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ABSTRACT 

 

The formation of organized, functional tissues, and later in life, their limited 

regeneration in response to injury, or disease, are governed by cell-matrix interactions. 

Directing and optimizing tissue self-structuring and remodeling in these processes are 

progressing, but there is still a lack of understanding how these interactions are 

coordinated across various scales, especially in terms of the role of cell’s mechanical 

environment. This environment is affected by the organization, and the properties of the 

local extracellular matrix (ECM) in which physical forces are communicated at the 

cellular and fiber levels. Thus, mechanical cues along with biochemical and electrical 

cues contribute to a complex process of self-structuring and remodeling that necessitates 

the development of computational frameworks which can incorporate a large number of 

experiments into a comprehensive whole. 

Theoretical development of the mechanics of ECM substrates has relied on 

making many simplifying assumptions. Continuum-based models are commonly used for 

these purposes, but they mostly do not consider the fiber-fiber interactions and non-affine 

microstructural reorganization of fibrous materials. Another limitation of these models is 

that they generally do not include autonomous mechanoresponsive cells. These cells 

generate forces that reorganize the ECM and alter their activity in response to forces from 

the ECM. The purpose of this work is to develop such a fiber-based computational model 

and to account for active cellular component to help understand the dynamics and 

reciprocal nature of the cell’s mechanical environment. 
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PUBLIC ABSTRACT 

The formation of organized, functional tissues, and later in life, their limited 

regeneration in response to injury, or disease, are governed by cell-matrix interactions 

and cell’s mechanical environment. 

Theoretical development of the mechanics of extracellular matrix (ECM) 

substrates has relied on making many simplifying assumptions (i.e., they mostly do not 

consider the fiber-fiber interactions in fibrous tissues, and do not include the autonomous 

mechanoresponsive cells, which generate forces that reorganize the ECM and alter their 

activity in response to forces from the ECM). The purpose of this work is to develop such 

a fiber-based computational model and to account for active cellular component to help 

understand the dynamics and reciprocal nature of the cell’s mechanical environment. 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

 

 
LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES ........................................................................................................... ix 

CHAPTER 1 INTRODUCTION ........................................................................................ 1 

1.1 Motivation ................................................................................................................. 1 

1.2 Objective ................................................................................................................... 4 

CHAPTER 2 THE EFFECT OF CELL COMPACTION ON REMODELING OF 

COLLAGEN GELS IN A MULTI-SCALE MECHANICAL MODEL ............................ 6 

2.1 Introduction ............................................................................................................... 6 

2.2 Methods ..................................................................................................................... 8 

2.2.1 Multi-scale Model............................................................................................... 8 

2.2.2 Microscale Networks and Cell Compaction ....................................................... 9 

2.2.3 Cell Compaction Case Studies ......................................................................... 11 

2.3 Results ..................................................................................................................... 14 

2.4 Discussion ............................................................................................................... 22 

CHAPTER 3 AN IMAGE-BASED MULTI-SCALE MODEL FOR A DIRECT 

COMPARISON WITH FIBRIN GELS EXPERIMENTS ON STUDYING THE ROLE 

OF CELL MATRIX INTERACTIONS IN WOUND HEALING ................................... 26 

3.1 Introduction ............................................................................................................. 26 

3.2 Methods ................................................................................................................... 27 

3.2.1 Multi-scale Model............................................................................................. 27 

3.2.2 Model Formulation and Computational Details ............................................... 28 

3.3 Results ..................................................................................................................... 31 

3.4 Discussion ............................................................................................................... 35 

3.5 Conclusion ............................................................................................................... 37 

CHAPTER 4 FIBER NETWORK MODELS PREDICT ENHANCED CELL 

MECHANOSENSING ON FIBROUS GELS .................................................................. 38 

4.1 Introduction ............................................................................................................. 38 

4.2 Methods ................................................................................................................... 39 

4.2.1 Models and Boundary Conditions .................................................................... 39 

4.2.2 Continuum Model ............................................................................................. 41 



vii 
 

4.2.3 Fiber Model ...................................................................................................... 42 

Fiber Networks .......................................................................................................... 42 

Model Parameters ...................................................................................................... 44 

Effective Stiffness ...................................................................................................... 45 

Computational Resources .......................................................................................... 46 

4.3 Results ..................................................................................................................... 46 

Comparison between Continuum Model and Growth Network Fiber Model ........... 47 

Comparison between Growth Network and Delaunay Network Fiber Models......... 51 

4.4 Discussion ............................................................................................................... 56 

CHAPTER 5 A DISCRETE MECHANISTIC NETWORK-BASED MODELING OF 

CELL MIGRATION, AND COUPLING IT TO A SUBSTRATE MODEL ................... 63 

5.1 Introduction ............................................................................................................. 63 

5.2 Methods ................................................................................................................... 63 

5.2.1 Cell Biomechanics and Migration .................................................................... 64 

5.2.2. Coupling Between Cell Migration and Substrate Models ............................... 67 

5.3 Results ..................................................................................................................... 68 

5.4 Discussion ............................................................................................................... 71 

REFERENCES ................................................................................................................. 73 

APPENDIX A ................................................................................................................... 79 

APPENDIX B ................................................................................................................... 91 

 

   

  



viii 
 

LIST OF TABLES 

 

Table 4-1: Material parameters values used for each model ...........................................47 

 

Table 4-2: Average principal stress and displacements in focal adhesion (FA) regions .48 

 

Table 4-3: Fit parameters for critical thickness, hcrit, and saturation maximum surface 

displacement, uinf, for each model ....................................................................................59 

 

 

 

 

  



ix 
 

LIST OF FIGURES 

 

Figure 1-1: Mechanical interactions at the fiber and the cellular levels control tissue 

development, remodeling, and repair .................................................................................2 

 

Figure 2-1: “Strap” formation between explants and the multiscale modeling strategy. 

(A) A triangular explant configuration develops strong fiber alignment between 

fibroblast explants after 60 hours. Images are montages of sixty 20x DIC images 

(images from Dr. Sander’s lab). (B) Multiscale models consist of cellular networks 

(blue) that are configured in an analogous manner to the experiments and that  

contract to 40% of their original length to produce tension and reorganization in the  

surrounding ECM networks .............................................................................................12 

 

Figure 2-2: Top-view of fiber network realignment after 40% compaction for case 1. 

ECM networks develop varying patterns of fiber alignment between explants in a 

configuration dependent manner. The color map indicates the change in the degree of 

fiber alignment (∆α) between the initial traction free configuration and 40%  

compaction. Also depicted are the principal directions of fiber alignment  

(white crosses). For clarity directions are only shown for those elements with 

 ∆α > 0.08 .........................................................................................................................15 

 

Figure 2-3: Strain developed during 20% and 40% compaction for three explants. (A) 

top, bottom, left, and right boundaries are fixed, (B) top and bottom are fixed, and (C) 

symmetry boundary conditions are applied to the left, bottom, and back faces.  

Maximum principal strain patterns change in accord with the applied boundary 

conditions. White arrows show principal direction .........................................................17 

 

Figure 2-4: Comparison of mechanical response. (A) The force on the boundary  

during uniaxial extension for the case of 40% compaction for three explants (circles)  

is higher than the case where all of the networks are ECM networks (i.e. no explants). 

The inset plot shows the increase in force that develops on the boundary during the 

compaction process prior to uniaxial extension. (B) Regional differences in strain, 

particularly around the explants, are apparent at full stretch (λ=1.5) ..............................18 

 

Figure 2-5: Histograms of fiber strain in all ECM networks for uniaxial stretch of the 

three-explant model. (A, B) During the compaction phase of the simulations a small 

fraction of fibers developed small tensile and compressive strains. (C, D) With  

uniaxial stretch a wide range of fiber strains were observed, most of which were  

below the amount of stretch applied macroscopically (red line). The distribution of  

fiber strains in the no-explant model (data not shown) were similar in shape to those  

in C and D ........................................................................................................................19 

 

Figure 2-6: Differences in average fiber-level strain at 50% uniaxial stretch. (A) 

Regional variations in the average fiber-level strain in each element were apparent  

when the strains in the no-explant model were subtracted from those in the  



x 
 

three-explant model. The largest differences were found in the elements around the 

explants (white). Differences in fiber strain that exceeded ± 4% are highlighted  

with a star. Histograms of the strains for all 88,728 fibers in the starred elements  

for the three-explant model (B) and no-explant (model) .................................................20 

 

Figure 2-7: Behavior of selected networks. (A, B) Average fiber strains in each  

element are depicted at select instances for the (A) three-explant model and the (B) 

no-explant model. The red circles highlight the locations of two networks depicted 

below. (C) Top-view of network 1, which is associated with an area of high fiber  

strain. The individual fibers reorganize to satisfy force equilibrium and are color  

coded to indicate the level of fiber strain. (D) Network 2 is associated with an area  

low average fiber strain. Prior to uniaxial stretch the network volume shrinks and  

some fibers are under compression. The fiber strain and kinematics in these networks  

are compared with those developed in the no-explant model (E, F) ...............................22 

 

Figure 3-1: In vitro data collection and image-based computational model. (A) Three 

explants were placed at a distance of approximately 2 mm from each other to form  

the vertices of a triangle. A tiled image consisting of 36 individual 10x DIC images  

was acquired every 15 minutes in order to observe and quantify structural and 

morphological changes in the fibrin gel. (B) Over the course of the experiment the 

instantaneous and cumulative displacements of a subset of embedded microspheres  

was analyzed at each location (the depicted image corresponds to the black box in  

(A)). (C) The image-based computational model consists of finite elements  

containing fiber networks that are representative of the fibrin fibers in the gel.   

(D) The model is partitioned into cellular networks (white elements) and surrounding 

fibrin networks (yellow elements) that are configured to approximate the geometric 

configuration of the explants and gel in the experiments ................................................29 

 

Figure 3-2: Model predictions (A, C) and experimental data (B, D) of displacement. 

Displacement fields for (A, C) the Fixed and (B, D) Free conditions at 24 hours.  

Arrows indicate the direction of ECM displacement towards the compacting explants .32 

 

Figure 3-3: Model prediction of fiber realignment. Fiber network realignment at  

t = 24 hours for a (A) Fixed and (B) Free gel. The color map indicates the change in  

the strength of fiber alignment (∆α) from the initial network configuration. Also  

shown as white arrows are the principal directions of fiber alignment for those  

elements where ∆α > 0.05. Network reorganization and fiber forces for a  

representative network in an axial (C, D) and non-axial region (E, F) ...........................34 

 

Figure 4-1: Schematic of the FE model. Cell traction forces are applied to the FE  

nodes (red) associated with the focal adhesion area on the FE top surface. For the  

fiber model, 3D Growth or Delaunay fiber networks similar to the microstructures  

found in fibrous gels were used instead and compared to the nonlinear Continuum  

model ................................................................................................................................41 

 

Figure 4-2: Shear simulation results fitted to experimental data for a 2 mg/mL  



xi 
 

acellular fibrin gel from Wen et al. (75). Model parameters were selected to match  

the nonlinear increase in stress with strain ......................................................................45 

 

Figure 4-3: Maximum principal stress for 10 µm, 30 µm, and 50 µm thick gels in 

response to 6 nN of traction force. Stress contours for the (A) Continuum model, the  

(B) Growth Network model, and the (C) Delaunay Network model. Black nodes 

correspond to the inner and outer nodes of the focal adhesion area where the traction 

forces were applied ..........................................................................................................48 

 

Figure 4-4: Displacement fields for 10 µm, 30 µm, and 50 µm thick gels in response  

to 6 nN of traction force for the (A) Continuum model, the (B) Growth Network  

model, and the (C) Delaunay Network model. Black nodes correspond to the inner  

and outer nodes of the focal adhesion area where the traction forces were applied ........49 

 

Figure 4-5: Magnitude of displacement along the length of the FE domain for nodes  

at the top surface of (A) 10 µm, (B) 30 µm, and (C) 50 µm thick gels for the Growth 

Network, Delaunay Network and Continuum models. Shaded regions indicate which  

FE nodes were associated with the focal adhesion area ..................................................50 

 

Figure 4-6: Comparison of (A) effective stiffness and (B) relative effective stiffness 

normalized to the 200 µm thick gel for each model ........................................................50 

 

Figure 4-7: (A) Growth Network model, and (B) Delaunay Network model fiber  

network realignments for 10 µm, 30 µm, and 50 µm thick gels in response to 6 nN  

of traction force. The color map indicates the change in the degree of fiber alignment 

(∆α) from the initial, nominally isotropic, traction free configuration. Also, depicted  

is the principal direction of fiber alignment (white lines). For clarity, principal  

directions are only shown for those elements with ∆α > 0.1 ...........................................53 

 

Figure 4-8: Growth fiber network behavior at selected locations. The direction of  

fiber alignment is shown on the 10 µm case displacement field for ∆α > 0.1, the  

orange circles indicate the inner and outer boundaries of the focal adhesion area, and  

the lettered white circles indicate the locations of networks A and B shown below. 

Network organization, fiber forces, and fiber anisotropy index are shown for the  

initial, middle, and final steps of the simulation. Fiber force histograms are also  

shown for the final step of the simulation ........................................................................55 

 

Figure 4-9: Delaunay fiber network behavior at selected locations. The direction of  

fiber alignment is shown on the 10 µm case displacement field for ∆α > 0.1, the  

orange circles indicate the inner and outer boundaries of the focal adhesion area, and  

the lettered white circles indicate the locations of networks A and B.  Network 

organization, fiber forces, and fiber anisotropy index are shown for the initial,  

middle, and final steps of the simulation. Fiber force histograms are also shown for  

the final step .....................................................................................................................56 

 

Figure 5-1: Two-dimensional Delaunay network representing cell, and the  



xii 
 

cytoskeleton mechanical properties. Neighboring nodes i and j are connected by  

elastic spring with elasticity coefficient Eij and viscous dashpot with viscosity  

coefficient µ, in parallel. The active forces Fi are applied at the front of the cell.  

A representative force is marked by an arrow. The cell center is indicated by C ...........65 

 

Figure 5-2: Schematic of the two-dimensional cell model on top surface of the three-

dimensional finite element model. Cell traction forces are interpolated and applied to  

the finite element nodes on the top surface ......................................................................68 

 

Figure 5-3: The cell moves from the soft side of the substrate toward the stiff side of  

the substrate. The trajectory of the cell center is marked with a dashed arrow ...............69 

 

Figure 5-4: Displacement fields for the cell migration model coupled to the substrate 

model at initial, middle and final steps.............................................................................70 

 

Figure 5-5: Displacement fields for the cell migration coupled to the substrate  

with a step in stiffness at initial, middle and final steps...................................................70 

 

 

  



1  
 

CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

Tissue development, remodeling and repair is profoundly affected and directed by 

the mechanical microenvironment of cells (1-3). The attributes of this complex 

environment, which include substrate dimensionality, stiffness, porosity, and topology, 

are also important to consider in a number of strategies in regenerative medicine, such as 

in designing the stem cell niche (4, 5). Therefore, a number of experimental and 

computational studies have been performed to identify the role mechanical environment 

plays in directing various cell activities, such as cell migration (6), and extracellular 

matrix (ECM) remodeling (7, 8). 

