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ABSTRACT

A new method of evaluating tillage tools using computational fluid dynamics is

proposed.  Steady-state CFD only and transient two-way fluid-structure interaction

simulations were run to predict draft and vertical forces on a spring-reset field cultivator

standard.  Using CFD the soil was treated as a visco-plastic fluid using the Bingham-plastic

material  model.   Lab  tests  were  run  using  a  rigid  flat  steel  bar  and  a  production  field

cultivator standard with 178 and 254 mm sweeps for comparison.  The results indicate that

the method can be used to reasonably predict the draft force to within three standard

deviations of the average measured draft.  The method was successfully used to determine

which sweep size created the higher draft forces.  The method also was able to predict the

areas  on  the  tool  with  the  highest  pressure  related  to  the  locations  that  exhibit  the  highest

wear.  Soil parameters were measured using a standard technique, but modified values were

needed to get good agreement between measured and calculated forces.  An alternate method

of  measuring  soil  properties  using  a  flat  steel  bar  was  therefore  proposed.   Further  work  is

needed to determine if the modified soil properties were correct, requiring the new soil

property measurement technique, or if the CFD method needs to be modified.
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1. INTRODUCTION

Currently, ground engaging tillage tools are developed by constructing parts and

running physical tests either in a soil bin or in the field.  Based on the results changes are

made and new parts are constructed and retested.  Design options are limited by the cost

required  to  construct  the  parts  and  the  time required  to  run  tests.   A new method of  using

computational fluid dynamics (CFD) to simulate ground engaging tools in soil is proposed.

If successful, using CFD approach to design ground engaging tillage tools could reduce the

time and cost required.

Throughout the history of farming various tools and machines have been developed to

improve the effectiveness and speed of conditioning soil for improved crop growth.  One

important factor in evaluating these tools is the amount of power required to pull the tool, or

implement, through the soil.  The power requirement effects the size of tractor needed, the

speed, and depth at which the tool can operated.

A common type of tool used to condition soil is a standard as shown in Figure 1.1.

There are several types of standards based on the soil depth that they operate at and the type

of soil conditions they are made for.  Most agricultural implements have several standards

mounted across the width of the machine.  Each standard is typically made up of a rigid steel

bar, referred to as the shank, which mounts to the frame of the implement and hangs below

the  frame  with  a  steel  blade  mounted  at  the  end  that  is  pulled  through  the  soil.   Common

blade types are sweep, point, and shovel and are designed to penetrate and breakup the soil.

Modern day standards have spring reset mechanisms so that the sweep and shank can rotate

up and over obstacles, such as large rocks, but reset back into the ground after clearing the

obstacle.  Spring reset standards are used on a number of different types of tillage tools

including: field cultivators, chisel plows, mulch finishers, disc-rippers, mulch rippers, and

mulch tillers.
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Figure 1.1: Field cultivator spring reset standard

Consider the example of a field cultivator sweep from Figure 1.1 which will be

studied in this dissertation.  The work done by the sweep creates forces that are carried

through the standard and into the implement frame.  The forces can be divided into three

components as illustrated in Figure 1.2.  The force in the fore-aft direction is commonly

referred to as the draft force.  The vertical force is the amount of force the standard sucks into

the ground or pushes up.  The lateral force is the side-to-side force.  These forces tend to be

cyclic in nature and fatigue the implement frame.  The sum of the forces from each

individual standard is the total load on the hitch of the implement that connects the

implement to the tractor.

Typically, tillage tools are developed by evolution rather than revolution.  That is,

current tool shapes are modified or created using welded steel plates and tested in the field or

the lab.  This method limits both the number and types of designs that can be evaluated due

to the time and cost required.  Although the shape of the tool may be modeled in three-

dimensions on a computer, test parts must still be made and physically tested.
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Figure 1.2: Free body diagram of field cultivator sweep and shank

 Investigations have been made over a century in developing methods of measuring

draft forces in lab and field conditions.  John J. Thomas in 1869 described the principles of

farm implements and the effect of draft for plows and cultivators (Thomas, 1869).  A number

of authors have investigated analytical methods of predicting the forces on tillage tools based

on soil mechanics.  More recently work has been done on developing numerical models for

predicting draft loads based on laboratory or field test results.  The latest work in this field is

computer based simulations to predict static draft loads.  Computer simulations may also be

used to predict the amount of soil disturbance and the resulting trough or furrow.  However,

no known work has been done on predicting loads on production tillage tools using

computational fluid dynamics and there is also no known work on predicting dynamic loads

on spring reset tillage tools.

The benefit of predicting loads on tillage tools using computer simulations is that any

number of tillage tool geometries can be evaluated in various types of soil conditions without

the expense and time of building working prototypes.  Currently, it can take several days to

manufacture a rough weldment or weeks to order rapid prototype forgings or castings.  In

addition, testing in a soil bin can take several days to complete if different moisture levels are

considered.  In contrast, steady-state simulations can be completed in hours.  Transient
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analysis can be more time consuming and depending upon the size of the models could take

days  or  weeks  to  run.   Besides  predicting  the  amount  of  power  necessary  to  pull  an

implement with a known number of standards, being able to predict the dynamics of the

loading can be used in predicting fatigue lives of the standards and the frame that the

standards attach to.  This is the reasoning behind the research presented here.

The approach taken for this research is to use a combination of finite element analysis

(FEA) with computational fluid dynamics (CFD) to model the soil tool interaction of a spring

reset field cultivator standard.  The FEA model contains the structural components of the tool

and the CFD domain represents the soil and in particular as a visco-elastic Bingham plastic.

The Bingham plastic material model was chosen for several reasons.  The literature

review showed that this model has been previously applied to soils.  The model requires just

two parameters, shear strength and viscosity.  It was a desire of this research to use a material

model that could be used with actual field soil conditions that could be obtained in-situ.  As a

part of this research a portable soil viscometer was constructed to measure the two material

properties  necessary  for  the  model.   The  viscometer  can  be  used  in  a  soil  bin  or  out  in  the

field.  The only other property necessary for the CFD model was density.  However, the soil

viscometer was developed for civil engineering purposes for use with static structures.  As an

addition to this research, a proposal for a more dynamic method of soil property

measurement is included.

1.1 Benefits of Using FEA-CFD
One of the biggest weaknesses of using just FEA to simulate a tool moving through

soil is modeling the domain.  In the FEA model the entire length of soil mass that the tool

will travel through during the simulation must be modeled.  Considering a simulation running

at 16.09 kph (10 mph) would require a domain 4.47 meters long for a one second run time.

This could be prohibitively large if a somewhat refined mesh is used.  Using CFD for the soil

domain reduces the model to a window around the tool of interest.  An analogy would be that

using FEA would be like watching the tool pass by while standing in the field while using

CFD would be like riding with the tool as it travels through the field.

Another  benefit  of  using  CFD  for  the  soil  domain  is  that  the  number  of  inputs

required to characterize the soil is simplified to density, yield strength, and viscosity.  Using
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FEA requires that a more complicated material model with possibly a detailed stress versus

strain curve with failure criteria be defined.  To simulate soil failure once an element has

reached the failure limit for stress or strain then that element is deleted and thus separating

the mass.  This can increase the sensitivity to mesh size and be computationally expensive.

Using FEA to model the spring reset standard allows the deflection of the standard to

be simulated in a way that would not be easily replicated in just a CFD analysis.  In CFD it is

possible to develop equations that will replicate the movement of the mesh based on the

resulting pressures but it is much more difficult to accomplish.  This joint simulation is made

possible by the ANSYS Workbench software package that supports the two-way interaction

between the ANSYS FEA solver and the CFX CFD solver.

1.2 Detriments to Using FEA-CFD
One detriment to using CFD to model the soil domain is that the momentum of the

tool is not included in the analysis.  As shown in laboratory testing, as a tool disturbs the soil

the forward momentum of the tool causes the soil to move in the same direction as the tool

until the particle is tossed to the side and the tool passes by.  In the CFD analysis the tool has

no momentum because the tool is stationary and the soil flows around the tool.

Consequently,  the soil  tends to build up in front of the tool rather than rolling forward and

falling to the side.  The repercussions of this will be discussed later.

Obviously using two codes rather than just one software package for the simulation

introduces more chances for problems to arise.  Care must be taken in setting up the models

and defining the interfaces that the pressure and displacement data is transferred across.  A

finer detail is that the builds (build date/release level) of the ANSYS and CFX software must

be the same for the two codes to interact.

1.3 Literature Review
For more than a century work has been done to understand the physics behind tillage

operations.  John J. Thomas wrote a book in 1869 describing how tillage equipment of the

time  worked  and  the  effects  of  the  ground  forces  on  the  implement  (Thomas,  1869).   His

work was mostly based on observation and qualitative in nature.  As the understanding of soil

failure and soil-tool interaction has increased so has the level of detail in the analysis.
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Some of the earliest developments in understanding soil failure were developed by

Coulomb in 1776.  He surmised that the shear strength of soil was made up of two

components: cohesion and friction.  Cohesion is the shear strength or bonding strength of the

soil independent of any external applied pressure.  Friction is the shear strength component

that is relative to the applied pressure.  Coulomb’s law of soil shear strength is

tannC , (1.1)

where:  = soil shear strength at failure

C  = cohesion

n = normal stress on the failure plane

 = angle of internal friction

From  the  Coulomb’s  law  of  soil  shear  strength,  various  methods  of  evaluating  the

force of the soil acting on a wall or cutting tool have been developed.  The basis for these

formulations started out from infinite smooth vertical walls retaining a soil mass, such as a

retaining wall.  Coulomb developed one of the earliest such methods of calculating the soil

force.  He based his method on the idea that the weakest failure plane would most likely be

the failure surface.  Then he calculated the failure surface based on the internal friction,

cohesion strength, and soil weight.  The graphical representation of this development is

shown in Figure 1.3.  The resulting equation is

2
1

2

sin1
sin12

sin1
sin1

2
1 CzzP (1.2)

where: P  = force of the soil acting on the wall

 = soil specific weight

z  = depth or height of the soil mass

C  = cohesion

 = angle of internal friction
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Figure 1.3: Representation of Coulomb’s soil force development

The methodology developed by Coulomb has been applied to certain types of soil-

tool interactions.  These included wide tools such as bulldozer blades and plows where edge

effects are small compared to the forces on the face of the tool because the width of the tools

is large compared to the height.  However, there are many types of tillage tools that do not

satisfy the geometry assumptions.

Mohr, in 1882, showed that it is possible to show the two dimensional stress state on

the failure plane even with known stress values that are not on the failure plane.  The stresses

on the failure plane can be determined by creating a graph of Mohr’s circle with the values of

cohesion  and  the  principal  stresses.   The  graph  could  also  be  used  to  calculate  the  internal

friction angle of the soil and the angle of the failure plane.  Figure 1.4 shows an example of

the stress state on a triaxial soil sample and the corresponding Mohr’s circle of the stress

state.

Figure 1.4: Mohr’s circle of stresses for soil in failure
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Prandtl developed an equation for determining the bearing capacity of smooth

shallow footings.  Directly below the footing is an active Rankine soil failure zone that

moves downward and to the sides are passive failure zones that move up.  Between the active

and passive failure zones are radial shear zones.  Prandtl surmised that if the weight of the

soil were assumed to be negligible compared to the forces resulting from soil cohesion along

the radial shear zone then the shape of the radial shear zone surface would be a log spiral

(McKyes, 1989).

Combining the theories of Coulomb and Prandtl resulted in a two-dimensional model

for calculating soil forces on tillage tools.  The two failure zones in front of the tool have a

surface shaped by the logarithmic spiral curve as mentioned before.  Calculating the soil

forces on the failure boundaries of the two zones and adding in the body forces can be used

to calculate the force components on a tillage tool.  Based on this theory, Reece developed a

force equation for the total force on the tool (Shen and Kushwaha, 1998).  Figure 1.5

illustrates the model and failure surface.

Figure 1.5: 2-d soil-tool model with logarithmic spiral failure zone

In 1956, Payne ran tests with flat steel blades of various height to width ratios and in

several soil types and proved the necessity of specialized methods for narrow tools.  For most

tillage tool applications, these two dimensional based methods are not accurate where the

tool width to depth ratio is less than ten.  Payne also showed that the distance from the tool to
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the forward failure plane changed with the tool width to depth ratio (McKyes, 1989).  Based

on his observations, Payne developed a three-dimensional model for predicting the draft and

vertical forces on narrow tools with a width to depth ratio less than one.  In developing his

equations, he broke up the soil failure mass into three regions.  Further experiments showed

that the shape of the soil failure mass changed with the change in the shape of the tool.

Others have developed their equations to address this shortcoming of Payne’s equations.

Observations in the field have given way to lab experiments in controlled conditions

that allowed for repetition.  Soil bins were created in laboratories so that various soil

parameters could be controlled to determine the effect on tillage tools.  Willatt and Willis

studied the effect of soil compaction and buildup on simple tines (Willatt and Willis, 1965).

Others  used  grids  of  chalk  drawn onto  the  soil  to  observe  how soil  breaks  as  a  tool  passes

through.  From these observations more tillage specific analytical models were developed to

predict the stresses in the soil and the forces created on simple tool shapes.  For example,

Koolen and Kuipers developed various equations for predicting the draft of a plough as a

function of soil moisture or speed (Koolen and Kuipers, 1983).

Stafford (1981) looked at the application of critical state soil mechanics as they apply

to rigid tines.  He performed laboratory experiments using narrow tines 40 mm wide and

operating at 150 mm depth in a soil bin.  A sandy loam and clay soil types were considered.

He observed both the soil failure pattern on the surface and the draught force versus time for

varying speeds, moisture levels, and rake angles.  Two failure modes were observed, brittle

and flow.  He noted that flow failure was observed at higher speeds (5 m/s) for all moisture

levels tested.  The results lead to the idea of a failure coefficient or index, F, which is defined

such that below the value soils would fail in brittle mode and above the index value soils

would fail in flow mode.

Trying to predict the dynamics of soil-tool interaction have not received nearly the

attention of predicting average draught forces.  However, one such analysis was conducted

by  Upadhyaya  et.  al  (1987).   They  used  Fast  Fourier  transform  and  harmonic  analysis

techniques to understand and predict the dynamic loading of tillage tool draft.  They found

that the dominant frequency was tied to the soil-fracture mode.  For their studies, they used a

rigid flat bar operating at 50 mm depth.  First they ran tests at two speeds and in two soils.
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They were able to predict the force/time response based on the FFT results and the equation

that was developed from their test data.  The calculated dominant frequencies 7.75 Hz for

Soil1A and 9.43 Hz for Soil2 at 0.22 m/s and 31.25 Hz for Soil1A and 19.86 Hz for Soil2 at

1.11 m/s.  They also ran four additional tool systems to see the impact on the load frequency

and the resulting draught forces.  These included a sprung rigid tool, a tuned stiffness rigid

tool, sinusoidal oscillation of a non-rigid tool, and non-sinusoidal oscillation of a rigid tool.

They concluded that for many cases the load does vary in a periodic mode and at extremes

the load could vary by +/- 50 percent of the mean draft value.

Glancey et. al (1989) looked at the dynamic loading characteristics of a chisel in tilled

and untilled field conditions.  They conducted tests in field conditions at operating depths of

100 and 200 mm.  The operating speed varied between 0.8 and 3.2 km/h.  The resulting

measured load frequencies ranged from 0.81 Hz up to 11.15 Hz.  The higher frequencies

matched up with the higher operating speed but were not directly related to operating depth.

The distance from the tool face to the fracture surface was inversely proportional to speed.

The slower speeds created the largest distance to the fracture surface.  A modal analysis of

the chisel showed a first vibration of approximately 55 Hz indicating that the measured

frequencies of the loading were due to the soil failure.

Most of the two and three-dimensional models were based on wide tools and were not

valid for narrow tillage tools, as found by Payne.  Also, these models did not account for the

dynamic effects at speeds which are common to tillage practice.  So Swick and Perumpral

(1988) set out to update the quasi static equation previously developed by Perumpral et. al to

account for the shear rate effect and friction at the soil-tool interface and apply it to narrow

tillage tools.  They developed a three step procedure for tines and tested it in a soil bin.  First,

they conducted laboratory tests to determine the relationship of shear rate on shear strength

and the soil-tool friction values.  Second, they modified the classical “slow moving” soil

force equation to account for shear rate effects and the force of accelerating the soil mass.

Third, the resulting equation was verified by running additional comparison tests in a soil

bin.  The soil failure mass accounted for the edge regions and broke the mass into a center

wedge and two circular side wedges.  Their analysis included four tool widths operating at

51, 102, and 152 mm of depth.  Their model gave results for the narrow tools considered.
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More advanced soil models have been developed for geotechnical purposes and even

implemented into commercial finite element packages.  These are used mostly for static

analysis for slope stability and foundations.  One example is the CAM Clay model developed

by the Geotechnical Group at Cambridge University in 1958.  This model is based on critical

state soil mechanics, which basically says that “a soil is said to be in critical state when it

undergoes large shear deformations at constant volume and constant shear and normal

effective stress” (Karmakar, Sharma, Kushwaha, 2004).  Rather than defining the failure

stress state with Mohr’s circle, a three-dimensional stress state is developed with the critical

state line (CSL) passing through it.  Many variations of the basic Cam Clay model have been

developed over the years.  These models account for the stress history and any resulting

softening or hardening of the soil.  The model also takes into account the initial void ratio,

compressibility, and swelling.  The basic Cam-Clay model uses five parameters which are

determined  with  various  lab  tests  including  triaxial  and  oedometer  (PLAXIS  V.  8).   Other

advanced models that include hardening and softening can use from five to fifteen

parameters.

Wheeler and Godwin (1996) experimentally developed equations to predict the

draught forces for single and multiple tines at speeds up to 20 km/h.  Using previously

developed equations by Godwin et. all for horizontal and vertical forces they created an

additional equation that took into account both the number of tines and the spacing.  The

predictions were tested in both the lab, with a frictional soil, and in the field, with a cohesive

soil.   They were able to get good correlation for horizontal  and vertical  forces for both soil

types.  They also confirmed findings by Schuring and Emori that below a critical speed,

inertial effects are negligible.

Using a glass sided soil bin, Fielke (1996) looked at the effect of the tillage tool

cutting edge on the soil.  In his experiments he used a 400 mm wide experimental sweep and

varied the sharpness or bluntness of the leading edge and the effect on draught and soil

fracture.  He also compared the results with field results taken in two soil types (sandy loam

and  clay  loam).   The  soil  bin  soil  was  prepared  with  a  white  grid  that  was  visible  from

outside  and  the  displacements  of  the  soil  were  video  recorded  as  the  sweep  was  moved
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through the soil.  He found that the shape of the leading edge of the tillage tool had a strong

effect on the measured draught forces.

Along the way various tools have been developed in the geotechnical community to

measure and characterize the strength of soil.  Such tools include the cone penetrometer and

rotary shear vane.  The cone penetrometer was developed to measure the level of compaction

present in soil as a function of stress.  The rotary shear vane was developed to measure the

shear strength of soil.  Both of these tools have been used extensively in laboratory and in-

situ or field conditions.

Using a standard tine to predict the loads on tillage tools was proposed by Desbiolles

et.al (1997).  They investigated an approach where the tillage forces could be predicted based

on  two  factors  relating  to  soil  strength  and  the  tool  geometry.   The  first  step  involved

establishing relationships between a standard tine and various tool geometries under

controlled  soil  conditions,  such  as  in  a  soil  bin.   Five  different  tool  types  were  considered

including two subsoilers, chisel tine, disc, and mouldboard plow.  The second step involved

measuring the forces on the standard tine in a variety of field conditions.  Collecting data

with the standard tine in four soil conditions, they were able to predict the draught to within

an average of 18 percent of the measured force.

Predicting tillage forces based on cone penetrometer readings was proposed by

Desbiolles et. al (1999).  In their research they compared the relationship between the cone

penetration energy (Pe)  and  the  soil  strength  factor  (S).   They  collected  cone  penetrometer

data  in  sandy-loam  and  clay  soils.   Draught  data  was  collected  for  a  70mm  wide  standard

tine.  Using a regression analysis of the data, they were able to develop equations for sandy

and clay soils as a function of soil type, geometry, tool width, working depth, and

penetrometer energy.

One of the interesting observations made about soil at failure is that the soil appears

to “flow”, as stated by Stafford and others.  More clearly stated, prior to failure soil acts as a

solid,  however,  once  failure  has  been  reached  soil  can  act  more  like  a  fluid.   Several

investigations into this phenomenon have been made and have lead to comparing soil to a

viscous fluid.  Some viscosity models have been examined and include linear, power law,

and hyperbolic sign function (Keedwell, 1984).  Because of the solid/fluid dual nature the
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Bingham Plastic model has been considered to model the non-Newtonian visco-plastic nature

(Vyalov, 1986).  Figure 1.6 graphically shows the visco-plasticity model.  This model

describes the shear stress as a function of the yield strength, viscosity, and shear rate.

Figure 1.6: Bingham Plastic model

Two equations describe the two curves representing the Bingham plastic model.  The

first equation defines the value of shear stress as a function of yield and shear rate.  The

second equation defines the conditions for the shear rate for use in the first equation.  The

equations are:

Y  when Y (1.3)

0  when Y (1.4)

where:    = shear stress (Pa),

 = shear rate (s-1),

Y = yield strength (Pa),

 = plastic viscosity (Pa-s),

The advantage of this material model is its simplicity since only two parameters are

required.  In addition, these parameters can be easily obtained using a rotary shear vane.  Soil

parameters can be measured in the lab or in the field.

Zhixiong, Yaohua, and Junzheng (2001) looked at the stress strain behavior of clay

and sandy soils under explosive loading to determine the soil mechanical properties.  Soil
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samples were prepared in a soil pit with a steel plate set on top.  An explosive of ammonium

nitrate fuel oil was detonated on top of the plate to create a one-dimensional stress wave.  In

their experiments they used piezoelectric crystal gauges buried at three depths to measure the

soil stress.  From the measured response they used a Lagrangian analysis method to develop

a stress-depth-time surface.  They concluded that both soil types exhibited fluid elastoplastic

behavior from 0 to 20 cm in depth and viscoplastic behavior from 20 to 60 cm.

Jayasuriya and Salokhe (2001) reviewed the soil-tine models available at the time to

organize the different approaches and determine what work need to be done.  They

considered eighteen different published works dating from 1952 to 1998 dealing with soil

failure.  The models covered a large range of tool types, soil types, and failure types.  The

models were organized into two groups: those that did not consider dynamic effects and

those that did.  They reviewed fourteen tillage force prediction models that did not account

for dynamic effects and ten models that  did account for dynamic effects.   From their  study

they concluded that “the feasibility of applying theories in the area of laminar fluid flow

mechanics to the behavior of wet clay under tool motion could be studied.”  They thought

that frictional-cohesive and partially saturated soil could be modeled as turbulent flow.

In addition to analytical models, numerical models have also been investigated.

These have made use of finite element analysis (FEA) to predict static states of stress in the

soil and the forces on simple tool shapes.  Various elastic constitutive models have been

investigated such as linear, nonlinear (bilinear and multi-linear), hyperbolic, and rate

dependant.  Plastic models have also been investigated including rigid, perfectly plastic and

elastic-plastic.  Properties for soil were measured using triaxial tests such as modulus of

elasticity, Poisson’s Ratio, and stress/strain curves.

Shen and Kushwaha (1993) compared two and three-dimensional FEA models to soil

bin results and looked at how the simulation time might be reduced.  For the soil, they used a

hyperbolic stress-strain model.  The model was of a rigid flat bar 50 mm wide and operating

at  100  mm  depth.   The  3-D  model  was  half-symmetry.   They  created  a  FORTRAN  based

program and compared the run time results with a commercial code.  Their results showed

that although 2-D plane strain or plane stress models ran considerably faster, the 3-D model

provided the most accurate results.
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Shen and Kushwaha (1998) followed up their work with a book investigating various

aspects of using FEA for soil-tool interaction.  In their book they looked at various

constitutive models for modeling soil, ways of simulating the soil-tool interface, various

algorithms, and programming techniques.  As part of their ongoing research they ran

simulations with ADINA software that allowed for element birth and death. When a soil

element reached the shear or tensile failure criteria then the element stiffness was greatly

reduced so that the element did not contribute in any further iterations towards the forces on

the tool.

