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Abstract 

This thesis consists of three related techno-economic studies of biofuels production. The 

major purpose of these studies is to establish meaningful comparisons between different 

technologies for producing biofuels and explore scenarios leading to optimal biofuel 

costs.  

Three journal papers have been published in Biofuels, Bioprocessing, and Biorefining 

from the results of this study: “Comparative economics of biorefineries based on the 

biochemical and thermochemical platforms”, “Establishing the optimal size of different 

kinds of biorefineries”, and “Distributed processing of biomass to bio-oil for subsequent 

production of Fischer-Tropsch liquids”.  

Several major conclusions were drawn from this study.  Advanced biorefineries will 

require capital investments that are 4 to 5 times larger than current grain ethanol plants. 

Nevertheless, optimally sized thermochemical plants (240 to 486 million gge output) can 

produce lower cost fuel than biochemical ethanol plants.  A 550 million gallon Fischer-

Tropsch liquids can reduce fuel costs ($1.56/gallon) by preprocessing of biomass before 

delivery to the central upgrading facility.
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General Introduction 

Introduction 

Conclusions from a 1981 technoeconomic paper published by Palsson et. al.1 helped 

shape long standing perceptions of the relative merits of biochemical and thermochemical 

biomass conversion technologies. The biochemical approach has long been considered 

more economical than thermochemical pathways. Biochemical plants based on sugar 

conversion to ethanol have flourished in the United States and contributed to the current 

interest in alternative fuels. The success of the ethanol industry has shifted much of the 

attention on advanced fuels towards enzymatic hydrolysis of cellulose for the production 

of ethanol. Nevertheless, the production of biofuels via thermochemical conversion of 

biomass has remained an intriguing option2.  

Various advanced biorenewable technologies are in active development for the 

production of transportation fuel. These technologies focus on the conversion of 

lignocellulosic material into biofuels. Biorefineries based on cellulose should allow for a 

larger displacement of fossil fuels than the current sugar platform. The cost of these 

advanced technologies continues to be debated particularly when compared to the 

established biochemical industry. Differences in key assumptions among published 

studies have made it difficult to compare the cost of biofuels based on the 

thermochemical pathway to the biochemical platform.  

The main purpose of this paper is to address some of the questions affecting advanced 

biofuel technologies. The establishment of a common comparison in the first paper of this 

study allows for further analyses of advanced biorefinery scenarios. One such analysis 

consists of establishing the biorefinery plant capacity at which biofuel costs are 

minimized. A different analysis explores the impact of biomass preprocessing to reduce 

transportation costs. These analyses are conducted over three separate but related papers.  
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Background 

Various biomass biochemical and thermochemical conversion technologies are 

considered in this study. The sugar platform is represented by the corn grain process3 and 

dilute acid hydrolysis4, 5, 6 of cellulose to produce ethanol. All thermochemical 

technologies employ gasification to produce a synthetic gas that is further upgraded to 

yield a liquid product7, 8. Liquid fuels considered in this study include hydrogen, 

methanol, and Fischer-Tropsch Liquids from which green diesel can be derived.9
,10A 

special case is that of biomass fast pyrolysis11, which yields a primarily liquid product 

known as bio-oil. Bio-oil is not suitable as a transportation fuel and most scenarios 

assume it is mostly employed as an intermediate to other fuels. Table 1 summarizes the 

various technologies and products considered throughout this study. 

Table 1 Biofuel Technologies for Production of Transportation Fuels 

Platform Primary Feedstock Liquid Product 

Biochemical 
Starch Ethanol 

Cellulose Ethanol 

Thermochemical Cellulose 

Hydrogen 

Methanol 

Fischer-Tropsch Liquids 

 

The biochemical platform is well established commercially in the United States and 

Brazil employing corn grain and sugar cane as the main feedstock respectively. Ethanol is 

the transportation biofuel with the highest production (15–29tons) worldwide12,13. The 

low cost of feedstock (average of $2.57 per bushel of corn historically)14 coupled with 

low capital cost requirements and favorable policies encouraged the growth of ethanol 

production. Concerns over the availability of grain as demand for ethanol increases has 

prompted interest in advanced biochemical technologies employing primarily 

lignocellulosic material15.  
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Figure 1 Cellulosic Biomass to Ethanol 

Advanced biochemical platforms employ a pre-fermentation process to breakdown the 

cellulosic material in efforts to make the simple sugars more accessible to 

microorganisms. Various pretreatment approaches have been envisioned; short –term 

cellulosic ethanol will probably employ enzymatic hydrolysis16 which provides for higher 

yields, lower maintenance costs, and higher compatibility with downstream processes 

than other pretreatment processes17,18, 6. A shift towards cellulosic material will allow for 

higher production of ethanol but various key obstacles remain19. Challenges for advanced 

biochemical technologies include level of development as well as higher capital and 

operating costs. Various technoeconomic studies on the production of ethanol via the 

starch20, 3 or cellulosic21, 22, 23, 24 process have been published. 

Table 2 Pretreatment processes for production of cellulosic ethanol 

Pretreatment Methods Reference 
Dilute acid 25 

Flowthrough 26 

Partial flow pretreatment 26 

Controlled pH 27 

AFEX 28 

ARP 29 

Lime 30 

The thermochemical platform employs well-known technology that is commonly found 

in the coal and gas industries. Theuse of non-petroleum feedstock for transportation and 

chemical markets has been very limited with few exceptions such as SASOL31, 32, 33 in 

South Africa where an embargo forced the development of alternatives to petroleum. 

Thermochemical technologies for production of liquid fuelsare typically based on the 

partial combustion of biomass in the absence of oxygen (pyrolysis) or with limited 
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availability (gasification). Biomass pyrolysis produces gaseous, solid, and liquid products 

of which the liquid yield can be catalytically upgraded to transportation fuel34. The 

gasification process employs numerous types of feedstock to produce a Carbon 

Monoxide and Hydrogen rich gas known as producer gas or synthetic gas (syngas). 

Figure 2 shows some of the most common chemicals and liquid fuels that can be 

produced from syngas.  

 

Figure 2 Common Synthetic Gas Derived Chemicals35 

The general schematic of thermochemical process based on gasification is shown in 

Figure 3. Operating conditions and process requirements vary for different products and 

some fuels can be produced through various scenarios. Biomass pretreatment is generally 

a function of the gasification specifications. Particle reduction may be required for some 

designs and moisture in the biomass negatively affects the thermal performance of the 

reactor. Common reactor designs are variations on four main designs36, 37: updraft, 

downdraft, bubbling bed, and circulating bed. Downdraft and updraft gasifiers entrain 

biomass particles in a hot gas stream that flows co-current or counter-current to the solids 
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respectively. For large scale operations, fluid bed designs (bubbling and circulating) are 

commonly used38, 39. Gas cleaning is employed to remove particulates that can reduce 

catalytic activity or pose harm to the environment. Some compounds are particularly 

damaging to catalyst with Sulfur being a notable example that can cause fouling at 

concentrations of 0.2 ppm40. Gas processing can consist of various operations based on 

the catalytic reactor specifications and syngas components. Methane reforming and 

water-gas-shift are two process that increase the hydrogen and carbon monoxide content 

in the syngas; removal of inert compounds also falls under this category. Finally, 

catalytic synthesis allows for the conversion of syngas to various products as shown in 

Figure 2. Numerous catalysts have been employed for the production of transportation 

fuels from syngas and this area is in active development41. 

 

Figure 3 Thermochemical Conversion To Transportation Fuels 

Biomass-to-liquids (BTL) via the thermochemical pathway would create a biorenewable 

resource for transportation fuels beyond ethanol42. As shown in Figure 2, various fuels 

may be produced from syngas including ethanol. Specific process requirements limit the 

number of chemicals that may be produced by a single facility, but with further 

development and investment, a plant can be envisioned where multiple chemicals are 

produced based on demand43. This approach would be very similar to that employed by 

petroleum refineries where yield of various distillation columns is carefully controlled 

and fine tuned to the state of the market44. Technoeconomic studies for different 

thermochemical biomass to fuel technologies can be found in the literature4,10, 45, 46, 47, 48. 

Biomass pyrolysis is the thermal heating of biomass in the absence of oxygen49. Pyrolysis 

actually takes place during the gasification process as the biomass is heated prior to 

coming in contact with the oxidizing agent. Biomass pyrolysis yields solid (char), liquid 
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(bio-oil) and gaseous products. The solid fraction can be combusted to provide process 

heat or employed as a soil amendment. Bio-char benefits include increased soil water 

availability and organic matter and enhanced nutrient cycling50. Gas and liquid yields can 

be used for power generation,51 while bio-oil can be upgraded to transportation fuel52. 

Small-scale pyrolysis reactors can be built for biomass densification purposes53 which 

would alleviate biomass delivery concerns for large facilities. This scheme has been 

explored in this study as well as others54,55, 56, .  

A concept that has gained interest recently is the so called hybrid platform57. This 

platform combines the biochemical and thermochemical approaches to take advantage of 

their strengths and reduce the impact of weaknesses. With this concept, feedstock is first 

thermochemically converted to synthetic gas which is then fed into a biochemical reactor 

where bugs convert the CO and H2 to ethanol or other chemicals58. This approach 

eliminates a strict H2 to CO ratio requirement of various catalysts35. It also allows for a 

larger variety of feedstock to be employed than the typical biochemical route. Recent 

high profile investment in this concept has raised awareness of this approach59.  

The USDA has conducted various technoeconomic studies related to grain ethanol3, 60, 61, 

62, 63and cellulosic ethanol in collaboration with NREL5,6. Other researchers have also 

published studies on ethanol production with an emphasis on the economic aspects4,64, 65. 

There are also numerous reviews on ethanol production66, 67,68, 6923. 

Technoeconomics studies of thermochemical ethanol and mixed alcohols have been 

conducted by NREL70, 71. Hydrogen and methanol9 production as well as Fischer-Tropsch 

liquids10 were explored in detail by the Netherland group.Bridgwater has published 

extensively on fast pyrolysis72, 73, 74 and NREL published a recent technoeconomic study 

on large scale biomass pyrolysis11. There are numerous other technoeconomic studies on 

syngas based fuels some of which are included inTable 3. 
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Table 3 Summary of select technoeconomic studies for thermochemical technologies 

Fuel References 
Hydrogen/Methanol 75,76,77 

Ethanol/Mixed Alcohols 70,71 

Fischer-Tropsch Liquids 10, 78, 79 

Pyrolysis Oil 11, 72, 73, 74, 80 

Thesis Organization 

This thesis is a compilation of three journal articles: “Comparative economics of 

biorefineries based on the biochemical and thermochemical platforms”81, “Establishing 

the optimal size of different kinds of biorefineries”82, and “Distributed processing of 

biomass to bio-oil for subsequent production of Fischer-Tropsch liquids”83. 

“Comparative economics of biorefineries based on the biochemical and thermochemical 

platforms” establishes a common basis of comparison between biochemical pathways 

represented by starch and cellulosic based ethanol, and thermochemical fuels represented 

by hydrogen, methanol, and Fischer-Tropsch liquids. Key assumptions converted to a 

common basis in this study include plant capacity, fuel energy content, feedstock cost, 

method of calculating capital charges, and year in which the analysis is assumed. The 

primary researcher and author of this paper is Mark M. Wright; the corresponding author 

is Robert Brown. Both authors are affiliated with the Iowa State University department of 

Mechanical Engineering 

“Establishing the optimal size of different kinds of biorefineries” employs economies of 

scale and biomass transportation costs to determine the plant capacity at which fuel costs 

are minimized. Economies of scale dictate that unit costs decrease with increasing 

capacities. Biomass transportation costs produce diseconomies of scale due to increasing 

costs at larger capacities. A minimum is established at which increases in plant size result 

in higher fuel costs due to increasing transportation costs and reduced economies of 

scale.The primary researcher and author of this paper is Mark M. Wright; the 

corresponding author is Robert Brown.  
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“Distributed processing of biomass to bio-oil for subsequent production of Fischer-

Tropsch liquids” explores the concept of biomass preprocessing to reduce transportation 

costs. This concept employs fast pyrolysis to convert biomass into bio-oil, which has a 

higher energy density, prior to delivery to a centralized facility. At the central facility, 

bio-oil can be upgraded to produce Fischer-Tropsch liquids. A reduction in transportation 

costs allows for further fuel costs reduction at larger output capacities. The primary 

author for this paper is Mark M. Wright; the corresponding author is Robert Brown. 

Akwasi A. Boating is a contributing author from the ERRC/ARS/USDA. 
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Comparative Economics of Biorefineries Based on the Biochemical 

and Thermochemical Platforms 

A paper published in Biofuels, Bioproducts & Biorefining 

Mark M. Wright and Robert C. Brown 

Abstract 

A variety of biochemical and thermochemical technologies have been proposed for the 

production of biofuels.  Meaningful economic comparisons requires that they be 

evaluated on the same bases in terms of plant capacity, the energy content of the fuel, 

feedstock costs, method of calculating capital charges, and year in which the analysis is 

assumed. Such an analysis reveals that capital costs will be comparable for advanced 

biochemical and thermochemical biorefineries, costing 4 to 5 times as much as 

comparably sized grain ethanol plants.  The cost of advanced biofuels, however, will be 

similar to that of grain ethanol as corn prices exceed $3.00/bushel.   

Introduction 

The commercial success of the grain ethanol industry has increased interest in processes 

that convert fibrous biomass (lignocellulose) into biofuels.  Much of this attention has 

been directed toward enzymatic hydrolysis of cellulose to simple sugars and its 

subsequent fermentation to ethanol, the so-called biochemical platform.  However, the 

recent announcement by the Department of Energy that three of the six biorefinery 

projects selected for federal funding include gasification technologies has increased 

interest in the thermochemical platform 1.  This approach thermolytically transforms 

biomass into gaseous or liquid intermediate chemicals that can be upgraded to 

transportation fuels or commodity chemicals.  The thermochemical platform is closely 

related to the commercially successful processes used by the petroleum and 

petrochemical industries to transform fossil fuels into fuels and chemicals.  Opinions vary 

widely on which of these platforms is most likely to prevail in the emergence of 
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cellulosic biofuels.  Although a number of techno-economic studies for various 

manifestations of these two platforms have appeared in the literature, a direct comparison 

of them on the same bases are difficult to find.   

