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ABSTRACT

In-situ adaptive tabulation (ISAT) method, which can treat complex chemistry efficiently,

has been implemented into a multiphase computational fluid dynamics (CFD) code. The

numerical algorithm is improved to solve the chemical source term. Two-dimensional and

three-dimensional non-isothermal detailed silane pyrolysis cases are used to test the features

of ISAT, such as scale factors and multiple tables on multiple processors. ISAT can reduce the

computational time for chemistry drastically. For example, a speed-up of 50 times is achieved

with the non-isothermal three-dimensional case. Coal gasification with detailed chemical reac-

tions is simulated to test the performance of ISAT with complex gas-solid reaction mechanisms.

The speed-up of chemistry is around 16 times with 10% reduction in total CPU time for sim-

ulations. The elutriation phenomenon in fluidized beds is also studied in order to increase

the efficiency of biomass reactors. In the simulations, fine and coarse particles are solved as

two individual phases. Effects of gas velocity, and fine and coarse particle diameters are in-

vestigated for elutriation rate constants. The elutriation rate constants are proportional to

approximately the 5.6th power of the gas velocity and decrease with increasing fine diameters.

The diameters of coarse particles have little influence on elutriation rate constants. The simu-

lation results are compared with experiments from the literature and performed at Iowa State

University. Apart from the mainstream of this research, the effects on the use of coordinate

systems and configurations to model fluidized bed reactors are tested. Three different fluidiza-

tion regimes: bubbling, slugging and turbulent regimes are investigated. The results indicate

that a two-dimensional Cartesian system can be used to successfully simulate and predict a

bubbling regime. Caution must be exercised when using two-dimensional simulations for other

fluidized regimes.
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CHAPTER 1. INTRODUCTION

1.1 Background

Fluidized beds are found in many operations in chemical, petroleum, pharmaceutical, agri-

cultural, biochemical, food, electronic, and power-generation industries. For example, combus-

tion or gasification of coal is used in the power-generation industry. Fluid catalytic cracking

(FCC) in chemical engineering industries employs one or more fluidized beds for a catalyst

particles circulation system. Silicon for semiconductor industries is inexpensively produced

from chemical vapor deposition (CVD) reactors.

The phenomenon of fluidization occurs when solid particles behave like a fluid state through

suspension in a gas or liquid. Thus, a gas fluidized bed looks very much like a boiling liquid

and in many ways exhibits liquid-like behavior. Gas-solid fluidized beds have advantages in

comparison with other methods of gas-solid reactors (Kunii and Levenspiel, 1991). In fluidized

beds, the rapid mixing of solids leads to nearly isothermal conditions throughout the bed,

thereby, the whole bed of well-mixed solids resists rapid temperature changes. Heat and mass

transfer rates between gas and particles are high compared to other methods. The smooth flow

of particles allows continuous automatic operations and makes it possible to add or remove

the vast quantities of heat in large reactors. Therefore, fluid-like behavior of solids with its

rapid, easy transport and intimate gas contact in a fluidized bed are the most important

characteristics for industrial applications.

Experiments are traditionally used in the design of multiphase reacting systems such as

fluidized beds to improve efficiency of the process. However, a laboratory-scale process does

not always exhibit the same flow behavior as a real reactor. It is often necessary to build ex-

pensive pilot-scale facilities in order to test the viability of fluidized beds. Computational fluid
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dynamics (CFD) provides an alternative method to analyze the gas-solid behavior. Usually,

CFD calculations can give time-dependent information for pressure, temperature, composition

and velocity distributions. With such information, the conditions in a reactor can be visualized

and parametric studies can be conducted, thereby, assisting in the design process and avoiding

the need for expensive pilot-scale tests. Barthod et al. (1999) have successfully improved the

performance of a fluidized bed in the petroleum industry by using CFD.

CFD for reacting multiphase flows, however, is still not widely applied. One reason is be-

cause of the difficulty in describing multiphase systems. For example, there is still no agreement

on detailed modeling of the interactions between the flowing gas and suspended particles (Wen

and Yu, 1966; Gidaspow, 1994) or particle-particle interactions (Lun et al., 1984; Hrenya and

Sinclair, 1997). The incorporation of chemical models in multiphase flow simulations is also a

challenging task. Another issue is that multiphase flows are computationally expensive due to

a wide range of length and time scales.

The entrainment of carbon particles from the freeboard is the main source of loss in reactor

efficiency for fluidized bed gasifiers or combustors, especially for biomass reactors. Attrition and

fragmentation for biomass are far more extensive since biomass usually has a higher moisture

and volatile content, a more porous and fragile structure, a lower density and a higher intrinsic

reactivity than coal. The efficiency of reactors is associated with the residence time of carbon

fines in the bed. In addition, the elutriation of solid particles has to be known for designing

gas cleaning equipment.

1.2 Problem Statement

The objective of this research is to advance the progress in simulating multiphase reacting

flows using a government-developed numerical code. Multiphase Flow with Interphase eX-

changes (MFIX) is a FORTRAN code developed by the National Energy Technology Labora-

tory (NETL) which models chemical reactions and heat transfer in dense and dilute fluid-solid

flows. It can use multiple particle types, three-dimensional Cartesian or cylindrical coordinate

systems and uniform or non-uniform grids. The continuity, momentum, energy and species
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equations are solved for gas and solid phases.

The first issue of this study is to improve the numerical algorithm to solve the chemical

source term. In-situ adaptive tabulation (ISAT) (Pope, 1997) provides such a strategy and

has a number of advantages compared to other tabulation schemes. For example, tables are

generated during the calculations only for the regions in which chemical reactions happen.

ISAT has been implemented into MFIX to test the feasibility of the time splitting method with

a grid-based gas-solid code. It was the first study that demonstrated ISAT could be coupled to

a finite-volume code. The test case was for the isothermal chemical vapor deposition of silane

in a two-dimensional domain (Xie, 2002). There was only one chemical reaction with three

gaseous species and two solid species.

In this research, first the MFIX-ISAT algorithm will be modified to improve ISAT per-

formance. Then two-dimensional and three-dimensional non-isothermal detailed silane cases

will be used to test the features of ISAT, such as scale factors and multiple tables on multiple

processors. Based on the knowledge of the aforementioned tests, coal gasification with detailed

chemical reactions will be simulated to test the performance of ISAT using complex gas-solid

reaction mechanism.

The second task of this research is to study the elutriation of carbon in biomass reactors. In

fluidized bed reactors, carbon comminution, such as fragmentation and attrition, occurs (Chi-

rone et al., 1991). In combination with reactions, these phenomena control the reduction of

feed carbon particles into fines of elutriable size, thereby, reactor efficiency. As the first step

of this study, elutriation phenomenon will be simulated using two solid phases with the same

density and different diameters. The simulation results will be validated with experiments

from the literature and performed at Iowa State University.

1.3 Dissertation Organization

In Chapter 2, a survey of different modeling methods for multiphase flows is presented.

The modeling methods include Eulerian-Eulerian modeling and Lagrangian-Eulerian model-

ing. Numerical methods for chemistry are then presented, which include methods like direct



4

integration, reduction, and storage and retrieval. The governing equations and numerical

methods for this research are described in detail in Chapter 3. The closure models for the

equations such as solid phase stresses and interphase momentum transfer are presented. The

implementation of chemical reactions using ISAT are presented in Chapter 4. Chapter 5 and

6 present the results of ISAT used in MFIX for silane decomposition and coal gasification.

Chapter 7 shows the simulations of fluidized beds using different coordinate systems. The sim-

ulations of elutriation phenomenon using MFIX are compared with the experiments in Chapter

8. Chapter 9 discusses the conclusions and future work.
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CHAPTER 2. LITERATURE REVIEW

Since there are many types of multiphase flows (gas-solid, gas-liquid, liquid-liquid, etc.)

and several possible flow regimes (bubbly flow, slug flow, etc.) exist, general applicable models

and methods are not available. Usually, two distinct numerical methods are used to simulate

multiphase flow systems; namely the Lagrangian-Eulerian (LE) model or discrete element

model (DEM) and the Eulerian-Eulerian (EE) model or two-fluid model (Sha, 1986). In

addition, the chemical source term should be given close attention since a wide range of time

scales appears in reactions. In this section, numerical methods which focus on gas-solid flows

are introduced depending on the applications for multiphase flows with an overview of methods

available for the chemical source term.

2.1 Survey of Methods for Solving Multiphase Flows

The early models developed for gas-solid flows were based on one-way coupling (Crowe,

1984). One-way coupling requires that the dispersed phase particles have no effect on the flow

field of the continuous gas phase, but are controlled by the gas phase. Later on, numerical

models incorporating two-way coupling were derived to describe the particle effects on the

gas phase flow field. Four-way coupling methods are used for dense flows because the relative

distance between particles is small enough so that particles collide. It is essential to examine

the extent of coupling between gas and solid phases to select an appropriate modeling approach,

especially for turbulent flows.

A classification of one-way, two-way and four-way coupling for gas-solid suspensions was

proposed by Elghobashi (1991), based on the characteristic time scales and the volume fraction

of particles as shown in Fig. 2.1. The particle relaxation time τx
12 represents the entrainment



6

10

10

10

10

10 10 10 10-7 -5 -3
s

-1

-4

-2

0

2

τ       τx
12 1

t

ε

One-way

coupling two-way coupling four-way coupling

negligible

effects on

turbulence

particles enhance

turbulence

particles enhance

dissipation

Figure 2.1 Classification of flow regimes for gas-solid flows by Elghobashi

(1991).

of the particles by the gas phase, τ t
1 is the characteristic time scale of the large eddies in the

continuous phase and ǫs is the volume fraction of solid phase. The assumption of one-way

coupling is generally valid if the suspension is very dilute (ǫs < 10−6). Two-way coupling

occurs when the particle volume fraction increases up to ǫs = 10−3. For a given volumetric

fraction, turbulence is enhanced when the particle diameter is increased, whereas it is damped

when the particle diameter is decreased. If particle volume fraction exceeds ǫs > 10−3, four-

way coupling happens. In most fluidization applications, four-way coupling occurs, especially

in the dense regions of the bed.

2.1.1 Eulerian-Eulerian Model

When different phases are mathematically described as interpenetrating continua, the

Eulerian-Eulerian model is used to solve the equations for all phases. The continuity, mo-

mentum and energy equations with closure models are solved in all computational cells of the

domain. Then the variables for different phases such as velocities and temperatures are known

at every grid point. The continuity, momentum and energy equations for different phases in-

teract through mass transfer, interaction forces representing the momentum transfer between
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the phases, and interphase heat transfer. Examples of applications for the Eulerian-Eulerian

model are circulating fluidized-bed combustors and fluid catalytic cracking risers. The model

in this survey concentrates on gas-solid flows. However, the models and numerical methods

are not necessarily restricted to gas-solid flows and most models can be applied to other kinds

of mixtures.

Two sets of governing equations for the multiphase flow model originate from the works

of Anderson and Jackson (1967) and Ishii (1975). Anderson and Jackson (1967) and Jackson

(1997, 1998) derived the continuum equations of motion for gas-particle flow. They used a

formal mathematical definition of local mean variables to translate the point variables for the

fluid and the Newton’s equation of motion for a single particle directly into continuum equa-

tions representing momentum balances for the fluid and solid phases. The point variables are

averaged over large regions with respect to the particle diameter but the regions are consid-

ered small with respect to the characteristic dimension of the complete system. Ishii (1975)

derived multiphase fluid-fluid governing equations in which both phases are averaged over a

fixed volume; the volume is relatively large compared to the size of individual molecules.

The continuity equations have the same form in both descriptions by Anderson and Jackson

(1967) and Ishii (1975). However, two differences appear in the momentum equations. First,

the solid volume fraction multiplied by the gradient of the total gas-phase stress tensor (ǫs∇ ·

¯̄τg−ǫs∇P ) is included in the solid-phase momentum equation by Anderson and Jackson (1967),

whereas only the solid volume-fraction multiplied by the gradient of the pressure (−ǫs∇P ) is

included by Ishii (1975). Second, in the gas-phase momentum balance of Ishii (1975), the

pressure carries the gas volume fraction outside the gradient operator (−ǫg∇P ) whereas the

shear stress carries the gas volume fraction inside the gradient operator (∇ · ǫg ¯̄τg). Both

stresses are treated equally with respect to the gas volume fraction and the gradient operators

(−ǫg∇P + ǫg∇ · ¯̄τg) by Anderson and Jackson (1967). The results from both formulations

for the governing equations are similar in terms of macroscopic flow behavior, but differ on a

local scale such as individual bubbles or localized solid distributions (Wachem et al., 2001b).

Closure of the solid-phase momentum equation requires a description for the solid-phase stress.
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When the particle motion is dominated by collisional interactions, most of the researchers use

the concept from gas kinetic theory for particles interaction. Other terms that need closure are

drag force, gas-solid heat transfer and so on (Wachem et al., 2001b; Wachem and Almstedt,

2003).

The Eulerian-Eulerian approach is the practical approach for simulating large-scale particle

flows. However, this approach needs sophisticated modeling to close the equations.

2.1.2 Lagrangian-Eulerian Model

The Lagrangian-Eulerian model is used in applications where one phase is continuous and

the other phase is discrete and suspended. The continuous phase is solved using Eulerian meth-

ods on a computational grid, while the discrete suspended phase is solved using Lagrangian

methods to track the trajectory of each particle. In one-way coupling, the continuous phase

flow field can be obtained independent of the dispersed phase. Then the trajectories of particles

can be calculated by the equations of motion. For two-way and four-way coupling, an iteration

procedure is used since both phases interact with each other. The additional models (e.g.,

hard-sphere and soft-sphere models) for particle-particle interactions are needed for four-way

coupling (Ranade, 2002). Examples of applications for the discrete particle model are blood

flow and discrete particles in gas (Sha, 1986).

The motion of each particle is determined by the continuous phase and its neighboring

particles. The equation for a particle which is subjected to Newton’s equation of motion is

m
d~v

dt
=
∑

~F

where ~F is the force on the particle, m and ~v are the mass and velocity of the particle respec-

tively, and t is time. The continuous phase represents a generalization of the Naiver-Stokes

equations.

The continuous phase exerts the traction force on the particles and influences their trajec-

tories. Meanwhile, the particles are represented by the forces in the Stokes’ equations of the

continuous phase. Fogelson and Peskin (1986) studied three-dimensional incompressible flow
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with 500–1000 particles. Particle size, shape and deformability were prescribed, however, the

interactions between the particles were neglected. The particle forces were spread to nearby

grid points and the velocities of the continuous phase were interpolated from the grid to the

particle points. The results came out well for sedimentation of particles under gravity and

the computational time increased linearly with the number of particles. In discrete element

models, the particles are influenced through a series of interactions with the continuous phase.

The inertia effect, for example, was studied by Launay et al. (1998) in a homogeneous, isotropic

turbulent flow. Ranade (2002) discussed the different drag coefficient correlations suitable for

gas-solid flows.

Two types of approaches are possible for describing the collisions of particles: the hard-

sphere approach and soft-sphere approach. In the hard-sphere approach, collision between

particles are assumed binary and instantaneous. Hoomans et al. (1996), Jie and Li (1999)

and Wachem et al. (2001a) used this method to simulate the gas-solid flows. The physical

motivation for the soft-sphere approach is that when two particles collide they actually deform.

Tsuji et al. (1993) used the assumption of soft particles for interactions between particles to

simulate gas-solid fluidization.

The Lagrangian-Eulerian model can track the trajectory of every particle. An advantage

is the ability to easily vary the physical properties associated with individual particles such

as size or density. Local physical phenomena related to the particle flow can be probed and

can be used for validation and development of continuum models. However, the Lagrangian-

Eulerian model needs a large memory requirement and long calculation time. Constitutive

models are also required except when using direct numerical simulations for the continuous

phase (Wachem et al., 2001b).

2.2 Numerical Modeling of the Chemical Source Term

Chemistry is an essential part in calculations of reactive flows and it forms the chemical

source term in the governing equations. Fractional time stepping is widely used in reactive

flows since it can avoid many costly matrix operations and allow the best numerical method
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to be used for each type of term (Oran and Boris, 2001). A consequence is that chemistry

introduces a large number of coupled nonlinear ordinary differential equations. The nonlinear

equations are notoriously stiff if the reactions cover a wide range of time scales. Different

numerical methods have been developed to solve these equations (Yang and Pope, 1998), and

are described next.

2.2.1 Direct Integration

Direct integration is a straightforward approach to determine the source term in which the

reaction equation is integrated numerically. For a detailed reaction mechanism, direct integra-

tion is computationally expensive because the coupled differential equations for chemistry are

stiff. For example methane combustion with a 16-species mechanism requires about 6 years

of CPU time for 109 times of direct integration on an SGI Indigo 2 workstation (Pope, 1997).

Therefore, direct integration applied to detailed chemistry is prohibitive.

2.2.2 Reduction

Another approach developed to reduce the number of degrees of freedom in the descrip-

tion of chemistry are the reduced mechanism method (Peters, 1985) and the intrinsic low-

dimensional manifold method (ILDM) (Maas and Pope, 1992). In reduced mechanism meth-

ods, a numerical analysis of a stoichiometric reaction is performed in order to determine the

relative influence of any reaction in a large system of reactions. The maximum concentration

level of all intermediate species then can be analyzed. For those species where the maximum

mole fractions are sufficiently low and the diffusion coefficients are not too large, steady state

assumptions are introduced. Then, for the reactions whose forward and backward rates are

large compared to the other rate expressions, partial equilibrium is assumed. The algebraic

expressions for the reaction rates are obtained by a partial equilibrium assumption. Peters

(1985) reduced the chemical reactions for hydrocarbon flames from eighteen to four using

reduced mechanism methods.

Some drawbacks exist for the reduced mechanism methods. These methods require a



11

considerable amount of human time and experience to develop the reduced scheme for each

reaction system, or, even for the same reaction system under different conditions. Assumptions

of steady state and partial equilibrium are not always accurate.

The ILDM is based on the intrinsic study of underlying time scales of chemical reactions.

The fast time scales of chemical reactions are decoupled by assuming local equilibrium. The

method reduces the number of dimensions of reactions to the non-linear manifold, defined by

the slowest chemical time scales. The number of slow chemical scales is very small, for example,

one to three for combustion systems. The CO/H2/air system was used to test the ILDM (Maas

and Pope, 1992). However, it is not straightforward to find and parameterize the manifold for

a detailed reactions scheme because the low-dimensional manifold is non-linear.

2.2.3 Storage and Retrieval

In storage and retrieval methods, the chemical source terms are stored in multidimen-

sional databases which are based on direct integration of either a full mechanism or a reduced

mechanism. The databases can be generated during the simulations or ahead of time.

Pre-computed look-up tabulation is one type of storage and retrieval method (Fox, 2003).

Since the chemical source term is computationally expensive, a pre-computed chemical look-

up table is calculated and stored for a set of representative initial conditions in composition

space. The simplest method is to place these points on a multidimensional grid in composition

space. Then numerical interpolation is used to find the values based on the neighboring points,

replacing direct integration in the simulations. Taing et al. (1993) used pre-computed look-up

tabulation in Monte Carlo calculations of the joint velocity-composition probability density

function for pilot-stabilized turbulent jet nonpremixed flames of H2/CO2 fuel mixtures. The

multidimensional look-up tables are generated using a three-step chemical kinetic scheme, re-

duced systematically from a more detailed mechanism to represent chemical reactions. These

tables were used for density, and other dependent properties such as temperature and com-

position. Taing et al. (1993) demonstrated that the use of these tables in calculations was

computationally efficient.



12

Tabulation methods have drawbacks, however. The whole accessible region of the composi-

tion space must be tabulated since it is not known which regions are needed before simulations.

Thus, the required table is very large, especially when the number of reaction dimensions is

high. When the dimension of the table is high, the work to retrieve information from the table

is not trivial. Therefore, the application of pre-computed look-up tables will be limited by the

complexity of reactions. The direct application to detailed kinetics is not feasible.

In-situ adaptive tabulation (ISAT) is a method which overcomes many of the difficulties

of look-up tables and this method is explained in Chapter 4 in detail. Another example of

storage and retrieval is the repro-modeling approach (Turnyi, 1994). In the repro-modeling

approach, information for reaction rates is extracted from detailed chemical calculations and

stored in the form of high-order multivariate polynomials.

According to Pope (1997), criteria for the storage and retrieval techniques are

1. the CPU time required to create the store,

2. the memory required for the store,

3. inaccuracies in the retrieved table (e.g. interpolation error),

4. the CPU time required to retrieve the table.

The retrieval time may be three orders of magnitude smaller than the time to perform a direct

integration. Therefore, if the number of retrievals is over 109, the time for creating the table

is negligible.
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CHAPTER 3. THEORETICAL FORMULATION

In this chapter, a mathematical model for multiphase flow based on hydrodynamic theory of

fluidization is presented. The models necessary to close the system of equations are introduced.

Finite volume schemes are used to discretize the governing equations. The SIMPLE algorithm

is modified for multiphase flow to solve the algebraic equations.

3.1 Hydrodynamic Theory

The hydrodynamic model for multiphase flow assumes that different phases behave as in-

terpenetrating continua and the instantaneous variables are averaged over a region which is

larger than the particle spacing but much smaller than the flow domain. Multiple types of

particles should be considered to describe phenomena such as particle segregation and elutri-

ation. Each particle type has a unique diameter with identical material properties (Syamlal

et al., 1993).

3.1.1 Governing Equations

The field variables, called phasic volume fractions, are used to determine the fraction of the

average volume occupied by each phase. The sum of all of the volume fractions, both for the

gas phase and the mth solid phases, where m denotes a unique solid phase, must equal unity

ǫg +

M
∑

m=1

ǫsm = 1

The subscript g indicates the gas phase and s indicates solid phases with the total number of

solid phase M. The gas phasic volume fraction is also called the void fraction. The effective
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densities of the gas phase ρ′g and solid phases ρ′sm respectively, are

ρ′g = ǫgρg

ρ′sm = ǫsmρsm

The continuity equations for the gas phase and the solid phase m, respectively, are

∂

∂t
(ǫgρg) +∇ · (ǫgρg~vg) =

Ng
∑

n=1

Rgn (3.1)

∂

∂t
(ǫsmρsm) +∇ · (ǫsmρsm~vsm) =

Nsm
∑

n=1

Rsmn (3.2)

The first and second terms on the left sides of Eqs. (3.1) and (3.2) are the rate of mass

generation per unit volume and the net rate of convective mass flux. The terms of Rgn and

Rsmn on the right sides account for interphase mass transfer due to chemical reactions or

physical processes.

