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ABSTRACT 

Previous work shows that young children focus on holistic (or overall) 

similarity and older children focus on dimensional similarity (selectively attending 

to one property to the exclusion of others). Research on early word learning, 

however, suggests that process of learning new words trains attention towards 

category-relevant dimensions via regularities in the linguistic and physical 

environment. Thus, over development, children learn to attend to specific 

dimensions when making nominal category judgments—they selectively attend to 

shape, for example, when learning names for solid objects. In four experiments, I 

asked a question fundamental to our understanding of dimensional attention: does 

word learning scaffold attention to dimensional similarity in more general contexts. 

The results of Experiment 1 showed that children who are holistic classifiers are 

slower than dimensional classifiers to learn categories of objects that vary along both 

a category-relevant dimension (e.g. size) and a category-irrelevant dimension (e.g. 

brightness). However, the results of Experiment 2 showed that when children were 

presented with incidental labels during category learning, holistic classifiers learn 

the categories as quickly as dimensional classifiers. In a follow-up similarity 

classification task, children who had been holistic classifiers showed an increase in 

dimensional attention only if they had been in the label experiment. In Experiments 

3 and 4, I examined category learning with and without a label in children who 

preferred to selectively attend to one dimension of similarity (e.g. brightness) 

regardless of whether this means selecting dimensional or holistic matches in a 

classification task. The results of these experiments provide a more complete picture 
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of the continuous developmental trajectory of increasing selective and flexible 

dimensional attention. By showing how labels support dimensional attention, these 

results clarify the processes involved in development of similarity perception and 

potentially unify our understanding of attentional processes in word learning with 

those in a broader context.  
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To the Language Development student whose name I’ve long since forgotten who came 
to my office hours and said, “I don’t know what this paper ‘Lupyan, Rakison, & 

McClelland’ is,” to which I responded, “I don’t know either, let me Google that for you.” 
Your lack of attention in class has forever changed the course of my life. 
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To illustrate, how does one learn to distinguish claret from burgundy? … the adhesion of 
each wine with its own name becomes more and more inveterate, and at last each flavor 

suggests instantly and certainly its own name and nothing else. The names differ far more 
than the flavors, and help to stretch these latter farther apart. Some such process as this 
must go on in all our experience. Beef and mutton, strawberries and raspberries, odor of 

rose and odor of violet, contract different adhesions which reinforce the differences 
already felt in the terms. 

 
William James 

Principles of Psychology 
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ABSTRACT 

Previous work shows that young children focus on holistic (or overall) 

similarity and older children focus on dimensional similarity (selectively attending 

to one property to the exclusion of others). Research on early word learning, 

however, suggests that process of learning new words trains attention towards 

category-relevant dimensions via regularities in the linguistic and physical 

environment. Thus, over development, children learn to attend to specific 

dimensions when making nominal category judgments—they selectively attend to 

shape, for example, when learning names for solid objects. In four experiments, I 

asked a question fundamental to our understanding of dimensional attention: does 

word learning scaffold attention to dimensional similarity in more general contexts. 

The results of Experiment 1 showed that children who are holistic classifiers are 

slower than dimensional classifiers to learn categories of objects that vary along both 

a category-relevant dimension (e.g. size) and a category-irrelevant dimension (e.g. 

brightness). However, the results of Experiment 2 showed that when children were 

presented with incidental labels during category learning, holistic classifiers learn 

the categories as quickly as dimensional classifiers. In a follow-up similarity 

classification task, children who had been holistic classifiers showed an increase in 

dimensional attention only if they had been in the label experiment. In Experiments 

3 and 4, I examined category learning with and without a label in children who 

preferred to selectively attend to one dimension of similarity (e.g. brightness) 

regardless of whether this means selecting dimensional or holistic matches in a 

classification task. The results of these experiments provide a more complete picture 
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of the continuous developmental trajectory of increasing selective and flexible 

dimensional attention. By showing how labels support dimensional attention, these 

results clarify the processes involved in development of similarity perception and 

potentially unify our understanding of attentional processes in word learning with 

those in a broader context.  
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CHAPTER I: THE DEVELOPMENT OF DIMENSIONAL 

ATTENTION 

Over the course of development, we become increasingly skilled at attending to 

one thing to the exclusion of others (see Hanania & Smith, 2010 for review). For 

example, adults can easily focus on the color of a lime, rather than its exact shape or size, 

in order to distinguish it from a lemon. This ability, known as selective attention, is one 

that has long been recognized as critical to our cognition. In fact, William James, in his 

seminal book Principles of Psychology, wrote, “the art of being wise is the art of 

knowing what to overlook,” (1950). Evidence that older children and adults are generally 

much better than preschool age children at selectively attending to one dimension or 

property to the exclusion of others comes from a variety of domains including rule use 

(e.g. Frye, Zelazo, & Palfai, 1995), discrimination learning (e.g. Kendler & Kendler, 

1962), and similarity classification (e.g. Smith & Kemler, 1978). However, we still do 

not know the process by which this change occurs. The goal of this project is to explore 

the processes that drive changes in selective attention with respect to their effects on one 

particular domain: similarity perception. For example, how do children become able to 

judge a lime and a grasshopper as being the same with respect to color even though these 

objects are different with respect to other dimensions? 

 Similarity perception is critical to cognition. It has even been proposed to be the 

basis of categorization (Goldstone, 1994a, Medin, Goldstone, & Gentner, 1993). Thus, 

similarity has implications for a variety of domains, from basic cognitive processes such 

as object recognition (Edelman, 1999) and problem solving (Simon 1978), to more 

complex behaviors such as race perception (Greenberg & Macgregor-Hannah, 2010), to 

the vast developmental differences present in autism (Gastgeb et al., 2006). James had 

much to say on this topic as well. He believed similarity to be such a significant driving 
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force underlying cognitive processes that he described it as “the very keel and backbone 

of our thinking” (1950).  

The holistic-to-dimensional shift in similarity classification 

In the years since James, much has been done towards understanding how adults 

perceive similarity while considerably less work has been done on its development. What 

we do know comes from descriptions of shifts in classification behavior from one age to 

another. Of particular relevance to the current study is the holistic-to-dimensional shift, or 

the tendency for young children to focus on holistic similarity and older children and 

adults to focus on dimensional similarity relationships (Smith & Kemler, 1977). Imagine 

you are presented with an orange, a yellowish-orange ball, and a yellowish-orange toy 

car. If you are an adult, you would be more likely to group the ball with the car because 

they match exactly along one dimension (i.e. they are identical in color). A young child, 

however, would group the orange with the ball because they are similar along multiple 

dimensions (i.e. shape and color)—they are holistically similar. These changes in 

similarity perception occur during the early school-age years of childhood, such that 

younger children (< 8-years-old) tend to be holistic classifiers and older children 

dimensional classifiers.  

Evidence for such a shift comes from research using free classification tasks. As 

an example, a triad classification task is pictured in Figure 1. As can be seen in the figure, 

two stimuli (A and B) match on one dimension (e.g. size) but vary greatly along another 

dimension (e.g. brightness). The third stimulus (C) is highly similar to the first (A) along 

both dimensions, but not identical to it (A) on either. If a participant were using holistic 

similarity, he or she would classify A and C together. If a participant were using 

dimensional similarity, he or she would classify A and B together. Using this task Smith 

and Kemler (1977) found that 5-6 year-olds made mostly AC matches and 10-11 year-

olds made mostly AB matches. However, other research on the holistic-to-dimensional 
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shift shows even 5-6 year-olds attend to dimensional similarity relationships in some task 

contexts (Smith & Kemler, 1978; Smith, 1983). Additionally, analyses of individual 

children’s patterns of responding have revealed a common intermediate strategy between 

holistic and dimensional classification. A child following this “preferrer” strategy would 

selectively attend to one dimension, but not the other, on all trials, regardless of whether 

that meant selecting the holistic match or the dimensional match on a given trial (see 

Hanania & Smith, 2010). Thus, over development children go from an initial tendency to 

attend to overall similarity, to preferentially attending to one dimension of similarity, to 

being able to flexibly shift attention between dimensions depending on context. Together, 

these results suggest that the development of similarity classification is not a discrete 

change so much as a continuous shift towards increasingly selective and flexible 

attention.  

This more continuous picture fits with research on the development of attention 

switching showing that much younger children are able to attend to one dimension to the 

exclusion of others in some tasks. For example, in the dimensional change card sort 

(DCCS) task, 3-4 year-old children are asked to sort cards according to a rule, such as 

cards with pictures of blue shapes go in a pile and those with red shapes go in another 

pile (regardless of object shape). The central question in this task is whether, after 

attending to one dimension for a number of trials, children will be able to flexibly switch 

to attending to values along the other dimension. The canonical result is that on “post-

switch” trials, when the rule is switched so that now cards with one shape go in one pile 

and cards with another shape go in different pile (regardless of color), 3-year-old children 

tend to perseveratively sort by the first rule, while 4-year-old children are able to switch 

to the new rule (Frye et al., 1995). What processes enable 4-year-old children to show 

“mature” dimensional attention in this task while 5-6 year-old children cannot in the triad 

classification task?  
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One possibility is that the DCCS task makes fewer demands on children’s 

dimensional attention than the triad classification task. For example, in the DCCS 

children have to attend to specific values (e.g. blue and red) rather than a range of values 

along a dimension. Likewise, in deciding where to sort cards in the DCCS task, children 

have to choose between two visible targets that each match the sort card exactly on one 

dimension. In the triad classification task, on the other hand, overall (holistic) similarity 

is always pitted against dimensional similarity. Thus, a child who has even a small 

amount of trouble attending to one dimension at a time will be biased to choose the 

holistic match. For this reason, these two tasks are historically thought to measure 

different aspects of attentional development; the DCCS task is typically thought to 

measure the development of attention switching rather than selective attention.  

Nevertheless, Hanania & Smith (2010) recently argued that the development of 

selective attention also increases flexible attention switching. The crux of their argument 

comes from (what Hanania and Smith refer to as circumstantial) evidence that the 

developmental changes involved in children’s performance in the DCCS task mirror the 

changes involved in their performance in the triad task. In both tasks, children first 

become better at being able to attend selectively to one dimension. However, data from 

both tasks also show “sticky attention” to that one dimension—either pereseveratively 

sorting by the first rule in the DCCS task, or preferentially attending to only one 

dimension of similarity in triad classification. Thus, in both these cases, it is clear that the 

child with sticky attention lacks the flexibility to switch between attending to different 

dimensions. Considered together, the data from attention switching and selective 

attention tasks reveal a general trend over development from nonselective attention, to 

relatively selective but not flexible attention, to selective and flexible. Hanania and Smith 

therefore hypothesize that flexible attention is a necessary party of mature selective 

attention. 
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For this reason, then, understanding the developmental changes that allow 

children to succeed in flexible attention switching should shed light on the changes that 

allow them to succeed in selective attention more generally. An example of such research 

comes from a study using the DCCS task that suggests a relationship between words and 

attention. Kirkham, Cruess, & Diamond (2003) found that asking children to label the 

relevant dimension as they sorted cards on the post-switch trials of the DCCS resulted in 

less perseveration and more correct sorting by the new rule. One possible suggestion 

from this experiment is that when children name the specific value along the relevant 

dimension (e.g. “blue” when sorting by color), it forces them to attend to that value Once 

children’s attention is drawn to the relevant dimension they are able to correctly sort the 

card. Thus, the process of labeling can support the weak selective attention abilities of 

young children. This supporting process, similar to what socio-cultural theorists have 

described as “scaffolding,” occurs during the immediate timescale of online attention and 

decision making. However, modeling work has shown how this scaffolding can support 

the emergence of dimensional attention over longer timescales of learning and 

development.  

Over the same period in which dimensional attention abilities are developing, 

children are also learning many dimension words (e.g. color, size, etc.) and the names of 

values along those dimensions (e.g. blue, small, etc.). Modeling work by Smith and 

colleagues (1997) suggests that learning these dimension and value words is what builds 

representations of these dimensions. Specifically, Smith, Gasser and Sandhofer (1997) 

taught a neural network that demonstrated holistic perception to label attributes of 

individual objects and to compare attributes between objects. Labeling and comparing 

attributes led the network to selectively isolate both dimensions that corresponded to 

sensory dimensions pre-specified in its environment and novel dimensions that did not 

correspond to these sensory dimensions. This led the network to make similarity 

comparisons and thus selectively attend to these dimensions. The results of this model 
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suggest that word learning plays a critical role in the change from holistic to dimensional 

similarity classification. This, along with the results of Kirkham et al., 2003, suggests that 

naming specific features and dimensions helps children and neural networks attend to 

those dimensions both over developmental and immediate timescales. The modeling 

work shows how learning the names of dimensions can help a system to learn to attend to 

dimensions at all, while the work using the DCCS tasks show how using already-learned 

dimension names can support flexible, selective attention to already-learned dimensions 

in a weak attentional system. Other work, however, suggests that word learning may 

more generally play a role in the perception of similarity.   

Around the same time children are undergoing these changes in dimensional 

attention, there are also changes in the way words influence their perception of similarity. 

For example, work by Katz (1963) demonstrated that when two objects are named with 

the same label, 7- and 9-year-old children were more likely to perceive them as the same 

than if they were named with different labels. This effect was more pronounced in 7 than 

9-year-olds suggesting younger children’s similarity perception is more affected by label 

cues. Similarly, work by Landau & Shipley (2001) demonstrates that when two objects 

are given the same label, children and adults will generalize that label to all intermediate 

morphs between the objects. If, however, the two objects are given two different names 

or no names at all, participants divide the intermediates into two distinct categories. The 

authors argue that this provides evidence for labels “boosting the equivalence” of objects. 

This work by Landau and Shipley (2001) and Katz (1963) advanced our understanding of 

the relationship between word learning and similarity. However we cannot tell if, for 

example, children judged objects with a common label as being the same because they 

selectively attended to the dimension in common, or because they know objects within a 

common category (or associated with a common name as in the Landau & Shipley study) 

should be treated equivalently.  
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It is clear, however, that there is a tight link between words, categories and 

similarity: words refer to categories, categories are organized around some form of 

similarity, and words can highlight the nature of that similarity. Thus, in order to 

understand the development of any one of these processes, we must consider the 

interactions between them. In particular, how do category learning and word learning 

increase dimensional attention? The goal of this dissertation is to understand the 

developmental interactions between word learning and categorization that lead to 

selective attention to dimensional similarity. In the rest of this chapter, I review recent 

findings from the developmental and adult cognitive literatures that point to relationships 

between word learning, categorization, and attention to dimensional similarity. This work 

helps to clarify the mechanisms driving the holistic to dimensional shift in similarity 

classification. I first review work on the relationship between dimensional attention and 

category learning. Next I describe recent work on the relationship between word learning 

and category learning. Then, I discuss work on the relationship between word learning 

and dimensional attention. Finally, I propose an experimental account of how these 

processes fit together over development. 

The relationship between dimensional attention and 

category learning 

A rich body of research suggests that learning a category changes our perceptions 

of the similarity of its members. Adults’ ability to selectively attend allows them to form 

novel categories of objects that require attention to small changes along one relevant 

dimension (e.g. size) but not to changes along an irrelevant one (e.g. brightness) (e.g. 

Goldstone, 1994b). Learning categories organized in this way then changes adults’ ability 

to make discriminations along relevant and irrelevant dimensions (Goldstone, 1994b). In 

particular, Goldstone found that adults show enhanced discrimination for between-

category exemplars along relevant dimensions and diminished discrimination for within-
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category exemplars along irrelevant dimensions when these dimensions are perceptually 

separable (i.e. dimensions for which adults can selectively attend to one and ignore the 

other, such as size and brightness). When these dimensions are perceptually integral (i.e. 

dimensions for which adults cannot typically selectively attend to one and ignore the 

other, such as hue and brightness), adults still showed enhanced discrimination for 

between-category exemplars along the relevant dimension but no diminished 

discrimination along the irrelevant dimension.  

That adults could learn categories that forced them to attend to one dimension and 

ignore another even when those dimensions are not separable, suggests that learning a 

category increases attention to separate dimensions. Perhaps, then, even young children 

with holistic similarity perception could learn to separate dimensions that are “integral” 

to them in a task such as this. In fact, work by Minda, Desroches, and Church, (2008) 

demonstrated that children as young as 3-years-of-age can successfully learn a category 

that is organized by a single-dimensional rule. For example, children learned to assign all 

blue objects to one category and all orange objects to another, regardless of size and 

shape. However, the children in Minda et al.’s study were not tested on novel category 

exemplars after learning (nor were adults in Goldstone’s study). Thus, we do not know 

whether children had actually learned to attend to the relevant dimension. They could 

also have learned to remember exact exemplars or the relevant attributes rather than 

dimensions (i.e. orange and blue rather than color). Thus, while learning to make 

categorical distinctions seems to enhance dimensional attention, it may be that one must 

have the ability to selectively attend to a single dimension to even learn such categorical 

distinctions. 

In fact, a review of earlier work on discrimination learning suggests that children 

can learn a single dimension category (as in Minda et al.’s 2008 study) without 

abstracting a dimensional basis for the distinction (Kendler, Kendler & Wells, 1960; 

Kender & Kendler, 1962; and see Hanania & Smith, 2010 for review). This line of 
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research showed that both preschool and school age children can learn a category 

distinction, such as white triangles and white circles go in one category and black 

triangles and black circles go in another, quite well. However, the two groups of children 

did not learn to categorize in the same way. Evidence for the different methods of 

learning came from children’s ability to learn a new categorization rule after they had 

mastered the first. In the second phase of the experiment, the rule was switched so that 

children either had to categorize by 1) the same dimension as before but in the opposite 

way so that, for example, the black objects now go in the first category and the white 

objects now go in the second category (i.e. an intra-dimensional shift) or 2) by the other 

dimension so that triangles now go in one category and circles in another (extra-

dimensional shift). Older children were quicker to learn a new rule after an intra-

dimensional shift rather than after an extra-dimensional shift suggesting they learned to 

pay attention to the color dimension and ignore the shape dimension. Younger children 

did not show this advantage and instead seemed it make these category distinctions by 

memorizing whole stimuli. Memorizing which whole objects go into which categories 

makes it easier to switch rules regardless of whether the switch is intra- or extra-

dimensions. Thus, while even young children are often skilled category learners, the 

selective attention skills of older children may be required to attend to category-relevant 

dimensions of similarity.  

Developmental changes in category learning are related to changes in children’s 

selective attention abilities. Selective attention is necessary for learning some kinds of 

categories, but less so for others. In particular, selective attention is especially important 

for learning categories organized by similarity along a single dimension (Lupyan, 

Mirman, Hamilton, & Thompson-Schill 2012; Sloutsky, 2010; Ashby & Maddox, 2011). 

These categories, which I will call “dimensional,” (alternatively called “rule-based” by 

Ashby, “selection-based” by Sloutsky, or “low-dimensional” by Lupyan), require the 

learner to selectively attend to one category-relevant dimension and abstract across 
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category-irrelevant dimensions. In contrast, what I will call “holistic” categories 

(alternatively called “compression-based” by Sloutsky or “high-dimensional” by 

Lupyan), have a large number of covarying features and require the learner to attend to 

overall similarity across multiple dimensions rather than selectively attending to one 

dimension. Developmental research has shown that children learn holistic categories as 

well as adults do (Kloos & Sloutsky, 2008; Minda et al., 2008), but that they require 

explicit verbal instructions about the relevant feature to learn dimensional categories 

(Kloos & Sloutsky, 2008). In fact, Ashby and colleagues have argued that the optimal 

strategy for learning dimensional categories is to verbalize a rule (e.g. green objects go 

here, blue objects there). However, for holistic categories, learners need to integrate 

information across dimensions, and verbalization is not a useful strategy (Ashby & 

Maddox, 2011; and see Sloutsky, 2010). In other words, using a verbalizable rule that 

labels a relevant dimension or feature value can help learners categorize only in cases 

where selective attention is needed. While adults can learn dimensional categories even 

without externally provided verbal rules, they may engage language to support this 

categorization. In fact, this idea is supported by studies that show verbal interference 

(Lupyan, 2009) and language impairments such as aphasia (see Vignolo, 1999 for 

review) impair adults’ dimensional categorization and sorting (see R. Cohen, Kelter, & 

Woll, 1980; R. Cohen, Woll, Walter, & Ehrenstein, 1981; and Lupyan & Mirman, under 

review, for similar arguments).  

Children, however, have relatively immature selective attention abilities and thus 

require externally provided verbal rules to learn dimensional categories. This 

developmental change supports the proposal that there is a tight link between dimensional 

categorization, attention and language. Thus, if labeling relevant dimensions or features 

increases selective attention, then changes in children’s knowledge and use of labels for 

dimensions should be related to changes in selective attention to those dimensions. We 

know that selective attention is required for dimensional categorization and that language 
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has been shown to support selective attention. However, it still unclear what the nature of 

the relationship is and whether language is what drives developmental changes in 

selective attention.  

The relationship between labels and category learning 

Recently, research on adult’s category learning clarified the nature of the 

relationship between language and categorization (Lupyan, Rakison & McClelland, 

2007). Lupyan and colleagues demonstrated that when learning categories, adult 

participants given incidental labels learned more quickly and were more accurate at test 

than those not given labels. Participants were presented with novel objects that varied 

along two dimensions and asked to decide to which of two novel categories they 

belonged. Participants in the label condition were presented with a novel category label 

after feedback on each category learning trial. The other group only received feedback 

and no label. Importantly, the labels presented to participants in the label condition were 

completely redundant to the category—i.e. they provided no new information above and 

beyond the feedback. Nevertheless, participants in the label condition learned the 

categories more quickly than participants in the no-label condition. Furthermore, other 

redundant cues, such as an associated spatial location, did not affect participant’s 

learning. The authors suggested that labels facilitate learning because they are 

(historically) better predictors of category membership than other cues.  

Other researchers have referred to this facilitative effect as linguistic 

bootstrapping (Yoshida and Smith, 2005). Yoshida and Smith (2005) argued that 

redundant associations between linguistic cues strengthen the associations between other 

perceptual cues and category structure. These authors taught Japanese–speaking children 

categories of solid things organized by similarity in shape and nonsolid things organized 

by similarity in material, either with or without redundant syntactic cues (e.g. always 

using the classifier “hitotsu no” when naming solid objects and the quanitifier “sukoshi 
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no” when naming nonsolid substance. Children trained with these syntactic cues were 

more accurate in a novel noun generalization transfer task than children trained without 

syntactic cues. Potentially, this was because these redundant syntactic cues facilitated 

attention to the associated category-relevant dimensions: to shape for solid things and to 

material for nonsolid things. Importantly, Yoshida and Smith argued that the facilitative 

effect of labels is fundamentally developmental. Labels do not begin with a privileged 

status in learning, but rather begin to take on this role over the course of development. 

That is, over the course of word learning, the frequent redundancy between labels and 

other cues such as solidity, syntax, and category organization helps children use labels to 

facilitate their learning. The more experience children have learning regularities in these 

overlapping cues, the better they can attend to category-relevant information in word 

learning.  

The role of word learning on the development of 

dimensional attention 

This work by Yoshida and Smith ties into a larger body of work on the 

development of dimensional attention in word learning. That work suggests that the 

process of learning words does scaffold dimensional attention, at least in its application to 

further word learning. During word learning, labels guide children’s attention to 

category-relevant dimensions. In particular, children acquire certain word-learning biases 

that help them attend to relevant dimensions of novel stimuli when learning new words in 

a specific context. For example, children acquire a shape bias, or the tendency to 

generalize names of novel objects by similarity in shape (Landau, Smith, & Jones, 1988). 

Research has suggested that this bias emerges from the regularities present in the 

linguistic environment. Specifically, most words that children learn early name categories 

of solid objects organized by similarity in shape, e.g. ball, cup, (Samuelson & Smith, 

1999). As children learn more of these labels, their attention is trained such that they 
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automatically attend to a specific feature an object—the shape—when learning names for 

novel solid objects (Smith et al., 2002). As they learn more words that name categories 

organized in other ways, for example names for nonsolids in categories organized by 

similarity in material substance or adjectives that name properties of objects, they acquire 

other biases and learn to flexibly attend to context-appropriate dimensions (Jones & 

Smith, 1993).  

Thus, Smith and colleagues (2002) describe word learning as  “on-the-job training 

for attention,” and have shown that teaching young children names of categories 

organized by similarity in shape leads them to precociously attend to shape when learning 

new words (see also, Perry, Samuelson, Malloy, & Schiffer, 2010; Samuelson, 2002). 

Thus, over the course of development, learning words helps direct children’s attention to 

dimensional similarity in future word-learning contexts. The critical unanswered 

question, however, is whether learning words also helps direct children’s attention to 

dimensional similarity in non-linguistic contexts. I propose that word learning provides 

on-the-job training for attention more globally, meaning changes we see in word-learning 

biases are connected to changes we see in similarity perception—labels scaffold 

dimensional attention in similarity perception. 

Specific proposal 

It has already been established that category learning influences adults’ perceptual 

discrimination along category-relevant dimensions (Goldstone, 1994b). It has not yet 

been established, however, whether category learning can influence children’s perceptual 

discrimination in the same way. In the early school years, children are undergoing large 

changes in their ability to attend to one dimension to the exclusion of others. These 

changes should affect not only the way in which they learn categories, but the influence 

category learning has on their perception. Additionally, what drives changes in children’s 

emerging dimensional attention in similarity classification tasks has not yet been 



 

 

14 

14 

established. Research on novel noun generalization has demonstrated that word learning 

trains children’s selective attention in the service of learning new words. Thus, I propose 

that word learning scaffolds the emergence of dimensional attention over development, 

but also within the context of learning an individual category. It is my prediction, then, 

that while children who attend to holistic similarity will have difficulty learning 

categories that require selective attention to one dimension to the exclusion of others, the 

presence of a novel label can scaffold this attention. In 4 experiments, I asked: 1) if there 

are developmental differences in dimensional category learning that relate to dimensional 

attention in similarity classification, 2) whether labels can support dimensional attention 

and facilitate categorization, and 3) if there are developmental differences in the way 

category learning influences perceptual discrimination.  

In Experiment 1, I examined whether the influence of category learning on 

perception of category-relevant dimensions rests on a 5-to-8-year-olds’ ability to 

demonstrate attention to dimensional similarity. I predicted that children who classify 

holistically in a triad task would have more difficulty learning categories defined by 

similarity along a single dimension (i.e. dimensional categories). Further, I predicted 

these children would not show changes in discrimination along either the dimension that 

was criterial for the category they learned or an irrelevant dimension. On the other hand, I 

predicted that children of the same age who could classify dimensionally should be able 

to learn dimensional categories and would show changes in discrimination similar to the 

pattern demonstrated by adults in earlier studies (i.e. Goldstone, 1994b).  

If labels facilitate categorization by increasing selective attention to relevant 

dimensions, then they may also scaffold dimensional attention in children who are not 

able to attend dimensionally on their own. Thus, in Experiment 2, I examined whether the 

presence of an incidental label would enable even holistic classifiers to learn dimensional 

categories and lead them to subsequently show changes in discrimination and 

classification. Furthermore, I predicted that the advantage in categorization these children 
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would demonstrate relative to their counterparts in Experiment 1 would relate to 

increased changes in discrimination to relevant and irrelevant dimensions.  

If the holistic to dimensional shift is a continuous increase in selective and 

flexible attention, then examining children who use an intermediate classification 

strategy, such as the preferrer strategy, should greatly inform our understanding of 

selective attention across the developmental spectrum. Thus, in Experiment 3, I examined 

the influence of category learning on preferrers’ attention to category-relevant 

dimensions. In Experiment 4, I examined whether the presence of a label during category 

learning would affect preferrers’ subsequent discrimination and classification abilities. 

