlinear, monotone, finite-difference technique is

used for solving the governing equations (Grinstein et al., 1985). FCT adds linear velocity-

dependent diffusion to a high-order algorithm during convective transport. Fourth-order

accuracy is maintained by subtracting out the added diffusion during a second nonlinear

anti-diffusion stage.

2. A high-order, finite-element spectral method was used by Korczak and Wessel (1989).

Functions are represented as tensor-product Lagrangian interpolants through Gauss-

Lobatto-Chebyshev collocating points. An explicit method with third-order Adams-

Bashforth is used for the nonlinear terms. The pressure and viscous parts are solved

implicitly with variational projection operators based on Chebyshev polynomial expan-

sions. The solver is either a direct matrix inversion or an iterative conjugate gradient

method.

3. Direct lagrangian simulations (DLS) using a “transport-element” method was used to

simulate an inviscid mixing layer (Battaglia and Givi, 1993). The Lagrangian simulation is

a “grid free” discretization of the transport equations for the vorticity and for the gradients

of the mixture fraction. A beta density model was used to calculate the probability

distribution of an appropriately defined Shvab-Zel’dovich variable. A gradient diffusion

model was used to account for the effects of turbulent convective fluxes.

4. A methodology named the filtered mass density function (FMDF) was developed and

implemented for large eddy simulations of variable-density chemically reacting turbulent

flows at low mach numbers (Jaberi et al., 1999). The FMDF represents the joint probabil-

ity density function of the subgrid-scale (SGS) scalar quantities and is obtained by solving

a model transport equation. The chemical reaction source term appears in a closed form
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and the influences of SGS mixing and convection are modeled. The equations are solved

via a lagrangian Monte Carlo scheme.

5. The evolution of a temporal mixing layer was studied by Vreman et al.(1997) at high

Reynolds numbers to study the effect of different subgrid models on the solution. Finite

differencing was used with up to fourth-order discretization. They found the dynamic

model to give the best approximation to a self-similar state.

2.2 Large eddy simulations

Large eddy simulations directly solve the large scale resolvable flow field and incorporate

the small scale turbulent behavior using models. LES can provide closure data for lower–level

turbulence models at high Reynolds numbers and for complex geometries beyond the reach of

DNS (Piomelli, 1999). Since LES is the choice of methodology adopted in the present study,

detailed formulation of equations is given in chapter 3. Here, various models are discussed with

respect to the SGS stresses. An analogous procedure is applicable to the turbulent scalar flux.

The effect of the unresolved scales appears through the SGS term,

τij = (uiuj − uiuj) = lij + cij + rij

where

lij =
(
uiuj − uiuj

)

cij =
(
uiu

′′
j + u′′

i uj

)

rij =
(
u′′

i u
′′
j

)

The turbulent velocity field ui is represented by the resolved field, ui and the unresolved field,

u′′
i and lij are the Leonard stresses (Leonard, 1974), cij are the cross terms and rij are the SGS

Reynolds stresses. The Leonard stresses represent interactions between resolved scales that

result in subgrid scale contributions and can be explicitly calculated. The cross terms represent

interactions between the resolved and unresolved scales and the SGS Reynolds stresses repre-

sent the interaction between the unresolved scales. While the Reynolds stresses are Galilean
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invariant, lij and cij are not (Pope, 2000) and hence, the term τij is modeled instead of each

term separately. In LES, the dissipative scales are either resolved poorly, or not at all and

it is the subgrid model which removes energy from the resolved scales, mimicking the drain

associated with the energy cascade. Thus, most subgrid scale models are eddy viscosity models

of the form

τij −
1

3
τkkδij = −2νtSij

where νt is the eddy-viscosity, δij is the Kronecker delta function, and the filtered rate of strain

tensor is

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

A simple algebraic model was proposed by Smagorinsky (1963) and is still being used for many

engineering flows.

νt =
(
Cs∆

)2 |S|

where,

|S| =

√
2SijSij

For isotropic turbulence, a value of Cs between 0.18 and 0.23 has been found to be satisfactory.

For channel flows, due to the presence of solid boundaries, a lower constant has to be used. The

length scales reduce near boundaries and functions such as the van Driest damping function

(van Driest, 1956) must be used. Thus, a major drawback of the Smagorinsky model is its

inability to correctly represent different kinds of flows with a single universal constant.

In 1991, Germano et al. presented a novel idea in which the model coefficient is computed

dynamically as the calculation progresses. The dynamic model was a major development in

the area of LES and subsequently, the model was applied to compressible turbulent flows and

scalar transport (Moin et al., 1991). A modification to the Germano model was proposed by

Lilly (1992) to minimize the difference between the closure assumption and the resolved stresses,

and proved to be more amenable to numerical solutions. The dynamic model and its variants

have been widely used and validated for various complex engineering flows. A feature common to

all the dynamic models is that the model is unstable unless some kind of averaging is performed.

The dynamic models were first tested for flows with at least one homogeneous direction and
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hence the averaging was carried out over planes of directional homogeneity. For dynamic models

to be applicable for inhomogeneous flows, a variety of averaging techniques have been proposed.

Examples of currently recognized models were developed by Zang et al. (1993) and Piomelli

and Liu (1995) using local spatial averaging. Ghosal et al.(1995) solved an integral equation

where the solution yields the model coefficient as a function of space and time. Meneveau

et al.(1996) used a Lagrangian dynamic model to accumulate the required averages over flow

pathlines. Models based on a second-order velocity structure function (structure function model

and filtered structure function model) were proposed (Métais and Lesieur, 1992; Ducros et al.,

1996). The models are based on the local kinetic energy spectrum and take into account the

local intermittency of turbulence. Unless modeled, information about the subgrid kinetic energy

(Ksgs) is not available in an LES simulation. Ksgs is defined as 1
2 (uiui − uiui) and can be used

to provide velocity scale information for the eddy viscosity (analogous to the k-equation in

RANS model). A transport equation thus needs to be solved for Ksgs. Variations of this model

can be found in literature (Menon et al., 1996; Ghosal et al., 1995).

The eddy viscosity models are able to represent the dissipative effects satisfactorily. However

for transitional flows where energy is transferred to and fro between the large and the small

scales, eddy viscosity models have not been able to reproduce the stresses accurately (Liu et

al., 1994). Scale–similar and mixed models are able to account for this energy transfer and

are based on the assumption that the largest subgrid scales interact with the smallest resolved

scales (Bardina et al., 1980). Germano (1986) suggested a form of decomposition in which each

component of the residual stress is Galilean invariant.

τij = l0ij + c0
ij + r0

ij

where

l0ij =
(
uiuj − uiuj

)

c0
ij =

(
uiu′′

j + u′′
i uj − uiu′′

j − u′′
iuj

)

r0
ij =

(
u′′

i u
′′
j

)

The SGS stress can then be written as

τij = −2νT Sij +
(
uiuj − uiuj

)
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where the last term in brackets is the scale–similarity model and the eddy viscosity term provides

the dissipation that is underestimated by the scale–similar part alone. Together they are called

mixed models. Models based on a “deconvolution” method where an approximation of the

turbulent field is obtained by operating an inverse filter on the resolved field have been proposed

(Guerts, 1997; Stolz and Adams, 1999; von Kaenel et al., 2002). Detailed reviews on the

development of LES are provided by Rogallo and Moin (1985), Galperin and Orszag (1993),

Lesieur and Métais (1996), Piomelli (1999), Meneveau and Katz (2000), Piomelli and Balaras

(2002) and Berselli et al. (2006).

With so many models available in literature, a natural question follows, “which is the best

LES model?” and the answer probably is “there is no universally best LES model” which is

perhaps why there are so many models in the first place. With the advent of fast processors

and parallel computing, the complexity and accuracy of subgrid models have been increasing.

However, the models must to be tested to find the best model for a particular application.

The present study aims at understanding the effect of a selective set of subgrid models on the

resolved scales in a complex flow configuration. Validation of the numerical algorithm and

subgrid model is made by comparing solutions with DNS and experimental results in literature.

A thorough validation of the flow in confined jet reactor is made with experimentally measured

data for the velocity and scalar field, including two-point spatial correlations that represent

length scales in the flow. With access to parallel clusters, the study makes extensive use of high

performance computing to obtain solutions in a reasonable amount of time. The present work

is a part of study which aims to validate computational models for turbulent reacting flows.

Fast computations are therefore necessary if reacting scalars are to be solved, since reacting

flows involve solutions of transport equations for multiple species.
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CHAPTER 3. NUMERICAL SOLUTION OF LARGE EDDY

SIMULATION

Numerical solutions to the incompressible Navier–Stokes equations have been documented

since the early 20th century (Thom A., 1933). Mathematically, the incompressible flow equa-

tions present unique issues with satisfying the incompressibility requirement. In an incom-

pressible medium, pressure information travels at infinite speed, which is the root cause of all

problems. In literature, two distinct approaches for satisfying this incompressibility constraint

have been documented, and the differences in the solution procedure stem from the choice of

the method. In “pressure-based” methods, the incompressibility constraint is satisfied directly

by decoupling pressure from the momentum equations and then solving the pressure Poisson

equation (Chorin, 1968, Harlow and Welch, 1965). The second method closely mimics the

compressible flow formulation, where momentum and continuity equations are coupled through

density and incompressibility is recovered in a limiting sense. This class of method is referred

to as a “density-based” method and is coupled with the artificial compressibility formulation

(Chorin, 1967, Merkle, 1994).

Pressure-based methods solve the elliptic pressure Poisson equation where a sparse matrix

is inverted every time step. In the density-based method, a time derivative of the pressure term

is added to the continuity equation. The governing equations are iterated in “pseudo-time”

until convergence, which is done for every time step. Efficient algorithms (e.g., preconditioning

techniques) are often employed to obtain fast convergence. Both methods have been used by

researchers and there is no evidence of the superiority of one method over another. Occasionally,

instead of pressure and velocity, variables such as vorticity and stream function have been used.

However, the use of the vorticity-stream function approach has been limited due to increased

computational costs for three-dimensional calculations. Over the years, the CFD community
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has seen improvements in numerical algorithms, in terms of both speed and accuracy, and

the ability to obtain solutions for complex geometries and systems, all due to tremendous

improvements in computing power. This is especially important for turbulent flow calculations,

which encompass a wide range of length and time scales. High grid resolution and small time

steps lead to long calculation times, and what takes weeks on a single computer can now be

completed in a matter of hours on a supercomputer.

In the present work, a partial staggered variable arrangement with a pressure-based scheme

is used for solving the governing equations. Finite differencing is used for discretization of the

filtered Navier–Stokes equations. In the following sections, the governing equations, numerical

schemes, subgrid models and solution methodology are described in detail.

3.1 Governing Equations

The motion of a constant density fluid is governed by the incompressible Navier-Stokes

equations. Direct numerical simulations (DNS) are the only means of solving these equations

exactly. However, for complex flows, the present day computing facilities are not enough to

obtain solutions in a reasonable time. Large eddy simulations (LES) are a methodology where

solutions are obtained on a coarse grid (compared to DNS). Thus the underlying philosophy of

LES is to compute only the important, large-scale motions of the flow and model the effect of

the small scale motions on the evolution of the large scales. In order to separate the large scales

from the small scales, a filtering operation is performed. Filtering is represented mathematically

in physical space as a convolution operation. The resolved (filtered) part denoted by f(xi) is

defined by the relation,

f(xi) =

∫

D
f(ξi)G(xi − ξi; ∆)dξi

where f is a generic variable, and convolution kernel G is a filter function associated with the

cut-off scales in space ∆ and satisfies the property
∫ +∞

−∞
G(xi; ∆)dxi = 1. The space vectors are

represented by xi and ξi, and D represents the entire domain. The following properties also

hold for the filtering operation:

1. f(xi) = f(xi) + f ′′(xi)
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2. cf(xi) = cf(xi), where c is a constant

3. f(xi) + g(xi) = f(xi) + g(xi)

4. f ′′(xi) 6= 0

5. f(xi) 6= f(xi)

6. ∂f(xi)
∂x = ∂f(xi)

∂x

Some common filters (G) are,

1. Top-hat or box filter: G(xi, ∆i) =





1/∆i : |x| ≤ ∆i/2

0 : otherwise

2. Gaussian filter: G(xi, ∆i) =
√

6
π∆i

3
exp

(
−6x2

i

∆
2

i

)

3. Cut-off filter: G(xi, ∆i) = 2
(

sin(πxi/∆i)
πxi

)

Applying the filter to the Navier–Stokes equations yields a non-dimensional filtered set of equa-

tions given by,

∂ui

∂xi
= 0 (3.1)

∂ui

∂t
+

∂uiuj

∂xj
= − ∂p

∂xi
+

1

Re

∂

∂xj

(
∂ui

∂xj

)
− ∂τij

∂xj
(3.2)

where the turbulent subgrid scale stress (SGS) tensor that requires modeling is given by,

τij = uiuj − uiuj

and t represents time, ui is the filtered velocity field, p is the pressure and Re is the Reynolds

number.

3.2 Numerical Solution: Finite difference methods

3.2.1 Variable arrangement

A key issue during discretization is to select points in the domain at which the values

of the unknown dependent primitive variables are to be computed. In literature, three such

arrangements are found, and will be discussed next.
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u,v,w,p

y

z

xδ

δ

δ

Figure 3.1 Non-staggered primitive variable arrangement for a grid cell

defined at each node. δx, δy and δz are the grid point displace-

ments along x, y and z directions, respectively.

