
Retrospective Theses and Dissertations

2008

Improving solution characteristics of particle
swarm optimization through the use of digital
pheromones, parallelization, and graphical
processing units (GPUs)
Vijay Kiran Kalivarapu
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/rtd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in
Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

Recommended Citation
Kalivarapu, Vijay Kiran, "Improving solution characteristics of particle swarm optimization through the use of digital pheromones,
parallelization, and graphical processing units (GPUs)" (2008). Retrospective Theses and Dissertations. 15700.
http://lib.dr.iastate.edu/rtd/15700

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15700&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15700&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15700&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15700&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F15700&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd/15700?utm_source=lib.dr.iastate.edu%2Frtd%2F15700&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Improving solution characteristics of particle swarm optimization through the use of
digital pheromones, parallelization, and graphical processing units (GPUs)

by

Vijay Kiran Kalivarapu

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Co-majors: Mechanical Engineering; Human Computer Interaction

Program of Study Committee:
Eliot Winer (Co-major Professor)

Adin Mann
James Oliver
Judy Vance

Julie Dickerson

Iowa State University

Ames, Iowa

2008

Copyright © Vijay Kiran Kalivarapu, 2008. All rights reserved

3316222

3316222
 2008

ii

To mom, sis
and

my wife Kavita

iii

TABLE OF CONTENTS

List of Figures .. vi
List of Tables ... viii
Acknowledgements ... ix
Abstract .. xi
1 Introduction .. 1

1.1 Formulation of Optimization Problems .. 1
1.2 Classification of Optimization Problems ... 5
1.3 Numerical and Evolutionary Methods ... 7
1.4 Genetic Algorithms .. 11
1.5 Simulated Annealing .. 15
1.6 Particle Swarm Optimization ... 18

2 Background... 22
2.1 Particle Swarm Optimization ... 22
2.2 Digital Pheromones .. 23
2.3 Parallelization ... 24
2.4 Computations Using Graphics Hardware ... 28
2.5 Research Issues .. 33

3 Digital Pheromones in PSO ... 36
3.1 Rationale ... 36
3.2 Method Overview ... 38
3.3 Digital Pheromone Initialization and Merging Process ... 39
3.4 Proximity Analysis to Determine Target Pheromone .. 42
3.5 Velocity Vector Update .. 43
3.6 Geometric Interpretation of Target Pheromone and Confidence Parameter, c3 44
3.7 Move Limits ... 46
3.8 Statistical Significance of Digital Pheromones .. 47

3.8.1 Statistical Hypothesis Testing ... 47
3.8.2 Hypothesis Testing Procedure .. 49

3.9 Further Improvements .. 52
4 Parallelization on Computer Clusters.. 53

4.1 Rationale for Parallelization ... 53
4.2 Synchronous Coarse Grain Parallelization ... 54
4.3 Shared Pheromone Parallelization ... 57

5 Parallelization on Commodity Graphics Hardware 61
5.1 GPU Parallelization .. 61
5.2 Choice of GLSL as Shading Language .. 64
5.3 Vertex and Fragment Shaders .. 65
5.4 Formulation for GPU Computations .. 65
5.5 GPU Implementation.. 67
5.6 Percentage of GPU Vs CPU Usage .. 70
5.7 Implementation Specifics ... 70

iv

6 Constrained Optimization ... 72
6.1 Methods to Solve Constrained Problems ... 72

6.1.1 Exterior Penalty Function Method (EPF) ... 75
6.1.2 Interior Penalty Function Method (IPF) ... 77

6.2 Augmented Lagrange Multiplier (ALM) Method .. 78
7 Results and Discussion ... 84

7.1 Overview .. 84
7.2 Test Problem Description ... 85

7.2.1 Six-hump Camelback 2D function .. 85
7.2.2 Himmelblau 2D function .. 86
7.2.3 Rosenbrock 5D function ... 87
7.2.4 Ackley’s 10D Path Function ... 88
7.2.5 Dixon and Price 15D function .. 89
7.2.6 Ackley’s 20D Path Function ... 89
7.2.7 Levy 25D Function ... 90
7.2.8 Sum of Squares 30D Function .. 90
7.2.9 Sphere 40D Function .. 91
7.2.10 Griewank’s 50D Function ... 92
7.2.11 One Dimensional Two Inequality Constrained Problem 93
7.2.12 Two Dimensional Single Inequality Problem ... 94
7.2.13 Two Dimensional Two Inequality Problem .. 94
7.2.14 Four Dimensional Eight Inequality Constrained Weld Beam Problem 94
7.2.15 Golinski’s Speed Reducer Problem .. 96
7.2.16 Himmelblau 5D Constrained Problem .. 99

7.3 Results from Digital Pheromone Implementation in PSO 100
7.3.1 Test Problem Settings ... 100
7.3.2 Results and Discussion ... 102
7.3.3 Simulating Realistic Objective Functions ... 109

7.4 Statistical Analysis ... 110
7.4.1 Test Problem Settings ... 110
7.4.2 Results and Discussion ... 111

7.5 Coarse Grain Parallelization Results .. 117
7.5.1 Test Problem Settings ... 117
7.5.2 Results and Discussion: Evaluation With/Without Pheromones 119
7.5.3 Results and Discussion: Parallel Efficiency and Speedup Characteristics 124

7.6 Shared Pheromone Parallelization Results ... 130
7.6.1 Test Problem Settings ... 130
7.6.2 Results and Discussion: Fixed Swarm Size per Processor 132
7.6.3 Results and Discussion: Fixed Overall Swarm Size 140
7.6.4 Note on parallel speedups and efficiencies ... 144

7.7 GPU Parallelization Results ... 144
7.7.1 Test Problem Settings ... 145
7.7.2 Results and Discussion ... 146

7.8 Constrained Problems .. 152
7.8.1 Test Problem Settings ... 152

v

7.8.2 Results and Discussion ... 153
8 Conclusions and Future Work ..159

8.1 Conclusions .. 159
8.2 Future Work ... 162

9 References ...164

vi

List of Figures

Figure 1 Simple One dimensional design space ... 3
Figure 2 Contour plot of a 2D objective function ... 4
Figure 3 Contour plot of a 2-D objective function with inequality constraints 5
Figure 4 General classification of optimization problems .. 6
Figure 5 Binary representation of variables in Genetic Algorithms 11
Figure 6 Crossover and Mutation operations in Genetic Algorithms 13
Figure 7 Floating point operation increase of GPUs and CPUs in the past 6 years 32
Figure 8 Particle movement in a basic PSO.. 36
Figure 9 Particle movement with digital pheromones .. 37
Figure 10 Overview of PSO with Digital Pheromones ... 38
Figure 11 Merging of Digital Pheromones ... 40
Figure 12 Flowchart of pheromone merging process ... 41
Figure 13 Illustration of target pheromone selection .. 43
Figure 14 Schematic of synchronous coarse grain parallelization .. 56
Figure 15 Shared pheromone parallel implementation flowchart ... 59
Figure 16 Simplified Graphics Pipeline (programmable components indicated) 62
Figure 17 Visual Summary of a Fixed Functionality Graphics Pipeline 63
Figure 18 Data Entry Sequence in a Texture and its Use for Objective Function Evaluation 67
Figure 19 Flowchart for GPU Hardware Acceleration of PSO with Digital Pheromones 69
Figure 20 Optimality conditions for a constrained optimization problem 73
Figure 21 Flowchart for ALM implementation in PSO with digital Pheromones 82
Figure 22 Six-hump Camelback Function .. 85
Figure 23 Himmelblau function .. 86
Figure 24 Rosenbrock’s Valley Function ... 87
Figure 25 Ackley’s Path Function .. 88
Figure 26 Dixon and Price Function ... 89
Figure 27 Sum of Squares Function.. 91
Figure 28 Sphere (De Jong’s) Function .. 92
Figure 29 Griewank’s Function .. 93
Figure 30 Illustration of Weld Beam Problem .. 95
Figure 31 Golinski’s Speed Reducer .. 97
Figure 32 Solution accuracy measure across 2, 4, and 8 processors 121
Figure 33 Parallel Speedup characteristics of PSO with digital pheromones 125
Figure 34 Parallel Efficiency characteristics of PSO with digital pheromones 127
Figure 35 Effect of number of processors on parallel efficiency .. 128
Figure 36 Charts for Basic PSO: Speedup (Left), Parallel Efficiency (Right) 129
Figure 37 Solution accuracy charts for test problems with fixed swarm size per processor 136
Figure 38 Solution duration charts for test problems with fixed swarm size per processor . 138
Figure 39 Solution accuracy charts for test problems with fixed overall swarm size 141
Figure 40 Solution duration charts for test problems with fixed overall swarm size 142
Figure 41 Solution accuracy plot for CPU and GPU implementation of PSO with digital
pheromones ... 149

vii

Figure 42 Solution Duration plot for CPU and GPU implementation of PSO with digital
pheromones ... 149

viii

List of Tables

Table 1 Terminology used for mapping CPU algorithms to the GPU 30
Table 2 Decisions and Errors in Hypothesis Testing .. 49
Table 3: List of problem numbers used for testing the developed methods 85
Table 4 Description of design variables for Golinski’s speed reducer problem 97
Table 5 Test Problem Matrix for serial implementation of PSO with digital pheromones .. 100
Table 6 Digital Pheromone Parameters .. 101
Table 7 Solution averages obtained from solving preliminary test problems 103
Table 8 Summary of results from solving problems 7.2.5 – 7.2.10 106
Table 9 Summary of results for Ackley 20D with variable function evaluation time 109
Table 10 Hypothesis test results for Camelback 2D function ... 112
Table 11 Summary of hypothesis testing for Camelback 2D problem 112
Table 12 Summary of hypothesis testing for Himmelblau 2D problem 113
Table 13 Summary of hypothesis testing for Rosenbrock 5D problem 114
Table 14 Summary of hypothesis testing for Ackley 10D problem 115
Table 15 Summary of hypothesis testing for Ackley 100D problem 116
Table 16 Test problem matrix for synchronous coarse grain parallelization 117
Table 17 Summary of solutions from coarse grain parallelization 119
Table 18 Summary of solution times and number of iterations from coarse grain
parallelization .. 122
Table 19 Test problem matrix for shared pheromone parallelization 130
Table 20 Summary of solutions from shared pheromone parallelization 133
Table 21 Test problem matrix for GPU parallelization .. 145
Table 22 Results obtained from GPU implementation ... 148
Table 23 Comparison of solution duration and number of iterations on CPU Vs GPU 151
Table 24 Test problem matrix for constrained problem solving ... 152
Table 25 Solutions from complete solving of pseudo objective functions 154
Table 26 Solutions from limited pseudo iterations ... 155

ix

Acknowledgements

This dissertation could not have been possible without the support and guidance of numerous

people. Firstly, I wish to thank and express my deepest gratitude to my advisor Dr. Eliot

Winer for providing me a tremendous graduate education experience. I owe a major share of

my success to his constant encouragement, continuous support and above all his belief in my

abilities as a researcher. He relentlessly fueled my analytical thinking and greatly assisted me

with scientific writing.

I am also very grateful for having a wonderful doctoral committee and wish to thank Drs.

Julie Dickerson, Adin Mann, Jim Oliver and Judy Vance for providing me invaluable input to

this research.

This acknowledgement is not merely half complete if I did not thank the Virtual Reality

Applications Center and the staff. The congenial work atmosphere and sense of pride they

provide me is unparalleled. I would also like to thank everyone in my research group Alex,

Andy, Brandon, Brett, Catherine, Christian, Eric, Kenny, Levi, Marisol, and Ruqin for their

time and patience in offering me their precious pointers in shaping my dissertation and

presentation. I cherished the times I spent with them sharing the woes of graduate students.

Special thanks are in order to Eric for cheering my spirits when things did not work the way I

wanted. My research would have been half hearted if he did not show both sides of the coin

by playing a devil’s advocate.

x

Thanks goes out to my friends Prathibha, Vikram, Suman, Goutham, Krishnaveni, Kishore,

Sreekanth, Shashank and Deepti for standing by me and providing encouragement and

support.

Finally, I would like to thank the most important people in my life – mom, sis and my wife

Kavita. They are the ones to whom I owe my existence. Mom’s unending faith and

confidence in me is what shaped me to be the person I am today. I would never forget mom’s

words on how nothing can go wrong with having a good education. Sis’ unfaltering affection

inculcated the sense of responsibility towards my family. Nothing comes close to the

encouragement and support Kavita provides me. She rejoiced with me when I had happy

moments at work and empathized with me during rough times. Kavita, you have taught me

the value of love in life.

xi

Abstract

Optimization has its foundations dating back to the days of Newton, Lagrange, Cauchy, and

Leibnitz when differential calculus methods were developed to minimize and maximize

analytical functions. Substantial progress in optimization became more prominent in the mid

to late twentieth century when digital computers showed promise in offloading analytical

problem solving into numerical methods through computer code for faster evaluations of

designs.

Deterministic optimization methods such as steepest descent, conjugate gradient and

Newton’s methods are known for their robustness in iteratively reducing the objective

function value for minimization problems. However, they are primarily suitable for solving

single objective function problems that are unimodal and continuous. With increased

sophistication in engineering problems, multimodal and multi-objective problems have

become more prevalent drastically reducing the effectiveness of deterministic methods. This

led to the development of heuristic methods, particularly evolutionary methods such as

Genetic Algorithms, Ant Colony Optimization, and Particle Swarm Optimization. These

methods have multiple design points exploring the design space over iterations as opposed to

a single design point as in the case of deterministic methods. Evolutionary methods come

with the capability to solve multimodal discontinuous design spaces with increased reliability

and efficiency, but at considerable computational expense.

xii

Particle Swarm Optimization (PSO) is one of the very recent population based heuristic

methods similar in characteristics to other evolutionary search methods. In a basic PSO, an

initial randomly generated population swarm propagates towards the global optimum over a

series of iterations. The direction of the swarm movement in the design space is based on an

individual particle’s best position in its history trail (pBest) through exploration, and the best

particle in the entire swarm (gBest) through exploitation. This information is used to generate

a velocity vector indicating a search direction towards a promising location in the design

space. The primary advantage of this method is its ease in implementation with a very small

number of user-defined parameters. Although a relatively young method as it was developed

in 1995, it has been added to the list of global search methods due to its reliability in finding

the global optimum for a variety of problems.

There are a few disadvantages of the method that suppress its efficiency and accuracy and is

the premise for the research presented in this thesis. Only two candidates - pBest and gBest

dictate the search direction for each swarm member. Much more information is available if

characteristics of additional swarm members could be utilized. Additionally, poor move sets

specified by pBest and gBest in the initial stages of optimization can trap the swarm in a local

minimum or cause slow convergence. To address this issue, a new approach to PSO using

digital pheromones to coordinate swarms within n-dimensional design space has been

developed. Digital pheromones are mathematical representations of real pheromones in that

they dissipate in time and do not move in addition to the fact that a stronger pheromone field

indicates a greater possibility for finding an optimum in the design space. The methods

developed using digital pheromones with PSO have substantially improved the accuracy,

xiii

efficiency, and reliability characteristics when compared to a basic PSO. The implementation

of this concept within a PSO is the first component in the development section of this thesis,

where the challenges and method development are outlined. Statistical hypothesis testing is

additionally performed to evaluate the efficacy of the developed method.

The second component of the research explores the possibility of multiple swarms searching

the design space in a parallel computing environment. Two methods have been developed: 1)

a synchronous coarse grain approach and 2) an asynchronous shared pheromone approach.

These schemes leverage the computational capabilities offered by present day processor and

network technologies in increasing the efficiency of particle swarms in reaching the global

optimum in multimodal design spaces.

The third component of the research is to investigate hardware acceleration of PSO with

digital pheromones using commodity graphics processing units (GPU). Methods have been

developed to offload repetitive computations on to GPUs where they are computed in parallel

and logical operations are carried out on the CPU that hosts the GPU. This computational

outsourcing dramatically reduced the overall solution times without any significant

compromise in the solution accuracy and reliability.

Realistic optimization problems are characterized by numerous inequality and equality

constraints. To test the viability of digital pheromones within a PSO for solving constrained

optimization problems, a sequential unconstrained minimization technique – Augmented

Lagrange Multiplier (ALM) method has been implemented. This final research component

xiv

was to examine the usability of digital pheromones within PSO to solve constrained

optimization problems.

The performance of each developed method was evaluated through a series of relevant multi-

dimensional multimodal test problems, and the results from digital pheromone PSO were

benchmarked against basic PSO implementations. Unconstrained problems were tested on

serial, distributed parallel computing environments and workstations with GPUs. Constrained

optimization problems were tested on serial computing environments and results are

presented. The testing of the developed methods showed promising results and provided

encouraging motivation for future development in addressing a wide variety of problems

(discrete optimization problems, multi-objective problems, etc).

1

1 Introduction

In a most generic sense, optimization is the process of attaining a best output from a

given set of inputs. Design engineers typically have to take into account many

technological and managerial decisions during a design process. The eventual purpose of

such decisions is to either minimize costs or maximize benefits or both. Design

optimization provides necessary tools required to achieve these targets.

Engineering problems, when formulated appropriately can extensively be solved using

design optimization techniques. Some such typical applications, but not limited to, are

listed below:

1. Aircraft design

2. Design of structures such as frames, foundations, bridges, etc for minimum costs

3. Optimal design of mechanical components such as linkages, gears and machine

tools

4. Design of material handling equipment such as conveyors, trucks and cranes for

minimum costs

5. Traveling salesman problems

6. Optimal production planning, control, and scheduling

7. Optimal design of control systems

1.1 Formulation of Optimization Problems

Typically, a design optimization problem consists of an objective to be achieved, through

satisfying certain conditions. This objective is termed the objective function, cost

2

function, or fitness value. The conditions that need to be satisfied while solving the

problem are called the design constraints. A general optimization problem can

mathematically be stated as follows:

A general optimization problem consists of one or multiple objectives to be minimized

represented by F1(X, Y) through Fp(X, Y). X is a vector of independent design variables,

which are the foundational parameters that all other functions are built upon. Y represents

a vector of dependent design variables that are linear or non-linear functions of X.

Inequality constraints are typically denoted by g(X, Y), and equality constraints are

represented as h(X, Y). The objective function F(X, Y), inequality constraints g(X, Y),

and equality constraints h(X, Y) can each be linear or non-linear functions depending

upon the problem to be solved. The side constraints provide lower and upper bounds for

the design variables. If design vector X is plotted on an n-dimensional Cartesian

coordinate system with each coordinate axis representing a design variable (X1, X2, X3 …

Xn), the space occupied by the coordinate system is called the design variable space or

the design space. An objective function F(X) refers to the location in the design space for

Minimize: F1(X, Y), F2(X, Y), …, Fp(X, Y) Objective function

Subject to: gj(X) ≤ 0, j = 1, m Inequality constraints

 hk(X) = 0, k = 1, l Equality constraints

 Xl
i ≤ Xi ≤ Xu

i i = 1, n Side constraints

X = [X1, X2, …, Xn], Y = [Y1, Y2, …, Yn]
X → Independent Design Variables (DVs)

Y → Dependent Design Variables

3

a specific set of values assigned to the design vector X. Figure 1 represents a simple

single dimensional objective function with four minimums.

Figure 1 Simple One dimensional design space

In this design space the design variable X is plotted on the X-axis and the objective

function is plotted on the Y-axis. Points A, B and D are local minimums and point C is

the global minimum. Figure 2 represents a two dimensional objective function with one

minimum. The design variables X1 and X2 are plotted on the coordinate axes and the

objective function is represented as contours that are obtained for different combinations

of X1 and X2.

4

Figure 2 Contour plot of a 2D objective function

The smallest oval in the objective function contour represents the optimum and its value

increases as the size of the oval increases. A design point A (X1, X2) encapsulates the

design variable information. For a 10 dimensional objective function the design point A

will have variable values X1, X2, X3, …, X10.

Realistic design problems are characterized by numerous inequality and equality

constraints. Figure 3 represents a 2D objective function with one linear and three non-

linear inequality constraints.

5

Figure 3 Contour plot of a 2-D objective function with inequality constraints

In figure 3, the smallest oval does not represent the optimum because it violates the

constraints represented by gj(X) ≤ 0, where j = 1 ... 4. The area enclosed within the

constraints is the feasible region and a design point outside of the feasible region is

infeasible. When a design point A (X1, X2) resides on a constraint boundary, the

constraint is considered “active”. The optimum value for this objective function is shown

by X* that renders the inequality constraint g4(X) as active.

1.2 Classification of Optimization Problems

Optimization problems are classified into various categories as shown in Figure 4. If the

objective function and all the constraints are linear functions of the design variables, the

optimization problem is considered a Linear Programming (LP) problem. If the objective

X*

6

function and/or the constraints are non-linear functions of the design variables it is

termed a Non-linear Programming (NLP) problem.

Figure 4 General classification of optimization problems

A Geometric Programming problem (GP) is one in which the objective function and

constraints are expressed as posynomials⊗ in X. A Quadratic Programming (QP) problem

is a non-linear programming problem with a quadratic objective function and linear

constraints. If some or all of the design variables in the design vector are restricted to take

⊗ A function p(X) is called a posynomial if p can be expressed as the sum of power terms
each of the form: Cix1

ai1x2
ai1x3

ai1…xn
ai1, where Ci and aij are constants with Ci>0 and xj>0.

Optimization
(Mathematical
programming)

Nature of
constraints

Nature of
equations

Nature of
Design

variables

Constrained
problems

Unconstrained
problems

Linear
programming

problems

Non-linear
programming

problems

Integer
programming

problems

Real-valued
programming

problems

Deterministic
programming

problems

Stochastic
programming

problems

Number of
objectives

Single
objective
problems

Multi
objective
problems

Geometric
programming

problems

Quadratic
programming

problems

7

on only integer (or discrete) values, the problem is called an integer-programming

problem. Real-valued programming problems are those where the design variables are

permitted to take any real value. If the parameters (design variables and/or various pre-

assigned values) are probabilistic, then the problems are considered stochastic (non-

deterministic). Single objective and multi-objective problems are classified based on the

number of objective functions to be minimized. In addition to these classifications, an

objective function can be unimodal or multimodal. Unimodal objective functions are

those that contain a single optimum while multimodal objective functions contain

multiple optimums. A real design situation more often as a rule than exception,

encompasses more than one of the above features into the design objective(s). For

example, an aircraft wing design could have two objectives (multi-objective problem),

one being simple linear and the other being highly non-linear, multimodal and multi-

dimensional. Such problems are more difficult to solve than single unimodal objective

problems.

1.3 Numerical and Evolutionary Methods

Methods to solve design optimization problems in various categories require different

approaches and techniques [1] [2] [3]. Analytical methods use classical differential

calculus theory and calculus of variations where the extremes of a function f(x) are

obtained by finding the values of x that cause the derivatives of f(x) to vanish. These

methods can be used to find unconstrained maximums and minimums of an objective

function with several design variables, with the assumption that the design space is

8

continuous and functions are twice differentiable. Some such deterministic optimization

methods include:

1) Simplex methods for linear programming problems

2) 1-D search methods for non-linear problems – exhaustive search, interval halving,

golden section, Quadratic and Cubic interpolation methods, and Newton’s method.

3) Unconstrained optimization methods – Random walk, Powell’s method, Steepest

descent (Cauchy’s) method, Newton’s method, and the Conjugate gradient (Fletcher-

Reeves) method.

4) Constrained optimization methods – Sequential linear and quadratic programming,

Penalty function methods, Augmented Lagrange Multiplier method, Method of

Feasible Directions, Modified Method of Feasible Directions, and the Generalized

Reduced Gradient Method.

The ubiquitous availability of cheap computational hardware resources made it possible

to automate much of these design optimization processes thereby paving the way for

numerical optimization. Through numerical methods, this computational hardware can

perform number crunching quickly and achieve an optimal combination of design

variables in a design iteratively. For example, consider a 2D design problem that we wish

to investigate with 10 different values for each of the design variables. Therefore, a total

of 100 (10x10) combinations of design variables exist. Let us assume that it would take

1/10th of a CPU second for a computer to compute the objective function for each

combination of the design variable. For the 100 combinations, it would take 10 seconds

of computer time. Realistic design situations where objective functions are composed of

9

hundreds or thousands of design variables will require a substantial amount of

computational resources. Advances in computational hardware (e.g., processor power)

allows for increased clock cycles per second and hence faster evaluation of designs. For

example, a 3.0 GHz processor is capable of performing 3.0 x 106 floating-point

operations per second.

For years, many numerical methods (i.e. those guaranteeing a reduction in the objective

function iteratively) were developed to solve different types of optimization problems.

Most of these problems were single objective and unimodal in nature. For problems

containing multiple extrema (multimodal), methods were devised to run from a number

of initial points to determine the global solution. With increased sophistication in process

and product design, these problems also grew larger and became increasingly multimodal

and multi-objective in nature. The use of numerical methods alone was no longer

sufficient, giving way to heuristic methods, particularly evolutionary methods. In an

evolutionary method, a population of design points is generated and made to traverse and

explore the design space to find the optimal objective function value (usually a maximum

or minimum) and its corresponding design parameter values, over a series of iterations,

while agreeing with the design constraints. Examples of such evolutionary algorithms are

Genetic Algorithms (GA), Simulated Annealing (SA), Ant Colony Optimization, and

Particle Swarm Optimization (PSO). These evolutionary methods have some natural

advantages over traditional deterministic methods:

10

1) They can handle mixed continuous-discrete variables, and discontinuous and non-

convex design spaces. Use of numerical methods can either be computationally very

expensive or return incorrect values (i.e. get trapped in local minimums).

2) Evolutionary methods do not require derivative information to attain a solution.

3) A population of design points is used instead of a single design point to search for the

optimum. Therefore, there is a higher probability of reaching the global optimum.

4) Due to random initialization of the population, the chances of getting trapped in local

minimums are dramatically reduced.

The primary strength of evolutionary methods lie in that population members arrive at a

global optimum through communication with each other. It can be thought that the

performance of numerical methods can be equivalent to evolutionary methods when

executed with multiple initial points searching the design space simultaneously.

However, numerical methods are not designed to provide communication between

multiple design points in the design space. Therefore, each design point will be subjected

to a higher computational intensity (e.g., first and second derivative information) than a

typical evolutionary algorithm. As such, evolutionary methods have proven themselves

somewhat more efficient for reaching the global optimum than numerical methods.

The following three sections describe the salient characteristics of the most widely used

evolutionary methods including their advantages and disadvantages. It is then followed

by the motivation for the research presented in this thesis.

11

1.4 Genetic Algorithms

Genetic Algorithms (GA) are based on the principles of genetics and natural selection

inspired from Darwin’s theory of evolution – survival of the fittest. Holland [4] was the

first to present it systematically and was later explained in the context of biological

evolution by Rechenberg [5]. Due to its robustness and insensitivity to whether design

spaces are continuous or discrete, they are one of the most widely used heuristic

evolutionary optimization methods. They have been in existence for approximately 35

years and are still an active area of research [6] [7]. Although the implementation could

be different and problem specific, the genetic search typically consists of three main

components: (a) selection (reproduction), (b) crossover, and (c) mutation.

A population of design points is used instead of a single design point. The size of the

population can range anywhere from 2n to 4n and sometimes up to 10n, with n being the

number of design variables. The design variables are typically represented as binary

encoded strings corresponding to chromosomes in genetics. For example, a design

variable vector <x1, x2, x3, x4> = <18, 3, 1, 4> can be represented as a binary string as

shown in Figure 5.

Figure 5 Binary representation of variables in Genetic Algorithms

12

In general, if a binary number is given by BqBq-1 … B2B1B0 then its equivalent decimal

representation is given by∑
=

q

i
i

i B
0

2 , where ‘i’ indicates the current position in the binary

string. Therefore, x1 (= 10010) as shown in Figure 5, is represented as 1x24 + 0x23 +0x22

+1x21 +0x20, a binary equivalent for the number 18. This flexibility in representing the

design variables makes GAs naturally suitable for use in both discrete and continuous

problems. Moreover, they do not require derivative information. The objective function

value is termed as ‘fitness value’, which is analogous to the role of fitness in natural

genetics. A new set of strings is produced in each generation (iteration) through selection,

crossover and mutation from old generation.

In the selection process, the best genes would be retained while copies of the fittest genes

would replace the weakest genes. Different methods are used to perform the selection

process, tournament and roulette wheel selection being the most popular. Survival of the

fittest theory makes highly fit individuals survive and reproduce in each generation. The

algorithm automatically gets rid of least fit individuals through replacement by children

from the highly fit individuals [4-8].