This paper compares the capital costs and operating costs of the current generation of 

starch-based ethanol plants to advanced platforms for producing biofuels.  These 

advanced platforms include enzymatic hydrolysis of cellulose to ethanol (the biochemical 

platform) and three manifestations of the thermochemical platform in which biomass is 

gasified and upgraded to hydrogen, methanol, or Fischer Tropsch diesel.   

Background 

Current ethanol production is based on either sugar or starch crops, with the former 

dominating in Brazil and the latter in the United States, the two largest commercial 

ethanol producers in the world.  The present study focuses on dry milling of corn (a 

starch crop) because of its relevance to U.S. markets. Although wet milling has some 

efficiency and production cost advantages, dry milling has dominated the recent grain 

ethanol industry because of its lower requirements for capital and labor.   

Dry milling consists of four major operations: grinding to make the starch accessible to 

enzymes; cooking with enzymes to hydrolyze the starch to sugars; fermentation of sugars 

by yeast to produce ethanol, and distillation to produce neat ethanol.  The byproduct of 

this process is distillers dried grains, a fiber and protein-rich material that is used as 

livestock feed.  

Techno-economic analyses of dry grind ethanol in the United States and Europe estimate 

production costs to be between $0.80 and $1.36 per gallon of ethanol depending upon 

assumptions, especially feedstock costs2,3, 4. The present study employs for the grain 

ethanol base case the often cited 2000 report by McAloon and colleagues at the National 

Renewable Energy Laboratory5.  This report estimates that a dry grind corn processing 

plant producing 25 million gallons of ethanol per year would cost $27.9 million (1999 
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US). The operating cost of this plant was estimated to be $0.88 per gallon of ethanol 

based on feedstock cost of $1.94 per bushel of corn grain.  

The advanced biochemical platform employs cellulose (and hemicellulose) from plant 

fibers instead of starch in the production of ethanol.  The process of biologically 

converting structural carbohydrate into ethanol consists of four major operations: 

pretreatment of plant fibers to make cellulose accessible to enzymes (which often 

chemically hydrolyzes hemicellulose to simple sugars); treatment with enzymes to 

hydrolyze cellulose to glucose; fermentation of the simple sugars to produce ethanol, and 

distillation to produce neat ethanol.  Lignin is a byproduct of this process, which can be 

used as boiler fuel.   

Based on the current state of technology, capital costs for biochemical ethanol from 

cellulose are estimated to be between $4.03 and $5.60 per gallon of ethanol annual 

capacity. Operating costs are estimated to be between $1.34 and $1.69 depending upon 

the assumptions made about feedstock costs, enzyme costs, and the kind of pretreatment 

to be employed6,7, 8, 9.  Projected capital cost for future plants employing anticipated 

improvements in conversion technologies are estimated to be $3.33 - $4.44 per gallon 

ethanol annual capacity with operating costs dropping to $0.40 and $0.89 per gallon of 

ethanol10. The present study uses the recent analysis of Hamelinck et. al., which builds 

upon earlier studies and employs more recent information on the unit operations 

employed for this technology. The process is based on dilute acid pre-treatment and 

enzymatic hydrolysis. The total capital investment was calculated to be $294 million, 

while the operating costs were an estimated $1.51 per gallon of ethanol. 

Unlike the biochemical platform, for which the fuel product is defined (ethanol) and there 

is reasonable consensus as to the unit operations to be employed, there is greater diversity 

of opinion on how the thermochemical platform should be configured. Thermolytic 

processing of biomass can generally be categorized as either gasification (to produce a 

gaseous product) or fast pyrolysis (to produce primarily liquid product).  A variety of 

catalytic11 or even biocatalytic schemes12have been proposed to upgrade the thermolytic 
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products into alcohols, ethers, esters, or hydrocarbons.  The present analysis focuses on 

gasification followed by catalytic synthesis to three fuels: hydrogen, methanol, and 

Fischer-Trospch liquids.   

Hydrogen can be manufactured from syngas via the water-gas shift reaction: 

 CO + H2O →  CO2 + H2 

This reaction requires the mixing of steam with syngas since biomass gasification rarely 

releases sufficient water vapor for this purpose. Although hydrogen might be one of the 

most cost-effective clean-burning biofuels to produce, the physical characteristics of 

hydrogen present challenges in its use as transportation fuel13. 

Methanol is commercially manufactured from syngas using a copper based catalyst via 

the reaction14: 

 CO + 2H2 →  CH3OH 

As a transportation fuel, it has many of the same advantages and disadvantages as 

ethanol15.  However, methanol is considerably more toxic than ethanol.  Recent rulings 

by the U.S. Environmental Protection Agency (EPA) are likely to ban the closely related 

and similarly toxic methyl tertiary butyl ether (MTBE) as a fuel additive because of 

concerns about ground water contamination16. 

Fischer-Tropsch liquids are synthetic hydrocarbon fuels produced from syngas by the 

action of metal catalysts at elevated pressures.   The primary products of Fischer-Tropsch 

synthesis are a mixture of light hydrocarbon gases, paraffin waxes, and alcohols 

according to the generalized reaction17: 

CO + 2H2→  —CH2— + H2O       

The optimal H2/CO ratio of 2:1 is achieved through the water-gas shift reaction ahead of 

the synthesis reactor.  Depending on the types and quantities of F-T products desired, 

either low (200–240°C) or high temperature (300–350°C) synthesis is used with either an 
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iron (Fe) or cobalt catalyst (Co).  Additional processing of the F-T products yields diesel 

fuel or gasoline.   

The five major unit operations of the thermochemical platform based on gasification 

include fuel preparation, gasification, gas clean-up, catalytic processing to the desired 

fuels, and separations.  Fuel preparation is typically size reduction and drying to levels 

consistent with the gasification technology employed.  Although a large variety of 

biomass gasification technology can be envisioned18, the thermochemical base cases 

included in this analysis assume oxygen-blown, high temperature gasification with the   

F-T process also employing pressurized gasification.  Gas clean-up includes removal of 

particulate matter and trace contaminants including sulfur, chlorine, and ammonia.  

Separations are designed to yield pure fuel.  Catalytic processing may require multiple 

catalysts operating at different conditions of temperature and pressure.  The water-gas 

shift reaction is common to production of most synfuels, including hydrogen, methanol, 

and Fischer-Tropsch liquids.  Methanol synthesis is optimal at a syngas H2:CO ratio of 

3:1 while Fischer Tropsch synthesis favors a H2:CO ratio of 2.1519.  Of course, hydrogen 

production involves the complete reaction of CO and steam to form hydrogen fuel.  

Separations are an integral part of thermochemical processing but, unlike the aqueous 

phase processes of the biochemical platform, thermochemical processes employ vapor-

phase reactions that do not require energy intensive distillations to remove water from the 

fuel product.  

The literature includes several studies on the cost of hydrogen from biomass.  Capital 

costs range from $0.65 to $1.33 per gallon of liquid hydrogen capacity20, 21 depending 

upon the type and size of gasifier plant.  Operating costs range from $0.31 to $0.44 per 

gallon of liquid hydrogen produced22 depending upon the cost of biomass and the kinds 

of processes employed23. The study by Hamelinck and Faaij24 represents one of the most 

recent studies (2002) on biomass-to-hydrogen and include data in sufficient detail to 

serve as the base case for the present study.  For a gasification plant producing 220 
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million gallons of liquid hydrogen fuel per year, the estimated capital cost is $206 million 

with operating costs of $0.24 per gallon of liquid hydrogen produced. 

Early techno-economic studies of methanol plants report that production costs range from 

$0.91 to $1.11 per gallon of methanol25, 26.The techno-economic analysis of Hamelinck 

and Faaij was chosen for this study because it analyzes both hydrogen and methanol 

plants. Based on averages from their analysis, a gasification plant producing 87 million 

gallons of methanol per year would require a capital investment of $276 million. The 

production cost of methanol was $0.62 per gallon of methanol.  

Previous studies of gasification plants producing Fischer-Tropsch diesel suggest that 

costs range from $1.1 to $4.1 per gallon of F-T diesel27,28. Among the most recent and 

complete techno-economic analyses of a Fischer Tropsch diesel plant is that by 

Tijmensen et. al.29. This analysis employs the oxygen-blown, pressurized gasifier of the 

Institute of Gas Technology configured to achieve the preferred H2 to CO ratio. A 

reformer and water shift reactor are not necessary for this configuration. The product 

selectivity for hydrocarbon chains of five carbons or longer is 73.7 to 91.9 percent. 

Capital cost for a plant producing about 35 million gallons of F-T diesel per year is 

estimated to be about $341 million with operating costs of about $2.37 per gallon of F-T 

diesel.  

 

Table 4 summarizes the data on plant capacity, capital cost, fuel efficiency, and heating 

value of the fuel produced for each of the five biofuel plants analyzed in this study.  Fuel 

efficiency is defined as the fraction of energy inputs that appear as chemical enthalpy in 

the product transportation fuel.  Other energy or material outputs (such as process heat, 

electricity, and distillers’ dried grains) do not appear in efficiency calculations but count 

towards credits in calculating net operating costs.  Table 5 breaks down the operating 

costs for each plant.  Clearly, direct comparisons among these five plants are difficult 

without placing them on a common basis, as described in the methodology section. 
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Table 4 Capital Costs of Reference Plants 

Plant Type Plant 
capacity 

(MMGPY)* 

Capital 
Cost 

(million) 

Fuel 
Efficiency 

Basis 
Year 

Fuel 
Heating 
Value 
(MJ/L) 

Source 

Grain Ethanol 25 $27.9 35% 1999 21 [5] 

Cellulosic 
Ethanol 50 $294 35% 2005 21 [10] 

Methanol 87 $254 45% 2002 16 [24] 

Hydrogen 182 $244 50% 2002 8 [24] 

Fischer Tropsch 35 $341 46% 2002 36 [29] 

* Millions of gallons per year; all fuels assumed to be liquefied. 

 

Table 5 Operating Cost Components of Reference Plants 

Plant Type 

Biomass 
Feedstock 
(million) 

Operation and 
Management 

(million) 
Credits 

(million) 

Capital 
Charges 
(million) 

Total 
(million) 

Grain Ethanol $17.0 $10.5 $7.1 $2.8 $22.0 

Cellulosic Ethanol  $35.4 $11.1 * $29.4 $76.0 

Methanol  $24.8 $10.2 $8.68 $30.2 $56.5 

Hydrogen  $24.7 $9.76 $9.88 $29.0 $53.6 

Fischer-Tropsch  $29.2 $14.6 * $43.8 $87.5 

* Byproducts or waste energy are used for process heat within the plant 

Methodology 

The approach to this study was to modify existing techno-economic analyses found in the 

published literature to place them on the same bases.  These adjustments include: plant 

capacity, the gasoline equivalency of the fuel, feedstock costs, method of calculating 

capital charges, and the year for which costs are estimated to allow meaningful 

comparisons.   

Since economies of scale strongly influence the cost of production, capital costs in the 

original studies were adjusted to a common plant size of 570 million liters per year (150 

million gallons per year) gasoline equivalent.  This size was selected as representative of 
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expected early generation cellulosic biofuel plants, but no attempt was made to optimize 

plant size (which will be different for each of the technologies employed). Capital costs 

were scaled to plant size using a simple power law commonly employed to account for 

economies-of-scale30. A scaling exponent of 0.63 was assumed for the grain ethanol and 

cellulosic ethanol (biochemical) platforms while a scaling exponent of 0.7 was assumed 

for the thermochemical platforms. Following usage in the petroleum industry, capital 

costs are expressed as dollars “per barrel per day” (pbpd) of production capacity.  The 

capacity factor of the plant is assumed to be 0.9.   

Plant capacity is customarily reported as the volume of fuel produced although the 

volumetric energy density (MJ/L) can vary considerably among different kinds of fuels.  

For example, ethanol, the most prominent biofuel manufactured today, has only 2/3 the 

enthalpy of an equal volume of gasoline.  Thus, production capacity and production cost 

are reported in this paper on the basis of the gasoline equivalence of the fuel produced. 

Operating costs are broken down into categories of biomass feedstock, operation and 

management, byproduct credits, and capital charges.  Biomass costs are proportional to 

plant capacity and process efficiency in converting biomass into fuels. Cellulosic 

feedstock costs are assumed to be $50 per Mg. Corn is priced at $2.12 per bushel, the 

price prevailing in the basis year (2005).  Operation and management costs include plant 

and management labor, materials and supplies to operate the plant, and utilities.  Credits 

are given in some instances for by-products. For example, grain ethanol produces 

distillers dried grains, which can be sold as cattle feed.  Gasification generates high 

temperature heat that can be used for electric power generation.  A realistic analysis of 

operating costs must include the cost of capital although this calculation can be 

complicated by the fact that actual projects are usually financed by a combination of debt 

and investor capital.  To simplify the evaluation, this study assumes 100% debt financing 

over 20 years at an annual interest rate of 8%.  Inflation can make it difficult to compare 

studies performed in different years. Accordingly, all costs were adjusted to 2005 dollars. 
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Results 

The capital costs and operating costs for the various biochemical and thermochemical 

biofuels plants on a common basis are compared in Table 6 .  It is clear that advanced 

biofuels will come at very high capital cost – more than five times that of comparably 

sized starch ethanol plants – based on the current state of technology.  In terms of least 

capital cost, the order of preference for cellulosic biofuels is thermochemical hydrogen, 

methanol, lignocellulosic ethanol, and Fischer-Tropsch diesel.  The difference in capital 

costs among the cellulosic biofuel options is significant: Fischer-Tropsch diesel requires 

almost 50% greater investment than thermochemical hydrogen.  This difference reflects 

the additional unit operations required to convert syngas into Fischer-Tropsch diesel.  

The two most fungible fuels among the advanced biofuels, lignocellulosic ethanol and 

Fischer-Trospsch diesel, are the most capital intensive processes.  At $76,000 pbpd and 

$86,000 pbpd, respectively, their capital costs are essentially the same within the 

uncertainty of the analysis (+/- 30%).  In comparison, the capital cost for a grain to 

ethanol plant is only $13,000 pbpd. 

The rank ordering in terms of operating costs is the same as for capital costs, with 

thermochemical hydrogen being the least expensive followed by methanol, 

lignocellulosic ethanol, and Fischer-Trospsch diesel.  Operating costs range from a low of 

$1.05/gal of gasoline equivalent for hydrogen to $1.80/gal of gasoline equivalent for 

Fischer-Tropsch diesel.  In comparison, grain ethanol for this size of plant could be 

produced for $1.22/gal of gasoline equivalent.  This is cheaper than all the cellulosic 

biofuels except hydrogen.   