3.2.1.1 Non-staggered arrangement

The non-staggered grid arrangement (Chorin, 1967), defines both pressure and velocities

at the grid nodes (Fig. 3.1). The non-staggered arrangement has advantages because of its

simplicity and the fact that velocity is defined on the boundary where it is generally prescribed.

This arrangement has advantages in complex geometries and situations where unstructured

grids are often used. However, the main disadvantage of a non-staggered grid arrangement is

that pressure is also defined on the boundary. The resulting discretized system of equations for

a node has no direct coupling between the pressure and velocities, resulting in what is known

as odd-even splitting. Non-staggered central difference schemes are known to suffer because

of pressure-velocity decoupling, which make the schemes unstable especially for high Reynolds

number turbulent flows (Patankar, 1980). To prevent spurious pressure fluctuations, a remedy

is to introduce “artificial diffusion” which provides a stable solution (Sotiropoulos et al. 1991).

This method requires the specification of ad-hoc constants which determine the amount of extra

diffusion introduced.
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Figure 3.2 Complete staggered arrangement where velocities are defined at

the cell face centers and pressure is defined at the cell volume

center.

3.2.1.2 Complete Staggered Arrangement

The staggered grid arrangement (Fig. 3.2) introduced by Harlow and Welch (1965) offers

advantages over the non-staggered arrangement. For a staggered grid, velocities are defined at

the cell faces, while pressure is defined at the cell center. The biggest advantage of the stag-

gered arrangement is the strong coupling between the velocities and pressure, which alleviates

convergence problems and oscillations in the pressure and velocity fields (Patankar, 1980). On

the other hand, a disadvantage of this arrangement is that only one of the velocity components

is defined on each side of the domain boundary. Hence it is necessary to employ ghost cells

outside the domain to enforce boundary conditions.

3.2.1.3 Partial Staggered Arrangement

A partial staggered arrangement (Fortin et al. 1971) defines velocities at the grid nodes

(Fig. 3.3) similar to the non-staggered arrangement while pressure is staggered to the cell center.

The grid points are displaced by δx, δy and δz in the x, y and z directions respectively. The

arrangement has the advantage that pressure is staggered with respect to velocity and the

pressure-velocity decoupling is avoided (as in the completely staggered case). Moreover, the

domain passes through all the velocity points (as in the non-staggered case) and hence no ghost
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Figure 3.3 Partial staggered arrangement in which velocities are defined at

the grid nodes and pressure is defined at the cell center.

cells are required outside the domain.

3.2.1.4 Selection of grid variable arrangement

Numerical simulations were performed using the non-staggered and the partial staggered

arrangements to compare the stability of the two configurations. The divergence of the velocity

field (∇·u) gives an indication if the incompressibility constraint is satisfied by a particular nu-

merical scheme and this criterion was used to compare the two arrangements. Two-dimensional

Poiseuille flow (200×48 cells) and three-dimensional duct flow simulations (200×48×48 cells),

for which analytical solutions exist, were performed. The order of ∇ · u on the non-staggered

grid was 10−4, whereas, on the partial staggered grid a value of 10−5 was obtained. Thus for

a simple laminar flow, an order difference in magnitude was observed for the divergence of the

velocity field. Moreover, the simulation on the non-staggered grid led to an instability in the

solution due to the decoupled nature of the variable arrangement. The cause of decoupling is

illustrated next.

On the non-staggered grid, the pressure gradient using a central–difference formulation has

the form

∂pn
m

∂x
=

pn
m+1 − pn

m−1

2δx

where m represents a grid index and n is the time level. The Laplacian operator can be written
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as:

∂

∂x

∂pn
m

∂x
=

∂

∂x

(
pn

m+1 − pn
m−1

2δx

)

=
∂pn

m+1/∂x − ∂pn
m−1/∂x

2δx

=

(
pn

m+2 − pn
m

)
/2δx −

(
pn

m − pn
m−2

)
/2δx

2δx

=
pn

m+2 − 2pn
m + pn

m−2

(2δx)2
(3.3)

However, directly discretizing the Laplacian of pressure using a second–order central difference

scheme has the form:

∂2pn
m

∂x2
=

pn
m+1 − 2pn

m + pn
m−1

(δx)2
(3.4)

which is not consistent with Eqn. (3.3). If the disretization represented by Eqn. (3.4) is used,

∇ · u is not satisfied. If instead, Eqn. (3.3) is used to represent the Laplacian of pressure,

the formulation leads to pressure–velocity decoupling. The splitting is caused by the fact

that the numerator of Eqn. (3.3) requires discrete pressure values at locations relative to pm

separated by 2δx, causing the pressure solution to oscillate. In contrast, Eqn. (3.4) only uses

adjacent pressure values at δx. To prevent odd–even splitting, some form of dissipation is

added, e.g. (Sotiropoulos et al. 1991),

∂

∂x

∂pn
m

∂x
=

pn
m+2 − 2pn

m + pn
m−2

4(δx)2
− ε

4
(δx)2

∂4pn
m

∂x4

where ε is a constant whose value lies between 0 and 1. A value of 0 gives the discretized

Eqn. (3.3) whereas a value of 1 gives the form shown in Eqn. (3.4). The present study is intended

for LES, therefore artificially introducing numerical dissipation must be avoided. Thus, a partial

staggered grid is adopted in this study, and a description of the arrangement is presented next.

A two-dimensional schematic is shown in Fig. 3.4 representing index notation on a partially

staggered grid. The velocities are represented by filled circles and pressure by hollow circles.

The subscripts for pressure indicate that they are displaced 1
2δx from the velocity nodes. Unlike

the non-staggered approach, the divergence and gradient operators on u and p, respectively, for

the partially staggered scheme are defined differently. The divergence operator is defined at the

cell center (m + 1/2), while the gradient operator is defined at the cell face (m). The discrete
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u

xδ

m+1m

p

m+3/2m−1/2 m+1/2

Figure 3.4 Index notation for the variables on partially staggered grid.

forms of the divergence of velocity and the pressure gradient are shown for time level n:

∂un

∂x

∣∣∣
m+1/2

=
un

m+1 − un
m

2 (δx/2)

∂pn

∂x

∣∣∣
m

=
pn

m+1/2 − pn
m−1/2

2 (δx/2)

The Laplacian of pressure at m + 1/2 can then be expanded as follows:

∂

∂x

∂pn

∂x

∣∣∣
m+1/2

=
∂pn/∂x|m+1 − ∂pn/∂x|m

(2δx/2)

=

(
pn

m+3/2 − pn
m+1/2

)
/ (2δx/2) −

(
pn

m+1/2 − pn
m−1/2

)
/ (2δx/2)

(2δx/2)

=
pn

m+3/2 − 2pn
m+1/2 + pn

m−1/2

(δx)2

This discretization of the Laplacian operator is consistent with that of the discrete pressure

gradient and divergence operator, and thus eliminates the odd-even splitting of the pressure

solution. On the partial staggered grid, the pressure gradients obtained on the cell faces have to

be interpolated back on to the grid points, leading to an added computational effort. First-order

interpolations are used for the purpose.

3.2.2 Spatial and temporal discretizations

LES models are dissipative in nature, hence, it is important to use non-dissipative discretiza-

tion schemes. For the spatial discretizations shown in this section, only one direction will be

shown for simplicity (subscript represents grid index m).
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3.2.2.1 Second-order central difference scheme

The first- and second-order derivatives for a general function f(x) are, respectively,

∂fm

∂x
= f ′

m =
fm+1 − fm−1

2δx
∂2fm

∂x2
= f ′′

m =
fm+1 − 2fm + fm−1

(δx)2

At the boundaries, one-sided approximations are used with second-order accuracy. For example

at a left boundary,

f ′

m =
−3fm + 4fm+1 − fm+2

2δx

f ′′

m =
2fm − 5fm+1 + 4fm+2 − fm+3

(δx)2

3.2.2.2 Sixth-order compact scheme

A higher-order scheme can resolve a larger range of wave numbers as compared to a second-

order scheme on the same grid. In other words, a higher-order scheme requires fewer grid points

to resolve the same scales. A sixth-order low dispersive scheme proposed by Lele (1992) is used

here. The approximation for a first-order derivative is

f ′

m + α(f ′

m+1 + f ′

m−1) =
a

2δx
(fm+1 − fm−1) +

b

4δx
(fm+2 − fm−2)

with the constraint a + 24b = 5!
4!(2α) and α = 1/3, a = 1

3(4 + 2α), b = 1
3 (4α − 1). The

formulation is sixth-order accurate at the internal nodes. At the boundaries however, the

accuracy is reduced, where

f ′

m + αf ′

m+1 =
1

δx
(afm + bfm+1 + cfm+2)

with α = 2, a = −5/2, b = 2 and c = 1/2. The scheme is third-order accurate at the boundary

and fourth-order accurate at points adjacent to the boundary.

The approximation of a second-order derivative is

f ′′

m + α(f ′′

m+1 + f ′′

m−1) =
a

(δx)2
(fm+1 − 2fm + fm−1) +

b

4(δx)2
(fm+2 − 2fm + fm−2)

with the constraint a + 24b = 6!
4!α and α = 2/11, a = 4

3 (1 − α), b = 1
3(10α − 1) for sixth-order

accuracy. At boundaries,

f ′′

m + αf ′′

m+1 =
1

(δx)2
(afm + bfm+1 + cfm+2 + dfm+3)
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with α = 11, a = 13, b = −27 and c = 15 and d = −1. These schemes are computationally

expensive and a matrix inversion (of a tridiagonal matrix) is required to calculate the derivatives.

A Thomas algorithm is used to invert the matrix.

3.2.2.3 Time integration

A compact third-order Runge–Kutta method is used to march the solution in time (Wray, 1990).

The compact scheme requires minimum storage during a simulation. For the ordinary differen-

tial equation, dx/dt = f(x, t), the four stages are

x∗ = xn +
1

4
f (xn, tn) δn

t

x∗∗ = xn +
8

15
f (xn, tn) δn

t

x∗∗∗ = x∗ +
5

12
f (x∗∗, t∗∗) δn

t

xn+1 = x∗ +
3

4
f (x∗∗∗, t∗∗∗) δn

t

with

t∗ = tn +
1

4
δn
t

t∗∗ = tn +
8

15
δn
t

t∗∗∗ = tn +
2

3
δn
t

tn+1 = tn + δn
t

3.2.3 Numerical solution and the pressure Poisson equation

Beginning with the initial conditions, an elliptic pressure Poisson equation is obtained by

decoupling pressure from the momentum equations (Harlow and Welch, 1965). Equation (3.2)

can be rewritten as,

∂ui

∂t
= − ∂p

∂xi
+ Fi

where Fi represents the filtered convective, viscous and SGS stress terms. Discretizing the time

term (one step of the Runge–Kutta scheme),

un+1
i − un

i

δt
= −∂pn

∂xi
+ Fn

i (3.5)
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where n and n + 1 are the current and next time levels, respectively, and δt is the time step.

The continuity condition is enforced at n + 1, whereby:

∂un+1
i

∂xi
= 0 (3.6)

and maintains incompressibility at time level n + 1. Now taking the divergence of Eqn. (3.5)

and using Eqn. (3.6), the pressure Poisson equation is obtained,

∂

∂xi

∂pn

∂xi
=

∂

∂xi

[
un

i

δt
+ Fn

i

]
(3.7)

The pressure solution of the Poisson equation ensures that incompressibility is maintained from

time n to n + 1. Once pressure is known, the velocity field at n + 1 can be computed from

Eqn. (3.5). Note that this formulation follows that of Harlow and Welch (1965) and obviates

the need for intermediate boundary conditions necessary in the fractional-step method (Kim

and Moin, 1985). The pressure solution is obtained using an iterative solver and is discussed

later in chapter 4. Since explicit methods are used to discretize the equations, time-step re-

strictions based on the CFL (convective scale) and Von-Neumann (diffusive scale) criteria must

be followed.

3.2.4 Comments on filter commutation

Near boundaries, a non-uniform mesh is used in order to reduce grid resolution (as compared

to using a uniform mesh throughout the domain). A mapping function based on a Jacobian

transformation is then used to obtain the spatial derivatives on the non-uniform mesh. It is

known that on a non-uniform mesh, the filtering operation does not commute, i.e. ∂u/∂x 6=

∂u/∂x and the error can be quantified as (Ghosal, 1996),

∂u

∂x
=

∂u

∂x
− α∆

2
(

∆ ′

∆

)
∂2u

∂x2
+ O

(
∆
)4

where α =
∫

ζ2G(ζ)dζ. The pressure Poisson discretization is second-order, irrespective of the

scheme used for convection and diffusion terms, and the overall accuracy of the solution is

second-order. Therefore, the finite difference error is on the same order as the commutation

error and can be ignored. In general, for higher-order schemes, the second-order derivative

term must be included (Ghosal et al., 1995). Another way to avoid the commutation error
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is to use high-order filters. High-order discrete filters have been constructed, which have zero

lower-order moments, e.g. α = 0 on the non-uniform mesh (Vasilyev et al. 1998).

3.2.5 Boundary conditions

The velocity points are defined on the domain boundary, hence no-slip conditions can be

directly enforced. For an inflow boundary, a known velocity field can be prescribed. For an

outflow boundary, a convective outflow boundary condition is used (Ferziger and Perić, 2002):

∂ui

∂t
+ U ∂ui

∂xi
= 0

where U is a constant velocity calculated from the inflow, so as to conserve the mass flow rate.

