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Chapter 1: Introduction 

With so much research in progress to study biomedical applications of engineering 

principles, sensor systems are quickly becoming a primary bridge between biology and 

engineering. One of the most common applications for these sensors is to detect 

concentrations of chemical species, with the goal of detecting ever-smaller concentrations 

with ever-greater certainty and specificity. This thesis specifically studies the detection and 

binding forces of the protein thrombin using a single-stranded DNA aptamer as the detection 

mechanism. The two methods employed to measure the interaction between the thrombin and 

its corresponding DNA aptamer were microcontact printing and force spectroscopy. Based 

on these experiments, a characterization of thrombin and the aptamer was completed.  

This thesis is organized into four chapters. This first chapter provides a background of 

the biochemical and mechanical principles discussed in chapters two and three. Chapter two 

is a research letter resulting from microcontact printing research, and will be submitted to 

Nano Letters. Chapter three is a research paper resulting from force spectroscopy research, 

and is to be submitted to Langmuir. Chapter four discusses general conclusions drawn from 

this research and proposes future work in regards to these topics.  

Relevant Biochemistry Background 

Deoxyribose Nucleic Acid (DNA) 

In the early 1950s, James Watson and Francis Crick proposed a structure for the 

fundamental chemical species that governs daily life for all creatures: Deoxyribose Nucleic 

Acid (DNA) (Watson & Crick, 1953). This helical double strand made up of four nucleic 

acids—adenine, thymine, guanine, and cytosine—forms the backbone of modern 

biochemistry. DNA has an approximate “footprint” of 2.4 nm by 2.2 nm, and a length of 0.34 

nm per base pair. Each base pair is also asymmetrical and so a strand of DNA has a five 

prime (5’) end, which terminates in a phosphate group; and a three prime (3’) end, which 

terminates in a hydroxyl group. As a double-stranded helix, DNA is quite rigid and forms 

rod-like shapes. DNA can also be manufactured as a single strand, without a typical inherent 

structure of its own. Single-stranded DNA (ssDNA) can form many different shapes and 
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structures based on its base sequence, and usually different structure than double stranded 

DNA. 

Aptamers 

One of the more recent applications of single-stranded DNA is to form structures 

known as aptamers (Cullen & Greene, 1989; Ellington & Szostak, 1990). Aptamers are 

engineered nucleic acid strands that are selected using the Systematic Evolution of Ligands 

by Exponential Enrichment (SELEX) method due to their ability to bind a specific protein 

(Tuerk & Gold, 1990). These aptamers can then be used to detect the protein’s presence 

through assays, to be immobilized in arrays, or to inhibit the protein’s inherent function. 

Aptamers are flexible and versatile molecules with a wide range of biochemical applications. 

 The specific aptamer used in this study was 

developed by Tasset, et al. to bind to the protein human 

thrombin (Tasset, Kubik, & Steiner, 1997). The thrombin 

aptamer has a hairpin structure formed by eight guanine 

bases, which form what is known as a G-quadruplex 

(Macaya, Schultze, Smith, Roe, & Feigon, 1993). The G-

quadruplex has the base structure GGNTGGN2-

5GGNTGG, which fits into thrombin’s heparin binding 

site (Kelly, Feigon, & Yeates, 1996). In Figure 1, the 

guanine bases are represented by the white spheres and the 

hydrogen bonds that hold the hairpin together are the gray 

rods. The black backbone is the rest of the ssDNA strand, 

which can be of various lengths depending on the intended 

application of the aptamer. The 3’ and 5’ labels represent 

the 3’ end and 5’ end of the DNA strand, respectively, although the aptamer extension can be 

on either the 3’ or 5’ end without significantly changing the aptamer function.  

It is hypothesized that the thrombin aptamer binds to thrombin with a physical rather 

than chemical bonding process, where the structure of the thrombin creates a place for the 

hairpin to “hook” into the protein (Basnar, Elnathan, & Willner, 2006; Tasset, Kubik, & 

Steiner, 1997). The dissociation constant—the propensity of the thrombin-aptamer complex 

3’ 

5’ 

Figure 1: Thrombin Aptamer 
Structure 



 3 
to separate—of the thrombin aptamer is around 75 nM, with some experiments finding it as 

low as 1.4 nM (Macaya, Schultze, Smith, Roe, & Feigon, 1993; Tsiang, Gibbs, Griffin, 

Dunn, & Leung, 1995). This shows that the thrombin aptamer has high specific bonding to 

thrombin. 

 When the aptamer binds with thrombin, either end of the aptamer can be modified by 

labeling with fluorescent or dye groups, or to immobilize the aptamer-protein complex. In 

this study, a thiol group consisting of a sulfur-hydrogen pair was added to the 5’ end of the 

aptamer in order to immobilize it on a gold surface. The thiol group has a high affinity for 

gold, and forms a strong bond with a gold substrate with a Gibbs free energy on the order of 

23 kJ/mol (Yang, Yau, & Chan, 1998). With this thrombin aptamer structure, the protein can 

be immobilized on a flat gold surface for further scanning and experimentation to analyze its 

behavior and properties. 

Thrombin 

Human thrombin is a blood coagulation protein that acts as a catalyst in many 

reactions, including the conversion of fibrinogen into fibrin. Fibrinogen, synthesized in the 

liver, can be converted into fibrin to form a mesh that is part of the blood clotting process. 

Thrombosis is one disease that results from too much fibrin in the system, which can also be 

caused by too much thrombin. The opposite, hemorrhage, results from not enough fibrin and 

can be caused by too little thrombin as well as other factors. Therefore, the study and control 

of thrombin is vital to the blood coagulation process and human health. 

Human thrombin has two major binding sites that are relevant to this study (Bode et 

al., 1989). The first site is the fibrinogen binding site, which is where the cleavaged 

fibrinogen to fibrin occurs. This site is primary to thrombin’s function in the bloodstream. 

The second site is the heparin binding site, which is where the molecule heparin binds to the 

thrombin and inhibits its function. Heparin is found in the saliva of leeches, and its 

interaction with thrombin explains the anti-coagulation properties of leeches. When heparin 

is present, the ability of thrombin to cleave fibrinogen is drastically reduced. In the presence 

of the thrombin aptamer, fibrin production has been shown to slow by as much as 675% 

(Bock, Griffin, Latham, Vermaas, & Toole, 1992).  
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This slowing of fibrin production indicates that the aptamer affects the thrombin in a 

similar way to heparin. It is hypothesized the heparin binding site primarily binds to the 

thrombin aptamer. However, the presence of the thrombin aptamer in the fibrinogen binding 

site could also slow fibrin production.  

Motivation 

In detecting biological species, small samples and high sensitivity are key. In the 

human system, small changes can elicit large responses and result in potentially fatal 

illnesses. Many custom chemical species are expensive and difficult to manufacture, so a 

small sample size can save in research costs and can also reduce final sensor costs.  

This thesis serves as a proof-of-concept for small-scale sensor systems that do not use 

fluorescence to detect bonding. Fluorescence is a common type of labeling, which is where 

chemical species are modified with an additional molecule that emits a visual signal at a 

binding event. Most commonly, labels will be attached at the binding site of a species, where 

they are released upon binding. The released label will give off a detectable signal, frequently 

visual. Chemical species that have been labeled are more expensive to manufacture, and are 

limited in their sensor applicability. Nonlabeled species require less handling, and a method 

of detection for nonlabeled aptamers would prove more versatile for sensing applications. 