The momentum equations for the gas phase and the solid phase m have the form

∂

∂t
(ǫgρg~vg) +∇ · (ǫgρg~vg~vg) = ∇ · Sg + ǫgρg~g −

M
∑

m=1

~Igm + ~fg (3.3)

∂

∂t
(ǫsmρsm~vsm) +∇ · (ǫsmρsm~vsm~vsm) = ∇ · Ssm + ǫsmρsm~g + ~Igm −

M
∑

l=1
l 6=m

~Iml (3.4)

The first terms on the left sides of Eqs. (3.3) and (3.4) are the net rate of momentum generation

and the second terms are the net rate of momentum transfer by convection. Equations (3.3)

and (3.4) include the gas phase and solid phase stress tensors Sg and Ssm, the body forces due

to gravity ~g, the flow resistance force ~fg due to internal porous surfaces, the interaction force

~Igm accounting for the momentum transfer between the gas phase and the mth solid phase,

and the interaction force ~Ilm between the mth and lth solid phases.
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The internal energy balances for the gas and solid phase m are

ǫgρgCpg

(

∂Tg

∂t
+ ~vg · ∇Tg

)

= −∇ · ~qg −

M
∑

m=1

Hgm −△Hrg + Hwall(Twall − Tg) (3.5)

ǫsmρsmCpsm

(

∂Tsm

∂t
+ ~vsm · ∇Tsm

)

= −∇ · ~qsm + Hgm −△Hrsm (3.6)

with temperature T and constant pressure specific heats Cp. Equations (3.5) and (3.6) include

the conductive heat flux ~qg and ~qsm, the gas-solid interphase heat transfer Hgm, and the heats

of reaction △Hrg and △Hrsm. The last term in Eqn. (3.5) is the heat loss to the wall.

Heat transfer between different solid phases is negligible due to rapid mixing and uniform

temperature distribution in the dense bed.

The gas and solid phases are formulated to represent an arbitrary number of chemical

species, Ng and Nsm. The corresponding conservation of species for the gas and solid phases

are

∂

∂t
(ǫgρgXgn) +∇ · (ǫgρgXgn~vg) = ∇ ·Dgn∇Xgn + Rgn (3.7)

∂

∂t
(ǫsmρsmXsmn) +∇ · (ǫsmρsmXsmn~vsm) = ∇ ·Dsmn∇Xsmn + Rsmn (3.8)

where X is the mass fraction and D is the diffusion coefficient. Equations (3.7) and (3.8)

include accumulation, convection and the rate of reaction but neglect diffusive fluxes.

The chemical source terms are closed by reaction kinetic expressions in the species balance

equations. It should be noted that the chemical source terms involve a wide range of time

scales which will make the equations stiff. Therefore, efficient algorithms must be used to treat

these terms.

3.1.2 Constitutive Relations

The complete formulation requires that the governing equations be closed. A wide range

of constitutive relations can be found by using different approaches, from empirical informa-

tion to kinetic theory. Most differences between multiphase theories originate from closure
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assumptions. The closure models used in this research are introduced next.

3.1.2.1 Gas-Phase Equation of State

The equation of state for the gas phase assumes ideal gas behavior,

ρg =
PgMw

RTg

where Pg is the gas pressure, Mw is the molecular weight and R is the universal gas constant.

For an incompressible gas the density is assumed to be constant.

3.1.2.2 Gas-Solid Momentum Transfer

From previous studies on the dynamics of a single particle in a gas, three important mech-

anisms for the gas-solid interaction force ~Igm are considered: drag force, caused by velocity

differences between gas-solid phases; buoyancy, caused by the gas pressure gradient; and mo-

mentum transfer due to mass transfer between phases. Other forces, such as virtual mass effect

caused by relative acceleration between phases, Magnus force caused by particle spin and so

on, are not considered. Thus, the gas-solid momentum interaction force becomes

~Igm = −ǫsm∇Pg − Fgm(~vsm − ~vg) + R0m[ζ0m~vsm + ζ̄0m~vg] (3.9)

where R0m is the mass transfer from the gas phase to solid phase m, and

ζ0m =















1 for R0m < 0

0 for R0m > 0

for ζ0m = 1− ζ0m,

The gas-solid drag formulation for converting terminal velocity correlations to drag corre-
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lations (Syamlal and O’Brien, 1987) is

Fgm =
3ǫsmǫgρg

4V 2
rmdpm

CDS

(

Rem

Vrm

)

|~vsm − ~vg| (3.10)

where dpm is the diameter and Vrm is the terminal velocity correlation for the mth solid phase.

Vrm = 0.5
[

A− 0.06Rem +
√

(0.06Rem)2 + 0.12Rem(2B −A) + A2
]

(3.11)

where A and B are the functions of void fraction. The Reynolds number of the mth solid phase

is

Rem =
dpm|~vsm − ~vg|ρg

µg
(3.12)

The single sphere drag function (Dalla Valla, 1948) has the form

CDS

(

Rem

Vrm

)

=

(

0.63 +
4.8

√

Rem/Vrm

)2

(3.13)

Equations (3.11), (3.12) and (3.13) are coupled to (3.10) for the complete description of the

gas drag coefficient.

3.1.2.3 Solid-Solid Momentum Transfer

The drag between the phases due to velocity differences is assumed as the major effect

in the solid-solid momentum transfer. Thus, the momentum transfer Iml between solids is

represented as

~Iml = −Fsml(~vsl − ~vsm) + Rml[ζml~vsl + ζ̄ml~vsm] (3.14)

where Rml is the mass transfer from solid phase m to solid phase l,

ζml =















1 for Rml < 0

0 for Rml > 0

and ζ̄ml = 1− ζml,
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The drag coefficient Fsml is derived by using a simplified version of kinetic theory (Syamlal,

1987a)

Fsml =
3(1 + elm)(π/2 + Cflmπ2/8)ǫslρslǫsmρsm(dpl + dpm)2g0lm

|~vsl − ~vsm|

2π(ρsld
3
pl + ρsmd3

pm)
(3.15)

where elm and Cflm are the coefficient of restitution and coefficient of friction, between the

lth and mth solid-phase particles, and g0lm
is the radial distribution function at contact for a

mixture of hard spheres.

3.1.2.4 Gas Phase Stress Tensor

The gas phase stress tensor has two parts: the pressure contribution and the Newtonian

viscous stress tensor, which is given by

Sg = −PgI + τg (3.16)

The viscous stress tensor, τg, is

τg = 2ǫgµgDg + ǫgλgtr(Dg)I (3.17)

where I is the identity tensor and Dg is the strain rate tensor for the gas phase

Dg =
1

2

[

∇~vg + (∇~vg)
T
]

3.1.2.5 Solid Phase Stress Tensor

In the solid phase stress tensor term, a solid pressure is calculated to ensure that the volume

fraction does not exceed the packed-bed volume fraction. This can be accomplished by treating

the particles as an incompressible fluid at a critical void fraction and the pressure is set to

zero when the void fraction becomes greater than the packed-bed void fraction (Syamlal and

O’Brien, 1988).
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Granular flow theory is used to describe the solid phase stresses in detail. There are two

distinct flow regimes in granular flow: a viscous or rapidly shearing regime in which stresses

arise due to collisional or translational momentum transfer, and a plastic or slowly shearing

regime in which stresses arise due to Coulomb friction between grains in close contact. Two

different approaches are used for these regimes:

Ssm =















−P p
smI + τ

p
sm if ǫg ≤ ǫ∗g

−P v
smI + τ

v
sm if ǫg > ǫ∗g

where P p
sm and τ

p
sm are the pressure and the viscous stress in the mth solid phase for the plastic

regime, P v
sm and τ

v
sm are the pressure and the viscous stress for the viscous regime, and ǫ∗g is

a critical packing number, usually set to the void fraction at minimum fluidization.

The granular stress equation based on kinetic theory (Syamlal, 1987b) is applied to the

viscous regime. The granular pressure and stresses are given by

P v
sm = K1mǫ2

smΘm (3.18)

τ
v
sm = 2µv

smDsm + λv
smtr(Dsm)I (3.19)

where Θm is the granular temperature and λv
sm is the second coefficient of viscosity,

λv
sm = K2mǫsm

√

Θm

The shear viscosity factor µv
sm is

µv
sm = K3mǫsm

√

Θm

The strain rate tensor, Dsm, is given by

Dsm =
1

2

[

∇~vsm + (∇~vsm)T
]
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and K1m, K2m and K3m are constants.

In the plastic flow regime, frictional flow theory (Jenike, 1987) provides an arbitrary func-

tion that allows a certain amount of compressibility in the solid phase where

P p
sm = ǫsmP ∗ (3.20)

and P ∗ is expressed by an empirical power law

P ∗ = A(ǫ∗g − ǫg)
n

for values of A = 1025 and n = 10.

The solid stress tensor is calculated for solid phase m using the formulation (Schaeffer,

1987)

τ
p
sm = 2µp

smDsm (3.21)

3.1.2.6 Gas-Solid Heat Transfer

The heat transfer between the gas and solid phases is a function of a temperature difference

Hgm = −γgm(Tsm − Tg) (3.22)

where γgm is the heat transfer coefficient between the gas phase and the mth solid phase. The

heat transfer coefficient γgm (Bird et al., 1960) is corrected using the coefficient γ0
gm by adding

the influence of the interphase mass transfer,

γgm =
CpgR0m

e(CpgR0m /γ0
gm) − 1

and the coefficient γ0
gm is

γ0
gm =

6kgǫsmNum

d2
pm

The correlation is applicable for a porosity range of 0.35–1.0 and a Reynolds number up to
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105. For the work herein, the cases studied fall within the ranges of the correlation.

3.1.2.7 Conductive Heat Flux in Gas and Solid Phase

The conductive heat fluxes for both the gas and solid phases are described according to

Fourier’s law

~qg = −ǫgkg∇Tg (3.23)

~qsm = −ǫsmksm∇Tsm (3.24)

where kg and ksm are the thermal conductivity for gas and particle phases, respectively. The

particle thermal conductivity (Syamlal and Gidaspow, 1985) has the form

ksm

kg
=

[ΦkRkm + (1− Φk)λrm]
√

1− ǫg

where Φk is the contact area function with the value 7.26×10−3 and Rkm and λrm are constants.

3.1.2.8 Heat of Reaction

The heat of reaction accounts for the difference in temperatures between phases by parti-

tioning reaction processes between each phase. Partitioning of the heat is arbitrary since the

averaging required to derive the hydrodynamic equations does not contain any information

regarding the gas-solid interface. The actual chemical reactions occur in an interface region,

however, the partitioning of the heats of reaction must be based on physical arguments. For

example, to partition the heat of the coal combustion reaction C + O2 → CO2, the heat of

reaction for the step C + 1
2O2 → CO is assigned to the solid phase (△Hrs in Eqn. (3.6)) and

the heat of reaction for the step CO + 1
2O2 → CO2 is assigned to the gas phase (△Hrg in Eqn.

(3.5)) .
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3.1.2.9 Granular Energy Equations

The constitutive relation for granular flow is based on kinetic theory of smooth, slightly

inelastic, spherical particles. The relationship contains the granular temperature Θm which is

proportional to the granular energy of the continuum. The granular temperature is introduced

as a measure of the particle velocity fluctuations

3

2
Θm =

1

2
〈~C2

m〉

where ~Cm is the fluctuating component of the instantaneous velocity ~cm of the mth solid phase

~cm = ~vsm + ~Cm

The transport of granular energy is

3

2

[

∂(ǫsmρsmΘm)

∂t
+∇ · (ǫsmρsmΘm)~vsm

]

= Ssm : ∇~vsm −∇ · ~qΘm
− γΘm

+ Φgm +

M
∑

l=1,l 6=m

Φlm

(3.25)

where γΘm
is the rate of granular energy dissipation due to inelastic collisions of the form (Lun

et al., 1984)

γΘm
= K4mǫ2

smΘ
3
2
m

and ~qΘm
is the diffusive flux of granular energy

~qΘm
= −kΘm

∇Θm

The term Φgm is the transfer of granular energy between the gas phase and the mth solid phase,

and Φlm accounts for the transfer of granular energy between the mth and lth solid phases.

The formulation for granular energy transfer (Ding and Gidaspow, 1990) is

Φgm = −3FgmΘm
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and Φlm is ignored by setting Φlm = 0.

The granular temperature Θm is calculated using an algebraic expression by assuming that

the granular energy is dissipated locally and the convection and diffusion contributions are

neglected. The simplification is a reasonable assumption in the case of fluidized-bed modeling

and reduces the computational effort by about 20% according to Wachem et al. (2001b). The

algebraic granular energy equation used is

Θm =







−K1mǫsmtr(Dsm) +

√

K2
1mtr2(Dsm)ǫ2

sm + 4K4mǫsm[K2mtr2(Dsm) + 2K3mtr(Dsm

2
)]

2ǫsmK4m







2

(3.26)

3.1.3 Initial and Boundary Conditions

3.1.3.1 Initial Conditions

The initial values of all field variables must be specified for the entire computational domain.

However, the initial conditions are usually not of interest, and the solution is governed by the

boundary conditions. Therefore, the initial conditions merely affect the initial convergence of

the equations.

3.1.3.2 Boundary Conditions

Two types of inflow boundary conditions are possible, constant velocity or constant mass

flux. Specifying constant pressure is the most common condition for the fluid outflow boundary.

At impermeable walls, the normal velocities are set to zero. The condition for the tangential

components is specified either as a non-slip or as a free-slip condition. The fixed temperature

and specified heat flux can be used as thermal boundary conditions. For species equations,

either specified species concentration or species diffusion flux can be used.

3.2 Numerical Formulation

A finite volume approach is used for the numerical discretization of the equations for

multiphase flows. The approach has an advantage to ensure the conservation laws for mass,
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momentum and energy. The conservative property of finite volume methods is more attractive,

especially if a fine grid is too computationally expensive. Thus, even for coarse grids, the

solutions hold the integral balances (Patankar, 1980).

3.2.1 A Staggered Grid

A staggered grid is used for discretizing the partial differential equations. Scalars such

as pressure, void fraction, temperature, and mass fraction are stored at the cell centers and

the velocity components are stored at the cell surfaces. If all variables such as velocity and

pressure are stored on the same grid points, the pressures for two alternate grid points appear

in the momentum equations. Thus the zigzag pressure field for a one-dimensional domain and

checkerboard pressure field for a two-dimensional domain develop as an acceptable solution.

More complex results exist for three-dimensional case and a similar situation appears for the

velocity components from continuity equations (Patankar, 1980). If a staggered grid is used,

unphysical pressure and velocity fields will not occur since two neighboring grid points appear

in the momentum equations.

3.2.2 Discretization

3.2.2.1 Discretization of the Governing Equations

The discretization of the governing equations is discussed using the transport equation for

a scalar variable Φ

∂

∂t
(ǫmρmΦ) +

∂

∂xi
(ǫmρmvmiΦ) =

∂

∂xi

(

ΓΦ
∂Φ

∂xi

)

+ RΦ (3.27)

where m = 0 denotes the gas phase, m = 1 to M denotes the solid phases, ΓΦ is the diffusion

coefficient for Φ and RΦ is the source term.

Equation (3.27) has all the features of the equations for multiphase flow except the inter-

phase transfer term. The interphase transfer term is important in the multiphase flow equations

and is discussed in §3.2.2.2. The equation is integrated over a control volume. Figure 3.1 shows

a computational cell and the nomenclature of discretization (Syamlal, 1994). The point P is
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Figure 3.1 Computational cell for the scalar equations.

at the center of the control volume and its neighboring points are referred to as E, W, N, S,

T, B. The half-node positions are referred to as e, w, n, s, t, b.

A one-dimensional scalar equation is used as an example for discretization. Convection-

diffusion terms have the following form in the x-direction

ρu
∂Φ

∂x
−

∂

∂x

(

Γ
∂Φ

∂x

)

(3.28)

Equation (3.28) is integrated over a control volume dV shown in Fig. 3.2.

∫ [

ρu
∂Φ

∂x
−

∂

∂x

(

Γ
∂Φ

∂x

)]

dV =

[

ρuΦe −

(

Γ
∂Φ

∂x

)

e

]

Ae −

[

ρuΦw −

(

Γ
∂Φ

∂x

)

w

]

Aw (3.29)
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Figure 3.2 Nomenclature for the discretization in the x-direction.

With assumption of the piecewise-linear profile between the grids, the diffusive flux, for exam-

ple, at the east-face becomes
(

Γ
∂Φ

∂x

)

e

≈ Γe
(ΦE − ΦP)

δxe
(3.30)

with second order accuracy. Other fluxes have a similar form.

Higher-order schemes for discretizing convection terms are used to prevent numerical dif-

fusion which typically occurs with first-order schemes such as the upwind method. First-order

schemes lead to pointed bubble shapes in simulations of bubbling fluidized beds (Syamlal,

1998). However, high-order schemes tend to be deficient due to oscillations when discontinu-

ities are encountered. Total variation diminishing (TVD) schemes in the high-order methods

can help avoid oscillations. Such schemes use a limiter on the dependent variables (Tannehill

et al., 1980). The value of Φe at the east face is an example of a TVD scheme and it has the

form

Φe = ξeΦE + ξ̄eΦP (3.31)

where ξ̄e = 1− ξe.

The convection weighting factor ξe in Eqn. (3.31) is calculated from the down-wind factor

dwfe, where

if ue ≥ 0

Φe = dwfeΦE + (1− dwfe)ΦP
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Figure 3.3 Node locations for the TVD scheme.

ξe = dwfe

if ue < 0

Φe = dwfeΦP + (1− dwfe)ΦE

ξe = 1− dwfe

The down-wind factor dwfe is calculated using the superbee method which can be applied

to explicit conservative convection and diffusion schemes of any order of accuracy (Leonard,

1991)

dwfe = 1
2 max[0,min(1, 2θ),min(2, θ)]

where θ = Φ̃C /(1 − Φ̃C) and Φ̃C is

if ue ≥ 0

Φ̃C =
ΦP − ΦW

ΦE − ΦW

if ue < 0

Φ̃C =
ΦE − ΦEE

ΦP − ΦEE

The locations of ΦE, ΦW, ΦP and ΦEE are shown in Fig. 3.3.

The transient term in discretized form is

∫

∂

∂t
(ǫmρmΦ)dV ≈

[

(ǫmρmΦ)P − (ǫmρmΦ)0P
] δV

δt
(3.32)

where the superscript 0 indicates previous time step values. Source terms are usually nonlinear

and are first linearized as

RΦ ≈ R̄Φ −R′
ΦΦP (3.33)
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where R̄Φ stands for the constant part of RΦ, while R′
Φ is the coefficient of ΦP. Then, the

integration of the source term gives

∫

RΦdV ≈ R̄ΦδV −R′
ΦΦPδV (3.34)

For the stability of the iteration, R′
Φ ≥ 0.

All scalar equations may be arranged to get the following linear equation for Φ

aPΦP =
∑

nb

anbΦnb + b (3.35)

where b is a source term. Equation (3.35) should be subtracted by the discretized continuity

equation, which is multiplied by Φ (Patankar, 1980).

3.2.2.2 Interphase Phase Transfer Terms

The continuity equations for multiphase flows have a source term for interphase mass

transfer
∑

Rlm and can be discretized as

ΦP

M
∑

l=0

Rlm = ΦP〈Rlm〉 − ΦP〈−Rlm〉 (3.36)

where l = 0 indicates gas phase and

〈R〉 =















0 if R ≤ 0

R if R > 0

The first term on the right side of Eqn. (3.36) is substituted in the source term b of Eqn.

(3.35). 〈−Rlm〉 in the second term of Eqn. (3.36) is substituted in aP of Eqn. (3.35).

The interphase momentum and energy transfer terms
∑

Flm(ul−um) and
∑

γlm(Tl−Tm)

strongly couple the components of velocity and temperature amongst the phases. These terms

should be made fully implicit for solving the equations. However, the equations for each velocity

component must be solved together, which leads to a nonstandard matrix structure. The partial
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Figure 3.4 Free-slip wall boundary condition.

elimination of interphase coupling (Syamlal, 1998) is used for decoupling the equations.

3.2.2.3 Boundary Conditions

Periodic boundary conditions also referred to as cyclic conditions, are specified for the

azimuthal direction in cylindrical coordinates. Rotationally (without pressure drop) or trans-

lationally (with pressure drop) cyclic boundary conditions may be specified at any of the

boundaries.

The free-slip condition is shown schematically in Fig. 3.4 for a cell abut a wall and the

ghost cell. The free-slip requirement is

(V )ghost cell = (V )near wall cell

so that the gradient of the velocity at the wall is zero. The boundary condition becomes

V (i)− V (i− 1) = 0 (3.37)
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cell near the wallghost cell

ii−1

Figure 3.5 No-slip wall boundary condition.

The no-slip condition shown schematically in Fig. 3.5 is set as

(V )ghost cell = −(V )near wall cell

so that the velocity at the wall is zero. The boundary condition becomes

V (i) + V (i− 1) = 0 (3.38)

3.2.3 Modified SIMPLE Method

The semi-implicit method for pressure-linked equations (SIMPLE) was developed for the

calculation of the single flow field and it has served well (Patankar, 1980). Here, an extension of

SIMPLE is used to solve the discretized equations. However, the method requires modifications

for multiphase flows due to more field variables and more equations.

The SIMPLE algorithm derives the pressure correction equation to handle the pressure

terms in the momentum equations. These pressure terms are not expressed explicitly using

an equation. Velocities solved from the momentum equations with the correct pressure satisfy

the continuity equations. Similar procedures can be applied to multiphase flows using solid
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pressure corrections. However, the solid volume fraction correction equation is used instead

of solid pressure correction equation since solid pressure correction equation requires that

∂Ps /∂ǫs does not vanish when ǫs → 0.

