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ABSTRACT

Soliman, Muller Mark. M.S.B.M.E., Purdue University, August 2012. Developing a
Neural Signal Processor Using the Extended Analog Computer. Major Professor:
Ken Yoshida.

Neural signal processing to decode neural activity has been an active research

area in the last few decades. The next generation of advanced multi-electrode neuro-

prosthetic devices aim to detect a multiplicity of channels from multiple electrodes,

making the relatively time-critical processing problem massively parallel and push-

ing the computational demands beyond the limits of current embedded digital signal

processing (DSP) techniques. To overcome these limitations, a new hybrid computa-

tional technique was explored, the Extended Analog Computer (EAC). The EAC is

a digitally configurable analog computer that takes advantage of the intrinsic ability

of manifolds to solve partial differential equations (PDEs). They are extremely fast,

require little power, and have great potential for mobile computing applications.

In this thesis, the EAC architecture and the mechanism of the formation of po-

tential/current manifolds was derived and analyzed to capture its theoretical mode of

operation. A new mode of operation, resistance mode, was developed and a method

was devised to sample temporal data and allow their use on the EAC. The method

was validated by demonstration of the device solving linear differential equations and

linear functions, and implementing arbitrary finite impulse response (FIR) and infi-

nite impulse response (IIR) linear filters. These results were compared to conventional

DSP results. A practical application to the neural computing task was further demon-

strated by implementing a matched filter with the EAC simulator and the physical

prototype to detect single fiber action potential from multiunit data streams derived

from recorded raw electroneurograms. Exclusion error (type 1 error) and inclusion



xi

error (type 2 error) were calculated to evaluate the detection rate of the matched

filter implemented on the EAC. The detection rates were found to be statistically

equivalent to that from DSP simulations with exclusion and inclusion errors at 0%

and 1%, respectively.
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1. INTRODUCTION

1.1 Background

The human nervous system is one of the most complex systems in the body.

Among its functions is to establish two-way communication between the brain and

organs, as well as interpret and act upon ascending and descending signals, i.e. signals

from the periphery to the brain, and signals from the brain to the periphery, respec-

tively. Attempting to understand the communication pathway has been an interesting

topic for several researchers through the ages. Our curiosity has driven investigation

of this through the centuries, isolating the locus of consciousness to the mind; to the

nervous system. In other words, consciousness is translated by information that is

transmitted and processed by the nervous system. If we accept this hypothesis to

be true, then in essence, everything that we do to the environment and everything

that we perceive from the environment is mediated through the nervous system. Ob-

serving and understanding the information flow is the gateway to understanding the

human experience.

The peripheral nervous system (PNS) plays an important part in the transmission

of information and the transduction of information to/from the environment. It can

be thought of as the body’s wiring connecting the brain and central nervous system

(CNS) to the sensors and actuators (muscles) located throughout the body. Like a

bundle of telephone wires, the peripheral nerve consists of bundles of nerve fibers.

Each fiber within the nerve fascicle is hardwired from its cell body in the CNS to its

end organ in the periphery. The information it transmits corresponds one to one to

the information directed to/from that end organ. We refer to this unitary fiber as a

single unit in the nervous system. The nerve fibers are bundled topologically together

into nerve fascicles, and nerve fascicles are bundled together to form nerve trunks.



2

The information transmitted in the nerve fiber only flows in one direction: Sen-

sory fibers only conduct information from the sensory end organ centrally to the CNS.

Motor fibers only conduct information from the motor regions of the spinal cord pe-

ripherally to the muscle. These sensory and motor fibers are typically mixed within

nerve fibers. Information is transmitted down the nerve fiber by taking advantage

of the bioelectric phenomenon taking form in a self-propagating impulse that travels

down the nerve fiber, the action potential (AP). By itself, the AP does not contain

any information, but is rather, akin to the carrier wave the information. The body

encodes magnitude using two schemes, rate coding and population coding [1]. Within

the single fiber, magnitude information is encoded as the frequency of the action po-

tentials traveling down the fiber. Thus, the information in the nervous system is

transmitted digitally, in a schema akin to pulse code modulation used in digital elec-

tronic communication. These firing patterns of each single fiber, extracted from the

multiunit recordings, provide feedback control in functional neuromuscular stimula-

tion systems [2]. Therefore, we are in need of a device that is capable of monitoring

neural activity and perform signal processing in real-time.

