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ABSTRACT 

In the last few decades the medical imaging field has grown considerably, and new 

techniques such as computerized axial tomography (CAT) and Magnetic Resonance Imaging 

(MRI) are able to obtain medical images in noninvasive ways. These new technologies have 

opened the medical field, offering opportunities to improve patient diagnosis, education and 

training, treatment monitoring, and surgery planning. One of these opportunities is in the 

tumor segmentation field.  

Tumor segmentation is the process of virtually extracting the tumor from the healthy 

tissues of the body by computer algorithms. This is a complex process since tumors have 

different shapes, sizes, tissue densities, and locations. The algorithms that have been 

developed cannot take into account all these variations and higher accuracy is achieved with 

specialized methods that generally work with specific types of tissue data.  

In this thesis a color pre-processing method for segmentation is presented. Most 

tumor segmentation methods are based on grayscale values of the medical images. The 

method proposed in this thesis adds color information to the original values of the image. The 

user selects the region of interest (ROI), usually the tumor, from the grayscale medical image 

and from this initial selection, the image is mapped into a colored space. Tissue densities that 

are part of the tumor are assigned an RGB component and any tissues outside the tumor are 

set to black.  The user can tweak the color ranges in real time to achieve better results, in 

cases where the tumor pixels are non-homogenous in terms of intensity. The user then places 

a seed in the center of the tumor and begins segmentation. A pixel in the image is segmented 

as part of the tumor if it’s within an initial 10% threshold. This threshold is determined if the 



xi 

 

seed is within the average RGB values of the tumor, and within the search region. The search 

region is calculated by growing or shrinking the previous region using the information or 

previous segmented regions of the set of slices. The method automatically segments all the 

slices on the set from the inputs of the first slice.  All through the segmentation process the 

user can tweak different parameters and visualize the segmentation results in real time.  

The method was run on ten test cases several runs were performed for each test cases. 

10 out of the 20 test runs gave false positives of 25% or less, and 10 out of the 20 test runs 

gave false negatives of 25% or less.  Using only grayscale thresholding methods the results 

for the same test cases show a false positive of up to 52% on the easy cases and up to 284% 

on the difficult cases, and false negatives of up to 14% on the easy cases and up to 99% on 

the difficult cases. While the results of the grayscale and color pre-processing methods on 

easy cases were similar, the results of color pre-processing were much better on difficult 

cases, thus supporting the claim that adding color to medical images for segmentation can 

significantly improve accuracy of tumor segmentation. 
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1. INTRODUCTION 

The role of digital images and digital imaging processing in various technical fields 

has increased considerably in the past few decades. Significant applications of digital image 

processing are evident in astronomy, manufacturing, and law enforcement to name a few. In 

astronomy, digital images of star constellations are obtained by capturing the gamma-ray 

band; in product manufacturing, higher-energy X-rays digital images of circuit boards can be 

examined for flaws; and in law enforcement, digital images of license plates can be read to 

monitor traffic [1]. 

Another field that has successfully implemented digital image processing is medicine; 

the increase in computational technology has expanded the role of digital images and digital 

image processing in medicine. Medical image data such as CT/MR images can be analyzed 

and visualized as two-dimensional and three-dimensional data using computers, minimizing 

the need of invasive surgery [1].  It is now possible to store, process, and visualize vast 

amounts of medical information.  Medical images provide tools for diagnosis, treatment, and 

education of pathologies and create opportunities that can benefit health care [2].  

1.1 Medical Imaging 

X-rays are one of the oldest techniques used for medical imaging. X-rays have a 

vacuum tube with a cathode and anode. The cathode is heated causing free electrons to be 

released toward the anode. When the electrons strike a nucleus, energy is released in the form 

of X-ray radiation, this energy is used by X-ray sensitive film to produce an image [1]. 
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Today, two popular processes to obtain medical digital images in noninvasive ways 

are computerized axial tomography (CAT), also called computerized tomography (CT) for 

short, and Magnetic Resonance Imaging (MRI). In 1972, Sir Geoffrey Hounsfield introduced 

the first CT machine. CT technology uses X-rays to obtain images. The first scanner took 

several hours to obtain the raw data and several days to reconstruct the data into an image. 

Currently, the latest machines are capable of collecting four images in 350 ms and 

constructing a 512x512 image in less than a second [3].  

In 1977, Paul Lauterbur and Peter Mansfield introduced the first MRI machine. MRI 

technology uses the electro-magnetic energy in the radio frequency (RF) to obtain medical 

images. Different parts of the body will emit different variations in the RF range and using 

these different RF ranges the MRI image is formed [4].  

MRI and CT scanners produce a series of two-dimensional (2D) slices that can be 

combined to form a three-dimensional (3D) representation of the data, as shown in Figure 1.  

 

 

Figure 1. Representation of 2D Slices forming a 3D Set. 
 

In the last decade medical images are being stored using the Digital Imaging and 

Communications in Medicine (DICOM) standard instead of the traditional 2D printed films. 
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The DICOM standard was developed between the American College of Radiology (ACR) 

and the National Electrical Manufacturers Association (NEMA) in 1993.  The DICOM 

standard is structured as a multi-part document that facilitates the evolution of the standard 

since parts can be removed or added easily. These multi-parts or elements are composed of 

attributes, shown in Figure 2, such as a tag that works as the identifier, the length of the data, 

and a value field with the data [5]. This allows for a DICOM file to not only have image data 

but other types of data such as the patient name, age, ID, etc. Having the same format for a 

single file with different types of information for all patients facilitates the ease of data 

transfer and the implementation of software for digital processing and analysis.  

 

 

Figure 2. DICOM file structure. 
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Software packages such as Volview and OsiriX can be used to visualize these 

medical data by parsing the DICOM files into image and information data. The parsing 

process is the process of interpreting the data from the DICOM files into data usable for 

visualization and analysis. These packages offer different tools to manipulate the medical 

data and assess different information. Some of these tools include rendering a 3D volume 

from 2D images, clipping, and constructing animations.  One of these tools is segmentation, 

one of the most difficult tasks in image processing.  

1.2 Medical Image Segmentation 

Delineation of regions of interest from an image is referred to as image segmentation. 

In Figure 3, the tumor on the image is circled in red; this area should be segmented from the 

image. Medical image segmentation plays a role in applications such as diagnosis, 

localization of pathologies, treatment, and education. Different segmentation algorithms have 

been developed for different objects of interest for example the segmentation of bone is 

different from the segmentation of tumor. General methods exist that can be used for 

different data, but higher accuracy is achieved with specialized methods. Currently there is 

not a single segmentation method that can be used in every medical image and still produce 

successful results.  Figure 3 shows abdomen tumors of different patients; even from the same 

part of the body the tumors to be segmented have different shapes, sizes, intensity values, and 

locations. The algorithms try to take into account some of these variations; however they 

have difficulties achieving successful results. Tumors of different parts of the body add 

another layer of difficulty to the segmentation process, and current methods are not able to 
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account for all these differences [6]. Different segmentation approaches will be discussed in 

Chapter 2.  

 

 

(a) Homogenous tumor (b) Fuzzy edges tumor (c) Heterogeneus tumor 

Figure 3. Three different tumors of the abdomen: homogeneous tumor (a), 
tumor with fuzzy edges (b), heterogeneous tumor with calcification (c). 

 

Most of the image segmentation methods today are based on grayscale techniques. 

Lately, with the advancement in computation technology, color segmentation has attracted 

more attention. One of the advantages of a color image is that it provides more information 

than a grayscale image, Figure 4 shows the same file, one in grayscale and another in color, it 

is easier to observe the different structures on the color image.   
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Figure 4. Grayscale and color DICOM file. 
 
 

CT and MRI scans store the data in Hounsfield Units (HU) which is a measure of 

tissue density relative to the density of distilled water. The range of HU units in these scans is 

usually from -1000 HU to +1000 HU. New CT scanners can measure bigger ranges in HU. 

Water is assigned a HU value of zero, denser tissues such as bone have positives HU values, 

and less dense tissues such as fat have negative HU values [3]. Table 1 shows some HU 

values for different tissues [7]. 

Table 1. Body Tissues and corresponding HU Values. 

Tissue Value (HU) 
Fat -90 

Water 0 
Muscle +44 
Bone +1005 

 

The most common method to visualize DICOM files is to scale down the HU values 

into a grayscale image in a process called windowing. A window center and a window width 

are set according to the tissue that wants to be visualized. Any HU value smaller than the 

window width is set to black, and any HU value bigger than the specified window width is 
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set to white. The values within the width are set to the corresponding gray intensity. This 

process is illustrated in Figure 5.  

 

Figure 5. Windowing Process. HU values to pixel intensities. 
 

In the windowing process the HU values are scaled down into grayscale values. 

Converting HU values into color is not a trivial problem to implement.  A technique to map 

the HU values in a DICOM file to color values and use the information for tumor 

segmentation is presented in this thesis. 

1.3 Digital Image Processing 

A digital image is a two-dimensional array of numbers that represent the intensity 

distribution of a spatial image. These signals are sampled at finite discrete quantities. The 

intensity is set to a finite number of levels.  Each element of the array is called a picture 

element or pixel [2]. A digital image is formally defined as a two-dimensional function, 

f(x,y), where x and y are the position of the pixel, and the amplitude of f at any position of the 
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pixel is called the intensity or gray level of the image at that point. Digital imaging 

processing is the manipulation of digital images to produce different output images, two 

common digital image processes are blurring and sharpening.  Blurring is used to remove 

noise and detail from an image; sharpening on the other hand improves the image contrast 

and improves the details [1].  An example of these effects is shown in Figure 6. 

 

 

(d) Original Image (e) Blurred Image (f) Sharpened Image 

Figure 6. Examples of image processing techniques. 
 

In the early 1920s the first digital images were obtained in the newspaper industry by 

transmitting them from a submarine cable between New York and London. One of the first 

digital images, shown in Figure 7(a), was obtained by encoding the image, transmitting it 

through a cable, and then reconstructing it on a telegraph printer on the receiving location. 

Initially, there were many problems with the methods used to transmit pictures, the resolution 

obtained by transferring an image through the cable was low which produced the pixilated 

image shown [1].  
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(a) Digital Image from 1920 (b) First picture of the moon 

Figure 7. Examples of first digital images.  
 

It wasn’t until the 1960s when modern digital imaging processing was born. The 

combination between advances in computer technology and the space program allowed for 

the growth in the importance of digital images. The first image of the moon taken by Ranger 

7 on July 31, 1964, shown in Figure 7, was processed by a computer to correct some 

problems with the original image [1]. 

The methods used to enhance the first image of the moon brought up the potential of 

the digital image processing field and soon these techniques were applied to other fields, 

especial focus was brought to medical digital images. Enhancing digital pictures were 

applied to medicine to improve the visualization of data for human interpretation.   

1.4 Motivation 

The advances in technology provide new possibilities that could potentially help in 

the medical field. It is now possible to look at medical data in 3D as opposed as 2D 

information available in the past. This has opened the medical area, offering opportunities 

not only to doctors but to engineers, biologists, scientists, and mathematicians. Robots that 
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assist in surgery such as the da Vinci surgical system [8], assisted surgery from different 

locations [9], and virtual reality [10] to visualize data are now a reality.  Perhaps in the future 

robots will be able to perform surgeries automatically, and computers will be able to predict 

how a tumor will develop. 

The tumor segmentation problem is an interesting one, it is fundamental for many 

other future applications in medicine and to this date there is no unique solution. Providing a 

set of tools for doctors to visualize tumors could beneficiate patients in many ways. In order 

to create these tools not only the segmentation results for the tumor extraction must be 

accurate but also these tools must be easy to use.  

This thesis will address both areas of the problem. It will present a technique to 

colorize the grayscale data in DICOM files, and then use this color information to segment 

tumors. It will also provide software that allows the user to implement the segmentation 

techniques, and other visualization tools for medical data, in a fast, easy, and intuitive 

manner. This framework took advantage of 2D textures to allow users to manipulate 

segmentation data quickly, textures communicate with the graphics hardware in an efficient 

way to allow for fast and real time visualization of the results.  

