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Abstract 
 
Optimization has its foundations dating back to the days of Newton, Lagrange, Cauchy, and 

Leibnitz when differential calculus methods were developed to minimize and maximize 

analytical functions. Substantial progress in optimization became more prominent in the mid 

to late twentieth century when digital computers showed promise in offloading analytical 

problem solving into numerical methods through computer code for faster evaluations of 

designs.  

 

Deterministic optimization methods such as steepest descent, conjugate gradient and 

Newton’s methods are known for their robustness in iteratively reducing the objective 

function value for minimization problems. However, they are primarily suitable for solving 

single objective function problems that are unimodal and continuous. With increased 

sophistication in engineering problems, multimodal and multi-objective problems have 

become more prevalent drastically reducing the effectiveness of deterministic methods. This 

led to the development of heuristic methods, particularly evolutionary methods such as 

Genetic Algorithms, Ant Colony Optimization, and Particle Swarm Optimization. These 

methods have multiple design points exploring the design space over iterations as opposed to 

a single design point as in the case of deterministic methods. Evolutionary methods come 

with the capability to solve multimodal discontinuous design spaces with increased reliability 

and efficiency, but at considerable computational expense. 
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Particle Swarm Optimization (PSO) is one of the very recent population based heuristic 

methods similar in characteristics to other evolutionary search methods. In a basic PSO, an 

initial randomly generated population swarm propagates towards the global optimum over a 

series of iterations. The direction of the swarm movement in the design space is based on an 

individual particle’s best position in its history trail (pBest) through exploration, and the best 

particle in the entire swarm (gBest) through exploitation. This information is used to generate 

a velocity vector indicating a search direction towards a promising location in the design 

space. The primary advantage of this method is its ease in implementation with a very small 

number of user-defined parameters. Although a relatively young method as it was developed 

in 1995, it has been added to the list of global search methods due to its reliability in finding 

the global optimum for a variety of problems.  

 

There are a few disadvantages of the method that suppress its efficiency and accuracy and is 

the premise for the research presented in this thesis. Only two candidates - pBest and gBest 

dictate the search direction for each swarm member. Much more information is available if 

characteristics of additional swarm members could be utilized. Additionally, poor move sets 

specified by pBest and gBest in the initial stages of optimization can trap the swarm in a local 

minimum or cause slow convergence. To address this issue, a new approach to PSO using 

digital pheromones to coordinate swarms within n-dimensional design space has been 

developed. Digital pheromones are mathematical representations of real pheromones in that 

they dissipate in time and do not move in addition to the fact that a stronger pheromone field 

indicates a greater possibility for finding an optimum in the design space. The methods 

developed using digital pheromones with PSO have substantially improved the accuracy, 



xiii 
 

  

efficiency, and reliability characteristics when compared to a basic PSO. The implementation 

of this concept within a PSO is the first component in the development section of this thesis, 

where the challenges and method development are outlined. Statistical hypothesis testing is 

additionally performed to evaluate the efficacy of the developed method. 

 

The second component of the research explores the possibility of multiple swarms searching 

the design space in a parallel computing environment. Two methods have been developed: 1) 

a synchronous coarse grain approach and 2) an asynchronous shared pheromone approach. 

These schemes leverage the computational capabilities offered by present day processor and 

network technologies in increasing the efficiency of particle swarms in reaching the global 

optimum in multimodal design spaces.  

 

The third component of the research is to investigate hardware acceleration of PSO with 

digital pheromones using commodity graphics processing units (GPU). Methods have been 

developed to offload repetitive computations on to GPUs where they are computed in parallel 

and logical operations are carried out on the CPU that hosts the GPU. This computational 

outsourcing dramatically reduced the overall solution times without any significant 

compromise in the solution accuracy and reliability. 

 

Realistic optimization problems are characterized by numerous inequality and equality 

constraints. To test the viability of digital pheromones within a PSO for solving constrained 

optimization problems, a sequential unconstrained minimization technique – Augmented 

Lagrange Multiplier (ALM) method has been implemented. This final research component 
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was to examine the usability of digital pheromones within PSO to solve constrained 

optimization problems. 

 

The performance of each developed method was evaluated through a series of relevant multi-

dimensional multimodal test problems, and the results from digital pheromone PSO were 

benchmarked against basic PSO implementations. Unconstrained problems were tested on 

serial, distributed parallel computing environments and workstations with GPUs. Constrained 

optimization problems were tested on serial computing environments and results are 

presented. The testing of the developed methods showed promising results and provided 

encouraging motivation for future development in addressing a wide variety of problems 

(discrete optimization problems, multi-objective problems, etc). 
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1 Introduction 
 
In a most generic sense, optimization is the process of attaining a best output from a 

given set of inputs. Design engineers typically have to take into account many 

technological and managerial decisions during a design process. The eventual purpose of 

such decisions is to either minimize costs or maximize benefits or both. Design 

optimization provides necessary tools required to achieve these targets.  

 

Engineering problems, when formulated appropriately can extensively be solved using 

design optimization techniques. Some such typical applications, but not limited to, are 

listed below: 

1. Aircraft design 

2. Design of structures such as frames, foundations, bridges, etc for minimum costs 

3. Optimal design of mechanical components such as linkages, gears and machine 

tools 

4. Design of material handling equipment such as conveyors, trucks and cranes for 

minimum costs 

5. Traveling salesman problems 

6. Optimal production planning, control, and scheduling 

7. Optimal design of control systems 

1.1  Formulation of Optimization Problems 
 
Typically, a design optimization problem consists of an objective to be achieved, through 

satisfying certain conditions. This objective is termed the objective function, cost 
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function, or fitness value. The conditions that need to be satisfied while solving the 

problem are called the design constraints. A general optimization problem can 

mathematically be stated as follows: 

 

A general optimization problem consists of one or multiple objectives to be minimized 

represented by F1(X, Y) through Fp(X, Y). X is a vector of independent design variables, 

which are the foundational parameters that all other functions are built upon. Y represents 

a vector of dependent design variables that are linear or non-linear functions of X. 

Inequality constraints are typically denoted by g(X, Y), and equality constraints are 

represented as h(X, Y). The objective function F(X, Y), inequality constraints g(X, Y), 

and equality constraints h(X, Y) can each be linear or non-linear functions depending 

upon the problem to be solved. The side constraints provide lower and upper bounds for 

the design variables. If design vector X is plotted on an n-dimensional Cartesian 

coordinate system with each coordinate axis representing a design variable (X1, X2, X3 … 

Xn), the space occupied by the coordinate system is called the design variable space or 

the design space. An objective function F(X) refers to the location in the design space for 

Minimize: F1(X, Y), F2(X, Y), …, Fp(X, Y) Objective function 

Subject to: gj(X) ≤ 0,  j = 1, m  Inequality constraints 

  hk(X) = 0,  k = 1, l   Equality constraints 

  Xl
i ≤ Xi ≤ Xu

i i = 1, n   Side constraints 

X = [X1, X2, …, Xn], Y = [Y1, Y2, …, Yn] 
X → Independent Design Variables (DVs) 

Y → Dependent Design Variables 
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a specific set of values assigned to the design vector X. Figure 1 represents a simple 

single dimensional objective function with four minimums. 

Figure 1 Simple One dimensional design space 
 

In this design space the design variable X is plotted on the X-axis and the objective 

function is plotted on the Y-axis. Points A, B and D are local minimums and point C is 

the global minimum. Figure 2 represents a two dimensional objective function with one 

minimum. The design variables X1 and X2 are plotted on the coordinate axes and the 

objective function is represented as contours that are obtained for different combinations 

of X1 and X2. 
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Figure 2 Contour plot of a 2D objective function 

 

The smallest oval in the objective function contour represents the optimum and its value 

increases as the size of the oval increases. A design point A (X1, X2) encapsulates the 

design variable information. For a 10 dimensional objective function the design point A 

will have variable values X1, X2, X3, …, X10.  

 

Realistic design problems are characterized by numerous inequality and equality 

constraints. Figure 3 represents a 2D objective function with one linear and three non-

linear inequality constraints. 
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Figure 3 Contour plot of a 2-D objective function with inequality constraints 
 

In figure 3, the smallest oval does not represent the optimum because it violates the 

constraints represented by gj(X) ≤ 0, where j = 1 ... 4. The area enclosed within the 

constraints is the feasible region and a design point outside of the feasible region is 

infeasible. When a design point A (X1, X2) resides on a constraint boundary, the 

constraint is considered “active”. The optimum value for this objective function is shown 

by X* that renders the inequality constraint g4(X) as active. 

 

1.2  Classification of Optimization Problems 
 

Optimization problems are classified into various categories as shown in Figure 4. If the 

objective function and all the constraints are linear functions of the design variables, the 

optimization problem is considered a Linear Programming (LP) problem. If the objective 

X* 
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function and/or the constraints are non-linear functions of the design variables it is 

termed a Non-linear Programming (NLP) problem. 

Figure 4 General classification of optimization problems 
 

A Geometric Programming problem (GP) is one in which the objective function and 

constraints are expressed as posynomials⊗ in X. A Quadratic Programming (QP) problem 

is a non-linear programming problem with a quadratic objective function and linear 

constraints. If some or all of the design variables in the design vector are restricted to take 
                                                 
⊗ A function p(X) is called a posynomial if p can be expressed as the sum of power terms 
each of the form: Cix1

ai1x2
ai1x3

ai1…xn
ai1, where Ci and aij are constants with Ci>0 and xj>0. 

Optimization 
(Mathematical 
programming)

Nature of 
constraints 

Nature of 
equations  

Nature of 
Design 

variables

Constrained 
problems 

Unconstrained 
problems 

Linear 
programming 

problems

Non-linear 
programming 

problems

Integer 
programming 

problems

Real-valued 
programming 

problems

Deterministic 
programming 

problems

Stochastic 
programming 

problems

Number of 
objectives 

Single 
objective 
problems

Multi 
objective 
problems

Geometric 
programming 

problems

Quadratic 
programming 

problems
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on only integer (or discrete) values, the problem is called an integer-programming 

problem. Real-valued programming problems are those where the design variables are 

permitted to take any real value. If the parameters (design variables and/or various pre-

assigned values) are probabilistic, then the problems are considered stochastic (non-

deterministic). Single objective and multi-objective problems are classified based on the 

number of objective functions to be minimized. In addition to these classifications, an 

objective function can be unimodal or multimodal. Unimodal objective functions are 

those that contain a single optimum while multimodal objective functions contain 

multiple optimums. A real design situation more often as a rule than exception, 

encompasses more than one of the above features into the design objective(s).  For 

example, an aircraft wing design could have two objectives (multi-objective problem), 

one being simple linear and the other being highly non-linear, multimodal and multi-

dimensional. Such problems are more difficult to solve than single unimodal objective 

problems. 

 

1.3  Numerical and Evolutionary Methods 
 

Methods to solve design optimization problems in various categories require different 

approaches and techniques [1] [2] [3]. Analytical methods use classical differential 

calculus theory and calculus of variations where the extremes of a function f(x) are 

obtained by finding the values of x that cause the derivatives of f(x) to vanish. These 

methods can be used to find unconstrained maximums and minimums of an objective 

function with several design variables, with the assumption that the design space is 
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continuous and functions are twice differentiable. Some such deterministic optimization 

methods include: 

1) Simplex methods for linear programming problems 

2) 1-D search methods for non-linear problems – exhaustive search, interval halving, 

golden section, Quadratic and Cubic interpolation methods, and Newton’s method. 

3) Unconstrained optimization methods – Random walk, Powell’s method, Steepest 

descent (Cauchy’s) method, Newton’s method, and the Conjugate gradient (Fletcher-

Reeves) method. 

4) Constrained optimization methods – Sequential linear and quadratic programming, 

Penalty function methods, Augmented Lagrange Multiplier method, Method of 

Feasible Directions, Modified Method of Feasible Directions, and the Generalized 

Reduced Gradient Method. 

 

The ubiquitous availability of cheap computational hardware resources made it possible 

to automate much of these design optimization processes thereby paving the way for 

numerical optimization. Through numerical methods, this computational hardware can 

perform number crunching quickly and achieve an optimal combination of design 

variables in a design iteratively. For example, consider a 2D design problem that we wish 

to investigate with 10 different values for each of the design variables. Therefore, a total 

of 100 (10x10) combinations of design variables exist. Let us assume that it would take 

1/10th of a CPU second for a computer to compute the objective function for each 

combination of the design variable. For the 100 combinations, it would take 10 seconds 

of computer time. Realistic design situations where objective functions are composed of 
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hundreds or thousands of design variables will require a substantial amount of 

computational resources. Advances in computational hardware (e.g., processor power) 

allows for increased clock cycles per second and hence faster evaluation of designs. For 

example, a 3.0 GHz processor is capable of performing 3.0 x 106 floating-point 

operations per second. 

 

For years, many numerical methods (i.e. those guaranteeing a reduction in the objective 

function iteratively) were developed to solve different types of optimization problems.  

Most of these problems were single objective and unimodal in nature. For problems 

containing multiple extrema (multimodal), methods were devised to run from a number 

of initial points to determine the global solution. With increased sophistication in process 

and product design, these problems also grew larger and became increasingly multimodal 

and multi-objective in nature. The use of numerical methods alone was no longer 

sufficient, giving way to heuristic methods, particularly evolutionary methods. In an 

evolutionary method, a population of design points is generated and made to traverse and 

explore the design space to find the optimal objective function value (usually a maximum 

or minimum) and its corresponding design parameter values, over a series of iterations, 

while agreeing with the design constraints. Examples of such evolutionary algorithms are 

Genetic Algorithms (GA), Simulated Annealing (SA), Ant Colony Optimization, and 

Particle Swarm Optimization (PSO). These evolutionary methods have some natural 

advantages over traditional deterministic methods:  
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1) They can handle mixed continuous-discrete variables, and discontinuous and non-

convex design spaces. Use of numerical methods can either be computationally very 

expensive or return incorrect values (i.e. get trapped in local minimums). 

2) Evolutionary methods do not require derivative information to attain a solution. 

3) A population of design points is used instead of a single design point to search for the 

optimum. Therefore, there is a higher probability of reaching the global optimum. 

4) Due to random initialization of the population, the chances of getting trapped in local 

minimums are dramatically reduced. 

 

The primary strength of evolutionary methods lie in that population members arrive at a 

global optimum through communication with each other. It can be thought that the 

performance of numerical methods can be equivalent to evolutionary methods when 

executed with multiple initial points searching the design space simultaneously. 

However, numerical methods are not designed to provide communication between 

multiple design points in the design space. Therefore, each design point will be subjected 

to a higher computational intensity (e.g., first and second derivative information) than a 

typical evolutionary algorithm. As such, evolutionary methods have proven themselves 

somewhat more efficient for reaching the global optimum than numerical methods. 

 

The following three sections describe the salient characteristics of the most widely used 

evolutionary methods including their advantages and disadvantages. It is then followed 

by the motivation for the research presented in this thesis. 
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1.4  Genetic Algorithms 
 

Genetic Algorithms (GA) are based on the principles of genetics and natural selection 

inspired from Darwin’s theory of evolution – survival of the fittest. Holland [4] was the 

first to present it systematically and was later explained in the context of biological 

evolution by Rechenberg [5]. Due to its robustness and insensitivity to whether design 

spaces are continuous or discrete, they are one of the most widely used heuristic 

evolutionary optimization methods. They have been in existence for approximately 35 

years and are still an active area of research [6] [7]. Although the implementation could 

be different and problem specific, the genetic search typically consists of three main 

components: (a) selection (reproduction), (b) crossover, and (c) mutation. 

 

A population of design points is used instead of a single design point. The size of the 

population can range anywhere from 2n to 4n and sometimes up to 10n, with n being the 

number of design variables. The design variables are typically represented as binary 

encoded strings corresponding to chromosomes in genetics. For example, a design 

variable vector <x1, x2, x3, x4> = <18, 3, 1, 4> can be represented as a binary string as 

shown in Figure 5.  

 

Figure 5 Binary representation of variables in Genetic Algorithms 
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In general, if a binary number is given by BqBq-1 … B2B1B0 then its equivalent decimal 

representation is given by∑
=

q

i
i

i B
0

2 , where ‘i’ indicates the current position in the binary 

string. Therefore, x1 (= 10010) as shown in Figure 5, is represented as 1x24 + 0x23 +0x22 

+1x21 +0x20, a binary equivalent for the number 18. This flexibility in representing the 

design variables makes GAs naturally suitable for use in both discrete and continuous 

problems. Moreover, they do not require derivative information. The objective function 

value is termed as ‘fitness value’, which is analogous to the role of fitness in natural 

genetics. A new set of strings is produced in each generation (iteration) through selection, 

crossover and mutation from old generation. 

 

In the selection process, the best genes would be retained while copies of the fittest genes 

would replace the weakest genes. Different methods are used to perform the selection 

process, tournament and roulette wheel selection being the most popular. Survival of the 

fittest theory makes highly fit individuals survive and reproduce in each generation. The 

algorithm automatically gets rid of least fit individuals through replacement by children 

from the highly fit individuals [4-8].  

 

For crossover, two individual strings (chromosomes) are selected at random from the 

currently fit design vector. A crossover site is selected at random along the string length, 

and the binary digits are swapped between the two strings following the crossover site. 

Thus, a new string of design points are obtained, which is placed in the new population 

pool. There are various types of crossover implementations, the most common of them 



13 
 

  

being single point crossover, two point crossover, and cut-and-splice crossover methods 

[9-12]. 

 

A mutation process is then followed based on an assigned mutation probability. Mutation 

is an occasional random swapping of binary digits in a design variable from 0 to 1 and 1 

to 0. This procedure intends to prevent any bias in the individuals proceeding toward the 

solution and controls trapped local optimums. When used sparingly with selection and 

crossovers, mutation serves as a safeguard that prevents premature loss of important 

genetic material during the course of the algorithm. Figure 6 represents typical crossover 

and mutation operations. In the figure, the crossover is performed on parents ‘A’ and ‘B’, 

where a portion of the binary string (shown in bold) in ‘A’ is swapped with the binary 

string in ‘B’. Therefore, two parents of the form 11001011 and 11011111 combine to 

form 11001111 after crossover. Mutation is also explained in the figure where a selected 

bit in a string is swapped from 0 to 1 or 1 to 0.  

 

Figure 6 Crossover and Mutation operations in Genetic Algorithms 
 

Crossover – Chromosome bit until crossover point retained 

Mutation – Selected Bits are inverted 

11001011 + 11011111 = 11001111  

11001001  → 10001001 
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With new individuals obtained from each generation through these operations, fitness 

values for each individual are calculated. The algorithm stops with success when an 

appropriate convergence criterion is satisfied. For example, a problem is said to be 

converged if the difference in solution values are within 0.001 for 20 consecutive 

generations. 

 

GAs are primarily designed to handle unconstrained optimization problems that have 

single objective functions. Creating an unconstrained pseudo objective function [1] [2] 

[3], which contains a representation of the original objective function and constraints, is 

used to solve constrained optimization problems. Similar methods [1] [2] [3] can also be 

used to address multi-objective problems. 

 

The advantages of GAs are that they efficiently search the design space and are more 

likely to converge toward global minima when compared to direct methods [2]. Since the 

design variables are typically binary in nature, design spaces with discrete and integer 

design variables are well handled. Just as any other heuristic method, GAs do not require 

derivative information thereby avoiding the requirement for continuous design spaces. 

Additionally, since the method’s parameters do not interfere with the population size, it 

can be easily parallelized to realize gains in performance and efficiency. 

 

GAs have certain disadvantages that make it unsuitable for certain types of problems. For 

example, they show a very fast initial convergence, but improvements in fitness value 

slow as more generations are created. Based on the complexity of some GA 
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implementations, there could be a large number of user-controlled parameters that need 

to be carefully selected. Also, GA implementations are computationally intensive. 

Although mutation can sometimes help, population members getting trapped in local 

minimums are not uncommon. 

 

1.5  Simulated Annealing 
 

Simulated Annealing (SA) is a probabilistic algorithm to locate global optimum in multi-

dimensional design spaces. This method was described by two researchers Kirkpatrick, et 

al [13] in 1983, and Černý [14] in 1985. It is an adaptation of the Metropolis-Hastings 

[15] algorithm, a Monte Carlo method to generate sample states of a thermodynamic 

system. The SA procedure described in this section is adopted from two sources [16] 

[17].  

 

SA is similar to the process of thermal annealing involved in metal forming. Typical 

annealing process involves slow and controlled cooling of a metal to ensure proper 

solidification for a highly ordered crystalline state corresponding to the lowest energy 

state. Rapid cooling potentially causes defects and does not provide preferred material 

properties. In SA, the design space is considered to be the state of a physical system, and 

the objective function is analogous to the internal energy of the system in that state. The 

primary aim is to bring the system from an arbitrary initial state to one with least possible 

energy (i.e. the objective function is to be minimized). One of the advantages of SA lies 

in that entrapment in a local minimum is probabilistically avoided causing it to either stay 
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at the current position or only propagate to a position with lower energy state (i.e., 

minimum). 

 

The algorithm starts from an initial vector X1, iteratively generates improved design 

points X2, X3, …, while moving towards the global minimum. A current design point Xi 

is randomly made to move along each coordinate direction. The values for the new 

coordinates are uniformly distributed around Xi, and are ensured to be within the design 

variable’s lower and upper bounds. A design vector X is accepted or rejected based on a 

metropolis criterion. According to this criterion, a design is accepted if the objective 

function resulting from the new design point Xi+1 is improved (typically less than) over 

the one resulting from the older point, Xi. In such a case, Xi+1 is set to be X. Otherwise, 

the design point is accepted with a metropolis acceptance probability, P, as shown in 

equation (1). 

kT
f

efP
Δ−

=Δ )(  (1) 

Where, Δf  = f(Xi+1) – f(Xi) and k is Boltzmann’s constant1. The value of ‘k’ influences 

convergence characteristics. The acceptance probability function P(e,T) defines the 

probability of making the transition from a current state s to a new state s’ on a time-

varying parameter, temperature (T). One of the requirements of the method is that ‘P’ 

should be non-zero when f(Xi+1) > f(Xi), allowing the system to move to a new state even 

when the energy is higher than the current state. This feature in SA prevents the method 

                                                 
1 Boltzmann’s constant = 1.3806503 x 10-23 m2 kg/s2K 
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from getting trapped in a local minimum – a state worse than global minimum but better 

than its neighbors. 

 

SA starts with a high value for temperature, T0. Design vectors are generated iteratively 

until equilibrium is reached. Then, the temperature is further reduced and a new sequence 

of design vectors is generated. This procedure is continued until a sufficiently low 

temperature is reached, at which stage no further improvement in the objective function 

value can be realized. SA by nature does not handle constraints just as in a GA. Methods 

should be incorporated within an SA to be able to handle inequality or equality 

constraints [1-3]. 

 

The advantage of SA lies in that it is relatively insensitive to the type of design space and 

can deal with arbitrary systems and cost functions. It statistically guarantees finding an 

optimal solution, i.e., it either improves the solution or stays put at the same solution 

from the previous iteration. Just as GA, SA does not need derivative information hence 

making it suitable to search discontinuous design spaces. Finally, SA can be very easily 

parallelized to realize better efficiencies. 

 

There are a few disadvantages that make SA ill suited for certain optimization problem 

types. For example, iterative annealing is very slow and the problem is especially 

apparent with increasing complexity in the objective function. Although the 

characteristics of the design space are typically unknown, SA is computationally 

expensive especially if the design space is smooth or unimodal in nature. Direct methods 
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or other heuristic methods that can take advantage of additional information about the 

design space provide better performance characteristics when compared to SA. 

