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ABSTRACT

The engineering design process has undergone extensive research in the 

area of detailed design. Many computer aided design (CAD) software packages 

have been developed from this research to provide an integral analysis tool for 

companies in the detailed design phase. However with the development of more 

complex technologies and systems, decisions made earlier in the design process 

have been crucial to product success. To help  provide valuable information to assist 

these earlier decisions, tools have also been developed for conceptual design such 

as lightened CAD packages, concept elimination methods, and image processing 

software. Unfortunately, these tools have been proven ineffective based on the 

inability to provide a lower fidelity real-time analysis of each and every concept. By 

providing real-time analysis, engineers could spend more time evaluating every 

concept mathematically and base decisions on factual information instead of 

personal opinion.

On a different note, companies continually undergo next generation 

development of their products. This continuous cycle of design iterations generates 

a stockpile of high fidelity  analysis which we refer to as “legacy data.” Legacy data 

contains thousands of geometrical properties and analytical data used to assess the 

validity  of previous designs. This data creates a vast amount of analytical 

engineering knowledge which can be harnessed to help evaluate the validity  of 

future designs. Statistical approximations known as metamodels can be applied to 

summarize the general trends of the inputs and outputs of legacy dataset, and 
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eliminate the need for recreating CAD analysis models for each concept. 

Metamodeling techniques cannot produce 100% accuracy, but at the conceptual 

design stage, 100% accuracy is not a necessity. This thesis presents an 

implementation scheme for incorporating Polynomial Response Surface (PRS) 

methods, Kriging Approximations, and Radial Basis Function Neural Networks 

(RBFNN) into conceptual design. A conceptual design software application, the 

Advanced Systems Design Suite (ASDS), has also been developed to incorporate 

these metamodeling techniques into assessment tools to evaluate conceptual 

design concepts in both a desktop and immersive virtual reality (VR) environment.

The goal of the implementation scheme was to develop a strategy for 

constructing metamodels upon conceptual design datasets based upon their ability 

to perform under several conditions including various sample sizes, dataset linearity, 

interpolation within a domain, and extrapolation outside a domain. In order to 

develop the implementation scheme, two conceptual design datasets, wheel loading 

and stress analysis, were constructed due to a lack of available legacy data. The two 

datasets were setup using a design of experiments (DOE) to generate accurate 

sample points for the datasets. Once the DOE was formulated, digital prototypes 

were created in CAD software and the FEA test runs generated the responses of the 

DOE input parameters. The results of these FEA simulations generated the 

necessary conceptual design datasets required analyze the three metamodeling 

techniques.

The performance results revealed that each metamodeling technique 

outperformed the others when tested again the various parameters. For instance, 
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PRS metamodels performed very well when extrapolating outside its domain and 

with datasets consisting of more than 40 sample points. PRS metamodels require 

very  setup  and can be generated very quickly. If speed is the key consideration for 

metamodel construction, then PRS is the best option. Kriging metamodels showed 

the best performance with any non-linear dataset and large design space datasets 

exhibiting linear or non-linear behavior. Kriging metamodels are a very robust 

metamodeling technique especially  when using a first-order global model on non-

linear datasets. On the downside, Kriging metamodels require slightly  more time to 

setup  and construct than PRS metamodels. RBFNN metamodels performed well 

when interpolating within a large design space and on any sample size of linear 

datasets. However to reach performance levels of either PRS or Kriging, the ideal 

radius value must be determined prior to constructing the final model which took 

hours on small datasets. If the datasets consisted of thousands of design variables, 

constructing a RBFNN metamodel would take days to weeks to generate. However if 

construction time is not an issue, RBFNN metamodels outperform both PRS and 

Kriging techniques on linear datasets.

This implementation scheme for incorporating metamodels into conceptual 

design provides a method for generating rapid assessment capabilities as an 

alternative to high fidelity  analysis. Future work includes evaluating additional 

conceptual design datasets to create a more robust implementation scheme. More 

research will also be done in implementing additional types and varying setup 

parameters of both Kriging Approximations and Radial Basis Function Neural 

Networks.
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1 INTRODUCTION

1.1
 The Design Process

The product design process has been explained and defined many different 

ways. For now and for the ease of understanding, lets divide it up into three base 

groups including “understanding the opportunities”—steps 1-2 of Figure 1, 

“conceptual design”—steps 3-4, and “detailed design”—steps 5-8. The first phase, 

“understanding the opportunities,” involves several different sub-categories, which 

combine to reach a common goal of creating a vision for the new product to be put 

into production. This is done through brainstorming and researching the problem at 

Figure 1: Schematic of the engineering design process. (http://www.sallyridescienc      
e.com/toychallenge/design)
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hand. Companies often brainstorm to find answers to some of the following 

questions at this stage in design:

• What product do we wish were out there?

• What is difficult with our current product?

• Why does it not perform the way we want it to?

• What are our customer needs?

Once these questions have been researched and answered accordingly, the exact 

specifications and goals for the product such as performance, quality, and safety can 

be explicitly defined. The product is then ready to move forward to the second phase 

of design of developing a new concept.

Once the product moves into the conceptual phase of the design process, the 

next step is to create a functional model describing the inputs, outputs, and 

transformations that must happen for a product to work according to the market 

specifications and customer needs. This functional model is then used by engineers 

and design teams for generating many concepts to implement the functional 

specifications. After the concept pool is generated, the design team undergoes a 

selection process to determine the best idea. The result of this analysis is the 

concept to develop and move forward into the third phase of design.

The next phase of the design process, detailed design, involves first 

developing virtual models or physical prototypes to represent the final product for 

testing and assessment purposes. After the model is constructed, mathematical 

methods of analysis are constructed to evaluate the ability of the model to meet the 

needs of the customer as well as the functional model. At the end of this phase, a 
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working prototype or virtual model exists. Manufacturing, assembly, and 

maintenance process design of the product are then undertaken.1

The entire design process is full of many difficult decisions based sometimes 

on very little hands-on information. Engineers are sometimes forced to make 

decisions based solely on instinct and experience instead of factual information. 

Since each decision made along the way is imperative to the success or failure of 

both the design and functionality  of the final product, engineers need to have as 

much information as possible to make the correct decision. If the correct decisions 

can be made throughout the design process, the final product will benefit in a 

number of different ways. Some of these benefits include improving overall product 

quality, decreasing production time, and decreasing production costs. 

It is estimated that up  to 75% of product cost is spent during the product 

design phase including maintenance and manufacturing.2 Therefore, the design 

process has undergone extensive research in both academia and industry to 

improve the cost effectiveness of the design process as a whole. This research 

generated many commercial software solutions to optimize the detailed design 

phase. Software packages such as Solidworks3 (see Figure 2), ProEngineer4, and 

Abaqus5, enable engineers to create digital prototypes of a product design. The 

digital prototype can then be subjected to various analytical tests which measure the 

validity of the design. 

A large collection of todayʼs product driven companies have integrated 

sophisticated prototyping and simulation software into the detailed design phase of 

their design processes. These software packages have become a necessity to the 
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engineering community. Physical prototyping is an enormously expensive, time-

consuming process for companies producing extremely high price items such as 

airline jets, combine, or ocean-liner. Not only are the materials alone extremely 

expensive for such products, the costs of materials and construction labor can 

become enormous for such products. Additionally, the company needs to perform in-

depth analysis to ensure the prototype was built within the tolerance specifications. 

With the time and money consumed by the prototyping process, physical prototyping 

is being continually diminished in many engineering companies because digital 

prototyping (see Figure 2) allows them to decrease the development time and cost 

of the final product in addition to avoiding significant physical prototyping costs.6

Figure 2: A digital prototype created in the Solidworks virtual prototyping package. 
(http://www.dexigner.com/design_news/solidworks_2008.html)
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1.2 
 The Reality of Conceptual Design

With the development of more complex technologies and systems, decisions 

made in earlier stages of the design process become critical. Once a product 

reaches the detailed design phase, many specific properties such as dimensions an 

material properties need to be determined as the product will soon be moving into 

production. Otherwise, the company will incur significant delays and costs due to the 

redesign of the product.

For example, the detailed design phase consists of several stages including 

prototype creation, whether it be digital and/or physical, detailed analysis, 

performance evaluation, and possible redesign. Using a complex computer aided 

design (CAD) software package to create a digital prototype can take considerable 

amounts of time, especially with more intricate systems. Afterwards, complex 

assessment methods built into the CAD packages such as finite-element analysis 

(FEA) and dynamic simulations like computational fluid dynamics (CFD) are used to 

assess performance characteristics of a design. These performance criteria are then 

used to evaluate the validity of the design. If after all this time the design is found to 

be infeasible, the company has invested considerable time and money into the 

development of a product design which will never be put into production. 

This example illustrates how important the early stages of the design process 

are to the success of the product design cycle. In order to optimize the engineering 

design process, it is imperative that correct decisions are made as early as possible. 

Companies cannot afford the time and money required to send invalid solutions 
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forward into detailed design. Therefore, early  stages of the design process such as 

conceptual design are currently  undergoing large amounts of research in both the 

academic and industrial communities to try to improve the quality of decisions and 

ideas made and produced in this phase of design. Additionally, conceptual design 

decisions can be made with minimal cost and time impact yet can produce 

significant impacts on the downstream design and manufacturing process.7 Since 

these initial decisions have such a large impact on downstream development, 

engineers need tools to make accurate decisions at the conceptual stage. 

Unfortunately, the number of conceptual design tools available is very limited. 

The most prevalent tool used today in conceptual design is CAD software. 

However, these packages contain complex CAD functions such as precise 

dimensional mating, 3D meshing, finite-element analysis (FEA), and computational 

fluid dynamics (CFD) simulations (see Figure 3). These types of functions were not 

Figure 3: A Solidworks finite-element analysis simulation of a digital prototype. (Left-
http://www.dcwhite.co.uk/stress_fe.htm) A computational fluid dynamics simulation 
on a fighter jet digital prototype (Right-http://iar-ira.nrc-cnrc.gc.ca/aero/aero_4.html)
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developed for conceptual design but for detailed design. Conceptual design requires 

tools to estimate the look, feel, and performance of a particular concept quickly and 

with as much accuracy as possible. Assessment estimates of certain key conceptual 

design parameters are all that is necessary in this design stage. Full FEA and CFD 

simulations and analysis is just not possible. Running these analysis simulations are 

extremely difficult and time-consuming to setup  and run even when the engineers 

are highly trained and experienced as many of the specific inputs needed have ot be 

estimated for a concept design. To generate FEA or CFD analysis on many different 

concepts is unrealistic and simply cannot be accomplished in the limited amount of 

time available for engineers to establish the specifications of the concept to move 

into the next design phase. Therefore, by  using CAD software packages for 

conceptual design, only a small subset of the concepts could be run through such 

simulations. This can lead to design teams dismissing possible solutions without 

data to support this decision. Certain design characteristics can be eliminated due to 

the inability to evaluate the validity of all the concepts using this method.

Commercial CAD developers have released “lightened” versions of their 

software such as PTCʼs Pro/CONCEPT8 and CATIA PLM Express9 (see Figure 4) to 

try to reduce the limitations of 3D model creation. These packages reduce the 

amount of analytical functionality of the software, yet the complexity of 3D model 

creation such as precise mating and dimensioning still remains to be an unresolved 

issue. Requiring extensive training and a large learning curve, these lightened 

applications still do not meet the real-time creation and analysis requirements of 

digital prototyping at the conceptual design phase of the design process.
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Researchers have also developed other selection methods to rank the 

population of concepts. The goal of all these selection processes is to obtain as 

much information and concept details as cycle time and resources permit. Some of 

these selection processes include estimating technical difficulty and Pugh concept 

selection charts.1 Estimating technical difficulty is a method for engineers to compare 

known measurements and a model with that of a new concept to estimate the 

conceptʼs performance based on the information from the pre-existing data. Pugh 

charts are a more common selection method, which use a minimal evaluation scale 

and three overall ranking metrics to perform concept selection when there is minimal 

information quality available. These methods have been proven effective but are 

Figure 4: A screen capture of a digital prototype constructed using the “lightened” 
version of the CATIA CAD package—CATIA PLM Express.
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based on the opinions of engineers and not on hands-on factual data. In order to use 

these methods more effectively, more information needs to be provided to the 

engineers before using these methods to make concept selections.