Most current sensors utilize fluorescence to detect the presence or absence of 

chemical species. In the fluorescence method, the DNA aptamers are functionalized with 

fluorescent groups that put out a visual signal that changes luminescence when binding with 

their complimentary chemical species. This detection can be used with fixed or free 

aptamers, but can only be used for surfaces without an inherent fluorescence (C. L. Feng, 

Embrechts, Vancso, & Schönherr, 2006; X.-z. Feng et al., 2004; Lee et al., 2007).  

The most common fabrication method for sensor arrays with biological and chemical 

species still relies on printed patterns where binding is detected using fluorescence (Kumar & 

Whitesides, 1993; Mrksich & Whitesides, 1995; Ruiz & Chen, 2007; Xia & Whitesides, 

1998). The issue with these sensors is that they require a non-luminescent substrate such as 

glass or mica. A sensor system that does not use fluorescence would have the flexibility to 
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use substrates such as gold, protein, or polymers in addition to glass or mica for 

immobilization.  

Other printed or otherwise immobilized species arrays include a surface acoustic 

wave (SAW) sensor (Gronewold, Glass, Quandt, & Famulok, 2005), charge transfer sensor 

(Hianik, 2005), or microcantilever sensor (Lavrik, Sepaniak, & Datskos, 2004). The SAW 

sensors measure changes in acoustic waves that are translated through the substrate. The 

amplitude and velocity change between binding events, which indicates the presence of the 

bound chemical species. The charge transfer sensors measure changes in electrochemical 

response using an indicator such as methylene blue (Hianik, 2005), but this sensor still 

requires dye sensing much like fluorescence methods. Microcantilever sensors use small 

cantilevers (approx. 2 nm thick by 400 nm long) to measure surface stress changes across the 

cantilever surface. As the surface stress changes due to protein binding, the cantilever 

produces a physical response that can be measured using laser interferometry or vibration 

harmonics (Lavrik, Sepaniak, & Datskos, 2004). Sensors using free aptamers are in the form 

of chemical assays, and still rely on dyes or luminescence for detection (Olsen & Markwell, 

2007)  

Microcontact Printing Background 

One of the most widespread methods for creating micro and nanoscale structures was 

first outlined by Kumar and Whitesides, who described an “inking” process of transferring 

alkanethiols to gold surfaces (Kumar & 

Whitesides, 1993). Known as microcontact 

printing, this process has been used to print 

a multitude of chemical species from cell 

cultures to proteins to DNA (X.-z. Feng et 

al., 2004; Mrksich & Whitesides, 1995; Xia 

& Whitesides, 1998).  

To perform microcontact printing, a 

flexible polymer poly(dimethyl siloxane) (PDMS) stamp is made from a mold. The chemical 

species is exposed to the stamp as a solution in liquid, and then the liquid is either allowed to 

Figure 2: Microcontact printing process. Not 
to scale. 
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dry (as in the case of alcohol based solutions) or is dried with a gas such as nitrogen (as in the 

case of water based solutions). The dried chemical species is then printed on a substrate, 

where it adheres or bonds to the substrate. The PDMS stamp is removed, leaving a pattern of 

the chemical species printed on the substrate (see Figure 2).  

This bottom-up fabrication mechanism is frequently used for masking substrates to 

create patterns and molds, but it can also be used to form the base for self-assembled 

biological or chemical structures. The printed chemical species forms the initial layer for the 

intended structure, and future layers “self-assemble” based on their binding specificity to the 

preceding layer.  

In using microcontact printing for sensing systems, a known pattern (such as a grid of 

squares) of a chemical species is printed onto a substrate. A solution containing a 

complementary species is exposed to the substrate, and the complementary species bonds 

only to the printed species. In the case of fluorescence, the printed species has a fluorescent 

“tag” on the binding end, which is reoriented upon binding to the species in the solution. It is 

this fluorescence that can be detected with luminescence detectors and forms a visible pattern 

on the substrate. In this thesis, the presence of the complementary species is detected by 

measuring the height change before and after exposure to the solution containing the 

complementary species.  

Force Spectroscopy Background 

In determining the applicability of certain 

complimentary chemical species to sensor systems, 

it is vital to know the specificity of the binding 

between the species. One of the measures of this 

specificity is based on the force interaction between 

the complimentary pair. While the atomic force 

microscope (AFM) is most commonly used to 

measure topography data of small scans, it can also 

be used for other applications such as force 

measurements. For normal scanning functions, the AFM utilizes a detector and triangular 

Figure 3: AFM function schematic 
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cantilever system to measure micro- and nanoscale data (see Figure 3). A laser beam is 

deflected off of the cantilever onto a photodetector, which registers changes in the 

cantilever’s position. At the same time, the cantilever moves across the sample, reacting to 

topographical changes as it scans. The data is compiled line by line until a complete 

topographical map has been created.  

In the case of force spectroscopy, the cantilever does not move across the sample, and 

instead moves vertically in one place. This method measures the cantilever’s deflection based 

in its interaction with the surface to create what is known as a force curve. The deflections 

measured in a force curve can be converted into forces by using the cantilever’s spring 

constant. 

The method known as force spectroscopy—or force microscopy—was first introduced in 

1994 (Florin, Moy, & Gaub, 1994). Florin et al. investigated the forces of the complimentary 

species avidin and biotin through the use of force 

spectroscopy. In this method, the first chemical species 

is bound to an AFM cantilever tip through carboxyl 

chemistry, thiol groups (Basnar, Elnathan, & Willner, 

2006), biotinylated groups (Florin, Moy, & Gaub, 

1994; Micic, Chen, Leblanc, & Moy, 1999), or other 

methods. The complementary species is then bound to 

a flat substrate using similar methods (See Figure 4). 

The binding of each species to its substrate must have 

a much stronger binding force than that of the 

complementary species, in order to avoid measuring the binding forces of the chemical 

species to the substrates.  

After preparation of all surfaces, the cantilever and substrate are brought together and 

then pulled apart using force curves. This causes the complementary species to bind, stretch, 

and finally separate. The deflection of the cantilever indicates the point of contact with the 

substrate, the stretching, and the breaking forces. The force spectroscopy method is used to 

directly measure the binding forces between complementary species, and is especially 

applicable to manufactured complementary pairs such as aptamers.  

Figure 4: Functionalized tip and 
substrate. Not to scale. 
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From an engineering standpoint, the forces between thrombin and its binding agents are 

vital to the design of sensor systems. In particular, the magnitudes of the forces dictate the 

suitability of certain sensors to the detection of thrombin. While the microcontact printing 

sensor system described in this thesis relies on height rather than forces to measure the 

presence of thrombin, other sensor systems rely on surface stress changes or interaction 

forces to trigger a detection sequence (Lavrik, Sepaniak, & Datskos, 2004). 

Contact Mechanics 

When calculating forces in a force spectroscopy experiment, attention to the area in 

contact during the binding phase is vital. The most common method of calculating the 

contact area between a spherical and flat surface was developed by Hertz in the late 1800s as 

described in (Johnson, 1985). This method does not include small-scale adhesion forces, but 

does include elastic deformation due to the normal force with which the two surfaces are 

brought into contact. Most researchers choose to use the Hertz contact analysis as an initial 

contact area estimation, and some do not analyze the system much further as they argue that 

deformation does not play a strong role in force spectroscopy interactions (Noy, Vezenov, & 

Lieber, 1997).  