A commonly used experimental technique to study the effect of 

microenvironment mechanical properties on cell behavior and cell matrix interactions is 

to culture cells on polyacrylamide (9), PDMS (10), or other synthetic substrates. These 

substrates are used primarily because they are inexpensive and readily-available 

biocompatible materials whose mechanical properties are tunable over a range of 

biologically relevant stiffnesses (9, 11). Another important advantage is that mechanical 

analysis of the experiments is greatly simplified compared to native tissues due to the 

linear elastic, homogeneous, and isotropic, properties of these synthetic materials. 

Although the use of such materials has revealed much about the mechanobiology of 

various cell types, these materials are limited in that they are not directly comparable to 

the ECM that these cells reside in. The profile of the material properties of the ECM can 
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be categorized as substantially more complicated (i.e., not linear elastic, heterogeneous, 

and anisotropic). Much of this character derives from the fibrous nature of the ECM and 

the fact that these fibers are often connected into networks that organize into hierarchical 

structures at each scale of the tissue (Figure 1-1). Experiments on fibrous substrates, such 

as fibrin or collagen, have demonstrated that the cellular response is quite different than 

for a non-fibrous substrate of comparable bulk stiffness (12-15). 

 

Figure 1-1: Mechanical interactions at the fiber and the cellular levels control tissue development, 

remodeling, and repair (image courtesy of E.A. Sander). 

 

 



3  
 

Several computational models have been developed in order to understand how 

macroscopic forces affect cell activity (16-19). In these models, the microstructure is often 

represented as a continuum (17), or they do not properly consider the fibrous nature of the 

tissue or substrate (16, 18, 19). Furthermore, the cell traction forces on ECM, which can 

contribute substantially to the overall mechanical responses, may be ignored in such 

models. It is unclear how cell traction changes force transmission through the gel and 

how a cell senses its environment, which further limits our ability to engage in tissue 

engineering and repair. Sen et al. (20) modeled a contracting cell placed on a linear elastic 

substrate, such as PA, and computed the deformations and strain field using finite 

element analysis. They concluded that the cell can feel on length scales from a few 

hundred nanometers to a few microns. In contrast to PA gels, it was found experimentally 

that cells on fibrous gels, such as fibrin and collagen, can sense and deform the gel on 

much higher length scales (13, 14). Mehrota et al. (21) constructed a 2D axisymmetric 

finite element model of a poly(diallyldimethylammonium chloride) (PDAC)/sulfonated 

polystyrene, sodium salt (SPS) film to study how the thickness of the substrate influences 

the mechanosensitive length scale of cells. They assumed a constant cell traction force 

and a linear elastic material. They found that effective stiffness decreases linearly with 

substrate thickness, and reaches an asymptotic value around 50 microns. The 

mechanosensitive length scale of the cell is governed not only by Young’s modulus but 

also by thickness of the substrate. 

While most previous work has used synthetic, linear elastic materials, fibrous and 

nonlinear constitutive properties of biological gels can have a dramatic effect on cell 

mechanosensing. Notbohm et al. (22) developed a nonlinear finite element model for a 
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fiber network representing fibrin gels to simulate localized deformations induced by static 

cells, and showed that cells in a fibrous matrix induce deformations that propagate over a 

longer range than predicted by linear elasticity, but the mechanism does not seem to be 

the proposed microbuckling. Abhilash et al. (23) presented a finite element model for 2D 

discrete fiber networks created with linear elastic fibers, and captured static cell-mediated 

collagen alignment, deformations, and long-range force transmission. Both models 

utilized constant displacement boundary conditions for cell traction. 

On the other hand, cellular activities are strongly modulated by the mechanical 

environment (6, 24-28). For example, Lo et al. (6) demonstrated that substrate stiffness is 

an important regulator of cell migration on 2D substrates. Therefore, mathematical 

models for cell biomechanics and behavior in response to mechanical environment are 

also needed to resolve these complex relationships and interactions. Agent-based models 

(ABM) have been applied recently for these purposes (29-31). The rules governing cell 

behavior can be set up based on physical principles and conservation laws in such 

models. Dokukina et al. (30) constructed a discrete model of fibroblast motility to 

investigate the mechanics of rigidity sensing by modeling a fibroblast as 2D Delaunay 

network, with each fiber acting as an elastic spring and a viscous dashpot in parallel 

connected at nodes. By applying an external force to the front nodes in the 

lamellipodium, the model was able to reproduce cell preference for stiffer surfaces. 

 

1.2 Objective 

Characterizations of the cellular response to the environmental cues, the cell 

mechanosensing, and the substrate remodeling have been explored, but many of the 
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details require further study, in part because many of these cues present together, evolve 

reciprocally, and feedback into each other. For example, a cell may exert forces to locally 

reorganize ECM, the reorganization then changes the local effective stiffness, and the 

traction forces change (13). The goal of this dissertation is to develop and adapt a fiber-

based computational model and to account for active cellular component in order to 

understand and predict the role of cell matrix interactions and mechanosensing in tissue 

self-structuring and fiber reorganization. This work involves a characterization of the role 

of mechanical environment, expands a fiber-based modeling framework, and incorporates 

autonomous cell-matrix interactions. 
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CHAPTER 2 

THE EFFECT OF CELL COMPACTION ON REMODELING OF COLLAGEN 

GELS IN A MULTI-SCALE MECHANICAL MODEL 

 

2.1 Introduction 

Cell activity is controlled by a complex set of spatially and temporally varying 

environmental cues. It has been demonstrated that the properties of the surrounding 

extracellular matrix (ECM) and the local mechanical environment profoundly influence 

cell behavior (3, 11, 32-34). The mechanical environment is controlled in part by the 

composition and stiffness of the local ECM and by the manner in which physical forces 

applied at the tissue-level propagate down to the cellular level. Forces are communicated 

to the cell through cell-cell and cell-ECM attachments via a number of signaling 

pathways that result in the conversion of mechanical signals into chemical signals (i.e. 

mechanotransduction) (35-37).  

Changes in mechanical environment have been attributed to pathological 

remodeling in osteoporosis (38, 39), glaucoma (40, 41), atherosclerosis (42, 43), and 

aneurysm (44), to cite just a few examples. Physical forces and changes in ECM stiffness 

have also been implicated in tumor metastasis (45-47). The specifics on how such changes 

drive pathological tissue remodeling, however, remain poorly understood. Part of the 

confusion derives from the fact that the local mechanical environment is dynamic and 

dependent on the integrated and reciprocal response of the entire tissue.   

In the field of tissue engineering, deformations applied to cell-seeded scaffolds 

have also been shown to modulate synthetic and enzymatic cell activity and 
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differentiation (48-51). As a result, engineered tissues are commonly conditioned 

mechanically by dynamic stretching, which improves mechanical properties beyond the 

level that can be derived solely from biochemical stimulants. The choice of a particular 

waveform and magnitude of stretch, however, is largely empirical because the precise 

relationships between the applied deformations and the cellular response are poorly 

understood. Furthermore, the amplitude and frequency of the conditioning protocols often 

does not change over the course of the culture period even though the remodeling process 

changes the local mechanical environment, ostensibly in an effort to drive it to a point of 

tensional homeostasis (52). Syedain et al. found that fiber-based engineered tissues had 

improved composition and mechanical properties when the magnitude of cyclic 

distension was incrementally increased every few days compared to those subjected to a 

constant magnitude over the duration of the experiment (53). These results suggest that in 

order to maintain a synthetic response in growing constructs, the mechanical environment 

must change faster than the cells can adapt to it. Since the relationships between 

mechanical stimulation and ECM remodeling are complex, interdependent, and dynamic, 

theoretical remodels are required for understanding the underlying phenomena so that the 

conditioning process can be optimized to produce functional engineered tissues.  

The purpose of this chapter is to lay the foundation for answering the questions: 

how does cell compaction change the distribution of force, strain and fiber alignment in a 

collagen gel, and what is the relationship between macroscopic tissue strain and 

microscopic tissue strain when these constructs are deformed? These are critical 

questions that must be answered in order to optimize mechanical conditioning procedures 

designed to produce engineered tissues with mechanical functionality similar to native 
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tissues, particularly as the tissues and cells adapt to the mechanical environment. As an 

initial exploration into this area, we incorporated the effect of cell tractions on developing 

isometric tension in the surrounding fibers of fiber-based collagen gels in a multi-scale 

mechanical model (54). 

 

2.2 Methods 

2.2.1 Multi-scale Model 

The multi-scale modeling framework employed here was developed previously to 

examine mechanical coupling between scales in collagen gels (55-57) and other 

biomaterials (58, 59). The model treats the macroscopic domain of the material with the 

standard Galerkin finite element method and links it to a description of the microstructure 

via local microscopic fiber network problems and the theory of volume averaging (60, 

61).  The essential equations in the model include: (1) a constitutive equation describing 

the mechanical behavior of a single fiber, (2) an equation that provides the volume-

averaged stress of a collection of cross-linked fibers that form a network, (3) and an 

equation for the balance of macroscopic stress (55, 56). Briefly, macroscopic 

displacements on the FE mesh are mapped to the boundaries of the microscopic networks, 

each centered at the eight Gauss points within each element, through the use of tri-linear 

basis functions. The cross-linked fibers in the networks then reorganize and deform to 

satisfy force equilibrium. The volume-averaged stress from each network is then 

incorporated into the macroscopic stress balance, and an iteration is conducted until the 

positions of the FE nodes and the fiber reorganization combine to produce a state of 

equilibrium throughout the model. The constitutive equation of a fiber is 
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 1)exp(  f

ff
B

B

AE
F          (2.1) 

where fE  is the Young’s modulus at infinitesimal strain, fA  is the cross-sectional area 

of a fiber,  B is a fitting parameter that controls the nonlinearity of the force response, and 

f  is the Green’s strain of the fiber and is calculated as  15.0 2  ff  , where f is the 

fiber stretch ratio. In this study, a value of 
8104.1 ff AE N and a value of B = 3.8 

were used for both cellular and ECM networks based on our previous work. The volume-

averaged Cauchy stress of the fiber network, ij , is calculated in discrete form as 

 

1 1
ij ij i j

boundary nodesV

dV x F
V V

           (2.2) 

where V is the volume of the network, ij  is the local microscopic stress, and 𝑥𝑖 and 𝐹𝑗 

are the position and forces on the boundary nodes, respectively.  The macroscopic stress 

balance is 

  dAnu
V

kik

V

ijijiij ,,

1
 


        (2.3) 

where u is the displacement of the network boundary V, and n is the unit normal vector 

to the network surface. 

 

2.2.2 Microscale Networks and Cell Compaction  

The collagen gel microstructure was approximated by a collection of 3D fiber 

networks that have been shown to resemble the structure and heterogeneity observed 

experimentally (32, 33). In this study, each element in the FE mesh was randomly 

assigned a 3D fiber network containing on average 323 ± 26 cross-linked fibers. The 



10  
 

networks were created so that the fibers were preferentially aligned in the xy-plane (90% 

of the fibers were oriented within 10° of the xy-plane). In addition, the networks were 

created so as to be nearly isotropic (α = 0.15 ± 0.07 defined below) within the xy-plane. 

This configuration was chosen to help facilitate comparisons with experiments, in which 

information about fiber realignment through the thickness is often not available, and the 

subsequent analysis, which was conducted on the 2D projections of the 3D 

microstructures. 

Network orientation and strength of alignment were quantified by the length-

weighted 2D orientation tensor, Ω, which is given by  

 

2

21
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


       (2.4) 

where 𝜃𝑖  is the angle that fiber i makes with respect to the horizontal axis, 𝑙𝑖  is the 

length of fiber i, and the sum is over all of the fibers in the network, NF.  The 

eigenvectors and eigenvalues of this Ω represent the principal directions and magnitudes, 

respectively, of fiber orientation in the network. The strength of fiber alignment was 

quantified using an anisotropy index α, given by 

𝛼 = 1 − 𝜔1 𝜔2⁄          (2.5) 

where 𝜔1and 𝜔2are the eigenvalues of Ω, and 𝜔1 ≤  𝜔2. Under this convention, an 

isotropic network has an α value of 0, and a completely aligned network has an α value of 

1 (62).  

As a first step towards representing the physics of gel compaction and the 

development of internal tension, cell tractions were approximated by partitioning the 
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networks in the model into either ECM (non-contractile) networks or cellular (contractile) 

networks. Therefore, elements designated as cells (or explants) contain only cellular 

networks, and elements designated as collagen gel only contain ECM networks. For this 

initial effort, cellular and ECM networks were assigned the same material properties and 

structure. The only difference between these types of networks was that during the 

compaction phase of the simulation, the reference length of fibers in the cellular networks 

was incrementally reduced, which created tension in surrounding fibers of the ECM 

networks. This approach to modeling cell compaction is only meant to simulate the 

effects of cell traction forces on the surrounding ECM. It is not meant to reflect the 

manner in which a cell actually exerts traction forces on the ECM. 

 

2.2.3 Cell Compaction Case Studies 

In many applications that involve entrapping cells in gels, the cells are initially 

distributed homogeneously throughout the gel (e.g., (63)). The cells then compact the gel 

and produce a fiber alignment pattern that depends in part on cell traction forces, gel 

geometry, and gel mechanical constraints. In an effort to understand better the 

mechanisms involved within a less complex setting, several investigators have studied the 

development of fiber alignment, or “straps”, between clusters of cells, or explants (64-66). 

The explant system allows easier arrangement of cells into simple geometric patterns and 

facilitates visualization of the mechanisms underlying cell-driven fiber realignment. 

Thus, the explant system provides a convenient system for understanding how alignment 

patterns form. 
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We simulated the development of fiber alignment in an explant system under 

similar conditions to those of Sawhney and Howard (65). In that study, three mouse 

fibroblast explants (each consisting of approximately 4,000 cells) were placed in a 1.7 

mg/mL collagen gel in a triangular pattern spaced approximately 1 mm apart, and the 

development of fiber alignment between explants was monitored with time-lapse imaging 

over an 18 hour period. To represent a typical experiment (Figure 2-1A), a one-element 

thick square FE mesh consisting of 576 tri-linear hexahedral elements and 1250 nodes 

was created to represent a spatial scale of 10 mm x 10 mm x 2 mm (length, width, 

thickness). The FE domain (Figure 2-1B) was then partitioned into three triangularly 

arranged cellular domains, each consisting of four adjacent elements arranged as a square 

and containing only cellular networks. These cellular domains represent the explants, and 

they were embedded within a surrounding collagen gel domain consisting of ECM 

networks. 