In a traditional conceptual design exercise, engineers work with a variety of 

these tools and other experts to help visualize and convey their ideas. For example, 

the conceptual design team may turn to CAD packages, industrial design systems, 

image processing software such as PhotoShop, and sometimes even graphic artists 

to capture the overall shape and configuration of a particular concept. This is often a 

tedious and time-consuming process, but is still generally chosen over developing 

the entire 3D model in a “lightened” CAD package. The end result is generally 

several 2D images useful only  as a visual reference to provide visual clarity  amongst 

all the group members. There is not any factual information tied to analyze the 

validity of the concept nor the ability to make and assess changes in real-time.

1.3
 Motivation

All four conceptual design methods—CAD packages, lightened CAD 

packages, concept selection methods, and traditional methods—have their 

advantages and purposes. However, none of these methods are able to achieve 

what is truly needed in conceptual design; fast geometry creation and lower fidelity 

real-time analyses of each concept to make accurate decisions early in the design 

process. Currently, CAD software provides high fidelity analysis to evaluate all the 

concepts, but this process is just too time consuming. Additionally, concept 
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elimination methods do not use design analysis tools to make concept selection and/

or elimination decisions.

The need for high fidelity analysis in the detailed design phase is apparent. 

This is obvious since almost all companies have by  now adopted digital prototyping 

into their detailed design process to cut various production costs. Digital prototyping 

creates vast amounts of high fidelity  computational data to effectively assess the 

performance of a product. Once the product is completed and production begins, the 

company then begins the design process for the next generation of the product or a 

new product all together. This continuous cycle of design iterations builds a stockpile 

of high fidelity analysis data which is referred to as “legacy data.”

Legacy data contains thousands of geometrical properties and analytical data 

used to assess the validity of previous generations of product designs. This data 

creates a vast amount of analytical engineering knowledge which could be 

harnessed to help  evaluate the validity  of future designs. If general trends in the data 

exist, then statistical approximations known as metamodels can be applied to 

summarize this legacy data. For example, if twenty generations of a particular 

product exist and the same set of high fidelity analysis simulations were performed 

on each generation, then the input variables and results can be summarized 

mathematically using a metamodel.

By generating metamodels to interpolate and extrapolate high fidelity  legacy 

data, the need for recreating CAD analysis models can possibly  be eliminated. 

Metamodeling techniques cannot produce 100% accuracy  for representing their 

10



input data, but at the conceptual design stage, 100% accuracy  is not a necessity at 

this early stage of design. 

Metamodeling driven analysis tools can then facilitate a design by  shopping 

paradigm.10 After the analysis of the population of concepts is concluded, the design 

team sorts through the analytical results shopping for an optimal design. If an 

optimal solution for the detailed design does not yet exist, the best concepts are 

selected and another iteration of concept development is undergone with the newly 

selected concepts. This process continues until one or several concepts are found to 

move forward into detailed design. This design by shopping paradigm based upon 

the analytical data provided from the metamodels can then be coupled with 

additional concept selection methods as mentioned previously such as estimating 

technical difficulty  and Pugh selection charts. It is just important to note that none of 

these methods are effective without actual data.

1.4
 Thesis Organization

This thesis focuses on the ability  of different metamodeling techniques to best 

represent conceptual design data to create real-time assessment tools at the 

conceptual design phase of the design process. In Chapter 2 a literature review of 

Polynomial Response Surfaces (PRS), Kriging Approximations, and Radial Basis 

Functions (RBF), and Neural Networks is given. In Chapter 3 the methodology 

section begins with the construction of two conceptual design datasets to build the 

metamodels upon. The first is a legacy data wheel loading approximation, and the 
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second is a stress and displacement approximation. These datasets serve as 

evaluation tools to examine the performance between all three metamodeling 

techniques. Following the dataset construction is a section describing how each of 

the three metamodels were constructed and validated. In Chapter 4 the comparison 

results of the metamodel performance evaluation are presented. Chapter 5 contains 

a summary and discussion of the results in addition to future work.
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2 LITERATURE REVIEW

2.1
 Introduction to Metamodeling

Metamodeling is the general process of creating an approximation of a 

response or set of responses of a dataset over a certain domain. In more general 

terms, metamodels estimate the output(s) of a given set of inputs built upon the 

outputs of a similar dataset. This idea is best illustrated with a simple example of 

curve fitting using the line of best fit functionality built into Microsoft Excel. First, a set 

a data must be generated in order to have information to construct an approximation 

or estimation upon. Lets use the function seen in Eq. (1)

                                                                                                                                     
                                             (1)

To generate a dataset the function is evaluated at 200 equally  distributed sample 

points in the domain or range of x from 0 to 20. The results or y-values of the 

evaluations can be seen below in Figure 5 as the orange line. This orange line 

represents a plot of Eq. (1) for the domain chosen. 

When metamodeling is used, the exact function representing the data, Eq. (1) 

in this example, is unknown. The scattered dataset is generated from real world 

scenario and not from an experimental equation. Therefore, engineers do not have 

any idea of what the mathematical representation of the results is. Additionally, the 

data tends to have noise and outlier data points instead of a nice smooth curve. In 

order to represent Eq. (1) in a more realistic setting for metamodel construction, 

random noise was introduced into Eq. (1) and the resulting data points can be seen 

y = √x
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in Figure 5 as the blue noisy y-values points scattered about. This is a much more 

realistic dataset for which metamodels tend to be built upon. 

After the noisy dataset was built from Eq. (1), an approximation or metamodel 

of the scattered dataset can be built. The goal of the approximation is to create an 

equation as close to the actual trend of the data as possible. For this example, the 

general trend of the scattered dataset is Eq. (1). However, in most real 

metamodeling scenarios, the general trend is unknown. To construct a simple 

metamodel for this example, the line of best fit functionality of Microsoft Excel was 

used. The black line in Figure 5 is a second-order polynomial trend line built upon 

the scattered dataset. It uses the values of the scattered sample points to build an 

equation to estimate the y-value at a given x-value inside the domain. This equation 

and the R2 value (coefficient of determination) are both displayed in Figure 5. 

0!
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1.5!

2!

2.5!
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3.5!
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Y = -0.005x2 + 0.353x + 0.5

R2 = 0.911

Figure 5: A chart demonstrating Microsoft Excelʼs Line of Best Fit functionality.
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Anyone can then find the predicted y-value of the dataset by  simply calculating the 

equation for any value of x inside the domain. 

The R2 value of Figure 5 is a measure of how well the metamodel fits the 

scattered dataset. A value of zero indicates that the metamodel does not fit the 

scattered dataset at all, and a value of one indicates a perfect fit. Therefore, when 

constructing metamodels, one useful measure of the metamodelʼs ability  to fit the 

dataset is the R2 value. This is useful but cannot predict how close the metamodel is 

to the actual trend. For example, the estimate line (black) and the actual line 

(orange) are not exactly the same and the R2 does not accurately represent this 

difference.

The goal of metamodeling is to capture the general trend of the scattered 

dataset or make the black and orange lines as similar as possible. Therefore, an 

assumption of metamodeling is that the scattered dataset is a good representation of 

the general trend of the dataset. Therefore, if a metamodel is a highly accurate 

representation of the scattered dataset, then the metamodel is also a highly  accurate 

representation of the general trend as well. To accurately model as many types of 

datasets as possible, statisticians and engineers have developed different 

metamodeling techniques. The next section provides an overview of each of the 

three different metamodeling techniques: 1) Polynomial Response Surface (PRS) 

Methodology, 2) Kriging Approximations, and 3) Radial Basis Function Neural 

Networks (RBFNN).
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2.2 
 Overview of Metamodeling Techniques

2.2.1 
Polynomial Response Surfaces

Polynomial Response Surface methodology is widely  used throughout the 

engineering community11 and was originally developed to analyze the results of 

physical experiments to create statistical models of the experimental results.12 PRS 

models are designed to approximate datasets using polynomial expressions to fit the 

dataset and take the form


 
 
 
  
                                  
  (2)                    

where y(x) is the unknown function of interest, f(x) is a known polynomial function of 

x, and ε is random error . The random error is assumed to be normally distributed 

about zero. The known polynomial function, f(x), is generally a low-order polynomial. 

In order to satisfy more non-linear behavior, higher order polynomials can be used 

but require large numbers of sample points to satisfy  the coefficients in the 

polynomial equation. In Eq. (3) the polynomial equation is linear. Eq. (4) shows a 

second-order or quadratic expansion of the polynomial equation.

             (3)

                           (4) 

y(x) = f(x) + ε

ŷ = β0 +
k∑

i=1

βixi

ŷ = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix2
i +

∑

i=1

∑

j<1

βijxixj
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The coefficient parameters, β0, βi, βii, and βij, of the polynomials in Eqs. (3) 

and (4) are determined through least-squares regression. Least-squares regression 

first calculates the partial derivatives of the coefficients, then minimizes the sum of 

the squares of the residuals of predicted values, ŷ(x), from the actual values, y(x). 

The coefficients of Eqs. (3) and (4) can be found using Eq. (5)


 
 
 
 
 (5)

where X is the design matrix of sample data points, X′ is its transpose, and y is a 

column vector that contains the values of the response at each sample point.13

2.2.2
Kriging Approximations

Kriging metamodels originated from mining and geostatistical applications for 

the Rand gold deposit.14 Kriging models are formulated through a combination of a 

global regression model and localized departures

                                                                       
                                  (6)                                     

where y(x) is the unknown function of interest of design variable x, f(x) is a known 

approximation (usually polynomial) function of x, and z(x) is the realization of a 

stochastic process with mean zero, variance σ2, and nonzero covariance. The f(x) 

term in Eq. (6) is very  similar to the polynomial approximation for polynomial 

response surface models. Each provide a global approximation of the design space.

In order to better fit the model to the design space, z(x) created localized 

deviations so the Kriging model interpolates the ns sampled data points more 

accurately in large residual areas. The covariance matrix of z(x) is represented by

β = [X′X]−1X′y

y(x) = f(x) + z(x)
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                                                                    (7)                                

where R is a correlation matrix of dimensions (ns x ns) with ones along the diagonal.  

The correlation function R(xi,xj) is specified by the user and lies between any two 

sampled data points xi and xj. A large variety of correlation functions exist including 

linear, exponential, general exponential, gaussian, spherical, and spline functions.

15,16 The following Gaussian correlation function was utilized


 
 
                                       
 
           
 
            (8)

where ndv is the number of design variables, θk are the unknown correlation 

parameters used to fit the model, and xki and xkj are the kth components of sample 

points xi and xj. Different values of θ for each design variable are used instead of 

using a single correlation parameter.17

Predicted values, ŷ(x), of the response y(x) at untried values of x can be 

estimated using Eq. (9)



 



                                                     
                                  (9)

where y  is a column vector of length ns with responses of the sampled data point 

{x1,...,xns}, and f is a column vector of length ns filled with ones when f(x) is taken as a 

constant. In Eq. (9) the correlation vector rT(x) of length ns between a new x and the 

sampled data points can be expressed as:


 
 
                     
                     (10)


 In Eq. (9) the generalized least squares estimate, β̂ , is estimated using Eq. 

(11)

Cov[z(xi), z(xj)] = σ2R[R(xi, xj)]

R(xi, xj) = exp

[
−

ndv∑

k=1

θk|xi
k − xj

k|2
]

ŷ = β̂ + rT(x)R−1(y − fβ̂)

rT(x) = [R(x, x1),R(x, x2), ...,R(x, xns)]T
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 The estimate of the variance, σ̂2 , in Eq. (7) between the underlying global 

model β̂ and y is estimated using Eq. (12):





    
 
          (12)

where f(x) is assumed to be the constant β̂ . The maximum likelihood estimates for 

the θk in Eq. (8) are determined using Eq. (13)


 
 
 
                                                                


         
                     (13)

where both σ̂2  and |R| are functions of θk. Any value of θk can be used to approximate 

the Kriging model, but to generate the best Kriging model, a simulated annealing 

algorithm18 is used to solve the k-dimensional unconstrained nonlinear optimization 

problem given by Eq. (13) to find the maximum likelihood estimates for the θk 

parameters.19

2.2.3 
Radial Basis Function Neural Networks

Radial basis function (RBF) neural networks provide a powerful technique for 

generating multivariate, nonlinear mappings.20 Training an RBF network consists of 

a single output in the design space being calculated from a linear space of single or 

multiple dimensions. RBF networks have a three layer architecture which can be 

seen in Figure 6. The first layer of the network consists of “input” units whose 

number is equivalent to the number of independent variables of the problem. The 

second layer is composed by nonlinear “hidden” units fully connected to the first 

layer. A single unit for each data point xi = (xi, yi, zi, ... ) exists parametrized by its 

β̂ = (fTR−1f)−1fTR−1y

σ̂2 =
[
(y − fβ̂)TR−1(y − fβ̂)

]
/ns

maxφ(θk) =
[
ns ln(σ̂2) + ln |R|

]
/2
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center, which has the coordinates (xi, yi, zi, ... ) of the data point itself. The output 

layer, fully  connected to the hidden layer, consists of one or more linear units, whose 

weights are the unknown coefficients of the RBF expansion.21


 Vectors containing the input values are passed into a hidden layer of neurons 

which computes a hyperspherical function of x, the input vectors. The output of each 

of these ith hidden neurons can then be generalized as

                                                            
                                (14)

where yi is the center of the RBF for neuron i, and (||...||) denotes the Euclidean 

norm, magnitude,  for the hypersphere created at neuron i. The nonlinear function φ 

can be chosen in many different ways and can be different for each hidden neuron. 