Some researchers then do go on to calculate the contact area based on other methods, 

which take adhesion forces into account (Chandross, Lorenz, Stevens, & Grest, 2008; Goss, 

Brumfield, Irene, & Murray, 1993; Kopycinska-Müller, Geiss, & Hurley, 2005; Noy, 

Vezenov, & Lieber, 1997; Oncins, Vericat, & Sanz, 2008). The general consensus is that 

while the DMT method (Derjaguin-Muller-Toporov) more accurately models the work of 

adhesion, the JKR method (Johnson-Kendall-Roberts) is better for the surface profile and 

contact area calculations when adhesion forces will be taken into consideration. 

Most researchers conclude that neither of these models truly captures the contact 

mechanics on this scale well and a few have proposed their own models for interactions with 

thin films (Dimitriadis, Horkay, Maresca, Kachar, & Chadwick, 2002; Reedy, 2006). These 

contact models do not involve protein or DNA monolayers, and are highly specific. In force 

spectroscopy, the specific species of the experiment determine the most appropriate contact 

model. This is because the thicknesses of the layers on the AFM tip and substrate and the 
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medium of the experiment (such as liquid, air, or vacuum) have a large impact on the 

magnitude of the secondary forces such as meniscus and Van der Waals forces.  

Current Work 

 The current work described in this thesis combines the principles of thrombin and 

nucleic acid biochemistry, biosensors, atomic force microscopy, and contact mechanics. The 

first experiment conducted to characterize the thrombin-aptamer interactions was to create a 

biosensor using microcontact printing. Using the atomic force microscope to measure height 

changes, it was shown that a printed array can serve as a biosensor without the use of 

fluorescence. More details on this experiment can be found in chapter two.  

 The second experiment conducted was to determine the force of the aptamer-

thrombin interaction through the use of force spectroscopy. Here the atomic force 

microscope was used to measure cantilever deflection rather than height changes as we 

repeated the work of Basnar et al. (Basnar, Elnathan, & Willner, 2006). More details on this 

experiment can be found in chapter three. 

 Based on the two experiments conducted, we reached some general conclusions about 

the thrombin-aptamer interaction characteristics. These conclusions as well as suggestions 

for future research can be found in chapter four. During the course of the force spectroscopy 

experiment, an interesting poly(ethylene) glycol superstructure was observed on the substrate 

surface. Details of this observation can be found in Appendix A.  

 For each of the papers in this thesis, Janice Marquardt was the primary author and 

researcher. Dr. Pranav Shrotriya provided guidance, some data analysis programming, and 

editing; and he is the author for correspondence. Dr. Marit Nilsen-Hamilton provided 

biochemistry expertise and editing. Kanaga Karuppiah fabricated the stamp used in the 

microcontact printing experiment.  
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Chapter 2: Microcontact printing to detect thrombin binding to DNA 

aptamers with applications to biosensor systems 
Modified from a paper to be submitted to Nano Letters 

Janice Marquardt, Pranav Shrotriya, Marit Nilsen-Hamilton 

Abstract 

 As the use of chemical species to form nanostructures becomes ever more common, 

the need to detect binding specificity of these species also increases. Many sensor systems 

require modification of the binding molecules to add fluorophones to one or both molecules, 

which is costly and requires a non-fluorescent substrate for the binding activity. The purpose 

of this study is to examine the feasibility of using atomic force microscope (AFM) height 

measurements to detect changes in nucleic acid and protein interactions. This study used a 

thiolated 30-nt adenine oligonucleotide (Poly A) and its corresponding thymine DNA strand 

(Poly T) as a control, and the thiolated thrombin DNA aptamer and thrombin for the targeted 

detection pair. The poly A and aptamer were printed using microcontact printing techniques 

onto gold, and then were exposed to their complementary species. It was shown that there 

was a height change after binding to the target species, so it is feasible to use height data to 

detect binding of DNA aptamers and proteins. This fluorescence-free sensor system uses 

unmodified proteins, and so has far-reaching applications for sensing protein binding and 

building nanostructures. 

Introduction 

 Biosensors have far-reaching applications in the fields of security, medicine, and 

many other fields where detections of small quantities of substances are necessary. Research 

using biological building blocks to create these sensors is exploring the possibilities of small 

scale sensing to detect abnormalities and create complex structures. 

A small-scale sensor has many advantages, including its fine sensitivity. A micro or 

nanoscale sensor can detect very small concentrations of chemical species, and has high 

specificity. As the sensor decreases in size, the necessary sample size likewise decreases. The 

sensor in this paper uses a less than 100 uL sample size. 
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To reliably detect biological and chemical species on small scales, a highly specific 

sensor is needed to minimize error. One of the more recent advances in DNA technology is 

the creation of single-stranded DNA aptamers, which are selected from a random pool of 

nucleotide chains and often further engineered to bind to a specific protein (Cullen & Greene, 

1989). These aptamers can be used with sensor systems to detect certain proteins and bind 

them to certain surfaces, or they can be used to inhibit the activities of the proteins (Tasset, 

Kubik, & Steiner, 1997). Aptamers are at the lower end of the nanoscale, with a diameter of 

2-3 nm and length of 5-20 nm, which gives them great flexibility for a variety of 

applications.  

One of the most common methods for creating micro and nanoscale structures was 

first outlined by Kumar and Whitesides, who described an “inking” process of transferring 

alkanethiols to gold surfaces (Kumar & Whitesides, 1993). Known as microcontact printing, 

this process has been used to print a multitude of chemical species from cell cultures to 

proteins to DNA (X.-z. Feng et al., 2004; Mrksich & Whitesides, 1995; Xia & Whitesides, 

1998). This bottom-up fabrication mechanism is frequently used for masking substrates to 

create patterns and molds, but it can also be used to form the base for a self-assembled 

biological or chemical structure. The printed chemical species forms the initial layer for the 

intended structure, and future layers “self-assemble” based on their binding specificity to the 

preceding layer.  

Self-assembled monolayers of DNA strands are especially useful for creating 

complicated nanostructures several layers high in microcontact printing (Zhou, Bruckbauer, 

Ying, Abel, & Klenerman, 2003). A self-assembled monolayer is made up of DNA strands 

packed very closely to form a dense group of standing DNA molecules. Zhou et al. observed 

imperfect monolayers and DNA that did not exhibit the ideal upright structure that results in 

close-packed strands (Zhou, Bruckbauer, Ying, Abel, & Klenerman, 2003). Therefore, the 

measured height of their nanostructures more closely corresponded to the diameter of the 

DNA than to the length of the strands.  

The current intersection of microcontact printing and biosensors frequently utilizes 

fluorescence to detect the presence or absence of chemical species. In this method, the DNA 

aptamers are functionalized with fluorescent groups that put out a visual signal when they 
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bind with their complimentary chemical species. This detection can be used with fixed or 

free aptamers, but can only be used for surfaces without an inherent fluorescence such as 

glass or mica (C. L. Feng, Embrechts, Vancso, & Schönherr, 2006; X.-z. Feng et al., 2004; 

Lee et al., 2007).  

While glass is a useful medium for fluorescence detection, gold cannot be used in 

fluorescence because of its inherent luminescence. Last, the “glow” from fluorescence can 

result in errors in measurement based on the size of the measured species. The halo around 

the measured species can change its measured size, or its measured density in the case of 

closely-packed molecules. 