Additionally, a good cooling schedule is problem specific and is generally difficult to 

define thereby increasing the possibility of premature crystallization (entrapment in a 

local minimum). 

 

1.6  Particle Swarm Optimization 
 

PSO was developed by a psychologist, James Kennedy and an electrical engineer, Russell 

Eberhart in 1995 [18] [19] based on experiments derived from mathematical modeling of 

the flocking behavior of birds. The flocking models were originally developed by a 

biologist named Frank Heppner [20]. Heppner’s model was different from other flocking 

models in that it imparts attraction characteristics to roosting areas. According to this 

model, birds begin by flying around with no set destination and form flocks with the rest 

of the birds. However, when the criteria of ‘desire to roost’ is set higher than ‘desire to 

stay in the flock’ for a bird, it would pull away from the flock and land. This behavior in 

one bird resulted in the remaining birds following until the entire flock had landed. 

 

This concept was improvised by Kennedy and Eberhart to search multi-dimensional 

design spaces. Finding the roost is analogous to finding the global optimum, and the 

process in which a bird finds a roost making the remaining birds to follow the lead 

provides socio-cognitive characteristics in finding the global optimum. In this 

implementation, particles (mathematical models for birds) fly in the design space and 
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propagate towards the best solution. However, there are no rules in this model to avoid 

particles from propagating towards a local solution instead of a global solution. 

Therefore, Kennedy and Eberhart proposed a method to utilize the social and cognitive 

information gained by particles traversing through the design space. The social aspect 

gathers information from the remaining particles (exploitation), while the cognitive 

aspect takes advantage of information from a particle’s own history (exploration). If there 

is too little exploration, particles tend to converge on the first good solution. On the other 

hand, particles will never converge if there is very little exploitation. Therefore, a balance 

of socio-cognitive information is required, which is what Kennedy and Eberhart achieved 

in their formulation for PSO. 

 

PSO is a population based zero-order optimization method that exhibits several 

evolutionary characteristics similar to GAs. These are: 1) initialization with a population 

of random solutions, 2) design space search for an optimum through updating generations 

of design points, and 3) update based on previous generations [21]. In this method, each 

particle in the swarm denotes a location (i.e. design point) in the design space whose 

position is updated iteratively. Therefore, each particle moves from one position to 

another each iteration. A velocity vector, a function that captures the combined effects of 

each swarm member’s exploration and exploitation characteristics, provides the direction 

and the magnitude of this movement. The algorithm iteratively updates the search 

direction of the swarm propagating towards the optimum. Although there were many 

preliminary implementations, equations (2) and (3) are the most popularly used 

definitions for the mathematical simulation of this behavior. 
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Viter+1,i[]= witer ×Viter,i[]+ c1 × rand()× (pBesti[]− Xi[])
+ c2 ∗ rand()× (gBest[]− Xi[])

 (2) 

Xiter+1[]= Xiter[]+Vi+1[] (3) 
witer+1 = witer × λw  (4) 
 

Equation (2) represents the velocity vector update of a basic PSO method in iteration 

‘iter’, for each design variable represented by square braces and for each swarm member, 

i. randp() and randg() are random numbers generated each for pBest and gBest between 0 

and 1. c1 and c2 are user definable confidence parameters. Typically, these are set to 

values of 2.0. ‘pBesti[]’ represents the best position of the ith particle in its history trail, 

and ‘gBest[]’ represents the best particle location in the entire swarm. witer is termed 

“inertia” weight, and is used to control the impact of a particle’s previous velocity on the 

calculation of the current velocity vector. A large value for witer facilitates global 

exploration, which is particularly useful in the initial stages of an optimization. A small 

value allows for more localized searching, which is useful as the swarm moves toward 

the neighborhood of the optimum [22] [23]. These characteristics are attributed to the 

swarm by implementing a decay factor, λw for the inertia weight, as shown in equation 

(4). Equation (3) denotes the updated swarm location in the design space. 

 

One of the primary advantages of PSO is its ease in implementation with a small number 

of user defined parameters. The core of PSO requires very few lines of code when 

compared to GA and SA. PSO has been added to global search methods due to its 

reliability in finding global optimums for a wide range of problems [24] [25]. PSO is a 

population based method and hence can easily be implemented in parallel to gain 
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performance benefits. Moreover, it works with objective function evaluations alone and 

does not need derivative information. Therefore, discontinuities in design spaces can 

easily be handled. 

 

PSO is relatively young compared to other heuristic methods. Although it is intuitive and 

can solve various types of problems, there are a few disadvantages that suppress its 

efficiency and accuracy. At any instance, each particle is influenced by only pBest and 

gBest. This impedes the desired exploratory characteristics in the design space, and is not 

always sufficient to propagate toward the global optimum, especially in multimodal 

problems. Secondly, the method is initial condition dependent. Any poor location 

specified by pBest and gBest in the initial stages can offset the swarm from reaching the 

neighborhood of the optimum or delay convergence. 

 

No single heuristic method is ideal and can guarantee global optimum for all types of 

optimization problems. GA and SA have a history of more than 25 years in development 

and research is still being done to enhance their performance characteristics. Particle 

Swarm Optimization (PSO) on the other hand is a more recent method and has 

tremendous potential for further improvement. The research presented in this thesis 

addresses the drawbacks listed above to realize performance gains and contribute towards 

improving PSO in solution efficiency, accuracy and reliability. The second chapter 

provides a comprehensive background on the past and present developments in PSO. It is 

then followed by various resources that modern computational infrastructure can offer for 

further development of PSO. Finally, the research issues are identified and defined. 
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2 Background 

 

2.1  Particle Swarm Optimization 
 

A significant number of modifications have been made to the basic PSO algorithm for 

realizing performance improvements after it originated in 1995. Natsuki and Iba [26], and 

Hu, et al. [27] have explored the possibilities of performance improvement through 

introducing mutation factors in PSO, similar to the ones used in GAs. Gao et al. have 

obtained improvements in PSO, through the use of a virus operator that propagates partial 

genetic information in the swarm by infection operators for enhanced design space search 

[28]. Ray and Saini [29] developed a method to improve swarm movement within the 

design space through information sharing between individual particle members. They 

have successfully implemented this strategy in solving both constrained and 

unconstrained problems as well. 

 

Additionally, research has been done on utilizing PSO for constraint handling. Venter and 

Sobieski [30] implemented a quadratic exterior penalty function method to solve non-

linear constrained optimization problems. Hu and Eberhart [31] modified the basic PSO 

method so that the swarm is repeatedly initialized until all constraints are satisfied, while 

also forcing pBest and gBest to be feasible in every iteration. Sedlaczek and Eberhard 

[32] implemented the augmented Lagrangian method for solving small, constrained non-

linear optimization problems. Discrete PSO methods have been known to solve 
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constrained optimization problems as well, and Yang et al. have demonstrated it through 

converting by satisfaction problems into discrete optimization problems [33]. 

 

PSO was used and modified for multi-objective problems as well [34] [35]. Some of the 

recent advancements include solving traveling salesman problems using discrete PSO 

methods [36-39]. Penalty function approaches have been used to solve mixed discrete 

non-linear problems using PSO [40]. Other areas include developments in the areas of 

integer programming [41] and continuous variable problems [42]. Parsopoulos and 

Vrahatis [43] demonstrated the use of PSO for solving a wide range of problems 

including multi-objective, mini-max, and integer programming problems. The same 

authors have developed methods to compute all global minimizers of an objective 

function using PSO [44]. Similarly, He, et al. presented methods that tackled mixed 

variable types – integer, discrete and continuous variables [45]. A ‘fly-back’ constraint 

handling mechanism was also introduced in this research to maintain a feasible 

population. A substantial amount of success has been achieved in utilizing PSO for 

applications such as aircraft design [46] [47], topology and shape optimization [48] [49], 

structural optimization [50] [51], wireless network routing problems [52], optimization in 

manufacturing and production operations [53] [54], collision detection problems [55], 

and detection of optimal paths for unmanned aerial vehicles (UAVs) [56] [57]. 

2.2  Digital Pheromones 
 

Pheromones are chemical scents produced by insects essentially as a means of 

communication in finding suitable food and nesting locations. The more insects that 
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travel a path, the stronger the pheromone trail. A digital pheromone works on the same 

principle and is analogous to a natural pheromone in that it is a marker to determine 

whether or not a region in the design space is promising for further investigation. Digital 

pheromones have been used in applications such as the automatic adaptive swarm 

management of Unmanned Aerial Vehicles (UAVs) [58] [59]. In this research, the 

implementation of digital pheromones causes swarms of UAVs to automatically adapt 

and navigate in potentially hazardous environments dramatically reducing the 

requirement of human operators at the ground control stations. Ant Colony Optimization 

[60-62] models the behavior of ants that release pheromones to find optimal paths to food 

from their nesting location. In this method, pheromones act as attractors released by 

members (ants) causing other members to be attracted to stronger pheromone trails. 

Digital pheromones are also used for solving network communication problems [63]. 

 
The concept of digital pheromones is relatively new [64], and has not been applied to 

investigate n-dimensional design spaces. The benefits of digital pheromones from swarm 

intelligence and the adaptive applications described above can be merged into PSO to 

improve design space exploration, particularly for a multimodal optimization problem 

where swarm communication is essential to locating the global optimum accurately, 

efficiently, and reliably.  

 

2.3  Parallelization 
 

Parallelization provides a very convenient alternative to improve solution times when 

single workstation environments are not sufficient. Processor technology advancements 
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in addition to low costs make scientific computation on massively parallel computer 

clusters viable and affordable in academics and industries. However, certain requirements 

are crucial for an algorithm to be implemented in parallel. The primary requirement for 

parallelization is the ability of the method to decompose into segments for multi-

processor operation. In addition, the two highly desirable characteristics for 

parallelization are: a) scalability – the ability to adapt to any number of processors with 

no/minimal changes and b) processor load balancing – use of the available number of 

processors to the full extent without any processor substantially running idle. 

 

Parallelization can be synchronous or asynchronous. Synchronous parallelization 

facilitates a step wise parallel execution of tasks. Coarse decomposition schemes are 

examples of synchronous parallelization where each processor has its own swarm 

exploring the design space. Solutions obtained from different processors are 

synchronized and gathered on a common processor (usually, the root processor) to 

evaluate the final global optimum. This is achieved through the use of a barrier function 

in the Message Passing Interface (MPI) [65], the most commonly used interface for 

parallel programming. Asynchronous parallelization is the dividing of a sequential 

algorithm into autonomous tasks each of which can be carried out on different processors. 

Dependencies among the tasks are modeled by message passing or through shared 

memory [66], depending upon the hardware configuration. 

Population based optimization methods such as GA and PSO are computationally 

intensive and are a natural fit for parallelization because the method parameters do not 

limit the number of processors that can be used for solving the problem. Three different 
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types of parallelization are seen as most common in the literature for population based 

methods: 1) global (master-slave) model, 2) migration (distribution) model, and 3) 

diffusion model. In the master-slave model, the objective function is evaluated in parallel 

on slave processors, and the remaining operations are performed on the master, (e.g., 

selection and crossover in GA). This means that while the objective function values are 

evaluated on different processors by a subset of the population, the selection and 

crossover operations are performed for the total population. Therefore, no information 

about the population is lost due to information transition between processors, but the 

algorithm proceeds much faster [67] [68]. In the migration model, the population is 

divided into a number of sub-populations, with each propagating independently on a 

different processor and computing its own optimum. Depending upon the 

implementation, the best fitness value in all the processors is communicated to each other 

periodically. This model is known to produce better parallel efficiencies compared to the 

master-slave model but network communication causes considerable overhead [68-70]. 

The diffusion model depends on the locality concept where each population member is 

considered a separate breeding unit. Each population member is unaware of the best 

value in each iteration, and it moves only toward the best value in the neighborhood. The 

best value attained by each processor is broadcasted so that each member adjusts its own 

best location accordingly. Since each processor broadcasts its best value in the current 

iteration, entrapment in local minima is avoided. The effectiveness of this model depends 

upon the type of connection topology such as ring (two links per node) or fully connected 

[68]. 
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Schutte, et al [71] developed a synchronous parallelization scheme for PSO where the 

participating processors synchronize after objective function evaluations prior to 

computing the velocity vector. This synchronization caused significant performance 

issues, which were addressed by Koh et al [72] in their adaptive concurrent asynchronous 

parallelization scheme. In this research, the particle order in a swarm is permitted to 

change continuously depending upon the speed at which each processor performs 

objective function evaluations. This approach allows for the elimination of an iteration 

counter altogether and hence the need for synchronization between processors – a major 

bottleneck in parallel algorithms. Similarly, Venter and Sobieski [73] developed another 

asynchronous parallelization scheme in a master-slave implementation. The master 

processor is primarily used for controlling communication between processors and the 

slaves perform PSO computations while maintaining load balancing between processors. 

Belal and El-Ghazawi [74] explained various parallel models in PSO including master-

slave, migration, and diffusion PSO. Shi et al [75] developed a hybrid parallel method 

where PSO and GA interact, execute simultaneously and exchange design space 

information after a set number of iterations.  Another approach was devised by the same 

authors where PSO and GA interact with each other in series. The benefits of PSO 

parallelization has been successfully applied in various fields such as the design of 

electromagnetic absorbers [76], power flow applications [77], and antenna designs [78] 

[79]. 
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2.4  Computations Using Graphics Hardware 
 

Recently, technologies such as hyper threading and multi-core processing [80] have been 

the main drivers increasing CPU performance as opposed to the addition of more 

transistors onto a CPU chip. While hyper threading requires an additional burden on the 

programmer to develop thread-enabled code to realize performance improvements, multi-

core processor improvement is only linearly related to the number of cores used on the 

processor chip. For example, a dual core processor can only increase the CPU 

performance by approximately a factor of two. However, commodity Graphics 

Processing Units (GPUs) or more commonly graphics cards, another proven and 

developing technology, is capable of improving computational performance more than 

ten times that of a modern CPU [81]. For their price and ubiquitous availability, GPUs 

have a superior processing architecture when compared to modern CPUs. For example, a 

dual core processor has essentially two CPUs on one chip, but depending upon the type, 

GPUs can have greater than 24 processors (24 fragment shading pipelines). In addition, 

GPUs are capable of supporting hundreds of hardware threads as opposed to one or two 

on a CPU. Early GPUs had fixed functionality that made them ideal for supporting 

visualization and gaming. Modern GPUs include improved programmable processing 

units and support vectorized floating point operations. The advent of programmable 

graphics hardware in recent years has unlocked the use of GPUs for purposes other than 

visualization to enable CPU type operations to be performed. GPUs offer distinct 

advantages to any process involving large amounts of computation as they are now: 1) 

programmable, 2) priced significantly less than a high performance CPU, 3) data parallel 

in architecture, 4) highly threaded, and 5) good at reducing main memory access costs. 
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The programming component of GPUs primarily consists of vertex shaders and fragment 

shaders (also called pixel shaders). In graphics programming, vertex shaders handle 

transformation of vertices of an object and fragment shaders handle computing the pixel 

color values that fill the screen. Initially, graphics programmers created low-level (fine 

control) vertex and fragment shaders to achieve these tasks. However, due to the 

tediousness involved in programming with these shaders and limited flexibility in terms 

of debugging and code re-use, low-level shader programming is not a preferred method 

for graphics programming. High-level shading languages, which incorporate several low-

level function calls into easier to use functions, are now available, which solve the rigid 

low-level programming issues. The function of a shading language is to compile a shader 

program into individual vertex and/or fragment components and perform required 

computations before rendering images on the screen. Even though these operations were 

designed to create realistic computer graphics, they are still mathematical. If it is 

understood what mathematics are being performed, the data placed in a texture can be 

multiplied, divided, or subjected to other complex mathematical operations. 

 

While CPU programming has a large number of well-established programming languages 

to choose from, there are only few GPU programming languages such as Cg [82], GLSL 

[83], HLSL [84], Sh [85], and Ashli [86]. These languages are quite graphics specific, so 

the terminology used in programming follow the mapping constructs to CPU 

programming given in table 1. 
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Table 1 Terminology used for mapping CPU algorithms to the GPU 
CPU GPU 

Arrays or streams Textures 
Parallel loops Quads 

Loop body Vertex + fragment program 
Output arrays Render targets 
Memory read Texture fetch (gather) 
Memory write Framebuffer write (scatter) 

 
These shader languages adopt a C/C++ style of programming syntax. While Cg abstracts 

the graphics hardware quite closely, GLSL has some data types defined outside of the 

scope of current day graphics cards such as integers and matrices. As graphics hardware 

begins to support these data types, GLSL will be a powerful language. Sh on the other 

hand provides stream-programming capabilities particularly suitable for general purpose 

GPU (GPGPU) programming. Ashli is a layer above the other shader languages that 

internally supports reading shaders written in GLSL and HLSL, thereby providing a 

higher level of flexibility in GPU programming. 

 

Other high-level programming languages have emerged in recent years that focus more 

on the GPGPU functionality as opposed to graphics specific constructs. Some such 

languages are Brook [87], Scout [88], Microsoft Accelerator [89], CGiS [90], and the 

Glift template library [91]. Performance and other comparison characteristics for these 

languages have been studied [94] to provide a guideline for use in specific applications. 

CUDA [92] is one of the latest development tools from NVIDIA aimed at GPGPU 

computing. This promises to eliminate stream shader programming and GPUs can be 

programmed through multi-threaded C programming for exponential information flow. 
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Studies have shown that GPUs exceed the number of floating point operations per second 

and memory bandwidth on comparable CPUs. For example, a 3GHz Intel Pentium 4 

processor peaks at 12 GFLOPS (Giga-Floating Point Operations) with ~6 GB/sec of 

memory bandwidth as opposed to an ATI Radeon X1800 XT GPU that peaks at 83 

GFLOPS with 42 GB/sec of memory bandwidth. This is an improvement of almost 600% 

in floating point operations. The number of transistors that a GPU can hold is up to 222 

million compared to 50 million on an Intel Pentium 4 CPU, an increase of over 400%. 

Clearly, it can be seen that GPUs promise a tremendous amount of computing power than 

their CPU counterparts [93-95]. The technological advancements in GPU hardware have 

been predicted to follow a pace equal to three-times that of Moore’s law. In addition, 

most computers and workstations currently have a GPU. These performance gains could 

be instantly realized without the need to purchase additional hardware. If a computer is 

lacking a GPU, a robust graphics card can be purchased for as little as $100-$400 to 

acquire tremendous processing power. Figure 7 compares the performance curves of 

GPUs (NVIDIA and ATI) versus CPUs (Intel) in recent years. 
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Figure 7 Floating point operation increase of GPUs and CPUs in the past 6 years 
(Figure Courtesy: www.gpgpu.org) 

If these performance gains could be harnessed either on a single computer, a cluster, or a 

network of workstations (common in many companies and academic institutions), 

problems currently requiring enormous computational resources could be solved on 

commodity hardware. As identified in the introduction, large-scale, multi-objective 

optimization offers tremendous benefits to companies and researchers, if they have access 

to immense computational resources. By taking advantage of the power of GPUs, a new 

source of resources, already available, can become practically usable. 
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2.5  Research Issues 
 

Although substantial research has been done in optimization over the past 50 years, 

industry has not been able to adopt it into their design processes to realize its benefits to 

the fullest extent. Below is a partial list of reasons for this slow adoption rate: 

- Time: Without tangible and documented return on investment, a company will often 

incorporate optimization into their design processes 

- Computing costs: Procuring computing technologies to solve optimization problems 

in an industry’s design processes may not be cost effective 

- Trust: A designer’s optimization model may not incorporate various aspects of the 

problem and its accuracy is not guaranteed. Therefore, an industry trusts on a 

designer’s experience better than a formal mathematical optimization model 

- Awareness: Either an industry is unaware of the available tools to solve their 

optimization problems or their design problems are too complex to be solved by 

established optimization methods 

- Competition: In a monopolized market, an industry does not have the incentive to 

incorporate optimization to improve on their design processes further 

 

When successfully implemented in a design process, optimization has the potential to 

have a large impact on the quality, cost, and time for a product or process design. 

Increasing demand and competition will drive the use of optimization in industry, but it 

requires making optimization tools more practical and viable. The research presented in 

this dissertation attempts to address these possibilities and provide designers with robust 

tools to help improve their design processes. 
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Based on the needs defined and background material reviewed, three research issues have 

been identified. They are: 

 

1) How can the solution quality, accuracy, and reliability of PSO be improved in 

identifying global optimum in multimodal n-dimensional design spaces? 

Two drawbacks currently inhibit the performance of basic PSO in converging to a global 

optimum in an n-dimensional design space. The first drawback is that the particle updates 

are influenced by a limited number of factors. At any instance, each swarm member is 

directed by only two current or past swarm locations – pBest and gBest. Having just these 

two candidates impedes the desirable exploratory characteristics. In an n-dimensional 

design space, information from these two candidates alone will not always suffice to 

propagate a swarm toward the global optimum efficiently. A second drawback is that the 

method is initial condition dependent. Poor locations specified by pBest and gBest in the 

initial stages of optimization can potentially offset the swarm from attaining the 

neighborhood of the solution in the design space. This results in the swarm either being 

trapped in a local minimum or taking substantial time to recover from a bad location and 

reach the global optimum. Through the use of digital pheromones, PSO variations can be 

developed that can robustly explore and exploit design spaces for both unconstrained and 

constrained optimization problems. It is theorized that these methods will offer 

significant improvements in terms of solution quality and accuracy. 

 

2) How can the solution efficiency for PSO be improved for a faster global 

convergence in multimodal n-dimensional design spaces? 
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Although simple to implement, PSO is computationally quite intensive, particularly due 

to a substantial number of function evaluations by the swarm members. Additionally, the 

involvement of digital pheromones to improve the search efficiency adds additional 

computations per iteration. Coarse and fine grain parallelization strategies will be 

developed as a part of the second research issue to significantly increase solution 

efficiency. 

 

3) How can commodity graphics hardware be utilized to accelerate the optimization 

process in PSO? 

Section 2.4 explains the ubiquitous availability of commodity graphics hardware and its 

potential for large-scale mathematical computations in less time and cost than 

comparable CPUs. These features will be exploited to investigate the feasibility of 

solving multimodal n-dimensional optimization problems in a CPU-GPU architecture. 
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3 Digital Pheromones in PSO 

 

3.1  Rationale 
 

In a basic PSO algorithm, the swarm movement is governed by the velocity vector 

computed in equation (2). Each swarm member is therefore, essentially presented with 

information obtained from two specific locations from the design space at any iteration. 

However, multiple pheromones released by the swarm members could provide much 

more information on promising locations within the design space when the information 

obtained from pBest and gBest are insufficient or inefficient. This is the primary thrust 

and premise for the research presented in this thesis. 

 
Figure 8 Particle movement in a basic PSO 
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Figure 8 displays a scenario of a swarm member’s (Pi) movement whose direction is 

guided by pBest and gBest alone. The previous position of the particle is denoted by Pi-1 

and the previous velocity component is indicated by Vi-1. If c1 >> c2, the particle is 

attracted primarily towards its personal best position. On the other hand, if c2 >> c1, the 

particle is strongly attracted to the gBest position. In the scenario dominated by c2 as 

presented in Figure 8, neither pBest nor gBest leads the swarm member to the global 

optimum, at the very least, not in this iteration adding additional computation to find the 

optimum. 

 
Figure 9 Particle movement with digital pheromones 

 

Figure 9 shows the effect of implementing digital pheromones into the velocity vector. 