There are many different radial basis functions including linear, multiquadric, and 

Gaussian functions in addition to thin-plate and Sobolev splines. For this thesis a 

Inputs

Outputs

Hidden
Neurons

x1 xi xp. . . . . .

. . .

. . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

zi zn

1 i j

1i
ii

1n

in ji

jn

Figure 6: Architecture of a radial basis function neural network.

φi = φ(||x− yi||)
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Gaussian was used as the radial basis function for the hidden neuron as is typically 

used and can be seen in Eq. (15)

                                                                              
                                
                                (15)

where yi is the center point and r is the radius of the Gaussian RBF.22

The outputs of the RBF neural network are then formed from the weighted 

sum of the outputs from each of the hidden neurons











                     
(16)

where the weights wijand the biases θi are adaptive variables set during the learning 

phase. In order to find the correct synaptic weights for the hidden neurons, training 

data are supplied to the network in the form of pairs xp, tp of input and target vectors. 

The learning algorithm then uses generalized least squares to minimize the sum-of-

squares error for the training data defined by


 
 
          
 
                     (17)

where zip = zi(xp) denotes the output coming from neuron i when the network is given 

xp for training input data. When a minimum sum-of-squares error is reached then Eq. 

(18) is valid

                                           
 
 
                     (18)

φ(x) = exp
(
− (x− yi)2

r2

)

zi =
∑

j

ωijφj + θi

ES =
1
2

∑

p

∑

i

(zip − tip)2

∂ES

∂ωij
= 0
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Eq. (18) combined with RBF network outputs in Eq. (16) (after omitting the explicit 

bias terms) gives

           
 
 
                         
 
 
                     (19)

Where φjp  = φj(xp). Eq. (18) can then be simplified to





              






  (20)

where the square matrix M is defined by






       







   (21)

M  is the covariance matrix of the transformed data with a zero mean. In order to 

solve the weights for each neuron, M-1 is computed to solve Eq. (22)









     



   
(22)


 Typically the number of hidden neurons equals the number of inputs with the 

centers located at the input location. This allows the RBF network to fit all the input 

data points into the model. Therefore, highly accurate nonlinear approximations are 

possible with RBF networks. Fitting the RBF network to each sample point generally 

creates an overfit of the dataset instead of observing a more generalized trend. 

Other implementations however exist for RBF to help  account for overfitting. These 

techniques will be discussed in more detail in the following section.
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2.3
 Development of Metamodeling techniques

Metamodeling originated back in the early 1980s. Schmit et al.23,24 combined 

finite element analysis and mathematical programming algorithms to create 

structural synthesis, a method to reduce the structural weight of aerospace and 

automotive structures without compromising the structural integrity of the design. 

Then in early 1990s, response surface methods first developed by Box and 

Wilson25,26 became the primarily  focus of approximation methods research. Several 

different response surface methods were developed during this time. For instance, 

the Variable Complexity  Response Surface Modeling (VCRSM) method27,28 used 

analyses datasets of varying fidelity to reduce the area of the design space to a 

more effective region of interest. Then from this smaller subspace, the response 

surfaces were built to see a higher accuracy due to the model being built in a more 

concise and accurate domain.

Robust Design Simulation29 combined both response surface models and 

Monte Carlo simulation to generate robust design specifications. Robust Concept 

Exploration Method30,31 integrated response surface approximations into the early 

stages of complex systems design to explore the design space to determine a 

suitable range for specifications and to identify feasible starting points for design. 

This was called a robust concept exploration method because by using this method, 

quality concepts were identified before concept development began.

In the mid 1990s when response surfaces had undergone more research and 

were better understood, some limitations of this metamodeling technique became 
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apparent. Two of these shortcoming were the curse of dimensionality32,33 and the 

inability to generate accurate approximations on highly non-linear design space 

datasets19. These inabilities led to further development in both higher order response 

surface models34 and mixed polynomial models35 to try to better handle the highly 

non-linear datasets. Another approach was to find more efficient ways to sample the 

design space effectively with smaller datasets using computer analyses.36,37,38

In the late 1990s, the focus shifted away from response surface models to 

alternative approximation methods such as radial basis functions39. To better handle 

noisy datasets, curve-fitting procedures40,41 were developed to approximate only the 

smooth components of noisy and scattered data. The Extended Radial Basis 

Function (E-RBF) approach42 was also designed to impose smoothness constraints 

on the metamodel. This was accomplished by incorporating more flexibility in the 

metamodel by introducing additional degrees of freedom by adding coefficients into 

each dimension of the metamodel definition. A two dimensional example of 

Response Surface Methodology, Radial Basis Functions, and Extended Radial Basis 

Functions can be seen in Figure 7 below.

Figure 7: Systems of equations and the resulting metamodels using different 
metamodeling techniques.
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While Radial Basis Functions were under development, so were Kriging 

Approximations43. Other additional extensions of Kriging were implemented to try to 

create a more robust metamodel. Gano et al.44 built Kriging based scaling functions 

alongside a trust-management scheme to get low fidelity models to converge to 

higher fidelity models. Gano et al.45 later enhanced this method by introducing a 

metamodel update management system to reduce the cost of rebuilding a Kriging 

model. This was done by only updating the model parameters when producing a 

poor approximation. Another Kriging implementation is Co-kriging which adds 

additional gradient information to the unknown primary functions of interest at each 

specified sample location.46 Forrester et al.47 later combined Co-kriging with a 

Bayesian model update criterion based on an error estimate that reflects the amount 

of noise in the observed data.48

Each of these methods have undergone significant research to improve 

performance and robustness. During these developments, engineers and 

statisticians used various types of detailed design production models as test 

datasets. Some of the engineering applications where metamodeling has already 

been applied include solid bar torsion and elongation49, aircraft structural 

performance50, aerodynamics51, shell structure buckling52, blade-stiffened composite 

panels53, optimizing flow of a diffuser54, and optimizing an aerospike nozzle in a 

rocket engine19. These are obviously not all the examples of metamodeling 

incorporated into design, but merely a few to demonstrate the integration of 

metamodeling into the design process.
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2.4
 Research Issues

Based on the literature of current research in various metamodeling 

techniques including Polynomial Response Methodology, Kriging Approximations, 

and Radial Basis Function Neural Networks for mathematical approximations in 

conceptual design, three research issues have been identified. They are:

1. To determine which metamodeling technique is best suited for large vehicle 

conceptual design based upon sample size performance.

Building metamodels from conceptual design datasets can be challenging due to 

a small availability of sample points. It is crucial that metamodels possess the 

capability of generating high fidelity results from small sample datasets. This 

analysis would provide engineers with the knowledge to determine how many 

data points are necessary in order to construct an effective metamodel.

2. To determine if these metamodeling techniques can accurately interpolate 

and/or extrapolate responses inside and/or outside computational domains 

appropriate for large vehicle conceptual design.

Most conceptual design exercises push the limits of preexisting designs. If 

metamodels were constructed upon the preexisting designs, how well could they 

then extrapolate responses outside their domain? Additionally, if metamodels are 

constructed on many different types of preexisting designs, can these 
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metamodels effectively  interpolate for more specific design cases within their 

domain?

3. To develop an implementation scheme for integrating metamodels within a 

decision-based conceptual design framework.

When a conceptual design dataset becomes available to implement into a 

conceptual design tool, an implementation scheme for how to construct an 

accurate metamodel from the dataset would help ensure higher accuracy results. 

The implementation scheme would use the parameters of the dataset to draw 

conclusions about which metamodeling technique would be most suited to 

handle the properties of the given dataset.
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3 METHODOLOGY

3.1 
 Dataset Development

Based on the development of the research issues identified, this chapter first 

describes the construction procedures for the conceptual design datasets. When the 

legacy datasets generated from a companyʼs previous generations of detailed 

design is available, then the dataset development step  in the metamodel generation 

can be bypassed and one of the methods described in Section 3.2 can be 

implemented. However, since legacy data is not available, alternative methods of 

gathering the datasets were implemented.

The choice of conceptual design datasets can range from measurements 

such as heat flow, engine power, tipping angle, wheel loading, stress and 

displacement, etc. The two conceptual design datasets chosen to evaluate the 

performances of the metamodeling techniques were wheel loading and stress 

analysis. Each of these measurements play an important role in the concept 

assessment of the conceptual design phase for a large vehicle design.

Due to the lack of legacy  data, both the wheel loading and stress analysis 

datasets were simulated using a design of experiments (DOE).55 A  DOE was 

formulated to determine the specific parameters and values of all the design 

variables of the simulation. Digital prototypes were then created in CAD software to 

perform FEA test runs to calculate the responses of the input data. The results of 

these FEA simulations generated the conceptual design datasets required to begin 
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the analysis of the three metamodeling techniques. The following sections describe 

the process of constructing the wheel loading and stress analysis datasets.

3.1.1 
Wheel Loading Dataset

The term wheel loading refers to the reaction force at each support point of a 

product. For example, the support points of a tractor are the tires while the support 

points of a table are the legs. Wheel loading is an important design criteria for all 

stages of design since it affects many physical design constraints of a product. In 

order to generate the wheel loading data for a generic large vehicle, a DOE was 

created to form a specific set of parameters to most accurately simulate the possible 

wheel loading combinations. These parameters included number of wheels, wheel 

positions, center of gravity (CG) position, and CG force. 

The DOE consisted of four wheels with seven variable positions and a CG 

with a force of 1lb and a static center position. Each reaction force was then 

calculated as a percentage of the CG force, and the sum of the four reaction forces 

was the CG force. The entire design space using the parameters of the DOE 

consisted of over 2,400 FEA simulation design points. Since it was not possible to 

run 2,400 FEA simulations, an alternative method to simulate subsets of the design 

space was required. Several methods exist to generate these subsets of a design 

space including orthogonal (Taguchi) arrays, random sampling, and Latin 

hypercubes. Each of these methods provide a more uniformly distributed coverage 

of the design space creating concise datasets with fewer data points.
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The parameters for the simulation included four design variables representing 

each of the four wheels. Each of the four design variables could vary  between seven 

different wheel positions. The adequate number of simulations for the wheel loading 

dataset was determined to be 50 sample points. With this information, a method for 

sampling a subset of the design space could be implemented. Orthogonal arrays56 

were chosen initially for there easy setup. Many orthogonal arrays are available and 

implementing one is as simple as finding an array that fits the DOE parameters. An 

L-49 orthogonal array was then chosen due to the fact that it met the design criteria 

almost perfectly. The L-49 orthogonal array requires 49 trial runs and seven levels 

for each input variable while supporting between one to eight design variables.

However, orthogonal arrays were abandoned due to the inability to change 

the number of sample points within the dataset. By  adding or removing a single 

sample point from the dataset, the L-49 array would lose its orthogonal properties, 

and thus rendering it an inappropriate way to sample the design space in a balanced 

manner. Therefore, orthogonal array sampling was replaced with a random sampling 

scheme. A random sampling scheme generates random values for each wheel 

position within a certain domain. Since a random sampling scheme chooses points 

at random throughout the design space, sample sizes of the dataset can be modified 

without affecting the equal distribution of the subset of the original design space.

Once the testing method was finalized, the Abaqus simulation model—the 

loading rig—was developed and can be seen in Figure 8. The loading rig consisted 

of several pieces including the base, legs, and supports. The base was located in 

the center of the loading rig and attached to each of the four legs. The CG force was 
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also applied to the top  face of the base. The legs of the loading rig exist only as 

supports to distribute the CG force to the reaction forces of the supports. The legs 

were four meters long which was just long enough to support the variable support 

positions which varied according to the parameters of the random sample array. The 

supports reside on the bottom of the legs and were fixed so FEA could calculate the 

reaction forces at each of the four support locations. The loading rig had stainless 

steel material properties to keep the structure rigid, and with such a low CG force, 

deformation was assumed to be negligible. Even though this is a simple model, the 

loading rig is appropriate for measuring performances relative to conceptual design. 