1.1.1 Neural Interfaces

The bioelectric phenomenon is central to much of what we know about the ner-

vous system. We are able to detect minute electrical potential disturbance caused

by the transit of APs through electrodes placed on or within the neural tissue. The

technique of capturing signals of neural origin is collectively called Electroneuronogra-

phy (ENG). Similarly, APs originating from the bioelectrical activity of other tissues

form the basis for electromyography (EMG) for skeletal muscles, electrocardiography

(ECG) for cardiac muscle fibers, electroencelphalography (EEG) for the brain, elec-

trocorticography (ECoG), etc. These extracellular potentials of the single nerve fiber

range in magnitude from 1 µV through ∼ 100 µV in amplitude, and approximately
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1 ms in duration. The frequency content of the single fiber action potential (SFAP)

ranges up to several kilo Hertz to tens of kilo Hertz [3] [4].

Although the geometry of the neural interface plays a major role in its ability to

detect single unit activity, given a selective electrode placed within the nerve tissue,

the amplitude and frequency of the single units are altered in shapes depending on the

location and direction of the electrode in addition to the conduction velocity of SFAP

[5] [6] [7] [8]. It was proposed that the rate of a sufficient number of recorded units

could supply information regarding joint position, skin indentation, muscle length

and tension, etc [9]. Therefore, detecting and classifying these SFAP units based on

shapes are the ultimate techniques to decode the contained information in the neural

data stream.

Given a sufficiently selective electrode, the nerve fibers are resolved as spike wave-

forms within the recording. These spikes have unique shapes resulting from the

unique path that each nerve fiber takes with respect to the recording electrode posi-

tion. The activities of more distant fibers are smaller in amplitude and interfere with

one another, contributing to the amplitude of the background noise [5]. They are

further contaminated by environmental noise such as line noise and pickup of other

bioelectrically active tissues.

Detecting and classifying SFAP patterns in the digital signal processing (DSP)

environment may be a difficult task due to the massive computations that need to

be performed in a short period of time. The processing that is currently performed

off-line amounts to detecting and identifying different nerve fibers based on differ-

ences in the shapes of the units measured by the electrode. To sufficiently sample

the shape and the noise overlying the signal, the potential from each electrode con-

tact is typically sampled at a rate of between 30 and 50 kHz to provide adequate

oversampling [10]. Current peripheral neural interfaces contain between 8 and 16

active contacts [11] making the aggregate sampling rate needed approaching 1 MHz.

Several more operations need to be performed for the denoising, detection, and classi-

fication phases. For example, to design a 32-sample matched filter to detect SFAP in
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a multiunit recording, about 130 operations need to be performed for each contact in

the electrode. This indicates that more than 20,000 operations need to be performed

before moving to the next sample, ∼ 20 µs. If principal component analysis (PCA)

was then used to classify the detected SFAPs with two principal components that

have the largest variance values along with Euclidean distance calculations to clus-

ter the units, at least 500 more operations need to be performed for each contact in

the electrode. This would require another 80,000 operations per ∼ 20 µs. However,

today’s state-of-the-art DSP devices such as TI TMS320C6 series can only perform

up to 55,000 operations in the 20 µs period at full speed (2746 mega floating-point

operations per second) [12].

Therefore, hundreds of DSP devices in a multicore high performance computer

are necessary for the parallel computations so that the single units can be detected in

each channel fairly quickly in real-time. Power computation in DSPs is achieved by

constructing higher level functions at the expense of clock cycles which comes from

switching states on the gates, so that high performance in terms of speed comes at

the cost of greater power consumption. An additional constraint is the time-critical

nature of the information. Signal processing, control and activation of the system

must be conducted so that the total processing and system delay do not exceed a

few milliseconds and become noticeable to the user. Additional delays would not

only slow down the system, but also have the potential of impacting the system

stability. Therefore, the need of a low power, portable and powerful computational

signal processor tool still exists. This document aims to address this problem by

applying a new computing technique, the extended analog computer, to address the

technological gap for mobile neural signal processing.

1.1.2 The Extended Analog Computer

The extended analog computer (EAC) is an analog computing paradigm that was

first proposed by L. A. Rubel in 1993 [13]. It was envisioned to take advantage of the
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intrinsic computational power of distribution of potentials in space. Originally, Mills

et al., created a device consisting of a conductive sheet and a matrix of contacts,

bounded by insulated boundaries [14]. It can be described as a uniform volume

conductor with Neumann boundaries and a regular array of input/output contacts.

Each contact could be configured as a current source or current sink. Current sources

were defined as the set of inputs to the computer, and current sinks as the outputs.

Each output was processed through a restricted set of piecewise linear logic functions,

Lukasiewicz logic arrays (LLAs), and could be routed back onto the original sheet

(recursion), or routed as an input to another sheet. Particle Swarm Optimization

(PSO), an artificial machine learning optimization technique invented by Kennedy and

Eberhart [15], was used to train the connections and LLA set to train and configure

the EAC. These devices were successfully used in various applications such as in

prediction of the folding of proteins and character recognition [16]. Thus, the EAC

was an attractive technology to be developed into other forms of analog neural signal

processing.