In densely packed regions, the solid pressure is an exponentially increasing function of the

solid volume fraction. A small increase in the solid volume fraction will cause a large increase in

the solid pressure. For numerical stability, solid volume fraction corrections are underrelaxed,

where

If (ǫm)new > (ǫ)p and ǫ′m > 0

ǫ′m = ωǫm
ǫ′m (3.39)

and ǫp is the volume fraction for the packed region, ωǫm
is an under relaxation factor, and ǫ′m

is correction of solid volume fraction with guessed value ǫ∗m

ǫm = ǫ∗m + ǫ′m (3.40)

A transient simulation is performed since gas solid flows are inherently unstable. Small

time steps for a simulation and underrelaxation for iteration are chosen to ensure the numerical

stability. Further numerical details and parameters will be discussed with results.
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CHAPTER 4. IMPLEMENTATION OF CHEMICAL REACTIONS

USING IN-SITU ADAPTIVE TABULATION

A wide range of time scales involved in typical kinetic schemes requires specialized treat-

ment of chemical source terms. Available approaches include reduction and storage and re-

trieval (§2.2). In-situ adaptive tabulation (ISAT) is a storage and retrieval strategy, which has

been efficiently used to treat complex chemistry (Saxena and Pope, 1999; James et al., 1999)

and is readily adapted to any time-marching CFD code using fractional time stepping. In this

chapter, the ISAT algorithm and implementation of ISAT into MFIX are presented in detail.

4.1 In-Situ Adaptive Tabulation Applied to Chemical Reaction

Calculation

4.1.1 Decoupling Chemical Source Terms from Transport Terms

In a gas-solid mixture, the thermochemical state can be determined by Ns variables such as

mass fractions and enthalpy. However, if there are other dependencies existing between these

variables, the degrees of freedom decrease to D. The composition Φ is defined to include D

variables, which is a subset of total Ns variables. The transport equation for the composition

has the form

dΦ

dt
= S(Φ) + T(Φ) (4.1)

where Φ has components φ1, φ2, · · · , φD, S(Φ) and T(Φ) are the changes in Φ due to chemical

reactions and transport, respectively. The composition of reactive flows is affected by reactions

and transport which includes convection and diffusion as shown in Eqn. (4.1). Therefore, over
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a small time step δt, the change of composition when using fractional time stepping becomes

Φ(t)

transport,
reactions
−→ Φ(t + δt)

where Φ(t) and Φ(t + δt) are the compositions at time t and t + δt, respectively.

When CFD codes use fractional time stepping (e.g., MFIX) for reactive flow calculations,

splitting techniques can be applied so that the different processes can be treated in separate

fractional steps. In the first fractional time step, the change due to convection and diffusion is

solved for every node using equations

dΦ

dt
= T(Φ) (4.2)

with the initial condition Φ(t). The solution of Eqn. (4.2) is denoted as Φ′(t + δt). In the next

fractional time step, the change due to chemical reactions is solved by

dΦ

dt
= S(Φ) (4.3)

with the initial condition Φ′(t + δt). The composition of all nodes are then approximated to

Φ(t + δt). Usually, the change due to the reactions is calculated last since that some of the

reaction time scales are smaller than the flow time scales (Fox, 2003).

The overall fractional time stepping is represented as

Φ(t)
transport
−→ Φ′(t + δt)

reactions
−→ Φ(t + δt)

Therefore, the chemical source term is decoupled from the transport term and can be treated

with efficient numerical methods such as ISAT. Thus the problem statement for solving chem-

ical source terms is based on a given the chemical composition at time t to determine the

composition at time t + δt resulting from chemical reactions. Equation (4.3) is integrated

repetitively for each node at every time step with each new set of initial conditions.
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4.1.2 Overview of ISAT Algorithm

ISAT has some characteristics to overcome the disadvantages of pre-computed look-up

tables (Fox, 2003). For example, the method can efficiently calculate detailed chemistry. The

in-situ nature reduces the tabulation to only the accessed region which is much smaller than the

realizable region in which reactions can occur. An adaptive algorithm is employed to control

interpolation errors while minimizing the number of points tabulated. Furthermore, the binary-

tree tabulation algorithm is used to generate tables and access data. These characteristics are

introduced in detail as follows.

4.1.2.1 Linearized Mapping

A non-linear reaction map is defined by integrating Eqn. (4.3) over an arbitrary time δt

with an initial condition Φ0

Φ(δt) = R(Φ0; δt) (4.4)

Thus the reaction mapping is a system of ordinary differential equations (ODEs)

∂R(Φ0; δt)

∂t
= S(R(Φ0; δt)) (4.5)

with R(Φ0; 0) = Φ0. The mapping Jacobian matrix, which represents the sensitivity of the

reaction mapping to changes in the initial conditions, is defined as

A(Φ0; δt) =
∂R(Φ0; δt)

∂Φ0
(4.6)

Differentiating Eqn. (4.5) with respect to Φ0

∂2R(Φ0; δt)

∂t∂Φ0
=

∂S(R(Φ0; δt))

∂Φ0
(4.7)

Substituting Eqn. (4.6) into Eqn. (4.7) and using the chain rule

∂A(Φ0; δt)

∂t
=

∂S(R(Φ0; δt))

∂R(Φ0; δt)

∂R(Φ0; δt)

∂Φ0
(4.8)
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The matrix A of Eqn. (4.8) can be expressed by

∂A(Φ0; δt)

∂t
= J(R(Φ0; δt))A(Φ0; δt) (4.9)

with A(Φ0; 0) = I, where I is the identity matrix. The chemical-source-term Jacobian matrix

J is defined as

J(Φ) =
∂S(Φ)

∂Φ

Therefore, the values of Φ(δt) and A(Φ0; δt) can be calculated by integrating Eqs. (4.5)

and (4.9) with an initial composition Φ0 and the time step δt. This step is referred to as

direct integration (DI).

The ISAT contains information, Φ0, Φ(δt) and A(Φ0; δt), for each tabulation point. For a

query point Φq
0, Φq(δt) is calculated by linear interpolation from a neighboring point Φ(δt)

Φq(δt) = Φ(δt) + A(Φ0; δt)(Φ
q
0 − Φ0) (4.10)

instead of by direct integration, where

Φq
DI(δt) = R(Φq

0; δt) (4.11)

Thus the error induced by the linear approximation is

ǫL = Φq
DI(δt) − Φq(δt)

The linearized mapping for a query point Φq
0 is shown in Fig. 4.1 with δΦq = Φq(δt) − Φ(δt)

and δΦq
0 = Φq

0 − Φ0.

4.1.2.2 Ellipsoid of Accuracy and Binary Tree

The ellipsoid of accuracy (EOA) is used to control the interpolation errors, which are stored

in a specified number of binary trees. Each leaf of a tree is an EOA. Each call for ISAT is
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Figure 4.1 The linearized mapping used in ISAT.

referred to as a query. Thus for a given query point Φq
0, one of the following will occur:

1. If an EOA containing the query point is found, the linear approximation is returned.

This is called retrieve.

2. If the query is not fulfilled by a retrieve, then a direct integration is performed. Based

on the value of direct integration, the EOA is grown to include the query point if the

linear approximation is sufficiently accurate. This outcome is referred to as a grow.

3. If the query is not satisfied by a grow, a new EOA is added. The outcome is referred to

as an add.

4. If the table is full, an old EOA is deleted, and the new one is added; or no new EOA’s

are added, and the query is resolved by DI. This is called replace.

4.1.2.3 Flow Chart of ISAT Algorithm

Figure 4.2 shows the key steps in the ISAT algorithm. At the beginning of the simulation,

the binary tree is empty and thus the first call begins at the point marked “FIRST QUERY”.

Then, all calls to the algorithm begin at the point marked “NEXT QUERY”. The next step

is to check the EOA, as described in the previous section. If the query point is outside of
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Figure 4.2 The flow chart of the key steps in ISAT.

the EOA, direct integration is performed and then either the EOA grows or a new EOA is

created. Otherwise, if the query point is inside the EOA, linear approximation is returned and

the table is updated. For best performance, nearly all calls result in a “Retrieve”, thereby

avoiding direct integration.

4.2 Implementation of ISAT in MFIX

4.2.1 Decoupling Chemical Source Terms from Transport Terms in MFIX

The continuity, species and energy equations formulated in MFIX were presented in §3.1.1.

Recall that the change of volumetric fractions, gas and solid temperatures and mass fractions

are affected by transport and reactions. For every fractional time step, the solution flow chart
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Figure 4.3 The flow chart of original MFIX.

for original MFIX is shown in Fig. 4.3. During time marching, the velocities and volumetric

fractions are calculated first. Then the temperatures and species mass fractions are solved.

At last, the residuals are checked for convergence. If the convergence criterion is satisfied, the

simulation goes to the next time step. Otherwise, the iterations are continued.

Thus, the equations are integrated over a computational cell in the finite-volume method.

Usually, the chemistry is stiff, for example, due to the large range of time scales. The equations

are tightly coupled during the iterations of each time step. Therefore, a time-splitting method

can be employed to solve the equations.

Applying time-splitting techniques to MFIX, the calculation of species mass fractions, tem-

peratures and volumetric fractions requires two steps.
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1. In the first fractional time step, the change due to convection is solved for every node

using the Eqs. (3.1), (3.2) and (3.5)–(3.8) by setting the chemical source terms to zero

∂

∂t
(ǫgρg) +∇ · (ǫgρg~vg) = 0, (4.12)

∂

∂t
(ǫsmρsm) +∇ · (ǫsmρsm~vsm) = 0, (4.13)

ǫgρgCpg

(

∂Tg

∂t
+ ~vg · ∇Tg

)

= −∇ · ~qg −
M
∑

m=1

Hgsm + Hwall(Twall − Tg), (4.14)

ǫsmρsmCpsm

(

∂Tsm

∂t
+ ~vsm · ∇Tsm

)

= −∇ · ~qsm + Hgsm, (4.15)

∂

∂t
(ǫgρgXgn) +∇ · (ǫgρgXgn~vg) = ∇ ·Dgn∇Xgn, (4.16)

∂

∂t
(ǫsmρsmXsmn) +∇ · (ǫsmρsXsmn~vsm) = ∇ ·Dsmn∇Xsmn, (4.17)

with the initial conditions Xgn(t), Xsmn(t), ǫsm(t), ρg(t), Tg(t) and Tsm(t). The solutions

of Eqs. (4.12)–(4.17) are X ′
gn(t + δt), X ′

smn(t + δt), ǫ′sm(t + δt), ρ′g(t + δt), T ′
g(t + δt)

and T ′
sm(t + δt). For clarity, the spatial dependency has been suppressed. However, the

reader should keep in mind that the variables must be updated in time at every grid cell.

2. In the next fractional time step, the change due to the chemical source terms for mass

fractions are

d

dt
(ǫgρgXgn) = Rgn (4.18)

d

dt
(ǫsmρsmXsmn) = Rsmn (4.19)

Differentiating Eqs. (4.18) and (4.19) and rearranging terms yields

d

dt
(Xgn) =

Rgn

ǫgρg
−

Xgn

ǫgρg

d

dt
(ǫgρg), (4.20)

d

dt
(Xsmn) =

Rsmn

ǫsmρsm
−

Xsmn

ǫsmρsm

d

dt
(ǫsmρsm), (4.21)
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where the change of volumetric fractions ǫg and ǫsm are calculated from the continuity

equations for the solid phases

d

dt
(ǫsmρsm) =

Nsm
∑

n=1

Rsmn (4.22)

with ǫg +
∑M

m=1 ǫsm = 1. Eqn. (4.22) can be rearranged as

d

dt
(ǫsm) =

1

ρsm

Nsm
∑

n=1

Rsmn (4.23)

since ρsm is constant. Beginning with the continuity equation for the gas phase

d

dt
(ǫgρg) =

Ng
∑

n=1

Rgn (4.24)

the equation can be rewritten

ǫg
dρg

dt
− ρg

dǫs

dt
=

Ng
∑

n=1

Rgn (4.25)

Then, the change due to gas density is

d

dt
(ρg) =

1

(1− ǫs)





Ng
∑

n=1

Rgn + ρg
dǫs

dt



 (4.26)

The changes due to the chemical reactions for temperatures are

ǫgρgCpg
dTg

dt
= −△Hrg (4.27)

ǫsmρsmCpsm
dTsm

dt
= −△Hrsm (4.28)
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The equations can be rearranged as

dTg

dt
=
−△Hrg

ǫgρgCpg
(4.29)

dTsm

dt
=

−△Hrsm

ǫsmρsmCpsm
(4.30)

Thus Eqs. (4.20) and (4.21) for mass fractions, Eqn. (4.23) for volumetric fractions,

Eqn. (4.26) for gas density and Eqs. (4.29) and (4.30) for temperatures are integrated

with the initial condition X ′
gn(t + δt), X ′

smn(t + δt), ǫ′sm(t + δt) , ρ′g(t + δt), T ′
g(t + δt)

and T ′
sm(t + δt). The mass fractions, volumetric fractions, gas density and temperatures

at all nodes are updated to Xgn(t + δt), Xsmn(t + δt) , ǫsm(t + δt), ρg(t + δt), Tg(t + δt),

Tsm(t + δt) and pressure is updated using the ideal gas law . In order to use an ODE

solver, the user must provide the RHS of Eqs. (4.20), (4.21), (4.23), (4.26), (4.29) and

(4.30) and their Jacobian matrix.

With the time-splitting method the chemical reactions for the gas and solid phases are

isolated from the transport terms and can be treated with efficient numerical methods such

as ISAT. The problem statement for solving the chemical source terms is based on a given

chemical composition at time t to determine the composition at time t + δt resulting from

chemical reactions. During the course of a simulation, Eqs. (4.20), (4.21), (4.23), (4.26), (4.29)

and (4.30) are integrated repetitively for each node at every time step with each new set of

initial conditions.

Thus, as shown in Fig. 4.4, the chemical source terms are solved using ISAT and the

transport terms are calculated using MFIX at each fractional time step. The change in species

mass fractions, volumetric fractions and temperatures due to transport is calculated with other

equations using iterations in the MFIX code. If the equations converge, the change in species

mass fractions, volumetric fractions and temperatures due to chemical reactions are computed

using ISAT. Then the calculation moves to the next time step. In order to ensure rapid

convergence, MFIX adapts the time step δtM on every iteration.
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Figure 4.4 The flow chart of MFIX with ISAT.

4.2.2 ISAT User Subroutines

4.2.2.1 Direct Integration and Mapping Jacobian Matrix

As discussed in §4.1.2, direct integration of Eqs. (4.20), (4.21), (4.23), (4.26), (4.29)

and (4.30) should be provided to ISAT. In this research, Rosenbrock (Press et al., 1992) and

ODEPACK (Stepleman, 1983) stiff ODE solvers are used for integration. The chemical-source-

term Jacobian matrix is calculated numerically using ADIFOR 2.0 (Bischof et al., 1998).

The mapping Jacobian matrix A can be calculated by integrating Eqn. (4.9) with the initial

condition A(0) = I.

A(δt) = A(0)eJδt (4.31)
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A subroutine computes the matrix exponential of a general full matrix is available in Numerical

Recipes (Press et al., 1992). The subroutine uses an irreducible rational Pade approximation

for computing A.

4.2.2.2 ISAT Control Parameters

The selection of control parameters are crucial for effective ISAT usage. The following is a

description of the control parameters.

1. Scaling: The positive scale factors can be assigned to variables, which can improve ISAT

performance. However, the elements of the scaled mapping gradient matrix A should not

be larger than unity.

2. Transformations of variables: Due to the use of linear approximation, ISAT is most

effective if the chemical-source-term is a linear function of Φ. Thus, a transformation of

variables can be considered to reduce the level of non-linearity.

3. Error tolerance: The specification of the error tolerance is crucial for ISAT which is used

to control the interpolation error. Therefore, a smaller value of error tolerance will yield

better results. However, with lower error tolerance, a larger table is generated and the

number of retrieves decreases, thus time for calculation increases. A larger value of error

tolerance generates less accurate results with lower CPU time.

4. Other parameters are specified in ISAT manual such as the number of binary trees used in

the tabulation and the maximum allowable table size. Normally, the maximum allowable

table size should be set large enough that the limit is never reached.
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CHAPTER 5. SIMULATIONS OF FLUIDIZED BED PYROLYSIS OF

SILANE

In-situ adaptive tabulation (ISAT) has some advantages over the other storage and re-

trieval methods. It is readily adapted to any time-marching CFD code using fractional time

stepping, e.g. MFIX. The implementation of ISAT into MFIX is presented in §4.2 in detail.

In this chapter, the accuracy and performance of ISAT with MFIX are investigated with a

silane pyrolysis case. The numerical procedure is presented with isothermal simulations. The

influence of scale variables and multiple tables is introduced using non-isothermal simulations.

5.1 Introduction

Silane pyrolysis is an example of chemical vapor deposition (CVD). CVD is a method to

modify the surface state of the particles which influences particle properties such as corrosion

resistance and flowability. Each particle is coated by a thin layer of new material, thereby

changing the surface condition. A fluidized bed is used for CVD due to its isothermal and

thoroughly mixed particle properties resulting in uniformity of surface change. Two applica-

tions of silane pyrolysis in industry are: protecting either the particles or surfaces immersed in

a fluidized bed from oxidation or corrosion by depositing silicon films on them, and, produc-

ing ultrapure silicon for microelectronic and photovoltaic uses by growing the fluidized silicon

particles.

Detailed chemical reactions for simulations of silane pyrolysis are considered (Caussat et al.,

1995a,b). A fluidized bed reactor is fed with a mixture of silane (SiH4) and nitrogen (N2).

First, a reversible, gas-phase reaction occurs:
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SiH4 ←→ SiH2 + H2 + 238.5 kJ/mol

where highly reactive SiH2 undergoes a gas-phase reaction to form Si2H6:

SiH2 + SiH4 ←→ Si2H6 − 227.2 kJ/mol

Then the heterogeneous decomposition of SiH4 and SiH2 on alumina (Al2O3) particles is de-

scribed by two irreversible reactions:

SiH4 −→ Si(s) + 2H2 − 34.3 kJ/mol

SiH2 −→ Si(s) + H2 − 272.8 kJ/mol

The overall reaction involves five gaseous species (SiH4, H2, Si2H6, SiH2 and N2) and two

solid species (Al2O3 and Si) which need to be modeled in a numerical simulation. To determine

the production and consumption of the gases, the kinetic constants of Faylle (1993) have been

selected. The heterogeneous reactions of silane on surfaces follow the kinetic laws of Furusawa

et al. (1988) and Guenther et al. (2001). The thermodynamic data of silicon hydrides are

obtained from Gernot et al. (1997).

5.2 Isothermal Simulations

Figure 5.1 shows the two-dimensional (2D) geometry of a silane pyrolysis reactor, and two

different domain sizes for this study are given in Tab. 5.1. An experimental and theoretical

study for silane pyrolysis in a fluidized bed (Case 1) was performed by Caussat et al. (1995a,b).

Guenther et al. (2001) numerically simulated the experiment at a fixed temperature using

MFIX without time-splitting, and the results showed excellent agreement with experiments.

In simulations, the solid particles in the bed are Al2O3 with density 3.9 g/cm3 and diameter

8.2 × 10−3 cm. A mixture of SiH4 and N2 enters from the bottom of the bed with a velocity

of 7.89 cm/s. The outlet boundary condition is set to a constant pressure of 1.0 × 105 Pa.
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Figure 5.1 The computational 2D domain for fluidized bed pyrolysis of

silane.

Table 5.1 The domain sizes (cm) for silane pyrolysis reactors.

Case R1 R2 R3 H1 H2 H3 H4

1 5 2.65 2 33.2 63 74 80

2 5 2.65 2 12.0 13 24 30

The temperature inside the bed and at the boundaries is 882.45 K. At the center line, free-

slip boundary conditions are set for both the gas and solid phases, while no-slip boundary

conditions are set at the wall. The minimum void fraction in the bed is 0.5246 and a cylindrical

coordinate system is used for the simulations. The number of cells is 25 and 80 in the radial

and axial directions, respectively, which is determined to be grid independent by Guenther

et al. (2001). For the isothermal case with chemical reactions, the continuity, species and

momentum equations for the gas and solid phases are solved without the energy equation. All

simulations were performed on Sunfire 6800 using a single processor with ISAT (version 3.0).

For DI of equations, the source terms and Jacobian matrix of the source terms are provided

to a Rosenbrock stiff ODE solver (Press et al., 1992).
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5.2.1 Numerical Procedure for MFIX With ISAT

As mentioned in §4.2, ISAT is called by MFIX at every time step with a time increment,

denoted as δtM. The mass fractions, volumetric fractions and temperatures which are trans-

fered from MFIX to ISAT, are updated after the time step δtM by DI or linear interpolation,

and the values are returned to MFIX to start the next iteration.

The results denoted by ISAT(DI) are found using time-splitting where the calls to ISAT

use DI only. No linear interpolation is used for the ISAT(DI) calculations. These results

are compared with the results of MFIX to test the accuracy of the time-splitting method.

In the tests using linear interpolation, an error tolerance (E) of 10−5 is chosen to show the

full capabilities of ISAT. This error tolerance was obtained by testing silane decomposition

simulations using the global chemical mechanism (Furusawa et al., 1988; Xie, 2002). The

domain size of Case 1 was used for the first set of simulations with ISAT. ISAT began with an

empty table and all scale factors were chosen as one.

Figure 5.2 shows plots of radial void fraction and mass fraction of SiH4 averaged over 10-75

seconds for MFIX, ISAT(DI), and ISAT(E=10−5). The data are averaged only over a height of

2-10 cm since the chemical reactions occur mainly in the lower region of the bed. The bubbles,

which are indicated by a high void fraction (Fig. 5.2(a)), are away from the centerline due to the

fact that the simulations are two-dimensional (Guenther et al., 2001). The high mass fraction

of SiH4 (Fig. 5.2(b)) appears near the wall (r=2 cm). In general, ISAT(DI) is in very good

agreement with MFIX as shown in Fig. 5.2. Therefore, the time-splitting method of MFIX

with ISAT is successfully implemented. Based on Fig. 5.2, the averaged data for ISAT(DI)

and ISAT(E=10−5) also compare well confirming that the error tolerance is accurate enough

for the simulation of silane pyrolysis.

ISAT performance for the error tolerance of 10−5 is summarized in Tab. 5.2, listing the

percentage of CPU time used by retrieves, grows and adds. Although the percentage of CPU

time for retrieves is large, it is still too small for good performance of ISAT, which needs

almost all query points to be retrieves. In addition, the number of records is relatively large

compared to the number of queries. Large records means that retrieves do not dominate the
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Figure 5.2 (a) Radial void fraction and (b) mass fraction of SiH4 averaged

over 10–75 s and height 2-10 cm using MFIX, ISAT(DI) and

ISAT(E=10−5).
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Table 5.2 A summary of ISAT performance for silane decomposition with

an error tolerance of E=10−5 for Case 1.