Figure 8: A  top view of the loading rig for simulating a wheel loading legacy dataset 
(Left). A bottom view of the loading rig (Right). A close up image of the FEA 
simulation of the reaction forces at a wheel location (Bottom).
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Upon completion of the loading rig model, the random sampling scheme was 

used to generate the values of the design variables for each sampling point within 

the design space. Two different wheel loading datasets were constructed. The first 

was generated with the random sampling scheme using a mean (average) of two 

and a standard deviation (range of the distribution above and below the mean) of 

0.5. The second dataset also had a mean of two but a standard deviation of 1.0. 

Each dataset consisted of 80 sample points. These first 50 were used for 

constructing metamodels while the additional 30 were used as a cross-validation test 

dataset to evaluate the metamodel performance. Once the two datasets were 

populated, the 160 FEA simulations were run and the results recorded. The first 10 

sample points for each dataset can be seen in Tables 1 and 2.

Table 1: A subset of the full wheel loading dataset with a standard deviation of 0.5.

Input Design Variables Output Design Variables
Run No. X1 X2 X3 X4 Y1 Y2 Y3 Y4

1 2.195 1.835 2.777 2.243 0.208 0.353 0.158 0.281
2 2.044 1.578 2.354 1.998 0.194 0.362 0.165 0.278
3 1.682 2.249 2.979 1.862 0.297 0.245 0.154 0.304
4 1.720 2.744 2.252 2.638 0.408 0.143 0.300 0.149
5 2.222 1.727 2.932 2.932 0.236 0.384 0.170 0.210
6 1.525 1.577 1.830 1.739 0.272 0.266 0.223 0.239
7 2.391 1.877 1.430 2.052 0.198 0.236 0.352 0.214
8 2.285 2.332 1.894 1.596 0.200 0.219 0.247 0.334
9 1.589 1.573 2.595 2.340 0.295 0.328 0.168 0.209

10 1.867 1.399 1.442 0.818 0.106 0.271 0.142 0.481
11 1.406 1.940 2.318 2.495 0.407 0.206 0.232 0.154
12 0.899 1.967 1.699 2.109 0.531 0.105 0.266 0.097
13 2.493 2.243 2.276 2.131 0.209 0.272 0.231 0.288
14 1.741 1.702 1.450 2.607 0.305 0.200 0.373 0.122
15 2.164 1.925 2.043 1.863 0.208 0.279 0.222 0.291
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The input design variables X1, X2, X3, and X4 represent the distance 

between the wheel position and CG positions. The output variables Y1, Y2, Y3, and 

Y4 represent the reaction force for each wheel as a percentage of the CG force.

3.1.2 
Stress Analysis Dataset

The second dataset was based upon FEA stress analysis simulations. The 

results of such tests in a conceptual design setting produce very  effective 

assessment information to help make accurate judgements at this stage in the 

design process. The stress analysis dataset was based upon the stress and 

displacements incurred by boom trucks. These trucks (see Figure 9) have many 

Table 2: A subset of the full wheel loading dataset with a standard deviation of 1.0.

Input Design Variables Output Design Variables
Run No. X1 X2 X3 X4 Y1 Y2 Y3 Y4

1 2.990 1.880 0.812 0.989 0.086 0.179 0.372 0.363
2 2.219 1.935 0.202 2.615 0.069 0.020 0.897 0.014
3 2.262 2.485 2.986 2.508 0.276 0.263 0.200 0.261
4 3.213 1.405 1.481 3.692 0.150 0.365 0.366 0.119
5 1.725 1.850 2.327 2.591 0.326 0.263 0.233 0.179
6 1.867 1.565 2.234 1.356 0.159 0.328 0.130 0.383
7 0.730 1.921 2.022 2.380 0.625 0.093 0.208 0.073
8 0.336 3.535 0.996 0.991 0.701 0.013 0.226 0.060
9 1.296 1.394 1.053 1.981 0.314 0.174 0.395 0.117

10 2.281 0.653 1.626 1.952 0.072 0.629 0.107 0.192
11 1.459 2.469 0.814 2.000 0.302 0.057 0.568 0.073
12 0.667 1.096 0.944 1.682 0.457 0.137 0.321 0.085
13 3.073 2.036 3.473 3.095 0.170 0.423 0.147 0.260
14 1.288 1.373 2.056 0.126 0.033 0.077 0.019 0.871
15 1.989 2.535 0.783 2.428 0.233 0.060 0.643 0.064
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different uses including electrical and telecommunications maintenance, tree care, 

and light and sign installation. In order to be best suited for these different types of 

jobs, boom trucks come in many different shapes and sizes. In addition to the truck 

ranging in length and weight, the boom can range anywhere from approximately  40 

to 110 feet. The basket on the end of the boom can support loads up  to 4000 

pounds. To add a final parameter to the list, on most boom trucks, the boom is 

capable of rotating 360 degrees in all directions. All these varying parameters for 

these boom trucks require hundreds of various FEA simulations in order to ensure 

the exact specifications for a specific boom truck meet all factors of safety. These 

FEA simulations consume many resources of a boom truck manufacturing company. 

If metamodels could accurately capture the general trends of these FEA simulations 

of legacy data, then these metamodels could provide real-time FEA simulation data 

at the conceptual design phase.

Figure 9: An aerial boom truck in a static position. (Left-http://www.machinerytrade 
r.com/listings/detail.aspx?ohid=5324527) An aerial boom truck setup  with the boom 
extended. (Right-http://www.machinerytrader.com/listings/detail.aspx?ohid=532452 
7)
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Since the boom truck was chosen for the second dataset, a digital prototype 

of the reinforced center of the boom truck called the sub-base was created and can 

be seen below in Figure 10. The sub-base of the boom truck is a large welded 

platform constructed to handle the large moments created by the loading of the 

boom. The sub-base also disperses the vertical force and boom moment to the 

outriggers, the legs on the sides of the boom truck. Therefore, the large stresses 

incurred are handled completely  by the sub-base and the outriggers, keeping the 

truck from being exposed to any  structural damage, since the truck itself is not 

designed to handle such a load.

Figure 10: The sub-base of the boom truck with the FEA loading conditions attached 
to the outrigger plates and the pedestal.
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The sub-base consisted of several different pieces including the outer beams, 

the inner beams, the large and small support plates, the outriggers, and the platform. 

The outer beams formed the outer structure of the sub-base and span the entire 

length of the bed of the truck. The inner beams were welded perpendicularly inside 

the outer beams for additional reinforcement. These inner beams form the interior 

sub-base support for the pedestal and boom assembly. Next, the large and small 

plates hold the entire structure together and help  distribute the stresses throughout 

the entire sub-base assembly. The outrigger plates were welded directly  to the outer 

plates where the outriggers attach to the sub-base. Finally, the pedestal is the 

means for attaching the boom assembly to the sub-base structure.

The varying parameters for the trial runs were then built around five different 

aspects of the boom truck including sub-base length, sub-base width, boom length, 

boom material weight, and basket weight corresponding to X1, X2, X3, X4, and X5. 

These five parameters formed the inputs of the dataset and were the basis for the 

random sampling array generated for the FEA simulations. The values for the 

random sampling generation can be seen below in Table 3.

Table 3: The mean and standard deviation of the design variables for the stress and 
displacement analysis dataset.

 Input Design Variables

Length (in) Width (in) Boom (in) Boom (lbs) Basket (lbs)
X1 X2 X3 X4 X5

Mean 180 35 600 19000 500
Std. Dev. 24 2 175 5000 150
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Since this dataset consisted of five input parameters, an additional 10 trial 

runs were required in order to effectively test the metamodel performance. Certain 

metamodels required additional data points to perform the linear regression analysis. 

Therefore, the random sampling array contained 90 trial runs. 60 of the trial runs 

were for building the metamodels while the additional 30 trial runs were created for 

evaluating the performance of each metamodel. 

The output parameters of the FEA simulations were limited to five different 

parameters including maximum Von Mises stress, maximum displacement 

magnitude, maximum displacement position in the X-direction, maximum 

displacement in the Y-direction, and maximum displacement in the Z-direction 

corresponding to Y1, Y2, Y3, Y4, and Y5 can be seen in Figure 11. The XYZ 

positions of the maximum Von Mises stress were ignored for this study due to the 

Figure 11: An image of the FEA simulation results for the sub-base displaying 
displacement properties.
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fact that all 90 trial runs produced the same results for these positions. Therefore, 

the final dataset consisted of five design variables and five outputs. A small subset of 

the results of the FEA analysis for this dataset can be seen below in Table 4.

3.2 
 Metamodel Development

After the two datasets were constructed, each of the metamodeling 

techniques was developed. Each technique had specific development strategies in 

order to provide the “best” model for that method. In order to determine the setup 

parameters for each of the three techniques, implementation from previous papers in 

each area was used. Finding the correct parameters was much more difficult for 

Table 4: A subset of the full dataset of the results of the Solidworks FEA 
simulations for the boom truck stress and displacement analysis.

Input Design Variables Output Design Variables
Run No.Run No. X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 Y5

1 198.2 37.2 697.9 21850 539.3 473600 0.82 18.58 6.00 69.95
2 163.4 39.7 683.7 14411 586.0 270800 0.45 19.87 6.00 57.99
3 196.3 35.5 481.1 27505 468.9 417400 0.71 17.73 6.00 71.97
4 154.3 34.5 649.9 18876 96.4 298900 0.49 17.23 6.00 56.48
5 201.6 36.4 366.7 15151 823.4 197300 0.33 18.20 6.00 73.34
6 129.0 34.0 473.3 14812 356.4 144600 0.24 17.01 6.00 53.96
7 186.8 38.7 483.9 18541 788.4 284600 0.47 19.37 5.84 63.20
8 162.4 37.2 634.7 22151 652.4 377800 0.62 18.10 6.00 57.99
9 161.4 32.5 285.9 20923 98.6 166000 0.28 16.27 6.00 53.00

10 183.6 33.7 357.2 15950 499.2 99850 0.16 16.83 6.00 66.87
11 171.9 37.7 634.6 16932 537.7 306400 0.51 18.84 6.00 60.94
12 203.3 35.8 857.1 24590 618.8 663100 1.17 17.89 6.00 74.96
13 177.4 35.8 664.1 15498 588.8 304300 0.51 17.90 6.00 61.49
14 204.3 31.6 522.5 17250 586.6 301800 0.55 31.59 3.50 79.26
15 168.6 35.5 591.5 28084 543.6 457100 0.75 17.73 5.84 59.19
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Kriging Approximations and Radial Basis Function Neural Networks due to the vast 

amount of information available on Polynomial Response Surface Methodology. A 

Google Scholar search for each of the three techniques was done and can be seen 

in Table 5. This table shows the amount of research done in each of the three areas. 

In addition to the setup parameters for the metamodels, both dataset 

responses were normalized before constructing metamodels upon them. This was 

not as crucial for the wheel loading dataset since all the design variables were on 

the same order of magnitude. However, this was not the case for the stress analysis 

dataset as design variables having up to three orders of magnitude of difference 

existed. A detailed description of each of the three metamodeling development 

methods is described in the following sections.

3.2.1 
Polynomial Response Surface Construction



When constructing PRS models, it is important to consider the general trends 

of the dataset before creating a metamodel to generalize the trends. For example, 

PRS models capable of generating highly  accurate trend generalization due to 

excessive higher-order terms are not necessarily going to be the best approximation 

of the dataset. If the dataset consists of highly non-linear data points, then higher-

order approximations are necessary to capture oscillations of the function. However, 

Table 5: Number of articles on Google Scholar for each metamodeling technique.
Metamodel Articles

PRS Kriging RBFNN
Google Hits 3,950,000 76,700 59,700
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if the dataset appears to have a more general response with several outlier points, a 

lower-order polynomial will be more apt to correctly capture the trend of the dataset. 

A final condition of the dataset can occur when additional noise parameters exist in 

the data. Again, high-order polynomials will overfit the data and provide a more 

specific representation of the individual data points rather than capture the general 

trends of the overall dataset. Often all that can be expected of a PRS model design 

is a steady performance in criteria important to the user.57

The PRS models for the wheel loading and stress analysis datasets were 

generated in a similar manner. Ordinary least-squares regression was used to 

generate second and third-order approximations from the sample points of both 

datasets. The reason for using second and third-order approximations was to see if 

a higher order polynomial produced a better representation of either of the 

conceptual design datasets. Fitting the datasets with even higher order polynomial 

functions was neglected due to the fact that too many function coefficients can 

cause irregularity  in the function producing an “overfit” of the dataset. Bucher et al.58 

used higher order polynomials without the interaction terms to create PRS models. 