For crossover, two individual strings (chromosomes) are selected at random from the

currently fit design vector. A crossover site is selected at random along the string length,

and the binary digits are swapped between the two strings following the crossover site.

Thus, a new string of design points are obtained, which is placed in the new population

pool. There are various types of crossover implementations, the most common of them

13

being single point crossover, two point crossover, and cut-and-splice crossover methods

[9-12].

A mutation process is then followed based on an assigned mutation probability. Mutation

is an occasional random swapping of binary digits in a design variable from 0 to 1 and 1

to 0. This procedure intends to prevent any bias in the individuals proceeding toward the

solution and controls trapped local optimums. When used sparingly with selection and

crossovers, mutation serves as a safeguard that prevents premature loss of important

genetic material during the course of the algorithm. Figure 6 represents typical crossover

and mutation operations. In the figure, the crossover is performed on parents ‘A’ and ‘B’,

where a portion of the binary string (shown in bold) in ‘A’ is swapped with the binary

string in ‘B’. Therefore, two parents of the form 11001011 and 11011111 combine to

form 11001111 after crossover. Mutation is also explained in the figure where a selected

bit in a string is swapped from 0 to 1 or 1 to 0.

Figure 6 Crossover and Mutation operations in Genetic Algorithms

Crossover – Chromosome bit until crossover point retained

Mutation – Selected Bits are inverted

11001011 + 11011111 = 11001111

11001001 → 10001001

14

With new individuals obtained from each generation through these operations, fitness

values for each individual are calculated. The algorithm stops with success when an

appropriate convergence criterion is satisfied. For example, a problem is said to be

converged if the difference in solution values are within 0.001 for 20 consecutive

generations.

GAs are primarily designed to handle unconstrained optimization problems that have

single objective functions. Creating an unconstrained pseudo objective function [1] [2]

[3], which contains a representation of the original objective function and constraints, is

used to solve constrained optimization problems. Similar methods [1] [2] [3] can also be

used to address multi-objective problems.

The advantages of GAs are that they efficiently search the design space and are more

likely to converge toward global minima when compared to direct methods [2]. Since the

design variables are typically binary in nature, design spaces with discrete and integer

design variables are well handled. Just as any other heuristic method, GAs do not require

derivative information thereby avoiding the requirement for continuous design spaces.

Additionally, since the method’s parameters do not interfere with the population size, it

can be easily parallelized to realize gains in performance and efficiency.

GAs have certain disadvantages that make it unsuitable for certain types of problems. For

example, they show a very fast initial convergence, but improvements in fitness value

slow as more generations are created. Based on the complexity of some GA

15

implementations, there could be a large number of user-controlled parameters that need

to be carefully selected. Also, GA implementations are computationally intensive.

Although mutation can sometimes help, population members getting trapped in local

minimums are not uncommon.

1.5 Simulated Annealing

Simulated Annealing (SA) is a probabilistic algorithm to locate global optimum in multi-

dimensional design spaces. This method was described by two researchers Kirkpatrick, et

al [13] in 1983, and Černý [14] in 1985. It is an adaptation of the Metropolis-Hastings

[15] algorithm, a Monte Carlo method to generate sample states of a thermodynamic

system. The SA procedure described in this section is adopted from two sources [16]

[17].

SA is similar to the process of thermal annealing involved in metal forming. Typical

annealing process involves slow and controlled cooling of a metal to ensure proper

solidification for a highly ordered crystalline state corresponding to the lowest energy

state. Rapid cooling potentially causes defects and does not provide preferred material

properties. In SA, the design space is considered to be the state of a physical system, and

the objective function is analogous to the internal energy of the system in that state. The

primary aim is to bring the system from an arbitrary initial state to one with least possible

energy (i.e. the objective function is to be minimized). One of the advantages of SA lies

in that entrapment in a local minimum is probabilistically avoided causing it to either stay

16

at the current position or only propagate to a position with lower energy state (i.e.,

minimum).

The algorithm starts from an initial vector X1, iteratively generates improved design

points X2, X3, …, while moving towards the global minimum. A current design point Xi

is randomly made to move along each coordinate direction. The values for the new

coordinates are uniformly distributed around Xi, and are ensured to be within the design

variable’s lower and upper bounds. A design vector X is accepted or rejected based on a

metropolis criterion. According to this criterion, a design is accepted if the objective

function resulting from the new design point Xi+1 is improved (typically less than) over

the one resulting from the older point, Xi. In such a case, Xi+1 is set to be X. Otherwise,

the design point is accepted with a metropolis acceptance probability, P, as shown in

equation (1).

kT
f

efP
Δ−

=Δ)((1)

Where, Δf = f(Xi+1) – f(Xi) and k is Boltzmann’s constant1. The value of ‘k’ influences

convergence characteristics. The acceptance probability function P(e,T) defines the

probability of making the transition from a current state s to a new state s’ on a time-

varying parameter, temperature (T). One of the requirements of the method is that ‘P’

should be non-zero when f(Xi+1) > f(Xi), allowing the system to move to a new state even

when the energy is higher than the current state. This feature in SA prevents the method

1 Boltzmann’s constant = 1.3806503 x 10-23 m2 kg/s2K

17

from getting trapped in a local minimum – a state worse than global minimum but better

than its neighbors.

SA starts with a high value for temperature, T0. Design vectors are generated iteratively

until equilibrium is reached. Then, the temperature is further reduced and a new sequence

of design vectors is generated. This procedure is continued until a sufficiently low

temperature is reached, at which stage no further improvement in the objective function

value can be realized. SA by nature does not handle constraints just as in a GA. Methods

should be incorporated within an SA to be able to handle inequality or equality

constraints [1-3].

The advantage of SA lies in that it is relatively insensitive to the type of design space and

can deal with arbitrary systems and cost functions. It statistically guarantees finding an

optimal solution, i.e., it either improves the solution or stays put at the same solution

from the previous iteration. Just as GA, SA does not need derivative information hence

making it suitable to search discontinuous design spaces. Finally, SA can be very easily

parallelized to realize better efficiencies.

There are a few disadvantages that make SA ill suited for certain optimization problem

types. For example, iterative annealing is very slow and the problem is especially

apparent with increasing complexity in the objective function. Although the

characteristics of the design space are typically unknown, SA is computationally

expensive especially if the design space is smooth or unimodal in nature. Direct methods

18

or other heuristic methods that can take advantage of additional information about the

design space provide better performance characteristics when compared to SA.

Additionally, a good cooling schedule is problem specific and is generally difficult to

define thereby increasing the possibility of premature crystallization (entrapment in a

local minimum).

1.6 Particle Swarm Optimization

PSO was developed by a psychologist, James Kennedy and an electrical engineer, Russell

Eberhart in 1995 [18] [19] based on experiments derived from mathematical modeling of

the flocking behavior of birds. The flocking models were originally developed by a

biologist named Frank Heppner [20]. Heppner’s model was different from other flocking

models in that it imparts attraction characteristics to roosting areas. According to this

model, birds begin by flying around with no set destination and form flocks with the rest

of the birds. However, when the criteria of ‘desire to roost’ is set higher than ‘desire to

stay in the flock’ for a bird, it would pull away from the flock and land. This behavior in

one bird resulted in the remaining birds following until the entire flock had landed.

This concept was improvised by Kennedy and Eberhart to search multi-dimensional

design spaces. Finding the roost is analogous to finding the global optimum, and the

process in which a bird finds a roost making the remaining birds to follow the lead

provides socio-cognitive characteristics in finding the global optimum. In this

implementation, particles (mathematical models for birds) fly in the design space and

19

propagate towards the best solution. However, there are no rules in this model to avoid

particles from propagating towards a local solution instead of a global solution.

Therefore, Kennedy and Eberhart proposed a method to utilize the social and cognitive

information gained by particles traversing through the design space. The social aspect

gathers information from the remaining particles (exploitation), while the cognitive

aspect takes advantage of information from a particle’s own history (exploration). If there

is too little exploration, particles tend to converge on the first good solution. On the other

hand, particles will never converge if there is very little exploitation. Therefore, a balance

of socio-cognitive information is required, which is what Kennedy and Eberhart achieved

in their formulation for PSO.

PSO is a population based zero-order optimization method that exhibits several

evolutionary characteristics similar to GAs. These are: 1) initialization with a population

of random solutions, 2) design space search for an optimum through updating generations

of design points, and 3) update based on previous generations [21]. In this method, each

particle in the swarm denotes a location (i.e. design point) in the design space whose

position is updated iteratively. Therefore, each particle moves from one position to

another each iteration. A velocity vector, a function that captures the combined effects of

each swarm member’s exploration and exploitation characteristics, provides the direction

and the magnitude of this movement. The algorithm iteratively updates the search

direction of the swarm propagating towards the optimum. Although there were many

preliminary implementations, equations (2) and (3) are the most popularly used

definitions for the mathematical simulation of this behavior.

20

Viter+1,i[]= witer ×Viter,i[]+ c1 × rand()× (pBesti[]− Xi[])
+ c2 ∗ rand()× (gBest[]− Xi[])

 (2)

Xiter+1[]= Xiter[]+Vi+1[] (3)
witer+1 = witer × λw (4)

Equation (2) represents the velocity vector update of a basic PSO method in iteration

‘iter’, for each design variable represented by square braces and for each swarm member,

i. randp() and randg() are random numbers generated each for pBest and gBest between 0

and 1. c1 and c2 are user definable confidence parameters. Typically, these are set to

values of 2.0. ‘pBesti[]’ represents the best position of the ith particle in its history trail,

and ‘gBest[]’ represents the best particle location in the entire swarm. witer is termed

“inertia” weight, and is used to control the impact of a particle’s previous velocity on the

calculation of the current velocity vector. A large value for witer facilitates global

exploration, which is particularly useful in the initial stages of an optimization. A small

value allows for more localized searching, which is useful as the swarm moves toward

the neighborhood of the optimum [22] [23]. These characteristics are attributed to the

swarm by implementing a decay factor, λw for the inertia weight, as shown in equation

(4). Equation (3) denotes the updated swarm location in the design space.

One of the primary advantages of PSO is its ease in implementation with a small number

of user defined parameters. The core of PSO requires very few lines of code when

compared to GA and SA. PSO has been added to global search methods due to its

reliability in finding global optimums for a wide range of problems [24] [25]. PSO is a

population based method and hence can easily be implemented in parallel to gain

21

performance benefits. Moreover, it works with objective function evaluations alone and

does not need derivative information. Therefore, discontinuities in design spaces can

easily be handled.

PSO is relatively young compared to other heuristic methods. Although it is intuitive and

can solve various types of problems, there are a few disadvantages that suppress its

efficiency and accuracy. At any instance, each particle is influenced by only pBest and

gBest. This impedes the desired exploratory characteristics in the design space, and is not

always sufficient to propagate toward the global optimum, especially in multimodal

problems. Secondly, the method is initial condition dependent. Any poor location

specified by pBest and gBest in the initial stages can offset the swarm from reaching the

neighborhood of the optimum or delay convergence.

No single heuristic method is ideal and can guarantee global optimum for all types of

optimization problems. GA and SA have a history of more than 25 years in development

and research is still being done to enhance their performance characteristics. Particle

Swarm Optimization (PSO) on the other hand is a more recent method and has

tremendous potential for further improvement. The research presented in this thesis

addresses the drawbacks listed above to realize performance gains and contribute towards

improving PSO in solution efficiency, accuracy and reliability. The second chapter

provides a comprehensive background on the past and present developments in PSO. It is

then followed by various resources that modern computational infrastructure can offer for

further development of PSO. Finally, the research issues are identified and defined.

22

2 Background

2.1 Particle Swarm Optimization

A significant number of modifications have been made to the basic PSO algorithm for

realizing performance improvements after it originated in 1995. Natsuki and Iba [26], and

Hu, et al. [27] have explored the possibilities of performance improvement through

introducing mutation factors in PSO, similar to the ones used in GAs. Gao et al. have

obtained improvements in PSO, through the use of a virus operator that propagates partial

genetic information in the swarm by infection operators for enhanced design space search

[28]. Ray and Saini [29] developed a method to improve swarm movement within the

design space through information sharing between individual particle members. They

have successfully implemented this strategy in solving both constrained and

unconstrained problems as well.

Additionally, research has been done on utilizing PSO for constraint handling. Venter and

Sobieski [30] implemented a quadratic exterior penalty function method to solve non-

linear constrained optimization problems. Hu and Eberhart [31] modified the basic PSO

method so that the swarm is repeatedly initialized until all constraints are satisfied, while

also forcing pBest and gBest to be feasible in every iteration. Sedlaczek and Eberhard

[32] implemented the augmented Lagrangian method for solving small, constrained non-

linear optimization problems. Discrete PSO methods have been known to solve

23

constrained optimization problems as well, and Yang et al. have demonstrated it through

converting by satisfaction problems into discrete optimization problems [33].

PSO was used and modified for multi-objective problems as well [34] [35]. Some of the

recent advancements include solving traveling salesman problems using discrete PSO

methods [36-39]. Penalty function approaches have been used to solve mixed discrete

non-linear problems using PSO [40]. Other areas include developments in the areas of

integer programming [41] and continuous variable problems [42]. Parsopoulos and

Vrahatis [43] demonstrated the use of PSO for solving a wide range of problems

including multi-objective, mini-max, and integer programming problems. The same

authors have developed methods to compute all global minimizers of an objective

function using PSO [44]. Similarly, He, et al. presented methods that tackled mixed

variable types – integer, discrete and continuous variables [45]. A ‘fly-back’ constraint

handling mechanism was also introduced in this research to maintain a feasible

population. A substantial amount of success has been achieved in utilizing PSO for

applications such as aircraft design [46] [47], topology and shape optimization [48] [49],

structural optimization [50] [51], wireless network routing problems [52], optimization in

manufacturing and production operations [53] [54], collision detection problems [55],

and detection of optimal paths for unmanned aerial vehicles (UAVs) [56] [57].

2.2 Digital Pheromones

Pheromones are chemical scents produced by insects essentially as a means of

communication in finding suitable food and nesting locations. The more insects that

24

travel a path, the stronger the pheromone trail. A digital pheromone works on the same

principle and is analogous to a natural pheromone in that it is a marker to determine

whether or not a region in the design space is promising for further investigation. Digital

pheromones have been used in applications such as the automatic adaptive swarm

management of Unmanned Aerial Vehicles (UAVs) [58] [59]. In this research, the

implementation of digital pheromones causes swarms of UAVs to automatically adapt

and navigate in potentially hazardous environments dramatically reducing the

requirement of human operators at the ground control stations. Ant Colony Optimization

[60-62] models the behavior of ants that release pheromones to find optimal paths to food

from their nesting location. In this method, pheromones act as attractors released by

members (ants) causing other members to be attracted to stronger pheromone trails.

Digital pheromones are also used for solving network communication problems [63].

The concept of digital pheromones is relatively new [64], and has not been applied to

investigate n-dimensional design spaces. The benefits of digital pheromones from swarm

intelligence and the adaptive applications described above can be merged into PSO to

improve design space exploration, particularly for a multimodal optimization problem

where swarm communication is essential to locating the global optimum accurately,

efficiently, and reliably.

2.3 Parallelization

Parallelization provides a very convenient alternative to improve solution times when

single workstation environments are not sufficient. Processor technology advancements

25

in addition to low costs make scientific computation on massively parallel computer

clusters viable and affordable in academics and industries. However, certain requirements

are crucial for an algorithm to be implemented in parallel. The primary requirement for

parallelization is the ability of the method to decompose into segments for multi-

processor operation. In addition, the two highly desirable characteristics for

parallelization are: a) scalability – the ability to adapt to any number of processors with

no/minimal changes and b) processor load balancing – use of the available number of

processors to the full extent without any processor substantially running idle.

Parallelization can be synchronous or asynchronous. Synchronous parallelization

facilitates a step wise parallel execution of tasks. Coarse decomposition schemes are

examples of synchronous parallelization where each processor has its own swarm

exploring the design space. Solutions obtained from different processors are

synchronized and gathered on a common processor (usually, the root processor) to

evaluate the final global optimum. This is achieved through the use of a barrier function

in the Message Passing Interface (MPI) [65], the most commonly used interface for

parallel programming. Asynchronous parallelization is the dividing of a sequential

algorithm into autonomous tasks each of which can be carried out on different processors.

Dependencies among the tasks are modeled by message passing or through shared

memory [66], depending upon the hardware configuration.

Population based optimization methods such as GA and PSO are computationally

intensive and are a natural fit for parallelization because the method parameters do not

limit the number of processors that can be used for solving the problem. Three different

26

types of parallelization are seen as most common in the literature for population based

methods: 1) global (master-slave) model, 2) migration (distribution) model, and 3)

diffusion model. In the master-slave model, the objective function is evaluated in parallel

on slave processors, and the remaining operations are performed on the master, (e.g.,

selection and crossover in GA). This means that while the objective function values are

evaluated on different processors by a subset of the population, the selection and

crossover operations are performed for the total population. Therefore, no information

about the population is lost due to information transition between processors, but the

algorithm proceeds much faster [67] [68]. In the migration model, the population is

divided into a number of sub-populations, with each propagating independently on a

different processor and computing its own optimum. Depending upon the

implementation, the best fitness value in all the processors is communicated to each other

periodically. This model is known to produce better parallel efficiencies compared to the

master-slave model but network communication causes considerable overhead [68-70].

The diffusion model depends on the locality concept where each population member is

considered a separate breeding unit. Each population member is unaware of the best

value in each iteration, and it moves only toward the best value in the neighborhood. The

best value attained by each processor is broadcasted so that each member adjusts its own

best location accordingly. Since each processor broadcasts its best value in the current

iteration, entrapment in local minima is avoided. The effectiveness of this model depends

upon the type of connection topology such as ring (two links per node) or fully connected

[68].

27

Schutte, et al [71] developed a synchronous parallelization scheme for PSO where the

participating processors synchronize after objective function evaluations prior to

computing the velocity vector. This synchronization caused significant performance

issues, which were addressed by Koh et al [72] in their adaptive concurrent asynchronous

parallelization scheme. In this research, the particle order in a swarm is permitted to

change continuously depending upon the speed at which each processor performs

objective function evaluations. This approach allows for the elimination of an iteration

counter altogether and hence the need for synchronization between processors – a major

bottleneck in parallel algorithms. Similarly, Venter and Sobieski [73] developed another

asynchronous parallelization scheme in a master-slave implementation. The master

processor is primarily used for controlling communication between processors and the

slaves perform PSO computations while maintaining load balancing between processors.

Belal and El-Ghazawi [74] explained various parallel models in PSO including master-

slave, migration, and diffusion PSO. Shi et al [75] developed a hybrid parallel method

where PSO and GA interact, execute simultaneously and exchange design space

information after a set number of iterations. Another approach was devised by the same

authors where PSO and GA interact with each other in series. The benefits of PSO

parallelization has been successfully applied in various fields such as the design of

electromagnetic absorbers [76], power flow applications [77], and antenna designs [78]

[79].

28

2.4 Computations Using Graphics Hardware

Recently, technologies such as hyper threading and multi-core processing [80] have been

the main drivers increasing CPU performance as opposed to the addition of more

transistors onto a CPU chip. While hyper threading requires an additional burden on the

programmer to develop thread-enabled code to realize performance improvements, multi-

core processor improvement is only linearly related to the number of cores used on the

processor chip. For example, a dual core processor can only increase the CPU

performance by approximately a factor of two. However, commodity Graphics

Processing Units (GPUs) or more commonly graphics cards, another proven and

developing technology, is capable of improving computational performance more than

ten times that of a modern CPU [81]. For their price and ubiquitous availability, GPUs

have a superior processing architecture when compared to modern CPUs. For example, a

dual core processor has essentially two CPUs on one chip, but depending upon the type,

GPUs can have greater than 24 processors (24 fragment shading pipelines). In addition,

GPUs are capable of supporting hundreds of hardware threads as opposed to one or two

on a CPU. Early GPUs had fixed functionality that made them ideal for supporting

visualization and gaming. Modern GPUs include improved programmable processing

units and support vectorized floating point operations. The advent of programmable

graphics hardware in recent years has unlocked the use of GPUs for purposes other than

visualization to enable CPU type operations to be performed. GPUs offer distinct

advantages to any process involving large amounts of computation as they are now: 1)

programmable, 2) priced significantly less than a high performance CPU, 3) data parallel

in architecture, 4) highly threaded, and 5) good at reducing main memory access costs.

29

The programming component of GPUs primarily consists of vertex shaders and fragment

shaders (also called pixel shaders). In graphics programming, vertex shaders handle

transformation of vertices of an object and fragment shaders handle computing the pixel

color values that fill the screen. Initially, graphics programmers created low-level (fine

control) vertex and fragment shaders to achieve these tasks. However, due to the

tediousness involved in programming with these shaders and limited flexibility in terms

of debugging and code re-use, low-level shader programming is not a preferred method

for graphics programming. High-level shading languages, which incorporate several low-

level function calls into easier to use functions, are now available, which solve the rigid

low-level programming issues. The function of a shading language is to compile a shader

program into individual vertex and/or fragment components and perform required

computations before rendering images on the screen. Even though these operations were

designed to create realistic computer graphics, they are still mathematical. If it is

understood what mathematics are being performed, the data placed in a texture can be

multiplied, divided, or subjected to other complex mathematical operations.

While CPU programming has a large number of well-established programming languages

to choose from, there are only few GPU programming languages such as Cg [82], GLSL

[83], HLSL [84], Sh [85], and Ashli [86]. These languages are quite graphics specific, so

the terminology used in programming follow the mapping constructs to CPU

programming given in table 1.

30

Table 1 Terminology used for mapping CPU algorithms to the GPU
CPU GPU

Arrays or streams Textures
Parallel loops Quads

Loop body Vertex + fragment program
Output arrays Render targets
Memory read Texture fetch (gather)
Memory write Framebuffer write (scatter)

These shader languages adopt a C/C++ style of programming syntax. While Cg abstracts

the graphics hardware quite closely, GLSL has some data types defined outside of the

scope of current day graphics cards such as integers and matrices. As graphics hardware

begins to support these data types, GLSL will be a powerful language. Sh on the other

hand provides stream-programming capabilities particularly suitable for general purpose

GPU (GPGPU) programming. Ashli is a layer above the other shader languages that

internally supports reading shaders written in GLSL and HLSL, thereby providing a

higher level of flexibility in GPU programming.

Other high-level programming languages have emerged in recent years that focus more

on the GPGPU functionality as opposed to graphics specific constructs. Some such

languages are Brook [87], Scout [88], Microsoft Accelerator [89], CGiS [90], and the

Glift template library [91]. Performance and other comparison characteristics for these

languages have been studied [94] to provide a guideline for use in specific applications.

CUDA [92] is one of the latest development tools from NVIDIA aimed at GPGPU

computing. This promises to eliminate stream shader programming and GPUs can be

programmed through multi-threaded C programming for exponential information flow.

31

Studies have shown that GPUs exceed the number of floating point operations per second

and memory bandwidth on comparable CPUs. For example, a 3GHz Intel Pentium 4

processor peaks at 12 GFLOPS (Giga-Floating Point Operations) with ~6 GB/sec of

memory bandwidth as opposed to an ATI Radeon X1800 XT GPU that peaks at 83

GFLOPS with 42 GB/sec of memory bandwidth. This is an improvement of almost 600%

in floating point operations. The number of transistors that a GPU can hold is up to 222

million compared to 50 million on an Intel Pentium 4 CPU, an increase of over 400%.

Clearly, it can be seen that GPUs promise a tremendous amount of computing power than

their CPU counterparts [93-95]. The technological advancements in GPU hardware have

been predicted to follow a pace equal to three-times that of Moore’s law. In addition,

most computers and workstations currently have a GPU. These performance gains could

be instantly realized without the need to purchase additional hardware. If a computer is

lacking a GPU, a robust graphics card can be purchased for as little as $100-$400 to

acquire tremendous processing power. Figure 7 compares the performance curves of

GPUs (NVIDIA and ATI) versus CPUs (Intel) in recent years.

32

Figure 7 Floating point operation increase of GPUs and CPUs in the past 6 years
(Figure Courtesy: www.gpgpu.org)

If these performance gains could be harnessed either on a single computer, a cluster, or a

network of workstations (common in many companies and academic institutions),

problems currently requiring enormous computational resources could be solved on

commodity hardware. As identified in the introduction, large-scale, multi-objective

optimization offers tremendous benefits to companies and researchers, if they have access

to immense computational resources. By taking advantage of the power of GPUs, a new

source of resources, already available, can become practically usable.

33

2.5 Research Issues

Although substantial research has been done in optimization over the past 50 years,

industry has not been able to adopt it into their design processes to realize its benefits to

the fullest extent. Below is a partial list of reasons for this slow adoption rate:

- Time: Without tangible and documented return on investment, a company will often

incorporate optimization into their design processes

- Computing costs: Procuring computing technologies to solve optimization problems

in an industry’s design processes may not be cost effective

- Trust: A designer’s optimization model may not incorporate various aspects of the

problem and its accuracy is not guaranteed. Therefore, an industry trusts on a

designer’s experience better than a formal mathematical optimization model

- Awareness: Either an industry is unaware of the available tools to solve their

optimization problems or their design problems are too complex to be solved by

established optimization methods

- Competition: In a monopolized market, an industry does not have the incentive to

incorporate optimization to improve on their design processes further

When successfully implemented in a design process, optimization has the potential to

have a large impact on the quality, cost, and time for a product or process design.

Increasing demand and competition will drive the use of optimization in industry, but it

requires making optimization tools more practical and viable. The research presented in

this dissertation attempts to address these possibilities and provide designers with robust

tools to help improve their design processes.

34

Based on the needs defined and background material reviewed, three research issues have

been identified. They are:

1) How can the solution quality, accuracy, and reliability of PSO be improved in

identifying global optimum in multimodal n-dimensional design spaces?

Two drawbacks currently inhibit the performance of basic PSO in converging to a global

optimum in an n-dimensional design space. The first drawback is that the particle updates

are influenced by a limited number of factors. At any instance, each swarm member is

directed by only two current or past swarm locations – pBest and gBest. Having just these

two candidates impedes the desirable exploratory characteristics. In an n-dimensional

design space, information from these two candidates alone will not always suffice to

propagate a swarm toward the global optimum efficiently. A second drawback is that the

method is initial condition dependent. Poor locations specified by pBest and gBest in the

initial stages of optimization can potentially offset the swarm from attaining the

neighborhood of the solution in the design space. This results in the swarm either being

trapped in a local minimum or taking substantial time to recover from a bad location and

reach the global optimum. Through the use of digital pheromones, PSO variations can be

developed that can robustly explore and exploit design spaces for both unconstrained and

constrained optimization problems. It is theorized that these methods will offer

significant improvements in terms of solution quality and accuracy.

2) How can the solution efficiency for PSO be improved for a faster global

convergence in multimodal n-dimensional design spaces?

35

Although simple to implement, PSO is computationally quite intensive, particularly due

to a substantial number of function evaluations by the swarm members. Additionally, the

involvement of digital pheromones to improve the search efficiency adds additional

computations per iteration. Coarse and fine grain parallelization strategies will be

developed as a part of the second research issue to significantly increase solution

efficiency.

3) How can commodity graphics hardware be utilized to accelerate the optimization

process in PSO?

Section 2.4 explains the ubiquitous availability of commodity graphics hardware and its

potential for large-scale mathematical computations in less time and cost than

comparable CPUs. These features will be exploited to investigate the feasibility of

solving multimodal n-dimensional optimization problems in a CPU-GPU architecture.

36

3 Digital Pheromones in PSO

3.1 Rationale

In a basic PSO algorithm, the swarm movement is governed by the velocity vector

computed in equation (2). Each swarm member is therefore, essentially presented with

information obtained from two specific locations from the design space at any iteration.

However, multiple pheromones released by the swarm members could provide much

more information on promising locations within the design space when the information

obtained from pBest and gBest are insufficient or inefficient. This is the primary thrust

and premise for the research presented in this thesis.

Figure 8 Particle movement in a basic PSO

37

Figure 8 displays a scenario of a swarm member’s (Pi) movement whose direction is

guided by pBest and gBest alone. The previous position of the particle is denoted by Pi-1

and the previous velocity component is indicated by Vi-1. If c1 >> c2, the particle is

attracted primarily towards its personal best position. On the other hand, if c2 >> c1, the

particle is strongly attracted to the gBest position. In the scenario dominated by c2 as

presented in Figure 8, neither pBest nor gBest leads the swarm member to the global

optimum, at the very least, not in this iteration adding additional computation to find the

optimum.