Fielke (1999) compared the results for a two-dimensional FEA model with

experimental and field results.  His model was of the outside edge of an experimental sweep.

Using NISA II software with the soil modeled as elastic-plastic with a Mohr-Coulomb failure

criterion.  The soil parameters were taken from direct shear and triaxial compression tests.  In

addition, the model included friction between the soil mass and the tool.  Their work showed

a large effect of Poisson’s ratio when the soil does not remain in contact with the tool, as in

the case of sweeps.  He found that good correlation could be achieved between predicted

draft and vertical forces with experimental data.

Mouazen and Nemenyi (1999a, 1999b, 1999c) looked at how tillage tool design could

be affected using FEA.    They used COSMOS/M software and modeled the soil as elastic-

perfectly plastic with the Drucker-Prager criterion.  The half-symmetry three-dimensional

model was of a medium-deep subsoiler and the soil mass just ahead of it.  They considered

four tool geometries and one sandy loam soil type.  The predicted pressures on the tool face

were greatest near the bottom outside corners.  Soil bin tests were then conducted and the

predicted force values were compared.  They found that the FEA models over predicted the

forces by up to 20 percent.  Vertical soil movement was also well predicted.

Rosa and Wolfsohn (1999) looked as using FEA to predict the draft loading of narrow

tools at high speeds.  Their material model was based on a hypoelastic using a variable

Young’s modulus and Poisson’s ratio.  They also ran laboratory tests in a soil bin to develop

soil properties and to compare the analytical results with.   They found that including inertial

and viscous effects led to numerical instabilities. A viscoelastic model that included damping

was able to make better average draft predictions.
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Another method that has been used to look at dynamic soil-tool interaction is by using

a hypoplastic stress-strain material model.  Abo-Elnor used the Wolffersdorf version of the

hypoplastic model that had been implemented into the ABAQUS finite element code to

model fully drained sandy soil.  A model of a simplified dozer blade was considered at

various speeds (Abo-Elnor et.al, 2003, 2004).  The blade was modeled as a rigid body with

enforced displacements so no soil failure dynamics were observed in the results.  Also, the

results were not compared to any lab or field data.

Mouazen and Ramon (2002) used a combined numerical and statistical model to

simulate  a  subsoiler  in  sandy  loam  soil.   A  FEM  model  was  used  to  study  the  effects  of

varying the width of the tool, operating depth, and soil density on the reaction forces.  The

FEM model was run in COSMOS/DesignSTAR 1.0 software.  The soil was modeled as

Drucker-Prager elastic-perfectly plastic with Coulomb’s criterion with friction between the

soil and tool.  Using the FEM results, multiple regression analyses were done to develop a

formula to predict the draught forces for any combination of width, depth, and soil density.

The predictor equation was compared to soil bin results and was found to have a small over-

prediction in the draught force.

Renon, Montmitonnet, and Laborde (2005) used FEA to look at a rigid tine in soil but

carried their analysis out to include large-deformations.  The soil was modeled as a elastic-

perfectly plastic.  In their research, they considered several different numerical methods but

did not compare predicted force values with experimental data.  They also simulated triaxial

tests using two and three dimensional models.  The software used was Flac2D and FORGE3

and the FORGE3 software allowed the soil domain to be remeshed at each time step to

reduce mesh distortion during the analysis.

Using discrete element modeling (DEM) to simulate soil-tool interaction was

considered by Asaf, Rubinstein, and Shmulevich (2007).  They simulated two-dimensional

quasi-static in-situ tests representing plate/wedge sinkage and Grouser shear tests in

cohesionless soil.  Physical tests were run using plastic chips, glass beads, and sea sand for

comparison and parameter estimation of the analytical models.  An elastic-plastic material

model was utilized with contact and friction.  The models were able to reasonably predict the

forces measured and parameter optimization methods were investigated.
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Considering that soil failure has been considered to mimic a fluid and to address the

dynamic visco-plastic behavior, Karamakar and Kushwaha considered using computational

fluid dynamics (CFD) to simulate the soil to interaction (2005a).  In their work they

considered a flat simple bar in a soil “flow” modeled as a Bingham plastic.  Karamakar and

Kushwaha also constructed a bench top rotary viscometer to measure the shear strength of

soils at various speeds as needed to calculate the viscosity of clay loam soil at various levels

of moisture and compaction (2006a and 2006b).  The measured values for shear strength and

viscosity were then used in the CFD models.  The CFD domain consisted of only the soil and

did  not  include  the  vertical  displacements  of  the  soil  ahead  and  around  the  tool  or  the

resulting trough behind the tool.  The major findings from their work dealt with the predicted

relationships between tool face pressure to speed and draft force to speed (2005b).  The

model did not consider the soil disturbance, the resulting furrow, or dynamic effects.

1.4 Brief Overview of Finite Element Analysis
Finite element analysis reduces a structural domain to a finite number of elements

that represent the stiffness of the actual structure.  A stiffness matrix is developed for the

model based on the assembly of the stiffness of the individual elements.  Based on provided

boundary conditions a system of equations can be developed and solved to determine the

remaining displacements and reactions of the nodes in the model.  From these displacements

the resulting strains and stresses can be calculated.  The basic FEA system of equations for a

static analysis is (Chandrupatla and Belegundu, 1991),

RUK (1.5)

where: K  = global stiffness matrix,

U  = displacement column matrix, and

R  = reaction column matrix.

To simulate a dynamic system, additional forces must be added to the above equation.

These include inertia forces and damping forces.  All of these forces are time-dependent.
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The inertia forces account for accelerations that act on the mass.  The damping forces are

velocity dependent.  The dynamic system of equations is represented by

RUKUCUM (1.6)

where: M mass matrix

U = acceleration matrix

C = damping matrix

U = velocity matrix

K = stiffness matrix

U = displacement matrix

R = reaction matrix.

The mass matrix and stiffness matrix are calculated from the FEA mesh with the

assigned material density.  The damping matrix [C] can be replaced with Rayleigh damping

which takes the form of  [M] +  [K] (Bathe, 1996).  The values of alpha and beta can be

determined from a modal analysis using two damping ratios corresponding to two different

vibration frequencies.

1.5 Brief Overview of Computational Fluid Dynamics
One of the earliest recognized developments in CFD is attributed to Richardson who

in 1910 presented a point iterative method for solving Laplace’s equation and the biharmonic

equation  to  the  Royal  Society  of  London.   He  used  his  method  to  calculate  the  stress

distribution in a dam.  He later included relaxation in his method to take information from the

previous step to update the unknown to improve convergence.  Through World War II

additional improvements were made in relaxation techniques.

The beginning of applying numerical methods to CFD problems is attributed to

Courant, Friedrichs, and Lewy who published a paper in 1928.  In their paper they discussed

the solving of partial differential equations using numerical methods.  The paper also

discussed stability requirements for hyperbolic partial differential equations solved by
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numerical methods.  This paper was later republished in the IBM Journal of Research and

Development in 1967 (Tannehill et. al., 1997).

One of the principal equations used in CFD and of fluids in motion is the continuity

equation.  Based on the conservation of mass, the continuity equation says the time rate of

change of system mass is zero.  In other words, the mass flow rate into the system minus the

mass  flow  rate  out  of  the  system  is  equal  to  the  rate  of  change  of  the  mass  in  the  system

(control volume) (Robertson and Crowe, 1990).

Newton’s second law of motion states that the time rate of change of the linear

momentum of a system is equal to the sum of the forces acting on the system.  The forces

include pressure, gravitational, and viscous forces.  If the system is divided into differential

fluid elements the forces can be evaluated on the faces.  The forces acting on a differential

fluid element can then be expanded into Cartesian coordinates.  The forces acting on each of

the faces can be rewritten in terms of normal and shear stresses divided by the surface areas.

To  account  for  viscous  forces  constitutive  relationships  can  then  be  written  for  Newtonian

fluids and substituted into Newton’s second law.  The resulting three equations (X, Y, and Z

directions) are known as the Navier-Stokes equations.  The equations for compressible fluids

are:
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The continuity equation and the Navier-Stokes equations are the governing equations

for  CFD  analysis.   The  unknowns  that  have  to  be  solved  for  are  P,  u,  v,  and  w.   Various

numerical methods have been developed to solve these non-linear, second-order, partial
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differential  equations.   For  the  research  reported  in  this  paper  ANSYS CFX 11.0  has  been

used for solving the fluid flow problem.

1.6 Overview of Fluid-Structure Interaction
The two previous sections gave brief overviews of finite element analysis (FEA) and

computational fluid dynamics (CFD).  Combining these two analytical methods allows for

the simulation of more complex problems containing fluid-structure interaction or FSI.

Examples of this type of problem include fluid sloshing in a tank, airplane wing flutter, and

pumps.  FSI analyses can have one-way or two-way interaction and can be static or transient.

The more common method of FSI is when displacements are predicted by a structural

analysis in a solid domain and passed onto the fluid domain. Nodes of the fluid mesh at the

interface between the two fields are moved accordingly.  The CFD analysis is run to calculate

the new pressures at the interface and pass the information back to the structural solver.  The

pressure loads are updated and the process is repeated.  Referring to the equations for FEA,

the pressure from the CFD analysis is applied to the area of the interface and is included in

the  load  vector  [R]  in  either  equation  1.5  or  1.6.   Referring  to  the  equations  for  CFD,  the

predicted  displacements  at  the  interface,  from  the  FEA  domain,  are  applied  to  update  the

fluid domain before the Navier-Stokes equations 1.6, 1.7, 1.8 are solved.

In  one-way  interaction,  one  field  is  run  and  then  the  other  field  is  run  with  the

information  from  the  first  field.   An  example  would  be  running  a  CFD  analysis  of  a  fluid

domain representing a tank of fluid with an applied acceleration.  The resulting pressures on

the domain would then be passed to the structural model of the tank and supports to

determine the displacements and stresses on the structure.

In a two-way interaction, the process would be the same as the one-way interaction

except that the process would be repeated so that both solid and fluid fields impact each

other.  The solutions are obtained for each field until the difference between the shared

values at the interface (displacements and pressure/force) is less than some specified limit.

Once convergence has been achieved or a maximum number of iterations has been reached,

the analysis is complete for a static analysis.  For transient analysis, once convergence has

been achieved within a time step or the maximum number of iterations has been reached, the

time step is incremented until the full time of the analysis has been reached.
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1.7 Research Outline
The plan for this research project is as follows.

Measure soil properties

Soil bin testing of rigid flat bar

Soil bin testing of spring reset field cultivator standard

Modal analysis lab test of spring resent field cultivator standard

CFD simulation to validate material model

CFD simulation of rigid flat bar

Structural and CFD simulation of spring reset field cultivator standard
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2. SOIL PROPERTY TEST

In order to simulate the soil and tool interaction it is necessary to model the soil and

the behavior of the soil under large deformations.  As mentioned previously, numerous

approaches have been studied to model soil properties.  This paper focuses on treating the

soil as a fluid using CFD.  The relevant properties for a fluid analysis are density and

viscosity.  The Bingham-plastic model was chosen for this analysis and requires an extra

parameter for soil strength.  Soil properties can vary greatly depending upon composition,

moisture, and compaction.  Because of this variation, soil properties have to be measured for

specific conditions that are to be analyzed.

A portable soil viscometer was designed and constructed to measure the required

properties.   The  viscometer  is  a  powered  rotary  soil  shear  vane  with  a  motor  controller  to

operate at predetermined speeds.  The vane has four blades and is inserted vertically into the

soil to be tested.  A motorized drive system rotates the shaft of the vane at specified speeds

while the torque on the shaft is recorded.  The measured torque is converted to stress and the

values are plotted against the rotational speed. A linear curve is fit to the data with the slope

representing the viscosity.  The y-axis intercept represents the yield strength.  The operation

of  the  rotary  shear  vane  and  conversion  from  torque  to  stress  is  based  on  ASTM  standard

D2573-01.

2.1 Soil Viscometer
A gearmotor was used to drive the viscometer along with a variable speed drive and a

100:1 speed reducer to achieve the range of speeds required.  The viscometer drive train was

attached to a welded aluminum base that was mounted to the tool carrier on the soil bin.  The

variable speed drive was remotely mounted so that the viscometer could be used at any

location across the soil bin and controlled from the side of the bin.

The soil shear vane was a Geonor 55x110mm rotary vane.  The speed reducer was a

100:1 right angle worm gear drive from Torque Transmission model SWB-5H with a hollow

output  shaft.   The  BLF360A-30  gearmotor  and  controller  are  from  Oriental  Motor  and

included a 30:1 gear reduction.  The gearmotor has an output torque of 46 in-lbf and has a
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output shaft speed range of 2.7 to 133 rpm.  The controller was digital and allowed for the

speed to be set to within one rpm.  The gearmotor was accelerated and decelerated at a rate of

0.5 rpm/sec.  The gearmotor and the right angle speed reducer were connected by a flexible

coupler, Oriental Motor #MCL4015F06.  A custom torque transducer was designed and

manufactured from cold drawn steel bar with a calibrated shear bridge.  The shear vane

mounted to the torque transducer fit inside the hollow output shaft of the speed reducer with

the torque transmitted through a 0.125 inch pin.  The shaft speed was measured with a

magnetic pickup and an 18 tooth timing wheel.  The speed and torque were recorded on a

Somat EDAQ data acquisition system controlled through a Compaq nw8240 laptop computer

running the Somat TCE software.  Figure 2.1 shows the viscometer attached to the tool plate

in the soil bin.

Figure 2.1: Soil viscometer mounted to soil bin tool plate
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2.2 Experiment Setup
The lab tests conducted for this research were run at the John Deere soil bin facility.

The soil (15% clay, 33% silt and 52% sand) was prepared to achieve a cone index of 200

(loose) and 1,100 (normal) kPa.  The viscometer, rigid flat bar, and field cultivator standard

were mounted to a tool plate on a carrier that can be driven at specified speed.  The position

of the tool plate can be controlled both across the width of the soil bin and also vertically.

The soil shear strength was calculated from the measured torque with the shear vane

rotating at 0.027 rpm (0.17 deg/sec), within the range specified by ASTM D2573-01

Standard  Test  Method  for  Field  Vane  Shear  Test  in  Cohesive  Soil.   To  calculate  the

viscosity, the shear strength was also calculated from torque measurements taken at 0.053,

0.107, 0.213, 0.427, 0.853, and 1.333 rpm.  The measured torque values were recorded to

five significant digits.  The shear strength (N/m^2) was graphed against the rotating speed

(rad/sec) and a linear curve was fit to the data with the slope representing the soil viscosity.

The speeds were chosen based on the slowest speed achievable and then doubling the speed

until the max motor speed was reached.  The gearmotor and controller were chosen to

maximize the range of speeds possible to see the shape of the relationship between shear

stress and strain rate.  The equation to calculate the shear strength is

3
max

7
6

)(
D

TS fvu (2.1)

where Tmax is the maximum measured torque in N-m and D is the diameter of the shear vane

in meters.

For each soil treatment the torque measurements were run at the seven speeds in three

locations along the soil bin for replication, evenly separated along the length of the soil bin

near the beginning (five meters), middle (ten meters), and end (15 meters).  Soil treatments

were run at two compaction levels, 200 kPa and 1,100 kPa and two moisture levels, 7.4% and

8.8% dry bulb (d.b.).  The two compaction levels and the two moisture levels were used in

the lab tests for the comparison runs of the rigid flat bar and the spring reset field cultivator

standard.   At  each  of  the  three  positions  along  the  soil  bin  the  order  that  the  seven  speeds

were tested was randomized.  In addition, at each of the three locations measurements were
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made in the soil bin, five penetrometer readings were taken across the width of the soil bin

and one sample was taken to measure the moisture and density.

The seven shear strength tests were spaced evenly 288 mm apart with four samples

taken on one side of the penetrometer readings and three taken on the other side of the

penetrometer readings.  Figure 2.2 shows the soil bin surface after all tests and samples had

been run for the middle low moisture (7.4% d.b.) and low compaction (200 kPa) soil.  The

photograph shows the penetrometer holes down the middle and the shear vane holes on either

side.   The vane was inserted to a depth of about 152 mm so that the top of the vanes were

approximately 50 mm below the surface.  The calculated viscosity and shear strength

properties were therefore averages over the depth of 52 to 152 mm.

Figure 2.2: Soil bin surface with viscometer and penetrometer test holes
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Figures 2.3 through 2.6 are examples of the penetrometer readings taken at the middle

position  in  the  soil  bin  from  the  soil  surface  down  to  200  mm.   The  graphs  for  all  of  the

positions and soil treatment levels are provided in the Appendix.  The graphs show the

variation in soil compaction both across the soil bin (Positions A-E) and through the depth of

the soil.

The penetrometer and density readings in Table 2.1 show that there was variation

both across the width of the soil bin and along the length of the soil bin.  The results show

that one side of the bin had consistently higher compaction.  The third batch of readings

taken near the end of the soil bin was consistently higher than the other two positions.  At the

high moisture (8.8% d.b.) level there appears to be a compacted layer just below the 150 mm

depth.   The  viscometer  was  run  at  a  single  depth  with  the  bottom of  the  rotary  shear  vane

located at the 150 mm depth.  Table 2.1 summarizes the measured density, moisture content,

and average penetrometer measurements that were used in the computer simulations.

2.3 Results
For  each  soil  treatment  level  and  soil  bin  position  the  shear  strength  readings  were

graphed against the test run time in rad/sec.  The resulting graphs for the measured data taken

at the 10m position are shown in Figures 2.7 through 2.10.  The graphs show the soil shear

strength versus rotation angle for each of the shear vane test speeds and the residual strength

of the soil after failure.  The results were not consistent across all of the soil treatment levels

for  the  change  in  strength  at  failure  relative  to  speed.   However,  there  did  appear  to  be  a

difference between moisture levels.  Typically failure occurred between 20 and 30 degrees of

vane rotation.  The slopes of the curves leading up to failure were similar for all speeds and

for all conditions.  This indicates that the soil is elastic and related to the soil shear strength

independent of speed.  This also indicates that the soil does not exhibit viscous behavior.



27

Figure 2.3: Penetrometer readings for middle position, low moisture (7.4% d.b.), low
compaction (200 kPa)

Figure 2.4: Penetrometer readings for middle position, low moisture (7.4% d.b.), high
compaction (200 kPa)
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Figure 2.5: Penetrometer readings for middle position, high moisture (8.8% d.b.), low
compaction (200 kPa)

Figure 2.6: Penetrometer readings for middle position, high moisture (8.8% d.b.), high
compaction (1,100 kPa)
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Table 2.1: Penetrometer summary with density and moisture measurements
Moisture Compaction Position Measured Measured Average Penetrometer Reading (kPa)

Level Level Along Moisture Density Positions Across the Soil Bin Down to 150mm
(d.b.) (kPa) Soil Bin (m) (d.b.) (kg/m^3) A B C D E Average
Low Low-200 5 7.60% 1,330 230 211 206 192 196 207

10 7.00% 1,380 241 220 220 212 210 221
15 7.60% 1,330 292 265 255 245 238 259

Average 7.40% 1,347 229
Stdev 0.35% 29 27

Moisture Compaction Position Measured Measured Average Penetrometer Reading (kPa)
Level Level Along Moisture Density Positions Across the Soil Bin Down to 150mm
(d.b.) (kPa) Soil Bin (m) (d.b.) (kg/m^3) A B C D E Average
Low High-1100 5 7.20% 1,490 974 884 828 816 861 872

10 7.00% 1,460 934 866 842 831 877 870
15 7.80% 1,430 1036 957 895 894 938 944

Average 7.33% 1,460 895
Stdev 0.42% 30 42

Moisture Compaction Position Measured Measured Average Penetrometer Reading (kPa)
Level Level Along Moisture Density Positions Across the Soil Bin Down to 150mm
(d.b.) (kPa) Soil Bin (m) (d.b.) (kg/m^3) A B C D E Average
High Low-200 5 8.90% 1,290 234 216 212 215 212 218

10 8.80% 1,300 265 261 241 233 226 245
15 8.80% 1,320 262 249 233 231 243 244

Average 8.83% 1,303 235
Stdev 0.06% 15 15

Moisture Compaction Position Measured Measured Average Penetrometer Reading (kPa)
Level Level Along Moisture Density Positions Across the Soil Bin Down to 150mm
(d.b.) (kPa) Soil Bin (m) (d.b.) (kg/m^3) A B C D E Average
High High-1100 5 8.80% 1,430 995 909 883 860 902 910

10 8.70% 1,390 1056 998 961 943 972 986
15 8.80% 1,400 1015 935 918 914 950 946

Average 8.77% 1,407 947
Stdev 0.06% 21 38
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Figure 2.7: Measured torque versus time for middle position, low moisture (7.4% d.b.),
low compaction (200 kPa)

Figure 2.8: Measured torque versus time for middle position, low moisture (7.3% d.b.),
high compaction (1,100 kPa)
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Figure 2.9: Measured torque versus time for middle position, high moisture (8.8% d.b.),
low compaction (200 kPa)

Figure 2.10: Measured torque versus time for middle position, high moisture (8.8%
d.b.), high compaction (1,100 kPa)
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The peak shear strength value at each speed was selected and plotted against the test

speed or strain rate in radians per second.  A linear equation was fit to the data for each of the

four soil treatment levels.  The data showed a strong linear relationship which matches

results found by Lipscomb (1984).  The graphs of the calculated shear strength (kPa) versus

shear rate (rad/s) are shown in Figures 2.11 through 2.14.  The graphs also show the linear

curve fit to the data used to determine the shear strength and viscosity values for each soil

treatment level.  The Y-intercept represents the soil shear strength.  The slope of the fit curve

represents  the  viscosity.   A  summary  of  the  tests  results  is  shown  in  Table  2.2  with  the

measured density, and calculated values for shear strength and dynamic viscosity.  The R

values for the fit curves were low due to the large variation in results between the three

repetitions.  This variation was explored with a Tukey analysis presented later in the chapter.

The values given in the Table 2.2 were used in the simulations presented later in the

paper.  The levels of moisture and compaction closely match those used during the other

laboratory tests for the flat bar and the spring reset standard.  The results of those tests are

presented in the following two chapters.  The laboratory tests provide the conditions that the

simulations attempt to reproduce.

Table 2.2: Summary of Viscometer Results
Shear Dynamic

Moisture Compaction Density Strength Viscosity
(d.b.) (kPa) (kg/m^3) (Pa) (Pa-s)
7.4% 200 1347 7,742 622
7.3% 1,100 1460 30,173 5,764
8.8% 200 1303 4,752 9,144
8.8% 1,100 1407 23,834 20,858

The density was higher for the treatments with high compaction.  Also, the density

was higher for the low moisture treatments than the high moisture treatments.  Since water

has a density lower than the sand and clay this makes sense.  The shear strength was higher

when the compaction level was high and the moisture level was low.  However, the dynamic

viscosity was highest at the high moisture and high compaction level.
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Figure 2.11: Shear strength versus shear rate, low moisture (7.4% d.b.), low compaction
(200 kPa)

Figure 2.12: Strength versus shear rate, low moisture (7.3% d.b.), high compaction
(1,100 kPa)
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Figure 2.13: Strength versus shear rate, high moisture (8.8% d.b.), low compaction (200
kPa)

Figure 2.14: Strength versus shear rate, high moisture (8.8% d.b.), high compaction
(1,100 kPa)
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The measured soil properties were generally lower than those found by Karmakar and

Kushwaha (2006a).  In their testing, they ran their viscometer between 0.02 and 0.25 rpm

with moisture levels from ten to twenty percent and compaction levels between 100 to 400

kPa.  The clay content of their soil was about double and a slightly lower sand content (29%

clay, 24% silt, and 47% sand).  At the ten percent moisture level and low compaction (200

kPa), their measured viscosity was 145.8 kPa-s and the yield strength was 10.66 kPa.