1.5 Thesis Organization 

This thesis is divided into six chapters. The second chapter presents the background 

information with the literature review on medical segmentation, colorization of HU data, 

color segmentation, medical data user interfaces, and graphical hardware used with medical 

data. The methodology used for the segmentation algorithms and the development of the user 
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interface are found in chapters three and four. Chapter five presents results from the 

segmentation algorithms as well as the discussion of these results. And conclusions and 

future work are presented in chapter six. 
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2. LITERATURE REVIEW  

2.1 Segmentation 

The goal of segmentation varies from case to case. In some instances, the objective is 

to divide the image into groups, like gray matter, white matter, and fluids in the brain. In 

other cases, the purpose is to extract a single structure from the image such as a tumor in a 

CT scan. And some other applications have for their objective to classify the image into 

anatomical features such as bones, muscles, and vessels [2].  

As mentioned in the introduction chapter, due to the variations in medical information 

there is not a general segmentation technique that can produce accurate results for every case 

and every goal. The literature review showed a vast and varied number of medical image 

segmentation methods.   Most of the medical imaging segmentation techniques are based on 

grayscale methods [2, 11-14].  

Segmentation methods discussed in this chapter can be categorized into at least one of 

the following groups [11]: (1) thresholding approaches (2) region growing approaches, (3) 

classifiers, (4) clustering approaches, (5) Markov random field (MRF) models, (6) artificial 

neural networks, (7) deformable models, and (8) atlas-guided approaches.  

Reference [12] categorizes segmentation into two broad categories: (1) single 2D or 

3D image segmentation and (2) Multi-spectral image segmentation, in which segmentation is 

performed on a set of images that have different grayscale values. 

Taking into account the framework of this thesis, the grayscale segmentation 

techniques are classified into three groups: (1) classical approaches, such as thresholding and 
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region growing, (2) advanced approaches such as probability approaches, deformable 

models, fuzzy logic, and (4) hybrid approaches. These methods are covered in detail in the 

following sections. 

2.1.1 Classical Approaches 

In general, classical methods only use the information that is provided by the image 

[15]. Classical methods include thresholding techniques, clustering techniques and region 

growing techniques [2].   

Thresholding techniques are characterized by using pixel intensity levels. A pixel is 

selected if its density is equal or less to the density set by the user [13]. If the density level of 

the object is significantly different from the density of the background images, then 

thresholding becomes a very affective and simple method for segmentation [16]. 

Thresholding has several limitations, classical thresholding techniques do not take into 

account spatial pixel relations or any other information besides grayscale density thus 

thresholding becomes sensitive to noise or non homogenous images, which are common 

occurrence in medical images [11].  

Region growing is a technique in which the user places a pixel in the image, called a 

seed, and the region grows by adding neighboring pixels if they are within certain threshold 

of the current region [17].  One of the limitations of this classical technique is that it requires 

user input for the initial seed point. Another limitation is that selecting a pixel based on the 

threshold of the region makes the technique susceptible to noise. Methods that combine 

classical region grow with more approaches can overcome some of these limitations [18-19]. 
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Clustering divides pixels of an image into similar groups based on their 

characteristics, in the case of classical methods the pixels would be grouped according to 

intensity values.  The methods examine each pixel in an image and assign it to the group that 

best represents its characteristics [2, 20]. Clustering methods do not take spatial information 

into account either and like the rest of the classical methods they are susceptible to noise. 

Some algorithms have incorporated spatial information to the basic clustering techniques and 

have achieved better results [21].  

Classical approaches are effective methods when the intensity information from the 

regions of interest on an image is very different from the background information. Generally, 

they are easy to implement and they provide fast results. However, classical methods are very 

susceptible to noise since they rely heavily on the intensity information of the image.  

2.1.2 Advanced Approaches  

Advanced approaches in segmentation include statistical approaches and probabilistic 

approaches, deformable models, artificial neural networks (ANNs), fuzzy logic and atlas-

guided approaches.  

2.1.2.1 Statistical and Probabilistic Approaches  

Statistical approaches use the information on the medical image to create a statistical 

model of the image. These models determine if a pixel is part of the region of interest. In a 

similar fashion, probability approaches generate probability models that determine the 

probability of a pixel to be included into the segmented object [11, 15, 22 -23] Held et al., 

[22] developed a Markov random field model that takes the nonparametric intensity 
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distributions and the neighborhood correlations of the pixels to create the segmentation 

algorithm.   

Vincken et al., [24] uses a probabilistic segmentation, in which the child pixels of the 

3D image, called child voxels, are linked to more than one parent voxel. This linkage 

determines the final volume.  

Statistical and probability methods tend to yield accurate results. However, these 

methods initially need to prepare models before the segmentation which causes heavy 

burdens on computer and time resources [15].  

2.1.2.2  Deformable Models  

Deformable models delineate a region of interest by using parametric curves or 

surfaces [11]. These curves or surfaces can move under the influence of internal forces and 

external forces. The internal forces, the curve or surface in itself are designed to keep the 

model smooth during the deformation. The external forces, computed from the image data 

are used to move the model toward the region of interest [25]. By combining internal and 

external forces deformable models tend to be robust models.  

Kaus et al [26] propose a deformable model method to segment myocardium in 3D 

MRI. The deformable model is represented by a triangular mesh. After initially positioning 

the mesh, the model adapts by carrying out surface detection in each triangle of the mesh and 

by reconfiguration of the mesh vertices.  The internal forces of this method restrict the 

flexibility of the segmentation by maintaining the configuration of an initial mesh. And the 

external forces drive the mesh towards the surface points. 
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One of the limitations of deformable models is that they require initial interaction 

from the user to set up the model and the parameters [11].  Another limitation is that 

deformable models are used for highly specific cases [27]. 

2.1.2.3 Artificial Neural Networks (ANNs) 

ANNs are nodes that simulate a biological neural system. Each node has a weight 

associated to it that determines how the pixels should be classified [28].   Huang et al [29] 

developed a model that uses Neural Networks to contour breast tumors. In their method a 

hidden learning algorithm assigns weights to the neurons based on texture features of the 

image. An input vector is compared with all weight vectors and it is matched with the best 

neuron which corresponds to an associated output. The neural network was used as a filter 

for subsequent segmentation algorithms.  

One of the advantages of learning algorithms is that they can be applied to a wide 

range of problems. One of the limitations of learning algorithms is that they have to be 

trained, if the training set is not large enough errors occur, the same happens if it is over 

trained. Another limitation is that ANN is a black-box problem, given an input, the learning 

algorithm gives an output, however the details of the operations are unknown: how reliable 

the output is, and how was the decision reached [30].  

2.1.2.4 Fuzzy Logic 

 Fuzzy logic is a theory that represents the vagueness of everyday life, for example 

when cooking concepts like add hot water, put salt to taste are not crisp instructions, they 

allow certain liberties. Images are by nature fuzzy and fuzzy logic methods use the vagueness 
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concept to perform segmentation.  Fuzzy connectedness methods [31-32] are clustering 

methods in which every pair of pixels are assigned an affinity to each other according to 

different parameters such as spatial relations and intensity levels. This affinity defines the 

fuzzy connected project. Moonis et al [33] used fuzzy logic to segment brain tumors. To 

determine the affinity they used the training facility 3DVIEWNIX. Using this system they 

painted the tumor and edema for one patient by using a paint brush, from this one patient the 

affinity values were calculated and used for all the subsequent studies. For each study they 

first selected a general rectangular region that contained the tumor, this region was used to 

decrease processing as the algorithm ignored anything outside of this region. Then they 

planted seed points on the region of interest and their fuzzy-connectedness algorithm 

delineated the actual tumor. 

 One of the limitations of fuzzy logic approaches is that the user has to choose input 

parameters and the affinity relations which requires a lot more initial interaction than with 

other methods. 

2.1.2.5 Atlas-guided approaches 

Atlas-guided approaches create a model by compiling information on the anatomy of 

the region of interest. This model or atlas is used as the reference to segment new images. It 

allows for the use of both spatial and intensity information of the image [11, 34]. Lorenzo-

Valdes et al [34] developed a method to segment 3D cardiac images. To construct the general 

atlas they manually segmented 18 to 20 cycles of the heart composed of eight to ten slices of 



18 

 

14 adults. Using transformation algorithms they created a subject atlas, and then using a 

registration method they aligned the general atlas to the subject atlas.  

Atlas-guided approaches are very robust if the model and the new images are similar 

to the training set of images, but they are not capable of segmenting accurately images that 

are varied to the training set. For example if the training set is of the brain the algorithm 

would not be able to segment abdomen images.    

Advanced methods tend to achieve better results than classical techniques, but they 

require more input from the user, and because they have more complex equations they take 

more time to implement and to process than classical approaches.   

2.1.3 Hybrid Approaches 

Many segmentation methods do not fall within a single segmentation group as they 

integrate different approaches to overcome limitations and they are classified as hybrid 

approaches. Gibout et al [35] combined k-means, a classical clustering approach, and 

deformable models to create an algorithm that takes advantage of the speed of classical 

approaches and the accuracy of advanced approaches.    

Atkins et al [36] developed a method that uses a thresholding approach and 

deformable models to segment the brain in MRI. The first step in the algorithm uses 

histogram analysis to remove noise, the second stage produces a model to identify regions of 

the brain, and the third step locates the boundary of the brain.  

Hybrid approaches can complement the weaknesses of the methods to achieve better 

segmentation results but one of their limitations is that hybrid approaches tend to be more 



19 

 

complex than the approaches which can translate into heavy burdens in computer and time 

resources 

2.2 Colorization 

2.2.1 Color Fundamentals 

The color spectrum can be divided into six regions: violet, blue, green, yellow, 

orange, and red. These colors do not end abruptly but blend from one color to the next. The 

color of an object perceived by humans is determined by the wavelength of the light reflected 

from the object. If an object reflects light in all visible wavelengths, the object will be 

perceived as white to the observer. But if the object only reflects certain wavelengths the 

object will exhibit a specific color. For example, objects that reflect light between  

wavelengths of 500 and 570 nm are perceived as having green color. Color light spans the 

electromagnetic spectrum from 400 to 700 nm, shown in Figure 8 and sensors in the eye are 

responsible for human color vision. These sensors are sensitive to red, green, and blue light. 

Colors are seen as a combination of these primary colors [1].  

 

Figure 8. Electromagnetic Spectrum. 
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Three characteristics are generally used to describe color: brightness, hue, and 

saturation. Brightness is almost impossible to describe and it embodies the achromatic 

(without color) notion of light intensity. Hue describes the dominant wavelength in a mixture 

of light waves, the dominant color of an object. Saturation describes the amount of white 

light mixed with a hue. For example pink, the combination of red and white, is a color less 

saturated than red [1].  

 Color models or color spaces, specify the colors in a standard way by using a 

coordinate system and a subspace in which each color is represented by a single point [1]. 

The most common color spaces used in image processing methods are RGB and HIS.  

The red, green, and blue (RGB) color space can be represented in a 3D cube, shown 

in Figure 9, color can be represented by the combination of the reg, green, and blue colors.  

This color space is commonly used for television systems and pictures of digital cameras 

[37].  
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Figure 9. Representation of the RGB color space. 
 

The Hue-Saturation-Intensity (HSI) color space separates the color information of an 

image from the intensity information. Hue and saturation represent color values. Hue, 

Saturation and Intensity were defined earlier in this section of the chapter . The HSI colors 

can be obtained from the RGB colors with the following formulas [37]: 
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2.2.2 General Colorization Concepts 

Colorization is the process of adding color to a grayscale image by the use of a 

computer.  It is a difficult and time-consuming process, and automatic algorithms are not 

accurate enough and existing methods usually require extensive user input [38].  The 

problem of colorization is assigning three-dimensional information to a pixel from the 

original one-dimensional image. Colorization in RGB will add color channels to the image 

from 1 channel to 3 channels which will increase the possible number of colors from 256 to 

16 million. With the current colorization techniques there is not a unique solution that will 

specify which of those new 16 million colors will best represent the image, and thus so far 

colorization is very dependent on user input [39-40].  