An additional pheromone component potentially causes the swarm member to result in a 

direction different from the combined influence of pBest and gBest thereby increasing the 

probability of finding the global optimum.  
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Evaluate fitness value of each swarm member

Store pBest and gBest 
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3.2 Method Overview 
 

Figure 10 summarizes the procedure for PSO with steps involving digital pheromones 

highlighted.  

 
Figure 10 Overview of PSO with Digital Pheromones 
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The method initialization is similar to a basic PSO except that 50% of the swarm within 

the design space is randomly selected to release pheromones in the first iteration. This 

parameter is user-defined, but experimentation has shown 50% to be a good default 

value. For subsequent iterations, each swarm member that finds a better location releases 

a pheromone. Pheromones from the current as well as the past iterations that are close to 

each other in terms of the design variable value are merged into a new pheromone 

location. In addition, the digital pheromones are decayed in each iteration just as natural 

pheromones. This effectively creates a pheromone pattern across the design space while 

still keeping the number of pheromones manageable. Each distinct pheromone is then 

given a probability based on its pheromone level and its position relative to a particle. 

This probability is then used in a ranking process to select a target pheromone for each 

particle in the swarm. The target position for each particle will be an additional 

component of the velocity vector update in addition to pBest and gBest. Following this, 

the objective value for each particle is recalculated and the entire process is continued 

until a prescribed convergence criteria is satisfied. 

 

3.3 Digital Pheromone Initialization and Merging Process 
 

In order to populate the design space with an initial set of digital pheromones, 50% of the 

population is randomly selected to release pheromones, regardless of the objective 

function value. This is done to ensure a good spread of digital pheromones across the 

design space thus leading to effective swarm exploration. For subsequent iterations, the 

objective function value for each particle in the population is evaluated and only particles 



40 
 

  

finding an improvement in the objective function value when compared to the current 

gBest value will release a pheromone. Any newly released pheromone is assigned a level 

P, with a value of 1.0. The pheromone levels are normalized between 0.0 and 1.0. Just as 

natural pheromones produced by insects decay in time, a user defined decay rate, λP, 

(defaulting to 0.95), is assigned to the pheromones released by the particle swarm. Digital 

pheromones are decayed as the iterations progress forward to allow a swarm member to 

propagate toward a better design point by increasing the chances of attraction to a newer 

pheromone location with a better objective function value.  

 

Every particle that finds a solution improvement releases a pheromone potentially 

making the number of pheromones unmanageably large as iterations progress. Therefore, 

an additional step to reduce them to a manageable number, yet retaining the functionality, 

was implemented. Pheromones that are closely packed within a small region of the design 

space are merged together. Figure 11 shows an example merging process in a 2D design 

space.  

Figure 11 Merging of Digital Pheromones 
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To check for merging, each pheromone is associated with an additional, ‘Radius of 

Influence’ (ROI). For each design variable of a pheromone, an ROI is computed and 

stored. The value of this ROI is a product of the pheromone level and the range of the 

design variables. Any two pheromones for a design variable less than the sum of the 

ROIs are merged into one. This is analogous to two overlapping spheres merging into 

one. The average strength of the two merging pheromones is retained in the resulting 

pheromone. The location of the resultant pheromone is biased towards the stronger of the 

two merging pheromones. Through this approach, regions of the design space with 

stronger resultant pheromone levels will attract more particles and therefore, pheromones 

that are closely packed would indicate a high chance of optimality. Also similar to the 

pheromone level decay, the ROI also has its own decay factor, λROI, whose value is set 

equal to λP as a default.  This is to ensure that both the pheromone levels and the radius of 

influence decay at the same rate. Figure 12 is a flow chart illustrating the pheromone 

merging process. 

 
Figure 12 Flowchart of pheromone merging process 

 
 
 

Check if intersecting with any other digital pheromones. 

Calculate new location of pheromone

Create new merged pheromone

Repeat until no pheromones can be merged 
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3.4 Proximity Analysis to Determine Target Pheromone 
 

With numerous digital pheromones generated within the design space, a target 

pheromone needs to be identified for each swarm member. A criterion that is a function 

of both the pheromone level and its proximity from each particle needs to be considered 

in selecting the target pheromone. This is based on: a) the distance between a particle and 

pheromone, and b) the pheromone level. For each particle, a target pheromone attraction 

factor P’ is computed to this effect, which is a product of the pheromone level and the 

normalized distance between the particle and the pheromone. Equation (5) shows how the 

attraction factor P’ is computed, and equation (6) computes the normalized distance 

between the pheromone and each particle in the swarm. The variable rangek is the 

difference in the upper and lower limits of kth design variable.  
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Figure 13 shows an example scenario of a particle being attracted to a target pheromone 

from a pool of four merged pheromones, each having a pheromone level and are at 

variable distance from the particle in the design space. The target attraction factor, P’ is 

computed for each of these pheromones and rank ordered. The particle in the figure is 

attracted to pheromone number that has the highest P’ value (in this case, pheromone 4) 

based on its proximity to other pheromones and their pheromone levels. 
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Figure 13 Illustration of target pheromone selection 

 

3.5 Velocity Vector Update 
 

Upon determining the target pheromone, the velocity vector from basic PSO is updated 

with a new component called the target pheromone component as shown in equation (7). 

 

(7) 

 

In equation (7), c3 is a user defined confidence parameter for the pheromone component of 

the velocity vector similar to c1 and c2 in a basic PSO. c3 combines the knowledge from the 

cognitive and social components of the velocity of a particle, and complements their 

deficiencies. The confidence parameter c3 determines the extent of influence a target 

Viter+1,i[] = witer ×Viter,i[]
               + c1 × rand p () × (pBest i[]− Xi[])
               + c2 × randg () × (gBest[]− Xi[])
               + c3 × randT × (T argetPheromone i[]− Xi[])
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pheromone can have on the swarm when the information from pBest and gBest alone are not 

sufficient or efficient to determine a particle’s next move.  

 

randT is a random number generated between 0 and 1. Random numbers generated by 

computers are of two types: (a) Pseudo-Random Number Generators (PRNGs), and (b) 

True Random Number Generators (TRNGs). PRNGs are algorithms that use 

mathematical formulae or pre-calculated tables to produce sequence of numbers that 

appear random and hence are typically efficient. PRNGs are generally used for modeling 

and simulation. TRNGs on the other hand extract randomness from physical phenomena 

(roll of a die, atmospheric noise in thunderstorms, etc) and induce better random 

characteristics. TRNGs are typically preferred over PRNGs in applications where 

unpredictability is very important (data encryption, etc). They are lesser efficient than 

PRNGs [96]. In PSO, the influence of the swarm movement is weighted primarily by 

pBest and gBest. Therefore, the use of random numbers within the velocity vector 

equation does not considerably affect the outcome if PRNGs are used. Since efficiency is 

a significant concern in PSO, TRNGs are typically not used. 

 

3.6 Geometric Interpretation of Target Pheromone and Confidence Parameter, c3 
 

In a basic PSO, the particle swarm does not have a memory of the entire path traversed in the 

design space apart from the best position of an individual particle (pBest) and the best 

member’s position in the entire swarm (gBest). The target pheromone component addresses 

this issue. It is a container that functionally stores the trail path of the swarm and utilizes the 
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best features of it in steering towards a promising location in the design space. The use of the 

target pheromone relies heavily on pBest and gBest. If c3 = 0, there is no influence of 

pheromones and the swarm behaves as if in a basic PSO. If either of c1 or c2 is 0 and c3 > 0, 

then the target pheromone location is essentially determined only by the non-zero component 

of pBest or gBest and propagated into the velocity vector. This creates a bias thereby 

doubling the influence of non-zero pBest or gBest components on the swarm. This means that 

the swarm either explores or exploits the design space with double the intensity, either of 

which can prevent the swarm from converging. It is therefore essential that the influence of 

pBest and gBest be balanced (i.e. equal) for the pheromone component to provide accurate 

assistance in reaching the optimum. 

 

Although analytical determination of a value for c3 is out of the scope of this research, an 

empirical value has been determined through experimentation. A value between 2.0 and 5.0 

has shown good performance characteristics and solved a variety of problems. The results 

chapter (chapter 7) will provide insight on why the chosen values were found to be favorable 

for a variety of problems.  

 

A higher value of c3 causes the velocity vector’s magnitude to increase and places the swarm 

in a more general exploratory mode. However, it is desirable to make the swarm perform a 

tighter, local search as the swarm approaches the optimum. In this case, a lower value of c3 is 

desirable. Therefore, decreasing c3 can potentially help the swarm to move from an 

exploratory mode to an exploitation mode. To achieve this effect, a decay of c3 has been 

investigated in this research in addition to a constant c3, to adapt to the swarm movement as 
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required. Automatic adaptation of the confidence parameters is not new. Literature shows the 

use of such approaches in basic PSO as well [97] [98]. The results chapter (chapter 7) 

provides an explanation of how useful was c3 decay in various test problems.  

 

An inertia weight, wi of value 1.0 is initially chosen to preserve the influence of the velocity 

vector from previous iterations, and gradually decreased using an inertia weight decay factor 

similar to the one used in a basic PSO.  

 

3.7 Move Limits 
 

The additional pheromone term in the velocity vector update can considerably increase 

the computed velocity. This increase can potentially cause the solution to diverge if left 

unchecked. To address this, a move limit was imposed on the maximum value of the 

velocity vector’s magnitude. To ensure a fair amount of freedom in exploring the design 

space, the swarm is allowed to digress up to 10% of the range of the design variables 

initially. A move limit decay factor of λML = 0.95 is applied in subsequent iterations. 

While the move limit alone imposes a bound on the velocity vector’s magnitude, the 

move limit decay factor further fine tunes the swarm towards a local search. This means 

that the swarm is free to explore the design space in the beginning and confines it for a 

local search towards the end. The magnitude of the velocity vector is multiplied by λML in 

each iteration. 
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3.8 Statistical Significance of Digital Pheromones 
 

The implementation of digital pheromones caters for improved performance of PSO in 

terms of accuracy, efficiency and reliability. Section 7.3 in the results (chapter 7) 

demonstrates this capability. However, a quantitative assessment of the developed 

method needs to be made to prove this claim. Therefore, it is necessary to perform 

statistical hypothesis testing to prove that particle swarms with digital pheromones 

perform better than without pheromones (basic PSO). This section explains the procedure 

involved and the results are discussed in section 7.4 of chapter 7. 

 

3.8.1 Statistical Hypothesis Testing 
 

In statistical terms, a population is a group or individual that represents all members of a 

certain category of interest. A sample is a subset drawn from the population. Descriptive 

statistics apply only to the members of a sample of data collected from the population. 

Inferential statistics, on the other hand refer to the use of sample data to reach 

conclusions about the characteristics of the population that the sample represents. A 

hypothesis is typically a statement about the parameters in a population distribution. It is 

called as hypothesis because it is not known whether the statement is true or not. The 

primary objective of hypothesis testing is to test whether or not the values of a random 

sample from the population is consistent with the claimed hypothesis or not. The 

hypothesis is considered ‘accepted’ if the random sample is consistent with the 

hypothesis under consideration. Otherwise, the hypothesis is ‘rejected’ [99] [100] [101] 

[102]. 
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Within the context of this research, it is necessary to claim that digital pheromones when 

implemented in PSO perform better when compared to basic PSO in terms of solution 

accuracy and solution times. 

 

The hypothesis that specifies a particular value for the parameter being studied is called 

the null hypothesis and is denoted by H0. It represents the standard operating procedure 

of a system or a known procedure. The hypothesis that specifies those values of the 

parameter that represent an important change from standard operating procedure or 

known procedure is called the ‘alternative hypothesis’ or ‘research hypothesis’, and is 

denoted by Ha. Evidence from a result sample inconsistent with the stated hypothesis 

leads to rejection of the hypothesis, whereas evidence supporting the hypothesis leads to 

its acceptance. In statistical hypothesis testing, it is a norm that the acceptance of a 

proposed hypothesis is the result of insufficient evidence to reject it.  

 

There are two ways that errors can be committed in the decision process using hypothesis 

testing. A type I error is committed if the null hypothesis is rejected when it is actually 

true. A type II error is committed if the null hypothesis is not rejected when it is actually 

false. Table 2 shows the truth table of decision making while performing hypothesis 

testing. The probability of committing a type I error is called the level of significance of 

the test and is denoted by α, and the probability of committing a type II error is denoted 

by β.  
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Table 2 Decisions and Errors in Hypothesis Testing 
 Decision 
 Reject H0 Accept H0 

H0 True Type I Error Correct decision taken 
H0 False Correct decision taken Type II error 

 

Hypothesis testing can be one-tailed or two-tailed. For example, H0: μ = μ0 and Ha: μ ≠ 

μ0 is called a two-tailed hypothesis where the equality of μ and μ0 are tested. On the other 

hand, H0: μ < μ0 and Ha: μ ≥ μ0 (or) H0: μ > μ0 and Ha: μ ≤ μ0 is called a one-tailed test, 

where μ represents the population mean and μ0 represents the sample mean. A t-test 

assesses whether the mean of two groups are statistically different from each other, and is 

an especially appropriate tool when comparison of the means of two different group of 

parameters is desired. The t-distributions are affected by the sample size, and they 

approach normal distributions with large sample sizes.  

 

3.8.2 Hypothesis Testing Procedure 
 

The following is a five-step procedure adopted for performing hypothesis testing of PSO 

with and without digital pheromones: 

 

1. The null and alternate hypotheses are to be defined. 

Hypothesis testing can be single-sample based or multi-sample based. In a single sample, 

the null and alternate hypothesis will have parameters only from the problem under 

consideration. A two-sample test on the other hand allows for comparison of means of 

two different methods (e.g., with and without digital pheromones). Since the objective is 
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to investigate the performance characteristics of PSO with and without digital 

pheromones, a one-tailed hypothesis test is performed. The null and the alternate 

hypotheses are defined as shown in equation (8): 

 
H0: μ1 - μ2 ≤ 0 (null hypothesis) 
Ha: μ1 - μ2 > 0 (research or alternate hypothesis) (8)

 

Where, μ1 and μ2 corresponds to the means obtained from basic PSO and digital 

pheromone respectively. Therefore from equation (8), the null hypothesis H0 signifies 

that the mean objective function values and solution times for basic PSO are statistically 

smaller than those obtained using digital pheromone PSO. Conversely, the research 

hypothesis Ha from equation (8) signifies that the mean objective function values and 

solution times for basic PSO are statistically larger than those obtained using digital 

pheromone PSO. Within the context of this research, the research hypothesis Ha is 

desired to be accepted, a possibility that can happen only when H0 is rejected. 

2. A level of significance equal to α needs to be chosen. 

A 95% confidence level is chosen for hypothesis testing in this research. This means the 

hypothesis test is performed with a 0.05 probability for type I error. This is the most 

commonly used confidence level for statistical testing in general. 

 

3. An appropriate test statistic (i.e., t) is to be selected and its corresponding critical 

value (tcritical) is to be obtained from t distribution tables.  

Depending upon whether there is any dependency between the data samples obtained for 

PSO with and without pheromones, the test can be either independent or paired. Since the 
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test runs for basic PSO and digital pheromone PSO are performed independent of each 

other and have different random seed values for each during trial runs, independent two-

sample hypothesis testing is performed. Therefore, the test statistic (or the t-value) is 

calculated using equation (9) (a standard t-value estimator whose description can be 

looked up in any standard statistics textbook), where x1 and x2 represents the means of 

basic and pheromone PSO respectively. 

 

t = (x1 − x 2)

Sp
1
n1

+
1
n2

 
(9)

Sp
2 =

(n1 −1)s1
2 + (n2 −1)s2

2

n1 + n2 − 2
 (10)

 

Where equation (10) represents the square of the standard deviation or the variance of the 

sample data from basic and pheromone PSO, with (n1 + n2 – 2) degrees of freedom. 

 

4. The value of the statistic (t) is to be computed from the random sample of size, n. 

Most t-distribution tables consider degrees of freedom greater than 30 as an accurate 

approximation of a normal distribution. For statistical analysis in this research, 35 trial 

runs will be performed each for basic and pheromone PSO. The number of degrees of 

freedom for this hypothesis test is (n1 + n2 - 2) = 68, where n1 represents the sample size 

of results from basic PSO, and n2 represents the sample size of results obtained from 

digital pheromone PSO. This means that the data can be considered as normally 

distributed for all statistical testing purposes. 
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5. H0 is to be rejected if the statistic has a value in the critical region; otherwise Ha is to 

be rejected.  

A hypothesis is accepted if there is no evidence to reject it. If the value of ‘t’ calculated 

from equation (9) is greater than tcritical, H0 is rejected. If the value of ‘t’ is less than tcritical, 

Ha needs to be rejected. The value of tcritical is obtained from t-distribution tables 

corresponding to the probability of error chosen in step 2. 

 

3.9 Further Improvements 
 
The use of digital pheromones provides substantial information about the design space, 

thereby increasing the solution accuracy, efficiency and reliability of particle swarms. 

Although the computational expense due to pheromone operations increase per iteration, 

the benefits due to additional design space information offsets this drawback by allowing 

the solution to converge in substantially less iterations. Chapter 5 demonstrates the 

capability of particle swarms augmented by information from digital pheromones. 

In addition to the use of digital pheromones for improving solution characteristics of 

PSO, parallelization can further enhance the efficiency in searching multi-dimensional 

design spaces. This research takes advantage of PSO’s inherent capability for 

parallelization. Chapter 4 describes the rationale followed by various parallelization 

strategies implemented for improving the performance of PSO. 
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4 Parallelization on Computer Clusters 

 

4.1  Rationale for Parallelization 
 

PSO is generally computationally intense. Additionally, pheromone operations further 

increase the number of computations per iteration. This is particularly apparent with 

larger swarm sizes on highly multimodal problems. One way to reduce the computational 

overhead is to strategically distribute independent tasks in the method into different 

processes. On a computer workstation, each of these processes can be handled by 

independent tasks called threads. Threading is effective for single processor workstation 

operations but is not capable of providing the computational horsepower for highly 

multimodal problems with a large number of design variables requiring large swarm 

sizes. Therefore, alternate computational techniques become necessary.  

 

Fortunately, computing technologies have sufficiently advanced to provide affordable 

access to high performance cluster computing, which when used appropriately can prove 

to be a suitable alternative for improving particle swarm efficiencies. Parallelization is 

one such means where tasks can be distributed on multiple processors in a cluster of 

computers instead of multiple threads on a single workstation. Cluster computing 

increases solution efficiencies and not only reduces the computational burden on a single 

processor but also caters for additional computations if needed (e.g., multiple swarms).  

Communication between processors can be achieved through parallel application 

Programming Interfaces (APIs) such as MPI [65] or PVM [103] layers. These are 
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industry standard APIs that are simple to implement and effectively distribute 

information between processors thereby easing the computational intensity on a single 

processor. The communication network in a computer cluster is typically managed 

through Infiniband [104] [105] or Myrinet switches [106] [107]. PSO is a natural fit for 

parallelization, primarily due to the fact that it is population based and each swarm 

member is independently capable of traversing in the design space regardless of the 

whereabouts of the remaining swarm members. 

 

This chapter explains various parallelization schemes explored in this research to 

determine if solution efficiencies can substantially be improved with digital pheromones 

when compared to a basic PSO algorithm. 

 

4.2  Synchronous Coarse Grain Parallelization 
 

Multiple independent swarms traversing the design space independently can garner 

significantly more information on the design space than a single swarm with a larger 

population size. This is because: (a) each deployed swarm is considerably smaller in size 

and the communication costs (computational overhead) are smaller and (b) each swarm 

independently explores the design space increasing the diversity in search and thereby 

eliminates the pitfalls of following a single leader (gBest). 

 

On a single processor workstation, an equivalence of ‘n’ independent swarms can be 

achieved by a serial execution of the code with each swarm deployed one after another. 
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In this case, it potentially takes at least ‘n’ times the number of seconds for each swarm to 

report results. Another approach would be to deploy ‘n’ independent swarms 

simultaneously on a computer workstation through a threaded code. In this approach, a 

processor can spawn multiple processes, each handling an independent swarm. However, 

the processor load increases substantially thereby resulting in degraded performance and 

increased solution times. 

 

Simultaneous deployment of multiple swarms on different processors can dramatically 

reduce solution times. In this scenario, ‘n’ swarms are deployed simultaneously on ‘n’ 

different processors, where one design space is explored by groups of independent 

swarms, each reporting their solutions when converged. The solutions resulting from 

each processor can then be sorted to determine the actual best solution. Where a serial 

code potentially takes ‘np’ seconds to solve a problem using ‘p’ swarms, an ideally 

formulated parallel code would only take ‘n’ seconds when ‘p’ swarms are delegated 

each to a processor, dramatically reducing the solution time. However, parallelization 

comes at a considerable expense – network latencies. Communication between 

processors is currently limited by the available network technologies and every instance 

of a data transfer between processors is as fast as the slowest network connection. 

Therefore, benefits can be reaped only when the communication between the processors 

is kept to a minimum and synchronous coarse grain parallelization scheme is designed to 

do just that. Figure 14 shows a schematic of the developed synchronous parallel coarse 

grain decomposition of PSO with digital pheromones. 
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Figure 14 Schematic of synchronous coarse grain parallelization 
 

In this approach, each participating processor runs an identical copy of the serial PSO 

code with digital pheromones with its own randomly initiated population swarm. Upon 

determining the velocity direction and updating the particle positions, each processor 

performs a convergence check and arrives at the participating processor’s optimal point. 

This means that each processor containing a swarm determines its own gBest. Using 

barrier synchronization, optimal points from all the processors are synchronously 

gathered on the root processor and sorted for the best combination of the objective 

function and its corresponding design variables. Data communication between the 

processors takes place only at the end to gather each processor’s optimal point and sort 

for the global optimum point. Until this point, there is no exchange of information 
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between participating processors. This approach potentially avoids the primary 

parallelization bottleneck – network latency. Therefore, the chances of locating the global 

optimum increase with the number of processors. 

 

While it is true that coarse grain parallelization offers substantial advantages when 

compared to serial execution, each processor is unaware of the progress of the solution 

status of every other processor. Communication between the swarms on multiple 

processors substantially improves the chances of finding an optimum. However, the 

network latency costs due to exchange of information between swarm members across 

processors typically defeats the purpose of communication by substantially increasing the 

solution times. Each instance of data transfer between processors is only as fast as the 

slowest network connection. Moreover, the use of barrier synchronization causes the 

participating processors to wait until solutions are obtained from each processor. This 

means that the swarms on processors that find a solution stand idle until solutions are 

obtained from all other processors. This is an inefficient use of computational resources 

that could be more efficiently used with a suitable parallelization procedure. Therefore, a 

parallelization method that fosters the communication between swarms yet that retains 

latency costs to a manageable level is desired. This idea is explored through the idea of 

pheromone sharing across processors, a second parallel scheme. 

4.3 Shared Pheromone Parallelization 
 

A parallelization strategy has been developed where a swarm is deployed across multiple 

processors, similar to a coarse grain approach. However, the available processors are 
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divided into two categories: 1) optimization processor(s) and 2) a pheromone processor. 