In this letter, we report a proof of concept on a sensor system using the atomic force 

microscope (AFM) to identify specific aptamers and verify their binding ability. The reported 

method uses printing of thiolated aptamers (a sulfur-hydrogen sequence with a strong affinity 

for gold) on a gold substrate, followed by detection of the height change caused by binding to 

the target protein. Complementary DNA strands were also 

printed to serve as a control for validation of the printing 

process and to expand its validity to other binding 

combinations.  

This study uses an aptamer selected by Tasset, et 

al., which binds to the blood coagulation thrombin (Tasset, 

Kubik et al. 1997). The thrombin aptamer includes 15 

nucleotides that form a “hairpin” pattern (see Figure 5) 

that binds to the heparin binding site on a thrombin protein 

(Tasset, Kubik, & Steiner, 1997). In Figure 1, the white 

spheres represent the guanine molecules that form the 

cornerstones of the G-quadruplex first documented by 

Bock, et al (Bock, Griffin, Latham, Vermaas, & Toole, 

1992). The light gray bonds represent the hydrogen 

bonding to form the actual quadruplex structure that creates a physical bond to the thrombin 

molecule (Macaya, Schultze, Smith, Roe, & Feigon, 1993). Here the minimal 15-nt sequence 

for high affinity binding to thrombin was added to a 35-nt sequence of random nucleic acids 

3’ 

5’ 

Figure 5: Thrombin Aptamer 
Structure 
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with low probability of secondary structures (Basnar, Elnathan, & Willner, 2006). This added 

“tail” allows the fixed thrombin aptamer enough space to bind to the thrombin molecule 

without an added risk of interfering secondary structures. The 5’ and 3’ labels in figure 5 

mark the 5’ and 3’ ends of the single stranded DNA, respectively. Like most single strands of 

DNA, this aptamer should form a self-assembled monolayer under the appropriate 

conditions. 

Methods 

Unless otherwise noted, all chemicals were purchased from Sigma Aldrich 

(www.sigma.com), and all DNA was purchased from Integrated DNA Technologies 

(www.idtdna.com). Using an SU-8 photoresist master, a poly(dimethylsiloxane) mold 

(PDMS) was prepared with 5 µm by 5 µm squares with a 10 µm spacing. The PDMS was 

cured at 60°C for a minimum of 12 hours. As shown by Thibault, et al., a longer cure time 

(greater than 12 hours and up to 28 hours) results in a cleaner PDMS substrate (Thibault, 

Séverac, Mingotaud, Vieu, & Mauzac, 2007). Thibault, et al. also showed that uncleanliness 

of PDMS is beneficial to DNA printing due to its sponge-like composition.  

To print the thiolated poly A single stranded DNA (5’-AAA AAA AAA AAA AAA 

AAA AAA AAA AAA AAA-thiol-3’), an 88.5 µM concentration of poly A in double 

distilled water (ddH2O) was deposited on the PDMS stamp. After settling for 30 seconds, the 

excess liquid was poured off and the remaining liquid evaporated with a gentle stream of 

nitrogen. The stamp was placed on a silicon wafer with a 25 nm thick layer of sputter-coated 

gold for 30 seconds and then was removed. The sample was rinsed with ddH2O and dried 

again before being scanned by the AFM. 

To hybridize the DNA, a 50.6 µM solution of poly T DNA (5’-TTT TTT TTT TTT 

TTT TTT TTT TTT TTT TTT-3’) in binding buffer (20 mM Tris-HCl pH 7.4, 140 nM NaCl, 

5 mM KCl, 1 mM CaCl2, 1 mM Mg Cl2, and 5% glycerol v/v in ddH2O) was added to the dry 

sample and allowed to remain for 30 seconds. The excess was poured off and dried with a 

gentle nitrogen stream. The sample was rinsed with ddH2O before being scanned.  

To print the thiolated thrombin aptamer (5’-thiol-GCC TTA ACT GTA GTA CTG 

GTG AAA TTG CTG CCA TTG GTT GGT GTG GTT GG-3’), (Tasset, Kubik, & Steiner, 
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1997), a  solution of 3.4 µM aptamer in ddH2O was deposited on the PDMS stamp. After 

settling for one minute, the excess liquid was poured off and replaced with a binding buffer 

(20 mM Tris-HCl pH 7.4, 140 nM NaCl, 5 mM KCl, 1 mM CaCl2, 5 mM MgCl2, and 5% 

glycerol v/v in ddH2O). The sample was heated to 80°C for 30 minutes, then rinsed several 

times with the same binding buffer followed by ddH2O. The sample was dried with a gentle 

stream of nitrogen before being scanned.  

To bind the aptamer with thrombin, a 10 µM concentration of thrombin in high 

MgCl2 binding buffer with Tween20 included to decrease non-specific binding (20 mM Tris-

HCl pH 7.4, 140 nM NaCl, 5 mM KCl, 1 mM CaCl2, 5 mM Mg Cl2, 5% glycerol v/v  and 

0.05% Tween20 v/v in ddH2O) was deposited on the printed surface. The mixture was 

allowed to stand for 1 minute before being rinsed several times in binding buffer with NP40 

included (20 mM Tris-HCl pH 7.4, 140 nM NaCl, 5 mM KCl, 1 mM CaCl2, 5 mM Mg Cl2, 

5% glycerol v/v and 0.05% NP40 v/v in ddH2O) followed by rinsing several times with 

ddH2O.  

To create a control binding pair, poly A was printed and exposed to the thrombin 

protein. The poly A was printed using the same method as in the poly A/poly T experiment, 

and the thrombin was exposed to the poly A using the same method as in the 

aptamer/thrombin experiment. A summary of the four species used can be found in Table 1. 

Table 1: Summary of chemical species used for printing 

 

 

 

 

 

 

 

 

 

 

Chemical Species Concentration Solution 
Thiolated poly A 88.5 µM ddH2O 
Poly T 50.6 µM 20 mM Tris-HCl pH 7.4 

140 nM NaCl 
5 mM KCl 
1 mM CaCl2 
1 mM Mg Cl2 
5% glycerol v/v in ddH2O 

Thiolated Thrombin Aptamer 3.4 µM ddH2O 
Thrombin 10 µM 20 mM Tris-HCl pH 7.4 

140 nM NaCl 
5 mM KCl 
1 mM CaCl2 
5 mM Mg Cl2 
5% glycerol v/v 
0.05% Tween20 v/v in ddH2O 
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Scanning of height and friction traces was conducted in air and water using silicon nitride 

atomic force microscope tips on a Dimension 3100 atomic force microscope. The heights of 

the features were calculated using the cross section function of NanoScope offline software 

version 5.30. The range of true heights was calculated based on fifty height measurements 

and a 95% confidence interval for a normally distributed data set. The heights were also 

calculated using average heights, with results similar to the individual measurements. 

Individual measurements were used because a significant number of data points could be 

generated for greater potential for analyses. 

Results 

 The AFM scans shown use red as the lowest heights, and yellow to indicate peaks in 

height. Figures 2 and 3 show the AFM data for the four situations measured. Each image is 

20 µm square with the height data on a 10 nm scale. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Poly A and T DNA AFM Height Data. a) Poly A b) Hybridized poly A and poly T 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Thrombin aptamer AFM Height Data. a) Aptamer b) Bound thrombin  
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Figure 8: Control AFM Height Data. a) Poly A b) Poly A exposed to thrombin  
 

Height data was gathered by taking 50 cross-section heights for each chemical species 

using two different images. A t-test was conducted without assuming equal variances to 

determine if the height data is significantly different. The p-value for the t-test was less than 

0.0005 for the thrombin-aptamer pair. This indicates that the probability of accepting the null 

hypothesis (that the heights before and after binding are the same) was less than 0.05%. 