Transfer functions and lookup tables are two concepts used widely in the colorization 

field. Transfer functions are functions that take the corresponding information of the image to 

obtain new color information and assign this information to the data being visualized, thus 

every colorization method uses a transfer function. Lookup Tables (LUT) give a color output 

from a grayscale input. Every lookup table is obtained from a transfer function. Some 

colorization techniques are focused on the final colorized image, while others are focused on 

creating transfer functions that can be applied to the same type data [41].   Most transfer 

functions are obtained through a “trial and error” method. In which the user modifies the 

initial parameter until a good visualization is achieved [42].  
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2.2.3 Colorization Techniques 

Some methods ask the user to use a color palette and insert colors to the grayscale 

image [38, 40, 43]. For example, Levin et al [38] use a method in which the user colors a 

selected number of pixels in certain regions of the image and the algorithm propagates the 

colors in the image. The premise is that neighboring pixels that have similar intensities 

should have similar colors. One of the advantages of this method is that the user input is 

minimal and the results are accurate. However the time can be significant, at least 15 seconds 

per image, medical data consists of sets of hundreds of images that would take a lot of time 

to colorize.  This method only presented images that had no noise; medical data is usually 

noisy so the method could have very different results. 

  

 

Figure 10. Colorization technique by Welsh. 
 

Other methods use a source image to produce the colors [44].  Welsh et al [39] 

colorize an image by transferring color from a color image to a destination grayscale image 

without the need for the user to select and apply individual colors to the target image, as 

shown in Figure 10. A subset of pixels of the color image is used as a sample. Then each of 

the pixels in the target grayscale image is matched to the color pixels by using statistics. In 

addition, this method can also use swatches to be used as the color source. These swatches 
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work the same way as the color image source, it creates a subset sample. A limitation to this 

method is that there needs to be a source image to provide the subset sample, and this image 

has to be close in content to the target image.  Because of the variation in medical images it 

may  not be possible to find two source images close enough to the  destination image. 

Chen et al [45] propose a method in which first the source image is segmented into 

objects. Each object is colorized using Welsh et al [39] method and then the objects are 

grouped together to form the final image.  The presented method only shows images without 

noise.   

Takahiko et al [46] developed a method that colorizes an image by adding initial 

color seeds to the image and the colors propagate by minimizing the color difference among 

4-connected pixels. This algorithm is very fast it only takes a few seconds to colorize a 

256x256 pixel image. However the final results are not accurate. In addition it requires the 

user to pick colors and plant seeds to the source image.  

2.2.4 Medical Image Colorization Techniques 

As mentioned earlier CT and MRI scans do not contain color information but rather 

HU values that can be windowed for visualization. In order to apply color to medical data 

pseudocoloring methods are used.  

Pseudocoloring is a common technique for adding colors to medical images. One of 

the simplest techniques in pseudocoloring is to slice the image into intensity planes, and 

assign a color to each plane. This method applies color to the image linearly [1].  
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Tzeng et al [47] implements a method to create a color transfer function by having the 

user paint a few slices of the volume data set. The user paints the regions of interest in one 

color, and the background data in another color. The voxels are classified by artificial neural 

network segmentation approach. This method only works for 3D data.   

Silverstein et al [48] developed an algorithm to colorize 3D medical data for human 

visualization. The purpose of their work was to realistically colorize medical images to 

enhance surgeon’s visual perception. Initially the grayscale volume was divided into main 

body tissues such as fat and bone. Each structure was assigned and RGB value as realistically 

as possible. These initial values were adjusted by a group of surgeons.  The colors between 

tissue types were linearly interpolated.  From these values luminance was calculated and 

added to the data generating perceptual colorization.  The user can move the luminance on 

the data and change the perception of the colors on the image.  

Pelizzari et al [49] developed a technique to render and colorize a volume from 

grayscale CT and MRI scans. From a transfer function each voxel in the data is assigned a 

weight based on visual attributes like color by using a probabilistic classification of tissue 

types. Rays are cast through this weighted voxel from a viewport toward the rendered pixel 

that accumulates the visual attributes of the transverse voxels.  

2.2.5 Limitations on Colorization Techniques 

There are several limitations with the colorization techniques used today. One of the 

limitations is that colorization techniques require a lot of user input. Some of them ask for the 

user to colorize some images, or pick the correct transfer functions, or add the correct image. 
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Since there is no way to evaluate the output image it is difficult to know if the solution is 

accurate.  Most of the colorization techniques are focused on creating an image that is close 

to reality as perceived by humans. While this can prove an effective tool for diagnostic, it 

may not be the only alternative if other goals for colorization want to be achieved like further 

computer image processing. 

2.3 Color Segmentation Methods 

Many of the grayscale segmentation approaches can be extended to color 

segmentation. Color segmentation approaches include classical techniques such as 

thresholding, clustering, region growing, and advanced approaches such as fuzzy logic, ANN 

[37, 50-52].  

Some of the classical thresholding techniques separate the color information and 

obtain histograms separately on each piece of information [51-52]. Then through a function 

they combined the results.  Lin et al [53] used the HSI space to segment a road from the 

image. They converted the RGB image into HSI space. They calculated a value for each 

pixel by using the saturation and the intensity. Pixels were classified according to these 

values.  

Cheng et al [54] used a fuzzy logic approach that employ the concept of the 

homograph to extract homogeneous regions in a color image. In the first stage they used 

fuzzy logic to three color components to find threshold for each color component, then the 

segmentation results of the three colors were combined to form color clusters. Cheng et al 

achieved better results than if thresholding grayscale segmentation was performed. 
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Verikas et al [55] proposed a color segmentation using neural networks. An image 

that combined cyan, magenta, and yellow colors was created resulting in an image with nine 

color classes. The first stage included four steps created the segmentation. The first step was 

a binary decision three, then the second and third step used the neural networks to create 

weight vectors. And lastly a fuzzy classification was used to cluster the pixels. The second 

stage is a region merging approach to solve over segmentation problems. This method 

achieved 98% correct classification. 

Cremers et al [56] implemented a hybrid segmentation approach that uses a region-

based level set segmentation method and statistics that can use color information to segment 

the object of interest. Given a set of pixel colors at each image location, the minimization of 

the cost functions leads to the estimation of the boundary. This algorithm is not accurate in 

medical images where intensity characteristics of the region of interest and the background 

are similar.  

2.3.1 Limitations on Current Color Segmentation Methods 

Color segmentation approaches can be more reliable than gray scale segmentation 

approaches. However, they also have limitations similar to grayscale approaches. There is 

not a robust general algorithm that works for all cases. Picking a color space is difficult as 

each color space has advantages and disadvantages. While color images offer additional 

more information this can also result in more problems for segmentation algorithms, for 

example noise is increased [37, 51-52]. Most of the current color segmentation approaches 

deal with images with minimal noise, and sharp contrast between the boundaries, which is 
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not the case for medical images, this can introduce new problems when trying to apply the 

current algorithms to medical data.   

2.4 Visualization 

2.4.1 Current Interfaces 

There are several interfaces for medical image visualization. Volview [57] and OsiriX 

[58] are two examples. Volview, shown in Figure 11 allows for the visualization of different 

medical data such as DICOM files. Tools that are included are volume rendering, cropping, 

coloring, segmentation, filtering, and animation. Volview works on Windows XP/Vista.  

OsiriX was developed for the Mac OS as an image processing tool for medical data, 

is shown in Figure 11. OsiriX allows for the visualization of 2D, 3D, and even medical data 

combined with time information to produce videos. Like Volview, OsiriX tools include 

volume rendering, coloring, animation, etc.  

(a) Volview (b) Osirix 

Figure 11. Medical Imaging Software packages. 
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OsiriX and Volview, as long as other medical image visualization software, allow 

medical staff to view and manipulate medical data in any personal computer. These tools can 

be used to make better assessments about the information. However there are some 

limitations with the current software. Osirix and Volview only work on Mac OS and 

Windows respectively. They are also complicated pieces of software, as shown in Figure 11, 

that could prove difficult to use for novice users.  

 

2.5 Research Issues 

Based on the literature review, this thesis is addressing the following research issue: 

1) To improve the accuracy and speed of tumor segmentation from medical image data 

using color pre-processing and interactive user inputs.  

As discussed segmentation methods currently available are still limited in a number 

of ways. According to the literature color segmentation improves the results over grayscale 

methods, however these segmentation methods have been performed when the initial input 

images already have the color information, which is not the case of medical data. Efforts to 

add color to medical data have focused on achieving good end visualization results even 

using segmentation algorithms to add the right colors to the corresponding tissues. Colorizing 

the medical data first and performing segmentation on this new information to provide better 

segmentation results is a new concept. 
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3. METHODOLOGY DEVELOPMENT 

3.1 Introduction 

The segmentation process takes three steps: (1) selection of region of interest and 

color pre-processing, (2) seed selection and segmentation, and (3) post-processing and 

tweaking. The first step in the process is to select the tumor to be segmented and colorize the 

DICOM according to the grayscale values of the tumor. During the second step the user 

selects a seed point in the middle of the region of interest and the algorithm segments all the 

slices in the data set. The process ends with post-processing that can be tweaked in real time 

to achieve better segmentation results.  The complete segmentation process is shown in 

Figure 12.  

 

Region of interest 
selection and colorization 

Seed selection for first 
slice and segmentation 

Post-processing and 
interactive tweaking 

Figure 12. Diagram of the proposed Segmentation process. 
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3.2 Color Pre-Processing 

The first step of the segmentation process is to select the region to be colorized. The 

original data is in HU values that usually range from -1000 to 1000. These values are usually 

windowed, as explained in chapter 1, to produce a grayscale image of 256 intensity levels. In 

this method we are adding a red, green, and blue component to the original HU values in 

order to provide more information that can be segmented later.   The user draws the region of 

interest by clicking the image with the mouse. For a complex dataset, such as a highly 

calcified tumor with heterogeneous tissue densities, the user selection will have to be as close 

to the shape of the tumor as possible. In order to ensure better results the region selected has 

to encompass as much tumor as possible, this way more accurate input information is 

selected, as shown in Figure 13.  In some cases where the tumor densities are very different 

from the healthy tissues it is not necessary to do a close selection to obtain good results. A 

small piece of the tumor will be sufficient, however this is only for the cases where there is a 

high contrast between the tumor and the healthy tissues, since a small selected region will be 

representative of the tumor and very different from the rest of the tissues.      

 

Figure 13. Selection of the region of interest that delineates the tumor. 

Region of interest 
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Every point of the region selected represents a pixel with a specific HU value. From 

this set of values the maximum HU value and the minimum HU value are obtained and are 

set as the range of tissues to be colorized. Any values outside of this range are set to black 

since they are not considered to be a part of the tumor.  The range is calculated by the 

difference between the HU maximum and minimum values of the region selected as shown 

in Equation (1): 

minmax HUHUHUrange        (1) 

 

In order to differentiate the various tissue densities, the color pre-processing scheme 

of Figure 14 was developed. This scheme sets the minimum value in the range to red with no 

HU Min 

HU Max 

Midpoint 

Red Green Blue 

 Figure 14. Colorization scheme used to assign RGB values to 
the pixels. The minimum HU value is set to red and the 

maximum HU value is set to blue.  
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blue or green values and the maximum range is set to blue without red or green values, the 

rest of the values change from red to blue in a linear fashion, and any values outside the 

range are set to black. So any tissues that do not fall in the range to be colorized are not 

visible in the image and are ignored in the segmentation process to save processing time. The 

goal of this color pre-processing technique is not to provide color to every part of the image 

from a grayscale image but rather to highlight tissues of interest with color for effective 

segmentation.  

  To linearly colorize the data a parameter, P, is calculated as the ratio between the 

HU value of the pixel and the HU range as shown in equation (2): 

rangeHU

ueHUpixelVal
P        (2) 

 If this parameter is less than 0.5, then the red and green colors are calculated as 

shown in equations (3): 
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If P is more than or equal to 0.5 the colors are calculated as shown in euqtion 4: 
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The initial color pre-processing result of the region selection of Figure 13 is shown in 

Figure 15. The tumor was colorized as green and some of the tissues around it are blue. Some 

of the bone tissues are set to black since their HU values are outside the range of the selected 

region.  
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Figure 15. Sample results from the color pre-processing method.   
 