1.1.3 History of the EAC

Modern electronic analog computers were invented before electronic digital com-

puters [17]. The first analog computers were designed to solve ordinary differential

equations especially in Ballistics problems in military in the forties and fifties in vari-

ous applications such as gunfire control and aircraft design [17]. The General Purpose

Analog Computer (GPAC) was first introduced by Shannon in 1941 [18], and refined

by Pour-El and then Lipshitz and Rubel [19] [20]. The GPAC was described as

a mathematical model of analog device that consists of a finite number of analog

units. It was first built with mechanical components and then evolved to electronic

versions. This device was designed to do linear computations in real-time such as

summation, multiplication, and simple integration. It can also simulate Turing ma-
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chines [21], which are the first Logical Computing Machines invented in 1937 by Alan

Turing [22].

Rubel believed that the GPAC was unable to solve many problems to imple-

ment the functions of decision-making processes in the human brain because of the

non-linearity functions [23]. Therefore, Rubel created a new theoretical model of

multi-dimensional sensory inputs in uncertain decision processes (EAC) with LLA

implementation to perform non-linear functions. This architecture was further devel-

oped and implemented by Mills and colleagues at Indiana University Bloomington in

1995. The EAC developed was a restricted version of the Extended Analog Computer

based on sampling electric current or voltage distribution in a sheet of electrically con-

ductive foam. Unlike the GPAC, the EAC was simple but yet proved to be able to

compute solutions to complex problems [24].

1.1.4 Why the EAC?

The EAC has demonstrated the potential to make massive instantaneous, paral-

lel computations while consuming very little power to make those calculations [24].

Moreover, the principles of the device allow it to be miniaturized through microfab-

rication techniques to create a portable, massively parallel, computational platform.

Such properties are extremely attractive for development of small, implantable, or au-

tonomous remote devices that require high performance computing, where massively

parallel massively multi-core DSP is not a realistic option, such as a future neural

signal processor.

In its original version, the Mills implementation of the EAC was defined as a

current-current device, where the inputs were current sources and the outputs were

current sinks. The locations of these current sources and sinks modified the current

density manifold. Thus, the EAC could be configured to solve specific spatial partial

differential equations by configuring the location and current gain of the set of input

sources and sinks, adjusting the current density manifold to solve the problem. As
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such, the device was well suited for automatic machine learning and optimization tech-

nique, which automatically adjusted the location of the inputs and outputs to result

in the optimal configuration to solve a particular problem. However, the manifold of

the current density mode is not well suited for input functions that are time-varying,

such as the raw time-varying recordings coming from a neural prosthetic interface.

This is because the current density manifold is not independent of the magnitude of

the set of currents injected into the volume conductor. The Neural Signal Processing

problem needs a stationary manifold acting on a time-varying input data stream.

1.2 Problem Statement

The GPAC and EAC are capable to solve linear spatial problems that include

different operations such as multiplication and integration. But, we hypothesize that

it can be adapted so that it performs the same computations in the time domain for

real-time neural processing. It can be adapted to solve linear differential equations

in real-time as efficient as DSP devices using low power. Arbitrary any-order Finite

Impulse Response (FIR) and Infinite Impulse Response Filter (IIR) can be imple-

mented where their qualities are equivalent to DSPs. This hypothesis is validated

by implementing a matched filter, a practical application of an FIR filter, with the

EAC and compared to a DSP simulation of the same filter to give evidence for our

hypothesis.

The aim of the present work was to modify and develop the EAC to accept time-

varying inputs, and determine the governing equations of the new mode of manifold

computing. We develop the Potential Manifold paradigm, resistance mode, for Ex-

tended Analog Computing. We describe a means to enable the EAC to accept sam-

pled temporal data streams, and develop, through the use of reciprocity arguments,

a method to analyze the governing equations of the voltage manifold. We explore the

effects of volume conductor, input/output site geometry and conductivity on these

governing equations. The method was validated through demonstration of equality
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to analytical solutions, and through the implementation of arbitrary FIR filters and

IIR filters. Furthermore, A matched filter designed to detect the presence of a known

ENG single unit was developed to show proof of principle of the application of the

EAC to detect neural units within a neural data stream.

1.3 Organization of the Thesis

Chapter 2 presents a general analysis of the EAC and an explanation of the re-

sistance mode that was developed. This chapter explains the theory and analytical

solution of the potential manifold due to one or multiple current sources. Addition-

ally, it describes the effect of insulated boundaries and their benefits to maintain

low power and higher potential in the meantime. Various shapes of current sources

were also analyzed to reach an optimized shape that is easy to manufacture and give

precise results that match the analytical solutions.

Chapter 3 describes a new method developed to map and process time varying

signals onto the EAC. It describes the use of the reciprocity theorem to analyze the

filters weighting function and its link with time to apply different types of FIR filters.