The optimization processors are a function of the desired number of swarm members on 

each processor. Each optimization processor performs: a) random swarm generation, b) 

fitness value evaluation and pheromone release, c) calculation and storage of pBest, d) 

target pheromone calculation, e) velocity vector calculation, and f) particle position 

update. Figure 15 shows a flow chart of the developed method. The pheromone processor 

gathers a list of pheromones released by all participating optimization processors. They 

are then merged and decayed (for iteration numbers greater than one) appropriately as 

well. Therefore, the pheromone processor is a dedicated processor that exclusively 

performs pheromone operations and maintains a finalized repository of pheromones 

shared by multiple swarms spread across the design space on various optimization 

processors. Additionally, the pheromone processor also ranks from gBest candidates, 

called processor-gBest, sent by each optimization processor to find the actual gBest of all 

the swarms. Since the final pheromone list and actual gBest information takes up a tiny 

amount of memory, their broadcast to all optimization processors does not use a 

significant amount of network bandwidth. The pheromone processor performs the 

convergence check since it contains the most updated gBest information. If a specified 

convergence check is evaluated to true, this message is broadcast to all optimization 

processors upon which the code execution stops on all processors, and results are 

reported. 
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Figure 15 Shared pheromone parallel implementation flowchart 
 

It is to be noted that the target pheromone calculations are performed on the optimization 

processors, and not on the pheromone processor. This is because a target pheromone is 

unique to each swarm member. Communicating this information from each optimization 

processor to the pheromone processor would cause significant network latencies slowing 
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to handle target pheromone computations for each swarm member of swarms from all 

processors efficiently.  

 

There exists a two-fold advantage of the developed approach: 1) network latency costs 

between optimization processors are curtailed since they do not communicate with each 

other, and 2) the pheromone processor computes, stores and broadcasts the global 

pheromone list and the actual gBest to all optimization processors fostering 

communication between processors. Moreover, the participating processors do not have 

to synchronize at any point meaning that the method does not idle during any part of the 

code execution. Therefore, this approach combines the elements of information exchange 

between multiple swarms for improved search efficiency as well as reduced 

communication overhead across participating processors for better solution times. 
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5 Parallelization on Commodity Graphics Hardware 
 

5.1 GPU Parallelization 
 

Commodity Graphical Processing Units (GPUs), commonly known as graphics cards or 

video cards were traditionally used for visualization purposes until recently. A user could 

control various parameters in a graphics code, but the underlying functionality and 

sequence of operations were fixed. In recent years, this fixed functionality has been 

replaced with the capability to perform not only graphical operations but also general 

purpose computing. In 2004, the industry open standard OpenGL 2.0 API was released 

providing a formal channel for programmability of vertex and fragment shading 

operations under core OpenGL specifications [108]. Along with a hardware 

programmable component, hardware advancements has made GPUs capable general 

purpose processors capable of very high computational speeds for a variety of scientific 

applications. Their speed is attributed to their highly data parallel architecture. GPUs take 

advantage of their hardware parallelism, meaning that computations can be performed on 

multiple data simultaneously based on the Single Instruction Multiple Data (SIMD) 

technique. 

 

Although the programmable functions in GPU are graphical in context, the underlying 

operations are mathematical. Since these operations can be performed dramatically faster 

than on a traditional CPU, GPUs are increasingly becoming the mainstream for scientific 

and computation intense operations. Figure 16 is a very simplified view of a fixed 
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function graphics pipeline containing relevant information on data traversal from within 

the graphics application to the frame buffer. A frame buffer is the region of the graphics 

memory that is modified as a result of OpenGL rendering. In a general sense, the frame 

buffer corresponds to an OpenGL rendering in a window.  

 

 
 

Figure 16 Simplified Graphics Pipeline (programmable components indicated) 
 

In the vertex transformation component, the input vertices are appropriately transformed 

and passed to the assembly component where the vertices are assembled into a geometric 
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against view frustum are computed in these components. Geometric primitives that 

passed through the primitive assembly component in the pipeline are decomposed into 

smaller units corresponding to pixels in the destination frame buffer in a process termed 

rasterization. Each decomposed small unit is called a fragment. For example, if a line 

covers 10 pixels on the screen, rasterization converts the line geometry information 

obtained from vertex primitive assembly component into 10 fragments. Each of these 

fragments is then subjected to various fragment processing operations such as texture 

mapping, fog, and coloring. The last stage of the graphics pipeline includes performing 

various per-fragment operations such as pixel ownership test, scissor test, alpha test, 

stencil test, and the depth test. The underlying operations for vertex and fragment 

processing are essentially mathematical and can be replaced by programmable vertex and 

fragment shaders as indicated on the right side of the Figure 16. Figure 17 is a visual 

summary of the various stages involved in vertex and fragment processing as explained 

above. 

 
Figure 17 Visual Summary of a Fixed Functionality Graphics Pipeline 

(Figure Courtesy: www.lighthouse3d.com) 
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5.2 Choice of GLSL as Shading Language 
 

As outlined in section 2.4 of chapter 2, there are a handful of shading languages available 

to interface with graphics hardware. From the available choice of shading languages, 

GLSL was chosen for this research for the following reasons:  

1. It is a high-level shading language that integrates directly with the OpenGL standard. 

2. It is designed with intent for expansion and increased usability in the future. For 

example, current day graphics cards do not support double precision real valued data 

types but the pace of their advancements potentially support them in the near future. 

GLSL specifications support for such future developments and hence adaptation can 

be made with minimal alterations to vertex or fragment shaders.  

3. It is cross platform compatible. Therefore, the shader can be re-used on workstations 

running different operating systems without any change in the code. 

4. It supports most GPU chip makers (e.g. NVIDIA, ATI). With minor hardware 

alterations, GLSL can be used on a wide variety of GPUs. 

5. It closely resembles C/C++ in its programming syntax. 

6. It has in-built functions and reserved data types that are graphics in context and are 

derived from OpenGL. This means a non-graphical developer might have a 

considerable learning curve before realizing the full potential of GLSL. However, 

when compared to operating system specific (e.g., Microsoft Accelerator, HLSL, etc) 

or GPU hardware specific (e.g., CUDA) shaders, GLSL provides the flexibility of 

working with various operating systems and graphics hardware.  
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5.3 Vertex and Fragment Shaders 
 

Both vertex and fragment shaders can provide hardware acceleration for execution of 

specific portions of a PSO code. However, marked differences between the two 

necessitate careful consideration of how to proceed. Output from a vertex shader is sent 

as input to the fragment shader (as seen in the graphics pipeline, Figure 16 and Figure 

17), which in turn produces usable output to the main application. In other words, using a 

vertex-shader is a two-step process. Output from the fragment shader can directly be 

passed into the main application. Additionally, the fragment shader computes interpolated 

pixel values for the data provided from the vertex shader causing a possible loss of data 

or precision. Therefore, a logical choice is to use a fragment shader for this research. 

 

5.4 Formulation for GPU Computations 
 

Shaders typically work very well with two dimensional textures (analogous to 2D arrays 

on CPUs). Although 1D and 3D arrays are supported by GPUs, it is typically faster to 

compute and operate on 2D textures. Since the primary data holders in PSO are swarm 

members and their locations in the design space, it is a logical first step to create a 2D 

texture that can hold the design variable values for all swarm members. Older OpenGL 

releases (pre 2.0) are compatible only with square textures (i.e. of size 2n – 32, 64, 128, 

etc). Therefore, a 2D texture of size 40 x 55 previously required creation of a texture of 

size 64 x 64 where unused texture coordinates would be filled with zeroes. Although this 

approach is not a very efficient procedure, it previously served as a good work around to 
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deal with operations on non-square textures. The latest release of OpenGL however 

addresses this issue and can handle arbitrary rectangular textures, where texture memory 

can be fully utilized, and hence used for implementation in this research. 

 

The first step in transferring data to the GPU is to prepare OpenGL for off-screen 

rendering through a Frame Buffer Object (FBO). Graphical objects typically are 

represented by 8-bit precision each for red, green, blue and alpha channels on a graphics 

window (computer screen). The purpose of a frame buffer object is to set up off-screen 

computations in a 32-bit floating-point precision manner and eliminate 8-bit precision for 

the red, green, blue and alpha channels. The next step is to define appropriate arrays and 

textures for facilitating inputs and outputs between CPUs and GPUs. The format of the 

textures created is GPU hardware specific. For example, the texture format on an 

NVIDIA GPU is denoted by ‘GL_FLOAT_R32_NV’ and a texture format on ATI GPU is 

denoted by ‘GL_RGBA_FLOAT32_ATI’. Additionally, an orthogonal projection and a 

viewport are needed to provide a one-to-one correspondence between geometry 

coordinates (used in rendering) and texture coordinates (data input) and pixel coordinates 

(data output). All these parameters can be set while initializing the FBO. 

 

Design variables for each swarm member are stored in an array and uploaded into the 

GPU memory as a rectangular texture. The design variable values for each swarm 

member are filled into each column of the rectangular texture. Figure 18 shows an 

example ‘design variable texture’ of size nxm with the data entry and storage sequence 

indicated by dashed arrows within the cells. 
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Figure 18 Data Entry Sequence in a Texture and its Use for Objective Function 
Evaluation 

 

In the design variable texture, ‘m’ is the number of swarm members and ‘n’ is the number 

of design variables. The lower rectangular ‘objective function texture’ of size 1xm holds 

the objective function values computed from each column of swarm members 1 through 

m from the design variable texture (Multiple Data). Each objective function texture entry 

requires a column of information (1 through n) from the design variable texture. 

 

5.5 GPU Implementation 
 

In a PSO optimization routine, the bulk of the computational work comes from objective 

function evaluations. Thus, it was theorized that if objective function evaluations were 

delegated to the GPU, the efficiency of PSO would increase due to its data parallel 
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architecture. Although the costs of accessing the main memory on a CPU for input/output 

of data into the GPU are high, the benefits of data parallelization would outweigh these 

CPU-GPU network latencies. An overview of the GPU implementation of PSO with 

digital pheromones is outlined in Figure 19. 

 

The GLSL initialization phase includes preparing the GPU for computations within the 

framework explained in section 5.4. Therefore, this stage involves defining and creating 

textures for off-screen computations. Design variables for each swarm member are stored 

into an array that automatically fills the design variable 2D texture as explained through 

Figure 18. The fragment shader is then invoked to perform per-pixel objective function 

evaluations. The fragment shader program consists of instructions to compute the 

objective function and is executed via rendering a quadrilateral to an off-screen buffer 

initialized in FBO. Therefore, with a single instruction, computations are performed on 

multiple data (swarm members) at once to compute the objective function. 
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Figure 19 Flowchart for GPU Hardware Acceleration of PSO with Digital Pheromones 
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5.6 Percentage of GPU Vs CPU Usage 
 

Current generation GPUs are not equipped to perform double precision floating point 

operations. Hence, the GPU implementation for this research is limited to single precision 

floating precisions. Therefore, depending upon the objective function sensitivity, there 

may be loss in precision. To account for this, the developed code is designed to compute 

objective function values on CPU and GPU on a percentage basis. This means that a user 

can specify the percentage of objective function evaluations that can take place on the 

CPU and GPU. For example, if a high precision is desired, a 30% GPU-CPU percentage 

can be specified where objective function are evaluated three out of 10 iterations on a 

GPU and seven out of 10 iterations on a CPU. Conversely, a user could specify a 90% 

GPU-CPU percentage where objective function evaluations on nine out of 10 iterations 

are carried out on a GPU and one iteration is carried out on the CPU, if efficiency gains 

are a more important goal. 

 

5.7 Implementation Specifics 
 

During the initial implementation stages, temporary array variables were defined to store 

design variable values and then used in computing per-pixel objective function values. 

Therefore, a temporary array of size 10 was defined to compute the objective function 

value of dimensionality 10. Though this approach did not pose a problem when solving 

lower dimensional problems, the GPU ran short of temporary internal registers as the 

dimensionality of the objective function increased. Registers are place holders for 
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converting GLSL code into a machine specific list of instructions. The available number 

of these registers is typically limited by the graphics hardware type. For example, the 

GPU used for the test problems supported only 32 internal registers but the Griewank 

function required more since there were 50 design variables and hence returned an error. 

To solve this problem, the temporary array variable definition was replaced by defining a 

single variable that performed a run-time texture look-up, which avoided redundant use 

of internal registers. This procedure turned out to be faster and efficient means to perform 

GPU computations. 

 

When comparing solutions from CPU and GPU in the initial stages of GLSL 

implementation, it was observed that a number of trial runs on the GPU resulted in 

identical solution values (including design variable values and solution times). However, 

this was not observed on the CPU implementation. The solution values resulting from a 

CPU are independent in each trial run. Apparently, each GPU trial run did not have 

enough information to generate a distinct random seed for random number generation of 

design variables on the CPU. To avoid this problem, the seed for random initialization of 

design variable values was made a function of the current trial run, thereby ensuring a 

different seed in each run. This forced a different seed value in each run resulting in a 

distinct solution in each GPU trial run. 
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6 Constrained Optimization 
 
 
The methods developed and explained in chapters three through five provide a promising 

potential for digital pheromones to solve n-dimensional multimodal unconstrained 

optimization problems. However, realistic design problems are usually characterized by 

numerous inequality and equality constraints. To be considered as a practical 

optimization tool, it is imperative to prove that digital pheromones can effectively assist 

PSO in solving constrained optimization problems as well. This chapter is dedicated to 

applying digital pheromones within PSO to solve constrained optimization problems. 

 

6.1 Methods to Solve Constrained Problems 
 

A general constrained problem with a single objective function F(X) is given by equation 

(11) as shown below, where g(X) represents ‘m’ inequality constraints and h(X) 

represents ‘l’ equality constraints: 

Minimize, 
F(X) 

Subject to: 
gj(X) ≤ 0, j=1, m 

 
hk(X) = 0, k=1,l 

(11) 

 

A solution to a constrained optimization problem should necessarily satisfy three 

optimality conditions laid out by Kuhn and Tucker in 1950s [109] as shown in equations 

(12) (13) and (14). These conditions have been the guiding principles to solving any 
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constrained optimization problem. Figure 20 shows a 2-D objective function with four 

inequality constraints. 

 
Figure 20 Optimality conditions for a constrained optimization problem 

 

The first criterion that a design point should satisfy for being a solution is that it should 

be within the feasible region. This is given by Kuhn-Tucker’s first condition of optimality 

as shown in equation (12).  

X* (design vector that minimizes F(X) ) is feasible (12) 
 

Also, the product of λj and gj(X) should be zero as denoted by equation (13). λj is called 

the Lagrange multiplier for the jth constraint. A Lagrange multiplier indicates the rate at 
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which the objective function value changes with a corresponding rate of change in the 

constraint value. When a constraint is active, the value of gj(X) becomes zero and the 

corresponding λj becomes non-zero. If a constraint is satisfied but not active, the 

Lagrange multiplier reduces to zero while the corresponding gj(X) is non-zero. 

0 m,:1j    ,0*)( ≥== jjj Xg λλ  (13) 
 

To improve in the design, the point A (X1, X2) should move in the direction of decreasing 

objective function while being in the feasible region. This region is shown by the usable-

feasible sector in figure 19. If a design point is not within this usable-feasible region, it 

either violates a constraint or increases the objective function or both. Let a direction ‘S’ 

denote a direction that the point ‘A’ takes to improve in the design. At the point of 

optimality, the direction of ‘S’ is perpendicular to the tangent made by the objective 

function contour and the constraint boundary so that )(XF∇  and )(Xg∇λ are exactly 

equal and opposite to each other. This is given by Kuhn-Tucker’s third condition of 

optimality as shown in equation (14). This third condition (14) governs that no further 

move is available that will decrease the objective function while maintaining constraint 

feasibility. 

∑ ∑
= =

+ =∇+∇+∇
m

j

l

k
kkmjj XhXgXF

1 1
0*)(*)(*)( λλ  

λj ≥ 0 
λm+k unrestricted in sign 

(14) 

 

A number of methods have been developed in the past to solve n-dimensional constrained 

optimization problems including sequential linear programming/cutting plane method 

[110], the method of feasible directions [111], and generalized reduced gradient method 
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[112] [113]. Another more popular approach for solving constrained optimization 

problems are through employing Sequential Unconstrained Minimization Techniques 

(SUMT). 

 

As the name SUMT indicates, solving constrained optimization problems requires the 

solution of several unconstrained minimization problems, where the original constrained 

problem is typically substituted by a sequence of unconstrained sub-problems, called 

pseudo objective functions. The general strategy to solve constrained optimization 

problems would be to minimize the pseudo objective function as an unconstrained 

problem but impose penalties for constraint violations. 

 

A pseudo objective function is shown in equation (15), where F(X) is the original 

objective function and P(X) is the penalty function whose form depends on the SUMT 

technique used. ‘rp’ is a scalar that determines the magnitude of the penalty imposed on 

constraint violations. 

)()()( XPrXFX p+=Φ  (15) 
 

6.1.1 Exterior Penalty Function Method (EPF) 
 

The EPF methods typically yield feasible optimum values for extremely large rp values 

but potentially yields numerically ill-conditioned formulations, and hence are generally 

avoided in numerical methods, especially population based heuristic methods. On the 
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other hand, interior penalty function methods have the potential to reach discontinuous 

spaces, especially at constraint boundaries. 

 

The EPF method is the simplest to implement, which penalizes the objective function 

when constraints are violated. A typically used penalty function P(X) in an exterior 

penalty function method is given by equation (16) below [1] [2] [3]. 

[ ]{ } [ ]∑ ∑
= =

+=
m

i

l

k
kj XhXgXP

1 1

22 )()(,0max)(  (16) 

 

It can be seen from the equation that no penalty is imposed when all constraints are 

satisfied, but the square of the constraint is included when one or more constraints are 

violated. With a smaller value for ‘rp’, the pseudo objective function Ф(X) can easily be 

minimized but potentially yields large constraint violations. On the other hand, a large 

value for ‘rp’ can ensure near satisfaction of all constraints but can potentially be a 

numerically ill-conditioned problem. Therefore, ‘rp’ is started small and increased by a 

small factor and Ф(X) is minimized each time beginning the optimization from the 

previous solution. 

 

In addition to possible numerical ill-conditioning, another important disadvantage with 

the EPF method is that any optimization routine that is stopped prematurely could be 

unusable because the design points move from infeasible to feasible regions, and a design 

point used before convergence is not guaranteed to satisfy the constraints. 
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6.1.2 Interior Penalty Function Method (IPF) 
 

The IPF method, as opposed to EPF method can provide a series of improving designs 

with each pseudo function optimization. IPF method penalizes the objective function as 

the design points approach constraints, and violations are not allowed. Thus, all design 

points during a solution run are feasible. The penalty function typically used in the IPF 

method is shown in equation (17) below [1-3]: 
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Equation (18) shows the pseudo objective function of IPF. The second term on the right 

hand side in equation 15 is used to penalize inequality constraints and the third term is 

used to penalize equality constraints. The inequality penalty term introduces a new 

penalty parameter, rp’.  This term goes from a larger to smaller value (e.g., 20 to 1 during 

a solution run), while the rp penalty parameter increases from small to large, exactly as it 

does in the EPF method. 

 

Although the design points in this method are always in the feasible region and 

improving in objective function value every iteration, this comes at the cost of creating 

more complex minimization problems. Also, care must be taken to avoid function 

discontinuities at the boundaries of gj(X) = 0 in the pseudo objective function. 
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6.2 Augmented Lagrange Multiplier (ALM) Method 
 

Extended interior penalty function methods (linear extended penalty function [114] [115], 

quadratic extended penalty function [116], variable penalty function methods [117]) 

incorporate the best features of interior and exterior penalty function methods, but still 

suffer from many of the same drawbacks as EPF and IPF. The Augmented Lagrange 

Multiplier (ALM) method is another SUMT method with distinct advantages over other 

constrained minimization techniques and is explained in this section. 

 

The ALM method was originally developed for addressing equality constrained problems 

and later extended to solve inequality constraints. For a Lagrangian developed for an 

equality constrained problem, as shown in equation (19), the Kuhn-Tucker conditions 

require that the stationary conditions of L(X, λ) and feasibility requirements are the 

necessary conditions for optimality. 
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This also means that the minimum of the Lagrangian subject to the equality constraints 

defined in the problem provides the solution to the original objective function. Thus, a 

pseudo objective function can be built from equation (19) that can be solved using an 

exterior penalty function approach. For an equality constrained problem, the pseudo 

objective function is given by equation (20), where A(X, λ, rp) is referred as the 

augmented Lagrangian. 
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With a similar explanation for inequality constraints as well, the general augmented 

Lagrangian for a constrained (inequality and equality) problem is given by equation (21) 

[1-3]. 
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Therefore, minimizing the augmented Lagrangian is equivalent to minimizing the 

original objective function when the Kuhn-Tucker’s necessary conditions for optimality 

are imposed. The first summation term after F(X) in equation (21) correspond to 

inequality constraints where, ψ [118] is given by equation (22). The second summation 

term in equation (21) corresponds to the penalty function term for equality constraints. 

 

To minimize the augmented Lagrangian, a penalty factor of ‘rp’, on each constraint, is 

imposed, just as any other penalty function method. With appropriate Lagrange 

multipliers (λ) known, one unconstrained minimization of the pseudo objective function 

is sufficient. Since these multipliers and penalty factors ‘rp’ are typically unknown before 

hand, a series of unconstrained minimizations are carried out to arrive at the appropriate 

Lagrange multipliers and hence the solution of the actual objective function. 

 

The update relations for the Lagrange multipliers, λ are shown in equation (23) for 

inequality constraints and equation (24) for equality constraints. 
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Some of the distinct advantages of using ALM are: a) the inclusion of Lagrange 

multipliers to speed convergence, b) the penalty parameters play far less important role in 

determining convergence and therefore the method is insensitive to the value of rp, c) the 

starting design vector need not necessarily be feasible, and d) the non-zero values of 

Lagrange multipliers identify active constraints automatically. Together with the 

geometric significance of ALM for equality and inequality constraints, the above 

advantages over other penalty function methods make it a very favorable candidate for 

implementation in PSO with digital pheromones.  

 

A series of unconstrained problems are required to be formulated and PSO implemented 

on each to arrive at an appropriate combination of Lagrange multipliers that minimizes 

the original objective function. The first approach would be is to arrive at a combination 

of Lagrange Multipliers at the end of solving a pseudo objective function, and use it for 

the subsequent pseudo objective function. On the other hand, if a reasonable 

approximation in solving the pseudo objective function is acceptable, it is possible for 

more frequent Lagrange multiplier updates through limiting the number of pseudo 

objective function iterations or imposing a loose convergence criterion on the pseudo 

objective function. Since there are more Lagrange multiplier updates, the probability of 

finding the optimum combination of the multipliers that can solve the actual objective 



81 
 

  

function increase and hence a faster solution time. In this research, both approaches are 

investigated, and the results are presented. 

 

The description for ALM is well explained in Gill et al [3], and has been used as the basis 

for the development of the method. Figure 21 shows a flow chart of the ALM 

implementation in PSO with digital pheromones. At the beginning, a population swarm 

with an initial selection of design variables X, Lagrange multipliers ‘λ’s, and penalty 

parameter ‘rp’ for each of the design constraints, a positive integer ‘amax’, serving as an 

upper bound of the total number of unconstrained minimizations and ‘pmax’ to limit the 

number of iterations during pseudo objective function minimization are initialized. Upon 

evaluating the actual objective function value, a feasibility check followed by a 

convergence check is performed to determine if it attained the optimum while satisfying 

all constraints. If either of feasibility or convergence is not attained, values of the ‘λ’s 

and ‘rp’ are updated. The algorithm stops if convergence is achieved or if the number of 

unconstrained minimizations exceeds the maximum limit (amax). A problem is converged 

when the difference in solutions is within a tolerance for certain number of consecutive 

iterations. With updated ‘λ’s and ‘rp’, a new unconstrained pseudo objective function is 

constructed and solved using PSO with digital pheromones. 
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Figure 21 Flowchart for ALM implementation in PSO with digital Pheromones 
 

Two approaches were implemented to handle solution of the pseudo objective functions: 

a) Pseudo objective function was solved to convergence before proceeding to the next 

pseudo formulation and b) a limit was put on the number of pseudo iterations to facilitate 

more frequent Lagrange multiplier updates. Apart from this change, the remainder of the 

pseudo objective function solution adheres to the process outlined in Figure 10.  