Because little is currently known about what it means to prefer a dimension when judging 

similarity, I have no specific predictions regarding these children’s performance.  

Nevertheless, examining their behavior in these experiments will play an important role 

in expanding our understanding of the continuity in the development of selective 

attention. 

Thesis organization 

Experiments 1-4 used nearly identical tasks that differed only in the presence of 

labels in Experiment 2 and 4. These tasks were designed to compare category learning 

and subsequent attentional changes in children with different classification biases when 

categories are labeled versus not. Because all four experiments used almost identical 

procedures, I describe the general methods in Chapter 2, with specific details of the 

stimuli and modifications to test specific hypotheses provided in subsequent chapters.  

The questions proposed in this dissertation required me to measure children’s 

ability to categorize stimuli that differ along size and brightness dimensions and 

subsequent changes in discrimination. However, there was no basis in the current 

literature for understanding what stimulus values children might be able to differentiate 

along these dimensions. Thus, Chapter 3 presents a preliminary calibration study that 
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examined 5-to-8-year-old children’s perceptual discrimination of metric changes in size 

and brightness. I then used this information to design the stimuli used in the subsequent 

experiments. 

Chapter 4 presents the first experiment. In this experiment, children were sorted 

into holistic versus dimensional classifier groups based on their performance in a triad 

classification task. I then compared these groups’ abilities to learn dimensional categories 

containing stimuli that differ along both relevant (e.g. brightness) and irrelevant (e.g. 

size) dimensions. I also examine children’s ability to perceptually discriminate stimuli 

that differ along either the relevant or irrelevant dimension. 

Chapter 5 presents the second experiment. In this experiment, children were again 

sorted into groups based on triad classification performance. I then compared the groups’ 

abilities to learn the same categories presented in Experiment 1 in the presence of an 

incidental label. Subsequently I tested children’s discrimination abilities with the same 

stimuli used in Experiment 1. 

Chapter 6 presents a direct comparison of the results of the holistic classifiers in 

Experiments 1 and 2. This direct comparison allows further examination of the respective 

contributions of category learning and labels on increases to holistic classifier’s selective 

attention to dimensional similarity. 

Chapter 7 presents the results of the third and fourth experiments. These 

experiments were analogous to Experiments 1 and 2, with the exception that all the 

participants were classified as “preferrers”. That is, these children preferentially selected 

stimuli that most closely matched the exemplar on one dimension (e.g. size or brightness) 

on every trial of the triad classification task, regardless of whether the stimulus was a 

holistic or dimensional match. I compare brightness preferrers’ and size preferrers’ 

abilities to learn labeled and unlabeled categories and their subsequent abilities to make 

discriminations along size and brightness. In addition, category learning, discrimination 
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and subsequent dimensional attention in the post-test triad classification task of children 

in the preferrer groups was directly compared across the two experiments.  

Chapter 8 presents a general discussion of the results of Experiments 1-4. I also 

discuss the implications of these results and future directions for research on the role of 

labels and word learning in the development of dimensional attention. 
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CHAPTER II: GENERAL METHODS 

Participants 

Participants for all experiments were monolingual English-speaking children 

between 5- and 8-years-of-age. Previous research (e.g. Smith & Kemler, 1977) has shown 

that most children at the lower end of this range are not yet dimensional classifiers but 

that many at the upper end can attend dimensionally. Thus I examined children within 

this large age range to be able to compare children from a variety of developmental levels 

with varying attentional abilities. Informed consent was obtained from children’s parents 

or guardians prior to the session. Children were recruited via birth records and received a 

small toy for participation after each session. 

Stimuli and apparatus 

The stimuli were a set of squares that vary metrically along size and brightness, 

similar to those used in Goldstone’s 1994 study (see Figure 2). They can be divided into 

categories such that either size or brightness is the critical dimension. The particular 

values used were determined by a preliminary calibration study. All stimuli were 

presented on a pc with a 114.3cm touch screen monitor using Eprime 2.0 software. 

Children made responses by touching the computer screen. 

Discrimination task  

The discrimination task measured children’s ability to distinguish between close 

values on test dimensions (see Figure 3). Stimuli were squares that vary in size and 

brightness. Children sat in front of a touch-screen computer and were presented with a 

target and two test stimuli. The three stimuli were arranged in a triangle such that the 

target was at the bottom of the screen and the test stimuli were on top. The children had 

to indicate which of the test stimuli matched the target by touching it. All three stimuli 

were present until the children made their response. The target matched one of the test 
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stimuli on every trial. The left/right position of the matching test stimulus was 

counterbalanced across trials.  

Past experiments examining the effects of categorization on perceptual 

discrimination have used different tasks, some of which have later been shown to 

introduce varying degrees of categorical bias because of the extra memory demands they 

create (Pisoni & Tash, 1974; Hanley & Roberson, 2011). The method used in the present 

experiments, known as the ABX method, does show a bias in the speech domain, but 

preliminary work suggest a lack of bias with the stimuli used here; likely due to temporal 

differences in the presentation of auditory and visual stimuli. A third task, known as the 

AXBX task, where stimuli are presented in two pairs and participants have to decide 

which pair contained identical stimuli, has been shown to reduce categorical bias in both 

speech and color domains. However, this method has never been used with children and 

seems potentially difficult for children to comprehend. Thus the ABX method is the most 

child-friendly procedure that reduces memory bias. 

Triad task  

The triad task measures holistic versus dimensional attention in similarity 

classification (see Figure 4). Children were presented with three stimuli: an exemplar, a 

holistic match, and a dimensional match, and asked to pick which test stimulus went with 

the exemplar (see Smith & Kemler, 1977). Children indicated their choice by touching 

the stimulus. The size and brightness of the square stimuli were varied so that the 

dimensional match was the same size or brightness value as the exemplar but two steps 

away on the other dimension, and the holistic match was one step away on both 

dimensions. On half the trials the dimensional match was the same size as the exemplar, 

and on the other half of the trials it was the same brightness value. By comparing 

children’s accuracy on both dimensions I was able to examine how categorization and 

word learning influence attention to relevant and irrelevant dimensions.  
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Categorization task 

In the categorization task children were presented with a square, told it is a rock, 

and asked to sort it into one of two categories by selecting where it comes from (ocean or 

jungle). Children indicated their response by touching the appropriate place on the screen 

(see Figure 5). Geographical assignment of categories (ocean or jungle) and left/right 

assignment of response pictures were counterbalanced across children. During the 

learning phase, children received feedback regarding accuracy of each decision. Correct 

categorization was followed by a bell sound and visual presentation of the stimulus and 

the correct location (ocean or jungle) directly beneath the exemplar.  The experimenter 

then told the child “Yeah, good job, that did come from the [ocean/jungle]!” Incorrect 

categorization was followed by a buzzer sound and visual presentation of the stimulus 

and the correct location. The experimenter then told the child, “Uh oh, that one actually 

came from the [ocean/jungle]!”  

Learning blocks were made up of 8 trials, 4 trials for each category. Children 

received a sticker after completion of each block, regardless of performance, to keep 

them engaged with the task. The learning criterion was accurate categorization on 7 out 

of 8 trials per block, 2 blocks in a row. If a child did not reach criterion after 30 blocks, 

the learning phase of the categorization task ended.  

The learning phase was followed by a test phase. Stimuli used at test included the 

4 exemplars from each category that were presented during category learning and 6 novel 

exemplars from each category (see Figure 6). The test phase consisted of 4 blocks of 20 

trials. At test, no feedback was given after each trial. Children again received a sticker, 

regardless of performance, after each block.   
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Approach 

Assignment of participants to experiments 

Participants were 129 monolingual-English speaking 5-8-year-old children. Six 

children did not complete the entire experimental procedure (5 quit, 1 equipment error) 

and were excluded from analyses. This left 123 children in the final group (70 females; 

M: 6 years, 10 months; range: 5 years, 0 months to 8 years 11 months). Participants were 

assigned to one of the four experiments based on their performance in the triad pretest. 

The first 16 children who were holistic classifiers and the first 16 who were dimensional 

classifiers (based on pretest performance) were assigned to Experiment 1 (No Label), 

while the second 16 of each classifier type were assigned to Experiment 2 (Label). The 

first 16 children who were size preferrers and the first 16 who were brightness preferrers 

were assigned to Experiment 3 (No Label), while the remaining 16 children who were 

size preferrers and 11 children who were brightness preferrers and were assigned to 

Experiment 4 (Label). In each experiment, half of the children within a classifier group 

were randomly assigned to the brightness category learning group and the other half to 

the size category learning group. See Table 1 for participant information for each group 

in each experiment. 

Analyses 

I used mixed linear regression models to analyze the speed of category learning, 

and mixed logistic regression for all other tasks that used forced choice measures (e.g. 

dimensional versus holistic match, ocean versus jungle, and left stimulus versus right 

stimulus). I took this approach because recent arguments suggest ANOVA’s on 

categorical outcome variables such as mine are inappropriate (see Jaeger, 2008). 

Additionally, these models enable control for any potential random effects due to 

individual differences between children or specific stimuli. This is especially important in 

analyzing the data of young children who are notoriously noisy and variable. I removed 
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collinearity from the models by sum-coding data and scaling continuous variables. I 

began with a completely specified random effects structure including random slopes for 

all variables included in a given model. Using model comparison I systematically 

removed uninformative random effects to find an appropriate model (c.f. 

http://hlplab.wordpress.com/2009/05/14/random-effect-structure/). All final models 

included random intercepts for subject and items, unless otherwise specified. The models 

of performance in each task were identical in each experiment, and thus I describe their 

structure here.  

In each experiment, to assess differences in the number of blocks it took children 

to reach criterion for category learning, I created a mixed linear regression model of the 

interaction between classifier type (e.g. holistic versus dimensional) and category 

structure (brightness versus size). This model included random subject effects (but no 

random item effects as I was examining overall time to criterion rather than accuracy on 

each trial).  

All other models in each experiment were done separately for each classifier type 

and category learning type (e.g. only holistic classifiers who learned brightness 

categories) so that I could explore qualitative patterns in each group’s performance 

separately. These mixed logistic regression models each compared a given group’s 

likelihood of a given binomial response (e.g. correct versus incorrect) on various trial 

types (e.g. between, within-relevant, or within-irrelevant discriminations). Some of these 

models of more in-depth measures of trial type accuracy included an interaction between 

two factors related to trial type. In particular, the general structure of each of these 

models was: 

Dependent Variable ~ Trial Type  x optional second trial type factor + random subject 
and items effects 
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Graphical representation of data 

Results are depicted graphically with bar graphs. This will give the reader an idea 

of what the data look like. However, there is a limitation in this depiction in that bar 

graphs of, for example, proportion correct on a given measure, depict mean data 

collapsed across participants. Thus, these graphs do not capture the fact that the analysis 

took into account random subject and item effects and every point of data. For this 

reason, I cannot depict a measure of variance such as standard error on the graphs. To do 

so would be misleading because, again, such measures capture average variance whereas 

the models accounted for the variance of individual participants across trials. 

Nevertheless, to help the reader integrate statistical significance information from the 

models with the depictions of the data, asterisks between bars denote significant 

differences between children’s performance on various measures.  

 



 

 

24 

24 

CHAPTER III: PRELIMINARY CALIBRATION 

STUDIES 

Calibration Study A 

The purpose of Calibration Study A was to determine size of metric brightness 

and size changes to use be used in the main experiments.   

Method 

Participants 

Thirty-nine 5-8-year-old children (24 females, average age: 6 years, 9 months; 

range: 4 years, 11 months – 8 years, 10 months) participated.  

 

Procedure 

Children completed the discrimination task with both the size and the brightness 

stimulus sets. In the discrimination task, I used a staircasing procedure similar to that 

used in prior studies with children (Simmering & Spencer, 2008). If a child made two 

accurate discriminations on two trials in a row, the similarity distance between the stimuli 

was decreased by one step. If the child made an inaccurate discrimination, then the 

distance increased by one change unit. The number of stepwise changes by which the 

discrimination stimuli differed was adjusted until a child oscillated between two distances 

that were two steps apart. Each change in size was equal to an increase of .07 cm in both 

width and height (as in Goldstone, 1994b). Each change in brightness was equal to an 

increase of 2 units in each red, blue, and green color space. Threshold information was 

collected from each child for each dimension. I found the 75th percentile for 

discrimination between stimuli along both the size and brightness dimensions. These 

numbers were 6 steps (or an increase of 12 in RGB) for brightness and 16 steps (or an 

increase of 1.12 cm in both width and height) for size.   
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Calibration Study B 

The purpose of Calibration Study B was to 1) ensure that I knew about any a 

priori differences in perception along these dimensions related to children’s performance 

in a similarity classification task and 2) to get a sense of how prevalent each of the four 

relevant similarity classification types (i.e. holistic classifiers, dimensional classifiers, 

brightness preferrers, and size preferrers) were within my chosen age range.  

Method 

Participants 

Twenty-six 5-8-year-old children (12 females, average age: 6 years, 5 months, 

range: 5 years, 0 months to 8 years, 2 months) participated.  

Triad Stimuli 

I created triad stimuli in the same manner as Smith & Kemler 1977 (see Figure 1) 

such that one step in similarity space was equal to the 75th percentile of perceptual 

discrimination found in Calibration Study 1. 

Procedure 

Children completed a triad pretest and the discrimination test using the same 

staircasing procedure as in Calibration Study A. Performance on the triad pretest was 

used to assign children into one of four groups according to dimensional attention 

abilities: holistic, dimensional classifier, brightness preferrer, or size preferrer. 

Dimensional classifiers had more than 13 dimensional matches on the triad pretest (out of 

24 trials). Holistic classifiers made fewer than 12 dimensional matches with no indication 

of a preference for either dimension. The remaining children fell into preferrer category. 

These children demonstrated dimensional attention to one, but not the other, dimension. 

Brightness preferrers made dimensional matches on at least 11 of the 12 brightness match 

trials and no more than 1 dimensional match on the size match trials. Size preferrers 
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made dimensional matches on at least 11 of the 12 size match trials and no more than 1 

dimensional match on the brightness match trials.  

Of the twenty-six children who completed the triad pretest, 4 were dimensional 

classifiers, 6 were brightness preferrers, 8 were size preferrers, and 8 were holistic 

classifiers. There were no significant differences between classification groups or 

between age groups in discrimination thresholds. Thus I used the 75th percentile of all 

children for each dimension as the final step size between category stimuli.  
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CHAPTER IV: EXPERIMENT 1 

The purpose of Experiment 1 was to examine the influence of category learning 

on dimensional attention. Thus, I compared how children’s varying abilities to attend to 

dimensional similarity in classification relates to their abilities to learn dimensional 

categories and discriminate stimuli along relevant and irrelevant dimensions. 

Experiment 1 

Method 

Participants 

Participants were 33 5- to 8-year-old children. One child did not complete 

the entire experiment and was excluded from these analyses. Thus there were 32 

children in the final group.  

Procedure 

The children first completed a triad pretest. Children were then divided into 

classifier groups based on performance in this task.  There were 16 holistic classifiers and 

16 dimensional classifiers. See Table 1 for participant information. 

Categorization 

Children next completed the category-learning task and category test. For 

category learning, half of the children in each classification group were trained with 

categories organized by similarity in size (size learners), half with categories organized 

by similarity in brightness (brightness learners). Category spacing was based on 

discrimination thresholds from the calibration study: each exemplar was one threshold 

unit away from the next stimulus in brightness and size similarity. Trained exemplars for 

the brightness learners are shown in Figure 6a and trained exemplars for the size learners 

are shown in Figure 6b. As can be seen in the Figure, novel stimuli probed at test were 
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sampled from both in- and outside of the learned category space. This allowed me to 

examine whether children were attending to the category-relevant dimension or to 

specific values along that dimension. 

Discrimination 

Next, children completed the discrimination task. The procedure was identical to 

the preliminary calibration study with the following exceptions: 1) stimuli were selected 

from the category space used in the category-learning task and 2) stimuli did not change 

in brightness or size during the task based on children’s performance. Instead, 

discrimination abilities were probed at .5, 1, and 1.5 times the previously-defined 

perceptual threshold for each dimension (from the calibration study). Discrimination was 

tested both within and across category boundaries (see Figure 6). All pairs were presented 

four times—each stimulus within a pair was presented twice as target and matching test 

item, and twice as foil—for a total of 96 trials. Left/right presentation of match/foil was 

counterbalanced across trial types for each pair. Both size-learners and brightness-

learners were presented with the same pairs, such that any given trial forced children to 

make a discrimination along a dimension that was only relevant for one group’s learned 

category. For example, a stimulus pair that differed only in size would test discrimination 

along the relevant dimension for the size-learners and the irrelevant dimension for 

brightness-learners. This allowed an examination of changes in children’s ability to make 

both discriminations along category-relevant and irrelevant dimensions and 

discriminations both within and between categories.  

Strongly versus weakly learned areas: Locations of trained exemplars were 

chosen to allow for some areas of the category space to be more strongly-learned (e.g. 

between stimuli 2-4 and 2-5 in figure 6a) and other areas to be more weakly-learned (e.g. 

between stimuli 7-4 and 7-5 in figure 6a). This provided an assessment (with the 

discrimination task) of whether children who learned the categories did so by learning 
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about individual exemplars or regions of the category space, or if they learned to attend to 

the relevant dimension. If children were more accurate at making discriminations 

between stimuli in strongly-learned areas of the space than between stimuli in weakly-

learned areas of the space, this would suggest that they did not learn to attend a whole 

dimension (e.g. size) but instead learned to associate regions of the category space with 

the category response. 

Blocking: The order of presentation of discrimination trials was blocked so that 

children alternated between a block of 12 discriminations along the dimension that was 

relevant for their category task (i.e. single type relevant block), a block of 12 

discriminations along the irrelevant dimension (i.e. single type irrelevant block), and a 

block of 24 trials alternating between discriminations on relevant and irrelevant 

dimensions (i.e. mixed block). This blocked structure provided an additional measure of 

changes in dimensional attention related to category learning. If children show a 

discrimination advantage in the block of discriminations on the relevant dimension 

relative to the block of discriminations on the irrelevant dimension, it would suggest that 

learning a categorical distinction based on that dimension increased attention to that 

dimension. If children also show a discrimination advantage in a relevant block over the 

relevant-dimension discriminations in a mixed block, it would suggest that once children 

increased attention to a given dimension, there was a cost to switch attention to another 

dimension. If, however, children show no advantage for one type of block over another, it 

would suggest that their attention towards each dimension had not been affected, and that 

they were attending to overall similarity rather than dimensional similarity to 

discriminate between stimuli. Alternatively, although less likely, a lack of difference in 

accuracy between blocks could mean that children are actually very skilled, flexible 

switchers.  
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Posttest triad task 

The posttest triad task was identical to the pretest version.  

Predictions  

Categorization  

It was expected that children who classified dimensionally in the pretest would be 

able to learn both the size and brightness categories and generalize to novel category 

exemplars. However, children who classified holistically in the pretest should have more 

difficulty. While they should still be able to learn to categorize trained exemplars, they 

should have more trouble with novel exemplars. Correct categorization of novel 

exemplars should require children to have learned something about category organization 

rather than something about specific stimuli. As can be seen in Figure 6, novel stimuli 

were drawn from both inside and outside of the category space. Novel stimuli from inside 

the category were overall quite similar to learned exemplars, but they were also quite 

similar to stimuli on either side of the category boundary. Thus, these stimuli could be 

harder to categorize correctly for children who had relatively weak selective attention to 

the relevant dimension and tended to attend more to overall similarity. 

On the other hand, novel exemplars from outside the category space were, by 

definition, quite different from the stimuli at the category boundary. These stimuli were 

only similar to the trained exemplars along one dimension – the dimension critical for the 

category. Thus, correct categorization of novel exemplars from outside the category 

space should require children to attend to the category-relevant dimension rather than to 

overall similarity or specific learned values along the relevant dimension. However, 

because these stimuli were, by necessity, farther from the category boundary, it is also 

possible that much less attention to relevant dimensions is required to correctly categorize 

novel stimuli from outside the category space.  
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Discrimination 

I predicted that children who were dimensional classifiers on the triad pretest 

would show worse within-category discrimination along the irrelevant dimension and 

enhanced between-category discrimination on the relevant dimension than their 

counterparts. They should also show a switch cost for trials in the mixed block. However, 

because Goldstone had previously found that adults who learned brightness categories, 

but not size categories, showed enhanced discrimination along the relevant dimension 

and poorer discrimination along the irrelevant dimension, I also predicted that the 

advantage for relevant discriminations over irrelevant discriminations might only be 

found for dimensional classifiers who learned brightness categories. Because it was 

predicted that holistic classifiers would learn dimensional categories not by selectively 

attending to category-relevant dimensions, but instead by attending to the overall 

similarity between the stimuli, they should not demonstrate differences in attention to 

relevant versus irrelevant dimension. Within the context of the discrimination task, this 

means that children who were holistic classifiers on our triad pretest, should not show 

differences in accuracy for relevant versus irrelevant discriminations. Additionally, these 

children should show no differences in performance for blocked versus mixed trials in the 

discrimination task. 

Posttest triad 

I predicted that individual classification patterns would not generally differ from 

those at pretest. Children who were dimensional classifiers on the triad pretest should still 

classify dimensionally as learning dimensional categories should not decrease their 

ability to selectively attend to dimensional similarity. Children who were holistic 

classifiers on the triad pretest should still classify holistically. This is because it was 

expected that holistic classifiers will not be able to selectively attend to category-relevant 
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dimensions, the category learning should not change their attention to dimensional 

similarity in the posttest triad task.  

Results and discussion 

My primary questions in this experiment concerned how classifier type 

(dimensional versus holistic) influenced dimensional category learning and changed 

subsequent discrimination abilities on category-relevant versus category-irrelevant 

dimensions and subsequent similarity classification abilities. Thus to address these 

questions, I first examined the results of category learning, overall results of the 

discrimination test, and the results of the posttest triad task. Then, in order to more deeply 

examine the extent to which children were selectively attending to dimensional similarity 

in each of these tasks, I next examined the results of category test and the more in-depth 

measures of discrimination, including accuracy in strongly- versus weakly-learned areas, 

accuracy across different threshold sizes, and accuracy in the context of mixed versus 

blocked trials. 

Category learning 

If selective attention to dimensional similarity is necessary for learning categories 

organized by a single dimension, then dimensional classifiers should be faster to learn 

categories than holistic classifiers. To examine this I measured the number of blocks to 

criterion for each child in the category-learning task. These data are presented in Figure 

7. As can be seen in the figure, dimensional classifiers took fewer blocks to reach 

criterion than holistic classifiers, and both groups took fewer blocks to reach criterion if 

they learned categories organized by brightness rather than categories organized by size. 

A mixed linear regression model of the interaction between classifier type (holistic versus 

dimensional) and category structure (brightness versus size organization) on the number 

of blocks it took children to reach criterion, revealed a significant effect of classifier type 

such that dimensional classifiers were faster to reach criterion than holistic classifiers, 
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t=21.88, p<.0001.1  This model also showed a significant effect of category structure 

such that children were faster to reach criterion when learning categories organized by 

brightness, t =-23.00, p<.0001. This advantage for learning categories organized by 

similarity in brightness replicates Goldstone’s (1994b) finding with adult participants. 

There was also a significant interaction between classifier type and category structure 

such that holistic classifiers showed less of an advantage for learning brightness 

categories than dimensional classifiers, t=2.66, p<.01.  

Thus, the data appear to support my prediction; children who were able to 

selectively attend to a single dimension were able to learn a novel category distinction 

based on attention to one dimension faster than children who were holistic attenders. 

However, because the dimensional classifiers were generally older than the holistic 

attenders, it is possible that age or another developmental factor could be the basis for 

these results. To test this possibility, I created additional models to assess whether age, 

gender, or SES (as measured by maternal education), rather than classification group,  

might have driven the difference in learning. Model comparison revealed that classifier 

type was necessary to account for the findings, whereas age, sex, and SES were not. A 

model with both classifier type and age was significantly better than one with only age, 

X2(1) =12659, p<.0001, but no different from one with only classifier type. A model with 

both classifier type and sex was significantly better than one with only sex, X2(1) =10665, 

p<.0001, but no different from one with only classifier type. Finally, a model with both 

classifier type and SES was significantly better than one with only SES, X2(1) =14095, 

p<.0001, but no different from one with only classifier type.  

In addition, to check that the results were not due to the particular criterion I used 

to assign children to classifier groups, I also ran a model using a continuous measure of 

                                                
1 Because of the difficulty in determining degrees of freedom in mixed linear models, we 

conducted MCMC sampling to find p-values (see Baayen et al., 2008). 
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children’s dimensional responses on the triad task. This model used the interaction 

between the proportion of dimensional responses children made on brightness match 

trials and the proportion of dimensional responses they made on size match trials to 

predict the number of blocks it took children to reach criterion. Importantly, comparing 

the log likelihood values of the two models revealed that the likelihood of the categorical 

model accurately capturing the data was higher than the likelihood of the continuous 

model accurately capturing the data. Thus, grouping children in terms of their 

performance in the triad classification task is the most appropriate way to capture 

category learning performance.   

Overall, then, the results of category learning fit my predictions. Holistic 

classifiers were slower to learn dimensional categories than dimensional classifiers. In 

fact, 4 out of 16 children in the holistic group failed to reach criterion at all and thus 

completed the maximum number of blocks (30), while only 1 out of 16 children in the 

dimensional group failed to reach criterion. A critical question, however, is whether the 

holistic classifiers who managed to learn the categories did so in different ways than the 

dimensional classifiers. For example, did the holistic classifiers learn the categories by 

attending to the overall similarity between specific stimuli, while the dimensional 

classifiers increased attention to the category relevant dimension and decreased attention 

to the category irrelevant dimension? To answer this question, I next examined children’s 

performance in the categorization test, discrimination task and posttest triad task. These 

tasks were designed to measure any changes in selective attention to category-relevant 

and irrelevant dimensions. Thus differences in the classifier groups’ performance in these 

tasks should clarify whether the different groups of children who learned the dimensional 

categories did so using the same or different mechanisms. These analyses included only 

data from those children who reached criterion on category leaning. I report results of 

each classification group separately for two reasons. First, overall, all the participants did 

very well on the generalization and discrimination tests; performance was above 50% 
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across the board. Second, I am more interested in whether dimensional and holistic 

classifiers both show enhanced between-category discrimination, for example, than 

whether dimensional classifiers are more accurate than holistic classifiers. Thus, 

assessing the results of the two groups separately will allow me to find differences in 

their qualitative patterns of results. In addition, because there were differences in the 

learning of categories organized by similarity in brightness and size that correspond to 

differences previously described in the literature (e.g. Goldstone 1994b), I examined 

performance of children who learned each category structure separately. 

Discrimination  

The discrimination task was designed examine whether or not children of each 

classifier type had learned to selectively attend to the category-relevant dimension and 

ignore the category irrelevant dimension. To the extent that a child had learned to attend 

to the category-relevant dimension, she should show increased accuracy for 

discriminations along the relevant dimension—particularly for between-category 

discriminations—compared to those along the irrelevant dimension. Dimensional 

classifiers should already be able to selectively attend to category-relevant dimensions; 

therefore I predicted they would show increased accuracy for relevant discriminations 

and decreased accuracy for irrelevant discriminations. If holistic classifiers show this 

pattern, then it would suggest that their selective attention was supported by the category 

learning task. Goldstone found that adult participants demonstrated enhanced accuracy 

for discrimination across the category-relevant dimensions and decreased accuracy for 

discrimination across the category-irrelevant dimension if they had learned brightness 

categories but if they had learned size categories. Thus it is expected that the dimensional 

classifiers should also show this pattern for brightness but not size.  