For the pressure Poisson equation, at the inflow boundary and on the no-slip walls, a zero normal

pressure gradient is specified, ∂p/∂n = 0, and at the outflow boundary zero gage pressure is

specified. For the inflow boundary , generally, the velocity is prescribed. For simulations of the

rectangular jet, a special technique is used to mimic the experimental conditions. Details of

the procedure are given in chapter 5.

3.3 Subgrid stress models

In this section, the subgrid stress models that will be used for the rectangular jet application

are described.

3.3.1 Smagorinsky model

The Smagorinsky model is an eddy-viscosity type model, which represents the effect of the

subgrid scales purely as an enhanced diffusivity for the large-scale flow (Smagorinsky, 1963).

The SGS stress tensor is modeled as,

τij −
1

3
τkkδij = −2νtSij

where νt is the turbulent eddy-viscosity, δij is the Kronecker delta function, and the filtered

rate of the deformation tensor is

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
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The turbulent eddy-viscosity is parameterized by equating the subgrid scale energy production

and dissipation to obtain

νt =
(
Cs∆

)2 |S|

where,

|S| =

√
2SijSij

and Cs is the Smagorinsky coefficient to be specified. The effective filter width ∆ is a function

of the grid resolution and is defined as ∆ = (∆1∆2∆3)1/3, where ∆1, ∆2 and ∆3 represent the

filter widths in x, y and z directions, respectively. For near wall regions, a damping function is

applied (van Driest, 1956) to decrease the eddy viscosity.

The dynamic model (Germano et al. 1991) differs from the Smagorinsky model in that

the model constant Cs is calculated “dynamically” using information from two different length

scales already part of the resolved solution. The procedure is generic and can be applied to any

model. The coefficient Cs is a function of space and time and has been shown to be compatible

with the local flow physics. Also, with the dynamic model, the eddy-viscosity asymptotically

approaches zero near solid walls and in regimes where the flow is laminar. The model however

requires a new filtering operation to be performed within a test filter volume, where the test

filter width ∆̂ is assumed to be greater than the grid filter width ∆. An overbar, ‘−’ denotes

grid filtering (subgrid scales) and a caret, ‘̂ ’ denotes test filtering (sub–test scales). For the

test-filter operation, a Gaussian filter is used, represented by,

G(xi − ξi) =

[√
6/π

∆

]3

exp


−

[√
6

∆

]3

(xi − ξi)
2




Applying the test filter to the Navier–Stokes equations (Eqns. 3.2), the sub–test scale stress

tensor, Tij, is obtained as:

Tij = ûiuj − ûiûj

The quantities τij and Tij are related by the following identity given by Germano (Germano

et al. 1991),

Lij = Tij − τ̂ij = ûiuj − ûiûj
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where Lij is the resolved turbulent stress that can be explicitly calculated. The term Tij is also

modeled similar to the subgrid scale turbulent stress τij using the Smagorinsky model with the

same model constant Cs,

τij −
1

3
τkkδij = −2C2

s ∆
2|S|Sij

Tij −
1

3
Tkkδij = −2C2

s ∆̂2|Ŝ|Ŝij

Lij −
1

3
 Lkkδij = C2

sMij

where

Mij = 2∆
2

(
|̂S|Sij −

∆̂2

∆
2 |Ŝ|Ŝij

)

Using a least squares approach (Lilly, 1992), the coefficient C 2
s is evaluated as

C2
s =

〈LijMij〉
〈MijMij〉

(3.8)

where angled brackets denote averaging over the test filter volume.

3.3.2 Scale dependent dynamic Smagorinsky model

An assumption or simplification in the dynamic model is that the model coefficient is scale

invariant (Cs(∆) = Cs(∆̂)). For certain applications, e.g., in atmospheric boundary layer flows,

near the boundary the scales are outside the inertial range and the invariance is broken. Portè-

Agel et al. (2000) proposed a scale dependent model in which a new unknown β = C 2
s (∆̂)/C2

s (∆)

is introduced, and to solve for β, a second-test filtering operation is performed at the scale

∆̃ = 4∆. The Germano identity between scales ∆ and ∆̃ can be written as,

Qij −
1

3
Qkkδij = C2

sNij

where

Qij = ũiuj − ũiũj

and

Nij = 2∆
2

(
|̃S|Sij −

∆̃2

∆
2 |S̃|S̃ij

)

Using least squares procedure as before, yields another equation for C 2
s ,

C2
s =

〈QijNij〉
〈NijNij〉

(3.9)
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Since Eqns. 3.8 and 3.9 represent the same variable, equating them results in the equation,

〈LijMij〉〈NijNij〉 − 〈QijNij〉〈MijMij〉 = 0 (3.10)

The terms in Eq. 3.10 are given by,

〈LijMij〉 = a1β − b1

〈MijMij〉 = c1 + d1β
2 − e1β

〈QijNij〉 = a2θ − b2

〈NijNij〉 = c2 + d2θ
2 − e2θ

where

a1 = −2∆
2
4〈|Ŝ|ŜijLij〉

b1 = −2∆
2〈|̂S|SijLij〉

c1 =
(

2∆
2
)2

〈|̂S|Sij |̂S|Sij〉

d1 =
(

2∆
2
)2

(4)2〈|Ŝ|2ŜijŜij〉

e1 = 2
(

2∆
2
)2

4〈|Ŝ|Ŝij |̂S|Sij〉

a2 = −2∆
2
42〈|S̃|S̃ijQij〉

b2 = −2∆
2〈|̃S|SijQij〉

c2 =
(

2∆
2
)2

〈|̃S|Sij |̃S|Sij〉

d2 =
(

2∆
2
)2

(42)2〈|S̃|2S̃ijS̃ij〉

e2 = 2
(

2∆
2
)2

(4)2〈|S̃|S̃ij |̃S|Sij〉

where β = C2
s (∆̂)/C2

s (∆) and θ = C2
s (∆̃)/C2

s (∆). A power law behavior is assumed for Cs over

the range between scales ∆ and ∆̃. Therefore, C2
s (2∆)/C2

s (∆) = C2
s (4∆)/C2

s (2∆) = β, and,

θ = C2
s (4∆)/C2

s (∆) = β2. Substituting these relations into Eqn. 3.10 gives the form:

A0 + A1β + A2β
2 + A3β

3 + A4β
4 + A5β

5 = 0 (3.11)
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where,

A0 = b2c1 − b1c2

A1 = a1c2 − b2e1

A2 = b2d1 + b1e2 − a2c1

A3 = a2e1 − a1e2

A4 = −a2d1 − b1d2

A5 = a1d2

Eqn. (3.11) has five roots of which only the largest positive root is meaningful and chosen as

the solution. For the standard dynamic Smagorinsky model, β = 1. Using the scale dependent

dynamic model, values of β less than 1 in the boundary layer are obtained (Porté–Agel et

al., 2000).

3.3.3 Structure function model

The structure function model was originally formulated in spectral space and then applied

to physical space (Mètais and Lesieur, 1992). The eddy-viscosity is based on the local kinetic

energy spectrum, calculated in terms of the second-order velocity structure function of the

filtered field and takes into account the local intermittency of turbulence. The second-order

structure function is evaluated in physical space as (Lesieur and Métais, 1996),

F2(x, ∆, t) =
1

6

3∑

i=1

[
||u(x, t) − u(x + ∆xiei, t)||2 + ||u(x, t) − u(x− ∆xiei, t)||2

]( ∆

∆xi

)2/3

where, u and x represent the velocity and displacement vectors. The eddy-viscosity is given by,

νt = 0.105 C
−3/2
K ∆ F

1/2
2

where CK = 1.5 is the Kolmogorov constant.

3.3.4 One-equation subgrid kinetic energy model

The subgrid kinetic energy is defined as, ksgs = 1
2 (uiui − uiui), and represents the kinetic

energy of the unresolved scales of motion. The ksgs can therefore be used as a velocity scale
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in the SGS stress term. However, since there is no direct representation of the unresolved

scales in LES, a transport equation is solved. The one-equation subgrid kinetic energy model

has shown good results at lower grid resolutions as compared to the dynamic Smagorinsky

model (Menon et al. 1996). In this model, no assumption of local equilibrium is made between

energy production and dissipation rate. A transport equation can be derived for ksgs from the

Navier–Stokes equations which has unclosed terms. The model equation for k ≡ ksgs is given

by,

∂k

∂t
+

∂uik

∂xi
= −τij

∂ui

∂xi
+

∂

∂xi

(
νt

∂k

∂xi

)
− Cε

k3/2

∆

The terms on the right hand side represent the production, transport and dissipation of the

subgrid kinetic energy, respectively. The subgrid stresses τij are modeled in terms of the SGS

eddy viscosity νt as:

τij = −2νtSij +
2

3
kδij

where the SGS eddy viscosity νt = Ck∆
√

k. The variables Ck and Cε can be chosen as constants

or evaluated based on the dynamic procedure.

In the following chapter, validation of the numerics and the subgrid stress model is described.

The parallelization of the solver using message passing interface and performance studies on an

Iowa State University cluster are demonstrated.
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CHAPTER 4. BENCHMARKING AND PARALLELIZATION

To ascertain the accuracy of the numerical scheme as well as the SGS stress model, bench-

mark cases are simulated for laminar and turbulent flows using the partial staggered grid. So-

lutions for lid driven cavity flow and flow over a backward facing step ensures that the scheme

is correctly implemented. For testing the LES model, a turbulent channel flow simulation is

performed. For high Reynolds number flows where grid resolution requirements increase, multi-

ple processors are used to obtain solutions using message passing interface (MPI). Performance

curves are shown upto 256 processors on an AMD Opteron cluster at Iowa State University.

4.1 Lid driven square cavity flow

A square cavity flow driven by a moving lid has been studied extensively in CFD research

and is often used as a standard benchmark problem to validate numerical solution algorithms. A

two-dimensional schematic is shown in Fig. 4.1. The geometry consists of four planes enclosing

a square cavity and the the top plane is moving at a constant velocity U . Momentum is

transferred by viscous forces and the flow develops downward, reaching steady state forming

a primary recirculation zone. With increasing Reynolds number (defined as Re = LU/ν),

secondary recirculation zones appear near the bottom corners of the cavity. The dimension L

is chosen as the height of the cavity. Here the results are compared with those obtained by

Ghia et al. (1982) and Kim and Moin (1985) at a Reynolds number of 5000. Ghia et al. use

the vorticity-stream function approach to solve the Navier–Stokes equations using an implicit

multigrid method on a mesh of size 256×256 cells, while Kim et al. use a fractional time-stepping

scheme in conjunction with an approximate factorization technique to solve the problem on a

mesh of size 96 × 96 cells. The grid size used in this work is also 96 × 96 cells. Figure 4.2

shows u− and v− velocity profiles along the vertical and horizontal centerlines of the cavity,
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respectively. The current simulations deviate from that of Ghia et al. only near the cavity walls

and this is due to a lower resolution of the present simulation. The non-dimensional vorticity

at the center of the primary vortex is −1.821 (refer to Fig. 4.3) and is in close agreement with

the values obtained by Ghia et al. (−1.860) and Kim and Moin (−1.812).

Extensions of two-dimensional driven cavity flows were conducted to study Taylor–Görtler

vortex structures that are found in three-dimensional cavity flow experiments by Koseff et

al. (1982). Koseff et al., however, failed to reproduce this three-dimensional structure in their

numerical simulations. Kim and Moin (1985) were able to capture the longitudinal Taylor–

Görtler vortex structures in their simulations (for Reynolds numbers greater than 900) and

benchmark this case as a test for their numerical scheme. To check whether the partial staggered

scheme is able to capture these vortex structures, a three-dimensional driven cavity simulation

was performed on a coarse grid (32×32×32 cells) for a Reynolds number of 1500. To initialize

the calculation, small random disturbances in the spanwise direction (z) were added. Periodic

boundary conditions were used in the spanwise direction. Velocity vectors in a y − z plane

through the geometric center (x = 0.5) of the cubic cavity are shown in Fig. 4.4. Although

no quantitative measurements were reported in their paper, vortex structures similar to those

reported by Kim and Moin are observed in the present simulations.

4.2 Flow over a backward facing step

The flow over a backward-facing step in a channel is a good test case for the numerical

method because a dissipative scheme will not predict the correct reattachment length of the

recirculation zone downstream of the step. A two-dimensional schematic of the backward

facing step of height h is shown in Fig. 4.5. The flow expands downstream of the step and

reattaches at xr forming a recirculation zone. A two-dimensional simulation of laminar flow

over the step is performed for a Reynolds number of 400. At the inflow boundary, located

above the step, a parabolic velocity profile is prescribed. The downstream boundary is located

at x = 30h and 256 × 32 cells are used for the simulation. Figure 4.6 shows velocity vectors

in the domain, colored by streamwise velocity contours. Streamlines are also shown and the

reattachment length xr/h = 8.7. Kim and Moin (1985) report a reattachment length of 8.6
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in their simulations, while experimental results at Re = 400 show a reattachment length of

8.4 (Armaly et al. 1983).