The maximum and minimum HU values can be changed in real time to obtain 

different color pre-processing results, shown in Figure 16 (b) shows the color pre-processing 

if the small range of HU values on the DICOM file is selected. Changing the range of HU 

values is sometimes needed because the selected region tends to be noisy and some HU 

values that do not represent the tissue of interest appropriately are actually present in the 

selected area. The user has the option of setting the values manually if the initial color pre-

processing results do not present a clear division of the different tissues.   
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(a) HU Max: 190, HU Min: -397 (b) HU max 50 HU min -23 

 Figure 16.  Same slice with different HU ranges show different 
tissues. Figure (a) shows the tumor in blue, Figure (b) shows the tumor in 

green and many tissues are set to black. Tumor is delineated in yellow.  
 
 

Changes to the HU range are updated in real time so the user can instantly visualize 

the results. This is accomplished by generating OpenGL textures of the current slice. If the 

slice number or minimum and maximum HU values are changed, new textures are generated 

and displayed. For every pixel in the image the color value is calculated as described earlier 

in this section and the result value is set as an element of an array of 512 by 512. This array is 

then set as the OpenGL texture and is sent to the GPU for display. This process is analogous 

to making a sticker of the image, sending the sticker over and then slapping down the sticker 

to visualize the image, instead of sending data to the GPU pixel by pixel, which slows the 

color pre-processing process.  
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3.3 Segmentation 

Since the work presented is primarily to investigate if color pre-processing can 

improve tumor segmentation, a simple segmentation algorithm is used instead of a more 

complex segmentation algorithm as a proof of concept. The segmentation algorithm selected 

is the basic color thresholding algorithm. Color thresholding uses RGB information instead 

of grayscale information. Thresholding techniques are simple methods that perform well 

when the tumor and the healthy tissues have high contrast in densities.  

Segmentation is initialized with the user selecting a seed point within the region of 

interest as shown in Figure 17. From that point onwards all subsequent slices are segmented 

automatically.   

 

Figure 17. Example of seed placement on the colorized image. 
 

 

Seed placement 
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A pixel is selected depending on two factors: distance and color. A pixel is 

considered a tumor pixel if it’s equal or less than the threshold, initially set at 10% as shown 

in equation (5): 

R

D
CTp         (5) 

Tp is the pixel threshold, C is the Color threshold, D is the distance of the pixel from 

the seed for that slice, and R is the search region on the slice. This search region is not a 

finite boundary but rather a parameter that changes the weighting when calculating the pixel 

threshold.  

Using the region of interest, the average values of the red, green, and blue colors, Ar, 

Ag, Ab, are calculated.  These values are then compared to the colors of each pixel, P, of the 

image and a color threshold, C, is obtained from the difference, the color is divided by 255 to 

normalize it [1] as shown in equation (6): 
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If the color maximum and color minimum are changed by the user the averages Ar, 

Ag, and Ab are recalculated and the final threshold is modified accordingly.  

A second value, the difference between the pixel, P, and the seed, S, is calculated as 

shown in equation (7): 
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For the first slice the seed selected by the user, as shown in Figure 17 in subsequent 

slices the seed moves to the center of the previous segmented region. This way the seed will 

move with the tumor as the tumor moves.  

The search region, R, also grows or shrinks depending on how the tumor grows or 

shrinks as shown in equation (8): 

pRCR 
       (8) 

Rp is search region, of the previous slice. Ci is the percentage of growth or shrinkage 

and is defined as shown in equation (9): 

6
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C      (9) 

Ei-1 is the growth rate of the tumor in the previous slice and is defined as follows (10): 

2-i slice ofregion  segmented of Radius 

1-i slice ofregion  segmented of Radius
1 iE   (10) 

 where i is the number of the current slice. For example for the first slice the sum of Ei-1, Ei-2, 

and Ei-3 divided by 6 give 1.1 which makes the previous search region, in the case of the first 

slice the search region selected by the user to grow by 10%. For slice number 4, E3 is the 

segmented region of slice 3 over the segmented region of slice 2, E2 is the segmented region 

of slice 2 over the segmented region of slice 1, and E1 is 1.1. This C calculation allows for 

the region to grow or shrink depending on how the tumor actually changes.  

 



39 

 

 

(a) Test Case #7 Max Color 222 Min Color: 24 (b) Test Case #7 Max Color 328 Min Color: -7 

Figure 18. Segmentation results for test case #7 using the same threshold but 
different HU ranges. Figure a shows more selected pixels. Yellow line 

delineates the tumor.  
 

If the final value of the pixel is lower or equal to the original threshold of 10% of the 

range, the pixel is selected. If the final value is higher than the threshold, then the pixel is 

rejected.  The results of the segmentation are shown in Figure 18. The segmented object is 

displayed in red on top of the original DICOM file. Changing the maximum and minimum 

color changes the results.  

Sometimes the values of the color pre-processing do not give good segmentation 

results.  The segmentation threshold, as well as the HU maximum and HU minimum values 

can be tweaked in real time to give the results of Figure 18(b). 
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3.4 Post-Processing  

Post-processing is the last step of the segmentation process. Morphological operations 

on the segmented pixels eliminate some of the stray pixels, or pixels that are not connected to 

the segmentation object. This process is performed by eroding and dilating the segmented 

pixels.  

Figure 19. Example of a 5x5 structuring element. 
 

In this case, a 5x5 diamond shaped mask, shown in Figure 19, was the structuring 

element selected for post-processing.  Several structuring elements were tested, a 3x3, 7x7 

and 9x9. After several runs it was observed that the 3x3 structuring element was too small 

and left too many stray pixels on the image, on the other hand the 7x7 and 9x9 structuring 

elements eliminated some of the tumor pixels. It was decided that the 5x5 structuring element 

offered the best results.   

The structuring element defines the neighborhood of the pixel, which is in the center 

of this structuring element.  In the structuring element, the zeros are pixels that should be 

ignored, and ones are pixels that should be included for the dilation and erosion processes, 

0 0 1 0 0 

0 1 1 1 0 

1 1 1 1 1 

0 1 1 1 0 

0 0 1 0 0 



41 

 

which are highlighted in gray. This process is repeated for every pixel in the segmented 

region.  

In erosion, the value of the pixel should be set to the minimum value of any pixels in 

the structuring element. Since segmentation has either a selected pixel, of value one, or a 

non-selected pixel, of value zero, the final value of the pixel of interest is either zero or one 

[59].  

After erosion, dilation is performed. It follows the exact opposite process of erosion. 

The pixel of interest value is set to the maximum value in the structuring element, which can 

only be one or zero.  Figure 20 shows the segmentation results with and without post-

processing. Post-processing the images results in fewer stray pixels.   

 

Figure 20. Segmentation without post process (left) and with post processing 
(right). 
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4. USER INTERFACE DESIGN AND DEVELOPMENT  

A desktop application was developed to facilitate the visualization and analysis of 

medical image data and to implement the developed method. The programmatic building 

blocks of the software are shown in Figure 21. Using DCMTK [60], an open source library, 

any DICOM formatted medical image data can be processed and displayed. OpenGL[61], 

VTK[62], Corona[63], and VRJuggler[64] are used to manipulate the information. Corona 

and OpenGL draw the DICOM files in 2D, while VTK renders a volume. VRJuggler is used 

for communication between applications. Finally wxWidgets provides the elements to build a 

simple and usable graphical interface.  

 

 

 

 

 

 

wxWidgets 

OpenGL VTK Corona VRJuggler 

DCMTK 

DICOM File 

Figure 21. Programmatic building blocks for Medical Imaging 
Application.  
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4.1 Features 

The software has three main features: (1) visualization, (2) segmentation, and (3) 

collaboration, as illustrated in Figure 22.  

 

 

Desktop Interface 

Visualization Segmentation Collaboration 

Transverse, Sagittal, and 
Coronal 2D Views 

 
Volume Rendering 

 
Pseudo-coloring 

 
Windowing 

Connection to Virtual 
Reality Environment 

Figure 22. User interface available features: visualization, segmentation, and 
collaboration.  
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A screenshot of the interface, with feature specific tabs is shown in Figure 23.  There 

are four tabs in this application: 2D, Volume, Segmentation, and Sockets. These tabs are used 

to group features that are commonly used together facilitating access to the user. After 

opening a DICOM or a set of DICOM files the 2D tab is highlighted and the image is 

displayed on the left frame of the application, as shown in Figure 23.  

The 2D tab allows the user to control some viewing options such as coloring, and 

windowing. The scrollbars allow the user to move through the slices and change the 

windowing set-up. The windowing process was explained in the first chapter, and an 

example of windowing is show in Figure 24. 

Figure 23. Application Interface highlighting the 2D tab 
that allows the user to see DICOM files on the left side of 

the frame. 
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(a) DICOM not windowed Width: 70 Center: 300 

(b) DICOM windowed Width: 130 Center: 49 

Figure 24. Example of a DICOM file windowed and not windowed on the 
Medical Interface. Windowing and slice scrollbars are highlighted in red. 

 

 

 

Windowing 

Slice scrollbar 



46 

 

Two other lists are also available, the viewing list and the pseudocoloring list. The 

viewing list allows the 2D slices to be seen from top-bottom (transverse), front-

back(coronal), or left-right(sagittal), as shown in Figure 25.  

 

(a) Sagitall View of DICOM set 

 

(a) Coronal View of DICOM set 

Figure 25. Examples of Sagitall and Coronal View of DICOM sets. Features 
of 2D tab such as pseudocoloring and views are highlighted in red. 

 

View list 

Pseudocoloring 



47 

 

Lookup tables (LUT) are used to colorize the HU data.  These LUTs are different 

from the ones created by the user for segmentation and were generated prior to run time. 

These LUTs are used for human perception and visualization. These LUTs are tables already 

generated that have an output color for every grayscale windowed value. They do not use the 

entire HU range of the DICOM file but only the 256 grayscale windowed values. This is 

different from the color pre-processing  scheme described in the previous chapter that used 

the entire range of the HU values of the DICOM file. An example of pseudcoloring using the 

LUTs is shown in Figure 26.  

 

  

Figure 26. LUT pseudocoloring of DICOM images in the 2D tab.  
 

Volume rendering of the image dataset is another feature of the software and is 

grouped together under the “Volume” tab. First, slices are sorted according to their position 

in the se, this position is part of the information contained in the DICOM file itself. Then the 

slices are stacked together to form a volume, as shown in Figure 27. VTK is used to create 
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the 3D volume representation of the dataset, VTK converts the pixels of the image to create a 

voxel, four pixels from a single slice create the front face of the voxel, and four pixels of the 

next slice create the back face of the voxels, VTK linearly interpolates between the front and 

the back face to fill the gaps and create the 3D representation of the data. The “Volume” tab 

of the application, shown in Figure 27, allows the user to interact with the volume through 

the following operations: rotate, scale, translate, and apply pseudocolor. If windowing was 

performed on the slices it is also represented on the volume as shown in Figure 28. Figure 29 

shows different pseudocoloring for the same data set.  

 

 

Figure 27. Example of Volume Rendering of set of DICOM files. 
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Figure 28. Windowed Volume of DICOM dataset.  
 

 

 

The segmentation feature of the software was explained in the previous chapter. In 

this section the interface features that allow the user to perform segmentation on real time 

will be highlighted. The “Segmentation” tab allows the user to colorize the image and change 

the color range of the image on real time to highlight different tissues, as shown in Figure 30 

Figure 29. Volume Renders with different Pseudocoloring applied. 
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by moving the scrollbars. After setting the ranges the user clicks on the “Do Segmentation” 

button and the segmentation is performed on the slice. The user can then apply the 

segmentation to the rest of the slices by clicking on the “Apply to All” button. The user can 

also change any of the scrollbars to change the segmentation results on real time as shown in 

Figure 30.  

 

(a) Color pre-processing  with Color minimum -949 Color maximum 260 

 

(a) Color pre-processing  with Color minimum 159 Color maximum 497 

Figure 30. Segmentation tab that shows different color ranges. (a) Shows 
most tissues because the color range is big (b) shows the tumor and some 

other tissues because the color range is small. 