Figure 9 Particle movement with digital pheromones

Figure 9 shows the effect of implementing digital pheromones into the velocity vector.

An additional pheromone component potentially causes the swarm member to result in a

direction different from the combined influence of pBest and gBest thereby increasing the

probability of finding the global optimum.

38

Evaluate fitness value of each swarm member

Store pBest and gBest

Start Iterations

Decay digital pheromones in the design space (if any)

Populate particle swarm with random initial values

Merge pheromones based on relative distance between each

1st iteration?

Find target pheromone toward which each particle moves

Converged
?

STOP!
No Yes

Randomly
chosen 50%
of swarm
release
pheromones

Improved particles release pheromones

No

Yes

Update velocity vector and position of each particle

3.2 Method Overview

Figure 10 summarizes the procedure for PSO with steps involving digital pheromones

highlighted.

Figure 10 Overview of PSO with Digital Pheromones

39

The method initialization is similar to a basic PSO except that 50% of the swarm within

the design space is randomly selected to release pheromones in the first iteration. This

parameter is user-defined, but experimentation has shown 50% to be a good default

value. For subsequent iterations, each swarm member that finds a better location releases

a pheromone. Pheromones from the current as well as the past iterations that are close to

each other in terms of the design variable value are merged into a new pheromone

location. In addition, the digital pheromones are decayed in each iteration just as natural

pheromones. This effectively creates a pheromone pattern across the design space while

still keeping the number of pheromones manageable. Each distinct pheromone is then

given a probability based on its pheromone level and its position relative to a particle.

This probability is then used in a ranking process to select a target pheromone for each

particle in the swarm. The target position for each particle will be an additional

component of the velocity vector update in addition to pBest and gBest. Following this,

the objective value for each particle is recalculated and the entire process is continued

until a prescribed convergence criteria is satisfied.

3.3 Digital Pheromone Initialization and Merging Process

In order to populate the design space with an initial set of digital pheromones, 50% of the

population is randomly selected to release pheromones, regardless of the objective

function value. This is done to ensure a good spread of digital pheromones across the

design space thus leading to effective swarm exploration. For subsequent iterations, the

objective function value for each particle in the population is evaluated and only particles

40

finding an improvement in the objective function value when compared to the current

gBest value will release a pheromone. Any newly released pheromone is assigned a level

P, with a value of 1.0. The pheromone levels are normalized between 0.0 and 1.0. Just as

natural pheromones produced by insects decay in time, a user defined decay rate, λP,

(defaulting to 0.95), is assigned to the pheromones released by the particle swarm. Digital

pheromones are decayed as the iterations progress forward to allow a swarm member to

propagate toward a better design point by increasing the chances of attraction to a newer

pheromone location with a better objective function value.

Every particle that finds a solution improvement releases a pheromone potentially

making the number of pheromones unmanageably large as iterations progress. Therefore,

an additional step to reduce them to a manageable number, yet retaining the functionality,

was implemented. Pheromones that are closely packed within a small region of the design

space are merged together. Figure 11 shows an example merging process in a 2D design

space.

Figure 11 Merging of Digital Pheromones

41

To check for merging, each pheromone is associated with an additional, ‘Radius of

Influence’ (ROI). For each design variable of a pheromone, an ROI is computed and

stored. The value of this ROI is a product of the pheromone level and the range of the

design variables. Any two pheromones for a design variable less than the sum of the

ROIs are merged into one. This is analogous to two overlapping spheres merging into

one. The average strength of the two merging pheromones is retained in the resulting

pheromone. The location of the resultant pheromone is biased towards the stronger of the

two merging pheromones. Through this approach, regions of the design space with

stronger resultant pheromone levels will attract more particles and therefore, pheromones

that are closely packed would indicate a high chance of optimality. Also similar to the

pheromone level decay, the ROI also has its own decay factor, λROI, whose value is set

equal to λP as a default. This is to ensure that both the pheromone levels and the radius of

influence decay at the same rate. Figure 12 is a flow chart illustrating the pheromone

merging process.

Figure 12 Flowchart of pheromone merging process

Check if intersecting with any other digital pheromones.

Calculate new location of pheromone

Create new merged pheromone

Repeat until no pheromones can be merged

42

3.4 Proximity Analysis to Determine Target Pheromone

With numerous digital pheromones generated within the design space, a target

pheromone needs to be identified for each swarm member. A criterion that is a function

of both the pheromone level and its proximity from each particle needs to be considered

in selecting the target pheromone. This is based on: a) the distance between a particle and

pheromone, and b) the pheromone level. For each particle, a target pheromone attraction

factor P’ is computed to this effect, which is a product of the pheromone level and the

normalized distance between the particle and the pheromone. Equation (5) shows how the

attraction factor P’ is computed, and equation (6) computes the normalized distance

between the pheromone and each particle in the swarm. The variable rangek is the

difference in the upper and lower limits of kth design variable.

d)P(1P' −= (5)

particle ofLocation X
pheromone ofLocation

iablesdesign var of # :1,
1

2

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= ∑

Xp

nk
range

XXpd
k

k

kk

(6)

Figure 13 shows an example scenario of a particle being attracted to a target pheromone

from a pool of four merged pheromones, each having a pheromone level and are at

variable distance from the particle in the design space. The target attraction factor, P’ is

computed for each of these pheromones and rank ordered. The particle in the figure is

attracted to pheromone number that has the highest P’ value (in this case, pheromone 4)

based on its proximity to other pheromones and their pheromone levels.

43

Figure 13 Illustration of target pheromone selection

3.5 Velocity Vector Update

Upon determining the target pheromone, the velocity vector from basic PSO is updated

with a new component called the target pheromone component as shown in equation (7).

(7)

In equation (7), c3 is a user defined confidence parameter for the pheromone component of

the velocity vector similar to c1 and c2 in a basic PSO. c3 combines the knowledge from the

cognitive and social components of the velocity of a particle, and complements their

deficiencies. The confidence parameter c3 determines the extent of influence a target

Viter+1,i[] = witer ×Viter,i[]
 + c1 × rand p () × (pBest i[]− Xi[])
 + c2 × randg () × (gBest[]− Xi[])
 + c3 × randT × (T argetPheromone i[]− Xi[])

44

pheromone can have on the swarm when the information from pBest and gBest alone are not

sufficient or efficient to determine a particle’s next move.

randT is a random number generated between 0 and 1. Random numbers generated by

computers are of two types: (a) Pseudo-Random Number Generators (PRNGs), and (b)

True Random Number Generators (TRNGs). PRNGs are algorithms that use

mathematical formulae or pre-calculated tables to produce sequence of numbers that

appear random and hence are typically efficient. PRNGs are generally used for modeling

and simulation. TRNGs on the other hand extract randomness from physical phenomena

(roll of a die, atmospheric noise in thunderstorms, etc) and induce better random

characteristics. TRNGs are typically preferred over PRNGs in applications where

unpredictability is very important (data encryption, etc). They are lesser efficient than

PRNGs [96]. In PSO, the influence of the swarm movement is weighted primarily by

pBest and gBest. Therefore, the use of random numbers within the velocity vector

equation does not considerably affect the outcome if PRNGs are used. Since efficiency is

a significant concern in PSO, TRNGs are typically not used.

3.6 Geometric Interpretation of Target Pheromone and Confidence Parameter, c3

In a basic PSO, the particle swarm does not have a memory of the entire path traversed in the

design space apart from the best position of an individual particle (pBest) and the best

member’s position in the entire swarm (gBest). The target pheromone component addresses

this issue. It is a container that functionally stores the trail path of the swarm and utilizes the

45

best features of it in steering towards a promising location in the design space. The use of the

target pheromone relies heavily on pBest and gBest. If c3 = 0, there is no influence of

pheromones and the swarm behaves as if in a basic PSO. If either of c1 or c2 is 0 and c3 > 0,

then the target pheromone location is essentially determined only by the non-zero component

of pBest or gBest and propagated into the velocity vector. This creates a bias thereby

doubling the influence of non-zero pBest or gBest components on the swarm. This means that

the swarm either explores or exploits the design space with double the intensity, either of

which can prevent the swarm from converging. It is therefore essential that the influence of

pBest and gBest be balanced (i.e. equal) for the pheromone component to provide accurate

assistance in reaching the optimum.

Although analytical determination of a value for c3 is out of the scope of this research, an

empirical value has been determined through experimentation. A value between 2.0 and 5.0

has shown good performance characteristics and solved a variety of problems. The results

chapter (chapter 7) will provide insight on why the chosen values were found to be favorable

for a variety of problems.

A higher value of c3 causes the velocity vector’s magnitude to increase and places the swarm

in a more general exploratory mode. However, it is desirable to make the swarm perform a

tighter, local search as the swarm approaches the optimum. In this case, a lower value of c3 is

desirable. Therefore, decreasing c3 can potentially help the swarm to move from an

exploratory mode to an exploitation mode. To achieve this effect, a decay of c3 has been

investigated in this research in addition to a constant c3, to adapt to the swarm movement as

46

required. Automatic adaptation of the confidence parameters is not new. Literature shows the

use of such approaches in basic PSO as well [97] [98]. The results chapter (chapter 7)

provides an explanation of how useful was c3 decay in various test problems.

An inertia weight, wi of value 1.0 is initially chosen to preserve the influence of the velocity

vector from previous iterations, and gradually decreased using an inertia weight decay factor

similar to the one used in a basic PSO.

3.7 Move Limits

The additional pheromone term in the velocity vector update can considerably increase

the computed velocity. This increase can potentially cause the solution to diverge if left

unchecked. To address this, a move limit was imposed on the maximum value of the

velocity vector’s magnitude. To ensure a fair amount of freedom in exploring the design

space, the swarm is allowed to digress up to 10% of the range of the design variables

initially. A move limit decay factor of λML = 0.95 is applied in subsequent iterations.

While the move limit alone imposes a bound on the velocity vector’s magnitude, the

move limit decay factor further fine tunes the swarm towards a local search. This means

that the swarm is free to explore the design space in the beginning and confines it for a

local search towards the end. The magnitude of the velocity vector is multiplied by λML in

each iteration.

47

3.8 Statistical Significance of Digital Pheromones

The implementation of digital pheromones caters for improved performance of PSO in

terms of accuracy, efficiency and reliability. Section 7.3 in the results (chapter 7)

demonstrates this capability. However, a quantitative assessment of the developed

method needs to be made to prove this claim. Therefore, it is necessary to perform

statistical hypothesis testing to prove that particle swarms with digital pheromones

perform better than without pheromones (basic PSO). This section explains the procedure

involved and the results are discussed in section 7.4 of chapter 7.

3.8.1 Statistical Hypothesis Testing

In statistical terms, a population is a group or individual that represents all members of a

certain category of interest. A sample is a subset drawn from the population. Descriptive

statistics apply only to the members of a sample of data collected from the population.

Inferential statistics, on the other hand refer to the use of sample data to reach

conclusions about the characteristics of the population that the sample represents. A

hypothesis is typically a statement about the parameters in a population distribution. It is

called as hypothesis because it is not known whether the statement is true or not. The

primary objective of hypothesis testing is to test whether or not the values of a random

sample from the population is consistent with the claimed hypothesis or not. The

hypothesis is considered ‘accepted’ if the random sample is consistent with the

hypothesis under consideration. Otherwise, the hypothesis is ‘rejected’ [99] [100] [101]

[102].

48

Within the context of this research, it is necessary to claim that digital pheromones when

implemented in PSO perform better when compared to basic PSO in terms of solution

accuracy and solution times.

The hypothesis that specifies a particular value for the parameter being studied is called

the null hypothesis and is denoted by H0. It represents the standard operating procedure

of a system or a known procedure. The hypothesis that specifies those values of the

parameter that represent an important change from standard operating procedure or

known procedure is called the ‘alternative hypothesis’ or ‘research hypothesis’, and is

denoted by Ha. Evidence from a result sample inconsistent with the stated hypothesis

leads to rejection of the hypothesis, whereas evidence supporting the hypothesis leads to

its acceptance. In statistical hypothesis testing, it is a norm that the acceptance of a

proposed hypothesis is the result of insufficient evidence to reject it.

There are two ways that errors can be committed in the decision process using hypothesis

testing. A type I error is committed if the null hypothesis is rejected when it is actually

true. A type II error is committed if the null hypothesis is not rejected when it is actually

false. Table 2 shows the truth table of decision making while performing hypothesis

testing. The probability of committing a type I error is called the level of significance of

the test and is denoted by α, and the probability of committing a type II error is denoted

by β.

49

Table 2 Decisions and Errors in Hypothesis Testing
 Decision
 Reject H0 Accept H0

H0 True Type I Error Correct decision taken
H0 False Correct decision taken Type II error

Hypothesis testing can be one-tailed or two-tailed. For example, H0: μ = μ0 and Ha: μ ≠

μ0 is called a two-tailed hypothesis where the equality of μ and μ0 are tested. On the other

hand, H0: μ < μ0 and Ha: μ ≥ μ0 (or) H0: μ > μ0 and Ha: μ ≤ μ0 is called a one-tailed test,

where μ represents the population mean and μ0 represents the sample mean. A t-test

assesses whether the mean of two groups are statistically different from each other, and is

an especially appropriate tool when comparison of the means of two different group of

parameters is desired. The t-distributions are affected by the sample size, and they

approach normal distributions with large sample sizes.

3.8.2 Hypothesis Testing Procedure

The following is a five-step procedure adopted for performing hypothesis testing of PSO

with and without digital pheromones:

1. The null and alternate hypotheses are to be defined.

Hypothesis testing can be single-sample based or multi-sample based. In a single sample,

the null and alternate hypothesis will have parameters only from the problem under

consideration. A two-sample test on the other hand allows for comparison of means of

two different methods (e.g., with and without digital pheromones). Since the objective is

50

to investigate the performance characteristics of PSO with and without digital

pheromones, a one-tailed hypothesis test is performed. The null and the alternate

hypotheses are defined as shown in equation (8):

H0: μ1 - μ2 ≤ 0 (null hypothesis)
Ha: μ1 - μ2 > 0 (research or alternate hypothesis) (8)

Where, μ1 and μ2 corresponds to the means obtained from basic PSO and digital

pheromone respectively. Therefore from equation (8), the null hypothesis H0 signifies

that the mean objective function values and solution times for basic PSO are statistically

smaller than those obtained using digital pheromone PSO. Conversely, the research

hypothesis Ha from equation (8) signifies that the mean objective function values and

solution times for basic PSO are statistically larger than those obtained using digital

pheromone PSO. Within the context of this research, the research hypothesis Ha is

desired to be accepted, a possibility that can happen only when H0 is rejected.

2. A level of significance equal to α needs to be chosen.

A 95% confidence level is chosen for hypothesis testing in this research. This means the

hypothesis test is performed with a 0.05 probability for type I error. This is the most

commonly used confidence level for statistical testing in general.

3. An appropriate test statistic (i.e., t) is to be selected and its corresponding critical

value (tcritical) is to be obtained from t distribution tables.

Depending upon whether there is any dependency between the data samples obtained for

PSO with and without pheromones, the test can be either independent or paired. Since the

51

test runs for basic PSO and digital pheromone PSO are performed independent of each

other and have different random seed values for each during trial runs, independent two-

sample hypothesis testing is performed. Therefore, the test statistic (or the t-value) is

calculated using equation (9) (a standard t-value estimator whose description can be

looked up in any standard statistics textbook), where x1 and x2 represents the means of

basic and pheromone PSO respectively.

t = (x1 − x 2)

Sp
1
n1

+
1
n2

(9)

Sp
2 =

(n1 −1)s1
2 + (n2 −1)s2

2

n1 + n2 − 2
 (10)

Where equation (10) represents the square of the standard deviation or the variance of the

sample data from basic and pheromone PSO, with (n1 + n2 – 2) degrees of freedom.

4. The value of the statistic (t) is to be computed from the random sample of size, n.

Most t-distribution tables consider degrees of freedom greater than 30 as an accurate

approximation of a normal distribution. For statistical analysis in this research, 35 trial

runs will be performed each for basic and pheromone PSO. The number of degrees of

freedom for this hypothesis test is (n1 + n2 - 2) = 68, where n1 represents the sample size

of results from basic PSO, and n2 represents the sample size of results obtained from

digital pheromone PSO. This means that the data can be considered as normally

distributed for all statistical testing purposes.

52

5. H0 is to be rejected if the statistic has a value in the critical region; otherwise Ha is to

be rejected.

A hypothesis is accepted if there is no evidence to reject it. If the value of ‘t’ calculated

from equation (9) is greater than tcritical, H0 is rejected. If the value of ‘t’ is less than tcritical,

Ha needs to be rejected. The value of tcritical is obtained from t-distribution tables

corresponding to the probability of error chosen in step 2.

3.9 Further Improvements

The use of digital pheromones provides substantial information about the design space,

thereby increasing the solution accuracy, efficiency and reliability of particle swarms.

Although the computational expense due to pheromone operations increase per iteration,

the benefits due to additional design space information offsets this drawback by allowing

the solution to converge in substantially less iterations. Chapter 5 demonstrates the

capability of particle swarms augmented by information from digital pheromones.

In addition to the use of digital pheromones for improving solution characteristics of

PSO, parallelization can further enhance the efficiency in searching multi-dimensional

design spaces. This research takes advantage of PSO’s inherent capability for

parallelization. Chapter 4 describes the rationale followed by various parallelization

strategies implemented for improving the performance of PSO.

53

4 Parallelization on Computer Clusters

4.1 Rationale for Parallelization

PSO is generally computationally intense. Additionally, pheromone operations further

increase the number of computations per iteration. This is particularly apparent with

larger swarm sizes on highly multimodal problems. One way to reduce the computational

overhead is to strategically distribute independent tasks in the method into different

processes. On a computer workstation, each of these processes can be handled by

independent tasks called threads. Threading is effective for single processor workstation

operations but is not capable of providing the computational horsepower for highly

multimodal problems with a large number of design variables requiring large swarm

sizes. Therefore, alternate computational techniques become necessary.

Fortunately, computing technologies have sufficiently advanced to provide affordable

access to high performance cluster computing, which when used appropriately can prove

to be a suitable alternative for improving particle swarm efficiencies. Parallelization is

one such means where tasks can be distributed on multiple processors in a cluster of

computers instead of multiple threads on a single workstation. Cluster computing

increases solution efficiencies and not only reduces the computational burden on a single

processor but also caters for additional computations if needed (e.g., multiple swarms).

Communication between processors can be achieved through parallel application

Programming Interfaces (APIs) such as MPI [65] or PVM [103] layers. These are

54

industry standard APIs that are simple to implement and effectively distribute

information between processors thereby easing the computational intensity on a single

processor. The communication network in a computer cluster is typically managed

through Infiniband [104] [105] or Myrinet switches [106] [107]. PSO is a natural fit for

parallelization, primarily due to the fact that it is population based and each swarm

member is independently capable of traversing in the design space regardless of the

whereabouts of the remaining swarm members.

This chapter explains various parallelization schemes explored in this research to

determine if solution efficiencies can substantially be improved with digital pheromones

when compared to a basic PSO algorithm.

4.2 Synchronous Coarse Grain Parallelization

Multiple independent swarms traversing the design space independently can garner

significantly more information on the design space than a single swarm with a larger

population size. This is because: (a) each deployed swarm is considerably smaller in size

and the communication costs (computational overhead) are smaller and (b) each swarm

independently explores the design space increasing the diversity in search and thereby

eliminates the pitfalls of following a single leader (gBest).

On a single processor workstation, an equivalence of ‘n’ independent swarms can be

achieved by a serial execution of the code with each swarm deployed one after another.

55

In this case, it potentially takes at least ‘n’ times the number of seconds for each swarm to

report results. Another approach would be to deploy ‘n’ independent swarms

simultaneously on a computer workstation through a threaded code. In this approach, a

processor can spawn multiple processes, each handling an independent swarm. However,

the processor load increases substantially thereby resulting in degraded performance and

increased solution times.

Simultaneous deployment of multiple swarms on different processors can dramatically

reduce solution times. In this scenario, ‘n’ swarms are deployed simultaneously on ‘n’

different processors, where one design space is explored by groups of independent

swarms, each reporting their solutions when converged. The solutions resulting from

each processor can then be sorted to determine the actual best solution. Where a serial

code potentially takes ‘np’ seconds to solve a problem using ‘p’ swarms, an ideally

formulated parallel code would only take ‘n’ seconds when ‘p’ swarms are delegated

each to a processor, dramatically reducing the solution time. However, parallelization

comes at a considerable expense – network latencies. Communication between

processors is currently limited by the available network technologies and every instance

of a data transfer between processors is as fast as the slowest network connection.

Therefore, benefits can be reaped only when the communication between the processors

is kept to a minimum and synchronous coarse grain parallelization scheme is designed to

do just that. Figure 14 shows a schematic of the developed synchronous parallel coarse

grain decomposition of PSO with digital pheromones.

56

Figure 14 Schematic of synchronous coarse grain parallelization

In this approach, each participating processor runs an identical copy of the serial PSO

code with digital pheromones with its own randomly initiated population swarm. Upon

determining the velocity direction and updating the particle positions, each processor

performs a convergence check and arrives at the participating processor’s optimal point.

This means that each processor containing a swarm determines its own gBest. Using

barrier synchronization, optimal points from all the processors are synchronously

gathered on the root processor and sorted for the best combination of the objective

function and its corresponding design variables. Data communication between the

processors takes place only at the end to gather each processor’s optimal point and sort

for the global optimum point. Until this point, there is no exchange of information

Serial
implementation
on processor 0

STOP!

Serial
implementation

on processor p-1
…

Gather Results

Sort for best
objective

Report Results

Parallel initialization

Barrier Synchronization

Serial
implementation
on processor 1

57

between participating processors. This approach potentially avoids the primary

parallelization bottleneck – network latency. Therefore, the chances of locating the global

optimum increase with the number of processors.

While it is true that coarse grain parallelization offers substantial advantages when

compared to serial execution, each processor is unaware of the progress of the solution

status of every other processor. Communication between the swarms on multiple

processors substantially improves the chances of finding an optimum. However, the

network latency costs due to exchange of information between swarm members across

processors typically defeats the purpose of communication by substantially increasing the

solution times. Each instance of data transfer between processors is only as fast as the

slowest network connection. Moreover, the use of barrier synchronization causes the

participating processors to wait until solutions are obtained from each processor. This

means that the swarms on processors that find a solution stand idle until solutions are

obtained from all other processors. This is an inefficient use of computational resources

that could be more efficiently used with a suitable parallelization procedure. Therefore, a

parallelization method that fosters the communication between swarms yet that retains

latency costs to a manageable level is desired. This idea is explored through the idea of

pheromone sharing across processors, a second parallel scheme.

4.3 Shared Pheromone Parallelization

A parallelization strategy has been developed where a swarm is deployed across multiple

processors, similar to a coarse grain approach. However, the available processors are

58

divided into two categories: 1) optimization processor(s) and 2) a pheromone processor.

The optimization processors are a function of the desired number of swarm members on

each processor. Each optimization processor performs: a) random swarm generation, b)

fitness value evaluation and pheromone release, c) calculation and storage of pBest, d)

target pheromone calculation, e) velocity vector calculation, and f) particle position

update. Figure 15 shows a flow chart of the developed method. The pheromone processor

gathers a list of pheromones released by all participating optimization processors. They

are then merged and decayed (for iteration numbers greater than one) appropriately as

well. Therefore, the pheromone processor is a dedicated processor that exclusively

performs pheromone operations and maintains a finalized repository of pheromones

shared by multiple swarms spread across the design space on various optimization

processors. Additionally, the pheromone processor also ranks from gBest candidates,

called processor-gBest, sent by each optimization processor to find the actual gBest of all

the swarms. Since the final pheromone list and actual gBest information takes up a tiny

amount of memory, their broadcast to all optimization processors does not use a

significant amount of network bandwidth. The pheromone processor performs the

convergence check since it contains the most updated gBest information. If a specified

convergence check is evaluated to true, this message is broadcast to all optimization

processors upon which the code execution stops on all processors, and results are

reported.

59

Figure 15 Shared pheromone parallel implementation flowchart

It is to be noted that the target pheromone calculations are performed on the optimization

processors, and not on the pheromone processor. This is because a target pheromone is

unique to each swarm member. Communicating this information from each optimization

processor to the pheromone processor would cause significant network latencies slowing

down the solution progress. In addition, the pheromone processor will not likely be able

Yes

Determine actual
gBest

Find target pheromone toward which the swarm
moves

- Swarm drop phrm (~50% or improved)
- Send phrm and proc-gBest info to phrm proc.

Pheromone processing
Create
Merge, and
Decay

- Calculate fitness value
- Store pBest and processor-gBest

Broadcast pheromone
list

- Compute velocity vector
(pBest, gBest & target phrm)
- Update particle positions

Converged
?

- Broadcast gBest
- check for

convergence

No

STOP!

Pheromone processor (root)

Begin iterations

Optimization processor(s)

Begin iterations

60

to handle target pheromone computations for each swarm member of swarms from all

processors efficiently.

There exists a two-fold advantage of the developed approach: 1) network latency costs

between optimization processors are curtailed since they do not communicate with each

other, and 2) the pheromone processor computes, stores and broadcasts the global

pheromone list and the actual gBest to all optimization processors fostering

communication between processors. Moreover, the participating processors do not have

to synchronize at any point meaning that the method does not idle during any part of the

code execution. Therefore, this approach combines the elements of information exchange

between multiple swarms for improved search efficiency as well as reduced

communication overhead across participating processors for better solution times.

61

5 Parallelization on Commodity Graphics Hardware

5.1 GPU Parallelization

Commodity Graphical Processing Units (GPUs), commonly known as graphics cards or

video cards were traditionally used for visualization purposes until recently. A user could

control various parameters in a graphics code, but the underlying functionality and

sequence of operations were fixed. In recent years, this fixed functionality has been

replaced with the capability to perform not only graphical operations but also general

purpose computing. In 2004, the industry open standard OpenGL 2.0 API was released

providing a formal channel for programmability of vertex and fragment shading

operations under core OpenGL specifications [108]. Along with a hardware

programmable component, hardware advancements has made GPUs capable general

purpose processors capable of very high computational speeds for a variety of scientific

applications. Their speed is attributed to their highly data parallel architecture. GPUs take

advantage of their hardware parallelism, meaning that computations can be performed on

multiple data simultaneously based on the Single Instruction Multiple Data (SIMD)

technique.

Although the programmable functions in GPU are graphical in context, the underlying

operations are mathematical. Since these operations can be performed dramatically faster

than on a traditional CPU, GPUs are increasingly becoming the mainstream for scientific

and computation intense operations. Figure 16 is a very simplified view of a fixed

62

function graphics pipeline containing relevant information on data traversal from within

the graphics application to the frame buffer. A frame buffer is the region of the graphics

memory that is modified as a result of OpenGL rendering. In a general sense, the frame

buffer corresponds to an OpenGL rendering in a window.

Figure 16 Simplified Graphics Pipeline (programmable components indicated)

In the vertex transformation component, the input vertices are appropriately transformed

and passed to the assembly component where the vertices are assembled into a geometric

primitive. Also, per vertex operations such as lighting, texture coordinates, clipping

OpenGL Application

Primitive
Assembly

Raster
Operations

Frame Buffer

Vertices

Transformed
Vertices

Vertex
connectivity

Fragments

Colored Fragments

Pixel Updates

Rasterization,
Fragment

Texturing &
coloring

Programmable
Vertex
Shader

Programmable
Fragment
Shader

Vertex
Transformation

Pixel
positions

63

against view frustum are computed in these components. Geometric primitives that

passed through the primitive assembly component in the pipeline are decomposed into

smaller units corresponding to pixels in the destination frame buffer in a process termed

rasterization. Each decomposed small unit is called a fragment. For example, if a line

covers 10 pixels on the screen, rasterization converts the line geometry information

obtained from vertex primitive assembly component into 10 fragments. Each of these

fragments is then subjected to various fragment processing operations such as texture

mapping, fog, and coloring. The last stage of the graphics pipeline includes performing

various per-fragment operations such as pixel ownership test, scissor test, alpha test,

stencil test, and the depth test. The underlying operations for vertex and fragment

processing are essentially mathematical and can be replaced by programmable vertex and

fragment shaders as indicated on the right side of the Figure 16. Figure 17 is a visual

summary of the various stages involved in vertex and fragment processing as explained

above.