 

With a single design point searching the design space, as in the case of most deterministic 

methods, the solution from a current pseudo objective function minimization is used as an 

No 

Start

Initialize X, λ, rp, rp Max, a, amax, p, pmax 

Yes Converged? Stop 

No 

Calculate actual objective function 

Update λ and rp 

Use PSO to minimize A(X, λ, rp) 
gBest retained from pseudo iteration 

Feasible? 

Yes 
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input for the next pseudo minimization. Since there is a population of points in PSO, the 

gBest from the current pseudo objective minimization is used in the subsequent pseudo 

objective minimization and the remaining swarm members are randomly initialized. 

Therefore, out of ‘n’ swarm members, (n-1) are randomly initialized and one swarm 

member is retained (the gBest from previous pseudo minimization). The solution is 

converged if the difference in actual objective function values over a set number of 

iterations were within a specified tolerance limit, provided the constraints were satisfied. 

 

When the constraints are satisfied during the convergence check, the penalty values are 

decreased by a factor of 0.5 and increased by 2.0 when they are violated. This 

formulation is applied to both inequality and equality constraints and was adopted from 

Sedlaczek and Eberhard [119]. Equations (25) and (26) portray these update schemes 

with the lowest values for ‘rp’ bounded at 1.0. 
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7 Results and Discussion 
 

7.1 Overview 
 

The use of digital pheromones within PSO is theorized to improve the accuracy, 

efficiency and reliability of particle swarms. This chapter demonstrates this capability 

through testing the developed methods on different test problems with varied 

dimensionality and modality (unimodal and multimodal). Although it is possible to 

compare results of digital pheromone PSO against published results from another 

evolutionary method such as a GA, differences in computational environments 

(processing speeds, memory capacities, processor loads) can be an unfair comparison 

measure. Since this research is aimed at improving the performance of PSO, results from 

digital pheromone implementation are therefore benchmarked against a basic PSO, as 

outlined in section 1.6. 

 

The algorithmic implementation was made in C/C++ on a RedHat Linux computing 

environment. User defined parameters (c1, c2, c3, inertia weight decay, move limit decay, 

inertia weight decay, radius of influence, etc) were provided as an input to the algorithm 

run-time using xml configuration files (see xml specifications [120]). Also, other 

information such as the maximum number of runs and iterations, convergence tolerances, 

test problem specifications that include number of design variables, number of 

constraints, lower and upper limits for the test problems was also provided in the xml 

configuration file. 
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7.2 Test Problem Description 
 

Table 3 is a broad overview of test problem numbers used for testing a specific method’s 

performance. Section 7.2 describes these test problems with their published solution 

values in detail. 

Table 3: List of problem numbers used for testing the developed methods 

Method Description in 
Chapter # 

Test Problems 
used 

Digital pheromone implementation of PSO 3 7.2.1 – 7.2.10 
Statistical Analysis 7 7.2.1 – 7.2.4 

Coarse Grain Parallelization 4 7.2.5 – 7.2.10 
Shared Pheromone Parallelization 4 7.2.5 – 7.2.10 

GPU Parallelization 5 7.2.5 – 7.2.10 
Constrained Optimization 6 7.2.11 – 7.2.16 

 

The following are the test problems used for evaluating the performance of digital 

pheromones within PSO. Full mathematical descriptions for these test problems can be 

found in [121-123]. 

7.2.1 Six-hump Camelback 2D function 
 
This is a multimodal optimization problem with six local minima, two of which are 

global minima. Figure 22 shows the contours of the function. 

  

Figure 22 Six-hump Camelback Function 
(Figure Courtesy: http://www.geatbx.com) 
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The optimization problem statement is: 

Minimize: 
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7.2.2 Himmelblau 2D function 

This is a multimodal optimization problem with four local minima. Figure 23 shows the 

contours of the function. 

Figure 23 Himmelblau function 
(Figure Courtesy: http://en.wikipedia.org/wiki/Himmelblau's_function) 
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7.2.3 Rosenbrock 5D function 
 
Rosenbrock’s valley is also known as the Banana function. The global optimum is inside 

a long, narrow and parabolic shaped flat valley. Arriving at the neighborhood of the 

valley is trivial, but converging to the global optimum is difficult. This function is 

scalable to any number of dimensions. In this research, a five dimensional Rosenbrock 

function was used as a test case. Figure 19 shows a two dimensional Rosenbrock’s 

function to understand how the function behaves. 

Figure 24 Rosenbrock’s Valley Function 
(Figure Courtesy: http://www.geatbx.com) 
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7.2.4 Ackley’s 10D Path Function 

Ackley’s path function is a highly multimodal problem and is widely used as a test 

problem for unconstrained optimization methods. The problem seems to look like a 

unimodal problem with its bounds (-32.768 to 32.768), but the multimodal nature of the 

function becomes apparent when the bounds are decreased to (-2, 2). This function is 

scalable to any number of dimensions. Problem 7.2.4 will represent a 10 dimensional 

Ackley’s path function. Figure 25 shows the two dimensional Ackley’s path function. 

Figure 25 Ackley’s Path Function 
(Figure Courtesy: http://www.geatbx.com) 
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7.2.5 Dixon and Price 15D function 

This function is scalable to any number of dimensions and a 15 dimensional version was 

used in this research. Figure 26 shows the two dimensional Dixon and Price function. 

Figure 26 Dixon and Price Function 
(Figure Courtesy: 

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm) 
 

The optimization statement for the problem is as follows: 
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Published Solution: 
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7.2.6 Ackley’s 20D Path Function 

This test problem is the same as described in section 7.2.4 except that the number of 

design variables in this case is 20. Therefore, the published solution is 0.0000 and the 

design variable values that minimizes the path function are also 0.0000 as well. It was 

treated as a separate test case in this research and provided its own problem number for 

easy reference. 
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7.2.7 Levy 25D Function 

This function is scalable to any dimensions and a 25 dimensional Levy function [124] 

was used as one of the test cases in this research. 

The optimization problem statement is: 
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Published solution: 
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7.2.8 Sum of Squares 30D Function 

This function is scalable to any number of dimensions and a 30 design variable version 

was used for this research. Figure 27 shows a two dimensional sum of squares function. 

The optimization problem statement is: 
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Figure 27 Sum of Squares Function 

(Figure Courtesy: 
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm) 

 

7.2.9 Sphere 40D Function 

This is similar to the sum of squares function except that there is no multiplication factor 

(i+1) in the summation term. It is also known as De-Jong’s function. In this research, a 40 

dimensional sphere function was used. Figure 28 shows a two dimensional sphere 

function.  

The minimization problem is given by 
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Figure 28 Sphere (De Jong’s) Function 

(Figure Courtesy: 
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm) 

 

7.2.10 Griewank’s 50D Function 

Griewank’s function is a highly multimodal problem and many optimization methods 

frequently get trapped in local minima. A 50 dimensional Griewank’s function was used 

as one of the test cases in this research. Figure 29 shows a two dimensional Griewank’s 

function. 
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Figure 29 Griewank’s Function 

(Figure Courtesy: 
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm) 

 

7.2.11 One Dimensional Two Inequality Constrained Problem 

This is a simple one dimensional two inequality constrained test problem. The 

optimization statement is given by: 
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7.2.12 Two Dimensional Single Inequality Problem 

This is a two dimensional design variable problem subject to a non-linear inequality 

constraint. The optimization statement is given by: 
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7.2.13 Two Dimensional Two Inequality Problem 

This is a two dimensional design variable problem subject to a linear and a non-linear 

inequality constraint. The optimization statement is given by: 
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Published solution: 
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7.2.14 Four Dimensional Eight Inequality Constrained Weld Beam Problem 

This welded beam function is a standard constrained minimization test problem with 8 

inequality constraints [2]. Figure 30 shows the physical system of the weld beam 

problem: 
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Figure 30 Illustration of Weld Beam Problem 

(Figure Courtesy: [2]) 

The optimization statement is: 
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The published solution for this problem is: 2.386 and the solution set X* is: {0.2455, 

6.1960, 8.2730, 0.2455}. 

7.2.15 Golinski’s Speed Reducer Problem 

This is a seven dimensional eleven inequality constrained test problem, and is typically 

used as one of the standard test cases to evaluate the performance of a constrained 

optimization method. The speed reducer, as shown in Figure 31, represents a simple gear 

box that is typically utilized in airplane applications.  

 

The reducer consists of a gear-pinion mounted on two shafts. Each shaft is supported by 

one bearing at each end. A typical system includes gear, pinion, shafts and bearings 

enclosed in a common housing. 
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Figure 31 Golinski’s Speed Reducer 
 

The objective is to minimize the speed reducer weight while satisfying a number of 

constraints imposed by gear and shaft design practices. Table 4 shows a description of the 

design variables with its lower and upper bounds. 

Table 4 Description of design variables for Golinski’s speed reducer problem 
Design Variable Description Lower Limit Upper Limit

x1  face width of gear, cm 2.6 3.6 
x2  teeth module, cm 0.7 0.8 
x3  # of pinion teeth 17 28 
x4  shaft length #1, between bearings, cm 7.3 8.3 
x5  shaft length #2, between bearings, cm 7.3 8.3 
x6  shaft diameter #1, cm 2.9 3.9 
x7  shaft diameter #2, cm 5 5.5 

 

The optimization statement is given by: 

 
 
Where the coefficients are given by: 
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Subjected to the following constraints (although 25 constraints are listed, 14 of them 

represent the lower and upper bounds for the design variables thereby reducing the total 

number of constraints to 11): 

 
Where the coefficients for the constraints are given by: 
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Published solution: 
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7.2.16 Himmelblau 5D Constrained Problem 

This is a five dimensional constrained version of the Himmelblau function [21]. It is a 

minimization problem with 7 inequality constraints and the optimization statement is: 
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The published solution for this problem is: -31025.56142 and the solution set X* is: 

{78.0, 27.0, 27.070997, 45.0, 44.96924255}. 

7.3 Results from Digital Pheromone Implementation in PSO 

7.3.1 Test Problem Settings 
 

Problems 7.2.1 – 7.2.10 as shown in Table 5 were used as test cases to evaluate the 

digital pheromone implementation within PSO. The dimensionalities (i.e. number of 

design variables) of the test problems are also shown in the table. Of these, problems 

7.2.1 – 7.2.4 were used for determining the default values for the new user defined 

parameters introduced by the implementation of digital pheromones.  

Table 5 Test Problem Matrix for serial implementation of PSO with digital pheromones 
Problem Test Problem # of Design Variables 

7.2.1 Camelback function 2 
7.2.2 Himmelblau function 2 
7.2.3 Rosenbrock function 5 
7.2.4 Ackley’s path function 10 
7.2.5 Dixon and Price function 15 
7.2.6 Ackley’s path function 20 
7.2.7 Levy function 25 
7.2.8 Sum of Squares function 30 
7.2.9 Spherical function 40 
7.2.10 Griewank function 50 
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Several values were for the user defined parameters as shown in Table 6. There are 128 

unique combinations of parameters and each was used to solve a problem 20 times, to test 

repeatability of the method. This was performed for problems 7.2.1 - 7.2.4, yielding a total of 

10,240 independent solution runs. The remaining test problems (7.2.5 – 7.2.10) were then 

solved with the pheromone parameters that consistently provided the best answers and 

performance measures. 

Table 6 Digital Pheromone Parameters 
Pheromone parameters Combination of values tested # Combinations

c3 decay (0.5%) No, Yes (decayed once every 10 
iterations) 2 

c3 10.0, 5.0, 2.0, 1.0 4 
Pheromone level decay, λP 0.995, 0.95, 0.9, 0.85 4 

Move limit decay, λML 0.995, 0.95, 0.9, 0.85 4 
 

The values for c3 ranged from 1.0 through 10.0 to investigate if the pheromone influence 

needed to be large or small compared to pBest and gBest. Also, it was useful for studying 

the effect of the pheromone decay factor. The influence of pheromone levels and move 

limits were tested with decay rates ranging from 0.995 (0.5%) to 0.85 (15%) of their 

values in the previous iteration. The lower limit of the pheromone level decay was 

capped at 15% since a significant drop in the pheromone level could cause the influence 

of pheromones to be counter-productive for the swarm in reaching the global optimum. A 

similar reason was attributed for setting a lower bound on the move limit decay at 0.85. 

 

The solutions obtained for test problems 7.2.1 – 7.2.4 were ranked in order of smallest 

average objective function value. Conclusions were made based on the results (in terms of 

solution accuracy compared to published solutions) and suitable values for pheromone 
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parameters were determined. These parameters were then used into the developed method to 

solve problems 7.2.5 – 7.2.10. 

 

The solutions (accuracy and solution times) from solving these test cases with 

experimentally determined digital pheromone parameters were compared against those 

obtained from a basic PSO. The swarm size was defined as 10 times the number of 

design variables, and was capped at a maximum of 500. The test problems were 

considered converged when the difference in solutions was within 0.001 for 10 

consecutive iterations. All test cases were performed on a PC running the RedHat 

Enterprise Linux Operating System with an Intel Xeon processor and 2GB of system 

memory. 

7.3.2 Results and Discussion 
 

Table 7 provides a summary of the results obtained from solving problems 7.2.1 – 7.2.4. 

Problems solved using a basic PSO are designated with a “B” in parentheses next to the 

problem number and those using pheromones have a “P”. It tabulates the best ranked 

solutions from 128 combinations of pheromone parameter values. For example, the 

pheromone parameter values determined for the camelback 2D problem (problem 7.2.1) were 

c3 = 1, c3Decay = NO, pheromone decay factor = 0.995 and maximum velocity decay = 0.85, 

which resulted in an optimum solution of 1.031618. 

 

It can be seen from Table 7 that all pheromone parameters consistently produced an average 

objective function value less than that from the basic PSO. Since averages are not a true 
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measure for performance, two other columns – the smallest objective function value 

achieved, and the standard deviation are also noted in the table. The smallest objective 

function is the lowest value obtained in 20 trial runs for each test problem. The results 

demonstrate that the use of digital pheromones to search the design space provided 

substantially more information for the swarm to investigate the design space and attain the 

global optimum at a higher accuracy than a basic PSO, even when different parameter values 

were used. Although the solution value changed, it was still substantially better than using a 

basic PSO. 

Table 7 Solution averages obtained from solving preliminary test problems 

Prob. 
No. 

Average 
Objective 
Function 

Smallest 
Objective
Function 

Standard 
Deviation

Average 
Duration 
per run 

(sec) 

Average
No. of 

Iterations
c3

c3 
decay λP λML 

7.2.1 (B) -1.018154 -1.030545 0.01049 0.40 19.65 - - - - 
7.2.1 (P) -1.031618 -1.031628 0.00001 0.43 21.25 1 NO 0.995 0.85 

          
7.2.2 (B) 0.473549 0.000192 0.687921 0.43 21.25 - - - - 
7.2.2 (P) 0.000168 0.000001 0.000234 0.61 30.55 1 NO 0.995 0.85 

          
7.2.3 (B) 0.117105 0.000186 0.16704 1.06 21.1 - - - - 
7.2.3 (P) 0.000371 0.000000 0.00042 1.57 30.8 2 YES 0.95 0.95 

          
7.2.4 (B) 3.542873 0.002991 3.22811 10.26 102.5 - - - - 
7.2.4 (P) 0.001433 0.000661 0.00086 8.21 79.5 2 NO 0.85 0.9 
Legend: 7.2.1 – Camelback 2D, 7.2.2 – Himmelblau 2D, 7.2.3 – Rosenbrock 5D, 7.2.4 – 
Ackley’s path 10D. (B) – Results from basic PSO, (P) – Results from PSO with Digital 
Pheromones implemented 
 

It should also be noted that PSO with digital pheromones required longer times to solve the 

Camelback 2D, Himmelblau 2D, and Rosenbrock 5D problems. This behavior was found 

true in all 128 test runs. The reason is attributed to the additional number of pheromone 

operations needed. However, as the complexity of the objective function in terms of the 

number of design variables increased, the pheromones provided more information about the 
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design space to the swarm thereby converging in significantly less iterations. This is evident 

from the average solution times of the Ackley 10D problem where the solution duration with 

digital pheromones was smaller compared to that of the basic PSO. This suggests that 

decreased solution times become more prominent as the complexity of the optimization 

problem increases. 

 

It can be seen from the table that the camelback 2D and Himmelblau 2D problems performed 

best with a c3 value of 1.0, but Rosenbrock 5D and Ackley 10D performed best with c3 = 2.0. 

Although it was inconclusive, it provided some evidence for requiring a higher value for c3 as 

the dimensionality of the problem increased. Also, Rosenbrock 5D required a decay in the c3 

value with the progress in iterations, while other test problems did not. In addition, the 

average number of iterations for Rosenbrock 5D was 30.8, which means that the value of c3 

was decayed only three times by a factor of 5% (since decay is performed once every 10 

iterations). Although solution sets from all pheromone parameter combination possibilities 

are not shown in this paper, it was observed that the performance of the method was 

influenced by the value of c3 but relatively insensitive to decay in c3. For example, in the 

Ackley 10D (problem 7.2.4), the pheromone parameters that ranked second, in terms of 

average objective function value, required a c3 value of 10.0 to produce a solution of 

0.001496, as opposed to the parameter values that produced a solution of 0.001433. The 

solution accuracy between the two parameter sets was significant only in the fifth decimal 

place. However, it was noticed that in the first 10 ranked solution sets for Ackley 10D, four 

out of 10 cases required a c3 value of 10 and three out of 10 cases required a c3 value of 5.0. 

This suggests that higher dimensional problems might require a higher value of c3 so as to 
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increase the influence of pheromones over the swarm. From these observations a value of c3 

ranging from 2.0 to 5.0 is suggested. 

 

The results also suggest that a value of 0.9 to 0.95 is an appropriate choice of value for the 

pheromone decay factor. The test cases revealed that a value greater than 0.95 or less than 

0.9 allowed the pheromone component to become too large or small compared to the pBest 

and gBest components in the velocity vector. To achieve the maximum benefit from digital 

pheromones, a balance needs to be in effect for all of these components of the velocity 

vector. 

 

A pattern was also observed in the value of the move limit decay for the top 10 ranked 

solutions for all the test problems. Camelback 2D and Himmelblau 2D required a move limit 

decay value of 0.85, Rosenbrock 5D required 0.95, and Ackley 10D required 0.9 for attaining 

global optimum solutions. Although the scales of objective function values for each test 

problems are different, a range of values between 0.85 and 0.95 seemed to be appropriate. It 

is to be noted that although pheromone parameters are suggested in this section, they are 

user-defined parameters that can be altered to suit to a specific optimization problem. 

 

Based on the knowledge gained about the pheromone parameters, the following values were 

used for solving problems 7.2.5 – 7.2.10: 

- c3 = 5.0 with no decay,  

- Pheromone decay = 0.95, and  

- Move limit decay = 0.95 
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Table 8 provides the summary of results from these test runs. The table shows that digital 

pheromones when used in PSO consistently displayed superior performance when compared 

with solutions from a basic PSO. 

Table 8 Summary of results from solving problems 7.2.5 – 7.2.10 
Problem 

No. 
Solution 
Accuracy 

Objective Function Average
No. of 

iterations

Duration 
(secs/run) Average Smallest Std Dev

7.2.5 (B) 65% 48.366 0.0007 143.556 166.3 25.29 
7.2.5 (P) 85% 0.148 0.0003 0.466 92.0 14.72 

       
7.2.6 (B) 0% 4.658 2.659 2.740 166.7 16.899 
7.2.6 (P) 85% 0.171 0.003 0.418 143.3 15.095 

       
7.2.7 (B) 100% 0.143 0.131 0.041 96.5 24.819 
7.2.7 (P) 100% 0.132 0.130 0.001 40.8 11.289 

       
7.2.8 (B) 0% 16.301 0.521 48.692 212.45 66.10 
7.2.8 (P) 85% 0.084 0.006 0.128 138.25 46.46 

       
7.2.9 (B) 100% 0.033 0.0174 0.0078 162.65 68.35 
7.2.9 (P) 100% 0.002 0.0007 0.0007 85.15 39.38 

       
7.2.10 (B) 0% 1.189 1.056 0.133 186.1 99.014 
7.2.10 (P) 100% 0.008 0.003 0.005 158.1 93.801 

Legend: 7.2.5 – Dixon and Price function15D, 7.2.6 – Ackley’s path function 20D, 7.2.7 
– Levy function 25D, 7.2.8 – Sum of squares function 30D, 7.2.9 – Spherical function 
40D, 7.2.10 – Griewank function 50D. (B) – Results from Basic PSO, (P) – Results from 
PSO with Digital Pheromones implemented. 
 

Since the published solutions for most of the problems in Table 8 are 0.000, there was no 

measure for percentage accuracy. Therefore, a tolerance was given and accuracy was 

measured based on the number of times the obtained solution was within the tolerance limits. 

For example, a tolerance limit of +/-0.5 was assigned for a 20 design variable problem. If the 

solution was within this tolerance limit 85 times in 100 runs of the problem, the solution 

accuracy was 85%. 
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The solution accuracies noted in the table were within a tolerance limit of +/-0.5. The choice 

of 0.5 was not arbitrary. If the value was smaller than 0.5 basic PSO did not solve most of the 

problems. Thus, for some sort of comparison a slightly larger, but still sufficient tolerance 

was used. In all test cases, the solution accuracy of PSO with digital pheromones was either 

equal or superior when compared to basic PSO. For example, problem 7.2.6 (Ackley’s 20D), 

the basic PSO was not able to solve the problem whereas the pheromone PSO attained the 

solution within the specified tolerance limits 85 out of 100 runs.  

 

For the Dixon and Price function (problem 7.2.5) a solution accuracy of 65% was achieved 

by basic PSO. However, the average objective function value was 48.366, meaning that when 

the swarm did not locate the optimum within the tolerance limits, it was a very bad design 

point. The pheromone PSO method resulted in 85% accuracy with an average objective 

function value of 0.148 and a standard deviation of 0.466. So, even when the optimum was 

not located within the tolerance, the solution was still in the neighborhood of the optimum. A 

benefit, if restarting the method is an option. Also, the average duration per run was 

significantly lower for pheromone PSO when compared to basic PSO. 

 

The solution accuracy measure for the Levy function (problem 7.2.7) was essentially equal 

between basic and pheromone PSO. Both the methods solved the problem with 100% 

accuracy. Although the average, smallest and standard deviation between the methods was 

very close, there was almost a 50% decrease in the solution time for pheromone PSO. 
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The basic PSO failed to solve the 30 dimensional sum of squares function (problem 7.2.8) 

within the specified tolerance limit of +/- 0.5. The smallest objective function value returned 

was 0.521. However, the pheromone PSO solved the problem within the tolerance limits on 

all 20 trial runs along with improved average objective function value, standard deviation and 

duration. Given the unimodal nature of the test problem, the failure to solve the problem by 

basic PSO may be attributed to the high swarm size (300) causing substantial swarm activity 

negatively impacting convergence in the design space. The pheromone PSO on the other 

hand was relatively unaffected by the swarm size and converged faster when compared to 

basic PSO. 