4.3 Turbulent channel flow

The driven cavity flow and flow over a backward facing step proved the correctness of the

finite difference scheme and the numerical solution procedure. To test the efficacy of the subgrid

model on turbulent flow solutions, simulations of flow in a turbulent channel are performed. The

turbulent channel flow problem is a standard benchmark case to test turbulence models. Here,

the dynamic Smagorinsky model (Lilly, 1992) is tested for the partially staggered formulation,

since it does not use any ad-hoc constants. The flow geometry is shown in Fig. 4.7. The channel

is bounded only in the normal (y) direction and extends to infinity in x and z. The streamwise

(x) and spanwise (z) directions are homogeneous with periodic boundary conditions and the

normal direction is bounded by no-slip walls. For the initial condition, analytical expressions

for the three velocity components are used for Reτ = 180 (based on wall stress τw) (Kim et

al. 1987):

u(x, y, z) = C(1 − y8) + ε 2π sin(πy) cos(x) sin(z)

v(x, y, z) = −ε(1 + cos(πy)) sin(x) sin(z)

w(x, y, z) = −ε π sin(x) sin(πy) cos(z)

where C = 7.764 Re
1/7
τ is the centerline velocity and ε = 0.1C. This initial condition satis-

fies boundary conditions and is divergence free. Essentially it represents a three-dimensional

disturbance superimposed on a two-dimensional mean flow. In addition, a mean streamwise

pressure gradient term is added to the streamwise momentum equation (Fδi1). This is required

to maintain the mass flow rate in the system to its initial value. The streamwise pressure

gradient is adjusted at each time step (Benocci and Pinelli, 1990) to provide the desired mass

flow rate as:

F n+1 = F n − 1

∆t

[(
ṁ

Ac

)0

− 2

(
ṁ

Ac

)n

+

(
ṁ

Ac

)n−1
]
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where ṁn is the average mass flow rate at time level n, ∆t is the physical time step, and Ac is

the cross-flow area of the channel. The average mass flow rate is given by:

ṁ

Ac
=

1

LyLz

∫ 1

−1
〈ρu〉x,z dy

where 〈 〉x,z denotes an ensemble average in the x and z directions. The desired mass flow rate

is
(

ṁ
Ac

)0
, where 0 indicates the initial mass flow rate in the channel.

The non-dimensional channel dimensions (with respect to channel half-width) are 4π×2×2π.

Uniform grid cells are used in x and z, while stretched grid cells are used in the y-direction.

The domain is divided into 96 × 64 × 80 cells in x, y and z directions, respectively. For the

subgrid model, the dynamic Smagorinsky model is used with a test filter-to-grid filter ratio of

2.0

The velocity statistics are compared to the DNS results of Kim et al. (1987) and the ex-

perimental results of Niederschulte et al. (1990). The DNS study employed about 4 × 106 grid

points (192 × 129 × 160 in x, y, z) and used pseudospectral methods. The experiments of

Niederschulte were performed specifically to examine the accuracy of Kim et al.’s DNS results.

Good, but not exact agreement was found between the experimental and DNS results. The

mean streamwise profile is shown in wall coordinates in Fig. 4.8. The mean profile was obtained

by averaging in the homogeneous directions (x and z) and in time. The velocity is normalized

by the friction velocity as u+ = u/uτ , where uτ =
√

τw/ρ. The dashed line and the dash-dot

line represent the law of the wall and the log law, respectively. The LES agree well with the

DNS and experimental data. A value of uτ = 0.98 was obtained in the LES calculations making

the effective Reτ = 176.4. The normalized rms velocity fluctuations are shown in Fig. 4.9. The

rms velocities are underpredicted, and this is not completely unexpected, since, the LES data

represent resolved scale intensities in which the small scale contribution in not included. The

Reynolds shear stress is shown in Fig. 4.10 and compares well with the data. In general, the

LES results match well with the DNS data, thus providing confidence in the application of the

model to other general flows.
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4.4 Parallel Computing

As the dimensionality of system and complexity of the problem increases, the need for

obtaining quick solutions becomes a priority. Computing time becomes a bottleneck for simula-

tions of turbulent flows that require high grid resolutions. In the present case the computation

of pressure is an expensive part of the numerical solution procedure since pressure in the entire

domain has to be solved simultaneously due to the nature of the elliptic Poisson equation. The

incompressibility condition must be satisfied at every time step, i.e., each stage of the Runge–

Kutta time integration scheme, hence, the Poisson equation has to be solved four times in each

time step. These factors lead to the necessity of parallel computing.

Message passing interface (MPI) is a programming standard used on parallel computers

with distributed memory (Snir et al. 2001). The main idea is to use domain decomposition to

break up the geometry into parts such that every processor gets its own share of calculations.

A schematic of a simple two-dimensional domain is shown in Fig. 4.11. The geometry is divided

such that two processors share the computational domain, each having 16 grid points for its

own calculations (small filled circles for processor 0 and small unfilled circles for processor

1). The interprocessor boundary is shown in the figure with a double line. Two layers of grid

points (represented by large circles concentric to the small circles) adjacent to the interprocessor

boundary represent the points over which communication is required. The MPI library provides

routines for communication between processors.

Solutions to the first- and second-order derivatives for the sixth-order compact finite dif-

ference scheme are obtained by solving the Thomas algorithm. It is a direct method and the

solution is obtained in two steps, forward elimination and backward substitution (Tannehill et

al. 1997). Due to the substitution procedures of the algorithm, it is not scalable on a parallel

machine. However, since many such forward and backward steps are required along a particular

direction (e.g. x-direction) during a calculation, an overlap can be achieved in each stage to

reduce the overall computational time. This technique is known as pipelining. Details about

the procedure can be found in Stoessel et al. (1996). For the second-order central difference

schemes, only one layer of cells is required for communication.



36

To solve the linear system of equations for the Poisson equation on a three-dimensional

domain, a hepta-diagonal sparse matrix must be inverted. For this purpose, an efficient par-

allel program, Aztec, developed at the Sandia National Laboratory is coupled with the finite

difference solver (Tuminaro et al. 1999). Aztec is an iterative library for solving a system of

linear equations and is designed especially for distributed memory parallel machines. It offers a

variety of preconditioned Krylov solvers. The bi-conjugate gradient method with stabilization

and least squares preconditioning is used for the present calculations. Aztec is coupled with

the LES solver such that solutions can be obtained on multiple processors. The input/output

(I/O) is performed individually by each processor.

4.5 Parallel performance

The parallel code is tested on an AMD Opteron cluster which has 376 processor cores (94

nodes) with 8 GBytes of memory per node. Each node is a dual processor, dual core 2.4

GHz AMD 280 Opteron with 1 MB on-chip cache. The nodes are interconnected with a high

performance InfiniPath HTX communication network for MPI communication and a Gigabit

Ethernet switch for I/O. Each test utilized at least 1 hour of CPU time. Due to time limitations

per processor on the cluster, the test was divided into two parts: one using 4 to 64 processors

and another using 64 to 256 processors. Speed-up on n processors is defined as the ratio of time

taken by a single processor calculation to the time taken by the n-processor calculation. For

the tests using 4-64 processors, speed-up is based on 4 processors as a reference, and tests using

64-256 processors use a reference of 64 processors. Figures 4.12 and 4.13 show the performance

curves, where symbols represent simulation data and the solid line represents the ideal case.

Overall, the code performed well on multiple processors, and a few cases show better than ideal

or super-linear speed-up, which may be attributed to an efficient cache utilization for those

calculations.
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Figure 4.1 Two–dimensional schematic of a lid driven square cavity flow.
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Figure 4.3 Two–dimensional solution of spanwise vorticity for driven cavity

flow on a square domain with 96 × 96 cells at Re = 5000.
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Figure 4.4 Taylor–Görtler vortex structure: Velocity vectors in a (y − z)

plane through the geometric center of the cubic cavity (x = 0.5)

for three–dimensional driven cavity flow at Re = 1500.
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Figure 4.6 Velocity vectors superimposed with u− velocity contours and

streamlines at Re = 400.
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Figure 4.7 Schematic of turbulent channel flow. Walls at the top and bot-

tom extend to infinity in the x and z directions.

Figure 4.8 Mean streamwise velocity profile in wall coordinates.
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Figure 4.10 Normalized Reynolds shear stress.
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Figure 4.11 Partitioning of a finite difference grid for parallel computing.

Figure 4.12 Performance on AMD Opteron cluster from 4 to 64 processors.
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Figure 4.13 Performance on AMD Opteron cluster from 64 to 256 proces-

sors.
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CHAPTER 5. LARGE EDDY SIMULATIONS OF A RECTANGULAR

JET: MOMENTUM TRANSPORT

In this chapter, large eddy simulations are performed for a confined rectangular jet with

co-flowing fluid. The numerical procedure and subgrid models described in chapters 3 and

4 are used to obtain solutions. The effects of grid resolution, numerical schemes and subgrid

models on the LES are studied. Validation is performed by comparing LES statistics with those

obtained from particle image velocimetry (PIV) measurements. One-point statistics such as the

mean and the root mean square (rms) velocity, shear stress, correlation coefficient, skewness

and flatness compare well the experimental data. Two-point spatial correlations based on the

velocity field are computed and compare very well with experimental data. The chapter ends

with a discussion on closures for RANS models based on the eddy viscosity hypothesis and

anisotropy invariant mapping of turbulence.

5.1 Confined rectangular jet configuration

Large eddy simulations are performed for a confined planar jet. The schematic of the

geometry is shown in Fig. 5.1 with channel dimensions of 0.3×0.06×0.1 m (x, y, z respectively).

There are 3 inlet streams at the inflow boundary, each separated by splitter plates and the flow is

bounded by walls in the y- and z- directions. The volumetric flow rates in the two outer streams

are 0.4 L/s and in the inner co-flowing stream is 0.8 L/s, and the resulting average velocity

in the channel is Uavg =0.267 m/s. The Reynolds number based on the average velocity and

hydraulic diameter is 2 × 104. The flow is complex due to the presence of gradients in the two

shear layers and at the walls. For validation purposes, the results from LES are compared with

experimental PIV data. Details of the experimental setup can be found in Feng et al. (2006).

In order to validate the LES with experimental data, inflow conditions that are similar to
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those in the experiments are required to justify that there is a one-to-one comparison. For this

purpose, the inflow conditioning technique of Klein et al. (2003) is used. The method generates

inflow velocity signals that have statistical properties similar to those in the experiments. The

inflow velocities are given by

ui = 〈ui〉 + aijUj

where 〈ui〉 is the mean inflow velocity from experiments, Uj is obtained from a random field

with a prescribed two point statistic (also obtained from experiments), and

(aij) =




(R11)1/2 0 0

R21/a11

(
R22 − a2

21

)1/2
0

R31/a11 (R32 − a21a31) /a22

(
R33 − a2

31 − a2
32

)1/2




where Rij is the correlation tensor known from experiments. The advantage of this method is

that inflow conditions are obtained as the simulation progresses, unlike methods where prior

computations are required specifically to generate and store inflow velocities. PIV measure-

ments are available in the x − y plane at z = 0.05 m. For the LES velocity inflow boundary,

experimental data obtained at a location 1 cm downstream of the trailing edge of the splitter

plates are used. This location is denoted as x = 0 cm (refer to Fig. 5.1) and henceforth, all

other positions are relative to this location. Moreover, the third velocity component in the

spanwise direction is not measured in the experiments and an approximation of R33 = R22 is

made, implying the fluctuations of v and w velocity components are of equal magnitude, and

all other correlations involving the spanwise velocity fluctuation are made zero.

At the walls, a no-slip boundary condition is applied, and at the exit a convective outflow

boundary condition is used (Ferziger and Perić, 2002). For the pressure Poisson equation, a

zero normal gradient condition is used at the inflow and at the walls. At the outflow boundary

zero gage pressure is specified.

5.2 Grid resolution study

In this test, the dynamic SGS model is used (refer to Section 3.3.2) and finite differences are

employed using the sixth-order compact finite-difference scheme. The effect of increasing grid
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Table 5.1 Grid resolution study parameters for LES: Number of cells used

for the three cases.

x-direction y-direction z-direction

1 160 64 64

2 224 96 96

3 320 134 114

resolution from about 0.5 million to 5 million cells is investigated. It is important to note that

the grid size cannot be changed independently of the filter length scale because the filtering is

performed implicitly by the grid. The study is performed to obtain a grid resolution sufficient

to capture the essential physics of the flow. Non-uniform grids were used with clustering at the

wall boundaries and in the shear layers. The aspect ratio ∆x/∆y and ∆z/∆y were maintained

between 1 and 3 and the grid sizes used are summarized in Table 5.1 Figure. 5.2 compares

the resolved mean streamwise velocity profiles for the LES (lines) with that obtained from

PIV measurements (symbols) at streamwise location x = 7 cm. The highest resolution grid

is able to match the near-wall profile closely with experiments. This is essential since no wall

models are used to account for stresses in the developing boundary layers. Figure 5.3 shows the

streamwise rms velocity at the same location. Again near-wall behavior is better at the highest

resolution. In the shear layers (near y = 0.04 m and y = 0.06 m), the peaks are similar for

the three grid resolutions. The proportion of energy resident in the resolved scales is higher at

higher grid resolutions and this explains the overall increase in the intensity for the simulation

using 5 million cells. It should be noted that the effective filter width for the highest grid

resolution is very close to the resolution of the PIV measurements. Thus the next two studies

involving numerical schemes and SGS models are performed with the highest grid resolution

(320 × 134 × 114 cells).

5.2.1 Comment on near wall resolution

It is well known that LES works well away from the walls. Near walls the resolution of

LES is comparable to that of a DNS (Pope, 2000). Wall models provide analytical treatment
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for the near wall stresses which can otherwise only be resolved by using fine resolution at the

wall. Using wall models is tricky, especially if recirculation zones or heat transfer effects are

being resolved. In the present research, no wall models are used and the near wall resolution

using the highest grid resolution described in the preceding section was enough to capture the

slope at the wall accurately. An estimation of the near wall resolution requirement based on

analytical treatment is given next.