It also demonstrates a fixed-location configuration of the EAC to implement 8-bit

resolution weights of arbitrary FIR filters. This chapter also emphasizes the medium

thickness effect of the EAC on filtering and the possibility to change the thickness

without affecting the manifold distribution. Moreover, the capability of building a

high-order FIR-IIR filter is demonstrated with an example.

Chapter 4 demonstrates the application of the EAC to process neural signals. The

procedure of implementing a matched filter for detection and identification of single

unit spikes in a multi-unit recording is described. This chapter also proves that the

quality of EAC is equivalent to the quality of DSPs. This is done by comparing the

matched filter results by three different systems: digital signal processor, EAC result-

ing from finite element method (FEM) model, and EAC resulting from a developed
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physical prototype. In addition, low exclusion and inclusion errors were calculated

by testing the system with a synthesized neural activity.

Chapter 5 gives a discussion of all parts of the thesis. It also discusses some ideas

about possible research in the future in order to have a fully developed EAC that can

then be implanted. Then, the summary section summarizes the work done in this

thesis.
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2. REANALYSIS OF THE EAC

The starting point of this work was the Extended Analog Computer platform devel-

oped by Mills et al., the µEAC R002, shown in Fig. 2.1 [14]. The device is a macro

sized demonstrator of the technology and consists of a set of 25 points contacting a 12

cm × 12 cm × 0.5 cm conductive foam in a regular 5 × 5 matrix. Each point can be

configured as a voltage source, current source/sink or voltage/current measurement

point by driver control software running on a desktop or laptop personal computer.

Current density and potential manifold are formed on the conducive foam.

Fig. 2.1. The µEAC R002 developed by Mills et al. [14]. The black
material that exists at the bottom of the µEAC R002 is the conductive
foam where current density and potential manifold are formed.

The device was designed to be configured via machine learning and automatic

optimization techniques to predict a solution to a multidimensional problem posed

as to a static, spatial problem projecting to the 25 points. The aim of the present
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project was to modify and configure this static, spatial processor to enable processing

of inputs that are variable in time. It was realized that the volume conductor itself

intrinsically distributes the current density as a solution to Laplace and Poisson’s

equations, and that this solution can be monitored by measuring the current density or

potential manifold at specific points on that distribution. Moreover, the manifold can

be conditioned by the addition and positioning of current/voltage sources and sinks

to solve arbitrary partial differential equations. An understanding of the mechanism

of how the voltage/current density manifold forms on the volume conductor, how

the boundary conditions influence that manifold, and how solutions to differential

equations form within the volume conductor was necessary before the device could

be modified to address the neural signal problem we posed to it.

In this chapter the formation of the potential manifold within the volume con-

ductor is analyzed. Next, a method to deterministically configure and sample the

manifold to perform arbitrary linear operations and solve partial differential equa-

tions of time is developed.

2.1 A Black-box Analysis and the Possible EAC Modes of Operation

In the concept of the EAC the positions of a multiplicity of the sources and

sinks are placed to condition the voltage/current manifold to solve specific PDEs.

These sources and sinks can be defined as either electric currents or voltages, and

the manifold voltage or current can be monitored. Therefore, there are four possible

source/sink and voltage/current monitoring combinations in the active input / passive

output case. These can be conceptually described in terms of a black-box two-port

network analysis of electric devices.

The two-port network is a simple circuit or device that has two pairs of terminals

(two inputs and two outputs) and was first introduced in the 1920s [25]. It can be

treated as a black box represented by four different variables: I1, V1, I2, and V2 which

denote input current, input voltage, output current, and output voltage, respectively
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as shown in Fig. 2.2. For any two-port network, the relationship between these

variables describes its characteristics.

+

-

+

-

Two-Port
 Network

V1 V2

I1 I2

Fig. 2.2. A schematic representation of a two-port network.

In the general two-port black-box, the output port is a function of the signal

exciting the input port and vice versa. Thus, several configurations of the two-

port network can be considered where the three main categories are active/active,

active/passive, and passive/active input/output. For the active input port, electric

current or voltage is applied and for the passive output port, electric current or voltage

is measured. This leads to eight different configurations of the two-port model can be

considered, shown in Fig. 2.3. However, in the EAC, active input and passive output

ports are always considered, which indicates that the input port is not affected by

the output port. Therefore, only four modes of operation are considered. These

four possible modes that the EAC can be operated in are current gain, voltage gain,

resistance, and conductance mode.

The EAC is capable of working in as many as four different two-port networks

where no electric current or voltage are applied at the output port. These config-

urations are shown in Fig. 2.4. In the current gain mode, both input sources and

output measurements are electric currents. This leads to high input impedance, but

low output impedance. Therefore, when more output measurements are introduced

to the system, potential manifold is altered. This mode was explored by Mills et

al. for different applications such as protein folding and machine learning techniques.