Percentage of time %

Retrieves 95

Grows 4

Adds 1

Number of queries 5.4× 107

Records 6.2× 105

ISAT calculation. A graph of ISAT performance is provided in Fig. 5.3 and reflects the poor

performance of ISAT as shown in Tab. 5.2. Note that the add and grow curves in Fig. 5.3 do

not flatten for large numbers of queries. Therefore, the table is still growing and records are

being added to the table, which indicates that the table has not reached maturity at the end

of the simulation. This behavior was unexpected based on the results of other applications of

ISAT for reactive flows. We were thus motivated to determine its cause.

As noted earlier, MFIX calls ISAT at each fractional time step δtM, which changes errati-

cally during the course of the simulation. A plot of the time step δtM versus time is shown in

Fig. 5.4 for the silane pyrolysis using MFIX. The time step increases at the beginning of the
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simulation, but becomes statistically steady after about 10 seconds. However, the time step

fluctuates markedly around the mean value, and is essentially uncorrelated in time.

The poor performance of the ISAT is due to this drastically varying time step in MFIX.

Since ISATAB determines the EOA based both on the distance in the composition space

and the difference in the time step, a variable time step in ISAT with similar mass fractions

and volumetric fractions will produce a new record or growth instead of utilizing the linear

interpolation procedure. It appears that a CFD code with a rapidly varying time step needs

longer time and more memory to build and store the ISAT table. One possible remedy is to

call ISAT from MFIX at a fixed time step δtI during the calculation as shown in Fig. 5.5. At

the beginning, tM is equal to tI. Time steps in MFIX (δtM) vary during the simulation and

ISAT is only called when the time in MFIX advances more than δtI. Then, ISAT updates the

data every δtI, which is held constant until tI is greater than tM.

5.2.2 Results of 2D Simulations Using a Fixed Time Step

With the same numerical procedure discussed in §5.2.1, silane pyrolysis was again used to

test the accuracy and speed-up of ISAT with different number of trees. In simulations, tI is set

as 10−3, which is a value smaller than the averaged time step obtained by DI shown in Fig 5.4.
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Figure 5.5 Flow chart of MFIX with ISAT for fixed time step.

However, the height of the computational domain was reduced (Case 2 in Tab. 5.1) to 30 cm

in order to decrease the overall computational time and increase the percentage of CPU time

used for the chemical reaction calculation.

All ISAT calculations used the same error tolerance (E=10−5) as before. Different numbers

of trees, 2 and 10, were used to test the performance of ISAT, and results for ISAT(DI) and

ISAT with a fixed time step are shown in Fig. 5.6. Good agreement is observed for void

fraction and mass fraction of SiH4 between ISAT(DI) and ISAT, and the number of trees has

a negligible effect on the accuracy.

ISAT performance is summarized in Tab. 5.3. Total CPU time is the time used for the

entire MFIX–ISAT calculation, whereas the CPU time for chemistry is the time used only by

ISAT. The speed-up of chemistry is the ratio of CPU time between ISAT(DI) and ISAT for the

chemistry calculation. For the sake of comparison, also included in the table are results using

ISAT (E=10−5) allowing the calculations to proceed with a variable time step. Notably, the

percent retrieves is poor due to the enormous number of records. Thus, although the number of



52

r (cm)

V
oi

d
fra

ct
io

n

0 1 2 3
0.50

0.55

0.60

0.65

0.70

ISAT (DI)
ISAT (Ntree=2)
ISAT (Ntree=10)

(a)

r (cm)

M
as

s
fra

ct
io

n
of

S
iH

4

0 1 2 3
0.00

0.01

0.02

0.03

0.04

0.05

ISAT (DI)
ISAT (Ntree=2)
ISAT (Ntree=10)

(b)

Figure 5.6 (a) Radial void fraction and (b) mass fraction of SiH4 av-

eraged over 100–200 s and height 2-10 cm using ISAT(DI),

ISAT(ntree=2) and ISAT(ntree=10) with E=10−5.
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Figure 5.7 CPU time for ISAT events versus queries for ntree=10.

queries with a variable time step is 34% less, the CPU time for chemistry increases by a factor of

5.8. ISAT using a fixed time step reduces the computational time for chemistry drastically and

the speed-up is around 46 for silane pyrolysis. Moreover, the computational time decreases

when the number of trees increases. However, the total CPU time does not reduce much

due to the small percentage of computational time occupied by the chemistry calculation.

Comparing the results for ntree equal to 2 and 10, as the number of trees increases, CPU

time for the chemistry calculation decreases since the depth of tree is less and the time for a

Table 5.3 A summary of ISAT performance for isothermal simulations.

E = 10−5

ntree=10 ntree=10 ntree=2

(variable δtI) (fixed δtI) (fixed δtI) DI

Total CPU time (s) 187771 160927 169394 202533

CPU time for chemistry (s) 6269 1091 1353 50723

Number of queries 2.88 × 107 4.37 × 107 4.37 × 107 —

Retrieves (%) 95.12 99.93 99.49 —

Records 2.4× 105 569 5102 —

Speed-up of chemistry 5.5 46.5 37.5 —
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retrieve is shorter. Figure 5.7 is a graphical representation of Tab. 5.3 for ntree=10. As seen

in Fig. 5.7, a newly created table is dominated by adds, followed by an intermediate period

dominated by grows. When adds and grows become flat, the overall computational efficiency

of ISAT increases dramatically since the table is mature and almost every query point leads

to a retrieve. Finally, note that with a fixed time step the number of records is drastically

reduced as compared with a variable time step. This is an indication that ISATAB does not

perform efficiently with a rapidly varying time step.

5.3 Non-Isothermal Simulations

Version 4.0 of ISAT was released in 2003 with the capability to be implemented into par-

allel codes using MPI. A parallel code for multiprocessors can reduce the computational time

drastically, which is important for multiphase flow calculations since the simulations are com-

putationally expensive due to small time steps and grid size chosen to capture flow scales. The

addition of chemistry and interphase mass transport into the calculations adds to the compu-

tational expense too. Another feature of ISAT 4.0 is that it can be used to construct distinct

tables for different functions on each processor. Also, secondary retrieves and secondary grows

are added into the algorithm. In the primary retrieve, the trees are traversed in turn to reach

the primary-retrieve leaf. If the value can be retrieved from this leaf, then this value is imme-

diately returned. If the primary retrieve fails, the trees are traversed again and a secondary

retrieve from each tree is attempted. If the value can be retrieved from any leaf tested, then

this value is returned. If the secondary retrieve fails, then the value is evaluated by DI, and it

is attempted to grow the primary-retrieve leaf of each tree. If primary grow fails, the trees are

traversed in turn and a number of leaves are grown if possible by secondary grows.

With the new capabilities of ISAT, non-isothermal silane cases were simulated to test the

performance of ISAT. The reaction kinetics and properties of gas and solid phases are shown

in §5.2. However, energy equations for gas and solids were solved along with the continuity,

momentum and species equations. The initial condition for the temperatures of gas and solids

in the bed and gas at the inlet is 882.45 K. Fixed temperature conditions (882.45 K) are set at
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Table 5.4 ISAT control parameters for 2D non-isothermal simulations.

Case Variables Scale factors ntree E

1 All 1.0 16 10−5

Tg 882 K

Tsm 882 K

XSiH4
0.15

XSiH2
10−6

2 XH2
0.05 16 10−2

XSi2H6
0.05

XSi 5× 10−3

ρg 10−4

All others 1.0

walls for both phases. All calculations were performed on an Alpha Cluster (HPC3) at Iowa

State University. The direct integration of ODEs is calculated by ODEPACK (Stepleman,

1983).

5.3.1 2D Simulations Using Scale Factors

As mentioned in §4.2.2.2, positive scale factors can be assigned to the independent and the

dependent variables. The guideline is that the elements of the scaled gradient matrix should

not be large compared to unity. Thus ISAT is tabulated in terms of the normalized quantities

such that the non-isothermal 2D cases are simulated with scale factors. The computational

domain in the simulations is the same as the isothermal 2D cases shown in Fig. 5.1.

The control parameters for two different sets of scale factors are listed in Tab. 5.4. The

same number of trees (16) were used in both cases. Case 1 sets all scale factors as the default

values which are unity, which implies that variables are not scaled. Case 2 scales the tem-

peratures by the inlet gas and wall temperature which is 882 K. All other scale factors are

the maximum values appearing in the simulations obtained by DI. The factors are shown in

Tab. 5.4. Numerical tests showed that an error tolerance of 10−5 for case 1 yields satisfactory

accuracy with DI. However, case 2 can use a larger error tolerance (E= 10−2) to maintain

the agreement with DI when using scale factors, thus reducing computational time. Good
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Table 5.5 A summary of ISAT performance for Cases 1 and 2.

Case 1 Case 2 DI

Total CPU time (s) 71483 33169 45520

CPU time for chemistry (s) 33224 2504 9568

Number of queries 2.18 × 107 2.18 × 107 —

Primary Retrieves (%) 52.39 87.28 —

Secondary Retrieves (%) 18.69 11.13 —

Total Retrieves (%) 71.08 98.41 —

Replace (%) 19.54 0 —

Records 2.7 × 105 8014 —

Speed-up of chemistry 0.3 3.8 —

agreement is observed in Fig. 5.8. for void fraction, gas temperature, mass fractions of SiH4

and H2 between DI and ISAT.

The performance of ISAT is summarized in Tab. 5.5. For case 1 in which all scale factors

are set to unity, the number of records is large since the dependence of reaction rates on

temperature generally is exponential. The maximum allowable table size has been exceeded

and replace occurs. The CPU time for ISAT calculation increases drastically since queries

have to be computed by DI and new EOAs are replaced by old EOAs. Case 2 which uses scale

factors obtained a speedup of 4 without replace and requires less records in the table. The

plot of ISAT performance for case 2 is shown in Fig. 5.9. The primary and secondary retrieves

dominate the queries. After the table has matured, the percentage of grows and adds reduces

greatly.

5.3.2 3D Simulations Using Multiple Tables and Processors

A non-isothermal 3D case was simulated to test ISAT performance with multiple processors

and multiple tables. For simplicity of calculation, the computational domain is changed to a

rectangular domain with no expansion part. The computational geometry is shown in Fig. 5.10.

A Cartesian coordinate system is used for the simulations. Since ISAT generates a separate

table on each processor, the performance of different domain decomposition directions are
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Figure 5.8 (a) Radial void fraction, (b) gas temperature, (c) mass fraction

of SiH4 and (d) H2 averaged over 50–100 s and height 2-10 cm

using ISAT(DI), ISAT (Case 1) and ISAT (Case 2).
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Figure 5.9 Fraction of events versus queries for case 2.

investigated first. The speed-up is tested using the silane case with DI and all cases are run up

to 0.2 s. The CPU time per processor for computation is more than 1 hour to make sure that all

processors are involved in the computation. The computational domain is decomposed in three

ways: (1) parallelization in x direction, (2) parallelization in y direction, (3) parallelization

in z direction. The assignments of processors are shown in Tabs. 5.6, 5.7 and 5.8 for each

parallelization direction. Speed-up is defined by the formulation

Speed-up(n) = T1

Tn

where Speed-up(n) is the speed-up achieved with n processors, T1 is CPU time using 1 processor

and Tn is CPU time per processor when n processors are used.

Figure 5.11 demonstrates parallelization performance for all of the non-isothermal silane

pyrolysis cases. When number of processors is less than or equal to 4, the speed-up with

parallelization in different directions are similar. However, the speed-up with parallelization

in the y direction is highest (around 3.5) with 8 processors. For the other cases, there are not

enough cells on each processor when decomposing the domain in the x and z directions.

The algorithm of ISAT and the properties of fluidized beds should be considered when

the domain decomposition direction is chosen. Normally the chemistry is very different along
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Figure 5.10 The computational 3D domain for fluidized bed pyrolysis of

silane.

the y direction due to different temperatures and species concentrations. The tables on each

processor are quite different if the domain is decomposed in the y direction. The table on each

processor handles the reaction initial conditions which are smaller than the whole composition

space in a fluidized bed reactor. Therefore, the size of tables generated is smaller and CPU

time to build these mature tables is less. Each processor tabulates the entire composition space

which comprises the dense bed to the freeboard if parallelized in the x or z directions. Thus,

parallelization in the x or z directions is not efficient for ISAT. In the following simulations,

parallelization in the y direction is chosen and all cases are calculated using 4 processors.

As discussed in §5.3.1, the variables should be scaled by the factors which are the maximum

values in the domain. However, the values of variables are quite different in the freeboard than
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Table 5.6 Parallelization in the x direction on HPC3.

processors x y z

1 1 1 1

2 2 1 1

4 4 1 1

8 8 1 1

Table 5.7 Parallelization in the y direction on HPC3.

processors x y z

1 1 1 1

2 1 2 1

4 1 4 1

8 1 8 1

Table 5.8 Parallelization in the z direction on HPC3.

processors x y z

1 1 1 1

2 1 1 2

4 1 1 4

8 1 1 8

in the bed. For example, the mass fraction of SiH4 changes dramatically from the bed to the

freeboard, or the solid phase species may not exist in the freeboard. A consequence is that

for the processors that handle both freeboard and bed, two tables must be created separately

on each processor in order to maintain accuracy and reduce computational time. On every

processor, one table is built for chemical reactions in the bed, which include the gas-solid phase

reactions and gas phase reactions. Another table is for freeboard and only tabulates the gas

phase reactions. Both tables are scaled by different factors which are the maximum values

that occurs in the bed and freeboard, respectively. In all simulations, the number of trees is

12 and the error tolerance is 10−2.
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Figure 5.11 Speed-up for parallelization in different directions on HPC3

(MPI).

Figure 5.12 show plots of the void fraction, gas temperature and mass fractions of SiH4 and

H2 in the bed. The plots of gas temperature and mass fractions of SiH4 in the freeboard are

shown in Fig. 5.13. In the 3D simulations, bubbles appear in the center of the domain and solids

accumulate near the wall shown in Fig. 5.12(a) unlike the 2D simulations. A high mass fraction

of SiH4 is observed in the center of the bed (Fig. 5.12(c)) and a more uniform distribution of

SiH4 is shown in the freeboard (Fig. 5.13(a)). The mass fraction of H2 (Fig. 5.12(d)) is almost

constant along the radial direction. Gas temperatures are uniform through the whole reactor

(Fig. 5.12(b) and Fig 5.13(b)). ISAT(DI) and ISAT compare well for the both regions.

The performance of ISAT for processors 0 and 1 is shown in Tab. 5.9. The domain decom-

position and location of tables is shown in Fig. 5.14. Tables 0 and 1 tabulate the chemical

reactions in the bed and the freeboard, respectively. As shown in Fig 5.14, table 0 was built

on processor 0, and only processor 1 contained both tables 0 and 1. ISAT performance of

table 0 and table 1 on processor 1 is shown in Fig. 5.15. For all tables, the total retrieves are

more than 99.9%, which indicates that linear interpolation dominates the computation. The

speed-up of chemistry is calculated using the CPU time used by ISAT divided by the CPU

time used by DI on each processor. For processor 1, the speed-up is around 50. The total CPU

time for simulations is reduced by 24% by using ISAT.
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Figure 5.12 (a) Radial void fraction, (b) gas temperature, (c) mass fraction

of SiH4 and (d) H2 averaged over 5–10 s and height 2-10 cm

using ISAT(DI), ISAT in the bed.
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Figure 5.13 (a) Mass fraction of SiH4 and (b) gas temperature averaged

over 5–10 s and height 20-28 cm using ISAT(DI) and ISAT in

the freeboard.
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Table 5.9 A summary of ISAT performance for 3D simulations.

Processor 0 Processor 1

Table 0 Table 0 Table 1

Number of queries 3.96 × 107 3.45 × 107 1.28× 107

Primary Retrieves (%) 63.38 89.48 88.20

Secondary Retrieves (%) 26.53 10.48 11.78

Total Retrieves (%) 99.91 99.96 99.98

Records 859 272 138

Speed-up of chemistry 20.5 48.2

X

Y

Z

0.55 0.65 0.75 0.85 0.95

Processor 0

Processor 1

Processor 2

Processor 3

Table 0 (bed)

Table 1 (freeboard)

Figure 5.14 Void fraction at 15 s in 3D simulations using multiple proces-

sors and tables.
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Figure 5.15 A summary of ISAT performance for (a) the bed (table 0) and

(b) the freeboard (table 1) for processor 1.
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CHAPTER 6. SIMULATIONS OF FLUIDIZED BED COAL

GASIFICATION

The modified MFIX-ISAT algorithm was presented for the isothermal silane pyrolysis case

in Section §5.2. The two-dimensional and three-dimensional non-isothermal silane cases were

used to investigate the features of ISAT, such as scale variables and multiple tables on multiple

processors (§5.3). In this chapter, a coal gasification mechanism is used to test the performance

of ISAT with the complex gas-solid reactions using the improved performance parameters

discussed in Chapter 5.

6.1 Introduction

Coal is an inhomogeneous organic fuel, formed from partially decomposed and metamor-

phosed plant materials under high pressures and elevated temperatures. Coals vary greatly in

their composition. Coal is the world’s most plentiful fossil fuel and also the most abundant

fossil fuel in the United States (Smoot, 1993).

Several feasible conversion processes exist such as combustion, gasification and liquefac-

tion (Smoot and Smith, 1986). Gasification of coal is a process in which coal reacts with an

oxidizer to produce a gaseous product. The desired products usually include carbon monox-

ide, hydrogen and methane. The gaseous product can be used as a fuel for generation of

electrical power or a synthesis gas. Fluidized beds are widely used for coal gasification due to

their advantageous characteristics such as excellent gas-solid contacting and high rate of heat

transfer.

The MFIX model of coal chemistry is a modified version of the reaction scheme used by the

National Energy Technology Laboratory (Syamlal and Bissett, 1992). The chemical reactions
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are divided into initial stage reactions, and gasification and combustion reactions. The solid

phase consists of coal which contains four pseudo-species: ash, moisture, volatile matter and

fixed carbon. The gas phase includes eight species: O2, CO, CO2, CH4, H2, H2O, N2 and

tar. In reactors, ash does not react, and moisture evaporates during the initial stage reactions.

Volatile matter releases gas phase species through devolatilization, which depends on the type

of coal and the heating process. Fixed carbon takes part in the combustion and gasification

reactions. The steps of the chemical reactions for coal are:

1. Initial Stage Reactions

Moisture (coal) −→ H2O

Volatile Matter ←→ Tar + Gases

Tar −→ Fixed Carbon + Gases

2. Gasification Reactions

C + H2O←→ CO + H2

C + CO2 ←→ 2CO

C + 2H2 ←→ CH4

3. Combustion Reactions

2C + O2 −→ 2CO

2CO + O2 −→ 2CO2

CH4 + 2O2 −→ CO2 + 2H2O

2H2 + O2 −→ 2H2O

4. Water Shift Reaction

CO + H2O←→ CO2 + H2

The coefficients in the initial stage reactions are determined by assuming certain phenomeno-

logical rules (Syamlal and Bissett, 1992). The rate expressions for gasification and combustion

reactions can be found in Wen et al. (1982).
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Table 6.1 Analysis of Illinois No.6 coal.

Proximate Analysis

Fixed carbon 0.4679

Volatile matter 0.3767

Ash 0.078

Moisture 0.0774

Ultimate Analysis

C 0.6583

H 0.0696

N 0

O 0.1167

S 0

The feed material used for gasification simulations is Illinois No.6 coal. The feed has a

mean particle size of 297 µm and a density of 2.6 g/cm3. The proximate and ultimate analyses

of the coal are given in Tab. 6.1.

6.2 Pairwise Mixing Stirred Reactor

The pairwise mixing stirred reactor (PMSR) model is selected to test the chemical reactions

of coal gasification first since the results obtained from the PMSR model provide information for

optimizing parameters in ISAT to minimize the computational time for FB reactor simulations.

At any time t, the PMSR consists of an even number (N) of particles, the ith particle having

composition φ(i)(t) (Pope, 1997; Saxena and Pope, 1999). At t = 0, initial conditions are

assigned to all particles in the reactor. Then particles are advanced in discrete time steps,

with δt being the specified time step at the discrete times kδt (k is an integer that represents

time steps). Events occur corresponding to outflow, inflow, and pairing, which cause φ(i)(t) to

change discontinuously. Between discrete times, the composition evolves by a mixing fractional

step and a reaction fractional step.

The particles are arranged in pairs; e.g., particles 1 and 2, 3 and 4, ...N − 1 and N are
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partners. The mixing fractional step consists of a pair (e.g., p and q) evolving by

dφ(p)

dt
= −

1

τmix

(

φ(p) − φ(q)
)

(6.1)

dφ(q)

dt
= −

1

τmix

(

φ(q) − φ(p)
)

(6.2)

where τmix is the micromixing time scale.

In the reaction fractional step, each particle evolves according to the chemical source term

dφ(i)

dt
= S(φ(i)) (6.3)

where S is the source term.

Using τres as the specified residence time, inflow and outflow consist of selecting Nδt/(2τres)

particle pairs at random and replacing their compositions with the inflow compositions. With

τpair being the specified pairing time scale, Nδt/(2τpair) particle pairs (other than inflowing

particles) are randomly selected for pairing. These particles and the inflowing particles are

then randomly shuffled so that (most likely) they change partners. Equations (6.1) and (6.2)

can be solved analytically and need little time for simulations. The total computational time

depends on the complexity of the chemical source term and the wide range of chemical time

scales in Eqn. (6.3).

The values of the various parameters used in the simulations are shown in Tab. 6.2. As

the initial condition, particles in the reactor contain only N2 and ash with a void fraction of

0.43. The gas and solid temperatures are both 1000 K. The inflow particles include coal with a

volumetric fraction 0.002, and air, which has mass fraction of 0.2566 for O2 and 0.7434 for N2.

Also, the inlet particles have a temperature of 1000 K. For all simulations using the PMSR

model, the Rosenbrock method is used to integrate the ODEs. Simulations were performed on

the Sunfire 6800 with ISAT (version 3.0).

The simulations ran up to 1 s, achieving steady state, but the plots only show the results

for 0.05 s for sake of clarity. For all ISAT simulations, the variables were scaled by the values

in the statistically stationary state. Figure 6.1(a) shows mass fraction of CH4 and (b) is a
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Table 6.2 Parameters used in the PMSR simulations.