2.4 Statistical Analysis
A linear ANOVA Tukey analysis of the shear stress data was run using Minitab

software to determine if there was significant variation in the data from the soil property

measurement tests.  The data was analyzed for each of the four soil treatment levels to

consider the variation in the measured shear strength versus the lateral position across the soil

bin, the three positions along the length of the soil bin, and the test speed.  An example of the

full output from one of the analyses is shown in Figure 2.15.  The summary of the rest of the

analyses are provided in Figures 2.16 through 2.27.  Ideally, there should be no statistically

significant differences in the measured soil shear strength along the width or length of the

soil bin.  However, there should be statistically significant differences in the measured shear

strength versus speed.

The analysis showed three combinations that did have statistically significant

differences at the 95 percent confidence level. At the low moisture, low compaction level, the

average shear strength at the 15m soil bin position had a statistically significant difference

than the averages at the five and ten meter positions (Figure 2.15).  At the high moisture, low

compaction level, the average shear strength at the five meter soil bin position had a

statistically significant difference than the ten meter position (Figure 2.21).  Also, at the high

moisture, high compaction level, the average shear strength at the zero millimeter position

across the width of the soil bin had a statistically significant difference than the 720 mm

position (Figure 2.25).  For the three cases that did have statistically significant difference

pairings, tables were created to illustrate the results (Table 2.3, Table 2.4, and Table 2.5).

Cells in the tables that are filled indicate that there is no statistical significant difference

between that pair.
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An interesting result from the analyses was that for all four soil treatments there was

no statistically significant difference in the measured shear values across the range of test

speeds.  The point of running the test at multiple speeds was to determine if a linear curve

provided the best fit to the data with the slope being the viscosity used in the Bingham plastic

soil model.  This suggests several possibilities: more test samples are required to lower the

standard error, tests need to be run at higher speeds closer to actual field test speeds, and the

shear strength is independent of speed (non viscous).  Further testing would help to clarify

the results.  Because the speeds used to measure the soil properties were significantly lower

than actual field test speeds the test speeds may be too close together to show any statistically

significant difference.

2.5 Conclusions
A soil viscometer was designed and constructed based on ASTM standard D2573-01

using a rotary shear vane.  The soil viscometer was successfully used to measure the soil

strength at seven speeds and at four soil treatment levels.  The soil density was measured and

the yield strength and viscosity were calculated from the measured torque to provide the

three parameters necessary for using the Bingham-Plastic material model for the CFD

analysis.

The shear vane results indicate that increased moisture lowered the shear strength of

the soil but increased the viscosity.  However, increased compaction resulted in higher shear

strength and viscosity.  The results also indicate that the soil does not show viscous behavior

for the speeds tested but acts in a more elastic manner.

The Tukey analysis of the shear strength data showed that there were only three

combinations of data that had statistically significant differences.  The Tukey analysis also

showed that there was no statistically significant difference in the measured shear strength

versus speed.  This may be attributed to the fact that the test speeds were very low compared

with  actual  field  test  speeds.   The  test  data  points  may  be  too  close  together  to  show

statistical significant differences.   Further testing at higher speeds would clarify this issue

and verify that the slope of the strength versus speed data is linear.

The test method for the soil viscometer was based on the civil engineering standard

developed for static structures.  Limitations in the speeds that can be reasonably used with
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the rotational soil viscometer suggest that alternate test methods of measuring soil properties

may be required.  An alternate method is suggested in Chapter 8.  The test procedure also did

not allow for soil dilation which is not representative of tillage tools.

Source    DF      SS     MS      F      P
Location   2  10.793  5.396  10.46  0.001
Error     18   9.284  0.516
Total     20  20.077

S = 0.7182   R-Sq = 53.76%   R-Sq(adj) = 48.62%

                          Individual 95% CIs For Mean Based on
                          Pooled StDev
Level  N    Mean   StDev  ------+---------+---------+---------+---
 5     7  7.1574  0.8843  (-------*-------)
10     7  7.3761  0.4988     (-------*--------)
15     7  8.7757  0.7187                         (-------*--------)
                          ------+---------+---------+---------+---
                              7.00      7.70      8.40      9.10

Pooled StDev = 0.7182

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Location

Individual confidence level = 98.00%

Location =  5 subtracted from:

Location    Lower  Center   Upper  ------+---------+---------+---------+---
10        -0.7612  0.2187  1.1986             (-----*------)
15         0.6383  1.6183  2.5982                      (------*-----)
                                   ------+---------+---------+---------+---
                                      -1.5       0.0       1.5       3.0

Location = 10 subtracted from:

Location   Lower  Center   Upper  ------+---------+---------+---------+---
15        0.4197  1.3996  2.3795                     (-----*------)
                                  ------+---------+---------+---------+---
                                     -1.5       0.0       1.5       3.0

Figure 2.15: Tukey results – shear strength versus soil bin position, low moisture (7.4%
d.b.), high compaction (200 kPa)
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                        Individual 95% CIs For Mean Based on
                        Pooled StDev
Level  N   Mean  StDev  ---------+---------+---------+---------+
  0    3  8.962  1.023                (---------*--------)
144    3  8.249  0.954          (---------*--------)
288    3  7.952  0.788        (--------*---------)
432    3  7.279  0.666  (---------*--------)
576    3  7.402  0.904   (---------*--------)
720    3  7.295  1.058  (---------*---------)
864    3  7.248  1.115  (--------*---------)
                        ---------+---------+---------+---------+
                               7.2       8.4       9.6      10.8

Pooled StDev = 0.941

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Position

Individual confidence level = 99.58%

Figure 2.16: Tukey results – shear strength versus soil bin lateral position, low moisture
(7.4% d.b.), low compaction (200 kPa)

                        Individual 95% CIs For Mean Based on
                        Pooled StDev
Level  N   Mean  StDev   -+---------+---------+---------+--------
  80   3  7.310  1.341   (-------------*-------------)
 160   3  7.927  1.935         (-------------*-------------)
 320   3  8.335  0.228             (-------------*-------------)
 640   3  7.676  1.399       (-------------*-------------)
1280   3  7.622  0.382      (-------------*-------------)
2560   3  7.458  1.041     (-------------*-------------)
4000   3  8.060  0.331           (-------------*-------------)
                         -+---------+---------+---------+--------
                        6.0       7.0       8.0       9.0

Pooled StDev = 1.127

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Speed

Individual confidence level = 99.58%

Figure 2.17: Tukey results – shear strength versus rotational speed, low moisture (7.4%
d.b.), low compaction (200 kPa)
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                         Individual 95% CIs For Mean Based on
                         Pooled StDev
Level   N   Mean  StDev  ---------+---------+---------+---------+
 5     13  19.05  11.90  (----------------*---------------)
10     14  18.74  11.82  (---------------*---------------)
15     14  20.26  12.04      (---------------*---------------)
                         ---------+---------+---------+---------+
                               16.0      20.0      24.0      28.0

Pooled StDev = 11.92

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Location

Individual confidence level = 98.05%

Figure 2.18: Tukey results – shear strength versus soil bin position, low moisture (7.4%
d.b.), high compaction (1,100 kPa)

                        Individual 95% CIs For Mean Based on
                        Pooled StDev
Level  N   Mean  StDev  ---------+---------+---------+---------+
  0    5  23.74  13.39         (---------------*---------------)
144    6  20.34  13.34     (--------------*--------------)
288    6  19.26  12.50    (--------------*-------------)
432    6  18.35  12.15  (--------------*--------------)
576    6  18.19  11.86  (--------------*--------------)
720    6  17.96  11.73  (--------------*-------------)
864    6  18.38  12.38  (--------------*--------------)
                        ---------+---------+---------+---------+
                              14.0      21.0      28.0      35.0

Pooled StDev = 12.46

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Position

Individual confidence level = 99.64%

Figure 2.19: Tukey results – shear strength versus soil bin lateral position, low moisture
(7.4% d.b.), high compaction (1,100 kPa)
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                        Individual 95% CIs For Mean Based on
                        Pooled StDev
Level  N   Mean  StDev  ---------+---------+---------+---------+
  80   6  18.59  12.43   (--------------*-------------)
 160   6  17.91  11.07  (--------------*-------------)
 320   5  23.01  13.63        (---------------*---------------)
 640   6  18.89  12.36   (--------------*--------------)
1280   6  19.13  12.63   (--------------*--------------)
2560   6  19.24  13.14    (-------------*--------------)
4000   6  19.34  12.48    (--------------*-------------)
                        ---------+---------+---------+---------+
                              14.0      21.0      28.0      35.0

Pooled StDev = 12.52

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Speed

Individual confidence level = 99.64%

Figure 2.20: Tukey results – shear strength versus rotational speed, low moisture (7.4%
d.b.), high compaction (1,100 kPa)

                          Individual 95% CIs For Mean Based on
                          Pooled StDev
Level  N    Mean   StDev   -+---------+---------+---------+--------
 5     7  4.6572  0.6569   (--------*-------)
10     7  5.7318  0.6975                     (--------*-------)
15     7  5.1044  0.6452          (--------*--------)
                           -+---------+---------+---------+--------
                          4.20      4.80      5.40      6.00

Pooled StDev = 0.6669

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Location

Individual confidence level = 98.00%

Figure 2.21: Tukey results – shear strength versus soil bin position, high moisture
(8.8% d.b.), low compaction (200 kPa)
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                          Individual 95% CIs For Mean Based on
                          Pooled StDev
Level  N    Mean   StDev  ---+---------+---------+---------+------
  0    3  5.8433  0.3302                (-----------*-----------)
144    3  5.5320  1.5009            (-----------*------------)
288    3  5.2785  0.5131         (-----------*-----------)
432    3  5.0703  0.7290      (-----------*------------)
576    3  4.9336  0.3615    (------------*-----------)
720    3  4.7716  0.7162  (------------*-----------)
864    3  4.7220  0.8431  (-----------*-----------)
                          ---+---------+---------+---------+------
                           4.00      4.80      5.60      6.40

Pooled StDev = 0.8028

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Position

Individual confidence level = 99.58%

Figure 2.22: Tukey results – shear strength versus soil bin lateral position, high
moisture (8.8% d.b.), low compaction (200 kPa)

                          Individual 95% CIs For Mean Based on
                          Pooled StDev
Level  N    Mean   StDev  --+---------+---------+---------+-------
  80   3  4.8995  0.7144    (--------*--------)
 160   3  4.7187  0.8382  (--------*--------)
 320   3  4.9595  0.5169     (--------*--------)
 640   3  4.7816  0.8073   (--------*--------)
1280   3  5.3518  0.1855         (--------*--------)
2560   3  5.2427  0.8547       (--------*--------)
4000   3  6.1975  0.8927                 (--------*--------)
                          --+---------+---------+---------+-------
                          4.0       5.0       6.0       7.0

Pooled StDev = 0.7264

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Speed

Individual confidence level = 99.58%

Figure 2.23: Tukey results – shear strength versus rotational speed, high moisture
(8.8% d.b.), low compaction (200 kPa)
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                         Individual 95% CIs For Mean Based on
                         Pooled StDev
Level  N    Mean  StDev  ----+---------+---------+---------+-----
 5     7  24.450  1.769  (----------------*----------------)
10     7  24.490  3.784   (---------------*----------------)
15     7  25.381  3.424         (---------------*----------------)
                         ----+---------+---------+---------+-----
                          22.5      24.0      25.5      27.0

Pooled StDev = 3.118

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Location

Individual confidence level = 98.00%

Figure 2.24: Tukey results – shear strength versus soil bin position, high moisture
(8.8% d.b.), high compaction (1,100 kPa)

                         Individual 95% CIs For Mean Based on
                         Pooled StDev
Level  N    Mean  StDev  --------+---------+---------+---------+-
  0    3  28.389  1.868                       (-------*-------)
144    3  25.538  0.539               (-------*-------)
288    3  22.775  1.610       (-------*-------)
432    3  26.231  2.569                 (-------*-------)
576    3  23.864  1.540          (-------*-------)
720    3  21.017  2.596  (-------*-------)
864    3  25.604  3.775               (-------*-------)
                         --------+---------+---------+---------+-
                              21.0      24.5      28.0      31.5

Pooled StDev = 2.278

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Position

Individual confidence level = 99.58%

Figure 2.25: Tukey results – shear strength versus soil bin lateral position, high
moisture (8.8% d.b.), high compaction (1,100 kPa)
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                         Individual 95% CIs For Mean Based on
                         Pooled StDev
Level  N    Mean  StDev  --------+---------+---------+---------+-
  80   3  24.645  2.521          (---------*----------)
 160   3  21.818  2.551  (---------*----------)
 320   3  25.045  4.621           (----------*---------)
 640   3  26.080  3.425              (----------*---------)
1280   3  23.440  1.849      (----------*---------)
2560   3  25.183  0.389           (----------*---------)
4000   3  27.207  3.511                 (----------*---------)
                         --------+---------+---------+---------+-
                              21.0      24.5      28.0      31.5

Pooled StDev = 2.972

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Speed

Individual confidence level = 99.58%

Figure 2.26: Tukey results – shear strength versus rotational speed, high moisture
(8.8% d.b.), high compaction (1,100 kPa)
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Table 2.3: Tukey results – shear strength versus soil bin position, low moisture (7.4%
d.b.), low compaction (200 kPa)  Filled in squares have no statistical difference

m 5 10 15

5

10

15

Table 2.4: Tukey results – shear strength versus soil bin position, high moisture (8.8%
d.b.), low compaction (200 kPa)

m 5 10 15

5

10

15

Table 2.5: Tukey results – shear strength versus soil bin lateral position, high moisture
(8.8% d.b.), high compaction (1,100 kPa)

mm 0 144 288 432 576 720 864

0

144

288

432

576

720

864
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3. RIGID FLAT BAR LAB TEST

The first step in developing the CFD procedure was to use simple geometry and

compare to results from an actual physical test.  A two inch wide flat steel bar was chosen for

the simple tool shape similar to what was used by other authors in laboratory experiments

(Stafford, 1981).  The flat steel bar was mounted to a stiff structure and pulled through the

soil at a soil bin while the draft forces were measured.  The test depth, speed, and soil

compaction were varied.  The measured data was analyzed and the average draft force values

plus or minus three standard deviations were calculated to use as the goal for the CFD

simulation.

3.1 Test Setup
The flat bar was made from a 50.8 mm by 12.7 mm (2.0 in by 0.5 in) thick steel bar

203.2 mm (8 in) in length.  The bar was mounted to a custom designed mounting with two

half-inch carriage bolts. The mounting was relatively rigid and directly mounted to the soil

bin  tool  carrier.   The  carrier  was  used  to  move  the  bar  through  the  soil  at  predetermined

treatment levels.  Force measurements were made using four triaxial load cells (Model TRD-

A-5K, Michigan Scientific) mounted between the tool plate and the shank mounting bracket.

The twelve forces recorded by the data acquisition system are resolved in three orthogonal

forces and moments around these axes.

The tests were run at twelve treatment levels: two depth, 51 and 102 mm (2 and 4 in),

three speeds, 0.89, 1.79, and 2.68 m/s (2, 4, and 6 mph), and two compaction levels, 200 and

1,100 kPa.  Three repetitions of each treatment level were run and analyzed.  The runs were

randomized for each group of repetitions and sorted into groups of three by soil treatment

since three runs could be made before the soil had to be reconditioned.  After the first

repetition, a section of the trench was cleared of the loose soil by hand so that measurements

could be made of the trench profile and pictures were taken.  High speed video was also

taken from above looking down at the tool and the soil disturbance in front of the tool.

The density of the soil was measured once at each compaction level.  At the low

compaction level, 200 kPa, the soil had a density of 1,760 kg/m^3 with an average moisture
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content of 9.15 percent taken from ten samples.  At the high compaction level, 1,100 kPa, the

soil had a density of 1,960 kg/m^3 with an average moisture content of 9.2 percent taken

from ten samples.

The tool carrier was a custom designed steel weldment made up of 6mm (0.25 inch)

plate.  The carrier also included a camera mount that allowed the use of a 30 frame-per-

second color  webcam to  be  used  to  record  video  of  each  test.   The  webcam was  a  Philips

SPC900NC and was connected to an HP Compaq laptop to record the movie files.  The

camera  was  positioned  above  and  in  front  of  the  tool  to  observe  the  soil  fracture  and

shattering ahead of the tool.  The setup is shown in Figure 3.1.

Figure 3.1: Rigid flat bar lab test Setup
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Figure 3.2 shows how the trench was cleared of loose soil and dug out ahead to

provide a clear image of the resulting trench profile.  Clearing the loose soil away was

carefully done by hand and by used soft brushes.  A metal blade was used to remove the soil

in front of the cleared area.  A digital camera was then used to record the profile image.  A

tape measure was used to measure the width of the trench at the surface and the depth from

the surface to the bottom.

Figure 3.2: Flat bar example trench profile with loose soil cleared away
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3.2 Results
The videos captured by the webcam clearly showed how the level of compaction

changed how the soil failed.  At the low compaction level the soil exhibited flow failure

resembling with the soil breaking up into small particles millimeters in size.  At the high

compaction level the soil exhibited brittle failure resulting in chunks of failed soil with some

exceeding 100 mm in size.  Examples taken from the test video are shown in Figure 3.3 and

Figure 3.4.

Figure 3.5 and Figure 3.6 are examples of two time histories for the measured draft of

two treatment levels.  The operating depth and speed are the same and only the compaction

level is different.  The graphs give examples of the amount of repeatability that was

measured and that the higher compaction level resulted in nearly a three times increase in

average draft.  All of the time histories are provided in the Appendix.

Table 3.1 summarizes the average measured draft and standard deviation for each of

the twelve treatments.  Figure 3.7 shows the mean and +/- three standard deviations for the

average draft at each treatment level.  Treatments at the low compaction level typically had

lower variation in the average draft measurement between the three repeats.  This might be

explained by the higher level of variation in the compaction consistency as was shown in the

soil viscometer experiment.  The higher compaction level resulted in higher average draft

values.  The four inch depth resulted in higher average draft values than the two inch depth.

Both of these observations make sense and are in agreement with previous work.  Based on

the statistical analysis only the compaction level resulted in average draft values that were

statistically significant.
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Figure 3.3: Image of soil failure, 51 mm depth, 2.68 m/s, low compaction (200 kPa)

Figure 3.4: Image of soil failure, 51 mm depth, 2.68 m/s, high compaction (1,100 kPa)
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Figure 3.5: Measured draft, 51 mm depth, 2.68 m/s, low compaction (200 kPa)

Figure 3.6: Measured draft, 51 mm depth, 2.68 m/s, high compaction (1,100 kPa)
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Table 3.1: Summary of the draft forces for the rigid flat bar lab test
Depth Depth Speed Speed Compaction Draft (N)

Treatment (in) (mm) (mph) (m/s) (kPa) Average Stdev
1 D2S2L 2 50.8 2 0.89 200 98.04 21.17
2 D2S4L 2 50.8 4 1.79 200 153.26 10.50
3 D2S6L 2 50.8 6 2.68 200 219.14 29.00
4 D2S2H 2 50.8 2 0.89 1,100 483.50 50.81
5 D2S4H 2 50.8 4 1.79 1,100 594.27 107.33
6 D2S6H 2 50.8 6 2.68 1,100 665.62 92.47
7 D4S2L 4 101.6 2 0.89 200 280.98 15.53
8 D4S4L 4 101.6 4 1.79 200 350.50 62.63
9 D4S6L 4 101.6 6 2.68 200 416.53 36.90

10 D4S2H 4 101.6 2 0.89 1,100 1,053.70 172.53
11 D4S4H 4 101.6 4 1.79 1,100 1,295.17 67.68
12 D4S6H 4 101.6 6 2.68 1,100 1,609.90 42.25

Figure 3.7: Average draft values and +/- 3 standard deviations for each treatment level
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3.3 Statistical Analysis
A  regression  ANOVA  statistical  analysis  was  conducted  in  Microsoft  Excel  on  the

test  data  to  determine  which  variables  were  significant  in  predicting  the  draft  force  on  the

rigid flat bar.  Scatterplots and correlation coefficients were created for each variable.  Only

the  compaction  level  was  strongly  related  to  the  draft.   Based  on  the  coefficients  of

determination, the operating depth explains 25.9 percent of the variability, the speed explains

only four (4.0) percent of the variability, and the compaction level explains 56.5 percent of

the variability in the draft.  All three of the predictor variables had p-values lower than 0.05

meaning that all three variable were statistically significant at the 95 percent confidence

level.  The coefficient of determination from the regression analysis was 86.8 percent which

shows that the three variables account for most of the variability in the draft load.  Table 3.2

below has the results from the regression analysis.  The full results of the regression analysis

are provided in the Appendix.  The resulting predictor equation is,

Draft (N) = -841.44 (N) + 9.1068 x Depth (mm) + 135.40 x Speed (m/s)

+ 0.7779 x Compaction (kPa) (3.1)

Table 3.2: Regression analysis results for rigid flat bar test
Intercept Depth Speed Compaction

P-value 0.0000 0.0000 0.0027 0.0000
Coeff. -841.4377 9.1068 135.4015 0.7779
Units N mm m/s kPa

Figure 3.8 shows a comparison of the draft force predicted by equation (3.1) and the

test data that was shown in Figure 3.8.  The predictor equation predicted draft force value

was below the three standard deviation level for the lowest two speeds at the 51 mm depth

and low compaction (200 kPa) levels.  Similarly, the predictor equation predicted draft force

was below the three standard deviation level for the highest speed, at 102 mm depth and high

compaction (1,100 kPa) levels.
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Figure 3.8: Predictor equation for draft force values compared to measured values

3.4 Conclusions
A 12.7 mm by 51 mm rigid flat steel bar was tested in a soil bin to measure the draft

and vertical forces that occurred as the bar was pulled through soil.  Twelve treatment levels

were considered varying the tool speed, depth, and the soil compaction with three repeats of

each.  The data indicated that the variability in draft force was higher for the high compaction

level and that in general the draft force increases with speed and soil compaction.

The average draft force values were evaluated to determine which treatment factors

were  statistically  significant.   All  three  variables  were  determined  to  be  statistically

significant at the 95 percent confidence level.  A regression analysis was conducted to

develop a predictor equation based on all three statistically significant variables.  The

predictor equation produced results that fell within the +/-3 standard deviations in all but 3 of

the  12  test  conditions.   These  predicted  draft  force  values  will  be  later  compared  to  those

predicted from CFD.
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4. FIELD CULTIVATOR STANDARD LAB TEST

A soil bin lab test was conducted using a John Deere 200 lbf trip field cultivator

standard with both a 178 and 254 mm sweep to measure the forces resulting from soil failure.

The data was collected for later use in the development and validation of the simulation

procedure.  This particular standard and sweep combination were chosen because they

represent a typical spring reset standard with high volume usage on a number of different

machine types.

4.1 Setup
The standard assembly was mounted to the tool carrier on the soil bin.  A Sony high

speed video camera was mounted ahead of the sweep to the tool carrier to capture the soil

failure in front of the sweep as it progressed through the soil.  A bent sheet metal deflector

was attached to the pivot casting so that fractured soil traveling up the shank would fall off to

the sides and not block the high speed camera view.  The video was captured at 500 fps and

down sampled for viewing.  The resulting videos were used to examine the soil failure mode

and to look for connections between the soil failure rate and the load frequency.  The sweeps

used in the test were initially painted black.  During actual usage the black paint is worn off

by  friction  with  the  soil.   Before  testing  began  the  sweeps  were  sandblasted  to  remove  the

paint to better simulate the scoured surface finish.

Thirty-two different treatment levels were considered in the test.  Of those, eight were

run with three repetitions and used for comparison with the simulation.  The factors

considered were sweep sizes of 178 and 254 mm (7 and 10 inch), speeds of 0.89, 2.68, and

4.47 m/s (2, 6, and 10 mph), depths of 76 and 152 mm (3 and 6 inches), soil compaction

levels of 200 and 1,100 kPa (29 and 160 psi), and soil moisture levels of 6.9% and 8.3% d.b..