Figure 17 Visual Summary of a Fixed Functionality Graphics Pipeline

(Figure Courtesy: www.lighthouse3d.com)

64

5.2 Choice of GLSL as Shading Language

As outlined in section 2.4 of chapter 2, there are a handful of shading languages available

to interface with graphics hardware. From the available choice of shading languages,

GLSL was chosen for this research for the following reasons:

1. It is a high-level shading language that integrates directly with the OpenGL standard.

2. It is designed with intent for expansion and increased usability in the future. For

example, current day graphics cards do not support double precision real valued data

types but the pace of their advancements potentially support them in the near future.

GLSL specifications support for such future developments and hence adaptation can

be made with minimal alterations to vertex or fragment shaders.

3. It is cross platform compatible. Therefore, the shader can be re-used on workstations

running different operating systems without any change in the code.

4. It supports most GPU chip makers (e.g. NVIDIA, ATI). With minor hardware

alterations, GLSL can be used on a wide variety of GPUs.

5. It closely resembles C/C++ in its programming syntax.

6. It has in-built functions and reserved data types that are graphics in context and are

derived from OpenGL. This means a non-graphical developer might have a

considerable learning curve before realizing the full potential of GLSL. However,

when compared to operating system specific (e.g., Microsoft Accelerator, HLSL, etc)

or GPU hardware specific (e.g., CUDA) shaders, GLSL provides the flexibility of

working with various operating systems and graphics hardware.

65

5.3 Vertex and Fragment Shaders

Both vertex and fragment shaders can provide hardware acceleration for execution of

specific portions of a PSO code. However, marked differences between the two

necessitate careful consideration of how to proceed. Output from a vertex shader is sent

as input to the fragment shader (as seen in the graphics pipeline, Figure 16 and Figure

17), which in turn produces usable output to the main application. In other words, using a

vertex-shader is a two-step process. Output from the fragment shader can directly be

passed into the main application. Additionally, the fragment shader computes interpolated

pixel values for the data provided from the vertex shader causing a possible loss of data

or precision. Therefore, a logical choice is to use a fragment shader for this research.

5.4 Formulation for GPU Computations

Shaders typically work very well with two dimensional textures (analogous to 2D arrays

on CPUs). Although 1D and 3D arrays are supported by GPUs, it is typically faster to

compute and operate on 2D textures. Since the primary data holders in PSO are swarm

members and their locations in the design space, it is a logical first step to create a 2D

texture that can hold the design variable values for all swarm members. Older OpenGL

releases (pre 2.0) are compatible only with square textures (i.e. of size 2n – 32, 64, 128,

etc). Therefore, a 2D texture of size 40 x 55 previously required creation of a texture of

size 64 x 64 where unused texture coordinates would be filled with zeroes. Although this

approach is not a very efficient procedure, it previously served as a good work around to

66

deal with operations on non-square textures. The latest release of OpenGL however

addresses this issue and can handle arbitrary rectangular textures, where texture memory

can be fully utilized, and hence used for implementation in this research.

The first step in transferring data to the GPU is to prepare OpenGL for off-screen

rendering through a Frame Buffer Object (FBO). Graphical objects typically are

represented by 8-bit precision each for red, green, blue and alpha channels on a graphics

window (computer screen). The purpose of a frame buffer object is to set up off-screen

computations in a 32-bit floating-point precision manner and eliminate 8-bit precision for

the red, green, blue and alpha channels. The next step is to define appropriate arrays and

textures for facilitating inputs and outputs between CPUs and GPUs. The format of the

textures created is GPU hardware specific. For example, the texture format on an

NVIDIA GPU is denoted by ‘GL_FLOAT_R32_NV’ and a texture format on ATI GPU is

denoted by ‘GL_RGBA_FLOAT32_ATI’. Additionally, an orthogonal projection and a

viewport are needed to provide a one-to-one correspondence between geometry

coordinates (used in rendering) and texture coordinates (data input) and pixel coordinates

(data output). All these parameters can be set while initializing the FBO.

Design variables for each swarm member are stored in an array and uploaded into the

GPU memory as a rectangular texture. The design variable values for each swarm

member are filled into each column of the rectangular texture. Figure 18 shows an

example ‘design variable texture’ of size nxm with the data entry and storage sequence

indicated by dashed arrows within the cells.

67

Figure 18 Data Entry Sequence in a Texture and its Use for Objective Function
Evaluation

In the design variable texture, ‘m’ is the number of swarm members and ‘n’ is the number

of design variables. The lower rectangular ‘objective function texture’ of size 1xm holds

the objective function values computed from each column of swarm members 1 through

m from the design variable texture (Multiple Data). Each objective function texture entry

requires a column of information (1 through n) from the design variable texture.

5.5 GPU Implementation

In a PSO optimization routine, the bulk of the computational work comes from objective

function evaluations. Thus, it was theorized that if objective function evaluations were

delegated to the GPU, the efficiency of PSO would increase due to its data parallel

n Design Variables

1,1

2,1

3,1

…

…

m,1

1,2

…

1,n

2,n

…

…

…

m,n

m swarm members

f1 f2 f3 … … fm

Design
variable
texture

Objective
function
texture

68

architecture. Although the costs of accessing the main memory on a CPU for input/output

of data into the GPU are high, the benefits of data parallelization would outweigh these

CPU-GPU network latencies. An overview of the GPU implementation of PSO with

digital pheromones is outlined in Figure 19.

The GLSL initialization phase includes preparing the GPU for computations within the

framework explained in section 5.4. Therefore, this stage involves defining and creating

textures for off-screen computations. Design variables for each swarm member are stored

into an array that automatically fills the design variable 2D texture as explained through

Figure 18. The fragment shader is then invoked to perform per-pixel objective function

evaluations. The fragment shader program consists of instructions to compute the

objective function and is executed via rendering a quadrilateral to an off-screen buffer

initialized in FBO. Therefore, with a single instruction, computations are performed on

multiple data (swarm members) at once to compute the objective function.

69

Figure 19 Flowchart for GPU Hardware Acceleration of PSO with Digital Pheromones

Yes

Start

Initialize GLSL: Create FBO,
fragment shader and define
texture size and parameters

for GPU operation

Store design variables for
each swarm member in an

array

Read back objective function
values on CPU

pBest, gBest and Target
pheromone computation

Velocity vector and particle
position update

Converged
?

Stop No

DVs

Fill a rectangular 2D
texture on GPU

Perform per-pixel
objective function
evaluation in an

SIMD architecture

Store computed
objective function
values in a texture

Swarm Members

70

5.6 Percentage of GPU Vs CPU Usage

Current generation GPUs are not equipped to perform double precision floating point

operations. Hence, the GPU implementation for this research is limited to single precision

floating precisions. Therefore, depending upon the objective function sensitivity, there

may be loss in precision. To account for this, the developed code is designed to compute

objective function values on CPU and GPU on a percentage basis. This means that a user

can specify the percentage of objective function evaluations that can take place on the

CPU and GPU. For example, if a high precision is desired, a 30% GPU-CPU percentage

can be specified where objective function are evaluated three out of 10 iterations on a

GPU and seven out of 10 iterations on a CPU. Conversely, a user could specify a 90%

GPU-CPU percentage where objective function evaluations on nine out of 10 iterations

are carried out on a GPU and one iteration is carried out on the CPU, if efficiency gains

are a more important goal.

5.7 Implementation Specifics

During the initial implementation stages, temporary array variables were defined to store

design variable values and then used in computing per-pixel objective function values.

Therefore, a temporary array of size 10 was defined to compute the objective function

value of dimensionality 10. Though this approach did not pose a problem when solving

lower dimensional problems, the GPU ran short of temporary internal registers as the

dimensionality of the objective function increased. Registers are place holders for

71

converting GLSL code into a machine specific list of instructions. The available number

of these registers is typically limited by the graphics hardware type. For example, the

GPU used for the test problems supported only 32 internal registers but the Griewank

function required more since there were 50 design variables and hence returned an error.

To solve this problem, the temporary array variable definition was replaced by defining a

single variable that performed a run-time texture look-up, which avoided redundant use

of internal registers. This procedure turned out to be faster and efficient means to perform

GPU computations.

When comparing solutions from CPU and GPU in the initial stages of GLSL

implementation, it was observed that a number of trial runs on the GPU resulted in

identical solution values (including design variable values and solution times). However,

this was not observed on the CPU implementation. The solution values resulting from a

CPU are independent in each trial run. Apparently, each GPU trial run did not have

enough information to generate a distinct random seed for random number generation of

design variables on the CPU. To avoid this problem, the seed for random initialization of

design variable values was made a function of the current trial run, thereby ensuring a

different seed in each run. This forced a different seed value in each run resulting in a

distinct solution in each GPU trial run.

72

6 Constrained Optimization

The methods developed and explained in chapters three through five provide a promising

potential for digital pheromones to solve n-dimensional multimodal unconstrained

optimization problems. However, realistic design problems are usually characterized by

numerous inequality and equality constraints. To be considered as a practical

optimization tool, it is imperative to prove that digital pheromones can effectively assist

PSO in solving constrained optimization problems as well. This chapter is dedicated to

applying digital pheromones within PSO to solve constrained optimization problems.

6.1 Methods to Solve Constrained Problems

A general constrained problem with a single objective function F(X) is given by equation

(11) as shown below, where g(X) represents ‘m’ inequality constraints and h(X)

represents ‘l’ equality constraints:

Minimize,
F(X)

Subject to:
gj(X) ≤ 0, j=1, m

hk(X) = 0, k=1,l

(11)

A solution to a constrained optimization problem should necessarily satisfy three

optimality conditions laid out by Kuhn and Tucker in 1950s [109] as shown in equations

(12) (13) and (14). These conditions have been the guiding principles to solving any

73

constrained optimization problem. Figure 20 shows a 2-D objective function with four

inequality constraints.

Figure 20 Optimality conditions for a constrained optimization problem

The first criterion that a design point should satisfy for being a solution is that it should

be within the feasible region. This is given by Kuhn-Tucker’s first condition of optimality

as shown in equation (12).

X* (design vector that minimizes F(X)) is feasible (12)

Also, the product of λj and gj(X) should be zero as denoted by equation (13). λj is called

the Lagrange multiplier for the jth constraint. A Lagrange multiplier indicates the rate at

74

which the objective function value changes with a corresponding rate of change in the

constraint value. When a constraint is active, the value of gj(X) becomes zero and the

corresponding λj becomes non-zero. If a constraint is satisfied but not active, the

Lagrange multiplier reduces to zero while the corresponding gj(X) is non-zero.

0 m,:1j ,0*)(≥== jjj Xg λλ (13)

To improve in the design, the point A (X1, X2) should move in the direction of decreasing

objective function while being in the feasible region. This region is shown by the usable-

feasible sector in figure 19. If a design point is not within this usable-feasible region, it

either violates a constraint or increases the objective function or both. Let a direction ‘S’

denote a direction that the point ‘A’ takes to improve in the design. At the point of

optimality, the direction of ‘S’ is perpendicular to the tangent made by the objective

function contour and the constraint boundary so that)(XF∇ and)(Xg∇λ are exactly

equal and opposite to each other. This is given by Kuhn-Tucker’s third condition of

optimality as shown in equation (14). This third condition (14) governs that no further

move is available that will decrease the objective function while maintaining constraint

feasibility.

∑ ∑
= =

+ =∇+∇+∇
m

j

l

k
kkmjj XhXgXF

1 1
0*)(*)(*)(λλ

λj ≥ 0
λm+k unrestricted in sign

(14)

A number of methods have been developed in the past to solve n-dimensional constrained

optimization problems including sequential linear programming/cutting plane method

[110], the method of feasible directions [111], and generalized reduced gradient method

75

[112] [113]. Another more popular approach for solving constrained optimization

problems are through employing Sequential Unconstrained Minimization Techniques

(SUMT).

As the name SUMT indicates, solving constrained optimization problems requires the

solution of several unconstrained minimization problems, where the original constrained

problem is typically substituted by a sequence of unconstrained sub-problems, called

pseudo objective functions. The general strategy to solve constrained optimization

problems would be to minimize the pseudo objective function as an unconstrained

problem but impose penalties for constraint violations.

A pseudo objective function is shown in equation (15), where F(X) is the original

objective function and P(X) is the penalty function whose form depends on the SUMT

technique used. ‘rp’ is a scalar that determines the magnitude of the penalty imposed on

constraint violations.

)()()(XPrXFX p+=Φ (15)

6.1.1 Exterior Penalty Function Method (EPF)

The EPF methods typically yield feasible optimum values for extremely large rp values

but potentially yields numerically ill-conditioned formulations, and hence are generally

avoided in numerical methods, especially population based heuristic methods. On the

76

other hand, interior penalty function methods have the potential to reach discontinuous

spaces, especially at constraint boundaries.

The EPF method is the simplest to implement, which penalizes the objective function

when constraints are violated. A typically used penalty function P(X) in an exterior

penalty function method is given by equation (16) below [1] [2] [3].

[]{ } []∑ ∑
= =

+=
m

i

l

k
kj XhXgXP

1 1

22)()(,0max)((16)

It can be seen from the equation that no penalty is imposed when all constraints are

satisfied, but the square of the constraint is included when one or more constraints are

violated. With a smaller value for ‘rp’, the pseudo objective function Ф(X) can easily be

minimized but potentially yields large constraint violations. On the other hand, a large

value for ‘rp’ can ensure near satisfaction of all constraints but can potentially be a

numerically ill-conditioned problem. Therefore, ‘rp’ is started small and increased by a

small factor and Ф(X) is minimized each time beginning the optimization from the

previous solution.

In addition to possible numerical ill-conditioning, another important disadvantage with

the EPF method is that any optimization routine that is stopped prematurely could be

unusable because the design points move from infeasible to feasible regions, and a design

point used before convergence is not guaranteed to satisfy the constraints.

77

6.1.2 Interior Penalty Function Method (IPF)

The IPF method, as opposed to EPF method can provide a series of improving designs

with each pseudo function optimization. IPF method penalizes the objective function as

the design points approach constraints, and violations are not allowed. Thus, all design

points during a solution run are feasible. The penalty function typically used in the IPF

method is shown in equation (17) below [1-3]:

∑
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

=
m

i j Xg
XP

1)(
1)((17)

[]∑
=

×+×+=Φ
l

k
kpp XhrXPrXFX

1

2')()()()((18)

Equation (18) shows the pseudo objective function of IPF. The second term on the right

hand side in equation 15 is used to penalize inequality constraints and the third term is

used to penalize equality constraints. The inequality penalty term introduces a new

penalty parameter, rp’. This term goes from a larger to smaller value (e.g., 20 to 1 during

a solution run), while the rp penalty parameter increases from small to large, exactly as it

does in the EPF method.

Although the design points in this method are always in the feasible region and

improving in objective function value every iteration, this comes at the cost of creating

more complex minimization problems. Also, care must be taken to avoid function

discontinuities at the boundaries of gj(X) = 0 in the pseudo objective function.

78

6.2 Augmented Lagrange Multiplier (ALM) Method

Extended interior penalty function methods (linear extended penalty function [114] [115],

quadratic extended penalty function [116], variable penalty function methods [117])

incorporate the best features of interior and exterior penalty function methods, but still

suffer from many of the same drawbacks as EPF and IPF. The Augmented Lagrange

Multiplier (ALM) method is another SUMT method with distinct advantages over other

constrained minimization techniques and is explained in this section.

The ALM method was originally developed for addressing equality constrained problems

and later extended to solve inequality constraints. For a Lagrangian developed for an

equality constrained problem, as shown in equation (19), the Kuhn-Tucker conditions

require that the stationary conditions of L(X, λ) and feasibility requirements are the

necessary conditions for optimality.

∑
=

+=
l

k
kk XhXFXL

1
)()(),(λλ (19)

This also means that the minimum of the Lagrangian subject to the equality constraints

defined in the problem provides the solution to the original objective function. Thus, a

pseudo objective function can be built from equation (19) that can be solved using an

exterior penalty function approach. For an equality constrained problem, the pseudo

objective function is given by equation (20), where A(X, λ, rp) is referred as the

augmented Lagrangian.

∑
=

++=
l

k
pkkp XhrXhXFrXA

1

2})]([)({)(),,(λλ (20)

79

With a similar explanation for inequality constraints as well, the general augmented

Lagrangian for a constrained (inequality and equality) problem is given by equation (21)

[1-3].

∑∑
=

+
=

++Ψ+Ψ+=
l

k
kpkmkj

m

j
pjjp XhrXhrXFrXA

1

22

1
})]([)({][)(),,(λλλ (21)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=Ψ

p

p
j

jj r
g

2
,max

λ
 (22)

Therefore, minimizing the augmented Lagrangian is equivalent to minimizing the

original objective function when the Kuhn-Tucker’s necessary conditions for optimality

are imposed. The first summation term after F(X) in equation (21) correspond to

inequality constraints where, ψ [118] is given by equation (22). The second summation

term in equation (21) corresponds to the penalty function term for equality constraints.

To minimize the augmented Lagrangian, a penalty factor of ‘rp’, on each constraint, is

imposed, just as any other penalty function method. With appropriate Lagrange

multipliers (λ) known, one unconstrained minimization of the pseudo objective function

is sufficient. Since these multipliers and penalty factors ‘rp’ are typically unknown before

hand, a series of unconstrained minimizations are carried out to arrive at the appropriate

Lagrange multipliers and hence the solution of the actual objective function.

The update relations for the Lagrange multipliers, λ are shown in equation (23) for

inequality constraints and equation (24) for equality constraints.

80

mj
r

gr
p

p
j

jp
p
j

p
j ,1,

2
,max21 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+=+ λ

λλ (23)

lkXhr kp
p
j

p
j ,1),(21 =+=+ λλ (24)

Some of the distinct advantages of using ALM are: a) the inclusion of Lagrange

multipliers to speed convergence, b) the penalty parameters play far less important role in

determining convergence and therefore the method is insensitive to the value of rp, c) the

starting design vector need not necessarily be feasible, and d) the non-zero values of

Lagrange multipliers identify active constraints automatically. Together with the

geometric significance of ALM for equality and inequality constraints, the above

advantages over other penalty function methods make it a very favorable candidate for

implementation in PSO with digital pheromones.

A series of unconstrained problems are required to be formulated and PSO implemented

on each to arrive at an appropriate combination of Lagrange multipliers that minimizes

the original objective function. The first approach would be is to arrive at a combination

of Lagrange Multipliers at the end of solving a pseudo objective function, and use it for

the subsequent pseudo objective function. On the other hand, if a reasonable

approximation in solving the pseudo objective function is acceptable, it is possible for

more frequent Lagrange multiplier updates through limiting the number of pseudo

objective function iterations or imposing a loose convergence criterion on the pseudo

objective function. Since there are more Lagrange multiplier updates, the probability of

finding the optimum combination of the multipliers that can solve the actual objective

81

function increase and hence a faster solution time. In this research, both approaches are

investigated, and the results are presented.

The description for ALM is well explained in Gill et al [3], and has been used as the basis

for the development of the method. Figure 21 shows a flow chart of the ALM

implementation in PSO with digital pheromones. At the beginning, a population swarm

with an initial selection of design variables X, Lagrange multipliers ‘λ’s, and penalty

parameter ‘rp’ for each of the design constraints, a positive integer ‘amax’, serving as an

upper bound of the total number of unconstrained minimizations and ‘pmax’ to limit the

number of iterations during pseudo objective function minimization are initialized. Upon

evaluating the actual objective function value, a feasibility check followed by a

convergence check is performed to determine if it attained the optimum while satisfying

all constraints. If either of feasibility or convergence is not attained, values of the ‘λ’s

and ‘rp’ are updated. The algorithm stops if convergence is achieved or if the number of

unconstrained minimizations exceeds the maximum limit (amax). A problem is converged

when the difference in solutions is within a tolerance for certain number of consecutive

iterations. With updated ‘λ’s and ‘rp’, a new unconstrained pseudo objective function is

constructed and solved using PSO with digital pheromones.

82

Figure 21 Flowchart for ALM implementation in PSO with digital Pheromones

Two approaches were implemented to handle solution of the pseudo objective functions:

a) Pseudo objective function was solved to convergence before proceeding to the next

pseudo formulation and b) a limit was put on the number of pseudo iterations to facilitate

more frequent Lagrange multiplier updates. Apart from this change, the remainder of the

pseudo objective function solution adheres to the process outlined in Figure 10.

With a single design point searching the design space, as in the case of most deterministic

methods, the solution from a current pseudo objective function minimization is used as an

No

Start

Initialize X, λ, rp, rp Max, a, amax, p, pmax

Yes Converged? Stop

No

Calculate actual objective function

Update λ and rp

Use PSO to minimize A(X, λ, rp)
gBest retained from pseudo iteration

Feasible?

Yes

83

input for the next pseudo minimization. Since there is a population of points in PSO, the

gBest from the current pseudo objective minimization is used in the subsequent pseudo

objective minimization and the remaining swarm members are randomly initialized.

Therefore, out of ‘n’ swarm members, (n-1) are randomly initialized and one swarm

member is retained (the gBest from previous pseudo minimization). The solution is

converged if the difference in actual objective function values over a set number of

iterations were within a specified tolerance limit, provided the constraints were satisfied.

When the constraints are satisfied during the convergence check, the penalty values are

decreased by a factor of 0.5 and increased by 2.0 when they are violated. This

formulation is applied to both inequality and equality constraints and was adopted from

Sedlaczek and Eberhard [119]. Equations (25) and (26) portray these update schemes

with the lowest values for ‘rp’ bounded at 1.0.

⎪⎩

⎪
⎨

⎧

≤×

>>×
=

−

+

g
a

j
a

jp

g
a

j
a

j
a

j
a

jp
a

jp
xgifr

xgxgxgifr
r

ε

ε

)(:
2
1

)(OR)()(: 2

,

1
,

1
, (25)

⎪⎩

⎪
⎨

⎧

≤×

>>×
=

−

+

h
a

j
a

kp

h
a

j
a

j
a

j
a

jp
a

kp
xhifr

xhxhxhifr
r

ε

ε

 |)(| :
2
1

 |)(| OR |)(| |)(| : 2

,

1
,

1
, (26)

84

7 Results and Discussion

7.1 Overview

The use of digital pheromones within PSO is theorized to improve the accuracy,

efficiency and reliability of particle swarms. This chapter demonstrates this capability

through testing the developed methods on different test problems with varied

dimensionality and modality (unimodal and multimodal). Although it is possible to

compare results of digital pheromone PSO against published results from another

evolutionary method such as a GA, differences in computational environments

(processing speeds, memory capacities, processor loads) can be an unfair comparison

measure. Since this research is aimed at improving the performance of PSO, results from

digital pheromone implementation are therefore benchmarked against a basic PSO, as

outlined in section 1.6.

The algorithmic implementation was made in C/C++ on a RedHat Linux computing

environment. User defined parameters (c1, c2, c3, inertia weight decay, move limit decay,

inertia weight decay, radius of influence, etc) were provided as an input to the algorithm

run-time using xml configuration files (see xml specifications [120]). Also, other

information such as the maximum number of runs and iterations, convergence tolerances,

test problem specifications that include number of design variables, number of

constraints, lower and upper limits for the test problems was also provided in the xml

configuration file.

85

7.2 Test Problem Description

Table 3 is a broad overview of test problem numbers used for testing a specific method’s

performance. Section 7.2 describes these test problems with their published solution

values in detail.

Table 3: List of problem numbers used for testing the developed methods

Method Description in
Chapter #

Test Problems
used

Digital pheromone implementation of PSO 3 7.2.1 – 7.2.10
Statistical Analysis 7 7.2.1 – 7.2.4

Coarse Grain Parallelization 4 7.2.5 – 7.2.10
Shared Pheromone Parallelization 4 7.2.5 – 7.2.10

GPU Parallelization 5 7.2.5 – 7.2.10
Constrained Optimization 6 7.2.11 – 7.2.16

The following are the test problems used for evaluating the performance of digital

pheromones within PSO. Full mathematical descriptions for these test problems can be

found in [121-123].

7.2.1 Six-hump Camelback 2D function

This is a multimodal optimization problem with six local minima, two of which are

global minima. Figure 22 shows the contours of the function.

Figure 22 Six-hump Camelback Function
(Figure Courtesy: http://www.geatbx.com)

86

The optimization problem statement is:

Minimize:

()
22 and 33

44
3

1.24),(

21

2
2

2
221

2
1

4
1

121

≤≤−≤≤−

+−++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

xx

xxxxxxxxxF

Published solution:

)7126.0,0898.0(),7126.0,0898.0(),(
031628.1),(

21

21min

−−=
−=

xx
xxF

7.2.2 Himmelblau 2D function

This is a multimodal optimization problem with four local minima. Figure 23 shows the

contours of the function.

Figure 23 Himmelblau function
(Figure Courtesy: http://en.wikipedia.org/wiki/Himmelblau's_function)

The optimization problem statement is:

55 and 55
)7()11(),(

21

22
21

2
2

2
121

≤≤−≤≤−
−++−+=

XX
XXXXxxF

Published solution:

87

)2,3(),(
0.0),(

21

21min

=
=

xx
xxF

7.2.3 Rosenbrock 5D function

Rosenbrock’s valley is also known as the Banana function. The global optimum is inside

a long, narrow and parabolic shaped flat valley. Arriving at the neighborhood of the

valley is trivial, but converging to the global optimum is difficult. This function is

scalable to any number of dimensions. In this research, a five dimensional Rosenbrock

function was used as a test case. Figure 19 shows a two dimensional Rosenbrock’s

function to understand how the function behaves.

Figure 24 Rosenbrock’s Valley Function
(Figure Courtesy: http://www.geatbx.com)

The optimization problem statement is:

() ()

048.2048.2

1100)(
1

1

222
1

≤≤−

−+−×= ∑
−

=
+

i

n

i
iii

X

XXXXF

Published Solution:

nix
xF

i

i

:1,0.1)(
0.0)(min

==
=

88

7.2.4 Ackley’s 10D Path Function

Ackley’s path function is a highly multimodal problem and is widely used as a test

problem for unconstrained optimization methods. The problem seems to look like a

unimodal problem with its bounds (-32.768 to 32.768), but the multimodal nature of the

function becomes apparent when the bounds are decreased to (-2, 2). This function is

scalable to any number of dimensions. Problem 7.2.4 will represent a 10 dimensional

Ackley’s path function. Figure 25 shows the two dimensional Ackley’s path function.

Figure 25 Ackley’s Path Function
(Figure Courtesy: http://www.geatbx.com)

The optimization problem statement is:

()

768.32768.32
;:1 ;2 ;2.0 ;20

)(1

cos2

≤≤−
=⋅===
++

∑
−

∑

⋅−=

⋅
⋅−

i

n

xc

n

x
b

x
niPIcba

eaeeaxF

n

i
i

n

i
i

The published solution is:

0.0 ,0.0)(min == ixxF

89

7.2.5 Dixon and Price 15D function

This function is scalable to any number of dimensions and a 15 dimensional version was

used in this research. Figure 26 shows the two dimensional Dixon and Price function.

Figure 26 Dixon and Price Function
(Figure Courtesy:

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm)

The optimization statement for the problem is as follows:

() ()
niX

XXiXXF

i

n

i
ii

:0 ,0.100.10

2)(0.1)(
2

2

1
22

0

=≤≤−

−××+−= ∑
=

−

Published Solution:

0.0 ,0.0)(min == ixxF

7.2.6 Ackley’s 20D Path Function

This test problem is the same as described in section 7.2.4 except that the number of

design variables in this case is 20. Therefore, the published solution is 0.0000 and the

design variable values that minimizes the path function are also 0.0000 as well. It was

treated as a separate test case in this research and provided its own problem number for

easy reference.

90

7.2.7 Levy 25D Function

This function is scalable to any dimensions and a 25 dimensional Levy function [124]

was used as one of the test cases in this research.

The optimization problem statement is:

() () ()()[] ()

nix
xy

ayykayyk
n

xf

i

ii

n

i
nii

:1 ,1010
)1(25.01

sin1sin)(
1

1

2
1

22
1

2

=≤≤−
−+=

⎭
⎬
⎫

⎩
⎨
⎧

−++−+= ∑
−

=
+πππ

Published solution:

0.0 ,0.0)(min == ixxF

7.2.8 Sum of Squares 30D Function

This function is scalable to any number of dimensions and a 30 design variable version

was used for this research. Figure 27 shows a two dimensional sum of squares function.