Therefore, the heights before and after binding are significantly different. The p-value for the 

control t-test and the poly A-poly T t-test was greater than 0.05, which indicates that the 

height changes in these systems were not significantly different. The averages, 95% 

confidence intervals, and t-test results can be seen in Table 2.  

Table 2: Microcontact printing height summary 

Heights in nm Poly A Hybridized 
DNA 

Thrombin 
Aptamer 

Bound 
Thrombin 

Control 
poly A 

Control  
bound thrombin 

95% CI upper bound 1.800 1.677 2.023 2.723 1.800 1.813 
Average 1.684 1.588 1.855 2.451 1.684 1.711 
95% CI lower bound 1.569 1.499 1.687 2.178 1.569 1.610 
P-Value 0.59 0.00047 0.73 

 

Discussion 

It can be concluded from the findings that this microcontact printing sensor system is 

sufficiently accurate to determine the binding ability of aptamers. In a sensor system, a 

printed aptamer array would be exposed to the desired protein and a height change would 

indicate the presence of an aptamer on the array with sufficient specificity. A statistical 

5µ 5µ a b 
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difference before and after binding must be shown in the height data before a printed array 

sensor system is feasible. In an array of aptamers, the high-affinity thrombin aptamer pair 

shows a sufficient height change to be detectable. The control pair of poly A-thrombin and 

poly A-poly T show a non-significant height change, which clearly indicates that the 

measured height changes for the complementary thrombin pair are due to binding events.  

It is predictable that the binding of poly A and poly T does not result in a height 

change, as complementary DNA strands would not build structures vertically unless they are 

of different lengths. While the single-stranded poly A DNA would have little or no structure, 

the hybridized DNA would form a stiff helical rod. Unless the formation of the rod caused 

the DNA to “stand up” relative to the substrate, no major difference in height would be seen 

between the single- and double-stranded DNA.  

The well-documented “coffee ring” effect is present in many of the images, and is 

due to the uneven drying of the DNA ink during the microcontact printing process. The ink 

has a tendency to concentrate on the stamp edges, which is seen in the figures. The ripple 

effect seen in some of the images is due to interference from the gold surface. It was 

necessary to use a narrow cantilever in order to achieve the desired sensitivity, which has a 

smaller deflection area than the size of the detection laser beam. As a result, the reflection of 

the laser beam from the sample surface creates a diffraction pattern on the detector 

(Lohmeyer, 2008).  

The greatest hurdle to implementation of this system lies in the sample and AFM 

resolution. Previous work has shown heights of 1.7 ± 0.2 nm for single stranded DNA and 

2.7 ± 0.3 nm for thrombin on freshly cleaved mica (Liu, Lin, Li, & Yan, 2005), and this work 

validates that previous experiment. Heights of 1.86 ± 0.2 nm for the thrombin aptamer and 

2.45 ± 0.3 nm for the bound thrombin were found on the gold surface, although the sputter-

coated gold is rougher than the mica surface used in the previous experiment (see table 3).  

Table 3: Previous research height comparison 

 Thrombin aptamer Bound thrombin 
Previous research 1.7 ± 0.2 nm 2.7 ± 0.3 nm 
Current findings 1.86 ± 0.2 nm 2.45 ± 0.3 nm 
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The RMS roughness over a 10 µm square is 0.9 nm for the sputter-coated gold, while freshly 

cleaved mica has a roughness on the order of 0.13 nm (Senden & Ducker, 1992).  

The concept of an AFM height-based sensor system has potential for a less 

specialized fluorescence-free alternative to current systems with applications to an 

inexpensive method of determining binding specificity with minimally modified aptamers 

and proteins. Based on the information obtained from the specificity test, the applicability of 

certain affinity pairs for small scale manufacturing methods could be determined. 

By using the AFM rather than a fluorescence method to measure the printed 

aptamers, it was also shown that the microcontact printing method does not form highly 

dense monolayers. While fluorescence may show a fairly even luminescence in a printed 

area, the AFM measurements show a less uniform height distribution. This implies that the 

printed aptamers do not form self-assembled monolayers as easily or closely as with printed 

alkanethiols (Mrksich & Whitesides, 1995).   

 Future work will be to decrease noise in the system further, and to expand the sensor 

system to multi-aptamer arrays. Using thin film transfer or other methods for coating the gold 

may also result in a smoother surface to increase the contrast between the substrate and the 

printed material. The use of a polymer substrate for printing could also be investigated, in 

order to better encourage self-assembled monolayers to form. A printed layer of avidin, 

which is shown to form a closely packed self-assembled monolayer (Boujday et al., 2008), 

could be used as a substrate with a biotinylated thrombin aptamer. This study has shown that 

a sensor system with minimally modified DNA aptamers and unmodified protein is feasible 

using height changes and the atomic force microscope. 
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Chapter 3: The use of force spectroscopy to measure thrombin-aptamer 

interaction 
A paper to be submitted to Langmuir 

Janice Marquardt, Pranav Shrotriya, Marit Nilsen-Hamilton 

Abstract 

 As the use of chemical species to form nanostructures becomes ever more common, 

the need to detect binding specificity and strength of these species also increases. The 

strength of binding for a complementary species pair can determine its suitability for certain 

structures or sensor systems. The purpose of this study is to use the force spectroscopy (force 

microscopy) method to measure the force and specificity of the interaction between the anti-

coagulation protein thrombin and the single-stranded DNA thrombin aptamer. This study 

used a 30-nt adenine oligonucleotide (Poly A) and 2 kDa poly(ethylene) glycol (PEG) as 

controls, and the thrombin DNA aptamer and thrombin for the targeted detection pair. The 

thiolated poly A, PEG, and aptamer were printed onto gold, and then repeatedly brought into 

contact with a thrombin-coated atomic force microscope (AFM) tip.  It was shown that the 

binding force of the thrombin-aptamer interaction was 17.8 pN, and there was little or no 

response from the controls. The results from this experiment show that the thrombin-aptamer 

pair has far-reaching applications for biosensors and building nanostructures. 

 

Introduction 

In the development of micro and nanoscale structures and sensors, the forces between 

molecules are a key factor for determining molecule suitability. Low binding forces between 

a selected complementary pair of molecules can result in an instable nanostructure, or a lack 

of sensor sensitivity. DNA aptamers are a chemical species that behave similarly to 

antibodies, and are selected from a random pool to bond to specific proteins (Cullen & 

Greene, 1989). These aptamers have high affinity for their complementary proteins, but 

frequently rely on lesser binding such as physical confirmation or Van der Waals forces to 

bind protein (Cullen & Greene, 1989; Ellington & Szostak, 1990). Shortly after the first 
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aptamers were developed, it became apparent that there was a need to measure the force of 

their interaction to determine suitability to specific applications.  

Nearly fifteen years ago, a method to directly measure binding forces between 

specific complementary chemical species using the atomic force microscope (AFM) was 

discovered and put into practice (Florin, Moy, & Gaub, 1994). This method—coined force 

spectroscopy or force microscopy—has been used to determine the binding specificity and 

force for biotin-avidin (Florin, Moy, & Gaub, 1994), alkanethiols (Oncins, Vericat, & Sanz, 

2008), single-stranded DNA pairs (Strunz, Oroszlan, Schäfer, & Güntherodt, 1999), and 

many other complementary chemical species. Binding forces for these interactions were 

determined to be in the range of 30 to 150 pN (Basnar, Elnathan, & Willner, 2006), which 

verified that many aptamer-protein pairs were suitable for nanostructures or biosensors.  