To examine changes to children’s selective attention to category-relevant and 

irrelevant dimensions, I measured children’s accuracy for each type of discrimination: 

between-category, within-category along the relevant dimension and within-category 
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along the irrelevant dimension. Overall, children were quite accurate in discriminating 

stimuli. In particular, the dimensional classifiers who learned brightness categories, 

M=.82, t(7)=15.71, p<.0001, the dimensional classifiers who learned size categories, 

M=.81, t(6)=6.27, p<.001, the holistic classifiers who learned brightness categories, 

M=.74, t(6)=5.96, p<.001, and the holistic classifiers who learned size categories, M=.73, 

t(4)=5.04, p<.01, were all significantly better than chance (.50) at discriminating stimuli 

in this task. As can be seen in Figure 8a, dimensional classifiers who learned brightness 

categories were more accurate at between-category discriminations than within-category 

discriminations. This was supported by a mixed logistic regression model of the effect of 

discrimination comparison type (between, within relevant, within irrelevant) on 

discrimination accuracy which showed that dimensional classifiers in the brightness 

learning group had significantly increased discrimination accuracy when making between 

category discriminations compared to within category discriminations on either the 

irrelevant, z= -3.91, p<.0001 or relevant dimension, z=-3.84, p<.001. However, these 

children were also significantly more accurate at making within-category discriminations 

along the relevant than the irrelevant dimensions, z=-3.70, p<.001, demonstrating that, 

overall, they were more accurate at discriminating across the relevant than the irrelevant 

dimension. However, as can also be seen in the Figure, dimensional classifiers who 

learned size categories were no more accurate at making between-category 

discriminations than within-category discriminations on either the irrelevant, z=.25, NS, 

or the relevant dimension, z=-.98, NS. These children were not any more accurate at 

making one kind of within-category discrimination over another, z=.70, NS. 

If holistic classifiers were unable to selectively attend to category relevant 

dimensions, they should not show the same discrimination abilities as dimensional 

classifiers. However, as can be seen in Figure 8b, holistic classifiers who learned 

brightness categories performed like dimensional classifiers, although with slightly lower 

overall accuracy. Holistic classifiers were more accurate at between-category 
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discriminations than within-category discriminations. This was confirmed by a mixed 

logistic regression model showing that holistic classifiers who learned brightness 

categories were more accurate at between category discriminations than within category 

discriminations along both the irrelevant dimension, z=-2.33, p<.05, and the relevant 

dimension, z=-1.93, p<.05. However, these children were significantly more accurate at 

making within-category discriminations along the relevant than the irrelevant dimensions, 

z=-2.11, p<.05, demonstrating that, overall, they were more accurate at discriminating 

across the relevant than the irrelevant dimension. As can also be seen in Figure 8b, 

holistic classifiers who learned size categories were no more accurate at making between-

category discriminations than within-category discriminations along either the relevant, 

z=-.68, NS, or irrelevant dimensions, z=-.39. These children were not any more accurate 

at making one kind of within-category discrimination over another, z=.01, NS. 

Thus, both types of classifiers showed evidence of an effect of category learning 

on their perceptual discrimination abilities—but only if they learned a dimensional 

category for which brightness was the critical dimension.  Importantly, this effect was 

such that overall, the brightness learners were more accurate at making discriminations 

along the relevant dimension suggesting that they had learned something about 

dimensions rather than just categories. 

Posttest triad  

I next examined the results of the posttest triad task. The primary question of 

interest is whether there was a change in the number of dimensional matches children 

choose from pre- to posttest. The extent of such a change indicates the extent to which 

learning dimensional categories—which require the learner to selectively attend to one 

dimension to the exclusion of another—increased children’s selective dimensional 

attention in similarity classification. To examine this, I measured the number of 

dimensional responses children made in both pre- and posttest triad tasks. It was 

predicted that the dimensional classifiers would not show an increase in dimensional 
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responding from pre to post test because they were already attending dimensionally. As 

can be seen in Figure 9a, the dimensional classifiers who learned brightness categories 

did not increase the number of dimensional choices they made. This was supported by the 

results of a mixed logistic regression model that showed that dimensional classifiers who 

learned brightness categories were no more likely to choose dimensional matches during 

the posttest compared to the pretest, z=-.81 NS. Similarly, as can also be seen in the 

Figure, dimensional classifiers who learned size categories were no more likely to choose 

dimensional matches during the post test, z=-.15, NS.  

The holistic classifiers, on the other hand, were also not predicted to show an 

increase in dimensional responding but for a different reason—because they were not 

expected to be attending dimensionally in the category-learning task. As can be seen in 

Figure 9b, the holistic classifiers who learned brightness categories were no more likely 

to choose dimensional matches during the posttest compared to the pretest. This is 

supported by the results of a mixed linear regression model showing that holistic 

classifiers who learned brightness categories showed no increase in dimensional 

responding, z=.78, NS. As can be seen in the right panel of Figure 9b, however, those 

who learned size categories were marginally more likely to select dimensional matches 

during the post test than the pre test, z=1.94, p<.10. This result was unexpected but 

suggests that perhaps these children did learn to selectively attend to size during category 

learning. As can be seen in Figure 10b, holistic classifiers initially showed a slight 

preference in the pretest for selecting dimensional matches on brightness trials. The 

brightness categories were much easier for both holistic and dimensional classifiers to 

learn, suggesting that brightness is an easier dimension to selectively attend to than size. 

This could mean that even if the holistic classifiers who learned brightness categories did 

learn to attend to brightness during category learning, they would not show an increase in 

dimensional responding—because they already had a slight preference for attending to 

brightness. Those holistic classifiers who learned size categories, on the other hand, could 
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have shown an increase in dimensional responding because they learned to attend to size 

in category learning, which would lead to a change in their pattern of dimensional 

responses in the posttest triad.  

An important secondary question, then, is whether the particular category type 

learned influenced children’s choice of dimensional matches on triad task trials that 

probed the critical dimension for the category they had learned. I next examined the 

extent to which learning to selectively attend to a given dimension in categorization 

changed the specific dimension to which children selectively attended in similarity 

classification. Even though they did not show an overall increase in dimensional 

responding, I expected dimensional classifiers to select dimensional matches on the trials 

corresponding to the dimension relevant for the category they learned because they 

should have been primed to attend to that dimension after having done so during category 

learning. As can be seen in Figure 10a, dimensional classifiers who learned brightness 

categories were more likely to select dimensional matches on brightness trials than they 

were on the pretest. This was supported by the results of a mixed logistic regression 

model of the interaction between trial type (size or brightness) and test time (pre- or 

posttest triad) on the likelihood of selecting a dimensional match. The model revealed 

that dimensional classifiers who learned brightness categories were significantly more 

likely to choose dimensional matches on brightness trials than size trials, z=-2.68, p<.01, 

and there was a significant interaction such that they were even more likely to do so on 

the posttest trials, z=-2.01, p<.05. As can also be seen Figure 10a, dimensional classifiers 

who learned size categories, on the other hand, were more likely to choose dimensional 

matches on posttest size trials than they were during the pretest. This was supported by 

the results of a mixed logistic regression model that showed dimensional classifiers who 

learned size categories were significantly more likely to choose dimensional matches on 

size trials, z=-2.85, p<.01, and that this interacted with test time such that they were more 

likely to do so on the posttest, z=1.92, p<.10. Together, these results suggest that 
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dimensional classifiers learned to attend more to the dimension that was relevant to the 

categories they learned.  

It was predicted that the holistic classifiers would not choose dimensional 

matches more on trials corresponding to the dimensional structure of the category they 

learned. Holistic classifiers had more difficulty learning the categories relative to 

dimensional classifiers—presumably because they had greater difficulty attending 

selectively to dimensional similarity. Therefore, despite the fact that holistic classifiers 

(who learned brightness categories) did show some evidence of selective attention in the 

discrimination test, I did not predict that this would be enough of an increase to carry 

over to the triad task and result in changes to their classification. As can be seen in Figure 

10b, the holistic classifiers who learned brightness categories were more likely to choose 

dimensional matches on brightness trials during both pre- and posttest. A mixed logistic 

regression model of the interaction between trial type and test time showed that holistic 

classifiers who learned brightness categories were more likely to select dimensional 

matches on brightness trials, z=-6.04, p<.0001, however, there was no interaction, z=-

1.23, NS. This suggests that during both pre- and posttest triad holistic classifiers were 

more likely to select dimensional matches on brightness trials. Furthermore, as can be 

seen in the right panel of Figure 10b, holistic classifiers who learned size categories were 

also more likely to select dimensional matches on brightness trials. This was supported 

by a mixed logistic regression model showing that these children were significantly more 

likely to select dimensional matches on brightness trials, z=-6.42, p<.0001, and a 

significant interaction such that holistic classifiers who learned size categories were even 

more likely to select dimensional matches on posttest brightness trials than pretest ones 

z=-3.75, p<.001. This main effect suggests that these children did not learn to attend 

selectively to the dimension that had been relevant for categorization (size), and suggests 

instead that these children generally preferred to attend to similarity in brightness 

regardless of the structure of the category they learned. More than that, though, the 
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interaction suggests that somehow the category learning task increased their selective 

attention to the irrelevant dimension—brightness. 

 Together, the results of the triad task show that dimensional classifiers’ similarity 

classification was influenced by the categories they had learned earlier in the experiment. 

While dimensional classifiers did not show an increase in the overall proportion of 

dimensional responses they made from pre- to posttest, they did show a change in the 

particular dimension to which they paid the most attention. Thus, they clearly utilized 

selective attention to learn their categories and their later attention was influenced by the 

specifics of those categories. Holistic classifiers’ similarity classification, on the other 

hand, was not directly influenced by the categories they had learned earlier in the 

experiment. It is still unclear, then, whether or not they were utilizing selective attention 

to learn their categories. Therefore, the next series of analyses take a more in-depth look 

at the extent to which children were selectively attending to dimensional similarity during 

the experiment. 

In-depth analysis of dimensional attention 

The results of category learning task supported my prediction that holistic 

classifiers should have more difficulty than dimensional classifiers learning dimensional 

categories. However, the results of the discrimination task showed that both dimensional 

and holistic classifiers who learned brightness categories demonstrated a pattern of 

discrimination accuracy indicative of attention to category-relevant dimensions. The 

results of the posttest triad, on the other hand, suggest that the dimensional classifiers 

increased attention to category relevant dimensions while the holistic classifiers did not. 

Thus, the extent of each group’s selective attention is not clear. If the holistic-to-

dimensional shift is actually more of a continuous increase in selective flexible attention 

over development, rather than a discrete shift, then it is entirely possible that even holistic 

classifiers can—with the help of learned category distinctions—selectively attend to one 
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dimension and ignore another. This could mean that the holistic classifiers showed 

enough of an increase in dimensional attention that it could influence their accuracy in 

the discrimination task, but not enough that it could influence their overall preference for 

holistic similarity relationships in the triad task.  

 To clarify this issue I next examined children’s accuracy in categorization and 

discrimination with respect to stimulus type. The category test addressed whether or not 

children are more accurate at categorizing familiar than novel stimuli, and whether they 

are more accurate at categorizing novel stimuli from within the category space than 

outside the category space. These two questions will clarify the extent to which children 

learned to pay attention to the category-relevant dimension or to specific stimuli. The 

discrimination test addressed whether or not children’s discrimination accuracy was 

influenced by 1) where in the learned category space the comparison stimuli were 

sampled, 2) the size of difference between stimuli, and 3) whether the discrimination 

occurred within a mixed or blocked set of trials. Examining these issues together will 

clarify the process by which children learned the categories: whether by selectively 

attending to a category-relevant dimension or by attending to the overall similarity of the 

stimuli 

Category test 

Overall, children in both groups who reached the learning criterion were very 

accurate in the categorization test. The dimensional classifiers who learned brightness 

categories, M=.87, t(7)=41.61, p<.0001, the dimensional classifiers who learned size 

categories, M=.77, t(6)=4.98, p<.01, the holistic classifiers who learned brightness 

categories, M=.83, t(6)=6.33, p<.001, and the holistic classifiers who learned size 

categories, M=.70, t(4)=3.01, p<.05, were all significantly better than chance at 

categorizing the test stimuli. If children learned these categories by selectively attending 

to the relevant dimension and ignoring the irrelevant dimension, then they should be 
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equally accurate at categorizing familiar and novel exemplars at test. Additionally, they 

should be equally accurate at categorizing novel exemplars both inside and outside of the 

learned category space. If, however, children learned these categories by memorizing 

individual stimuli or learning about specific local regions of the stimulus space (rather 

than learning about a dimension), they should be more accurate at categorizing familiar 

exemplars relative to novel exemplars and might be worse at categorizing novel stimuli 

from inside of the learned category space than those outside. I predicted that the 

dimensional classifiers should show evidence of attending to dimensions rather than 

specific stimuli. The holistic classifiers, however, should show evidence of attending to 

specific stimuli rather than dimensions. 

To address this I first examined children’s accuracy categorizing familiar 

(presented during category learning) versus novel stimuli. As can be seen in Figure 11a, 

the data suggest, as predicted, that dimensional classifiers (right set of bars) who learned 

brightness categories categorized familiar and novel stimuli equally accurately, z=.61, 

NS. Likewise, dimensional classifiers who learned size categories categorized familiar 

and novel stimuli with equal accuracy as well, z =.54, NS. These findings could be taken 

to suggest that the dimensional classifiers learned something about the category’s rule 

rather than something about specific stimuli. 

The holistic classifiers, on the other hand, were predicted to show differences in 

accuracy for novel and familiar stimuli. As can be seen in Figure 11b, however, the 

holistic classifiers who learned brightness categories were equally good at categorizing 

familiar and novel stimuli, z=1.26, NS. Likewise, the holistic classifiers who learned size 

categories were also were equally accurate at categorizing both types of stimuli, z =-.17, 

NS. These results thus suggest that the holistic classifiers also learned something about 

the category-relevant dimension rather than something about specific stimuli. However, 

because the null result was found, the possibility still exists that children in both groups 
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learned something about specific regions of the stimulus space, rather than the specific 

dimension relevant for categorization. 

To examine this possibility, I analyzed accuracy of children’s categorization of 

novel stimuli with respect to whether the stimuli were drawn from inside or outside the 

category space. It was predicted that the dimensional classifiers would either be equally 

good at categorizing the novel stimuli that fell outside of the trained stimulus space, or 

potentially even better at categorizing those outside the space as they were maximally 

dissimilar from the incorrect category. As can be seen in Figure 12a, these children were 

in fact better at categorizing stimuli from outside the category space. A mixed logistic 

regression model of the effect of novel trial type on accuracy revealed that dimensional 

classifiers who learned brightness categories were significantly more accurate at 

categorizing novel stimuli from outside the trained category space than those inside the 

trained space z=-2.49, p<.05. In contrast, the dimensional classifiers who learned size 

categories were not any more accurate at categorizing novel stimuli from outside the 

category space than inside the category space, z=-.75, NS. This suggests that at least the 

brightness learners were attending to the dimension relevant to category organization. 

It was expected that the holistic classifiers, on the other hand, should be worse at 

categorizing the novel stimuli that fell outside the trained stimulus space relative to those 

from inside the space because the outside stimuli were very different from the stimuli 

presented during learning. As can be seen in the left panel of Figure 12b, however, the 

holistic classifiers who learned brightness categories were equally accurate at 

categorizing novel stimuli from outside the trained space compared to those from inside 

the space, z=-1.27, NS. As can be seen on the right of Figure 12b, on the other hand, the 

holistic classifiers who learned size categories, were more accurate at categorizing novel 

stimuli from outside the category space than inside, z=-2.78, p<.01. This result suggests 

that the holistic classifiers, at least those who learned size categories, might have learned 

something about the category relevant dimension.  
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Results of the categorization test are mixed overall. The dimensional classifiers 

who learned brightness categories, but not those who learned size categories, appear to 

have learned something about the specific dimension of category organization. However, 

for the holistic categorizers, it was the ones that learned size categories, and not the ones 

who learned brightness categories who appear to have learned something about the 

specific dimension of category organization—as evidenced by greater categorization 

accuracy for novel stimuli from outside the learned category space. Assessing the results 

of the discrimination test with respect to accuracy for discriminations in strongly- versus 

weakly-learned areas should help clarify the extent to which these two groups were 

attending to dimensions rather than specific stimuli and regions of the category space. 

 

Strongly versus weakly learned areas of the category space 

 If differences found in children’s accuracy for relevant and irrelevant 

discriminations were due to children having learned to selectively attend to a whole 

dimension, then they should be equally good at making discriminations in both strongly 

and weakly learned areas of the category space. If however, children had learned to 

attend to overall similarity between exemplars within a category, then they should be 

better at making discriminations between stimuli from strongly learned rather than 

weakly learned areas of the category space. To examine this, I analyzed accuracy for 

between and within-category discriminations in both strongly and weakly learned areas 

of the category space. A mixed logistic regression model of the interaction between 

stimulus location (strongly versus weakly learned space) and type (between, within 

relevant, within irrelevant) showed that dimensional classifiers were equally accurate on 

discriminations from both strongly and weakly learned areas of the stimulus space, 

regardless of whether they had learned brightness categories, z=1.25, NS, or size 

categories, z=.38, NS. Similarly, a mixed logistic regression model revealed that holistic 

classifiers were also equally accurate on strongly-learned and weakly-learned 
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discriminations regardless of whether they had learned brightness categories, z=-.21, NS, 

or size categories, z=-.26, NS. The results of these models demonstrated that there was no 

difference between children’s accuracy in discriminating stimuli from strongly- versus 

weakly-learned areas of the space. This provides some evidence that both groups of 

children who learned the trained categories may not just have learned about specific 

stimuli or regions of the space, and perhaps instead learned to selectively attend to 

category-relevant dimensions.  

Discrimination step size  

Next I examined whether learning to attend to brightness or size for a 

categorization task changed children’s discrimination abilities. Recall that discrimination 

was tested at .5, 1, and 1.5 times the chosen discrimination threshold. A mixed logistic 

regression model of the interaction between the step size (.5, 1, or 1.5) and discrimination 

type (between, within relevant, within irrelevant) showed that dimensional classifiers 

who learned brightness categories were significantly more accurate at making 

discriminations when the stimuli were more different, z= 4.42, p<.0001, as were those 

who learned size categories, z=5.10, p<.0001. Holistic classifiers who learned brightness 

categories also showed an effect of discrimination step size, z=2.18, p<.05 as did those 

who learned size categories, z=2.83, p<.01. These results suggest that, overall, children 

were better at making discriminations as the difference between stimuli increased. The 

question of interest for analysis was, after learning the categories, are children more 

accurate at making relevant discriminations even across smaller distances. The answer is 

clearly no. Accuracy in each discrimination type simply increased with step size. 

Blocking  

Finally, I examined children’s discrimination accuracy with respect to the block 

of trials where the discrimination occurred. If children really were attending more to one 

dimension than another, then they should show switch costs when they have to make 

discriminations along the other dimension. This would lead to decreased accuracy for 
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discriminations along the relevant dimension that occurred within the context of mixed 

blocks compared to those that occurred within single-type blocks, for example. If 

however, children are attending to the overall similarity of specific stimuli when they 

make discriminations, they should not show an advantage for one type of block over 

another because they do not have to reallocate their attention from trial to trial. To 

examine this, I measured children’s accuracy for between and within-category 

discriminations in single-type (relevant-only or irrelevant-only) and mixed blocks. As can 

be seen in Figure 13a, dimensional classifiers who learned brightness categories were 

slightly more accurate at making relevant between- (blue bars) and within-category 

(green bars) as well as irrelevant (orange bars) discriminations in the context of single-

type blocks than during mixed blocks. This was supported by a mixed logistic regression 

model of the effects of block on discrimination accuracy showing that when a trial 

occurred within a block of single-type trials, as compared to a mixed block, dimensional 

classifiers who learned brightness categories were marginally more accurate at making 

between category discriminations, z=1.81, p<.10, marginally more accurate at making 

within category discriminations along the relevant dimension, z=1.86, p<.10,  and 

marginally more accurate at making within category discriminations along the irrelevant 

dimension, z=1.94, p<.10. Similarly, as can be seen in the figure, dimensional classifiers 

who learned size categories were significantly more accurate at making between-category 

discriminations in single-type blocks than in mixed blocks, z=2.05, p<.05. However, 

those who learned size categories showed no advantage for blocked trials over mixed 

when making within category discriminations along either the relevant, z=.38, NS, or 

irrelevant dimension, z=.96, NS. Overall, these results suggest that the dimensional 

classifiers were possibly selectively attending to dimensions, although not to the same 

extent in the two different category-learning conditions. 

It was predicted that holistic classifiers would attend to overall similarity when 

making discriminations and thus should not show an advantage for trials in single-type 
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blocks. In fact, as can be seen in Figure 13b, those who learned brightness categories 

showed no advantage of block type on between category discriminations, z=.67, NS, or 

within category discriminations along either the relevant, z=-.56, NS, or irrelevant 

dimensions, z=.14, NS. Similarly, as can be seen in the figure, those who learned size 

categories showed no advantage for single-type blocks on between category 

discriminations, z=.64, NS, or within category discriminations along either the relevant, 

z=.42, NS, or irrelevant dimensions, z=.06, NS. The finding that holistic classifiers did not 

show any switch costs in discrimination and could indicate that they had not, in fact, 

learned to selectively attend to the relevant dimension in categorization. This could 

suggest that the categorical perception-like effects they appear to have demonstrated in 

the categorization test could have arisen from their attention to overall similarity of 

stimuli. 

Overall, the results of the discrimination test demonstrate that children’s ability to 

make discriminations along dimensions was affected by category learning—that is if they 

learned brightness categories. In general, these children demonstrated increased accuracy 

for relevant versus irrelevant discriminations. However, the results of the analysis of 

blocking indicate that the two classifier types may have learned the categories in different 

ways. Specifically, the dimensional classifiers’ performance suggests that they were 

selectively attending to category relevant dimensions while the holistic classifiers’ 

performance suggests that they were attending to overall similarity and thus did not show 

a cost for making discriminations within the context of a mixed block of trials.  

Conclusions 

Learning to categorize stimuli along a given dimension increases attention to that 

dimension and leads to changes in discrimination. For this to happen, however, the 

learner has to be able to attend to the relevant dimension in the first place. The results of 

Experiment 1 generally support this idea by demonstrating that holistic classifiers were 
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slower to learn categories organized by a single dimension of similarity. Furthermore, 

analysis of the blocking structure for the discrimination test suggest that of those children 

who did learn the categories, only the dimensional classifiers demonstrated increased 

attention to category relevant dimensions and decreased attention to category irrelevant 

dimensions.  The blocking measure suggests that the holistic classifiers may have learned 

the category distinction by attending to the overall similarity of individual stimuli within 

the categories. The fact that the holistic classifiers were equally accurate at making 

discriminations in single-type and mixed blocks, lends some support to my idea that they 

are engaging in less selective attention than their dimensional counterparts, making it 

more difficult for them to learn these category distinctions. 

However, the results of the categorization test and the null results of the 

discrimination test with respect to stimulus location are more mixed and relatively 

difficult to interpret. These tests do not clearly reveal whether children were selectively 

attending to dimensional similarity. It is possible they learned the categories by some 

other means or that these tests were not strong enough measures of attention.  

Overall, the results of Experiment 1 generally suggest that children who classify 

holistically have difficulty learning to attend to one dimension in the category-learning 

task, and instead might be learning about individual stimuli or regions of the category 

space, as evidenced by their slow category learning and their lack of a switch cost for 

discrimination. However, work on early word-learning shows that even very young 

children can do this in the context of novel noun generalization (Smith et al., 2002). 

Furthermore, we know that labels can facilitate category learning even in adults (Lupyan 

et al., 2007). If labels play a scaffolding role in the development of dimensional attention 

more generally, then we should also see a facilitative effect of labels on category learning 

in children who are holistic classifiers. In Experiment 2, I examined category learning in 

the context of redundant labels to assess subsequent changes in attention. 
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CHAPTER V: EXPERIMENT 2 

The results of Experiment 1 demonstrated that, as predicted, children who attend 

to holistic similarity relationships have greater difficulty learning dimensional categories 

than children who attend to dimensional similarity relationships. If, over the course of 

development, word learning supports the emergence of dimensional attention in 

similarity classification, then the presence of incidental labels should support even 

holistic classifiers’ dimensional attention during category learning. Thus, the purpose of 

Experiment 2 is to examine whether redundant category labels can increase children’s 

dimensional attention and category-learning accuracy.  

Experiment 2 

Method 

Participants 

35 5-8-year-olds participated. Three children did not complete the entire 

experiment (2 for quitting and 1 for equipment error) and thus were excluded from the 

analyses. Thus there were 32 children in the final group.  

Procedure 

General methods were identical to those of Experiment 1. Children were divided 

into classifier groups based on performance in the triad pretest. There were 16 holistic 

classifiers and 16 dimensional classifiers. See Table 1 for participant information. 

However, during category learning, a novel category label was presented immediately 

after accuracy feedback. The two labels “grecious" and “leebish” were recorded by a 

female speaker and were selected because they had been used in previous categorization 

work (e.g. Lupyan et al., 2007). Thus, on each trial, after the child responded they heard 

either a bell or a buzzer to give them feedback about their accuracy. This was followed 
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by the novel label associated with the stimulus’s category (either grecious or leebish). 

After the presentation of the label, the experimenter said (as in Experiment 1), “Yeah, 

good job, that did come from the [ocean/jungle]!” if the child had categorized correctly, 

or “Uh oh, that one actually came from the [ocean/jungle]!” if the child had categorized 

incorrectly. Assignment of labels to categories was counterbalanced across subjects. 

Results of each task were analyzed in the same manner as in Experiment 1: first I 

examine differences in speed of category learning between the classifier types of each 

category learning group. I then assessed accuracy in the discrimination and posttest triad 

tasks. Finally, I analyzed the results of categorization and discrimination tests to gain a 

more in-depth understanding of children’s dimensional attention. As in Experiment 1, all 

analyses (other than that for category learning) were conducted separately for each 

classifier type and category learning group, and included only children who successfully 

learned the categories. I directly compare performance of holistic classifiers with and 

without labels in the next chapter.  

Results and discussion 

Category learning 

If labels increase selective attention to category-relevant dimensions, then holistic 

and dimensional classifiers should be equally fast to learn dimensional categories in this 

Experiment. To examine this I measured the number of blocks to criterion for each child 

in the category-learning task. As can be seen in Figure 14, the holistic classifiers learned 

the categories as quickly as the dimensional classifiers, and both groups learned 

brightness categories as quickly as they did size categories. This was supported by a 

mixed linear regression model of the interaction between classifier type (holistic versus 

dimensional) and category structure (brightness versus size organization) on the number 

of blocks it took children to reach criterion. This analysis revealed that both groups of 
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children learned the categories equally quickly as there was no effect of classifier type, 

t=.04, NS, and no effect of category structure, t =-.30, NS.  