 

Both basic PSO and pheromone PSO were able to solve the 40D spherical function (problem 

4.9) with 100% accuracy. However, as seen from the table, the average objective function 

evaluated by the pheromone PSO (0.002) was about 16 times better than the average 

objective function returned by basic PSO (0.033). Moreover, the solution time of pheromone 

PSO (39.38 seconds) was 42% faster when compared to basic PSO (68.35 seconds). 

Although the variation of the results in basic PSO was small, the pheromone PSO showed 

superior consistency as evident from the standard deviation of the objective function values. 

 

Pheromone PSO was able to solve the 50D highly multimodal Griewank problem (problem 

7.2.10) with 100% solution accuracy whereas the basic PSO could not reach the global 

minimum in any of the 20 runs. There was a 5% improvement in the solution duration as well 

and the standard deviation was significantly better than a basic PSO. 
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To emphasize that that the suggested pheromone parameters determined from problem 7.2.1 - 

7.2.4 were good default values, they were used to solve problems 7.2.5 – 7.2.10. However, 

fine tuning of the pheromone parameters could potentially produce superior solutions than 

those in Table 8. For example in problem 7.2.5, a non decaying c3 value of 5.0, a pheromone 

decay factor of 0.995 and a move limit decay of 0.95 produced a solution of 0.00534 when 

compared to 0.148 with the suggested pheromone parameters. This means that although the 

suggested values perform well, additional performance improvement can be realized through 

refinements in the pheromone parameters. 

7.3.3 Simulating Realistic Objective Functions 
 

The test cases presented thus far are academic in nature with easily computed analytical 

objective functions. They are not a true representative of the type of problems solved in 

industrial settings, where function evaluations can take a considerable amount of 

computational time. To test if longer function evaluation times have any impact on the 

performance of the developed method, a sleep time was added when evaluating the objective 

function. This was done to simulate an objective function with a longer evaluation time. 

Table 9 shows the solution times for solving Ackley’s path function of 20 design variables 

when sleep times of 0, 5, 10, and 20 milliseconds were added. The other parameter values 

used were c3=5.0, λP=0.95 and λML=0.95. 

Table 9 Summary of results for Ackley 20D with variable function evaluation time 
Sleep time 
(milli-secs) 

Basic PSO Pheromone PSO solution time 
% improved Avg Obj 

func 
Duration 

(sec) 
Avg Obj 

func 
Duration 

(sec) 
0.0 4.659 16.898 0.171 15.095 10.67 % 
5.0 4.622 115.671 0.146 103.148 10.83 % 
10.0 5.016 185.863 0.065 177.323 4.59% 
20.0 4.258 374.963 0.051 333.056 11.18% 



110 
 

  

The table summarizes average objective function values, solution times and the improvement 

in solution times between the basic and pheromone PSO from 20 solution runs. The results 

indicate that whereas the basic PSO attained a local minimum in all four sleep time scenarios, 

PSO with digital pheromones solved the problem with superior accuracy levels, very close to 

the global solution.  The time improvement for a 10 millisecond sleep time was only 4.59% 

but basic PSO converged prematurely. Also, about two times out of 20 runs, PSO with digital 

pheromones converged to a local minimum at ~1.5 which increased the average objective 

function value in the case of 0 and 5 millisecond sleep time. Overall, when compared to the 

performance of basic PSO in all sleep time scenarios, PSO with digital pheromones displayed 

substantial improvement. 

 

7.4 Statistical Analysis 
 

7.4.1 Test Problem Settings 
 

Four unconstrained test problems (problems 7.2.1 – 7.2.4) of varying dimensionality 

were used for performing hypothesis testing on their solution accuracy and solution 

times. These problems were solved using PSO with and without digital pheromones 35 

times each to ensure an acceptable normal distribution. Two hypotheses were tested for 

each test problem with and without pheromones: a) whether the solution accuracy of PSO 

with digital pheromones compare better against basic PSO, and b) whether the solution 

times of PSO with digital pheromones compare better against basic PSO. The hypothesis 

tests were performed at a 95% confidence level, or a 0.05 probability for type I error. 
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H0: μ1 - μ2 ≤ 0 (null hypothesis) 
Ha: μ1 - μ2 > 0 (research or alternate hypothesis) (27)

 

As shown in equation (27) (same as equation (8)), the null hypothesis (H0) states that 

basic PSO fares better in comparison to PSO with digital pheromones and the research 

hypothesis (Ha) states that PSO with digital pheromones has better performance 

characteristics than basic PSO. The five-step procedure for performing the hypothesis test 

was outlined in section 3.8.2, and was used for all four test cases. The pheromone 

parameter combinations are shown in equation (28). The tcritical value for 0.05 probability 

in error (95% confidence level) for 68 degrees of freedom obtained from t-distribution 

tables is -1.645. 

 
Combination 1: c3=2.0, λp = 0.85, λML = 0.85 
Combination 2: c3=5.0, λp = 0.95, λML = 0.95 
Combination 3: c3=5.0, λp = 0.85, λML = 0.95 
Combination 4: c3=5.0, λp = 0.85, λML = 0.85 

(28)

 
The swarm size used for each test problem was chosen as 10 times the number of design 

variables with a maximum set to 500. The test problems were considered converged 

when the difference in objective function value was within 0.001 for 10 consecutive 

iterations. The computing platform for the trial runs was workstation running the Red Hat 

Enterprise Linux Operating System, with a processor speed of 3.2GHz and 2GB of 

system memory. 

7.4.2 Results and Discussion 
 

Table 10 explains in detail the results obtained from performing hypothesis testing on the 

2D camelback function (problem 7.2.1) at a 95% confidence level. The first pheromone 
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parameter combination from equation (28) was used. From the table, n1 and n2 are the 

number of samples (trial runs) drawn from PSO with and without digital pheromones 

respectively. 

Table 10 Hypothesis test results for Camelback 2D function 
x1 = -1.0166 (solution mean of trial runs of basic PSO) 

x2 = -1.03152 (solution mean of trial runs of PSO with digital 
pheromones) 

Sp = 0.000167087 (from equation (10)) 
df = 68 (Degrees of freedom = n1 + n2 – 2) 

tcalculated = -1.145509941 (using equation (9)) 
tcritical (α=0.05) = -1.645 (from t-distribution tables with probability of error = α) 

 
It can be seen from table that tcalculated is greater than tcritical, which leads to the conclusion 

that the null hypothesis, H0 can be rejected. This means that the solution quality of basic 

PSO is not better than PSO when implemented with digital pheromones. Since there is no 

evidence to prove that basic PSO fares better than PSO with digital pheromones, the 

research hypothesis (Ha) that the solution quality of PSO with digital pheromones is 

better than a basic PSO is considered as ‘accepted’. The solution quality and solution 

timings for all test problems are estimated using the procedure laid out in Table 10. Table 

11 below summarizes the hypothesis testing of the camelback problem (problem 7.2.1) 

for solution accuracy and solution timings for all stated combinations of pheromone 

parameters. 

Table 11 Summary of hypothesis testing for Camelback 2D problem 
Test 

Problem Combination 1 Combination 2 Combination 3 Combination 4 

7.2.1 tcalc H0 tcalc H0 tcalc H0 tcalc H0 

Solution 
accuracy 

-1.145 
(> tcritical) 

R -1.567 
(> tcritical) 

R -1.685 
(< tcritical) 

A -2.288 
(< tcritical) 

A 

 
Solution 
Times 

-0.488 
(> tcritical) 

R 0.210 
(> tcritical) 

R -0.495 
(> tcritical) 

R -0.322 
(> tcritical) 

R 

Legend: R – Rejected, A - Accepted 
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This table shows that the null hypothesis, H0 is rejected in two different instances for 

solution times – when using pheromone parameter combination one and two. This means 

that the solution quality of basic PSO is not better than PSO with digital pheromones at a 

95% confidence level. The results from hypothesis testing of solution times also concur 

with the fact that digital pheromones has a positive influence in reducing the solution 

times when compared to basic PSO. However, with the pheromone parameter 

combinations three and four, the null hypothesis was accepted at 95% confidence level. 

That means basic PSO performed better when compared to PSO with digital pheromones 

in terms of solution quality. However, the null hypothesis is rejected for pheromone 

combinations three and four for solution times. While this hypothesis test demonstrates 

that not all suggested pheromone parameter combinations can be beneficial, it points to 

the fact that slight changes in the values for pheromone parameters substantially affects 

the performance of PSO when implemented with digital pheromones, especially in two-

dimensional optimization problems. 

 

Table 12 summarizes the hypothesis testing for the Himmelblau 2D function (problem 

7.2.2) for solution accuracy and timings for all stated pheromone combinations. 

Table 12 Summary of hypothesis testing for Himmelblau 2D problem 
Test 

Problem Combination 1 Combination 2 Combination 3 Combination 4 

7.2.2 tcalc H0 tcalc H0 tcalc H0 tcalc H0 

Solution 
accuracy 

-0.195 
(> tcritical) 

R -0.551 
(> tcritical) 

R -0.587 
(> tcritical) 

R -0.675 
(> tcritical) 

R 

Solution 
Times 

2.390 
(> tcritical) 

R 0.365 
(> tcritical) 

R 0.339 
(> tcritical) 

R 1.296 
(> tcritical) 

R 

Legend: R – Rejected, A - Accepted 
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The results from Table 12 shows that the calculated t value (tcalculated) is greater than tcritical 

for all pheromone parameter combinations. This means that the null hypothesis stating 

that basic PSO is better than PSO with digital pheromones can be rejected at an error 

probability of 0.05. Both the solution quality and solution times suggest that H0 can be 

rejected. Since there is no other evidence showing that basic PSO performs better, the 

research hypothesis that pheromone PSO performs better is accepted. 

 

Table 13 summarizes the hypothesis testing for the Rosenbrock 5D function (problem 

7.2.3) for solution accuracy and solution timings. 

Table 13 Summary of hypothesis testing for Rosenbrock 5D problem 
Test 

Problem Combination 1 Combination 2 Combination 3 Combination 4 

7.2.3 tcalc H0 tcalc H0 tcalc H0 tcalc H0 

Solution 
accuracy 

-0.721 
(> tcritical) 

R -1.128 
(> tcritical) 

R -1.184 
(> tcritical) 

R 0.640 
(> tcritical) 

R 

Solution 
Times 

1.089 
(> tcritical) 

R 1.017 
(> tcritical) 

R 0.797 
(> tcritical) 

R 0.552 
(> tcritical) 

R 

Legend: R – Rejected, A - Accepted 
 

Hypothesis testing for solution quality and solution times of Rosenbrock 5D problem 

showed that the null hypothesis can be rejected. The table shows that the tcalculated value 

was greater than tcritical for all suggested pheromone parameter combinations. Therefore, 

the null hypothesis stating that basic PSO performs better when compared to PSO with 

digital pheromones is rejected. Since there is no other evidence to prove that basic PSO 

can perform better, the research hypothesis stating that PSO with digital pheromones has 

better performance characteristics in terms of solution quality and solution timings. 
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Table 14 summarizes the hypothesis testing for the Ackley’s path 10D function (problem 

7.2.4) 

Table 14 Summary of hypothesis testing for Ackley 10D problem 
Test 

Problem Combination 1 Combination 2 Combination 3 Combination 4 

7.2.4 tcalc H0 tcalc H0 tcalc H0 tcalc H0 

Solution 
accuracy 

-0.418 
(> tcritical) 

R -0.443 
(> tcritical) 

R -0.429 
(> tcritical) 

R -0.423 
(> tcritical) 

R 

Solution 
Times 

-0.219 
(> tcritical) 

R 0.040 
(> tcritical) 

R 0.187 
(> tcritical) 

R -0.233 
(> tcritical) 

R 

Legend: R – Rejected, A - Accepted 

This table shows that the null hypothesis, H0 is rejected for all suggested combinations of 

pheromone parameters. This means that the hypothesis testing demonstrates that basic 

PSO is not better than PSO with digital pheromones at a 0.05 probability for error. The 

fact that tcalculated value exceeds tcritical value for both solution quality and solution times 

suggest that the research hypothesis Ha can be accepted due to the lack of evidence to 

prove superior performance of basic PSO. That means that PSO with digital pheromone 

PSO compares better against basic PSO in terms of both solution quality and solution 

timings for this test problem. 

 

It can be seen that all combinations of pheromone parameters (except combinations three 

and four for Camelback 2D, i.e. problem 7.2.1) that the null hypothesis (H0) was rejected. 

That means that there is no evidence to prove that basic PSO fares better than PSO with 

digital pheromones. Therefore, it can be inferred that the research hypothesis (Ha) is 

accepted. The pheromone parameter combinations three and four for the Camelback 2D 

function suggest that they are not suitable values for lower dimensional problems. This is 
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understandable because the confidence parameter c3 was set to a high value of 5.0, which 

potentially increased pheromone activity causing longer times needed to converge. 

 

To check if a lower value for c3 was suitable for lower dimensional problems, an 

additional test was performed. In this case, hypothesis testing was performed on a 100D 

Ackley’s path function using the same pheromone parameter combinations. Table 15 

summarizes the results. 

Table 15 Summary of hypothesis testing for Ackley 100D problem 
Test 

Problem Combination 1 Combination 2 Combination 3 Combination 4 

Ackley 
100D tcalc H0 tcalc H0 tcalc H0 tcalc H0 

Solution 
accuracy 

0.233 
(> tcritical) 

R -1.247 
(> tcritical) 

R -1.038 
(> tcritical) 

R 0.314 
(> tcritical) 

R 

Solution 
Times 

-4.817 
(< tcritical) 

A -1.054 
(> tcritical) 

R -0.130 
(> tcritical) 

R -4.305 
(< tcritical) 

A 

Legend: R – Rejected, A - Accepted 
 

Table 15 is the result of performing hypothesis testing on the 100 design variable 

Ackley’s path function. The table shows that the tcalculated values for solution quality was 

greater than tcritical for all combinations of suggested pheromone parameters. This means 

that a lower value for c3 is acceptable for a higher dimensional problem (combination 

one). However, a high value of c3 may not be suitable for a lower dimensional problem 

(camelback 2D). Also for this problem, the null hypothesis stating that basic PSO fares 

better in comparison to pheromone PSO can be rejected.  
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It can be noted that the hypothesis testing of solution times shows that the null hypothesis 

can be accepted for pheromone combinations one and four. This means that the solution 

times for basic PSO were better when compared to PSO with digital pheromones. 

However, it comes at a cost of generally poor solution accuracy. This means that 

although basic PSO compares better against PSO with digital pheromones in terms of 

solution times, basic PSO was unable to solve the problem with a reasonable accuracy. 

 

7.5 Coarse Grain Parallelization Results 
 

In this section, results from solving problems 7.2.5 – 7.2.10 (shown in Table 16) in a 

synchronous coarse grain parallel computing environment are presented. 

Table 16 Test problem matrix for synchronous coarse grain parallelization 
Problem Test Problem Dimensions 

7.2.5 Dixon and Price function 15 
7.2.6 Ackley’s path function 20 
7.2.7 Levy function 25 
7.2.8 Sum of Squares function 30 
7.2.9 Spherical function 40 
7.2.10 Griewank function 50 

 

7.5.1 Test Problem Settings 
 

The pheromone parameter values established by testing digital pheromones in PSO with 

128 different settings as described in section 7.3 were used for the evaluation of the 

developed coarse grain parallelization method. Six unconstrained problems listed in table 

15 were used for this purpose. Though customization of parameters could potentially 



118 
 

  

improve the solution characteristics, the following parameter values catered well for most 

problems: 

- c3 = 5.0 with no decay 

- Pheromone decay = 0.95, and 

- Move limit decay = 0.95 

The swarm size was defined as 10 times the number of design variables, and was limited 

to a maximum of 500 as the dimensionality of the problems increased. A total of 20 trial 

runs were performed for each test case, with and without digital pheromones. The test 

problems were again considered converged when the difference in objective function 

values was within 0.001 for 10 consecutive iterations. All test cases were solved on 2, 4, 

and 8 Intel Xeon processors (3.06 GHz) of a RedHat Linux cluster that houses 2GB 

system memory per node and high bandwidth Myrinet network switches. The algorithm 

was implemented using the C++ programming language and MPI communication 

libraries (MPICH implementation) for data distribution between processors. 

 

The results section is divided into two main categories: 

a. Performance evaluation of PSO with and without digital pheromones: Accuracy, 

efficiency, and reliability of PSO with digital pheromones are compared against basic 

PSO in a parallel computing architecture. This is described in section 7.5.1.1 

b. Parallel performance: Evaluation of the developed method for adaptability to the 

parallel computing architecture. This involves evaluating parallel speedup and 

efficiencies of PSO with digital pheromones. This is described in section 7.5.1.2 
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7.5.2 Results and Discussion: Evaluation With/Without Pheromones 
 

Table 17 provides a summary of objective function values obtained from the test runs on 

2, 4, and 8 processors. Upon convergence on all participating processors, the root 

processor gathered the solution information and sorted for best objective function values. 

The root processor retained these values and the others were discarded. Results displayed 

in table 2 indicated these sorted values. The table contains three markers that assess the 

performance of the developed method – average objective function value, smallest 

objective function value and the standard deviation. The smallest objective function is the 

lowest value obtained in 20 trial runs for each test problem.  

Table 17 Summary of solutions from coarse grain parallelization 
 Objective Function 

(2 Processors) 
Objective Function 

(4 Processors) 
Objective Function 

(8 Processors) 
Avera

ge 
Smallest Std 

Dev. 
Average Smallest Std 

Dev. 
Average Smallest Std 

Dev. 
7.2.5 (B) 14.170 0.002 35.015 34.822 0.003 126.622 3.628 0.001 13.676
7.2.5 (P) 0.211 0.001 0.643 0.098 0.001 0.324 0.441 0.001 1.083 

          
7.2.6 (B) 5.456 2.245 3.504 6.181 1.991 4.031 5.946 1.900 4.013 
7.2.6 (P) 0.354 0.002 0.723 0.393 0.004 0.890 0.133 0.002 0.399 

          
7.2.7 (B) 0.134 0.131 0.002 0.133 0.130 0.002 0.134 0.131 0.003 
7.2.7 (P) 0.131 0.130 0.001 0.131 0.130 0.001 0.131 0.130 0.001 

          
7.2.8 (B) 3.166 0.259 3.212 1.531 0.273 1.070 2.178 0.220 2.313 
7.2.8 (P) 0.228 0.006 0.304 0.236 0.005 0.220 0.174 0.003 0.278 

          
7.2.9 (B) 0.035 0.017 0.014 0.036 0.012 0.018 0.031 0.009 0.019 
7.2.9 (P) 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 

          
7.2.10 (B) 1.151 1.067 0.064 1.146 1.051 0.044 1.155 1.061 0.074 
7.2.10 (P) 0.012 0.003 0.009 0.011 0.004 0.006 0.009 0.003 0.005 
Legend: 7.2.5 – Dixon and Price function15D, 7.2.6 – Ackley’s path function 20D, 7.2.7 – 
Levy function 25D, 7.2.8 – Sum of squares function 30D, 7.2.9 – Spherical function 40D, 
7.2.10 – Griewank function 50D. (B) – Results from Basic PSO, (P) – Results from PSO with 
Digital Pheromones implemented. 
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The results in the table show that PSO with digital pheromones (designated with a P) 

consistently displayed superior performance when compared with solutions from a basic 

PSO (designated with a B). 

 

Since the published solutions for the solved problems were 0.000, there was no measure to 

determine the percentage accuracy. Therefore, a tolerance was again given and accuracy was 

measured based on the number of times the obtained solution was within the tolerance limits. 
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Figure 32 Solution accuracy measure across 2, 4, and 8 processors 
 

Figure 32 shows the solution accuracy charts for the test problems across using the different 

number of processors. As evident from Figure 32, the solution accuracy of PSO with digital 

pheromones was either equal or superior when compared to basic PSO. For example, in 

problem 7.2.6 (Ackley’s 20D), the basic PSO was not able to solve the problem whereas the 

pheromone PSO attained the solution within the specified tolerance limits 75 out of 100 runs 

on 2 and 4 processors. When tested with 8 processors, the accuracy of pheromone PSO 

increased to 90%. 

 

The published solution for the 15 dimensional Dixon and Price function (problem 7.2.5) is 

0.000 and the swarm in basic PSO was unable to locate the optimum on any of 2, 4 or 8 

processor runs. The swarm reached closer to the optimum on the 8 processor cluster (3.628) 

but was still well out of the tolerance limits. On the other hand, PSO with digital pheromones 

solved the problem with a solution accuracy ranging between 80-95%.  The standard 

deviation of pheromone PSO, as evident from Table 17, was substantially better than basic 
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PSO as well. Also, in all the participating processors, the average solution time per run was 

at least 23% shorter for pheromone PSO than for basic PSO. 

 

Both basic and pheromone PSO were able to solve the 25 dimensional Levy function 

(problem 7.2.7) within the tolerance limits as evident from the 100% solution accuracy in 

Figure 32. Although the average, smallest and standard deviations between the methods (with 

and without digital pheromones) were quite close to each other on results from all processors, 

there was almost a 50% decrease in the solution time for pheromone PSO, showing that it 

was much more efficient than a basic PSO. Table 18 summarizes the average solution time 

and number of iterations for all test cases across 2, 4 and 8 processors. 

 

Table 18 Summary of solution times and number of iterations from coarse grain 
parallelization 

 2 Processors 4 Processors 8 Processors 
 Avg # 

iterations 
Avg Duration 

(secs/run) 
Avg # 

iterations 
Avg Duration 

(secs/run) 
Avg # 

iterations 
Avg Duration 

(secs/run) 
7.2.5 (B) 162.4 27.45 171.9 30.16 171.0 33.29 
7.2.5 (P) 116.9 20.45 118.9 23.17 113.7 24.77 

       
7.2.6 (B) 142.8 18.69 125.0 19.65 139.2 20.07 
7.2.6 (P) 141.2 16.68 137.9 17.23 146.9 17.84 

       
7.2.7 (B) 95.8 25.68 97.7 26.39 93.9 27.17 
7.2.7 (P) 40.5 12.28 41.2 12.55 41.9 12.98 

       
7.2.8 (B) 211.5 68.07 210.1 69.94 211.7 71.67 
7.2.8 (P) 151.2 53.94 154.4 55.83 149.0 57.44 

       
7.2.9 (B) 163.4 70.88 165.2 71.98 160.0 73.76 
7.2.9 (P) 85.2 39.80 83.3 40.52 85.1 41.57 

       
7.2.10 (B) 182.9 100.31 180.8 101.99 185.3 104.48 
7.2.10 (P) 159.7 96.45 159.6 96.71 159.5 97.65 
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The lowest objective function value obtained by the 30 dimensional sum of squares function 

(problem 4.4) by basic PSO was 0.220. Compared to the published solution of 0.000, this 

value is within the tolerance limits. However, the solution accuracy resulting from basic PSO 

method was only within the range of 5-25% when tested across 2, 4 and 8 processors. On the 

other hand, pheromone PSO was able to solve the problem within tolerance 80-95% of the 

time. Moreover, the solution time was 20% better than the basic PSO. 

 

Both basic PSO and pheromone PSO solved the 40 dimensional spherical function (problem 

7.2.5) within the tolerance limits resulting in 100% accuracy. That means that both basic 

PSO and pheromone PSO were able to find a solution within specified tolerance limits in the 

20 trial runs. However, it can be observed from Table 17 that the average objective function 

evaluated by pheromone PSO (0.002) is about 15 times better than the lowest average 

objective function returned by basic PSO (0.031). Moreover, the highest solution time for 

pheromone PSO (41.57 seconds per run on 8 processor cluster) is about 43% shorter when 

compared to that of basic PSO. Results from all the processors consistently showed a very 

small variation in the solution (standard deviation of 0.001), which proves the reliability of 

pheromone PSO. 