Number of particles 100

Number of time steps, Nstep 1000

Residence time, τres 0.001s

Mixing time scale, τmix 0.0001s

Pairing time scale, τpair 0.0001s

Table 6.3 ISAT performance for the PMSR.

DI E = 10−4 E = 10−3 E = 10−2

Total CPU time (s) 37606 2625 2151 1834

CPU percentage for chemistry (%) 94.46 93.31 92.07

Number of queries 2.94 × 107 2.94 × 107 2.94 × 107

Retrieves (%) 98.22 98.87 99.04

Records 9.32 × 104 6.22 × 104 4.05 × 104

Speed-up 10.5 17.5 20.5

close-up to compare solutions using DI and solutions for different ISAT error tolerances. ISAT

simulations match well with DI for all error tolerances. From the close-up (Fig. 6.1(b)) it

can be inferred that ISAT accuracy decreases when the error tolerance increases from 10−4

to 10−2. Also, the mass fraction of H2 and gas temperatures in Fig. 6.2 show that results

using ISAT agree well with DI. Thus, the error tolerance (E = 10−2) is reasonably accurate for

future simulations. ISAT performance is listed in Tab. 6.3. Chemistry calculations using the

PMSR model dominate more than 90% of total CPU time for all cases. The retrieve percentage

increases from 98.22 to 99.04 and the number of records reduces by 54% with E = 10−2, for a

speed-up around 20.5.

6.3 Fluidized Bed Reactor

Figure 6.3 shows the two-dimensional (2D) geometry of a fluidized bed reactor. In the

simulations, the solid particles in the bed are ash. A mixture of air and coal enters from

the bottom of the bed with velocities of 16.5 cm/s and 0.01 cm/s, respectively. The outlet
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Figure 6.1 (a) Mass fraction of CH4 and (b) the close-up using ISAT(DI)

and ISAT.
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and ISAT.
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Figure 6.3 Computational domain for coal gasification.

boundary condition is set to a constant pressure of 1.0 × 105 Pa. The temperature inside the

bed and at the boundaries is 923 K. No-slip boundary conditions for gas and solid phases are

set at the wall. The minimum void fraction in the bed is 0.43 and a Cartesian coordinate

system is used for the simulations. The number of cells used in the simulations is 15 and

32 in the radial and axial directions, respectively and simulations are run up to 200 s. All

simulations were performed on an Alpha Cluster (HPC3) at Iowa State University with ISAT

(version 4.0). For the DI solution of the equations, ODEPACK is used for the calculations.

An error tolerance (10−2) is used for ISAT and two tables are built for the bed and freeboard,

respectively. All variables are scaled by the maximum values in the reactor obtained by DI.

Figure 6.4 presents void fraction and gas temperature averaged over time using ISAT(DI).

The bed expands from 8 to 12 cm during the gasification process. Uniform gas temperature

distribution is observed in the bed and higher temperatures occur in the freeboard due to the

homogeneous combustion. The averaged contour plots of mass fractions of CO and H2 using

ISAT(DI) are shown in Fig. 6.5. Lower values of mass fractions of CO and H2 are observed

above the distributor plate. Both the mass fractions increase at a higher bed height, where
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Figure 6.4 Contour plots of (a) void fraction and (b) gas temperature av-

eraged over 100-200 s using ISAT(DI).
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Figure 6.5 Contour plots of mass fractions of (a) CO and (b) H2 averaged

over 100-200 s using ISAT(DI).
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coal gasification reactions occur.

Figure 6.6 shows the void fraction, gas temperature and mass fractions of CO and H2 in

the bed. Bubbles appear in the center of the domain and the solids accumulate near the walls

(Fig. 6.6(a)). A uniform distribution of gas temperature is observed from Fig. 6.6(b). The

plots of mass fractions of CO and H2 in the freeboard are shown in Fig. 6.7. A high mass

fraction of CO is observed in the center of the freeboard (Fig. 6.7(a)) and a more uniform

distribution of CO is shown in the bed (Fig. 6.6(c)). Mass fractions of H2 are uniform for both

bed (Fig. 6.6(d)) and freeboard regions (Fig. 6.7(b)). ISAT(DI) and ISAT compare well for

both regions.

Table 6.4 presents the performance for ISAT. Tables 0 and 1 tabulate the chemical reactions

in the bed and the freeboard, respectively. ISAT performance of table 0 and table 1 is shown

in Fig. 6.8. For all tables, the total retrieves are more than 99.9%, which indicates that the

tables are mature. The speed-up of chemistry is around 16 for 200 simulation seconds. The

total CPU time for MFIX-ISAT simulations is reduced by 10% by using ISAT.
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Figure 6.6 (a) Void fraction, (b) gas temperature, (c) mass fractions of CO

and (d) H2 averaged over 100–200 s and height 0-4 cm using

ISAT(DI) and ISAT in the bed.
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and height 15-25 cm using ISAT(DI) and ISAT in the freeboard.
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Table 6.4 ISAT performance for fluidized bed gasification.

Table 0 Table 1

Number of queries 4.12 × 107 5.33 × 107

Primary Retrieves (%) 82.35 93.05

Secondary Retrieves (%) 17.61 6.94

Total Retrieves (%) 99.96 99.99

Records 1801 42

Speed-up of chemistry 16.1
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Figure 6.8 A summary of ISAT performance for (a) the bed (table 0) and

(b) the freeboard (table 1).
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CHAPTER 7. EFFECTS OF USING TWO- VERSUS

THREE-DIMENSIONAL COMPUTATIONAL MODELING OF

FLUIDIZED BEDS

CFD simulations of fluidized beds using an Eulerian-Eulerian model are computationally

expensive. In order to simulate phenomena such as particle segregation and elutriation, mul-

tiple types of particles should be considered. Each particle type has a unique diameter with

identical material properties. Thus, three-dimensional simulations of fluidized beds are usually

prohibitive. Two-dimensional simulations are commonly used to compare with experiments.

This chapter focuses on the use of coordinate systems and configuration to model fluidized

bed reactors. Three different fluidization regimes, bubbling, slugging and turbulent regimes,

are investigated with inlet gas velocities, 1.25Umf , 1.86Umf and 4.04Umf , respectively. The

individual terms of the governing equations in two-dimensional (2D) and three-dimensional

(3D) simulations with the cylindrical and Cartesian coordinate systems are evaluated. The

additional terms appearing in 3D simulations are used to explain the discrepancy between 2D

and 3D simulations.

7.1 Introduction

Many numerical simulations of dense fluidized beds based on the Eulerian-Eulerian model

have been performed. In an early summary paper by Enwald et al. (1996), most published

literature presented 2D simulations since full 3D simulations were computationally prohibitive

due to memory and processor speeds. To date, even with improved computational facilities, 3D

simulations are still expensive as the equations have to be integrated for long times with small

time-steps to compute the inherently chaotic and transient fluidization processes. According
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to Geldart (1986), there are different coalescence effects in 2D and 3D beds. Also, smaller

bubbles (Geldart, 1970) and a lower rise velocity (van Wachem et al., 1998) are usually observed

with 2D beds. Therefore, one question that persists is the validity of using 2D simulations to

represent the true dynamical behavior of fluidized beds. Another question is the choice of

coordinate system and configuration used to model a cylindrical reactor, which is the most

common geometry used in industry.

Comparison between simulations and experiments is a common way to validate CFD mod-

els. For example, the 2D simulations of rectangular fluidized beds using the Cartesian coor-

dinate system by Johansson et al. (2006) were compared with experiments, and the general

trends indicated that 2D simulations show good agreement. The 2D Cartesian coordinate

system usually is used to simulate 3D rectangular fluidized beds, especially for pseudo-2D ex-

periments. Typically, pseudo-2D beds have a small depth compared to the height and width.

Thus the particle motion is suppressed in the depth direction. Many researchers have applied

2D Cartesian simulations to model pseudo-2D beds (Sun and Battaglia, 2006; Chiesa et al.,

2005; Goldschmidt et al., 2001, 2004; Boemer et al., 1998). Johansson et al. (2006) and En-

wald et al. (1999) also employed a 2D Cartesian system to represent 3D rectangular geometries

which were not considered as pseudo-2D beds.

Both the 2D cylindrical, which assumes symmetry in the azimuthal direction, and 2D Carte-

sian coordinate systems are employed for simulations of a cylindrical fluidized bed. Syamlal

and O’Brien (2003) applied the 2D cylindrical coordinate system for catalytic decomposition

of ozone in a fluidized bed reactor. Their simulations showed that bubbles formed near the

wall and migrated toward the centerline. However, bubbles did not reach the center of the

bed. The atypical flow dynamics may be due to the axisymmetric assumption which is not

representative of a real fluidized bed. An alternative approach is to simulate a cylindrical

fluidized bed using the 2D Cartesian coordinate system, which represents an axial slice at the

center of the reactor. Such simulations include work by Hulme et al. (2005), Chandrasekaran

et al. (2005), Zimmermann and Taghipour (2005), McKeen and Pugsley (2003), Pain et al.

(2002) and van Wachem et al. (1999). However, there are few articles in the literature that
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discuss the justification for using 2D simulations for fluidized beds.

Peirano et al. (2001) performed numerical simulations of a rectangular bubbling fluidized

bed using the code ESTET/ASTRID. Numerical results were compared to experimental values

for the power spectra of pressure fluctuations, bed height, and probability density function of

particle volume fraction. They observed a significant difference between 2D and 3D simulations,

and only 3D simulations could predict the correct bed height and pressure spectra. Cammarata

et al. (2003) also validated the bubbling behavior predicted by 2D and 3D simulations for a

rectangular fluidized bed using commercial software, CFX. The bed expansion, bubble hold-up

and bubble size calculated from 2D and 3D simulations were compared with the predictions

obtained from the Darton equation (Darton et al., 1977). A more realistic physical behavior

of fluidization was obtained using 3D simulations. Both Peirano et al. (2001) and Cammarata

et al. (2003) concluded that 3D simulations should be preferably performed except maybe in

cases where the flow is by nature two dimensional. However, these authors indicate that 2D

simulations could be used to conduct sensitivity analyses. For a cylindrical fluidized bed, there

are no studies comparing 2D and 3D simulations.

Briongos and Guardiola (2005) presented a new method to scale hydrodynamic data be-

tween a 2D and 3D fluidized bed applying the chaos scale-up methodology. They tested the

methodology for 2D fluidized beds and 3D cylindrical fluidized beds. The findings suggested

that 2D and 3D fluidized beds are dynamically similar if the fluidized beds have the same

flow properties, which is represented by the Kolmogorov entropy under the same fluidization

conditions. However, the results presented were limited to small ranges of gas velocities and

particle properties.

7.2 Hydrodynamics

The aim of the present work is to show the range of validity for employing simulations based

on a 2D Cartesian coordinate system to approximate both cylindrical and rectangular fluidized

beds. The simulations were conducted for three different inlet gas velocities, 1.25Umf , 1.86Umf

and 4.04Umf (Umf is the minimum fluidization velocity) which correspond to the bubbling,
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Figure 7.1 Computational domains for a (a) cylindrical and (b) rectangular

fluidized bed reactor.

slugging and turbulent regimes of fluidized beds. For bubbling fluidized beds, the results

of 2D and 3D simulations are presented for both cylindrical and rectangular domains. The

comparison of 2D and 3D simulations for a cylindrical geometry is shown for the slugging and

turbulent regimes. MFIX will be used for all simulations; for details, refer to Chapter 3.

7.2.1 Domain Discretization and Grid Resolution Study

The computational domains for the cylindrical and rectangular fluidized beds are shown in

Fig. 7.1. The heights of the domains are 100 cm for all the simulations. The diameter of the

cylinder is 14 cm and the cross section of the rectangular geometry is a square with a length
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of 14 cm per side. Three dimensional simulations of the cylindrical and rectangular domains

were calculated using the cylindrical and Cartesian coordinate systems, respectively. For 2D

simulations of the cylindrical domain, a 2D cylindrical (axisymmetric) coordinate system was

used with a 7 cm radius. A two-dimensional Cartesian coordinate system was considered,

representing a plane for both the cylindrical and rectangular domains with a width of 14 cm.

Finite volume schemes were used to discretize the governing equations. The SIMPLE

algorithm was modified for multiphase flow to solve the algebraic equations (Syamlal, 1998).

In simulations, the Superbee method was used as spatial discretization. A PDE for the granular

temperature was solved. The walls were modeled using no-slip boundary conditions for both

gas and solid phases. The free-slip boundary condition was used at the centerline for the

2D cylindrical domain. A uniform superficial gas velocity was employed at the bottom of

the bed and ambient pressure was specified at the exit. Three superficial gas velocities were

considered, representing three different flow regimes: a bubbling bed (1.25Umf ), a slugging

bed (1.86Umf ) and a turbulent bed (4.04Umf ). For the initial condition, the fluidized bed was

at minimum fluidization with a solid volume fraction of 0.58. The settled bed height was 50

cm for the bubbling and slugging regimes and 30 cm for the turbulent regime. The freeboard

was considered to be occupied by gas only. The solid particles have a density of 2.0 g/cm3,

diameter of 0.04 cm and are classified as a Geldart group B material with an assumed Umf

of 21.56 cm/s. Neither the choice of the particles nor the drag formulation would necessarily

alter the conclusions (as long as the models and parameters are fixed for the different cases) of

the paper as the focus is mainly on understanding the differences in the choice of coordinate

systems. The particles were fluidized by air at ambient conditions.

Two dimensional simulations using the cylindrical coordinate system were used to deter-

mine grid independence with a superficial gas velocity of 40 cm/s. Beginning with 7 and

100 cells in the radial and axial directions, respectively, the number of cells was doubled, as

shown in Tab. 7.1. Figure 7.2 shows the profiles of the void fraction versus radial distance

averaged over time (10–20 s) for two fixed bed heights. There is some change in the profiles

when the grid is refined from 7× 100 to 14× 200. However, further doubling the grid did
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Table 7.1 The grid resolution and cell sizes for 2D cylindrical simulations.

Grid △x (cm) △y (cm)

7× 100 1.0 1.0

14× 200 0.5 0.5

28× 400 0.25 0.25

56× 800 0.125 0.125
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Figure 7.2 Void fraction versus radial distance for different grids at (a) 20

cm and (b) 50 cm above the inlet for a superficial gas velocity

of 40 cm/s.

not result in significant differences in the solutions. This also corresponds to the resolution of

10 times the particle diameter which seems to be the typical resolution required to have grid

independent simulations (Guenther and Syamlal, 2001). As a compromise between accuracy

and computational cost, a uniform grid of 14× 200 (5× 5 mm2 cells) was employed in all the

simulations.

A further study examined 2D and 3D simulations using the cylindrical coordinate system

for a superficial gas velocity of 40 cm/s. A summary of the grid resolutions is found in

Tab. 7.2. The void fraction versus radial distance at 20 cm above the inlet is shown in Fig. 7.3.

Unphysical results were obtained when using the 2D cylindrical coordinate system, as the
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Table 7.2 The grid resolution for the cylindrical and Cartesian systems.

Grid

2D cylindrical 14× 200

3D cylindrical 14× 200× 2

3D cylindrical 14× 200× 3

3D cylindrical 14× 200 × 12

2D Cartesian 28× 200

3D Cartesian 28× 200 × 28

bubbles were repelled by the centerline free-slip boundary condition and the bubbles coalesced

away from the centerline, indicative of higher void fraction. Next, the 3D cylindrical domain

with 2 cells in the azimuthal direction was used to represent the axisymmetric condition,

however, lower void fraction was also observed near the centerline. Interestingly, increasing

the number of azimuthal cells to 3 captured the correct trend, allowing bubbles to rise along the

centerline (Guenther et al., 2001). Also, a 3D cylindrical calculation with 12 azimuthal cells was

tested, which reached the upper limit of the computational resources in both memory and time

on an Alpha cluster (DEC Alpha EV6.7 processor running at 833 MHz). It should be noted

that using 12 cells to discretize the azimuthal direction may be considered a coarse resolution,

effectively producing an axisymmetric flow. According to Guenther et al. (2001), azimuthal

cell discretization of 24 or greater were considered grid independent solutions. However, they

showed that 12 cells in the azimuthal direction were qualitatively similar to 24 and 36 cells.

For this study, only results for the 3D cylindrical system with 3 and 12 cells in the azimuthal

direction will be used in the following discussions.

7.2.2 Blending Formulation for Kinetic-Frictional Transition

Continuum simulations using Eulerian-Eulerian formulations like MFIX have only an ap-

proximate description of the stresses arising from the granular material. This is due to the

fact that granular materials behave differently when they are flowing rapidly as compared to

when they are flowing slowly with longer-lasting contacts. The behavior of rapidly flowing
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Figure 7.3 Void fraction versus radial distance to compare 2D and 3D

cylindrical grids.

granular materials, where the particle-particle interactions are largely dominated by binary

collisions, is described quite well by the kinetic theory of granular materials and has been

employed in MFIX (e.g. Lun et al. (1984)). The same theory cannot be applied for slowly

moving or static assemblies of granular materials, where longer-lasting contacts between par-

ticles transmit forces over relatively long-range stress chains. There are several continuum

models which approximate the behavior in this regime, and the one used in MFIX is the Scha-

effer model (Schaeffer, 1987). The rheological behavior of the transition zone between these

two granular regimes is poorly understood (e.g. Savage (1998)) and currently not employed in

the kinetic theory—plastic formulation in the default MFIX model.

However, many important gas-solid flow applications (including bubbling beds, spouted

beds etc.) have rapid transitioning between these two regimes at various locations in the

bed. In the current MFIX implementation, the granular stresses transition from the rapidly

shearing regime to quasi-static assemblies for void fractions below an ad-hoc critical packing

void fraction (ǫ∗); this is depicted in Fig. 7.4. This step transitioning (discontinuity) not only

causes numerical instabilities leading to slow convergence but is also found to generate spurious

solutions in spouted beds. In order to address these problems, an approximate transitioning

function, referred to here as the blending stress function, was constructed to provide a smooth
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Figure 7.4 A cartoon depicting the transition from the rapidly shearing

viscous regime to the slow shearing plastic regime.

transition between the two granular regimes in the void-fraction space. To be more rigorous,

this function should be both a function of local void fraction and shear rate, however, the results

to date have been very promising for the case where the blending function is dependent only

on void fraction. Thus this simpler formulation is used in this work. Here a brief description

of the blending stress formulation is presented.

The normal stress (pressure) in the conventional granular stress model is given as:

Pgranular =















Pcritical = 1025 (ǫ∗ − ǫg)
10 for ǫg < ǫ∗

Pkinetic theory for ǫg ≥ ǫ∗
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The viscous stresses and granular conductivity also switch between the critical state theory

and kinetic theory similar to the granular pressure. A blending function is introduced in the

void-fraction space with the following properties:

• a smooth but rapid transitioning around the critical packing void fraction (ǫ∗)

• approaches zero at ǫ∗ − δǫ

• approaches unity at ǫ∗ + δǫ

Some obvious choices for this function include using a hyperbolic tangent (used in many grid-

stretching programs, blending drag formulations etc.) or a sigmoidal function (used for rapid

transitioning, e.g., for combustion efficiency dependency on equivalence ratio, as in Daw et al.

(1996)). Both of these functions for blending the granular stresses have been employed and

a hyperbolic tangent function has been used in this work because of its simplicity. However,

for details of how these two different functions perform for a bin discharge example, refer

to Pannala et al. (2006).

The hyperbolic tangent blending function is given as:

φ (ǫg) =

[

tanh

(

2π (ǫ− ǫ∗)

ǫu − ǫl

)

+ 1

]

/2 (7.1)

where φ (ǫl) = 0.0 and φ (ǫu) = 1.0; ǫl = 0.99ǫ∗ and ǫu = 1.01ǫ∗. Figure 7.5 is a plot of the

hyperbolic tangent blending function shown versus void fraction, ǫg. The parameters ǫl and

ǫu are equal to ǫ∗ ± δǫ. Once the blending function is constructed, the granular stresses are

blended in the following manner:

Pgranular =















φ (ǫg)Pkinetic theory + [1− φ (ǫg)] 10
25 (ǫu − ǫg)

10 for ǫg < ǫu

Pkinetic theory for ǫg ≥ ǫu

Shear stress and the granular conductivity are also blended using the same function.

The influence of the blending function on accuracy and computational time was tested with

a 2D Cartesian coordinate system. Figure 7.6 presents the bed height versus the mean void
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Figure 7.5 Hyperbolic tangent blending function (in blue) and its applica-

tion to blending granular stresses around the critical state void

fraction.

fraction across the bed with and without the blending function. Higher bed height is obtained

for the case using the blending function. The void fraction and gas and solid velocities at two

different heights show a similar trend for both cases, as shown in Fig. 7.7. It was found that the

blending formulation improves the accuracy in the bin discharge flow (Pannala et al., 2006).

In addition, the smooth transition between the two granular flow regimes improves the scaling

characteristics of the computations and significantly improves the convergence characteristics,

especially in 3D cylindrical coordinates. For the above reasons, the blending formulation for

transitional flows is used in all further simulations in this study.
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at 20 cm (left) and 50 cm (right) above the inlet for a superficial

gas velocity of 40 cm/s with and without the blending function.
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7.2.3 Results and Discussion

The results are presented in three parts. In each part, the differences between 2D and 3D

simulations are shown for each fluidized regime. Three coordinate systems are examined for the

bubbling regime: 2D Cartesian, 3D Cartesian and 3D cylindrical. Table 7.2 summaries the grid

resolutions and corresponding coordinate systems. A goal of the comparisons is to determine

if a 2D Cartesian representation is reasonable for either the 3D Cartesian or cylindrical reactor

domains (see Fig. 7.1). For the slugging and turbulent regimes, the 3D Cartesian domain is

not considered.

7.2.3.1 Bubbling Fluidization

According to experimental evidence, Geldart group B material should exhibit a bubbling

behavior when the gas velocity exceeds the minimum fluidization velocity (Umf). In this study,

the gas-solid drag coefficient by Syamlal et al. (1993) was used in the simulations. The drag

model parameters have been adjusted to achieve the minimum fluidization velocity 21.56 cm/s.

Therefore the fluidization velocity was chosen as 27 cm/s (∼1.25Umf) to simulate the bubbling

regime and used in the following simulations.