Thus, the data appear to support my prediction; labels facilitate the learning of 

dimensional categories, such that holistic classifiers were now as quick to reach criterion 

as dimensional classifiers. In fact, only 1 out of 16 children in the holistic group failed to 

reach criterion and thus completed the maximum number of blocks (30), and none of the 

16 children in the dimensional group failed to reach criterion. A critical question, 

however, whether the presence of labels facilitated category learning for the holistic 

classifiers because it increased their selective attention to category-relevant dimensions. 

To answer this question, I next examined children’s performance in the categorization 

test, discrimination task and posttest triad task.  

Discrimination  

The discrimination task was designed to further address the question of whether 

or not children of each classifier type had learned to selectively attend to the category 

relevant dimension and ignore the category irrelevant dimension. Overall, children were 

quite accurate in discriminating stimuli. In particular, the dimensional classifiers who 

learned brightness categories, M=.83, t(6)=16.40, p<.0001, the dimensional classifiers 

who learned size categories, M=.80, t(6)=10.90, p<.0001, the holistic classifiers who 

learned brightness categories, M=.76, t(6)=7.42, p<.001, and the holistic classifiers who 

learned size categories, M=.77, t(7)=6.27, p<.001, were all significantly better than 

chance at discriminating stimuli in this task.  

It was predicted that, as in Experiment 1, dimensional classifiers who learned 

brightness categories would show increased between category discrimination and 

decreased within category discrimination. As can be seen in Figure 15a, dimensional 

classifiers who learned brightness categories were more accurate at between-category 

discriminations than within-category discriminations. This was supported by a mixed 

logistic regression model of the effect of discrimination comparison type (between, 
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within relevant, within irrelevant) on discrimination accuracy; dimensional classifiers in 

the brightness learning group were significantly more accurate when making between 

category discriminations compared to within category discriminations for both irrelevant, 

z= -4.50, p<.0001 and relevant dimensions, z=-3.93, p<.0001. These children were also 

significantly more accurate at making within-category discriminations along the relevant 

than the irrelevant dimensions, z=-4.50, p<.0001, demonstrating that, overall, they were 

more accurate at discriminating across the relevant than the irrelevant dimension. As can 

be seen in the figure dimensional classifiers who learned size categories were no more 

accurate when making between category discriminations than when making within 

category discriminations on either the irrelevant, z=1.49, NS, or the relevant dimension, 

z=-.42, NS. These children were no more accurate at making within-category 

discriminations along either dimension, z=1.49, NS. 

It was predicted that holistic classifiers who learned brightness categories would 

show an advantage for between-category discriminations relative to within-category 

discriminations, as in Experiment 1. As can be seen in Figure 15b, holistic classifiers who 

learned brightness categories were, in fact, more accurate at between-category 

discriminations than within-category discriminations. This was supported by a mixed 

logistic regression model showing that holistic classifiers who learned brightness 

categories were more accurate when making between category discriminations than 

within category discriminations along both the irrelevant, z=-5.29, p<.0001, and the 

relevant dimensions, z=-4.66, p<.0001. These children were also significantly more 

accurate at making within-category discriminations along the relevant than the irrelevant 

dimensions, z=-5.29, p<.0001, demonstrating that, overall, they were more accurate at 

discriminating across the relevant than the irrelevant dimension. However, as can be seen 

in the figure, holistic classifiers in the size learning group did not show any differences 

when making between-category discriminations relative to within-category 

discrimination along the irrelevant dimension, z=1.28, NS, or along the relevant 
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dimension, z=-.43. These children were no more accurate at making within-category 

discriminations along either dimension, z=1.49, NS. 

Thus, just as in Experiment 1, both types of classifiers showed some evidence of 

an effect of category learning on their perceptual discrimination abilities—but only if that 

dimension was brightness.  

Posttest triad  

Next, I examined the results of the posttest triad task. It was predicted that, as in 

Experiment 1, the dimensional classifiers would not increase in their amount of 

dimensional responding from pre- to posttest. However, as can be seen in Figure 16a, the 

dimensional classifiers who learned brightness categories did not demonstrate an increase 

in dimensional responding. This was supported by the results of a mixed logistic 

regression model that showed that dimensional classifiers who learned brightness 

categories were no more likely to choose dimensional matches during the post test than 

they did on the pretest, z=-.65 NS. However, as can be seen in the figure, dimensional 

classifiers who learned size categories were more likely to choose dimensional matches 

during the post test, z=2.43, p<.05.  

If labels drive attention to dimensional similarity, then the facilitative effects of 

labels in the category-learning task should have been a result of increased attention to 

dimensional similarity. Thus, it was predicted that the holistic classifiers would show 

increases in dimensional responding from pre to posttest. As can be seen in Figure 16b, 

the holistic classifiers who learned brightness categories were more likely to choose 

dimensional matches during the posttest. This is supported by the results of a mixed 

linear regression model showing that holistic classifiers who learned brightness 

categories showed an increase in dimensional responding, z=2.43, p<.05. Similarly, as 

can be can also be seen in the figure, those who learned size categories were more likely 

to select dimensional matches during the post test than the pre test, z=3.81, p<.001. These 
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results support the prediction that the presence of a label during category learning 

increases dimensional attention in similarity classification. 

A secondary question is whether the particular category type learned influenced 

children’s choice of dimensional matches on triad task trials that probed the dimension 

they had trained on during category learning. I next examined the extent to which 

learning to selectively attend to a given dimension in categorization changes the specific 

dimension to which children selectively attend in similarity classification. It was expected 

that dimensional classifiers should be more likely to choose dimensional matches on 

posttest trials corresponding to the dimension they learned to categorize by relative to 

how often they did so on the pretest. However, as can be seen in Figure 17a, the 

dimensional classifiers who learned brightness categories were more likely to select 

dimensional matches on size trials during both pre- and posttest. This was supported by 

the results of a mixed logistic regression model of the interaction between trial type (size 

or brightness) and test time (pre- or post- category learning) on the likelihood of selecting 

a dimensional match. In particular the model showed that dimensional classifiers who 

learned brightness categories were significantly more likely to choose dimensional 

matches on size trials than brightness trials, z=2.98, p<.01. There was no significant 

interaction between trial type and test time, z=-.22, NS. As can also be seen in the figure, 

dimensional classifiers who learned size categories, on the other hand, were no more 

likely to choose dimensional matches on either size or brightness trials during either pre- 

or posttest. This was supported by the results of a mixed logistic regression model that 

revealed no effect of trial type, z=.01, NS, and no interaction between trial type and test 

time, z=.01, NS. Together, these results suggest that dimensional classifiers did not select 

the dimension corresponding to their learned category more often during posttest.  

It was predicted that the holistic classifiers would choose dimensional matches 

more on trials corresponding to the dimensional structure of the category they learned. 

My proposal is that labels support selective attention to dimensional similarity. Thus, 
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holistic classifiers should be able to selectively attend to category-relevant dimensions in 

a labeling context. This increase in dimensional attention should then influence children’s 

responding in the triad task. As can be seen in Figure 17b, the holistic classifiers who 

learned brightness categories were more likely to choose dimensional matches on 

brightness trials. However, while a mixed logistic regression model of the interaction 

between trial type and test time showed that holistic classifiers who learned brightness 

categories were more likely to select dimensional matches on brightness trials, z=-9.03, 

p<.0001, there was no interaction, z=-1.23, NS. This suggests that during both the pre- 

and posttest triad tasks holistic classifiers were more likely to select dimensional matches 

on brightness trials. Furthermore, as can be seen in the figure, holistic classifiers who 

learned size categories were also more likely to select dimensional matches on brightness 

trials. This was supported by the results of a mixed logistic regression model showing 

that these children were significantly more likely to select dimensional matches on 

brightness trials, z=-2.24 p<.03, and a significantly interaction such that holistic 

classifiers who learned size categories were even more likely to select dimensional 

matches on size trials on posttest trials than pretest trials, z=3.14 p<.01.  

 Together, the results of the triad task show that holistic, but not dimensional 

classifiers’ similarity classification was influenced by the categories they had learned 

earlier in the experiment. This differs from the results of Experiment 1, which 

demonstrated that only the dimensional classifiers’ classification was influenced by the 

categories they learned. Clearly, the presence of redundant labels during category 

learning supported strong enough selective attention to category-relevant dimensions to 

carry over to similarity task even in holistic classifiers. It is not clear why, however, this 

attention to category-relevant dimensions did not carry over to the similarity task for 

dimensional classifiers in this experiment given that it did in Experiment 1. 
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In-depth analysis of dimensional attention 

The results of category learning supported my prediction that the presence of 

labels would help even holistic classifiers learn dimensional categories more quickly. 

However, the critical question is whether this happened because holistic classifiers 

increased selective attention to category-relevant dimensions. The results of the posttest 

triad task support the prediction that the increased speed of category learning was related 

to an increase in dimensional attention. The results of the discrimination test support my 

hypothesis as well, in that both dimensional and holistic classifiers who learned 

brightness categories showed enhanced accuracy for category-relevant discriminations 

relative to category-irrelevant discriminations. However, this was the same finding from 

Experiment 1, where, even though the holistic classifiers were slow to learn dimensional 

categories and did not show relevant changes in the triad classification task, there was 

evidence of their dimensional attention in the discrimination task. Thus, as in Experiment 

1, I conducted a more in-depth examination of children’s accuracy in categorization and 

discrimination to assess the extent to which children were selectively attending to 

category-relevant dimensions.  

Category test 

As in Experiment 1, children in both groups who reached learning criterion were 

very accurate in the categorization test. In particular, the dimensional classifiers who 

learned brightness categories, M=.84, t(6)=11.11, p<.0001, the dimensional classifiers 

who learned size categories, M=.86, t(6)=15.16, p<.0001, the holistic classifiers who 

learned brightness categories, M=.85, t(6)=13.32, p<.0001, and the holistic classifiers 

who learned size categories, M=.69, t(7)=4.30, p<.01, were all significantly better than 

chance at categorizing stimuli in this task. Because neither group showed a difference in 

accuracy for categorizing familiar versus novel stimuli in Experiment 1, I predicted again 

neither group would show a difference. 
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As can be seen in Figure 18a, the data suggest, as predicted, that dimensional 

classifiers who learned brightness categories are equally accurate at categorizing familiar 

and novel stimuli.  This was supported by a mixed logistic regression model of the effects 

of trial type on categorization accuracy showed that dimensional classifiers who learned 

brightness categories were no different in their accuracy of categorizing familiar than 

novel stimuli, z=.63, NS. As can be seen in the figure, dimensional classifiers who 

learned size categories were also equally accurate at categorizing all types of stimuli as 

well, z=.53, NS.  This suggests that the dimensional classifiers may have learned 

something about the category’s organization rather than just something about specific 

stimuli. 

As can be seen in Figure 18b, the holistic classifiers who learned brightness 

categories were also equally good at categorizing familiar and novel stimuli. This is 

supported by a mixed logistic regression model of the effect of trial type on accuracy at 

category test showed that holistic classifiers who learned brightness categories were 

equally accurate at categorizing familiar and novel stimuli., z=.56, NS. As can be seen in 

Figure 18b, the holistic classifiers who learned size categories were also were equally 

good at categorizing both types of stimuli, z=.49, NS. This would suggest that the holistic 

classifiers also learned something about the category’s organization rather than 

something about specific stimuli. However, because a null result was found, the 

possibility still exists that children in both groups paid attention to overall similarity 

rather the specific dimension relevant for categorization. 

To examine the extent to which children were attending to the dimension relevant 

for categorization rather than to specific regions of the category space, I examined 

accuracy of children’s categorization to novel stimuli with respect to whether the stimuli 

were drawn from inside or outside of the category space. It was predicted that the 

dimensional classifiers should be equally good or better at categorizing the outside 

stimuli relative to the inside stimuli. Although, as can be seen in Figure 19a, the 
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dimensional classifiers who learned brightness categories were generally more accurate 

in categorizing novel stimuli outside the category space than inside the category space, 

this trend was not significant. This is supported by the results of a mixed logistic 

regression model of the effect of novel trial type on accuracy z=-1.54, NS. Similarly, the 

dimensional classifiers who learned size categories were also not any more accurate at 

categorizing novel stimuli from outside the category space than inside the category space, 

z=-1.28, NS. This suggests that at least the brightness learners may not have been 

attending to specific stimuli or regions of the category space, but instead perhaps to 

category relevant dimensions. 

It was expected that the holistic classifiers would be equally good or better at 

categorizing the outside stimuli relative to the inside stimuli. As can be seen in Figure 

19b, the holistic classifiers who learned brightness categories were equally accurate at 

categorizing novel stimuli inside and outside the learned category space. This was 

supported by a mixed logistic model of the effect of novel stimuli type on categorization 

accuracy, z=-.86, NS. Although, as can be seen in Figure 19b, the holistic classifiers who 

learned size categories were generally more accurate at categorizing novel stimuli from 

outside the category space than inside a mixed logistic regression model revealed that this 

difference was not significant, z=-1.11, NS.  

Results of the categorization test overall show that both groups of children were 

equally accurate at categorizing all types of stimuli. This differs from the results of 

Experiment 1 that showed that dimensional classifiers who learned brightness categories 

and holistic classifiers who learned size categories were more accurate at categorizing 

novel stimuli from outside the learned category space. It is unclear why this would be. It 

may be that children in both experiments were overall so accurate in categorization that it 

is not possible to see differences in their attention by comparing accuracy for each trial 

type. It could be that generalizing to the novel stimuli in this task does not require as 

much selective attention as hypothesized and instead children were able to achieve a high 
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degree of accuracy by learning about specific regions of the category space. Assessing 

the results of the discrimination test with respect to strongly- versus weakly-learned areas 

of the stimulus space should help clarify the extent to which these two groups were 

attending to dimensions rather than specific stimuli and regions of the category space. 

Strongly versus weakly learned areas of the category 

 If children were more accurate at making discriminations from strongly-learned 

than weakly-learned areas of the category space, this would suggest that they had learned 

about specific regions of the space rather than category-relevant dimensions of similarity. 

To examine this, I measured accuracy for between and within-category discriminations in 

both strongly and weakly learned areas of the category space. A mixed logistic regression 

model of the interaction between stimuli location (strongly- versus weakly-learned space) 

and type (between, within-relevant, within-irrelevant) showed that dimensional classifiers 

were equally accurate at making discriminations in both strongly and weakly learned 

areas of the stimulus space, regardless of whether they had learned brightness categories, 

z=.33, NS, or size categories, z=-.56, NS. Similarly, a mixed logistic regression model 

revealed that holistic classifiers were also equally accurate regardless of whether they had 

learned brightness categories, z=.96, NS, or size categories, z=.16, NS. As in Experiment 

1, the results of these models suggest that children might not have just learned about 

specific regions of the category space, but instead might have learned to selectively 

attend to category-relevant dimensions.  

Discrimination step size  

Next I examined discrimination accuracy by asking if learning these categories 

affect the children’s ability to make discriminations along relevant dimension at even 

smaller metric differences than those learned. It was predicted that as in Experiment 1, 

both groups of children would be better at making discriminations across larger step 

sizes, but that this would not interact with discrimination type. A mixed logistic 

regression model of the interaction between the step size (.5, 1, or 1.5 times the 
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discrimination JND) and discrimination type (between, within-relevant, within-irrelevant) 

shows that dimensional classifiers who learned brightness categories were significantly 

more accurate at making discriminations when the stimuli were more different, z= 3.94, 

p<.0001, as were those who learned size categories, z=3.39 p<.001.  However, holistic 

classifiers who learned brightness categories showed no effect of discrimination step size, 

z=.36, NS, but did show an effect of trial type such that they were significantly more 

accurate at making between-category discriminations than within-category 

discriminations across both the relevant, z=3.27, p<.01, and irrelevant dimensions, 

z=3.03, p<.01. This model also revealed a significant interaction between trial type and 

step size, such that holistic classifiers who learned brightness categories were 

significantly less affected by step size when making between-category discriminations, 

z= -2.03, p<.05. On the other hand, those holistic classifiers who learned size categories 

did show a significant effect of step size on discrimination accuracy, z=4.38, p<.0001. 

There were no significant interactions. These results suggest that, with the exception of 

those holistic classifiers who learned brightness categories, children were better at 

making discriminations as the difference between stimuli increased. Overall, this 

replicates the results of the corresponding analysis from Experiment 1. However, it is 

critical to note the interesting results of the holistic classifiers who learned brightness 

categories. First, that they did not show an overall effect of step size on discrimination 

accuracy suggests that the holistic classifiers who learned brightness categories were 

equally accurate at making discriminations even at the smallest step size. Second, that 

these children showed an interaction such that they were least likely to show an influence 

of step size on accuracy for between-category discriminations shows that these children 

were selectively attending to the category-relevant dimension and this increased the 

accuracy with which they could make these discriminations. 

Blocking  
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Finally, I examined children’s discrimination accuracy with respect to the specific 

context of the block of trials where the discrimination occurred. It was predicted that both 

groups of children would show a cost for making discriminations in mixed blocks relative 

to single-type blocks. In Experiment 1, only the dimensional classifiers showed this 

switch cost. If labels are supporting holistic classifiers’ selective attention to category-

relevant dimensions, then they too should show a cost of switching between trial types. 

However, as can be seen in Figure 20a, dimensional classifiers who learned brightness 

categories were equally accurate at making discriminations in the context of single-type 

blocks than during mixed blocks. This was supported by a mixed logistic regression 

model of the effects of block on the discrimination accuracy showing that dimensional 

classifiers who learned brightness categories were equally accurate at making between 

category discriminations, z=.26, NS, equally accurate at making within category 

discriminations along the relevant dimension, z=-.89, NS,  and equally accurate at making 

within category discriminations along the irrelevant dimension, z=.10, NS when they 

occurred within a single-type block than in a mixed block. Similarly, as can also be seen 

in the figure, dimensional classifiers who learned size categories were equally accurate at 

making between-category discriminations in single-type blocks and mixed blocks, z=.71, 

NS, equally accurate at making within-category discriminations along the relevant 

dimension in single-type and mixed blocks, z=-.69, NS, and equally accurate at making 

within-category discriminations along the irrelevant dimension in irrelevant and mixed 

blocks, z=1.22, NS. These results were surprising given that the dimensional classifiers in 

Experiment 1 did show a difference in discrimination accuracy between mixed and 

single-type blocks of trials.  

It was predicted that holistic classifiers would show increased accuracy on trials 

occurring in single-type blocks relative to mixed blocks. However, as can be seen in 

Figure 20b, those who learned brightness categories showed no advantage of block type 

on between category discriminations, z=.89, NS, or within category discriminations along 
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either the relevant, z=1.20, NS, or irrelevant dimensions, z=.85, NS. Similarly, as can also 

be seen in the figure, those who learned size categories showed no advantage for single-

type blocks on between category discriminations, z=1.36, NS, or within category 

discriminations along either the relevant, z=-1.54, NS, or irrelevant dimensions, z=-.70, 

NS. These results, like those of the dimensional classifiers, are surprising given that the 

dimensional classifiers in Experiment 1 did show a cost for making discriminations in 

mixed blocks. It was expected that if children had learned to selectively attend to 

category-relevant dimensions then they should show a cost for making discriminations in 

mixed blocks. However, in both experiments children are overall very accurate in 

categorization and discrimination. It is possible that these measures are not sensitive 

enough to capture differences related to selective attention if children are performing at 

or near ceiling for all trial types. 

Conclusions 

I proposed that over development, word learning scaffolds selective attention to 

dimensional similarity, not just in the context of learning new words, but also more 

generally. If my proposal is correct, then we should see a role for labels in scaffolding 

children’s dimensional attention in non-linguistic tasks, such as the triad classification 

task. The primary results of Experiment 2 generally support this proposal by 

demonstrating that, unlike in Experiment 1, holistic and dimensional classifiers are 

equally quick to learn dimensional categories. Furthermore, the results of the posttest 

triad task demonstrate that, also unlike in Experiment 1, both holistic and dimensional 

classifiers show an increase in selective attention to the dimension of similarity relevant 

to the category they had learned. Interestingly, however, the results of the discrimination 

task do not differ from those of Experiment 1—namely that both holistic and dimensional 

classifiers who learned brightness categories showed enhanced accuracy for relevant 
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discriminations over irrelevant discriminations. This could suggest that dimensional 

category learning itself can increase selective attention to dimensional similarity. 

Thus, in children who are holistic classifiers, and have relatively weak selective 

attention abilities, it takes a long time to learn dimensional categories. Once the 

categories are learned, however, these children show slight increases in dimensional 

attention—as evidenced by their performance in the discrimination task. However, this 

increase was not strong enough to push them into very large increases in dimensional 

attention in the posttest triad task. Because labels appear to support even weak selective 

attention, however, when holistic classifiers learn dimensional categories in the context 

of redundant labels, they can learn the categories quite quickly. This increase in their 

selective attention then cascades forward to both their discrimination abilities and their 

classification biases. So, as Lupyan suggested in his 2008 study of effects of category 

grouping on visual processing, “categories matter, and named categories matter more.”  

However, it is important to note that the results of the secondary in-depth analyses 

of categorization and discrimination are mixed. Overall, these tests did not reveal clear 

evidence of children having changed attention to relevant versus irrelevant dimensions. It 

is unclear whether these tests are not sensitive enough to reveal a change in attention, or 

if children did not have such a change. To further examine the respective contributions of 

category learning and labels on increases to holistic classifier’s selective attention to 

dimensional similarity, in the next chapter, I directly compare the performance in each 

task of holistic classifiers in Experiments 1 and 2. This comparison should clarify the 

nature of these mixed results. 
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CHAPTER VI: DIRECT COMPARISON OF HOLISTIC 

CLASSIFIERS IN EXPERIMENTS 1 AND 2 

The results of Experiments 1 and 2 demonstrated that holistic classifiers are 

slower to learn dimensional categories than dimensional classifiers, but the presence of 

incidental labels eliminates this difference. Additionally these experiments demonstrate 

that the effects labels have on dimensional attention in category learning cascade forward 

to a similarity classification task. Together these results generally support the hypothesis 

that labels scaffold young children’s selective attention to dimensional similarity. 

However, the results of the discrimination task also demonstrate that regardless of the 

presence or absence of labels, category learning itself might also support selective 

attention. Holistic classifiers who learned brightness categories in both experiments 

demonstrated enhanced accuracy for category-relevant discriminations relative to 

category-irrelevant discriminations. Thus, both category learning and category learning in 

the context of labels appear to support some degree of selective attention (for those 

children who learned brightness categories). The purpose of this chapter is to directly 

compare the performance of holistic classifiers in the two experiments. Doing so will 

help clarify exactly how labels affected children’s performance in these tasks above and 

beyond category learning. 

Comparison Predictions 

Children’s performance in each task was compared across the two experiments 

for holistic classifiers who learned brightness categories and for those who learned size 

categories. The same basic mixed logistic regression model structure was used to make 

each comparison: the interaction between experiment (label versus no label) and task 

manipulation (e.g. between, within-relevant, or within-irrelevant discrimination type). 

This allowed me to examine how the presence of a label might interact with the effects of 

category learning. 
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There were two qualitative differences in holistic classifiers’ performance in 

Experiments 1 and 2 that have already been described. First, holistic classifiers in 

Experiment 2 (label) learned dimensional categories as quickly as dimensional classifiers 

did, while those in Experiment 1 were significantly slower than dimensional classifiers. 

Thus, it was expected that the comparison analysis between the two holistic classifier 

groups would show that those in Experiment 2 were significantly faster to learn the 

categories than those in Experiment 1. Second, holistic classifiers in Experiment 2 

showed increases in dimensional responding from pre- to posttest that related to the 

structure of the categories they learned, while those in Experiment 1 did not. Thus it was 

expected that the comparison analysis would show a significantly larger increase in 

dimensional responding from pre- to posttest for the holistic classifiers in Experiment 2 

relative to those in Experiment 1.  

There were no other qualitative differences between holistic children’s 

performance in the two experiments. Thus, it was anticipated that any differences 

revealed in the comparison analyses would be related to overall accuracy rather than 

differences in the overall patterns of performance. For example, it is possible that 

children’s overall highly accurate performance in the discrimination task could mask 

differences in discrimination accuracy for strongly- versus weakly-learned areas of the 

category space. A direct statistical comparison of the two experimental groups, however, 

might reveal such fine-grained effects, and thus help clarify the mixed results of the 

categorization and discrimination tasks. 

Comparison Analyses and Discussion 

Category learning 

If labels facilitate category learning, even in young children who still generally 

attend to holistic similarity relationships, then the holistic classifiers in Experiment 2 

should be significantly faster to learn categories than the holistic classifiers in Experiment 
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1. In fact, a mixed linear regression model of the interaction between experiment (label 

versus no label) and category structure (size versus brightness) on the number of blocks 

to reach learning criterion revealed that holistic classifiers were significantly quicker to 

reach criterion in the label experiment than the no label experiment, t=-26.57, p<.0001. 

There was an overall effect of category structure, such that children were faster to learn 

brightness categories, t=-23.66, p<.0001, however, there was also a significant interaction 

such that children in the label experiment showed less of an advantage for learning 

brightness categories, t=7.47, p<.0001. Thus, holistic classifiers who learned categories 

in the context of redundant labels were not only equally fast to learn those categories as 

their dimensional counterparts (as we saw in the results of Experiment 2), but they were 

significantly faster than their holistic counterparts in the no label experiment. Further, 

these children learned brightness and size categories at almost the same rate. This result 

provides direct evidence that labels facilitate dimensional category learning in children 

who have difficulty selectively attending to dimensional similarity.  

Discrimination 

If labels facilitate category learning because they increase children’s selective 

attention to category-relevant dimensions, then the children in the label experiment 

should show the biggest enhancement in accuracy for relevant over irrelevant 

discriminations. However, we also know from the results of Experiment 1 and 2 that 

holistic classifiers who learned brightness categories demonstrated the same general 

pattern of results in the discrimination tasks of both experiments. Nevertheless, it is still 

possible that the label had an effect on children’s discrimination, such as increasing 

accuracy overall, that would be revealed by a direct comparison between the two 

experiments. In fact, a mixed logistic regression model of the interaction between 

experiment (label versus no label) and discrimination type (between, within-relevant, or 

within-irrelevant) revealed a marginal effect of experiment such that the holistic 
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classifiers who learned brightness categories in the context of an incidental label had a 

tendency to be more accurate overall in discriminations than those in the no label 

experiment, z=1.69, p<.10. Additionally, there were significant interactions such that 

children in the label experiment showed a larger difference in accuracy in between-

category discriminations relative to within-category discriminations on the relevant 

dimension, z=2.25, p<.05, and relative to within-category discriminations on the 

irrelevant dimension, z=2.28, p<.05. However, the equivalent mixed logistic regression 

model of holistic classifiers who learned size categories did not reveal significant effects 

of experiment, z=2.28, NS, or any interactions. Together, these results demonstrate, at 

least for those children who learned brightness categories, that the presence of a label 

made the effects of category learning on perceptual discrimination somewhat stronger. 

This is evidence that labels increase selective attention to dimensions above and beyond 

category learning.  