The repeated treatment levels used the 178 mm sweep at 2.68 m/s and varied the depth,

compaction, and moisture levels.  The 178 mm sweep at 2.68 m/s was chosen because this

combination is the most common in actual tillage usage.  The full list of runs were

randomized by repetition and then paired for runs using the same level of compaction and

moisture since the soil bin width would accommodate two runs before the soil had to be



55

reconditioned.  Because of the difficulty and time required to change the moisture level of the

soil, the higher moisture level runs were completed first and then the soil was allowed to dry

out before running the low moisture treatment levels.

For each test run the loads were recorded at a frequency of 200 Hz in the draft,

vertical, and lateral directions with four load cells connecting the mounting plate on the test

rig to the tool carrier.  The forces were recorded in pounds to three decimal places or six

significant digits.  A string pot was mounted to the standard bucket with the string running

through the spring to the pivot casting so that the spring deflection could be measured.  The

data recorder was started after the test rig was up to the desired speed and stopped before the

test rig had to decelerate.  As mentioned previously, high speed video was recorded showing

the soil failure and deflection as the standard and sweep passed through the bin.  After each

run was finished photos were taken of the disturbed soil.  When both runs were completed

for the soil treatment level the soil was tilled, smoothed, and compacted according to the next

pair of test runs.

Figure 4.1 shows the field cultivator standard assembly mounted to the test rig in the

soil  bin.  Penetrometer readings were taken at  five positions across the width of the soil  bin

once for each of the two compaction levels at the high moisture level.  The resulting readings

are shown in Figure 4.2 and Figure 4.3.  At the low compaction level of 200 kPa, Figure 4.2,

the compaction across the soil bin was fairly consistent.  The graph also shows that the

compaction level is consistent to the about the lowest test depth of 152 mm.  At the high

compaction level of 1,100 kPa, Figure 4.3, the desired compaction level is not reached until

about a depth of 60 mm.  Figure 4.3 also shows that the actual average compaction level is

closer to 1,000 kPa.
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Figure 4.1: Field cultivator standard soil bin test setup

Figure 4.2: Penetrometer readings, high moisture (8.3% d.b.), low compaction (200
kPa)
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Figure 4.3: Penetrometer readings, high moisture (8.3% d.b.), high compaction (1,100
kPa)

4.2 Results
After the runs were completed the recorded load and spring deflection data were

analyzed for statistical significance.  For each of the runs the average and standard deviation

was calculated from the time history data.  For the runs that were repeated, the average of the

individual run averages and the standard deviation of the averages were also calculated.

Figure 4.4 and Figure 4.5 are still images taken from the high speed video.  The images show

the  different  soil  failure  modes  when  the  soil  compaction  is  low  or  high.   At  the  low

compaction level the soil fails in a fluid manner like sand.  At the high compaction level the

soil fails like a brittle material in chunks.  Figures 4.6 through 4.8 show one second time

segments of the measured forces to show the variation in response of the seven inch sweep at

152 mm at the high compaction and moisture levels but at the three different speeds.  All of

the graphed time histories are provided in the Appendix.

It is worth noting that by comparing Figures 3.5 and 3.6 with Figures 4.6 through 4.8,

the forces with the sweep have a periodic variation and that the period of the variation is
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much longer  than  that  for  the  rigid  bar.   Table  4.1  provides  a  summary  of  the  average  and

standard deviation draft and vertical forces for all of the treatment levels of the field

cultivator soil bin test.

Figure 4.4: Soil bin test – 178 mm sweep, 2.68 m/s, 76 mm depth, high moisture (8.3%
d.b.) , low compaction (200 kPa)
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Figure 4.5: Soil bin test – 178 mm sweep, 2.68 m/s, 76 mm depth, high moisture (8.3%
d.b.) , high compaction (1,100 kPa)

Figure 4.6: Run #1 time history results – 178 mm sweep, 0.89 m/s, 152 mm depth, high
moisture (8.3% d.b.) , high compaction (1,100 kPa)
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Figure 4.7: Run #16 – 178 mm sweep, 2.68 m/s, 152 mm depth, high moisture (8.3%
d.b.) , high compaction (1,100 kPa)

Figure 4.8: Run #111 – 178 mm sweep, 4.47 m/s, 152 mm depth, high moisture (8.3%
d.b.) , high compaction (1,100 kPa)
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Figure 4.9 shows the average draft force and +/- three standard deviations for the

eight treatments that were repeated.  Figure 4.10 shows the average vertical force and +/-

three standard deviations for the eight treatments that were repeated.  These treatments were

used  for  the  comparison  with  the  simulation.   Figure  4.9  shows  that  seven  of  the  eight

repeated treatments had relatively small standard deviations in the average measured draft

load, where the standard deviation is highest at the high compaction (1,100 kPa) and high

moisture (8.3% d.b.).

Figure 4.9: Field cultivator standard - average draft force values and +/- 3 standard
deviations for repeated treatment levels with 178 mm sweep and 2.68 m/s
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Figure 4.10: Field cultivator standard - average vertical force values and +/- 3 standard
deviations for repeated treatment levels with 178 mm sweep and 2.68 m/s

4.3 Statistical Analysis
A statistical analysis was conducted on the data to determine which independent

variables were significant in predicting the draft and vertical loads.  Scatter plots were

created and a multiple regression analysis was carried out with backward elimination by

eliminating the variables with the highest P-value greater than 0.10 one at a time starting with

the variable that had the highest P-value.  Based on the literature review (Mouazen and

Ramon, 2000) an additional variable of speed squared was added to the independent

variables.  After the initial regression analysis the speed variable was dropped with a P-value

of 0.6701.  The second variable that was dropped was sweep width with a P-value of 0.1599.

The remaining four variables all had P-values lower than 0.10 and were all statistically

significant in relation to the draft load.  However, reducing the number of variables did not

improve the coefficient of determination which was 75.0 percent.
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Table 4.2 shows the P-values for each iteration of the regression analysis and the

resulting coefficients for the predictor equation (4.1).  Based on the ANOVA analysis shown

in Table 4.2, the predictor equation for the draft load is,

Draft (N) = -2,088.1 (N) + 20.794 x Speed2 (m2/s2) + 3.6287 x Depth (mm)

+ 0.36447 x Compaction (kPa) + 225.18 x Moisture (% d.b.) (4.1)

A similar analysis was carried on the data for the vertical loading.  In the first pass of

the regression analysis the speed squared variable was dropped with a P-value of 0.7118.  In

the second pass the sweep width variable was dropped with a P-value of 0.4383.  The

remaining  four  variables  all  had  P-values  that  were  below  0.1  and  were  all  statistically

significant in relation to the vertical loads at the 95 percent confidence level.  The coefficient

of determination for the resulting predictor equation was only 65.6 percent.

Table 4.3 shows the P-values for each iteration of the regression analysis and the

resulting coefficients for the predictor equation.  Based on the ANOVA analysis, the

predictor equation for the vertical load is,

Vert (N) = 699.58 (N) – 43.608 x Speed (m/s) – 2.5354 x Depth (mm) – 0.093739

x Compaction (kPa) – 53.250 Moisture (% d.b.) (4.2)

Figure 4.12 shows the predicted values of the vertical force versus the measured

values.  The predictor equation was able to predict the average vertical force to within +/-

three standard deviations of the measured data in seven of the eight treatments.

An  additional  regression  analysis  was  performed  on  the  vertical  force  with  just  the

measured draft load as the predictor variable.  The regression analysis showed that the draft

variable is statistically significant at the 95 percent confidence level with no intercept.  Table

4.4 shows the P-values for each iteration of the regression analysis and the resulting

coefficient for the predictor equation.  Based on the ANOVA analysis, the predictor equation

for vertical load is,
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Vert (N) = – 0.39058 Draft (N) (4.3)

Figure 4.13 shows the predicted values of the vertical force versus the measured

values.  The predictor equation was able to predict the average draft to within +/- three

standard deviations of the measured data for all eight treatments.

The full tabular results for all of the regression analyses are provided in the

Appendix.

Table 4.2: Regression analysis P-values and final coefficients for field cultivator draft
loads

Intercept Sweep Speed Speed^2 Depth Compaction Moisture
Iteration#1 0.0000 0.2304 0.6701 0.4437 0.0000 0.0000 0.0000
Iteration#2 0.0000 0.1599 0.0000 0.0000 0.0000 0.0000
Iteration#3 0.0000 0.0000 0.0000 0.0000 0.0000
Coeff. -2,088.1 20.794 3.6287 0.36447 225.18
Units N mm m/s m^2/s^2 mm kPa % d.b.

Figure 4.11 shows the predicted values of the draft force versus the measured values.

The  predictor  equation  was  only  able  to  predict  the  average  draft  force  to  within  +/-  three

standard deviations of the measured data in three of the eight treatments.
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Figure 4.11: Predictor equation for draft force values compared to measured values

Table 4.3: Regression analysis P-values and final coefficients for field cultivator vertical
loads

Intercept Sweep Speed Speed^2 Depth Compaction Moisture
Iteration#1 0.0002 0.3990 0.6434 0.7118 0.0000 0.0035 0.0091
Iteration#2 0.0001 0.4383 0.0018 0.0000 0.0032 0.0084
Iteration#3 0.0001 0.0017 0.0000 0.0030 0.0081
Coeff. 699.58 -43.608 -2.5354 -0.093739 -53.250
Units N mm m/s m^2/s^2 mm kPa % d.b.
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Figure 4.12: Predictor equation for vertical force values compared to measured values

Table 4.4: Regression analysis P-value and final coefficient for field cultivator vertical
loads as a function of the draft loading

Intercept Draft
Iteration#1 0.9860 0.0000
Iteration#2 0.0000
Coeff. -0.39058
Units N N
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Figure 4.13: Predictor equation for vertical force as a function of measured draft force
values compared to measured values

4.4 Modal Analysis
The field cultivator standard was mounted to a rigid structure of four by four steel

tubing mounted to the floor.  Accelerometers were mounted to an aluminum block which was

then glued to the bottom of the sweep next to the shank.  One accelerometer was mounted in

the fore-aft direction and the other in the vertical direction.  A large metal mallet was used to

rap the end of the sweep to induce vibration in the standard assembly.  The accelerometers

were connected to a Somat Edaq data acquisition system and controlled by a laptop

computer.  The acceleration time histories were recorded at a frequency of 1,000 Hz.  Figure

4.14 and Figure 4.15 show the test stand setup and the location of the accelerometers.
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Figure 4.14: Modal analysis test stand for field cultivator standard
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Figure 4.15: Accelerometer mounting to field cultivator standard

Several tests were run and three tests with no double hits or noise were analyzed to

calculate the natural frequency of the assembly.  The calculated natural frequency of the field

cultivator standard was 22.6 Hz and was consistent for all three tests.  The natural frequency

value was also used to correlate with the structural FEA model later on.  The vibration data

was  also  used  to  calculate  the  damping  of  the  spring  reset  standard  to  also  use  in  the

structural FEA model.  An example of a partial time history is shown in Figure 4.16.  Table

4.5 shows the damping calculations.
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Figure 4.16: Time history of vibration data from accelerometer

The equations for calculating the damping from the measured accelerometer data are:

2/1ln XX (4.1)

224
(4.2)

nc 2 (4.3)

n/2 (4.4)

where:   = logarithmic decrement

 = damping ratio

n = natural frequency (Hz)

c = damping

 = beta damping.

mailto:Modal2@Accel_Horz.RN_5
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Table 4.5: Damping calculation for field cultivator standard
Run # 1 3 4 5 6 Average
X1 = 24.9200 21.5471 36.4987 26.5509 11.4312
X2 = 21.9986 18.4617 32.1731 23.2979 9.8420
Logarithmic decrement = 0.1247 0.1545 0.1261 0.1307 0.1497
Damping ratio = 0.0198 0.0246 0.0201 0.0208 0.0238 0.0223
Natural frequency (wn) = 22 22 22 22 22 22
Damping c = 0.8730 1.0819 0.8832 0.9151 1.0479 0.9820
Beta = 0.0020

4.5 Frequency Analysis of Measured Draft Force
A frequency analysis was conducted on the measured draft force time history data to

determine if there were common frequencies that occurred across treatments levels.  A power

spectral density analysis was run for each treatment using nCode’s nSoft 2004 software.  The

data was then exported in ASCII format and imported into MicroSoft Excel for plotting.  For

each treatment level, the three frequencies with the highest RMS power were recorded.

Figure 4.17 is an example of the plot from a power spectral density analysis and shows how

the three frequencies were determined.  Figure 4.18 compares the measured draft load

frequencies from the soil bin tests by treatment level for the repeated treatment levels.  Figure

4.19 shows the results for all treatment levels tested.  Both figures include a line representing

the natural frequency of the field cultivator standard.

Figure 4.18 shows that for the eight treatments that were repeated, at least one of the

three highest power frequencies coincided between repetitions.  The very low frequencies,

less than one hertz, that appear in the graph indicate that random vibration was significant in

the draft force time histories.  The most common frequency across all treatments was around

14.8 Hz which indicates that the dominant frequency is a function of the standard and the

tool carrier it was mounted to at the soil bin rather than the soil fracture/failure frequency.
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Figure 4.17: Example of power spectral density plot of measured draft forces

Figure 4.18: Dominant frequencies of measured draft forces for 176 mm sweep
at 2.68 m/s
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An additional investigation was made to determine if the field cultivator standard

stiffness influenced the frequency of the draft loads.  To do this, a singe example of the

power spectrum density plot of the measured draft force from each treatment level was

copied to Microsoft Excel.  The first column contained the frequency and the second column

contained the RMS power.  In the third column the RMS powers were unitized by dividing

the RMS power column by the maximum value.  The frequency column and the unitized

RMS power column were then plotted and compared in various ways to look for patterns.

Unitizing the RMS Power values was necessary to make the overlaid data more viewable.

Figure  4.20  shows the  raw overlaid  data  to  show how the  difference  in  RMS Power  levels

makes unitizing the data necessary.

Plots were created to compare across speeds,  soil  conditions,  test  depths,  and sweep

size.  Several plots are presented to illustrate the comparisons that were considered.  Figure

4.21 through Figure 4.23 compare the 176 mm sweep at 76 and 152 mm depths for all four

soil conditions at speeds of 0.89, 2.86, and 4.47 m/s respectively.  Figure 4.24 compares the

254 mm sweep at 76 and 152 mm depth for all four soil conditions at 2.86 m/s.  Figure 4.25

compares between the 178 and 254 mm sweeps at 76 and 152 mm depths but only for the soil

condition with the high moisture level, 8.3% d.b., and the high compaction, 1,100 kPa.

All  of  the  plots  show  random  vibration  occurred  but  there  were  several  common

harmonics that were visible.  For the 176 mm sweep at 0.89 m/s a common frequency was

found at about 3.5 Hz.  For the 176 mm sweep at 2.86 m/s common frequencies were found

at about 14,15, and 17 Hz.  For the 176 mm sweep at 4.47 m/s common frequencies were

found at about 14, 25, and 28 Hz.  For the 254 mm sweep at 2.86 m/s common frequencies

were found at about 8, 15, and 17 Hz.  A common frequency across all of the data occurred at

about 50 Hz.  It is not clear if this high frequency is related to the natural frequency of the

test fixture.

The unloaded natural frequency of the standard assembly, 22.6 Hz, did not occur as a

strong frequency in the data.  One reason for this may be that the natural frequency was

measured in the unloaded condition.  Treating the soil and field cultivator standard as a

spring mass system, the natural frequency is,
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m
k (4.5)

where k is the equivalent stiffness (distance/force) and m is the equivalent mass.  Assuming

that the stiffness is primarily controlled by the structure of the standard and that the soil

contributes to the mass, then the effect of the soil would be to increase the equivalent mass

which will reduce the resonance frequency of the first mode.

As the sweep is loaded by the soil, the shank deflects rearward and slightly changes

shape.  This change in shape may also change the stiffness of the system and poses another

possible reason for the difference between the loaded and unloaded frequencies.  This effect

could be studied by running a modal analysis on the deformed shank shape.

Figure 4.20: PSD plot for 178 mm sweep at 0.89 m/s, 76 & 152 mm depth, and all soil
conditions
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Figure 4.21: Unitized PSD plot for 178 mm sweep at 0.89 m/s, 76 & 152 mm depth, and
all soil conditions

Figure 4.22: Unitized PSD plot for 178 mm sweep at 2.86 m/s, 76 & 152 mm depth, and
all soil conditions
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Figure 4.23: Unitized PSD plot for 178 mm sweep at 4.47 m/s, 76 & 152 mm depth, and
all soil conditions

Figure 4.24: Unitized PSD plot for 254 mm sweep at 2.86 m/s, 76 & 152 mm depth, and
all soil conditions
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Figure 4.25: Unitized PSD plot for 178 & 254 mm sweep at 2.86 m/s, 76 & 152 mm
depth, 8.3% d.b, and high compaction (1,100 kPa)

Attempts  were  also  made  to  determine  the  dominant  frequency  of  the  load  data  by

reviewing the high speed video that was taken during the test.  The number of soil failures

was counted and divided by the time over which the failures occurred.  This method did not

match the PSD data very consistently and was difficult to perform due to unclear soil failure

surfaces.  This was especially true for the low compaction soil which tended to fail in a

flowing manner with no definitive failure surface.  At higher speeds the fractured soil coming

off of the sweep and shank obstructed the camera view of the soil failure surface.  Table 4.6

shows a summary of six treatments and the comparison between the measured frequency data

and the calculated frequency from the high speed video.  This method could not be used with

the rigid flat bar lab tests because the video camera was placed overhead.  The fractured soil

blocked the camera view making it impossible to count the fractured surfaces.
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Table 4.6: Comparison of measured draft force frequency to high speed video
frequency calculation

Measured High Speed Video
Sweep Speed Depth Compaction Moisture Dominant Time Fractures Calculated
(mm) (m/s) (mm) (kPa) (% d.b.) Frequency (sec) (#) Frequency
178 0.89 152 1,100 8.3% 6-7 0.746 5 6.7
178 0.89 152 1,100 6.9% 8-10 0.746 8 10.7
178 2.68 76 1,100 6.9% 14-17 0.748 23 30.7
178 2.68 76 1,100 6.9% 14-17 0.746 24 32.2
178 2.68 152 1,100 8.3% 14-17 0.748 24 32.1
254 2.68 76 1,100 8.3% 13-15 0.746 21 28.2

The results in Table 4.6 show that the soil fracture rate is related to the dominant

frequency  of  the  draft  force.   For  the  two  cases  at  the  0.89  m/s  speed  the  ratio  was

approximately one-to-one. For the other load cases at the 2.68 m/s the ratio was about two-

to-one.   From these  results  it  is  not  possible  to  tell  whether  the  fracture  rate  is  driving  the

draft force response frequency or the resonance response is driving the fracture frequency.

Measuring the resonant frequency of the field cultivator standard with a load applied might

show if the resonant frequency of the loaded structure matches the measured frequency of the

draft loading.  Conducting additional soil bin tests at different compaction levels would also

help clarify if the structure stiffness drives the draft force frequency.

4.6 Conclusions
Soil bin tests were conducted using a 178 mm and 254 mm wide sweep with a spring

reset  field  cultivator  standard.   Thirty-two  treatments  were  considered  and  eight  of  the

treatments were run with three repeats.  The sweep width, speed, depth, soil compaction, and

soil moisture were varied.  The repeated runs were run with the 178 mm sweep at a speed of

2.66 m/s (6 mph) while just the depth, compaction, and moisture levels were varied.

The results for the repeated runs showed a fairly low level of variability in the draft

force except for the treatment run at the higher depth, compaction, and moisture level.  For

both  sizes  of  sweep  the  average  ratio  of  vertical  to  draft  force  was  forty  percent.   In

predicting the draft load, the speed squared, depth, compaction, and moisture variables were

all statistically significant at the 95 percent confidence level.  In predicting the vertical load
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the speed, depth, compaction, and moisture variables were all statistically significant at the

95 percent confidence level.

The natural frequency was experimentally determined for the unloaded field

cultivator standard using accelerometers.  The natural frequency was calculated to be 22.6

Hz.  The accelerometer data was also used to calculate the damping of the spring reset

standard for use in the fluid-structure analysis.

The analysis of dominant measured draft force frequencies showed that there was

overlap in the repeated treatments.  The most common frequency across all treatments was

14.8 Hz which may indicate that the draft force frequency is related more to the stiffness of

the standard and the mounting than to the frequency of the soil failure.  Common frequencies

of around 14 to 15 Hz was found in the data for the 178 mm sweep at 2.86 and 4.47 m/s and

for the 254 mm sweep at 2.86 m/s for all soil conditions.  If this is the case, then in practice,

predicting the load frequency would be related to the stiffness of standard and the implement

structure stiffness, rather than the soil, which could be determined experimentally.  The lower

frequency of the draft force data compared with the natural frequency of the unloaded field

cultivator  standard  may  be  attributed  to  the  additional  mass  of  the  soil  when  treated  as  a

spring-mass system or a change in the standards stiffness in the loaded condition.

An attempt was made at predicting the draft force frequency by counting the soil

failure surfaces from high speed video recordings of the lab tests and dividing by the elapsed

time.  This method proved difficult but did show that the soil fracture rate was related to the

dominant draft force frequency.  This method was impossible to use at the low compaction

level because the soil failed in a flowing manner with no distinct fracture surfaces.

Additional testing would help to clarify the relationship.
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5. CFD SOIL MODEL

As  previously  mentioned,  the  soil  was  modeled  as  a  Bingham  plastic  for  all  of  the

simulation models.  The values of density, yield strength and viscosity used in the

simulations were measured and calculated as described in Chapter 2 and summarized in

Table 2.2.  To implement the visco-plastic model into the CFD software, equations were

programmed into the software using the CFX expression language (CEL).  The expressions

were then referenced in the CFD material definition for the soil.

According to the Bingham plastic model the strain rate is zero until the soil shear

stress reaches the yield strength.  After yield is reached the soil shear stress and strain rate are

directly  proportional  as  a  function  of  the  viscosity.   Because  the  slope  of  the  shear  stress

versus strain rate is infinite until the yield strength is reached it is numerically impossible.

To compensate for this a lower strain rate limit greater than zero is used to create a bilinear

viscosity.  Based on the recommendations of the CFX theory manual a low limit for the

strain rate of 0.001 s-1 was used (2007).

Visc = dynamic viscosity (Pa s) (5.1)

Yield = yield strength (Pa) (5.2)

LowLimit = 0.001 (s^-1) lower strain rate limit (5.3)

sstrnr = strain rate (s^-1) (5.4)

Visceqn = Yield / [max (sstrnr, LowLimit)] + Visc (Pa s) (5.5)

Using the equations 5.1 through 5.5, five test models were created.  The values of

equations 5.1 and 5.2 were modified to see if the effects would come out as expected.  The

test values with the resulting range of dynamic viscosity and strain rates are provided in

Table 5.1.  The curves plotting the shear stress versus strain rate are shown in Figure 5.1.

Note that for strain rates between zero and the LowLimit, the viscosity is equal to yield

strength divided by the LowLimit value plus the measured dynamic viscosity.  Above yield

the viscosity is equal to Yield divided by the actual strain rate plus the measured dynamic
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viscosity.  This method proved to the numerically stable and easy to implement the different

soil treatment levels that were used in the laboratory tests.

Figure 5.1: Shear stress versus strain rate for soil model test cases

5.1 Model
In  order  to  test  the  soil  model,  a  simple  two  dimensional  model  was  created  to

simulate a concentric cylinder viscometer.  In the model the outside of the domain is defined

as a wall with no slip conditions.  The inside diameter of the domain also was defined as a

wall with no slip conditions and given a velocity of 0.001 m s^-1 in the theta direction.  The

top and bottom cutting planes were defined with symmetry boundary conditions.  The

simulations were run as static with the solution allowed a maximum of 100 iterations with a

convergence value of 1e-6 for the RMS of the residuals for all of the governing equations

across the entire domain.  The solution timestep was chosen automatically by the software.
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5.2 Results
Table 5.1 below shows the different Yield and Visc values considered and the

resulting calculated dynamic viscosity and strain rate ranges across the gap between the inner

and outer cylinders.  Figures 5.2 through 5.6 show the dynamic viscosity profile for each of

the five models.  The models showed that the expressions created to model the visco-plastic

behavior work correctly and can be applied to the rigid flat bar and the field cultivator

standard simulations.