Biosensors use a variety of methods to detect the prescence of a certain protein, 

including chemical assays, Love-wave sensors (Gronewold, Glass, Quandt, & Famulok, 

2005), charge transfer sensors (Hianik, 2005), or microcantilever sensors (Lavrik, Sepaniak, 

& Datskos, 2004). While chemical assays and charge transfer sensors are not as dependent on 

binding forces for detection, wave sensors and microcantilever sensors require high 

specificity in binding and stable binding forces for detection. The proteins detected using this 

system are found in the bloodstream, and so are normally found in low concentration 

heterogeneous mixtures of many proteins and molecules. One such protein is the coagulation 

protein thrombin, which is instrumental in the synthesis of fibrin from fibrinogen during the 

blood clotting process. 

Thrombin has a wide range of health effects in the human system, from thrombosis 

caused by too much fibrin in the system to hemorrhage sometimes caused by too little fibrin 

in the bloodstream.  Thrombin also has a documented aptamer, which has been shown in 

chemical assays to have high binding specificity (Bode et al., 1989; Tasset, Kubik, & Steiner, 

1997; Tsiang, Gibbs, Griffin, Dunn, & Leung, 1995). These two factors make the thrombin-

aptamer pair both relevant for the study of binding forces and suitable for force spectroscopy. 

In this paper, we study the forces between human thrombin and a 35-nt thrombin 

aptamer using the force spectroscopy method. This force was previously found by Basnar et 
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al. to be about 4.45 pN, and we follow a similar method with some small modifications to 

further demonstrate binding specificity (Basnar, Elnathan, & Willner, 2006).  

Methods 

Unless otherwise noted, all chemicals were purchased from Sigma Aldrich 

(www.sigma.com), and all DNA oligos were purchased from Integrated DNA Technologies 

(www.idtdna.com). 

To functionalize the AFM tip, a carboxyl-coated (COOH) silicon nitride tip was 

purchased from Novascan Technologies, Inc. (www.novascan.com). Tip spring constants 

were calibrated by Novascan to minimize error in calculations. Each experiment used a fresh 

AFM tip, prepared using the following method: First, the probe was incubated in freshly 

prepared 10 mg/mL carbodiimide (EDAC) in double distilled water (ddH2O) for 30 minutes. 

Then the probe was washed twice in phosphate-buffered sodium chloride (PBS, pH 7.3). 

Human thrombin was prepared as 1 mg/mL in PBS and the probe was incubated in the 

thrombin solution for 90 minutes. Last, the probe was washed 3 times for 5 minutes each in 

PBS and 3 times for 5 minutes each in ddH2O. The probe was either used immediately or 

stored for less than 24 hours in ddH2O before use.  

To verify the presence of thrombin on the AFM tip, contact angle measurements were 

made at each point in the preparation process. 500 nL of water was placed on the AFM 

cantilever substrate, and the contact angle was measured by taking a picture of the water 

droplet from the side. After the tip was submerged in the thrombin solution and rinsed, a 

notably more hydrophilic surface indicated that the thrombin was bonded to the AFM tip and 

substrate. 

To coat the substrate with the thiolated thrombin aptamer (5’-thiol-GCC TTA ACT 

GTA GTA CTG GTG AAA TTG CTG CCA TTG GTT GGT GTG GTT GG-3’ (Tasset, 

Kubik, & Steiner, 1997), a 1 mg/mL concentration of the aptamer in binding buffer (20 mM 

Tris-HCl pH 7.4, 140 nM NaCl, 5 mM KCl, 1 mM CaCl2, 5 mM MgCl2, and 5% glycerol v/v 

in ddH2O) was heated to 55°C and then vortexed for 30 seconds. The aptamer solution was 

deposited on a silicon wafer with a 25 nm thick layer of sputter-coated gold for 30 seconds 
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and then the excess liquid was poured off. The sample was rinsed with ddH2O several times 

and grounded with copper tape before being scanned by the AFM. 

To print the thiolated poly A single stranded DNA (5’-AAA AAA AAA AAA AAA 

AAA AAA AAA AAA AAA-thiol-3’), a 1 mg/mL concentration of poly A in binding buffer 

(20 mM Tris-HCl pH 7.4, 140 nM NaCl, 5 mM KCl, 1 mM CaCl2, 5 mM MgCl2, and 5% 

glycerol v/v in ddH2O) was heated to 55°C and then vortexed for 30 seconds. The poly A 

solution was deposited on a silicon wafer with a 25 nm thick layer of sputter-coated gold for 

30 seconds and then the excess liquid was poured off. The sample was rinsed with ddH2O 

several times and grounded with copper tape before being scanned by the AFM. 

To print the thiolated poly(ethylene) glycol (PEG, 2 kDa, purchased from Creative 

PEGworks www.creativepegworks.com), a 1 mg/mL concentration of PEG in ethanol was 

heated to 45°C and vortexed for 30 seconds (Jans et al., 2004). The PEG solution was 

deposited on a silicon wafer with a 25 nm thick layer of sputter-coated gold for 30 seconds 

and then the excess liquid was poured off. The sample was rinsed with ddH2O several times 

and grounded with copper tape before being scanned by the AFM. 

Force curves were performed using a Dimension 3100 atomic force microscope in 

binding buffer (20 mM Tris-HCl pH 7.4, 140 nM NaCl, 5 mM KCl, 1 mM CaCl2, 5 mM 

MgCl2, and 5% glycerol v/v in ddH2O) at 174.4 nm/s (0.872 Hz over 200 nm). For each 

substrate material, 10 samples were taken at each of 6 different locations on the substrate, for 

a total of 60 samples per material.  Only the last binding event for each force curve was used 

for analysis, as that data likely has the fewest binding events. The data was processed using 

the data table export function of the NanoScope offline software version 5.30 and Microsoft 

Excel 2003.  

Results 

 The results confirm high binding specificity between thrombin and the thrombin 

aptamer. Using two different methods, the binding force was calculated to be 17.8 pN and 

106.5 pN. Characteristic force curves for each of the interactions are shown in Figures 9, 10 

and 11.  
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Figure 9: Characteristic thrombin aptamer force curve 
 
 

 
Figure 10: Characteristic non-specific binding (poly A) force curve 
 

 

 
Figure 11: Characteristic non-binding (PEG) force curve 
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The first method uses a contact area calculation to correlate the gathered data to the 

expected number of bound molecules. A Hertz method was used to calculate the contact area 

using the equation: 

 (Johnson, 1985) 

where A is the contact area, R is the tip radius, F is the maximum force, and E* is the 

composite elastic modulus. The tip radius was found by scanning very sharp spikes with the 

AFM to characterize the tip shape. This scan was then programmed in MATLAB to 

determine the tip radius at the point of contact with the surface. Tip radii were found to be 

10.7 nm for the aptamer tip, 13.9 nm for the poly A tip, and 7.9 nm for the PEG tip.  

The composite elastic modulus was found by fitting the force displacement curve to 

the Hertzian contact model. The equation for the force displacement curve during contact is 

given by:  

(Johnson, 1985) 

where δ is the tip deflection and P is the contact force, and E* can be calculated from the 

graph of force versus deflection. An average of twenty data sets was taken to determine E* 

for the monolayer and gold combination. While many researchers use E* for solid gold, we 

found that the E* for the DNA monolayer on gold was significantly lower (~0.2 GPa) and so 

this calculation improves the accuracy and specificity of our calculations. 