 

 

Figure 2-1: “Strap” formation between explants and the multiscale modeling strategy. (A) A triangular 

explant configuration develops strong fiber alignment between fibroblast explants after 60 hours. Images 

are montages of sixty 20x DIC images (images from Dr. Sander’s lab). (B) Multiscale models consist of 

cellular networks (blue) that are configured in an analogous manner to the experiments and that contract 

to 40% of their original length to produce tension and reorganization in the surrounding ECM networks.  
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Three simulation cases were investigated for 40% cell-driven compaction by three 

triangularly arranged explants: 

 Case 1: four fixed boundaries (top, bottom, left, and right surfaces) during 

compaction 

 Case 2: two fixed boundaries (top and bottom surfaces) during compaction, 

followed by 50% uniaxial stretch 

 Case 3: three symmetry boundaries (bottom, left, and back surfaces) during 

compaction. For each scenario, unless specified above, the boundary was free. 

We also repeated case 1 for 2 explants, 4 explants, and 5 explants to assess the 

role of explant geometry, and we repeated case 2 for no explants to assess the model 

mechanics without cell compaction.   

To simulate cell compaction, the reference lengths of the fibers in the cellular 

networks were shortened either 4% (cases 1 & 2) or 2% (case 3) with each step, and the 

restructuring of fibers in both ECM and cell networks required to achieve mechanical 

equilibrium was determined iteratively. This process continued until the cellular network 

fiber reference lengths were 40% shorter than the original fiber lengths (i.e., either 10 or 

20 steps). To apply uniaxial stretch (case 2), the top boundary was then displaced 0.5 cm 

over ten equally spaced steps (0.05 cm/step) while the bottom boundary remained fixed. 

Fiber stretch ratios were used to calculate the Lagrangian strain for the fibers. Fiber 

stretch ratios, which were defined relative to the original fiber length, were only 

calculated for the ECM networks due to difficulties with interpretation for the cellular 

networks, where the reference lengths were changed with each step to generate tension.  
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Since the FE domain contains 4,608 networks and consists of approximately 1.5 

million fibers, the computational demands for these simulations were large. Simulations 

were run using a custom parallelized C code with message passing interface (MPI) on 

high performance computing resources. All post processing was done using Matlab. 

 

2.3 Results 

The effect of cell compaction on microstructural reorganization, development of 

internal tension, and altered mechanical behavior in explants embedded in collagen gels 

was studied in a multi-scale modeling framework for a number of different scenarios. 

Compaction was achieved by incrementally shrinking the reference length of cellular 

network fibers until it had been reduced by 40%, which we refer to as 40% compaction, 

for all simulations.  

For case 1, four different explant configurations were simulated. Varying levels of 

fiber realignment were observed in the surrounding ECM networks for each configuration 

(Figure 2-2). Fiber realignment increased with the amount of compaction, first in the 

networks nearest the explants. As the amount of compaction increased, fiber realignment 

spread outward on paths directed towards the other explants and towards the fixed 

boundaries. The change in ECM network fiber alignment with respect to the initial 

configuration (Δα) also increased with the number of explants. At the end of compaction, 

Δα reached values of 0.037 ± 0.048 (mean ± standard deviation, two explants), 0.051 ± 

0.060 (three explants), 0.067 ± 0.064 (four explants), and 0.072 ± 0.071 (five explants). 

The Δα values are low because they were obtained by averaging over all ECM networks 

in the model, even though only a fraction of the ECM networks were impacted by cell 
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compaction. As the number of explants increased the fraction of ECM networks with Δα 

> 0.08 increased from approximately 11% to 30%. Within this subset Δα values were as 

high as 0.40 for some ECM networks immediately adjacent to the explants. 

 

 

Among the different explant configurations examined above, the triangular 

configuration (Figure 2-2B) was further explored to determine how boundary conditions 

Figure 2-2: Top-view of fiber network realignment after 40% compaction for case 1. ECM networks 

develop varying patterns of fiber alignment between explants in a configuration dependent manner. The 

color map indicates the change in the degree of fiber alignment (∆𝛼) between the initial traction free 

configuration and 40% compaction. Also depicted are the principal directions of fiber alignment (white 

crosses). For clarity directions are only shown for those elements with ∆𝛼 > 0.08. 



16  
 

affect model predictions of gel restructuring in response to cell compaction. As was 

observed with fiber realignment, cell compaction produced the largest strains in the 

networks immediately around and between the explants in a manner that depended on the 

boundary conditions (Figure 2-3). For the case of four fixed boundaries (Figure 2-3A, D), 

the direction of maximum principal strain was axially aligned between all three explants. 

When the left and right boundaries were freed (Figure 2-3B, E), the strain in the 16 

elements directly between the bottom two explants decreased from 0.062 ± 0.013 to 0.057 

± 0.019 and the strain pattern between explants switched from a triangular shape to an 

inverted v shape. In contrast, when symmetry conditions were applied and the surfaces 

were allowed to freely translate with compaction (Figure 2-3C, F), the direction of 

maximum principal strain changed and was generally perpendicular to the axis between 

explants.  At the end of 40% compaction, the average maximum principal strains were 

0.051 ± 0.024, 0.044 ± 0.026, and 0.035 ± 0.032, for the fixed, uniaxial, and free 

boundary simulations, respectively. 
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The effect of cell compaction on the mechanical response of the model construct 

was evaluated by comparing the response of the 40% compacted, three-explant model to 

an equivalent model without cellular networks (i.e. no explants), where both models were 

subjected to uniaxial extension (Figure 2-4). Prior to stretch, 40% compaction resulted in 

the development of a small amount of isometric force (8 mN) on the surface 

perpendicular to the axis of stretch (Figure 2-4A). The force then increased nonlinearly 

with stretch up to 0.62 N at a macroscopic stretch ratio of λ = 1.5 (i.e. 50% stretch). The 

force also increased with stretch in the explant-free model, but the force was always 

Figure 2-3: Strain developed during 20% and 40% compaction for three explants. (A) top, bottom, left, 

and right boundaries are fixed, (B) top and bottom are fixed, and (C) symmetry boundary conditions are 

applied to the left, bottom, and back faces. Maximum principal strain patterns change in accord with the 

applied boundary conditions. White arrows show principal direction. 
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slightly lower (e.g. 0.58 N at λ = 1.5) than in the three-explant model. The average 

principal strain was also lower in the no-explant model (Figure 2-4B) compared to the 

three-explant model (Figure 2-4C), reaching values of 0.639±0.048 and 0.649±0.095, 

respectively at λ = 1.5.  Regional variations in strain were also more pronounced in the 

three-explant model, particularly around the explants, where regions of tension and 

compression were observed (Figure 2-4C). 

 

 

During the compaction phase of the simulations, the average ECM fiber strains 

were very small and increased from 0.001 ± 0.013 at 20% compaction (Figure 2-5A) to 

0.005 ± 0.021 at 40% compaction (Figure 2-5B). The strains were small because the 

majority of fibers in the model were not strongly impacted by explant compaction. At 

20% and 40% compaction, the fraction of fibers in the model with tensile strains 

exceeding 1% increased from 9.4% to 21.6%, respectively, and the fraction of fibers with 

compressive strains in excess of 1% increased from 3.2% to 5.4%, respectively. These 

Figure 2-4: Comparison of mechanical response. (A) The force on the boundary during uniaxial 

extension for the case of 40% compaction for three explants (circles) is higher than the case where all 

of the networks are ECM networks (i.e. no explants). The inset plot shows the increase in force that 

develops on the boundary during the compaction process prior to uniaxial extension. (B) Regional 

differences in strain, particularly around the explants, are apparent at full stretch ( 𝜆 = 1.5).  
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fibers were primarily located in elements immediately around the explants and along the 

axes between explants. 

The average fiber strain increased with uniaxial extension from 0.101 ± 0.113 at 

25% stretch (Figure 2-5C) to 0.252 ± 0.241 at 50% stretch (Figure 2-5D). By comparison, 

the average fiber strain in the no-explant model was slightly lower, 0.094 ± 0.103 at 25% 

stretch and 0.243 ± 0.230 at 50% stretch. The distribution of all fiber strains in the model 

was also similar in shape to the three-explant model (data not shown). 

 

 

Figure 2-5: Histograms of fiber strain in all ECM networks for uniaxial stretch of the three-explant 

model. (A,B) During the compaction phase of the simulations a small fraction of fibers developed small 

tensile and compressive strains. (C,D) With uniaxial stretch a wide range of fiber strains were observed, 

most of which were below the amount of stretch applied macroscopically (red line). The distribution of 

fiber strains in the no-explant model (data not shown) were similar in shape to those in C and D. 
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Even though the difference in the overall average fiber strain between the models 

was small, the presence of the compacting explants resulted in regional differences in 

average fiber strain, particularly near the explants (Figure 2-6A and Figure 2-7A, B). For 

the three-explant model, average fiber strains were higher in elements above and below 

the explants, and lower in elements left and right of the explants than in the no-explant 

model. The starred elements in Figure 2-6A indicate the locations where the difference in 

strain exceeded 4%. For the red/orange starred elements (22 elements) the average fiber 

strain was 0.311 ± 0.309 and 0.256 ± 0.229 in the three-explant and no-explant models, 

respectively. In the blue elements (12 elements) the average fiber strain was 0.170 ± 

Figure 2-6: Differences in average fiber-level strain at 50% uniaxial stretch. (A) Regional variations in 

the average fiber-level strain in each element were apparent when the strains in the no-explant model 

were subtracted from those in the three-explant model. The largest differences were found in the elements 

around the explants (white). Differences in fiber strain that exceeded ± 4% are highlighted with a star. 

Histograms of the strains for all 88,728 fibers in the starred elements for the three-explant model (B) and 

no-explant (model). 
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0.149 and 0.246 ± 0.227 in the three-explant and no-explant models, respectively. 

Histograms of fibers in this subpopulation of the elements revealed differences in the 

distribution profiles as a result of cell compaction (Figure 2-6B, C). Regardless of the 

model or the location, the fiber strains tended to be much lower than the applied strain 

because fibers were able to rotate and realign towards the y-direction before stretching 

(Figure 2-5C, D). A small number of fibers, however, experienced amplified strains, 

some as high as three times the applied strain. Network kinematics and individual fiber 

strains for two networks are depicted in Figure 2-7. The first network (Figure 2-7C) is 

from a region of high strain and fiber alignment. During compaction, the network sheared 

and aligned diagonally along the axis between explants. This diamond shape was 

maintained during stretch. The other network (Figure 2-7C) also reorganized during 

compaction, but it shrank laterally with respect to the axis between the bottom explants. 

The fibers in this network also experience an increase in strain to accommodate the 

macroscopic stretch, but the reorganization differs markedly from its response to stretch 

in the no-explant model. 
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2.4 Discussion 

The models examined in this study were inspired by (but did not match exactly) 

the experiments of Sawhney and Howard (S&H) (65), who reported primarily on the 

reorganization of collagen fibers between explants in the triangular configuration. For 

example, the explants in the three-explant model were spaced farther apart 

(approximately 3.5 mm) than in S&H (approximately 1 mm) (65). There were also 

Figure 2-7: Behavior of selected networks. (A,B) Average fiber strains in each element are depicted at 

select instances for the (A) three-explant model and the (B) no-explant model. The red circles 

highlight the locations of two networks depicted below. (C) Top-view of network 1, which is 

associated with an area of high fiber strain. The individual fibers reorganize to satisfy force 

equilibrium and are color coded to indicate the level of fiber strain. (D) Network 2 is associated with 

an area low average fiber strain. Prior to uniaxial stretch the network volume shrinks and some fibers 

are under compression. The fiber strain and kinematics in these networks are compared with those 

developed in the no-explant model (E,F).    
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differences between the model and the gels in S&H in terms of the geometry and 

dimensions. The model consisted of a rectangular geometry with a total volume of 0.2 

cm3, whereas the gel was circular with a total volume of 1 cm3. Despite such differences, 

some qualitative comparisons can be made to provide some assessment of the model’s 

predictive capabilities.  

First, S&H reported that the anisotropy in collagen fiber alignment that 

materialized between explants developed simultaneously (65). The models (for all cases) 

also predicted an increase in network anisotropy and alignment along the axis between 

explants, but anisotropy in the models did not develop simultaneously between explants. 

Instead, alignment increased first in the ECM networks adjacent to the explants and then 

spread outward until meeting at the midpoint between explants, provided the distance 

between explants was not too far (e.g., the two-explant model in Figure 2-2A). It is 

possible that the development of alignment between explants in the model proceeded 

gradually because the distance between explants in the model was greater than in the 

experiment. It is also possible that this discrepancy arose from some feature of the multi-

scale model, such as the ECM network geometry used. Finally, it may be that the growth 

of fiber alignment outward from the explants did happen in the experiment, but that the 

changes in fiber alignment were too small to resolve with phase contrast microscopy and 

a 10x objective until a sufficient amount of reorganization had occurred, which would 

give the appearance of simultaneous fiber alignment. 

Second, the strains developed during compaction for the three-explant model were 

highly dependent on the boundary conditions (Figure 2-3). For cases 1 and 2 where fixed 

boundaries were present, the maximum principal strains were directed parallel to the axis 
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between explants. In contrast, for case 3 (Figure 2-3C, F), where the surfaces were 

allowed to contract, the principal strains were generally directed perpendicular to the axis 

between explants. This strain pattern was consistent with the observations of S&H (65). 

They found that there was significant lateral but not axial movement of glass beads 

embedded in the gel between explants. The qualitatively similar strain pattern for case 3 

indicates that free boundary conditions better reflected the experimental conditions of a 

gel spread out over a coverslip than the fixed boundary simulations did, and that a 

sufficient amount of translational freedom for the ECM network fibers was required to 

replicate the fiber restructuring of the experiment.  

The model also predicted that a wide range of fibers strains developed in the ECM 

networks during uniaxial stretch. The inclusion of cell compaction changed the 

distribution of these strains, particularly in the regions around the cells where the highest 

strains were found, which could have important implications for predicting how 

macroscopic forces propagate down to the cellular level. In fact, the increasing use of 

mechanical stimulation to improve the mechanical properties of engineered tissues has 

necessitated the development of mechanical models that can predict the cellular 

mechanical environment as a function of the construct architecture, mechanical properties 

and macroscopic loading conditions. Like this model, these models have generally found 

that incorporating microscopic heterogeneity is important and that wide range of 

microscopic strains can develop when a given amount of macroscopic stretch is applied 

to a construct (16, 67, 68). 

A number of simplifications that were made in this model must be acknowledged. 