Figure 4helps understand the differences in operating costs for the various biofuels 

plants.  Much of the advantage of thermochemical hydrogen comes from its relatively 

low biomass costs, which arises from its high fuel efficiency. As shown inTable 4, 

thermochemical hydrogen has a fuel efficiency of 50% compared to about 45% for the 

other two thermochemical technologies.  Whereas hydrogen production from syngas 

requires only water-gas shift reaction and gas separation, methanol production requires an 
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additional catalytic step, and Fischer-Tropsch diesel requires at least two additional 

catalytic steps, each with attendant loses in efficiency. At 35%, lignocellulosic ethanol is 

even less efficient, which arises from its inability to convert the non-carbohydrate 

fraction of lignocellulose into biofuel. 

Grain ethanol has the highest biomass costs among the five technologies evaluated.  This 

reflects a combination of relatively low fuel efficiency (about one-third of the corn grain 

ends up as the byproduct distillers dried grains) and high fuel cost (corn grain at $2.12 

per bushel is almost 75% more than lignocellulosic biomass on a dry weight basis).  

However, as Figure 4 illustrates, the byproduct from a dry mill corn ethanol plant 

(distillers dried grains) yields a production credit almost three times greater than achieved 

by any of the other processes.  If the expanding grain ethanol industry produces an 

oversupply of distillers dried grains (assumed to be worth $99/Mg in the present study, 

the attractive production cost for corn ethanol could evaporate. 

Another scenario that could diminish the attractive production cost of grain ethanol is 

already developing. The present analysis was based on the 2005 price for corn grain, 

which was only $2.12 per bushel.  Substituting $3.00 per bushel, which is more typical of 

the selling price in late 2006, increases production cost of grain ethanol to $1.74/gal of 

gasoline equivalent, which is comparable to the price for cellulosic ethanol and Fischer-

Tropsch diesel. 

Table 6 Capital cost and operating costs for 150 MMGPY gasoline equivalent plants (2005 dollars) 

Fuel Total Capital Cost 
(millions) 

Capital Cost Per Unit Production 
(pbpd)* 

Operating Cost 
$/gal* 

Grain Ethanol $111 $13,000 $1.22 

Cellulosic ethanol $756 $76,000 $1.76 

Methanol $606 $66,000 $1.28 

Hydrogen $543 $59,000 $1.05 

Fischer Tropsch $854 $86,000 $1.80 
*   per barrel per day gasoline equivalent 

** gallons gasoline equivalent) 
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Figure 4 Operating Costs for 150 MMGPY of Gasoline Equivalent 

 

Conclusions 

The rapidly expanding renewable fuels industry will soon have to turn to technologies 

that convert lignocellulosic biomass into biofuels.  Although much of the attention on 

advanced biofuels has focused on lignocellulosic ethanol, thermolytic processes have also 

been proposed for production of renewable fuels.  Meaningful comparison of advanced 

fuels technologies to the current grain ethanol process requires that techno-economic 

analysis be placed on the same basis. 

Such an adjustment to techno-economic analyses has been done for lignocellulosic 

ethanol, thermochemical hydrogen, methanol, and Fischer-Tropsch diesel production 

plants of 150 million gallons of gasoline equivalent per year.  This analysis reveals that 

advanced biofuels will come at very high capital cost – more than five times that of 

comparably sized starch ethanol plants.  Thus, raising the $0.5 billion to almost $1 billion 
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in capital for a cellulosic biofuels plant will be much more difficult than has proved to be 

the case for grain ethanol plants.  The smaller number of unit operations associated with 

thermochemical hydrogen makes it the least capital intensive of the four advanced 

biofuels options evaluated, including lignocellulosic ethanol.  However, the larger 

problems of hydrogen storage and distribution infrastructure compared to other fuels 

makes it less likely to be adopted within the 10 year time frame envisioned for significant 

expansion of biofuels in the United States.  The capital costs for lignocellulosic ethanol 

and Fischer-Tropsch diesel, probably the most fungible fuels among the four advanced 

biofuel options considered, are essentially the same within the uncertainty of the analysis, 

costing about $80,000 pbpd. 

Thermochemical hydrogen also has the lowest production cost, at about $1.05/gal of 

gasoline equivalent, of the four advanced biofuels options for a plants of 150 million 

gallons gasoline equivalent annual capacity.  It even bests grain ethanol, which would 

cost $1.27/gal of gasoline equivalent.  Lignocellulosic ethanol and Fischer-Tropsch diesel 

have almost the same production costs, at about $1.78/gal of gasoline equivalent.  If corn 

prices increase from $2.20 per bushel that prevailed in the basis year of this analysis 

(2005) to $3.00 per bushel found in late 2006 and expected in future years because of 

increased corn demand, then biofuels from lignocellulosic biomass will have comparable 

costs of production. 

From these comparisons it can be concluded that neither the biochemical nor 

thermochemical platforms have clear advantages in capital costs or operating costs for 

production of advanced biofuels.  Both technologies have opportunities to compete 

against grain ethanol as corn prices continue to rise, especially if the high capital costs of 

advanced biofuels plants can be dramatically reduced. 
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Establishing the Optimal Sizes of Different Kinds of Biorefineries 

A paper published in Biofuels, Bioproducts & Biorefining 

Mark M. Wright and Robert C. Brown 

Abstract 

This paper explores the factors that influence the optimal size of biorefineries and the 

resulting unit cost of biofuels produced by them.  Technologies examined include dry 

grind corn to ethanol, lignocellulosic ethanol via enzymatic hydrolysis, gasification and 

upgrading to hydrogen, methanol, and Fischer Tropsch liquids, gasification of 

lignocellulosic biomass to mixed alcohols, and fast pyrolysis of lignocellulosic biomass 

to bio-oil.  On the basis of gallons of gasoline equivalent (gge) capacity, optimally sized 

gasification-to-biofuels plants were found to be 50 – 100% larger than biochemical 

cellulosic ethanol plants.  Biorefineries converting lignocellulosic biomass into 

transportation fuels were found to be optimally sized in the range of 236 to 488 million 

gge per year compared to 74 million gge per year for a grain ethanol plant.  Among the 

biofuel options, ethanol, whether produced biochemically or thermochemically, are the 

most expensive to produce.  These lignocellulosic biorefineries will require 4.4 – 7.8 

million tons of biomass annually compared to 1.1 million tons of corn grain for a grain 

ethanol plant.  Factors that could reduce the optimal size of lignocellulosic biorefineries 

are discussed. 

Introduction 

The petroleum-based motor fuels industry is characterized by giant refineries, processing 

petroleum at rates equivalent to ten gigawatts of power or more (140,000 barrels of 

petroleum per day).  This situation exists because operating costs are driven by 

economies of scale, which causes operating costs to increase more slowly as plant size 

gets larger.  Thus, unit costs for transportation fuels and commodity chemicals derived 

from fossil fuels are expected to decrease monotonically with increasing plant size. 
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The situation is dramatically different for biorefineries where biomass feedstocks are 

obtained from a multiplicity of “farm gates” as opposed to a single “mine mouth” or 

“well head” of a refinery based on fossil fuels.  These farm gates are widely distributed 

geographically, resulting in transportation costs to the plant that strongly depends upon 

the size of the processing plant. Furthermore, transport of solid, low density biomass is 

more labor intensive and expensive than the movement of gaseous and liquid fuels, like 

natural gas or petroleum.  As a result, it has been argued that biomass processing will 

occur at relatively small scales, drawing biomass from a distance as little as 15 miles 

around the plant.  The corresponding rate of processing of biomass is equivalent to 

several hundred megawatts of power – at least an order of magnitude smaller than 

petroleum refineries. 

In fact, there is an optimal size for biorefineries since unit costs for processing go down 

while feedstock transportation costs go up as the plant size gets bigger.1, 2, 3  The optimal 

size for different kinds of biomass processing plants are not established but they are 

expected to depend upon the nature of biomass processed and the kind of processes 

employed.   

This paper expands upon a previous study by the authors which compared the economics 

of advanced biorefineries based on the biochemical and thermochemical platforms.4  

While the previous paper compared capital and operating costs of comparably sized 

plants, the present paper explores the factors that influence the optimal size of 

biorefineries and calculates the optimal size of several kinds of biofuels plants and the 

resulting unit costs for biofuels produced in them.  Technologies examined include dry 

grind corn to ethanol,5 lignocellusic ethanol via enzymatic hydrolysis,6 gasification and 

upgrading to hydrogen, methanol, and Fischer Tropsch liquids,7, 8 conversion of 

lignocellulosic biomass to mixed alcohols,9 and fast pyrolysis of lignocellulosic biomass 

to bio-oil.10 
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Background 

Biochemical conversion of sugar cane or grain crops (particularly corn) to ethanol is 

commercially available and widely practiced in Brazil and the United States, 

respectively. Grain ethanol plants are generally classified as wet or dry milling based on 

the grain pretreatment. Wet milling plants have the advantage of lower production costs 

and higher efficiencies, but the grain ethanol industry is currently dominated by dry 

milling plants due to the lower capital and labor costs of the latter11 and is thus the focus 

of this study. 

Figure 5 illustrates the five major steps of dry milling of corn to ethanol: grinding to 

expose the starch to enzymes; liquefaction by the action of heat and enzymes; 

saccharification by enzymatic activity; fermentation of sugars by yeast to produce 

ethanol; and distillation to neat ethanol. A by-product of this process is distillers dried 

grains (DDGS), a fiber and protein-rich that is used for livestock feed.  

 

Figure 5 Process flow diagram for dry grind of corn to ethanol 

Technical and economic data for the dry grind ethanol process comes from McAloon et. 

al.5They determined that a plant of 25 million gallons annual ethanol capacity had a 

production cost of $0.88 per gallon of ethanol (2000 basis year). 

As shown in Figure 6, biochemical conversion of cellulosic biomass into ethanol consists 

of four major steps:  chemical and mechanical pre-treatments to release sugars from 

hemicellulose and to make cellulose accessible to enzymes; acid or enzymatic hydrolysis 
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of cellulose into glucose; fermentation of the resulting hexose and pentose to ethanol, and 

distillation to yield neat ethanol. A by-product of this process is lignin, which can be 

employed as boiler fuel.  

Technical and economic data for biochemical conversion of biomass to ethanol comes 

from the analysis by Hamelinck et. al.,6 which assumes dilute acid pretreatment and 

enzymatic hydrolysis. The analysis found that a plant of 69.3 million gallon per year 

capacity would produce ethanol at a cost of $1.51 per gallon of ethanol (2005 basis year).   

 

Figure 6 Process flow diagram for biochemical conversion of lignocellulosic biomass to ethanol 

Thermochemical conversion of biomass offers a diversity of pathways to a number of 

biofuels.   In general, these pathways are based on either gasification of biomass to 

gaseous products or fast pyrolysis to liquid products.  In both cases these products 

represent intermediates in the manufacture of transportation fuels.   

Gasification of lignocellulosic biomass yields syngas which consists mostly of hydrogen 

(H2) and carbon monoxide (CO).12 A variety of catalytic and even biocatalytic schemes 

have been developed to upgrade syngas into alcohols, ethers, esters, and hydrocarbons. In 

this study, four fuels from syngas are considered: hydrogen, methanol, mixed alcohols 

(with the purpose of maximizing ethanol synthesis), and Fischer Tropsch liquids. The 

optimal H2:CO molar ratio differs for each synthesis route.  Methanol synthesis favors a 

hydrogen-to-carbon monoxide molar ratio of 3:1 while Fischer Tropsch diesel is 

optimized at a ratio of 2.15:1.13  Mixed alcohols optimized for ethanol production 

employs a syngas ratio of 0.6:19.   
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As illustrated in Figure 7, gasification routes to biofuels have four major operations in 

common: comminution of the feedstock; gasification; gas cleaning to remove tar, 

particulate matter, and inorganic contaminants; and water-gas shift reaction to enrich 

hydrogen with respect to carbon monoxide.14   If pure hydrogen is the desired product, at 

least two stages of water-gas shift are employed followed by gas purification to remove 

carbon dioxide.  Conversion of biomass to methanol, mixed alcohols, or Fischer Tropsch 

liquids adds catalytic synthesis steps after the water-gas shift unit operation.  Production 

of mixed alcohols further adds a distillation step to separate fuel ethanol from the other 

alcohols.  In all cases, unit operations are highly integrated to achieve heat recovery and 

utilize waste heat in electricity production. 

 

Figure 7 Process flow diagram for gasification of lignocellulosic biomass to hydrogen, methanol, mixed alcohols, 
or Fischer Tropsch liquids 

Technical and economic data for hydrogen and methanol production come from 

Hamelinck and Faaij,7 which assumed biomass throughput equivalent to 400 MW 

thermal and pressurized, oxygen-blown gasification.  This represents a hydrogen plant 

yielding 182 million gallon per year at a cost of $0.24 per gallon of hydrogen or a 

methanol plant yielding 96 million gallons per year at a cost of $0.64 per gallon (2002 

basis year).  Technical and economic data for production of Fischer Tropsch liquids 

comes from a study by Tijmensen et al., 8 which assumes pressurized, oxygen-blown 

gasification.  This analysis found that a plant of 35 million gallon per year capacity would 

produce Fischer Tropsch liquids at a cost of $2.37 per gallon (2002 basis year).  
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Technical and economic data for production of mixed alcohols comes from a study 

Phillips et. al.,9, which assumed atmospheric, indirectly heated gasification.  This analysis 

found that a plant of 61.8 million gallons of ethanol per year capacity would have a 

production cost of $1.01 per gallon (2005 basis year). 

Fast pyrolysis is another thermochemical route to liquid fuels.  Rapid heating of biomass 

at moderate temperatures (450 – 500 C) in the absence of oxygen directly yields a liquid 

product. As illustrated in Figure 8, bio-oil production involves four major operations: 

comminution of the feedstock; fast pyrolysis; gas cleaning to remove particulate matter; 

and recovery of bio-oil. Although bio-oil can be directly used as boiler fuel or even fired 

in certain kinds of engines, it is not suitable as transportation fuel without further 

upgrading.  However, the optimal size of a plant to produce bio-oil is included in this 

study because it illustrates the opportunities to explore distributed processing of biomass.  