Color min/max 
scrollbars 

Segmentation buttons 
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The fourth tab called “Sockets”, shown in Figure 31 was created to allow for 

collaboration between the virtual reality (VR) visualization software, Isis,  [10] and the 

desktop application. Both applications can work independently but when connected any 

changes on the desktop will update the VR viewer in real time. These changes are sent over a 

network connection by using a User Datagram Protocol (UDP) socket. Every time there is a 

change in translation, rotation, scaling, coloring, or windowing in the desktop application a 

packet is sent to the VR viewer. This feature was developed to allow for two or more 

applications to work at the same time, so groups of people could visualize the same data to 

allow surgical planning.  

 

 

Figure 31. Example of Sockets Tab. 
 

Sockets options 
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5. RESULTS AND DISCUSSION 

5.1 Information of Test Datasets 

Ten different datasets from seven individuals were used to test the developed color 

pre-processing  and segmentation method. Test cases #1-3 were a courtesy of Dr G. Miyano 

from Juntendo University School of Medicine, Tokyo, Japan. Test case #1 is a Cystic 

Teratoma on the left ovary, #2 is an immature Teratoma, and #3 is a MucinousCystadenoma 

on the right ovary. Test cases #4-#10 are Neuroblastomas and the courtesy of Dr R.M. 

Rangayan from University of Calgary, Alberta, Canada, the different test cases are shown in 

Table 2 .  

The test cases vary in number of slices and difficulty. There are three levels of 

difficulty for these data sets: tumors that have homogeneous densities are classified as a 

category A; tumors that have fuzzy edges and have some inhomogeneity in their tissues are 

considered of having a category B; tumors that have heterogeneous tissues are of category C. 

Some tumors with calcium buildup, which is called calcification, can be considered of 

category B or C depending on the degree of the calcification. When a tumor has a lot of 

calcification then the tissues densities in the tumors tend to be very different and the 

segmentation algorithms cannot easily select all types of densities in the tumor.    
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Table 2. Tumor Test Cases description.  

Description 
# Segmented 

Slices 
Difficulty 

Cystic Teratoma on left ovary 19 A 

Immature Teratoma 90 A 

MucinousCystadenoma on right ovary 251 A 

Neuroblastoma, small and diffuse 4 B 

Neuroblastoma 31 B 

Neuroblastoma, some calcification 13 B 

Neuroblastoma, some calcification 23 C 

Neuroblastoma, highly calcified 16 C 

Neuroblastoma 17 C 

Neuroblastoma 12 C 

 

5.2 Evaluation of the Segmentation Method 

A common form of evaluating a segmentation algorithm is by comparing the results 

of a manual segmentation, performed by a trained radiologist, known as the gold standard. 

Radiologist Dr. J.L. Friese from Brigham and Women’s Hospital, Boston, Massachusetts 

provided manual segmentations for test cases #1-#3, and radiologist Dr. G.S. Boag from 

Alberta Children’s Hospital, Calgary, Canada provided manual segmentations for test cases 

#4-#10. 

The accuracy is measured by calculating the misclassification rates of the pixels. If 

the segmentation algorithm classifies a pixel as part of the tumor but is not part of the golden 

standard that pixel is considered a False Positive (FP). If a pixel that is part of the tumor 

according to the golden standard is not selected by the algorithm then that pixel becomes part 

of the False Negative (FN). Both rates are calculated as shown in equations (10-11): 
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Where V(R) is the volume segmented by the radiologist, the golden standard, and 

V(A) is the volume segmented by the algorithm.  

The FP rate indicates how the algorithm ignores healthy tissues and only segments 

tumor tissues. A low FP rate indicates that the algorithm correctly ignores healthy pixels. The 

FN rate indicates how the algorithm correctly classifies tumor pixels. A low FN rate indicates 

that the algorithm selects most of the tumor pixels. 

The developed color preprocessing and segmentation technique was used on ten test 

cases. Five to six test runs were performed for each of the ten test cases and the FP and FN 

rates were calculated. The thresholding, HU maximum and HU minimum parameters were 

altered, these changes are shown in Table 3. The top two results that gave the lowest FP and 

FN values for each test case are discussed in detail in the following section. In addition, 

several of the test cases were also segmented using a grayscale thresholding method, this 

method was very similar to the color pre-processing method, the only difference is that 

instead of comparing the segmentation in the RGB channels the segmentation used only the 

original HU values.   These additional cases provide a base line to compare how the color 

pre-processing, adding three channels of color to a grayscale image improve segmentation.   
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Table 3. FP and FN Results for all the test runs.  

Dataset Threshold HU Max HU min FP FN 
1.1 0.15 124 -47 20.8245 14.8877 
1.2 0.1 160 -72 22.4746 15.5382 
1.3 0.2 111 -35 31.9706 11.8032 
1.4 0.06 416 -230 20.1710 4.7793 
1.5 0.05 416 -303 17.8671 1.9863 
2.1 0.25 109 -62 12.9642 4.8015 
2.2 0.1 318 -50 5.5798 10.3716 
2.3 0.1 379 -87 7.997 6.7941 
2.4 0.09 452 -111 11.2682 4.5689 
2.5 0.07 501 -259 13.1089 3.6946 
3.1 0.3 65 -100 7.2742 17.2981 
3.2 0.38 65 -100 11.0837 14.0453 
3.3 0.45 65 -56 10.4835 12.8215 
3.4 0.17 120 -375 21.9486 10.2801 
3.5 0.13 131 -121 35.9883 2.6645 
4.1 0.25 109 55 54.0000 33.4583 
4.2 0.25 112 41 76.8750 11.4167 
4.3 0.2 112 41 50.4167 23.75 
4.4 0.39 101 69 47.6250 44.0417 
4.5 0.3 109 65 67.1667 37.7917 
4.6 0.27 112 27 122.5 10.4583 
5.1 0.08 90 -1 26.5796 54.346 
5.2 0.05 574 -91 72.6124 10.821 
5.3 0.11 120 -91 49.3913 22.0039 
5.4 0.2 166 45 40.3981 31.7252 
5.5 0.2 181 30 66.157 13.4102 
6.1 0.2 590 -456 23.9025 61.7476 
6.2 0.25 605 -610 40.9614 47.1893 
6.3 0.4 482 98 21.9481 42.5343 
6.4 0.4 574 144 14.5879 37.971 
6.5 0.45 574 144 18.8161 30.1461 
6.6 0.47 559 128 25.3162 26.1623 
7.1 0.27 115 54 7.4111 74.2711 
7.2 0.35 115 60 8.3064 72.5073 
7.3 0.1 222 24 6.5087 67.8522 
7.4 0.1 328 -7 5.9099 57.6397 
7.5 0.08 161 -53 2.1984 87.6626 
8.1 0.3 101 28 36.9001 31.7648 
8.2 0.2 133 13 130.4576 11.6038 
8.3 0.15 88 -62 29.2867 43.3634 
8.4 0.1 178 -47 65.8532 33.7846 
8.5 0.08 178 -47 50.9483 38.7746 
9.1 0.2 108 -68 30.7342 40.4012 
9.2 0.1 284 -85 87.5960 18.013 
9.3 0.36 108 -15 42.6007 20.7052 
9.4 0.28 112 -50 37.4423 22.8191 
9.5 0.4 91 20 31.5722 28.5263 

10.1 0.29 500 111 10.9904 48.5986 
10.2 0.18 804 108 9.8529 48.2008 
10.3 0.4 554 117 15.8741 38.9544 
10.4 0.3 500 111 12.1784 46.9256 
10.5 0.25 554 109 10.7262 49.6004 
10.6 0.35 554 109 55.5239 37.0723 
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5.3 Hardware  

The segmentation method was performed on a system with Dual AMD Opteron 250 

2.4GHz processor and 4GB of memory, with a dual 512 MB NVidia Quadro FX4500 

graphics cards configuration, running Linux Red Hat Enterprise edition.  

5.4 Color segmentation 

 

 

Figure 32. False positive results of the two best test runs for each test case.  
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Figure 33. False negative results of the two best test runs for each test case. 
 
 

Several runs for each of the test cases were conducted and the two best FP and FN 

rates for each test case are shown in Figure 32-Figure 33. Test Cases #1-#3 of category A 

have the lowest FN and FP values; Test Cases #4-#5 and Test Cases #9-#10 have the largest 

FP values; Test Cases #7-#8 have the largest FN values. These results are shown in detail in 

Table 4. These results will be discussed in detail in this section with accompanying figures.  
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Table 4. Results of the segmentation with color pre-processing . 

Dataset Threshold HU Max HU min FP FN 

1 0.06 416 -230 20.1710 4.7793 

1 0.05 416 -303 17.8671 1.9863 

2 0.38 65 -100 11.0837 14.0453 

2 0.45 65 -56 10.4835 12.8215 

3 0.25 109 -62 12.9642 4.8015 

3 0.1 318 -50 5.5798 10.3716 

4 0.25 109 55 54.0000 33.4583 

4 0.2 112 41 50.4167 23.75 

5 0.11 120 -91 49.3913 22.0039 

5 0.2 166 45 40.3981 31.7252 

6 0.45 574 144 18.8161 30.1461 

6 0.47 559 128 25.3162 26.1623 

7 0.1 222 24 6.5087 67.8522 

7 0.1 328 -7 5.9099 57.6397 

8 0.4 554 117 15.8741 38.9544 

8 0.3 500 111 12.1784 46.9256 

9 0.3 101 28 36.9001 31.7648 

9 0.15 88 -62 29.2867 43.3634 

10 0.36 108 -15 42.6007 20.7052 

10 0.28 112 -50 37.4423 22.8191 

 

Test case #1 of category A yielded a FP around 20% or less and a FN of 5% or less. 

This showed that the color segmentation method was very successful at classifying tumor 

pixels as shown in Figure 34. Because the way the algorithm works, if there is a leak as 

shown in Figure 34(b) the region grows and more pixels are likely to be selected even if they 

are not part of the tumor, which lead to the FP of 20%. 

Adding color information before performing segmentation is an effective way to 

segment the tumors when the differences between the tumor densities and the healthy 

densities are different. 
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(a) Test Case #1 Slice #31 (b) Test Case #1 Slice #39 

 

(c) Test Case #1 Slice #44 (d) Test Case #1 Slice #49 

Figure 34. Test case #1 threshold 0.06. Yellow outlines tumor, red is the 
segmentation results by the algorithm.  

 

Test case #2 and test case #3 had similar results as test case #1, with FP and FN 

values of less than 18% and as low as 5%. The reason is the same as in the previous test case, 

the tumor densities of these cases are very different to the densities of the healthy tissues 

surrounding the tumor so adding color information to the image and then thresholding these 

values in three channels improved the segmentation results.   
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(a) Region Selection (b) Seed placement 

  

(c) Test Case #3 Slice #60 (d) Test Case #3 Slice #73 

  

(e) Test Case #3 Slice #76 (f) Test Case #3 Slice #79 

Figure 35. Test Case #3 Threshold 45%. The seed is placed on only part of 
the tumor and the algorithm selects both regions.  
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One of the strengths of this algorithm is that it can select pixels even if the tumor is 

divided as was the case of data set #3, as shown in Figure 35. There is only one region 

selected as the region of interest, shown in Figure 35(a), and only one seed placed on the 

region Figure 35(b). In the first slices, Figure 35(c), only one of the tumors is selected. The 

search region grows as the algorithm progresses, as shown in Figure 35(d), and in a few 

slices the algorithm segments both regions, Figure 35(e)-(f).  

 

 

Figure 36. Test Case #5. The tumor edges have similar densities to the 
healthy tissues surrounding the tumors.   

 

Test cases #4-#5, with category B, had higher FP and FN rates, with FP rates ranging 

from 40% to 54%. The FN rates ranged from 22% to 33%. These rates are considerably 

higher than the rates of the tumors from category A, because the tumor tissue densities in 

these cases are similar to the surrounding tissues. In addition, the edges between the tumor 

and the healthy tissues are similar. In some test cases the densities inside the tumor vary as 

shown in Figure 36. Adding color information to the image when the tumor and healthy 

Tumor 
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densities are similar, as shown in Figure 37, creates more noise and the thresholding 

algorithm does not perform as well. The algorithm does not classify a lot of tumor pixels that 

are darker than the average selected area as shown in Figure 37(b).  The algorithm leaked and 

moved away from the tumor picking pixels that are part of the walls because they have 

similar densities as the original selected region.  