In the voltage gain mode, both inputs and outputs are voltages. This leads to low
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Fig. 2.3. Schematics of all possible two-port model configurations. The
four highlighted schematics (two input and two output ports) represent
the four possible combinations of active input / passive output modes of
operation that the EAC can be configured into.

input impedance, but high output impedance. In this case, the manifold is modified

and current sources are not independent of each other. Unlike the other modes, high

input and output impedances occur in the resistance mode where input sources are

currents and output measurements are voltages. In this case, all inputs and outputs

are independent of each other. In the opposite case, both inputs and outputs are not

independent of each other in the conductance mode, where input sources are voltages

and outputs are currents.

The EAC conceptualized by Mills et al. was originally defined as a current gain

device, where the inputs were current sources and the outputs were current sinks [26].

The locations of these current sources and sinks alter the current density manifold

in the volume conductor. Then, specific partial differential equations can be solved

by arranging the source/sink locations. However, when more inputs or outputs are

introduced to the volume conductor, the current density in the volume conductor

is no longer stationary. Additionally, the magnitude of input currents changes the

current density manifold in the volume conductor. Thus, the manifold itself is not
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Fig. 2.4. Schematics of the four different modes of operation of the EAC:
current gain, voltage gain, resistance gain, and conductance mode.

stable, changing PDE solutions depending upon the relative input magnitudes. So,

for time varying inputs, this mode does not result in a stable solution manifold. The

same situation is true in the voltage gain mode where both inputs and outputs of the

system are voltages.

In contrast, in the case of the resistance mode, the current source and voltage mea-

surement are defined to have infinite output impedance and infinite input impedance,

respectively. Consequently, the potential distribution created by current sources in

the conductive space are independent of each other. Thus, the manifold changes

as the sum of the solutions of each individual input. Thus, additional inputs only

add complexity to the mathematical expression without influencing the other inputs.

Moreover, additional voltage detection measurements do not alter the potential man-

ifold. Similarly, additional inputs do not influence other inputs in the conductance

mode where inputs are represented by voltages and outputs are represented by elec-

tric currents. Measuring voltages however is more suitable than measuring electric

currents.

Therefore, in the resistance mode, it is possible to take advantage of the indepen-

dence of measurement and additional input source. The principle of superposition can

be applied in the resistance mode simplifying the analysis of the potential distribution

in the manifold space.
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2.1.1 The EAC in the Resistance Mode

Potential manifold is mapped onto a conductive medium when a current source

is injected into it as long as there is at least one sink point to allow current path in

the medium. Source/sink pair locations alter the potential distribution in the volume

conductor, along with the boundary conditions imposed at the extent of the medium.

The homogeneous resistive volume conductor can be thought of as a fully connected

3-D lattice of resistors. An equivalent to the volume conductor in 1-D is the resistive

network, which has been used as part of an Analog Computer, and currently is used in

various high speed mathematical applications. An example of this is an R-2R ladder

circuit which is made of repeated network of resistors, which is used to perform flash

digital to analog conversion, as shown in Fig. 2.5.

a0 a1 a2 a(n-1)

VoutR R R

2R 2R 2R 2R

Fig. 2.5. A schematic of an n-bit R-2R resistor ladder circuit.

The EAC can be thought of as an extension of this 1-D case to the 3-D case,

where the potential distribution that develops in the space is used to solve 2 or

even 3-D solutions of PDEs. To understand what the EAC manifold can solve, it is

necessary to understand how the distribution of current densities and potentials form

in the space and how boundaries, source/sink location and geometries influence the

potential manifold. Finite element simulation of the EAC manifold was used in this

thesis as a means to explore how different conductive media and their configurations

influenced the EAC manifold. The foundations of the FEM technique and analog
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simulations of a conductive space as they relate to analog computing are described

in [27]. These will be described in the next section.

2.2 Early Work in Analogue Computing and the Resistance Network

Analogue computing devices were proposed prior to the 19th century to solve

mathematical problems defined by geometric relationships [28]. The development of

the first direct electrical analogue techniques such as the electrolytic tank and the

conducting paper were designed to perform computations in the solution of boundary

value problems and operate on a principal known as field analogy. In the 1870s, the

British scientist, William Adams, published the description and use of the electrolytic

tank solving field equations [29] [30]. The apparatus is an analogue model of the

electric field distribution in dielectrics and consisted of a wooden tank containing a

conductive solution (water), two fixed metal electrodes, and two mobile electrodes

[31]. The German physicist, Gustav Robert Kirchhoff, used a conductive sheet of

copper to explore the potential distribution in an electric field [27]. The conductive

sheet works as a three-dimensional series of resistors (resistance network) as explained

later.