However in this study, all the functions were produced from full polynomial 

expansions for both second and third-order models. Eqs. (23) and (24) are examples 

of a second and third-order PRS model built upon the wheel loading dataset.

y1 = 0.242− 0.479x1 + 0.292x2 − 0.012x3 + 0.281x4 + 0.268x2
1                     (23)

        
         −0.086x1x2 − 0.007x1x3 − 0.149x1x4 − 0.126x2
2 + 0.022x2x3


         +0.096x2x4 − 0.067x2
3 + 0.091x3x4 − 0.100x2

4
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 y1 = 0.252− 0.549x1 + 0.282x2 + 0.0133x3 + 0.288x4 + 0.481x2
1                   (24)

                   −0.120x1x2 − 0.019x1x3 − 0.194x1x4 − 0.229x2
2 + 0.108x2x3


         +0.204x2x4 − 0.214x2
3 + 0.194x3x4 − 0.185x2

4 − 0.149x3
1


         −0.017x1x1x2 + 0.079x1x1x3 − 0.041x1x1x4 + 0.116x1x2x2


         −0.313x1x2x3 + 0.151x1x2x4 + 0.092x1x3x3 − 0.151x1x3x4


         +0.133x1x4x4 + 0.058x2
2 + 0.079x2x2x3 − 0.113x2x2x4


         −0.071x2x3x3 + 0.286x2x3x4 − 0.235x2x4x4 + 0.105x3
3


         −0.110x3x3x4 − 0.009x3x4x4 + 0.066x3
4

Both PRS models shown in Eqs. (23) and (24) were built upon the wheel loading 

dataset with a sample size of 50 and a standard deviation of 0.5.


 For the stress analysis dataset, second and third-order PRS models are given 

in Eqs. (25) and (26)


 y1 = −74896− 40528x1 − 2413x2 + 520547x3 + 343041x4 + 115861x5         (25)


         +7175x2
1 − 53790x1x2 + 182203x1x3 + 137901x1x4 + 132153x1x5


         +25485x2
2 − 38133x2x3 + 98306x2x4 − 26818x2x5 − 161971x2

3


         −73226x3x4 − 172772x3x5 − 27425x2
4 − 141267x4x5 − 25210x2

5


 y1 = −8031398 + 6238544x1 + 13824641x2 + 5979524x3 + 10950058x4        (26)


         +2084877x5 + 36035771x2
1 − 7521947x1x2 − 31056752x1x3


         −2885843x1x4 − 37901130x1x5 + 4679256x2
2 − 7650587x2x3


         −36009519x2x4 − 12201875x2x5 + 8437157x2
3 − 3419250x3x4
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         +3077202x3x5 − 1671771x2
4 + 8895627x4x5 + 15905511x2

5


         −9234840x3
1 + 571171x1x1x2 − 2629135x1x1x3 − 27846500x1x1x4


         −12096297x1x1x5 − 9990491x1x2x2 + 18489963x1x2x3 − 8551175x1x2x4


         +15461280x1x2x5 + 7397554x1x3x3 + 15236705x1x3x4 + 15450204x1x3x5


         +6662270x1x4x4 + 29227820x1x4x5 + 14827519x1x5x5 − 1404245x3
2


         −2447665x2x2x3 + 7820834x2x2x4 + 1534685x2x2x5 − 4836414x2x3x3


         +24854008x2x3x4 − 9238034x2x3x5 + 13711159x2x4x4 + 10186947x2x4x5


         +2224261x2x5x5 − 4321955x3
3 − 3886874x3x3x4 − 845910x3x3x5


         −9369324x3x4x4 − 8736211x3x4x5 − 268887x3x5x5 + 618079x3
4


         −8066094x4x4x5 − 14204145x4x5x5 − 10169637x3
5

Both PRS models shown in Eqs. (25) and (26) were built upon the stress analysis 

dataset with a sample size of 60.

3.2.2 
Kriging Approximation Construction



The method development for the Kriging Approximations was similar to the 

development of the PRS models. First of all the Kriging models were built upon the 

same datasets as PRS models, so any non-linearity characteristic considerations of 

the datasets for PRS models hold true with that of Kriging as well. With these 

dataset considerations in mind, it was determined that three different Kriging 

Approximations would be built for each dataset including constant, first-order, and 

42



second-order global models. Examples of these global models for Y1 for the wheel 

loading dataset with a sample size of 50 are given in Eqs. (27-29)

f(x) = −0.108                                                                                                (27)              

f(x) = −0.378− 0.998x1 + 0.486x2 + 0.026x3 + 0.463x4                                (28)

f(x) = −0.007− 0.903x1 + 0.504x2 − 0.070x3 + 0.482x4 + 0.187x2
1                (29)


 −0.055x1x2 − 0.007x1x3 − 0.091x1x4 − 0.067x2
2 + 0.014x2x3


 +0.051x2x4 − 0.040x2
3 + 0.053x3x4 − 0.051338x2

4

Additionally the global models for the stress analysis dataset can be seen in 

Eqs. (30-32). These functions contain additional coefficients in the first and second-

order global models due to the addition of a fifth design variable. These three global 

models were built upon y1 of the stress analysis dataset with a sample size of 60

f(x) = −0.105                                                                                                (30)

f(x) = −0.0165 + 0.281x1 + 0.019x2 + 0.556x3 + 0.570x4 − 0.013x5              (31)

f(x) = 0.0647 + 0.279x1 + 0.021x2 + 0.570x3 + 0.574x4 − 0.025x5                (32)           


 
 +0.002x2
1 − 0.020x1x2 + 0.071x1x3 + 0.050x1x4 + 0.046x1x5


 +0.011x2
2 − 0.017x2x3 + 0.040x2x4 − 0.011x2x5 − 0.073x2

3


 −0.031x3x4 − 0.070x3x5 − 0.011x2
4 − 0.054x4x5 − 0.009x2

5

Building an approximation for the global model was the first step  of generating 

the Kriging Approximations. The second step  used a Gaussian correlation function to 

account for the local departures of each data point. These departures were 

determined by the correlation matrix. To generate the correlation function, the θ 
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parameter of the correlation function must be calculated for each design variable. 

Initially  a single value for θ for each design variable was used. However the initial 

trial runs proved a single θ value to be insufficient to accurately  model the data. 

Each design variable required its own θ value. Therefore a simulated annealing 

algorithm was used to find the maximum likelihood estimates (MLEs) for the θ 

parameters for each design variable. A simulated annealing algorithm is a 

probabilistic method for locating a good approximation to the global optimum of a 

global optimization problem in a fixed amount of time. The parameters for the 

simulated annealing algorithm were an initial starting point of 15, a lower bound of 

0.05, and an upper bound of 220. The correlation parameters for both the wheel 

loading and stress analysis datasets can be seen in Tables 6 and 7.

Correlation Parameters for Y1
Global Model θx1 θx2 θx3 θx4

Constant 1.99 0.29 0.05 0.05
First Order 0.15 0.06 0.06 0.07

Second Order 2.36 0.23 2.36 2.36

Table 6: Correlation parameters of Y1 for the wheel loading dataset with various 
global models.

Correlation Parameters for Y1
Global Model θx1 θx2 θx3 θx4 θx5

Constant 0.94 5.05 0.10 0.29 0.08
First Order 0.26 0.05 1.54 0.17 220.00

Second OrderSecond Order 33.12 73.14 161.51 220.00 220.00

Table 7: Correlation parameters of Y1 for the stress analysis dataset with various 
global models.
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These MLEs created the most accurate representation of the local departures 

of the individual data points. Therefore the accuracy of the Kriging Approximations 

improved significantly by using the MLEs. Additionally, the three different global 

models help access whether a particular dataset benefits from a more non-linear 

representation of its data points. The combination of the MLEs for the Gaussian 

correlation function, the global model approximation, and the sample points fully 

specify the Kriging model. A new point is predicted using these values in Eqs. (9-11).

3.2.3 
Radial Basis Function Neural Network Construction

To build the neural networks with Radial Basis Functions in the simplest way, 

a single-layer network of only three inter-connected layers were used. The three 

layers consisted of an input layer, a hidden layer, and an output layer. The input 

layer was composed of a layer of input neurons consisting of the input vector of 

design variables. The hidden layer was composed of radial basis neurons. The radial 

basis neurons received the input neuron values and calculated the Euclidean Norm 

between the input vector and center vector. This result was then multiplied by a 

scalar threshold value allowing the adjustment of each neuronʼs sensitivity. This 

product was then passed through a Radial Basis Function where a constant radius 

of the Gaussian function was used for each hidden neuron. The final output layer 

was composed of layers of linear activation functions and an error function. The 

output layer then minimized the root mean square error (RMSE) Eq. (33) for the 

model by adjusting the values for the center vectors, weights, and thresholds.
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   RMSE =

√∑n
i=1(yi − ŷi)2

n                                         (33)

The process of building the network was iterative where the RMSE is 

minimized to reach a convergence limit called the goal. For the first iteration a single 

hidden neuron was placed where the largest residual of the input vector resided. 

After the neuron was placed, the RMSE value was minimized by shifting the 

parameters of the network accordingly. If the RMSE value was still larger than the 

goal value, another iteration of the network took place. This process continued until 

the RMSE value reached convergence with the goal value, or the network contained 

the same number of hidden neurons as value within the input vector.

An important consideration when building a RBF Neural Network is the 

number of hidden units and where their Radial Basis Function centers reside. 

Generally each data point in the training set corresponds to a RBF center. 

Additionally, a subset of the trial run data points could be used as the RBF centers 

for a less exact fit of the dataset. If the full dataset is used, then the number of 

degrees of freedom in the network equals the number of trial runs causing the 

network model to fit exactly  through the dataset. This can either produce a positive 

or negative effect. On the positive side, if the dataset has a regular behavior, the 

model will represent the underlying trends of the data very well. On the other hand, if 

the dataset is contaminated by noise, then the network will learn all the trends of 

each individual data point and not capture the general trends of the dataset. This 

phenomenon is referred to as overfitting. The resulting function of an overfit network 
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does a poor job of representing the general properties of the dataset due to the rapid 

oscillations that occur within the network function59.

In order to most accurately fit the dataset, the number of neurons for each 

model was equal to the number of trial runs within the dataset. For example, if the 

dataset consisted of 50 trial runs, then 50 hidden neurons were used to build the 

network. This ensures the model passes through every input neuron of the design 

space. Since it was known whether the dataset was noisy or contained outlier data 

points, this method was determined to be a sufficient initial performance measure for 

RBFNN metamodels. If however a poor performance was observed, then other 

methods such as less numbers of hidden neurons or curvature-driven smoothing 

would be implemented.

A final specified parameter of each network was the radius value for the 

Gaussian Radial Basis Functions. Generally a value between 0.25 and 2.0 for the 

radius captures the most accurate level of responsiveness for the functions. In order 

to determine the “best” radius value for a particular dataset, a large number of 

models, approximately  200, needs to be constructed upon varying radius values 

between 0.25 and 2.0. From the resulting analysis of each of the models, the best 

radius value for that dataset can be chosen through trial and error. Therefore for this 

study radius value of 0.5, 1.0, 1.5, and 2.0 were used. 

The large number of RBF neural networks to be built for this study required a 

limitation of the various radius values sampled. Therefore four radius values of 0.5, 

1.0, 1.5, and 2.0 were chosen to be modeled for each dataset in hopes that one of 
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the four values would approximately  capture the models ability to accurately 

represent the trends of the dataset.

3.3 
 Process of Constructing a Metamodel

The actual step-by-step  process of constructing various metamodels using 

different techniques was quite similar. Each metamodel involved a number of steps 

in order to setup, construct, and evaluate its performance. In order to better 

understand this process, the metamodel construction steps for a first-order Kriging 

Approximation for the wheel loading dataset is given.

The first step in generating any metamodel is to have a dataset consisting of 

both input and output parameters. The metamodel is constructed upon the input 

variable values to predict the output values. For the metamodels constructed in this 

study, metamodels were constructed upon a dataset, then a different testing dataset 

which contained different sample data points was used to evaluate the metamodel 

performance. Once the construction and testing datasets were constructed, the 

metamodel parameters were setup. The setup  parameters for a Kriging model built 

upon the wheel loading dataset of 50 sample points with a standard deviation of 1.0 

is given below in Table 8.