Table 5.1: Soil test model inputs and results
Inputs Dynamic Viscosity Strain Rate (sstrnr)

Model Yield Visc Min Max Min Max
Name (N m^-2) (N s m^-2) (N s m^-2) (N s m^-2) (s^-1) (s^-1)
Model 1 6,000 6,000 7.160E+04 6.006E+06 7.624E-04 9.162E-02
Model 2 0 6,000 6.000E+03 6.000E+03 1.801E-02 2.765E-02
Model 3 12,000 6,000 1.261E+05 1.201E+07 7.421E-04 1.001E-01
Model 4 1,000 6,000 2.369E+04 6.511E+05 1.550E-03 5.655E-02
Model 5 1,000 1,000 1.193E+04 1.001E+06 7.624E-04 9.161E-02

Figure 5.2: Model 1 dynamic viscosity plot (Yield=6,000 Pa, Visc=6000 Pa-s)
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Figure 5.3: Model 2 dynamic viscosity plot (Yield=0 Pa, Visc=6,000 Pa-s)

Figure 5.4: Model 3 dynamic viscosity (Yield=12,000 Pa, Visc=6,000 Pa-s)
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Figure 5.5: Model 4 dynamic viscosity (Yield=1,000 Pa, Visc=6,000 Pa-s)

Figure 5.6: Model 5 dynamic viscosity (Yield=1,000 Pa, Visc=1,000 Pa-s)
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5.3 Conclusions
The Bingham-Plastic material model was tested using a 2-d model of a concentric

cylinder viscometer.  The benefit of the test models was that the models are simple enough

that the run times were very short.  In addition, results for the two-dimensional models can be

visually interpreted.  The test models showed that the equations used to simulate the

Bingham-Plastic model work correctly.



88

6. RIGID FLAT BAR SIMULATION

A  steady-state  CFD  simulation  was  created  for  the  rigid  flat  bar  to  develop  the

methodology and compare to the lab test results.  Chapter 3 presented the actual lab test of

the rigid flat bar.  For this simulation the same parameters were varied and the calculated

draft was compared to the measured data.  This chapter presents the details of the model and

the results.  Lessons learned from this simulation were then applied to the final model of the

spring reset field cultivator standard presented in the next chapter.

6.1 Model
The geometry for the simulation was created in ANSYS version 11.0 Design Modeler

within the Workbench environment.  The model was created as a half-symmetry to reduce

the model size.  A domain was chosen reasonably large so the walls would not significantly

influence the flow.   The domain size was 3 m long by 1.5 meter wide by 1.0 m deep with 0.5

m depth below the bottom of the bar.  Figure 6.1 shows the domain.  The domain was

divided horizontally so that the mesh would have definite boundaries between the soil and air

at the two test depths of 51 and 102 mm.  The domain was divided between soil and air with

equations that were programmed into the software using the CFX expression language (CEL)

defining  the  element  volume  ratio  between  soil  and  air.   The  expressions  were  then

referenced in the domain initialization and at the inlet.  The equations allowed for the depth

of the soil to be specified without requiring the domain to be divided.  The equations to

defining the volume ratios for each element in the domain are

Height = Y + Offset – Depth (6.1)

Vair = step(step(Height/1 [m]) – 0.6) (6.2)

Vsoil = 1 – Vair (6.3)

where  Y  is  the  location  on  the  vertical  axis  in  the  domain,  Offset  is  the  distance  from  the

vertical  axis to the bottom of the tool (m),  Depth is the desired operating depth of the tool

(m),  Height  is  the  vertical  distance  above  the  soil  surface  (m)  (positive  above  the  surface,
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negative  below the  surface),  Vair  is  the  element  volume ratio  of  air  relative  to  the  vertical

location in the domain, and Vsoil is the element volume ratio of soil relative to the vertical

location in the domain.  For locations in the domain below the soil surface the value of Vair

is zero and the value of Vsoil is equal to one.  Above the soil surface the opposite is true.

This method allows for simple editing of the simulation input file to adjust the soil

depth in the simulation.  However, results will be improved at the soil surface if the domain

is divided so that the mesh is divided at the desired soil depths.  These equations were also

used in the simulation of the field cultivator standard.  The double step function in equation

6.2 changes the value of Height to either zero or one.  The second step function is required

because if the value of Height is equal to zero the first step function has a value of 0.5.  The

subtraction of 0.6 makes the sum become negative and the second step function makes the

value of Vair go to zero at the surface when Height does equal zero.  Equation 6.3 assures

that the sum of the volume ratios does not round off to a value other than exactly one.

1.0m

1.5m
3m

0.5m

Figure 6.1: Rigid flat bar simulation domain

The full domain mesh is shown in Figure 6.2.  Figure 6.3 shows a close-up of the

mesh around the rigid flat bar with the mesh inflation layers for improved results on the
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surface.  The model contained 737,561 elements and 139,610 nodes.  A mesh density of

0.006 mm was used on the surface of the flat bar.  The mesh size was expanded in the

remainder of the domain to a maximum element size of 50 mm.  The mesh was made up of

tetrahedron elements created in ANSYS Workbench Simulation and imported into ANSYS

CFX pre-processor.

The boundary conditions were applied to the faces of the domain to replicate the

actual lab test.  Initially, a set of boundary conditions were determined that were reasonable

and gave good results.  The test speed was defined at the inlet and outlet.  The half-symmetry

cutting plane was defined as a symmetry boundary condition.  The surfaces of representing

the flat  bar were defined with free slip conditions.   The rest  of the domain walls were also

defined with free slip conditions.

Figure 6.2: Rigid flat bar simulation mesh
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Figure 6.3: Close-up of rigid flat bar mesh

Table 6.1 shows the original development of the boundary conditions and the

corresponding results.   As the table shows, the results varied greatly depending on how the

boundary conditions were defined.  The basis for defining the speed at the inlet and outlet

was in considering the domain a window moving with the bar through the soil.  In such a

case the “speed” of the soil moving into the domain would have to equal the speed out of the

domain for conservation of mass to be maintained.

After the rigid flat bar simulations were completed, the steady-state field cultivator

standard simulations were run.  However, the results indicated that the same boundary

conditions would not work.  So, the boundary conditions were modified in a methodical

manner and a new set of boundary conditions were determined.  These new boundary

conditions were then applied to the rigid flat bar simulations to make sure the conditions

were “universal” for the two model types considered in this research.
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The final boundary conditions used were different at the outlet and top surfaces.  The

outlet was defined as a static pressure outlet with 0 Pa pressure.  The top surface was defined

as an opening, allowing fluid to enter or exit, with a pressure of 0 Pa defined.  The amount of

compaction and moisture level were accounted for in the material properties.  The boundary

conditions are illustrated in Figure 6.4.

Inlet
Speed

Outlet
0 Pa

Top
0 Pa Opening

Symmetry
Plane

Bottom
Wall

Outside
Wall

Figure 6.4: Rigid flat bar CFD domain boundary conditions

To implement the Bingham-plastic model into the CFD software, equations were

programmed into the software using the CFX expression language (CEL).  This is the same

method used to verify the material models from Chapter 5.  The expressions were then

referenced  in  the  CFD material  definition  for  the  soil.   Air  at  20  degrees  Celsius  was  also

included in the model from the software fluid library.  While running the simulations it

became apparent that changes to the material property values would be required to get results

that matched the test results.  Simulations were also run with the yield strength divided by

factors of 2.0. 2.25, and 2.5 but 3.0 showed to provide the best correlation with the lab test

results.  Ultimately it was found that dividing the viscosity by 100 and the yield strength by a
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factor  of  three  yield  the  best  results  for  both  the  rigid  flat  bar  and  the  field  cultivator

simulations.

A possible reason for this difference in material properties may be due to differences

between  the  material  measurement  method  and  the  actual  tests  being  simulated.   The  soil

viscometer test was run with the shear vane beneath the soil surface so that the soil was

contained and could not expand as failure occurred.  The rigid flat bar and field cultivator

tests disturbed the soil from the surface down so that soil expansion, dilation, could occur as

the soil failed.  By confining the soil, the viscometer tests may have forced the soil to appear

to be stiff or stronger than if dilation were allowed to occur.  Other published soil property

data were based on static or near static measurements and were higher in value for both

viscosity and strength than those that were measured or used in this dissertation.

Another difference between the viscometer test and the other lab test is the speed of

the tests.  The soil viscometer test was run at a maximum rotational speed of 1.333 rpm

which equates to a shear vane tip speed of 0.004 m/s.  This is 700 times slower than the

common test speed of 2.68 m/s used in both the rigid flat bar and the field cultivator lab tests.

The  simulation  was  run  as  a  static  analysis  and  launched  from  the  CFX  solver

manager with parallel processing on a 64 bit Windows workstation with 8 Gb of RAM.  The

convergence was set at 1e-6 with the number of iterations limited.  Each treatment simulation

was run to 100 iterations.  Full convergence was not reached by any of the simulations but

the forces in the draft direction were monitored during each run and did appear to reach

convergence.  Figure 6.5 is an example from one simulation to show the convergence of

pressure on the bar face.  The first two points were on the front side and the third point was

on the back side.  Figure 6.6 is an example from one simulation to show the convergence of

the sum of the forces in the draft (X) direction.
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Figure 6.5: Rigid flat bar – example of pressure convergence on front and back of bar

Figure 6.6: Rigid flat bar – example of draft force convergence
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6.2 Results
Simulations were run at the twelve treatment levels from the lab test.  Results were

compared against the average measured draft with the +/- three standard deviations and the

predictor equations and are presented in Figure 6.7 and Figure 6.8 with Yield divided by 2.0

and  3.0  respectively.   Overall,  the  simulations  were  able  to  capture  the  trends  in  the  draft

loading.  With the yield strength divided by 2.0, the predicted draft force fell within the +/-

three standard deviations in only five of the twelve treatments.

The  predictor  equation  was  within  three  standard  deviations  in  seven  of  the  twelve

treatments. With the yield strength divided by 3.0, nine of the twelve treatment levels, the

predicted draft fell within +/- three standard deviations of the measured values.  The

predictor equation was within three standard deviations in seven of the twelve treatments.  Of

the three treatments that the predicted draft load did not fall within three standard deviations,

one fell on the high side and two fell on the low side.

None of the runs reached the actual defined convergence tolerance over the entire

domain.  This was attributed to the abrupt interruption in the flow around the flat bar.

However,  the  total  draft  force  did  show  good  convergence.   The  pressure  at  points  on  the

front and back of the rigid flat bar were also monitored and also showed convergence.  Each

simulation took approximately 2.2 hours to run on a Windows 64 bit workstation with 8Gb of

memory.

Figure 6.9 and Figure 6.10 show the density distribution in the domain for treatment

D4S6L.  An isosurface was defined at 1,200 kg/m3 to show the soil surface and buildup on

the front of the rigid flat bar.  Figure 6.11 shows the pressure distribution on the flat bar with

the maximum pressure of 89.07 kPa.  The pressure value and distribution are comparable to

results found by Karamakar and Kushwaha (2005b).  Figure 6.12 shows the pressure in the

soil on the surface.  The distance in the fore-aft direction from the bar to where the pressure

is  equal  to  the  strength  of  the  soil  is  the  predicted  distance  ahead  of  the  bar  that  the  soil

would fail.  The distance was measured from the pressure plots and included in Table 6.2.

Table 6.2 summarizes the predicted maximum pressures on the bar face, and the predicted

soil failure distance from the bar face.
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Comparisons were attempted to the lab test data by measuring the distance from the

flat bar face to the failure surface by taking measurements from the overhead recorded

videos.   There  were  only  two  runs  were  the  failed  soil  did  not  block  the  view  of  the  soil

failure ahead of the tool.  Images from the video are shown in Figures 6.13 and 6.14.  The

figures have been annotated to show the distance from the face of the bar to the edge of the

soil failure surface.  Figure 6.13 shows the failure distance of 114 mm compared with the

predicted distance of 104 mm for the treatment with the speed of 0.89 m/s, depth of 102 mm,

and compaction of 1,100 kPa.  Figure 6.14 shows the failure distance of 127 mm compared

with the predicted distance of 113 mm for the treatment with the speed of 1.79 m/s, depth of

102 mm, and compaction of 1,100 kPa.

Table 6.2: Rigid flat bar simulation max pressure and failure distance summary

Predicted Predicted
Speed Depth Compaction Max Pres Failure
(m/s) (mm) (kPa) (kPa) (mm)
0.89 51 200 34 33
1.79 51 200 55 89
2.68 51 200 73 100
0.89 102 200 37 24
1.79 102 200 60 111
2.68 102 200 79 133
0.89 51 1,100 134 78
1.79 51 1,100 179 87
2.68 51 1,100 220 92
0.89 102 1,100 149 104
1.79 102 1,100 197 113
2.68 102 1,100 240 117
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Figure 6.7: Rigid flat bar simulation – predicted draft by treatment with Yield/2.0
compared to measured average draft force and +/- 3 standard deviations

Figure 6.8: Rigid flat bar simulation – predicted draft by treatment with Yield/3.0
compared to measured average draft force and +/- 3 standard deviations
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Figure 6.9: Rigid flat bar simulation – 2.68 m/s, 102mm depth, low compaction (200
kPa) - domain density

Figure 6.10: Rigid flat bar simulation – 2.68 m/s, 102mm depth, low compaction (200
kPa) - domain density
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Figure 6.11: Rigid flat bar simulation – 2.68 m/s, 102mm depth, low compaction (200
kPa) –pressure on flat bar

Figure 6.12: Rigid flat bar simulation – 2.68 m/s, 102mm depth, low compaction (200
kPa) soil pressure at the surface (top view)
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Figure 6.13: Rigid flat bar failure distance – 0.89 m/s, 102mm depth, high compaction
(1,100 kPa)

Figure 6.14: Rigid flat bar failure distance – 1.79 m/s, 102mm depth, high compaction
(1,100 kPa)
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6.3 Conclusions
A series of steady-state CFD simulations were run and compared to the soil bin

results for the rigid flat bar.  Overall, the simulations were able to show the trends in the draft

loading.   In  nine  of  the  twelve  treatment  levels,  the  predicted  draft  force  fell  within  three

standard deviations of the measured data.

Adjustments were required to the soil material parameters for the predicted forces to

correlate with the measured data by dividing the viscosity by a factor of 100 and the yield

strength by a factor of three.  These adjustments were determined in an iterative process

based  on  the  field  cultivator  standard  and  the  rigid  flat  bar  simulations.   There  are  several

possibilities for this: the soil property measurement test may not be appropriate for this

application, the measured soil properties are not good with viscosity not being a factor and

dividing the shear strength by a factor of three was coincidental, or the simulation does not

adequately represent the actual conditions being replicated.  Running the simulation with

viscosity removed from the Bingham-plastic model would clarify the impact of viscosity.

Running the simulation with different bar geometries would help clarify the appropriateness

of the soil parameters that were used.

An initial set of boundary conditions were developed based on trying various

combinations and comparing the predicted draft and vertical forces with the average

measured values.  However, when the boundary conditions were applied to the field

cultivator standard simulation the results did not match.  Additional iterations were required

and  developed.   The  boundary  conditions  were  verified  in  both  simulations  and  across  a

range of operating conditions.
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7. FIELD CULTIVATOR STANDARD SIMULATION

The main objective of this research was to predict the dynamic loads on a spring reset

field cultivator standard.  To accomplish this, both steady-state CFD and two-way interactive

transient FEA-CFD analyses were run and the results were compared with the lab test results

from  chapter  4.   The  models  were  half-symmetry  to  reduce  the  model  size  and  run  times.

The geometry was simplified to reduce small features that were not conducive to the meshing

for both the FEA and CFD domains.  Over the course of this research many iterations were

run to determine the combination of parameters and boundary conditions that yielded the best

and most consistent results.

7.1 Model
The structural model included the bucket, spring, pivot casting, pin, shank, adapter,

and sweep.  The bucket, pivot casting, pin, shank, adapter, and sweep were modeled with

solid 10-node tetrahedron elements.  The sweep, shank, and adapter were merged into one

part in ANSYS Design Modeler so that there were no voids between the parts as required for

the CFD model.  The spring was modeled with a linear spring element with a spring rate of

22,766 N/m.  The no-load position of the standard compresses the spring such that there is a

preload of about 1,890 N which was included in the model.  Figure 7.1 shows the meshed

model with the boundary conditions.

A half-symmetry CFD domain was created around the structural model to simulate air

and soil flowing by the standard.  The CFD domain was 2.1 m wide, 4.5 m long, and 1.25 m

high with 0.5 m below the bottom of the sweep.  Figure 7.2 shows the CFD domain with the

major dimensions.  The domain was meshed with the ANSYS CFX mesher using tetrahedron

elements.  The domain mesh had 1,030,606 elements and 737,561 nodes.  An inflation layer

of elements was created on the face of the sweep and shank.  Figure 7.3 shows the mesh of

the entire domain.  Figure 7.4Error! Reference source not found. shows a close-up of the

mesh around the field cultivator standard with the inflation layers.
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Surfaces
fixed

Spring with
Preload

Symmetry
Plane

1G gravity
load

Pinned joint
between bucket
and pivot casting

Frictionless contact
between front of pivot
casting and bucket

Figure 7.1: Field cultivator structural model

1.25m

2.1m
4.5m

0.5m

Figure 7.2: Field cultivator CFD domain
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Figure 7.3: Field cultivator standard CFD domain mesh

Figure 7.4: Field cultivator standard CFD domain mesh close-up
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Table 7.1: Field cultivator standard simulation boundary condition development
Treatement Domain Solver Setup

Speed Depth Comp. Moist. Initial Multiphase Boundary Conditions Time Time Vlm Frac Soil Property
(m/s) (mm) (H/L) (H/L) Pres. Option Inlet Outlet Top Type Step (sec) sec/step iter/step Cplng Modification Pres. Force
2.68 152 L H Yes in-homog. Speed Press - Pout/Press Wall - free slip Static auto 100 Visc/100 Good Bad
2.68 152 L H Yes in-homog. Speed Speed/Speed Wall - free slip Static auto 100 Visc/100 Bad Bad
2.68 152 L H Yes in-homog. Speed Press - Pout Wall - free slip Static auto 100 Visc/100 Good Bad
2.68 152 L H Yes in-homog. Speed Press - Pout/Press Open - pres & drn - Pout Static auto 100 Visc/100 Good Good
2.68 152 L H Yes in-homog. Press Speed Open - pres & drn - Pout Static auto 100 Visc/100 Bad Bad
2.68 152 L H Yes in-homog. Speed Speed Open - pres & drn - Pout Static auto 100 Visc/100 Crash
2.68 152 L H Yes in-homog. Speed Speed Wall - free slip Static auto 100 Visc/100 Bad Bad
2.68 152 L H Yes in-homog. Speed Press - Pout Open - static entrain - Pout Static auto 100 Visc/100 Ok Bad
2.68 152 L H Yes in-homog. Speed Open - pres & drn - Pout Open - pres & drn - Pout Static auto 100 Visc/100 Bad Bad
2.68 152 L H Yes in-homog. Speed Press - Pout Open - pres & drn - Pout Static auto 100 Visc/100 Good Good
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Static auto 100 Visc/100 Good Good
0.89 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Static auto 100 Visc/100 Crash
4.47 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Static auto 100 Visc/100 Good Good
2.68 76 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Static auto 100 Visc/100 Ok Bad
4.47 76 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Static auto 100 Visc/100 Crash
2.68 152 L H Yes homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Static auto 100 Visc/100 Good Bad
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Good Good
2.68 76 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Ok Good
4.47 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Good Good
4.47 76 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Good Good
2.68 152 H H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Bad
2.68 152 H H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.05 100 Visc/100 Crash
2.68 76 H H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Crash
4.47 152 H H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100
4.47 76 H H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100
2.68 152 L L Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Good Good
2.68 76 L L Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Crash
2.68 76 L L Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 100 Visc/100 Good Good
4.47 152 L L Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Crash
4.47 152 L L Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 100 Visc/100 Good Good
4.47 76 L L Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 100 Visc/100 Good Good
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/1000 Crash
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/200 Good Good
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/500 Good Good
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/800 Good Good
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.05 50 Visc/100 Good Good
2.68 152 L H Yes in-homog. Press Speed Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 crash
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Yield/1.25 Ok Good
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Yield/1.4 Ok Bad
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Yield/1.3 Crash
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Yield/1.25 Good Good
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 50 Visc/100 Yield/1.28 Crash
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 100 Visc/100 Yield/1.3 Good Good
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 100 Visc/200 Good Good
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 100 Visc/100 Yield/1.5 Good Good
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.2 100 Visc = 0 Crash
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - 0 Pa Static auto 100 Visc/100 Crash
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Static auto 100 Visc/100 Crash
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Static 0.2 100 X Visc/100 Crash
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Static 0.1 100 X Visc/100 Ok Bad
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Static 0.1 100 X Yield/2 Crash
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Crash
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - 0 Pa Static 0.2/.01 100 X Visc/100 Crash
2.68 152 L H Yes in-homog. Speed Avg. Static Pres - Pout Open - pres & drn - 0 Pa Static 0.2/.01 100 X Visc/100 Bad Bad
2.68 152 L H Yes in-homog. Speed Speed Open - pres & drn - 0 Pa Static 0.2/.01 100 X Visc/100 Bad Bad
2.68 152 L H Yes in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Bad Bad
2.68 152 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Good Good
2.68 152 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/1.2 Good Good
2.68 152 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/1.4 Good Good
2.68 152 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/1.6 Good Good
2.68 152 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/2 Good Good
2.68 152 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Yield/2 Good Good
2.68 76 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/2 Good Good
2.68 76 H H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/2 Good Good
2.68 76 H H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/2.5 Good Good
2.68 76 H H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
2.68 152 H H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
2.68 76 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
2.68 152 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
2.68 76 L L No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
2.68 152 L L No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
2.68 76 H L No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
2.68 152 H L No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
4.47 152 H H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
4.47 76 H H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
4.47 152 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
4.47 76 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
4.47 152 H L No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
4.47 76 H L No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
4.47 152 L L No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
4.47 76 L L No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
0.89 152 H H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
0.89 76 H H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
0.89 152 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
0.89 76 L H No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
0.89 152 H L No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
0.89 76 H L No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
0.89 152 L L No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
0.89 76 L L No in-homog. Speed Avg. Static Pres - 0 Pa Open - pres & drn - 0 Pa Static auto 100 X Visc/100 Yield/3 Good Good
0.00 0
2.68 152 L H Yes in-homog. Speed Supercritical - 0 Pa Open - pres & drn - Pout Trans auto 1.0 0.1 100 Visc/100 Crash
2.68 152 L H Yes in-homog. Speed Speed Open - pres & drn - Pout Trans auto 1.0 0.1 100 Visc/100 Crash
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Many different parameters and boundary condition combinations were considered in

this research.  Table 7.1 lists many of the various combinations that were tried and the

generalized outcome.  The list of parameters that were adjusted included: viscosity, static

versus  transient  analysis,  number  of  iterations  per  time  step,  and  number  of  time  steps

(transient  analysis  only).   Initially,  steady-state  CFD  only  analyses  were  carried  out  to

determine which combination of parameters and boundary conditions gave the best results.

The number of iterations per step was set at 100 with the convergence set at 1e-6.  The

pressure at several locations on the sweep and the total force in the draft and vertical

directions  were  also  monitored  during  the  simulations.   Figure  7.5  shows the  CFD domain

with the boundary conditions labeled.