First, the same constitutive relationship, microstructure, and material properties were 
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used for both the cellular and ECM networks as a matter of convenience, and because 

many of these parameters are not well defined experimentally, even though ECM proteins 

like collagen are formed and behave quite differently from intracellular cytoskeleton 

proteins like actin (69, 70). Other cellular details, including discrete cell attachments, cell 

proliferation, and cell migration, were omitted in this first-pass model. In addition, the 

method used here to simulate cell compaction was also chosen for its simplicity in 

implementation. It appears that uniform shrinking of fibers in the explants is sufficient for 

representing this aspect of the experimental system. It is far more probable, however, that 

cells pull on fibers until a homeostatic level of force is encountered, rather than until a set 

level of displacement is achieved (i.e. force limited versus displacement limited) (71). The 

next steps for developing this model involve modifying the details of the networks and 

the rules governing cell tractions so that they better reflect reality. For example, 

incorporating force-based rules for changing the fiber length based on target force should 

significantly change network restructuring and increase the development of anisotropy 

compared to the results presented here using uniform fiber shrinkage as a means to 

generate internal tension. To aid model development further, we are conducting new 

experiments (e.g. Figure 2-1A) so that we can better assess model predictions and the 

physics we are incorporating (including aspects of these simulations, such as the different 

explant geometries). In conclusion, the model predictions were consistent with 

experiments and demonstrate the model’s potential for predicting fiber reorganization in 

response to cell traction forces. 
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CHAPTER 3 

AN IMAGE-BASED MULTI-SCALE MODEL FOR A DIRECT COMPARISON 

WITH FIBRIN GELS EXPERIMENTS ON STUDYING THE ROLE OF CELL 

MATRIX INTERACTIONS IN WOUND HEALING 

 

3.1 Introduction 

Tissue growth, remodeling, and repair are complex processes that are regulated in 

part by multi-scale mechanical interactions. To better understand how these interactions 

contribute to the mechanobiology of the remodeling process in the context of wound 

healing and scar formation, we conducted in vitro experiments on fibroblast-matrix 

interactions in fibrin gels (as an approximation of the initially formed clot) subjected to 

either Free or Fixed in-plane mechanical constraints (8). Using averaged morphological 

measurements from the experiments, an idealized, image-based multi-scale model was 

used to simulate the experiment so that the ability of the model to capture the physics of 

short-term structural remodeling could be evaluated. Small, but significant, differences in 

short-term structural remodeling of fibrin gels by the fibroblasts in response to Fixed or 

Free gel boundaries were observed that could impact long-term remodeling. Image-based 

models of the experiments were able to qualitatively predict some features of the 

remodeling process. This combined system of experiments and image-based models 

represents a new model system for understanding the mechanobiology of scar formation 

and for devising and assessing new treatments to manage scar formation. 
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3.2 Methods 

The focus of this chapter is to develop an image-based model of a series of in 

vitro experiments and compare the model's predictions to the experiment data. Details on 

the experimental portion of this work can be found in (8). 

 

3.2.1 Multi-scale Model 

Structural reorganization of the fibrin gel by the explants in the experiments was 

simulated with a multi-scale modeling technique that has been described in chapter 2. The 

expression for the macroscopic stress equilibrium is given as 
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where ij  is the macroscopic volume-averaged Cauchy stress of the fiber network, 

nH

ij  is an additive neo-Hookean stress (defined below), ij  is the local microscopic 

stress, u is the displacement of the RVE boundary, and n is the unit normal vector to the 

boundary surface. The components of these stresses are related to the RVE volume, V, 

and the components of the position, 𝑥𝑖, and force, 𝐹𝑗, of the fiber nodes on the RVE 

boundary by equation (2.2). The force required to deform a fiber is calculated from a 

phenomenological constitutive equation (2.1) (72). 

In order to limit the compressibility and distortion of the fibrin fiber networks, a 

continuum-level compressible neo-Hookean stress was added to the volume-averaged 

stress (c.f. (59)). This stress is given as  
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where G is the shear modulus, 𝜈 is Poisson’s ratio, J is the determinant of the 

deformation tensor, and B is the left Cauchy-Green deformation tensor (73). 

 

3.2.2 Model Formulation and Computational Details 

In Chapter 2, we setup a multi-scale model of explant compaction of a collagen 

gel in which the FE domain was partitioned into cellular and extracellular matrix (ECM) 

domains (54). The effect of cell traction forces on the structural reorganization of the 

surrounding matrix was assessed by incrementally shortening the reference length of all 

the fibers in the cellular networks. The procedure generated tensile force in the cellular 

domain that induced substantial reorganization in the ECM networks in a manner 

dependent on the geometry of the problem. Here, image-based models were produced for 

direct comparison with the experiment as follows. First, a square FE mesh was created 

that matched the fibrin gel’s dimensions of 8 mm x 8 mm x 0.8 mm (length, width, depth) 

and approximated the average geometric spacing and size of the triangular explants 

(Figure 3-1C, D). The mesh, which contained 46 elements along the length, 46 elements 

along the width, and four elements through the depth, consisted of 8,464 tri-linear 

hexahedral elements and 11,045 nodes (Figure 3-1). It was partitioned into a cellular 

domain consisting of three triangularly arranged squares, each consisting of 16 adjacent 

surface elements (i.e., one element through the depth), and a surrounding ECM domain. 

The model consisted of a collection of nearly isotropic 3D fiber networks that contained 

on average 337 ± 30 cross-linked fibers. Since experimental data about fiber realignment 

through the thickness was not available, network orientation and strength of alignment 

was quantified in a manner consistent with previous work using the 2D projections of the 
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3D microstructure as in equation (2.4), and the strength of alignment, α, is defined the 

same as in equation (2.5). 

 

 

Figure 3-1: In vitro data collection and image-based computational model. (A) Three explants were placed 

at a distance of approximately 2 mm from each other to form the vertices of a triangle. A tiled image 

consisting of 36 individual 10x DIC images was acquired every 15 minutes in order to observe and quantify 

structural and morphological changes in the fibrin gel. (B) Over the course of the experiment the 

instantaneous and cumulative displacements of a subset of embedded microspheres was analyzed at each 

location (the depicted image corresponds to the black box in (A)). (C) The image-based computational 

model consists of finite elements containing fiber networks that are representative of the fibrin fibers in the 

gel.  (D) The model is partitioned into cellular networks (white elements) and surrounding fibrin networks 

(yellow elements) that are configured to approximate the geometric configuration of the explants and gel in 

the experiments. 

 

Image-based models of the experiment were constructed by using the average 

explant area and the centroid-to-centroid distances (Free and Fixed gels combined) at the 

start of the experiment as target values for the model. These values were not matched 

exactly due to the discrete nature of the elements and computational constraints on 
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increasing the number of elements. As a result, the simulated explant area was given a 

value of 0.484 mm2 compared to an average initial explant area in the experiments of 

0.463 ± 0.089 mm2 (average of both Free and Fixed cases). Similarly, the horizontal 

centroid-to-centroid distance, which was larger between the top two explants, was set at 

2.09 mm compared to 2.2 ± 0.15 mm in the experiment. The centroid-to-centroid spacing 

of the other two axes were set to 2.03 mm in the model compared to a spacing of 2.03 ± 

0.12 mm and 1.93 ± 0.21 mm in the experiment.  

To simulate the Fixed experiment, all FE mesh surfaces except the top surface, 

which remained free, were fixed. To simulate the Free experiment, the only constraint on 

the FE mesh was on the bottom surface, where the nodes contained in an area at the 

center measuring 1.74 mm x 1.74 mm were fixed. The surrounding elements were 

allowed to translate inward in a manner consistent with the small reduction (< 2%) in gel 

area observed experimentally, where the gel became partially detached from the substrate 

around the periphery. Structural remodeling due to explant traction forces was simulated 

by incrementally reducing the reference lengths of all of the fibers in the cellular 

networks uniformly by 24%. This value was selected so that the simulated final average 

area of an explant matched the average measured area of the explants for the Free 

boundary condition after 24 hours in the experiments. The Free condition was selected 

because the decrease in explant area was slightly greater in the Free boundary case than 

in the Fixed boundary case. Both cell and gel networks were assigned values of 

 and B = 4, and G = 1 Pa and 𝜈 = 0.3 for the neo-Hookean 

component. These values were obtained by fitting a model to the stress-strain curve 

generated from a uniaxial mechanical test of a rectangular 6.8 mg/ml fibrin gel.  

NAE ff
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The computational costs associated with the simulations were very large. There 

were roughly 1,000 degrees of freedom per fiber network and 67,712 networks in each 

mesh. As a result, simulations were run using a custom parallelized C code with message 

passing interface (MPI) on high performance computing resources (ITS Helium Cluster, 

University of Iowa). Simulations were executed on a single 12-core node (Intel Xenon 

processor with 144 GB of memory and Infiniband connectivity). The fixed boundary 

condition simulation required a CPU time and wall time of 282 hours and 58 hours, 

respectively. The CPU time and wall time for the free boundary condition simulation 

were 348 hours and 74 hours, respectively. 

 

3.3 Results 

Model predictions for both Fixed and Free boundary conditions resulted in 

qualitatively similar morphological changes as in the experiment (Figure 3-2). For the 

Free condition, the simulation was terminated when the final explant area shrank to 66% 

of its initial area to 0.319 ± 0.001 mm2, in close agreement with the experiment (66.6% ± 

17.9% and 0.31 mm2 ± 0.07 mm2, respectively). For the same amount of simulated 

compaction, the explant area in the Fixed condition reduced to 69% of the initial area to 

0.332 ± 0.002 mm2, also in close agreement with the experiment (70.9% ± 19.9% and 

0.33 mm2 ± 0.12 mm2, respectively). The centroid-to-centroid distances shortened to 

97.1% ± 0.2% and 99.2% ± 0.0% the initial distances in the Free and Fixed simulations, 

respectively, but these changes in distance were not as much as in the experiment. In the 

experiments, the explants also moved closer to each other in a manner dependent on the 

boundary conditions. The average centroid-to-centroid distance between explants after 24 
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hours, normalized with the corresponding distance between explants at t = 0 hours, was 

lower in Free gels (0.95 ± 0.02) compared to Fixed gels (0.98 ± 0.02). 

Model predictions of displacements in the gel were also qualitatively similar to 

the experiments in several ways (Figure 3-2). First, the overall patterns of the 

displacement fields were similar, with the largest displacements occurring in regions 

closest to the explants. In addition, much larger displacements were predicted in the Free 

condition compared to the Fixed condition. 

 

Figure 3-2: Model predictions (A, C) and experimental data (B, D) of displacement. Displacement fields 

for (A, C) the Fixed and (B, D) Free conditions at 24 hours. Arrows indicate the direction of ECM 

displacement towards the compacting explants.  



33  
 

 

Model predictions of fiber network reorganization were also similar to those 

observed experimentally (Figure 3-3). For both Fixed and Free gels, changes in the 

strength of fiber alignment (Δ𝛼) were greatest around the explants and in the axial 

regions between explants (Figure 3-3 C, D). Fiber networks located away from the 

explants were mostly unaffected and remained close to isotropic in both conditions 

(Figure 3-3 E, F). Although the fiber alignment patterns between the two simulations 

were similar, small differences were predicted. In the Free gel, more surface ECM 

elements had a change in the initial strength of fiber alignment Δ𝛼 > 0. 05 than in the 

Fixed gel (281 versus 234, respectively). In addition, the overall average ∆𝛼 was slightly 

higher in the Free gel (0.0278 ± 0.0353) than in the Fixed gel (0.0216 ± 0.0357), but the 

overall 𝛼 was the same at 0.1506 ± 0.0738 and 0.1505 ± 0.0736 in the Free and Fixed 

gel, respectively. In contrast, network fiber forces were higher in the Fixed gel (1.3 ± 8.6 

pN) than in the Free gel (0.5 ± 6.3 pN). Also, even though the symmetry of the model 

resulted in strong axial alignment between all three explants, greater spacing between the 

top two explants than with the bottom explant resulted in significantly lower average 

fiber alignment strength (   0.134  0.061 and    0.133  0.063 in the Fixed and Free 

gels, respectively) than in the other axial regions (   0.279  0.080 and    0.268  

0.055 in the Fixed gel, and    0.276  0.077 and    0.266  0.054 in the Free gel). 
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Figure 3-3: Model prediction of fiber realignment. Fiber network realignment at t = 24 hours for a (A) 

Fixed and (B) Free gel. The color map indicates the change in the strength of fiber alignment (∆α) from the 

initial network configuration. Also shown as white arrows are the principal directions of fiber alignment for 

those elements where ∆α > 0.05. Network reorganization and fiber forces for a representative network in an 

axial (C,D) and non-axial region (E,F). 
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3.4 Discussion 

The image-based computational models were able to predict boundary condition 

dependent relative changes in explant morphology and spacing, regional differences in 

microsphere displacements, and fiber alignment patterns that qualitatively matched what 

was observed experimentally. However, the model predicted much lower displacement 

magnitudes and an increase in the period average rates of displacement over time instead 

of a decrease. Small differences in fiber alignment between the Free and Fixed gels were 

also predicted, but the imaging method used did not clearly show whether such 

differences in alignment between gels existed or not. Instead, these images showed 

stronger alignment in axial regions between explants than in non-axial regions, and that 

one or two dominant axes of fiber alignment formed instead of three, regardless of the 

boundary conditions. As stated earlier, formation of a dominant axis of alignment in the 

experiments could be a result of asymmetries in the experiment, such as the centroid-to-

centroid distance or the size/number of cells, and thus the total force associated with each 

explant. The model did predict less alignment in the matrix between the top two explants, 

which were farther apart from each other than with the bottom explant, than between 

each of the top explants and the bottom one, which is consistent with our experimental 

observations that dominant axes form between explants that are closer together.  

Several model refinements could potentially improve model predictions. For one, 

the description of the microstructure could be improved to better reflect the 

micromechanics of fibrin fibers in the gel. Currently, network fibers are represented as 

single segments that are cross-linked to other fibers via ball joints that cannot resist 
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moments. Others have represented network fibers as a series of connected segments with 

torsion springs at the joints that resist rotation (23, 74, 75). This representation allows for 

curved fibers that can collapse locally yet still transmit tension as they are gathered into a 

pericellularly dense region around the explants. Some of these models have reproduced 

this densification and the development of alignment between pairs of cells (23, 75). 

Incorporating such behavior into our model should increase the predicted cumulative 

displacements and also help match the fibrin densification observed experimentally.  

Another area requiring improvement is in modeling the manner in which cells 

generate and respond to forces. In the model, cell traction forces are generated by 

incrementally shortening the reference length of cellular network fibers the same amount 

at each step. This approach does capture the alignment produced and relative differences 

in cumulative displacements, but predicted rates of displacement continued to increase 

over time, which is in opposition to the experimentally observed decrease with time. This 

behavior suggests that the cells are modulating how much they deform the surrounding 

matrix based on either a feedback-controlled, force-sensing mechanism, or possibly by 

saturation of the number of cell-ECM binding sites (76). Others have modeled the 

development of traction forces with the former mechanism in mind (77, 78). For example, 

Wang et al. incorporated the well-known Hill-relation used to describe muscle 

contraction (79). We anticipate that incorporating similar changes into the model will 

result in a decrease in the rate of displacement with time and better predict the short-term 

remodeling observed experimentally. Finally, although it was beyond the scope of this 

work, a mechanism for degrading the fibrin fibers and replacing it with collagen fibers 
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will also be necessary in order to predict long–term remodeling and propensity for 

scarring. 

 

3.5 Conclusion 

Multi-scale mechanical interactions in wound healing are poorly understood. 