Technical and economic data comes from Ringer et. al.10 Their analysis found that a plant 

of 28 million gallons per year capacity (assumed 90% capacity factor) would have a 

production cost of $0.59 per gallon of bio-oil (2003 basis year).  

 

Figure 8  Process flow diagram for production of bio-oil from fast pyrolysis 

One option for upgrading bio-oil is hydrocracking it to diesel fuel and gasoline.15  

Another option for upgrading bio-oil is gasification followed by catalytic synthesis to 

Fischer Tropsch liquids.  However, insufficient technical and economic data is currently 

available to include these biofuels options in the present study.   

Methodology 

The petroleum-based motor fuels industry is characterized by giant refineries, processing 

petroleum at a rate equivalent to gigawatts of power.  This situation exists because plant 

operating costs are driven by economies of scale, which causes plant operating costs to 
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increase more slowly as a plant gets bigger.  Specifically, the operating cost (excluding 

fuel costs) of a plant, CP, scales with plant capacity, M, according to the power law: 

CP = CPo (M/Mo)
n        (1) 

where CPo is the plant operating cost for a plant of capacity Mo and n is a power law 

exponent less than unity, often assumed to be 0.6 (the “sixth-tenth” rule).  Ngyuen and 

Prince2suggest that n is likely in the range of 0.6 to 0.8 while Jenkins3, in analyzing the 

optimal size of electric power plants, argues that this range is only appropriate for 

biomass power plants of size less than 50 MW electrical.  He cites a study by Fisher et 

al.16 that supports values of n as large as 0.93-0.94 for coal-power plants in the size range 

of 100 – 1,400 MW.   

The total cost, CT, for producing a quantity M of motor fuel from fossil fuel is the sum of 

the cost of plant operations, CP, the cost of feedstock at the mine mouth, CF, and the cost 

of feedstock delivery (transportation), CD: 

CT = CP + CD + CF        (2) 

= CPo (M/Mo)
n + CFo (M/Mo) + CDo (M/Mo)    (3) 

where CFo is the feedstock cost and CDo is the feedstock delivery cost for a plant of 

capacity Mo.  The unit cost for the resulting motor fuel ($ per gallon) is determined by 

dividing through by the plant capacity M: 

(CT /M)= (CPo/Mo
n) Mn-1 + (CFo/Mo) + (CDo /Mo)    (4) 

Thus, for n less than unity, it is evident that unit cost of the motor fuel from fossil fuel 

feedstocks decreases as the plant gets bigger without limit. 

The case is more complicated for biomass fuel since it does not come from a single mine 

mouth located a fixed distance from the plant but is dispersed over a large area 

surrounding the plant.  Thus, delivery cost for a unit of biomass fuel increases as the 
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capacity of the plant increases because the biomass must be delivered from increasingly 

greater distances.  Such an analysis has been explored by several researchers 1, 2, 3. 

The cost of biomass delivery is proportional to both transport distance and the quantity of 

biomass transported.  Since the amount of biomass around a plant increases as the square 

of distance, D, from the plant, the cost of delivery is: 

CD = CDo(D/Do)(M/Mo) = CDo(M/Mo)
0.5(M/Mo) = CDo(M/Mo)

1.5 =CDo(M/Mo)
m  (5) 

where Do is the delivery distance for a plant of capacity Mo and m has been substituted 

for 1.5 to allow for some variation in this power law.  Nguyen and Prince2 argue that the 

power law exponent m might be as large as 2 if available land for biomass becomes 

increasingly sparse with distance from a plant, although in most cases 1.5 is probably a 

realistic value for m.  

The total cost for producing a quantity of biomass-derived motor fuel is the cost of plant 

operations, CP, the cost of biomass fuel delivery, CD, and the cost of biomass fuel at the 

farm gate, CF: 

CT = CP + CD + CF        (6) 

= CPo (M/Mo)
n + CDo(M/Mo)

m + CFo(M/Mo)    (7) 

This expression is divided by M to obtain the unit cost for motor fuel produced from 

biomass: 

(CT /M)= (CPo/Mo
n) Mn-1 + (CDo/Mo

m) Mm-1 + (CFo/Mo)     (8) 

Since n-1 is less than zero and m-1 is greater than zero, the first term on the right hand 

side of Eq. 8 decreases with plant capacity while the second term increases with plant 

capacity.  Thus, there is an optimum plant size to achieve minimum unit cost of motor 

fuel derived from biomass, which is obtained by differentiating Eq. 8, setting it equal to 

zero, and solving for Mopt/Mo.  The result obtained is: 
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 (Mopt/Mo) = {[(1-n)/(m-1)](CPo/CDo)}
1/(m-n)     (9) 

It is evident from this expression that if operating costs CPo for a baseline plant of size 

Mo are much greater than the transportation cost CDo of biomass, then the optimum plant 

size Mopt will be much greater than the size of the baseline plant.   

Further insight into plant size optimization can be found by rearranging Eq. 9 as follows: 

 CDo(Mopt/Mo)
m / CPo(Mopt/Mo)

n =  (1-n)/(m-1)             (10) 

The quantity on the left hand side of Eq. 10 is recognized as the ratio of cost of delivery 

of biomass to the cost of plant operations, R, under the conditions of optimization; thus:   

 Ropt = (CD/CP)opt= (1-n)/(m-1)               (11) 

This indicates that, for a plant sized to give the minimum unit cost of motor fuel, the ratio 

of delivery cost to operating cost depends only on the power law exponents m and n.  For 

example, assuming n is 0.6 (the sixth-tenth rule of economies of scale) and m is 1.5, 

delivery costs will equal 80% of plant operating costs in an optimally sized plant for 

minimum unit cost of motor fuel. 

 Nguyen and Prince2 present data on the unit cost of motor fuel for sugar cane ethanol 

plants of different sizes in an effort to identify the value Ropt that gives the minimum cost 

ethanol.  Their data indicates that this minimum occurs when Ropt is about 0.46 (although 

they mistakenly report it to be 0.60 in their paper).  This corresponds to n equal to 0.77, 

somewhat larger than the classical sixth-tenths value but not unexpectedly large.  

Once values of n and m are selected, the unit cost of biofuel as a function of plant of size 

M can be calculated from Equation 8 and from knowledge of the cost of plant operations, 

the cost of feedstock, and the cost of feedstock delivery for a plant of arbitrary baseline 

size Mo.  The cost of plant operations, CPo, for baseline cases of the various kinds of 

biofuel plants was obtained from the literature cited in the background section of this 

paper.  All plant operating costs were inflation adjusted to place them in the common 



 

 

basis year of 2005.  The farm gate cost of feedstock was assumed to be $75.71/ton 

($2.12/bushel) for corn (the price in the basis year 2005) and $40/ton of lignocellulosic 

biomass.   

The cost of delivering feedstock from the farm gate to the plant gate 

    

where CDU is the unit cost for feedstock delivery (dollars per ton per mile), 

average delivery distance of feedstock, and F is the tons of feedstock delivered annually 

to the plant.  The unit cost of feedstock delivery for corn grain

lignocellulosic biomass18 is $0.71/ton/mi.  

For biomass uniformly distributed around a processing plant, the maximum radius r

around the plant from which feedstock must be delivered

 max
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where f is the fraction of the acreage around a plant devoted to feedstock production 

(assumed to be 60% in this study) and Y is the annual yield of feedstock (assumed to 140 

bushel per acre or  3.92 tons/acre for corn grain and 5 tons/acre for lignocellulosic 

biomass).   

The average (land area-weighted) radius from which feedstock is obtained around the 

plant is two-thirds of rmax.  The actual distance traveled by a truck delivering biomass is 

greater than the radial (straight

the road network.  To account for this additional distance, a “tortuosity factor” 

defined as the ratio of actual distance traveled to the straight

Tortuosity factors can be about 1.2 for developed agriculture regions where roads are laid 

out in rectangular grids or as great as 3.0 for less developed re

basis year of 2005.  The farm gate cost of feedstock was assumed to be $75.71/ton 

($2.12/bushel) for corn (the price in the basis year 2005) and $40/ton of lignocellulosic 

The cost of delivering feedstock from the farm gate to the plant gate is calculated from:

       

is the unit cost for feedstock delivery (dollars per ton per mile), r

average delivery distance of feedstock, and F is the tons of feedstock delivered annually 

unit cost of feedstock delivery for corn grain17 is $0.018/bu/mi and for 

is $0.71/ton/mi.   

For biomass uniformly distributed around a processing plant, the maximum radius r

around the plant from which feedstock must be delivered is given by: 

        (13)

where f is the fraction of the acreage around a plant devoted to feedstock production 

(assumed to be 60% in this study) and Y is the annual yield of feedstock (assumed to 140 

tons/acre for corn grain and 5 tons/acre for lignocellulosic 

weighted) radius from which feedstock is obtained around the 

.  The actual distance traveled by a truck delivering biomass is 

than the radial (straight-line) distance to the plant depending upon the nature of 

the road network.  To account for this additional distance, a “tortuosity factor” 

defined as the ratio of actual distance traveled to the straight-line distance from the plant.  

Tortuosity factors can be about 1.2 for developed agriculture regions where roads are laid 

out in rectangular grids or as great as 3.0 for less developed regions. The present analysis 
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basis year of 2005.  The farm gate cost of feedstock was assumed to be $75.71/ton 

($2.12/bushel) for corn (the price in the basis year 2005) and $40/ton of lignocellulosic 

is calculated from: 

 (12) 

r is the 

average delivery distance of feedstock, and F is the tons of feedstock delivered annually 

is $0.018/bu/mi and for 

For biomass uniformly distributed around a processing plant, the maximum radius rmax 

(13) 

where f is the fraction of the acreage around a plant devoted to feedstock production 

(assumed to be 60% in this study) and Y is the annual yield of feedstock (assumed to 140 

tons/acre for corn grain and 5 tons/acre for lignocellulosic 

weighted) radius from which feedstock is obtained around the 

.  The actual distance traveled by a truck delivering biomass is 

line) distance to the plant depending upon the nature of 

the road network.  To account for this additional distance, a “tortuosity factor” τ is 

line distance from the plant.  

Tortuosity factors can be about 1.2 for developed agriculture regions where roads are laid 

gions. The present analysis 



 

 

 

42

assumes the tortuosity factor is 1.5.  Based on these adjustments, the average delivery 

distance is: 

 
2
3

F
D

fY
τ

π
=            (14) 

Capital costs range from a low of $68 million for the 74 million gge grain ethanol plant to 

$1.52 billion for the 488 million gge Fischer-Tropsch diesel plant.  All of the cellulose-

to-biofuels plants exceed one-half billion dollars to build at their optimal size (which are 

larger than 236 million gge of biofuels).  The unit cost of bio-oil is only $0.64 per gge for 

the optimally scaled plant although bio-oil is not suitable as motor fuel without additional 

upgrading.  It is followed by hydrogen at $1.21, methanol at $1.35, grain ethanol at 

$1.47, Fischer Tropsch diesel at $1.53, biochemical cellulosic ethanol at $1.78, and 

ethanol from the mixed alcohols process at $1.82.  Among the cellulosic biofuel options, 

ethanol, whether produced biochemically or thermochemically, is the most expensive to 

produce. 

The total production costs for each of the plants (with the exception of the fast pyrolysis 

process) are plotted as functions of plant size in Figure 7. As expected, total costs at first 

decline rapidly as plant capacity increases. Eventually total costs reach a minimum value.  

These minima are remarkably shallow.  With the exception of the grain ethanol plant, 

capacity can be varied by 100 million gge or more around the optimal capacity without 

substantially affecting unit cost of biofuel production.  Below about 50 million gge, or 75 

million gallons ethanol, the grain ethanol process yields the lowest unit cost of biofuel.  

At larger plant capacities, grain ethanol becomes   
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Table 7 tabulates the average delivery distances and annual cost of delivering biomass to 

the baseline plants calculated according to Equations 14 and 12, respectively.  Average 

delivery distance ranges between 5.5 miles and 11.4 miles for these seven base cases. The 

table also includes the volumetric (lower) heating values of the biofuels produced for 

each process because comparisons among the different fuels are done on the basis of 

gallons gasoline equivalency (gge).   

Table 8 is a compilation of plant size, capital cost (inflation adjusted to 2005), plant 

operating costs (inflation adjusted to 2005), unit cost of biofuels production, and R value 

of the various baseline biofuel plants to support the subsequent analysis of this study.  

The fact that none of the R values approaches the optimal value of 0.8 suggests that these 

baseline plants are far from the size that yields the minimum unit cost of biofuels 

production. 

Results 

Table 9summarizes the results of the plant size optimization for processing cost power 

law exponent, n, and delivery cost power law exponent, m, equal to 0.6 and 1.5 

respectively (corresponding to R equal to 0.8).  The biofuels plants are listed in order of 

increasing optimal plant capacity in terms of gallons of gasoline equivalent (gge):  corn 

grain ethanol, fast pyrolysis of biomass to bio-oil, biochemical production of cellulosic 

ethanol, gasification of lignocellulosic biomass to methanol, hydrogen, mixed alcohols, 

and Fischer Tropsch diesel. The relatively low unit cost of plant operations relative to 

feedstock delivery for corn grain ethanol allows it to be built at an optimal scale of 74 

million gge.  In comparison, biochemical cellulosic ethanol requires a plant of 236 

million gge capacity and the gasification-based biofuel plants range is size from 344 

million gge to 488 million gge to produce biofuel at minimum unit cost.  On the basis of 

gallons of gasoline equivalency, optimally sized plants based on gasification are 50 – 

100% larger than biochemical cellulosic ethanol plants.  With the exception of the 

pyrolysis to bio-oil plant, all optimally-sized biofuel plants using lignocellulosic biomass 
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as feedstock consume 4.4 – 7.8 million tons of biomass annually compared to 1.1 million 

tons of corn for the optimally sized grain ethanol plant. 

Capital costs range from a low of $68 million for the 74 million gge grain ethanol plant to 

$1.52 billion for the 488 million gge Fischer-Tropsch diesel plant.  All of the cellulose-

to-biofuels plants exceed one-half billion dollars to build at their optimal size (which are 

larger than 236 million gge of biofuels).  The unit cost of bio-oil is only $0.64 per gge for 

the optimally scaled plant although bio-oil is not suitable as motor fuel without additional 

upgrading.  It is followed by hydrogen at $1.21, methanol at $1.35, grain ethanol at 

$1.47, Fischer Tropsch diesel at $1.53, biochemical cellulosic ethanol at $1.78, and 

ethanol from the mixed alcohols process at $1.82.  Among the cellulosic biofuel options, 

ethanol, whether produced biochemically or thermochemically, is the most expensive to 

produce. 