 The density of thrombin was calculated based on a dense layer of ~3 nm diameter 

thrombin molecules, for a density of 1.1 x 1013 molecules per square centimeter. A 

theoretical 60% of the monolayer is assumed to account for surface artifacts, resulting in 6.6 

x 1012 thrombin molecules per square centimeter. The surface coverage of the thiolated 

thrombin aptamer was determined with microgravimetric measurments to be 6 x 1012 

molecules per square centimeter (Basnar, Elnathan, & Willner, 2006). Based on a chemical 

assay conducted using a thrombin aptamer of similar length in a similar binding buffer 

solution, a binding rate of 27% was used for all calculations (Mokhtarian, 2004). 
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 The contact area calculated with the Hertz contact method was then expanded to 

include all interactions where the tip and substrate were within 4.4 nm of contact. This is 

because AFM height measurements showed that the aptamer monolayer has a thickness of 

1.9 nm, and the protein monolayer has a thickness of 2.5 nm (see Chapter 2). A calculated 

average of 5.15 molecules were in contact for each binding event, for a calculated force of 

106.5 pN per thrombin-aptamer bond. This number was derived from the previously 

described contact mechanics methods. 

 Histograms of the thrombin aptamer and poly A substrate experiments are shown in 

Figures 12 and 13, 

respectively.  A bin size of 

four was used because it is 

sufficiently low to avoid 

sampling above the Nyquist 

frequency, and sufficiently 

high to show a trend. It can 

be seen from the histograms 

that the non-specific 

binding does not show a 

regular trend, so no further 

analysis was done on the 

non-specific binding data. 

The non-binding data did 

not even show meniscus or 

Van der Waals forces due 

to the repellant nature of 

PEG and protein, so there 

was insufficient data to 

generate a histogram. 
 

Figure 12: aptamer histogram and autocorrelation function 
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Figure 13: Poly A histogram 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: Force Spectroscopy Fourier Analysis. Arrows denote force quantum locations. 
 

 After subjecting the data to a smoothing function (Marchand & Marmet, 1983), an 

autocorrelation function was applied to the aptamer data (see Figure 12) to determine the 

force quantum of the data. Multiple frequencies appeared in the autocorrelation function, so a 

Fourier analysis was applied (see Figure 14) to find a force quantum of 17.8 pN. This 

quantum was similar across the data, regardless of bin size used in the analysis. 
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 The peaks seen in the histogram were also graphed linearly with respect to the 

number of binding events (see Figure 15). The slope of this line is 17.7 pN per binding event 

with a coefficient of determination (R2) of 0.997, which correlates well with the Fourier 

analysis.  

 
Figure 15: Linear regression of the specific binding adhesion force peaks 

Discussion 

 This experiment showed a difference from the work of Basnar et al., who showed a 

bond strength of 4.5 pN for 

the same aptamer-protein 

complementary pair (Basnar, 

Elnathan, & Willner, 2006). 

While there may be many 

causes for this discrepancy, 

we hypothesize that it is due 

to differences in the 

assumptions made for each 

experiment.  
 Figure 16: Aptamer AFM tip characterization 
 The nominal tip radius of 30 nm was found through tip characterization to be 10.7 nm 

for the aptamer data (see Figure 16). This resulted in far fewer bonds per interaction and so 

increased the calculated force. The calculated value for E* for the monolayers is much lower 

than that of gold, which showed that contact mechanics methods cannot be neglected. A 
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simple geometric interpretation of the contact does not account for the deformation of the 

monolayers. The histogram bin size can also have a large impact on force data analysis. The 

autocorrelation function and Fourier analysis reduce the error due to bin size, and the data 

was also calculated for a range of bin sizes to determine trends independent of bin size. The 

scale of the histogram of the previous experiment has a maximum measured force of 100 pN, 

while this experiment has a scale of nearly 1000 pN. Previous force spectroscopy 

experiments are on the scale of 1000 pN (Florin, Moy, & Gaub, 1994). Non-specific binding 

forces for this experiment were on the range of 200 pN. The prior research also determines a 

60% binding rate, which is quite high for this interaction. Chemical assays show a binding 

rate of closer to 27.5% (Mokhtarian, 2004). 

 In reconciling the differences between the contact mechanics model and the Fourier 

analysis, there are several possibilities for the discrepancy in the calculated forces. The 

contact mechanics value of 106.5 pN per bond is based on a Hertzian contact model with the 

added radius from interactions less than 4.4 nm apart. This measurement was determined 

experimentally, but it is difficult to find the true separation of tip and substrate where 

bonding occurs. This calculation is also highly dependent on the concentration of aptamers 

on the surface, which was determined by others through microgravimetric measurements to 

be 6 x 1012 molecules per square centimeter (Basnar, Elnathan, & Willner, 2006). Small 

changes in the concentration yield large changes in the calculated adhesion force. It is also 

notable that 106.5 pN is very near the sixth force quantum of 17.8 pN (106.8 pN).  

 Future work for characterizing the thrombin-aptamer bond forces could investigate 

the effects of changing variables on the calculated forces. Research has shown that the pull-

off speed in force spectroscopy experiments can affect the measured forces by as much as 

10-fold (Taubenberger et al., 2007). Further investigation into the physical properties of the 

thrombin and thrombin aptamer monolayers would also yield greater accuracy in the 

calculations of adhesion forces using contact mechanics methods. This experiment reinforced 

the specificity of the thrombin-aptamer binding complex, and has increased the depth of 

analysis initially conducted by Basnar et al (Basnar, Elnathan, & Willner, 2006). 



 29 
Chapter 4: General Conclusions 

General Discussion 

 Through investigation of the interactions between the thrombin aptamer (Tasset, 

Kubik, & Steiner, 1997) and the blood coagulation protein thrombin, it has been shown that 

there is sufficiently high binding force and specificity between these chemical species for 

their use in nanoscale manufacturing and biosensors. The proof-of-concept sensor system 

using a microcontact printing array has shown that the atomic force microscope can be used 

with minimally modified aptamer-protein complexes to detect binding specificity.  

Recommendations for Future Work 

 Future work for the microcontact sensor will be to decrease noise in the system 

further, and to expand the sensor system to multi-aptamer arrays. An array printed of several 

different aptamers would further demonstrate specificity and improve speed of identification. 

It could also detect secondary, less specific aptamers with lower binding forces.  

Using thin film transfer or other methods for coating the gold may also result in a 

smoother surface to increase the contrast between the substrate and the printed material. The 

use of a polymer substrate for printing could also be investigated, in order to better encourage 

self-assembled monolayers to form. A printed layer of avidin or another chemical species 

could be used as a substrate with a biotinylated thrombin aptamer. While mica and glass are 

possibilities for fluorescent sensors, they could also be investigated as height change sensor 

substrates to increase the flexibility of the system.  

Future work for the aptamer-thrombin forces should evaluate the effects of retraction 

speed on the measured force. Previous work has shown that different retract speeds during 

pull-off can change force measurements by as much as 10-fold (Taubenberger et al., 2007). 