They are particularly important to characterize because they control both the manner in 

which mechanical signals are propagated to the cellular level to direct cell activity and 

the ultimate mechanical behavior and function of the healed tissue. Due to the complexity 

of these processes, it is necessary to develop computational models that serve as a 

theoretical basis for predicting how ECM remodeling proceeds. In this study, we began 

the development of this kind of modeling system by quantitatively characterizing small 

but significant differences in an in vitro explant-fibrin gel system with Fixed and Free in-

plane mechanical constraints. We also performed a rigorous comparison with an image-

based multi-scale mechanical model and found qualitative agreement with the 

experiments in some areas. Discrepancies between model and experiment provide fertile 

ground for challenging model assumptions and devising new experiments to enhance our 

understanding of how this multi-scale system functions. These efforts will ultimately 

improve the predictions of the remodeling process, particularly as it relates to dermal 

wound healing and the reduction of patient scarring. Such models could then be used to 

recommend patient-specific mechanical-based treatment dependent on parameters such as 

wound geometry and location and patient age and health. 
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CHAPTER 4 

FIBER NETWORK MODELS PREDICT ENHANCED CELL 

MECHANOSENSING ON FIBROUS GELS 

 

4.1 Introduction 

The propagation of mechanical signals through non-linear fibrous tissues is much 

more extensive than through continuous synthetic hydrogels. Results from recent studies 

indicate that increased mechanical propagation arises from the fibrous nature of the 

material rather than the strain-stiffening property (12, 14, 15). The relative importance of 

different parameters of the fibrous network structure to this propagation, however, remain 

unclear. In this chapter, we directly compared the mechanical response of substrates of 

varying thickness subjected to a constant cell traction force using either a non-fibrous 

strain-stiffening continuum-based model or a volume-averaged fiber network model 

consisting of two different types of fiber network structures: one with low fiber 

connectivity (Growth Networks) and one with high fiber connectivity (Delaunay 

Networks). The Growth Network fiber models predicted a greater propagation of substrate 

displacements through the model and a greater sensitivity to gel thickness compared to 

the more connected Delaunay Networks and the nonlinear continuum model. Detailed 

analysis of the results indicates that rotational freedom of the fibers in a network with low 

fiber connectivity is critically important for enhanced, long-range mechanosensing. Our 

findings demonstrate the utility of multi-scale models in predicting cells mechanosensing 

on fibrous gels, and they provide a more complete understanding of how cell traction 
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forces propagate through fibrous tissues, which has implications for the design of 

engineered tissues and the stem cell niche. 

 

4.2 Methods 

In this chapter, we comprehensively compare a continuum-based finite element 

(FE) model (Continuum model) that uses a third-order strain energy density function to 

describe material nonlinear strain stiffening behavior with a multi-scale fiber network FE 

model (Fiber model) that consists of a set of fiber networks that are either characterized 

as Growth Networks or Delaunay Networks (c.f., “Continuum Model” & “Fiber Model” 

sections, respectively). The nonlinear response of the Fiber model primarily derives from 

non-affine rotations and stretch of the individual cross-linked fibers of the network. To 

facilitate direct comparisons between the different types of models formulated to describe 

different physical attributes of the system, the parameters governing each model were 

selected so that the shear stress-strain response of each model matched the macroscopic 

mechanical behavior of a 2mg/mL acellular fibrin gel (data obtained from Wen et al. 

(80)) representative of those used as substrates for the study of cell mechanosensing. 

 

4.2.1 Models and Boundary Conditions 

The propagation of cell traction forces through deformable substrates of 

increasing thickness was assessed by considering one-element wide, rectangular FE 

meshes representing a spatial scale of 75 µm x 4 µm x (10 – 200) µm (length, width, 

thickness). Three FE meshes consisting of tri-linear hexahedral elements were created in 
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ABAQUS CAE (v. 6.12-1; ABAQUS, Providence, RI). These meshes had thicknesses of 

10 µm, 30 µm, 50 µm, and 200 µm respectively. 

A schematic of the model is shown in Figure 4-1. It depicts a single cell applying 

a constant inward traction force on the surface of a finite thickness gel. The model 

possesses axes of symmetry on the left surface and the front and back surfaces. For the 

left surface, the nodes were fixed in x and z and free in y (i.e., nodes were free to move up 

and down through the thickness). For the front and back surfaces, the nodes were fixed in 

z and free in x and y (i.e., nodes were free to move along the length and thickness). For 

the bottom and right surfaces, the nodes were fixed in x, y, and z, and for the top surface 

nodes were free in x, y, and z. A small subset of 22 nodes on the top surface was 

designated as focal adhesion nodes contained with the focal adhesion area at the front of 

the cell. A total cell traction force of 6 nN, which is equivalent to a cell traction stress of 

about 250 Pa (within the range of those reported from traction force microscopy studies 

(81, 82)), was applied to these nodes by equally dividing this total force amongst the 

nodes and over 55 equally spaced steps. A region on the top surface starting 9 µm from 

the left surface and extending an additional 6 µm in length was designated as the focal 

adhesion area for comparison with our previous work (12). Since large stress gradients 

develop in this region, the mesh in this area (a region measuring 24 µm x 5 µm (length, 

thickness)) was locally refined until there was less than a one percent change in the total 

nodal displacement at the end of the simulation with further mesh refinement. 
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Figure 4-1: Schematic of the FE model. Cell traction forces are applied to the FE nodes (red) associated 

with the focal adhesion area on the FE top surface. For the fiber model, 3D Growth or Delaunay fiber 

networks similar to the microstructures found in fibrous gels were used instead and compared to the 

nonlinear Continuum model. 

 

4.2.2 Continuum Model 

The effects of material nonlinearity (strain stiffening) were investigated using FE 

models constructed in ABAQUS (v. 6.12-1; ABAQUS, Providence, RI) with C3D8 (tri-
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linear hexahedral) elements. We selected a third-order (cubic) reduced polynomial strain 

energy function given by 

𝑊 = 𝐶10(𝐼1 − 3) + 𝐶20(𝐼1 − 3)2 + 𝐶30(𝐼1 − 3)3 +
1

𝐷1
(𝐽𝑒𝑙 − 1)2 +

1

𝐷2
(𝐽𝑒𝑙 − 1)4 +

1

𝐷3
(𝐽𝑒𝑙 − 1)6                 (4.1) 

where 𝑊 is the strain energy density, 𝐼I is the first strain invariant, 𝐶10, 𝐶20 and 𝐶30 are 

material constants, 𝐷1, 𝐷2 and 𝐷3 are compressibility terms, and 𝐽el is the elastic volume 

strain  (83). We selected this strain energy function because it is of the same form as the 

third order reduced polynomial used in our earlier preliminary investigation, and it is able 

to match the nonlinear stiffening behavior of fibrous gels (12). We refer to this model 

throughout the manuscript as the Continuum model. 

 

4.2.3 Fiber Model  

The Fiber model employed herein uses a multi-scale modeling framework that has 

been described in chapters 2 and 3. 

 

Fiber Networks 

The microscale is represented by a set of cross-linked fiber networks that are 

centered at the integration points of the FE elements. Two microstructurally distinct types 

of networks were investigated in this study. The first type of network is referred to as a 

Growth Network because the algorithm used to produce the network follows rules that are 

based on a process by which monomeric biomolecules may stochastically self-assemble 

into fibers (c.f. (57)). The second type of network we investigated is referred to as a 

Delaunay Network because the networks are generated from Delaunay triangulation (84). 



43  
 

Both types of networks were constructed in MATLAB, and a collection of distinct 

networks with the following properties were obtained: 

Growth Network Model: Networks containing 338 ± 30 cross-linked fibers, with 

non-dimensional individual fiber lengths of 0.28 ± 0.23, a total non-dimensional fiber 

length of 94.79 ± 7.21, a fiber connectivity of 3 (i.e., the number of fibers connecting at a 

crosslink), and 3D orientation tensor (defined below) eigenvalues of 0.29 ± 0.02, 0.33 ± 

0.01, and 0.38 ± 0.02. 

Delaunay Network Model: Networks containing 470 ± 9 cross-linked fibers, with 

non-dimensional individual fiber lengths of 0.38 ± 0.16, a total non-dimensional fiber 

length of 178.35 ± 6.49, a fiber connectivity of 13.26 ± 3.75, and 3D orientation tensor 

eigenvalues of 0.31 ± 0.01, 0.33 ± 0.01, and 0.36 ± 0.01. 

Three-dimensional fiber network orientation and strength of alignment can be 

quantified with the length-weighted orientation tensor, Ω3, defined as  
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where 𝑙𝑖 is the length of fiber i, 𝜃𝑖   is the angle fiber i makes with the horizontal axis in 

the x-y plane, 𝜑𝑖 is the angle the fiber i makes with the z-axis, and the sum is over all of 

the fibers, NF, in the network. The eigenvalues and eigenvectors of 𝛺 then correspond to 

the magnitudes and principal direction of network fiber alignment, respectively, with an 

isotropic network possessing eigenvalues of [0.33 0.33 0.33] and a completely aligned 

network possessing eigenvalues of [0 0 1]. Networks in this study were produced so that 

they were nominally isotropic in all three dimensions. To facilitate visualization, changes 
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in fiber organization and alignment in response to cell traction were quantified using the 

two-dimensional orientation tensor, 𝛺2, which is given as: 

2
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The three-dimensional tensor reduces to the two-dimensional tensor when 𝜑 =

90°. The degree of anisotropy, 𝛼, a metric of strength of network fiber alignment, can be 

defined as 𝛼 = 1 − 𝜔1 𝜔2⁄ , where 𝜔1and 𝜔2are the minor and major eigenvalues of Ω, 

respectively. Here, the eigenvalues for an isotropic network corresponds to [0.5 0.5] and 

𝛼 = 0, and for a completely aligned network these values correspond to [0 1] and 𝛼 = 1 

(85). The change in fiber alignment with respect to the initial network configuration can 

also be defined as ∆𝛼 = 𝛼 − 𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙, where 𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial strength of network fiber 

alignment. 

 

Model Parameters 

Model parameters were selected in order to match the mechanical behavior of a 2 

mg/mL acellular fibrin gel in simple shear (12, 13). Continuum and Fiber models 

(described below) were subjected to equivalent boundary conditions and deformations as 

described in the experiment. Model parameters were selected until the mechanical 

response fit the experimental data of the test (Figure 4-2). 
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Figure 4-2: Shear simulation results fitted to experimental data for a 2 mg/mL acellular fibrin gel from Wen 

et al. (80). Model parameters were selected to match the nonlinear increase in stress with strain. 

 

Effective Stiffness 

The stiffness the cell “senses” as a function of the substrate mechanical properties 

and thicknesses was assessed by calculating the effective stiffness of the system, 𝑘𝑒𝑓𝑓. 

Effective stiffness describes a substrate’s resistance to deformation upon application of a 

shear force on the surface of the substrate; this stiffness can differ from the bulk modulus 

of the substrate due to material nonlinearity and/or fiber interactions. Here effective 

stiffness was calculated in a manner analogous to that of Mehrotra et al. (86) as: 



46  
 

𝑘𝑒𝑓𝑓 =
𝐹/𝐴

𝑢/𝑅̅
∝

1

𝑢
         (4.4) 

where F is the total traction force exerted by the cell on the substrate, A is the 

undeformed focal adhesion area, 𝑢̅ is the mean displacement of the nodes, and 𝑅̅ is the 

mean radius of the focal adhesion area. Note that in all models the force boundary 

conditions were constant and the only variable that changed was 𝑢̅.  Thus, for the given 

traction force applied, a lower displacement at the “focal adhesions” resulted in a higher 

effective stiffness. 

 

Computational Resources 

Due to the substantial computational costs associated with the large number of 

degrees of freedom in the Fiber Network models (i.e., eight fiber networks in each 

element with more than 1000 degrees of freedom per network) simulations were run 

using a custom parallelized C code with message passing interface (MPI) on high 

performance computing resources (ITS Helium Cluster, University of Iowa) utilizing a 

single 12-core node (Intel Xenon processor with either 24 GB or 144 GB of memory and 

Infiniband connectivity). The CPU time and wall time for these simulations ranged from 

approximately 18 hours to 1128 hours and from 4 hours to 227 hours, respectively, 

depending on the job size. All Continuum models were run in ABAQUS and all post 

processing was done using MATLAB on a local coreTM i7-2600 HP desktop computer. 

 

4.3 Results 

The simulation cases considered in this study were designed to ask the following 

questions: (1) does the experimentally observed long-distance sensing of cells on fibrous 
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gels originate from nonlinearity in the bulk material properties or from some aspect of the 

fiber structure, and (2) if it is the fiber structure how do differences in idealization of the 

microstructure affect model predictions. To answer the first question we compared the 

Continuum model to a Growth Network Fiber model, and to answer the second question 

we compared a Growth Network Fiber model to a Delaunay Network Fiber model. 

  

Comparison between Continuum Model and Growth Network Fiber Model 

Material parameters were selected for each model (Table 4-1) so that the 

simulated shear stress-strain curves approximated an experimentally generated fibrin gel 

shear stress-strain curve up to a shear strain of 50% (Figure 4-2). The material properties 

were chosen for each model to match the fibrin gel’s nonlinear response at low to mid-

level strains because the shear strains developed in the simulations for the applied cell 

traction force were less than 40%. 

Table 4-1: Material parameters values used for each model. 

Continuum Model: C10 = 130 Pa; C20 = 120 Pa; C30 = 125 Pa; v = 0.49 

Growth Network Model: 𝐸𝑓𝐴𝑓 = 45 nN; B = 0.2; G = 10 Pa; v = 0.49 

Delaunay Network Model: 𝐸𝑓𝐴𝑓 = 1.5 nN; B = 3; G = 10 Pa; v = 0.49 

 

Application of a constant horizontal cell traction force on the gel surface produced 

comparable magnitudes and patterns in the stress (Figure 4-3) and displacement fields 

(Figure 4-4) between the Continuum and Growth Network models for all thicknesses. The 

largest maximum principal stresses were found in the focal adhesion (FA) area in all 

models. The average principal stresses in this region were lower in the Continuum model 

were approximately 30% to 40% lower than in the Growth Network model for all 

thicknesses (Table 4-2). The largest displacements in the models were also found in the 
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FA area. These displacements were between 1.7 and 2.1 times lower in the Continuum 

model than in the Growth model and increased with increasing gel thickness. 

 

Figure 4-3: Maximum principal stress for 10 µm, 30 µm, and 50 µm thick gels in response to 6 nN of 

traction force. Stress contours for the (A) Continuum model, the (B) Growth Network model, and the (C) 

Delaunay Network model. Black nodes correspond to the inner and outer nodes of the focal adhesion area 

where the traction forces were applied. 

 

Table 4-2: Average principal stress and displacements in focal adhesion (FA) regions.  

 Thickness 

[µm] 

Continuum Growth Delaunay 

Principal Stress [Pa] 10 266 ± 119 366 ± 204 368 ± 199 

 30 278 ± 124 420 ± 206 385 ± 190 

 50 277 ± 122 444 ± 191 387 ± 192 

 200 275 ± 121 445 ± 175 391 ± 183 

     

FA Displacement [µm] 10 1.7 ± 0.1 2.9 ± 0.2 2.1 ± 0.1 

 30 2.0 ± 0.2 3.9 ± 0.2 2.5 ± 0.1 

 50 2.1 ± 0.2 4.2 ± 0.2 2.6 ± 0.1 

 200 2.1 ± 0.2 4.5 ± 0.2 2.7 ± 0.1 
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Figure 4-4: Displacement fields for 10 µm, 30 µm, and 50 µm thick gels in response to 6 nN of traction 

force for the (A) Continuum model, the (B) Growth Network model, and the (C) Delaunay Network model. 