Posttest triad 

If word learning is what drives the emergence of selective attention to dimensions 

in similarity classification over development, then we may also see indices of these 

changes in attention over the course of an experiment if there are incidental labels 

presented during category learning. We saw in both Experiments 1 and 2 that holistic 

classifiers showed some increases in dimensional responding. However, only those 

children in Experiment 2 showed any evidence of changes in their dimensional 

responding related to the specifics of their category learning. In particular, children in 

Experiment 1 who learned size categories only showed a slight increase in attention to 

brightness—a finding that suggests any effects of category learning did not carry forward 

to the similarity classification. Therefore I predicted that the holistic classifiers in the 

label experiment should show the largest increases in dimensional responding from the 

pre- to posttest triad task regardless of which type of category they learned. This 
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prediction was supported by a mixed logistic regression model of the effect of experiment 

(label versus no label) on the change in dimensional responses from pre- to posttest triad 

for holistic classifiers who learned brightness categories. This model revealed that those 

in the label condition showed a significantly larger increase in dimensional responding 

from pre- to posttest, z=3.34, p<.001. Similarly, the equivalent mixed logistic regression 

model of the effect of experiment on change in dimensional responding for holistic 

classifiers who learned size categories revealed that those in the label experiment also 

showed a significantly larger increase in dimensional responding from pre- to posttest, 

z=3.55, p<.001. These results demonstrate that the presence of a label not only 

immediately facilitated category learning, but also led to changes in selective attention 

that cascaded forward to a similarity classification task.  

In-depth analysis of dimensional attention 

Together, the results of the comparison analysis support my proposal that labels 

scaffold dimensional attention: holistic classifiers are faster to learn dimensional 

categories in the presence of labels; they demonstrate more extreme influences of 

attention to category-relevant/category-irrelevant dimensions on their perceptual 

discrimination abilities; and they demonstrate significantly larger increases in 

dimensional attention in a similarity classification task from pre- to posttest. Next, I 

examined performance in the categorization and discrimination tasks at the detailed level 

of stimulus location, threshold size, and blocking to examine whether the presence of a 

label had an effect on children’s accuracy. 

Category test 

The results of Experiment 1 and 2 revealed no differences in categorization 

accuracy for familiar and novel stimuli by classification group, category structure or 

experiment. This was likely because all the children performed very well on the 

categorization test. Thus, it was expected that there would be no significant differences 
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between the two groups of holistic classifiers. In fact, a mixed logistic regression model 

of the interaction between experiment (label versus no label) and trial type (familiar or 

novel) on children’s categorization revealed that holistic classifiers who learned 

brightness categories showed no effect of experiment, z=.29, NS. Similarly, the 

equivalent mixed logistic regression model for holistic classifiers who learned size 

categories revealed no effect of experiment, z=-.12, NS. Clearly all children were equally 

accurate at categorizing familiar and novel stimuli. It is unclear just from this test, 

however, if this is because all children had truly learned to attend to category-relevant 

dimensions or whether this test was not a strong enough measure of dimensional 

attention. For this reason, I next examined children’s accuracy in categorization with 

respect to type of novel stimulus (inside or outside the category space).  

In Experiment 1, the holistic classifiers who learned size categories were 

significantly more accurate at categorizing novel stimuli from outside the category space 

than from inside the space. In Experiment 2, however, while holistic classifiers generally 

demonstrated higher accuracy for categorizing novel stimuli outside the space, they were 

not statistically different at categorizing stimuli from outside and inside. Thus, directly 

comparing the performance will help clarify whether the children in the two experiments 

actually were different with respect to accuracy In fact, the results of mixed logistic 

regression models demonstrate that there was no difference between the children in the 

two experiments in accuracy of categorizing novel stimuli. In particular a mixed logistic 

regression model of the interaction between experiment (label versus no label) and trial 

type (novel inside or novel outside) showed that holistic classifiers who learned 

brightness categories were equally accurate in both experiments, z=.43, NS. Similarly the 

equivalent model for holistic classifiers who learned size categories revealed no effect of 

experiment, z=-.55, NS. Together, these comparisons of the holistic classifiers’ accuracy 

in categorization demonstrate that once children learned dimensional categories, they are 
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equally accurate at categorizing different types of stimuli as each other, regardless of 

whether there had been labels present or not. 

Strongly- versus weakly-learned areas of the category 

The results of Experiment 1 and 2 revealed that no group of children, regardless 

of classifier type, learned category structure, or experiment, showed any differences in 

accuracy for discriminations between stimuli from strongly- versus weakly-learned areas 

of the category space. It is possible that all children’s very high accuracy in 

discrimination overall prevented me from seeing any difference related to attention to 

category relevant dimensions rather than specific regions of the category space. 

Exploring performance in this task by directly comparing holistic classifiers from the two 

experiments allowed me to assess whether there were any differences not captured by the 

qualitative results. A mixed logistic regression model of the interaction between 

experiment (label versus no label), location (strongly- versus weakly-learned), and 

discrimination type (between, within-relevant, or within-irrelevant) showed a marginal 

effect of experiment such that children in the label experiment were overall slightly more 

accurate at making discriminations than those in the no label experiment, z=1.69, p<.10. 

There were not, however, any significant effects of location, z=.40, NS. However the 

equivalent mixed logistic regression model of discrimination accuracy for holistic 

classifiers who learned size categories showed no effect of experiment, z=.56, NS and no 

interaction with location, meaning that children in both experiments were no different in 

making discriminations in both strongly- and weakly-learned areas of the category space. 

Thus these two models do not tell us anything above and beyond the results of the earlier 

comparison model of discrimination that showed an effect of experiment on 

discrimination accuracy. It is unclear whether the lack of an effect is because these two 

groups of children are both showing selective attention to category-relevant dimensions 
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or because this test is not sensitive enough to capture differences. Assessing results of the 

other two discrimination measures may help clarify this issue. 

Discrimination step size 

The results of Experiment 1 and 2 demonstrated that children generally tended to 

be more accurate at discrimination with bigger differences between the stimuli. It was 

therefore expected that there would be no difference between the holistic classifiers in the 

two experiments with respect to threshold size. In fact, a mixed logistic regression model 

of the interaction between experiment (label versus no label), threshold size (.5, 1, or 1.5x 

JND), and discrimination type (between, within-relevant, or within-irrelevant) on the 

discrimination accuracy of holistic classifiers who learned brightness categories did not 

reveal any effect of condition, z=1.42, NS, or any interactions with threshold size. 

Additionally, the equivalent model for holistic classifiers who learned size categories did 

not reveal any effect of condition, z=-.02, NS, or any interactions with threshold size. 

These results suggest that children in the two experiments were equally affected by the 

size of the difference between stimuli. Again, it is not clear from the results of this test 

whether this means children are demonstrating selective attention or not. Assessing 

differences between holistic classifiers’ performance in the discrimination task with 

respect to the blocking of trials may help clarify this issue. 

Blocking 

The results of Experiment 1 and 2 showed no effect of blocking type on holistic 

classifiers’ discrimination accuracy. However, the results of Experiment 1 did show that 

dimensional classifiers were more accurate when making discriminations in the context 

of single-type blocks than in mixed blocks. This was taken as evidence that dimensional 

classifiers in Experiment 1 were selectively attending to category-relevant dimensions 

and thus showed a cost for making discriminations in mixed blocks where they had to 

switch between attending to each dimension. It is possible that I did not find such a 
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switch cost for children in Experiment 2—even if they had been selectively attending to 

the relevant dimension during category learning—because they were so accurate overall 

at discrimination. Making a direct comparison between holistic classifiers in the two 

experiments will clarify whether this is the case. I predicted that if there was a difference 

between the two experiments it would be such that the holistic classifiers in the label 

condition were more accurate overall and would show a greater cost for making 

discriminations in mixed blocks than those in the no label condition. However, a mixed 

logistic regression model of the interaction between experiment (label versus no label), 

block (mixed versus relevant or irrelevant), and discrimination type (between, within-

relevant or within-irrelevant), revealed no significant effect of experiment on the 

accuracy of holistic classifiers who learned brightness categories doing between-category 

discriminations, z=1.25, NS, within-relevant discriminations, z=.21, NS or within-

irrelevant discriminations, z=.14, NS, nor were there any interactions with block. 

Similarly, the equivalent model for holistic classifiers who learned size categories 

revealed no significant effect of experiment on the accuracy of between-category 

discriminations, z=-.06, NS, within-relevant discriminations, z=.98, NS or on within-

irrelevant discriminations, z=1.35, NS, nor were there any interactions with block. These 

results suggest that the presence of a label did not affect children’s likelihood of showing 

a cost for making discriminations in the context of mixed blocks. 

Conclusions 

The results of the primary comparison analyses between holistic classifiers in the 

two experiments add to the qualitative analyses of the previous two chapters by directly 

examining the extent to which labels support selective attention above and beyond 

category learning. In particular, the analysis of learning speed revealed that holistic 

classifiers in the label experiment were significantly faster to learn dimensional 

categories—either organized by brightness or size. This added to the results of 
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Experiment 2 by demonstrating that it was not just the case that the presence of labels 

removed the difference between holistic and dimensional classifiers, but that it led the 

holistic classifiers to be significantly faster to learn than their counterparts in the no label 

experiment.  

Additionally the results of the comparison of discrimination task accuracy 

between the two experiments revealed that holistic classifiers in the label experiment 

were not only significantly more accurate at discrimination overall, but they showed a 

larger difference in accuracy for the different trial types. In other words, children in the 

label experiment showed greater enhanced attention to category-relevant dimensions and 

more decreased attention to category-irrelevant dimensions. This adds to the qualitative 

assessment of Experiments 1 and 2, both of which demonstrated that holistic classifiers 

who learned brightness categories showed the “adult” pattern found by Goldstone 

(1994b). The analysis presented in this chapter shows that the holistic classifiers in the 

label experiment show a more extreme pattern, adding support to the claim that category 

learning affects attention to dimensions, but labeled category learning affects it more.  

Finally, the comparison of the two holistic groups’ changes in dimensional 

responding in the triad task revealed that those in the label experiment showed 

significantly larger increases in dimensional responding from pre- to posttest than those 

in the no label experiment. This offers the strongest evidence that labels scaffold selective 

attention to dimensional similarity. The only difference between the two experiments was 

the presence of incidental, redundant, labels during the feedback in category learning. Yet 

this difference was enough to change children’s pattern of responding in a seemingly 

unrelated similarity classification task. Together, the results of these three primary 

analyses clearly show that labels can support selective dimensional attention even in 

children who tend to attend to holistic similarity relationships. 

The results of the secondary analyses—which were supposed to provide a more 

in-depth analysis of the extent to which children demonstrate selective attention to 
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dimensional similarity—however, do not provide such clear support. These secondary 

analyses reveal no effects of experiment (label versus no label) on children’s accuracy in 

categorizing familiar versus novel stimuli, or novel inside versus novel inside stimuli, or 

in discrimination based on stimulus location, threshold size, or block type. The null 

results of these secondary analyses (with respect to experiment) coupled with the 

similarly unclear results of these analyses in the qualitative assessments of Experiments 1 

and 2 suggest that these tests might not be strong enough measures of selective attention 

to be informative.  

Nevertheless, the results of the direct comparison are nevertheless informative. 

The purpose of Experiments 1 and 2 was to explore the extent to which the presence of 

incidental labels could support dimensional attention in holistic above and beyond 

category learning. While the results of these experiments demonstrate that labels do in 

fact scaffold dimensional attention above and beyond category learning, category 

learning still supports a degree of dimensional attention even in holistic classifiers. That 

holistic classifiers can be pushed into selectively attending to dimensional similarity via 

category learning with or without labels supports the proposal that the change from 

holistic to dimensional attention is one of continuous developmental change rather than a 

discrete.  

Previous studies have also proposed continuity in the development of selective 

dimensional attention. For example, researchers have argued that children who 

preferentially attend to one dimension of similarity (e.g. brightness) regardless of whether 

this means classifying by dimensional or holistic similarity may be an intermediate part 

of this developmental continuum (see e.g. Hanania & Smith, 2011). Thus, in the next 

chapter, I explore the effects of category learning with and without incidental labels on 

changes to selective dimensional attention in “preferrer” children. Understanding how 

category learning and labels influence these children’s selective attention to dimensions 
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will help clarify how children eventually begin to attend to dimensional similarity 

without linguistic support. 
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CHAPTER VII: EXPERIMENTS 3 AND 4 

If the holistic to dimensional shift is a continuous increase in selective and 

flexible attention, then examining children who use an intermediate classification 

strategy, such as the preferrer strategy, is necessary for our understanding of selective 

attention across the developmental spectrum. Thus, in Experiment 3, I examined the 

influence of category learning on preferrers’ attention to category-relevant dimensions. In 

Experiment 4, I examined whether the presence of a label during category learning would 

affect these children’s subsequent discrimination and classification abilities. At the end of 

this chapter, I conduct a direct comparison between the two experiments for each 

preferrer group. 

Experiment 3 

The purpose of this experiment was to examine preferrers’ category learning and 

its effects on their dimensional attention. It is unclear why children should prefer the 

specific dimension they do when they demonstrate a preference in similarity 

classification. It is also unclear how stable this preference is and whether it will influence 

children’s learning and discrimination later in the experiment. Some researchers have 

explained the preferrer strategy by arguing that individual dimensions “become 

available” to children at different times as their perceptual systems mature, and that the 

order in which dimensions become available differs between children (Cook & Odom, 

1992). If this preference is relatively stable, then preferrers should be able to learn 

dimensional categories fairly quickly if the category is organized by the dimension they 

prefer (i.e. brightness preferrers should be faster to learn brightness categories than size 

categories and size preferrers should be faster to learn size categories than brightness 

categories).  

A second possibility is that the preference is not stable. It could be that children 

end up classified as a preferrer not because they are really good at focusing on brightness 
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(for example) but instead because they are able to selectively attend to one dimension but 

cannot yet flexibly switch between dimensions. This type of attention could be described 

as, “sticky attention” (see Hanania & Smith, 2010). If this is the case, then preferrers may 

be equally quick to learn either type of category, and would show dramatic difference in 

their ability to make category-relevant versus category-irrelevant discriminations. 

Additionally, if it was the case that they have sticky attention, preferrers may switch 

which dimension they prefer from pre- to posttest triad depending on their learned 

category structure.  

A third possibility is that there is something inherently different about brightness 

and size dimensions. The results of Goldstone’s 1994 study of perceptual learning and the 

holistic and dimensional classifiers’ category learning in Experiment 1 both demonstrate 

that, in general, children and adults are faster to learn brightness categories than size 

categories. The results of these studies also demonstrate that both children and adults 

show changes to their abilities to make discriminations along relevant versus irrelevant 

dimensions if they learn brightness—but not size—categories. It therefore seems 

probable that size is a more difficult dimension to attend to than brightness and even 

when people learn categories that force them to attend to size, they still are really good at 

attending to brightness. If size is just a more difficult dimension to attend to, this could 

mean that size preferrers actually have much stronger selective attention abilities than 

brightness preferrers. Size preferrers might be equally good at learning either type of 

category, then, because they are good at attending to size and because brightness is an 

easier dimension for anyone to attend to. Brightness preferrers, on the other hand, would 

be quick to learn brightness categories, but show difficulty in learning size categories 

(just as holistic and even dimensional classifiers did in Experiment 1).  

By comparing the speed with which children of each preferrer type learn 

categories of each type, and comparing the qualitative patterns of results in 

categorization, discrimination, and posttest triad tests, I should be able to clarify not only 
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what it means to “prefer” a dimension, but also how children using this intermediate 

strategy fit into the continuum from holistic to dimensional attention.. 

Method 

Participants 

Participants were 33 5- to 8-year-old children. One child did not complete the 

entire experiment and was excluded from these analyses. Thus there were 32 children in 

the final group. 

Procedure 

The procedure was identical to that of Experiment 1—the no label experiment. 

The only difference was that all the children in this experiment used a preferrer strategy 

on the triad classification test. That is, they preferentially selected the stimulus that most 

closely matched the exemplar on one dimension (size or brightness) regardless of 

whether that meant selecting the holistic or the dimensional match. Children were divided 

into classifier groups based on performance in the triad pretest. There were 16 brightness 

preferrers and 16 size preferrers. See Table 1 for participant information. 

Results and Discussion 

Category Learning 

It was thought that preferrers might differ from each other with respect to the 

speed with which they learned categories of each type. As can be seen in Figure 21, the 

size preferrers were equally fast to learn both brightness and size categories while the 

brightness preferrers were only fast at learning brightness categories. This was supported 

by a mixed linear regression model of the effect of classifier type (brightness versus size 

preferrer) on the number of blocks it took children to reach criterion. The model revealed 

a significant effect of classifier type such that size preferrers were significantly faster to 
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reach criterion than brightness preferrers, t=-50.60, p<.0001, a significant effect of 

category structure such that children learned brightness categories more quickly than size 

categories, t=-65.80, p<.0001, and significant interaction such that size preferrers were 

less likely to show an advantage for learning brightness categories, t=4.98, p<.0001. 

These results support the idea that there is something different about brightness and size 

dimensions that makes categorize defined by size more difficult to learn. By this view, if 

a child is good at attending to size (the more “difficult” dimension) then they are also 

good at attending selectively to brightness (the “easy” dimension) and can learn either 

category structure relatively quickly. On the other hand, if a child is good at attending to 

brightness, they have more difficulty attending to size, and they are therefore much 

quicker to learn brightness categories than size categories.  

Discrimination 

Overall, children were quite accurate in discriminating stimuli. In particular, the 

brightness preferrers who learned brightness categories, M=.82, t(7)=9.51, p<.0001, the 

brightness preferrers who learned size categories, M=.82, t(6)=13.96, p<.0001, the size 

preferrers who learned brightness categories, M=.85, t(7)=18.29, p<.0001, and the size 

preferrers who learned size categories, M=.80, t(7)=8.35, p<.0001, were all significantly 

better than chance at discriminating stimuli in this task.  

Children’s accuracy in making relevant versus irrelevant discriminations could 

differ depending on whether the category they learned was “easy” for them to learn given 

their classifier type. In particular, it was thought that brightness preferrers who learned 

brightness categories could show an advantage for category-relevant over category-

irrelevant discriminations, but those who learned size categories might not. As can be 

seen in Figure 22a, brightness preferrers who learned brightness categories were more 

accurate at making between-category than within-category discriminations. This was 

supported by the results of a mixed logistic regression model of the effects of 
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discrimination type (between, within-relevant, within-irrelevant) on accuracy. The model 

showed that brightness preferrers who learned brightness categories were significantly 

more accurate at making between-category discriminations than within-category 

discriminations along the irrelevant dimension, z=-4.83, p<.0001, or the relevant-

dimension, z=3.83, p<.001. These children were also significantly more accurate at 

making within-category discriminations along the relevant than the irrelevant dimensions, 

z=-4.27, p<.0001, demonstrating that, overall, they were more accurate at discriminating 

across the relevant than the irrelevant dimension. However, as can be seen in the figure, if 

brightness preferrers learned size categories, they actually demonstrated the reverse 

pattern. These children were actually more accurate at making discriminations along the 

irrelevant dimension than the relevant dimension. This was supported by a mixed logistic 

regression model of the effect of discrimination type on accuracy that revealed that 

brightness preferrers who learned size categories were significantly more accurate at 

making discriminations along the irrelevant dimension than either making between-, 

z=2.31, p<.05, or within-category discriminations, z=3.50, p<.001. These children were 

actually significantly more accurate at making within-category discriminations along the 

irrelevant than the relevant dimensions, z=3.50, p<.001. Together, these results 

demonstrate that brightness preferrers were very accurate at making brightness 

discriminations regardless of whether brightness was relevant or irrelevant to their 

category learning. However, if they learned brightness categories, they do appear to be 

affected by their learning in that they are more accurate at making between-category than 

within-category discriminations along the relevant dimension. 

Because size preferrers were equally quick to learn either category structure, they 

should show increased accuracy for discriminations along the category-relevant 

dimensions relative to the category-irrelevant dimension regardless of which type of 

category they learned. As can be seen in Figure 22b, size preferrers who learned 

brightness categories were in fact more accurate in making between-category 
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discriminations than within-category discriminations. This is supported by a mixed 

logistic regression model of the effect of discrimination type (between, within-relevant, 

within-irrelevant) on accuracy. This model revealed a significant effect of discrimination 

type such that size preferrers who learned brightness categories were more accurate at 

making between category discriminations than within-category discriminations along 

either the relevant dimension, z=4.04, p<.0001, or the irrelevant dimension, z=-4.02, 

p<.0001. These children were also significantly more accurate at making within-category 

discriminations along the relevant than the irrelevant dimensions, z=-3.11, p<.01, 

demonstrating that, overall, they were more accurate at discriminating across the relevant 

than the irrelevant dimension. However, as can also be seen in the figure, the same was 

not true for those size preferrers who learned size categories. A mixed logistic regression 

model of the effect of discrimination type on accuracy revealed that these children were 

equally accurate at making between-category discriminations as they were making 

within-category discriminations along the relevant, z=.40, NS, and irrelevant dimensions, 

z=-43, NS. These children were no more accurate at making within-category 

discriminations along either dimension, z=-.15, NS. Thus, despite the fact that size 

preferrers focused on size similarity in the classification task, and were quite quick to 

learn size categories, they do not show any evidence of increased attention to size in the 

discrimination task. 

Posttest Triad 

As was the case in Experiment 1, the primary question of interest with respect to 

the results of the posttest triad task is was there an increase in dimensional responding 

from pre- to posttest triad task? It was expected that neither classifier group would show 

an increase in dimensional responding if they learned the type of category corresponding 

to the dimension they preferred. On the pretest, each preferrer group was already 

choosing the maximum number of dimensional responses corresponding to their 
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dimension. Even if category learning increases attention to relevant dimensions, these 

children will not be able to exceed the number of dimensional matches that they choose 

on pretest. However, if these children learn the category structure organized by their non-

preferred dimension, then they might show an increase in dimensional responding. The 

question is, though, would category learning actually lead to an increase in dimensional 

responding. It was thought that brightness preferrers who learned brightness categories 

would not show an increase. It was also thought that brightness preferrers who learned 

size categories would not increase, because they had had so much difficulty learning their 

categories that the learning should not have impacted their subsequent attention. As can 

be seen in Figure 23a, brightness preferrers who learned brightness categories did not 

show an increase in dimensional responding from pre- to posttest. This was supported by 

a mixed logistic regression model of the effect of test time (pretest or posttest) on 

dimensional responding that revealed no effect of test time, z=1.54, NS. Similarly, as can 

be seen in Figure 23a, brightness preferrers who learned size categories did not show an 

increase in dimensional responding either. This was supported by a mixed logistic 

regression model of the effect of test time (pretest or posttest) on dimensional responding 

that revealed no effect of test time, z=.66, NS. Together these results show that category 

learning did not alter brightness preferrers’ dimensional attention in the triad 

classification task. 

Similarly, it was predicted that size preferrers who learned size categories would 

not show any increase in dimensional responding. As can be seen in Figure 23b, size 

preferrers who learned size categories did not in fact show any increase. This was 

supported by a mixed logistic regression model of the effect of test time (pre versus post) 

on dimensional responding that revealed no effect of test time, z=-.10, NS. However, it 

was predicted that those who learned brightness categories might show an increase in 

dimensional responding as these children had been able to learn their categories relatively 

easily. But, as can be seen in the figure, size preferrers who learned brightness categories 
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did not show any change in dimensional responding from pre- to posttest triad. This was 

supported by a mixed logistic regression model of the effects of test time (pre or post) on 

dimensional responding that reveal no effect of test time, z=.92, NS. Thus, neither 

brightness nor size preferrers showed an increase in dimensional responding from pre- to 

posttest. It remains to be seen, however, whether the specific pattern of dimensional 

choices children made was influenced by the specifics of the categories they learned. 

Thus, a secondary question is whether preferrers change the dimension to which 

they prefer to attend. If category learning can affect the specific dimensions of similarity 

to which children attend, then preferrers may switch their preferred dimension. This 

would support the idea of preferrers having “sticky attention.” Once they selectively 

attend to a given dimension, they get stuck and cannot flexibly switch to attending to 

another dimension. However, if they can learn a dimensional category, this could get 

them stuck on a dimension that is different than the one they initially preferred. Thus, it 

was thought that brightness preferrers who learned brightness categories might continue 

to prefer brightness and size preferrers who learned size categories would continue to 

prefer size. Brightness preferrers who learned size categories did not show increased 

accuracy for the relevant dimension over the irrelevant dimension in discrimination, and 

so it was not expected that they would prefer size in the posttest. Size preferrers who 

learned brightness categories on the other hand, did show increased accuracy for the 

relevant dimensional over the irrelevant dimension in discrimination, and so it was 

expected that they might develop a preference for brightness in the posttest. 

As can be seen in Figure 24a, brightness preferrers who learned brightness 

categories did not change their preference from pre- to posttest. This was supported by a 

mixed logistic regression model of the interaction between trial type (size or brightness 

match) and test time (pretest or posttest) that revealed no significant effect of test time, 

z=1.44, NS. This model did reveal a significant effect of trial type such that children were 

most likely to select dimensional matches on brightness trials, z=-6.04, p<.0001. Thus 
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brightness preferrers remained brightness preferrers. Similarly, as can be seen in the 

figure, those brightness preferrers who learned size categories showed an increase in their 

likelihood of selecting dimensional matches on size trials. This was supported by a mixed 

logistic regression model of the interaction between trial type (size or brightness) and test 

time. This model revealed a significant effect of time, such that children were more likely 

to select dimensional matches on the posttest, z=3.66, p<.001, a significant effect of trial 

types, such that they were more likely to select the dimensional match on brightness 

trials, z=-6.42, p<.0001, and a significant interaction such that children were more likely 

to choose dimensional matches on size trials during the posttest, z=-3.75, p<.001. Thus, 

despite the fact that brightness preferrers had difficulty learning size categories and did 

not show increased attention to the relevant dimension in discrimination, they do show an 

increase in attention to similarity in size if they learned categories organized by size. 

As can be seen in Figure 24b, size preferrers who learned brightness categories 

showed a small increase in their likelihood of selecting dimensional matches on size trials 

from pre- to posttest. This was supported by the results of a mixed logistic regression 

model that revealed a significant effect of test time such that children were more likely to 

select dimensional matches on the posttest triad, z=2.89, p<.01, a significant effect of trial 

type such that overall children were more likely to select dimensional matches on size 

trials, z=10.13, p<.0001, and a significant interaction such that children were more likely 

to select dimensional matches on brightness trials during the posttest triad, z=-2.95, 

p<.01. Thus, size preferrers continued to be size preferrers, but showed a slight increase 

in their likelihood of attending to brightness. As can also be seen in the figure, size 

preferrers who learned size categories continued to prefer size as well. This was 

supported by the results of a mixed logistic regression model that revealed no significant 

effect of time, z=.96, NS, a significant effect of trial type, such that children were more 

likely to select the dimensional match on the size trials, z=10.32, p<.0001, and no 
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interaction, z=-1.35, NS. Thus, size preferrers continued to be size preferrers if they had 

learned size categories. 

In-depth analysis of dimensional attention 

The results of Experiment 3 so far suggest that children who prefer classifying by 

size are somewhat different than those who prefer to classify by brightness. Size 

preferrers learn both size and brightness categories equally quickly, but only show 

changes to their discrimination abilities if they learned brightness categories. Brightness 

preferrers on the other hand learn brightness categories much more quickly than size 

categories and show increased accuracy for brightness discriminations no matter whether 

they learned brightness or size categories. In the triad task, both classifier types, however, 

show an increase in attention to the non-preferred dimension if they learned categories 

organized by that dimension. This last result would suggest that both preferrer groups are 

at some intermediate place on the developmental continuum from holisitic to dimensional 

attention. The results of Experiment 1 demonstrated that holisitic classifiers’ posttest 

responses were not influenced by the specifics of the categories they learned, while the 

dimensional classifiers were greatly influenced. The current results show that preferrers 

are also influenced, but not to the extent that they flexibly choose dimensional matches 

on a majority of trials. Why then, do brightness preferrers not show increased attention to 

the relevant dimension during discrimination? Next I take a more in-depth look at the 

results of categorization and discrimination to clarify this issue. 