Further investigation into the physical properties of the thrombin and thrombin aptamer 

monolayers such as their thicknesses and moduli of elasticity would also yield greater 

accuracy in the calculations of adhesion forces using contact mechanics methods. 
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Appendix A: Poly(ethylene) Glycol Superstructure 

In conducting the force spectroscopy experiment, a notable pattern was observed with 

the atomic force microscope (AFM) on the poly(ethylene) glycol (PEG) surface (See Figure 

17). While superstructures of PEG which look similar to those seen in Figure 17 have been 

seen (Rathore & Sogah, 2001), this structure was much larger than previously documented. 

 
Figure 17: PEG superstructure surface 

 

The diagonal pattern that formed would suggest at least one very dense monolayer, 

with other layers possibly building on the base monolayer. It is unlikely that this structure is 

the result of a scanning artifact, as other scans of other materials and shapes conducted that 

day with that same tip did not show the same patterns. Assuming the results seen in Figure 17 

are repeatable, the superstructure seen here may be worthy of further investigation.  
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Appendix B: Force Spectroscopy Aptamer Data 
The data shown is for the last pull-off event in each force curve. The bond force is calculated 

based on the proportion of the last event as part of the total pull-off event.  
Point # File # Lower Point (nN) Higher Point (nN) Event Force (pN) Proportion of total pull-off Calculated bond force (pN)

2 38 -0.9845 -0.9090 75.5000 0.1823 83.2561

3 39 -0.8404 -0.5702 270.2000 1.0000 54.1391

4 40 -0.5873 -0.2973 290.0000 1.0000 57.9714

5 41 -0.6141 -0.4265 187.6000 1.0000 37.5529

7 42 -1.116 -0.9065 209.5000 0.4320 96.8000

9 43 -0.9138 -0.8432 70.6000 0.2100 67.0178

10 44 -0.7774 -0.4947 282.7000 1.0000 56.3357

11 45 -0.8871 -0.4825 404.6000 1.0000 80.7198

13 46 -0.7945 -0.6945 100.0000 0.3230 61.7028

15 47 -0.4606 -0.4069 53.7000 0.1385 77.4248

16 49 -1.123 -0.5166 606.4000 1.0000 118.1650

17 50 -1.106 -0.2534 852.6000 1.0000 167.7787

18 51 -1.309 -0.5020 807.0000 1.0000 158.6362

21 52 0.151 0.1754 24.4000 0.0254 189.8600

23 53 -0.129 0.1048 233.8000 0.3297 139.9347

24 54 -0.9797 -0.1048 874.9000 1.0000 172.8921

26 55 -0.307 -0.2485 58.5000 0.0636 181.5975

28 56 -0.4094 -0.3533 56.1000 0.0432 256.1429

31 57 -0.551 -0.4581 92.9000 0.1020 179.5706

32 58 -1.355 -0.5386 816.4000 1.0000 160.7011

33 59 -1.421 -0.5191 901.9000 1.0000 177.3252

35 60 -0.6629 -0.5824 80.5000 0.1365 118.0356

36 62 -0.5922 -0.4143 177.9000 1.0000 37.1746

40 63 -0.9456 -0.8724 73.2000 0.1267 121.5237

42 64 -0.9748 -0.8798 95.0000 0.2334 85.3748

43 65 -1.172 -0.3631 808.9000 1.0000 168.0945

45 66 -0.4362 -0.3265 109.7000 0.3062 74.8615

46 67 -0.4947 -0.3729 121.8000 1.0000 25.5189

47 68 -1.5743 -1.0550 519.3000 1.0000 97.1337

48 69 -1.8106 -1.2233 587.3000 1.0000 112.0751

50 70 -1.3818 -1.2258 156.0000 0.2667 111.3911

52 71 -1.238 -1.1746 63.4000 0.1066 113.0832

53 72 -1.685 -1.1380 547.0000 1.0000 104.3590

55 73 -1.679 -1.1868 492.2000 0.4988 187.8799

56 74 -1.3647 -0.8066 558.1000 1.0000 107.0348

57 75 -1.1161 -0.4655 650.6000 1.0000 124.7434

58 76 -1.551 -0.6312 919.8000 1.0000 175.4016

59 77 -0.9602 -0.3339 626.3000 1.0000 119.3035

60 78 -0.8042 -0.1901 614.1000 1.0000 116.7161

62 79 -0.909 -0.6385 270.5000 0.3172 161.1619

63 80 -0.7896 -0.3534 436.2000 1.0000 82.0777

64 81 -1.2209 -0.6507 570.2000 1.0000 107.3647

65 82 -1.2697 -0.7189 550.8000 1.0000 103.7787

67 85 -0.8042 -0.6994 104.8000 0.1920 103.6711

69 86 -0.8919 -0.7189 173.0000 0.3737 88.0263

72 87 -0.8944 -0.7579 136.5000 0.1965 132.5081

75 88 -1.172 -1.0480 124.0000 0.1621 146.0389

76 89 -1.233 -0.9821 250.9000 1.0000 47.4466

77 90 -1.121 -0.8749 246.1000 1.0000 47.0683

79 91 -0.9358 -0.7335 202.3000 0.4511 86.0661

82 93 -1.439 -1.3355 103.5000 0.2597 77.5675

83 94 -1.043 -0.6287 414.3000 1.0000 79.5100

84 95 -1.043 -0.6361 406.9000 1.0000 77.9128

85 96 -1.2599 -0.7457 514.2000 1.0000 98.5082

88 97 -1.0966 -0.9284 168.2000 0.2937 110.1152

90 98 -1.3379 -1.1990 138.9000 0.3064 87.1500

91 99 -1.1698 -0.7798 390.0000 1.0000 74.7271

92 100 -0.8698 -0.6774 192.4000 1.0000 36.9025

95 101 -1.489 -1.3525 136.5000 0.2467 105.3699

97 102 -0.9187 -0.7798 138.9000 0.3117 85.2519

100 103 -1.1113 -0.9139 197.4000 0.2219 171.1152

102 104 -0.9529 -0.7335 219.4000 0.3273 128.2633

103 105 -1.431 -0.7019 729.1000 1.0000 138.8858

105 106 -0.9894 -0.6799 309.5000 0.4847 122.0163

106 107 -0.9772 -0.4800 497.2000 1.0000 95.4117

108 108 -1.314 -1.2234 90.6000 0.4415 39.2198

109 109 -1.3257 -0.8066 519.1000 1.0000 99.3886

110 110 -1.5329 -1.0503 482.6000 1.0000 91.8419

113 111 -0.8919 -0.7847 107.2000 0.1448 140.7354

115 112 -0.9577 -0.8140 143.7400 0.1661 164.3998

117 113 -0.9139 -0.8213 92.6000 0.2695 65.3101

119 114 -0.9943 -0.8505 143.8000 0.2151 126.8418

120 115 -1.1039 -0.8724 231.5000 1.0000 44.1630

122 116 -1.235 -0.9943 240.7100 0.3445 133.2679

123 117 -1.6937 -0.9626 731.1000 1.0000 139.5279

124 118 -2.437 -1.7595 677.5000 1.0000 129.4692

125 119 -1.3842 -1.0966 287.6000 1.0000 55.2276

128 122 -0.9212 -0.8432 78.0000 0.1270 117.2277

129 123 -0.9626 -0.8335 129.1000 1.0000 24.7594

132 124 -1.106 -0.9456 160.4000 0.2485 123.9856

134 125 -0.9261 -0.8261 100.0000 0.2869 66.9693

136 126 -1.216059 -1.2101 5.9590 0.0185 61.9473

137 128 -0.9967 -0.7725 224.2000 1.0000 43.2116
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