In order to approximate the near wall resolution, the friction velocity uτ and wall stress τw

are required. These characteristic turbulent parameters can be calculated based on correlations

for the coefficient of friction Cf :

Cf =
f

4
=

τw
1
2ρU2

avg

(5.1)

where f is the friction factor, ρ is the fluid density and Uavg is the mean velocity. The theoretical

friction factor for turbulent flow can be approximated as f = 0.316×Re−1/4, and for the present

flow, f = 0.0266. Based on Eq. 5.1, the wall shear stress is τw = 0.2362 N/m2. The friction

velocity can be found, where uτ =
√

τw

ρ = 0.0154 m/s. The near wall resolution is commonly

expressed in terms of non-dimensional units of y+ = y×uτ

ν and for the highest grid resolution

case (5 million cells), a y+ ≈ 5 is obtained for the first off-wall grid point.

5.3 Effect of numerical schemes

The effect of a second-order central difference (FD2), third-order QUICK (FD3) and sixth-

order compact (FD6) schemes on the solutions are investigated using 5 million cells and the

structure function model. Figures 5.4 and 5.5 show the mean streamwise and the streamwise

rms velocity, respectively. The mean profiles match very well with the PIV data for all three

schemes. For the rms profiles, all three schemes predict similar peaks in the shear layers near

y = 0.02 and y = 0.04 m. A slight difference in magnitude, however, is seen at y = 0.03 m,

and the FD2 scheme shows higher rms than the FD3 and FD6 schemes. It could be inferred

that the third-order convective scheme (FD3) provides some stabilization as compared to the

FD2 scheme, resulting in lower u-rms at y = 0.03 m. It is often argued that a dissipative

scheme should not be used for LES since it is difficult to differentiate between the numerical

dissipation and the SGS dissipation. A calculation was therefore carried out on the same grid
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for the FD3 scheme without the SGS model to check the dissipative nature of the scheme. The

simulation, however, was unstable leading to a premature end of the calculation. In summary,

all three schemes show good comparison with the experiments. Since non-dissipative schemes

are preferred for LES, the sixth-order central difference scheme (FD6) is adopted here for further

studies.

5.4 Effect of Subgrid models

Four SGS models: constant Smagorinsky, dynamic Smagorinsky, dynamic scale dependent

and the structure function model are used to compare the effect of SGS dissipation on the

resolved scale solution. A grid size of 320 × 134 × 114 cells and the FD6 scheme is used for all

simulations. For the constant Smagorinsky model, Cs = 0.17 is chosen (Pope, 2000). A van

Driest wall function (van Driest, 1956) is used to reduce the SGS viscosity to zero near wall

boundaries. Figures 5.6 and 5.7 show the mean streamwise and the streamwise rms velocities,

respectively. The mean profiles compare well for all four SGS models and the peak u-rms

values in the shear layers are also resolved. In addition, all four models compare well with

the resolved scale statistics of the PIV measurements. Interestingly, the constant Smagorinsky

model appears to perform just as well as the dynamic Smagorinsky model in the present case

without the need for any coefficient adjustment. The calculation of the dynamic models is more

expensive than the structure function model, however.

5.5 One-point velocity statistics

In this section, additional results from the resolved scale simulations are presented. Com-

parisons with PIV measurements are shown at four streamwise location of x = 0, x = 7, x = 13,

and x = 22 cm. LES statistics at x = 0 cm compare exactly with PIV data since this is the

inflow boundary provided for the calculations. LES are obtained with 5 million cells using the

FD6 scheme and the structure function model. Although no error bars are shown for the vari-

ation in experimental measurements, an error of about 5% is present for measurements using

PIV techniques (Hua Feng, 2006) and the experimental errors are slightly larger for near wall

measurements.
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The mean streamwise velocity profile at the four locations is shown in Fig. 5.8, depicting the

growth of the mixing layer. PIV data are represented by symbols and LES by a line. Vorticity

is shed at the trailing edge of the splitter plates and the instability mechanism is known as

the Kelvin–Helmholtz instability. With increasing downstream distance, the steep gradients in

the shear layers are quickly diffused by turbulence. The mean profiles compare very well with

experiments for all four locations. At x = 22 cm, the peak mean streamwise velocity is slightly

underpredicted by the LES. Steep gradients at the wall boundaries are resolved by the grid

without resorting to use of wall models.

The streamwise rms velocity is shown in Fig. 5.9. The peaks are seen in the shear layer where

the high and low speed fluids mix. At location x = 0, in the shear layers, two small sharp peaks

are observed, caused by the growing boundary layers on the two sides of the splitter plates.

As the steep velocity gradients decrease, the peaks also reduce. The wall normal rms velocity

is shown in Fig. 5.10. Note that a similar trend is observed, although the peak intensities

for the wall normal rms are slightly lower than the streamwise rms peaks. This trend has

been observed by researchers where PIV measured wall normal intensities are slightly lower

than their true values (Hua Feng, 2006), and could explain the discrepancy between the LES

resolved and the measured values at x = 7 and x = 13 cm. Another possible explanation for

the observed differences is that the effective LES filter width is very close to the interrogation

window length scale in the PIV measurements. It is therefore possible that the energetic scales

resolved by the two techniques are different. In LES, all information regarding the subgrid

scale contribution to the turbulent intensities is lost. The SGS kinetic energy is a measure of

the unresolved energy and must be estimated in order to obtain the obtain the total turbulent

kinetic energy. This is typically estimated by solving a transport equation for the evolution

of the SGS kinetic energy, 1
2 (uiui − uiui) (Kim and Menon, 1999). Figure 5.11 shows the

spanwise w-rms velocity along the normal direction at the four streamwise locations, however

PIV measurements are unavailable for the spanwise velocity component. Note that the intensity

is close to the wall normal rms intensity (refer to Fig. 5.10), and substantiates the assumption

used in the inlet turbulence model that 〈w′w′〉 = 〈v′v′〉. Furthermore, Feng et al. (2005) use the

same assumption to estimate the turbulent kinetic energy necessary to obtain inflow conditions
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for the RANS k−ε turbulence model. The correctness of this assumption is therefore validated

by the present LES study.

The resolved shear stress is shown in Fig. 5.12. The previous argument offered for the

differences in the resolved length scales can also explain the difference between the resolved and

measured values of the peak shear stress at x = 7 and x = 13 cm. The SGS component τ12 is

an estimate of the unresolved shear stress, however, this is unavailable in the experiments and

a model similar to an SGS model must be utilized to obtain this estimate (Hua Feng, 2006).

Figure 5.13 shows profiles of the correlation coefficient ρuv between the resolved streamwise and

normal components of turbulent fluctuations, defined by:

ρuv =
〈u′v′〉√
〈u′2〉〈v′2〉

The profiles are in good agreement with the experimental data and provide confidence in the

reliability of the SGS model. At x = 22 cm, the profile resembles that observed in turbulent

channel flow calculations (Moin and Kim, 1982).

The velocity skewness and flatness factors are defined as:

S(ui) =
〈u′

i
3〉

〈u′
i
2〉3/2

F (ui) =
〈u′

i
4〉

〈u′
i
2〉2

respectively. These high-order one-point statistics are shown in Figs. 5.14, 5.15, and 5.16 at

x = 7, x = 13, and x = 22 cm, respectively. Skewness is a measure of asymmetry of a

distribution. It can be observed from the streamwise skewness plots that the u-velocity (S(u))

distribution is symmetric about the center of the channel at y = 0.03 m, and also symmetric

about the shear layers, y = 0.02 and y = 0.04 m. For the normal component (S(v)), the v-

distribution is approximately symmetric about the shear layers and does not exhibit symmetry

about the channel center. Flatness, also known as Kurtosis, is a measure of whether the data

distribution is peaked or flat relative to a normal distribution. Data sets with high kurtosis

tend to have a distinct peak near the mean, decline rapidly, and have heavy tails. Data with low

kurtosis tend to have a flat top near the mean. The kurtosis for a standard normal distribution

is 3.0, as reported for channel flows (Moin and Kim, 1982), and is seen here at x = 22 cm,
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where the flow is fast approaching turbulent flow in a channel. Overall, good agreement is

observed between computations and experiments, which is especially encouraging, considering

the difficulties associated with the measurements of high-order statistics.

5.6 Two-point velocity statistics

Turbulence theory begins with the concept of energy cascade introduced by Richardson in

1922 (Pope, 2000), in which energy from the large scales in the flow is transferred to the small

scales and is eventually dissipated by the viscous length scales. Two-point correlations give

useful information about this energy cascade and form the basis of spectral theories. Parameters

such as the longitudinal and transverse length scales based on the two-point correlations are

often used in literature to give the reader a notion of the eddy sizes involved in the flow. For

canonical flows such as isotropic turbulence, in which the two-point correlation is completely

determined by the longitudinal length scale, aposteriori testing of closure models often involves

the prediction of these length scales (Pope, 2000). For more complex flows with no directional

homogeneity, eddy structures of different shapes and sizes are prevalent and two-dimensional

plots of spatial correlations give a better idea of the energetic eddy structures in the flow. In

order to obtain two-point spatial correlations from experiments, measurements with one fixed

probe and one moving probe are simultaneously utilized (Shaw et al., 1995). PIV, however,

enables measurement of a complete two-dimensional flow field, and spatial correlations can be

computed as part of data post-processing (Hua Feng, 2006). Spatial correlations can also

be obtained from LES based on the resolved velocity field to provide information about the

characteristic flow patterns.

Two-point spatial correlations of the resolved velocity fluctuations are defined as:

Ru′

i
u′

j
(x, y; X0, Y0) =

〈u′
i(x, y)u′

j(X0, Y0)〉
√
〈u′2

i (x, y)〉〈u′2
j (X0, Y0)〉

where (X0, Y0) are the coordinates of a basis point about which the correlation is measured,

and (x, y) are locations around the basis point. Here, the correlations are obtained in the

plane z = 0.05 m at three streamwise locations of x = 0.09, 0.15, and 0.24 m. At each

streamwise locations, 5 cross-stream locations are chosen as shown in a schematic in Fig. 5.17.
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The circles in the figure illustrate the basis points (X0, Y0). Figures 5.18- 5.21 show correlations

for Ru′u′ , Rv′v′ , Ru′v′ , and Rv′u′ , respectively, where the experimentally measured values and

those obtained from LES are superimposed on each other. PIV obtained data are shown as

colored contours, while LES statistics are shown as lines, keeping the same scale. Each figure

is shown as a matrix of 15 sub-figures; moving from left to right, the X0 basis point changes

from 0.09 m to 0.15 m to 0.24 m, and moving from top to bottom, Y0 changes from 0.01 m to

0.05 m.

Figure 5.18 shows the streamwise correlation Ru′u′ field as an ellipse with the major axis

aligned in the streamwise direction and slightly inclined to the horizontal. This has been

observed previously for incompressible mixing layers (Olsen and Dutton, 2002). The inclination

is more apparent near the walls further downstream (e.g., x = 0.24 m), and is caused by the

growing boundary layers at the walls. The elliptical shape of the correlation field suggests that

the correlation distance is longer in the streamwise direction than in the normal direction, and

the structures grow larger in size with increasing downstream distance.

Cross-stream correlation functions Rv′v′ are shown in Fig. 5.19, and the correlation field is

a vertically-oriented ellipse. Clearly the fluctuations are strongly correlated in the y-direction

than in the x-direction. For the same y-location, the correlations grow in size with increasing

downstream distance. The shear layers grow quickly and the correlations span almost the entire

height of the channel (e.g., at X0 = 0.24, Y0 = 0.03 m).

Figure 5.20 shows the cross-correlation fields for Ru′v′ , which are not as well-defined as the

correlation fields for Rv′u′ shown in Fig. 5.21. The trends, however, are the same, i.e., the size of

the ellipses increases with downstream distance, and the ellipses are inclined at 45◦ angle with

the horizontal axis. This is seen more clearly for the correlations at locations of y = 0.04 m in

both Figs. 5.20 and 5.21. As the basis point changes downstream, the peak value at the basis

point increases, and the size of the positively correlated region (solid lines) grows, implying an

increase in the size of the structures. Another trend is the growth of positively correlated region

displacing a negatively correlated region (dashed lines) with increasing streamwise distance.

This is seen in the shear layer at y = 0.04 m, and vice-versa at y = 0.02 m in Fig. 5.20. Similar

features are seen in Fig. 5.21.
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5.7 Information for RANS closure models from LES

Data obtained from DNS provide scope for the development of turbulence closure models.

Since DNS are not feasible for the current application, information useful for providing closures

for RANS equations are obtained from the LES database. Two approaches are discussed next.

5.7.1 Simple closure based on the eddy viscosity hypothesis

According to the turbulent viscosity hypothesis, the scalar coefficient, νT , is known as the

turbulent viscosity or eddy viscosity and can be evaluated as,

νT =
−〈u′v′〉
∂u/∂y

Turbulent viscosity is calculated from the experiments and compared with those obtained based

on the resolved scale LES statistics. Figure 5.22 compares the eddy viscosities at four down-

stream locations. LES predicts a higher eddy viscosity than the experiments, however, both

show a wide variation in the streamwise and the transverse directions. The maximum turbulent

viscosity appears in the shear-layer regions between the central jet and the outer streams. In

regions near the sidewalls, the coefficient becomes small. These observed trends are consistent

with the results reported by Lemione et al. (1999).