A time sequence of void fraction using a 2D Cartesian system is shown in Fig. 7.8. Small

bubbles develop near the inlet and travel through the bed, forming larger bubbles by coa-

lescence. Figure 7.9 presents mean void fraction varying along the bed height averaged over

10–20 s for the four cases: 2D Cartesian, 2D axisymmetric, 3D cylindrical and 3D Cartesian.

Results indicate that similar bed heights are obtained for all four test cases. The time-averaged

void fraction, and gas and solid velocities at heights of 20 and 40 cm are shown in Fig. 7.10.

The results using a 3D cylindrical system are averaged over all planes in the azimuthal direc-

tion. The 3D Cartesian results are averaged over the vertical planes. The results for the 2D

Cartesian system agree well with results using the 3D cylindrical system with 12 cells for both

void fraction, and gas and solid velocities. However, at the lower bed height (20 cm) bubbles

stay away from the centerline with the 3D cylindrical system with 3 cells in the azimuthal di-

rection. The results with the 3D Cartesian system show slightly lower gas and solid velocities
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than the 2D Cartesian system due to the wall effect in the third direction.

7.2.3.2 Slugging Fluidization

In general, slugging fluidization can occur in beds of small diameter if three conditions

are met: 1) maximum bubble size is greater than 0.6 times the diameter of the bed; 2) the

superficial gas velocity is sufficiently high; 3) the bed is sufficiently deep. Geldart (1986)

proposed a criterion for slugging flows:

Ums = Umf + 1.6× 10−3
(

60D0.175 −Hmf

)2
+ 0.07(g100D)0.5 (7.2)

where D is the bed diameter, Hmf is the bed height at minimum fluidization and g is gravity.

The minimum slugging velocities (Ums) computed using Eqn. (7.2) for this case is 33.03 cm/s

(1.53Umf ). A superficial gas velocity 40 cm/s (∼1.86Umf) is chosen to simulate the slugging

regime.

Instantaneous plots of void fraction are shown in Fig. 7.11. Large bubbles appear in the

bed and grow by coalescence until they reach the width of the bed. Figure 7.12 shows mean

void fraction varying along the bed height averaged over 10–20 s. The 2D Cartesian system

shows a slightly higher bed expansion than both cases using the 3D cylindrical grid resolutions.

The averaged void fractions, and gas and solid velocities at heights of 20 and 50 cm are shown

in Fig. 7.13. The results of void fraction using the 2D Cartesian system are in very good

agreement with results using the 3D cylindrical system with 12 azimuthal cells. However,

there are discrepancies for gas velocities in the bed. For gas and solid velocities, the 3D

cylindrical system with 3 azimuthal cells obtained correct trends (Guenther et al., 2001) and

compared better than the 2D Cartesian system with the 3D cylindrical system using 12 cells.

7.2.3.3 Turbulent Fluidization

The transition to turbulent fluidization is associated with many factors, such as fluidization

pressure, particle properties and the geometric conditions of the bed. Based on the experi-

mental results of the transition to turbulent regime shown by Yang (2003), a gas velocity of
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87 cm/s (∼4.04Umf) is chosen for the simulations. The initial bed height is reduced to 30 cm

compared to previous simulations in order to prevent the bed material from being elutriated.

Instantaneous plots of void fraction are shown in Fig. 7.14. A more rapid and irregular

development of bubble coalescence is observed, forming very large bubbles. The bed surface

fluctuates due to the bursting of bubbles which also can be observed from Fig. 7.15.

The mean void fraction is not uniform upward through the bed as with the other two regimes

(refer to Figs. 7.9 and 7.12). The bursting of bubbles is demonstrated with the increasing void

fraction over the bed height of 30–60 cm. The time-averaged void fraction, and gas and solid

velocities at 20 and 50 cm are shown in Fig. 7.16. Predictions of void fraction agree very well

at lower bed heights, but there are discrepancies higher in the bed where the flow is more

turbulent. The gas and solid velocities are in reasonable agreement. Overall, the 2D Cartesian

simulations under-predicted the velocities.

7.2.4 Summary

The computational time required for each case representing the cylindrical domain and

various flow regimes is listed in Tab. 7.3. As expected, the 3D cylindrical simulation takes

more time per computation, even with as few as 3 cells in the azimuthal direction. The

difference in gas velocities between 2D Cartesian and 3D cylindrical with each case increases

with increasing inlet gas velocities. For bubbling fluidization, satisfactory qualitative agreement

between 2D and 3D simulations is observed for both cylindrical and rectangular fluidized

beds. The 2D Cartesian system can predict the correct multiphase fluid dynamics with much

less computational time. These results indicate that a 2D Cartesian system can be used to

successfully simulate and predict a bubbling regime. However, caution must be exercised when

using 2D Cartesian coordinates for other fluidized regimes.
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Figure 7.8 Contours of instantaneous void fraction at a superficial gas ve-

locity of 27 cm/s for a bubbling fluidized bed with 2D Cartesian

simulations.
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Figure 7.9 Time averaged void fraction versus bed height at a superficial
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Figure 7.10 Void fraction and gas and solid velocities versus radial dis-

tance at 20 cm (left) and 40 cm (right) above the inlet for a

superficial gas velocity of 27 cm/s for a bubbling fluidized bed.
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Figure 7.11 Contours of instantaneous void fraction at a superficial gas ve-

locity of 40 cm/s for a slugging fluidized bed with 2D Cartesian

simulations.
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Figure 7.12 Time averaged void fraction versus bed height at a superficial

gas velocity of 40 cm/s for a slugging fluidized bed comparing

coordinate systems.
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Figure 7.13 Void fraction and gas and solid velocities versus radial dis-

tance at 20 cm (left) and 50 cm (right) above the inlet for a

superficial gas velocity of 40 cm/s for a slugging fluidized bed.
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Figure 7.14 Contours of instantaneous void fraction at a superficial gas ve-

locity of 87 cm/s for a turbulent fluidized bed with 2D Carte-

sian simulations.
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Figure 7.15 Time averaged void fraction versus bed height at a superficial

gas velocity of 87 cm/s for a turbulent fluidized bed comparing

coordinate systems.
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Figure 7.16 Void fraction and gas and solid velocities versus radial dis-

tance at 20 cm (left) and 50 cm (right) above the inlet for

a superficial gas velocity of 87 cm/s for a turbulent fluidized

bed.
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Table 7.3 Computational time for simulations.

3D cylindrical 3D cylindrical 2D Cartesian

Grid 14× 200× 3 14× 200× 12 28× 200

CPU time (h) (27 cm/s) 114.8 616.8 49.6

CPU time (h) (40 cm/s) 176.0 1118.4 64.4

CPU time (h) (87 cm/s) 348.4 1393.6 79.6

7.3 Analyses

To get a better insight into the complex phenomena associated with fluidized beds, an

analysis has been performed to explain the discrepancies observed between the 2D and 3D

simulations. The governing equations are compared for each coordinate system to isolate the

terms, and hence the physics, that are not similar. Results are presented in two sections. First,

the difference in simulations using 2D Cartesian and 3D cylindrical coordinate systems with

three superficial gas velocities is presented. Then the difference between 2D and 3D Cartesian

simulations with the superficial gas velocity 1.25Umf is shown.

7.3.1 2D Cartesian and 3D Cylindrical Coordinates

The governing equations and constitutive relations of MFIX are explained in detail in

Chapter 3. The vector form of the gas momentum equation is repeated here:

∂

∂t

(

ǫgρg
~Vg

)

+∇ ·
(

ǫgρg
~Vg

~Vg

)

= ∇ · Sg + ǫgρg~g − ~Igs (7.3)

where the subscript g indicates the gas phase. Equation (7.3) can be expressed for a 2D

Cartesian and 3D cylindrical coordinate system, as shown in Fig. 7.17 with the corresponding

velocity components. The expanded form of the 2D Cartesian system for the streamwise
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direction is:

∂

∂t
(ǫgρgvg) +

∂

∂x
(ǫgρgugvg) +

∂

∂y
(ǫgρgvgvg) = −

∂Pg

∂y
+

∂

∂x

[

ǫgµg

(

∂ug

∂y
+

∂vg

∂x

)]

(7.4)

+
∂

∂y

(

2ǫgµg
∂vg

∂y

)

−
∂

∂y

[

2

3
ǫgµg

(

∂ug

∂x
+

∂vg

∂y

)]

+ Fgs (vs − vg)− ǫgρgg

where v and u are the velocity components in the streamwise (y) and cross-stream (x) direc-

tions, respectively.

The 3D cylindrical coordinate system is

∂

∂t
(ǫgρgvg) +

∂

∂r
(ǫgρgugvg) +

ǫgρgugvg

r
+

∂

∂y
(ǫgρgvgvg) +

1

r

∂

∂θ
(ǫgρgvgwg) = −

∂Pg

∂y
(7.5)

+
∂

∂r

[

ǫgµg

(

∂ug

∂y
+

∂vg

∂r

)]

+
ǫgµg

r

(

∂ug

∂y
+

∂vg

∂r

)

+
∂

∂y

(

2ǫgµg
∂vg

∂y

)

+
1

r

∂

∂θ

[

ǫgµg

(

1

r

∂vg

∂θ
+

∂wg

∂y

)]

−
∂

∂y

[

2

3
ǫgµg

(

∂ug

∂r
+

∂vg

∂y
+

1

r

∂wg

∂θ
+

ug

r

)]

+Fgs (vs − vg)− ǫgρgg

where u, v and w are three components of gas velocity, in the radial (r), streamwise (y) and

azimuthal (θ) directions. As shown in Fig. 7.17, x and y in the 2D Cartesian coordinate system

correspond to r and y in the 3D cylindrical coordinate system, respectively. Thus, two ad-

ditional terms appear on the left side of Eqn. (7.5), namely
ǫgρgugvg

r and 1
r

∂
∂θ (ǫgρgvgwg). There

are three additional terms on the right side of Eqn. (7.5):
ǫgµg

r

(

∂ug

∂y +
∂vg

∂r

)

, 1
r

∂
∂θ

[

ǫgµg

(

1
r

∂vg

∂θ +
∂wg

∂y

)]

and − ∂
∂y

[

2
3ǫgµg

(

1
r

∂wg

∂θ +
ug

r

)]

. Other terms are the common terms which exist in both

Eqs. (7.4) and (7.5), such as ∂
∂t (ǫgρgvg), −

∂Pg

∂y and so on. Refer to Tab. 7.4 for a summary of

the terms to be compared.

The contour plots of gas velocity in three directions for different regimes are shown in

Figs. 7.18, 7.19 and 7.20. All three velocities increase as the inlet gas velocities increase and

the axial direction with the velocity vg is the dominant direction. To appreciate the physical

behavior of every term appearing in Eqs. (7.4) and (7.5) relative to the solution of vg, a

comparison of these terms is pursued. In order to compare the magnitude of all terms, finite

differencing is used to discretize the partial derivatives. For example, three adjacent planes
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Figure 7.17 Domains for a (a) 3D cylindrical and (b) 2D Cartesian coor-

dinate system and the corresponding velocity components.
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Figure 7.18 The contour plots of gas velocities in (a) r− (b) y− and (c)

θ− directions for a superficial gas velocity 1.25Umf averaged

over 10–20 seconds with 3D cylindrical simulations.



105

23.8
21.4
19.0
16.6
14.1
11.7

9.3
6.9
4.5
2.1

-0.3
-2.8
-5.2
-7.6

-10.0

(a)

192.8
178.3
163.8
149.3
134.8
120.3
105.9

91.4
76.9
62.4
47.9
33.4
19.0

4.5
-10.0

(b)

4.8
4.3
3.8
3.3
2.8
2.3
1.9
1.4
0.9
0.4

-0.1
-0.6
-1.0
-1.5
-2.0

(c)

Figure 7.19 The contour plots of gas velocities in (a) r− (b) y− and (c)

θ− directions for a superficial gas velocity 1.86Umf averaged

over 10–20 seconds with 3D cylindrical simulations.

23.8
21.4
19.0
16.6
14.1
11.7

9.3
6.9
4.5
2.1

-0.3
-2.8
-5.2
-7.6

-10.0

(a)

192.8
178.3
163.8
149.3
134.8
120.3
105.9

91.4
76.9
62.4
47.9
33.4
19.0

4.5
-10.0

(b)

4.8
4.3
3.8
3.3
2.8
2.3
1.9
1.4
0.9
0.4

-0.1
-0.6
-1.0
-1.5
-2.0

(c)

Figure 7.20 The contour plots of gas velocities in (a) r− (b) y− and (c)

θ− directions for a superficial gas velocity 4.04Umf averaged

over 10–20 seconds with 3D cylindrical simulations.
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Table 7.4 A summary of the terms to be compared with different coordi-

nate systems.

terms 2D Cartesian 3D cylindrical 3D Cartesian

(1)
ǫgρgugvg

r

(2) 1
r

∂
∂θ (ǫgρgvgwg)

(3)
ǫgµg

r

(

∂ug

∂y +
∂vg

∂r

)

(4) 1
r

∂
∂θ

[

ǫgµg

(

1
r

∂vg

∂θ +
∂wg

∂y

)]

(5) ∂
∂y

[

2
3ǫgµg

(

1
r

∂wg

∂θ +
ug

r

)]

(6) −
∂Pg

∂y −
∂Pg

∂y −
∂Pg

∂y

(7) ∂
∂t (ǫgρgvg)

∂
∂t (ǫgρgvg)

∂
∂t (ǫgρgvg)

(8) Fgs (vs − vg) Fgs (vs − vg) Fgs (vs − vg)

k − 1, k and k + 1, as shown in Fig. 7.21, are randomly chosen to calculate the values of

the terms in Eqn. (7.5) since the flow patterns in a cylinder are usually symmetric. For the

first order derivatives such as 1
r

∂
∂θ (ǫgρgvgwg), forward differencing is used for the k and k + 1

planes. Central differencing is applied to calculate the second order derivatives, such as the

term ∂
∂y

[

2
3ǫgµg

(

1
r

∂wg

∂θ +
ug

r

)]

. The k plane is used to compute the term
ǫgρgugvg

r .

To evaluate the importance of the additional terms appearing in the 3D cylindrical system,

their numerical values are averaged over 10–20 seconds. Figures 7.22, 7.23 and 7.24 show

the contour plots of the additional terms for three different superficial gas velocities, 1.25Umf ,

1.86Umf and 4.04Umf , respectively, for the 3D cylindrical simulations. The values of all five

additional terms increase as the superficial gas velocity increases. The terms of (1)
ǫgρgugvg

r and

(2) 1
r

∂
∂θ (ǫgρgvgwg) have increased in a proportion greater than terms (3)

ǫgµg

r

(

∂ug

∂y +
∂vg

∂r

)

, (4)

1
r

∂
∂θ

[

ǫgµg

(

1
r

∂vg

∂θ +
∂wg

∂y

)]

and (5) − ∂
∂y

[

2
3ǫgµg

(

1
r

∂wg

∂θ +
ug

r

)]

. Overall, terms (1)
ǫgρgugvg

r and

(2) 1
r

∂
∂θ (ǫgρgvgwg) have the largest values, which are at least one order of magnitude larger

than the other three terms, irrespective of the superficial gas velocity. Thus terms (3), (4) and

(5) are neglected in the future discussion.

Evaluating each term in the 2D Cartesian Eqn. (7.4) revealed that the advective terms

∇ ·
(

ǫgρg
~Vg

~Vg

)

, the viscous terms ∇ · τg and the body force ǫgρgg were small compared to the

time derivative ∂
∂t (ǫgρgvg) , pressure gradient −

∂Pg

∂y and drag force Fgs (vs − vg). The same
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Figure 7.21 Planes used to calculate the terms in the gas momentum equa-

tion for a 3D cylindrical coordinate system.
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Figure 7.22 The contour plots of terms (1)
ǫgρgugvg

r , (2) 1
r

∂
∂θ (ǫgρgvgwg),

(3)
ǫgµg

r

(

∂ug

∂y +
∂vg

∂r

)

, (4)1
r

∂
∂θ

[

ǫgµg

(

1
r

∂vg

∂θ +
∂wg

∂y

)]

and

(5) ∂
∂y

[

2
3ǫgµg

(

1
r

∂wg

∂θ +
ug

r

)]

for a superficial gas velocity

1.25Umf averaged over 10–20 seconds with 3D cylindrical

simulations.
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Figure 7.23 The contour plots of terms (1)
ǫgρgugvg

r , (2) 1
r

∂
∂θ (ǫgρgvgwg),

(3)
ǫgµg

r

(

∂ug
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∂vg

∂r

)

, (4)1
r

∂
∂θ

[

ǫgµg

(

1
r

∂vg

∂θ +
∂wg

∂y

)]

and

(5) ∂
∂y

[

2
3ǫgµg

(

1
r

∂wg

∂θ +
ug

r

)]

for a superficial gas velocity

1.86Umf averaged over 10–20 seconds with 3D cylindrical

simulations.
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Figure 7.24 The contour plots of terms (1)
ǫgρgugvg

r , (2) 1
r

∂
∂θ (ǫgρgvgwg),

(3)
ǫgµg

r

(

∂ug

∂y +
∂vg

∂r

)

, (4)1
r

∂
∂θ

[

ǫgµg

(

1
r

∂vg

∂θ +
∂wg

∂y

)]

and

(5) ∂
∂y

[

2
3ǫgµg

(

1
r

∂wg

∂θ +
ug

r

)]

for a superficial gas velocity

4.04Umf averaged over 10–20 seconds with 3D cylindrical

simulations.
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conclusion was observed for the corresponding cylindrical terms in Eqn. (7.5). Based on this

conclusion, these particular terms are not considered an important influence on the gas-solid

dynamics.

Figures 7.25, 7.26 and 7.27 show the contour plots of terms (6) −
∂Pg

∂y , (7) ∂
∂t (ǫgρgvg) and

(8) Fgs (vs − vg) averaged over 10–20 seconds for three different superficial gas velocities with

the 3D cylindrical simulations. The same terms for the 2D Cartesian coordinate system are

plotted in Figs. 7.28, 7.29 and 7.30. The pressure gradient (6) −
∂Pg

∂y is similar irrespective

of the superficial gas velocity and coordinate systems used. Terms (7) ∂
∂t (ǫgρgvg) and (8)

Fgs (vs − vg) increase as the superficial gas velocity increases from 1.25Umf to 4.04Umf for both

3D cylindrical and 2D Cartesian simulations. For example, term (7) ∂
∂t (ǫgρgvg) is one order

magnitude smaller than (5) −
∂Pg

∂y with a superficial gas velocity 1.25Umf . It has the same

magnitude as (5) −
∂Pg

∂y for 4.04Umf . The terms (6) ∂
∂t (ǫgρgvg) and (7) Fgs (vs − vg) have

larger values in the 3D cylindrical simulations than the 2D Cartesian simulations for the same

superficial gas velocity.

The difference of variable vg calculated from the Eqs. (7.4) and (7.5) depends on comparison

of the important additional terms, (1)
ǫgρgugvg

r and (2) 1
r

∂
∂θ (ǫgρgvgwg), and large common

terms, (6) −
∂Pg

∂y , (7) ∂
∂t (ǫgρgvg) and (8) Fgs (vs − vg). The ratio of the additional terms to the

common terms increases with the superficial gas velocity. Thus the difference of vg calculated

using the 3D cylindrical and 2D Cartesian simulations becomes larger due to increasing values

of the additional terms, which was shown in §7.2.3. For the superficial gas velocity 1.25Umf , the

values of the additional terms are small compared with the common terms where agreement

of vg was observed for the 2D and 3D simulations. However, discrepancy was obtained with

4.04Umf due to higher values of the additional terms.
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Figure 7.25 The contour plots of terms (6) −
∂Pg

∂y , (7) ∂
∂t (ǫgρgvg) and (8)

Fgs (vs − vg) for a superficial gas velocity 1.25Umf averaged

over 10–20 seconds with 3D cylindrical simulations.
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Figure 7.26 The contour plots of terms (6) −
∂Pg

∂y , (7) ∂
∂t (ǫgρgvg) and (8)

Fgs (vs − vg) for a superficial gas velocity 1.86Umf averaged

over 10–20 seconds with 3D cylindrical simulations.
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Figure 7.27 The contour plots of terms (6) −
∂Pg

∂y , (7) ∂
∂t (ǫgρgvg) and (8)

Fgs (vs − vg) for a superficial gas velocity 4.04Umf averaged

over 10–20 seconds with 3D cylindrical simulations.
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Figure 7.28 The contour plots of terms (6) −
∂Pg

∂y , (7) ∂
∂t (ǫgρgvg) and (8)

Fgs (vs − vg) for a superficial gas velocity 1.25Umf averaged

over 10–20 seconds with 2D Cartesian simulations.
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Figure 7.29 The contour plots of terms (6) −
∂Pg

∂y , (7) ∂
∂t (ǫgρgvg) and (8)

Fgs (vs − vg) for a superficial gas velocity 1.86Umf averaged

over 10–20 seconds with 2D Cartesian simulations.
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Figure 7.30 The contour plots of terms (6) −
∂Pg

∂y , (7) ∂
∂t (ǫgρgvg) and (8)

Fgs (vs − vg) for a superficial gas velocity 4.04Umf averaged

over 10–20 seconds with 2D Cartesian simulations.
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7.3.2 2D Cartesian and 3D Cartesian Coordinates

For the 3D Cartesian coordinate system, Eqn. (3.3) becomes:

∂

∂t
(ǫgρgvg) +

∂

∂x
(ǫgρgugvg) +

∂

∂y
(ǫgρgvgvg) +

∂

∂z
(ǫgρgvgwg) = −

∂Pg

∂y
(7.6)

+
∂

∂x

[

ǫgµg

(

∂ug

∂y
+

∂vg

∂x

)]

+
∂

∂y

(

2ǫgµg
∂vg

∂y

)

+
∂

∂z

[

ǫgµg

(

∂vg

∂z
+

∂wg

∂y

)]

−
∂

∂y

[

2

3
ǫgµg

(

∂ug

∂x
+

∂vg

∂y
+

∂wg

∂z

)]

+ Fgs (vs − vg)− ǫgρgg

Compared to Eqn. (7.4), one additional term appears on the left hand side of Eqn. (7.6),

∂
∂z (ǫgρgvgwg). Two additional terms on the right hand side of Eqn. (7.6) are ∂

∂z

[

ǫgµg

(

∂vg

∂z +
∂wg

∂y

)]

and ∂
∂y

(

2
3ǫgµg

∂wg

∂z

)

. The contour plots of three velocities are shown in Fig. 7.31. Figure 7.32

shows the planes used to calculate the terms for 3D Cartesian coordinate system, where k is

the central plane in the computational domain. By calculation, the term ∂
∂z (ǫgρgvgwg) has the

largest value among those additional terms than the 2D Cartesian calculations and is shown

in Fig. 7.33. For the common terms plotted in Fig. 7.34, (6) −
∂Pg

∂y has same values as those

obtained from 3D cylindrical (Fig. 7.25) and 2D Cartesian (Fig. 7.28) coordinate systems. The

values of terms (6) −
∂Pg

∂y , (7) ∂
∂t (ǫgρgvg) and (8) Fgs (vs − vg) are shown in Fig. 7.34. The

additional term ∂
∂z (ǫgρgvgwg) is much smaller than the three common terms in Fig. 7.34 and

can be neglected. Comparing the terms using 2D Cartesian simulations in Fig. 7.28 with the

terms using 3D Cartesian simulations in Fig. 7.34, the terms have the similar values.