Categorization 

As in Experiment 1, children in both groups who reached learning criterion were 

very accurate in the categorization test. In particular, the brightness preferrers who 

learned brightness categories, M=.84, t(7)=11.19, p<.0001, the brightness preferrers who 

learned size categories, M=.74, t(6)=3.68, p<.01, the size preferrers who learned 

brightness categories, M=.89, t(7)=30.89, p<.0001, and the size preferrers who learned 
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size categories, M=.76, t(7)=10.36, p<.0001, were all significantly better than chance at 

categorizing stimuli in this task. The results of Experiment 1 revealed that neither holistic 

nor dimensional classifiers demonstrated any difference in their accuracy of categorizing 

familiar versus novel stimuli. It was predicted that this would hold true for preferrers too. 

As can be seen in Figure 25a, brightness preferrers who learned brightness categories 

were equally accurate at categorizing familiar and novel stimuli. This was supported by 

the results of a mixed logistic regression model of the effect of stimulus type (familiar or 

novel) on categorization accuracy, z=1.09, NS. Similarly, as can be seen in the figure, 

brightness preferrers who learned size categories were equally accurate at categorizing 

familiar and novel stimuli. This was supported by the results of a mixed logistic 

regression model of the effects of stimulus type on categorization, z=.81, NS. Regardless 

of the type of category they learned, brightness preferrers were equally accurate at 

categorizing familiar and novel stimuli. As can be seen in Figure 25b, size preferrers who 

learned brightness categories were also equally accurate at categorizing both kinds of 

stimuli. This was supported by the results of a mixed logistic regression model of the 

effects of stimulus type on categorization, z=-.26, NS. Similarly, as can be seen in the 

figure, size preferrers who learned size categories also were equally accurate at 

categorizing both familiar and novel stimuli. This was supported by the results of a mixed 

logistic regression model of the effects of stimulus type on categorization, z=.75, NS. 

Together these results show that both preferrer groups were equally good at categorizing 

both types of stimuli. Next, I compared children’s accuracy at categorizing novel stimuli 

inside and outside of the learned category space to examine the extent to which children 

had learned to attend to a dimension of similarity versus a region of the category space. 

It was predicted that the brightness preferrers who learned brightness categories 

would either be equally accurate at categorizing all novel stimuli or be even more 

accurate in categorizing novel stimuli from outside the category than from inside the 

category because they should be attending to the dimension of brightness rather than 
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specific areas of the category space. In fact, as can be seen in Figure 26a, brightness 

preferrers who learned brightness categories were equally accurate at categorizing both 

types of novel stimuli. This was supported by a mixed logistic regression model of the 

effect of stimulus type (novel inside or novel outside) on categorization accuracy. This 

model revealed no effect of stimulus type, z=-1.46, NS. However, while it was predicted 

that those brightness preferrers who learned size categories might be more accurate at 

categorizing novel stimuli from inside the category space because they might not have 

learned to attend to the entire dimension of size, as can be seen in the figure, they were 

actually more accurate at categorizing stimuli outside the category space. This was 

supported by the results of a mixed logistic regression model of the effects of stimulus 

type on categorization accuracy that revealed a significant effect of stimulus type such 

that brightness preferrers who learned size categories were actually significantly more 

accurate to categorize novel stimuli from outside the category space, z=-2.95, p<.05. It 

could be the case that brightness preferrers are worse at making fine grained 

discriminations between similarly sized objects, and so are more accurate at categorizing 

stimuli outside the space, which are maximally different from the (more ambiguous) 

stimuli near the category boundary. Together, these results suggest that brightness 

preferrers may be attending to relevant dimensions of similarity rather than specific 

stimuli or regions of the category space. 

It was predicted that size preferrers would also show evidence of attending to 

dimensions, and would be either be equally accurate at categorizing stimuli inside or 

outside of the space, or even better at categorizing stimuli from outside the space. In fact, 

as can be seen in Figure 26b, they were actually equally accurate in categorizing novel 

stimuli. This was supported by a mixed logistic regression model of the effects of 

stimulus type on categorization accuracy that revealed no effect of stimulus type, z=3-

1.01, NS. As can also be seen in the figure, however, those size preferrers who learned 

size categories were actually more accurate at categorizing stimuli outside the category 
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space. This was supported by a mixed logistic regression model of the effects of stimulus 

type on categorization that revealed a significant effect of stimulus type, z=-2.05, p<.05. 

Together these results demonstrate that the size preferrers might not have been merely 

learning about specific regions of the category space.  

Strongly versus weakly learned areas of the category 

The results of Experiments 1 and 2 demonstrated that no group of children ever 

showed an advantage for making discriminations in strongly- versus weakly-learned 

areas of the category space. This could mean that this was not a sensitive measure of 

dimensional attention. Thus it was not expected that either type of preferrer would show 

effects of stimulus location on discrimination. In fact, brightness preferrers who learned 

brightness categories were equally good at making both kinds of discriminations. This 

was supported by the results of a mixed logistic regression model of the interaction 

between stimulus location (strongly- versus weakly-learned areas of the space) and 

discrimination type (between, within-relevant, within-irrelevant) which revealed no 

significant effect stimulus location z=-.55, NS, and no interactions of location and type. 

Similarly, brightness preferrers who learned size categories were equally good at making 

both kinds of discriminations. This was supported by the results of a mixed logistic 

regression model of the interaction between stimulus location and discrimination type 

that revealed no effect of location, z=-.33, NS, and no interactions with location. These 

results provide some indication that brightness preferrers were attending to dimensions 

rather than specific regions of the category space.  

Similarly, size preferrers who learned brightness categories were equally accurate 

at making discriminations in both strongly- and weakly-learned areas of the category 

space. This was supported by the results of a mixed logistic regression model of the 

interaction between stimulus location (strongly- versus weakly-learned) and 

discrimination type (between, within-relevant, and within-irrelevant) that revealed no 
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significant effect of stimulus location, z=.15, NS, and no interactions with location. 

Likewise, size preferrers who learned size categories were equally accurate at making 

discrimination in both locations. This was supported by the results of a mixed logistic 

regression model of the interaction between stimulus location and discrimination type 

that revealed no significant effect of location, z=-.24, NS. Together these data suggest that 

size preferrers might not be attending just to specific regions of the learned category 

space, but instead may attend to the relevant dimension.  

Discrimination Threshold 

Results of Experiments 1 and 2 revealed that holistic and dimensional classifiers’ 

discrimination accuracy was influenced by the size of the difference between the to-be-

discriminated stimuli. It was therefore expected that both types of preferrers would show 

increased accuracy for larger differences. Brightness preferrers who learned brightness 

categories were more accurate at making discriminations across larger distances. This 

was supported by a mixed logistic regression model of the interaction between threshold 

size (.5, 1, or 1.5x JND) and discrimination type (between, within-relevant, or within-

irrelevant) that revealed a significant effect of threshold size such that the bigger the 

difference between stimuli, the more accurate children were at discriminating between 

them, z=3.58, p<.001. There was also a significant interaction such that this effect was 

less strong for within-category discriminations across the irrelevant dimension, z=-2.01, 

p<.05. This suggests that brightness prefers were relatively poor at making size 

discriminations regardless of how different the stimuli were from each other. Similarly, 

brightness preferrers who learned size categories were also more accurate at making 

discriminations across larger distances. This was supported by a mixed logistic regression 

model of the interaction between threshold size and discrimination type that revealed a 

significant effect of threshold size such that the bigger the difference between the stimuli, 

the more accurate children were at discriminating between them, z=3.47, p<.001 and no 
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significant interactions. This result suggests that brightness preferrers who learned to 

attend to size simply increase accuracy the more different discrimination stimuli become. 

It was thought that size preferrers would show a similar pattern of results. 

However, size preferrers who learned brightness categories actually were no more 

accurate at discrimination as threshold size increased. This was supported by a mixed 

logistic regression model of the interaction between threshold size and discrimination 

type that revealed no significant effect of threshold size, z=.87, NS, and no interactions. 

Those size preferrers who learned size categories, on the other hand, were more accurate 

as discrimination as threshold size increase. This was supported by a mixed logistic 

regression model of the interaction between threshold size and discrimination type that 

revealed a significant effect of threshold size such that the more different stimuli were, 

the more accurate children were in discriminating them, z=5.05, p<.0001, and a 

significant interaction such that children showed less of an effect for within-category 

discriminations along the irrelevant dimension. This result is similar to that of the 

brightness preferrers who learned brightness categories in that when a child’s preferred 

dimension matches the dimension relevant for categorization, children did not seem to 

show typical attentional changes to the irrelevant dimension. It is unclear what exactly 

this means about their dimensional attention. The results of the blocking analysis might 

clarify this issue. 

Blocking 

It was expected that if children did learn to selectively attend to the category-

relevant dimension, then they would show a cost for switching between discrimination 

types in the mixed blocks. Because both preferrer types had shown some indication of 

selective attention to dimensions in the other tasks, it was predicted that they would show 

such a cost. As can be seen in Figure 27a, brightness preferrers who learned brightness 

categories do show some cost: they are more accurate at making between-category 
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discriminations in the context of single-type blocks than mixed blocks (blue bars), more 

accurate at making within-category discriminations across the irrelevant dimension in the 

context of single-type blocks than mixed blocks (orange bars), but equally accurate at 

making within-category discriminations across the relevant dimension in both types of 

blocks (green bars). This was supported by the results of a mixed logistic regression 

models of the effects of block type on accuracy that revealed brightness preferrers who 

learned brightness categories were marginally more accurate at making between-category 

discriminations in relevant blocks, z=1.88, p<.10,  marginally more accurate at making 

within-category discriminations across the irrelevant dimension in single-type blocks, z=-

1.66, p<.10, but equally accurate at making within-category discriminations in both types 

of block, z=-.14, NS. This suggests that overall, these children have learned to selectively 

attend to dimensions. 

As can also be seen in the figure, brightness preferrers who learned size categories 

showed no switch costs. This was supported by mixed logistic regression models of the 

effects of block type on discrimination accuracy that revealed no effect of block on 

accuracy for between-category discriminations, z=56, NS, for within-category 

discriminations along the relevant dimension, z=-.76, NS, or for within-category 

discriminations along the irrelevant dimension, z=-.29, NS. These results suggest that 

brightness preferrers who learned size categories may not have learned to selectively 

attend to their category-relevant dimension. 

Similarly, as can be seen in Figure 27b, size preferrers who learned brightness 

categories did not show any switch costs either. This was supported by the results of 

mixed logistic regression models of the effects of block type on discrimination accuracy 

that revealed no effect of block on accuracy for between-category discrimination, z=-.03, 

NS, or for within-category discriminations along the irrelevant dimension, z=-.86, NS, or 

along the relevant dimension, z=-.16, NS. This suggests that size preferrers who learned 
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brightness categories might not have fully learned to selectively attend to their category-

relevant dimension. 

Finally, as can also be seen in the figure, size preferrers who learned size 

categories only showed a switch cost for within-category discriminations along the 

irrelevant dimension (orange bars). This was supported by mixed logistic regression 

models of the effects of block on discrimination accuracy that revealed no effect of block 

on accuracy for between-category discrimination, z=1.58, NS, or for within-category 

discriminations along the relevant dimension, z=.86, NS, but did show an effect of block 

for within-category discriminations along the irrelevant dimension, z=-2.12, p<.05. This 

suggests that even though these size preferrers learned about categories organized by 

similarity in size, they appear to be selectively attending to brightness such that they a 

cost for switching between making these discriminations in a mixed block relative to a 

single-type block. Together the results of the results of the blocking analysis lend some 

support to the idea that children learned to selective attend to dimensional similarity, but 

not always to the dimension related to the learned category. 

Overall, the results of Experiment 3 suggest that category learning increases 

preferrers’ selective attention to category-relevant dimensions. This could be taken to 

support the idea that preferrers have sticky attention. Perhaps, there is nothing inherently 

different about these two groups, but rather the size preferrers randomly got stuck on size 

during the pretest triad while the brightness preferrers got stuck on the brightness. This 

would mean that learning a dimensional category organized by the opposite dimensions 

can get them to switch the dimension to which they attend. However, the results also 

suggest that brightness and size dimensions are not equivalent and that children who 

prefer attending to one dimension over the other are not equivalent. This would support 

the idea that size is the more difficult dimension to attend to. Those children that 

preferred size were able to quickly learn either brightness or size categories whereas 

those who preferred brightness were much quicker to learn brightness categories than size 
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categories. However, it also seems as though these two dimensions are different from 

each other in ways that extend beyond the attentional maturity of the children that prefer 

them. Even size preferrers, for example, did not show increased category-relevant 

discrimination and decreased category-irrelevant discrimination if they learned size 

categories. Given these differences, I next ask, how do labels affect these children’s 

selective attention to category-relevant dimensions. 

Experiment 4 

The purpose of this experiment was to examine the effects of redundant labels on 

preferrers’ category learning and dimensional attention. The results of Experiment 2 

indicated that incidental labels can scaffold selective attention even in holistic classifiers. 

The results of Experiment 3 suggest that while both brightness preferrers and size 

preferrers show an effect of category learning on their perceptual discrimination and 

subsequent similarity classification, they are not equally skilled at the initial category 

learning. In particular, brightness preferrers are much quicker to learn brightness 

categories than size categories, while size preferrers are equally quick to learn both kinds 

of categories and faster overall at category learning than brightness preferrers. This opens 

up the interesting possibility that size is a more difficult dimension to attend to, and when 

children prefer to attend to it they can easily selectively attend to either size or brightness. 

When children prefer to attend to brightness, on the other hand, they have difficulty 

attending to size instead and are much slower to learn size categories. The question that 

remains is will the presence of a label help brightness preferrers learn size categories as 

quickly as they learn brightness categories. If this is the case, it would suggest that labels 

enhance category representations allowing children to focus on category-relevant 

dimensions. However, recent work on adults’ category learning suggests that when 

learners are biased to attend to a specific dimension, labels increase this bias making it 

more difficult to learn categories organized by another dimension (Brojde, Porter, & 
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Colunga, 2011). Thus, it is possible that labels could make it even more difficult for 

brightness preferrers to selectively attend to size in the category learning task. As size 

preferrers were equally good at learning both types of categories, it could be that labels 

facilitate category learning equally for both types. 

Method 

Participants 

Participants were 28 5- to 8-year old children. 1 child did not compete the entire 

experiment and was excluded from these analyses. There were 27 children in the final 

group. 

Procedure 

The procedure was identical to that of Experiment 2—the label experiment. The 

only difference was that children in this experiment all used a preferrer strategy on the 

triad classification test. Children were divided into classifier groups based on 

performance in the triad pretest. There were 11 brightness preferrers and 16 size 

preferrers. See Table 1 for participant information.  

Results and Discussion 

Category learning 

As can be seen in Figure 28, brightness preferrers were faster to learn brightness 

categories than size categories while size preferrers were equally quick to learn either 

type. This was supported by the results of a mixed linear regression model of the 

interaction between classifier type (brightness or size preferrer) and category structure 

(brightness or size) that revealed a significant effect of classifier type such that size 

preferrers were significantly faster to reach criterion than brightness preferrers, t=-31.71, 

p<.0001, a significant effect of category structure such that children were overall faster to 
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learn brightness categories than size categories, t=-37.29, p<.0001, and a significant 

interaction such that size preferrers were significantly faster to learn size categories than 

brightness preferrers were, t=26.13, p<.0001. Clearly, the presence of a label did not 

support brightness preferrers’ selective attention to size or facilitate their learning of size 

categories.  

Discrimination 

Overall, children were quite accurate in discriminating stimuli. In particular, the 

brightness preferrers who learned brightness categories, M=.79, t(5)=5.88, p<.01, the 

brightness preferrers who learned size categories, M=.84, t(3)=22.42, p<.0001, the size 

preferrers who learned brightness categories, M=.84, t(6)=8.78, p<.001, and the size 

preferrers who learned size categories, M=.84, t(7)=22.56, p<.0001, were all 

significantly better than chance at discriminating stimuli in this task.  

If labels increase selective attention to category-relevant dimensions than I would 

expect children to show an advantage for relevant versus irrelevant discriminations. The 

results of Experiment 3 demonstrated that brightness preferrers who learned brightness 

categories showed this pattern. Thus it was expected that those in the current experiment 

should do so as well as they had learned their categories relatively quickly. However, 

because the brightness preferrers had more difficulty learning size categories, it was 

expected that they would not show this pattern and would instead, as in Experiment 3, 

actually show enhanced accuracy for discriminations along the irrelevant dimension. As 

can be seen in Figure 29a, brightness preferrers who learned brightness categories were in 

fact more accurate at making between-category discriminations than within-category 

discriminations along either the relevant or irrelevant dimension. This was supported by 

the results of a mixed logistic regression model of the effects of discrimination type 

(between, within-relevant, and within-irrelevant) on discrimination accuracy. This model 

showed that brightness preferrers who learned brightness categories were significantly 
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more accurate at making between category discriminations than within category 

discriminations along either the relevant, z=3.74, p<.001 or irrelevant dimensions, 

z=3.31, p<.001. These children were also significantly more accurate at making within-

category discriminations along the relevant than the irrelevant dimensions, z=-2.50, 

p<.05, demonstrating that, overall, they were more accurate at discriminating across the 

relevant than the irrelevant dimension. As can also be seen in the figure, brightness 

preferrers who learned size categories, on the other hand, were significantly more 

accurate at making discriminations on the irrelevant dimension than between category 

discriminations. This was supported by the results of a mixed logistic regression model of 

the effects of discrimination type on accuracy that revealed a significant effect of 

discrimination type such that children were more accurate at making within-category 

discriminations along the irrelevant dimension that between category discriminations, z=-

2.17, p<.05, but equally accurate at making within-category discriminations along both 

irrelevant and irrelevant dimensions, z=1.54, NS. These children were no more accurate at 

making within-category discriminations along the relevant or irrelevant dimension, 

z=1.54, NS. Similar to the results of Experiment 3, this suggests that brightness preferrers 

are quite accurate at making discriminations along brightness regardless of whether it is 

the relevant or irrelevant dimension for their learned category. 

It was predicted that because they had learned brightness and size categories 

equally quickly, size preferrers would show evidence of selective attention to relevant 

dimensions in the discrimination task. As can be seen in Figure 29b, size preferrers who 

learned brightness categories were more accurate at making between-category 

discriminations than within-category discriminations along the relevant but not irrelevant 

dimension. This was supported by a mixed logistic regression model of the effects of 

discrimination type on accuracy that revealed a significant effect of discrimination type 

such that these children were marginally more accurate at making between-category 

discriminations than within-category discriminations along the relevant dimension, 
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z=1.73, p<.10, but equally accurate at making between category discriminations as 

within-category discriminations along the irrelevant dimension, z=-.96, NS. These 

children were no more accurate at making within-category discriminations along the 

relevant or irrelevant dimension, z=.28, NS. This suggests that size preferrers who learned 

brightness categories did show increases in attention to the relevant dimension, but also 

maintained a high degree of attention to the irrelevant dimension (which in this case 

happens to be their preferred dimension). As can also be seen in the figure, however, size 

preferrers who learned size categories did not show any differences in accuracy for 

different trial types. This was supported by a mixed logistic regression model of the 

effect of trial type on discrimination accuracy showing that these children were equally 

accurate at making between-category and within-category discriminations along both the 

relevant, z=.43, NS, and irrelevant dimensions, z=-.60, NS. These children were no more 

accurate at making within-category discriminations along the relevant or irrelevant 

dimension, z=.68, NS. Next I examine the results of the posttest triad task to see how far 

reaching these changes to dimensional attention were. 

Posttest triad 

If children learned to selectively attend to category-relevant dimensions, then it 

was expected that they would show increases in dimensional responding related to the 

category they had learned. Brightness preferrers who learned brightness categories should 

not increase in dimensional responding from pre- to posttest triad, but those who learned 

size categories might if they had learned to attend to size. Similarly, size preferrers who 

learned size categories should not increase in dimensional responding from pre- to 

posttest triad, but those who learned brightness categories might if they had learned to 

attend to brightness. In fact, as can be seen in Figure 30a, brightness preferrers who 

learned brightness categories did not show an increase in dimensional responding from 

pre- to posttest triad. This was supported by the results of a mixed logistic regression 
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model of the effect of test time (pretest or posttest) on dimensional responding that 

revealed no effect of test time, z=.13, NS. Similarly, as can be seen in the figure, 

brightness preferrers who learned size categories also did now show an increase in 

dimensional responding from pre- to posttest triad. This was supported by the results of a 

mixed logistic regression model of the effect of test time on dimensional responding that 

revealed no effect of test time, z=-.43, NS. These results suggest that the presence of a 

label in category learning did not increase brightness preferrers’ overall dimensional 

attention. 

As can be seen in Figure 30b, size preferrers who learned brightness categories 

also did not show any increases in dimensional responding from pre- to posttest triad. 

This was supported by the results of a mixed logistic regression model of the effect of test 

time on dimensional responding that revealed no effect of test time, z=.33, NS. Similarly, 

as can also be seen in the figure, size preferrers who learned brightness categories did not 

show any increases in dimensional responding from pre- to posttest triad. This was 

supported by the results of a mixed logistic regression model of the effect of test time on 

dimensional responding that revealed no effect of test time, z=.10, NS. Together, these 

results suggest that the presence of a label in category learning did not increase size 

preferrers’ overall dimensional attention. Next, I examined the specific pattern of 

dimensional responses for these groups of children to see if the specifics of the learned 

categories influenced their likelihood of selecting dimensional responses on category-

relevant trials. 

It was predicted that brightness preferrers who learned brightness categories 

would remain brightness preferrers. However, as can be seen in Figure 31a, these 

children actually showed a slight increase in dimensional responding on size trials and a 

decrease in dimensional responding on brightness trials. This was supported by a mixed 

logistic regression model of the interaction between test time (pretest or posttest) and trial 

type (brightness or size match) that revealed a significant effect of trial type such that 
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children were overall more likely to select dimensional matches on brightness trials, z=-

7.14, p<.0001, and a significant interaction such that they were more likely to select 

dimensional matches on size trials during the posttest than during the pretest, z=4.29, 

p<.0001. This result was completely unexpected. There does not appear to be a reason 

why brightness preferrers who had learned brightness categories would increase the 

number of dimensional matches they selected on size trials. As can be seen in Figure 31a, 

the brightness preferrers who learned size categories demonstrated this same effect 

(although it was the expected result for these children). This was supported by the results 

of a mixed logistic regression model of the interaction between test time and trial type 

that revealed a significant effect of trial type such that children were much more likely 

overall to select dimensional matches on brightness trials, z=-7.53, p<.0001, and a 

significant interaction such that children were more likely to select dimensional matches 

on size trials during the posttest, z=2.24, p<.05. On the one hand, if children who learned 

size categories learned to attend to dimensional similarity in size, we would expect them 

to be more likely to select dimensional matches on posttest size trials. On the other hand, 

however, even the brightness preferrers who learned brightness categories were more 

likely to select dimensional matches on posttest size trials. And these children should not 

have had a reason to increase selective attention to size. Thus it is not clear from this test 

whether either group of brightness preferrers had learned to selectively attend to the 

category-relevant dimension.  

It was expected that the size preferrers who learned brightness categories might 

show an increase in dimensional responses on brightness trials, but that those who 

learned size categories would show no differences in dimensional responding on either 

trial type. As can be seen in Figure 31b, however, those size preferrers who learned 

brightness categories did not show any differences in their pattern of dimensional 

responding from pre- to posttest triad. This was supported by the results of a mixed 

logistic regression model of the interaction between test time and trial type that revealed 
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no effect of trial type, z=.01, NS, and no interaction, z=-.01, NS. Similarly, as also can be 

seen in the figure, those size preferrers who learned size categories did not show any 

differences in their pattern of responding from pre- to posttest triad. This was supported 

by the results of a mixed logistic regression model of the interaction between test time 

and trial type that revealed no effect of trial type, z=.01, NS. These results demonstrate 

that size preferrers remained size preferrers during the posttest regardless of the category 

they had learned. The results of the posttest triad task are puzzling. Why, if preferrers had 

learned in the no label experiment to attend to category-relevant dimensions, would they 

not do so in the label experiment? Furthermore, the results of Experiment 2 demonstrated 

that the presence of a label increased holistic and dimensional classifiers’ attention to 

category-relevant dimensions. Why should preferrers be any different? I next examined 

preferrers’ performance in the categorization and discrimination tasks in hopes of 

clarifying these results.  

In-depth analysis of dimensional attention 

The results of Experiment 4 so far are mixed. Brightness preferrers are faster to 

learn brightness categories than size categories—just as they were in Experiment 3—and 

they show a tendency to be better at making discriminations along brightness, regardless 

of whether it is the category-relevant dimension—just as in Experiment 3. However, 

unlike in Experiment 3, brightness preferrers do not show a tendency to increase their 

dimensional responses on the posttest triad trials that correspond to the organization of 

the category they learned. Instead, both brightness preferrers who learned brightness 

categories and those who learned size categories showed an increase in selections of 

dimensional matches on size trials during posttest. How did the presence of a label 

change their attention in this way?  

The size preferrers, on the other hand, were equally likely to learn both brightness 

and size categories quickly, but only showed effects of increased attention to category 
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relevant dimensions when they learned brightness categories (as was the case in 

Experiment 3). I next took a more in-depth look at the results of categorization and 

discrimination to clarify the relationship between labels and dimensional attention in 

these preferrer children. 

Category test 

Overall, children in both groups who reached learning criterion were not very 

accurate in the categorization test relative to participants in the previous experiments. In 

particular, the brightness preferrers who learned brightness categories, M=.63, t(5)=1.48, 

NS, and the brightness preferrers who learned size categories, M=.64, t(3)=2.08, NS, were 

not significantly different than chance. The size preferrers who learned brightness 

categories were only marginally better than chance, M=.76, t(6)=2.24, p<.10, and only 

the size preferrers who learned size categories were significantly better than chance at 

categorizing stimuli in this task, M=.82, t(7)=9.53, p<.0001.  

As no group of children in Experiments 1-3 showed any differences in accuracy 

when categorizing novel versus familiar stimuli, it was predicted that the children in 

Experiment 4 would not show any differences either. As can be seen in Figure 32a, 

brightness preferrers who learned brightness categories were equally accurate in 

categorizing novel and familiar stimuli. This was supported by the results of a mixed 

logistic regression model of the effect of trial type (familiar versus novel) on accuracy 

that revealed no significant effect of trial type, z=.34, NS. Similarly, as can be seen in the 

figure, brightness preferrers who learned size categories were equally accurate in 

categorizing both types of stimuli. This was supported by the results of a mixed logistic 

regression model of the effect of trial type on accuracy that revealed no significant effect 

of trial type, z=-.51, NS. As can be seen in Figure 32b, the same was true for size 

preferrers. This was supported by the results of mixed logistic regression models of the 

effect of trial type on accuracy that revealed no significant effect to trial type on the 



 

 

103 

103 

accuracy of either size preferrers who learned brightness categories, z=.18, NS or those 

who learned size categories, z=-.16, NS. 