5.7.2 Closure based on anisotropy invariant mapping of turbulence

In 1977, Lumley and Newman examined the return to isotropy of homogeneous turbulence,

and in their analysis utilized the non-dimensional anisotropic Reynolds stress tensor (Lumley

and Newman, 1977),

aij =
uiuj

q2
− 1

3
δij

where q2 = ukuk. An overline here indicates Reynolds averaging and u the fluctuation. The

anisotropy can then be quantified in terms of the invariants of aij , given by Ia = akk = 0,

IIa = aijaji, and IIIa = aijajkaki, respectively. The functional dependence between the two

independent invariants, IIa and IIIa, is bounded for all physically realistic turbulent flows and is

shown in Fig. 5.23. The bounded region is also commonly known as the Lumley ‘triangle’. The

two curves originating from the origin (point of isotropy) represent axisymmetric turbulence.
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The right-hand side of the ‘triangle’ represents axisymmetric expansion, where two eigenval-

ues of the Reynolds stress tensor are smaller than the third. The left side is axisymmetric

contraction, where two eigenvalues are larger than the third. The upper curve corresponds to

two-component turbulence where one of the eigenvalues is zero. This result is useful in the

development of turbulence closure models (Jovanović, 2004).

In the present case, a considerable amount of turbulent energy is present in the resolved

scales and the anisotropic tensor can therefore be similarly constructed from the resolved scale

Reynolds stress tensor, 〈u′
iu

′
j〉, to quantify the anisotropy in the flow. The quantity II

1/2
a

quantifies the magnitude of the anisotropy, while the ‘shape’ of the anisotropy is given by the

value of (III
1/3
a , II

1/2
a ). The state of anisotropy is shown in Figs. 5.24 – 5.26 at three streamwise

locations of 7, 13, and 22 cm, respectively. In each figure, the scatter plot of the invariants is

shown along the normal coordinate direction and is colored based on distance from the lower

wall (y = 0 cm). The anisotropy is highest near the walls and is lower at the center of the

channel. At x = 7 and x = 13 cm, the anisotropy follows the axisymmetric expansion boundary

with a few points lying in the region of axisymmetric contraction. Close to the wall boundaries,

the points lie close to the two-component boundary. At x = 22 cm, the anisotropy is high near

the channel walls and the direction of the anisotropy map changes from the right hand side

of the boundary to the left hand side in the two shear layers, with the minimum anisotropy

occurring at the center of the channel.

Jovanović derives turbulence closures for flows at or close to the boundaries of the anisotropy

invariant map. The anisotropy map is narrow, hence, an attempt could be made to interpolate

the closures valid around the boundary of the map to turbulent flows whose anisotropy map

resides within these boundaries. Based on the invariant maps shown for the rectangular jet

configuration, closures could be attempted for the Reynolds stress transport equations.

5.8 Summary

Large eddy simulations were performed for a confined rectangular jet. The flow is complex

because of the presence of two shear layers at the inflow and wall boundaries in the normal and

spanwise directions. It is shown that an in situ turbulence generation procedure can represent
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the experimental data very well to model the inflow boundary conditions. The effect of grid

resolution, numerical schemes and subgrid models were studied on the resolved scale statistics

in a systematic manner. Although most LES studies advocate the use of central difference

schemes, the third order Quick scheme gave good results in the present study. The constant

Smagorinsky model, using the standard value for the constant, was not found to be overly

dissipative as is generally observed. In fact, the four models tested show similar resolved

scale statistics, which leads to the impression that the grid size used for the study is able to

resolve most of the turbulent energy and a simple closure is sufficient to model the subgrid

scales. One-point statistics for the mean streamwise velocity, the rms velocities, shear stress

and correlation coefficient compare well with experiments. Information regarding the spanwise

rms velocity, which is unavailable from the experiments, was used to complement the turbulent

kinetic energy information required for RANS models. Third- and fourth-order resolved scale

statistics correspond well with experimental values, further validating the LES study. Two-

point correlations compared well with experiments, thus proving that LES is able to resolve

the eddies in the shear layers and the flow in general. The invariance map was calculated

to demonstrate the state of anisotropy of turbulence in the flow in an attempt to provide

information for closures for RANS equations.
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Figure 5.1 Schematic of a confined planar jet.
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Figure 5.2 Mean streamwise velocity profile at x = 7 cm for three different

grid resolutions in the normal direction, with comparisons to

experiments.
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Figure 5.3 Streamwise rms velocity profile at x = 7 cm for three different

grid resolutions in the normal direction, with comparisons to

experiments.
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Figure 5.4 Mean streamwise velocity profile at x = 7 cm for a second-order

central difference (FD2), a third-order Quick (FD3) and a

sixth-order compact (FD6) finite difference scheme.
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Figure 5.5 Streamwise rms velocity profile at x = 7 cm for a second-order

central difference (FD2), a third-order Quick (FD3) and a

sixth-order compact (FD6) finite difference scheme.
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Figure 5.6 Mean streamwise velocity profile at x = 7 cm comparing solu-

tions using different subgrid stress models with experiments.
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Figure 5.7 Streamwise rms velocity profile at x = 7 cm comparing solutions

using different subgrid stress models with experiments.
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Figure 5.8 Mean streamwise velocity profiles at four streamwise locations

downstream of the splitter plates depicting growth of mixing

layer.
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Figure 5.9 Streamwise rms velocity profiles at four streamwise locations

downstream of the splitter plates.
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Figure 5.10 Wall normal rms velocity profile at four streamwise locations

downstream of the splitter plates.
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Figure 5.11 Spanwise rms velocity profile at four streamwise locations

downstream of the splitter plates. Note that experimental data

is not available for comparisons.
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Figure 5.12 Resolved shear stress at four streamwise locations downstream

of the splitter plates.
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Figure 5.13 Correlation coefficient profiles at four streamwise locations

downstream of the splitter plates.
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Figure 5.14 Skewness (S) and Kurtosis (F) for u- and v-velocity at x = 7

cm.
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Figure 5.15 Skewness (S) and Kurtosis (F) for u- and v-velocity at x = 13

cm.
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Figure 5.16 Skewness (S) and Kurtosis (F) for u- and v-velocity at x = 22

cm.
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Figure 5.18 Spatial correlations of streamwise velocity Ru′u′ . Left to right

column shows correlations at increasing streamwise distance.

Top to bottom shows correlations at increasing distance from

bottom wall. Experimental data is shown as colored contour

and LES solution is superimposed as solid lines. The range is

divided into 20 equal intervals for both data.
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Figure 5.19 Spatial correlations of cross-stream velocity Rv′v′ . Left to right

column shows correlations at increasing streamwise distance.

Top to bottom shows correlations at increasing distance from

bottom wall. Experimental data is shown as colored contour

and LES solution is superimposed as solid lines. The range is

divided into 20 equal intervals for both data.
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Figure 5.20 Spatial correlations Ru′v′ . Left to right column shows correla-

tions at increasing streamwise distance. Top to bottom shows

correlations at increasing distance from bottom wall. Experi-

mental data is shown as colored contour and LES solution is

superimposed as solid lines. The range is divided into 20 equal

intervals for both data.
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Figure 5.21 Spatial correlations Rv′u′ . Left to right column shows correla-

tions at increasing streamwise distance. Top to bottom shows

correlations at increasing distance from bottom wall. Experi-

mental data is shown as colored contour and LES solution is

superimposed as solid lines. The range is divided into 20 equal

intervals for both data.
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Figure 5.22 Comparisons between LES predicted eddy viscosity and ex-

perimentally obtained values at four downstream locations.
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Figure 5.23 Anisotropy invariant map of aij and the limiting values of IIa
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77

IIIa

II a

-0.1 0 0.1 0.2 0.30

0.2

0.4

0.6

0.000 0.009 0.018 0.027 0.036 0.045 0.054
Y

Figure 5.24 The resolved Reynolds stress anisotropy shown using the Lum-

ley invariant map at x = 7 cm.
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Figure 5.25 The resolved Reynolds stress anisotropy shown using the Lum-

ley invariant map at x = 13 cm.
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Figure 5.26 The resolved Reynolds stress anisotropy shown using the Lum-

ley invariant map at x = 22 cm.
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CHAPTER 6. LARGE EDDY SIMULATIONS OF A RECTANGULAR

JET: PASSIVE SCALAR TRANSPORT

In this chapter, large eddy simulations are performed to include the transport of a conserved

scalar for the confined rectangular jet with co-flowing fluid streams. The work complements

chapter 5 by examining different subgrid scale models for the diffusion of a scalar. In particu-

lar, substantial effort went into testing various numerical schemes for the discretization of the

scalar transport equation. The choice of numerical scheme is shown to impact the conservation

of scalar mass since the grid resolution for LES is low as compared to the DNS requirement.

Validation is performed by comparing LES statistics with those obtained from planar laser in-

duced fluorescence (PLIF) experiments. Predictions of the scalar mean, scalar rms and scalar

fluxes (obtained from simultaneous PIV and PLIF measurements) compare well with the exper-

imental data. The chapter ends with a summary of the appropriate combination of numerical

scheme and subgrid scale model for simulations of a complex flow.

6.1 Scalar transport equations

The mixing of two or more fluids at the molecular level plays an important role in chemically

reacting flows. In chemical reactors, often, the objective is to obtain rapid rates of mixing,

and hence practical problems generally focus on scalar mixing in turbulent flows. In many

applications for reacting flows, it is the processes occurring at the molecular diffusion scales

in the scalar field that are crucial in determining the outcome of the mixing process. Such

problems are often formulated in terms of an appropriately defined conserved passive scalar

quantity known as the mixture fraction. A passive scalar can be thought of as a tracer dye in

a fluid flow that is present in such low concentrations that it has no dynamical effect on the

fluid motion itself.
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Assuming a constant scalar diffusivity, D, the passive scalar field φ satisfies the advection-

diffusion equation, [
∂

∂t
+ u · ∇ − 1

ReSc
∇2

]
φ(x, t) = 0 (6.1)

where, u is the velocity field advecting the scalar, Re is the Reynolds number and Sc is the

Schmidt number. Equation 6.1, although linear in φ, involves plenty of dynamics, which can

be understood via transport equations for the scalar energy, scalar gradients and scalar dissipa-

tion (Buch and Dahm, 1996). To discern the fine structures of mixing, one can define the scalar

energy per unit mass 1
2φ2(x, t), which is analogous to kinetic energy. The transport equation

for scalar energy is given by,

[
∂

∂t
+ u · ∇ − 1

ReSc
∇2

]
1

2
φ2(x, t) = − 1

ReSc
∇φ · ∇φ(x, t) (6.2)

The right hand side of Eq. 6.2 gives the local instantaneous rate at which molecular diffusion

reduces non-uniformities in the scalar energy field and is called the scalar dissipation. The

transport equation for the scalar gradient vector that appears on the right hand side of Eq. 6.2

is, [
∂

∂t
+ u · ∇ − 1

ReSc
∇2

]
∇φ(x, t) = −(∇φ · S) − (∇φ × 1

2
ω) (6.3)

The first term on the right hand side of Eq. 6.3 describes the change in magnitude and direction

of the scalar gradient vector due to the local strain rate tensor, S = 1
2(∇u + ∇uT ) associated

with the underlying velocity field. The second term on the right hand side of Eq. 6.3 gives the

pure rotation of the scalar gradient vector with the fluid vorticity without any change in the

gradient magnitude. The scalar dissipation in Eq. 6.2 is the magnitude squared of the scalar

gradient vector in Eq. 6.3, and follows the transport equation,

[
∂

∂t
+ u · ∇ − 1

ReSc
∇2

]
1

2
(∇φ · ∇φ) = −(∇φ · S · ∇φ) − 1

ReSc
∇(∇φ) : ∇(∇φ) (6.4)

In the first term on the right in Eq. 6.4, the symmetric contraction selects the normal component

of the strain rate tensor along the local scalar gradient vector direction, giving −S∇φ∇φ(∇φ·∇φ).

The remaining components of the strain rate tensor act only to change the gradient vector

orientation but do not affect the magnitude. This results in a reduction of the scalar gradient

magnitude due to extensional straining along the gradient direction or, conversely, the increase
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in dissipation resulting from compression of the scalar gradient. The second term on the right in

Eq. 6.4 is strictly negative and gives the reduction in dissipation due to diffusional cancellation

of gradients in the scalar field.

The role of molecular diffusion in mixing is characterized by the Schmidt number, Sc = ν/D,

which is the ratio of the kinematic viscosity of the fluid to the molecular diffusivity. Some

examples where Sc � 1 are the mixing of fine particles such as soot or oil droplets in the

atmosphere, the mixing and reaction of aqueous acid-base solutions, or the mixing of various

components in a wide range of liquid-phase chemical, pharmaceutical, and industrial processes.

Examples when Sc ≈ 1 include gaseous-phase mixing and combustion and Sc � 1 for mixing

in plasmas. The range of scales present in the scalar field is sensitive to Sc. For Sc < 1

the smallest scale is estimated to be the Obukhov–Corrsin scale λoc ≡ λνSc−3/4 while, for

Sc � 1, the smallest scale is the Batchelor scale λB ≡ λνSc−1/2 (Fox, 2003). A major

difficulty in studying turbulent mixing at high Sc is the need to resolve scales of size λB , which

is much smaller than the smallest scale of the velocity field. This puts stringent demands on the

sensitivity of measurement capabilities in experiments as well as grid resolution and consequent

CPU expense in DNS.