 

The highly multimodal 50 dimensional Griewank function (problem 7.2.10) was also 

attempted to solve using basic and pheromone PSO. While the basic PSO could not reach the 

global optimum on any of the 20 trials across 2, 4 and 8 processors, pheromone PSO was 

able to obtain a solution within the tolerance limits in all the trials. In addition, the variation 

of the results as seen from the standard deviation values in Table 17 show that pheromone 
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PSO was significantly consistent in performance when compared to basic PSO. This also 

must be taken into account when considering iterations and solution times as basic PSO 

converged prematurely on every single solution run. 

 

In all the test cases, the digital pheromone implementation of PSO displayed superior 

performance characteristics in terms of accuracy (closeness to published solution), efficiency 

(solution duration) and reliability (standard deviation) when implemented in a parallel 

architecture. 

7.5.3 Results and Discussion: Parallel Efficiency and Speedup Characteristics 
 

The output from parallelizing an algorithm is typically measured and compared in terms 

of speedup and parallel efficiency. The speedup defines how fast a code runs in parallel; 

it is a ratio of the amount of time the code spends in communication to the amount of 

time it spends on computing. If the time taken to run a code on one processor is t1 

seconds, and the time it takes to run the same code on ‘p’ processors is tp seconds, then 

the parallel speedup is given by equation (29). 

pt
t1Speedup =  (29) 

 

Parallel efficiency is a percentage measure of how well the available processors are 

used. In other words, it provides information on how well the load balancing is 

maintained. Equation (30) shows the procedure for calculating parallel efficiency. 

p
Speedup

=Efficiency Parallel  (30) 
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The parallel performance characteristics of pheromone PSO can be measured through 

speedup and efficiency calculations. Ideally, the parallel speedup should be equal to the 

number of processors, and the parallel efficiency should be 100%. However, due to 

communication latencies, these values do not usually reach these ideal values. Therefore, 

the measure of parallel performance is based on how close they are to ideal values. In this 

section, the parallel performance characteristics were evaluated and presented for 

Pheromone PSO. 

 

Figure 33 shows the speedup characteristics of pheromone PSO plotted for all 

participating processors. The plot was generated based on the speedup values evaluated 

for each test problem running on 2, 4 and 8 processors. The x-axis portrays various test 

problems with their dimensionality and the y-axis shows the parallel speedup. 

 
Figure 33 Parallel Speedup characteristics of PSO with digital pheromones 
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The plot shows that the parallel speedup was almost ideal when two processors were used 

alone. This means that the network latencies have a very small effect on the two swarms 

in a parallel architecture. When four swarms were deployed on a four processor system, 

the speedup did not reach the ideal as quickly. However, parallel speedup approached the 

ideal value of 4.00 as the dimensionality of the problem increased to 40 (spherical 

function – problem 7.2.9). With eight swarms simultaneously deployed, a plateau was 

noticed at a non-ideal speedup (i.e., 7.00) when the problem dimensionality was between 

20 (Ackley’s path – problem 7.2.6) and 30 (Sum of squares – problem 7.2.8). The 

speedup gradually increased towards ideal (i.e., 8.00) as the problem dimensionality 

increased to 50 (Griewank function – problem 7.2.10). 

 

It can be inferred from these findings that the processor communication latencies had 

more influence and hence a lower parallel speed up was noticed on lower dimensional 

problems. As the problem dimensionality increases along with the number of processors, 

the network latencies are offset and near ideal parallel speedups are attained. 

 

Figure 34 shows the parallel efficiency characteristics of pheromone PSO across the 

participating processors. 
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Figure 34 Parallel Efficiency characteristics of PSO with digital pheromones 

 

Parallel efficiency provides load balancing information and is dependent upon the 

speedup and the number of participating processors. A 100% parallel efficiency means 

that the system is perfectly load balanced. Figure 34 shows that the parallel efficiency 

values ranged from 85% through 75% across 2, 4, and 8 processors for a 15 dimensional 

Dixon and Price function (problem 7.2.5). For this problem, this means that the load 

balancing worsened when the number of processors increased from 2 to 8. This trend 

more or less continued to the remaining problems as well. However, the decrease in 

parallel efficiency was negligible with higher dimensional problems (i.e., Griewank 

50D). This means that the load balancing improved considerably as the dimensionality of 

the problems increased.  

 

Figure 35 shows the relation between parallel efficiency and the number of processors in 

the context of the six test problems. Figure 35 is equivalent to Figure 34, but the relation 
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between parallel efficiency and number of processors in the context of test cases is better 

understood. 

 

Figure 35 Effect of number of processors on parallel efficiency 
 

With the increase in problem dimensionality, a pattern of increasing parallel efficiency 

can be observed in Figure 35. The 15 dimensional Dixon and Price function (problem 

7.2.5) has the smallest parallel efficiency, while the 50 dimensional Griewank function 

(problem 7.2.10) shows the best efficiency characteristics. The parallel efficiencies for 

the test problems gradually increased as the dimensionality increased, which corroborates 

with the findings shown in Figure 34 as well. 

 

A similar speedup and efficiency study was also performed on the basic PSO method 

with multiple swarms traversing the design space, and the results concur with the pattern 

of findings reported above. Figure 36 show the plots from testing basic PSO. 
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Figure 36 Charts for Basic PSO: Speedup (Left), Parallel Efficiency (Right) 
 

The pheromone parameter settings used were the default ones determined. However, with 

refined settings, the solution characteristics could be further improved. For example, 

solving the 40D sphere problem with the suggested pheromone parameters resulted in an 
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average objective function value of 0.0019 that took an average of 41.57 seconds per run 

on an 8 processor computing environment. However, with tuned parameter settings, the 

best solution achieved was 0.0015 that took an average of 29.76 seconds per run. The 

altered parameter values showed a 20% improvement in the objective function value 

along with a 28% improvement in solution time. The changes in these parameters are 

problem dependent and currently do not have mathematical rules to ascertain the most 

optimal parameter settings. In spite of the additional computations per iteration due to 

pheromone operations, solution times nearly always decreased when compared to a basic 

PSO. This is attributed to the information provided by the digital pheromones thereby 

facilitating the swarms in propagating towards the global optimum faster. 

 

7.6 Shared Pheromone Parallelization Results 
 

In this section, results from implementing the shared pheromone parallelization scheme 

are presented. Problems 7.2.5 – 7.2.10 (shown in Table 19) were used as test cases. 

Table 19 Test problem matrix for shared pheromone parallelization 
Problem Test Problem Dimensions 

7.2.5 Dixon and Price function 15 
7.2.6 Ackley’s path function 20 
7.2.7 Levy function 25 
7.2.8 Sum of Squares function 30 
7.2.9 Spherical function 40 
7.2.10 Griewank function 50 

 

7.6.1 Test Problem Settings 
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The pheromone parameters used for shared pheromone parallelization were the same as 

in coarse grain parallelization. They are: 

- c3 = 5.0 with no decay, 

- Pheromone decay, λp = 0.95, and 

- Move limit decay, λML = 0.95 

Though customization of parameters for each problem would further improve solution 

characteristics, the default parameter values catered well for most problems. A total of 20 

trial runs were performed for each test case. All test cases were solved on 2, 4, and 8 Intel 

Xeon processors (2.8 GHz) of a RedHat Linux distributed memory cluster that houses high 

bandwidth Myrinet network switches. The algorithm was implemented using the C++ 

programming language with the MPI communication libraries (MPICH implementation) for 

data distribution across processors. As a general rule of thumb, the swarm size was defined 

as 10 times the number of design variables, and was capped at 500 per processor as the 

dimensionality increased. 

 

To evaluate the performance of the developed method, results were compared against: a) 

basic PSO, and b) pheromone PSO, both executed in a coarse grained parallel strategy. One 

of the comparison measures for coarse grained and shared pheromone parallelization was the 

swarm size. In coarse grained parallelization, swarms propagated independently of each other 

and no communication existed between processors. This meant that a coarse grained 

execution of a 15 dimensional problem with four processors had one swarm containing 150 

particles per processor. However, shared pheromone parallelization with a similar problem 

set up had 150 swarm members on each processor, with communication between them 
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effectively putting the total swarm size at 150x4 = 600. Moreover, the swarm operations and 

hence swarm size only occurred on the optimization processors. The shared pheromone 

processor only performed pheromone operations. 

 

To address this issue, two different swarm schemes were developed in the shared pheromone 

parallelization method: a) fixed swarm size per processor and b) fixed overall swarm size. 

For the fixed swarm size per processor a swarm size of 10 times the number of design 

variables per processor was mandated. For example, an 8 processor run for a 20 design 

variable problem would have 200 swarm members per optimization processor. For the fixed 

overall swarm size a swarm size of 10 times the number of design variables overall was used. 

For example, an 8 processor run (7 optimization processors + 1 pheromone processor) for a 

20 design variable problem will have 200/7 = ~29 members per optimization processor. Any 

fractional value when distributing the swarm over the optimization processors in this scheme 

was rounded to the next nearest whole number. Using this method allowed the shared 

pheromone method to be more precisely compared to the basic and coarse grain PSO 

implementations. 

 

7.6.2 Results and Discussion: Fixed Swarm Size per Processor 
 

Table 20 provides a summary of objective function values obtained from test runs on 2, 4, 

and 8 processors with swarm sizes 10 times the number of design variables per processor. 

Although averages show a general trend, they are not a true indicator of the method’s 

performance. Therefore, the smallest value achieved and the standard deviation is also 
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reported to denote the reach of multiple swarms in the design space and their reliability when 

communicating through digital pheromones.  

Table 20 Summary of solutions from shared pheromone parallelization 

 

Objective Function 
(2 Processors) 

Objective Function 
(4 Processors) 

Objective Function 
(8 Processors) 

Average Smallest Std 
Dev. 

Average Smallest Std 
Dev. 

Average Smallest Std Dev.

7.2.5 (B) 14.170 0.002 35.015 34.822 0.003 126.622 3.628 0.001 13.676 
7.2.5 (P) 0.211 0.001 0.643 0.098 0.001 0.324 0.441 0.001 1.083 

7.2.5 (SP) 0.635 0.355 0.238 0.386 0.018 0.237 0.206 0.032 0.183 
          

7.2.6 (B) 5.456 2.245 3.504 6.181 1.991 4.031 5.946 1.900 4.013 
7.2.6 (P) 0.354 0.002 0.723 0.393 0.004 0.890 0.133 0.002 0.399 

7.2.6 (SP) 0.368 0.013 0.274 0.139 0.025 0.095 0.059 0.002 0.050 
          

7.2.7 (B) 0.134 0.131 0.002 0.133 0.130 0.002 0.134 0.131 0.003 
7.2.7 (P) 0.131 0.130 0.001 0.131 0.130 0.001 0.131 0.130 0.001 

7.2.7 (SP) 0.130 0.130 0.000 0.130 0.130 0.000 0.130 0.129 0.000 
          

7.2.8 (B) 3.166 0.259 3.212 1.531 0.273 1.070 2.178 0.220 2.313 
7.2.8 (P) 0.228 0.006 0.304 0.236 0.005 0.220 0.174 0.003 0.278 

7.2.8 (SP) 0.107 0.001 0.168 0.021 0.000 0.019 0.011 0.000 0.017 
          

7.2.9 (B) 0.035 0.017 0.014 0.036 0.012 0.018 0.031 0.009 0.019 
7.2.9 (P) 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 

7.2.9 (SP) 0.003 0.000 0.005 0.001 0.000 0.000 0.001 0.000 0.001 
          

7.2.10 (B) 1.151 1.067 0.064 1.146 1.051 0.044 1.155 1.061 0.074 
7.2.10 (P) 0.012 0.003 0.009 0.011 0.004 0.006 0.009 0.003 0.005 

7.2.10 (SP) 0.375 0.000 0.310 0.170 0.000 0.150 0.099 0.001 0.133 
Legend: 7.2.5 – Dixon and Price function15D, 7.2.6 – Ackley’s path function 20D, 7.2.7 – 
Levy function 25D, 7.2.8 – Sum of squares function 30D, 7.2.9 – Spherical function 40D, 
7.2.10 – Griewank function 50D. (B) – Results from Basic PSO from coarse grain 
parallelization, (P) – Results from PSO with Digital Pheromones implemented from coarse 
grain parallelization, (SP) – Results from shared pheromone parallelization. 
 

The results in Table 20 show that the shared pheromone parallelization (designated with an 

‘SP’) consistently showed improvement in average objective function values returned when 

compared to the coarse grained pheromone PSO (designated with a ‘P’) and out-performed 

basic PSO (designated with a ‘B’) in all test cases. This trend is especially pronounced when 
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the number of processors increased suggesting that the method’s performance improves as 

the number of processors grows and hence the swarm size grows. This evidence suggests that 

design space information is being better distributed throughout the swarm through digital 

pheromones and the parallelization method. For example on the 20 dimensional Ackley’s 

path function (problem 7.2.6) whose published solution is 0.000, the average objective 

function obtained with 2 processors was 0.368, but the value improved to 0.139 using 4 

processors and to 0.059 with 8 processors. 

 

While the results showed a superior performance improvement over basic PSO, results from 

the coarse grain pheromone PSO outperformed the shared pheromone parallelization results 

in some of the test cases, especially on 2 processor runs. The reason for this behavior can be 

attributed to the number of swarms. 

 

A 2 processor shared pheromone parallel execution has only one swarm (one swarm on the 

one optimization processor) while a 2 processor coarse granular execution has two swarms 

searching the design space. It is theorized that this difference in the number of swarms 

caused the coarse granular pheromone PSO to outperform the shared pheromone 

parallelization. However, as the number of participating optimization processors increased, 

the shared pheromone parallelization method performed better. For example, the average 

objective function value returned by the shared pheromone parallelization for the 15 

dimensional Dixon & Price function (problem 7.2.5) was 0.635 when compared to 0.211 for 

coarse grained pheromone PSO on two processors. With 8 processors however, the shared 
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pheromone method returned 0.206 as opposed to 0.441 on coarse grained pheromone PSO. 

This is a 53% improvement in the objective function value. 

 

Table 20 also shows that the standard deviations of the shared pheromone parallelization 

improved as the number of processors increased. On the 30 dimensional sum of squares 

function (problem 7.2.8), the standard deviation was 0.168 on 2 processors when 

compared to 0.017 on 8 processors. The standard deviation also improved when 

compared to coarse grained PSO and pheromone PSO as well. This suggests that the 

consistency and reliability in solving the problem increases with the developed method 

and improves as more processors were used. The particle swarms received more 

information from shared pheromones resulting in reliable solutions. 
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Figure 37 Solution accuracy charts for test problems with fixed swarm size per processor 
 

Figure 37 shows the solution accuracy charts for test problems 7.2.5 – 7.2.10 on 2, 4, and 8 

processors. The published solutions to these problems are 0.0, so a tolerance value close to 

the optimum was again used to determine solution accuracy. 
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The solution accuracy was calculated based on 20 trial executions for each of: a) coarse grain 

parallelization on basic PSO, b) coarse grain pheromone PSO parallelization, and c) shared 

pheromone parallelization, represented by three vertical bar graphs as portrayed in the 

solution accuracy charts. The numbers 7.2.5 – 7.2.10 below the bar plots indicate the test 

problem number. As seen from these plots, the solution accuracies reported from shared 

pheromone parallelization was superior when compared to coarse grained basic PSO and 

pheromone PSO. 

 

This trend is more evident with an increased number of processors. For example, the solution 

accuracy was only 75% for the 20 dimensional Ackley’s path function (problem 7.2.6) on 2 

processors whereas the solution accuracy was 100% with 4 and 8 processors. Similarly, the 

solution accuracy upon solving Griewank’s function (problem 7.2.10) was 65% on 2 

processors while it was 95% on 4 and 8 processors.  

 

The solution accuracy is only one measure of the method’s performance. Figure 37 show that 

coarse grain parallelization performed close to the shared pheromone method, albeit slightly 

worse in accuracy. Figure 38 shows the solution duration charts for test problems 7.2.5 – 

7.2.10 on 2, 4, and 8 processors. 
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Figure 38 Solution duration charts for test problems with fixed swarm size per processor 
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The shared pheromone parallelization showed a dramatic decrease in solution duration when 

compared to coarse grained basic PSO and coarse grained pheromone PSO on all test 

problems. As much as a 79% decrease in solution times was observed for the 30 dimensional 

sum of squares function (problem 7.2.8) on 4 processors when compared to coarse grained 

basic PSO. When compared to coarse grained pheromone PSO, the solution time decreased 

by about 74%. On the 20 dimensional Ackley’s path function (problem 7.2.6), the solution 

duration decrease was about 41% when compared to basic PSO and was 34% when 

compared to coarse grain pheromone PSO on an 8 processor execution. 

 

Although the solution times varied from problem type and number of design variables, they 

indicate that sharing of digital pheromones presents substantial information of the design 

space to multiple swarms. This resulted in faster solution times, when compared to coarse 

grained parallelization in basic PSO and pheromone PSO that have no communication 

between them until the end of a generation. Since the amount of information exchanged 

between processors was small, the network latency costs were insignificant. 

 

It was noticed that the solution accuracy for the 15 dimensional Dixon and Price function 

performed quite poorly with shared pheromones on two processors (35% accurate) when 

compared to 4 processors (80% accurate) and 8 processors (95% accurate). This meant that 

the method was able to find a solution within the tolerance limits only 35 times out of 100 on 

two processors. It is hypothesized that the shape of the function could be the reason for the 

behavior of the method. The function contours take the shape of a trough where the slopes 

are not steep enough to be noticed by minute changes in objective function while checking 
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for convergence. A tighter convergence criterion with more precision could improve the 

solution characteristics. When tested with increased swarm size (i.e., 300) per processor, the 

method was able to achieve the solution with substantial accuracy. Although the course of 

the developed method did not find the solution with reasonable solution accuracy, the swarm 

size could be customized to improve the performance. 

 

7.6.3 Results and Discussion: Fixed Overall Swarm Size 
 

Solution accuracies of coarse grained parallel PSO (basic and pheromones) and shared 

pheromone parallelization with fixed overall swarm size is shown in Figure 39. Results from 

two processor execution were eliminated because the swarm distribution with a fixed overall 

swarm is identical to that of fixed per-processors swarm size. 
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Figure 39 Solution accuracy charts for test problems with fixed overall swarm size 
 

It was observed that the solution accuracies either stayed the same or decreased with fixed 

overall swarm size when compared to fixed per-processor swarm size. While the solution 

accuracy decrease was most (95% to 25% on 8 processor executions) for the 15 dimensional 

Dixon and Price function (problem 7.2.5), the solution accuracy worsened only by 20% (95% 

to 75% on 8 processor executions) in the case of the 50 dimensional Griewank’s function 

(problem 7.2.10). The reason for this behavior is theorized that even though communication 

was made possible between processors on shared pheromone parallelization, the overall 

swarm size was not sufficient to explore the design space and converge on the optimum. For 

problems 7.2.6 – 7.2.10, the solution accuracies remained very high (between 95% and 

100%) in both fixed overall swarm size and fixed per-processor swarm size schemes. 
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Figure 40 Solution duration charts for test problems with fixed overall swarm size 
 

Figure 40 shows the solution duration characteristics of coarse granular PSO (basic and 

pheromones) and shared pheromone parallelization with fixed overall swarm size. It can be 

seen from the figures that there is a dramatic decrease in solution times for fixed overall 

swarm size (Figure 40) when compared to solution times for fixed per-processor swarm size 

(Figure 38). For example, the solution duration for a 4 processor execution of the 30 

dimensional sum of squares function (problem 7.2.7) was 9.1 seconds for fixed per-processor 

swarm size but only 3.47 seconds for fixed overall swarm size. This is almost a 62% decrease 
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in solution time with the solution accuracy remaining at 100% for both the cases. For the 20 

dimensional Ackley’s path function (problem 7.2.6), the solution duration decrease was 

about 87% on an 8 processor execution although the solution accuracy decreased by a mere 

10% (100% on fixed per-processor swarm size execution to 90% on fixed overall swarm 

size). Although the solution durations for the 15 dimensional Dixon and Price function 

(problem 7.2.5) had greater disparity, the comparison is not justified because the fixed 

overall swarm size solved the problem with 25% solution accuracy. 

The difference in solution accuracies and duration between the two schemes of swarm sizes 

is a direct result of the number of processors. The fixed swarm size per processor scheme had 

more particles per processor than the fixed overall swarm size. This simply meant that more 

operations had to be computed thus resulting in increased solution times (as evident in Figure 

38). The conclusion to be reached is that the shared pheromone parallelization method 

consistently found the global solution in considerably less time than other parallel PSO 

methods. Depending on the problem, a user may want to refine the number of particles per 

processor to improve the method’s performance further. 

 

To eliminate the possibility of any hardware errors in calculating solution durations, all 

test problems were executed and timed on a different Linux cluster with a comparable 

computational platform. Although the results varied slightly, the results appeared 

consistent with the ones presented in figures Figure 39 and Figure 40. 
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7.6.4 Note on parallel speedups and efficiencies 
 

Since the shared pheromone method requires at least two processors, the time it takes to 

execute the code in serial (i.e. t1) cannot be obtained from a single processor execution. Since 

the total number of operations performed on two processors with shared pheromone parallel 

method was equivalent to the number of operations on a serial execution of the code, it was 

this time that was used for parallel speedup and efficiency calculations. With this approach, 

parallel speed ups of magnitude ranging from 2.4 through 7.7 were observed for solutions 

with two processor runs using shared pheromones for fixed per-processor swarm size 

scheme. The parallel efficiencies on two processor execution for the above range were 

between 120% and 384%. On eight processors, speedups ranging from 9.7 through 26 were 

observed thereby placing parallel efficiencies within the range of 121% through 327%. These 

values are extremely high and thus merited further research. It was found that there are 

actually multiple ways to compute parallel speedups and efficiencies. Due to the nature of 

this parallelization method (e.g., containing no barrier synchronization) further work must be 

performed to determine the best manner to quantify the speedup and efficiency calculations. 

However, obtaining the “correct” number does not detract from the conclusion that this new 

approach offers significant speedup and efficiency over a serial or coarse grained approach. 

7.7 GPU Parallelization Results 
 

In this section, results from implementing PSO with digital pheromones on a GPU are 

presented. Problems 7.2.5 – 7.2.10 (shown in Table 21) were used as test cases. 
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Table 21 Test problem matrix for GPU parallelization 
Problem Test Problem Dimensions 

7.2.1 Camelback function 2 
7.2.2 Himmelblau function 2 
7.2.3 Rosenbrock function 5 
7.2.4 Ackley’s path function 10 
7.2.5 Dixon and Price function 15 
7.2.6 Ackley’s path function 20 
7.2.7 Levy function 25 
7.2.8 Sum of Squares function 30 
7.2.9 Spherical function 40 
7.2.10 Griewank function 50 

 

7.7.1 Test Problem Settings 
 

The pheromone parameters used for the GPU implementation follows the values as 

established by the serial implementation of PSO with digital pheromones. Therefore, the 

value of c3 for lower dimensional problems (2D through 5D) is different from that of 

higher dimensional problems (above 5D). The values are: 

- c3 = 
⎩
⎨
⎧

decay no 7.2.10, - 7.2.4 problemsfor  5.0
decay no 7.2.3, - 7.2.1 problemsfor  2.0

 

- Pheromone decay, λp = 0.95, and 

- Move limit decay, λML = 0.95 

Though customization of parameters for each problem would further improve solution 

characteristics, the default parameter values catered well for most problems. A total of 35 

trial runs were performed for each test case using the GPU method, and were benchmarked 

against test runs from CPU. Since GPUs, as of the time the research was done, did not 

support double precision computations, test runs were executed using single precision. Since 

the serial implementation results discussed in section 7.3 were performed using double 
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precision and were not a true match to the GPU implementation, all test problems listed in 

Table 21 were executed both on CPU and GPU on a single workstation with single precision 

for a fair comparison. Also to emphasize the difference in performance between CPU and 

GPU, the test runs were performed only on the digital pheromone implementation of PSO. 