7.3.3 Discussion

The results in §7.2.3 show satisfactory qualitative agreement for gas velocities in the stream-

wise direction for the 2D and 3D simulations for both rectangular and cylindrical fluidized beds

for bubbling fluidization. However, a larger discrepancy is obtained with higher superficial gas

velocities in the slugging and turbulent regimes. For the slugging fluidized bed, the vertical

gas velocities are underpredicted when using the 2D Cartesian system as compared to the 3D

cylindrical system. A lower gas velocity is predicted with the 2D Cartesian simulations than

the 3D cylindrical simulations for the turbulent regime. The lower predicted velocities for these
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Figure 7.31 The contour plots of gas velocities in (a) r− (b) y− and (c)

θ− directions for a superficial gas velocity 1.25Umf averaged

over 10–20 seconds with 3D Cartesian simulations.

two flow regimes can be attributed to the additional terms modeled in a 3D cylindrical domain.

For example, the additional terms, (1) and (2), increase the axial gas velocity. Therefore, it is

not surprising that for higher superficial gas velocities, the 2D Cartesian coordinate does not

accurately predict the hydrodynamics.

For the bubbling regime (superficial gas velocity 1.25Umf ), the pressure gradient has the

largest value among all common terms. The value of pressure gradient is same for the 2D Carte-

sian, 3D cylindrical and 3D Cartesian coordinate systems shown in Figs. 7.25, 7.28 and 7.34.

The values of additional terms appearing in the 3D cylindrical coordinate (Fig. 7.22) and the

3D Cartesian coordinate (Fig. 7.33) systems are small compared to the pressure gradient (6)

−
∂Pg

∂y . Therefore, variables vg calculated from the equations for three different coordinate

systems is dominated by the pressure gradient. The values of additional terms are negligible.

Good agreement is observed between 2D and 3D simulations.

However, the magnitude of additional terms increases as the superficial gas velocity in-

creases, refer to Figs. 7.22, 7.23 and 7.24. With higher gas velocity, the influence of those

additional terms can not be neglected in simulations unlike with low gas velocity. The ad-

ditional terms cause the values of vg calculated with 3D cylindrical simulations to be higher
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Figure 7.32 Planes used to calculate the terms in equations for 3D Carte-

sian coordinate system.

compared to 2D Cartesian simulations. Also, the difference between 2D and 3D simulations

increase with higher gas velocities since the values of the additional terms increases. In gen-

eral, the initial energy entering fluidized beds is mainly directed to defy the gravity and thus

primarily axial direction (y−direction). The influence of non-axial terms can be neglected,

therefore, the difference between 2D and 3D simulations is small (bubbling regimes). However,

the flows become unstable and the energy diverts to non-axial terms with increasing energy.

The non-axial terms become more important with higher inlet gas velocity, which causes the

discrepancy increases from slugging to turbulent regimes.
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Figure 7.33 The contour plots of term ∂
∂z (ǫgρgvgwg) for a superficial gas

velocity 1.25Umf averaged over 10–20 seconds with 3D Carte-

sian simulations.
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Figure 7.34 The contour plots of terms (6) −
∂Pg

∂y , (7) ∂
∂t (ǫgρgvg) and (8)

Fgs (vs − vg) for a superficial gas velocity 1.25Umf averaged

over 10–20 seconds with 3D Cartesian simulations.
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CHAPTER 8. SIMULATIONS OF ELUTRIATION PHENOMENON IN

FLUIDIZED BEDS

The carbon material that is entrained out of a gasifier reduces the reactor efficiency for

biomass fluidized bed reactors. It is important to be able to predict and characterize elutriation

of solid materials in order to design gas cleaning equipment, such as cyclones. In this chapter,

the experimental findings for elutriation phenomena in fluidized beds are introduced first.

Then, as the first step to improve the efficiency of a biomass gasifier, the capability of MFIX

to simulate elutriation phenomenon in fluidized beds is validated. Quantitative data, such

as elutriation rate, are compared with the experiments performed by Leva (1951) and those

performed at Iowa State University (ISU).

8.1 Background

Biomass is a term for all organic materials that stems from plants (Williams et al., 2001).

Biomass is produced by green plants combining CO2 in the air, water and sunlight via pho-

tosynthesis to generate carbohydrates. The solar energy is stored in the chemical bonds of a

biomass material. Recently, biomass has gained consideration as a renewable energy source

due to several reasons (McKendry, 2002a). First, global warming is believed to cause climatic

changes due to high emission levels of greenhouse gases in which CO2 is the most important

concern. When energy stored in the chemical bonds of biomass is extracted, carbon is oxidized

to produce CO2 and water. Roughly the same amount of carbon emitted during conversion

is taken up during plant growth. The use of biomass therefore does not contribute to the

build up of CO2 in the atmosphere. However, it takes millions of years to generate fossil fuels

such as coal and oil. Thus, fossil fuels are not renewable within a time-scale that mankind
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can use since burning fossil fuels uses “old” biomass and converts it into “new” CO2, which

contributes to the greenhouse effect. Second, technological developments have increased the

yields of biomass and made the conversion of energy from biomass more efficient than before.

For example, the world crop yield of sorghum, corn, rye, rice and wheat increased by 20.1%,

19.5%, 30.1%, 8.7% and 4.5%, respectively, during the period 1991–1996 (Sadaka et al., 2002).

The cost of electricity produced from low cost biomass residues and high conversion efficiency

can be competitive with fossil fuel-based power generation. Other reasons that biomass is

becoming a more viable energy source are the increasing price of fossil fuels and food surpluses

in Western Europe and the US.

Biomass can be converted into three main types of product: power/heat generation, trans-

port fuel and chemical feedstock. The first two products are related to energy which can be

generated by three technologies: thermo-chemical, bio-chemical/biological and mechanical ex-

traction. Within thermo-chemical conversion four processes are available: combustion, pyroly-

sis, gasification and liquefaction/hydro-thermal upgrading. Among those processes, gasification

by fluidized beds is the focus point in this study. Fluidized beds have been used extensively

for coal gasification for many years. Fluidized beds provide a promising technology to convert

biomass to energy as a result of well-mixed solids and nearly isothermal conditions (McKendry,

2002b). Gasification converts biomass into a combustible gas mixture by the partial oxidation

of biomass at a high temperature, usually around 800–900 ◦C. Gasification can be classified

depending on the gasifying agent such as air, steam, steam-oxygen, air-steam, oxygen-enriched

air, etc (Lv et al., 2004). The gas produced can be used to generate the methanol and hydro-

gen or burned in equipments such as gas turbines. The biomass integrated gasification and

combined cycle (BIGCC) is one promising concept since gas turbines convert the gaseous fuel

to electricity with a high overall conversion efficiency.

The methodology that is available for coal is often applied to biomass combustion and

gasification (Williams et al., 2001) although there are still areas where there is a lack of in-

formation. Biomass reactions follow four fundamental steps: heating–up of biomass particles,

devolatilization, reactions of volatiles and char reactions. However, biomass has a great dif-
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Table 8.1 Proximate analysis of some biomass and coal (wt %) (McKendry,

2002a).

Biomass Moisture Volatile Fixed Ash

matter carbon

Wood 20 82 17 1

Wheat straw 16 59 21 4

Barley straw 30 46 18 6

Bituminous coal 11 35 45 9

ference in chemical and physical properties from that of fossil fuels (Scala and Salatino, 2002;

Scala and Chirone, 2004). Biomass usually has a higher moisture and volatile content, a more

porous and fragile structure, a lower density and a higher intrinsic reactivity. The proximate

analysis of some biomass and coal is shown in Tab. 8.1. The loosely connected structures of

chars after devolatilization form carbon fines by comminution such as attrition and fragmenta-

tion. Attrition and fragmentation are far more extensive in the case of high-volatile fuels. The

reactor efficiency is directly determined by the relative extent of the combustion time scale

and of the residence time of carbon fines produced by comminution and reactions in the bed.

8.2 Introduction to Elutriation in Fluidized Beds

The entrainment of carbon materials from the freeboard is the main source of loss in reactor

efficiency for fluidized bed gasifiers or combustors, especially for biomass reactors. In addition,

the fines exiting from fluidized beds due to a size distribution of input solids or by attrition

must either be recovered or removed from the gas for economic or environmental requirements.

The elutriation of solid materials has to be known to design gas cleaning equipment.

The fluidized bed may be divided into different zones as shown in Fig 8.1. Above the

distributor is the dense fluidized bed, where bubbles grow and rise to the surface of the bed.

When bubbles burst at the surface, solids are thrown above the bed and entrained by the gas

in the freeboard. The freeboard height is defined as the height between the surface of the

dense bed and the gas outlet. The height of the column is usually prescribed to prevent the
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Figure 8.1 Different zones in a fluidized bed.

solids from being carried out of the vessel. The entrainment rate gradually decreases until it

becomes constant or nearly constant from experimental observations. The height where the

entrainment rate becomes constant is called the transport disengaging height (TDH).

8.2.1 Elutriation Rate

The rate of elutriation of fines from fluidized beds can be expressed as a first order equa-

tion (Leva, 1951):







rate of removal

of solids of size di






= K







weight of that size

solids in the bed







and

−
dWi

dt
= KWi (8.1)

where Wi is the weight of solids of size di in the bed. Earlier researchers (e.g. Osberg and

Charlesworth (1951)) correlated the value of K (sec−1), the elutriation constant, with particle

diameter, superficial gas velocity and so on.

The rate of elutriation (Yagi and Aochi, 1955) also can be defined as:
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That is:

−
1

A

dWi

dt
= K∗

(

Wi

W

)

(8.2)

where A is the bed cross section and W is the weight of all solids in the bed. K∗ (kg/m2 · sec)

is called the elutriation rate constant, which is independent of bed height. Comparing Eqs.

(8.1) and (8.2),

K∗ =
KW

A
(8.3)

Most researchers, for example Wen and Hashinger (1960), Tanaka et al. (1972) and Baeyens

et al. (1992), related K∗ with system parameters to describe the elutriation.

Both batch systems and steady state flow systems have been used to study the elutriation

phenomena (Kunii and Levenspiel, 1991). For a batch system with two components such as in

this study, Eqs. (8.1) and (8.2) can be expressed in terms of the concentration of fines XF:

−
dXF

dt
=

K∗A

W
XF = KXF (8.4)

The bed weight W can be considered constant if the fraction or concentration of fines is small,

usually less than 20%. Thus integration of Eqn. (8.4) gives:

XF = XF0 exp

(

−
K∗A

W
t

)

= XF0 exp (−Kt) (8.5)

where XF0 is the initial fine concentration in the bed. Experiments have demonstrated that K∗

is close to a constant for binary mixtures with a small concentration of fines in batch systems.

Thus according to Eqn. (8.5), the slope of the data on a semi-log plot of XF/XF0 versus time

gives the elutriation rate K∗. From experimental observation, the straight line in the semi-log

plot usually anchors at one point named the critical concentration X∗
F. Leva and Wen (1971)
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stated that the transport of fines through the bed to the upper surface became rate controlling

after XF reached the critical concentration. Only the initial straight portion of the data is

used to calculate elutriation rate constants.

8.2.2 Entrainment at the Bed Surface

The particles are ejected from the fluidized bed surface into the freeboard primarily due

to the eruption of bubbles. A dominant mechanism by which particles elutriate is not clearly

established (Wen and Chen, 1982). Two possible explanations which are reported to be re-

sponsible for the particle ejection are (Yang, 2003):

1. Solids held in the leading roof or nose of a bubble are projected into the freeboard after

the bubble breaks.

2. The particles transported in the bubble wake are thrown upwards when the bubbles burst

at the surface.

Some researchers (Zenz and Weil, 1958; Do et al., 1972) concluded that the nose mechanism

is the most important. The wake mechanism was considered to be the dominating mechanism

by Yates and Rowe (1977) and George and Grace (1978). Pemberton and Davidson (1986)

stated that both mechanisms may be used to explain that ejection of particles into the free-

board. For example, the nose mechanism prevails when the Geldart group A particles fluidized

at high gas velocities, whereas the wake mechanism governs the ejection of the Geldart group

B particles which fluidize at low gas velocities. Also, differences exist for the solids ejected into

the freeboard by the two mechanisms (Yang, 2003). The solids thrown into the freeboard from

the nose of bubbles are much finer than the bed materials. However, the solids thrown into

freeboard from the wake of bubbles are similar to the size distribution of the bed materials.

The entrainment at the bed surface, E0, can be obtained by extrapolation of the entrain-

ment rate data in the freeboard to the bed surface (Wen and Chen, 1982). Table 8.2 lists some

of the correlations in the literature for the entrainment rate at the bed surface, where db is the

bubble diameter at the bed surface. The column diameter is used instead of bubble diameter

for slugging beds. The subscript mf indicates properties at minimum fluidization.
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Table 8.2 Correlations for the entrainment at the bed surface (Yang, 2003).

Equation Reference

E0 = 3dp
(1− ǫmf)(U − Umf)

db
Pemberton and Davidson (1986)

bubble nose model

E0 = 0.1ρs(1−ǫmf)(U−Umf)

bubble wake model

E0 = 3.07×10−9
Adb(U − Umf)

2.5ρ3.5
g g0.5

µ2.5
Wen and Chen (1982)

E0 = 9.6A(U−Umf )
2.5Adb

(

298

T

)3.5

Choi et al. (1989)

8.2.3 Elutriation of Fines Above TDH

As mentioned earlier, the entrainment flux becomes almost constant above the transport

disengaging height (TDH). The entrainment and elutriation rate constants above TDH usually

have the index “∞”, such as E∞ and K∗
∞. The effect of various parameters on the elutriation

of fines above TDH will be presented in the following paragraphs.

• Effect of Bed Hydrodynamics. Since the entrainment rate at the bed surface is

associated with bubble size and frequency in the bed, the bed hydrodynamics has a more

pronounced effect on the entrainment rate at the bed surface. However, the elutriation

rate constant above TDH is not influenced by the bed dynamics. Sanari and Kunii (1962)

stated that no strong influence on the elutriation of fines was found with different coarse

particle sizes (from 300µm to 2500µm). Tanaka et al. (1971) reported that no effect was

found with two different distributor plates. The elutriation rates were nearly equal with

both totally mixed and separated systems (Lin et al., 1980). Choi et al. (1989) concluded

that the bed height had little effect on the elutriation rate. Thus, Wen and Chen (1982)
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drew conclusions that the elutriation rate above TDH is not affected strongly by the

hydrodynamics of bed.

• Effect of Gas Velocity. The influence of the superficial velocity on the elutriation rate

constant is tremendous. The velocity has an effect on both entrainment rate on the bed

surface and elutriation rate. In general, the elutriation rate constant is proportional to

the 2nd to 6th power of the gas velocity. At the higher velocities, the power reduces to

less than one (Wen and Chen, 1982).

• Effect of Fine Particle Size. Most researchers agree that the elutriation rate constant

increases with decreasing fine particle size. However, a trend is observed that the elu-

triation rate constant levels off or decreases with decreasing size for group A particles,

which is probably due to the formation of cohesive fine particles.

• Effect of Column Diameter. There is a lack of data available on the influence of scale

up. Lewis et al. (1962) tested elutriation with fluidized bed diameters ranging from 0.019

to 0.146 m. They concluded that the elutriation rate became independent of bed size for

a diameter larger than 0.1 m. However, the elutriation rate increased with decreasing

diameter for a smaller bed. Others, such as Colakyan and Levenspiel (1984) and Tasirin

and Geldart (1998), confirmed the conclusions of Lewis et al. (1962). The reason is that

fine particles tend to fall back into the bed along the wall. Thus less fine particles descend

if the column diameter is large, which causes higher elutriation rate for larger beds.

• Effect of Temperature and Pressure. Chan and Knowlton (1984) investigated the

influence of pressure. They found that the elutriation increases with pressure due to the

increasing gas density. For the effect of temperature, George and Grace (1981) did not

find an influence of temperature on entrainment. Choi et al. (1997) stated that there

was a minimum entrainment for temperatures from 450 to 700 K. However, Wouters and

Geldart (1998) did not find a minimum for the entrainment rate, and concluded that the

elutriation rate constant decreased with increasing temperature.
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Table 8.3 lists some empirical correlations available in the literature for the elutriation rate

constant above TDH. The parameters U and ut are the superficial gas velocity and the terminal

velocity of fines, respectively, dp is the fine diameter and Dh is the hydraulic diameter of the

fluidized bed column. Re and Ret are the Reynolds numbers based on bed column and fine

particles, respectively. Yang (2003) plotted the elutriation rate constant versus gas velocity

using different correlations. A significant difference in magnitude and predicted tendencies

is observed. Wen and Chen (1982) concluded that the deviation of some of the experimental

data was greater than ±50% due to the difficulty in obtaining accurate elutriation data. There-

fore, the selection of correlations should be careful due to the diversity of the experimental

conditions.

8.2.4 Entrainment Below TDH

An exponential decay of the entrainment rate with respect to freeboard height h was

observed by Andrews (1960). The entrainment rate of solids can be represented as:

Eh = E∞ + (E0 − E∞) exp (−ah) (8.6)

where Eh is the entrainment rate of fine particles in the freeboard at a height h. It can be

calculated using the elutriation rate E∞, the entrainment rate at the bed surface E0 and the

decay constant a. Wen and Chen (1982) concluded that a varies between 2.2 to 6.6 m−1. The

value of 4.0 m−1 is recommended for a system in which no information is available.

8.2.5 Estimation of TDH

The freeboard height should be higher than the TDH in order to reduce the elutriation of

fines. However, increasing the freeboard height excessively beyond the TDH has no advantage.

Currently there is no commonly accepted calculation for estimating the TDH, however, there

are a number of correlations that exist in the literature and a few of them are summarized in

Tab. 8.4.
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Table 8.3 Correlations for the elutriation rate constant K∗
∞ (Yang, 2003).

Equation Reference

K∗
∞gd2

p

µ (U − ut)
2 = 0.0015Re0.6

t +0.01Re1.2
t Yagi and Aochi (1955)

K∗
∞

ρgU
=







1.26 × 107
(

U2

gdpρ2
s

)1.88
for U2

gdpρ2
s

< 3.1

1.31 × 104
(

U2

gdpρ2
s

)1.18
for U2

gdpρ2
s

> 3.1
Zenz and Weil (1958)

K∗
∞

ρg (U − ut)
= 1.52 × 10−5

[

(U − ut)
2

gdp

]0.5

Re0.725

(

ρs − ρg

ρg

)1.15

Wen and Hashinger (1960)

K∗
∞

ρg (U − ut)
= 4.6 × 10−2

[

(U − ut)
2

gdp

]0.5

Re0.3
t

(

ρs − ρg

ρg

)0.15

Tanaka et al. (1972)

K∗
∞

ρgU
= 23.7exp

(

−5.4
ut

U

)

Geldart et al. (1979)

K∗
∞

ρgU
= 9.43×10−4

(

U2

gdp

)1.65

Lin et al. (1980)

K∗
∞ = 0.011ρs

(

1−
ut

U

)2
Colakyan and Levenspiel (1984)

K∗
∞ = 2.8×10−2

(

U − ut

U

)1.6(ρs − ρg

ρs

)0.54U2.1
t

Dh Kato et al. (1985)

K∗
∞

ρgU
= 1.6

(

U

ut

)

(

1−
ut

U

)

Sciazko et al. (1991)

K∗
∞ = 5.4×10−5ρs

(

U

0.2

)3.4
(

1−
ut

U

)2
Baeyens et al. (1992)

K∗
∞ =

{

23.7ρgU
2.5exp

(

−5.4ut

U

)

for Re < 3000

14.5ρgU
2.5exp

(

−5.4ut

U

)

for Re > 3000
Tasirin and Geldart (1998)
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Table 8.4 Correlations for the estimation of the transport disengaging

height (TDH) (Yang, 2003).

Equation Reference

TDH = 0.85U1.2 (7.33 − 1.2logU) Chan and Knowlton (1984)

TDH = 1000
U2

g
Fournol et al. (1973)

TDH = 18.2db George and Grace (1978)

TDH = 13.8db Fung and Hamdullahpur (1993)

8.3 Benchmark Case

The first experimental work to investigate the elutriation phenomenon was performed

by Leva (1951). Leva reported basic observations on the elutriation of fines from fluidized

beds and proposed Eqn. (8.1) for the elutriation rate. The systems investigated were com-

posed of one coarse and one fine component. The influence of system variables such as gas

velocity, and fine and coarse particle diameters on the elutriation rate was presented. This

experimental work is chosen as the benchmark case to test the feasibility of MFIX to simulate

the elutriation phenomenon.

8.3.1 Simulation Conditions and Grid Resolution Study

Figure 8.2(a) represents the experimental setup (Leva, 1951). It is a cylinder with a di-

ameter of 3.4 cm and height of 121.9 cm. A small cyclone at the top of the unit was used to

collect the fines. Two narrow cuts of particles were used in the experiments. The fines were

elutriated ahead of time in order to remove the finer particles. In the experiments, 80% coarse

particles and 20% fines were mixed first before being charged into the fluidized bed. The initial
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Figure 8.2 (a) Fluidized bed used for elutriation experiments and (b) com-

putational domain used in simulations.

bed weight was 200 g and the static bed height was 11.3 cm. Gas with a low velocity was

introduced into the bed to fluidize the solids in order to ensure a uniform mixture before a

higher velocity was used to elutriate the fines. The elutriation rate of fines was obtained for

conditions above the TDH.