Black nodes correspond to the inner and outer nodes of the focal adhesion area where the traction forces 

were applied. 

 

A closer look at the nodal displacements along the length of the top surface of 10 

µm, 30 µm and 50 µm thick gels can be found in Figure 4-5. Here, it can be seen that the 

nodal displacement magnitudes for the models were highest in the FA area (indicated by 

the gray band), and were substantially larger and extended laterally much farther for the 

Growth Network model. Peak nodal displacement magnitudes increased with gel 

thickness for all models, with the most pronounced increases occurring for the Growth 

Network model. As a result, the effective stiffness was much lower for the Growth model 

compared the Continuum model (Figure 4-6A). The sensitivity of effective stiffness to 

substrate thickness was further assessed by normalizing effective stiffness by the 

asymptoting values obtained at 200 µm (Figure 4-6B). Although effective stiffness in 

both models decreased with increasing substrate thickness, the Growth Network model 
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was much more sensitive to changes in the gel thickness than the Continuum model. 

Effective stiffness in the Growth Network model decreased 26% from 10 µm to 30 µm 

compared to a 15% decrease over the same range for the Continuum model, 7% 

compared to 5% from 30 µm to 50 µm, and 7% compared to 0% from 50 µm to 200 µm, 

respectively. 

 

Figure 4-5: Magnitude of displacement along the length of the FE domain for nodes at the top surface of 

(A) 10 µm, (B) 30 µm, and (C) 50 µm thick gels for the Growth Network, Delaunay Network and 

Continuum models. Shaded regions indicate which FE nodes were associated with the focal adhesion area. 

 

 

Figure 4-6: Comparison of (A) effective stiffness and (B) relative effective stiffness normalized to the 200 

µm thick gel for each model.  



51  
 

 

Comparison between Growth Network and Delaunay Network Fiber Models 

The role of fiber network microstructure in the model was also assessed by 

comparing differences between Growth Network Fiber and Delaunay Network Fiber 

models. Even though the shear response of the Delaunay Network model closely 

followed the Growth Network model in approximating the experimental data, the model 

simulations produced noticeably different results in response to the applied cell traction 

force. The average principal stresses in the FA area (Table 4-2) were comparable to the 

Growth Network model (Figure 4-3B, Figure 4-4B) but mostly lower for the Delaunay 

Network model, particularly as the thickness increased. (Figure 4-3C, Figure 4-4C). The 

Delaunay Network model average nodal displacements, however, were nearly 1.5 times 

lower (Table 4-2). In addition, the effective stiffness of the Delaunay Network model was 

higher than the Growth Network model, but showed less sensitivity to an increase in gel 

thickness (Figure 4-6). Force propagation both laterally and into the depth of the gel was 

also much lower and less sensitive to an increase in gel thickness in the Delaunay 

Network. An assessment of this was made by arbitrarily locating the vertical distance at 

which nodal displacements dropped below 0.9 µm. For the Growth Network model, this 

vertical distance was approximately 5.0 µm, 17.5 µm, and 30.0 µm away from the focal 

adhesion area for gel thicknesses of 10 µm, 30 µm, and 50 µm, respectively. This 

distance was much less extensive in the Delaunay Network model, extending 

approximately 3.1 µm, 5.0 µm, and 5.0 µm for gel thicknesses of 10 µm, 30 µm, and 50 

µm, respectively. 
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To further explore the basis for the greater sensitivity to substrate thickness 

observed in the Growth Network model, the accompanying changes in fiber 

microstructural reorganization in both Fiber Network models was also assessed. For both 

Growth and Delaunay Network models, networks that were initially nominally isotropic 

underwent a greater amount of realignment near where the traction forces were applied 

(i.e., the focal adhesion area) than networks farther away (Figure 4-7). The fiber 

realignment (α) and the magnitude of the change in fiber alignment with respect to the 

initial network configuration in the unloaded state (Δα) also grew with increasing gel 

thickness and was much higher in the Growth Network model than in the Delaunay 

Network model. For example, if one considers the same block of 25 elements on the top 

surface and from the left surface to the outer edge of the cell for all thicknesses, the 

change in fiber alignment (Δα) was 0.35 ± 0.10, 0.39 ± 0.06 and 0.40 ± 0.08 in the 

Growth Network model and 0.32 ± 0.16, 0.35 ± 0.16 and 0.36 ± 0.14 in the Delaunay 

Network model, for gel thicknesses of 10 µm, 30 µm, and 50 µm, respectively. The 

average strength of fiber alignment (α) also grew with increasing gel thickness and was 

higher in the Growth Network model, 0.50 ± 0.10, 0.53 ± 0.07 and 0.54 ± 0.07, than in 

the Delaunay Network model, 0.41 ± 0.17, 0.44 ± 0.15 and 0.44 ± 0.14, for gel 

thicknesses of 10 µm, 30 µm, and 50 µm, respectively. This pattern of enhanced network 

reorganization with increasing gel thickness seems to have occurred because the 

increasing distance of the rigid lower boundary from the gel surface reduced the 

constraints on fiber rotational freedom, which in turn facilitated more fiber alignment and 

the lower effective stiffnesses observed in thicker gels. This effect was likely more 

prominent in the Growth Network model because of the lower degree of connectivity 
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amongst the fibers in the network, which translated into less restrictions on fiber 

movement and greater displacements in the model compared to the more connected 

networks in the Delaunay Network model. In addition, finite elements which had 

networks with a change in network fiber alignment of Δα>0.1 were detected at vertical 

distances of approximately 10 µm, 30 µm, and 40 µm away from the focal adhesion area 

for gel thicknesses of 10 µm, 30 µm, and 50 µm, respectively. This propagation was 

again much less extensive in the Delaunay Network model, extending only as far as 

approximately 10 µm regardless of gel thickness. 

 

Figure 4-7: (A) Growth Network model, and (B) Delaunay Network model fiber network realignments for 

10 µm, 30 µm, and 50 µm thick gels in response to 6 nN of traction force. The color map indicates the 

change in the degree of fiber alignment (∆𝛼) from the initial, nominally isotropic, traction free 

configuration. Also, depicted is the principal direction of fiber alignment (white lines). For clarity, principal 

directions are only shown for those elements with ∆𝛼 > 0.1. 
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A detailed view of how two networks in the 10 µm thick Growth Network model 

reorganized in response to the cell traction force is depicted in Figure 4-8. The first 

network (Figure 4-8A), which was located outside the focal adhesion area underneath the 

inner region of the cell, gradually elongated in the vertical direction while compressing 

laterally and rotating slightly to the right to produce a small shearing motion. At the 

conclusion of the simulation (i.e., Step 55), 75% of the fibers in this network were in 

tension (0.17 ± 0.32 nN) and 22% of the fibers were in compression (-0.16 ± 0.37 nN). 

Combined, these tensile and compressive forces corresponded to an average network 

fiber force of 0.10 ± 0.35 nN (maximum and minimum fiber forces of 2.01 nN and -2.14 

nN, respectively). A second network (Figure 4-8B), located directly under and inside the 

inner boundary of the focal adhesion area, experienced a much larger shearing motion 

with fibers aligning diagonally toward the direction of the applied force. At Step 55, 78% 

of the fibers were in tension (0.42 ± 0.55 nN) and 21% were in compression (-0.22 ± 0.39 

nN), which corresponded to an average fiber force of 0.28 ± 0.59 nN (maximum and 

minimum fiber forces of 2.57 nN and -2.57 nN, respectively). 
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Figure 4-8: Growth fiber network behavior at selected locations. The direction of fiber alignment is shown 

on the 10 µm case displacement field for ∆𝛼 > 0.1, the orange circles indicate the inner and outer 

boundaries of the focal adhesion area, and the lettered white circles indicate the locations of networks A 

and B shown below. Network organization, fiber forces, and fiber anisotropy index are shown for the 

initial, middle, and final steps of the simulation. Fiber force histograms are also shown for the final step of 

the simulation. 

 

Differences in Delaunay Network reorganization were also evident. Changes in 

network shape and volume were slightly less pronounced, and a higher fraction of fibers 

were in compression than tension For example, 54% (Figure 4-9A) and 49% (Figure 4-

9B) of the fibers in networks at equivalent locations as in the Growth Network model 

were in compression at Step 55. As a result, the average fiber forces in the network were 

-0.05 ± 0.35 nN (maximum and minimum fiber forces of 0.88 nN and -0.81 nN, 

respectively) and 0.10 ± 0.60 nN (maximum and minimum fiber forces of 2.20 nN and -

0.96 nN, respectively) for networks A and B, respectively. The change in the strength of 
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fiber alignment (Δα) at step 55 was comparable but lower in the Delaunay Network 

model (0.34 and 0.47) than in the Growth Network model (0.42 and 0.48) for networks A 

and B, respectively. 

 

Figure 4-9: Delaunay fiber network behavior at selected locations. The direction of fiber alignment is 

shown on the 10 µm case displacement field for ∆𝛼 > 0.1, the orange circles indicate the inner and outer 

boundaries of the focal adhesion area, and the lettered white circles indicate the locations of networks A 

and B.  Network organization, fiber forces, and fiber anisotropy index are shown for the initial, middle, and 

final steps of the simulation. Fiber force histograms are also shown for the final step. 

 

4.4 Discussion 

In conducting this comprehensive comparison of model differences between non-

linear continuum and fiber-based FE models, we found that (1) the Growth Network 

model predicted much larger displacements both laterally and through the depth than the 
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Continuum model for the same amount of traction force due to the ability of the fibers to 

rotate and stretch, and that (2) the representation of the network was critically important, 

particularly with respect to fiber connectivity. The low fiber connectivity in the Growth 

Network model fostered greater fiber realignment and displacement propagation into the 

gel with a greater sensitivity to the gel thickness than in the highly connected Delaunay 

Network model. The Delaunay Network model exhibited reduced displacement 

propagation, fiber realignment, and thickness sensitivity such that these model 

predictions approached those of the non-linear continuum model.  These results highlight 

the importance of fiber connectivity and its role in extending the distance that mechanical 

information is transmitted from the boundaries, which could have implications for the 

design of engineered soft tissues and stem cell niches. 

To facilitate model comparisons, the material parameters for all three models 

were selected so that the model response to shear matched a fibrin gel shear test. Even 

though this mode of shear deformation most closely resembled that of the applied cell 

traction force, other modes of deformation (as well as small differences in how each 

model matched the mechanical response) likely contributed to the differences in the 

mechanical responses observed amongst the models, particularly with respect to the non-

normalized effective stiffness. Because the applied traction force and model geometry 

was equivalent in each model, the effective stiffness was only dependent on the inverse 

of the mean displacements in the FA area. These displacements were small in all models, 

but the differences were large enough that the non-normalized effective stiffness for the 

Growth Network model was much lower than for the other two models. These results, 

together with the larger displacement propagation distances in both the vertical and 
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horizontal directions, indicate that the Growth Network model was locally “softer” than 

the other two models even though all three models have comparable bulk material 

properties in shear. 

Because the effective stiffness values are based on relatively small displacements, 

the differences between models could also reflect how well each model fit the 

experimental shear data. To check for this possibility, we also chose to calculate metrics 

based on the sensitivity of each individual model to an increase in gel thickness. 

Consistent with our previous work (12), we calculated the normalized effective stiffness 

with respect to a semi-infinite gel, approximated here by the values obtained for a 200 

µm thick gel. The normalized effective stiffness also indicates that the Growth Network 

model was much more sensitive to changes in gel thickness than the other two models 

(Figure 4-6B). This increased sensitivity is reflected in the observation that there was still 

a small increase in the mean displacement in the FA area of 7.1% between the 50 µm and 

200 µm gels for the Growth Network model, but there was only a 3.8% increase for the 

Delaunay Network model and no change for the Continuum model over the same span of 

gel thicknesses. This result can be interpreted to mean that the depth at which the rigid 

boundary still has some influence was much greater for the Growth Network model. We 

also calculated the critical gel thickness, hcrit, and saturation maximum displacement, uinf, 

for each model (Table 4-3) according to the equation used by us previously (12) and 

given per Sen et al. (20): 𝑢𝑚𝑎𝑥 = (ℎ × 𝑢𝑖𝑛𝑓)/(ℎ + ℎ𝑐𝑟𝑖𝑡), where umax is the maximum 

surface displacement and h is the gel thickness. hcrit represents the gel thickness at which 

the maximum surface displacement reaches half of the value obtained for a gel of  semi-

infinite thickness and uinf is the saturation displacement reached on a semi-infinite gel. 
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Both uinf and hcrit were much higher for the Growth Networks, which also supports the 

notion that mechanical communication and depth sensitivity is enhanced in the Growth 

Networks. 

Table 4-3: Fit parameters for critical thickness, hcrit,  

and saturation maximum surface displacement, uinf,  

for each model. 

Model uinf [µm] hcrit [µm] 

Continuum  2.27 1.66 

Delaunay Network  2.85 2.45 

Growth Network 4.82 5.39 

 

The traction forces applied to the gel are shared between the gel and the rigid 

underlying substrate in a manner that is dependent on the thickness of the gel (86). As the 

gels get thicker, a saturation thickness is reached at which the rigid substrate no longer 

has an influence on the mechanical response to the applied tractions, and all of the 

applied load is carried by the gel (i.e., the gel can be considered semi-infinite). We 

consider this saturation thickness as representative of the cell’s maximum possible depth 

sensing distance for a given traction force. The introduction of fibers into the model 

extended this distance compared to a non-linear continuum model, particularly with 

respect to the Growth Networks, which due to their low degree of fiber connectivity, had 

fibers with greater rotational freedom. As the distance of the rigid lower boundary 

increased, the fibers in the networks experienced greater realignment towards the lower 

boundary compared to the more connected (and therefore more constrained) fibers in the 

Delaunay Network model. This had the two-fold effect of making the Growth Network 
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model appear softer locally and of extending the depth of fiber realignment and force 

propagation.  

The results from this study support the growing body of experimental and 

theoretical work that indicates that the fibrous nature of biological gels is responsible for 

enhanced long-distance cell mechanosensing compared to non-fibrous gels (12-15, 87-90). 