Basic PSO was not implemented. 

 

The CPU used was an Intel Xeon processor (3.2 GHz) of a RedHat Enterprise Linux 

workstation with 2MB of cache memory. The system memory was 2GB DDR. The GPU 

used was an NVIDIA Quadro FX 4400 with 512MB of DDR memory. The NVIDIA driver 

version at the time of the code execution was 169.07. The algorithm was implemented using 

the C++ programming language, and the GPU implementation was made in GLSL, as 

described in section 5.2. As a general rule of thumb, the swarm size was defined as 10 times 

the number of design variables, and was capped at 500 per processor as the dimensionality 

increased. 

 

7.7.2 Results and Discussion 
 

Table 22 provides a summary of results obtained from solving problems 7.2.1 – 7.2.10. 

Values obtained from the CPU and GPU are indicated against each problem number in 

the table. The average, smallest and standard deviation of the objective function values 

were noted along with averages of solution duration and number of iterations as well. 
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It can be seen from the table that the objective function values returned by the GPU were 

extremely close to the values returned by the CPU, in almost all test cases. In seven out 

of 10 test cases, the average objective function values returned by GPU were equal to or 

improved when compared to CPU. For example, on the 25 dimensional Levy Function 

(problem 7.2.7), there is a ~97% improvement in the solution value for GPU (0.004) 

when compared to the CPU result (0.129). Also, the improvement in the solution value 

was very consistent on the GPU implementation as apparent from the standard deviation 

(0.000).  

 

Test problems such as Ackley’s path function (7.2.4, 7.2.6) and Levy function (problem 

7.2.7) are prone to errors in accuracy due to having trigonometric relations in the 

objective functions. However, the solution accuracies were not compromised because of 

this reason. Figure 41 shows a visual comparison of solution accuracies between the CPU 

and GPU results. With the exception of the 30D Sum of squares function (problem 7.2.8), 

the solution accuracies on all other problems for the GPU implementation were either 

equal to or better than that of the CPU implementation. This suggests that GPUs can be 

capable co-processors for computations and not have a major effect in the outcome of the 

solution qualities.  
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Table 22 Results obtained from GPU implementation 

CPU/GPU Solution 
Accuracy (%) 

Objective Function 
Average Smallest Std Dev 

7.2.1 (CPU) 100.00% -1.032 -1.032 0.000 
7.2.1 (GPU) 100.00% -1.032 -1.032 0.000 

          
7.2.2 (CPU) 100.00% 0.000 0.000 0.000 
7.2.2 (GPU) 100.00% 0.000 0.000 0.000 

          
7.2.3 (CPU) 100.00% 0.000 0.000 0.000 
7.2.3 (GPU) 100.00% 0.000 0.000 0.000 

          
7.2.4 (CPU) 100.00% 0.000 0.000 0.000 
7.2.4 (GPU) 100.00% 0.000 0.000 0.000 

          
7.2.5 (CPU) 82.86% 0.261 0.000 0.592 
7.2.5 (GPU) 82.86% 0.382 0.000 0.977 

          
7.2.6 (CPU) 91.43% 0.077 0.000 0.262 
7.2.6 (GPU) 97.14% 0.053 0.000 0.163 

          
7.2.7 (CPU) 100.00% 0.129 0.129 0.000 
7.2.7 (GPU) 100.00% 0.004 0.004 0.000 

          
7.2.8 (CPU) 82.86% 0.286 0.001 0.329 
7.2.8 (GPU) 71.43% 0.298 0.003 0.321 

          
7.2.9 (CPU) 100.00% 0.000 0.000 0.000 
7.2.9 (GPU) 100.00% 0.000 0.000 0.000 

          
7.2.10 (CPU) 100.00% 0.005 0.000 0.006 
7.2.10 (GPU) 100.00% 0.008 0.000 0.008 

Legend: 7.2.1 – Camelback 2D, 7.2.2 – Himmelblau 2D, 7.2.3 – Rosenbrock 5D, 7.2.4 – 
Ackley 10D, 7.2.5 – Dixon and Price function15D, 7.2.6 – Ackley’s path function 20D, 
7.2.7 – Levy function 25D, 7.2.8 – Sum of squares function 30D, 7.2.9 – Spherical 
function 40D, 7.2.10 – Griewank function 50D. (CPU) – Results from CPU 
implementation, (GPU) – Results from GPU implementation. 
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Figure 41 Solution accuracy plot for CPU and GPU implementation of PSO with digital 

pheromones 
 

Figure 42 shows the solution duration charts for the GPU implementation as compared 

with the CPU implementation. 

 
Figure 42 Solution Duration plot for CPU and GPU implementation of PSO with digital 

pheromones 
 

It can be seen that the solution duration for all test problems dramatically reduced on the 

GPU implementation as opposed to the CPU counterpart. The reduction in the solution 
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duration is a clear indication that GPUs are not just comparable in performance to 

traditional CPUs, but they could exceed the throughput by a factor of about 10 or more in 

terms of solution times. For example, the average solution time for the 10 dimensional 

Ackley’s path function (problem 7.2.4) on a CPU was 23.81 seconds where as the GPU 

took 0.83 seconds. This is approximately a 96.5% decrease. Similarly, the 50 dimensional 

Griewank function (problem 7.2.10) resulted in an 88% decrease in solution time on a 

GPU (14.65 seconds) when compared to the solution time on a CPU (128.35 seconds). 

The same trend was seen in all the test problems, with reduction in solution durations 

ranging from 88% - 97% were observed. Table 23 tabulates the average duration, average 

number of iterations and the percentage decrease in solution duration through using 

GPUs when compared to CPU usage alone. The data parallel architecture of a GPU is 

attributed to this dramatic reduction in solution times. Since GPUs are inherently 

hardware parallel in architecture, a single instruction can be performed on multiple data 

simultaneously resulting in enormous time savings as evident from figures Figure 41 and 

Figure 42 and tables Table 22 and Table 23. Although the amount of time savings can be 

hardware and problem specific, the results show that a GPUs has great potential to 

outperform CPUs with no marked difference in solution quality for optimization 

computations. There was also no notable difference in the number of iterations for each 

test problem when executed on a CPU or a GPU. This indicates that the data traversal 

between CPU and GPU did not significantly affect the overall algorithm’s performance. 

This suggests that commodity graphics cards can potentially be a very viable option in 

optimization computations when time and cost are important factors. 
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Table 23 Comparison of solution duration and number of iterations on CPU Vs GPU 

CPU/GPU 
Average 
Duration 

(secs per run) 

Average # 
iterations 

% Decrease in 
duration 

7.2.1 (CPU) 1.48 73.97  
97.03% 7.2.1 (GPU) 0.04 73.86 

       
7.2.2 (CPU) 2.16 107.71 96.63% 7.2.2 (GPU) 0.07 115.49 

       
7.2.3 (CPU) 4.76 93.54 97.19% 
7.2.3 (GPU) 0.13 94.89 

       
7.2.4 (CPU) 23.81 231.11 96.50% 7.2.4 (GPU) 0.83 234.11 

       
7.2.5 (CPU) 30.07 192.11 95.46% 
7.2.5 (GPU) 1.37 189.40 

       
7.2.6 (CPU) 48.41 229.69 94.31% 7.2.6 (GPU) 2.75 235.77 

       
7.2.7 (CPU) 27.42 103.03 93.49% 
7.2.7 (GPU) 1.78 103.80 

       
7.2.8 (CPU) 76.47 235.89 92.33% 7.2.8 (GPU) 5.87 235.00 

       
7.2.9 (CPU) 64.28 146.57 91.30% 
7.2.9 (GPU) 5.59 140.29 

       
7.2.10 (CPU) 128.35 228.94 88.59% 7.2.10 (GPU) 14.65 231.46 

Legend: 7.2.1 – Camelback 2D, 7.2.2 – Himmelblau 2D, 7.2.3 – Rosenbrock 5D, 7.2.4 – 
Ackley 10D, 7.2.5 – Dixon and Price function15D, 7.2.6 – Ackley’s path function 20D, 
7.2.7 – Levy function 25D, 7.2.8 – Sum of squares function 30D, 7.2.9 – Spherical 
function 40D, 7.2.10 – Griewank function 50D. (CPU) – Results from CPU 
implementation, (GPU) – Results from GPU implementation. 
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7.8 Constrained Problems 
 

In this section, results from solving problems 7.2.11 – 7.2.16 (shown in Table 24) is 

presented. 

Table 24 Test problem matrix for constrained problem solving 
Problem Test Problem Dimensions # of Constraints

7.2.11 One Dimensional Two Inequality 1 2 
7.2.12 Two Dimensional Single Inequality 2 1 
7.2.13 Two Dimensional Two Inequality 2 2 
7.2.14 Weld Beam  4 8 
7.2.15 Golinski’s Speed Reducer Problem 7 11 
7.2.16 Himmelblau constrained 5 7 

7.8.1 Test Problem Settings 
 
The following PSO and digital pheromone parameters were used to run all constrained 

problems: 

- c1=c2=2.0 

- c3=2.0 with no decay 

- Pheromone decay = 0.95 

- Move limit decay = 0.95 

- Inertia weight initialized at 1.0 and decreased at 0.5% every iteration 

- Particle swarm size of 10 times the number of design variables 

 

Twenty test runs were performed on each problem using two approaches: a) pseudo 

objective function solved completely before updating Lagrange multipliers and b) pseudo 

iterations limited to five before updating Lagrange multipliers. Although the number of 

pseudo iterations might seem arbitrary, literature [32] shows that three to five pseudo 

iterations generally worked well in other ALM implemented methods. The algorithm was 
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made to report its current results at the end of 10,000 iterations if a feasible solution is not 

found. The constraint feasibility and solution tolerance were set to 0.01. The test 

problems were considered converged when the difference in solutions was within 0.01 

for 10 consecutive iterations. In the case of problems where each pseudo objective 

function is completely solved, the convergence tolerance was set to 0.01 for three pseudo 

iterations. All Lagrange multipliers were initialized to zero, and the penalty values were 

initialized to one. Although ALM does not require any restriction on the penalty 

parameter values, an upper limit of 100,000 was imposed to avoid any numerical ill-

conditioning resulting from penalizing infeasible solutions. 

7.8.2 Results and Discussion 
 

The results from solving constrained problems 7.2.11 – 7.2.16 are tabulated in Table 25 

with the test problem descriptions given in section 7.2. The column entries with ‘*’ 

indicates that none of the solutions in 20 trial runs were feasible. However, the lowest, 

average and highest values are reported to demonstrate the difference from published 

solutions. For column entries that are not marked with ‘*’, the lowest and highest values 

are reported only for feasible solutions. This is done to indicate the range of solutions 

obtained when they are feasible. Averages are reported on all test problems regardless of 

whether they are feasible or infeasible. 

 

 

 

 



154 
 

  

Table 25 Solutions from complete solving of pseudo objective functions 

Prob. Published 
solution 

Solution Obtained 
(Feasible solutions reported in 

Lowest & Highest columns) 

Constraint 
Satisfaction 
consistency 

# of 
constraints 

  Lowest Average Highest   
7.2.11 0.45 0.45 0.45 0.45 20 of 20 runs 2 
7.2.12* -50.00 -50.48 -50.26 -50.05 0 of 20 runs 1 
7.2.13 -9.24 -9.23 -9.36 -9.07 5 of 20 runs 8 
7.2.14 2.39 1.79 2.19 2.92 17 of 20 runs 7 
7.2.15* 2985.22 2634.16 2658.07 2731.65 0 of 20 runs 11 
7.2.16* -31025.57 -32217.43 -32217.43 -32217.43 0 of 20 runs 6 
* indicates no feasible solutions were found in each of 20 trial runs 
 

It can be seen from the table that the method was able to solve three out of six problems. 

The method found the solution in all 20 trial runs in the case of problem 7.2.11 while 17 

of 20 trial runs solved the problem 7.2.14. It can also be seen that the lowest value 

attained for problem 7.2.14 (four dimensional weld beam problem) is lower (1.79) than 

the published solution (2.39). The reason is attributed to the information provided by 

digital pheromones to particle swarms in searching the design space. Although problem 

7.2.13 was solved only five out of 20 runs, the lowest and highest feasible solution values 

are within a close neighborhood of the published solutions. 

 

The algorithm was unable to solve problems 7.2.12, 7.2.15, and 7.2.16 within the 

tolerance limits specified in any of the 20 trial runs. It was observed that problem 7.2.15 

(Golinski’s speed reducer problem violated the most number of constraints when 

compared to other problems (~ 4 out of 11 constraints were violated in all 20 trial runs). 

However, it was observed that the average violations were between zero and one 

indicating that the swarm was very close to the feasible region. Similar behavior was 

observed in other test cases that failed to be feasible in all 20 trial runs. For example, 
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problem 7.2.12 having one inequality constraint violated only by 0.28 on average of all 

20 trial runs. However, problem 7.2.16 was an exception where all except one of the six 

constraints hovered at 2.3.  

 

The problems were also solved with a limited number of pseudo function iterations. 

These results are tabulated in Table 26. It can be seen from the table that four of six 

problems have feasible solutions of the 20 trial runs. The method found the solution in all 

20 trial runs in the case of problems 7.2.11 and 7.2.14 (four dimensional weld beam 

problem with eight constraints). 

 

Table 26 Solutions from limited pseudo iterations 

Prob. Published 
solution 

Solution Obtained 
(Feasible solutions reported in 

Lowest & Highest columns) 

Constraint 
Satisfaction 
consistency 

# of 
constraints 

Lowest Average Highest  
7.2.11 0.45 0.45 0.45 0.45 20 of 20 runs 2 
7.2.12 -50.00 -50.64 -50.24 -49.96 3 of 20 runs 1 
7.2.13 -9.24 -9.89 -9.29 -7.37 5 of 20 runs 8 
7.2.14 2.39 1.87 2.39 3.09 20 of 20 runs 7 
7.2.15* 2985.22 2714.23 2828.83 2957.30 0 of 20 runs 11 
7.2.16* -31025.57 -32217.43 -32217.43 -32217.43 0 of 20 runs 6 
* indicates no feasible solutions were found in each of 20 trial runs 
 

It is worth noting that the solutions resulting from both these problems are equal to or 

better than the published solutions. For example, the weld beam problem resulted in the 

lowest value of 1.87, which is about 22% better than the published solution. The average 

solution value obtained over 20 trial runs was 2.39, which is equal to the published 

solution. For problem 7.2.11, the solution obtained was exactly equal to the published 

solution. A similar behavior is observed in problem 7.2.12 as well, where the lowest 
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feasible solution (-50.64) fared better than the published solution (-50.00). Although the 

difference is not very significant and only three of 20 trial runs were feasible, suggesting 

that the particle swarm gathered significant information about the design space and 

digital pheromones assisted this behavior. The average solution values of infeasible and 

feasible solutions returned -50.24, which is yet better than the published solution. 

 

For problem 7.2.13, five trial runs of 20 resulted in a feasible solution, of which the 

lowest feasible solution was 7% better than the published solution. There are two 

potential reasons for 15 of the 20 being infeasible: a) the swarm is trapped in a local 

minimum resulting in a solution value better than the published solution but is in an 

infeasible space or b) the swarm is very close to the optimum but could not find the 

precise design variable values necessary to satisfy all constraints. To clarify this issue, the 

design variables that returned an infeasible solution were observed. For example, one of 

the 20 trial runs returned design variable values of {1.738, 1.978}, resulting in one of the 

constraint being violated by 0.105 and the second constraint active at -0.002. The 

published solution set for this problem is {1.746, 1.953}, which is very close to the 

obtained solution set. A similar behavior was observed for the rest of the trial runs as well 

suggesting that the swarm was trapped in a location very close to the optimal point, but 

with a small degree of infeasibility. The main reason for this is thought to be the 

formulation of the pseudo objective function. Since this method is not handling 

constraints directly, there is a mapping that has to occur from the actual constrained 

design space to the unconstrained pseudo design space. A pseudo design space must be 

different each time if a different, and improved, design point is to be found. Most likely, 
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for the test cases that could not converge, the penalty being applied was too small to 

influence the pseudo design space to meet all constraints. In other words, the pseudo 

representation reached a certain point and could not change further. 

 

None of the trial runs returned a feasible solution for problems 7.2.15 (Golinski’s speed 

reducer problem) and 7.2.16 (constrained Himmelblau problem). A feasible solution was 

not obtained even when the pseudo objective functions were completely solved, as noted 

in section 7.8.2. This suggests that these problems are very sensitive to the behavior of 

the swarm movement within the design space, and a different constraint handling 

approach might be required to address this issue. 

 

Overall, the ALM implementation of PSO with digital pheromones produced promising 

results. Out of a total of 240 trial runs for all test cases (both complete pseudo solving and 

limited pseudo iterations), 90 trial runs resulted in feasible solutions. This can be 

observed from the ‘constraint satisfaction consistency’ columns in Table 25 and Table 

26. Problems that resulted in feasible solutions were solved quite fast and within 

significantly less number of iterations. For example, the weld beam problem (7.2.14) took 

~2470 seconds and 10,000 iterations to result in a solution of 1.907 that violated one 

constraint, while it took only 4.25 seconds and 15 iterations before converging to a 

feasible solution of 1.913. 

 

Since only about 37% of the test cases resulted in feasible solutions, further research has 

to be done to improve the reliability of the method. Two fundamental issues that must be 
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dealt with are: a) continuous formulation of the pseudo objective function to ensure 

improvement until feasibility and convergence and b) an intelligent distribution of the 

penalty across the swarm so that members exploring “bad” regions of the design space do 

not exert undue influence on the remainder of the swarm. However, the method did 

perform well in accuracy as it found better solutions than currently published for some of 

the test cases. This alone is a significant contribution to the field for an emerging 

constrained optimization method. 
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8 Conclusions and Future Work 
 

8.1 Conclusions 
 

This research presents a novel use of digital pheromones to search n-dimensional 

multimodal design spaces in PSO. A basic PSO is known for its simplicity in 

implementation because of a small number of parameters to alter. The use of digital 

pheromones within PSO introduces three new parameters namely the confidence 

parameter (c3), move limit decay (λML) and pheromone decay (λP). Although these are 

user defined, default values have been empirically established through testing with 128 

different combinations of pheromone parameters with three different test cases. These 

values were used as inputs for the remaining test cases to test the feasibility of digital 

pheromones to aid a particle swarms to search for the global optimum in n-dimensional 

design spaces. It was observed that the objective function values resulting from using 

digital pheromones were nearly always equal to published, if not better, ones for the test 

cases used. Although additional computations were added per iteration, solutions times 

still decreased when digital pheromones were implemented due to faster convergence. 

The viability of solving realistic multimodal optimization problems was simulated 

through imposing sleep-times on objective function evaluations. When a basic PSO was 

unable to solve a problem, the additional information about the design space through 

digital pheromones caused a faster convergence on the global minimum with increased 

accuracy, efficiency and reliability.  

 



160 
 

  

Statistical tests at a 95% confidence level were performed to test the significance of the 

results obtained when compared to a basic PSO. In all of the test cases the objective 

function values from digital pheromone implementation was significantly better than a 

basic PSO. With very few new pheromone parameters added to a basic PSO, the solution 

accuracy, efficiency and reliability characteristics of PSO substantially increased thereby 

improving the usability of PSO in practical design processes in an industry. 

 

Additionally, the developed method was implemented in parallel to determine its 

feasibility in a cluster computing environment. Six different problems were tested in 

synchronous coarse grain parallelization and asynchronous shared pheromone 

parallelization schemes. Although the solution accuracies of coarse grain parallelization 

did not differ much from serial implementation, it was demonstrated that substantial 

savings were achieved in terms of solution times. The parallel efficiency and speedup 

studies showed that almost ideal parallel speedups were achieved in spite of network 

latencies. The parallel efficiencies and speedups improved as the dimensionality and 

number of processors increased. 

 

In the shared pheromone parallelization method, multiple swarms deployed across 

available processors share a common repository of digital pheromones. These served as 

information communication sources for particle swarms resulting in substantial 

improvement in solution accuracy, efficiency and reliability. Additionally, these gains 

improved as the number of processors increased suggesting the method’s scalability to a 

large number of processors. For a fair performance comparison, two modes of shared 
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pheromone parallelization were introduced – fixed swarm size per processor, and fixed 

overall swarm size. Both implementation schemes performed significantly better than 

coarse grain parallelization demonstrating that communication between swarm members 

is essential for improved solution efficiency. 

 

The GPU implementation of PSO with digital pheromones was another important 

accomplishment of this research, where solution speedups of up to ~97% were realized 

compared to CPU computing with comparable solution qualities. The objective function 

values were computed using GPUs although the percentage of GPU involvement could 

be altered using configuration files. This is especially helpful when high precisions 

combined with computational efficiencies are primary requirements for a designer. GPUs 

are traditionally used for visualization purposes and typically not used for solving 

complex design optimization problems. Adoption of GPUs as a means to substantially 

improve solution efficiencies in highly multimodal design problems serves as a 

noteworthy contribution to the field of Human-Computer Interaction in this research. 

 

On GPUs, objective function evaluations are currently computed on a Single Instruction 

Multiple Data scheme that makes large number of computations possible simultaneously 

– an inherent hardware property of GPUs that is different from a traditional CPU. 

Although the GPU implementation merits further research for realizing more 

performance benefits, the implemented method serves as a proof of concept that GPUs 

are a cost effective and faster means to perform scientific computations. This 

implementation is further a testimony for realizing enormous solution efficiencies 
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through parallelization with little (~$100 USD) or no changes in hardware infrastructure 

in an industry. 

 

In addition, the developed method was tested for solving constrained optimization 

problems. The Augmented Lagrange Multiplier method was used to accomplish this task. 

Significant solution accuracies were observed for those problems that the method was 

able to solve. In some cases, the solutions exceeded published solution values. However, 

further investigation is warranted to improve the reliability of the method. 

 

8.2 Future Work 
 

There are many future directions for further implementation of digital pheromones in 

PSO. While refining the performance of digital pheromones to solve a wide range of 

problems (e.g., multi-objective, discrete optimization problems, etc) is an ongoing 

venture, the following are some of the future goals that are worth investigating and 

implementing: 

 

1) Develop a graphical user interface to specify various problem parameters during 

run-time and visualization of solution progress in the design space using various 

n-dimensional visualization techniques. 

2) Improve the reliability characteristics for solving constrained optimization 

problems. 
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3) Develop methods to off-load more independent computations on to GPUs, while 

also reduce data traffic between CPUs and GPUs. 

4) Currently, shared pheromone operations in parallel are performed by only one 

processor (the root processor). It would be beneficial to mathematically, 

analytically, and statistically determine the appropriate number of pheromone 

processors for efficient utilization of computational resources as problem 

characteristics change. 

5) Possible elimination of pBest and usage of gBest alone with digital pheromones. 
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