 

  

(a) Test Case #5 Slice #18 (b) Test Case #5 Slice #32 

  

(c) Test Case #5 Slice #41 (d) Test Case #5 Slice #48 

Figure 37. Test case #5 threshold 0.2. Yellow outlines the approximate tumor, 
red is the actual segmentation by the algorithm. 

 



63 

 

Test case #6 of category B had better FP and FN rates than the other category B 

cases. The best results showed a FP rate of 18% and a FN rate of 30%. This data set has 

calcification on the tumor, which means there is high contrast between the tumor edges and 

the surrounding pixels, and therefore the algorithm is capable of differentiating what is a 

tumor pixel and what is a healthy pixel more easily than with the other cases, as shown in 

Figure 38.  

 

  

(a) Test Case #6 Slice #12 (b) Test Case #6 Slice #24 

Figure 38. Test Case #6 Threshold 45%. Yellow outlines the approximate 
tumor, red is the actual segmentation by the algorithm. 

 
 

Test cases #7 and #8 show FP values that go from 6% to 16% and FN from 38% to 

67%. These two cases are similar to case #6 as the tumor in each case is calcified. Calcified 

tumors usually have a different density than the surrounding tissues and therefore if the right 

densities are used the algorithm is capable of containing the tumor. However, inside the 
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tumor the tissue densities may vary considerably, from calcified white colors to dark color, 

and therefore some of the pixels are not classified as being part of the tumor, resulting in high 

FN values. The results for test case #7 are shown in Figure 39. 

 

  

(a) Test Case #7 Slice #28 (b) Test Case #7 Slice $34 

Figure 39. Test Case #7 Threshold 40%. Yellow outlines the approximate 
tumor, red is the actual segmentation by the algorithm. 

 

Test cases #9 and test case #10 are not calcified, the densities of the tumor are similar 

to the densities surrounding the tumor. However, the tumor has a significant tissue density 

variation within. The results of these test cases are similar to those of test cases #4 and #5. 

With a FP ranging from 29% to 37% and FN from 20% to 43%. FN yielded better results, 

which corresponds to the fact that FP values are also high, if more pixels in general were 

selected then more tumor pixels were a also selected. These results are shown in Figure 40. 
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(a) Test Case #10 Slice #26 (b) Test Case #10 Slice # 33 

Figure 40. Test Case #10 Threshold 28%. Yellow outlines the approximate 
tumor, red is the actual segmentation by the algorithm. 

 

5.4.1 Summary of results 

The results of the segmentation by adding color information and thresholding the 

colors are varied. The best results were from tumors with category A. In these cases the 

tumors densities and the healthy tissues densities were very different as presented in test 

cases #1-#3. When color is added to these cases and thresholding is done in the RGB channel 

the FP and FN rates are low, and most of the tumor is selected while most of the healthy 

tissue is not selected. Colorizing the image prior to segmentation removes unnecessary 

tissues such as bone and skin which allow for a simple thresholding to achieve good results.  

Calcified tumors either of category B or C yielded better results than non-calcified 

tumors of category B and C like in test cases #6 and #7. This is due to the fact that calcified 

tumors also have a high contrast between the edges of the tumors and the surrounding tissues 

and the algorithm is successful at ignoring the healthy pixels yielding low FP, however inside 
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the tumors the tissue densities varied and the algorithm had problems selecting all the pixels 

which yielded high FN rates.  

Tumors that had fuzzy edges and had high variations in their density yielded high FP 

and FN rates. This is because adding color information to the data and then performing a 

simple threshold was not enough to select tumor pixels. The colors are too close between the 

healthy tissues and the tumor tissues and relying heavily on tissue density differences is not 

enough to segment the tumor. 

5.4.2 Sensitivity 

This section describes the sensitivity of the segmentation results when segmentation 

parameters are changed. The three parameters that can be changed in the segmentation 

process are the thresholding, the HU maximum value and the HU minimum value. It was 

observed that different combinations of these parameters for the same test case would yield 

different results.  These results are shown in Table 5.  

Table 5. Standard deviation results for each of the parameters and the  
for each of the test runs.  

SD 
threshold 

SD HU 
Max 

SD HU 
Min SD FP SD FN 

1 0.063008 156.7667 121.3808 5.460259 6.105034 

2 0.072595 152.59 84.50266 3.295515 2.670681 

3 0.135757 33.36465 127.7705 11.79481 5.508325 

4 0.064395 4.262237 16.13278 28.11176 13.96728 

5 0.069065 197.7756 65.48893 18.7628 17.60741 

6 0.110529 43.14163 345.4597 9.041133 12.7926 

7 0.12227 89.64207 46.7258 2.3456 10.88754 

8 0.088204 42.02737 40.52777 40.37704 12.18777 

9 0.121326 80.57171 42.22914 23.74985 8.883675 

10 0.076616 113.9924 3.250641 17.92407 5.429446 
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Figure 41. Standard deviation for each test case over the different test runs.  
 

The sensitivity of the method was measured by calculating the standard deviation of 

each of the segmentation parameters and the standard deviation of FP and FN in the test runs, 

these results are shown in Figure 41 and Table 5. The range of the standard deviation for 

thresholding is between 0-1, for the HU values the range can be of 3000.  

Test cases of category A are not very sensitive, the HU maximum and HU minimum 

show large standard deviations but the FP and FN standard deviations are very small they 

range from approximately 3% to approximately 12%.  Since the HU values can show large 

standard deviations and yet the segmentation results show small standard deviations it seems 

that for test cases of Category A variations in the segmentation parameters do not affect the 

segmentation results.  

Category B test cases show larger FP and FN standard deviations than category A. In 

test case #4 the standard deviation of HU maximum and HU minimum is lower, 4% and 16% 



68 

 

respectively than the standard deviations for FP and FN which are 28% and 14% 

respectively.  Category B test cases are more sensitive to changes in the parameters than 

Category A. Category C test cases show the most erratic deviations, some test cases such as 

test case #7 show a FP and FN deviation of 2% and 11%  than test case #8 which shows the 

highest standard deviation for FP of 40%.  Changes in the segmentation parameters for test 

cases of Category B and Category C affect heavily the segmentation results because 

Category B and Category C tumor cases have a higher variation in tissue density within the 

tumor and densities between the tumor tissue and the surrounding tissues are closer, therefore 

these cases are very dependent on the HU values, and even small variations of HU values 

changes which tissues are selected and the segmentation results.  

5.5 Grayscale segmentation 

In this section the results of the grayscale segmentation algorithm are discussed. 

Several runs of test cases #1, #5, #6, and #7 were done using a grayscale thresholding 

segmentation algorithm. The test cases ranged from category A to category C. 

To assess the effects of color pre-processing  prior to segmentation, selected test cases 

were segmented w the original HU values using the thresholding method discussed in 

Chapter 3.3.   

5.5.1 Algorithm 

The initial region selected by the user determines the average HU value. This average 

was then compared to each pixel in the image and multiplied by the distance over the search 
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region, if the difference was the same or lower than the threshold the pixel was selected as 

part of the tumor.  

5.5.2 Results 

Table 6. Grayscale Accuracy Results. 

# Threshold FP FN 

1 
0.1 52.7817 0.6795 

0.05 21.8807 14.255 
0.08 47.8684 1.0446 

5 
0.06 23.6672 93.077 
0.1 71.8079 50.782 

6 
0.2 283.266 80.716 
0.1 224.641 99.545 

7 
0.1 113.4980 35.228 

0.04 19.2508 92.218 

 

 The basic thresholding method did not perform very well, the summary of the results 

is shown in Table 6. The rates of FP ranged from a minimum of 19% to a high of 284% the 

ranges of FN were from a low of 0.67% to 99%. Only in one case both the FP and FN rates 

were less than 22%, in the rest of the cases one of rates was at least 47%. This means that 

even in the case of low FP or FN rates the algorithm classified a lot of the pixels wrong either 

by selecting too many healthy pixels or ignoring too many tumor pixels. If the algorithm did 

not select tumor pixels then FP was very low while FN was large, and if the algorithm 

selected every pixel then FN was low but FP was large.  

For Test Case #1 which is of category A the results were the best out of all the runs 

and test cases. The best test run on Test Case #2 presented a FP at around 21% and FN at 

around 14%. This is because this dataset has a high contrast between the tumor and the 

healthy tissues and a grayscale thresholding algorithm is able to differentiate between the 

tumor and the rest of the tissues, in this case the thresholding was set to 5%. However for the 
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same test case when the thresholding was increased to 8% the algorithm FP rate increases to 

around 47%. And when the threshold was set to 10% the FN decreased dramatically to .67% 

but FP increased to 52%, in this case FN is very small because every pixel was selected even 

pixels that were not part of the tumor. Even if FN rates are very low the results are not usable 

if many healthy pixels are selected since it will not create an accurate representation of the 

actual tumor. 

  

(a) Test Case #5 Slice #18 (b) Test Case #5 Slice #22 

  

(c) Test Case #5 Slice #39 (d) Test Case #5 Slice # 48 

Figure 42. Segmentation Results for Grayscale algorithm. Yellow outlines the 
approximate tumor, red is the actual segmentation by the algorithm. 
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The images of the best results for Test Case # 5 which is of category B are shown in 

Figure 42. The false positive is 23.67% which may seem like a reasonable result however 

looking at the figure it can be observed that a lot of tumor pixels were not selected which 

resulted in a FN of 93.077%. These results are expected because there is some variation in 

intensities on the tumor and since the algorithm uses grayscale intensity values it can’t select 

different tissues densities without selecting a lot of healthy tissues. It can also be observed 

that even with the small thresholding such as the case in slice # 48, Figure 42(d), the 

algorithm selected a lot of pixels that are not part of the tumor.  

The FP and FN rates of segmenting dataset #6 do not go lower than 80%. The images 

of the results of dataset 6 with a thresholding of 10% are shown in Figure 43. The algorithm 

is not capable of selecting the calcified pixels and soon the segmentation classifies healthy 

pixels as tumor pixels and grows to select the whole image as a tumor except for the calcified 

tumor, as shown in Figure 43(d). Resulting in a FP of 224% and a FN of 99%. Even if the 

algorithm selected most of the pixels it was incapable of selecting the actual tumor pixels 

when the tumor was calcified. The results of an increased thresholding of 20% only improve 

the FN by lowering it to 80% but a lot more pixels that are not part of the tumor are also 

selected and FP goes up to 283%. 
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(a) Test Case #6 Slice #12 (b) Test Case #6 Slice #15 

  

(c) Test Case #6 Slice #20 (d) Test Case #6 Slice #24 

Figure 43. Grayscale Segmentation Results Case 6. Yellow outlines the 
approximate tumor, red is the actual segmentation by the algorithm.  

  

Test Case #7 best results were a FP of 19% and a FN of 92%, these results can be 

observed in Figure 44. The FP rate is low because the algorithm does not select many of the 

pixels as shown in Figure 44(a), (b), and (c). The algorithm selects only one type of tissue 
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density and ignores the calcified tumor, or the pieces of tumor with different densities. As 

shown in Figure 44(c) the segmentation starts to grow and by the last slice Figure 44(d) the 

whole image is selected, except for the white pixels that in this case represent the actual 

tumor. The thresholding technique creates a region leak outside the tumor of densities similar 

in color with the region selected on the first slice but that unfortunately are not part of the 

actual calcified tumor. 

  

(a) Test Case #7 Slice #26 (b) Test Case #7 Slice #33 

  

(c) Test Case #7 Slice #42 (d) Test Case #7 Slice #48 

Figure 44. Test case #7. Yellow outlines the approximate tumor, red is the 
actual segmentation by the algorithm. 
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5.5.3 Limitations of Grayscale Thresholding 

As the literature review of chapter 2 described and this section confirmed, basic 

thresholding does not yield acceptable segmentation results. If the tumor is density is very 

different than the healthy tissue density then this method produces adequate results as shown 

in test case #1, however if the tumor densities are similar to healthy tissues densities as in the 

case of test case #5, or if the tumor densities are varied as in test case #6 and test case #7 

basic thresholding is not capable of producing results less than 90% in either FP or FN rates. 