Several of these theoretical studies have found that the mechanosensing length scale of a 

cell increases when fibers are accounted for in the model (12, 87, 89, 90). For example, 

Ma et al. developed an image-based 2D FE model of two cells separated by a distance of 

~100 µm and surrounded by a network of linear elastic collagen fibers embedded in a soft 

nonfibrous material  with mechanical properties selected from the literature (87). This 

model also found that forces were only transmitted long distances from one contracting 

cell to the other when the fibers were explicitly accounted for due to improved force 

transmission along aligned fibers. If the surrounding material was represented instead by 

a homogeneous non-linear strain-hardening material, then the stresses rapidly decayed a 

short distance away from the cells and no mechanical communication occurred between 

the two cells. Another key property of the networks that facilitates fiber alignment and 

the transmission of long-range mechanical signals is the low compressive resistance of 

the fibers (relative to the tensile stiffness), which Notbohm et al. also reported and 

referred to as microbuckling (90). In this context, microbuckling does not refer to a 

mechanism of failure, but instead means that less energy is needed for fibers in the 

network to compress in order to accommodate the realignment of other network fibers in 

tension. In our simulations, even with microbuckling, a highly connected network, such 

as the Delaunay Network, exhibited reduced depth sensing compared to network with low 
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connectivity (i.e., Growth Network) because the ability of fibers to rotate and realign was 

reduced. Thus, from our point of view, those network properties that facilitate fiber 

reorientation (i.e., low fiber connectivity, microbuckling, rotational freedom at the 

crosslinks) work together to enhance long-range force transmission.  

The mechanics of fiber networks are dependent on a number of network 

properties, such as the density of fibers and crosslinks, the distribution of fiber lengths 

and fiber orientations, the fiber connectivity (number of fibers connecting at a crosslink), 

and the nature of the crosslinks (e.g. a freely rotating ball joint or a fixed joint). 

Exploration of all of these complex relationships was beyond the scope of this study and 

are reviewed elsewhere (69, 91). Instead, we chose to limit our analysis to two 

fundamentally different types of networks that primarily differ in the number of fibers 

connected by a crosslink (i.e., connectivity), and that we believe are reasonable 

idealizations of network structure one might find for substrates used in 

mechanobiological studies. We have used the less connected Growth Network to 

successfully represent the low fiber connectivity typically found in dilute collagen and 

fibrin gels (85, 92-94). The more highly connected Delaunay Networks represent a shift up 

the connectivity spectrum towards the limiting case of a fully connected and continuous 

material. In addition, the Delaunay Networks are likely more representative of synthetic 

polymers and other highly crosslinked hydrogels that resemble cellular solids (95) and 

that could be used as cell substrates either for mechanobiological studies or regenerative 

medicine applications. Thus, both types of networks should be useful for understanding 

in vitro experimental findings on cell responses on different materials. Finally, cell 

tractions were simulated as a constant force equally distributed amongst the nodes of the 
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focal adhesion area. However, cells likely adjust the tractions they exert on the substrate 

as part of a feedback loop in order to achieve some set point of baseline tension. Such 

mechanisms have been included in other modeling schemes (78, 89), and future work will 

seek to incorporate such cell feedback into this model. 

In conclusion, traction forces produce a greater propagation of displacements 

through Growth Networks than through more connected Delaunay Networks and 

continuum models. Rotational freedom of the fibers in an extracellular matrix network 

with low fiber connectivity appear to be critical for the enhanced, long-range 

mechanosensing observed experimentally for cells cultured on fibrous gels. These results 

aid our understanding of cell-cell communication within sparse tissues and have 

implications for the design of engineered soft tissue replacements. 
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CHAPTER 5 

A DISCRETE MECHANISTIC NETWORK-BASED MODELING OF CELL 

MIGRATION, AND COUPLING IT TO A SUBSTRATE MODEL 

 

5.1 Introduction 

The purpose of this chapter is to develop a computational model that accounts for 

active cellular component to help understand the dynamics and reciprocal nature of the 

cell’s mechanical environment. We develop a type of two-dimensional agent-based 

model that is a mechanistic network representation of mechanosensing cells. This model 

is coupled to a three-dimensional representation of the substrate. The active cell model is 

based primarily on physical and conservation laws and represents cells as mechanical 

elements that interact with each other and the extracellular matrix (ECM). 

 

5.2 Methods 

The incorporation of individual, autonomous cells that can migrate and interact 

with other cells and the ECM based on a set of rules that provide positive and negative 

mechanical feedback is important in representation of cells. To begin to address these 

issues, we develop a type of cell model, which is then coupled to a substrate model. The 

model is based primarily on physical and conservation laws rather than a collection of 

conditional if then statements that are difficult to pin down to physical mechanisms. We 

choose this approach because network models have been used successfully to describe 

mechanical feedback between cells and substrates. 
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5.2.1 Cell Biomechanics and Migration 

Cell that is represented by a two-dimensional Delaunay network is constructed 

and force-based rules similar to the model proposed by Dokukina et al. is utilized (30). 

The network, which represents the cell cytoskeleton coarsely, consists of nodes that are 

connected together by elastic springs and viscous dashpots in parallel (Figure 5-1). When 

the resting lengths between the nodes changes, cytoskeletal viscoelastic forces, 

𝐹⃗𝑖
𝑉𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐, are developed. Active forces, 𝐹⃗𝑖

𝐴𝑐𝑡𝑖𝑣𝑒, are applied to defined nodes at the 

front of the cell in order to simulate the propulsive forces generated from actin 

polymerization at the leading edge of the lamellipodium. Cell adhesions to the 

extracellular matrix (ECM) will be approximated as a drag force, 𝐹⃗𝑖
𝐷𝑟𝑎𝑔

, so that a cell 

velocity can be calculated. These forces must balance at each node i in the network 

according to: 

𝐹⃗𝑖
𝐷𝑟𝑎𝑔

+ 𝐹⃗𝑖
𝑉𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝐹⃗𝑖

𝐴𝑐𝑡𝑖𝑣𝑒       (5.1) 

 which can be expanded to:  

𝜇0𝑖
𝜕𝑟𝑖

𝜕𝑡
+ ∑ (𝜇

𝜕𝜀𝑖𝑗

𝜕𝑡
+ 𝐸𝑖𝑗𝜀𝑖𝑗)

𝑀𝑖
𝑗=1 𝑟̂𝑖𝑗 = 𝐹⃗𝑖

𝐴𝑐𝑡𝑖𝑣𝑒      (5.2) 

where μ0i is the viscous drag coefficient for node i due to the cell-substrate interaction, 

𝑟𝑖 = (𝑥𝑖, 𝑦𝑖) is the position vector of node i, 𝐸𝑖𝑗 is the cell cytoskeleton elasticity 

coefficient, μ is the cell cytoskeleton viscosity coefficient, εij is the change in length 

between nodes i and j, and 𝑟𝑖𝑗 is the unit vector along the line connecting nodes i and j. 
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Figure 5-1: Two-dimensional Delaunay network representing cell, and the cytoskeleton mechanical 

properties. Neighboring nodes i and j are connected by elastic spring with elasticity coefficient Eij and 

viscous dashpot with viscosity coefficient µ, in parallel. The active forces Fi are applied at the front of the 

cell. A representative force is marked by an arrow. The cell center is indicated by C. 

 

5.2.1.1 Cell Viscoelasticity 

The cytoskeletal modulus will decrease quadraticly from the front to the back of 

the cell in order to simulate experimentally observed spatial differences in cytoskeletal 

stiffness: 

𝐸𝑖𝑗 = 𝐸𝑚𝑖𝑛 + (𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛)
(𝑦𝑎𝑣𝑒−𝑦𝑚𝑖𝑛)2

𝐿𝑐𝑒𝑙𝑙
2       (5.3) 

where 𝑦𝑎𝑣𝑒 = (𝑦𝑖(𝑡 = 0) + 𝑦𝑗(𝑡 = 0)) /2 and 𝐿𝑐𝑒𝑙𝑙 = 𝑦𝑚𝑎𝑥(𝑡 = 0) − 𝑦𝑚𝑖𝑛(𝑡 = 0) is the 

initial cell length. It is assumed that the elasticity coefficient is not dependent on the 

direction normal to the cell axis. The modulus values are assigned at the initial time and 

remain fixed thereafter. 
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5.2.1.2 Cell Matrix Interactions and Force Generation 

The adhesion drag force is described by a viscosity coefficient multiplied by the 

cell speed. It is assumed that the viscosity coefficient, 𝜇0𝑖, due to the cell substrate 

interaction at the ith node is a linearly increasing function of substrate rigidity: 

 𝜇0𝑖 = 𝑘 × 𝜎𝑆𝑇(𝑥𝑖, 𝑦𝑖)         (5.4) 

where k is the proportionality coefficient, and 

 𝜎𝑆𝑇 = 𝜎𝑚𝑖𝑛 − (𝜎𝑚𝑖𝑛 − 𝜎𝑚𝑎𝑥)
𝑦𝑛

𝑦𝑛+𝐿𝑏
𝑛       (5.5) 

is the substrate rigidity at the ith node with coordinates (xi, yi). 

Due to experimental observations that cells are able to develop stronger 

mechanical forces on stiffer substrates than on softer substrates, it is assumed that the 

active force generated by the cell increases with substrate rigidity (6). A Hill function is 

used here for the limited growth of active force with substrate rigidity. Therefore, the 

magnitude of the cell-generated force at ith front node is described as: 

|𝐹𝑖
𝐴𝑐𝑡𝑖𝑣𝑒| =

|𝐹𝐴𝑐𝑡|

𝑁𝐹𝑟𝑜𝑛𝑡
×

𝜎𝑆𝑇
2

𝜎𝑆𝑇
2 +𝜎𝑎𝑣𝑒

2         (5.6) 

 

Because of the presence of the position-dependent spring deformation 𝜀𝑖𝑗 in the 

second time-derivative term, the force balance equations are nonlinear in node 

coordinates. Therefore, they were discretized and solved using a nonlinear iterative 

method at each time step (Appendix B). 
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5.2.2. Coupling Between Cell Migration and Substrate Models 

The two-dimensional cell migration model, which has been developed, is coupled 

to the top surface of a three-dimensional substrate model, described by the compressible 

formulation of the neo-Hookean constitutive equation given as 

      (5.7) 

where 𝜎𝑖𝑗
𝑛𝐻 represents the compressible neo-Hookean stress (73), G is the shear modulus, 

ν is Poisson’s ratio, J is the determinant of the deformation tensor, and B is the left 

Cauchy-Green deformation tensor. 

The two-dimensional cell cytoskeleton is modeled by 16 nodes connected 

according to the Delaunay triangulation on the xy-plane and on the top surface of the 

three-dimensional substrate model represented by a square finite element mesh 

containing 20 elements along the length, 20 elements along the width, and one element 

through the depth and consisting of 400 tri-linear hexahedral elements and 882 nodes 

(Figure 5-2). 

To simulate the cell migration coupled to the substrate model, all finite element 

mesh surfaces except the top surface, which remains free, are fixed. 

We have already implemented nodal force boundary conditions in the finite 

element model to assess how far forces are transmitted through the substrate in chapter 4. 

Cell cytoskeletal viscoelastic forces are interpolated and applied to substrate finite 

element mesh as traction forces. Substrate displacements are then calculated and 

interpolated to find the effective stiffness in a manner analogous to equation (4.4) utilized 

to update the cell viscous drag coefficient instead of using equation (5.5), and the 
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magnitude of the cell-generated force described by equation (5.6). Therefore, active 

cellular component is added to our model to understand how the cell dynamically and 

reciprocally interacts with the mechanical environment. 

 

Figure 5-2: Schematic of the two-dimensional cell model on top surface of the three-dimensional finite 

element model. Cell traction forces are interpolated and applied to the finite element nodes on the top 

surface. 

 

5.3 Results 

First, we simulate cell motion from a softer side of substrate to a stiffer side of 

substrate (Figure 5-3). Cell, which is initially planted on the soft side of substrate and has 

a cell-generated force applied to the 3 front nodes, migrates from the soft to the stiff side. 
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The model cell migrating to the stiff side of the substrate, stretches and its projected area 

increases. 

 

Figure 5-3: The cell moves from the soft side of the substrate toward the stiff side of the substrate. The 

trajectory of the cell center is marked with a dashed arrow. 

 

The cell migration model coupled to the substrate model is presented in Figure 5-

4 at initial, middle and final steps. Cell traction forces calculated from the cell model are 

interpolated and applied to the finite element mesh causing the substrate to deform, which 

in turn change the effective stiffness of the underlying matrix and the cell-generated 

force, and affect the force balances on the cell network nodes, the cell shape and the 

direction of movement. 
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Figure 5-4: Displacement fields for the cell migration model coupled to the substrate model at initial, 

middle and final steps. 

 

 

Figure 5-5: Displacement fields for the cell migration coupled to the substrate with a step in stiffness at 

initial, middle and final steps. 

 

The cell migration model coupled to the substrate model with a step in stiffness is 

presented in Figure 5-5 at initial, middle and final steps. The cell at the same initial 

location on the substrate with the same stiffness and with the same initial force generated 

at the front nodes and the same total migration time as the cell in Figure 5-4, readily 
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moves towards and crosses the boundary with the substrate that is three times stiffer, in a 

manner similar to the experimental observations (6). 

Compared with the cells on soft substrates, those on stiff substrates showed 

increased spreading area (6, 9). The cell area moving from the soft side to the stiff side of 

the substrate increased about 33% and 38% of the initial cell area, at the middle and final 

steps, respectively, whereas, the cell remaining on the soft substrate had a less increase in 

area (about 20% of the initial area at both the middle and final steps). Furthermore, the 

cell average speed and migration distance for the cell moving from the soft side to the 

stiff side of the substrate was higher (more than 2 times) than for the cell remaining on 

the soft substrate, which was also consistent with experiments (6). 

The maximum substrate displacements for the cell moving from the soft side to 

the stiff side of the substrate was happening at cell rear that was on the soft side or close 

to the soft side of the substrate and was larger (about 18% and 16% at the middle and 

final steps, respectively) than for the cell remaining on the soft substrate, which had the 

maximum substrate displacements occurring at the cell front. This is because of 

increasing the cell-generated force at the front nodes with the substrate rigidity and 

effective stiffness and the lower force on the softer substrate in the model, which was also 

observed experimentally (6). 

 

5.4 Discussion 

Computational models that account for active cellular component to help 

understand the dynamics and reciprocal nature of the cell’s mechanical environment 

observed experimentally, are developed. 
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Cell prefers migrating towards and over the stiffer substrate than the softer 

substrate. The cell model qualitatively describes experimental observations, and substrate 

rigidity sensing, which allows us to gain additional insights into the cell 

mechanosensitivity. 

Coupling between the cell migration and the substrate models adds a new 

feedback mechanism as cell traction forces on the substrate cause the finite element mesh 

to deform, which in turn change the effective stiffness of the underlying matrix, and 

affect the cell forces, shape, spread area, speed and direction of motility. 

The simulations are performed in MATLAB. This model can also be implemented 

in a three-dimensional fiber-based representation of the substrate in a parallelized C code. 
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APPENDIX A 

 

Here, as in chapter 4, we directly compared the mechanical response of substrates 

of varying thickness subjected to a constant traction force using either the Growth 

Network or the Delaunay Network fiber models, but instead of the shear test, the 

parameters governing each model were selected so that the stress-strain response of each 

model matched the macroscopic uniaxial mechanical behavior of an acellular fibrin gel 

representative of those used as substrates for the study of cell mechanosensing.  