Each metamodel consists of several of inputs parameters, which must be set 

before constructing each metamodel. Every parameter listed in Table 8 was 

specified before constructing the metamodel. To better define each parameter, to 

begin, each simulation first required a model and test dataset. For this dataset, there 
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were four design variables. Then the initial theta value and the upper and lower 

limits of the theta value were specified, followed finally  by the order of the global 

model approximation for the Kriging Approximations.

Once the setup  was completed, the simulation was run and a report was 

generated as seen in Figure 12. Each report generated many important pieces of 

information regarding the metamodel. This report gives general information about 

the setup  parameters, then displays information regarding the dataset. Next the 

report displays detailed information about the actual metamodel, followed by cross-

validation information and finally prediction information for the test dataset. 

After the report was generated, the correlation coefficient and Yhat matrix 

from the report were copied into a spreadsheet as seen in Table 9 and 10. From 

these predicted output values, metamodel performance measures such as absolute 

error and root mean square error were additionally built into the spreadsheets. The 

results for these analysis for the Kriging approximation can be seen in Table 10.

Setup Parameters for Kriging Metamodels

Simulation Parameters

Model Dataset Model Size 50 - Std Dev 1.0.m
Test Dataset TestData - Model Size 30 - Std Dev 0.5.m

No. Design Variables 4
Initial Theta Value 15

Theta Lower Bound 0
Theta Upper Bound 220

Global Model First Order

Table 8: The setup parameters for the Kriging metamodel built upon the wheel 
loading dataset of 50 sample points with a standard deviation of 1.0.
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Figure 12: A  sample Kriging metamodel report generated after constructing the 
metamodel.

SURROGATE TASK INFORMATION.
General information:
    Number of variables = 4
    Number of points    = 50
    Method              = { @srgtsKRG }
 
Kriging information:
    CorrelationModel    = @corrgauss
    RegressionModel     = @regpoly1
    Theta0              = [15  15  15  15 ]
    LowerBound          = [0.05        0.05        0.05        0.05 ]
    UpperBound          = [220  220  220  220 ]
================================================================================
TRAINING SET INFORMATION.
 
Min of the response    = 0.019212
Max of the response    = 0.885098
Mean of the response   = 0.271848
StdDev of the response = 0.204646

================================================================================
SURROGATE FITTING INFORMATION.
 
Kriging:
    Generalized least squares estimate    = [-0.081327 ; -0.72973 ; 0.37192 ; …
    Estimate of process variance          = 0.020388
    Correlation parameters (Theta)        = [0.29529    0.052973     0.37205 …  
    Correlation factors                   = [0.891167     -1.30503 …
    Scaled design sites                   = [1.2742    -0.09896     -1.0841 …    
    Scaling factors for design arguments  = [0.4359     0.50608     0.47807 …  
    Scaling factors for design ordinates  = [0.27185 ; 0.20465 ]
    Cholesky factor of correlation matrix = [1           0           0 …  
    Decorrelated regression matrix        = [1      1.2742    -0.09896 …  
    From QR factorization: Ft = Q*G'      = [-2.6973           0           0 …
    Number of function evaluations        = 49
    (q+2)*nv array                        = [15      16.8369      13.3635 …
================================================================================
CROSS-VALIDATION INFORMATION.
    PRESSRMS                = 0.031201
    Cross Validation Errors = [0.013123 ; -0.066786 ; 0.038477 ; 0.019336 ; … 
================================================================================
PREDICTION INFORMATION.
    Correlation Coefficient = 0.99684
    RMS Error               = 0.010041
    Maximum Absolute Error  = 0.026887
    Ytest                 = [0.326 ; 0.336 ; 0.124 ; 0.2548 ; 0.43114 ; 0.1416 …
    Yhat                    = [0.32426 ; 0.34239 ; 0.099677 ; 0.25565 ; 0.4305 …
    Error Matrix            = [0.001739 ; -0.006394 ; 0.024323 ; -0.00084783 ; …
================================================================================
SIMULATION OUTPUT INFORMATION.
 
Kriging:
    Estimated mean squared error = [2.8521e-05 ; 0.00027017 ; 0.00035098 ; …
================================================================================
END OF REPORT.
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Outputs for Y1

Experiment # Kriging - Constant Kriging - 1st-order Kriging - 2nd-order
1 0.5947 0.5818 0.5885
2 0.5806 0.6215 0.6877
3 0.0761 0.0904 0.1447
4 0.4190 0.4317 0.4291
5 0.8986 0.8143 0.8184
6 0.1216 0.1616 0.1898
7 0.5265 0.5529 0.5048
8 0.8696 0.8197 0.8548
9 0.0677 0.1138 0.0377

10 0.1804 0.2499 0.2123
11 0.7553 0.7514 0.7183
12 0.4730 0.4771 0.4767
13 0.5790 0.5829 0.5953
14 0.4390 0.4737 0.5162
15 0.1438 0.1890 0.1926
16 0.4594 0.4618 0.4382
17 -0.0117 0.0305 -0.0755
18 0.5030 0.4756 0.5320
19 0.5222 0.5379 0.5383
20 0.2514 0.2432 0.2346
21 0.2617 0.2938 0.2575
22 0.0898 0.1014 0.0472
23 0.5306 0.5436 0.5629
24 0.1436 0.1679 0.2339
25 0.0943 0.1410 0.1487
26 1.0233 1.0588 1.0199
27 0.9737 0.9220 0.9395
28 0.5331 0.5367 0.5266
29 0.3892 0.4235 0.4090
30 0.4892 0.4756 0.4812

Table 9: The predicted values for the output variable Y1 for the Kriging 
Approximation example.
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After calculating the performance statistics for Y1, metamodels for Y2-Y4 

were also constructed. Afterwards, a summary statistics table was constructed to get 

a better measure of the metamodel performance for all output variables. Table 14 

below shows the results of averaging the performance characteristics of Y1-Y4 

together. Since so many metamodels were constructed in this study, the results were 

combined to observe general trends. Additionally, there were too many metamodels 

to look at the results of each study on an individual basis.

Kriging Summary Statistics for Y1
Kriging - Con. Kriging - 1st Kriging - 2nd

R 0.9951 0.9968 0.9944
R2 0.9902 0.9937 0.9889

Minimum Absolute Error 0.0022 0.0002 0.0006
Average Absolute Error 0.0321 0.0152 0.0235
Median Absolute Error 0.0223 0.0079 0.0173

Maximum Absolute Error 0.0829 0.0588 0.0802
Standard Deviation 0.0249 0.0162 0.0237

Root Mean Square Error 0.163% 0.048% 0.110%

Table 10: A statistical summary of the performance of the Kriging approximation 
example for Y1.

Table 11: An average of the performance characteristics for Y1-Y4 for the Kriging 
approximation example.

Kriging Summary Statistics for combined Y1-Y4
Kriging - Con. Kriging - 1st Kriging - 2nd

R 0.9704 0.9801 0.9924
R2 0.9421 0.9609 0.9849

Minimum Absolute Error 0.0008 0.0606 0.0010
Average Absolute Error 0.0467 0.1645 0.0222
Median Absolute Error 0.0344 0.1665 0.0159

Maximum Absolute Error 0.2071 0.3404 0.0804
Standard Deviation 0.0464 0.0864 0.0210

Root Mean Square Error 0.481% 9.349% 0.105%
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3.4 
 The Advanced Systems Design Suite

In addition to developing these three different metamodels, a software 

package was created to implement these metamodels into real-time conceptual 

design tool called the Advanced Systems Design Suite60,61 (ASDS). The ASDS is a 

conceptual design tool created to quickly  design 3D conceptual models, assess 

them with qualitative analysis and quantitative data, and visualize the results on a 

desktop and immersive virtual reality (VR) system. The interface enables fast 

geometry creation by  simplifying the unnecessary inputs required by typical CAD 

systems. The ASDS application consists of a client interface on a tablet, laptop, or 

desktop PC and a VR viewer. VR Juggler62,63 and OpenSceneGraph64 (OSG) serve 

as the VR platform and scenegraph manager for the ASDS. Both of these 

foundational software tools are available by open source licensing.

3.4.1 
System Architecture

A brief outline of the software architecture for the developed application is 

illustrated in Figure 13. As shown, user interactions from the client application are 

transmitted over a network connection and replicated in the immersive viewer 

simultaneously. In addition both the client and immersive applications acquire the 

legacy models and data from the same data source.

Client Application—The client application operates under Windows XP and 

can run independently of the immersive application. In addition to OSG, the GIMP 
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Toolkit65 (GTK+) is used for graphical user interface (GUI) creation. Since both OSG 

and GTK+ are cross-platform development tools, the client interface could be ported 

to additional operating systems.

Network—Network communications between the ASDS client and immersive 

applications are transported using a UDP (User Datagram Protocol) socket program. 

UDP sockets were chosen over other communication protocols due to its speed of 

data transmission. 

Immersive Application—The ASDS immersive application  operates under a 

64-bit Linux kernel calling OSG libraries and relying upon VR Juggler 2.2 for 

interface communication, stereoscopic viewing, and display-device abstraction. 

Additionally, the shared memory used in a cluster environment was redesigned to 

Figure 13: Schematic of the ASDS system architecture.
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maintain the softwareʼs performance between a single wall display or a large six-

walled computer cluster.

Data Source—As a final product, it is envisioned that the ASDS part libraries 

will consist of legacy geometric models and physical data properties of previous 

generations of products as well as newly created parts from programs such as 

Google SketchUp. The physical data is then drawn out of the legacy data and used 

for assessment tool calculations and concept evaluation.

3.4.2 
Interface Interactions

To begin designing concepts, engineers must first decide which existing 

models and legacy data will be useful. Then if necessary these models are 

converted to one of many different file formats the ASDS system can handle to form 

a modeling parts library. If legacy data does not fully represent all the necessary 

components to design a new concept, there are several options. First, a primitive 

shape can quickly be added into the scenegraph to represent the feature missing 

from the legacy data. If this is not sufficient, a more detailed part can be created 

quickly with an alternate model creation tool, such as Google SketchUp. 

Once the parts library  is created, any part or hierarchy of parts located in the 

parts library can be imported and edited inside the scenegraph by  using either 

translation, rotation, or scaling manipulations. The hierarchy is similar to many CAD 

packages and can be edited on-the-fly. Objects can be grouped and ungrouped as 

the user chooses. This allows for a useful and sensible tree structure to be built for 
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each concept and additional assemblies and parts to be appended into the existing 

structure. By reusing existing hierarchies and enabling hierarchy manipulation, the 

ASDS can save the scenegraph information so a designer can pick up  where they 

left off. These quick interaction methods enable engineers to quickly design multiple 

concepts on-the-fly and collaborate using the VR application to do real-time 

immersive conceptual design.

3.4.3 
Assessment Tools

A 3D visual representation of a new concept design is extremely useful and 

already puts engineers ahead of the curve. However, besides a visual 

representation, assessment tools can give designers additional information to make 

educated decisions about concept integrity and viability. The ASDS has implemented  

metamodeling techniques to incorporate high fidelity FEA analysis into real-time 

assessment tools. These assessment tools can be used at any time on any concept 

thus providing immediate feedback and factual information to help make quick and 

informed decisions.

3.4.3.1 
 Center of Gravity and Tipping Angle

The first assessment tool dynamically computes the center of gravity (CG) of 

the entire model in both the client and immersive applications. Individual part weight 

and CG positions are stored as metadata within the scenegraph. With this 

information, by concatenating all the part transforms together, the CG location of any 
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individual part, subassembly, or entire scenegraph model can be computed. The CG 

location is represented by a red sphere inside the scenegraph while the scenegraph 

model turns transparent to view the exact CG location.

A second assessment tool computes the tipping angle of the entire model. 

The term tipping angle refers to the minimum angle a product can be subjected to 

before tipping over. To calculate the tipping angle, support points—wheels, legs, etc.

—which keep the model in contact with the ground must be selected. The ASDS 

then uses the overall CG and contact positions of the support points to calculate the 

minimum tipping angle of the model and display it to the user as seen in Figure 14.

Figure 14: The tipping angle tool displays the smallest angle the product will tip 
based upon the selected wheels.
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3.4.3.2 
 Virtual Measuring and Wheel Loading

Since several CAD features such as mating and collision detection have been 

eliminated in the ASDS interface for quicker assembly, a visual measuring tool was 

integrated into the ASDS client and immersive applications. When design teams 

collaborate within the immersive application, quick dimensional information is key to 

making rapid drag-and-drop part manipulations to verify whether different part library 

objects can be swapped to create a new dimensionally sound concept. The virtual 

ruler system allows the user to manipulate components and return physical 

characteristics from the scenegraph. Once the user selects a geometric boundary, 

both applications return physical characteristics of the selected boundary such as 

radius, length, width, etc.