The optimization problem statement is:

nix

xixf

i

n

i
l

:1 ,1010

)()1()(
0

2

=≤≤−

×+= ∑
=

Published solution:
0.0 ,0.0)(min == ixxF

91

Figure 27 Sum of Squares Function

(Figure Courtesy:
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm)

7.2.9 Sphere 40D Function

This is similar to the sum of squares function except that there is no multiplication factor

(i+1) in the summation term. It is also known as De-Jong’s function. In this research, a 40

dimensional sphere function was used. Figure 28 shows a two dimensional sphere

function.

The minimization problem is given by

nix

xxf

i

n

i
l

:1 ,1010

)()(
0

2

=≤≤−

= ∑
=

Published Solution:

0.0 ,0.0)(min == ixxF

92

Figure 28 Sphere (De Jong’s) Function

(Figure Courtesy:
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm)

7.2.10 Griewank’s 50D Function

Griewank’s function is a highly multimodal problem and many optimization methods

frequently get trapped in local minima. A 50 dimensional Griewank’s function was used

as one of the test cases in this research. Figure 29 shows a two dimensional Griewank’s

function.

The optimization statement is given by:

nix
i

xx
xf

i

n

i

n

i

ii

:1 ,600600

cos
4000

)(
1 1

2

=≤≤−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑ ∏

= =

Published solution:

0.0 ,0.0)(min == ixxF

93

Figure 29 Griewank’s Function

(Figure Courtesy:
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm)

7.2.11 One Dimensional Two Inequality Constrained Problem

This is a simple one dimensional two inequality constrained test problem. The

optimization statement is given by:

2 ,1 ,21

0
2

)2()(

0
2

)1()(

20
)2()(

2

1

2

=≤≤

≤
−

=

≤
−

=

+
=

ix

xxg

xxg

xxf

i

Published solution:

0.1 ,45.0)(min == xxF

94

7.2.12 Two Dimensional Single Inequality Problem

This is a two dimensional design variable problem subject to a non-linear inequality

constraint. The optimization statement is given by:

2 ,1 ,55
0254),(

10141422),(
2
2

2
121

2121
2
2

2
121

=≤≤−
≤−+=

+−−−+=

ix
xxxxg

xxxxxxxxf

i

Published solution:

}0.3 ,0.2{, ,50)(21min −=−= xxxF

7.2.13 Two Dimensional Two Inequality Problem

This is a two dimensional design variable problem subject to a linear and a non-linear

inequality constraint. The optimization statement is given by:

2 ,1 ,101
01553),(

0164),(

1086),(

21212

2
2

2
1211

21
2
2

2
121

=≤≤
≤−+=

≤−+=

+−−+=

ix
xxxxg

xxxxg

xxxxxxf

i

Published solution:

}.95271 ,7456.1{, ,2347.9)(21min =−= xxxF

7.2.14 Four Dimensional Eight Inequality Constrained Weld Beam Problem

This welded beam function is a standard constrained minimization test problem with 8

inequality constraints [2]. Figure 30 shows the physical system of the weld beam

problem:

95

Figure 30 Illustration of Weld Beam Problem

(Figure Courtesy: [2])

The optimization statement is:

3 ,2 ,0.101.0
4 ,1 ,0.21.0

0)(:)(
0)(:)(
0125.0:)(

00.5)0.14(04811.010471.0:)(

0:)(
0)(:)(

0)(:)(
:

)0.14(04811.01047.1)(

7

16

15

243
2

14

413

max2

max1

2432
2

1

=≤≤
=≤≤
≤−
≤−
≤−

≤−++

≤−
≤−
≤−

++=

iX
iX

XPPXg
XXXg
XXg

XXXXXg

XXXg
XXg

XXg
toSubjected

XXXXXXF

i

i

c

δ

σσ
ττ

Where,

96

.25.0,000,30,600,13
1012,1030.,14,6000

42
1

)36/(013.4
)(

4)(

6)(

212
22

24

2
,",

2
'

)"(
2

"'2)'()(

maxmaxmax

66

3
2

6
4

2
3

4
3

3

3

2
34

2
31

2
2

21

2
31

2
2

2

21

222

inpsipsi
psiGpsiEinLlbP

G
E

L
X

L
XXE

XP

XEX
PLX

XX
PLX

XXX
XXJ

XXXR

XLPM
J

MR
XX

p
R

XX

C

===
×=×===

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

+=

⎟
⎠
⎞

⎜
⎝
⎛ +

+=

⎟
⎠
⎞

⎜
⎝
⎛ +===

++=

δστ

δ

σ

ττ

τττττ

The published solution for this problem is: 2.386 and the solution set X* is: {0.2455,

6.1960, 8.2730, 0.2455}.

7.2.15 Golinski’s Speed Reducer Problem

This is a seven dimensional eleven inequality constrained test problem, and is typically

used as one of the standard test cases to evaluate the performance of a constrained

optimization method. The speed reducer, as shown in Figure 31, represents a simple gear

box that is typically utilized in airplane applications.

The reducer consists of a gear-pinion mounted on two shafts. Each shaft is supported by

one bearing at each end. A typical system includes gear, pinion, shafts and bearings

enclosed in a common housing.

97

Figure 31 Golinski’s Speed Reducer

The objective is to minimize the speed reducer weight while satisfying a number of

constraints imposed by gear and shaft design practices. Table 4 shows a description of the

design variables with its lower and upper bounds.

Table 4 Description of design variables for Golinski’s speed reducer problem
Design Variable Description Lower Limit Upper Limit

x1 face width of gear, cm 2.6 3.6
x2 teeth module, cm 0.7 0.8
x3 # of pinion teeth 17 28
x4 shaft length #1, between bearings, cm 7.3 8.3
x5 shaft length #2, between bearings, cm 7.3 8.3
x6 shaft diameter #1, cm 2.9 3.9
x7 shaft diameter #2, cm 5 5.5

The optimization statement is given by:

Where the coefficients are given by:

98

Subjected to the following constraints (although 25 constraints are listed, 14 of them

represent the lower and upper bounds for the design variables thereby reducing the total

number of constraints to 11):

Where the coefficients for the constraints are given by:

99

Published solution:

}29.5 ,35.3 ,3.7 ,3.7 ,17 ,7.0 ,5.3{} , , , , , ,{
22.2985)(

7654321

min

=
=

xxxxxxx
xF

7.2.16 Himmelblau 5D Constrained Problem

This is a five dimensional constrained version of the Himmelblau function [21]. It is a

minimization problem with 7 inequality constraints and the optimization statement is:

100

4572 ,4572 ,4572 ,4533 ,10278
0)0019085.00012547.00047026.0300961.9(1:)(
00.250019085.00012547.00047026.0300961.9:)(

0)0021813.00029955.00071317.051249.80(1:)(

00.1100021813.00029955.00071317.051249.80:)(

0)0022053.000026.00056858.0334407.85(1:)(
00.920022053.000026.00056858.0334407.85:)(

:
)141.407922932239.378356891.03578547.5)(

44321

4331536

4331535

2
321524

2
321523

5341522

5341521

151
2

1

≤≤≤≤≤≤≤≤≤≤
≤+++×−
≤−+++

≤+++×−

≤−+++

≤−++×−
≤−−++

−++=

XXXXX
XXXXXXXg

XXXXXXXg
XXXXXXg

XXXXXXg

XXXXXXXg
XXXXXXXg

toSubjected
XXXXXF

The published solution for this problem is: -31025.56142 and the solution set X* is:

{78.0, 27.0, 27.070997, 45.0, 44.96924255}.

7.3 Results from Digital Pheromone Implementation in PSO

7.3.1 Test Problem Settings

Problems 7.2.1 – 7.2.10 as shown in Table 5 were used as test cases to evaluate the

digital pheromone implementation within PSO. The dimensionalities (i.e. number of

design variables) of the test problems are also shown in the table. Of these, problems

7.2.1 – 7.2.4 were used for determining the default values for the new user defined

parameters introduced by the implementation of digital pheromones.

Table 5 Test Problem Matrix for serial implementation of PSO with digital pheromones
Problem Test Problem # of Design Variables

7.2.1 Camelback function 2
7.2.2 Himmelblau function 2
7.2.3 Rosenbrock function 5
7.2.4 Ackley’s path function 10
7.2.5 Dixon and Price function 15
7.2.6 Ackley’s path function 20
7.2.7 Levy function 25
7.2.8 Sum of Squares function 30
7.2.9 Spherical function 40
7.2.10 Griewank function 50

101

Several values were for the user defined parameters as shown in Table 6. There are 128

unique combinations of parameters and each was used to solve a problem 20 times, to test

repeatability of the method. This was performed for problems 7.2.1 - 7.2.4, yielding a total of

10,240 independent solution runs. The remaining test problems (7.2.5 – 7.2.10) were then

solved with the pheromone parameters that consistently provided the best answers and

performance measures.

Table 6 Digital Pheromone Parameters
Pheromone parameters Combination of values tested # Combinations

c3 decay (0.5%) No, Yes (decayed once every 10
iterations) 2

c3 10.0, 5.0, 2.0, 1.0 4
Pheromone level decay, λP 0.995, 0.95, 0.9, 0.85 4

Move limit decay, λML 0.995, 0.95, 0.9, 0.85 4

The values for c3 ranged from 1.0 through 10.0 to investigate if the pheromone influence

needed to be large or small compared to pBest and gBest. Also, it was useful for studying

the effect of the pheromone decay factor. The influence of pheromone levels and move

limits were tested with decay rates ranging from 0.995 (0.5%) to 0.85 (15%) of their

values in the previous iteration. The lower limit of the pheromone level decay was

capped at 15% since a significant drop in the pheromone level could cause the influence

of pheromones to be counter-productive for the swarm in reaching the global optimum. A

similar reason was attributed for setting a lower bound on the move limit decay at 0.85.

The solutions obtained for test problems 7.2.1 – 7.2.4 were ranked in order of smallest

average objective function value. Conclusions were made based on the results (in terms of

solution accuracy compared to published solutions) and suitable values for pheromone

102

parameters were determined. These parameters were then used into the developed method to

solve problems 7.2.5 – 7.2.10.

The solutions (accuracy and solution times) from solving these test cases with

experimentally determined digital pheromone parameters were compared against those

obtained from a basic PSO. The swarm size was defined as 10 times the number of

design variables, and was capped at a maximum of 500. The test problems were

considered converged when the difference in solutions was within 0.001 for 10

consecutive iterations. All test cases were performed on a PC running the RedHat

Enterprise Linux Operating System with an Intel Xeon processor and 2GB of system

memory.

7.3.2 Results and Discussion

Table 7 provides a summary of the results obtained from solving problems 7.2.1 – 7.2.4.

Problems solved using a basic PSO are designated with a “B” in parentheses next to the

problem number and those using pheromones have a “P”. It tabulates the best ranked

solutions from 128 combinations of pheromone parameter values. For example, the

pheromone parameter values determined for the camelback 2D problem (problem 7.2.1) were

c3 = 1, c3Decay = NO, pheromone decay factor = 0.995 and maximum velocity decay = 0.85,

which resulted in an optimum solution of 1.031618.

It can be seen from Table 7 that all pheromone parameters consistently produced an average

objective function value less than that from the basic PSO. Since averages are not a true

103

measure for performance, two other columns – the smallest objective function value

achieved, and the standard deviation are also noted in the table. The smallest objective

function is the lowest value obtained in 20 trial runs for each test problem. The results

demonstrate that the use of digital pheromones to search the design space provided

substantially more information for the swarm to investigate the design space and attain the

global optimum at a higher accuracy than a basic PSO, even when different parameter values

were used. Although the solution value changed, it was still substantially better than using a

basic PSO.

Table 7 Solution averages obtained from solving preliminary test problems

Prob.
No.

Average
Objective
Function

Smallest
Objective
Function

Standard
Deviation

Average
Duration
per run

(sec)

Average
No. of

Iterations
c3

c3
decay λP λML

7.2.1 (B) -1.018154 -1.030545 0.01049 0.40 19.65 - - - -
7.2.1 (P) -1.031618 -1.031628 0.00001 0.43 21.25 1 NO 0.995 0.85

7.2.2 (B) 0.473549 0.000192 0.687921 0.43 21.25 - - - -
7.2.2 (P) 0.000168 0.000001 0.000234 0.61 30.55 1 NO 0.995 0.85

7.2.3 (B) 0.117105 0.000186 0.16704 1.06 21.1 - - - -
7.2.3 (P) 0.000371 0.000000 0.00042 1.57 30.8 2 YES 0.95 0.95

7.2.4 (B) 3.542873 0.002991 3.22811 10.26 102.5 - - - -
7.2.4 (P) 0.001433 0.000661 0.00086 8.21 79.5 2 NO 0.85 0.9
Legend: 7.2.1 – Camelback 2D, 7.2.2 – Himmelblau 2D, 7.2.3 – Rosenbrock 5D, 7.2.4 –
Ackley’s path 10D. (B) – Results from basic PSO, (P) – Results from PSO with Digital
Pheromones implemented

It should also be noted that PSO with digital pheromones required longer times to solve the

Camelback 2D, Himmelblau 2D, and Rosenbrock 5D problems. This behavior was found

true in all 128 test runs. The reason is attributed to the additional number of pheromone

operations needed. However, as the complexity of the objective function in terms of the

number of design variables increased, the pheromones provided more information about the

104

design space to the swarm thereby converging in significantly less iterations. This is evident

from the average solution times of the Ackley 10D problem where the solution duration with

digital pheromones was smaller compared to that of the basic PSO. This suggests that

decreased solution times become more prominent as the complexity of the optimization

problem increases.

It can be seen from the table that the camelback 2D and Himmelblau 2D problems performed

best with a c3 value of 1.0, but Rosenbrock 5D and Ackley 10D performed best with c3 = 2.0.

Although it was inconclusive, it provided some evidence for requiring a higher value for c3 as

the dimensionality of the problem increased. Also, Rosenbrock 5D required a decay in the c3

value with the progress in iterations, while other test problems did not. In addition, the

average number of iterations for Rosenbrock 5D was 30.8, which means that the value of c3

was decayed only three times by a factor of 5% (since decay is performed once every 10

iterations). Although solution sets from all pheromone parameter combination possibilities

are not shown in this paper, it was observed that the performance of the method was

influenced by the value of c3 but relatively insensitive to decay in c3. For example, in the

Ackley 10D (problem 7.2.4), the pheromone parameters that ranked second, in terms of

average objective function value, required a c3 value of 10.0 to produce a solution of

0.001496, as opposed to the parameter values that produced a solution of 0.001433. The

solution accuracy between the two parameter sets was significant only in the fifth decimal

place. However, it was noticed that in the first 10 ranked solution sets for Ackley 10D, four

out of 10 cases required a c3 value of 10 and three out of 10 cases required a c3 value of 5.0.

This suggests that higher dimensional problems might require a higher value of c3 so as to

105

increase the influence of pheromones over the swarm. From these observations a value of c3

ranging from 2.0 to 5.0 is suggested.

The results also suggest that a value of 0.9 to 0.95 is an appropriate choice of value for the

pheromone decay factor. The test cases revealed that a value greater than 0.95 or less than

0.9 allowed the pheromone component to become too large or small compared to the pBest

and gBest components in the velocity vector. To achieve the maximum benefit from digital

pheromones, a balance needs to be in effect for all of these components of the velocity

vector.

A pattern was also observed in the value of the move limit decay for the top 10 ranked

solutions for all the test problems. Camelback 2D and Himmelblau 2D required a move limit

decay value of 0.85, Rosenbrock 5D required 0.95, and Ackley 10D required 0.9 for attaining

global optimum solutions. Although the scales of objective function values for each test

problems are different, a range of values between 0.85 and 0.95 seemed to be appropriate. It

is to be noted that although pheromone parameters are suggested in this section, they are

user-defined parameters that can be altered to suit to a specific optimization problem.

Based on the knowledge gained about the pheromone parameters, the following values were

used for solving problems 7.2.5 – 7.2.10:

- c3 = 5.0 with no decay,

- Pheromone decay = 0.95, and

- Move limit decay = 0.95

106

Table 8 provides the summary of results from these test runs. The table shows that digital

pheromones when used in PSO consistently displayed superior performance when compared

with solutions from a basic PSO.

Table 8 Summary of results from solving problems 7.2.5 – 7.2.10
Problem

No.
Solution
Accuracy

Objective Function Average
No. of

iterations

Duration
(secs/run) Average Smallest Std Dev

7.2.5 (B) 65% 48.366 0.0007 143.556 166.3 25.29
7.2.5 (P) 85% 0.148 0.0003 0.466 92.0 14.72

7.2.6 (B) 0% 4.658 2.659 2.740 166.7 16.899
7.2.6 (P) 85% 0.171 0.003 0.418 143.3 15.095

7.2.7 (B) 100% 0.143 0.131 0.041 96.5 24.819
7.2.7 (P) 100% 0.132 0.130 0.001 40.8 11.289

7.2.8 (B) 0% 16.301 0.521 48.692 212.45 66.10
7.2.8 (P) 85% 0.084 0.006 0.128 138.25 46.46

7.2.9 (B) 100% 0.033 0.0174 0.0078 162.65 68.35
7.2.9 (P) 100% 0.002 0.0007 0.0007 85.15 39.38

7.2.10 (B) 0% 1.189 1.056 0.133 186.1 99.014
7.2.10 (P) 100% 0.008 0.003 0.005 158.1 93.801

Legend: 7.2.5 – Dixon and Price function15D, 7.2.6 – Ackley’s path function 20D, 7.2.7
– Levy function 25D, 7.2.8 – Sum of squares function 30D, 7.2.9 – Spherical function
40D, 7.2.10 – Griewank function 50D. (B) – Results from Basic PSO, (P) – Results from
PSO with Digital Pheromones implemented.

Since the published solutions for most of the problems in Table 8 are 0.000, there was no

measure for percentage accuracy. Therefore, a tolerance was given and accuracy was

measured based on the number of times the obtained solution was within the tolerance limits.

For example, a tolerance limit of +/-0.5 was assigned for a 20 design variable problem. If the

solution was within this tolerance limit 85 times in 100 runs of the problem, the solution

accuracy was 85%.

107

The solution accuracies noted in the table were within a tolerance limit of +/-0.5. The choice

of 0.5 was not arbitrary. If the value was smaller than 0.5 basic PSO did not solve most of the

problems. Thus, for some sort of comparison a slightly larger, but still sufficient tolerance

was used. In all test cases, the solution accuracy of PSO with digital pheromones was either

equal or superior when compared to basic PSO. For example, problem 7.2.6 (Ackley’s 20D),

the basic PSO was not able to solve the problem whereas the pheromone PSO attained the

solution within the specified tolerance limits 85 out of 100 runs.

For the Dixon and Price function (problem 7.2.5) a solution accuracy of 65% was achieved

by basic PSO. However, the average objective function value was 48.366, meaning that when

the swarm did not locate the optimum within the tolerance limits, it was a very bad design

point. The pheromone PSO method resulted in 85% accuracy with an average objective

function value of 0.148 and a standard deviation of 0.466. So, even when the optimum was

not located within the tolerance, the solution was still in the neighborhood of the optimum. A

benefit, if restarting the method is an option. Also, the average duration per run was

significantly lower for pheromone PSO when compared to basic PSO.

The solution accuracy measure for the Levy function (problem 7.2.7) was essentially equal

between basic and pheromone PSO. Both the methods solved the problem with 100%

accuracy. Although the average, smallest and standard deviation between the methods was

very close, there was almost a 50% decrease in the solution time for pheromone PSO.

108

The basic PSO failed to solve the 30 dimensional sum of squares function (problem 7.2.8)

within the specified tolerance limit of +/- 0.5. The smallest objective function value returned

was 0.521. However, the pheromone PSO solved the problem within the tolerance limits on

all 20 trial runs along with improved average objective function value, standard deviation and

duration. Given the unimodal nature of the test problem, the failure to solve the problem by

basic PSO may be attributed to the high swarm size (300) causing substantial swarm activity

negatively impacting convergence in the design space. The pheromone PSO on the other

hand was relatively unaffected by the swarm size and converged faster when compared to

basic PSO.

Both basic PSO and pheromone PSO were able to solve the 40D spherical function (problem

4.9) with 100% accuracy. However, as seen from the table, the average objective function

evaluated by the pheromone PSO (0.002) was about 16 times better than the average

objective function returned by basic PSO (0.033). Moreover, the solution time of pheromone

PSO (39.38 seconds) was 42% faster when compared to basic PSO (68.35 seconds).

Although the variation of the results in basic PSO was small, the pheromone PSO showed

superior consistency as evident from the standard deviation of the objective function values.

Pheromone PSO was able to solve the 50D highly multimodal Griewank problem (problem

7.2.10) with 100% solution accuracy whereas the basic PSO could not reach the global

minimum in any of the 20 runs. There was a 5% improvement in the solution duration as well

and the standard deviation was significantly better than a basic PSO.

109

To emphasize that that the suggested pheromone parameters determined from problem 7.2.1 -

7.2.4 were good default values, they were used to solve problems 7.2.5 – 7.2.10. However,

fine tuning of the pheromone parameters could potentially produce superior solutions than

those in Table 8. For example in problem 7.2.5, a non decaying c3 value of 5.0, a pheromone

decay factor of 0.995 and a move limit decay of 0.95 produced a solution of 0.00534 when

compared to 0.148 with the suggested pheromone parameters. This means that although the

suggested values perform well, additional performance improvement can be realized through

refinements in the pheromone parameters.

7.3.3 Simulating Realistic Objective Functions

The test cases presented thus far are academic in nature with easily computed analytical

objective functions. They are not a true representative of the type of problems solved in

industrial settings, where function evaluations can take a considerable amount of

computational time. To test if longer function evaluation times have any impact on the

performance of the developed method, a sleep time was added when evaluating the objective

function. This was done to simulate an objective function with a longer evaluation time.

Table 9 shows the solution times for solving Ackley’s path function of 20 design variables

when sleep times of 0, 5, 10, and 20 milliseconds were added. The other parameter values

used were c3=5.0, λP=0.95 and λML=0.95.

Table 9 Summary of results for Ackley 20D with variable function evaluation time
Sleep time
(milli-secs)

Basic PSO Pheromone PSO solution time
% improved Avg Obj

func
Duration

(sec)
Avg Obj

func
Duration

(sec)
0.0 4.659 16.898 0.171 15.095 10.67 %
5.0 4.622 115.671 0.146 103.148 10.83 %
10.0 5.016 185.863 0.065 177.323 4.59%
20.0 4.258 374.963 0.051 333.056 11.18%

110

The table summarizes average objective function values, solution times and the improvement

in solution times between the basic and pheromone PSO from 20 solution runs. The results

indicate that whereas the basic PSO attained a local minimum in all four sleep time scenarios,

PSO with digital pheromones solved the problem with superior accuracy levels, very close to

the global solution. The time improvement for a 10 millisecond sleep time was only 4.59%

but basic PSO converged prematurely. Also, about two times out of 20 runs, PSO with digital

pheromones converged to a local minimum at ~1.5 which increased the average objective

function value in the case of 0 and 5 millisecond sleep time. Overall, when compared to the

performance of basic PSO in all sleep time scenarios, PSO with digital pheromones displayed

substantial improvement.

7.4 Statistical Analysis

7.4.1 Test Problem Settings

Four unconstrained test problems (problems 7.2.1 – 7.2.4) of varying dimensionality

were used for performing hypothesis testing on their solution accuracy and solution

times. These problems were solved using PSO with and without digital pheromones 35

times each to ensure an acceptable normal distribution. Two hypotheses were tested for

each test problem with and without pheromones: a) whether the solution accuracy of PSO

with digital pheromones compare better against basic PSO, and b) whether the solution

times of PSO with digital pheromones compare better against basic PSO. The hypothesis

tests were performed at a 95% confidence level, or a 0.05 probability for type I error.

111

H0: μ1 - μ2 ≤ 0 (null hypothesis)
Ha: μ1 - μ2 > 0 (research or alternate hypothesis) (27)

As shown in equation (27) (same as equation (8)), the null hypothesis (H0) states that

basic PSO fares better in comparison to PSO with digital pheromones and the research

hypothesis (Ha) states that PSO with digital pheromones has better performance

characteristics than basic PSO. The five-step procedure for performing the hypothesis test

was outlined in section 3.8.2, and was used for all four test cases. The pheromone

parameter combinations are shown in equation (28). The tcritical value for 0.05 probability

in error (95% confidence level) for 68 degrees of freedom obtained from t-distribution

tables is -1.645.

Combination 1: c3=2.0, λp = 0.85, λML = 0.85
Combination 2: c3=5.0, λp = 0.95, λML = 0.95
Combination 3: c3=5.0, λp = 0.85, λML = 0.95
Combination 4: c3=5.0, λp = 0.85, λML = 0.85

(28)

The swarm size used for each test problem was chosen as 10 times the number of design

variables with a maximum set to 500. The test problems were considered converged

when the difference in objective function value was within 0.001 for 10 consecutive

iterations. The computing platform for the trial runs was workstation running the Red Hat

Enterprise Linux Operating System, with a processor speed of 3.2GHz and 2GB of

system memory.

7.4.2 Results and Discussion

Table 10 explains in detail the results obtained from performing hypothesis testing on the

2D camelback function (problem 7.2.1) at a 95% confidence level. The first pheromone

112

parameter combination from equation (28) was used. From the table, n1 and n2 are the

number of samples (trial runs) drawn from PSO with and without digital pheromones

respectively.

Table 10 Hypothesis test results for Camelback 2D function
x1 = -1.0166 (solution mean of trial runs of basic PSO)

x2 = -1.03152 (solution mean of trial runs of PSO with digital
pheromones)

Sp = 0.000167087 (from equation (10))
df = 68 (Degrees of freedom = n1 + n2 – 2)

tcalculated = -1.145509941 (using equation (9))
tcritical (α=0.05) = -1.645 (from t-distribution tables with probability of error = α)

It can be seen from table that tcalculated is greater than tcritical, which leads to the conclusion

that the null hypothesis, H0 can be rejected. This means that the solution quality of basic

PSO is not better than PSO when implemented with digital pheromones. Since there is no

evidence to prove that basic PSO fares better than PSO with digital pheromones, the

research hypothesis (Ha) that the solution quality of PSO with digital pheromones is

better than a basic PSO is considered as ‘accepted’. The solution quality and solution

timings for all test problems are estimated using the procedure laid out in Table 10. Table

11 below summarizes the hypothesis testing of the camelback problem (problem 7.2.1)

for solution accuracy and solution timings for all stated combinations of pheromone

parameters.

Table 11 Summary of hypothesis testing for Camelback 2D problem
Test

Problem Combination 1 Combination 2 Combination 3 Combination 4

7.2.1 tcalc H0 tcalc H0 tcalc H0 tcalc H0

Solution
accuracy

-1.145
(> tcritical)

R -1.567
(> tcritical)

R -1.685
(< tcritical)

A -2.288
(< tcritical)

A

Solution
Times

-0.488
(> tcritical)

R 0.210
(> tcritical)

R -0.495
(> tcritical)

R -0.322
(> tcritical)

R

Legend: R – Rejected, A - Accepted

113

This table shows that the null hypothesis, H0 is rejected in two different instances for

solution times – when using pheromone parameter combination one and two. This means

that the solution quality of basic PSO is not better than PSO with digital pheromones at a

95% confidence level. The results from hypothesis testing of solution times also concur

with the fact that digital pheromones has a positive influence in reducing the solution

times when compared to basic PSO. However, with the pheromone parameter

combinations three and four, the null hypothesis was accepted at 95% confidence level.

That means basic PSO performed better when compared to PSO with digital pheromones

in terms of solution quality. However, the null hypothesis is rejected for pheromone

combinations three and four for solution times. While this hypothesis test demonstrates

that not all suggested pheromone parameter combinations can be beneficial, it points to

the fact that slight changes in the values for pheromone parameters substantially affects

the performance of PSO when implemented with digital pheromones, especially in two-

dimensional optimization problems.

Table 12 summarizes the hypothesis testing for the Himmelblau 2D function (problem

7.2.2) for solution accuracy and timings for all stated pheromone combinations.