Insight into the fine structure of the scalar dissipation fields have been provided by exper-

imental measurements of Dahm et al. (1991) and Buch and Dahm (1996, 1998). They found

that the scalar dissipation field shows ‘spottiness’ and has a sheet-like topology, and unlike

the vorticity field in turbulent flows, the scalar gradients are concentrated solely on sheet-like

small-scale structures. This supports the sheet-like conceptual models of reacting turbulent

flows, such as the flamelet models (e.g., Gibson and Libby, 1972). Vedula et al. (2001) obtained

a similar ‘spottiness’ of the dissipation rate in their DNS study where they observed that the

scalar dissipation fluctuations are highly intermittent. Eswaran and Pope (1987) found from

their DNS simulations (Sc = 0.7) that the initial scalar to velocity integral length-scale ratio

influences the evolution of scalar fields and the probability density function (PDF) of scalar field

becomes Gaussian. It was also found that the shape and evolution of the scalar PDF does not

depend on the initial length-scale ratio. DNS have also been performed by Yeung et al. (2002)

for Sc = 64, Brethouwer et al. (2003) for Sc = 144 and Yeung et al. (2004) up to Sc = 1024.
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The emphasis has been on resolving the viscous-convective range of scales (λν > l > λB) and the

Reynolds number is kept low so as to reduce grid resolution requirements. Yeung et al. (2004)

found from their study of forced isotropic turbulence with an imposed uniform mean scalar

gradient that the scalar spectrum resembles the k−1 viscous-convective range as Sc is raised

from 64 to 1024. They also found that the scalar variance increases slightly with Sc, but the

scalar dissipation rate is independent of Sc.

DNS, however is not possible for most flows of practical importance. LES has shown success

in predicting passive scalar transport, e.g., Moin et al. (1991), Ribault et al. (2001), Herrmann

et al. (2004), Chumakov et al. (2004). Very few studies have attempted LES of high Schmidt

numbers, e.g., Dong et al. (2003) for Sc = 200, Burton (2005) for Sc = 100. An objection

commonly raised against LES is that turbulent mixing requires molecular mixing at the diffusive

scales, and therefore LES, which does not directly represent the diffusive scales should not yield

accurate predictions. Mahesh et al. (2005) answer this concern by proposing a kinematic model

for the scalar fluctuations without detailed knowledge of the diffusive processes. They conclude

that any model which accurately captures the energy-containing convective motions, and the

approximate thickness of the scalar fronts can yield good predictions for the scalar field. Mahesh

et al. (2005) also state that predictions in gas-phase flows, or high Reynolds number flows are

likely to be easier than those in liquid-phase, low Reynolds number flows.

6.2 Numerical scheme for scalar transport

Numerical schemes for scalar transport equations are challenging from the viewpoint of sta-

bility. Unlike velocity transport, the solution of a conserved scalar transport equation should

preserve boundedness. This is especially difficult in LES simulations, where a low spatial

resolution causes the filtered scalar field to fluctuate sharply between its minimum and max-

imum values. It has been shown that the advection equation solved using central difference

schemes can lead to oscillations and instabilities (Pierce, 2001). To counter this problem,

explicit schemes using an upwind bias, e.g., the quadratic upstream interpolative convective

kinematic (QUICK) scheme (Leonard, 1979), can reduce numerical oscillations, however, they

can lead to artificial diffusion. In spite of this drawback, upwind schemes are being used due



83

to their robust numerical stability. Essentially non-oscillatory (ENO) and weighted essentially

non-oscillatory (WENO) schemes have been used for advection-type equations involving sharp

gradients (Shu, 1997). In the following paragraphs, these schemes are discussed in detail with

regard to their discretization.

The velocity and scalar are defined at the grid nodes and the scalar fluxes are evaluated at

the interface between two grid nodes to ensure and maintain flux balance. To illustrate how the

fluxes are calculated, a 1-D schematic is shown in Fig. 6.1. The flux evaluations are performed

at the interface indicated by the vertical lines (fl indicates flux at left face and fr indicates flux

at right face). The convective term is evaluated as,

∂uφ

∂x
=

urφr − ulφl

dx
(6.5)

and fl = ulφl and fr = urφr.

Four schemes are described here: a second-order central difference scheme (CD), a third-

order QUICK scheme, a third-order WENO scheme and a fifth-order WENO scheme. For all

the schemes, the velocities at the cell faces are interpolated as:

ul =
1

2
(ui−1 + ui)

ur =
1

2
(ui + ui+1)

For the CD scheme, the right hand side of Eq. 6.5 are defined as:

φl =
1

2
(φi−1 + φi)

φr =
1

2
(φi + φi+1)

and for the QUICK scheme, the terms in Eq. 6.5 are defined as:

φr =
6

8
φi+1 +

3

8
φi −

1

8
φi+2 (ur < 0)

φr =
6

8
φi +

3

8
φi+1 −

1

8
φi−1 (ur > 0)

φl =
6

8
φi +

3

8
φi−1 −

1

8
φi+1 (ul < 0)

φl =
6

8
φi−1 +

3

8
φi −

1

8
φi−2 (ul > 0)
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For the WENO schemes, extra terms need to be defined. The flux definitions are shown

for φr (Jiang and Shu, 1996). The definitions for φl are straightforward. For the fifth-order

WENO scheme, three stencils containing three cells each are associated with every node in the

grid (Note: The third-order WENO scheme utilizes two stencils with two cells each. For details,

refer to Jiang and Shu, 1996). Each of the three stencils give rise to approximations for the

fluxes denoted by φm
r (m = 0, 1, 2):

φ0
r =

1

3
φi +

5

6
φi+1 −

1

6
φi+2

φ1
r = −1

6
φi−1 +

5

6
φi +

1

3
φi+1

φ2
r =

1

3
φi−2 −

7

6
φi−1 +

11

6
φi

Next, positive (wm) and negative (w̃m) weights are computed as wm = αm/
∑2

m=0 αm and

w̃m = α̃m/
∑2

m=0 α̃m, where αm = dm/(ε + βm)2 and α̃m = d̃m/(ε + βm)2, with d0 = 3/10,

d1 = 6/10, d2 = 1/10, d̃0 = 1/10, d̃1 = 6/10, d̃2 = 3/10, ε = 10−6. The expressions for the

smooth indicators βm are given by,

β0 =
13

12
(φi − 2φi+1 + φi+2)2 +

1

4
(3φi − 4φi+1 + φi+2)2

β1 =
13

12
(φi−1 − 2φi + φi+1)2 +

1

4
(φi−1 − φi+1)2

β2 =
13

12
(φi−2 − 2φi−1 + φi)

2 +
1

4
(φi−2 − 4φi−1 + 3φi)

2

The expressions for the positive and negative interpolations at the right cell face are:

φ+
r =

k−1∑

m=0

wmφm
r

φ−

r =
k−1∑

m=0

w̃mφm
r

The choice between the positive and the negative interpolation is made based on the value of

the Roe-speed, ar = fi+1−fi

φi+1−φi
. Given the Roe-speed,

φr = φ−

r , if ar >= 0,

= φ+
r , if ar < 0

To test the predictive capabilities of the schemes just described, a simple 1-D test is con-

ducted with a uniform periodic velocity field. Since scalar profiles in turbulent flows are rarely
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smooth and involve strong gradients, a profile that involves a combination of a Gaussian, square

wave, sharp triangle wave and half ellipse is used (Jiang and Shu, 1996) across the domain

discretized by 256 equidistant cells. The 1-D equation solved is:

∂φ

∂t
+

∂uφ

∂x
= 0 (−1 < x < 1)

u(x, t) = 1 (−1 < x < 1; t ≥ 0)

using the initial scalar profile:

φ(x, 0) =





1
6 [G(x, β, z − δ) + G(x, β, z + δ) + 4G(x, β, z)] : −0.8 ≤ x ≤ −0.6

1 : −0.4 ≤ x ≤ −0.2

1 − |10(x − 0.1)| : 0 ≤ x ≤ 0.2

1
6 [F (x, α, a − δ) + F (x, α, a + δ) + 4F (x, α, a)] : 0.4 ≤ x ≤ 0.6

0 : otherwise

(6.6)

where,

G(x, β, z) = exp(−β(x − z)2)

F (x, α, a) =
√

max(1 − α2(x − a)2, 0)

The constants are a = 0.5, z = −0.7, δ = 0.005, α = 10 and β = log 2/36δ2 . A third-order

Runge–Kutta method is used to advance the solution in time. The simulation is carried out

for four rotations, where each rotation is defined as the time taken for the initial profile to

be convected back to its initial location. Figure 6.2 compares results obtained from the four

schemes with the initial condition of Eq. 6.6. The CD scheme exhibits the largest oscillations

at sharp interfaces and poorly predicts the exact solution. Using the QUICK scheme, most

oscillations are damped, however, the scalar values exceed the bounds of the solution. The third-

order WENO scheme shows no oscillations, however it does not capture the local extrema of the

scalar, which indicates that the scheme might cause damping of the resolved scalar fluctuations.

The fifth-order WENO scheme captures the profiles accurately, shows no oscillations and gives

the best solution.
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As seen from the results, the CD and the QUICK scheme give solutions that grow out

of bounds and therefore cannot be used for our purpose. Herrmann et al. (2004) recently

proposed a bounded QUICK (BQUICK) scheme, which preserves scalar values within bounds.

The BQUICK scheme is based on a predictor-corrector algorithm. The predictor step advances

the solution using the QUICK scheme. However, when the predicted scalar value is outside of

the bounds, a first-order upwind scheme is used to re-calculate the scalar flux and the corrector

step advances the initial scalar field (before the predictor step) in time. Although the method

uses a first-order approximation in the corrector step, it has been shown to maintain a third-

order accuracy (Herrmann et al., 2004). The steps required for the BQUICK algorithm to

maintain scalar boundedness are:

1. March velocity from un
i → un+1

i .

2. March scalar from φn
i → φn+1

i based on flux evaluation (fl, fr) using QUICK scheme.

3. Check φn+1
i for boundedness. If out of bounds, re-evaluate both fl and fr using first-order

upwind scheme:

(a) IF ul ≥ 0 THEN φl = φi−1, ELSE φl = φi

(b) IF ur ≥ 0 THEN φr = φi, ELSE φr = φi+1

(c) Re-evaluate flux fr for node i− 1 and fl for node i + 1 based on first-order method.

(d) March φn
i−1, φn

i , φn
i+1 → φn+1

i−1 , φn+1
i , φn+1

i+1 based on the new fluxes.

Based on the predictor-corrector methodology, a scheme using a second-order central differ-

ence method in the predictor step and first-order upwind method in the corrector step is also

tested (Muppidi, 2006): the bounded central difference scheme (BCD). Also, a plain first-order

upwind scheme is also tested in order to bring out the difference between using a first-order

scheme only in the corrector step and using a first-order scheme for the convective term. Fig. 6.3

compares results from the three schemes against the exact solution. The three schemes are able

to maintain the scalar values within bounds and the BQUICK scheme shows the best results.

The first-order upwind scheme shows results similar to the BCD scheme, leading to the conclu-

sion that the first-order corrector step must have been invoked often for the BCD scheme.



87

Based on the above tests, the first-order upwind scheme, the BCD scheme, the BQUICK

scheme, the third-order WENO scheme and the fifth-order WENO schemes will be tested for

the confined rectangular jet.

6.3 Governing equation and subgrid model

In order to couple the scalar transport with the governing equations (3.1) and (3.2), the

non-dimensional filtered equation of passive scalar φ is given by,

∂φ

∂t
+

∂ujφ

∂xj
=

1

ReSc

∂

∂xj

(
∂φ

∂xj

)
− ∂λj

∂xj
(6.7)

where the turbulent subgrid scalar flux vector that requires modeling is given by,

λj = ujφ − ujφ =
Cs

Sct
∆

2|S| ∂φ

∂xj

A simple closure for the turbulent Schmidt number Sct assumes a constant value; here Sct = 0.4

is used. Closure is also obtained by using a dynamic procedure proposed by Moin et al. (1991).

When the test filter is applied to the scalar transport equation, a similar expression is obtained

for the subtest scalar flux,

Λj = ûjφ − ûjφ̂ =
Cs

Sct
∆̂2|Ŝ| ∂φ̂

∂xj

Using the Germano identity,

Λj − λ̂j = Css


−∆̂2

∆
2 |Ŝ|

∂φ̂

∂xj
+

̂
|S| ∂φ

∂xj




Or,

Ls
j = CssM

s
j

where Css = Cs

Sct
∆

2
. Using the least squares approach, the set of equations is contracted with

M s
j to obtain the value of Css:

Css =
Ls

jM
s
j

M s
j M s

j

(6.8)

In the following sections, the effect of numerical schemes and subgrid flux models on the resolved

scalar field are compared against experimental measurements.
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6.4 Effect of numerical schemes

Large eddy simulations of momentum and passive scalar transport are performed for a

confined rectangular jet at Re = 20, 000 and Sc = 1200 and compared to PIV and PLIF

measurements. Numerical schemes for the advection term can have a great effect on the scalar

solution. As explained in section 6.2, the first-order upwind, the BCD, the BQUICK and the

WENO schemes are used to test the predictive capabilities of the formulations. However, when

the WENO schemes were tested for the passive scalar transport in the confined rectangular jet,

it was found that the scalars exceeded the bounded values. The solutions also showed ringing

similar to Gibb’s phenomenon. Therefore, the WENO schemes will not be considered and are

a part of future work. For the reactor geometry, the first-order upwind, the BCD and the

BQUICK schemes will be used.

The filtered scalar transport equation is solved using these three schemes for the convection

term, and a constant turbulent Schmidt number Sct = 0.4 was used to close the subgrid flux

model. Figure 6.4 compares the mean resolved scalar profiles at four locations downstream

of the splitter plates. PLIF results are shown as symbols and LES solution as lines. The

corrector step in the bounded methods ensures conservation of the scalar mass flow rate since

artificial clipping of scalars exceeding physical bounds is avoided. All three schemes are able

to capture the mean profile well. At locations x = 13 and x = 22 cm, the BCD and BQUICK

schemes underpredict the maximum scalar value and slightly overpredict values near the wall

as compared to the experiment and the first-order upwind scheme. This is due to a higher

turbulent scalar-flux transport obtained using the BCD and BQUICK schemes.