Another assessment tool built into the ASDS system is wheel loading as seen 

in Figure 15. The term wheel loading comes from our target application to ground 

vehicles, but “wheel” simply refers to any support point. This tool first requires each 

support point be selected just like the tipping angle tool. Once completed, the ASDS 

system uses the contact positions of the support points and the overall CG position 

and weight to calculate the load distribution for each selected object. This 

information is then displayed graphically in both the client and immersive 

environments. This calculation is accomplished by either using statics equations by 

summing the force and moments about a point, or a using one of the three 

metamodel approximations to estimate the wheel load at each support point.
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Figure 15: The wheel loading at each support position is graphically displayed to the 
user.
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4 RESULTS

In order to obtain conclusive evidence about performances of certain 

metamodeling techniques for conceptual design, it is imperative to obtain enough 

data to observe the general trends of each metamodeling technique. If only a small 

amount of metamodels are built upon a very specific type of dataset, then the 

conclusions drawn about each technique would only apply to that specific dataset.  

Any general conclusions drawn in a more broad sense would be dismissed due to 

the small nature of the study. Several measures were taken to avoid drawing broad 

conclusions on a very specific dataset. First off, multiple datasets with very different 

characteristics and behaviors were generated from hundreds of FEA simulations.

Another measure taken was to generate as many  metamodels as necessary 

to find conclusive evidence of specific metamodel performance. Therefore, 

thousands of metamodels were constructed on these datasets for each output 

variable of each metamodel type. For example, the Y1 output variable for the stress 

analysis dataset had many different metamodels constructed to predict its output. 

These metamodels include a second-order PRS model, a third-order PRS model, a 

constant Gaussian Kriging Approximation, a first-order Gaussian Kriging 

Approximation, a second-order Gaussian Kriging Approximation, a RBFNN - radius 

0.5, a RBFNN - radius 1.0, a RBFNN - radius 1.5, and a RBFNN - radius 2.0. These 

models were also constructed upon datasets consisting of a model size ranging 

between 20 and 60 sample points. The total FEA simulations and constructed 

metamodels for this study can be seen below in Table 12.
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Table 12: Shows the number of FEA and metamodel simulations required for the 
entire study.

Total FEA Simulations

Abaqus Solidworks

FEA Simulations 160 90

Total Metamodels Generated For Dataset 1
Metamodels Size 20 Size 30 Size 40 Size 50 Size 60

PRS - 2nd-order 32 32 32 32 32
PRS - 3rd-order 32 32 32 32 32

Kriging - constant 48 48 48 48 48
Kriging - 1st-order 48 48 48 48 48

Kriging - 2nd-order 48 48 48 48 48
RBFNN - 0.5 rad. 64 64 64 64 64
RBFNN - 1.0 rad. 64 64 64 64 64
RBFNN - 1.5 rad. 64 64 64 64 64
RBFNN - 2.0 rad. 64 64 64 64 64

Total Metamodels Generated For Dataset 2
Metamodels Size 20 Size 30 Size 40 Size 50 Size 60

PRS - 2nd-order 10 10 10 10 10
PRS - 3rd-order 10 10 10 10 10

Kriging - constant 15 15 15 15 15
Kriging - 1st-order 15 15 15 15 15

Kriging - 2nd-order 15 15 15 15 15
RBFNN - 0.5 rad. 20 20 20 20 20
RBFNN - 1.0 rad. 20 20 20 20 20
RBFNN - 1.5 rad. 20 20 20 20 20
RBFNN - 2.0 rad. 20 20 20 20 20

RBFNN - Best 1001 1001 1001 1001 1001

Total FEA Simulations = 250
Total Metamodels Generated = 8070

61



4.1 
 Overall Summary Statistics


 With the vast amounts of data collected, looking at the overall performance of 

the three metamodeling techniques has little importance due to the large numbers of 

variable parameters for each method. The summary statistics for each of the three 

techniques can be seen below in Table 13. These statistics are the average of every 

metamodel built. For example, the data found under Kriging results from the average 

of the zero-order, first-order, and second-order performances on every dataset 

combined into a single average to show the overall performance.

This table alone shows Kriging Approximations to be a significant winner over 

the other two methods. However, to conclude from this table alone that Kriging is 

simply the best metamodel for conceptual design out of these three methods is 

simply untrue. Many additional considerations must be taken to adequately 

determine which metamodel performs the best under specific circumstances. In 

order to sift through the different levels of performance between the metamodels, the 

Table 13: An overall summary of statistical measurements for each of the three 
metamodeling techniques.

Summary Statistics
Statistical Properties PRS Kriging RBFNN

R 0.810 0.869 0.731
R2 0.739 0.777 0.626

Minimum Absolute Error 0.004 0.003 0.012
Average Absolute Error 0.165 0.084 0.324

Maximum Absolute Error 0.101 0.055 0.201
Absolute Error Standard Deviation 0.918 0.367 1.959

Root Mean Square Error 19.90% 9.22% 40.24%
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results have been divided to look at specific circumstances to better understand 

exactly why certain types of metamodels perform better under specific cases.

First off, the performance of each metamodel is compared based upon 

sample size of both the first and second datasets each metamodel was constructed 

upon. Next, RBFNN parameters are redefined in the second dataset in order to find 

the ideal radius value before constructing the model. This helps to better understand 

the performance enhancements that are possible when ideal radius values for the 

Radial Basis Functions are determined prior to constructing the model itself.

The next section is based strictly on the first dataset and evaluates each 

models performance based upon the idea of interpolation and extrapolation. The two 

different ranged datasets having standard deviations of either 0.5 or 1.0 are 

compared against one another. The basis for these analysis was to determine which 

metamodel was best apt to handle extrapolating a small range of values outward 

across a much larger design space. Analysis was also done to determine which 

metamodel was most apt to interpolate data from a much larger dataset into a more 

concise region of the design space. These analysis breakdowns make it easier to 

draw accurate conclusions about each models performance.

Another important consideration was the normalization of the output variable 

design space. This was accomplished by using each output variableʼs minimum and 

maximum values and then normalizing these values between zero and one. 

Otherwise the RMSE values were up to five orders of magnitude different before the 

normalization. Therefore combining the results of the output variables to measure 
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performance characteristics would have been unreasonable since several output 

variables would have been insignificant when averaged with others.

The results of each specific case are presented as RMSE. This has been the 

dominate performance metric used throughout the cited work. Also zero conditioning 

of the dataset takes place before construction of the metamodels, so outlier data 

points can still exist in the dataset. These outliers can cause very large absolute 

errors on an individual basis. Even if the metamodel overall provides a good fit to the 

dataset, a single outlier data point can cause a large absolute error. If absolute error 

was used as the performance metric in this case, then the metamodel would appear 

to be a poor fit of the data, when in reality, the metamodel was actually a good 

representation. RMSE was used to provide a better understanding of not only the 

absolute error for the model, but also the models ability overall to fit the dataset.

4.2 
 Sample Size Analysis


 Varying the sample size was analyzed due to the fact that these metamodels 

were being constructed for conceptual design based upon legacy data. Generally 

companies have massive amounts of legacy data retained from previous designs. 

Each new design undergoes hundreds a data simulations before being produced. 

Therefore, the goal was to determine how many sample points are necessary for 

each metamodeling type to adequately model the design space. The first dataset 

consisted of five different sample sizes ranging between 20 and 50 in increments of 

10 while the second contained an additional 10 sample points.
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4.2.1 
PRS Results - Sample Size - Dataset 1

The results of the PRS performance for Dataset 1 can be seen below in 

Figure 16. The second-order PRS model performs slightly better with model sizes 

under 40 sample points. However, once the dataset consists of 40 or more sample 

points, a third-order PRS model fits the dataset more accurately. With a model size 

of 50, the third-order polynomial has almost 1.0% less error than the second-order 

PRS model. In summary for Dataset 1, second-order PRS models should be built up 

to 40 sample points. The extra coefficients of a third-order PRS model only show 

benefit with datasets containing 40 or more sample points. 
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Figure 16: A chart displaying the RMSE values for PRS based upon sample size.
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4.2.2 
Kriging Results - Sample Size - Dataset 1

The results of the Kriging Approximations performance for Dataset 1 can be 

seen below in Figure 17. To begin the constant global model seems to be 

significantly outperformed with every model size. First and second-order Kriging 

Approximations show similar results for almost every model size except 50. Here the 

second-order model shows a significant improvement in performance. To summarize 

Kriging Approximations for Dataset 1, first-order approximations provide high 

accuracy until a model size of 50 where a second-order Kriging Approximation 

should be implemented due to higher accuracy.

Figure 17: A chart displaying the RMSE values for Kriging based upon sample size.
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4.2.3 
RBFNN Results - Sample Size - Dataset 1

The results of the RBFNN models for Dataset 1 can be seen below in Figure 

18. The RMSE values are completely  scattered for each model size. There is no 

possible way to determine a best radius value based upon the four sampled radius 

values. Each model size has a different ideal radius value. In order to determine the 

performance of RBFNNs, ideal radius values must first be determined. Then the 

models should be constructed upon those ideal radius values. In summary, ideal 

radius values should be determined before constructing a RBFNN metamodel.
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Figure 18: A chart displaying the RMSE values for RBFNN based upon sample size 
for Dataset 1.
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4.2.4 
Metamodel Comparisons - Sample Size - Dataset 1

Figure 19 below shows the best performance result for each metamodeling 

technique. The best performance simply refers to each type of metamodeling 

technique. For example, for a model size of 20, the second-order PRS model RMSE 

value was used since it was better than the third-order value. So these values 

represent the best possible solution for each of the three metamodeling techniques 

with the data sampled.
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Figure 19: A chart displaying the RMSE values for each metamodeling technique 
based upon sample size for Dataset 1.
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From Figure 19, it is difficult to draw conclusions about which metamodeling 

technique produced the best results for several reasons. First of all each result is 

within approximately 1.0% of the other RMSE values. So to draw any conclusions 

specifying an obvious winner is difficult with such small differences between them. 

With that said, PRS models showed the best performance in model sizes of 30 and 

50 while RBFNN performed the worst. However, RBFNN outperformed the other two 

techniques with model sizes of 20 and 40. Kriging did not outperform either method 

with any model size which is quite surprising. Kriging uses a correlation function in 

addition to a global polynomial model to help  pull the function towards outlier data 

points. Basically it combines the best parts of PRS and RBFNN into a single method. 

Yet it performs the worst on the first dataset.

These observations support a fairly linear dataset. In order for RBFNN model 

to accurately  fit the test dataset with the current implementation of using the sample 

data points as centers for the hidden neurons, the dataset must be fairly  linear to 

observe low RMSE values and a high R2 value. Additionally, since PRS models tend 

to outperform Kriging models, this could possibly be due to the Kriging correlation 

function pulling the fit too close to each outlier data point causing additional 

oscillations in the fit of the design space. This overfitting the dataset with the 

correlation function does not occur is PRS. This could be a viable explanation for the 

results of Figure 19. On a final note, RBFNNs can also perform significantly  better 

yet by  finding the ideal radius values before constructing the metamodels. This idea 

was implemented in the following section.
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4.2.5 
Metamodel Comparisons - Sample Size - Dataset 2

Figure 20 below shows the best performance result for each metamodeling 

technique. Dataset 2 produces significantly different results than Dataset 1. The 

benefit of Kriging Approximations can easily be seen in the evaluation of this 

dataset. First-order Kriging Approximations outperform every other type of 

metamodel built upon this dataset in every model size. Kriging outperforms PRS by 

approximately  4.0% and RBFNN by approximately 10.5%. These differences are far 

greater than in Dataset 1.

Figure 20: A chart displaying the RMSE values for each metamodeling technique 
based upon sample size for Dataset 2.
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From these results it is clear Dataset 2 contains highly non-linear data points. 

The construction of the dataset parameters prior to the FEA simulations also support 

non-linear behavior. To explain exactly  what is happening here with these results, 

first off, PRS does a descent job of fitting this dataset for conceptual design with 

roughly a 10% RMSE value. Kriging then uses a similar polynomial expression to 

generalize the dataset, then implements the correlation function to pull the final 

Kriging model closer to the outlier data points encapsulating more of the dataset 

within the model. This additional piece of Kriging can be directly observed in Figure 

20. As for RBFNN, it is apparent that it is having a difficult time fitting the non-linear 

data points. The issue lies within the construction parameters of each RBFNN 

model. By fitting the input dataset almost exactly, the model is overfitting Dataset 2. 