The total production costs for each of the plants (with the exception of the fast pyrolysis 

process) are plotted as functions of plant size in Figure 9. As expected, total costs at first 

decline rapidly as plant capacity increases. Eventually total costs reach a minimum value.  

These minima are remarkably shallow.  With the exception of the grain ethanol plant, 

capacity can be varied by 100 million gge or more around the optimal capacity without 

substantially affecting unit cost of biofuel production.  Below about 50 million gge, or 75 

million gallons ethanol, the grain ethanol process yields the lowest unit cost of biofuel.  

At larger plant capacities, grain ethanol becomes more expensive than hydrogen (at 50 

million gge), methanol (at 100 million gge), and Fischer Tropsch diesel (at 325 million 

gge).  Ethanol produced from lignocellulosic biomass, either biochemically or 

thermochemically is more expensive than ethanol from $2.12/bushel corn grain even at 

plant capacities of one billion gge. 
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Table 7 Average delivery distances and delivery costs for baseline cellulosic biomass plants 

Plant 

Biofuel 
Heating 
Value 

(MJ/L) 

Plant 
Size 

(million 
gge*) 

Biomass 
Input 

(million 
tons) 

Average 
Delivery 

Distance** 
(miles) 

CDo*** 
(millions) 

Grain Ethanol 
 21 16.7 0.25 6.44 $1.16 

Biochemical Cellulosic Ethanol 21 33.5 0.66 11.8 $5.51 

Gasification to Hydrogen (Liquid) 6 47.9 0.67 10.5 $4.99 

Gasification to Methanol 
 16 43.4 0.67 10.5 $4.95 

Gasification to Mixed Alcohols 
 21 41.2 0.77 11.3 $6.15 

Gasification to Fischer-Tropsch Diesel 36 40.4 0.64 10.3 $4.66 

Fast Pyrolysis to Bio-oil 19.6 17.3 0.18 5.46 $0.695 

*     Gallons gasoline equivalency 
**   Assumes feedstock yield of 3.92 tons/acre for corn grain and 5 tons 

per acre for lignocellulosic biomass; land utilization factor of 60%; 
and tortuosity factor of 1.5. 

*** Assumes feedstock delivery cost of $0.018/bu/mi for corn grain and 
$0.71/ton/mi for lignocellulosic biomass. 
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Table 8 Base Case Sizes and Annual Costs 

Process M0  

(millio
n 

gge*) 

Bioma
ss  

Input  
(millio
n tons) 

Capital 
Costs** 
(million

s) 

Operating Costs  
(millions) 

CT/
Mo 

(per 
gge*) 

R**
* 

CPo*
* 

CDo CFo CTo 

Grain Ethanol 
 16.7 0.25 $27.9 

$5.8
6 $1.16 

$18.
9 

$25.
9 $1.55 0.20 

Biochemical Cellulosic Ethanol 33.5 0.66 $294 
$40.

5 $5.51 
$26.

4 
$72.

4 $2.16 0.14 

Gasification to Hydrogen 
(Liquid) 
 47.9 0.67 $244 

$38.
8 $4.99 

$26.
8 

$70.
6 $1.47 0.13 

Gasification to Methanol 
 43.4 0.67 $254 

$40.
4 $4.95 

$26.
8 

$72.
2 $1.66 0.12 

Gasification to Mixed Alcohols 
 41.2 0.77 $137 

$61.
9 $6.15 

$30.
8 

$98.
9 $2.40 0.10 

Gasification to Fischer-Tropsch 
Diesel 40.4 0.64 $341 

$54.
6 $4.66 

$25.
6 

$84.
8 $2.10 0.09 

Fast Pyrolysis to Bio-oil 17.3 0.18 $30 
$4.3

5 
$0.69

5 
$7.2

0 
$12.

2 $0.71 0.16 

*   Gallons gasoline equivalency 
** Adjusted to 2005 basis year 
*** R is the ratio of cost of delivery of biomass to the cost of plant operations 
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Table 9 Optimum Plant Annual Capacity and Operating Costs (R = 0.8) 

 

Relatively optimistic assumptions were made about lignocellulosic biomass yield (5 tons 

per acre) and the percentage of land around the plant that would be devoted to growing 

this biomass (60%). Reductions in either yield or the percentage of land use could 

significantly reduce the optimal size of biomass processing plants as calculated in this 

study.  For example, substituting an agriculture residue such as corn stover for a 

dedicated energy crop might reduce the yield of lignocellulosic biomass to 2.5 tons per 

acre.  Alternatively, the number of producers surrounding the plant willing to produce a 

dedicated energy crop like switchgrass might control only 30% of the land surrounding a 

processing plant.  In either case, the optimal size of plants processing lignocellulosic 

biomass would be reduced by about 30%.   

Process M  
(million 

gge) 

Biomass 
Input 

(million 
tons) 

Capital 
Cost 

(millions) 

Operating Costs 
(millions) 

CT/M  

(per 

gge) 

Volumetric 

Annual 

Plant 

Capacity 

(millions of 

gallons) 

CT/M 

(per 

gal) 
CP CD CF CT 

Grain 
Ethanol 74 1.11 68.2 $14.3 $11 $84 $109 $1.47 111 $0.98 

Fast 
Pyrolysis to 
Bio-oil 110 1.14 91.6 $13.2 $11.1 $45.8 $70.1 $0.64 178 $0.14 

Biochemical 
Cellulosic 
Ethanol 236 4.65 949 $131 $103 $186 $420 $1.78 354 $1.19 

Gasification 
to Methanol 344 5.31 881 $140 $111 $212 $463 $1.35 690 $0.67 

Gasification 
to Hydrogen 362 5.06 822 $131 $104 $203 $437 $1.21 1376 $0.32 

Gasification 
to Mixed 
Alcohols 416 4.42 549 $248 $197 $311 $756 $1.82 624 $0.71 

Gasification 
to Fischer-
Tropsch 
Diesel 488 7.73 1520 $243 $196 $309 $748 $1.53 425 $1.76 
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Another scenario that would result in smaller optimally sized processing plants is 

illustrated in Figure 10, which is a plot of optimum plant size as a function of the power 

law exponent n that describes the scaling of feedstock processing costs with plant size. 

For low values of n, the optimal plant capacity increases with increasing n. After a 

maximum optimum plant size is reached, optimal plant sizes decrease rapidly with 

increasing n indicating that small biofuels plants could be economically built if linear 

scaling (n approaching unity) prevailed.  In principle, linear scaling could be approached 

by mass production of small-scale biofuels plants whereas today plants are custom 

designed and constructed.  However, the authors are not aware of any such instances of 

mass production that demonstrate the practicality of this principle.  Of course, any 

technology advances that reduce the capital cost and hence capital charges in the plant 

operating costs would also tend to reduce the optimal size of plants. 

On the other hand, it is easy to envision changes to the grain ethanol plant that would 

increase its optimal size and reduce the cost of ethanol production.  For example, many 

ethanol producers are considering the addition of front-end separation of corn oil to their 

dry-grind ethanol plants, which would increase plant processing costs.  Transportation 

costs for these plants could be significantly reduced if grain was shipped by rail or barge 

instead of by truck.  According to Eq. 9, these factors will increase the optimal size of a 

grain ethanol plant to something larger than the 74 million gge calculated in this study as 

well as lower the cost of grain ethanol. 

Conclusions 

Unlike fossil fuel processing plants for which unit cost of fuel product decreases as the 

plant gets larger, optimal biomass processing plant capacities are expected that achieve 

the lowest unit cost of biofuel production.  The optimal capacity depends upon the value 

of power law exponents used in scaling relationships that describe the costs of feedstock 

processing and delivery, respectively, and upon the relative cost of feedstock processing 

compared to feedstock delivery.   
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Data from the published literature was used to evaluate the optimal size of several 

biorefinery concepts. In the order of their increasing optimal plant size these are:  corn 

grain ethanol, fast pyrolysis to bio-oil, biochemical production of cellulosic ethanol, 

gasification to methanol, gasification to hydrogen, gasification to mixed alcohols, and 

gasification to Fischer Tropsch diesel.  Optimally sized plants based on gasification are 

50 – 100% larger (gge basis) than the biochemical cellulosic ethanol plant.  Biorefineries 

converting lignocellulosic biomass into transportation fuels are optimally sized in the 

range of 236 to 488 million gge per year and require 4.4 – 7.8 million tons of biomass 

annually compared to 1.1 million tons of corn grain for an optimally sized grain ethanol 

plant.  Capital costs for advanced biofuels plants are similarly much greater than for a 

grain ethanol plant, ranging from $549 million for a mixed alcohols plant to $1.52 billion 

for a Fischer-Tropsch diesel plant compared to $68.2 million for the grain ethanol plant.  

Among the cellulosic biofuel options, ethanol, whether produced biochemically or 

thermochemically, is the most expensive to produce. 

The minima in the unit cost of cellulosic biofuel vs. plant capacity are so shallow that, 

with the exception of the fast pyrolysis plant, plant size can be varied by as much as 100 

million gge around the optimal capacity without substantially affecting unit cost of 

biofuels production.   

Although optimally sized biorefineries based on lignocellulosic biomass are predicted in 

this study to process four to seven times as much feedstock as grain ethanol plants, three 

factors could reduce the optimal size of these advanced biorefineries.  First, reductions in 

either biomass yield or the percentage of land surrounding a plant dedicated to biomass 

crops would significantly increase the distance required to collect biomass, making it too 

expensive to build as large of plant as projected in this study.  Second, making the power 

law for biomass processing nearly linear through mass production of small-scale biofuels 

plants might reduce the optimal size of these plants.  Finally, technology advances that 

reduce capital costs of the plant would reduce the size of plant that produces biofuel at 

the lowest unit cost. 
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Figure 9 Unit Cost of Biofuels Production vs Plant Size 

 

Figure 10 Effect of processing cost scale factor n on the optimal size of biofuels plants 
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Distributed Processing of Biomass to Bio-Oil for Subsequent Production 

of Fischer-Tropsch Liquids 

A paper to be published Biofuels, Bioproducts & Biorefining (April 2008) 

Mark M. Wright, Robert C. Brown, Akwasi A. Boateng 

Abstract 

This study compares centralized processing to distributed processing of biomass for 

subsequent production of Fischer-Tropsch liquids (FTL) at a centralized catalytic 

synthesis facility.  Distributed processing in this study is based on fast pyrolysis to bio-

oils, which are more economically transported to a centralized F-T plant where bio-oil is 

gasified and the syngas catalytically converted to F-T liquids.  The study indicates that a 

centralized gasification plant can produce Fischer-Tropsch liquids from biomass for 

$1.56 per gallon of gasoline equivalent (gge) in an optimally sized plants of 550 million 

gge per year.  Three distributed processing systems were investigated based on the scale 

of biomass processing capacity:  “on-farm” pyrolyzers of 5.4 ton per day (tpd) capacity; 

“small cooperative” pyrolyzers of 55 tpd capacity, and “large cooperative” pyrolyzers of 

550 tpd capacity.  Distributed processing is combined with very large centralized bio-oil 

processing plants that accept bio-oil for catalytic upgrading to transportation fuels, 

achieving costs as low as $1.43 for total fuel production capacities in excess of 2500 

million gge. Total capital investment (distributed pyrolyzers and centralized bio-oil 

processing plant) for this optimally sized distributed processing system is projected to be 

$4 billion compared to $1.6 billion for the centralized biomass processing facility.
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Introduction 

The optimal size of advanced cellulosic biofuel plants are expected to be up to five times 

as large as existing grain to ethanol plants.1  As much as 23,000 tons of biomass would 

have to be shipped daily to such a plant, which would have serious impacts on 

transportation infrastructure and communities near the plant. Distributed biomass 

processing has the potential to alleviate biomass delivery expenses by densifying biomass 

prior to shipping to a central facility for upgrading to renewable transportation fuels. 

One method of densifying biomass is converting it to bio-oil via fast pyrolysis.2 The 

specific gravity of bio-oil from switchgrass is 1.2-1.3 compared with 0.5 for pelletized 

switchgrass.3 Biomass pyrolysis can reduce transportation costs by converting feedstock 

to a liquid product. Badger and Fransham argue that fast pyrolysis reactors can be built 

economically at small scales, allowing their use in distributed processing systems.4  The 

high density of bio-oil is expected to result in lower transportation costs compared to 

chopped or baled biomass, allowing it to be transported longer distances at a reduced 

cost.  Low transportation costs will result in larger optimally-sized fuel production 

facilities and lower unit costs for fuel.1 

This paper considers fast pyrolysis as a means of densifying biomass for transportation 

with subsequent upgrading at a centralized refinery to transportation fuel. Two scenarios 

are considered for producing Fischer-Tropsch liquids (FTL): centralized gasification of 

biomass crops and centralized gasification of bio-oil produced from distributed 

processing of biomass crops.  Distributed processing is considered at three scales: 5.4 

tons per day (“on-farm”), 55 tons per day (“small co-op”), and 550 tons per day (“large 

co-op”).  

Background 

Thermochemical conversion of biomass via gasification is likely to occur in large-scale 

plants processing in excess of 2000 ton per day.1  Large plants take advantage of 

economies of scale to reduce unit production costs. This is evident in the petroleum 
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industries where petroleum refineries can achieve process rates equivalent to 140,000 

barrels per day (about 2 billion gallons per year) due to relatively low crude oil 

transportation costs. While increasing capacity generally leads to lower production costs, 

biomass processing facilities are constrained by feedstock availability. Because of the 

diffuse nature of biomass, land availability and transportation costs limit biomass 

conversion plants to an optimum plant size. In a previous study, the optimum plant size 

for a biomass to Fischer-Tropsch liquids (FTL) plant was found to be 486 million gallons 

of gasoline (gge) equivalent per year and 104 million gge for fast pyrolysis to bio-oil 

requiring biomass inputs of 1.08 and 7.69 million tons per year, respectively.1 

Biomass-to-liquids (BTL) is premised on the gasification of biomass followed by 

catalytic upgrading to FTL.5 The primary products of Fischer-Tropsch synthesis are a 

mixture of light hydrocarbon gases, paraffin waxes, and alcohols according to the 

generalized reaction:6 

CO + 2H2→  —CH2— + H2O  

Depending on the types and quantities of Fischer-Tropsch products desired, either low 

(200–240 °C) or high temperature (300–350 °C) synthesis is used with either an iron (Fe) 

or cobalt catalyst (Co).  Additional processing of the F-T products yields diesel fuel or 

gasoline. 