Inlet
Speed

Outlet
0 Pa

Top
0 Pa Opening

Symmetry
Plane

Bottom
Wall

Outside
Wall

Figure 7.5: Field cultivator computational fluid domain boundary conditions

Different boundary conditions were tried on the inlet, outlet, and top surfaces to the

domain.  The inlet was defined with a specified pressure and with a specified speed.

Ultimately,  defining  the  speed  at  the  inlet  proved  to  be  the  best.   At  the  outlet,  definitions

specifying the pressure or the speed were considered, as well as an opening.  The best

definition for the outlet was with a specified pressure with the supercritical option turned on
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and an air pressure of 0 Pa.  The top surface of the domain was considered as a wall with free

slip and as an opening.  Defining the top surface as an opening with a specified pressure of 0

Pa proved to be the with the inlet and outlet combinations.  The bottom surface and outside

surface were defined as walls with free slip.  The sweep and shank were also defined as walls

with free slip.  The symmetry plane was defined as such.

Other methods were used to evaluate the results separately, from comparing the

predicted forces.  For example, some combinations of parameters and boundary conditions

created suction, or negative pressure, on the back side of the sweep and shank which is not

physically possible.  Another method was to graph the pressures on the domain to see if there

was any interaction between the soil disturbance around the sweep and shank and with the

domain boundaries.  This was a test to determine if the model domain was large enough.  An

example of this is shown later.

The material properties from Chapter 2 were modified as discussed in Chapter 6.

Based on the results from the simulations and methodically varying the viscosity and yield

strength, the viscosity was divided by a factor of 100 and the yield strength was divided by a

factor of three.  These same changes were shown to be appropriate for the rigid flat bar.

The  effect  on  predicted  draft  and  vertical  forces  was  also  examined  in  relation  to

mesh  density  and  solver  parameters.   Table  7.2  shows  the  steady-state  results  of  the  same

model of the 178 mm sweep at 2.68 m/s, 152 mm depth, low compaction (200 kPa), and

8.3% d.b. moisture levels.  The table shows the effects of increasing the mesh size on the

sweep and shank, the number of iterations,  and whether the simulation was solved serially,

one processor, or in parallel on two processors.  The first column represents the baseline and

how the results published in this dissertation were run.  Figure 7.6 shows the locations on the

model  were  forces  were  recorded  from  the  CFD  analysis.   The  shaded  cells  in  the  upper

portion of Table 7.2 highlight what factor(s) was changed.

The results indicate that going from free-slip to no-slip wall conditions on the sweep,

adapter, and shank has a large effect.  The change is clearly seen in the draft force results as

the pressure forces were reduced but the viscous forces increase considerably.  The effect on

the vertical forces was also dramatic.  The viscous portion of the vertical force was negative

or created suction.
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Figure 7.6: Locations monitored for CFD predicted forces

Increasing the number of iterations from 100 to 500 also impacted the predicted force

results.  Both the predicted draft and vertical forces were lower and the convergence of the

forces was better.  The use of 100 iterations for the published results was based trying to

reach a balance between good convergence in all treatment conditions and run time.

Increasing the mesh density from between 0.003 to 0.006 m down to 0.002 m

decreased the draft force prediction by three percent, while the vertical force prediction

increased by three percent.  Increasing the number of processors from one to two caused a

one percent decrease in the predicted draft force and a ten percent increase in the predicted

vertical force.  Lowering the mesh size to just 0.001 m and using two processors resulted in a

one percent increase in the draft force and a ten percent increase in the vertical force.
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Table  7.3  shows  the  effect  of  the  soil  properties  on  the  predicted  draft  and  vertical

forces.  The table shows how changes to either viscosity, yield strength, or both.  Although

the  soil  property  measurement  test  indicated  that  the  soil  may  not  be  viscous  but  rather

elastic, the steady-state CFD results in the table show that viscosity does significantly impact

the results.  Using both the viscosity and yield strength as measured resulted in significantly

higher predicted draft and vertical forces.  Removing viscosity from the soil material model

and using the soil yield strength as measured resulted in a 26 percent reduction in predicted

draft but only a modest four percent increase in predicted vertical force.  Using the modified

yield strength and no viscosity resulted in a 73 percent reduction in predicted draft force and

a 55 percent reduction in the predicted vertical force.

Table 7.3: Effect of soil properties on predicted draft and vertical forces
Mesh Size (m) 0.003-0.006 0.003-0.006 0.003-0.006 0.003-0.006
# Elements 1,030,606 1,030,606 1,030,606 1,030,606
Surface Condition free-slip free-slip free-slip free-slip
Viscosity Visc/100 Visc/1 Visc=0 Visc=0
Yield Strength Yield/3 Yield/1 Yield/1 Yield/3
# of iterations 100 100 100 100
# Processors 1 2 2 2
Run Time (hrs) 3.2 1.7 2.2 2.3

Draft Vert Draft Vert Draft Vert Draft Vert
Pressure Force Force (N) Force (N) Force (N) Force (N) Force (N) Force (N) Force (N) Force (N)
Sweep Edge 11.4 -7.6 544.1 -333.5 8.4 -6.6 3.6 -2.6
Sweep Top 58.5 95.7 1,697.8 2,291.9 87.6 173.3 34.6 70.8
Sweep Bottom 18.2 59.8 317.7 717.9 0.5 -1.7 1.0 2.3
Adapter 0.1 0.8 70.0 1.7 0.2 0.1 0.1 0.1
Shank Front 28.3 1.4 1,956.3 153.8 39.2 2.6 9.1 1.2
Shank Back 2.9 1.3 1,447.4 368.8 2.9 0.4 1.3 0.6
Sub-Total 119.4 151.4 6,033.3 3,200.6 138.8 168.1 49.7 72.4

Draft Vert Draft Vert Draft Vert Draft Vert
Viscous Force Force (N) Force (N) Force (N) Force (N) Force (N) Force (N) Force (N) Force (N)
Sweep Edge 56.3 -33.6 3,215.7 -1,680.8 11.3 -8.8 3.9 -3.0
Sweep Top 20.6 20.8 845.9 714.7 16.5 11.1 6.8 7.1
Sweep Bottom 12.1 33.4 343.8 928.3 1.8 11.1 0.7 4.0
Adapter 0.0 0.0 8.3 8.1 -0.1 0.1 0.0 0.0
Shank Front 25.0 4.5 1,814.2 363.6 8.5 1.4 2.1 0.3
Shank Back 2.6 1.3 572.8 151.4 -2.9 1.6 0.2 0.0
Sub-Total 116.6 26.4 6,800.7 485.3 35.1 16.5 13.7 8.4
Total 236.0 177.8 12,834.0 3,685.9 173.9 184.6 63.4 80.8
% Diff. ----- ----- 5338% 1973% -26% 4% -73% -55%
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7.2 Modal Analysis
A modal analysis was run in ANSYS Workbench v11.0 to determine how well the

structural model matched the stiffness of the actual field cultivator standard.  The analysis

was  set  up  as  two  steps.   In  the  first  step,  a  static  structural  analysis  was  run  to  apply  the

spring preload and gravity loading to the structural model.  Then the modal analysis was run

on the preloaded model.  The measured natural frequency from the testing presented in

Chapter 4 was 22.6 Hz and the predicted value from the modal analysis was 19.2 Hz.  Figure

7.7 shows the displacements of the natural frequency of the model.

Figure 7.7: Field cultivator modal analysis – deformation

7.3 Steady-State CFD Only Results
Initially, only a steady-state CFD analysis was run to verify the boundary conditions

and soil properties.  Simulations were run to compare with the field cultivator test results in

Chapter 4.  Simulations were run for both of the sweep sizes and the same soil, speed, and
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depth conditions.  From the simulations the pressure was monitored at several locations on

the sweep.  In addition, the draft and vertical forces were monitored.

Several results are provided as an example from one steady-state CFD simulation

involving a 178mm sweep operating at 152mm depth at the 8.3% d.b. moisture level and

1,100 kPa compaction levels.  Figure 7.8 shows an example of the draft and vertical reaction

force convergence throughout a steady-state simulation.  Figure 7.9 show an example of the

pressure convergence at three locations on the face of the sweep throughout the same steady-

state simulation. Figure 7.10 and Figure 7.11 show density plots with an iso-surface created

to clarify the surface of the soil.  The figures show the soil flowing up the sweep and shank,

as well as the trough formed behind the sweep and shank.  Figure 7.12 and Figure 7.13 show

the pressure distribution on the domain boundary.  The fringe scale is set so that areas in red

are above the modified yield strength of the soil to show where the soil would be flowing.

Figure 7.13 shows a low pressure region between the sweep and the shank.  This low

pressure region occurs because the top of the sweep is higher than the adapter that connects

the sweep to the shank and no soil flow occurs in this area.

Figure 7.14 shows the pressure distribution on the sweep and shank.  The figure

shows that the highest pressure occurs on the leading edge of the sweep.  High pressures also

occur at various locations on the sweep and shank.  Figure 7.15 is a photo of a new and worn

254 mm sweep.  Comparing Figure 7.14 with Figure 7.15 shows that the high pressure

locations match up well with the locations that show the most wear on the sweep.

The draft and vertical forces predicted from the steady-state results were compared

with the measured average and +/- three standard deviations.  Figure 7.16 through Figure

7.21 show the draft and vertical force results for the treatments run with the 128 mm sweep at

0.89, 2.68, and 4.47 m/s.  Figure 7.22 and Figure 7.23 show the draft and vertical force

results for the 254 mm sweep at 2.68 m/s.

Overall, the results for the steady-state simulations compared well with the measured

data.  The results indicate that steady-state simulations can be used to compare sweep and

shank geometry, predict the forces, and possibly predict high wear locations.  A benefit of the

steady-state simulations is simplified setup and reduced run time compared with the transient

two-way fluid-structure interaction.



114

Figure 7.8: Field cultivator standard – example of reaction force convergence for
steady-state CFD simulation

Figure 7.9: Field cultivator standard – example of pressure convergence for steady-state
CFD simulation
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Figure 7.10: Field cultivator standard – example of density plot and iso-surface for
steady-state simulation

Figure 7.11: Field cultivator standard – example of density plot and iso-surface for
steady-state simulation
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Figure 7.12: Field cultivator standard – example of pressure plot for steady-state
simulation on the symmetry plane

Figure 7.13: Field cultivator standard – example of pressure plot for steady-state
simulation on the soil surface
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Figure 7.14: Field cultivator standard – example of pressure plot for steady-state
simulation on the sweep and shank

Figure 7.15: Field cultivator standard – example of new and worn 254mm sweep
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Figure 7.16: Field cultivator standard predicted versus measured draft force – 178 mm
Sweep, 0.89 m/s

Figure 7.17: Field cultivator standard predicted versus measured vertical force – 178
mm Sweep, 0.89 m/s
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Figure 7.18: Field cultivator standard predicted versus measured draft force – 178 mm
Sweep, 2.68 m/s

Figure 7.19: Field cultivator standard predicted versus measured vertical force – 178
mm Sweep, 2.68 m/s
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Figure 7.20: Field cultivator standard predicted versus measured draft force – 178 mm
Sweep, 4.47 m/s

Figure 7.21: Field cultivator standard predicted versus measured vertical force – 178
mm Sweep, 4.47 m/s
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Figure 7.22: Field cultivator standard predicted versus measured draft force – 254 mm
Sweep, 2.68 m/s

Figure 7.23: Field cultivator standard predicted versus measured vertical force – 254
mm Sweep, 2.68 m/s
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For the 178 mm sweep at 0.89 m/s, the predicted draft force fell within three standard

deviations of the measured draft loads in two of eight treatment levels and in three of eight

for the vertical force.  However, the trends were correct based on depth and compaction but

did not match well for differences in moisture content.  The predictor equation draft force fell

within three standard deviations of the measured draft loads in four of eight treatment levels

and in six of eight for the vertical force.  However, for both the draft and vertical forces, the

predictor equation predicted forces of opposite sign in one treatment each.

For the 178 mm sweep at 2.68 m/s, the predicted draft force fell within three standard

deviations in six of the eight treatment levels and four out of eight for the vertical force.  The

trends were generally good.  The predictor equation draft force fell within three standard

deviations of the measured draft loads in four of eight treatment levels and in seven of eight

for the vertical force.  However, for both the draft and vertical forces, the predictor equation

predicted forces off opposite sign in one treatment each.

For the 178 mm sweep at 4.47 m/s, the predicted draft force fell within three standard

deviations in five of eight treatments and in all eight treatment levels for the vertical force.

The trends matched very well.  The predictor equation draft force fell within three standard

deviations of the measured draft loads in five of eight treatment levels and in eight of eight

for the vertical force.

For the 254 mm sweep at 2.68 m/s, the predicted draft force fell within three standard

deviations of the measured data in five of the eight treatment levels and in six of the eight

treatment levels for the vertical force.  Again the trends matched very well.  The predictor

equation draft force fell within three standard deviations of the measured draft loads in five

of eight treatment levels and in seven of eight for the vertical force.  However, for both the

draft and vertical forces, the predictor equation predicted forces off opposite sign in one

treatment each.

One of the points of this research was to determine if this methodology could be used

to compare different sweep shapes and predict the relative differences in draft and vertical

forces.  To determine the effectiveness of the approach, the differences between the average

draft and average vertical forces were calculated for the measured and predicted data of the

178 mm and 254 mm sweeps.  The predicted difference was then divided by the measured
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difference in forces to determine the ratio of the predicted difference to the measured

difference.

measuredmeasured

predictedpredicted

mmmm
mmmm

Ratio
178254
178254

(7.1)

Figure 7.24 shows the ratio between the predicted and measured differences in the

draft and vertical forces between the 254 mm and 178 mm sweeps.  A positive ratio means

that the simulation correctly predicted which sweep had the higher force.  A ratio of exactly

one means that the simulation correctly predicted the difference in forces between the two

sweep  sizes.   The  figure  shows  that  the  simulation  did  consistently  predict  the  differences

between the two sweep sizes and the method can be used to predict between two designs.

Care should be taken to make sure that the forces have converged by running the simulations

to the number of iterations required to reach the desired convergence level.

For draft forces, the error in the simulation predicted difference was equally over and

under predicted.  The simulation incorrectly predicted which sweep had the higher draft force

in one condition (152 mm depth, 6.9% d.b. and 200 kPa compaction).  The predicted

difference for the treatment of 76 mm depth, 8.3% d.b. and 1,100 kPa compaction matched

the measured difference.  Five of the treatment conditions had an error of less than 100

percent.  One treatment condition had an error exceeding 200 percent.

For the vertical forces, the error was also equally likely to be over or under predicted.

The simulation incorrectly predicted which sweep had the higher vertical force in three

conditions.   There  were  only  two treatment  conditions  with  an  error  less  than  100  percent.

Three conditions had errors that exceeded 200 percent or double the measured difference.
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Figure 7.24: Field cultivator standard ratio of predicted to measured force differences
between the 254 mm and 178 mm sweeps

7.3 Transient Fluid-Structure Interaction Results
A fully coupled two-way transient fluid-structure interaction analysis with the CFD

and FEA models connected was set up.  The purpose was to predict the dominant frequency

of the predicted draft loading to compare with the measured data.  To couple the structural

and CFD codes, fluid-structure interfaces were defined in both models.  The interfaces were

broken up into several segments for the sweep, shank, and the adapter that connects them.

In the structural model, the fluid-structure interfaces were created as loads.  In the

CFD model, the fluid-structure interfaces were set up as boundary conditions.  Additionally,

the boundary conditions also allowed the definition of mesh movement based on

displacements passed on from the structural model.  At boundaries adjacent to the fluid-

structure interfaces in the CFD model, the mesh motion was set as unspecified to allow the

mesh to move as required.
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No results were able to be obtained past the first time step.  Several attempts were

made to complete the simulation for one-second of time with a time step size of 0.005

seconds or 200 Hz to match the data collection rate used in lab tests.  However, a couple of

problems occurred in trying to complete this complex analysis.

One of the major problems with this type of analysis is the time due to the size of the

problem.  For this analysis the CFD model required the most time to solve.  The CFD domain

required a somewhat large number of elements to get convergence on the surface of the

sweep and shank.  Also, because of the split fluid between soil and air and the sharp corners

of the geometry, getting good convergence requires more iterations within each time step.

Based  on  a  dual  processor  HP  workstation  with  8Gb  or  RAM  each  iteration  required

approximately two minutes.  Based on a minimum of 100 iterations per time step at 200 Hz,

the CFD analysis would require 667 hours without considering addition stagger iterations at

each time step.

The problem that was most difficult was the degradation of the CFD domain elements

as the structural model forced displacements onto the CFD mesh under load.  Ultimately this

problem killed the analysis.  During the first time step the solvers would iterate with stagger

steps until convergence was reached under the initial loading.  During the second time step

when the structural model passed meshed displacements to the CFD model the enforced

displacements caused some elements to degrade to failure.  Additional attempts were made to

modify  the  mesh  but  none  were  successful.   Test  models  with  simpler  geometry  using  all

hexahedral elements were able to sustain large displacements without significantly degrading

the mesh quality and were able to run to completion.  However, the complex geometry made

an all hexahedral mesh extremely difficult.

7.4 Conclusions
A CFD model was set up for the field cultivator standard with the 178 and 254 mm

sweeps and shank.  The CFD domain contained both soil and air.  The depth of the soil was

specified by the volume fraction at the inlet and initialization of the domain by the use of

equations created in CFX Expression Language (CEL).  The model was used for both steady-

state and transient simulations.



126

The soil properties were modified as for the rigid flat bar simulation by dividing the

measured values of viscosity by 100 and the yield strength by three.  This was necessary to

get the predicted forces to best correlate with the measured force data.  This may suggest that

either  the  soil  property  test  was  not  appropriate  for  this  application  or  soil  moisture  levels

used or that the Bingham-plastic soil model cannot adequately simulate the behavior of

cohesive  soil  and  the  adjustments  made  to  the  soil  properties  to  improve  the  results  were

coincidental.

The effects on the predicted draft and vertical forces were considered for different

mesh sizes, solver parameters, and soil properties.  The tests validated the mesh density used

for the simulations used to compare with the test data.  The tests indicated that approximately

300 iterations would have improved the predicted force convergence although 100 iterations

gave  good  convergence  over  a  range  of  treatment  simulations.   Although  the  soil  property

test indicated that the soil may behave elastically and not viscous the tests showed that

viscosity is a strong factor in the predicted draft force.

A structural finite element model was set up of the spring reset field cultivator

assembly with preloaded spring.  A modal analysis predicted a natural frequency of 19.2 Hz

compared with 22.6 Hz that was measured.  The structural model was also used in the two-

way fluid-structure interaction transient simulations.

Steady-state CFD simulations were run at all of the treatment levels tested for in

Chapter 4 to compare the predicted draft and vertical force values.  Overall, the predicted

force values and trends compared well with the measured data.  The steady-state simulations

showed  good  convergence  on  both  pressure  and  force  values.   The  simulation  was  able  to

predict  which  sweep size  had  the  higher  draft  force  in  seven  of  eight  treatment  conditions.

The simulation was able to predict which sweep size had the higher vertical force in five of

eight  treatment  conditions.   In  addition,  the  simulation  also  showed the  potential  ability  to

predict high wear locations and run with a typical run time measured in hours.

A  transient  two-way  fluid-structure  interaction  simulation  was  set  up  and  run  to

attempt to predict the dynamic loading of the field cultivator standard.  However, results

were  not  able  to  be  obtained  due  to  convergence  and  element  distortion  problems.   A high

enough quality mesh was not able to be constructed in a reasonable manner that could
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withstand the deformations passed to the CFD simulation from the structural FEA

simulation.   Based  on  the  limited  simulation  results,  the  run  time for  a  full  analysis  would

potentially  require  weeks  to  complete  a  transient  analysis  with  only  a  one-second  time

duration.  Even the simulation did work, the value of the added information would not justify

the time required.
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8. ALTERNATIVE SOIL PROPERTY MEASUREMENT

As mentioned in previous Chapters 6 and 7, the soil properties measured with the soil

viscometer in Chapter 2 had to be modified for the predicted forces from the simulations to

correlate with the lab tests.  Several factors were proposed to explain this difference: the lack

of soil expansion during the soil viscometer test, the relatively slow test speeds of the shear

vane relative to the test speeds of the rigid flat bar and field cultivator tests, and the results

from the shear vane property test not be used for this type of simulation.  In order to improve

the quality of the soil property test a new test standard is proposed.

8.1 Limitations of Soil Viscometer
The soil  viscometer  used  to  measure  the  properties  for  this  research  was  developed

for civil engineering applications for use in static or near static applications.  ASTM Standard

D 2573-01 specifies the shape of the shear vane and the rotational speed to determine the soil

shear strength.  The standard specifies a test range of 0.005 to 0.034 rpm.  The standard also

specifies that the shear vane be below the surface where soil expansion can not occur.

The calculated soil viscosity was based on running the soil viscometer test at a variety

of speeds and calculating the slope of the shear strength plotted against the rotation speed.

The soil viscometer used in this research operated over a speed range of 0.027 to 1.333 rpm.

With the 55 mm diameter shear vane at 1.333 rpm, the maximum tip speed was only 0.0038

m/s.  This is approximately 700 times slower than a typical tillage speed of 2.86 m/s (6 mph).

Simply increasing the speed of the shear vane is not likely to yield good results.  To achieve

a tip speed of 2.86 m/s with the 55 mm shear vane would require operating at about 1,000

rpm.  At this speed the soil would fail quickly and any real differences between the soil shear

strength at useful test speeds would be indistinguishable.  The soil property test results also

indicated that the soil did not show viscous behavior.

8.2 Proposed Material Property Test
A proposed test is to use the rigid flat bar for calculating the soil shear strength and

viscosity based on the test depth and the measured draft force using equations developed

from the tests results reported in Chapter 3.  The shape of the bar would be specified as 12.7
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x 101 mm (0.5 x 2.0 inches) as used in previous research and in the rigid flat bar lab test from

Chapter 3.  The test would be run at three or more speeds and at the depth representative of

the actual tool operating depth being simulated.  Three or more samples should be collected

at each speed and soil treatment level.  The data would be plotted with the draft force versus

the  speed.   A  linear  trendline  would  be  fitted  to  the  data  to  determine  the  Y-intercept  and

slope for each soil depth and soil treatment or condition.  Figure 8.1 shows the plotted data

from the Chapter 3 test results with the trendlines displayed.

Figure 8.1: Rigid flat bar draft versus test speed

A multiple regression analysis was run on the data from Chapter 3 for the flat bar to

determine the coefficients for the shear strength equation and for the viscosity equation

recommended for this standard.  The equations relate the draft force, depth, and the slope of

the draft force versus speed.  The output from the regression analysis is provided in the

Appendix.  The two predictor equations are:

Shear Strength (Pa) = 5,446.5 (Pa) – 65.7 x Depth (mm) + 19.2 x Draft (N) – 17.7      (8.1)
x Slope (Ns/m)
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Viscosity (Pa-s) = 162.6 (Pa-s) – 1.2 x Depth (mm) + 0.4 x Draft (N) – 0.3                (8.2)
x Slope (Ns/m)

A sample spreadsheet has been created to use in future soil property tests and is

presented in Figure 8.2.  The spreadsheet has spaces to record the test information, test

conditions, test speed, and the average measured draft force for each test run.  The

spreadsheet includes a graph to plot the draft force versus speed data.  Once the data has been

plotted a line can be drawn through the data to determine the Y-intercept and the slope to use

in the soil property calculations.  At the bottom of the spreadsheet are places to record the Y-

intercept and slope into formulas to calculate the soil shear strength and viscosity.

Additional testing is recommended to further refine the equation coefficients and to

test the validity and accuracy of the equations.  However, this method of determining the

material properties for use in CFD simulations is easily adaptable to use in both the lab and

field conditions.  The main benefits of this method are that the test can be run at

representative speeds used in actual farming practices and is simple to use.

8.3 Conclusions
The soil viscometer used to measure the soil properties necessary for the CFD

simulation is limited and does not reflect ground engaging tool applications in two ways.