Therefore even the more linear points within the test dataset are still producing large 

absolute error values due to the exact fitting of the outlier data points in the sample 

dataset. 

In order to produce better results for RBFNN models, two methods can be 

implemented. The first method involves calculating the ideal radius value for the 

dataset prior to constructing the metamodel. This method is implemented in the 

following section. A second method would be to implement a curve smoothing 

function into the development of the RBFNN model after determining the ideal radius 

value. RBFNN models fit the construction dataset exactly, yet on a non-linear 

dataset cannot produce the same kind of accuracy values observed in Kriging 

Approximations.
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4.2.6 
Metamodel Comparison with Ideal Values for RBFNN

Figure 21 below shows almost the same information as Figure 20 with one 

exception, the RBFNN Best models have been constructed using the ideal radius 

value for each model size. To determine the ideal radius value, 1005 metamodels 

were built for each of the five model sizes. Simulations consisting of 201 radius 

values ranging between 0.25 and 2.0 with a constant step size were generated for 

each output variable. The lowest RMSE metamodel then became the new RBFNN 

Best containing the ideal radius value for that output variable at that model size.

Figure 21: A chart displaying the RMSE values for each metamodeling technique 
based upon sample size for Dataset 2 with the ideal radius values used for RBFNN.
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The RMSE difference now between Kriging and RBFNN has dropped from 

10.5% to approximately 4.6%, almost a 6% decrease in RMSE due to building the 

RBFNN model with the ideal radius. The RBFNN models however still do not 

perform as well as the PRS metamodels. PRS models have a RMSE of 

approximately 2.2%. 

To summarize the results of finding the ideal radius value for to find RBFNN 

Best, the time required to find the ideal radius value can only be justified when the 

dataset has a fairly linear behavior. Over five thousand metamodels had to be 

generated in order to produce the data to generate Figure 21. This still took hours to 

calculate with only  five design variables and five output variables. If the dataset 

consisted of hundreds or even thousands of design variables, constructing RBFNN 

metamodels would be out of the question. Not to mention they still would not fit the 

data as well as a PRS metamodel or a Kriging Approximation.

4.3 
 Extrapolation vs. Interpolation Results

Conceptual design teams can have a number of different tasks ranging from 

designing a completely new product from scratch, designing another generation of a 

product already in production, or even sometimes taking several completely different 

products and combining them to harness new product capabilities into a single 

product. The question at hand is how well can metamodels handle these different 

types of conceptual design. If a metamodel is constructed upon legacy data in a very 

concise design space, is it capable of providing high enough accuracy at the 
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conceptual design phase to provide designers with useful information for concepts 

with parameters extremely outside the design space the metamodel was built on. 

This is referred to as extrapolation.

On the contrary, if a metamodel was constructed on a dataset comprised of a 

very  wide range of sample points throughout a design space, can the metamodel 

accurately  predict concept designs with parameters localized within a small region of 

the design space? This is referred to as interpolation. Throughout this section each 

metamodeling technique is tested on Dataset 1 to determine each techniqueʼs 

performance in terms of both extrapolation and interpolation. Additionally, the smaller 

and larger ranged datasets are evaluated against test datasets with the same range 

to test each metamodels ability to predict values within the same localized design 

space.

In order to test these cases, Dataset 1 was sampled with a standard deviation 

of both 0.5 and 1.0. Metamodels were constructed upon both ranges of datasets, 

and then tested against a test dataset of either the same range or the larger or 

smaller range. For example, PRS models were constructed upon the smaller range 

dataset—a standard deviation of 0.5—and then tested against both the smaller and 

large range test dataset. This then provides test results for a localized metamodel 

test against both a localized and interpolated dataset. Additionally, PRS models were 

constructed on the larger range dataset—a standard deviation of 1.0—and then 

tested against a test dataset of both smaller and larger ranges. Thus providing test 

results for a localized larger design space in addition to the results for interpolation 

of the large range model performance on a localized test dataset.
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4.3.1 
PRS Results - Standard Deviation - Dataset 1

Figure 22 shows the results of the PRS model performance. For interpolation, 

the second-order PRS model better captured the behavior for a localized test 

dataset. However, for extrapolation, the extra coefficients for the third-order PRS 

model created a more precise fit of the larger ranged test data. For the small ranged 

models tested against small range data, third-order PRS models perform better. 

However, for large ranged models tested against large range data, the opposite 

trend occurred where less coefficients did a better job of capturing the general trend 

of the data.

Figure 22: A chart displaying RMSE values for PRS based upon standard deviation.
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4.3.2 
Kriging Results - Standard Deviation - Dataset 1

Figure 23 shows the results of the Kriging model performance. For 

interpolation and extrapolation, the second-order Kriging model better captured the 

behavior for both the small and large range data. For the small ranged models 

tested against small range data, second-order models also more accurately  predict 

the localized design space more accurately. However, for the large ranged models 

tested against large range data, the first-order model best fit the test data. PRS and 

Kriging perform better with less coefficients in a larger less concise design space.

Figure 23: A chart displaying the RMSE values for Kriging based upon standard 
deviation.
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4.3.3 
RBFNN Results - Standard Deviation - Dataset 1

The results for RBFNN performances are shown below in Figure 24. These 

are not ideal radius values so the performance could greatly increase by finding 

these ideal radius values prior to constructing the models. RBFNN seems to work 

well with the first and second columns where the model was constructed to predict 

small localized areas. When extrapolating or predicting a large area of the design 

space, RBFNN breaks down. This shows the inability of RBFNN to handle more non-

linear approximations due to overfitting the sample dataset.

Figure 24: A chart displaying the RMSE values for RBFNN based upon standard 
deviation.
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4.3.4 
Metamodel Comparisons Based Upon Standard Deviation

The comparisons of each metamodeling techniques performance can be 

seen below in Figure 25. For interpolation, RBFNN models exhibit the best 

performance for interpolation and the worst for extrapolation. PRS showed the best 

performance in extrapolation and also in the first column with localized data due to 

the overfit caused by the correlation function for Kriging and the exact fit to the 

sample data for RBFNN. For the larger range data in the forth column, Kriging 

models outperform the other two techniques. 

Figure 25: A chart displaying the RMSE values for each metamodeling technique 
based upon standard deviation.
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The results for testing extrapolation and interpolation throughout this section 

follow the general performance trends observed throughout the entire results 

section. For the first column results where a smaller ranged model was tested 

against smaller range test data, the results show that higher order polynomials are 

better suited for small concise datasets. However, the correlation function for Kriging 

appears to hinder the methodʼs performance compared to PRS. Additionally, RBFNN 

could possibly be a better solution here if time was taken to generate the ideal radius 

values before generating the metamodels.

For interpolation, RBFNN wins hands down, even with non-ideal radius 

values. The additional oscillations for both Kriging and RBFNN allow both methods 

to capture more of design space in localized regions. Then when predicting values in 

a localized area of the design space with these models, they are better suited due to 

the additional curvature of the models. If interpolation is the main focus of 

constructing an accurate metamodel, then RBFNN appears to be the best choice.

For extrapolation the exact opposite is true. The more accurate fitting of the 

localized sample data for RBFNN causes it to breakdown significantly when 

extrapolated out to larger areas of the design space. Third-order PRS models 

performed the best when testing for extrapolation capabilities with second-order 

Kriging models not far behind. 

When large areas of the design space are sampled for both the metamodel 

and test dataset in the fourth column, Kriging Approximations appear to be the most 

robust solution. Although with RBFNN not far behind, it is difficult to conclude 

whether Kriging is the absolute best solution since non-ideal radius values were 
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used. Possibly  with ideal radius values, RBFNN performance could match or exceed 

that of Kriging Approximations.
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5 CONCLUSIONS AND FUTURE WORK

Rapid assessment capabilities need to be implemented into conceptual 

design as an alternative to high fidelity analysis. Building metamodels upon legacy 

data of previous high fidelity simulations has the potential reduce or possibly 

eliminate the need for high fidelity  analysis in conceptual design, yet provide highly 

accurate information in real-time to engineers. With this structure in place, engineers 

could quickly evaluate a multitude of concepts in real-time with factual hands on 

information about each concept. Three different metamodeling techniques, 

Polynomial Response Surfaces (PRS), Kriging Approximations, and Radial Basis 

Function Neural Networks (RBFNN), were evaluated to determine which of the three 

best fit the general trends of several conceptual design datasets.

5.1 
 Polynomial Response Surface Conclusions

When to use PRS metamodels

1. Sample sizes greater than 40 data points for linear datasets

2. Extrapolation of concise datasets to a larger area of the design space

3. Linear datasets consisting of a small concise design space

When NOT to use PRS metamodels

1. Interpolation of large datasets in small regions of the design space

2. Any highly non-linear dataset

3. Datasets with a very large design space exhibiting non-linear behavior
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Several other important notes regarding the implementation of PRS are to 

generally  always use third-order polynomials to fit the data. In almost every  situation,  

third-order polynomials outperformed second-order polynomials with the exclusion of 

highly non-linear datasets. Also, building a PRS metamodel requires very  little effort 

and can be done very quickly. If speed is the key consideration for metamodel 

construction, then PRS is the best option. The only specification in the construction 

is the order of the polynomial which should almost always be third-order unless it is 

a highly non-linear dataset. In which case a PRS metamodel is a poor option.

5.2 
 Kriging Approximation Conclusions

When to use Kriging metamodels

1. Any non-linear dataset of any sample size

2. Large design space datasets exhibiting linear or non-linear behavior

When NOT to use Kriging metamodels

1. For cases where interpolation or extrapolation are required

2. Linear datasets with sample sizes larger than 40 data points

Kriging Approximations are a very robust metamodeling technique with very 

high performance using a first-order global model on non-linear datasets. In regards 

to more linear datasets, Kriging should be avoided. However, if Kriging must be 

used, second-order global models perform much better on linear datasets than first-

order models. Always avoid using a constant global model for generating Kriging 

Approximations for the performance of these metamodels was significantly  worse in 
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every single test case. On the downside, Kriging metamodels require slightly more 

time to setup  and construct than PRS metamodels, but overall, the extra preparation 

results in a much more robust metamodel which can handle a larger number of 

different types of datasets.

5.3 
 Radial Basis Function Neural Network Conclusions

When to use RBFNN metamodels

1. Linear datasets consisting of any sample size

2. Interpolation of large area design spaces to concise localized areas

3. Linear datasets consisting of a small concise design space

When NOT to use RBFNN metamodels

1. Extrapolation of concise datasets to a larger area of the design space

2. Any highly non-linear dataset

Radial Basis Function Neural Networks require large amounts of 

preconditioning in order to reach the performance levels of either PRS or Kriging. In 

order to compete with the performance of the other techniques, the ideal radius 

value must be determined prior to constructing the final model. This process took 

hours for the datasets used. However, if the datasets consisted of hundreds of 

sample points and thousands of design variables, constructing a RBFNN would take 

days to week to generate. On another note, if construction time is not an issue, 

RBFNN metamodels outperform both PRS and Kriging techniques on datasets with 

linear behavior.
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5.4 
 Future Work

For the future development of the use of metamodels for conceptual design, 

the focus will be towards evaluating additional datasets to continue to test the 

performance of metamodels on high fidelity  analysis data. Using actual legacy 

datasets to test the performance of these metamodels is a high priority. If the same 

kind of accuracy results can be achieved using legacy data, then hopefully the 

implementation of metamodeling techniques into conceptual design can be adopted 

into conceptual design the same way CAD has been adopted into detailed design.

In addition to testing more types of conceptual design datasets, more 

research will be done to implementing additional types of both Kriging 

Approximations and Radial Basis Function Neural Networks. Kriging Approximations 

are already  the dominating performer for non-linear datasets. However, many 

different alterations exist for Kriging including Co-Kriging, Collocated Kriging, and 

even Collocated-Co-Kriging Approximations. Possibly one of these may be able to 

approximate linear datasets better than standard Kriging Approximations. 

RBFNN metamodels also have potential. With all the possible construct 

methods for neural networks, any of these could prove to perform better for non-

linear datasets or for extrapolation. There are many different possibilities when it 

comes to neural networks. First of all, the method in which to generate the neural 

network can be done several different ways. The population of neurons can come 

directly from the sample points like was done in this thesis, or a subset of the 

population can be used until the RMSE for the model drops below a certain value. 
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The population can be generated randomly  throughout the entire design space. One 

final implementation for RBFNN will be to implement a curve smoothing function with 

ideal radius values to see if this technique can better handle a highly non-linear 

dataset.
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