In the following section the grayscale and color methods will be compared and it will be 

shown how adding color to the DICOM file and using the same thresholding technique but 

with information in the RGB channels yields much better results, even with category C 

tumors. 

5.6 Comparison to other segmentation methods 

While the results of the color segmentation are not as accurate as some other 

elaborate segmentation algorithms the segmentation algorithm implemented here was a basic 

thresholding technique that is not usually used for complex cases, comparing the 

segmentation of basic thresholding between the color and grayscale cases the color 

algorithms yielded much better results, as shown in Table 7 and Figure 45Figure 46. In each 

of the test cases the color algorithm yielded better results, especially in difficult cases. Test 

case #1 that corresponds to category A yielded the closest results between the two algorithms 

which is expected since in this case the tumor densities are very different to healthy densities 

and therefore simple thresholding can segment the tumor.  
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Figure 45. False Positive results for three segmentation methods: Grayscale 
(gray), Color (red), Probabilistic (green). 

 

 

Figure 46. False Negative results for three segmentation methods: Grayscale 
(gray), Color (red), Probabilistic (green). 
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Table 7. Comparison between grayscale and segmentation with color pre-processing .  

 
 

Grayscale Color Probabilistic 
Test 

Case# 
Category 

FP FN FP FN FP FN 

1 
A 

21.8807 14.255 11.0837 14.0453 3.1000 1.8000 

5 
B 

23.6672 93.077 40.3981 31.7252 13.1000 19.9000 

6 
B 

224.641 99.545 18.8161 30.1461 9.1000 12.6000 

7 
C 

19.2508 92.218 5.9099 57.6397 25.2000 53.4000 

 

However calcified tumors or tumors with fuzzy edges or different tissue densities 

cannot be segmented accurately by grayscale thresholding methods as shown in test cases #5-

#7 that had at least 90% FN, since most of the tumor pixels were not selected. Just by adding 

color to the image and performing the same thresholding algorithm in three channels the 

results improved as in case #6 from FP of 224% to 18% and false negative of 99% to 30%.    

These results show that adding color to the DICOM file before performing 

segmentation improves the segmentation process.  

A comparison between the color pre-processing and the probabilistic method [10] 

was also made and is shown in Figure 45Figure 46. The probabilistic method yielded better 

FN and FP results. All of the 10 cases yielded mean FN value of less than or equal to 25%. 

And eight out of the 10 cases yielded a mean FP value of less than or equal 25%. The color 

pre-processing method only yielded FP and FN values of less than 25% for half of the test 

runs. For test case #7 the color pre-processing method has around 6% of FP and 58% FN and 

the probabilistic method has a higher FN of 25% and a slightly lower FN of 53%. It is very 

important to highlight that the probabilistic method is a more complex method compared to 

the color thresholding technique used to test the color pre-processing.  
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As expected, the grayscale case produced the worst results, the probabilistic method 

yielded the best results and the color pre-processing method was in the middle. Even though 

the color pre-processing method did not yield the best results the results improved 

substantially the accuracy of the thresholding segmentation method. If the same approach is 

used for the probabilistic method, if color is added as a pre-processing step it could improve 

the accuracy of the current probabilistic method.  

5.7 Timing 

The method developed takes advantage of OpenGL textures to allow for the 

visualization of the segmentation results of the current slice in real time. For the twenty cases 

segmented the total time for the complete segmentation of the whole set was measured and 

then it was divided by the number of slices, the results are shown in Table 8. If segmentation 

is performed in the whole set of slices it takes a few seconds up to one minute if 251 slices 

are being segmented such as test case #6.  Tweaking values on one slice is performed in real 

time, if the preferences selected to that slice want to be applied to the whole set then it takes 

an average of 1/10 of a second per slice to show the results.  

 

 

 

 

 

 

 



78 

 

Table 8. Segmentation Times per Test Case.  

Dataset 
Number of 

Slices Threshold Total Time Time Slice 
1 19 0.06 2.61 0.137368 

1 19 0.05 2.63 0.138421 

2 90 0.38 15.38 0.170889 

2 90 0.45 15.2 0.168889 

3 251 0.25 50.1 0.199602 

3 251 0.1 61.19 0.243785 

4 4 0.25 0.43 0.1075 

4 4 0.2 0.43 0.1075 

5 31 0.11 5.08 0.163871 

5 31 0.2 5.4 0.174194 

6 13 0.45 1.42 0.109231 

6 13 0.47 1.53 0.117692 

7 23 0.1 2.99 0.13 

7 23 0.1 2.9 0.126087 

8 16 0.4 2.02 0.12625 

8 16 0.3 2 0.125 

9 17 0.3 1.83 0.107647 

9 17 0.15 1.64 0.0964706 

10 12 0.36 1.4 0.116667 

10 12 0.28 1.38 0.115 

   Average per slice 0.1391032 

 

5.8 Limitations of the segmentation algorithm using color pre-processing  

While the algorithm shows promising results especially in comparison of grayscale 

thresholding, there are several limitations to the current method. One of them is the 

importance of the user input, the user needs to select a region of interest, then place a seed, 

and in most cases tweak with minimum and maximum colors to get the best segmentation 

results. If the user does not know about the tumor, or selects the wrong initial region or 

places the seed in the correct place the algorithm does not select the appropriate pixels. While 

it is true that in the easy cases the algorithm is capable of detecting the tumor with low FP 
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and FN rates without the need of tweaking with the minimum and maximum colors, the user 

still has to select a region of interest and place a seed.   

Since this method is thresholding on three different channels the method is very 

sensitive to tissue densities. In some cases if the color values are varied even by a little bit the 

results vary a lot.  For example test case #4, using the same threshold of 25% if the color 

minimum is moved from 109 to 112, 3 values and the color maximum is decreases from 55 

to 41, 14 values, the FP changes from 54% to 76% and FN changes from 33% to 11%. 

Because the algorithm is only dependant on the position and on the densities if the wrong 

maximum color and minimum color are chosen then the resulting FN and FP ranges will be 

very high.  

Due to the fact of the high sensitivity of the tissue densities the method also performs 

poorly when the densities within a tumor are varied, selecting only a few pixels of the tumor 

such as in test case #6 and #7, however it does not select a lot of pixels outside the tumor.  In 

a similar fashion when the edges of the tumor are fuzzy such as in cases #9-#10 the algorithm 

picks a lot of pixels that are not part of the tumor. 
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6. CONCLUSIONS 

6.1 Summary of conclusions 

A framework to improve the accuracy of tumor segmentation from medical image 

data was presented. This framework includes an interface for visualization of DICOM data in 

2D and 3D. The framework introduced the idea of colorizing medical image by selecting a 

region of interest, usually the tumor and colorizing the rest of the image with RGB values in 

a linear fashion.  This method also takes advantage of OpenGL textures to allow interactive 

segmentation by having user tweak with the parameters in real time and visualize the results. 

In the past colorization techniques have been implemented to achieve better 

visualization results, such as colorizing black and white movies, however colorization 

methods in medical image data to improve segmentation is a novel concept. To prove the 

concept that colorizing or adding R, G, and B channels, information to an image to improve 

segmentation a basic thresholding technique was implemented in grayscale and in color. The 

method was very similar; the only difference was that instead of calculating the difference 

between the original HU values for the grayscale case, the difference was calculated in RGB, 

in three channels. The new method performed a lot better than the grayscale method in all the 

cases, but especially in difficult cases tumors with calcification or tumors with different 

densities. While the grayscale method had FN values of 90%, the color case had FN values 

up to 57%.  10 out of the 20 test cases gave false positives of 25% or less, and 10 out of the 

20 test runs gave false negatives of 25% or less. This new method promises a lot of 

possibilities, however future work has to be done on the proposed method.    
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It is important to note that at this point human input is fundamental to this method and 

segmentation methods in general. The segmentation algorithms developed to this day are not 

completely accurate and when the results are helping to determine surgical planning there is 

no room for errors.  

6.2 Future work 

Future work on this framework can be divided into four ways: (a) adding different 

and more complex segmentation algorithms using color information; (b) trying different 

color pre-processing methods (c) using GPU and shaders to increase the speed of the results; 

(d) different ways to move the seed point; (e) isolate the sources of error; (g) improve the 

user interface. 

Taking into account that adding color to the basic grayscale thresholding technique 

improved results there is a possibility that adding more complex color segmentation 

algorithms can yield even better results. Many successful algorithms that are used for tumor 

segmentation are only focused on grayscale methods since medical data is obtained only in 

reference to HU values.  If adding color to the images improves the basic method other 

methods can also be improved in this fashion. Probabilistic segmentation methods, fuzzy 

logic, and region grow can be methods to be tested using color pre-processing techniques and 

then segmentation. These new methods may decrease the need of user input. 

A simple color pre-processing method that added RGB information from red to blue 

in a linear fashion was implemented, however other methods can also be tested to see if they 

improved segmentation results. Adding more colors instead of just RGB or even changing 
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color spaces for example using HSI instead of RGB may yield different results that could 

make the framework more robust. 

The method proposed in this work uses textures to visualize the results to be tweaked 

in real time. Using shaders offers another possibility instead of generating textures every time 

a parameter is changed, and perhaps shaders will improve the speed of the method. While the 

method is already fast improving the speed allows for more complicated methods to be 

implemented without sacrificing the speed of the framework.  

The method only explores one way to move the seed point which is by placing the 

seed on the center of the previous segmented slice. Other ways to move the seed point may 

yield better results and should be explored in future work.  

Several parameters are used to calculate the segmentation region and it is not clear 

which parameters have the most influence on the results, a study needs to be developed to 

isolate the sources of error in the method and segmentation in general.  

The user interface right now has not been tested and has only been used by the 

developers. Testing should be performed to improve the user experience and make the 

application easier to use.  

 

 

 

 



83 

 

ACKNOWLEDGMENTS 

I would first like to acknowledge my parents and my brother. Also my extended 

family which includes my grandparents, uncles, cousins and my old friends: “the band”, the 

“pecados”, and the fantastic four. You always believed in me and helped me to get into a 

better university even if it meant being away from all of you, and you motivated me to take 

advantage of the great opportunity. 

I also want to thank Eliot Winer because he gave me the opportunity to do a masters. 

He was patient with my lack of programming skills and at the same time pushed me enough 

to try new things and learn more. 

To Eric Foo because he was there day through day helping me with concepts, code, 

and the revision of this thesis.   

Ken Kopecky because when I asked if I should do A or B he said C, which was very 

complicated at first but resulted in a big important part of my research. Also because when I 

see his code I think pretty and it pushes me to improve my coding skills. 

To the watch research group especially Vijay K, Brandon N, Catherine P, Andrew k 

because they helped me with random stuff from makefile files to Socketing. 

And to all my friends, especially Curt Putney, Grego Worhland, Jason Morgan, Len 

Martinez, Al Cosme, and Nick Johnston because they have helped a lot in the last few 

months with things like posters, to grammar and spelling.  



84 

 

REFERENCES 

 

[1] Gonzalez, Rafael C., and Richard E. Woods. Digital Image Processing. New 

York: Addison-Wesley, 2008.  

[2] Bankman, Isaac. Handbook of Medical Imaging: Processing and Analysis. 

California: Academic Press, 2000. 

[3]  Imaginis: Brief History of CT.  13 Sep. 2007. Imaginis. 22 Oct. 2008. 

<http://www.imaginis.com/ct-scan/history.asp> 

[4] Hornak, Joseph. The Basics of MRI. 22 Oct. 2008. 

<http://www.cis.rit.edu/htbooks/mri/inside.htm>  

[5] Nema. Digital Imaging and Communications in Medicine. 22 Oct. 2008 

<http://medical.nema.org/> 

[6] Pham, Dzung.L., Chenyang Y. Xu, and Jerry L. Prince. “A Survey of Current 

Methods in Medical Image Segmentation.” Medical Image Analysis 2.1 (1998): 1-36. 