Next, I examined categorization with respect to accuracy categorizing novel 

stimuli from inside and outside the category space. It was expected that if children 

learned to attend to relevant dimension for categorization, rather than specific regions of 

the space, they should either be equally good at categorizing both types of stimuli or 

would actually be better at categorizing stimuli from outside of the space. As can be seen 

in Figure 33a, brightness preferrers who learned brightness categories were equally 

accurate in categorizing both types of stimuli. This was supported by the results of a 

mixed logistic regression model of the effects of stimulus type (novel inside or novel 

outside the category space) on accuracy that revealed no significant effect of stimulus 

type, z=.58, NS. However, as can be seen in the figure, those brightness preferrers who 

learned size categories were more accurate at categorizing stimuli from outside of the 

category space. This was supported by the results of a mixed logistic regression model of 

the effects of stimulus type on accuracy that revealed a marginal effect of stimulus type 

such that children were more accurate at categorizing stimuli from outside the category 

space, z=-1.73, p<.10. Together these results suggest that brightness preferrers might not 

have learned merely about specific regions of the category space, but instead may have 

learned about the relevant dimension for categorization. 

As can be seen in Figure 33b, size preferrers who learned brightness categories 

also were more accurate at categorizing stimuli from outside the category space. This was 

supported by the results of a mixed logistic regression model of the effects of stimulus 

type on accuracy that revealed a significant effect of stimulus type such that children 

were more accurate at categorizing stimuli from outside the category space, z=-2.69, 

p<.01. Similarly, as can be seen in the figure, size preferrers who learned size categories 

also were more accurate at categorizing stimuli from outside the category space. This was 

supported by the results of a mixed logistic regression model of the effects of stimulus 
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type on accuracy that reveal a significant effect of stimulus type such that children were 

more accurate at categorizing stimuli from outside the category space, z=-2.46, p<.05. 

This again suggests that preferrers might not merely have learned about specific stimuli 

or specific regions of the category space, but may instead have learned to selectively 

attend to category-relevant dimensions. The remaining analyses of the discrimination test 

should help clarify the extent to which children were selectively attending to dimensional 

similarity. 

Strongly- versus weakly-learned areas of the category 

No children in Experiments 1-3 showed any differences in discrimination 

accuracy for stimuli from strongly- versus weakly-learned areas of the category space. 

Thus, it was predicted that no children in Experiment 4 would either. In fact, no group 

did. This was supported by mixed logistic regression models of the interaction between 

stimulus location (strong- versus weakly-learned areas) and discrimination type (between, 

within-relevant, or within-irrelevant) on discrimination accuracy that revealed no 

significant effect of stimulus location or interaction on accuracy for brightness preferrers 

who learned brightness categories, z=-1.04, NS, brightness preferrers who learned size 

categories, z=-.20, NS, size preferrers who learned brightness categories, z=.55, NS, or 

size preferrers who learned size categories, z=-.08, NS. These results suggest that the 

children might not simply have learned about specific regions of the category space, but 

rather may have been learned something about the category-relevant dimensions. 

Discrimination step size 

The previous experiments showed a general trend for children to be more accurate 

at making discriminations when there were bigger differences between stimuli. Thus it 

was predicted that children in this experiment would show a similar effect. In fact, each 

group did show an increase in accuracy corresponding to an increase in threshold size. 

This was supported by the results of mixed logistic regression models of the interaction 
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between threshold size (.5, 1, or 1.5x JND) and discrimination type (between, within-

relevant, or within-irrelevant) that revealed significant effects of threshold size on 

accuracy (but no interactions) for brightness preferrers who learned brightness categories, 

z=3.76, p<.001, brightness preferrers who learned size categories, z=3.47, p<.001, size 

preferrers who learned brightness categories, z=5.06, p<.0001, and size preferrers who 

learned size categories, z=6.25, p<.0001. These results suggest that, as in previous 

experiments, children are more accurate at discriminating stimuli the more different they 

are. This does not clarify, however, whether the presence of a label had any effect on 

children’s dimensional attention. Thus, in the final analysis, I examine the results of 

discrimination with respect to blocking to clarify this issue. 

Blocking 

If children are selectively attending to category-relevant dimensions, then they 

should show a cost for making discriminations within the context of mixed blocks. As 

can be seen in Figure 34a, brightness preferrers who learned brightness categories did not 

show any advantage for making discriminations in single-type blocks over mixed blocks. 

This was supported by mixed logistic regression models of the effects of block type 

(single-type or mixed) on discrimination accuracy that revealed no effects of block such 

that brightness preferrers who learned brightness categories were no more accurate at 

making between category discriminations in the context of single-type blocks than mixed 

blocks, z=.77, NS, no more accurate at making within-category discriminations along the 

relevant dimension in the context of single-type than mixed blocks, z=.39, NS, and no 

more accurate at making within-category discriminations along the irrelevant dimension 

in the context of single-type than mixed blocks, z=.84, NS. This would suggest that the 

brightness preferrers who learned brightness categories might not have been selectively 

attending to the relevant dimension.  
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On the other hand as can also be seen in the figure, those brightness preferrers 

who learned size categories did show a switch cost for making between-category 

discriminations, although they did not show a cost for within-category discriminations of 

either type. This was supported by the results of mixed logistic regression models of the 

effect of block on discrimination accuracy that revealed an effect of block such that these 

brightness preferrers who learned size categories were significantly more accurate at 

making between-category discriminations in the context of single-type blocks than mixed 

blocks, z=2.50, p<.05, but no more accurate at making within-category discriminations 

along the relevant dimension in single-type blocks than mixed blocks, z=.23, NS, or 

within-category discriminations along the irrelevant dimension in single-type blocks than 

mixed blocks, z=.73, NS. This suggests that brightness preferrers who learned size 

categories might have slightly increased their selective attention to category-relevant 

dimensions, as evidenced by their switch cost for between-category discriminations. 

As can be seen in Figure 34b, size preferrers who learned brightness categories 

did not show any advantage for making discriminations in single-type blocks versus 

mixed blocks. This was supported by the results of mixed logistic regression models of 

the effect of block on discrimination accuracy that revealed that size preferrers who 

learned brightness categories were no more accurate at making between-category 

discriminations in the context of single-type blocks than mixed blocks, z=.09, NS, no 

more accurate at making within-category discriminations along the relevant dimension in 

the context of single-type blocks than mixed blocks, z=1.32, NS, and no more accurate at 

making within-category discriminations along the irrelevant dimension in the context of 

single-type blocks than mixed blocks, z=-.26, NS. As can be seen in Figure 34b, however, 

the size preferrers who learned size categories did show a switch cost for between-

category discriminations, but not for either type of within-category discriminations (just 

as the brightness preferrers who learned size categories). This was supported by the 

results of mixed logistic regression models of the effects of block type on discrimination 
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accuracy that revealed a significant effect of block such that size preferrers who learned 

size categories were significantly more accurate at making between-category 

discriminations in the context of single-type blocks than mixed blocks, z=2.67, p<.001, 

but equally accurate at making within-category discriminations along the relevant 

dimension in the context of single-type and mixed blocks, z=.03, NS, and equally 

accurate at making within-category discriminations along the irrelevant dimension in the 

context of single-type and mixed blocks, z=-.34, NS. This suggests that brightness 

preferrers who learned size categories might have slightly increased their selective 

attention to category-relevant dimensions, as evidenced by their switch cost for between-

category discriminations. 

Conclusions 

Overall, the results of Experiment 4 suggest that labels do not qualitatively alter 

brightness or size preferrers’ category learning or selective attention to dimensions. As in 

Experiment 3, the results show that size preferrers are quicker to learn both brightness 

and size categories than brightness preferrers. The results of both preferrer groups add to 

evidence from the first three experiments that there are differences in the way children 

learn about brightness and size categories that go above and beyond children’s 

classification type. In particular, the results of Experiment 4 again demonstrated that only 

children who learned brightness categories show subsequent enhanced accuracy for 

between-category discriminations relative to within-category discriminations. The results 

of posttest triad were mixed however. In Experiment 3, preferrers who learned categories 

organized by the dimension opposite of their preference showed increases in dimensional 

responding corresponding to the structure of their learned category, suggesting preferrers 

learned to attend to the category-relevant dimension of similarity. However, in 

Experiment 4, brightness preferrers who learned about brightness actually showed an 

increase in dimensional responding on size trials while size preferrers who learned about 
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brightness did not show any increases in dimensional responding on either trial type. 

Why would preferrers show an increase in dimensional attention in the no label 

experiment? I next directly compared the results of each preferrer group in the two 

experiments to clarify this apparent contradiction. 

Comparison between Preferrers in Experiments 3 and 4 

The prior analyses of Experiments 3 and 4 suggest that there are no qualitative 

differences in the way preferrers learn categories with or without a label. In particular, in 

both experiments, size preferrers were equally quick to learn both brightness and size 

categories, while brightness preferrers were significantly faster to learn brightness 

categories than size categories. Similarly, both brightness and size preferrers who learned 

brightness categories in either experiment showed increased accuracy for between-

category relative to within-category discriminations. However, there do appear to be 

some differences in the pattern of results that each group shows with respect to the speed 

with which children learned dimensional categories and the direction of dimensional 

attention in the posttest triad task. Thus, direct comparison between the two experiments 

should be useful for understanding the nature of any differences.   

Comparison Analyses and Discussion 

As in the previous chapters, I first conducted analyses to answer my three primary 

questions regarding speed to reach criterion in category learning, overall accuracy in 

discrimination along relevant and irrelevant dimensions, and changes to dimensional 

responding in similarity classification. I then examined the more in-depth questions about 

accuracy in categorization and discrimination to explore potential differences in the 

extent to which children were selectively attending to dimensional similarity. Comparing 

the performance of children in each preferrer group between the two experiments should 

clarify what the role of labels are in supporting dimensional attention above and beyond 

category learning. 
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Category learning 

The results of Experiment 1 and 2 demonstrated that holistic classifiers were 

significantly faster to learn dimensional categories in the presence of a label. Although 

there were no a priori predictions about exactly how labels would affect preferrers’ 

category learning, it seemed possible that labels may facilitate their category learning too. 

However, the results of the direct comparison between preferrers in Experiments 3 and 4 

revealed that the opposite was true. In fact, both preferrer groups, regardless of the type 

of category they learned, were slower to reach criterion in the label experiment than in 

the no label experiment. This was supported by the results of mixed linear regression 

models of the interaction between experiment (label versus no label) and category type 

(brightness or size) on the number of blocks it took children to reach criterion. In 

particular, a model of brightness preferrers’ performance revealed a significant effect of 

experiment such that children were significantly slower to reach criterion in the label 

experiment, t=23.11, p<.0001, a significant effect of category type such that children 

were slower overall to reach criterion when learning size categories than brightness 

categories, t=-63.92, p<.0001, and a marginal interaction such that the difference in the 

number of trials to reach criterion for learning brightness and size categories was greater 

in the label condition, t=1.89, p<.10. Similarly, the equivalent model of size preferrers’ 

performance revealed a significant effect of experiment such that children were 

significantly slower in the label experiment, t=29.59, p<.0001, a significant effect of 

category type such that children were faster overall to learn brightness categories than 

size categories, t=-3.19, p<.01, and a significant interaction such that the difference in 

the number of trials to learn size and brightness categories was larger in the label 

experiment, t=5.92, p<.0001. Together, the results of these models show that both 

preferrer groups are slower to learn categories in the label experiment and are especially 

slow to learn size categories in the label experiment.  
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On the one hand, that the brightness preferrers would have increased difficulty for 

learning size categories would seem to support the idea that labels can increase our 

existing attentional biases making it even harder to switch attention to another dimension 

(cf. Brojde et al., 2011). However, this would not explain why the size preferrers were 

also slower to learn size categories in the label experiment—unless both preferrer groups 

have some bias to attend to brightness that was exaggerated by the presence of a 

redundant label. This would support the idea that brightness is an easier dimension to 

attend to than size is. The size preferrers are good at attending to size, especially relative 

to the brightness preferrers, but it is still easier for them to attend to brightness. The 

results of the discrimination comparison might clarify what the nature of the differences 

between dimensions is.  

Discrimination 

The results of Experiment 3 and 4 demonstrated that both groups of preferrers 

showed enhanced between-category discrimination relative to within-category 

discrimination if they learned brightness categories. It was therefore thought that there 

would not be any quantitative differences between the two experiments for those who 

learned brightness categories. Similarly, I had no a priori predictions about differences 

between the groups in each experiment with respect to discrimination accuracy. Inasmuch 

as those in the label experiment took longer (and presumably had more difficulty learning 

the categories), I thought that perhaps they would show less of an advantage for between-

category over within-category discriminations. The results of mixed logistic regression 

models of the interaction between experiment and discrimination type (between, within-

relevant, and within-irrelevant) revealed that the brightness preferrers did not in fact 

show any differences in discrimination related to experiment whether they had learned 

brightness categories, z=-.66, NS, or size categories, z=.42, NS. Similarly, size preferrers 

who learned size categories did not show any differences related to experiment either, 
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z=.82, NS.  This was not the case for size preferrers who learned brightness categories, 

however. These children showed a smaller increase in accuracy for between-category 

discriminations in the label experiment, z=-2.47, p<.05. It is unclear why this would be 

the case. 

Posttest triad 

The results of Experiment 3 suggested that both preferrer groups showed changes 

in their dimensional responding to the nonpreferred dimension on the posttest triad if they 

had learned categories organized by that dimension. However, in Experiment 4, children 

did not do so. Thus, it was thought that those in the no label experiment would show 

significantly larger changes in dimensional responding that related to the structure of the 

categories they had learned. In fact mixed logistic regression models of the effects of 

experiment on the change in dimensional responses from pre- to posttest triad revealed 

that both brightness preferrers who learned brightness categories, z=-4.04, p<.0001, and 

those who learned size categories, z=-3.88, p<.0001, showed significantly smaller 

increases in dimensional responding if they were in the label experiment. Similarly, a 

mixed logistic regression model of changes in the dimensional responding of size 

preferrers who learned brightness categories showed a significant effect of experiment 

such that those in the label condition showed significantly smaller increases in 

dimensional responding from pre- to posttest triad, z=-3.16, p<.01. However, a mixed 

logistic regression model of the changes in the dimensional responding of size preferrers 

who learned size categories showed a significant effect of experiment such that those in 

the label condition showed larger increases in dimensional responding from pre- to 

posttest triad, z=3.13, p<.01.  
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In-depth analysis of dimensional attention 

Next I compared children’s performance in the two experiments in the more in-

depth measures of categorization and discrimination in order to clarify the extent to 

which children were selectively attending to dimensional similarity. 

Categorization 

The results of Experiment 3 and 4 demonstrated that all preferrers were equally 

accurate at categorizing familiar and novel stimuli. Thus, it was expected that there 

would be no differences between the two experiments with respect to this measure. In 

fact, mixed logistic regression models of the interaction between experiment (label versus 

no label) and trial type (familiar versus novel) revealed that brightness preferrers who 

learned brightness categories, z=-1.31, NS, brightness preferrers who learned size 

categories, z=-1.27, NS, size preferrers who learned brightness categories, z=-.37, NS, all 

were equally accurate at categorizing familiar and novel stimuli in the two experiments. 

However, size preferrers who learned size categories, were significantly more accurate 

overall at categorizing both kinds of stimuli if they were in the label experiment, z=2.15, 

p<.05.  

I next compared accuracy across the two experiments with respect to categorizing 

novel stimuli from inside the category space versus those outside the category space. A 

mixed logistic regression model of the interaction between experiment (label versus no 

label) and trial type (novel inside or novel outside) on the categorization accuracy of 

brightness preferrers who learned brightness categories revealed a significant interaction 

such that children in the label experiment were less accurate at categorizing stimuli 

outside the category space, z=2.73, p<.01. Brightness preferrers who learned size 

categories, on the other hand, showed a significant effect of trial type such that in both 

experiments, children were more accurate at categorizing stimuli from outside the 

category space, z=-2.14, p<.05. The size preferrers who learned brightness categories 
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showed a marginal interaction between experiment and trial type such that those in the 

label experiment showed less of an advantage for categorizing stimuli for outside versus 

inside the space, z=-1.81, p<.10. Finally the size preferrers who learned size categories 

showed a significant effect of experiment such that those children in the label experiment 

were overall more accurate at categorization than those in the no label experiment, 

z=3.18, p<.01, and a significant effect of trial type such the children in both experiments 

were less accurate at categorizing stimuli from inside the space than outside, z=-2.77, 

p<.01.  While these results suggest that, in general, children’s categorization accuracy 

was affected by the presence of a label, it is not clear exactly how this relates to whether 

or not they were selectively attending to dimensional similarity. 

Strongly- versus weakly-learned areas of the space 

All children in previous experiments were equally good at making discriminations 

in both strongly- and weakly-learned areas of the category space. Thus it was thought that 

there would be no differences between the two experiments with respect to preferrers’ 

accuracy for making these discriminations. A mixed regression model of the interaction 

between stimuli location (strongly-learned or weakly-learned area) and discrimination 

type (between, within-relevant, or within-irrelevant) revealed that brightness preferrers 

who learned brightness categories were equally accurate at making discriminations in 

both locations in the two experiments, z=-.58, NS. Brightness preferrers who learned size 

categories were also equally accurate at making discriminations in both locations in the 

two experiments, z=.47, NS. Size preferrers who learned brightness categories, z=.42, 

NS,  and those who learned size categories, z=.83, NS, were also both equally accurate at 

making discriminations in both locations in the two experiments. Together these results 

show that the presence of labels did not change children’s accuracy with respect to 

making discriminations in strongly- and weakly-learned areas of the category space. 
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Discrimination size step 

The results of the previous experiments have shown, in general, that as the size of 

the difference between stimuli increases, children are more accurate at discriminating 

them regardless of the presence or absence of a label. Thus, it was thought that there 

would be no effects of experiment on children’s discrimination accuracy with respect to 

threshold size. In fact, mixed logistic regression models of the interaction between 

experiment (label versus no label) and threshold size (.5, 1, or 1.5x JND) revealed that 

both brightness preferrers who learned brightness categories, z=-.91, NS, and those who 

learned size categories, z=-.58, NS, were equally accurate at making discriminations in 

both experiments. The same was true for size preferrers who learned size categories, z=-

.41, NS. However, size preferrers who learned brightness categories were significantly 

less accurate in making discriminations in the label experiment, z=-2.04, p<.05, but this 

interacted with discrimination size such that children in the label experiment showed a 

larger effect of discrimination size on accuracy, z=2.05, p<.05.  

Blocking 

The blocking analysis is supposed to assess whether children show a cost for 

having to switch between making relevant and irrelevant discriminations. Mixed logistic 

regression models of the interaction between experiment (label versus no label) and block 

type (single-type or mixed) revealed that brightness preferrers who learned brightness 

categories showed no effect of experiment on accuracy of making between-category 

discriminations, z=-.18, NS or on accuracy of making within-category discriminations 

along the relevant dimension, z=-1.33, NS. However, there was a marginal interaction 

between experiment and block in the model of these children’s accuracy in making 

within-category discriminations along the irrelevant dimensions such that children in the 

label condition showed less of an advantage for making discriminations within the 

context of a single-type than a mixed block. 
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Conclusions 

In general, the results of these comparison analyses are mixed, and unexpected in 

many ways. One possible explanation for the mixed and unexpected results is that there 

are differences in the way children learn about size and brightness, making it difficult to 

separate differences in the child and their attentional biases from differences inherent in 

the dimensions themselves. The results of the category learning comparison revealed that 

both brightness and size preferrers were slower to learn categories in the presence of a 

label. This finding differs markedly from the results of the holistic classifier comparison, 

which revealed that labels facilitated category learning in children who show very little 

evidence of dimensional attention. If we assume that preferrers do in fact represent an 

intermediate developmental stage between holistic and dimensional attention, then the 

results of Experiment 3 and 4 could be taken to suggest that labels direct attention to 

specific dimensions, but that when attention is already biased to a given dimension, the 

increase in selective attention to that dimension makes it much more difficult to instead 

attend instead to another dimension (cf. Brojde et al., 2011). This fits with the fact that 

size preferrers were equally good at learning categories organized by size or brightness 

without a label, but were slightly slower to learn size categories with the label, could 

suggest that size is a harder dimension to attend to in category learning. In that case, the 

label could be directing attention to the more salient or easy-to-attend-to dimension—

brightness—and thereby slowing learning of the harder dimension. 

Together these findings do lend some support to the idea that the developmental 

trajectory of selective attention is one from weak selective attention to selective but 

inflexible—or sticky—attention to selective and flexible attention. Here we see that 

preferrers are in fact quite sticky and that this appears to interact with inherent differences 

between size and brightness dimensions, as evidenced by the increased stickiness in the 

label experiment. To really explore how the differences between dimensions and 

differences between types of dimensional attention interact, further experiments will have 
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to be conducted on preferrers’ ability to categorize dimension categories organized by 

dimensions other than brightness and size (e.g. orientation, shape, color, etc.) or even 

novel dimensions. It could be the case that brightness and size are not equal in either 

salience or learnability, and exploring how children learn about other dimensions will 

help clarify this issue. Unfortunately, however, the results of the two preferrer 

experiments presented here, however, cannot disentangle the effects of a given child’s 

dimensional bias from the inherent differences in the dimensions themselves. 

 

 

 

 



 

 

117 

117 

CHAPTER VIII: GENERAL DISCUSSION 

The role of category learning in dimensional attention 

It had already been established that category learning influences adults’ 

perceptual discrimination along category-relevant dimensions (Goldstone, 1994b). 

However, it was not previously clear whether category learning should influence 

children’s perceptual discrimination abilities in the same way. Young children had 

previously been shown to have difficulty selectively attending to one dimension of 

similarity to the exclusion of others, and thus it was unclear whether they should even be 

able to learn dimensional categories in the same way that adults do. Furthermore, it was 

unclear whether learning to selectively attend to a category-relevant dimension would 

scaffold children’s subsequent attention to dimensional similarity in a classification task 

that pit holistic similarity against dimensional similarity.  

In Experiment 1, I showed that the influence of category learning on perceptual 

discrimination rests in part on children’s ability to demonstrate attention to dimensional 

similarity. Children who classified holistically in a triad task were slower to learn  

dimensional categories. On the other hand, children of the same age who classified 

dimensionally were able to learn these categories quickly. Interestingly, both classifier 

groups showed changes in discrimination similar to the pattern demonstrated by adults in 

earlier studies (i.e. Goldstone, 1994b). In particular, both dimensional and holistic 

classifiers who learned brightness categories showed enhanced accuracy for between-

category discriminations relative to within-category discriminations. However, only the 

dimensional classifiers demonstrated increased selective attention to category-relevant 

dimensions during the posttest triad task. Together these results suggest that while it is 

relatively difficult for holistic classifiers to learn dimensional categories, the process of 

doing so does influence their selective attention to category-relevant dimensions in the 

same way as it had dimensional classifiers or adults in previous experiments (e.g. 
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Goldstone, 1994b). Importantly, however, the influences of category learning do not 

appear to be strong enough to cause changes to children’s subsequent similarity 

classification.  

The role of labels in dimensional attention 

If category learning is not enough to scaffold children’s selective attention to 

dimensional similarity, what is? Evidence from young children’s novel noun 

generalization suggests that word learning trains children’s selective attention in the 

service of learning new words (Smith et al., 2002). Evidence from adults suggests that 

redundant labels facilitate category learning (Lupyan et al., 2007) possibly because they 

increase selective attention to category relevant dimensions (Brojde et al., 2011). Thus 

my proposal was that, over developmental time, word learning could train children’s 

selective attention more broadly and thereby be the driving force in the development of 

selective attention processes. It was therefore predicted that, over the course of an 

experiment, labels would facilitate category learning—even for children who typically 

have difficulty learning dimensional categories—and support increased selective 

attention to dimensional similarity in subsequent classification. 

In fact, in Experiment 2, the presence of a label enabled holistic classifiers to 

learn dimensional categories as quickly as dimensional classifiers did. Again both 

dimensional and holistic classifiers who learned brightness categories demonstrated 

increased accuracy for between-category relative to within-category discriminations. 

However, this time, the holistic classifiers also showed increased selective attention to 

category-relevant dimensions in the classification task. Furthermore, results of a direct 

comparison between holistic classifiers’ performance in Experiments 1 and 2 revealed 

that not only were those in Experiment 2 (i.e. who heard labels) faster to learn 

dimensional categories, but they also showed a greater advantage for making between- 

versus within-category discriminations, and showed a larger increase in selective 
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attention to dimensional similarity in a subsequent classification task. These second two 

results suggest that the advantage in categorization that holistic classifiers show in this 

experiment relative to their counterparts in Experiment 1 was connected to an increase in 

their changes in selective dimensional attention. Together, these results support my 

hypothesis that labels scaffold dimensional attention beyond the context of novel noun 

generalization. 

 Together, the results of Experiments 1 and 2 demonstrate that labels play a 

critical role in children’s selective attention to dimensions. However, the results also 

suggest that category learning itself can influence selective attention. The fact that 

holistic classifiers can learn dimensional categories (even if it is relatively slowly), and 

that doing so influences their ability to make discriminations along the category-relevant 

dimension, demonstrates that the development of selective attention is not a discrete 

change. Rather, these data suggest that the emergence of attention to dimensional 

similarity is a continuous developmental change of increasingly selective and flexible 

attention.  

Preferrers 

Previous research demonstrated that a common, developmentally intermediate, 

pattern of responding in the triad classification task is to preferentially attend to one 

dimension of similarity on every trial regardless of whether this means selecting the 

dimensional or holistic match. At present it is still not understood why children should 

prefer one particular dimension over another. Nevertheless, in order to understand 

selective attention across development, it was important for me to examine the roles of 

category learning and labels on preferrers’ selective attention to dimensional similarity. 

Together, the results of Experiments 3 and 4 demonstrate that labels actually slow 

down dimensional category learning in preferrers. This was different from the results of 

the holistic classifier comparison, which revealed that labels facilitated category learning. 
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These results could be taken as evidence for the idea that labels direct attention to 

specific dimensions, but that when attention is already biased to a given dimension, this 

increase in selective attention to that dimension makes it quite difficult to attend instead 

to another dimension (cf. Brojde et al., 2011). Additionally, the fact that size preferrers 

were equally good at learning categories organized by their preferred and nonpreferred 

dimension without a label, but were slightly slower to learn size categories with the label, 

could suggest that size is a harder dimension to attend to in category learning. This could 

mean, among other possibilities, that even size preferrers are biased in some way to 

selectively attend to brightness—especially in the context of a label.  

Differences between size and brightness dimensions 

The results of the preferrer experiments add evidence to the idea that there is 

something inherently different about brightness as size dimensions. As Goldstone’s 

(1994) study of the effects of adults’ category learning on subsequent perceptual 

discrimination showed, participants who learned brightness, but not size categories, 

showed evidence of enhanced accuracy on discriminations along the relevant dimension 

relative to the irrelevant dimension. This pattern was generally replicated throughout the 

current study—children who learned brightness categories showed differences in their 

discrimination, but children who learned size categories did not. What is different about 

these dimensions and how might that help us understand what the results of the preferrer 

experiments?  

One possibility is related to the difficulty that children have learning to use size 

terms, such as big and small, compared to color terms (Sandhofer & Smith, 1999). Part of 

this difficulty is that size terms need to be used relationally while color terms can be used 

categorically (Sandhofer & Smith, 2001). In fact, anecdotally it seemed that many 

children in the current studies who learned brightness categories tended to describe 

stimuli in terms of pre-existing color categories (often “white” and “brown” which are 
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probably the closest labels some children have to describe values on a grayscale). It also 

seemed that many children learning size categories seemed to use words like “big” and 

“small” in an absolute sense rather than a relational sense to describe the stimuli.  