Table 12 Summary of hypothesis testing for Himmelblau 2D problem
Test

Problem Combination 1 Combination 2 Combination 3 Combination 4

7.2.2 tcalc H0 tcalc H0 tcalc H0 tcalc H0

Solution
accuracy

-0.195
(> tcritical)

R -0.551
(> tcritical)

R -0.587
(> tcritical)

R -0.675
(> tcritical)

R

Solution
Times

2.390
(> tcritical)

R 0.365
(> tcritical)

R 0.339
(> tcritical)

R 1.296
(> tcritical)

R

Legend: R – Rejected, A - Accepted

114

The results from Table 12 shows that the calculated t value (tcalculated) is greater than tcritical

for all pheromone parameter combinations. This means that the null hypothesis stating

that basic PSO is better than PSO with digital pheromones can be rejected at an error

probability of 0.05. Both the solution quality and solution times suggest that H0 can be

rejected. Since there is no other evidence showing that basic PSO performs better, the

research hypothesis that pheromone PSO performs better is accepted.

Table 13 summarizes the hypothesis testing for the Rosenbrock 5D function (problem

7.2.3) for solution accuracy and solution timings.

Table 13 Summary of hypothesis testing for Rosenbrock 5D problem
Test

Problem Combination 1 Combination 2 Combination 3 Combination 4

7.2.3 tcalc H0 tcalc H0 tcalc H0 tcalc H0

Solution
accuracy

-0.721
(> tcritical)

R -1.128
(> tcritical)

R -1.184
(> tcritical)

R 0.640
(> tcritical)

R

Solution
Times

1.089
(> tcritical)

R 1.017
(> tcritical)

R 0.797
(> tcritical)

R 0.552
(> tcritical)

R

Legend: R – Rejected, A - Accepted

Hypothesis testing for solution quality and solution times of Rosenbrock 5D problem

showed that the null hypothesis can be rejected. The table shows that the tcalculated value

was greater than tcritical for all suggested pheromone parameter combinations. Therefore,

the null hypothesis stating that basic PSO performs better when compared to PSO with

digital pheromones is rejected. Since there is no other evidence to prove that basic PSO

can perform better, the research hypothesis stating that PSO with digital pheromones has

better performance characteristics in terms of solution quality and solution timings.

115

Table 14 summarizes the hypothesis testing for the Ackley’s path 10D function (problem

7.2.4)

Table 14 Summary of hypothesis testing for Ackley 10D problem
Test

Problem Combination 1 Combination 2 Combination 3 Combination 4

7.2.4 tcalc H0 tcalc H0 tcalc H0 tcalc H0

Solution
accuracy

-0.418
(> tcritical)

R -0.443
(> tcritical)

R -0.429
(> tcritical)

R -0.423
(> tcritical)

R

Solution
Times

-0.219
(> tcritical)

R 0.040
(> tcritical)

R 0.187
(> tcritical)

R -0.233
(> tcritical)

R

Legend: R – Rejected, A - Accepted

This table shows that the null hypothesis, H0 is rejected for all suggested combinations of

pheromone parameters. This means that the hypothesis testing demonstrates that basic

PSO is not better than PSO with digital pheromones at a 0.05 probability for error. The

fact that tcalculated value exceeds tcritical value for both solution quality and solution times

suggest that the research hypothesis Ha can be accepted due to the lack of evidence to

prove superior performance of basic PSO. That means that PSO with digital pheromone

PSO compares better against basic PSO in terms of both solution quality and solution

timings for this test problem.

It can be seen that all combinations of pheromone parameters (except combinations three

and four for Camelback 2D, i.e. problem 7.2.1) that the null hypothesis (H0) was rejected.

That means that there is no evidence to prove that basic PSO fares better than PSO with

digital pheromones. Therefore, it can be inferred that the research hypothesis (Ha) is

accepted. The pheromone parameter combinations three and four for the Camelback 2D

function suggest that they are not suitable values for lower dimensional problems. This is

116

understandable because the confidence parameter c3 was set to a high value of 5.0, which

potentially increased pheromone activity causing longer times needed to converge.

To check if a lower value for c3 was suitable for lower dimensional problems, an

additional test was performed. In this case, hypothesis testing was performed on a 100D

Ackley’s path function using the same pheromone parameter combinations. Table 15

summarizes the results.

Table 15 Summary of hypothesis testing for Ackley 100D problem
Test

Problem Combination 1 Combination 2 Combination 3 Combination 4

Ackley
100D tcalc H0 tcalc H0 tcalc H0 tcalc H0

Solution
accuracy

0.233
(> tcritical)

R -1.247
(> tcritical)

R -1.038
(> tcritical)

R 0.314
(> tcritical)

R

Solution
Times

-4.817
(< tcritical)

A -1.054
(> tcritical)

R -0.130
(> tcritical)

R -4.305
(< tcritical)

A

Legend: R – Rejected, A - Accepted

Table 15 is the result of performing hypothesis testing on the 100 design variable

Ackley’s path function. The table shows that the tcalculated values for solution quality was

greater than tcritical for all combinations of suggested pheromone parameters. This means

that a lower value for c3 is acceptable for a higher dimensional problem (combination

one). However, a high value of c3 may not be suitable for a lower dimensional problem

(camelback 2D). Also for this problem, the null hypothesis stating that basic PSO fares

better in comparison to pheromone PSO can be rejected.

117

It can be noted that the hypothesis testing of solution times shows that the null hypothesis

can be accepted for pheromone combinations one and four. This means that the solution

times for basic PSO were better when compared to PSO with digital pheromones.

However, it comes at a cost of generally poor solution accuracy. This means that

although basic PSO compares better against PSO with digital pheromones in terms of

solution times, basic PSO was unable to solve the problem with a reasonable accuracy.

7.5 Coarse Grain Parallelization Results

In this section, results from solving problems 7.2.5 – 7.2.10 (shown in Table 16) in a

synchronous coarse grain parallel computing environment are presented.

Table 16 Test problem matrix for synchronous coarse grain parallelization
Problem Test Problem Dimensions

7.2.5 Dixon and Price function 15
7.2.6 Ackley’s path function 20
7.2.7 Levy function 25
7.2.8 Sum of Squares function 30
7.2.9 Spherical function 40
7.2.10 Griewank function 50

7.5.1 Test Problem Settings

The pheromone parameter values established by testing digital pheromones in PSO with

128 different settings as described in section 7.3 were used for the evaluation of the

developed coarse grain parallelization method. Six unconstrained problems listed in table

15 were used for this purpose. Though customization of parameters could potentially

118

improve the solution characteristics, the following parameter values catered well for most

problems:

- c3 = 5.0 with no decay

- Pheromone decay = 0.95, and

- Move limit decay = 0.95

The swarm size was defined as 10 times the number of design variables, and was limited

to a maximum of 500 as the dimensionality of the problems increased. A total of 20 trial

runs were performed for each test case, with and without digital pheromones. The test

problems were again considered converged when the difference in objective function

values was within 0.001 for 10 consecutive iterations. All test cases were solved on 2, 4,

and 8 Intel Xeon processors (3.06 GHz) of a RedHat Linux cluster that houses 2GB

system memory per node and high bandwidth Myrinet network switches. The algorithm

was implemented using the C++ programming language and MPI communication

libraries (MPICH implementation) for data distribution between processors.

The results section is divided into two main categories:

a. Performance evaluation of PSO with and without digital pheromones: Accuracy,

efficiency, and reliability of PSO with digital pheromones are compared against basic

PSO in a parallel computing architecture. This is described in section 7.5.1.1

b. Parallel performance: Evaluation of the developed method for adaptability to the

parallel computing architecture. This involves evaluating parallel speedup and

efficiencies of PSO with digital pheromones. This is described in section 7.5.1.2

119

7.5.2 Results and Discussion: Evaluation With/Without Pheromones

Table 17 provides a summary of objective function values obtained from the test runs on

2, 4, and 8 processors. Upon convergence on all participating processors, the root

processor gathered the solution information and sorted for best objective function values.

The root processor retained these values and the others were discarded. Results displayed

in table 2 indicated these sorted values. The table contains three markers that assess the

performance of the developed method – average objective function value, smallest

objective function value and the standard deviation. The smallest objective function is the

lowest value obtained in 20 trial runs for each test problem.

Table 17 Summary of solutions from coarse grain parallelization
 Objective Function

(2 Processors)
Objective Function

(4 Processors)
Objective Function

(8 Processors)
Avera

ge
Smallest Std

Dev.
Average Smallest Std

Dev.
Average Smallest Std

Dev.
7.2.5 (B) 14.170 0.002 35.015 34.822 0.003 126.622 3.628 0.001 13.676
7.2.5 (P) 0.211 0.001 0.643 0.098 0.001 0.324 0.441 0.001 1.083

7.2.6 (B) 5.456 2.245 3.504 6.181 1.991 4.031 5.946 1.900 4.013
7.2.6 (P) 0.354 0.002 0.723 0.393 0.004 0.890 0.133 0.002 0.399

7.2.7 (B) 0.134 0.131 0.002 0.133 0.130 0.002 0.134 0.131 0.003
7.2.7 (P) 0.131 0.130 0.001 0.131 0.130 0.001 0.131 0.130 0.001

7.2.8 (B) 3.166 0.259 3.212 1.531 0.273 1.070 2.178 0.220 2.313
7.2.8 (P) 0.228 0.006 0.304 0.236 0.005 0.220 0.174 0.003 0.278

7.2.9 (B) 0.035 0.017 0.014 0.036 0.012 0.018 0.031 0.009 0.019
7.2.9 (P) 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001

7.2.10 (B) 1.151 1.067 0.064 1.146 1.051 0.044 1.155 1.061 0.074
7.2.10 (P) 0.012 0.003 0.009 0.011 0.004 0.006 0.009 0.003 0.005
Legend: 7.2.5 – Dixon and Price function15D, 7.2.6 – Ackley’s path function 20D, 7.2.7 –
Levy function 25D, 7.2.8 – Sum of squares function 30D, 7.2.9 – Spherical function 40D,
7.2.10 – Griewank function 50D. (B) – Results from Basic PSO, (P) – Results from PSO with
Digital Pheromones implemented.

120

The results in the table show that PSO with digital pheromones (designated with a P)

consistently displayed superior performance when compared with solutions from a basic

PSO (designated with a B).

Since the published solutions for the solved problems were 0.000, there was no measure to

determine the percentage accuracy. Therefore, a tolerance was again given and accuracy was

measured based on the number of times the obtained solution was within the tolerance limits.

121

Figure 32 Solution accuracy measure across 2, 4, and 8 processors

Figure 32 shows the solution accuracy charts for the test problems across using the different

number of processors. As evident from Figure 32, the solution accuracy of PSO with digital

pheromones was either equal or superior when compared to basic PSO. For example, in

problem 7.2.6 (Ackley’s 20D), the basic PSO was not able to solve the problem whereas the

pheromone PSO attained the solution within the specified tolerance limits 75 out of 100 runs

on 2 and 4 processors. When tested with 8 processors, the accuracy of pheromone PSO

increased to 90%.

The published solution for the 15 dimensional Dixon and Price function (problem 7.2.5) is

0.000 and the swarm in basic PSO was unable to locate the optimum on any of 2, 4 or 8

processor runs. The swarm reached closer to the optimum on the 8 processor cluster (3.628)

but was still well out of the tolerance limits. On the other hand, PSO with digital pheromones

solved the problem with a solution accuracy ranging between 80-95%. The standard

deviation of pheromone PSO, as evident from Table 17, was substantially better than basic

122

PSO as well. Also, in all the participating processors, the average solution time per run was

at least 23% shorter for pheromone PSO than for basic PSO.

Both basic and pheromone PSO were able to solve the 25 dimensional Levy function

(problem 7.2.7) within the tolerance limits as evident from the 100% solution accuracy in

Figure 32. Although the average, smallest and standard deviations between the methods (with

and without digital pheromones) were quite close to each other on results from all processors,

there was almost a 50% decrease in the solution time for pheromone PSO, showing that it

was much more efficient than a basic PSO. Table 18 summarizes the average solution time

and number of iterations for all test cases across 2, 4 and 8 processors.

Table 18 Summary of solution times and number of iterations from coarse grain
parallelization

 2 Processors 4 Processors 8 Processors
 Avg #

iterations
Avg Duration

(secs/run)
Avg #

iterations
Avg Duration

(secs/run)
Avg #

iterations
Avg Duration

(secs/run)
7.2.5 (B) 162.4 27.45 171.9 30.16 171.0 33.29
7.2.5 (P) 116.9 20.45 118.9 23.17 113.7 24.77

7.2.6 (B) 142.8 18.69 125.0 19.65 139.2 20.07
7.2.6 (P) 141.2 16.68 137.9 17.23 146.9 17.84

7.2.7 (B) 95.8 25.68 97.7 26.39 93.9 27.17
7.2.7 (P) 40.5 12.28 41.2 12.55 41.9 12.98

7.2.8 (B) 211.5 68.07 210.1 69.94 211.7 71.67
7.2.8 (P) 151.2 53.94 154.4 55.83 149.0 57.44

7.2.9 (B) 163.4 70.88 165.2 71.98 160.0 73.76
7.2.9 (P) 85.2 39.80 83.3 40.52 85.1 41.57

7.2.10 (B) 182.9 100.31 180.8 101.99 185.3 104.48
7.2.10 (P) 159.7 96.45 159.6 96.71 159.5 97.65

123

The lowest objective function value obtained by the 30 dimensional sum of squares function

(problem 4.4) by basic PSO was 0.220. Compared to the published solution of 0.000, this

value is within the tolerance limits. However, the solution accuracy resulting from basic PSO

method was only within the range of 5-25% when tested across 2, 4 and 8 processors. On the

other hand, pheromone PSO was able to solve the problem within tolerance 80-95% of the

time. Moreover, the solution time was 20% better than the basic PSO.

Both basic PSO and pheromone PSO solved the 40 dimensional spherical function (problem

7.2.5) within the tolerance limits resulting in 100% accuracy. That means that both basic

PSO and pheromone PSO were able to find a solution within specified tolerance limits in the

20 trial runs. However, it can be observed from Table 17 that the average objective function

evaluated by pheromone PSO (0.002) is about 15 times better than the lowest average

objective function returned by basic PSO (0.031). Moreover, the highest solution time for

pheromone PSO (41.57 seconds per run on 8 processor cluster) is about 43% shorter when

compared to that of basic PSO. Results from all the processors consistently showed a very

small variation in the solution (standard deviation of 0.001), which proves the reliability of

pheromone PSO.

The highly multimodal 50 dimensional Griewank function (problem 7.2.10) was also

attempted to solve using basic and pheromone PSO. While the basic PSO could not reach the

global optimum on any of the 20 trials across 2, 4 and 8 processors, pheromone PSO was

able to obtain a solution within the tolerance limits in all the trials. In addition, the variation

of the results as seen from the standard deviation values in Table 17 show that pheromone

124

PSO was significantly consistent in performance when compared to basic PSO. This also

must be taken into account when considering iterations and solution times as basic PSO

converged prematurely on every single solution run.

In all the test cases, the digital pheromone implementation of PSO displayed superior

performance characteristics in terms of accuracy (closeness to published solution), efficiency

(solution duration) and reliability (standard deviation) when implemented in a parallel

architecture.

7.5.3 Results and Discussion: Parallel Efficiency and Speedup Characteristics

The output from parallelizing an algorithm is typically measured and compared in terms

of speedup and parallel efficiency. The speedup defines how fast a code runs in parallel;

it is a ratio of the amount of time the code spends in communication to the amount of

time it spends on computing. If the time taken to run a code on one processor is t1

seconds, and the time it takes to run the same code on ‘p’ processors is tp seconds, then

the parallel speedup is given by equation (29).

pt
t1Speedup = (29)

Parallel efficiency is a percentage measure of how well the available processors are

used. In other words, it provides information on how well the load balancing is

maintained. Equation (30) shows the procedure for calculating parallel efficiency.

p
Speedup

=Efficiency Parallel (30)

125

The parallel performance characteristics of pheromone PSO can be measured through

speedup and efficiency calculations. Ideally, the parallel speedup should be equal to the

number of processors, and the parallel efficiency should be 100%. However, due to

communication latencies, these values do not usually reach these ideal values. Therefore,

the measure of parallel performance is based on how close they are to ideal values. In this

section, the parallel performance characteristics were evaluated and presented for

Pheromone PSO.

Figure 33 shows the speedup characteristics of pheromone PSO plotted for all

participating processors. The plot was generated based on the speedup values evaluated

for each test problem running on 2, 4 and 8 processors. The x-axis portrays various test

problems with their dimensionality and the y-axis shows the parallel speedup.

Figure 33 Parallel Speedup characteristics of PSO with digital pheromones

126

The plot shows that the parallel speedup was almost ideal when two processors were used

alone. This means that the network latencies have a very small effect on the two swarms

in a parallel architecture. When four swarms were deployed on a four processor system,

the speedup did not reach the ideal as quickly. However, parallel speedup approached the

ideal value of 4.00 as the dimensionality of the problem increased to 40 (spherical

function – problem 7.2.9). With eight swarms simultaneously deployed, a plateau was

noticed at a non-ideal speedup (i.e., 7.00) when the problem dimensionality was between

20 (Ackley’s path – problem 7.2.6) and 30 (Sum of squares – problem 7.2.8). The

speedup gradually increased towards ideal (i.e., 8.00) as the problem dimensionality

increased to 50 (Griewank function – problem 7.2.10).

It can be inferred from these findings that the processor communication latencies had

more influence and hence a lower parallel speed up was noticed on lower dimensional

problems. As the problem dimensionality increases along with the number of processors,

the network latencies are offset and near ideal parallel speedups are attained.

Figure 34 shows the parallel efficiency characteristics of pheromone PSO across the

participating processors.

127

Figure 34 Parallel Efficiency characteristics of PSO with digital pheromones

Parallel efficiency provides load balancing information and is dependent upon the

speedup and the number of participating processors. A 100% parallel efficiency means

that the system is perfectly load balanced. Figure 34 shows that the parallel efficiency

values ranged from 85% through 75% across 2, 4, and 8 processors for a 15 dimensional

Dixon and Price function (problem 7.2.5). For this problem, this means that the load

balancing worsened when the number of processors increased from 2 to 8. This trend

more or less continued to the remaining problems as well. However, the decrease in

parallel efficiency was negligible with higher dimensional problems (i.e., Griewank

50D). This means that the load balancing improved considerably as the dimensionality of

the problems increased.

Figure 35 shows the relation between parallel efficiency and the number of processors in

the context of the six test problems. Figure 35 is equivalent to Figure 34, but the relation

128

between parallel efficiency and number of processors in the context of test cases is better

understood.

Figure 35 Effect of number of processors on parallel efficiency

With the increase in problem dimensionality, a pattern of increasing parallel efficiency

can be observed in Figure 35. The 15 dimensional Dixon and Price function (problem

7.2.5) has the smallest parallel efficiency, while the 50 dimensional Griewank function

(problem 7.2.10) shows the best efficiency characteristics. The parallel efficiencies for

the test problems gradually increased as the dimensionality increased, which corroborates

with the findings shown in Figure 34 as well.

A similar speedup and efficiency study was also performed on the basic PSO method

with multiple swarms traversing the design space, and the results concur with the pattern

of findings reported above. Figure 36 show the plots from testing basic PSO.

129

Figure 36 Charts for Basic PSO: Speedup (Left), Parallel Efficiency (Right)

The pheromone parameter settings used were the default ones determined. However, with

refined settings, the solution characteristics could be further improved. For example,

solving the 40D sphere problem with the suggested pheromone parameters resulted in an

130

average objective function value of 0.0019 that took an average of 41.57 seconds per run

on an 8 processor computing environment. However, with tuned parameter settings, the

best solution achieved was 0.0015 that took an average of 29.76 seconds per run. The

altered parameter values showed a 20% improvement in the objective function value

along with a 28% improvement in solution time. The changes in these parameters are

problem dependent and currently do not have mathematical rules to ascertain the most

optimal parameter settings. In spite of the additional computations per iteration due to

pheromone operations, solution times nearly always decreased when compared to a basic

PSO. This is attributed to the information provided by the digital pheromones thereby

facilitating the swarms in propagating towards the global optimum faster.

7.6 Shared Pheromone Parallelization Results

In this section, results from implementing the shared pheromone parallelization scheme

are presented. Problems 7.2.5 – 7.2.10 (shown in Table 19) were used as test cases.

Table 19 Test problem matrix for shared pheromone parallelization
Problem Test Problem Dimensions

7.2.5 Dixon and Price function 15
7.2.6 Ackley’s path function 20
7.2.7 Levy function 25
7.2.8 Sum of Squares function 30
7.2.9 Spherical function 40
7.2.10 Griewank function 50

7.6.1 Test Problem Settings

131

The pheromone parameters used for shared pheromone parallelization were the same as

in coarse grain parallelization. They are:

- c3 = 5.0 with no decay,

- Pheromone decay, λp = 0.95, and

- Move limit decay, λML = 0.95

Though customization of parameters for each problem would further improve solution

characteristics, the default parameter values catered well for most problems. A total of 20

trial runs were performed for each test case. All test cases were solved on 2, 4, and 8 Intel

Xeon processors (2.8 GHz) of a RedHat Linux distributed memory cluster that houses high

bandwidth Myrinet network switches. The algorithm was implemented using the C++

programming language with the MPI communication libraries (MPICH implementation) for

data distribution across processors. As a general rule of thumb, the swarm size was defined

as 10 times the number of design variables, and was capped at 500 per processor as the

dimensionality increased.

To evaluate the performance of the developed method, results were compared against: a)

basic PSO, and b) pheromone PSO, both executed in a coarse grained parallel strategy. One

of the comparison measures for coarse grained and shared pheromone parallelization was the

swarm size. In coarse grained parallelization, swarms propagated independently of each other

and no communication existed between processors. This meant that a coarse grained

execution of a 15 dimensional problem with four processors had one swarm containing 150

particles per processor. However, shared pheromone parallelization with a similar problem

set up had 150 swarm members on each processor, with communication between them

132

effectively putting the total swarm size at 150x4 = 600. Moreover, the swarm operations and

hence swarm size only occurred on the optimization processors. The shared pheromone

processor only performed pheromone operations.

To address this issue, two different swarm schemes were developed in the shared pheromone

parallelization method: a) fixed swarm size per processor and b) fixed overall swarm size.

For the fixed swarm size per processor a swarm size of 10 times the number of design

variables per processor was mandated. For example, an 8 processor run for a 20 design

variable problem would have 200 swarm members per optimization processor. For the fixed

overall swarm size a swarm size of 10 times the number of design variables overall was used.

For example, an 8 processor run (7 optimization processors + 1 pheromone processor) for a

20 design variable problem will have 200/7 = ~29 members per optimization processor. Any

fractional value when distributing the swarm over the optimization processors in this scheme

was rounded to the next nearest whole number. Using this method allowed the shared

pheromone method to be more precisely compared to the basic and coarse grain PSO

implementations.

7.6.2 Results and Discussion: Fixed Swarm Size per Processor

Table 20 provides a summary of objective function values obtained from test runs on 2, 4,

and 8 processors with swarm sizes 10 times the number of design variables per processor.

Although averages show a general trend, they are not a true indicator of the method’s

performance. Therefore, the smallest value achieved and the standard deviation is also

133

reported to denote the reach of multiple swarms in the design space and their reliability when

communicating through digital pheromones.

Table 20 Summary of solutions from shared pheromone parallelization

Objective Function
(2 Processors)

Objective Function
(4 Processors)

Objective Function
(8 Processors)

Average Smallest Std
Dev.

Average Smallest Std
Dev.

Average Smallest Std Dev.

7.2.5 (B) 14.170 0.002 35.015 34.822 0.003 126.622 3.628 0.001 13.676
7.2.5 (P) 0.211 0.001 0.643 0.098 0.001 0.324 0.441 0.001 1.083

7.2.5 (SP) 0.635 0.355 0.238 0.386 0.018 0.237 0.206 0.032 0.183

7.2.6 (B) 5.456 2.245 3.504 6.181 1.991 4.031 5.946 1.900 4.013
7.2.6 (P) 0.354 0.002 0.723 0.393 0.004 0.890 0.133 0.002 0.399

7.2.6 (SP) 0.368 0.013 0.274 0.139 0.025 0.095 0.059 0.002 0.050

7.2.7 (B) 0.134 0.131 0.002 0.133 0.130 0.002 0.134 0.131 0.003
7.2.7 (P) 0.131 0.130 0.001 0.131 0.130 0.001 0.131 0.130 0.001

7.2.7 (SP) 0.130 0.130 0.000 0.130 0.130 0.000 0.130 0.129 0.000

7.2.8 (B) 3.166 0.259 3.212 1.531 0.273 1.070 2.178 0.220 2.313
7.2.8 (P) 0.228 0.006 0.304 0.236 0.005 0.220 0.174 0.003 0.278

7.2.8 (SP) 0.107 0.001 0.168 0.021 0.000 0.019 0.011 0.000 0.017

7.2.9 (B) 0.035 0.017 0.014 0.036 0.012 0.018 0.031 0.009 0.019
7.2.9 (P) 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001

7.2.9 (SP) 0.003 0.000 0.005 0.001 0.000 0.000 0.001 0.000 0.001

7.2.10 (B) 1.151 1.067 0.064 1.146 1.051 0.044 1.155 1.061 0.074
7.2.10 (P) 0.012 0.003 0.009 0.011 0.004 0.006 0.009 0.003 0.005

7.2.10 (SP) 0.375 0.000 0.310 0.170 0.000 0.150 0.099 0.001 0.133
Legend: 7.2.5 – Dixon and Price function15D, 7.2.6 – Ackley’s path function 20D, 7.2.7 –
Levy function 25D, 7.2.8 – Sum of squares function 30D, 7.2.9 – Spherical function 40D,
7.2.10 – Griewank function 50D. (B) – Results from Basic PSO from coarse grain
parallelization, (P) – Results from PSO with Digital Pheromones implemented from coarse
grain parallelization, (SP) – Results from shared pheromone parallelization.

The results in Table 20 show that the shared pheromone parallelization (designated with an

‘SP’) consistently showed improvement in average objective function values returned when

compared to the coarse grained pheromone PSO (designated with a ‘P’) and out-performed

basic PSO (designated with a ‘B’) in all test cases. This trend is especially pronounced when

134

the number of processors increased suggesting that the method’s performance improves as

the number of processors grows and hence the swarm size grows. This evidence suggests that

design space information is being better distributed throughout the swarm through digital

pheromones and the parallelization method. For example on the 20 dimensional Ackley’s

path function (problem 7.2.6) whose published solution is 0.000, the average objective

function obtained with 2 processors was 0.368, but the value improved to 0.139 using 4

processors and to 0.059 with 8 processors.

While the results showed a superior performance improvement over basic PSO, results from

the coarse grain pheromone PSO outperformed the shared pheromone parallelization results

in some of the test cases, especially on 2 processor runs. The reason for this behavior can be

attributed to the number of swarms.

A 2 processor shared pheromone parallel execution has only one swarm (one swarm on the

one optimization processor) while a 2 processor coarse granular execution has two swarms

searching the design space. It is theorized that this difference in the number of swarms

caused the coarse granular pheromone PSO to outperform the shared pheromone

parallelization. However, as the number of participating optimization processors increased,

the shared pheromone parallelization method performed better. For example, the average

objective function value returned by the shared pheromone parallelization for the 15

dimensional Dixon & Price function (problem 7.2.5) was 0.635 when compared to 0.211 for

coarse grained pheromone PSO on two processors. With 8 processors however, the shared

135

pheromone method returned 0.206 as opposed to 0.441 on coarse grained pheromone PSO.

This is a 53% improvement in the objective function value.

Table 20 also shows that the standard deviations of the shared pheromone parallelization

improved as the number of processors increased. On the 30 dimensional sum of squares

function (problem 7.2.8), the standard deviation was 0.168 on 2 processors when

compared to 0.017 on 8 processors. The standard deviation also improved when

compared to coarse grained PSO and pheromone PSO as well. This suggests that the

consistency and reliability in solving the problem increases with the developed method

and improves as more processors were used. The particle swarms received more

information from shared pheromones resulting in reliable solutions.

136

Figure 37 Solution accuracy charts for test problems with fixed swarm size per processor

Figure 37 shows the solution accuracy charts for test problems 7.2.5 – 7.2.10 on 2, 4, and 8

processors. The published solutions to these problems are 0.0, so a tolerance value close to

the optimum was again used to determine solution accuracy.

137

The solution accuracy was calculated based on 20 trial executions for each of: a) coarse grain

parallelization on basic PSO, b) coarse grain pheromone PSO parallelization, and c) shared

pheromone parallelization, represented by three vertical bar graphs as portrayed in the

solution accuracy charts. The numbers 7.2.5 – 7.2.10 below the bar plots indicate the test

problem number. As seen from these plots, the solution accuracies reported from shared

pheromone parallelization was superior when compared to coarse grained basic PSO and

pheromone PSO.