[7] Ayres, F.J, et al.  “Estimation of the Tissue Composition of the Tumor Mass in 

Neuroblastoma Using Segmented CT Images.” Medical & Biological Engineering and 

Computing 42.3 (2004): 266-77. 

[8] Intuitive Surgical: da Vinci Surgical System. 22 Oct. 2009. 

<http://www.intuitivesurgical.com/products/davinci_surgicalsystem/index.aspx> 

[9] Marescaux, Jaques., et al. “Transcontinental Robot-Assisted Remote Telesurgery: 

Feasibility and Potential Applications.” Annals of Surgery 245.4 (2002): 487-92. 



85 

 

[10] Foo, Eric. “A Framework for Segmentation and Interactive Immersive 

Visualization of Medical Image Data.” Diss. Iowa State University, 2008.  

[11] Pham, Dzung L., Chenyang Xu, and Jerry L. Prince. “Current Methods in 

Medical Image Segmentation.” Annual Review of Biomedical Engineering 2 (2000): 315-

337. 

[12] Clarke, L.P. et al. “MRI Segmentation: Methods and Applications.” Magnetic 

Resonance Imaging 13.3 (1995): 343-68.   

[13] Hadwiger, Marcus, et al. State of the Art Report 2004 on GPU Based 

Segmentation. Vienna, Austria: VRVis Research Center, 2004.  

[14] Fan, Jianping, et al. “Automatic Image Segmentation by Integrating Color-Edge 

Extraction and Seeded Region Growing.” IEEE Transactions on Image Processing 10 (2001): 

1454-66. 

[15] Rajapakse, Jagath C., et al. “Statistical Approach Segmentation Single-Channel 

Cerebral MR Images.” IEEE Transactions on Medical Imaging 16 (1997): 176-86. 

[16] Sezgin, Methmet, and Bulent Sankur. “Survey Over Image Thresholding 

Techniques and Quantitative Performance Evaluation.” Jounral of Electronic Imaging 13.1 

(2004): 146-65. 

[17] Freixenet, F., et al. “Yet Another Survey on Image Segmentation: Region and 

Boundary Information Integration.” Lecture Notes In Computer Science: Proceedings of the 

7th European Conference on Computer Vision-Part III, Denmark, 28-31 May 2002. Ed. A 

Hayden. Berlin: Springer, 2002. 408-422. 

[18] Hojjatoleslami, S.A., and J. Kittler. “Region Growing: A New Approach.” IEEE 

Transactions on Image Processing 7 (1998): 1079-84.  



86 

 

[19] Pohle, Regina, and Klaus, Toennies. “Segmentation of Medical Images Using 

Adaptive Region Growing.” SPIE Medical Imaging 4322 (2001):  1337-46. 

[20] Berkhin, P. “Survey in Clustering Data Mining Techniques.” Grouping 

Multidimensional Data: Recent Advances in Clustering. Ed. Jacob Kogan. Berlin: Springer, 

2006. 25-71. 

[21] Zhang, Dao-Qiang, and Song-Can Chen. “A Novel Kernelized Fuzzy C-means 

Algorithm with Application in Medical Image Segmentation.” Artificial Intelligence in 

Medicine 32.1 (2004): 37-50.   

[22] Held, Karsten, et al. “Markov Random Field Segmentation of Brain MRI 

Images.”  IEEE Transactions on Medical Imaging 16 (1997): 878-886. 

[23] Zhang, Yongye, et al. “Segmentation of Brain MR Images through a Hidden 

Markov Random Field Model and the Expectation-maximization Algorithm.” IEEE 

Transactions on Medical Imaging 20 (2001): 45-57. 

[24] Vincken, Koen. “Probabilistic Multiscale Image Segmentation. “ IEEE 

Transactions on Pattern Analysis and Machine Intelligence 19 (1997): 109-120.   

[25] Xu, Chenyang, et al. “Image Segmentation Using Deformable Models.” 

Handbook of Medical Imaging: Medical Image Processing and Analysis. Ed. Jacob Beutel. 

Bellingham: SPIE Press, 2000. 129-74. 

 [26] Kaus, Michael R., et al. “Automated Segmentation of the Left Ventricle in 

Cardiac MRI.” Medical Image Analysis 8.3 (2003): 245-54. 

[27] McInerney, Tim, and Demetri Terzopoulos. “Deformable Models in Medical 

Image Analysis: a Survey.” Medical Image Analysis 1.2 (1996): 91-108.  



87 

 

[28] Reddick, Wilburn E., et al. “Automated Segmentation and Classification of 

Multispectral Magnetic Resonance Images of Brain Using Artificial Neural Networks.” IEE 

Transactions on Medical Imaging 16 (1997): 911-18. 

[29] Huang, Yu-Len, and Dar-Ren Chen. “Watershed Segmentation for Breast Tumor 

in 2-D Sonography.” Ultrasound in Medicine & Biology 30.5 (2004): 625-32.   

[30] Egmont-Patersen, M., D. de Ridder, and H. Handels. “Image Processing with 

Neural Networks – a Review.”  Pattern Recognition 35 (2002): 2279-301. 

[31] Saha, Punam K, Jayaram K . Udupa, and Dewey Odhner. “Scale-Based Fuzzy 

Connected Image Segmentation: Theory, Algorithms, and Validation.” Computer Vision and 

Image Understanding 77 (2000): 145-174.   

[32] Udupa, Jayram K., and Supun Samarasekera. “Fuzzy Connectedness and Object 

Definition: Theory, Algorithms, and Applications in Image Segmentation.”  Graphical 

Models and Image Processing 58 (1996): 246-61. 

[33] Moonis, Gul, et al. “Estimation of Tumor Volume with Fuzzy-Connectedness 

Segmentation of MR Images.” American Journal of Neuroradiology 23 (2002): 356-63. 

[34] Lorenzo-Valdés, M., et al. “Atlas-Based Segmentation and Tracking of 3D 

Cardiac MR Images Using Non-rigid Registration.”  Medical Image Computing and 

Computer-Assisted Intervention-MICCAI 2002, 5th International Conference Proceedings, 

Tokyo, 25-28 September 2002. Ed. Takeyoshi Dohi. Berlin: Springer. 642-50.  

[35] Gibou, Frédéric, and Ronald Fedkiw. A Fast Hybrid k-Means Level Set 

Algorithm for Segmentation. California: Standford University Computer Science 

Department, 2002. 

 



88 

 

 [36] Atkins, M. Stella, and Blair T. Mackiewich. “Fully Automatic Segmentation of 

the Brain in MRI.” IEEE Transactions on Medical Imaging 17 (1998): 98-107. 

[37] Cheng, H.D., et al. “Color Image Segmentation: Advances and Prospects.” 

Pattern Recognition 34 (2001): 2259-81. 

[38] Levin, Anat, Dani Lischinski, and Yair Weiss. “Colorization Using 

Optimization.” Proceedings of the 2004 SIGGRAPH Conference. Ed. John C.Hart. New 

York: ACM, 2004. 689-94. 

[39] Welsh, Tomihisa, Michael Ashikhim, and Klaus Mueller. “Transferring Color to 

Greyscale Images.”  International Conference on Computer Graphics and Interactive 

Techniques: Proceedings of the 29th Annual Conference on Computer Graphics and 

Interactive Techniques, San Antonio, Texas, 23-26 July 2002. New York: ACM, 2002. 277-

80.  

[40] Sapiro, Guillermo. “Inpainting the Colors.”  IEEE International Conference on 

Image Processing, 2005. 2005. 698-701. 

 [41] Pfister, Hanspeter, et al. “The Transfer Function Bake-off.” IEEE Computer 

Graphics and Applications 21 (2001): 16-22. 

[42] He, Taosong, et al. “Generation of Transfer Functions with Stochastic Search 

Techniques.” IEEE Visualization: Proceedings of the 7th Conference on Visualization ’96, 

San Francisco, California, 28-29 October 1996. Ed. Roni Yagel. CA: IEEE Computer 

Society, 1996.  227-34. 

[43] Yatziv, Liron, and Guillermo Sapiro. “Fast Image and Video Colorization Using 

Chrominance Blending.” IEEE Transactions on Image Processing 15 (2006): 1120-29. 



89 

 

[44] Blasi, Di, and Reforgiatio Recupero. “Fast Colorization of Gray Images.” 

Proceedings Eurographics Italian Chapter, 2003.  2003. 

 [45] Chen, Tongbo, et al. “Grayscale Image Matting and Colorization.” Proceedings 

of Asian Conference on Computer Vision, Korea, 2004. 2004. 1165-69. 

[46] Horiuchi, Takahiko, and Sayaka Hirano. “Colorization Algorithm for Grayscale 

Image by Propagating Seed Pixels.” International Conference on Image Processing, 2003. 

2003. 457-60.  

[47] Tzeng, Fan-Yin, Eric B. Lum, and Kwan-Liu Ma. “A Novel Interface for 

Higher-Dimensional Classification of Volume Data.” Proceedings of the 14th IEEE 

Visualization, 22-24 October 2003. Washington, DC: IEEE Computer Society, 2003. 505-12. 

[48] Silverstein, Jonathan C., Nigel M. Parsad, and Victor Tsirline. “Automatic 

Perceptual Color Map Generation for Realistic Volume Visualization.”  Journal of 

Biomedical Informatics 41 (2008): 927-35. 

[49]Pelizzari, Charles A., et al. “Volumetric Visualization of Anatomy for Treatment 

Planning.” International Journal of Radiation Oncology, Biology and Physics 34.1 (1996): 

205-11. 

[50] Li, C.H., and P.C. Yuen. “Regularized Color Clustering in Medical Image 

Database.” IEEE Transactions on Medical Imaging 19 (2000): 1150-55. 

[51]Lucchese, L., and S.K. Mitra. “Color Image Segmentation: A State-of-the-Art 

Survey.”  Proceedings Indian National Science Academy, India. 2001. 207-21. 

[52] Skarbek, Wladyslaw, and Andreas Koschan. “Colour Image Segmentation – A 

Survey - .”  Berlin: Institute for Technical Informatics, University of Berlin, 1994.   



90 

 

[53] Lin, Xueyin, and Shaoyun Chen. “Color Image Segmentation Using Modified 

HSI System for Road Following.” IEEE International Conference on Robotics and 

Automation, Proceedings, California, 9-11 April 1991. 1991. 1996-2003. 

[54] Cheng, H.D., X.H. Jiang, and Jingli Wang. “Color Image Segmentation Based on 

Homogram Thresholding and Region Merging.” Pattern Recognition 35 (2002): 373-93. 

[55] Verikas, A., K. Malmqvist, and L. Bergman. “Colour Image Segmentation by 

Modular Neural Network.”  Pattern Recognition Letters 18 (1997): 173-85. 

[56] Cremers, Daniel, Mikael Rousson, and Rachid Deriche. “A Review of Statistical 

Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape.” 

International Journal of Computer Vision. 72 (2006): 195-215. 

[57] Volview. 8 Nov. 2008 <http://www.kitware.com/products/volview.html> 

[58] OsiriX Imaging Software. 9 Nov. 2008 < http://www.osirix-viewer.com/> 

  [59] “Morphology Fundamentals: Dilation and Erosion.” The MathWorks. 9 Nov. 

2008 <http://www.mathworks.com/access/helpdesk/help/toolbox/images/index.html?/ 

access/helpdesk/help/toolbox/images/f18-12508.html>  

[60] DCMTK – DICOM Toolkit. 9 Nov. 2008 <http://dicom.offis.de/dcmtk> 

[61] OpenGL. 9 Nov. 2008 <http://www.opengl.org/> 

[62] The Visualization Toolkit (VTK). 9 Nov. 2008 <http://www.vtk.org/> 

[63] Corona. 9 Nov. 2008 <http://corona.sourceforge.net/> 

[64] VR Juggler. 9 Nov. 2008 <http://www.vrjuggler.org/> 

 


	2008
	An interactive color pre-processing method to improve tumor segmentation in digital medical images
	Marisol Martinez Escobar
	Recommended Citation


	Microsoft Word - MME_Thesis_All_04