The biomass gasification to Fischer-Tropsch liquids process can be conceptualized as a 

five step process. These processes, which are shown in Figure 11, include comminution, 

gasification, gas clean-up, water gas shift, and catalytic processing to the desired fuels. A 

large number of variations and additions to this biomass gasification technology can be 

envisioned.5 

Comminution consists of mechanical treatment of the feedstock to reduce its particle size 

and moisture content based on process requirements. Selection of reactor type and 

operating conditions generally dictate the extent of the pre-treatment required for optimal 

conversion to synthetic gas. Gasification can occur at a variety of operating conditions 
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but for Fischer-Tropsch catalysis oxygen-blown, high pressure (>10 bar) and high 

temperature (>1000 oC) gasifiers are preferred. The concept selected in this paper 

employs and oxygen-blown, pressurized gasifier from the Gas Technology Institute 

(GTI) operating at 20.3 bars and 980 oC.7 Gas cleaning includes removal of particulate 

matter and trace contaminants including sulfur, chlorine, and ammonia. Some 

contaminants, particularly sulfur, are extremely active catalyst poisons that can limit the 

catalytic process and result in high expenses for catalyst replacement. Fouling of the 

catalyst can occur at very small concentrations measured in the parts per billion ranges.8  

Synthetic gas composition can vary widely from different gasifier technologies and 

operating conditions, and catalyst requirements depend on the major metal component 

employed; the water-gas shift reaction adjusts the H2:CO ratio of the syngas when 

required by the catalyst. Finally, a Fischer-Tropsch reactor using a metal based catalyst is 

used to convert the syngas to a mixture of hydrocarbons. 

 

Figure 11 Flow diagram biomass to liquids production based on centralized biomass gasification 

Studies of biomass gasification plants producing Fischer-Tropsch liquids have found fuel 

costs range from $1.10 to $4.10 per gallon. 9,10 We employ the frequently cited study of 

Tijmensen et al.7  Their analysis of a 35 million gallon plant yielded a production cost of 

$2.37 per gallon fuel. 

Distributed processing is one potential solution to supplying feedstock to large 

biorefineries. In this concept, small processing equipment or facilities located in close 

proximity to the feedstock are employed to densify the biomass prior to shipping. While 
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different approaches to densification can be considered, this paper examines fast 

pyrolysis for distributed processing.  The resulting bio-oil is more easily shipped to a 

centralized processing facility for generation of electric power11,12 or for upgrading to 

transportation fuel.13 

Fast pyrolysis employs a rapid heating of biomass at moderate temperatures (450 – 500° 

C) in an anaerobic environment to yield liquid, solid (char), and gaseous products.14 The 

liquid product is known as pyrolysis liquid or more commonly as bio-oil. Bio-oil is a 

mixture of various organic compounds resulting from fragmentation of cellulose, 

hemicellulose, and lignin polymers. 15, 16, 17 Up to 75 wt-% of the biomass weight can be 

converted to liquids with the balance consisting of non-condensable gas (NCG) and 

charcoal. 18 

The scheme for pyrolytic pretreatment of biomass and bio-oil upgrading is illustrated in 

Figure 12. Biomass is ground to 1-3 mm fiber lengths and dried to about 10% moisture to 

achieve the desired yields of bio-oil. 14  The biomass is pyrolyzed and the resulting 

vapors passed through a particulate matter separation device before being condensed to 

liquid product. Numerous reactor designs have been considered,19 but fluid bed and 

circulating fluid bed reactors are most commonly employed due to ease of operation and 

scale-up.20 Gas clean-up is used to separate solid particles, or aerosols, entrained in the 

gas stream. Condensation can take place over various heat exchangers to yield different 

bio-oil fractions.3Bio-oil can be pumped into a tanker truck for transportation to an 

upgrading facility.4 Gasification of bio-oil followed by Fischer-Tropsch Synthesis is one 

method to convert bio-oil into a transportation fuel.13 



 

Figure 

Charcoal can provide the energy for pyrolysis although the energy value is only a

$25/ton based on coal selling for $1.10/GJ. However, charcoal is increasingly being 

recognized as a valuable co-product that can be used for soil enrichment and carbon 

sequestration. 21  When markets develop for sequestering carbon dioxide from the 

atmosphere, the value of charcoal as a carbon sequestration agent could be considerably 

higher than its fuel value. 

Various techno-economic analyses of fast pyrolysis plants are available in the 

literature.22, 23, 24, 25 Prior investigations estimated bio

between $0.4122 and $1.2126 

Ringer et. al.27  for a 550 dry tons per 

per year at a cost of $0.62 per gallon. This recent (2006) analysis includes the detailed 

technoeconomic study of pyrolysis technology that could be employed with minimum 

modifications in this research.

 

Figure 12 Distributed Biomass Processing Diagram 

Charcoal can provide the energy for pyrolysis although the energy value is only a

$25/ton based on coal selling for $1.10/GJ. However, charcoal is increasingly being 

product that can be used for soil enrichment and carbon 

When markets develop for sequestering carbon dioxide from the 

osphere, the value of charcoal as a carbon sequestration agent could be considerably 

economic analyses of fast pyrolysis plants are available in the 

Prior investigations estimated bio-oil production costs to range 

 per gallon. Our analysis is based on the NREL report by 

for a 550 dry tons per day plant producing 28 million gallons of bio

per year at a cost of $0.62 per gallon. This recent (2006) analysis includes the detailed 

technoeconomic study of pyrolysis technology that could be employed with minimum 

modifications in this research. 

 

 

58

Charcoal can provide the energy for pyrolysis although the energy value is only about 

$25/ton based on coal selling for $1.10/GJ. However, charcoal is increasingly being 

product that can be used for soil enrichment and carbon 

When markets develop for sequestering carbon dioxide from the 

osphere, the value of charcoal as a carbon sequestration agent could be considerably 

economic analyses of fast pyrolysis plants are available in the 

duction costs to range 

per gallon. Our analysis is based on the NREL report by 

day plant producing 28 million gallons of bio-oil 

per year at a cost of $0.62 per gallon. This recent (2006) analysis includes the detailed 

technoeconomic study of pyrolysis technology that could be employed with minimum 
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Methodology 

The approach to this study consists of combining data from existing techno-economic 

analyses to compare the cost of producing Fischer-Tropsch liquids via centralized and 

distributed biomass processing systems. The present analysis incorporates analytical 

methods for scaling plant capital and production costs, calculating feedstock delivery 

costs, and determining the optimal size of plants that process biomass.   

Two main process configurations are considered in this paper: centralized biomass 

gasification (CBG) and distributed biomass processing (DBP). Distributed processing is 

considered at three scales: 5.4 tons per day (“on-farm”), 55 tons per day (“small co-op”), 

and 550 tons per day (“large co-op”). These distributed pyrolyzer sizes were chosen as 

representative of potential fast pyrolysis applications as well technology availability. For 

example, processing 5.4 tons of biomass per day would consume the output of an average 

size Iowa farm (355 acres) 28 yielding 5 ton/acre of biomass crop.   

Plant capital costs follow a power law commonly known as economies of scale that 

dictates decreasing costs with increasing plant capacity. This relationship is expressed as: 

 
n

o
pop M

MCC 





=                  (1) 

where Cpo is capital cost for a plant of annual fuel production capacity  Mo and n is the 

scale factor, which is usually taken to be about 0.6 (the “sixth-tenth rule).  Linear scaling 

(n = 1.0), which implies that capital costs per unit of production is invariant with the size 

of the plant, favors the construction of smaller plants to achieve the lowest fuel 

production costs.1  Linear scaling might be achieved through mass production, which 

would require processing plants small enough to be factory assembled or field assembled 

from a few modular subsystems.  Anecdotal evidence suggests a factory assembled or 

modular plant might be as large as a few tens of tons of biomass per day, setting the 

upper bound on the size of a plant that could be mass produced and achieve linear 

scaling. In this analysis, large plants (biomass gasification and large co-op) follow a 0.6 
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scale factor while the 5.4 tpd and 55 tpd distributed pyrolysis plants employ linear 

scaling. 

Table 10 Biorefinery Capital Cost Components Based on Reference Plant Size* 

Gasification + FT  

(35 MMGPY FTL)
7 

Cost 

(millions) 

Fast Pyrolysis  

(28 MMGPY Bio-oil)
27 

Cost 

(millions) 

Pre-treatment $71.6 Handling and Drying $5.57 

Gasifier $61.4 Pyrolysis Reactor $3.92 

Oxygen Plant $51.1 Quench $1.94 

Cleaning Section $61.4 Heat Recovery $1.14 

Shift $3.41 Product Recovery and Storage $0.80 

FT Reactor $20.5 Recycle $1.38 

Gas Turbine $23.9 Steam and Power Production $3.16 

Heat Recovery Steam Generator $37.5 Utilities $3.13 

Other $10.2 Contingency $7.37 

Total $341 Total $28.4 

* Only total capital costs employed in scaling calculations 

Operating costs typically involve various components of which some are specific to 

certain processes. To determine the annual feedstock cost for a given fuel output, the first 

step is to calculate the amount of biomass required: 

BBTF

G

E
EM

F
η

=                (2) 

where F is the total biomass input in units of tons per year, EG and EB represent the 

energy content of gasoline and biomass respectively, and ηBTF  is the biomass to liquid 

fuel efficiency. The plant capacity M is given in units of gallons of gasoline equivalent 

(gge) per year and converted to energy units by a factor of 31.8 MJ per gallon of 

gasoline. The biomass energy value assumed here is 19.5 MJ/kg. The value of ηBTF is 

process dependent and has a value of 46% for biomass to Fischer Tropsch liquids and 

40% for biomass to Fischer Tropsch liquids with fast pyrolysis processing. The farm-gate 

cost of feedstock is assumed to be $40 per ton for all concepts. Other plant operating cost 

components are process dependent and include items such as maintenance and labor 
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charges. A full listing of all estimated process cost components and their calculation 

methods are included inTable 11 and Table 12. 

Table 11 Biomass Gasification Annual Operating Cost Components Based on Reference Plant Sizea 

Gasification + FT  

(35 MMGPY) 

Cost  

(millions) 

Explanation 

Capital Charge $44.4 13% of TCI 

Maintenance $10.2 3% of TCI 

Personnel $2.22 Linear scaling 

Dolomite $1.06 Linear scaling 

Waste water  $1.03 Linear scaling 

ZnO consumption $0.03 $33.3k/year 

FT cat. Insurance $0.44 1% Ann Dep. 

Key Parameter Parameter  

Value 

Explanation 

Biomass to Fuel Efficiency 46% MJ FTL per MJ Biomass 

Bio-oil to Fuel Efficiencyb 58%  MJ FTL per MJ Bio-oil 

FTL Energy Value 36 MJ per Liter 

aFarm gate feedstock cost of $40 per ton for all concepts 
bAll data comes from Ref. [7] except for Bio-oil to Fuel Efficiency which comes from Ref [13] 

 

The charcoal byproduct from fast pyrolysis has the potential of becoming an important 

revenue stream. Establishing a long-term carbon price is a speculative process at this time 

even though some markets have seen significant activity.29 A $50/ton credit is assigned to 

charcoal production, which assumes the charcoal (85% carbon) has value as a carbon 

sequestration agent equivalent to $16/ton carbon dioxide.  The charcoal, which contains 

various inorganic compounds, also has potential as fertilizer30 and soil organic matter,21 

but this has not been factored into the charcoal credit.  

  



 

 

 

62

Table 12 Biomass Fast Pyrolysis Annual Operating Cost Components Based on Reference Plant Sizea 

Fast Pyrolysis  

(28 MMGPY) 

Cost 

(millions) 

Explanation 

Water Treatment $1.00 Linear scaling 

Electricity (credit) $0.21 Linear scaling 

Labor $1.34 0.6 power law scaling 

Overhead $0.80 60% Labor 

Maintenance $0.57 2% Equip. 

Insurance/ Taxes $0.72 1.5% TCI 

Charcoal (credit) $1.92 $50/ton 

Key Parameter Parameter 

Value 

Explanation 

Biomass to Bio-oil Efficiency 69% MJ Bio-oil per MJ Biomass 

Char yield 16.2% Kg Char per Kg Biomass 

Bio-oil Energy Value 19.7 MJ per Liter 

aAll data adapted from Ref. [27] except for Charcoal (credit) which comes from Ref.[29] 

For the centralized biomass processing case, the average delivery distance to the central 

plant from a circular area surrounding the central plant is given by: 

fY

F
r circle

π
τ

3

2_

=         (3) 

where τ is the tortuosity factor, which is a function of a region’s road development and 

reflects the ratio of actual distance traveled to the straight line distance to a location.31 A 

tortuosity factor of 1 corresponds therefore to a straight line trajectory between two given 

points. A value of 1.5 is assumed here, which is characteristic of a rectangular grid road 

layout. Y is the biomass yield in tons per acre. The factor f is the fraction of land 

surrounding the plant that is devoted to biomass crops. The exact value is site specific 

and depends upon land availability, environmental concerns, and other local 

considerations; here a value of 60% is assumed. Once the average delivery distance is 

calculated, it is multiplied by a unit cost for biomass transportation ($0.7132 per ton per 

mile). 
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For the distributed biomass processing case, a square grid is assumed around the 

centralized bio-oil processing plant with distributed pyrolysis plants located at the center 

of the squares making up the grid.  The average biomass transportation distance to a 

pyrolysis plant is equal to the average distance from a random point in the square to the 

center of the square:33 

))21ln(2(
6

1_

++=
fY

F
r square τ       (4) 

Also needed is the average distance that bio-oil must be shipped from distributed 

pyrolysis plants to the centralized bio-oil processing plant.  This quantity depends upon 

the amount of biomass that must be converted to bio-oil and the size of the distributed 

pyrolysis plants, as shown in Figure 3.  From this figure a power law for calculating bio-

oil transportation distance was determined: 

 

Figure 13 Average Bio-oil Delivery Distance to Central Plant 
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A larger mass of bio-oil can be transported than biomass by a single truck by virtue of its 

higher volumetric density. This is reflected in a lower bio-oil unit transportation cost. The 

unit cost for bio-oil transportation is assumed to be $0.14 per ton per mile.34 

Using the above information on processing costs and transportation costs, the unit cost of 

biofuel as a function of total fuel output was calculated for centralized biomass 

processing and distributed biomass processing with subsequent centralized upgrading to 

FTL.  As described in a previous paper, an optimal size for minimum fuel production 

costs is expected1. 