This trend is more evident with an increased number of processors. For example, the solution

accuracy was only 75% for the 20 dimensional Ackley’s path function (problem 7.2.6) on 2

processors whereas the solution accuracy was 100% with 4 and 8 processors. Similarly, the

solution accuracy upon solving Griewank’s function (problem 7.2.10) was 65% on 2

processors while it was 95% on 4 and 8 processors.

The solution accuracy is only one measure of the method’s performance. Figure 37 show that

coarse grain parallelization performed close to the shared pheromone method, albeit slightly

worse in accuracy. Figure 38 shows the solution duration charts for test problems 7.2.5 –

7.2.10 on 2, 4, and 8 processors.

138

Figure 38 Solution duration charts for test problems with fixed swarm size per processor

139

The shared pheromone parallelization showed a dramatic decrease in solution duration when

compared to coarse grained basic PSO and coarse grained pheromone PSO on all test

problems. As much as a 79% decrease in solution times was observed for the 30 dimensional

sum of squares function (problem 7.2.8) on 4 processors when compared to coarse grained

basic PSO. When compared to coarse grained pheromone PSO, the solution time decreased

by about 74%. On the 20 dimensional Ackley’s path function (problem 7.2.6), the solution

duration decrease was about 41% when compared to basic PSO and was 34% when

compared to coarse grain pheromone PSO on an 8 processor execution.

Although the solution times varied from problem type and number of design variables, they

indicate that sharing of digital pheromones presents substantial information of the design

space to multiple swarms. This resulted in faster solution times, when compared to coarse

grained parallelization in basic PSO and pheromone PSO that have no communication

between them until the end of a generation. Since the amount of information exchanged

between processors was small, the network latency costs were insignificant.

It was noticed that the solution accuracy for the 15 dimensional Dixon and Price function

performed quite poorly with shared pheromones on two processors (35% accurate) when

compared to 4 processors (80% accurate) and 8 processors (95% accurate). This meant that

the method was able to find a solution within the tolerance limits only 35 times out of 100 on

two processors. It is hypothesized that the shape of the function could be the reason for the

behavior of the method. The function contours take the shape of a trough where the slopes

are not steep enough to be noticed by minute changes in objective function while checking

140

for convergence. A tighter convergence criterion with more precision could improve the

solution characteristics. When tested with increased swarm size (i.e., 300) per processor, the

method was able to achieve the solution with substantial accuracy. Although the course of

the developed method did not find the solution with reasonable solution accuracy, the swarm

size could be customized to improve the performance.

7.6.3 Results and Discussion: Fixed Overall Swarm Size

Solution accuracies of coarse grained parallel PSO (basic and pheromones) and shared

pheromone parallelization with fixed overall swarm size is shown in Figure 39. Results from

two processor execution were eliminated because the swarm distribution with a fixed overall

swarm is identical to that of fixed per-processors swarm size.

141

Figure 39 Solution accuracy charts for test problems with fixed overall swarm size

It was observed that the solution accuracies either stayed the same or decreased with fixed

overall swarm size when compared to fixed per-processor swarm size. While the solution

accuracy decrease was most (95% to 25% on 8 processor executions) for the 15 dimensional

Dixon and Price function (problem 7.2.5), the solution accuracy worsened only by 20% (95%

to 75% on 8 processor executions) in the case of the 50 dimensional Griewank’s function

(problem 7.2.10). The reason for this behavior is theorized that even though communication

was made possible between processors on shared pheromone parallelization, the overall

swarm size was not sufficient to explore the design space and converge on the optimum. For

problems 7.2.6 – 7.2.10, the solution accuracies remained very high (between 95% and

100%) in both fixed overall swarm size and fixed per-processor swarm size schemes.

142

Figure 40 Solution duration charts for test problems with fixed overall swarm size

Figure 40 shows the solution duration characteristics of coarse granular PSO (basic and

pheromones) and shared pheromone parallelization with fixed overall swarm size. It can be

seen from the figures that there is a dramatic decrease in solution times for fixed overall

swarm size (Figure 40) when compared to solution times for fixed per-processor swarm size

(Figure 38). For example, the solution duration for a 4 processor execution of the 30

dimensional sum of squares function (problem 7.2.7) was 9.1 seconds for fixed per-processor

swarm size but only 3.47 seconds for fixed overall swarm size. This is almost a 62% decrease

143

in solution time with the solution accuracy remaining at 100% for both the cases. For the 20

dimensional Ackley’s path function (problem 7.2.6), the solution duration decrease was

about 87% on an 8 processor execution although the solution accuracy decreased by a mere

10% (100% on fixed per-processor swarm size execution to 90% on fixed overall swarm

size). Although the solution durations for the 15 dimensional Dixon and Price function

(problem 7.2.5) had greater disparity, the comparison is not justified because the fixed

overall swarm size solved the problem with 25% solution accuracy.

The difference in solution accuracies and duration between the two schemes of swarm sizes

is a direct result of the number of processors. The fixed swarm size per processor scheme had

more particles per processor than the fixed overall swarm size. This simply meant that more

operations had to be computed thus resulting in increased solution times (as evident in Figure

38). The conclusion to be reached is that the shared pheromone parallelization method

consistently found the global solution in considerably less time than other parallel PSO

methods. Depending on the problem, a user may want to refine the number of particles per

processor to improve the method’s performance further.

To eliminate the possibility of any hardware errors in calculating solution durations, all

test problems were executed and timed on a different Linux cluster with a comparable

computational platform. Although the results varied slightly, the results appeared

consistent with the ones presented in figures Figure 39 and Figure 40.

144

7.6.4 Note on parallel speedups and efficiencies

Since the shared pheromone method requires at least two processors, the time it takes to

execute the code in serial (i.e. t1) cannot be obtained from a single processor execution. Since

the total number of operations performed on two processors with shared pheromone parallel

method was equivalent to the number of operations on a serial execution of the code, it was

this time that was used for parallel speedup and efficiency calculations. With this approach,

parallel speed ups of magnitude ranging from 2.4 through 7.7 were observed for solutions

with two processor runs using shared pheromones for fixed per-processor swarm size

scheme. The parallel efficiencies on two processor execution for the above range were

between 120% and 384%. On eight processors, speedups ranging from 9.7 through 26 were

observed thereby placing parallel efficiencies within the range of 121% through 327%. These

values are extremely high and thus merited further research. It was found that there are

actually multiple ways to compute parallel speedups and efficiencies. Due to the nature of

this parallelization method (e.g., containing no barrier synchronization) further work must be

performed to determine the best manner to quantify the speedup and efficiency calculations.

However, obtaining the “correct” number does not detract from the conclusion that this new

approach offers significant speedup and efficiency over a serial or coarse grained approach.

7.7 GPU Parallelization Results

In this section, results from implementing PSO with digital pheromones on a GPU are

presented. Problems 7.2.5 – 7.2.10 (shown in Table 21) were used as test cases.

145

Table 21 Test problem matrix for GPU parallelization
Problem Test Problem Dimensions

7.2.1 Camelback function 2
7.2.2 Himmelblau function 2
7.2.3 Rosenbrock function 5
7.2.4 Ackley’s path function 10
7.2.5 Dixon and Price function 15
7.2.6 Ackley’s path function 20
7.2.7 Levy function 25
7.2.8 Sum of Squares function 30
7.2.9 Spherical function 40
7.2.10 Griewank function 50

7.7.1 Test Problem Settings

The pheromone parameters used for the GPU implementation follows the values as

established by the serial implementation of PSO with digital pheromones. Therefore, the

value of c3 for lower dimensional problems (2D through 5D) is different from that of

higher dimensional problems (above 5D). The values are:

- c3 =
⎩
⎨
⎧

decay no 7.2.10, - 7.2.4 problemsfor 5.0
decay no 7.2.3, - 7.2.1 problemsfor 2.0

- Pheromone decay, λp = 0.95, and

- Move limit decay, λML = 0.95

Though customization of parameters for each problem would further improve solution

characteristics, the default parameter values catered well for most problems. A total of 35

trial runs were performed for each test case using the GPU method, and were benchmarked

against test runs from CPU. Since GPUs, as of the time the research was done, did not

support double precision computations, test runs were executed using single precision. Since

the serial implementation results discussed in section 7.3 were performed using double

146

precision and were not a true match to the GPU implementation, all test problems listed in

Table 21 were executed both on CPU and GPU on a single workstation with single precision

for a fair comparison. Also to emphasize the difference in performance between CPU and

GPU, the test runs were performed only on the digital pheromone implementation of PSO.

Basic PSO was not implemented.

The CPU used was an Intel Xeon processor (3.2 GHz) of a RedHat Enterprise Linux

workstation with 2MB of cache memory. The system memory was 2GB DDR. The GPU

used was an NVIDIA Quadro FX 4400 with 512MB of DDR memory. The NVIDIA driver

version at the time of the code execution was 169.07. The algorithm was implemented using

the C++ programming language, and the GPU implementation was made in GLSL, as

described in section 5.2. As a general rule of thumb, the swarm size was defined as 10 times

the number of design variables, and was capped at 500 per processor as the dimensionality

increased.

7.7.2 Results and Discussion

Table 22 provides a summary of results obtained from solving problems 7.2.1 – 7.2.10.

Values obtained from the CPU and GPU are indicated against each problem number in

the table. The average, smallest and standard deviation of the objective function values

were noted along with averages of solution duration and number of iterations as well.

147

It can be seen from the table that the objective function values returned by the GPU were

extremely close to the values returned by the CPU, in almost all test cases. In seven out

of 10 test cases, the average objective function values returned by GPU were equal to or

improved when compared to CPU. For example, on the 25 dimensional Levy Function

(problem 7.2.7), there is a ~97% improvement in the solution value for GPU (0.004)

when compared to the CPU result (0.129). Also, the improvement in the solution value

was very consistent on the GPU implementation as apparent from the standard deviation

(0.000).

Test problems such as Ackley’s path function (7.2.4, 7.2.6) and Levy function (problem

7.2.7) are prone to errors in accuracy due to having trigonometric relations in the

objective functions. However, the solution accuracies were not compromised because of

this reason. Figure 41 shows a visual comparison of solution accuracies between the CPU

and GPU results. With the exception of the 30D Sum of squares function (problem 7.2.8),

the solution accuracies on all other problems for the GPU implementation were either

equal to or better than that of the CPU implementation. This suggests that GPUs can be

capable co-processors for computations and not have a major effect in the outcome of the

solution qualities.

148

Table 22 Results obtained from GPU implementation

CPU/GPU Solution
Accuracy (%)

Objective Function
Average Smallest Std Dev

7.2.1 (CPU) 100.00% -1.032 -1.032 0.000
7.2.1 (GPU) 100.00% -1.032 -1.032 0.000

7.2.2 (CPU) 100.00% 0.000 0.000 0.000
7.2.2 (GPU) 100.00% 0.000 0.000 0.000

7.2.3 (CPU) 100.00% 0.000 0.000 0.000
7.2.3 (GPU) 100.00% 0.000 0.000 0.000

7.2.4 (CPU) 100.00% 0.000 0.000 0.000
7.2.4 (GPU) 100.00% 0.000 0.000 0.000

7.2.5 (CPU) 82.86% 0.261 0.000 0.592
7.2.5 (GPU) 82.86% 0.382 0.000 0.977

7.2.6 (CPU) 91.43% 0.077 0.000 0.262
7.2.6 (GPU) 97.14% 0.053 0.000 0.163

7.2.7 (CPU) 100.00% 0.129 0.129 0.000
7.2.7 (GPU) 100.00% 0.004 0.004 0.000

7.2.8 (CPU) 82.86% 0.286 0.001 0.329
7.2.8 (GPU) 71.43% 0.298 0.003 0.321

7.2.9 (CPU) 100.00% 0.000 0.000 0.000
7.2.9 (GPU) 100.00% 0.000 0.000 0.000

7.2.10 (CPU) 100.00% 0.005 0.000 0.006
7.2.10 (GPU) 100.00% 0.008 0.000 0.008

Legend: 7.2.1 – Camelback 2D, 7.2.2 – Himmelblau 2D, 7.2.3 – Rosenbrock 5D, 7.2.4 –
Ackley 10D, 7.2.5 – Dixon and Price function15D, 7.2.6 – Ackley’s path function 20D,
7.2.7 – Levy function 25D, 7.2.8 – Sum of squares function 30D, 7.2.9 – Spherical
function 40D, 7.2.10 – Griewank function 50D. (CPU) – Results from CPU
implementation, (GPU) – Results from GPU implementation.

149

Figure 41 Solution accuracy plot for CPU and GPU implementation of PSO with digital

pheromones

Figure 42 shows the solution duration charts for the GPU implementation as compared

with the CPU implementation.

Figure 42 Solution Duration plot for CPU and GPU implementation of PSO with digital

pheromones

It can be seen that the solution duration for all test problems dramatically reduced on the

GPU implementation as opposed to the CPU counterpart. The reduction in the solution

150

duration is a clear indication that GPUs are not just comparable in performance to

traditional CPUs, but they could exceed the throughput by a factor of about 10 or more in

terms of solution times. For example, the average solution time for the 10 dimensional

Ackley’s path function (problem 7.2.4) on a CPU was 23.81 seconds where as the GPU

took 0.83 seconds. This is approximately a 96.5% decrease. Similarly, the 50 dimensional

Griewank function (problem 7.2.10) resulted in an 88% decrease in solution time on a

GPU (14.65 seconds) when compared to the solution time on a CPU (128.35 seconds).

The same trend was seen in all the test problems, with reduction in solution durations

ranging from 88% - 97% were observed. Table 23 tabulates the average duration, average

number of iterations and the percentage decrease in solution duration through using

GPUs when compared to CPU usage alone. The data parallel architecture of a GPU is

attributed to this dramatic reduction in solution times. Since GPUs are inherently

hardware parallel in architecture, a single instruction can be performed on multiple data

simultaneously resulting in enormous time savings as evident from figures Figure 41 and

Figure 42 and tables Table 22 and Table 23. Although the amount of time savings can be

hardware and problem specific, the results show that a GPUs has great potential to

outperform CPUs with no marked difference in solution quality for optimization

computations. There was also no notable difference in the number of iterations for each

test problem when executed on a CPU or a GPU. This indicates that the data traversal

between CPU and GPU did not significantly affect the overall algorithm’s performance.

This suggests that commodity graphics cards can potentially be a very viable option in

optimization computations when time and cost are important factors.

151

Table 23 Comparison of solution duration and number of iterations on CPU Vs GPU

CPU/GPU
Average
Duration

(secs per run)

Average #
iterations

% Decrease in
duration

7.2.1 (CPU) 1.48 73.97
97.03% 7.2.1 (GPU) 0.04 73.86

7.2.2 (CPU) 2.16 107.71 96.63% 7.2.2 (GPU) 0.07 115.49

7.2.3 (CPU) 4.76 93.54 97.19%
7.2.3 (GPU) 0.13 94.89

7.2.4 (CPU) 23.81 231.11 96.50% 7.2.4 (GPU) 0.83 234.11

7.2.5 (CPU) 30.07 192.11 95.46%
7.2.5 (GPU) 1.37 189.40

7.2.6 (CPU) 48.41 229.69 94.31% 7.2.6 (GPU) 2.75 235.77

7.2.7 (CPU) 27.42 103.03 93.49%
7.2.7 (GPU) 1.78 103.80

7.2.8 (CPU) 76.47 235.89 92.33% 7.2.8 (GPU) 5.87 235.00

7.2.9 (CPU) 64.28 146.57 91.30%
7.2.9 (GPU) 5.59 140.29

7.2.10 (CPU) 128.35 228.94 88.59% 7.2.10 (GPU) 14.65 231.46

Legend: 7.2.1 – Camelback 2D, 7.2.2 – Himmelblau 2D, 7.2.3 – Rosenbrock 5D, 7.2.4 –
Ackley 10D, 7.2.5 – Dixon and Price function15D, 7.2.6 – Ackley’s path function 20D,
7.2.7 – Levy function 25D, 7.2.8 – Sum of squares function 30D, 7.2.9 – Spherical
function 40D, 7.2.10 – Griewank function 50D. (CPU) – Results from CPU
implementation, (GPU) – Results from GPU implementation.

152

7.8 Constrained Problems

In this section, results from solving problems 7.2.11 – 7.2.16 (shown in Table 24) is

presented.

Table 24 Test problem matrix for constrained problem solving
Problem Test Problem Dimensions # of Constraints

7.2.11 One Dimensional Two Inequality 1 2
7.2.12 Two Dimensional Single Inequality 2 1
7.2.13 Two Dimensional Two Inequality 2 2
7.2.14 Weld Beam 4 8
7.2.15 Golinski’s Speed Reducer Problem 7 11
7.2.16 Himmelblau constrained 5 7

7.8.1 Test Problem Settings

The following PSO and digital pheromone parameters were used to run all constrained

problems:

- c1=c2=2.0

- c3=2.0 with no decay

- Pheromone decay = 0.95

- Move limit decay = 0.95

- Inertia weight initialized at 1.0 and decreased at 0.5% every iteration

- Particle swarm size of 10 times the number of design variables

Twenty test runs were performed on each problem using two approaches: a) pseudo

objective function solved completely before updating Lagrange multipliers and b) pseudo

iterations limited to five before updating Lagrange multipliers. Although the number of

pseudo iterations might seem arbitrary, literature [32] shows that three to five pseudo

iterations generally worked well in other ALM implemented methods. The algorithm was

153

made to report its current results at the end of 10,000 iterations if a feasible solution is not

found. The constraint feasibility and solution tolerance were set to 0.01. The test

problems were considered converged when the difference in solutions was within 0.01

for 10 consecutive iterations. In the case of problems where each pseudo objective

function is completely solved, the convergence tolerance was set to 0.01 for three pseudo

iterations. All Lagrange multipliers were initialized to zero, and the penalty values were

initialized to one. Although ALM does not require any restriction on the penalty

parameter values, an upper limit of 100,000 was imposed to avoid any numerical ill-

conditioning resulting from penalizing infeasible solutions.

7.8.2 Results and Discussion

The results from solving constrained problems 7.2.11 – 7.2.16 are tabulated in Table 25

with the test problem descriptions given in section 7.2. The column entries with ‘*’

indicates that none of the solutions in 20 trial runs were feasible. However, the lowest,

average and highest values are reported to demonstrate the difference from published

solutions. For column entries that are not marked with ‘*’, the lowest and highest values

are reported only for feasible solutions. This is done to indicate the range of solutions

obtained when they are feasible. Averages are reported on all test problems regardless of

whether they are feasible or infeasible.

154

Table 25 Solutions from complete solving of pseudo objective functions

Prob. Published
solution

Solution Obtained
(Feasible solutions reported in

Lowest & Highest columns)

Constraint
Satisfaction
consistency

of
constraints

 Lowest Average Highest
7.2.11 0.45 0.45 0.45 0.45 20 of 20 runs 2
7.2.12* -50.00 -50.48 -50.26 -50.05 0 of 20 runs 1
7.2.13 -9.24 -9.23 -9.36 -9.07 5 of 20 runs 8
7.2.14 2.39 1.79 2.19 2.92 17 of 20 runs 7
7.2.15* 2985.22 2634.16 2658.07 2731.65 0 of 20 runs 11
7.2.16* -31025.57 -32217.43 -32217.43 -32217.43 0 of 20 runs 6
* indicates no feasible solutions were found in each of 20 trial runs

It can be seen from the table that the method was able to solve three out of six problems.

The method found the solution in all 20 trial runs in the case of problem 7.2.11 while 17

of 20 trial runs solved the problem 7.2.14. It can also be seen that the lowest value

attained for problem 7.2.14 (four dimensional weld beam problem) is lower (1.79) than

the published solution (2.39). The reason is attributed to the information provided by

digital pheromones to particle swarms in searching the design space. Although problem

7.2.13 was solved only five out of 20 runs, the lowest and highest feasible solution values

are within a close neighborhood of the published solutions.

The algorithm was unable to solve problems 7.2.12, 7.2.15, and 7.2.16 within the

tolerance limits specified in any of the 20 trial runs. It was observed that problem 7.2.15

(Golinski’s speed reducer problem violated the most number of constraints when

compared to other problems (~ 4 out of 11 constraints were violated in all 20 trial runs).

However, it was observed that the average violations were between zero and one

indicating that the swarm was very close to the feasible region. Similar behavior was

observed in other test cases that failed to be feasible in all 20 trial runs. For example,

155

problem 7.2.12 having one inequality constraint violated only by 0.28 on average of all

20 trial runs. However, problem 7.2.16 was an exception where all except one of the six

constraints hovered at 2.3.

The problems were also solved with a limited number of pseudo function iterations.

These results are tabulated in Table 26. It can be seen from the table that four of six

problems have feasible solutions of the 20 trial runs. The method found the solution in all

20 trial runs in the case of problems 7.2.11 and 7.2.14 (four dimensional weld beam

problem with eight constraints).

Table 26 Solutions from limited pseudo iterations

Prob. Published
solution

Solution Obtained
(Feasible solutions reported in

Lowest & Highest columns)

Constraint
Satisfaction
consistency

of
constraints

Lowest Average Highest
7.2.11 0.45 0.45 0.45 0.45 20 of 20 runs 2
7.2.12 -50.00 -50.64 -50.24 -49.96 3 of 20 runs 1
7.2.13 -9.24 -9.89 -9.29 -7.37 5 of 20 runs 8
7.2.14 2.39 1.87 2.39 3.09 20 of 20 runs 7
7.2.15* 2985.22 2714.23 2828.83 2957.30 0 of 20 runs 11
7.2.16* -31025.57 -32217.43 -32217.43 -32217.43 0 of 20 runs 6
* indicates no feasible solutions were found in each of 20 trial runs

It is worth noting that the solutions resulting from both these problems are equal to or

better than the published solutions. For example, the weld beam problem resulted in the

lowest value of 1.87, which is about 22% better than the published solution. The average

solution value obtained over 20 trial runs was 2.39, which is equal to the published

solution. For problem 7.2.11, the solution obtained was exactly equal to the published

solution. A similar behavior is observed in problem 7.2.12 as well, where the lowest

156

feasible solution (-50.64) fared better than the published solution (-50.00). Although the

difference is not very significant and only three of 20 trial runs were feasible, suggesting

that the particle swarm gathered significant information about the design space and

digital pheromones assisted this behavior. The average solution values of infeasible and

feasible solutions returned -50.24, which is yet better than the published solution.

For problem 7.2.13, five trial runs of 20 resulted in a feasible solution, of which the

lowest feasible solution was 7% better than the published solution. There are two

potential reasons for 15 of the 20 being infeasible: a) the swarm is trapped in a local

minimum resulting in a solution value better than the published solution but is in an

infeasible space or b) the swarm is very close to the optimum but could not find the

precise design variable values necessary to satisfy all constraints. To clarify this issue, the

design variables that returned an infeasible solution were observed. For example, one of

the 20 trial runs returned design variable values of {1.738, 1.978}, resulting in one of the

constraint being violated by 0.105 and the second constraint active at -0.002. The

published solution set for this problem is {1.746, 1.953}, which is very close to the

obtained solution set. A similar behavior was observed for the rest of the trial runs as well

suggesting that the swarm was trapped in a location very close to the optimal point, but

with a small degree of infeasibility. The main reason for this is thought to be the

formulation of the pseudo objective function. Since this method is not handling

constraints directly, there is a mapping that has to occur from the actual constrained

design space to the unconstrained pseudo design space. A pseudo design space must be

different each time if a different, and improved, design point is to be found. Most likely,

157

for the test cases that could not converge, the penalty being applied was too small to

influence the pseudo design space to meet all constraints. In other words, the pseudo

representation reached a certain point and could not change further.

None of the trial runs returned a feasible solution for problems 7.2.15 (Golinski’s speed

reducer problem) and 7.2.16 (constrained Himmelblau problem). A feasible solution was

not obtained even when the pseudo objective functions were completely solved, as noted

in section 7.8.2. This suggests that these problems are very sensitive to the behavior of

the swarm movement within the design space, and a different constraint handling

approach might be required to address this issue.

Overall, the ALM implementation of PSO with digital pheromones produced promising

results. Out of a total of 240 trial runs for all test cases (both complete pseudo solving and

limited pseudo iterations), 90 trial runs resulted in feasible solutions. This can be

observed from the ‘constraint satisfaction consistency’ columns in Table 25 and Table

26. Problems that resulted in feasible solutions were solved quite fast and within

significantly less number of iterations. For example, the weld beam problem (7.2.14) took

~2470 seconds and 10,000 iterations to result in a solution of 1.907 that violated one

constraint, while it took only 4.25 seconds and 15 iterations before converging to a

feasible solution of 1.913.

Since only about 37% of the test cases resulted in feasible solutions, further research has

to be done to improve the reliability of the method. Two fundamental issues that must be

158

dealt with are: a) continuous formulation of the pseudo objective function to ensure

improvement until feasibility and convergence and b) an intelligent distribution of the

penalty across the swarm so that members exploring “bad” regions of the design space do

not exert undue influence on the remainder of the swarm. However, the method did

perform well in accuracy as it found better solutions than currently published for some of

the test cases. This alone is a significant contribution to the field for an emerging

constrained optimization method.

159

8 Conclusions and Future Work

8.1 Conclusions

This research presents a novel use of digital pheromones to search n-dimensional

multimodal design spaces in PSO. A basic PSO is known for its simplicity in

implementation because of a small number of parameters to alter. The use of digital

pheromones within PSO introduces three new parameters namely the confidence

parameter (c3), move limit decay (λML) and pheromone decay (λP). Although these are

user defined, default values have been empirically established through testing with 128

different combinations of pheromone parameters with three different test cases. These

values were used as inputs for the remaining test cases to test the feasibility of digital

pheromones to aid a particle swarms to search for the global optimum in n-dimensional

design spaces. It was observed that the objective function values resulting from using

digital pheromones were nearly always equal to published, if not better, ones for the test

cases used. Although additional computations were added per iteration, solutions times

still decreased when digital pheromones were implemented due to faster convergence.

The viability of solving realistic multimodal optimization problems was simulated

through imposing sleep-times on objective function evaluations. When a basic PSO was

unable to solve a problem, the additional information about the design space through

digital pheromones caused a faster convergence on the global minimum with increased

accuracy, efficiency and reliability.

160

Statistical tests at a 95% confidence level were performed to test the significance of the

results obtained when compared to a basic PSO. In all of the test cases the objective

function values from digital pheromone implementation was significantly better than a

basic PSO. With very few new pheromone parameters added to a basic PSO, the solution

accuracy, efficiency and reliability characteristics of PSO substantially increased thereby

improving the usability of PSO in practical design processes in an industry.

Additionally, the developed method was implemented in parallel to determine its

feasibility in a cluster computing environment. Six different problems were tested in

synchronous coarse grain parallelization and asynchronous shared pheromone

parallelization schemes. Although the solution accuracies of coarse grain parallelization

did not differ much from serial implementation, it was demonstrated that substantial

savings were achieved in terms of solution times. The parallel efficiency and speedup

studies showed that almost ideal parallel speedups were achieved in spite of network

latencies. The parallel efficiencies and speedups improved as the dimensionality and

number of processors increased.

In the shared pheromone parallelization method, multiple swarms deployed across

available processors share a common repository of digital pheromones. These served as

information communication sources for particle swarms resulting in substantial

improvement in solution accuracy, efficiency and reliability. Additionally, these gains

improved as the number of processors increased suggesting the method’s scalability to a

large number of processors. For a fair performance comparison, two modes of shared

161

pheromone parallelization were introduced – fixed swarm size per processor, and fixed

overall swarm size. Both implementation schemes performed significantly better than

coarse grain parallelization demonstrating that communication between swarm members

is essential for improved solution efficiency.

The GPU implementation of PSO with digital pheromones was another important

accomplishment of this research, where solution speedups of up to ~97% were realized

compared to CPU computing with comparable solution qualities. The objective function

values were computed using GPUs although the percentage of GPU involvement could

be altered using configuration files. This is especially helpful when high precisions

combined with computational efficiencies are primary requirements for a designer. GPUs

are traditionally used for visualization purposes and typically not used for solving

complex design optimization problems. Adoption of GPUs as a means to substantially

improve solution efficiencies in highly multimodal design problems serves as a

noteworthy contribution to the field of Human-Computer Interaction in this research.