First, the test is run below the soil surface where no expansion of the soil can take place as

failure occurs.  Second, the test speed range of the soil viscometer is well below that of actual

farming practices.

An alternate method of calculating soil properties for use in CFD simulations is

proposed to address some of the shortcomings of using the shear vane viscometer.  The basis

for the method is from measuring the draft force on a 12.7 mm x 102 mm steel bar forced

through the soil.  The measured draft force, test speed, and depth are used in equations

developed to calculate the soil strength and viscosity.  The equations are based on a

regression analysis of the test data discussed in Chapter 3 for the rigid flat bar lab test.  The

main benefits of the proposed test are ease of use, the ability to measure soil properties at the

realistic farming speeds, and the soil is failed in a manner similar to ground engaging tools

used in farming practice.  Additional testing is recommended to further refine the equations.
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Test Date:
Tester:
Test Location:
Test Condition Description:

Soil Moisture (% d.b.):
Soil Compaction (kPa):
Test Depth (mm):

Test Average Test Average
Speed Draft Speed Draft

Test # (m/s) (N) Test # (m/s) (N)
1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
10 20

Soil Shear Strength Calculation
+         5446.5

Depth x 65.7 =  -
Y-intercept x 19.2 = +
Slope x 17.7 =  -
Soil shear strength Pa

Soil Viscosity Calculation
+           162.6

Depth x 1.2 =  -
Y-intercept x 0.4 = +
Slope x 0.3 =  -
Soil shear strength Pa-s

Test Speed (m/s)

A
ve

ra
ge

 D
ra

ft 
(N

)

Figure 8.2: Soil property test sheet
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9. CONCLUSIONS

Currently tillage tools are developed by creating physical prototypes and testing them

either in a lab or in field tests to determine the resulting forces generated.  This process

conducted in the physical domain is both time consuming and limits the number of tool

shapes that can be evaluated.  A better method is proposed by using numerical simulations

using computational fluid dynamics.  The goal would be to use computer simulations that

allow low cost evaluation of tillage tools so that more designs could be evaluated, more

complex shapes could be evaluated, in less time and at less expense.

9.1 Simulation Methodology
The purpose of this research is to determine if it is possible to use computational fluid

dynamics (CFD) to simulate tillage tools moving through soil for use in tillage tool

development.  Both steady-state and two-way fluid-structure interaction simulations were

considered.  The research was focused on predicting the draft and vertical forces on a field

cultivator standard.  Several steps were taken to carry out and validate the proposed method.

Simulating ground engaging tools such as a field cultivator standard could be done

using FEA, CFD, or discrete element analysis (DEA).  CFD was chosen because the domain

needed to simulate a field only had to be large enough to not influence the flow around the

tool.  This allowed for a smaller model size and consequently shorter run times.  Using FEA

or DEA would have required modeling the entire length of a field.  The CFD approach

allows interaction with the structure to be included using two-way fluid-structure interaction.

The Bingham-plastic model was chosen to simulate the properties of soil for the CFD

simulations.  This model was chosen because it represents the behavior of soil well and only

requires  two  properties  versus  other  more  complicated  structural  material  models.   The

required properties are soil shear strength and viscosity.  To measure these properties, a shear

vane soil viscometer was developed and used.
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9.2 Soil Property Measurement
A soil viscometer was designed and constructed based on ASTM standard D2573-01

using a rotary shear vane.  The soil viscometer was successfully used to measure the soil

strength at seven speeds and at four soil treatment levels.  The soil density was measured and

the yield strength and viscosity were calculated from the measured torque to provide the

three parameters necessary for using the Bingham-Plastic material model for the CFD

analysis.

The shear vane results indicate that increased moisture lowers the shear strength of

the soil but increased the viscosity.  However, increased compaction resulted in higher shear

strength and viscosity.  The results also indicate that the soil does not show viscous behavior

for the speeds tested but acts in a more elastic manner.

The Tukey analysis of the shear strength data showed that there were only three

combinations of data that had statistically significantly differences.  The Tukey analysis also

showed that there was no statistical significant difference in the measured shear strength

versus speed.  This may be attributed to the fact that the test speeds were very low compared

with  actual  field  test  speeds.   The  test  data  points  may  be  too  close  together  to  shown

statistical significant differences.   Further testing at higher speeds would clarify this issue

and verify that the slope of the strength versus speed data is linear.

The test method for the soil viscometer was based on the civil engineering standard

developed for static structures.  Limitations in the speeds that can be reasonably used with

the rotational soil viscometer suggest that alternate test methods of measuring soil properties

may  be  required.   The  test  procedure  also  did  not  allow  for  soil  dilation  which  is  not

representative of tillage tools.  An alternate method is suggested in Chapter 8.

9.3 Rigid Flat Bar Test
A 12.7 mm by 51 mm rigid flat steel bar was tested in a soil bin to measure the draft

and vertical forces that occurred as the bar was pulled through soil.  Twelve treatment levels

were considered varying the tool speed, depth, and the soil compaction with three repeats of

each.  The data indicated that the variability in draft force was higher for the high compaction

level and that in general the draft force increases with speed and soil compaction.
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The average draft force values were evaluated to determine which treatment factors

were  statistically  significant.   All  three  variables  were  determined  to  be  statistically

significant at the 95 percent confidence level.   A regression analysis was conducted to

develop a predictor equation based on all three statistically significant variables.  The

predictor equation predicted draft force value was below the three standard deviation level

for the lowest two speeds at the 51 mm depth and 200 kPa compaction levels.  Similarly, the

predictor equation predicted draft force was below the three standard deviation level for the

highest speed, at 102 mm depth and 1,100 kPa compaction levels.

9.4 Field Cultivator Standard Test
Soil bin tests were conducted using a 178 mm and 254 mm wide sweep with a spring

reset  field  cultivator  standard.   Thirty-two  treatments  were  considered  and  eight  of  the

treatments were run with three repeats.  The sweep width, speed, depth, soil compaction, and

soil moisture were varied.  The repeated runs were performed with the 178 mm sweep at 2.66

m/s (6 mph) while just the depth, compaction, and moisture levels were varied.

The results for the repeated runs showed a fairly low level of variability in the draft

force except for the treatment ran at the higher depth, compaction, and moisture level.  For

both  sizes  of  sweep  the  average  ratio  of  vertical  to  draft  force  was  forty  percent.   In

predicting the draft load, the speed squared, depth, compaction, and moisture variables were

all statistically significant at the 95 percent confidence level.  In predicting the vertical load,

speed, depth, compaction, and moisture variables were all statistically significant at the 95

percent confidence level.

The natural frequency was experimentally determined for the unloaded field

cultivator standard using accelerometers.  The natural frequency was calculated to be 22.6

Hz.  The accelerometer data was also used to calculate the damping of the spring reset

standard for use in the fluid-structure analysis later on.

The analysis of measured draft force dominant frequencies showed that there was

overlap in the repeated treatments.  The most common frequency across all treatments was

14.8 Hz which may indicate that the draft force frequency is related more to the stiffness of

the standard and the mounting than to the frequency of the soil failure.  Common frequencies

of around 14 to 15 Hz were found in the data for the 178 mm sweep at 2.86 and 4.47 m/s and
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for the 254 mm sweep at 2.86 m/s for all soil conditions.  If this is the case, then in practice,

predicting the load frequency would be related to the stiffness of standard and the implement

structure stiffness, rather than the soil.  Both stiffness values could be determined

experimentally.  The lower frequency of the draft force data compared with the natural

frequency of the unloaded field cultivator standard may be attributed to the additional mass

of the soil when treated as a spring-mass system or a change in the standards stiffness in the

loaded condition.

An attempt was made at predicting the draft force frequency by counting the soil

failure surfaces from high speed video recordings of the lab tests and dividing by the elapsed

time.  This method proved difficult but did show that the soil fracture rate was related to the

draft force dominant frequency.  This method was impossible to use at the low compaction

level because the soil failed in a flowing manner with no distinct fracture surfaces.  Coupled

with  the  conclusion  that  the  draft  force  variation  is  related  to  the  natural  frequency  of  the

field cultivator standard, these results suggest that the vibration of the standard drives the

frequency of soil failure rate, rather than the soil fracture rate driving the vibration.

Additional testing would help to clarify the relationship.

9.5 Soil Model Verification
The Bingham-Plastic material model was tested using a 2-d model of a concentric

cylinder viscometer.  The benefit of the test models was that the models are simple enough

that the run times were very short.  In addition, results for the two-dimensional models can be

visually interpreted.  The test models showed that the equations created in CFX Expression

Language (CEL) used to simulate the Bingham-Plastic model work correctly.

9.6 Rigid Flat Bar Simulation
A series of steady-state CFD simulations were run and compared to the soil bin

results for the rigid flat bar.  Overall, the simulations were able to show the trends in the draft

loading.   In  nine  of  the  twelve  treatment  levels,  the  predicted  draft  force  fell  within  three

standard deviations of the measured data.

Adjustments were required to the soil material parameters for the predicted forces to

correlate with the measured data by dividing the viscosity by a factor of 100 and the yield
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strength by a factor of three.  These adjustments were determined in an iterative process

based  on  the  field  cultivator  standard  and  the  rigid  flat  bar  simulations.   There  are  several

possibilities for this: the soil property measurement test used may not be appropriate for this

application, the measured soil properties were not good with viscosity not being a factor and

dividing the shear strength by a factor of three was coincidental, or the simulation does not

adequately represent the actual conditions being replicated.  Running the simulation with

viscosity removed from the Bingham-plastic model would clarify the impact of viscosity.

An initial set of boundary conditions were developed based on trying various

combinations and comparing the predicted draft and vertical forces with the average

measured values.  However, when the boundary conditions were applied to the field

cultivator standard simulation the results did not match.  Additional iterations were required

and  developed.   The  boundary  conditions  were  verified  in  both  simulations  and  across  a

range of operating conditions.

9.7 Field Cultivator Standard Simulation
A CFD model was set up for the field cultivator standard with the 178 and 254 mm

sweeps and shank.  The CFD domain contained both soil and air.  The depth of the soil was

specified by the volume fraction at the inlet and initialization of the domain by the use of

equations created in CFX Expression Language (CEL).  The model was used for both steady-

state and transient simulations.

The soil properties were modified as for the rigid flat bar simulation by dividing the

measured values of viscosity by 100 and the yield strength by three.  This was necessary to

get the predicted forces to best correlate with the measured force data.  This may suggest that

either the soil property test was not appropriate for this application or the soil moisture levels

used or that the Bingham-plastic soil model cannot adequately simulate the behavior of

cohesive  soil  and  the  adjustments  made  to  the  soil  properties  to  improve  the  results  were

coincidental.

The effects on the predicted draft and vertical forces were considered for different

mesh sizes, solver parameters, and soil properties.  The tests validated the mesh density used

for the simulations run to compare with the test data.  The tests indicated that approximately

300 iterations would have improved the predicted force convergence although 100 iterations
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gave  good  convergence  over  a  range  of  treatment  simulations.   Although  the  soil  property

test indicated that the soil may behave elastically and was not viscous the tests showed that

viscosity is a strong factor in the predicted draft force.

A structural finite element model was set up of the spring reset field cultivator

assembly with preloaded spring.  A modal analysis predicted a natural frequency of 19.2 Hz

compared with 22.6 Hz that was measured.  The structural model was also used in the two-

way fluid-structure interaction transient simulations.

Steady-state CFD simulations were run at all of the treatment levels tested for in

Chapter 4 to compare the predicted draft and vertical force values.  Overall, the predicted

force values and trends compared well with the measured data.  The steady-state simulations

showed  good  convergence  on  both  pressure  and  force  values.   The  simulation  was  able  to

predict  which  sweep size  had  the  higher  draft  force  in  seven  of  eight  treatment  conditions.

The simulation was able to predict which sweep size had the higher vertical force in five of

eight  treatment  conditions.   In  addition,  the  simulation  also  showed the  potential  ability  to

predict high wear locations and run with a typical run time in measured in hours.

A  transient  two-way  fluid-structure  interaction  simulation  was  set  up  and  run  to

attempt to predict the dynamic loading of the field cultivator standard.  However, results

were  not  able  to  be  obtained  due  to  convergence  and  element  distortion  problems.   A high

enough quality mesh was not able to be constructed in a reasonable manner that could

withstand the deformations passed to the CFD simulation from the structural FEA

simulation.   Based  on  the  limited  simulation  results,  the  run  time for  a  full  analysis  would

potentially  require  weeks  to  complete  a  transient  analysis  with  only  a  one-second  time

duration.  Successfully running the transient FSI simulation may also help clarify the

relationship between the structure resonant frequency, the soil fracture frequency, and the

draft load frequency.

9.8 Alternative Soil Property Measurement
The soil viscometer used to measure the soil properties necessary for the CFD

simulation is limited and does not reflect ground engaging tool applications in two ways.

First, the test is run below the soil surface where no expansion of the soil can take place as
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failure occurs.  Second, the test speed range of the soil viscometer is well below that of actual

farming practices.

An alternate method of calculating soil properties for use in CFD simulations is

proposed to address some of the shortcomings of using the shear vane viscometer.  The basis

for the method is from measuring the draft force on a 12.7 mm x 102 mm steel bar forced

through the soil.  The measured draft force, test speed, and depth are used in equations

developed to calculate the soil strength and viscosity.  The equations are based on a

regression analysis of the test data discussed in Chapter 3 for the rigid flat bar lab test.  The

main benefits of the proposed test are ease of use, the ability to measure soil properties at the

practical farming speeds, and the soil is failed in a manner similar to ground engaging tools

used in farming practice.  Additional testing is recommended to further test the equations.

9.9 Future Work
CFD produced results to simulate tillage tools in soil that could be matched to

measured draft and vertical forces on a field cultivator standard with a sweep.  Steady-state

simulations were used.  The estimated time to complete such an analysis would be one to two

days for set-up, solving, and post-processing.  This process could be used to compare

different sweep/shank designs in a time that is beneficial and an improvement over current

physical test methods.  The simulation also provides detailed information not readily

obtained from physical testing such as the load created by the sweep versus the shank and the

possibility of predicting were the high wear areas will occur.

However, additional work is necessary to improve and further validate the

methodology  presented.   The  primary  concern  is  that  to  match  experimental  data,  the  soil

properties  were  varied.   It  is  critical  that  work  be  performed  to  validate  the  modified  soil

parameters and validate the CFD model for soils.

The proposed method of soil property measurement needs to be further validated and

adjusted with additional soil bin test data.  More tests need to be run at different speeds and

depths and with more soil variations to determine if this approach is viable.  If proven, this

method  of  calculating  soil  strength  and  viscosity  would  be  an  improvement  of  the  soil

viscometer using the rotational shear vane.  The proposed test method also needs to be run in

actual field conditions to determine if the method produces valid results.
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Additional tool shapes need to be analyzed using the method described to determine

if the same boundary conditions can be applied.  In particular, the method needs to be applied

to tools that operate at greater soil depths such as rippers and sub-soilers.  The field cultivator

standard that was investigated as a part of this research operates at a relatively shallow 150

mm.  Deep tillage tools can operate at well over twice that.  At that greater depth soil shatters

less  and  is  kept  somewhat  contained,  similar  to  the  way  soil  fails  with  the  rotating  soil

viscometer.

Successfully running a transient two-way fluid structure interaction may clarify the

relationships between system stiffness, soil failure, and draft loading frequencies.  Using

either  simpler  tillage  tool  shapes  to  allow  for  easier  mesh  creation  or  using  a  better  mesh

creation tool would help overcome some of the issues discussed in this dissertation for doing

this type of analysis.  Distributed computing systems would also help reduce the long run

times.

More  simulations  of  different  tool  shapes  compared  with  actual  tool  wear  will  also

help determine if this method of ground engaging tool simulation can help predict locations

of  highest  wear.   The  benefit  of  this  is  that  tool  shapes  can  be  optimized  to  improve  the

useful life of the tool and allow material to be removed that does not improve or degrade the

overall life.
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APPENDIX

The Appendix contains data from the lab tests and statistical analysis output not

included in the body of the document.  The figure and table numbers are separated by the

chapters the information was referenced in.
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Figure A1.1: Penetrometer readings for 5m position, low moisture (7.4% d.b.), low
compaction (200 kPa) from viscometer test

Figure A1.2: Penetrometer readings for 10m position, low moisture (7.4% d.b.), low
compaction (200 kPa) from viscometer test
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Figure A1.3: Penetrometer readings for 15m position, low moisture (7.4% d.b.), low
compaction (200 kPa) from viscometer test

Figure A1.4: Penetrometer readings for 5m position, low moisture (7.4% d.b.), high
compaction (1,100 kPa) from viscometer test
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Figure A1.5: Penetrometer readings for 10m position, low moisture (7.4% d.b.), high
compaction (1,100 kPa) from viscometer test

Figure A1.6: Penetrometer readings for 15m position, low moisture (7.4% d.b.), high
compaction (1,100 kPa) from viscometer test
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Figure A1.7: Penetrometer readings for 5m position, high moisture (8.8% d.b.), low
compaction (200 kPa) from viscometer test

Figure A1.8: Penetrometer readings for 10m position, high moisture (8.8% d.b.), low
compaction (200 kPa) from viscometer test
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Figure A1.9: Penetrometer readings for 15m position, high moisture (8.8% d.b.), low
compaction (200 kPa) from viscometer test

Figure A1.10: Penetrometer readings for 5m position, high moisture (8.8% d.b.), high
compaction (1,100 kPa) from viscometer test
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Figure A1.11: Penetrometer readings for 10m position, high moisture (8.8% d.b.), high
compaction (1,100 kPa) from viscometer test

Figure A1.12: Penetrometer readings for 15m position, high moisture (8.8% d.b.), high
compaction (1,100 kPa) from viscometer test
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Table A1.1: Viscometer run sheet and measurements for low moisture (7.4% d.b.)
Bin Motor Shaft Shaft

Compaction Moisture Soil Position Speed Speed Speed Torque Shear
# (kPa) (% d.b.) Treatment (m) Location (rpm) (rpm) (rad/s) (N-m) (kN/m^2)
1 200 7.43 1 5 A 320 0.107 0.011 5.2415 8.60
2 200 7.43 1 5 B 1280 0.427 0.045 4.4502 7.30
3 200 7.43 1 5 C 2560 0.853 0.089 3.9292 6.44
4 200 7.43 1 5 D 160 0.053 0.006 3.9361 6.45
5 200 7.43 1 5 E 4000 1.333 0.140 4.9109 8.05
6 200 7.43 1 5 F 640 0.213 0.022 4.2527 6.97
7 200 7.43 1 5 G 80 0.027 0.003 3.8314 6.28
8 200 7.43 1 10 A 320 0.107 0.011 4.9835 8.17
9 200 7.43 1 10 B 4000 1.333 0.140 4.7154 7.73
10 200 7.43 1 10 C 1280 0.427 0.045 4.5884 7.52
11 200 7.43 1 10 D 640 0.213 0.022 4.1266 6.77
12 200 7.43 1 10 E 2560 0.853 0.089 4.5178 7.41
13 200 7.43 1 10 F 80 0.027 0.003 4.1589 6.82
14 200 7.43 1 10 G 160 0.053 0.006 4.3949 7.21
15 200 7.43 1 15 A 160 0.053 0.006 6.1698 10.12
16 200 7.43 1 15 B 80 0.027 0.003 5.3826 8.83
17 200 7.43 1 15 C 320 0.107 0.011 5.0238 8.24
18 200 7.43 1 15 D 2560 0.853 0.089 5.1972 8.52
19 200 7.43 1 15 E 640 0.213 0.022 5.6628 9.29
20 200 7.43 1 15 F 1280 0.427 0.045 4.9048 8.04
21 200 7.43 1 15 G 4000 1.333 0.140 5.1185 8.39
22 1100 7.32 2 5 A 320 0.107 0.011 21.2569 34.86
23 1100 7.32 2 5 B 1280 0.427 0.045 18.1335 29.74
24 1100 7.32 2 5 C 4000 1.333 0.140 16.9176 27.74
25 1100 7.32 2 5 D 160 0.053 0.006 15.7585 25.84
26 1100 7.32 2 5 E 80 0.027 0.003 19.3669 31.76
27 1100 7.32 2 5 F 640 0.213 0.022 17.5286 28.75
28 1100 7.32 2 5 G 2560 0.853 0.089 16.7632 27.49
29 1100 7.32 2 10 A 1280 0.427 0.045 19.3819 31.78
30 1100 7.32 2 10 B 80 0.027 0.003 17.4788 28.66
31 1100 7.32 2 10 C 320 0.107 0.011 18.2972 30.01
32 1100 7.32 2 10 D 4000 1.333 0.140 18.7787 30.80
33 1100 7.32 2 10 E 2560 0.853 0.089 18.6580 30.60
34 1100 7.32 2 10 F 160 0.053 0.006 17.7712 29.14
35 1100 7.32 2 6 G 640 0.213 0.022 18.1075 29.69
36 1100 7.32 2 15 A 320 0.107 0.011 20.5890 33.76
37 1100 7.32 2 15 B 4000 1.333 0.140 20.3183 33.32
38 1100 7.32 2 15 C 80 0.027 0.003 17.8057 29.20
39 1100 7.32 2 15 D 640 0.213 0.022 19.4394 31.88
40 1100 7.32 2 15 E 2560 0.853 0.089 21.3211 34.96
41 1100 7.32 2 15 F 1280 0.427 0.045 18.5315 30.39
42 1100 7.32 2 15 G 160 0.053 0.006 17.5072 28.71
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Table A1.2: Viscometer run sheet and measurements for high moisture (8.8% d.b.)
Bin Motor Shaft Shaft

Compaction Moisture Soil Position Speed Speed Speed Torque Shear
# (kPa) (% d.b.) Treatment (m) Location (rpm) (rpm) (rad/s) (N-m) (kN/m^2)
1 200 8.84 1 5 A 4000 1.333 0.140 3.5279 5.79
2 200 8.84 1 5 B 320 0.107 0.011 2.8576 4.69
3 200 8.84 1 5 C 2560 0.853 0.089 2.7760 4.55
4 200 8.84 1 5 D 160 0.053 0.006 2.3597 3.87
5 200 8.84 1 5 E 640 0.213 0.022 2.6551 4.35
6 200 8.84 1 5 F 1280 0.427 0.045 3.1833 5.22
7 200 8.84 1 5 G 80 0.027 0.003 2.5200 4.13
8 200 8.84 1 10 A 80 0.027 0.003 3.3818 5.55
9 200 8.84 1 10 B 1280 0.427 0.045 3.3929 5.56
10 200 8.84 1 10 C 2560 0.853 0.089 3.0350 4.98
11 200 8.84 1 10 D 320 0.107 0.011 3.3878 5.56
12 200 8.84 1 10 E 4000 1.333 0.140 4.4039 7.22
13 200 8.84 1 10 F 640 0.213 0.022 3.4836 5.71
14 200 8.84 1 10 G 160 0.053 0.006 3.3817 5.55
15 200 8.84 1 15 A 2560 0.853 0.089 3.7799 6.20
16 200 8.84 1 15 B 4000 1.333 0.140 3.4059 5.59
17 200 8.84 1 15 C 1280 0.427 0.045 3.2144 5.27
18 200 8.84 1 15 D 160 0.053 0.006 2.8909 4.74
19 200 8.84 1 15 E 80 0.027 0.003 3.0613 5.02
20 200 8.84 1 15 F 640 0.213 0.022 2.6087 4.28
21 200 8.84 1 15 G 320 0.107 0.011 2.8274 4.64
22 1100 8.81 2 5 A 80 0.027 0.003 16.0016 26.24
23 1100 8.81 2 5 B 1280 0.427 0.045 12.9918 21.31
24 1100 8.81 2 5 C 4000 1.333 0.140 14.1182 23.15
25 1100 8.81 2 5 D 640 0.213 0.022 15.7274 25.79
26 1100 8.81 2 5 E 320 0.107 0.011 15.6902 25.73
27 1100 8.81 2 5 F 2560 0.853 0.089 15.2386 24.99
28 1100 8.81 2 5 G 160 0.053 0.006 14.6006 23.94
29 1100 8.81 2 10 A 320 0.107 0.011 17.8580 29.29
30 1100 8.81 2 10 B 1280 0.427 0.045 14.9373 24.50
31 1100 8.81 2 10 C 640 0.213 0.022 13.9083 22.81
32 1100 8.81 2 10 D 80 0.027 0.003 13.2561 21.74
33 1100 8.81 2 10 E 2560 0.853 0.089 15.2015 24.93
34 1100 8.81 2 10 F 4000 1.333 0.140 17.7973 29.19
35 1100 8.81 2 10 G 160 0.053 0.006 11.5793 18.99
36 1100 8.81 2 15 A 640 0.213 0.022 18.0742 29.64
37 1100 8.81 2 15 B 160 0.053 0.006 13.7344 22.52
38 1100 8.81 2 15 C 2560 0.853 0.089 15.6295 25.63
39 1100 8.81 2 15 D 4000 1.333 0.140 17.8559 29.28
40 1100 8.81 2 15 E 80 0.027 0.003 15.8270 25.95
41 1100 8.81 2 15 F 1280 0.427 0.045 14.9515 24.52
42 1100 8.81 2 15 G 320 0.107 0.011 12.2688 20.12
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Table A2.1: Rigid flat bar test data summary
Run Data Tool Depth Depth Speed Speed Comp. Comp. Draft Draft