The foundation of analog simulations by a conductive space that is represented by

a resistance network was explored by Karplus [27]. DePackh and Redshaw presented

their first published reports of successful solutions of Laplaces and Poissons equation

by the resistance network technique [32] [33]. The field is distributed in a continuous

manner throughout the conductive material; therefore, finite-difference approximation

was employed to understand the underlying equations of potential distribution in the

conductive space. If we considered a one-dimensional continuous conductive system

(Fig. 2.6A), then the field can be mathematically discretized by a series of network

resistors (Fig. 2.6B) that replaces the continuous system. Then, finite-difference

approximation is applied to determine the governing equation (Fig. 2.6C).



17

x1 x2 x3 x4

x

0 X
x

2 1
R1R2

i

0

(A) (B) (C)

Fig. 2.6. (A) One-dimensional continuous conductive system. (B) Dis-
cretized equivalent representation of (A). (C) differential element approx-
imation.

As shown in Fig. 2.6, the wire has been replaced by n (3) resistors. Then, x

coordinate is specified as discrete steps x1, x2, · · · . If the resistivity of the wire is ρ

ohms per unit length and the spacing between the resistor nodes is ∆x, each resistor

must have a value of ρ ∆x ohms. According to the continuity principal, the current

passing through the resistors R1, R2, and nodes 0, 1, and 2 (see Fig. 2.6C) are the

same. And according to Kirchhoffs current law where R1 and R2 are equal

V1 − 2V0 + V2 = 0 (2.1)

This equation is the finite-difference approximation of the one-dimensional partial

differential equation (Laplace’s equation)

∂2V

∂x2
= 0 (2.2)

Subsequently, the three-dimensional conductive space is the discretized approxima-

tion of the Laplace’s equation in three-dimensions and represented by the following

equation

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0 (2.3)

The solution of field problems by means of resistance networks was described by

Karplus in the 1950s by the following points [27]. The field is modeled as a network
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of large number of electrical resistors where all resistors have the same value in case

of homogeneous isotropic conductive space, as shown in Fig. 2.7. The voltage or

current sources are then applied to the resistance network at its external boundaries

and the interior nodes. The potential distribution is then determined by measuring

and recording the voltage at each node of the network. The equipotential lines and

streamlines are then sketched by interpolating between points of measured potential.

Accurate and precise solution is achieved with a higher density of resistors per unit

volume. Finer net spacing is sometimes necessary in cases where a more accurate

solution on the conductive space is needed and can be specially applied in the portions

of the field in which the potential undergoes sharp variations. Therefore, diagonal

nets are also considered so that every node is connected to all adjacent nodes in the

cube block.

Finite difference is a numeric method that aims to approximate a solution to

differential equations using finite different equations to approximate derivatives. Fi-

nite element is an equivalent method of finite difference, however, it approximates

the solution of differential equations using integration and linear algebra techniques.

Presently, the finite element method has become the most common modeling numer-

ical technique in engineering. The power of the finite element modeling arises when

considering complex geometries where the finite difference method becomes harder

to implement and its demands of computational power increases. Therefore, a finite

element method modeling package, COMSOL Multiphysics, was used in this thesis,

where the meshing size is proportional to the density of resistor components per unit

volume.
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Fig. 2.7. Conductive space is modeled and approximated by a network of
resistors that are fully connected where larger density of resistor compo-
nents (less meshing size) gives more accurate potential distribution.

2.3 The Effect of the Neumann and Dirichlet Boundary Conditions

To understand the distribution of the potential manifold and the influences of

boundaries, begin the analysis with a simple case of a dipole source/sink pair in

a uniform, conducting volume, bounded by an insulator. This simple case is used

since a known analytical solution exists, and Finite Element Model analyses which

are conducted later for more constrained realistic volumes can be validated with the

analytical solution. In this simple case (see Fig. 2.8) several observations can be

made.

The current injection and sink points can be clearly seen as the red and blue

points on the right and left half of the space, respectively. Two perpendicular lines of

symmetry can be described. In one case, a line can be described bisecting the space

into top and bottom (Fig. 2.8B). Likewise, another line can be described splitting

the space into left and right sides (Fig. 2.8C).