 

Fibrin Gel Mechanical Characterization and Model Parameter Optimization 

To determine the bulk mechanical behavior of a representative fibrin matrix used 

for mechanobiological studies, acellular fibrin gels were produced by mixing stock 

solutions of bovine fibrinogen, CaCl2, and thrombin.  The solution was cast into a 

rectangular fibrin gel and placed between low force compression grips and mounted in a 

BioTense Bioreactor (ADMET, Norwood, MA) equipped with a 250-gram load cell.  The 

sample was subjected to uniaxial extension at a rate of 10 mm/min until failure, and the 

force and elongation data was plotted as First Piola-Kirchhoff stress (F/Ao) versus stretch 

ratio, , (l/lo) (Figure A-1). The experiment was simulated for both Fiber models 

(described in chapter 4) using a finite element mesh that matched the geometry and 

boundary conditions of the experiment. Model parameters were selected until the 

mechanical response approximated the experimental test (Figure A-1). 
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Figure A-1: Uniaxial extension simulations results fitted to experimental data for an acellular fibrin gel. 

Model parameters were selected to match the nonlinear increase in stress with stretch. 

 

Models and Boundary Conditions 

A schematic of the model is shown in Figure 4-1, and described in chapter 4. A 

total traction force of 0.11 nN, which is equivalent to a low traction stress of 4.60 Pa, was 

applied to the focal adhesion nodes by equally dividing this total force amongst the nodes 

and over 50 equally spaced steps. 

 

 

Comparison between Growth Network and Delaunay Network Fiber Models 

Material parameters were selected for each model (Table A-1) so that the 

simulated uniaxial stress-strain curves approximated an experimentally generated fibrin 
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gel stress-strain curve up to a stretch ratio of 1.7 (Figure A-1). The fibrin gel 

demonstrated a typical nonlinear strain stiffening response with increasing stretch. The 

material properties chosen for each model to match this nonlinear response resulted in the 

Growth Network model exhibiting slightly softer behavior compared to the experiment at 

low to mid-level strains (i.e., up to a Lagrangian strain of 34.5%). This region of the 

curve is highlighted because the maximum strains developed in the simulations for the 

applied traction force were less than 25%. 

Table A-1: Material parameters values used for each model. 

  

Growth Network Model: N; B = 4; G = 1 Pa; v = 0.3 

Delaunay Network Model: N; B = 4; G = 1 Pa; v = 0.3 

 

In order to better assess the role of fiber network microstructure in the model, we 

investigated differences between Growth Network and Delaunay Networks. The model 

parameters selected to match the experiment for the Delaunay Network model (Table A-

1) produced a mechanical response that was slightly stiffer than the Growth Network 

model in the low stretch region (Figure A-1 inset). Even though the uniaxial mechanical 

response of the Delaunay Network model closely followed the Growth Network model in 

approximating the experimental data, the model simulations produced significantly 

different results in response to the applied cell traction force. The average maximum 

principal stresses in the focal adhesion area were higher and extended over a larger area 

in the Growth Network model (8.00 ± 4.10 Pa, 8.80 ± 4.20 Pa and 9.00 ± 4.70 Pa) (Figure 

A-2 A). The largest displacements in the models were also found in this area. These 

displacements were higher in the Growth Network model (1.1 ± 0.1 µm, 1.7 ± 0.1 µm, 

103 10f fE A  

101.6 10f fE A  
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and 1.9 ± 0.2 µm), and increased with increasing gel thickness (Figure A-3 A). Compared 

to the Growth Network model, both the average principal stresses (4.60 ± 3.00 Pa, 4.60 ± 

300 Pa and 4.50 ± 300 Pa) and average displacements (0.33 ± 0.02 µm, 0.40 ± 0.02 µm 

and 0.41 ± 0.02 µm) were several-fold lower in the focal adhesion area for the Delaunay 

Network model (Figure A-2 B, Figure A-3 B) at 10 µm, 30 µm, and 50 µm, respectively. 

 

Figure A-2: Maximum principal stress for 10 µm, 30 µm, and 50 µm thick gels. Stress contours for the (A) 

Growth Network model, and the (B) Delaunay Network model. Black nodes correspond to the inner and 

outer nodes of the focal adhesion area where the cell forces were applied. 
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Figure A-3: Displacement fields for 10 µm, 30 µm, and 50 µm thick gels for the (A) Growth Network 

model, and the (B) Delaunay Network model. Black nodes correspond to the inner and outer nodes of the 

focal adhesion area where the cell forces were applied. 

 

A detailed view of how two networks in the 10 µm thick Growth Network model 

reorganized in response to the cell traction force is depicted in Figure A-4. The first 

network (Figure A-4 A), which was located outside the focal adhesion area just 

underneath the inner region of the cell, gradually elongated in the vertical direction while 

compressing laterally and rotating slightly to the right to produce a small shearing 

motion. At the conclusion of the simulation (i.e., Step 50), 79% of the fibers in this 

network were in tension (2.2 ± 1.0 pN) and 21% of the fibers were in compression (-5.2 ± 

17.5 pN). Combined, these tensile and compressive forces corresponded to an average 
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network fiber force of 0.7 ± 12.4 pN (maximum and minimum fiber forces of 94.4 pN 

and -94.7 pN, respectively). A second network (Figure A-4 B), located directly under and 

just inside the inner boundary of the focal adhesion area, reorganized differently. This 

network experience a much larger shearing motion with fibers aligning diagonally toward 

the direction of the applied force. At Step 50, 77% of the fibers were in tension (6.2 ± 

16.2 pN) and 23% were in compression (-18.2 ± 25.9 pN), which corresponded to an 

average fiber force of 0.7 ± 21.4 pN (maximum and minimum fiber forces of 139.5 pN 

and -94.3 pN, respectively). As the gel thickness increased, the magnitudes and 

distribution of forces in these same networks also changed. For the 50 µm case (data not 

shown), the average forces at Step 50 for both networks increased roughly 57% and 

286% to 1.1 ± 16.1 pN (Figure A-4 A) and 2.7 ± 23.7 pN (Figure A-4 B), respectively. In 

addition, the degree of anisotropy (𝛼) for these networks also increased approximately 

39% and 32%, respectively, between the 10 µm and 50 µm thick gels. 
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Figure A-4: Growth fiber network behavior at selected locations. Depicted is the 10 µm case with a sub 

region consisting of 320 finite elements indicated by the dashed line and enlarged. The direction of fiber 

alignment is shown on the displacement field for ∆𝛼 > 0.1, the orange circles indicate the inner and outer 

boundaries of the focal adhesion area, and the lettered white circles indicate the locations of networks A 

and B.  Network organization, fiber forces, and fiber anisotropy index are shown for the initial, middle, and 

final steps of the simulation. Fiber force histograms are also shown for the final step of the simulation.   

 

The number of networks with increased fiber realignment (𝛼) and the magnitude 

of the change in fiber alignment with respect to the initial network configuration in the 

unloaded state (Δ𝛼) also grew with increasing gel thickness. For example, model-wide 

60, 98, and 116 finite elements had networks with a change in network fiber alignment of 

Δ𝛼 > 0.1, with average Δ𝛼 values of 0.130 ± 0.026, 0.139 ± 0.035 and 0.144 ± 0.037, for 

gel thicknesses of 10 µm, 30 µm, and 50 µm, respectively. Similarly, if one considers a 

block of 320 elements common to all four meshes for a more even comparison, as 
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indicated in the magnified region depicted in Figure 8, the change in fiber alignment (Δ𝛼) 

also increased 0.060 ± 0.043, 0.071 ± 0.054, and 0.075 ± 0.060, for gel thicknesses of 10 

µm, 30 µm, and 50 µm, respectively. This pattern of enhanced network reorganization 

with increasing gel thickness seems to have occurred because the increasing distance of 

the rigid lower boundary from the gel surface reduced the constraints on fiber rotational 

freedom, which in turn facilitated the greater fiber alignment and lower effective 

stiffnesses observed in thicker gels. 

Clear differences in Delaunay Network reorganization were also evident. Changes 

in network shape and volume were less pronounced, and a substantially higher fraction of 

fibers were in compression than tension. For example, 66% (Figure A-5 A) and 59% 

(Figure A-5 B) of the fibers in networks at equivalent locations as in the Growth Network 

model were in compression at Step 50. As a result, the average fiber forces in the network 

were -4.4 ± 7.7 pN and -6.1 ± 16.2 pN, respectively. An increase in gel thickness to 50 

µm did not change the average fiber force in these two networks (-5.3 ± 9.4 pN and -6.8 

± 16.7 pN, respectively) nearly as much as in the Growth Networks. Fiber reorganization 

was also not as extensive in the Delaunay Network model as in the Growth Network 

model. None of the Delaunay Networks had a change in network fiber alignment greater 

than 0.1 (i.e., Δ𝛼 > 0.1). For the same block of 320 elements examined for the Growth 

Network model, the change in fiber alignments (Δ𝛼) was not affected by gel thickness, 

with Δ𝛼 =  0.0227 ±  0.0202, Δ𝛼 = 0.0225 ±  0.0209, and Δ𝛼 =  0.0227 ±  0.0185 

for 10 µm, 30 µm, and 50 µm thick gels, respectively. 
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Figure A-5: Delaunay fiber network behavior at selected locations. Depicted is the 10 µm case with a sub 

region consisting of 320 finite elements indicated with the dashed line. The direction of fiber alignment is 

shown on the displacement field for ∆𝛼 > 0.05, the orange circles indicate the inner and outer boundaries of 

the focal adhesion area, and the lettered white circles indicate the locations of networks A and B.  Network 

organization, fiber forces, and fiber anisotropy index are shown for the initial, middle, and final steps of the 

simulation. Fiber force histograms are also shown for the final step. 

 

Aspect of the microstructure responsible for the results 

Fibrous biological materials, such as collagen gels, fibrin gels, and native soft 

tissues, possess several mechanical characteristics that differentiate them from non-

fibrous materials, including non-affine fiber deformations, strain stiffening, axial 

coupling under biaxial stretch, etc. These characteristics make modeling these tissues 

difficult because non-fibrous constitutive laws are extremely limited in their ability to 

replicate these behaviors. Even constitutive laws that do incorporate fibers, typically in 
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the form of distribution of fiber angles, are unable to account for complex fiber-fiber 

interactions and non-affine deformations. 

It was found that the Delaunay Network model produced much lower stresses and 

displacements in response to the applied cell traction force than the Growth Network 

model, even though both models closely approximated the mechanical data obtained for a 

uniaxial extension test on a fibrin gel. The mechanical state of the networks in the 

Growth and Delaunay Network models were similar when matching the fibrin gel stretch 

data shown in Figure A-1. At 30% stretch, the axial component of the network volume-

averaged stresses were about 80 Pa and 90 Pa, the average network fiber forces were 120 

± 210 pN and 110 ± 160 pN, and the tension:compression ratio was 90:10 and 70:30 in 

the Growth and Delaunay Networks, respectively, results consistent with the fact that 

both Fiber models produced similar stress-strain curves that matched the experimental 

data. The mechanical state of the networks in the Growth Network model in response to 

cell traction force was similar, but for the Delaunay Networks the mechanical behavior 

was quite different, particularly with regard to the majority of fibers being in 

compression.  

To better understand why the Delaunay network behavior was different we 

subjected the top surface of all three 10 µm thick models to a uniformly applied 4.30 Pa 

shear stress and compared the mechanical response (Figure A-6). 
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Figure A-6: Shear simulations results with the same model parameters selected to match the nonlinear 

increase in stress with stretch. 

 

A closer look at how two representative fiber networks in the Growth Network 

and Delaunay Network models behave in response to the uniaxial extension and the shear 

force is shown in Figure A-7. In response to the shear, the Growth network, 80% and 

20% of the fibers undergo tension and compression respectively with an average network 

fiber forces of 4 ± 12 pN; in the Delaunay network, 55% and 45% of the fibers are in 

tension and compression respectively with an average network fiber forces of 1 ± 10 pN. 

This indicates that although the Growth and Delaunay networks exhibit similar responses 

to the uniaxial extension, their responses to the shear are different. At the same amount of 

shear strain (10%), the shear component of the network volume-averaged stress tensor, 

are about 2.00 Pa and 4.00 Pa in the Growth and Delaunay networks respectively, and 

demonstrate that during the application of shear force the Delaunay network exhibits a 

stiffer behavior than the Growth network. Thus, the displacements are much less in the 
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Delaunay Network model than in the Growth Network model in response to the applied 

shear force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-7: Behavior of selected Growth and Delaunay fiber networks in response to (A) uniaxial 

extension, and (B) shear test.  
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APPENDIX B 

 

Force balance equations 

 

x-coordinate of node i: 

𝜇0𝑖

𝜕𝑥𝑖

𝜕𝑡
+ ∑ (𝜇

𝜕𝜀𝑖𝑗

𝜕𝑡
+ 𝐸𝑖𝑗𝜀𝑖𝑗)

𝑀𝑖

𝑗=1

𝑐𝑜𝑠𝜑𝑖𝑗 = |𝐹𝑖
𝐴𝑐𝑡𝑖𝑣𝑒|𝑐𝑜𝑠𝛼𝑖 

y-coordinate of node i: 

𝜇0𝑖

𝜕𝑦𝑖

𝜕𝑡
+ ∑ (𝜇

𝜕𝜀𝑖𝑗

𝜕𝑡
+ 𝐸𝑖𝑗𝜀𝑖𝑗)

𝑀𝑖

𝑗=1

𝑠𝑖𝑛𝜑𝑖𝑗 = |𝐹𝑖
𝐴𝑐𝑡𝑖𝑣𝑒|𝑠𝑖𝑛𝛼𝑖 

 

Discretization for x-coordinate: 

𝜇0𝑖

𝑥_𝑛𝑒𝑤𝑖 − 𝑥𝑖

∆𝑡
+ ∑ (𝜇

𝜀_𝑛𝑒𝑤𝑖𝑗 − 𝜀𝑖𝑗

∆𝑡
+ 𝐸𝑖𝑗𝜀𝑖𝑗)

𝑀𝑖

𝑗=1

𝑐𝑜𝑠𝜑𝑖𝑗 = |𝐹𝑖
𝐴𝑐𝑡𝑖𝑣𝑒|𝑐𝑜𝑠𝛼𝑖 

 

𝑥_𝑛𝑒𝑤𝑖
𝑝+1 = 𝑥𝑖 +

(− ∑ (𝐸𝑖𝑗𝜀𝑖𝑗)
𝑀𝑖
𝑗=1 𝑐𝑜𝑠𝜑𝑖𝑗 + |𝐹𝑖

𝐴𝑐𝑡𝑖𝑣𝑒|𝑐𝑜𝑠𝛼𝑖)∆𝑡 − ∑ 𝜇(𝜀_𝑛𝑒𝑤𝑖𝑗
𝑝 − 𝜀𝑖𝑗)

𝑀𝑖
𝑗=1 𝑐𝑜𝑠𝜑𝑖𝑗

𝜇0𝑖

 

 

Similar for y-coordinate… 
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