Since the scalar field is fixed at the inlet, the scalar rms profiles shown in Fig. 6.5 begin

with location x = 7 cm. In general, the rms peaks reduce with downstream distance. However,

the first-order upwind scheme dissipates the most scalar energy relative to the other schemes

resulting in a lower rms, most notably at locations x = 22 and x = 28 cm. Examination of

Fig. 6.5 also reveals that predictions of the scalar rms for the BCD and the BQUICK schemes

are comparable. It should be noted that for the PLIF measurements, the resolution in the

plane of measurements is higher than the LES filter length scale. However, the resolution in
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the out-of-plane direction is coarse, leading to a lower energy in the resolved scales measured

by PLIF as compared to LES, and can be seen in the turbulent scalar flux profiles shown in

Fig. 6.6. The normalized streamwise and cross-stream turbulent scalar fluxes are shown only

at locations of x = 7 and x = 13 cm. The fluxes resolved by the LES are higher than those

measured by simultaneous PIV and PLIF, especially for the BCD and BQUICK schemes as

compared to the first-order upwind scheme.

6.5 Effect of subgrid flux model

Based on the scalar results in Section 6.4, it is apparent that the subgrid model must

account for the unresolved scalar energy. Simulations using the dynamic procedure (section

6.3, Eq. 6.8) to close the subgrid scalar flux are compared to the previous simulations for

Sct = 0.4. Figures 6.7 and 6.8 compare the scalar mean and rms profiles for the two cases using

the BQUICK scheme for the convection terms. Both closure models give an almost identical

solution of the resolved scalar field. Thus the constant Sct model is sufficient to provide a good

solution, thus saving (about 20%) computational effort required for the dynamic calculation.

6.6 Summary

Large eddy simulations were performed for scalar transport in a confined rectangular jet. An

important step in obtaining a good solution is using a numerical scheme that can resolve sharp

scalar gradients in the shear layer while preserving the scalar boundedness without resorting

to artificial clipping. A 1-D test case with sharp initial conditions was studied to investigate

the effect of numerical schemes on the scalar solution. The central-difference scheme showed

the largest instabilities in the solution. The QUICK scheme reduced most of the oscillations

but still exceeded the physical bounds imposed by the scalar initial conditions. The BQUICK

scheme with its predictor-corrector steps was able to maintain the scalar bounds. WENO

schemes provided good solutions for the 1-D test case, however, numerical instabilities (i.e.,

Gibb’s ringing) developed for simulations of flow in the reactor geometry. The effects of a

first-order upwind, the second-order BCD scheme and the third-order BQUICK scheme were

studied on the resolved scale statistics for the rectangular jet. Overall, the scalar mean and rms
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profiles compared well PLIF measurements. Results using the second- and third-order schemes

showed higher turbulent fluxes across the shear layers. The dynamic closure model did not

show any significant improvement with accuracy of the solution as compared to the case when

a constant turbulent Schmidt number was used. The state of the art PLIF and simultaneous

PIV and PLIF measurements of the confined jet reactor are unique and the validation of the

filtered scalar transport equation using LES for large Schmidt number flows is an important

contribution of this work to the LES literature.

i+1

ur

i+2i-2 i-1 i
φr

dx

φl

fr

ul

fl

Figure 6.1 A 1-D schematic to illustrate scalar flux evaluation.
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Figure 6.2 1-D convection test case comparing numerical schemes. Exact

solution shown in black and numerical solutions are shown as a

dotted line.
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Figure 6.3 1-D convection test case comparing numerical schemes. Exact

solution shown in black and numerical solutions are shown as a

dotted line.
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Figure 6.4 Mean scalar profiles at four streamwise locations downstream of

the splitter plates using a constant turbulent Schmidt number.
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Figure 6.5 Scalar rms profiles at four streamwise locations downstream of

the splitter plates using a constant turbulent Schmidt number.
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Figure 6.6 Normalized streamwise and cross-stream scalar flux profiles at

x = 7 and x = 13 cm using a constant turbulent Schmidt

number.
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Figure 6.7 Mean scalar profiles at four streamwise locations downstream

of the splitter plates.
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Figure 6.8 Scalar rms profiles at four streamwise locations downstream of

the splitter plates.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

A robust code for large eddy simulations of turbulent flows with application to the confined

jet reactor was developed. A critical step in the stability of the solution was staggering the

pressure to the cell center. This work represents the first time that the partial staggered scheme

has been used for LES. Another step was making the code amenable to parallel computing

utilizing MPI routines and parallel libraries for matrix inversion. A parallel iterative solver,

Aztec, was used for solving the pressure Poisson equation. Validation of the solution algorithm

was performed for driven cavity flows and flow over a backward facing step (both laminar flows).

The subgrid scale model validation was performed by simulating a turbulent channel flow and

comparing the LES with DNS and experiments that are well documented in the literature.

Performance of the code on an Opteron cluster at Iowa State University was performed and a

linear speed up was obtained up to 192 processors, indicating the amount of time savings that

could be achieved in the numerical computations in this research.

Turbulent mixing in a confined rectangular jet was studied using large eddy simulations

and results were validated with PIV and PLIF measurements. The Reynolds number of the

jet was 20,000 based on the hydraulic diameter and average velocity at the inlet. The Schmidt

number of the fluorescence dye was 1,200. Flow statistics such as mean velocity, rms velocity,

Reynolds stresses, correlation coefficients, skewness and kurtosis were calculated and compared

with measurements at multiple locations. The effect of grid resolution, numerical schemes and

subgrid models were studied on the resolved scale solution. It must be pointed out that since the

filter size is not independent of the grid resolution, an accurate grid independence study cannot

be performed. However, a resolution necessary to capture the mean profile accurately was

chosen. The LES statistics agreed very well with those obtained from PIV measurements. The

most notable results from the study were the two-point velocity spatial correlations obtained at
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several locations within the domain. LES correctly predicts the length scales and the orientation

of the large scale structures. The quantitative and qualitative agreement of these correlations

was excellent and such detailed statistics have not been published in literature so far.

LES of the passive scalar transport was also performed for the same geometry and com-

pared with PLIF measurements of resolved scalar statistics and simultaneous PIV and PLIF

measurements of the scalar fluxes. The resolution of the PLIF measurements is coarser than the

LES filter length scale since the depth of the laser sheet is quite large. Thus the resolved LES

scalar field predicted more energy than the measurements. An issue with the numerics was that

sharp gradients exist at the inlet and with a low molecular diffusivity, the scalar solution tends

to exhibit oscillations similar to the Gibbs ringing effect. Another constraint on the scalar was

that it should maintain the boundedness imposed by the initial and the boundary conditions.

Several schemes were tested for a 1-D test case, including a bounded scheme based on predictor-

corrector steps. The schemes used for the solving scalar transport in the reactor geometry were

based on a second-order central difference or a third-order QUICK scheme for the scalar flux

in the predictor step and an upwind scheme for the corrector step (BCD and BQUICK, respec-

tively), with the fluxes evaluated at the interface between grid nodes. The schemes maintained

scalar boundedness without the need for any artificial clipping. The bounded schemes were

used to discretize the convective term in the filtered passive scalar transport equation for the

rectangular jet. The first-order upwind scheme, although bounded and conservative, is dissipa-

tive in nature and is not suitable with the LES methodology. The resolved scale scalar mean

and rms profiles were close to those measured using PLIF. The dynamic subgrid flux model

did not show any improvement in accuracy as compared to the case when a constant turbulent

Schmidt number was used. The turbulent scalar flux obtained from LES showed higher values

since the resolution of the LES was better then the simultaneous PIV and PLIF measurements.

Overall, the best scheme was the BQUICK for the convection term with a constant Sct be-

cause a higher-order accuracy of the solution is maintained and time savings are made by not

resorting to the dynamic subgrid scalar flux model.
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Future Work

The future direction of this research lies in the validation of models for turbulent reacting

flows. The LES methodology breaks down when the rate controlling mechanism occurs at

unresolved scales, which is the case with reacting flows at high Schmidt numbers. The resolved

scale mixture fraction is known, but the SGS fluctuations are not resolved and information

about the SGS mixture fraction PDF is required to compute resolved scale reacting scalar

fields. Thus, LES of turbulent reacting flows has closure problems associated with the chemical

source term. In the present research, focus is on non-premixed liquid reacting flows, which are

characterized by high Schmidt numbers. Such flows are often described by a mixture-fraction

variable and a reaction-progress variable (Fox, 2003).

A mixture fraction is obtained from a linear combination of the reacting scalars (Toor,

1975) such that the source term in the mixture–fraction transport equation is null (just like in

a non-reacting scalar transport equation). The motivation is that simple forms for the mixture-

fraction PDF can be employed to describe the reacting scalars. According to the manner in

which the subgrid scale concentration fluctuations are treated in the closure for the chemical

source term, the models can be roughly classified into four general categories: moment methods,

conditional moment methods, presumed PDF methods and transported PDF methods (Fox,

2003). These methods although well understood, have not been thoroughly validated due to

lack of experimental data. The models could be tested in the LES code for simple reaction

schemes against PLIF measurements.

For more complex reactions, only a one-point, one-time joint composition PDF can describe

the source term completely, however, only DNS is capable of resolving the finest of structures

to provide such information, which is feasible only for simple flows (Fox, 2003). The alternative

is to use transported PDF methods where a joint PDF is solved for the SGS fluctuations of

all concentrations. The method has a distinct advantage in that the chemical source terms

appear in closed form and require no modeling. Unlike presumed PDF methods, transported

PDF methods do not require apriori knowledge of the joint composition PDF. The methods are

the most computationally demanding of all macroscopic models for turbulent reacting flows.
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However, they offer the only known solution for treating finite-rate chemistry that is often

associated with pollutant information. Although the chemical source term is treated exactly,

modeling is required for molecular mixing (micromixing models), which describes the effect of

molecular diffusion on the shape of the PDF. A disadvantage of the method is that being a

one-point, one-time PDF, no length or time scale information is available from the PDF, hence,

the mixing time scales have to be related to turbulence time scales through a model for the

scalar dissipation rate (Pope, 1985; Tsai and Fox, 1995; Fox, 1996; Cha and Trouillet, 2003).

One such lagrangian PDF code has been developed at Iowa State University and is expressed

in terms of a stochastic differential equations for the position and composition of “notional”

particles (Raman et al. 2001, 2003, 2004). This code could be coupled with the present LES

code for solving complex reactions where solution for the velocity field is obtained from the LES

and the PDF code solves for the scalars. Validations can then be performed for micromixing

models in literature.
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Mètais, O. and Lesieur, M. (1992). Spectral large-eddy simulation of isotropic and stably strat-

ified turbulence. Journal of Fluid Mechanics, 239, 157–194.

Merkle, C.L. (1994). Unified time-marching procedure for compressible and incompressible flow.

Proceedings of the International Conference on Hydrodynamics, Wuxi, China.

Moin, P. and Kim, J. (1982). Numerical investigation of turbulent channel flow. Journal of

Fluid Mechanics, 118, 341–377.

Moin, P., Squires, K., Cabot, W. and Lee, S. (1991). A dynamic subgrid-scale model for com-

pressible turbulence and scalar transport. Physics of Fluids A, 3, (11), 2746–2757.

Moser, R.D. and Rogers, M.M. (1993). The three-dimensional evolution of a plane mixing layer:

Pairing and transition to turbulence. Journal of Fluid Mechanics 247, 275–320.

Mungal, M.G. and Dimotakis, P.E. (1984). Mixing and combustion with low heat release in a

turbulent shear layer. Journal of Fluid Mechanics, 148, 349–382.

Muppidi Suman (2006). Direct numerical simulations and modeling of jets in crossflow. Ph.D.

Dissertation, Dept. of Mechanical Engineering, The University of Minnesota, MN.



110

Olsen, M.G. and Dutton, J.C. (2002). Stochastic estimation of large structures in an incom-

pressible mixing layer. AIAA Journal, 40, (12) 2431–2438.

Patankar, S.V. (1980). Numerical heat transfer and fluid flow. New York: McGraw-Hill.

Patterson, G.K. (1990). Simulating turbulent–field mixers with multiple second–order chemical

reactions. AIChE Journal, 36

Pierce, C.D. (2001). Progress variable approach for large-eddy simulation of turbulence combus-

tion., Ph.D. thesis, Stanford University.

Pierce, C. and Moin, P. (1998). A dynamic model for subgrid–scale variance and dissipation

rate of a conserved scalar. Physics of fluids 10, (12), 3041–3044.

Piomelli, U. and Balaras, E., (2002). Wall–layer models for large–eddy simulations. Annual

Review of Fluid Mechanics 34, 349–374.

Piomelli, U. and Liu, J. (1995). Large-eddy simulation of rotating channel flows using a localized

dynamic model. Physics of Fluids, 4, 839–848.

Pipino, M. and Fox, R.O. (1994). Reactive mixing in a tubular jet reactor: A comparison of

PDF simulations with experimental data. Chemical Engineering Science, 49, 5229–5241.

Pope, S.B. (1985). PDF methods for turbulent reactive flows. Progress in Energy and Combus-

tion Science. 11, 119–192.

Pope, S.B. (2000). Turbulent Flows. Cambridge University Press
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