In the case shown in Fig. 2.8B, the bottom and top sub-spaces are identical mirror

images of one another. One can also observe that the current path is parallel to the

horizontal symmetry line that passes through the source/sink pair. The horizontal

symmetry line defines a mirror plane. Since the potential distribution at the top and
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Fig. 2.8. (A) Potential distribution in a conductive medium due to a cur-
rent source (right) and current sink (left) at which there are two symmetry
lines. (B) The Potential distribution and current density of the bottom
side of the horizontal symmetry line is a mirror image of the top. (C)
The Potential distribution of the left side of the vertical symmetry line
is an inverted mirror image of the right. (D) a quarter of the medium
that represents the driven solution that is achieved by replacing the hori-
zontal line by an insulated boundary (Neumann boundary condition) and
the vertical symmetry line by a grounded boundary (Dirichlet boundary
condition).

bottom sides are identical, only one side would give the desired solution. Therefore,

an insulated boundary is applied at the symmetry line location so that half current

magnitude and space volume are achieved. The insulated boundary condition reflects
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the potential, and the current density flows parallel to it. This type of boundary is

defined as a Neumann boundary condition [34] and is mathematically denoted with

the following equation:

n · ∇ J
∣∣
Ω

= 0 (2.4)

where n is the outward normal vector of the boundary Ω and J is the current density

which is zero in the normal direction.

In the case shown in Fig. 2.8C, the left and right sides are inverted mirror images

of one another. The vertical symmetry line defines a zero potential in case of equal

source/sink values where the current path is perpendicular to that line. Therefore,

only one of these sides gives the expected solution of all the medium. Thus, it was de-

cided to reduce to half the area of this medium and ground the boundary at which the

potential distribution and current density remain the same. The grounded boundary

in this case can be mathematically modeled as a Dirichlet boundary condition which

is the boundary condition at which the potential value is zero and current density

flows perpendicular or normal to this boundary [34]. Mathematically, the Dirichlet

boundary is denoted with the following equation:

φ|Ω = C (2.5)

where φ denotes the potential at the corresponding boundary Ω and C is a constant.

For a grounded boundary, φ|Ω = 0.

Therefore, modeling only a quarter of the medium gives the expected solution that

is given at the whole medium with only half of the current magnitude. A grounded

boundary, Dirichlet boundary condition, is implemented to replace a current sink and

reduce the volume conductor by half. An insulated boundary, Neumann boundary

condition, reflects the current as a mirror plane as explained later. It is implemented

proximate to a current source to allow half the volume and half the current magnitude

as well.
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2.3.1 Analytical Solution of Potential Distribution

If we restrict the media to a homogeneous resistive volume conductor, the potential

distribution in the volume resulting from a point current source in the volume drops

as a function that is inversely proportional to the radius from the point source. Thus,

the potential manifold resulting from a point current source is described by a function

that is strictly related to the conductivity of the medium and inversely proportional to

the radius; the function has a radial basis [35]. This relationship can be analytically

described using the classical equations of electrostatics. Restated, if we consider a

point current source of magnitude I in a uniform conductive infinite medium with

conductivity of σ, equipotential (isopotential) lines must be uniformly circular where

current flow lines are perpendicular to them and directed radially [36]. For a spherical

medium with a radius of r, the current density J crossing this surface must be uniform

and estimated by

J = I/4πr2 (2.6)

From the field theory, it is known that the electric field E is related to potential φ by

E = −∇φ (2.7)

Also, by Ohm’s law

J = σE (2.8)

From Eq. 2.6, Eq. 2.7, and Eq. 2.8

I/4πr2 = −σ∇φ (2.9)

And by integration with respect to r considering that the medium is isotropic where

σx = σy = σz = σ, the potential field at r distance away from the current source can

be estimated by
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φ =
I

4πσr
(2.10)

where r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2, each monopole is located at (x, y, z),

and the field point is at (x′, y′, z′).

The potential distributions predicted by the analytical equations assume an in-

finite, uniform media with point sources. Differences in the source geometry, the

shape of the volume conductor, and the boundary conditions will have an effect on

the potential distribution, and thus the solutions given by the EAC. In these cases,

it is not easy to determine analytical expressions to determine the potential distribu-

tion analytically. Therefore, a finite element method (FEM) model was implemented

to analyze the behavior of the voltage manifold with different configurations. The

sensitivity of the potential distribution solution to real constraints, and the effect of

different irregular geometries were analyzed using the FEM technique. These mod-

els were implemented in Comsol Multiphysics 3.5a with the Conductive Media DC

module (COMSOL Inc., Burlington, MA).

2.4 Analytical vs. Empirical Solution

The analytical solution of the potential field is based on the assumption that the

medium is of infinite extent. This is practically not possible; however, grounded

boundaries, Dirichlet Boundaries, with COMSOL 3.5a provide accurate and accept-

able results in the first ∼ 90% of the distance between a centric current source and

the medium boundary while the current and potential distribution are distorted in

the other ∼ 10% due to the boundary conditions as shown in Fig. 2.9. In terms of the

boundary constriction zone about 10% at each grounded side of the medium should

not be used either for inputs nor detection points. This region is largely influenced by

the boundary conditions and defined as the zone near a source or sink electrode of a

current path [37] where the current density or potential distribution is dictated by the

boundary condition. Fig. 2.10 shows a schematic of a conductive medium with 10%
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restricted zone from the grounded boundaries. Equipotential lines that are within