On GPUs, objective function evaluations are currently computed on a Single Instruction

Multiple Data scheme that makes large number of computations possible simultaneously

– an inherent hardware property of GPUs that is different from a traditional CPU.

Although the GPU implementation merits further research for realizing more

performance benefits, the implemented method serves as a proof of concept that GPUs

are a cost effective and faster means to perform scientific computations. This

implementation is further a testimony for realizing enormous solution efficiencies

162

through parallelization with little (~$100 USD) or no changes in hardware infrastructure

in an industry.

In addition, the developed method was tested for solving constrained optimization

problems. The Augmented Lagrange Multiplier method was used to accomplish this task.

Significant solution accuracies were observed for those problems that the method was

able to solve. In some cases, the solutions exceeded published solution values. However,

further investigation is warranted to improve the reliability of the method.

8.2 Future Work

There are many future directions for further implementation of digital pheromones in

PSO. While refining the performance of digital pheromones to solve a wide range of

problems (e.g., multi-objective, discrete optimization problems, etc) is an ongoing

venture, the following are some of the future goals that are worth investigating and

implementing:

1) Develop a graphical user interface to specify various problem parameters during

run-time and visualization of solution progress in the design space using various

n-dimensional visualization techniques.

2) Improve the reliability characteristics for solving constrained optimization

problems.

163

3) Develop methods to off-load more independent computations on to GPUs, while

also reduce data traffic between CPUs and GPUs.

4) Currently, shared pheromone operations in parallel are performed by only one

processor (the root processor). It would be beneficial to mathematically,

analytically, and statistically determine the appropriate number of pheromone

processors for efficient utilization of computational resources as problem

characteristics change.

5) Possible elimination of pBest and usage of gBest alone with digital pheromones.

164

9 References

[1] Vanderplaats, G., “Numerical Optimization Techniques for Engineering Design”,

3rd Edition, VR&D Publications, ISBN: 094-495-6009, 1999

[2] Rao, S. S., “Engineering Optimization – Theory and Practice”, 3rd Edition, New

Age Publications, ISBN: 047-155-0345, 1996

[3] Gill, P., Murray, W., Wright, M. H., “Practical Optimization”, Academic Press,

ISBN: 012-283-9501, 1981

[4] Holland, J., H., “Adaptations in Natural and Artificial Systems”, University of

Michigan Press, Ann Arbor, Michigan, 1975

[5] Rechenberg, I., “Cybernetic Solution Path of an Experimental Problem”, Library

Translation 1122, Royal Aircraft Establishment, Farnborough, Hampshire,
England, 1965

[6] Srinivas, M., Patnaik, L., “Genetic Algorithms: a Survey”, IEEE Computer,

Volume 27, Issue 6, ISSN:0018-9162, pp. 17-26, June 1994

[7] Haupt, R., Haupt, S., Practical Genetic Algorithms, Wiley Publications, ISBN:

0471455652, 2004

[8] Sivanandam, S. N., Deepa S. N., “Introduction to Genetic Algorithms”, Springer-

Verlag Publications, ISBN 978-354-073-1894, 2008

[9] Poon, P. W., Carter, J. N., “Genetic Algorithm Crossover Operators for Ordering

Applications”, Computers Operations Research, Elsevier Science Ltd., Vol. 22,
No. 1, pp. 135-147, 1995

[10] Goldberg, D. E., Lingle, R. L., “Alleles, loci and the traveling salesman problem”,

Proceedings, First International Conference on Genetic Algorithms and their
Applications, pp. 154 – 159, Erlbaum, 1985.

[11] Oliver, I. M., Smith, D. J., Holland, J. R. C., “A Study of Permutation Crossover

Operators on the Traveling Salesman Problem”, Proceedings of Second
International Conference on Genetic Algorithms and their Applications, p. 224 –
230, Erlbaum, 1987

[12] Syswerda, G., “Schedule Optimization using Genetic Algorithms”, Handbook of

Genetic Algorithms (Edited by L. Davis), pp. 332 – 349, Van Nostrand Reinhold,
Amsterdam, 1991

165

[13] Kirkpatrick, S., Gelatt, C., Vecchi, M., “Optimization by Simulated Annealing”,

Science, Vol. 220, Number 4598, pp. 671-680, 1983

[14] Cerny, V., “A Thermodynamical Approach to the Travelling Salesman Problem:

an Efficient Simulation Algorithm”, Journal of Optimization Theory and
Applications, Vol. 45, pp. 41-51, 1985

[15] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E., “Equations

of State Calculations by Fast Computing Machines”, Journal of Chemical Physics,
21(6): 1087 – 1092, 1953

[16] ‘Simulated annealing – Wikipedia, the free encyclopedia’, web reference:

http://en.wikipedia.org/wiki/Simulated_annealing, retrieved, April 10, 2008

[17] Rao, S., “Engineering Optimization – Theory and Practice”, 3rd Edition, Wiley-

Interscience publications, ISBN: 047-155-0345, 1996

[18] Eberhart RC., Kennedy J., “A New Optimizer using Particle Swarm Theory”,

Proceedings of the sixth international symposium on micro machine and human
science. Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp. 39-
43, 1995

[19] Kennedy, J., Eberhart, RC., “Particle Swarm Optimization”, Proceedings of the

1995 IEEE international conference on neural networks, vol. 4, Institute of
Electrical and Electronics Engineers, Piscataway, NJ, pp. 1942 – 1948, 1995

[20] Heppner, F., Grenander, U., “A Stochastic Non-linear Model for Coordinated Bird

Flocks”, In S., Krasner, Ed., The Ubiquity of Chaos, AAAS Publications,
Washington DC, ISBN: 087-168-3504, 1990

[21] Hu, X., Eberhart, R., Shi Y., “Engineering Optimization with Particle Swarm”,

IEEE Swarm Intelligence Symposium, 2003, pp 53-57

[22] Shi, Y., Eberhart, R., “Parameter Selection in Particle Swarm Optimization”,

Proceedings of the 1998 Annual Conference on Evolutionary Computation, March
1998

[23] Shi, Y., Eberhart, R., “A Modified Particle Swarm Optimizer”, Proceedings of the

1998 IEEE International Conference on Evolutionary Computation, pp 69-73,
Piscataway, NJ, IEEE Press May 1998

[24] Eberhart R. C., Shi Y., “Particle Swarm Optimization: Developments,

Applications, and Resources”, In proceedings of the 2001 congress on
evolutionary computation, pp. 81-86, 2001

166

[25] Kennedy J., Eberhart R. C. “Swarm Intelligence”, Morgan Kauffman publishers,

San Mateo, CA, 2001

[26] Natsuki, H., Iba, H., “Particle Swarm Optimization with Gaussian Mutation”,

Proceedings of IEEE Swarm Intelligence Symposium, Indianapolis, pp. 72-79,
2003

[27] Hu, X., Eberhart, R., Shi, Y., “Swarm Intelligence for Permutation Optimization:

A Case Study of n-Queens Problem”, IEEE Swarm Intelligence Symposium,
Indianapolis, IN, 2003

[28] Gao, F., Liu, H., Zhao, Q., Cui, G., “Virus-Evolutionary Particle Swarm

Optimization Algorithm”, Lecture Notes in Computer Science, Vol. 4222/2006,
Springer Berlin/Heidelberg Publications, pp. 156-165, September 2006

[29] Ray, T., Saini, P., “Engineering Design Optimization Using a Swarm with an

Intelligent Information Sharing Among Individuals”, Engineering Optimization,
Vol. 33, pp. 735-748, 2001

[30] Venter, G., Sobieszczanski-Sobieski, J., “Particle Swarm Optimization”, AIAA

Journal, Vol.41, No.8, pp 1583-1589, 2003

[31] Hu, X., Eberhart, R., “Solving Constrained Nonlinear Optimization Problems

with Particle Swarm Optimization”, 6th World Multiconference on Systemics,
Cybernetics and Informatics (SCI 2002), Orlando, USA, 2002

[32] Sedlaczek, K., Eberhard, P., “Using Augmented Lagrangian Particle Swarm

Optimization for Constrained Problems in Engineering”, Structural
Multidisciplinary Optimization Journal, Vol. 32, pp. 277-286, 2006

[33] Yang, Q., Sun, J., Zhang, J., Wang, C., “A Hybrid Particle Swarm Optimization

for Binary CSPs”, Lecture Notes in Computer Science, Springer
Berlin/Heidelberg Publications, Vol. 4115/2006, pp. 39-49, September 2006

[34] Hu, X., Eberhart, R., Shi, Y., “Particle Swarm with Extended Memory for

Multiobjective Optimization”, Proceedings of 2003 IEEE Swarm Intelligence
Symposium, pp 193-197, Indianapolis, IN, USA, IEEE Service Center, April
2003

[35] Coello C., Lechuga M., “A proposal for multiple objective particle swarm

optimization”, Technical report EVOCINV-01-2001, Evolutionary Computation
Group at CINVESTAV-IPN, Mexico, 2001

167

[36] Clerc, M., “Discrete Particle Swarm Optimization”, New Optimization

Techniques in Engineering, Springer, Berlin Heidelberg, NY, 2004

[37] Wang, K, Huang, L., Zhou, C., Pang, W., “Particle Swarm Optimization for

Traveling Salesman Problem”, Proceedings of the Second International
Conference on Machine Learning and Cybernetics, November 2003

[38] Li, X., Tian, P., Hua, J., Zhong, N., “A Hybrid Discrete Particle Swarm

Optimization for the Traveling Salesman Problem”, Lecture Notes in Computer
Science, Vol. 4247/2006, Springer Berlin/Heidelberg Publications, pp. 181-188,
October 2006

[39] Shen, B., Yao, M., Yi, W., “Heuristic Information Based Improved Fuzzy Discrete

PSO Method for Solving TSP”, Lecture Notes in Computer Science, Springer
Berlin/Heidelberg Publications, Vol. 4099/2006, pp. 859-863, July 2006

[40] Kitayama, S., Arakawa, M., Yamazaki, K., “Penalty Function Approach for the

Mixed Discrete Non-Linear Problems by Particle Swarm Optimization”,
Structural and Multidisciplinary Optimization, Vol. 32, No. 3, pp. 191-202, 2005

[41] Liu, J., Sun, J., Xu, W., “Quantum-Behaved Particle Swarm Optimization for

Integer Programming”, Lecture Notes in Computer Science, Springer
Berlin/Heidelberg Publications, Vol. 4233/2006, pp. 1042-1050, October 2006

[42] Tayal, M., Wang, B., “Particle Swarm Optimization for Mixed Discrete, Integer

and Continuous Variables”, 10th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, Albany, New York, Aug 30-1, 2004

[43] Parsopoulos, K. E., Vrahatis, M. N., “Recent Approaches to Global Optimization

Problems Through Particle Swarm Optimization”, Natural Computing, Vol. 1, pp.
235-306, 2002

[44] Parsopoulos, K. E., Vrahatis, M. N., “On the Computation of All Global

Minimizers Through Particle Swarm Optimization”, IEEE Transactions on
Evolutionary Computation, Vol. 8, No. 3, pp. 211-224, 2004

[45] He. S., Prempain, E., Wu, Q. H., “An Improved Particle Swarm Optimizer for

Mechanical Design Optimization Problems”, Engineering Optimization, Vol. 36,
No. 5, pp. 585-605, October 2004

[46] G. Venter and J. Sobieszczanski-Sobieski, “Multidisciplinary optimization of a

transport aircraft wing using particle swarm Optimization”, In 9th AIAA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization 2002, Atlanta, GA

168

[47] Pidaparti, R., Jayanti, S., “Corrosion Fatigue Through Particle Swarm

Optimization”, AIAA Journal, Vol. 41, No. 6, June 2003

[48] P.C. Fourie and A.A. Groenwold, “The particle swarm algorithm in topology

optimization”, In Proceedings of the Fourth World Congress of Structural and
Multidisciplinary Optimization 2001, Dalian, China

[49] Fourie, P. C., Groenwold, A. A., “The Particle Swarm Optimization Algorithm in

Size and Shape Optimization”, Structural Multidiscplinary Optimization, Vol. 23-
4, pp. 259-267, 2002

[50] Bochenk, P., Fory’s P., “Structural Optimization for Post-Buckling Behavior

Using Particle Swarm”, Structural and Multidisciplinary Optimization, Vol. 32,
No. 6, pp. 521-530, 2006

[51] Schutte, J., Groenwold, A., “Sizing Design of Truss Structures Using the Particle

Swarms”, Structural and Multidisciplinary Optimization, Vol. 25, pp. 261-269,
2003

[52] Yang, S., Huang, R., Shi, H., “Mobile Agent Routing Based on a Two-Stage

Optimization Model and a Hybrid Evolutionary Algorithm in Wireless Sensor
Networks”, Lecture Notes in Computer Science, Springer Berlin/Heidelberg
Publications, Vol. 4222/2006, pp. 938-947, September 2006

[53] Onwubolu, G., Clerc, M., “Optimal Path for Automated Drilling Operations by a

New Heuristic Approach using Particle Swarm Optimization”, International
Journal of Production Research, Vol. 42, No. 3, pp 473-491, 2004

[54] Rameshkumar, K., Suresh, R., Mohanasundaram, K., “Discrete Particle Swarm

Optimization (DPSO) Algorithm for Permutation Flowshop Scheduling to
Minimize Makespan”, Lecture Notes in Computer Science, Vol. 3612/2005, pp.
572-581, July 2005

[55] Tianzhu, W., Wenhui, L., Yi, W., Zihou, G., Dongfeng, H., “An Adaptive

Stochastic Collision Detection Between Deformable Objects Using Particle
Swarm Optimization”, Lecture Notes in Computer Science, Springer
Berlin/Heidelberg, Vol. 3907/2006, pp. 450-459, March 2006

[56] Batkiewicz, T., Dohse, K., Kalivarapu, V., Dohse, T., Walter, B., Knutzon, J.,

Parkhurst, D., Winer, E., Oliver, J., “Multimodal UAV Ground Control System”,
11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
AIAA 2006-6963, 6 – 8 September 2006, Portsmouth, VA

169

[57] Foo, J., Knutzon, J., Oliver, J., Winer, E., “Three-Dimensional Path Planning of

Unmanned Aerial Vehicles Using Particle Swarm Optimization”, 11th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA
2006-6995, 6 – 8 September 2006, Portsmouth, VA

[58] Walter, B., Sannier, A., Reiners, D., Oliver, J., “UAV Swarm Control: Calculating

Digital Pheromone Fields with the GPU”, The Interservice/Industry Training,
Simulation & Education Conference (I/ITSEC), Volume 2005 (Conference
Theme: One Team. One Fight. One Training Future), 2005

[59] Gaudiano, P, Shargel, B., Bonabeau, E., Clough, B., “Swarm Intelligence: a New

C2 Paradigm with an Application to Control of Swarms of UAVs”, In Proceedings
of the 8th International Command and Control Research and Technology
Symposium, 2003

[60] Colorni, A., Dorigo, M., Maniezzo, V., “Distributed Optimization by Ant

Colonies”, In Proc. Europ. Conf. Artificial Life, Editors: F. Varela and P.
Bourgine, Elsevier, Amsterdam, 1991

[61] Dorigo, M., Maniezzo, Colorni, A., “Ant System: Optimization by a Colony of

Cooperating Agents”, In IEEE Trans. Systems, Man and Cybernetics, Part B, Vol.
26, Issue 1, pp 29-41, 1996

[62] Montgomery, J., “Towards a Systematic Problem Classification Scheme for Ant

Colony Optimization”, Technical Report tr02-15, School of Information
Technology, Bond University, Australia, 2002

[63] White, T., Pagurek, B., “Towards Multi-Swarm Problem Solving in Networks”,

icmas, pp. 333, Third International Conference on Multi Agent Systems
(ICMAS’98), 1998

[64] Parunak, H., Purcell M., O’Conell, R., “Digital Pheromones for Autonomous

Coordination of Swarming UAVs”, In Proceedings of First AIAA Unmanned
Aerospace Vehicles, Systems, Technologies, and Operations Conference,
Norfolk, VA, AIAA, 2002

[65] Gropp, W., Lusk, E., Skjellum, A., “Using MPI – Portable Parallel Programming

with the Message Passing Interface”, 2nd Edition, MIT Press, ISBN: 0-262-571-
323, 1999

[66] Itzigehl, P., R., "A Method for Asynchronous Parallelization", International

Conference on Software Engineering, Proceedings of the 10th International
Conference on Software Engineering, Singapore, pp.4-9, ISBN: 0-89791-258-6,
1988

170

[67] Chalermwat, P., El-Ghazawi, T., LeMoegne, J., “2-phase GA-based Image

Registration on Parallel Clusters”, Future Generation Computer System 17, 2001

[68] Belal, M., Ghazawi, T., “Parallel Models for Particle Swarm Optimizers”,

International Journal on Intelligent Cooperative Information Systems 4, pp. 100-
111, 2004

[69] Aguire, H., Tanaka, K., SUgimara, T., Oshita, S., “Improved Distributed Genetic

Algorithm with Cooperative-Competitive Genetic Operators”, IEEE 2000

[70] Vladimir, L., Burgher, J., Tkachuk, A., Gnatjiuk, V., “The Application of the

Distributed Genetic Algorithm to the Decision of the Packing in Containers
Problem”, Proceedings of the 2002 IEEE International Conference on Artificial
Intelligence Systems, 2002

[71] Schutte, J., Reinbolt, J., Fregly, B., Haftka, R., George, A., “Parallel Global

Optimization with the Particle Swarm Algorithm”, Int. J. Numer. Meth. Engng,
2003

[72] Koh, B, George A. D., Haftka, R. T., Fregly, B., “Parallel Asynchronous Particle

Swarm Optimization”, International Journal for Numerical Methods in
Engineering, 67:578-595, 2006

[73] Venter, G., Sobieszczanski-Sobieski, J., “A Parallel Particle Swarm Optimization

Accelerated by Asynchronous Evaluations”, 6th World Congresses of Structural
and Multidisciplinary Optimization, Rio de Janiero, Brazil, June 2005

[74] Belal, M., El-Ghazawi, T., “Parallel Models for Particle Swarm Optimizers”, The

International Journal of Intelligent Computing and Information Sciences,
4(1):100-111, 2004

[75] Shi, X., Lu, Y., Zhou, C., Lee, H., Lin, W., Liang, Y., “Hybrid Evolutionary

Algorithms Based on PSO and GA”, 2003 Congress on Evolutionary
Computation, pp. 2393-2399, Vol. 4, 2003

[76] Cui, S., Weile, D., “Application of Parallel Particle Swarm Optimization Scheme

to the Design of Electromagnetic Absorbers”, IEEE Transactions on Antennas and
Propagation, pp. 3616-3624, Vol. 53, issue 11, November 2005

[77] Kim, J., Jeong, H., Lee, H., Park, J., “PC Cluster Based Parallel PSO Algorithm

for Optimal Power Flow”, International Conference on Intelligent Systems
Applications to Power Systems, pp. 1-6, November 2007

171

[78] Jin, N., Rahmat-Samii, Y., “Parallel Particle Swarm Optimization and Finite-

Difference Time-Domain (PSO/FDTD) Algorithm for Multiband and Wide-band
Patch Antenna Designs”, IEEE Transactions on Antennas and Propagation, pp.
3459-3468, Vol. 53, Issue 11, November 2005

[79] Gies, D., Rahmat-Samii, Y., “Reconfigurable Array Design Using Parallel Particle

Swarm Optimization”, Internationsl Symposium of IEEE Antennas and
Propagation Society, 2003, pp. 177-180, Vol. 1, June 2003

[80] Sutter, H., “The Free Lunch is Over: A Fundamental Turn Toward Concurrency in

Software”, Dr. Dob’s Journal, 30(3), March 2005, website:
http://www.gotw.ca/publications/concurrency-ddj.htm, accessed February 2007

[81] Owens, J., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., and

Purcell. T., “A Survey of General-Purpose Computation on Graphics Hardware”
In Eurographics 2005, State of the Art Reports, August 2005, pp. 21-51

[82] Fernando, R., Kilgard, M., The Cg Tutorial: The Definitive Guide to

Programmable Real-Time Graphics, Addison-Wesley Publications, 2003, ISBN:
0321194969

[83] Rost, R., OpenGL(R) Shading Language (2nd Edition) (OpenGL), Addison-

Wesley Publications, 2006, ISBN: 0321334892

[84] DirectX 9 High Level Shading Language (Microsoft DirectX 9 HLSL),

http://msdn2.microsoft.com/en-us/library/ms810449.aspx, accessed February
2007

[85] McCool, M., D Toit, S., Popa T., Chan, B., Moule K., “Shader Algebra”, ACM

Transactions on Graphics 23,3 August 2004, pp. 787-795

[86] Bleiweiss, A., Preetham, A., “Ashli-Advanced Shading Language Interface”,

ACM Siggraph Course Notes, July 2003,
http://ati.amd.com/developer/SIGGRAPH03/AshliNotes.pdf, accessed February
2007

[87] Buck, I., Foley, T., Horn, D., Sugerman J., Fatahalian K., Houston, M., Hanrahan,

P., “Brook for GPUs: Stream Computing on Graphics Hardware”, ACM
Transactions on Graphics 23, 3, August 2004, pp. 777-786

[88] McCormick, P., Inman J., Ahrens, J., Hansen, C., Roth, G., “Scout: A Hardware-

Accelerated System for Quantitatively Driven Visualization and Analysis”, In
IEEE Visualization 2004, October 2004, pp. 171-178

172

[89] Tarditi D., Puri, S., Oglesby, J., “Accelerator: Using Data-Parallelism to Program

GPUs for General Purpose Uses”, In Proceedings of the Twelfth International
Conference on Architectural Support for Programming Languages and Operating
Systems, October 2006

[90] Lucas P., Fritz, N., Wilhelm, R., “The CGiS Compiler”, In proceedings of the 15th

International Conference on Compiler Construction”, vol. 3923 of Lecture Notes
in Computer Science, Springer, March 2006, pp. 105-108

[91] Lefohn, A., Kniss, J., Strzodka, R., Sengupta, S., Owens, J., “Glift: An

Abstraction for Generic, Efficient GPU Data Structures”, ACM Transactions on
Graphics 26, 1, January 2006, pp. 60-99

[92] “NVIDIA CUDA Homepage”, http://developer.nvidia.com/object/cuda.html,

accessed February 2007

[93] Wasson, S., “ATI Stakes Claims on Physics, GPGPU Ground”, The Tech Report

– Personal Computing Explored”, Oct 11, 2005 -
http://techreport.com/onearticle.x/8887, accessed February 2007

[94] Owens, J., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., and

Purcell. T.,. “A Survey of General-Purpose Computation on Graphics Hardware”,
Volume 26 (2007). Computer Graphics Forum, Accepted for publication in March
2007 or June 2007

[95] Kruger J., Schiwietz, T., Kipfer, P., Westermann, R., “Numerical Simulations on

PC Graphics Hardware”, EuroPVM/MPI 2004, LNCS 3241, pp. 442-449,
Springer-Verlag Berlin Heidelberg, 2004

[96] Introduction to Randomness and Random Numbers, Web Ref:

http://www.random.org/randomness/, accessed July 15, 2008

[97] Ratnaweera A. C., Halgamuge S. K., Watson H. C., “Particle Swarm Optimizer

with Time Varying Acceleration Coefficients”, In: proceedings of the International
Conference on Soft Computing and Intelligent Systems, pp. 240-255, 2002

[98] Suganthan P. N., “Particle Swarm Optimiser with Neighborhood Operator”,

Proceedings of the IEEE Congress on Evolutionary Computation, IEEE,
Piscataway, NJ, pp. 1958 – 1062, 1999

[99] Walpole, R., Myers, R., “Probability and Statistics for Engineers and Scientists”,

2nd Ed. Macmillan Publishing Co., Inc., ISBN: 0-024-241105, 1978

173

[100] McClave, S., “Probability and Statistics for Engineers”, PWS Publishers, ISBN:

0-534-06486, 1986

[101] Ross, S., “Introduction to Probability and Statistics for Engineers and Scientists’,

2nd edition, Academic Press, ISBN: 0-125-984723, 2000

[102] Urdan, T., “Statistics in Plain English”, 2nd edition, Lawrence Erlbaum Associates

Publishers, ISBN: 0-805-852417, 2005

[103] Geist, A., Beguelin, A., Dongarra, J., Manchek, R., Jiang, W., Sunderam, V.,

“PVM 3 User’s Guide and Reference Manual”, Technical Report ORNL/TM-
12187, Oak Ridge National Laboratory, Knoxville, TN, 1994

[104] “InfiniBand – Wikipedia, the free encyclopedia”,

http://en.wikipedia.org/wiki/Infiniband, accessed May 2008

[105] “InfiniBand® Trade Association: Home”, http://www.infinibandta.org/home,

accessed May 2008

[106] “Myrinet – Wikipedia”, http://en.wikipedia.org/wiki/Myrinet, accessed May 2008

[107] “Myricom Home Page”, http://www.myri.com/, accessed May 2008

[108] Rost, R., “OpenGL Shading Language”, Second Edition, Addison Wesley

Publications, ISBN: 032-133-4892, 2006

[109] Kuhn, H. W., Tucker, A., “Nonlinear Programming”, Proceedings of the 2nd

Berkeley symposium on Mathematical Statistics and Probability, University of
California Press, Berkeley, 1951

[110] Kelly, J. E., “The Cutting Plane Method for Solving Convex Programs”, J. SIAM,

Vol. 8, pp. 702-712, 1960

[111] Zoutendijk, G.., “Methods of Feasible Directions”, Elsevier publications,

Amsterdam, 1960

[112] Abadie, J., Carpentier, J., “Generalization of the Wolfe Reduced Gradient Method

to the Case of Nonlinear Constraints, in Optimization”, R. Fletcher (ed.),
Academic Press, New York, pp. 37-47, 1969

[113] Gabriele, G. A., and Ragsdell, K. M., “The Generalized Reduced Gradient

Method: A Reliable Tool for Optimal Design”, ASME J. Engin. Ind., series B, vol.
99, no. 2, pp. 394-400, May 1977

174

[114] Kavlie, D., Moe, J., “Automated Design of Frame Structures”, ASCE Journal of

Struct. Div., vol. 97, No. ST1, pp 33-62, January 1971

[115] Cassis, J. H., Schmit, L. A., “On Implementation of the Extended Interior Penalty

Function”, International Journal for Numerical Methods in Engineering, vol. 10,
no. 1, pp. 3-23, 1976

[116] Haftka, R. T., Starnes, Jr., J. H., “Applications of a Quadratic Extended Interior

Penalty Function for Structural Optimization”, AIAA Journal, vol. 14, no. 6, pp.
718-724, June 1976

[117] Prasad, B., “A Class of Generalized Variable Penalty Methods for Nonlinear

Programming”, Journal of Optimization Theory and Applications, vol. 35, no. 2,
pp. 159-182, October 1981

[118] Rockafellar, R. T., “The Multiplier Method of Hestenes and Powell Applied to

Convex Programming”, J. Optim. Theory Appl., vol. 12, no. 6, pp. 555 – 562,
1973

[119] Sedlaczek, K., Eberhard, P., “Using Augmented Lagrangian Particle Swarm

Optimization for Constrained Problems in Engineering”, Structural
Multidisciplinary Optimization Journal, Vol. 32, pp. 277-286, 2006

[120] “Extensible Markup Language (XML) 1.0 (Fourth Edition)”, Web reference:

http://www.w3.org/TR/REC-xml/ retrieved: May 23, 2008

[121] Engelbrecht, A., “Fundamentals of Computational Swarm Intelligence, Wiley

Publications, NY, ISBN: 047-009-1916, 2006

[122] “Test Problems in Global Optimization”, Web Reference: http://www-

optima.amp.i.kyoto-
u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm, cited May
23, 2008

[123] “GEATbx: Example Functions (Single and Multi-objective Functions) 2

Parametric Optimization”, Web Reference:
http://www.geatbx.com/docu/fcnindex-01.html, Cited May 23, 2008

[124] Levy, A, and Montalvo, A., “The Tunneling Algorithm for the Global

Minimization of Functions”, SIAM Journal of Scientific and Statistical
Computing 6, pp. 15-29, 1985

	2008
	Improving solution characteristics of particle swarm optimization through the use of digital pheromones, parallelization, and graphical processing units (GPUs)
	Vijay Kiran Kalivarapu
	Recommended Citation

	Microsoft Word - vijayKalivarapuDissertationFinal.doc