Results 

Figure 14 plots fuel cost as a function of fuel production capacity for centralized biomass 

gasification (CBG) and three scales of distributed biomass processing (DBP). CBG has a 

clearly discernable minimum cost of $1.56 for fuel production that occurs at a fuel 

production capacity of 550 million gge.  From Figure 14, fuel cost for DBP appears to 

decrease monotonically with increasing fuel production capacity.  In fact, DBP also has 

optimal plant sizes, but these occur at fuel production capacities well in excess of 2.5 

billion gge.  Fuel cost also decreases for DBP as the size of the distributed pyrolyzers 

gets smaller.  For sufficiently large fuel production capacity, DBP is more cost-effective 

than CBG.  This occurs at 450 million gge for 5.4 tpd pyrolyzers and 700 million gge for 

550 tpd pyrolysis plants. 
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Figure 14 Fuel Production Cost at Different Plant Sizes for Central and Distributed Processing 

 

Figure 15 Operating Cost Components at Optimum Centralized Processing Output Size 

Figure 15 shows the major cost components for the four biomass processing scenarios for 

total fuel production capacity of 550 million gge which is the optimum capacity for the 

centralized biomass processing concept. Differences in fuel costs are essentially 

indistinguishable for these four scenarios at this capacity (± 30% uncertainty), however, 

there are major differences in the distribution of major cost components for CBG and 
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DBP. O&M costs are lower for CBG because of favorable economies of scale.  Biomass 

costs are also lower for CBG because a centralized plant has higher thermodynamic 

efficiencies.  On the other hand, transportation costs for DBP are less than half that of 

CBG because of the short distances that biomass has to be hauled for a distributed system 

(0.56 miles compared to 37 miles).    Keep in mind that as total fuel capacity increases 

beyond 550 million gge, biomass transportation costs for CBG balloons while it increases 

only modestly for DBP because transportation costs per mile for bio-oil is only 20% the 

cost of biomass transportation.  This difference in transportation costs also explains why 

distributed processing employing the smallest pyrolyzers (5.4 tpd) yielded the lowest 

production costs shown in Figure 5. 

Table 4 summarizes capital costs for the four biofuel production systems.  Capital costs 

for the 550 million gge CBG plant totals $1.63 billion.  Capital costs for the centralized 

bio-oil plant in the DBP system is only $1.6 billion because of the simpler feedstock 

handling system for bio-oil compared to biomass. Of course, the distributed pyrolyzers 

required for DBP add substantially to the capitals cost of this approach to biofuels.  Large 

coop pyrolyzers (550 tpd) cost  $47.8 million each which comes to a $2.63 billion 

investment for the pyrolyzers alone.  Total capital cost of DBP employing large coop 

pyrolyzers would come to $4.1 billion. The small coop pyrolyzer and on-farm pyrolyzer 

systems have identical aggregate costs within a 5% uncertainty  

Table 13 Capital Costs for Centralized and Distributed Plant Scenarios at 550 Million gge Capacity 

 CBG DBP  

Number of Plants 

Central Central Distributed  

1 1 55 

Capital Cost (billions) $1.6 $1.4 $2.6 

Total $1.6 $4.1 
Capital costs for DBP based on 550, 55, and 5.4 tpd pyrolyzers are identical within ±5% uncertainty 

A sensitivity analysis was conducted to study the effects of key variables. These are 

biomass yield, fuel conversion efficiency, transportation cost. Charcoal credit sensitivity 

was included in the pyrolysis technologies analysis. While there are numerous factors 

that could greatly affect the cost of BTL fuels, the impact of these selected variables can 
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easily be studied in this model for both CBG and DBP. Figure 16 includes the results of 

this analysis. 

 

Figure 16 Sensitivity Analysis of 550 million gge for Centralized and 5.4 tpd Distributed Processing 

As shown in Figure 16, there are various factors that can significantly affect the cost of 

biofuel production. Fuel conversion efficiency, a reflection of process performance, 

indicates that improving conversion efficiency from 46 to 55% can reduce fuel costs by 

$0.25 per gallon produced for centralized biomass processing. Due to the large biomass 

delivery distances that CBP would require, it is no surprise that a 20% increase in 

transportation costs can increase fuel production costs by $0.08 per gge (from $1.56 to 

$1.64 per gge). In this analysis, low crop yields would be require an increase in the area 

of cropland employed to grow biomass which would raise the biomass delivery distance 

and subsequently production costs. A 20% decrease in crop yields would raise fuel 

production costs by $0.04 per gge. DBP has a markedly lower sensitivity to 

transportation costs and biomass yields due to the reduction in average biomass delivery 

distances. In fact, a 20% increase in biomass delivery costs would only increase DBP fuel 

costs a bit more than a tenth of a cent per gge. DBP is affected by process efficiency with 

potential $0.23 per gge reduction in cost for 20% increase in process efficiency. Charcoal 

cost also stands to have a significant impact on fuel costs; a 50% variation in the cost of 

charcoal assumed here would alter fuel costs by $0.09 per gallon. These results 



 

 

 

68

underscore the importance of process efficiency as well as mark the vulnerability of a 

centralized biomass processing scenario to variations in the biomass harvesting and 

transportation system. 

Conclusions 

Distributed processing of biomass to bio-oil followed by gasification of the bio-oil and 

catalytic conversion of syngas to FTL offers production cost advantages over a more 

traditional system of centralized biomass gasification and F-T synthesis at fuel 

production capacities exceeding 550 million gge per year.  Higher operation and biomass 

costs of the distributed processing system are off-set by much lower transportation costs 

of bio-oil compared to biomass.  An additional advantage of distributed processing is a 

low sensitivity to variations in delivery costs and crop yields. This is important because 

delivery costs are hard to predict due to variations in transportation fuel costs, and 

regional considerations.  

On the other hand, the distributed processing system comes at much higher capital cost 

than the centralized biomass processing system. Capital costs will be a major factor in 

future technology selection. Distributed processing incurs a large capital expense that will 

require solid financing and long-term commitments.  

As shown in this analysis, large scale production of transportation fuel from biomass will 

require large investments in the order of billions of dollars. Distributed processing of 

biomass could be necessary at large production scales to lower fuel transportation costs, 

and reduction in capital investment expenses would allow for a faster implementation of 

these advanced biomass conversion pathways.  
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General Conclusions 

General Discussions 

Advanced biorenewable technologies show great promise as a substitute to fossil-based 

transportation fuels. The low cost of petroleum has limited the development and adoption 

of biomass derived chemicals. Increases in the cost of petroleum as well as public 

awareness of the benefits of a biorenewable society are creating renewed opportunities 

for biofuels. If the rise in the price of oil, now over $90 a barrel, constitutes a long –term 

trend, investment in alternatives will increase. As the perceived value of the additional 

benefits of a biorenewable society increases, the adoption of alternatives could occur 

more rapidly than market conditions would dictate. 

As shown in this study, advanced biorenewable plants require large capital investments. 

Without guarantees in the long –term price of oil, investors have been reluctant to invest 

these large amounts of money. A reduction in the capital costs would attract 

entrepreneurial interest. Reductions can be achieved through research and development 

as well as public policy. Current policies, such as the ethanol subsidy, favor the 

traditional biochemical approach and less capital intensive solutions. The adoption of 

advanced technologies with better efficiencies, environmental impacts, and economical 

returns will benefit from an appreciation of these benefits.  

Other challenges exist in the adoption of biomass based fuels. Some of these challenges 

have been discussed in this study. Cost and availability of feedstock could become a 

problem as output capacity increases. Infrastructure challenges that include fuel delivery 

and engine compatibility will need to be addressed. Exploring the biofuel 

technoeconomic issues should help provide solutions that would advance the adoption of 

biorenewable technologies in a sustainable and responsible manner. 
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Recommendations 

Biorenewable technologies continue to evolve and different pathways gain increased 

interest as new developments are discovered. These new developments will have to be 

compared to other technologies based on both their technical and economical merits. 

Some of the more recent developments include the hybrid concepts, new chemicals of 

interest, and scenarios such as various distributed systems. Due to the high risk inherent 

in the investment of unproven technologies, technoeconomic studies of promising 

solutions need to improve to better forecast the related costs and benefits. 

Process design tools that model various technical and economical aspects of chemical 

processes are available. These tools are currently not optimized to deal with biomass 

based processes, but as research in this area increases these tools can be expected to 

improve. The accuracy in the results of technoeconomic studies will improve as 

additional information regarding biomass properties and conversion performance become 

available from both academia and industry. 

The aim of this study was to provide a general framework for the discussion of 

biorenewable fuel technologies. The ±30% uncertainty in these kinds of analyses requires 

that specific applications be analyzed much further. On the other hand, general analysis 

can help shape public policy and guide investment in research. Publishing these tools in a 

variety of media could help increase awareness and usefulness of the results. For 

example, simple software packages that are made publically available for rapid 

comparison of available and new fuel technologies can be envisioned.  It is possible to 

reach larger audiences, which are becoming more interested in alternatives to petroleum, 

by providing these studies in formats that are easy to understand and adopt. 
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Appendix 

The appendix includes all the spreadsheet tables employed in this study and are arranged 

based on the studies supported by the results. Equations and calculations have been 

included in each of the articles. 

Comparative Economics of Biorefineries Based on the Biochemical and 

Thermochemical Platforms 

Table 14 Summary of Capital Costs of Biorefineries (150 MMGPY gge) 

Fuel Type Base Size 
[gallons of 
gasoline 

equivalent/year] 

Final Size 
[gallons of 
gasoline 

equivalent/year] 

Base Total 
Capital 

Investment 

Final Total 
Capital 

Investment 
(2005 $) 

Final Total 
Capital 

Investment 
[$/bpd] 

Grain Ethanol 16,666,667 150,000,000 $27,900,000 $126,272,390 $12,728 

Cellulosic Ethanol 33,524,570 150,000,000 $294,000,000 $755,624,446 $76,167 

Methanol 43,390,372 150,000,000 $254,350,000 $658,052,637 $66,332 

Hydrogen 47,892,242 150,000,000 $244,320,000 $589,898,987 $59,462 

Fischer-Tropsch 40,425,842 150,000,000 $341,000,000 $853,801,492 $86,063 
 

Table 15 Summary of Operating Costs of Biorefineries (150 MMGPY gge) 

Fuel Type Fuel Cost [$/gallon 
of gasoline 

equivalent] 2005 
Dollars 

Capital 
Costs 

Biomass Operation and 
Management 

Miscellaneous/Credits 

Grain 
Ethanol $1.22 $0.08 $1.27 $0.36 -$0.49 

Cellulosic 
Ethanol $1.76 $0.50 $1.06 $0.20  

Methanol $1.28 $0.52 $0.79 $0.18 -$0.20 

Hydrogen $1.05 $0.39 $0.71 $0.16 -$0.21 

Fischer-
Tropsch $1.80 $0.61 $0.90 $0.29  
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Table 16 Summary of Base Case Operating Cost Components 

Grain Ethanol 
17 
MMGPY Cellulosic Ethanol 

34 
MMGPY 

Shelled Corn  $17.0 Feedstock $36.3 

Other Raw Materials  $1.6 O&M Variable $8.1 

Denaturant  $0.6 O&M Fixed $12.1 

Utilities  $4.0 Capital $36.3 
Labor, Supplies, and Overhead 
Expenses  $3.1 Power -$4.0 

Depreciation of Capital  $2.8     

DDG Credit - -$7.1     

Total Production Cost  $22.0   $88.7 

      

Methanol 
43 
MMGPY Hydrogen 

48 
MMGPY 

Capital (MUS$) $30.2 Capital (MUS$) $29.0 

O&M $10.2 O&M $9.8 

Biomass $24.8 Biomass $24.7 

Costs/income power -$8.7 Costs/income power -$9.9 

Total Production Cost $56.5   $53.6 

      

Diesel 
40 
MMGPY    

Biomass $29.2    

O&M $14.6    

Investment Costs $43.8    

Total Production Cost $87.5     
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Table 17 Grain Ethanol Base Case Costs 

Base Size 25,000,000 25,000,000 gal Ethanol/year 

Final Size 25,000,000 225,000,000 gal Ethanol/year 

    

Base Total Capital 
Investment $27,900,000 $27,900,000  

Final Total Capital 
Investment 

$27,900,000 $111,372,248  

Scale Factor 0.63 0.63  

    

Shelled Corn 
$17,000,000 $2.12 $167,368,421 

Other Raw 
Materials 

$1,600,000 $0.06 $13,500,000 

Denaturant $600,000 $0.03 $6,750,000 

Utilities $4,000,000 14% $15,592,115 

Labor, Supplies 
and Overhead 
Expenses $3,100,000 11% $12,250,947 

Depreciation of 
Capital 

$2,800,000 10% $11,137,225 

DDG Credit -$7,100,000 -$0.29 -$65,250,000 

Total Operating 
Cost $22,000,000.00 $2.27 $161,348,708 

Operating Cost 
$0.88 $0.72 $/gallon of Ethanol 

 
$1.32 $1.08 

$/gallon of gasoline 
eq 

 
$1.50 $1.22 

(2005) $/gallon of 
gasoline equivalent 

    

CPI (Base Year 
2005) 0.882 0.882 2000 
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Table 18 Lignocellulosic Ethanol Capital and Operating Costs 

Base Total Capital Investment $294,000,000  

Final Total Capital Investment $755,624,446  

Scale Factor 0.63  

Efficiency 35% efficiency to fuel 

Base capital cost $2.10 $/W of ethanol 

   

Base size 400,000,000 W 

Final size 1,789,732,143 W 

Base Biomass Input 2000 ton/day 

Final Biomass Input 8949 ton/day 

Biomass Cost $158,531,945  

   