In the simulations, the fine and coarse particles are solved as two individual phases, each

described by equations for continuity and momentum (i.e., two equations per solid phase),

where each phase is characterized by a unique diameter and density. Although the experiments

of Leva (1951) investigated the mixture of a combination of sand and iron catalyst particles,

only a mixture of sand are simulated in this study. The coarse and fine particles are modeled

with different diameters but the same sand density of 2.6 g/cm3. One experimental case is

chosen to determine the correct grid size using a gas velocity of 27.4 cm/s. The diameters of
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Table 8.5 The grid resolution and cell sizes.

Grid ∆x (cm) ∆y (cm)

16 × 240 0.21 0.50

16 × 480 0.21 0.25

32 × 480 0.105 0.25

32 × 960 0.105 0.125

the fine and coarse particles are 51.3 µm and 191 µm, respectively. Since three-dimensional

simulations are computationally prohibitive, a two-dimensional Cartesian coordinate system is

considered for the simulations, representing a plane for the cylindrical domain with a width of

3.4 cm shown in Fig. 8.2(b). The Superbee method (§3.2.2) is used to discretize the governing

equations and the blending formulations (§7.2.2) are employed for solid stress calculations.

The walls are modeled using no–slip boundary conditions for both gas and solid phases. A

uniform gas velocity is specified at the bottom of the bed and ambient pressure is specified at

the exit. The particles are fluidized by air at ambient conditions. For the initial condition,

the fluidized bed is at minimum fluidization with a void fraction of 0.42. The freeboard is

considered to be occupied only by the gas.

The grid resolution study was conducted first and the number of cells used are shown

in Tab. 8.5. Figure 8.3 shows the profiles of the time-averaged void fraction and volumetric

fraction of fines averaged over the x−direction versus bed height. An obvious difference is

observed when the grid is changed from 16×240 to 16×480 for both variables. However, there

are no significant changes in the void fraction and volumetric fraction of fines for grids 16×480,

32×480 and 32×960. Therefore, a uniform grid of 16×480 is employed in all the simulations for

the benchmark case. Figure 8.3(a) indicates that the bed expands to an approximate height of

22 cm. The exponential decay of fines in the freeboard is observed from 22 to 30 cm in 8.3(b).

Highest volumetric fraction of fines appears at a bed height about 10 cm and gradually reduces

as the bed height decreases, which is an indication of segregation in the dense bed. Fines float

on top of the bed and coarse particles accumulate at the bottom.
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Figure 8.3 (a) Void fraction and (b) volumetric fraction of fines averaged

over 10–20 s and x− direction versus bed height for different

grids.
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8.3.2 Elutriation Rate Constants Above TDH

As stated in §8.2.3, the elutriation rate constants above TDH vary with different parame-

ters. The influence of gas velocity and fine and coarse particle diameters on K∗
∞ is presented

next.

8.3.2.1 Effect of Gas Velocity

Since the influence of gas velocity is dominant, its effect on the elutriation rate constant

K∗
∞ is investigated first. In the experiments (Leva, 1951) and the simulations, the diameters

of fine and coarse particles are 51.3 µm and 191 µm, respectively. The three different gas

velocities studied are 21.3 cm/s, 27.4 cm/s and 32.9 cm/s, respectively.

In the experiments, the fixed rate of gas flow was maintained for sufficient time to drive a

small portion of the fines out of the system. The time for test runs in the experiments with

gas velocities 21.3 cm/s and 27.4 cm/s was near 60 mins and with 32.9 cm/s was 40 mins.

According to Leva and Wen (1971), the slope of the initial linear portion of the data on a semi-

log plot of XF/XF0 versus time is used to calculate elutriation rate constants. The run time

used to obtain the elutriation rate constants was about 20 mins for all three cases. However,

for the simulations herein, the computational time required to perform calculations up to a

physical time of 20 mins for each case would be about four months using 4 processors on a DEC

Alpha EV6.7 cluster running at 833 MHz, even for two-dimensional simulations. Therefore,

the second task with respect to the simulations is to determine the necessary physical time

to obtain a reasonable elutriation rate constant, which can accurately predict the trends for

elutriation rate constants with varying system parameters. An intermediate gas velocity of

27.4 cm/s used in the experiments is selected for this task and this case is simulated up to

600 s (10 mins).

Figure 8.4 shows the plot of ln(XF/XF0) versus time for gas velocity 27.4 cm/s. At the

initial stage of the simulation, XF is zero since fines do not elutriate from the bed at startup.

Neglecting the initial startup (about 12 s), a linear line is observed up to 600 s and can be

used to calculate the elutriation rate, K∞. The slope of the line, K∞, is obtained by linear
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Figure 8.4 ln(XF/XF0) versus time for gas velocity 27.4 cm/s.

regression using EXCEL and the elutriation rate constant, K∗
∞, is calculated using Eqn. (8.3).

Elutriation rate constants versus the amount of time used to calculate the constants are plotted

in Fig. 8.5 for gas velocity 27.4 cm/s. For example, using data up to time of 80 s yields K∗
∞

of 0.0354. This is one data point in Fig. 8.5. A lower elutriation rate constant is observed

when less time is used to calculate the constant, such as with 40 s and 60 s. The values of K∗
∞

increase as more data are used. From Fig. 8.5, the fluctuation of elutriation rate constants is

less than 1% after 200 s such that 200 s is sufficient to predict the elutriation rate constants.

The error incurred using times between the values of 60 to 200 s to predict elutriation rate

constants is less than 5%.

The plot of ln(XF/XF0) versus time for three different gas velocities is shown in Fig. 8.6.

The simulation time used to calculate the elutriation rate constants is 200 s for gas velocities

21.3 cm/s and 32.9 cm/s and 600 s for gas velocity 27.4 cm/s. As the gas velocity increases, the

slopes increase and therefore the elutriation rate constants increase. The constants are shown

in Tab. 8.6 and plotted in Fig. 8.7, where the predicted K∗
∞ (triangles) is compared with

the experiments of Leva (1951) (squares). The elutriation rate constants are proportional to

approximately 5.6th power of the gas velocity. Although Leva (1951) did not give an estimation

of experimental errors, Wen and Chen (1982) concluded that the deviation of some of the



133

Time (s)

E
lu

tri
at

io
n

ra
te

co
ns

ta
nt

(k
g/

m
2
s)

0 200 400 600
0.03

0.032

0.034

0.036

0.038

Figure 8.5 Elutriation rate constants versus the amount of time used to

calculate the constants for gas velocity 27.4 cm/s.

Time (s)

ln
(X

F
/X

F
0
)

0 200 400 600
-0.2

-0.15

-0.1

-0.05

0

gas velocity 21.3 cm/s
Gas velocity 27.4 cm/s
Gas velocity 32.9 cm/s

Figure 8.6 ln(XF/XF0) versus time for different gas velocities.
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Table 8.6 Comparison of K∗
∞ from the experiments (Leva, 1951) and the

simulations.

K∗
∞ (kg/m3s)

Gas velocity (cm/s) Experiments Simulations

21.3 0.0058 0.0030

27.4 0.0289 0.0367

32.9 0.0652 0.1750

Table 8.7 The experimental conditions for correlations (Yang, 2003).

Reference Gas velocity Bed diameter Coarse particle diameter

(m/s) (m) (mm)

Yagi and Aochi (1955) 0.3–1.0 0.07–1.0 0.1–1.6

Wen and Hashinger (1960) 0.6–1.0 0.102 0.7

Tanaka et al. (1972) 0.9–2.8 0.031-0.067 0.7–1.9

Baeyens et al. (1992) 0.2–0.7 0.03–0.78

Tasirin and Geldart (1998) 0.2–0.8 0.076, 0.152 0.017–0.077

Simulations 0.21–0.33 0.0335 0.191

experimental data was greater than ±50% due to difficulty in obtaining accurate elutriation

data. There existed a size distribution of fines in the experiments although a narrow range of

particles was used. Also, the electrostatic forces are larger at higher velocities and causes the

sand to adhere to the bed walls in the experiments, reducing the elutriation of sand particles.

The correlations available in the literature (listed in Tab. 8.3) are also shown in Fig. 8.7

along with the results of experiments and simulations. Significant differences are observed from

the correlations since different fluidized systems were applied to derive the correlations. From

Fig. 8.7, five correlations fit well with the results obtained from Leva’s experiments and the

simulations: Yagi and Aochi (1955) (1), Wen and Hashinger (1960) (3), Tanaka et al. (1972)

(4), Baeyens et al. (1992) (10) and Tasirin and Geldart (1998) (11). The conditions for those

experiments used to derive the correlations are shown in Tab. 8.7. No common trend is found

for the experimental conditions.
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Figure 8.7 Comparison of elutriation rate constants by correlations of Yagi

and Aochi (1955) (1), Zenz and Weil (1958) (2), Wen and

Hashinger (1960) (3), Tanaka et al. (1972) (4), Geldart et al.

(1979) (5), Lin et al. (1980) (6), Colakyan and Levenspiel

(1984) (7), Kato et al. (1985) (8), Sciazko et al. (1991)

(9), Baeyens et al. (1992) (10), Tasirin and Geldart (1998)

(11), experiments (12) and simulations (13).

8.3.2.2 Effect of Fine Particle Size

The influence of fine particle size is investigated with two fine diameters, 40.5 µm and

67.1 µm, along with 51.3 µm presented in the previous section. The coarse particle size

is 191 µm for all cases. Three gas velocities used for the simulations are same as before:

21.3 cm/s, 27.4 cm/s and 32.9 cm/s. The cases with the fine particle sizes, 40.5 µm and

67.1 µm, are simulated up to 60 s.

Elutriation rate constants versus gas velocity for different fine particle sizes are plotted in

Fig. 8.8. For the same gas velocity, the elutriation rate constant increases with decreasing fine

particle size. The increasing of rate constants with larger gas velocity is again observed for a

fixed fine particle size.
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Figure 8.8 Elutriation rate constants versus gas velocity for different fine

particle sizes.

8.3.2.3 Effect of Coarse Particle Size

Bed hydrodynamics is influenced by coarse particles fluidized in the vessel, affecting the

entrainment rate at the bed surface. Experimental observation concludes that the elutriation

rate constant above TDH is not influenced by different coarse particle sizes (Sanari and Kunii,

1962). In this study, three coarse particle sizes are chosen: 191 µm, 227 µm and 320 µm. The

fine particle size is 51.3 µm for all tests. The simulations with 227 and 320 µm run up to 60 s.

Elutriation rate constants versus gas velocity for different coarse particle sizes are shown

in Fig. 8.9. The values of rate constants are similar for the same gas velocity with different

sizes of coarse particles. In conclusion, elutriation rate constant does not strongly depend on

coarse particle size.

8.3.3 Elutriation Rate Constants Below TDH

The entrainment model proposed in the literature, shown in Eqn. (8.6), is based on the

assumption of an exponentially decaying entrainment rate along the freeboard. The data along

the freeboard calculated from the simulations are chosen to fit the data in order to obtained

the decay constant a. Figure 8.10 shows comparisons of entrainment rate from the simulations
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Figure 8.9 Elutriation rate constants versus gas velocity for different coarse

particle sizes.

with the proposed model for different gas velocities. Fine and coarse particle sizes are 51.3 µm

and 191 µm are used for all of the simulations. Values between 2.2 m−1 and 6.6 m−1 were

determined from the experiments (Wen and Chen, 1982). However, a constant between 0.4

m−1 and 0.8 m−1 is obtained from the simulations. Thus, a faster decay of fines is observed in

the experiments above the bed surface. The improved constituent models for the interaction

of gas-solid phases and solid-solid phases could reduce the difference between experiments and

simulations.

8.4 Experiments Performed at Iowa State University (ISU)

Experimental investigation of the elutriation phenomenon in fluidized beds is performed

in the fluidized bed lab at Iowa State University. Figure 8.11(a) represents the setup for the

elutriation experiments. The column has a diameter of 9.5 cm and height of 86.1 cm. Both

fine and coarse particles are glass beads with a density of 2.6 g/cm3. A composition of 15%

fines and 85% coarse particles is mixed before being placed into the vessel. The weights of

fine and coarse particles are about 175 and 1000 g, respectively. Air enters from the bottom

of the bed after passing a humidifier in order to reduce electrostatic forces during fluidization,
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Figure 8.10 Comparison of entrainment rate from the simulations with the

proposed model for different gas velocities.

therefore, reducing the possibility of an accumulation of particles on the wall of the vessel. An

expansion part at the top of the vessel is used to collect the fines by decreasing the air velocity.

The computational domain for the simulations is shown in Fig. 8.11(b). Two-dimensional

simulations are performed employing the Cartesian coordinate system. The fine and coarse

particles used in the experiments have a size distribution between 500–600 µm and 180–212 µm,

respectively. In the simulations, the fine and coarse particles are solved as two individual

phases where each phase is characterized by a unique diameter. Thus, the standard averaged

diameters of coarse and fine particles, 537 µm and 196 µm, are used in simulations for two solid

phases. The Superbee method is used to discretize the governing equation; and the blending

formulations are employed for solid stress calculations. The walls are modeled using no–slip

boundary conditions for both gas and solid phases and an ambient pressure is specified at

the exit. For the initial condition, the dense bed is at the minimum fluidization with a void

fraction 0.42 and the freeboard is occupied by the gas. The number of cells is 40 × 300 in

x− and y− directions, respectively, which is about 5 times the coarse particle diameter. Thus,

the cell size is 0.24 cm and 0.29 cm in x− and y− directions. For the experiments, the height

of the freeboard is lower than the TDH, therefore, elutriation rate constants (K∗) obtained
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Figure 8.11 (a) Fluidized bed used for experiments (courtesy of Nathan

Franka) and (b) computational domain used in simulations.

should be larger than those above the TDH, K∗
∞.

Four different gas velocities, 1.8, 2.0, 2.2 and 2.5 m/s, are used in the experiments to

investigate the influence of gas velocity on elutriation rate constants. The comparison of the

results for the experiments and the simulations is shown in Figs. 8.12, 8.13, 8.14 and 8.15,

which corresponds to the four gas velocities. The solid lines and lines with symbols indicate

the simulation and experiment results, respectively. Each symbol represents a time that the

amount of elutriated fines is measured experimentally. Different time intervals used to obtain

the experimental data have little effect on the results, which is observed from Figs. 8.12–8.15,

indicating the repeatability of the experiments and providing confidence in the experimental

procedure. All simulations run up to the same time as the experiments. The initial slope at

the beginning of a simulation is larger, which is caused by the start-up of the bed and is more

obvious with higher gas velocity (Figs. 8.14 and 8.15). The initial part of data is not considered

when calculating elutriation rate constants. The slope, which indicates the elutriation rate

constant, increases as gas velocity increases from 1.8 m/s (Fig. 8.12) to 2.5 m/s (Fig. 8.15).

The elutriation rate constants obtained from the experiments and the simulations are shown
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Figure 8.12 ln(XF/XF0) versus time for gas velocity 1.8 m/s.

Table 8.8 Comparison of K∗ from the experiments performed at ISU and

the simulations.

K∗ (kg/m3s)

Gas velocity (m/s) Experiments Simulations

1.8 1.982 1.550

2.0 3.023 2.359

2.2 5.333 3.981

2.5 7.717 7.185

in Tab. 8.8 and compared in Fig. 8.16. The results of the simulations show good agreement

with the experimental results for all four gas velocities.
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CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Gas-solid fluidized bed reactors have many industrial applications due to their advantageous

characteristics such as excellent gas-solid contacting and high rate of heat transfer. With

increasing computational facilities, CFD can be a viable tool to assist the design of reactors.

However, CFD modeling for reacting gas-solid flows is very complex and not widely applied.

In this research, the effort has been put to advance the progress in modeling multiphase

reacting flows using a finite-volume CFD code (MFIX), which models chemical reactions and

heat transfer in fluid-solid flows. The goal of this study was to improve computations for

solving complex chemistry problems and capture elutriation phenomena in fluidized beds. In

addition, the capability of the code (MFIX) to predict actual physics using 2D modeling was

also investigated.

The isothermal silane pyrolysis case was first used to investigate the in-situ adaptive tabu-

lation (ISAT) performance with the modified MFIX-ISAT algorithm. With MFIX-ISAT time-

splitting algorithm, ISAT which can treat complex chemistry efficiently was employed to solve

the chemical reactions in fluidized bed reactors; whereas the hydrodynamics of multiphase

flows was resolved by MFIX. At first, ISAT was called by MFIX at every time step during the

calculation. An error tolerance (E) of 10−5 was chosen for ISAT to maintain the accuracy of

computational results for the isothermal cases. In general, ISAT(DI) was in very good agree-

ment with MFIX, which indicated the successful implementation of the time-splitting method

of MFIX with ISAT. Although the results for DI and ISAT compared well, ISAT calculations

did not achieve a good performance. A relatively large number of records were stored in the

table and the table did not reach maturity at the end of the simulation. The poor perfor-

mance of ISAT was due to the drastically varying time step in MFIX, since ISAT determines
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the EOA based both on the distance in the composition space and the difference in the time

step. Therefore, the MFIX-ISAT algorithm was modified to improve ISAT performance by

calling ISAT from MFIX at a fixed time step. With the improved algorithm, ISAT reduced

the computational time for chemistry drastically and the speed-up was around 46 times for

silane pyrolysis.

Then two-dimensional and three-dimensional non-isothermal silane pyrolysis cases were

used to test the features of ISAT. In ISAT, positive scale factors can be assigned to the in-

dependent and the dependent variables. Thus, ISAT can tabulate in terms of the normalized

quantities to improve the performance. Two-dimensional non-isothermal silane pyrolysis cases

with and without scaled factor were simulated. An error tolerance of 10−5 for the case with-

out scaled factors was chosen to maintain the calculation accuracy. A large error tolerance

(E=10−2) can be used to maintain the agreement with DI when using scaled factors, thus

reducing computational time. The maximum allowable table size was exceeded for the case

without scaled factors, whereas a speedup of 4 times was obtained for the case with scaled

factors. Since the values of the variables were quite different in the freeboard than in the bed,

two tables were created separately to maintain accuracy and reduce computational time. One

table was built for chemical reactions in the bed, which included the gas-solid phase reactions

and gas phase reactions. Another table was for the freeboard and only tabulated the gas phase

reactions. With the non-isothermal three-dimensional case, the speed-up was around 50 times

on one processor. The total CPU time for simulations was reduced by 24% by using ISAT.

All capabilities of ISAT were tested with complex chemical reactions in a fluidized bed

coal gasifier. The reactions of the coal gasifier were divided into initial stage reactions and

gasification and combustion reactions. With such complex reactions, the PMSR model was

tested first with the chemical reactions to provide information for optimizing parameters in

ISAT. An error tolerance of E=10−2 was necessary to maintain reasonable accuracy for fluidized

bed simulations. The speed-up was around 20.5 times with PMSR reactor. A batch coal

gasifier was simulated with Illinois No.6 coal using the optimized parameters obtained from

PMSR simulations. DI and ISAT compared well for both dense bed and freeboard regions
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and the speed-up of chemistry was around 16 times with 10% reduction in total CPU time for

MFIX-ISAT simulations.

It becomes possible to simulate complex multiphase flow reactors, such as biomass gasifiers,

when chemistry is efficiently calculated using ISAT. Biomass has gained consideration as a

promising and profitable energy source and is an excellent alternative fuel to help reduce

global warming and the use of fossil fuels. However, the entrainment of carbon particles into

the freeboard from the reacting bed is the main source of loss in reactor efficiency, especially

for biomass reactors, since attrition and fragmentation are far more extensive for biomass. In

addition, the elutriation of solid particles has to be known for designing gas cleaning equipment.

As a first step to investigate a biomass gasifier, elutriation phenomenon was simulated and

validated with experiments from the literature and those performed at Iowa State University.

The first experimental work for elutriation phenomenon in fluidized beds was performed

by Leva (1951) and chosen as the benchmark case to test the feasibility of MFIX to accurately

predict elutriation. In the simulations, the fine and coarse sand particles were solved as two

individual phases. Effects of gas velocity, and fine and coarse particle diameters were inves-

tigated for elutriation rate constants above the TDH. The results of the experiments and the

simulations compared well. The elutriation rate constants were proportional to approximately

the 5.6th power of the gas velocity and decreased with increasing fine diameters. The diameters

of coarse particles had little influence on elutriation rate constants. Experiments performed at

ISU investigated the influence of gas velocity for the elutriation rate when the reactor height

was below the TDH. Four different gas velocities were used and experimental results compared

very well with the simulations.

Apart from the mainstream research, the effects on the use of coordinate systems and con-

figurations to model fluidized bed reactors were tested. Since three-dimensional simulations of

fluidized beds, based on the Eulerian-Eulerian model, are usually prohibitive, two-dimensional

simulations are commonly used to compare with experiments. Thus, the validity of using 2D

simulations to represent the true dynamics and the choice of coordinate system and config-

uration used to model a cylindrical reactor were tested. Three different fluidization regimes:
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Figure 9.1 CFD simulations of biomass fluidized bed reactors.

bubbling, slugging and turbulent regimes, were investigated. The results indicated that a 2D

Cartesian system can be used to successfully simulate and predict a bubbling regime. Caution

must be exercised when using 2D simulations for other fluidized regimes.

For the future work, a laboratory-scale, bubbling fluidized bed biomass gasifier should be

simulated using MFIX. Cold flows of the gasifier should be computed to test the hydrody-

namics of the flow field first. The biomass gasification kinetics should then be implemented

into MFIX with ISAT. The chemical kinetic models can be tested with a simple reactor us-

ing a pairwise mixing stirred reactor for validation first. For biomass, the loosely connected

structures of chars after devolatilization form carbon fines by comminution such as attrition

and fragmentation. Carbon comminution during fluidized bed reactions has gained growing

interest because it controls the elutriation of fines, therefore, reactor efficiency and pollution

emission. The particle population balance method is the starting point to account for carbon

comminution phenomena. Particle size distribution due to comminution can be tracked by the

direct quadrature method of moments (DQMOM) (Marchisio and Fox, 2005). DQMOM is a

computationally efficient and effective method to simulate the evolving particle-size distribu-

tion in fluidized beds. Fan et al. (2004) simulated fluidized beds without reactions using MFIX

with DQMOM. Therefore, DQMOM can be used in conjunction with ISAT to simulate the

particle size change due to the comminution and reactions in a chemically reacting biomass

reactor, as shown in Fig. 9.1.
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