Why would talking about size in an absolute sense make it more challenging to 

learn size categories? Labels such as “big” and “small” are relative terms: a mouse is big 

in the context of an ant but small in the context of an elephant. Inappropriately activating 

a familiar label like “small” to remember a specific absolute size before you have had 

time to get a sense of what the range of sizes within the stimulus set are, could make it 

hard to learn and remember where the category boundary is. It could help you correctly 

categorize stimuli at the furthest ends of the dimension, but could make it more difficult 

to categorize the stimuli in the middle. In addition, research suggests that using labels to 

describe objects tends to make our memories for specific object properties less precise 

(e.g. Lupyan, 2008). If children are remembering the smallest stimulus by calling it small, 

their memory for it may be exaggerated in the direction of it being even smaller than it is 

in reality. When they subsequently see a stimulus from the middle of the dimension and 

need to compare it to that small stimulus that they know for sure belongs to a particular 

category, the middle stimulus may seem more different from the memories for both the 

small and the big stimuli. Therefore, if children are remembering object-category pairings 

by saying “the small one goes here” their memory for the category boundary will be 

fairly imprecise. Further work will need to be done to figure out if the different ways in 

which children and adults talk about size and brightness relate to their ability to learn 

categories and make perceptual discriminations along these dimensions. 

Another possibility is, even though the stimuli were calibrated to equate step size 

changes in size to changes in brightness (just as they had been for adults in Goldstone’s 

work), it could be that brightness is a more salient dimension than size. If so, it is possible 

that it would require many more size category learning blocks to affectively decrease 

children’s attention to brightness compared to the number of blocks it takes to decrease 
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attention to size. Similarly, even if size preferrers can selectively attend to size well 

enough to learn size categories, it is may be so easy to attend to brightness that they can 

flexibly switch to attending to either during discrimination.  Further work will need to be 

done to explore if this is possible or if attention to brightness can never really decrease. 

Continuity in the development of dimensional attention 

There is growing evidence that the development of selective dimensional attention 

is a protracted continuous change rather than a discrete shift. Over the preschool and 

early school years, we see children gradually increasing in their abilities to both 

selectively and flexibly attend to dimensional similarity (Hanania & Smith). A certain 

degree of selectivity is needed to correctly sort cards in the pre-switch phase of the DCCS 

task, and even more is need be able to flexibly shift and selectively attend to the opposite 

dimension in the post-switch phase. The amount of selective attention needed increases 

again to focus on a single dimension of similarity in the triad classification task. Finally, 

there is a further bump in the amount of selective attention is needed to be able to flexibly 

shift between attended dimensions to exclusively select dimensional matches, or as one 

child participant referred to it, as “adjusting between size and color.”  

The data from the current studies support this idea of continuity in the 

development of selective attention. First, even holistic classifiers in the no label 

experiment show an influence of category learning on their subsequent discrimination 

abilities such that they were significantly more accurate at making discriminations along 

the relevant the irrelevant dimension. This shows how, with a good deal of effort, 

children can selectively attend to dimensional similarity. However, this selective attention 

did not cascade into the triad classification task, demonstrating that it was still relatively 

weak compared to the attentional abilities of the dimensional classifiers, for example.  

Second, preferrers appear to be demonstrating “sticky attention” not just in the 

triad task, but more generally. In particular I found that labels slow down both brightness 
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and size preferrers’ category learning—especially for size categories. This might mean 

that labels are more likely to direct attention to brightness than size, and that this gets 

preferrers stuck on brightness, which is okay if they are learning brightness categories, 

but detrimental to their learning of size categories. Sticky attention would suggest a 

continuous trajectory of selective attention development: children go from a preference to 

overall similarity, to selectively attending to one dimension in particular, to being able to 

flexibly switch back and forth to selectively attending to either dimension.  

Third, and perhaps most obviously, the very fact that labels could scaffold 

dimensional attention in holistic classifiers, but not dimensional classifiers supports the 

continuity idea to some extent. Labels did not fundamentally change what the children 

were doing, but rather supported their weak attention enough to carry over into the 

subsequent tasks. Dimensional classifiers were strong enough in their selective attention 

to not benefit from this support. This is similar to Katz’s 1963 finding that 7-year-olds’ 

similarity perception was more affected by labeling patterns than 9-year-olds’ similarity 

perception. Over development, children become increasingly skilled at directing their 

attention to dimensional similarity and thus become decreasingly influenced by labels—

especially when the task at had is relatively easy (as was the category learning task in the 

current studies). Thus, an important direction for future research will be to further 

examine this developmental trajectory with respect to the role that labels can play in 

supporting dimensional similarity. 

Category response labels versus novel incidental labels 

In the current experiments, the category response itself was associated with a 

label: ocean or jungle. This is similar to prior work with adults, such as Lupyan and 

colleagues’ aliens to approach or avoid. This means that, by one view, all the participants 

had a label that was redundant with the category information; and the participants in the 

“label” experiments had two. Why did the single known labels, not support the same 
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degree of dimensional attention as extra novel labels did? One possibility is that the 

labels ocean and jungle, for example, are already familiar and loosely associated with 

many objects and categories. Thus, these labels are already associated with many things 

and not clearly relevant to the to-be-learned categories in the experiment. This would 

mean that it is more difficult to associate the category response label with the category-

relevant dimension. Novel labels, on the other hand, are not associated with anything 

prior to the experiment. This could make them more easily associated with the novel 

stimuli and thus better serve to direct attention to the category-relevant dimension. Future 

work clearly needs to be done to delineate between these possibilities. One way to 

examine this issue would be to compare children’s category learning with familiar and 

novel labels that were both redundant to a category response label. Additionally, familiar 

labels could be either relevant or irrelevant. For example, would children still be faster to 

learn a brightness distinction if the redundant labels were cat and dog or big and small as 

if they were light and dark or leebish and gracious? 

While work with adults shows that labels are a better redundant cue to category 

structure than other cues, no such comparison was made in the current experiments. It is 

possible that, for children, any redundant cue could facilitate category learning and 

dimensional attention. Future work will need to be done to determine the extent to which 

it is the label or the redundancy that is helping children. 

Other mechanisms of category learning 

The primary goal of this dissertation was to examine the mechanisms driving the 

development of selective attention to dimensional similarity. Previous research with has 

suggested that category learning and labels play a role in adult’s dimensional attention. 

Thus, these experiments were designed to measure changes to selective attention brought 

about by category learning with and without labels. For this reason, the results of the four 

experiments were discussed primarily in terms of the extent to which they demonstrate 
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selective attention to dimensional similarity. However, it is critical to note that there are 

surely other mechanisms influencing children’s category learning. For example, when 

learning a category distinction, children may associate individual stimuli or specific 

regions of a category space with the category response. Labels could still facilitate this 

process by acting as a redundant cue to category membership.  

While the categorization and discrimination tests do not rule out this type of 

associative mechanism, they suggest that it is not the only one at play and that selective 

attention processes are playing a role in children’s category learning. In particular, the 

analyses that examined differences in children’s accuracy categorizing novel versus 

familiar stimuli demonstrate that this associative mechanism is not the only mechanism at 

play. If children had been significantly better at categorizing familiar relative to novel 

stimuli, this could suggest that they had learned something about specific regions of the 

category space rather than about the dimension of organization. Instead, I found that no 

group of children showed any difference in categorization accuracy for novel versus 

familiar stimuli. This suggests that children did not only learn about specific stimuli or 

regions of the space.  

This finding does not rule out, however, whether associative mechanisms play an 

important role in category learning, especially early on in the time course of individual 

category learning. Further evidence against associative mechanisms being solely 

responsible for the category learning seen here comes from the results of the 

discrimination test. If children were only learning about regions of the category space 

they may have shown enhanced between-category discrimination and within-category 

discrimination that was equally decreased across both the relevant and irrelevant 

dimensions. Such a result would suggest that children had learned about categories but 

not necessarily about dimensions. Instead, I found that in every case where children 

showed categorical perception like effects in discrimination, they were significantly more 

accurate at making within-category discriminations along the relevant than the irrelevant 
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dimension. This suggests that they did not just learn to ignore differences between some 

values (within the categories) and attend to differences at other values (between the 

categories), but instead learned which dimension was relevant. However, it is worth 

noting that they were also always more accurate at between-category discriminations than 

even within-category discriminations along the relevant dimension. This could potentially 

mean that both associative learning mechanisms and selective attention mechanisms 

influenced category learning. Additionally, it could mean that a simple associative 

mechanism is what builds up selective attention over the course of learning an individual 

category. Future research will need to be done to explore this issue further. 

Future Directions 

The effects of labels over multiple timescales 

My proposal was that word learning trains children’s selective attention to 

dimensional similarity, not just in the service of learning new words, but also more 

generally. The current studies support this proposal in that labels had supportive 

cascading effects on holistic classifier’s attention in categorization, discrimination, and 

similarity classification. However, it is important to note that these effects were all found 

during the course of an experimental session and I did not measure whether or not 

children learned anything about the labels themselves. While these studies clearly support 

a role for labels and word learning in the development of dimensional attention, it 

remains unclear how exactly labels do this over a longer timescale.  

One way to think about how word learning scaffolds dimensional attention over 

developmental time is to consider what we already know about the mechanisms driving 

selective attention in the context of word learning (see Smith et al., 2002; Samuelson, 

2002; Perry et al., 2010). We know that the regularities present in the early linguistic 

environment drive children’s selective attention to similarity in shape. Most words 

children learn early name solid objects in categories well-organized by similarity in shape 
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(e.g. bucket).  Children first associate individual labels with individual objects. A blue 

plastic bucket with a handle is called “bucket,” an orange cloth bucket with a jack-o’-

lantern face is called “bucket,” and so on. These associations between the label and each 

individual object lead to an association between the label “bucket” and the category-

relevant dimension: the abstract shape of buckets. As children learn more associations 

between labels and categories—many of which are also organized by similarity in 

shape—they develop a higher-order association between the naming context and past 

instances of selectively attending to shape. This association leads to a bias to selectively 

attend to shape in future instance of word learning. As children develop, they learn many 

new words: including nominal categories organized by similarity dimensions other than 

shape (e.g. pudding is a category organized by similarity in material) and dimensional 

adjectives and value labels (e.g. blue is a category organized by similarity in color). 

Children acquire the ability to flexibly shift their attention to different dimensions based 

on context: to material in the context of nonsolid substances and to color in the context of 

adjectival frames (Jones & Smith, 1993). The final step that connects this flexible 

attention to dimensions in different word learning contexts to flexible attention to 

dimensions more generally is still unclear. The body of work on word learning biases 

shows that the specific words children already know affect their ability to flexibly and 

selectively attend to dimensional similarity in novel noun generalization. One important 

direction for future research, therefore, will be to investigate how the specific words 

children already know affect their ability to selectively attend to dimensional similarity in 

non-linguistic contexts (see for example, Thom & Sandhofer, 2009; Sandhofer & 

Doumas, 2008; Sandhofer & Smith, 2001; Sandhofer & Smith, 1999).  
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What do labels really do?  

Are all categories created equal? 

The present studies showed that, overall, labels facilitated category learning and 

are associated with increases in selective attention. However, the directionality of these 

relationships is unclear. Do labels provide a cue to category membership thus enhancing 

category representations? Or, do labels support selective attention, enhancing attention to 

task-relevant dimensions and abstraction over others? If the latter is true, then not all 

category learning should benefit from the presence of labels (cf. Brojde et al., 2011). In 

particular, learning holistic categories, which require representing overall similarity 

rather than selecting specific dimensions, requires less selective attention (Lupyan et al., 

2012; Ashby & Maddox, 2011; Sloutsky, 2010). If labels support selective attention, then 

they should only facilitate dimensional category learning (as in the present studies) but 

should not facilitate holistic category learning. If, however, labels provide an extra cue to 

category membership, making category representations stronger, then category structure 

should not matter—there will be facilitative effects for both holistic and dimensional 

categories.  

How do labels become special? 

It also seems possible that the role that labels play in category learning may 

change over time. Evidence from research on infants’ categorization demonstrates that 

early on, labels are simply features that can be associated with objects, no different from 

any other associated feature (Sloutsky, 2009). The word “lime” is associated with a lime 

in the same way the color green is associated with a lime (see e.g. Gliozzi, Mayor, Hu, & 

Plunkett, 2009; Deng & Sloutsky, 2012; Sloutsky & Fisher, 2004). However, we know 

very clearly from research with adults, that eventually labels take on a different role and 

are no longer equivalent to other cues or features associated with objects. For example, 

work with adults demonstrates that while redundant labels facilitate category learning, 
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other redundant cues, such as space do not (Lupyan et al., 2007). Similarly, labels 

facilitate adults’ familiar object recognition while other cues highly associated with an 

object (such as a mooing sound associated with a cow) do not (Lupyan & Thompson-

Schill, 2012). Therefore, while there is no a priori reason why labels should be “special” 

or different than any other source of information, they might become special over 

development as children learn to associate them with past instances of selective attention 

and they become more heavily weighted than other features (cf. Lupyan, 2012a).  

An extremely important direction for future research, therefore, will be to 

examine the developmental changes that lead to this increasing “specialness” of labels. 

One way to do this would be to come back to this question of whether labels support the 

learning of both holistic and dimensional category structures. It is my hypothesis that 

labels drive selective attention to dimensional similarity. Labels should facilitate adults’ 

dimensional category learning, but not their holistic category learning. However, it is 

likely that this would not be the case much earlier in development. Earlier in 

development, when labels are no different than any other feature, they should facilitate 

either type of category learning. Therefore examining both children and adults’ holistic 

and dimensional category learning with and without labels will be critical to 

understanding when and how labels become special and label to direct attention to 

dimensional similarity.   

Neural implications 

A recent study demonstrates that examining neural connections between cognitive 

control and categorization is another useful way to examine the question of what labels 

do and how they might direct attention to dimensional similarity. This study asked how 

changing cortical activity over the left inferior frontal gyrus (LIFG) via transcranial direct 

current stimulation (tDCS, noninvasive electrical stimulation used to temporarily affect 

cortical activity) affected categorization (Lupyan et al., 2012). LIFG is associated both 
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with cognitive control processes, such as those used in go/no-go tasks (see Novick et al., 

2005) and language processes, such as speech production (see Gernsbacher & Kaschak, 

2003). Changes in cortical activity induced by tDCS depend on polarity of stimulation: 

anodal stimulation increases cortical excitability and cathodal decreases it (Nitsche & 

Paulus, 2000). Thus, anodal stimulation to LIFG should increase cognitive control in 

categorization, and cathodal stimulation should decrease it. In fact, Lupyan and 

colleagues found that cathodal stimulation led to decreased accuracy for dimensional 

categories (e.g. “things that are green”) relative to holistic categories (e.g. “things in a 

kitchen”), while increasing activity increased the likelihood of selecting items that were 

weakly associated with the category (Lupyan et al., 2012). This study shows how 

changing activity in LIFG affects categorization of familiar objects. To fully understand 

the connection between language and selective attention to dimensional similarity, future 

work will need to examine how LIFG activity affects cognitive control in novel category 

learning and assess the directionality of the neural relationship between these processes.  

Words or a developmental history of word learning? 

Does language affect cognitive control because of an immediately present label, 

or prior experience selecting informative dimensions? A long-term history of using words 

to refer to categories that require representing relevant dimensions and abstracting over 

irrelevant dimension should lead to a cognitive control system that can be activated even 

without immediate linguistic support. According to the Label Feedback Hypothesis, this 

is why learned labels have a top-down effect on cognition and perception (see Lupyan, 

2012b). For example, learning the words “blue” and “green” means that when you see a 

green object, the word “green” is automatically activated and has a top-down effect that 

leads to a more categorical representation of green-ness. However, the developmental 

argument that suggests word-learning is what drives the flexible, selective attention we 

see in adult cognition suggests that top-down effects of labels do not just come from 
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specific word-referent mappings but more general experience relying on words to support 

selective attention. A lexicon of labels associated with past instances of selectively 

attending to category-relevant dimensions leads to a higher-order association between 

labels and selective attention. This leads novel words to support selective attention to 

dimensions (as in this dissertation) and a cognitive control system that supports selective 

attention without labels (Smith, 1993). One way to examine this experimentally would be 

to alter cortical activity in the LIFG (via tDCS). If this affects cognitive control in 

category learning, even without a label present, this would suggest previously-

demonstrated effects of labels on cognitive control stem from a longer history of using 

labels to support cognitive control over development.  

Conclusions 

Overall, the results of this dissertation support the idea that labels can not only 

facilitate children’s dimensional category learning, but in doing so, they lead to cascading 

increases in selective attention to dimensional similarity in subsequent tasks. That labels 

could drive increases in selective attention online during the experiment provides support 

that labels and word learning could also be the driving force in increasing selective 

attention over development. Together, the results of these experiments help to clarify the 

processes involved in development of similarity perception and unify our understanding 

of attentional processes in word learning with those in a broader context.  
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Table A1.  Participant information for each classifier type and category learning group in 
each experiment including: mean age and range, number of participants, 
number of females, mean socioeconomic status (as measured by maternal 
education where 1 is 8th grade degree and 6 is doctoral degree) and range of 
SES. 

 
Participant Information    

 
Holistic 
Classifiers 

Dimensional 
Classifiers 

Brightness 
Preferrers 

Size 
Preferrers 

E1 & E3  
(No Label): 
Brightness learners 

M: 5:11 
 range:5:0-8:3 
N=8, 6F 
SES: 4.9 (4-6) 

M: 6:5 
 range: 5:0-8:1 
N=8, 6F 
SES: 5.5 (5-7) 

M: 7:9 
range: 6:3-8:8 
N=8, 4F 
SES: 5 (3-6) 

M: 6:11  
range: 5:3-8:6 
N=8, 4F 
SES: 4.6 (3-6) 

E1 & E3  
(No Label): 
Size learners 

M: 6:0 
 range: 5:0-8:2 
N=8, 6F 
SES: 4.75 (3-5) 

M: 6:10  
range: 5:0-8:10 
N=8, 4F 
SES: 4.4 (3-6) 

M: 6:11  
range: 5:3-8:4 
N=8, 5F 
SES: 4.6 (3-6) 

M: 6:7 
 range: 5:3-8:0 
N=8, 2F 
SES: 4.5 (3-6) 

E2 & E4  
(Label):  
Brightness learners 

M: 6:6 
 range:5:1-8:4 
N=8, 2F 
SES: 4.2 (2-5) 

M: 7:0 
range:5:6-8:11 
N=8, 5F 
SES: 5.6 (5-7) 

M: 7:10  
range:6:7-8:11 
N=6, 4F 
SES: 5.6 (4-7) 

M: 6:10  
range: 5:1-8:7 
N=8, 5F 
SES: 5 (4-6) 

E2 & E4  
(Label):  
Size learners 

M: 6:6 
range:5:0-7:11 
N=8, 4F 
SES: 3.8 (3-6) 

M: 7:7  
range:6:10-8:9  
N=8, 5F 
SES: 5.5 (5-7) 

M: 7:0 
 range: 6:1-8:0 
N=5, 4F 
SES: 4.6 (2-6) 

M: 7:0  
range: 6:2-8:1 
N=8, 2F 
SES: 4.4 (3-6) 

  



 

 

139 

139 

 

 

Figure A1. Schematic representation of stimuli used in Smith and Kemler’s 1977 triad 
classification task. 
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Figure A2. Stimuli used in Experiments 1-4. 
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Figure A3. Discrimination task. Represents presentation of all three stimuli: target is at  
bottom, foil is top left, match is top right. Children had to touch the square 
represented on top that they believe was the same as the bottom one. 
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Figure A4. Example of stimuli used in triad task 
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Figure A5. Representation of a categorization trial.  
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Figure A6. Stimulus space used for stimuli in Experiments 1-4. 6a shows structure of 
categories for brightness learners and 6b shows the structure of categories for 
size learners. Yellow and pink cells represent exemplars presented in category 
learning for each group. Orange and purple cells represent novel exemplars 
presented in category test for each group. Blue arrows represent locations at 
which size discriminations were made in the discrimination task and red 
arrows represent locations at which brightness discrimination were made. 
Filled arrows represent strongly-learned areas of the category space (for the 
learning group for whom the discrimination dimension is relevant). Open 
arrows represent weakly-learned areas of the category space (again for the 
learning group for whom the discrimination dimension is relevant). 
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 Figure A7. Average number of blocks it took children in each group to reach criterion 
(e.g. accurate categorization on 7 of 8 trials for 2 blocks in a row) in the 
category learning task of Experiment 1. 
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Figure A8. Accuracy for discriminations between categories, within categories along the 
relevant dimension, and within categories along the irrelevant dimension in 
Experiment 1. Panel A shows the results of children who were dimensional 
classifiers and Panel B shows the results of children who were holistic 
classifiers.  
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Figure A9. Proportion of dimensional responses that children made during pre- and 
posttest triad tasks in Experiment 1. Panel A shows the results of children who 
were dimensional classifiers and Panel B shows the results of children who 
were holistic classifiers. 
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Figure A10. Proportion of dimensional responses that children made during pre- and   
                    posttest triad tasks for each trial type (whether the dimensional match was a  
                    match along the brightness dimension or the size dimensions) in Experiment  
                    1. Panel A shows the results for children who were dimensional classifiers  
                    and Panel B shows the results for children who were holistic classifiers. 
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 Figure A11. Average accuracy during category test on both familiar and novel trials for  
                      brightness learners (left bars) and size learners (right bars) in Experiment 1.  
                      Panel A shows the accuracy of children who were dimensional classifiers  
                      and Panel B shows the accuracy of children who were holistic classifiers.  
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Figure A12. Average accuracy during category test for novel stimuli both inside and  
                    outside the category space in Experiment 1. Panel A shows the results for  
                    children who were dimensional classifiers and Panel B shows the results for  
                    children who were holistic classifiers. 
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Figure A13.  Accuracy for each type of discrimination depending on block structure (all    
                     relevant-dimension, all irrelevant-dimension, or mixed-dimension  
                     discriminations) in Experiment 1. Panel A shows results from children who  
                     were dimensional classifiers. Panel B shows results from children who were  
                     holistic classifiers. 
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Figure A14. Average number of blocks it took children in each group in Experiment 2 to  
                     reach criterion (e.g. accurate categorization on 7 of 8 trials for 2 blocks in a  
                     row) in the category learning task. 
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Figure A15. Accuracy for discriminations between categories, within categories along the  
                     relevant dimension, and within categories along the irrelevant dimension in  
                     Experiment 2. Panel A shows the results of children who learned were  
                     dimensional classifiers and Panel B shows the results of children who were  
                     holistic classifiers.  
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Figure A16. Proportion of dimensional responses that children made during pre- and  
                    posttest triad tasks in Experiment 2. Panel A shows the results of children  
                    who were dimensional classifiers and Panel B shows the results of children  
                    who were holistic classifiers.  
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Figure A17. Proportion of dimensional responses that children made during pre- and  
                    posttest triad tasks for each trial type (whether the dimensional match was a  
                    match along the brightness dimension or the size dimensions) in Experiment  
                    2. Panel A shows the results for children who were dimensional classifiers  
                    and Panel B shows the results for children who were holistic classifiers. 
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Figure A18. Average accuracy during category test on both familiar and novel trials for  
                     brightness learners (left bars) and size learners (right bars) in Experiment 2.  
                     Panel A shows the accuracy of children who were dimensional classifiers  
                     and Panel B shows the accuracy of children who were holistic classifiers. 
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Figure A19. Average accuracy during category test for novel stimuli both inside and  
                    outside the category space in Experiment 2. Panel A shows the results for  
                    children who were dimensional classifiers and Panel B shows the results for  
                    children who were holistic classifiers. 
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Figure A20. Accuracy for each type of discrimination depending on block structure (all  
                    relevant-dimension, all irrelevant-dimension, or mixed-dimension  
                    discriminations) in Experiment 2. Panel A shows results from children who  
                    were dimensional classifiers. Panel B shows results from children who were  
                    holistic classifiers.  
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Figure A21. Average number of blocks it took children in each group to reach criterion  
                    (e.g. accurate categorization on 7 of 8 trials for 2 blocks in a row) in the  
                    category learning task of Experiment 3. 
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Figure A22. Accuracy for discriminations between categories, within categories along the  
                    relevant dimension, and within categories along the irrelevant dimension in  
                    Experiment 3. Panel A shows the results of children who learned were  
                    brightness preferrers and Panel B shows the results of children who were size  
                    preferrers. 
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Figure A23. Proportion of dimensional responses that children made during pre- and  
                    posttest triad tasks in Experiment 3. Panel A shows the results of children  
                    who were brightness preferrers and Panel B shows the results of children  
                    who were size preferrers. 
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Figure A24. Proportion of dimensional responses that children made during pre- and  
                    posttest triad tasks for each trial type (whether the dimensional match was a  
                    match along the brightness dimension or the size dimensions) in Experiment  
                    3. Panel A shows the results for children who were brightness preferrers and  
                    Panel B shows the results for children who were size preferrers. 
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Figure A25. Average accuracy during category test on both familiar and novel trials for  
                    brightness learners (left bars) and size learners (right bars) in Experiment 3.  
                    Panel A shows the accuracy of children who were brightness preferrers and  
                    Panel B shows the accuracy of children who were size preferrers. 
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Figure A26. Average accuracy during category test for novel stimuli both inside and  
                    outside the category space in Experiment 3. Panel A shows the results for  
                    children who were brightness preferrers and Panel B shows the results for  
                    children who were size preferrers. 
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Figure A27. Accuracy for each type of discrimination depending on block structure (all  
                    relevant-dimension, all irrelevant-dimension, or mixed-dimension  
                    discriminations) in Experiment 3. Panel A shows results from children who  
                    were brightness preferrers. Panel B shows results from children who were  
                    size preferrers. 
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Figure A28. Average number of blocks it took children in each group to reach criterion  
                    (e.g. accurate categorization on 7 of 8 trials for 2 blocks in a row) in the  
                    category learning task of Experiment 4. 
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Figure A29. Accuracy for discriminations between categories, within categories along the  
                    relevant dimension, and within categories along the irrelevant dimension in  
                    Experiment 4. Panel A shows the results of children who learned were  
                    brightness preferrers and Panel B shows the results of children who were  
                    size preferrers. 
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Figure A29. Proportion of dimensional responses that children made during pre- and  
                    posttest triad tasks in Experiment 4. Panel A shows the results of children  
                    who were brightness preferrers and Panel B shows the results of children  
                    who were size preferrers. 
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Figure A30. Proportion of dimensional responses that children made during pre- and  
                    posttest triad tasks for each trial type (whether the dimensional match was a  
                    match along the brightness dimension or the size dimensions) in Experiment  
                    4. Panel A shows the results for children who were brightness preferrers and  
                    Panel B shows the results for children who were size preferrers. 
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Figure A31. Average accuracy during category test on both familiar and novel trials for  
                    brightness learners (left bars) and size learners (right bars) in Experiment 4.  
                    Panel A shows the accuracy of children who were brightenss preferrers and  
                    Panel B shows the accuracy of children who were size preferrers. 
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Figure A32. Average accuracy during category test for novel stimuli both inside and  
                    outside the category space in Experiment 4. Panel A shows the results for  
                    children who were brightness preferrers and Panel B shows the results for  
                    children who were size preferrers. 
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Figure A33. Accuracy for each type of discrimination depending on block structure (all  
                    relevant-dimension, all irrelevant-dimension, or mixed-dimension  
                    discriminations) in Experiment 4. Panel A shows results from children who  
                    were brightness preferrers. Panel B shows results from children who were  
                    size preferrers. 
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