Operational Costs   

Maintenance $22,668,733 0.03 

Labour $4,783,719 0.005 

Gas Cleaning $377,812 0.005 

Insurance $755,624 0.001 

Sub-total $28,585,889  

Consumables   

Dilute Acid $7,338 $.82/tonne biomass input 

Lime $7,785 $.87/tonne biomass input 

Cellulase $515,137 $.013/L ethanol 

Ammonia $589,634 $.24/kg, consumption of .062kg/l ethanol 

CSL $681,566 $.20/kg, consumption of .086kg/l ethanol 

Dolomite $10,629 $50/tonne, consumption of .3kg/kg clean dry wood 

Sub-total $1,812,090  

Capital Cost $75,562,445  

Total $264,492,369  

Operating Cost $1.18 $/gal of ethanol 

 $1.76 2005 $/gal of gasoline equivalent 

 $13.21 $/GJ 

Biomass Cost 50 $/English ton 

Conversions Factors   

1 0.907 English ton 

1.5 1 gallon of gasoline 

89,000,000 1 gallon of ethanol 
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Table 19 Methanol Capital and Operating Costs 

Base total capital 
investment 

254,350,00
0 

254,350,00
0  

Final total capital investment 
606,066,47

9  

Scale Factor  0.7  

Efficiency to fuel  45.3%  

Efficiency to power  8.5%  

Operation Time  8000 hr 

    

Base size 
400,000,00

0 
400,000,00

0 W 

Final size  
1,382,795,2

54 W 

    

Base Biomass Input 80 80 dry ton/hr 

Final Biomass Input  277 dry ton/hr 

Operational Costs    

Capital 
$30,233,33

3 
$72,051,76

9 
Annual Capital cost calculated from 
Hamelinck 

Operation and 
management 

$10,166,66
7 

$24,242,65
9 4% of total capital investment 

Biomass 
$24,666,66

7 
$108,876,4

89 $50/English Ton 

Costs/income power 
-

$8,633,333 

-
$28,043,08

8 $.03/kWh and 12.4% power efficiency 

    

Total 
$56,483,33

3 
$177,127,8

29 $ 

Operating Cost  $0.59 $/gal of methanol 

  $1.18 $/gal of gasoline eq 

  $1.28 2005 $/gal of gasoline eq 

 $10.37 $9.82 $/GJ of Fuel produced 

Biomass cost $50  dollars/English ton 

Power cost/credit $0.03  dollars/kWh  

    

Conversions Factors    

1 tonne 0.907 English ton 

56800 BTU 1 gallon of Methanol 

114000 BTU 1 gallon of gasoline 
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1055 Joules 1 BTU 

CPI  0.921 2002 

59924000 
1.1074918

57   

1.018708    
Table 20 Hydrogen Operating and Capital Costs 

Base total capital 
investment 

$244,320,0
00 

$244,320,0
00  

Final total capital 
investment  

$543,296,9
67  

Scale Factor  0.7  

Efficiency to fuel  50.0%  

  9.6%  

  8000 hr 

    

Base size 
400,000,00

0 
400,000,00

0 W 

Final size  
1,252,812,5

00 W 

    

Base Biomass Input  80 dry ton/hr 

Final Biomass Input  251 dry ton/hr 

    

Operational Costs    

Capital 
$29,400,00

0 
$54,329,69

7 
Annual Capital cost calculated from 
Hamelinck 

Operation and 
management $9,760,000 

$21,731,87
9 4% of total capital investment 

Biomass 
$24,700,00

0 
$98,642,09

9 $50/English Ton 

Costs/income power 
-

$9,880,000 

-
$28,985,07

0 $.03/kWh and 12.4% power eff. 

    

Total 
$53,580,00

0 
$145,718,6

05 $ 

Operating Cost  $0.26 $/gal of hydrogen 

  $0.97 $/gal of gasoline eq 

  $1.05 2005 $/gal of gasoline eq 

 $9.05 $8.08 $/GJ of Fuel produced 

    

Biomass cost $50  dollars/English ton 
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Power cost/credit $0.03  
dollars/kW
h  

Conversion Factors    

1 tonne 0.907 English ton 

30000 BTU 1 gallon of hydrogen 

114000 BTU 1 gallon of gasoline 

1055 Joules 1 BTU 

CPI  0.921 2002 

31650000    

0.16458 
0.1786970

68   

 

Table 21 Fischer-Tropsch Capital and Operating Costs 

Base Total Capital 
Investment 341,000,000    

Final Total Capital 
Investment 853,801,492    

Scale Factor 0.7    

Efficiency to fuel 0.46    

Operation time 8000 h   

Base size 168,820,000 W 40,425,842 gal of gasoline/year 

Final size 626,406,250 W 
150,000,00

0 
gal of gasoline 
equivalent/year 

     

Base Biomass Input 367,000,000 W 684,386 English ton/year 

Final Biomass Input 1,361,752,717 W 2,539,413 English ton/year 

     

Basis 427000000 Watts input   

Annual Depreciation $85,380,149 10% of Total capital investment 

Operational Costs     

Maintenance $25,614,045 3% of Total capital investment 

Personnel $8,192,840 
0.7MUS$/100 
MW 367 MW input for basis 

Dolomite $3,905,560 $47.6/tonne 25728 tonne input for basis 

Waste-water treatment $2,944,022 
0.21MUS$/75 
MW 367 MW input for basis 

ZnO $33,300 33.3 KUS$/year  

FT cat. Consumption 
insurance $853,801    

Operational Costs $41,543,569    

     

Biomass $126,970,666    
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Total $253,894,383.34    

Operating Cost $1.95 $/gal of Diesel  

 $1.69 $/gal of gasoline equivalent  

 $1.80 2005 $/gal of gasoline eq.  

Biomass Cost 50 $/English Ton   

Conversion Factors     

131000 BTU/gal of Diesel    

114000 
BTU/gal of 
gasoline    

0.94 CPI    

Establishing the Optimal Sizes of Different Kinds of Biorefineries 

Table 22 Base Case Values for Optimal Plant Size Calculations 

Fuel Type M0 Biomass 
Input 

(million) 

CPo 
(milli
on) 

CDo 
(million) 

CFo 
(million) 

CT 
(milli
on) 

CT/Mo R 

Grain 
Ethanol 25.0 0.25 $5.0 $1.1 $18.6 $24.8 $0.99 

0.2
3 

Cellulosic 
Ethanol 69.6 0.93 $52.5 $20.4 $21.3 $94.2 $1.35 

0.3
9 

Methanol 88 0.64 $40.4 $14.1 $14.7 $69.2 $0.78 
0.3

5 

Hydrogen 182.0 0.64 $38.8 $14.1 $14.7 $67.6 $0.37 
0.3

6 

Fischer-
Tropsch 35.2 0.59 $54.6 $12.9 $13.5 $81.0 $2.30 

0.2
4 

Fast 
Pyrolysis 1.0 7.50 $438.6 $165.0 $172.5 $776.1 $776.10 

0.3
8 

  Squares can be varied       

         

Fuel Type Transporta
tion Cost 

[$/ton] 
Biomass 
Cost 

Plant 
Scale 
Facto
r (n) 

Transporta
tion Scale 
Factor (m) 

Calculat
ion 

Plant 
Start 
Size 

Step 
Size 

Largest 
Size 

Estimat
ed 

 

Grain 
Ethanol $4.64 75.71 0.60 1.5 80 1 107  

Cellulosic 
Ethanol $22.0 23 0.60 1.5 80 1 134  

Methanol $22.0 23 0.60 1.5 80 3 242  

Hydrogen $22.0 23 0.60 1.5 80 10 620  

Fischer-
Tropsch $22.0 23 0.60 1.5 80 3 242  

Fast 
Pyrolysis $22.0 23 0.60 1.5 10 1 37  
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Table 23Optimal Plant Sizes Results (Note: not same as published results) 

Study Case         

Grain Ethanol 100.5 0.99 $11.5 $9.2 $74.9 $95.6 $0.95  

Cellulosic 
Ethanol 134.0 1.78 $77.8 $54.4 $41.0 $173.2 $1.29  

Methanol 221.0 1.60 $70.1 $55.7 $36.8 $162.6 $0.74  

Hydrogen 440.0 1.55 $65.9 $14.1 $35.6 $115.6 $0.26  

Fischer-Tropsch 137.0 2.29 $123.3 $12.9 $52.6 $188.8 $1.38  

Fast Pyrolysis 20.0 150.00 
$2,646.

6 $165.0 
$3,450.

0 $313.1 $2.01  

         

         

Optimum Case        

Fuel Type Mo Biomass 
Input 

(million 
Ton) 

Cpo 
(million

) 

Cdo 
(million

) 

Cfo 
(million

) 

Ct 
(million

) 

Ct/Mo 
($/gal 
of gas 
eq.)   

Grain Ethanol 
              
101  

         
0.99  $11.5 $9.2 $74.9 $20.7 $0.95 

0.8
0 

Cellulosic 
Ethanol 

              
134  

         
1.78  $77.8 $54.4 $41.0 $132.2 $1.29 

0.7
0 

Methanol 
              
221  

         
1.60  $70.1 $55.7 $36.8 $125.8 $0.74 

0.8
0 

Hydrogen 
              
440  

         
1.55  $65.9 $52.9 $35.6 $118.9 $0.35 

0.8
0 

Fischer-Tropsch 
              
137  

         
2.29  $123.3 $99.2 $52.6 $222.6 $2.01 

0.8
0 

Fast Pyrolysis 
               
10  

        
75.00  

$1,746.
1 

$5,217.
8 

$1,725.
0 

$6,963.
9 

$696.3
9 

2.9
9 
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Distributed Processing of Biomass to Bio-Oil for Subsequent Production of 

Fischer-Tropsch Liquids 

Table 24 Summary Results of Distributed Biomass Processing and Central Gasification 

Input      

Case CG DP550 DP55 DP5.4 DG 

Bio Energy Gasified 
[MW] 4986 5687 5687 5687 4986 

Total Output [MMGPY 
gge] 

550.0
0 550.00 550.00 550.00 

550.0
0 

Number of Plants   55 541 5502 1 

Biomass Input (tpd per 
plant)   540 55 5.4   

      

      

Case CBG 
DBP 550 tpd, 
n=0.6 

DBP 55 tpd, n 
=1 

DBP 5.4 tpd, n 
= 1  

Transportation Cost 0.38 0.15 0.10 0.09 0.38 

Capital Cost 0.39 0.34 0.34 0.34 0.39 

Biomass Cost 0.59 0.72 0.72 0.72 0.59 

O&M 0.20 0.39 0.39 0.39 0.20 

Total Cost 1.56 1.60 1.55 1.53  

      

Capital Costs (billions) 
 
$1.63  $4.05  $4.03  $4.03  $1.42  

 

Table 25 Totals of Distributed Pyrolysis Units Operating Costs 

Totals for 55 plants  

Biomass Cost  $396,141,814                      0.72   

Biomass transportation  $38,418,243                      0.07   

Operation and management  $125,770,935                      0.23   

  $560,330,992                      1.02  $/gal of FT Diesel 

                      0.37  $/gal of Bio-oil 
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Table 26 Centralized Gasification Operating and Capital Costs 

Base Plant Size 367 MW 

Plant Size 4986 MW 

Plant Efficiency 0.46  

Plant operation time 8000 hr 

   

FT Diesel 2293.545658 MW 

 1,809,206,107 Liters Diesel/year 

                 550,000,000  gge 

Biomass input 7,363,892,415 kg/year 

                     7,363,892  tonne/year 

                     8,117,344  English ton/year 

   

Switchgrass production                          3,200  tons/mi^2 

                          6,342  mi^2/year 

Base Plant TCI $341,000,000 $ 

Final Plant TCI $1,631,565,358 $ 

Scale Factor 0.6  

   

Production Costs   

Biomass Cost $324,693,773 40 

Annual Depreciation $212,103,496  

Maintenance $48,946,961  

Personnel $29,997,550  

Dolomite $14,299,955  

Waste water treatment $13,960,713  

ZnO consumption $33,300  

FT cat. Insurance $2,121,035  

Total  $              646,156,782  100% 

Transportation Cost   

Yield [Y]                          3,200  tons/mile^2 

Available land [a]                            0.60   

average direct distance x 24.5 miles 

average delivery distance x 36.68 miles 

Birrell's Model 0.71 $/ton/mile 

   

Operating Costs 1.17 $/gge 

 9.78 $/GJ input 

Conversion Factors   

36.51 MJ/l of Diesel  

3.78 liters/gal  

1055 BTU/J  

19.5 MJ/kg of Biomass  
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Table 27 Distributed Pyrolysis Units Capital and Operating Costs 

Energy Production per 
FP Plant 

                 
72.00  MW   

Number of plants 55    

Capital Cost 
$4,048,408,6
77    

Plant operation time 8000 hr   

Base Plant Cost  $48,291,646     

Base Equipment Cost  $28,410,000     

Base Electricity Credit  $(209,620)    

Base Biomass Input 550 dry tons/day   

Base Bio-oil production 
          
28,354,185  gallons/year 4.54 

Bio-oil density 
[kg/gal] 

Base Labor Cost  $1,340,920  1340920   

Plant Cost  $47,773,158  

 $    
2,627,523,68
9  0.6 Scale Factor 

Equipment Cost  $28,104,973   0.6 Scale Factor 

Biomass input [dry 
basis] 

                 
540.2  tons/day                    180,064  tons/year 

Bio-Oil production 
          
27,848,624  gallons/year 16.4 MJ/kg of bio-oil 

Char production 37814 tons/year 
                                          
0.21  g/g of feed 

Feedstock  $7,202,578  40 $/dry ton  

Water treatment  $982,170     

Electricity  $ (205,882)    

Labor  $1,326,523  0.6 Scale Factor  

Overhead  $795,914  0.6 60% of Labor  

Maintenance  $562,099  0.02 2% of Equip. Cost  

Insurance/taxes  $716,597  0.015 1.5% of TPI  

Char Credit 
 $ 
(1,890,677) -50 $/ton  

Operating Cost  $2,286,744  100%   

Switchgrass 
                       
5  tons/acre                   1,234.57  tons/km 

 
                
90,032  acres/year                         0.40  

Area Conservation 
Fraction 

Yield [Y] 
                 
3,200  tons/mile^2   

Available land [a] 
                   
0.60     

average delivery 
distance x 5.5 miles 1.5 tortuosity 

Birrell Cost  $698,514  0.71 $/ton/mile  
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