# # Type (in) (mm) (mph) (kph) (H/L) (kPa) Avg. (N) Stdev (N)
1 2 Bent 4 102 6 9.66 Low 200 ---- ----
2 4 Bent 4 102 2 3.22 Low 200 ---- ----
3 5 Flat 2 51 6 9.66 Low 200 187.57 16.72
4 6 Bent 2 51 4 6.44 High 1100 ---- ----
5 7 Bent 2 51 2 3.22 High 1100 ---- ----
6 8 Flat 4 102 2 3.22 High 1100 1010.82 108.11
7 9 Bent 2 51 6 9.66 Low 200 ---- ----
8 10 Bent 2 51 4 6.44 Low 200 ---- ----
9 12 Bent 4 102 4 6.44 Low 200 ---- ----
10 13 Flat 2 51 4 6.44 High 1100 647.77 71.06
11 14 Flat 2 51 2 3.22 High 1100 472.59 53.19
12 15 Flat 4 102 4 6.44 High 1100 1275.01 89.02
13 16 Flat 2 51 4 6.44 Low 200 161.12 12.85
14 17 Flat 4 102 6 9.66 Low 200 415.13 17.90
15 18 Flat 4 102 4 6.44 Low 200 335.04 14.27
16 19 Flat 4 102 4 6.44 Low 200 370.82 21.02
17 20 Flat 2 51 2 3.22 Low 200 108.13 10.34
18 21 Flat 2 51 6 9.66 High 1100 733.32 71.56
19 22 Flat 4 102 6 9.66 High 1100 1602.52 103.80
20 23 Flat 4 102 4 6.44 High 1100 1370.64 101.73
21 24 Flat 4 102 4 6.44 Low 200 422.57 16.50
22 26 Flat 4 102 6 9.66 Low 200 454.11 40.18
23 27 Flat 2 51 4 6.44 Low 200 141.34 12.22
24 28 Flat 4 102 2 3.22 High 1100 1243.62 137.79
25 29 Flat 2 51 2 3.22 High 1100 538.88 56.62
26 30 Flat 2 51 4 6.44 High 1100 664.33 69.94
27 31 Flat 4 102 6 9.66 High 1100 1655.36 97.77
28 32 Flat 2 51 6 9.66 High 1100 703.27 69.30
29 33 Flat 2 51 6 9.66 Low 200 225.24 19.53
30 34 Flat 4 102 2 3.22 Low 200 291.96 15.29
31 35 Flat 2 51 2 3.22 Low 200 112.28 11.71
32 36 Flat 4 102 2 3.22 High 1100 906.65 104.29
33 37 Flat 2 51 6 9.66 High 1100 560.26 64.14
34 38 Flat 2 51 4 6.44 High 1100 470.70 60.08
35 40 Flat 2 51 6 9.66 Low 200 244.61 19.32
36 41 Flat 4 102 2 3.22 Low 200 269.99 12.08
37 42 Flat 2 51 4 6.44 Low 200 157.33 13.50
38 43 Flat 4 102 6 9.66 High 1100 1571.84 102.75
39 44 Flat 4 102 4 6.44 High 1100 1239.86 89.63
40 45 Flat 2 51 2 3.22 High 1100 439.04 59.58
41 46 Flat 4 102 6 9.66 Low 200 380.35 16.23
42 47 Flat 4 102 4 6.44 Low 200 273.54 12.01
43 48 Flat 2 51 2 3.22 Low 200 73.71 7.78

Note: Run 18 was supposed to be R18F42L.
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Figure A2.1: Rigid flat bar test – treatment #1 draft force time histories – 51 mm depth,
0.89 m/s, low compaction (200 kPa)

Figure A2.2: Rigid flat bar test – treatment #2 draft force time histories – 51 mm depth,
1.79 m/s, low compaction (200 kPa)
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Figure A2.3: Rigid flat bar test – treatment #3 draft force time histories – 51 mm depth,
2.68 m/s, low compaction (200 kPa)

Figure A2.4: Rigid flat bar test – treatment #4 draft force time histories – 51 mm depth,
0.89 m/s, high compaction (1,100 kPa)



152

Figure A2.5: Rigid flat bar test – treatment #5 draft force time histories – 51 mm depth,
1.79 m/s, high compaction (1,100 kPa)

Figure A2.6: Rigid flat bar test – treatment #6 draft force time histories – 51 mm depth,
2.68 m/s, high compaction (1,100 kPa)
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Figure A2.7: Rigid flat bar test – treatment #7 draft force time histories – 102 mm
depth, 0.89 m/s, low compaction (200 kPa)

Figure A2.8: Rigid flat bar test – treatment #8 draft force time histories – 102 mm
depth, 1.79 m/s depth, low compaction (200 kPa)
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Figure A2.9: Rigid flat bar test – treatment #9 draft force time histories – 102 mm
depth, 2.68 m/s, low compaction (200 kPa)

Figure A2.10: Rigid flat bar test – treatment #10 draft force time histories – 102 mm
depth, 0.89 m/s, high compaction (1,100 kPa)
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Figure A2.11: Rigid flat bar test – treatment #11 draft force time histories – 102 mm
depth, 1.79 m/s, high compaction (1,100 kPa)

Figure A2.12: Rigid flat bar test – treatment #12 draft force time histories – 102 mm
depth, 2.68 m/s, high compaction (1,100 kPa)
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Figure A3.1: Field cultivator standard –  run #1 time history results – 178 mm sweep,
152 mm depth, 0.89 m/s, high moisture (8.3% d.b.), high compaction (1,100 kPa)

Figure A3.2: Field cultivator standard –  run #2 time history results – 178 mm sweep,
76 mm depth, 2.68 m/s, high moisture (8.3% d.b.), high compaction (1,100 kPa)
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Figure A3.3: Field cultivator standard –  run #3 time history results – 178 mm sweep,
152 mm depth, 2.68 m/s, high moisture (8.3% d.b.), low compaction (200 kPa)

Figure A3.4: Field cultivator standard –  run #4 time history results – 178 mm sweep,
152 mm depth, 0.89 m/s, high moisture (8.3% d.b.), low compaction (200 kPa)
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Figure A3.5: Field cultivator standard –  run #5 time history results – 254 mm sweep,
152 mm depth, 2.68 m/s, high moisture (8.3% d.b.), high compaction (1,100 kPa)

Figure A3.6: Field cultivator standard –  run #6 time history results – 178 mm sweep,
76 mm depth, 0.89 m/s, high moisture (8.3% d.b.), high compaction (1,100 kPa)
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Figure A3.7:  Field cultivator standard –  run #7 time history results – 178 mm sweep,
76 mm depth, 4.47 m/s, high moisture (8.3% d.b.), low compaction (200 kPa)

Figure A3.8: Field cultivator standard –  run #8 time history results – 254 mm sweep,
76 mm depth, 2.68 m/s, high moisture (8.3% d.b.), low compaction (200 kPa)
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Figure A3.9: Field cultivator standard –  run #9 time history results – 254 mm sweep,
152 mm depth, 2.68 m/s, high moisture (8.3% d.b.), low compaction (200 kPa)

Figure A3.10: Field cultivator standard –  run #10 time history results – 178 mm sweep,
76 mm depth, 0.89 m/s, high moisture (8.3% d.b.), low compaction (200 kPa)
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Figure A3.11: Field cultivator standard –  run #11 time history results – 178 mm sweep,
152 mm depth, 4.47 m/s, high moisture (8.3% d.b.), high compaction (1,100 kPa)

Figure A3.12: Field cultivator standard –  run #12 time history results – 254 mm sweep,
76 mm depth, 2.68 m/s, high moisture (8.3% d.b.), high compaction (1,100 kPa)
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Figure A3.13: Field cultivator standard –  run #13 time history results – 178 mm sweep,
76 mm depth, 2.68 m/s, high moisture (8.3% d.b.), low compaction (200 kPa)

Figure A3.14: Field cultivator standard –  run #14 time history results – 178 mm sweep,
152 mm depth, 4.47 m/s, high moisture (8.3% d.b.), low compaction (200 kPa)
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Figure A3.15: Field cultivator standard –  run #15 time history results – 178 mm sweep,
76 mm depth, 4.47 m/s, high moisture (8.3% d.b.), high compaction (1,100 kPa)

Figure A3.16: Field cultivator standard –  run #16 time history results – 178 mm sweep,
152 mm depth, 2.68 m/s, high moisture (8.3% d.b.), high compaction (1,100 kPa)



166

Figure A3.18: Field cultivator standard –  run #18 time history results – 178 mm sweep,
76 mm depth, 2.68 m/s, high moisture (8.3% d.b.), low compaction (200 kPa)

Figure A3.19: Field cultivator standard –  run #19 time history results – 178 mm sweep,
152 mm depth, 2.68 m/s, high moisture (8.3% d.b.), low compaction (200 kPa)
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Figure A3.20: Field cultivator standard –  run #20 time history results – 178 mm sweep,
152 mm depth, 2.68 m/s, high moisture (8.3% d.b.), high compaction (1,100 kPa)

Figure A3.21: Field cultivator standard –  run #21 time history results – 178 mm sweep,
76 mm depth, 2.68 m/s, high moisture (8.3% d.b.), high compaction (1,100 kPa)
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Figure A3.22: Field cultivator standard –  run #22 time history results – 178 mm sweep,
76 mm depth, 2.68 m/s, high moisture (8.3% d.b.), high compaction (1,100 kPa)

Figure A3.23: Field cultivator standard –  run #23 time history results – 178 mm sweep,
152 mm depth, 2.68 m/s, high moisture (8.3% d.b.), high compaction (1,100 kPa)
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Figure A3.24: Field cultivator standard –  run #24 time history results – 178 mm sweep,
152 mm depth, 2.68 m/s, high moisture (8.3% d.b.), low compaction (200 kPa)

Figure A3.25: Field cultivator standard –  run #25 time history results – 178 mm sweep,
76 mm depth, 2.68 m/s, high moisture (8.3% d.b.), low compaction (200 kPa)
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Figure A3.26: Field cultivator standard –  run #26 time history results – 178 mm sweep,
76 mm depth, 2.68 m/s, low moisture (6.9% d.b.), low compaction (200 kPa)

Figure A3.27: Field cultivator standard –  run #27 time history results – 254 mm sweep,
152 mm depth, 2.68 m/s, low moisture (6.9% d.b.), low compaction (200 kPa)
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Figure A3.28: Field cultivator standard –  run #28 time history results – 178 mm sweep,
152 mm depth, 4.47 m/s, low moisture (6.9% d.b.), low compaction (200 kPa)

Figure A3.29: Field cultivator standard –  run #29 time history results – 254 mm sweep,
76 mm depth, 2.68 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)
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Figure A3.30: Field cultivator standard –  run #30 time history results – 178 mm sweep,
152 mm depth, 0.89 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)

Figure A3.31: Field cultivator standard –  run #31 time history results – 178 mm sweep,
76 mm depth, 4.47 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)
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Figure A3.32: Field cultivator standard –  run #32 time history results – 178 mm sweep,
76 mm depth, 2.68 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)

Figure A3.33: Field cultivator standard –  run #33 time history results – 178 mm sweep,
76 mm depth, 0.89 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)
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Figure A3.34: Field cultivator standard –  run #34 time history results – 178 mm sweep,
152 mm depth, 0.89 m/s, low moisture (6.9% d.b.), low compaction (200 kPa)

Figure A3.35: Field cultivator standard –  run #35 time history results – 178 mm sweep,
76 mm depth, 4.47 m/s, low moisture (6.9% d.b.), low compaction (200 kPa)
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Figure A3:36: Field cultivator standard –  run #36 time history results – 178 mm sweep,
152 mm depth, 4.47 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)

Figure A3.37 Field cultivator standard –  run #37 time history results – 254 mm sweep,
152 mm depth, 2.68 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)
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Figure A3.38: Field cultivator standard –  run #38 time history results – 178 mm sweep,
76 mm depth, 0.89 m/s, low moisture (6.9% d.b.), low compaction (200 kPa)

Figure A3.39: Field cultivator standard –  run #39 time history results – 178 mm sweep,
152 mm depth, 2.68 m/s, low moisture (6.9% d.b.), low compaction (200 kPa)
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Figure A3.40: Field cultivator standard –  run #40 time history results – 254 mm sweep,
76 mm depth, 2.68 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)

Figure A3.41: Field cultivator standard –  run #41 time history results – 178 mm sweep,
152 mm depth, 2.68 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)
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Figure A3.42: Field cultivator standard –  run #42 time history results – 178 mm sweep,
152 mm depth, 2.68 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)

Figure A3.43: Field cultivator standard –  run #43 time history results – 178 mm sweep,
76 mm depth, 2.68 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)
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Figure A3.44: Field cultivator standard –  run #44 time history results – 178 mm sweep,
76 mm depth, 2.68 m/s, low moisture (6.9% d.b.), low compaction (200 kPa)

Figure A3.45: Field cultivator standard –  run #45 time history results – 178 mm sweep,
152 mm depth, 2.68 m/s, low moisture (6.9% d.b.), low compaction (200 kPa)
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Figure A3.46: Field cultivator standard –  run #46 time history results – 178 mm sweep,
152 mm depth, 2.68 m/s, low moisture (6.9% d.b.), low compaction (200 kPa)

Figure A3.47: Field cultivator standard –  run #47 time history results – 178 mm sweep,
76 mm depth, 2.68 m/s, low moisture (6.9% d.b.), low compaction (200 kPa)
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Figure A3.48: Field cultivator standard –  run #48 time history results – 178 mm sweep,
76 mm depth, 2.68 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)

Figure A3.49: Field cultivator standard –  run #49 time history results – 178 mm sweep,
152 mm depth, 2.68 m/s, low moisture (6.9% d.b.), high compaction (1,100 kPa)
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Table A3.2: Field cultivator soil bin test draft load regression analysis with all variables
Regression Statistics

Multiple R 0.8732
R Square 0.7624
Adjusted R Square 0.7277
Standard Error 177.6771
Observations 48

ANOVA
df SS MS F Significance F

Regression 6 4154176.2 692362.7 21.93161 2.31126E-11
Residual 41 1294335.773 31569.17
Total 47 5448511.973

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -2,366.0310 349.6782 -6.7663 0.0000 -3,072.2205 -1,659.8416 -3,072.2205 -1,659.8416
Sweep 1.1589 0.9519 1.2174 0.2304 -0.7636 3.0813 -0.7636 3.0813
Speed 42.6384 99.3631 0.4291 0.6701 -158.0295 243.3063 -158.0295 243.3063
Speed^2 13.8699 17.9342 0.7734 0.4437 -22.3490 50.0889 -22.3490 50.0889
Depth 3.6287 0.6731 5.3909 0.0000 2.2693 4.9881 2.2693 4.9881
Compaction 0.3645 0.0570 6.3953 0.0000 0.2494 0.4796 0.2494 0.4796
Moisture 225.1805 36.6364 6.1464 0.0000 151.1918 299.1693 151.1918 299.1693

Table A3.3:  Field cultivator soil bin test draft load regression analysis with Speed
eliminated

Regression Statistics
Multiple R 0.8726
R Square 0.7614
Adjusted R Square 0.7330
Standard Error 175.9430
Observations 48

ANOVA
df SS MS F Significance F

Regression 5 4148363 829672.602 26.80173602 4.58091E-12
Residual 42 1300149 30955.92768
Total 47 5448512

CoefficientsStandard Error t Stat P-value Lower 95% Upper 95% Lower 95.0%Upper 95.0%
Intercept -2,337.0423 339.7421 -6.8789 0.0000 -3,022.6696 -1,651.4150 -3,022.6696 -1,651.4150
Sweep 1.2839 0.8974 1.4308 0.1599 -0.5270 3.0949 -0.5270 3.0949
Speed^2 21.3214 4.4398 4.8023 0.0000 12.3616 30.2813 12.3616 30.2813
Depth 3.6287 0.6665 5.4441 0.0000 2.2836 4.9738 2.2836 4.9738
Compaction 0.3645 0.0564 6.4583 0.0000 0.2506 0.4784 0.2506 0.4784
Moisture 225.1805 36.2788 6.2069 0.0000 151.9669 298.3942 151.9669 298.3942
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Table A3.4:  Field cultivator soil bin test draft load regression analysis with Sweep
eliminated

Regression Statistics
Multiple R 0.8659
R Square 0.7497
Adjusted R Square 0.7265
Standard Error 178.0725
Observations 48

ANOVA
df SS MS F Significance F

Regression 4 4084989.664 1021247 32.20603 1.98955E-12
Residual 43 1363522.308 31709.82
Total 47 5448511.973

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -2,088.0929 295.3391 -7.0702 0.0000 -2,683.7010 -1,492.4849 -2,683.7010 -1,492.4849
Speed^2 20.7939 4.4780 4.6436 0.0000 11.7631 29.8247 11.7631 29.8247
Depth 3.6287 0.6746 5.3790 0.0000 2.2682 4.9892 2.2682 4.9892
Compaction 0.3645 0.0571 6.3811 0.0000 0.2493 0.4797 0.2493 0.4797
Moisture 225.1805 36.7179 6.1327 0.0000 151.1318 299.2293 151.1318 299.2293

Table A3.5:  Field cultivator soil bin test vertical load regression analysis with all
variables

Regression Statistics
Multiple R 0.8116
R Square 0.6586
Adjusted R Square 0.6087
Standard Error 94.3291
Observations 48

ANOVA
df SS MS F Significance F

Regression 6 703864.5311 117310.8 13.18398 2.97121E-08
Residual 41 364817.0892 8897.978
Total 47 1068681.62

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 759.9369 185.6448 4.0935 0.0002 385.0197 1,134.8541 385.0197 1,134.8541
Sweep -0.4308 0.5054 -0.8524 0.3990 -1.4514 0.5899 -1.4514 0.5899
Speed -24.6055 52.7520 -0.4664 0.6434 -131.1404 81.9294 -131.1404 81.9294
Speed^2 -3.5423 9.5213 -0.3720 0.7118 -22.7710 15.6864 -22.7710 15.6864
Depth -2.5354 0.3574 -7.0949 0.0000 -3.2571 -1.8137 -3.2571 -1.8137
Compaction -0.0937 0.0303 -3.0982 0.0035 -0.1548 -0.0326 -0.1548 -0.0326
Moisture -53.2497 19.4503 -2.7377 0.0091 -92.5304 -13.9690 -92.5304 -13.9690
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Table A3.6:  Field cultivator soil bin test vertical load regression analysis with Speed2

eliminated
Regression Statistics

Multiple R 0.8108
R Square 0.6575
Adjusted R Square 0.6167
Standard Error 93.3565
Observations 48

ANOVA
df SS MS F Significance F

Regression 5 702632.9593 140526.6 16.12386 7.37796E-09
Residual 42 366048.6609 8715.444
Total 47 1068681.62

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 770.3195 181.6428 4.2408 0.0001 403.7494 1,136.8896 403.7494 1,136.8896
Sweep -0.3713 0.4745 -0.7825 0.4383 -1.3289 0.5863 -1.3289 0.5863
Speed -43.6079 13.0520 -3.3411 0.0018 -69.9480 -17.2678 -69.9480 -17.2678
Depth -2.5354 0.3537 -7.1688 0.0000 -3.2491 -1.8217 -3.2491 -1.8217
Compaction -0.0937 0.0299 -3.1305 0.0032 -0.1542 -0.0333 -0.1542 -0.0333
Moisture -53.2497 19.2498 -2.7662 0.0084 -92.0974 -14.4021 -92.0974 -14.4021

Table A3.7:  Field cultivator soil bin test vertical load regression analysis with Sweep
eliminated

Regression Statistics
Multiple R 0.8078
R Square 0.6525
Adjusted R Square 0.6202
Standard Error 92.9348
Observations 48

ANOVA
df SS MS F Significance F

Regression 4 697295.8912 174324 20.18368 2.03196E-09
Residual 43 371385.729 8636.877
Total 47 1068681.62

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 699.5840 156.8427 4.4604 0.0001 383.2807 1,015.8874 383.2807 1,015.8874
Speed -43.6079 12.9931 -3.3562 0.0017 -69.8109 -17.4049 -69.8109 -17.4049
Depth -2.5354 0.3521 -7.2014 0.0000 -3.2454 -1.8254 -3.2454 -1.8254
Compaction -0.0937 0.0298 -3.1447 0.0030 -0.1539 -0.0336 -0.1539 -0.0336
Moisture -53.2497 19.1628 -2.7788 0.0081 -91.8952 -14.6042 -91.8952 -14.6042

Table A3.7: Field cultivator soil bin test vertical load regression analysis as a function
of draft load

Regression Statistics
Multiple R 0.8719
R Square 0.7602
Adjusted R Square 0.7550
Standard Error 74.6411
Observations 48

ANOVA
df SS MS F Significance F

Regression 1 812401.7995 812401.8 145.8191 7.27526E-16
Residual 46 256279.8208 5571.3
Total 47 1068681.62

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -0.3167 17.8916 -0.0177 0.9860 -36.3307 35.6973 -36.3307 35.6973
Draft -0.3861 0.0320 -12.0756 0.0000 -0.4505 -0.3218 -0.4505 -0.3218
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Table4.0.1: Alternative soil measurement – regression analysis output for soil shear
strength
SUMMARY OUTPUT

Regression Statistics
Multiple R 1
R Square 1
Adjusted R Square 65535
Standard Error 0
Observations 4

ANOVA
df SS MS F Significance F

Regression 3 40458080.44 13486027 #NUM! #NUM!
Residual 0 0 65535
Total 3 40458080.44

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 5446.522455 0 65535 #NUM! 5446.522 5446.522 5446.522 5446.522
Depth -65.67117845 0 65535 #NUM! -65.671 -65.671 -65.671 -65.671
Draft 19.16934706 0 65535 #NUM! 19.169 19.169 19.169 19.169
Slope -17.69028426 0 65535 #NUM! -17.690 -17.690 -17.690 -17.690

Table 4.0.2: Alternative soil measurement – regression analysis output for soil viscosity
SUMMARY OUTPUT

Regression Statistics
Multiple R 1
R Square 1
Adjusted R Square 65535
Standard Error 0
Observations 4

ANOVA
df SS MS F Significance F

Regression 3 13721.07677 4573.692 #NUM! #NUM!
Residual 0 0 65535
Total 3 13721.07677

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 162.5745836 0 65535 #NUM! 162.575 162.575 162.575 162.575
Depth -1.209389712 0 65535 #NUM! -1.209 -1.209 -1.209 -1.209
Draft 0.353019569 0 65535 #NUM! 0.353 0.353 0.353 0.353
Slope -0.32578139 0 65535 #NUM! -0.326 -0.326 -0.326 -0.326
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