the restricted zone get distorted from the circular shape. The experimental results

were simulated using a finite element modeling software, COMSOL 3.5a. The EAC

computes based upon how the manifold changes as a function of the input sources. In

other words, the potential distribution near the sources and the ”near field” defines

the EAC solution set. The boundaries at the extent of the volume conductor only

serve as an approximation to an infinite volume conductor, a return path for the

currents injected, and an approximation of the ”far field”. To a large extent, they do

not enter into the computations that the EAC makes.
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Fig. 2.9. A comparison between the potential distribution from the ana-
lytical and empirical solutions for a current input source in a conductive
medium. The empirical solution was simulated with COMSOL 3.5a for a
centered current point source of 1 A in a spherical medium with a radius of
1 m and conductivity (isotropic) of 1 S/m at grounded boundaries state.
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Fig. 2.10. A schematic of potential distribution and equipotential lines on
a conductive medium with 10% restricted zone at all grounded edges that
is influenced by the grounded edges.

2.5 The Superposition Principle

The distance between the current source and the voltage detection point is a

major key in the EAC. As explained above, the reciprocal of the distance represents

the coupling between the input and the detections point. Moreover, multiple inputs

can be introduced to the medium and the potential at the detection point can be

predicted using the superposition principles. The superposition principles are valid in

the resistance and conductance mode, but not in the current or the voltage gain mode

where the source/sink inputs and outputs alter the current density. The potential at

the detection point is equivalent to the weighted sum which can be calculated by

φ =
1

4πσ

N∑
i=1

Ii
ri

(2.11)

where σ is the medium conductivity, Ii is the injected current at current source i,

ri is the distance between the source i and detection point, and N is the number of

current inputs.
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Fig. 2.11. A grounded boundaries conductive medium with four different
point current sources at different locations and one potential detection
point.

Fig. 2.11 shows an example of four current inputs in a conductive medium and

one detection site. The potential in this case can be calculated by

φ =
1

4πσ
(
I1

r1

+
I2

r2

+
I3

r3

+
I4

r4

) (2.12)

Moreover, multiple voltage sensors can be defined at which the potentials (coupling

weights) are independent and would be calculated instantaneously.

2.6 Insulated Boundaries as Reflectors

The potential in a conductive medium due to a point current source is proportional

to the current magnitude and inversely proportional to the medium conductivity, as

determined from Eq. 2.10. It is critical to have a wide range of potential measure-

ment values and large magnitudes in order to distinguish output shapes and acquire

better resolution. This can be done by either reducing the medium conductivity or
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increasing the current input magnitudes. Reducing the medium conductivity may

increase the chance of error in the contact between the pin source and the medium

due to the porosity increase. Thus, increasing the current magnitude would be a

suitable solution.

The input current source is driven by voltage controlled current circuits which

requires relevant power magnitude. Therefore, power dissipation may be a concern,

because low power is desired to be maintained. The insulated boundary is the best

solution to increase current magnitude and decrease the conductive medium size as

well. It is known that an insulated boundary, a Neumann boundary state, work as a

mirror wall and the reflection of the medium is considered its extension.

For a cubic volume conductor, orthogonal planes on the X, Y , and Z axes bisect

the space symmetrically. If each of these planes is defined as an insulator, the required

volume of electrically conductive material is reduced without changing the current

density or potential distribution in the medium. Moreover, not only is the potential

magnitude multiplied and amplified in the cut medium but also a no constricting zone

is assigned to the insulated boundary. The insulated boundary reflects the electrical

current back to the conductive medium and so the potential increases, as shown in

Fig. 2.12. Thus, when an input current source is positioned proximate to an insulated

side, the potential magnitude range in a medium is doubled. Due to the symmetry

of the bisected volume, the potential measurement at a corner of the conductive

material cube is effectively unchanged from a potential measurement located at the

center of a cubic volume that is eight times larger than the conductive cube. Three

electrically insulated sides joined at a corner effectively increase the sensitivity of

a voltage sensor positioned at the corner by a factor of eight. Therefore, the need

to amplify the input signals is reduced and the electrically conductive material can

occupy a smaller volume. Consequently, the EAC consumes less electrical energy

during operation, while occupying less volume.
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Fig. 2.12. Reflections of an electrical signal from electrically insulated
sides of an electrically conductive material. (A) A centered current source
in 1 cubic meter medium with grounded boundaries. (B) A current source
proximate to an insulated boundary in 0.5 × 1 × 1 m medium. (C) A
current source proximate to two electrically insulated boundaries in 0.5
× 0.5 × 1 m medium. The medium in the three cases is isotropic with
conductivity of 1 S/m, where the current magnitude is 1 A. These results
were simulated by COMSOL 3.5a.
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2.7 Effect of the Shape of the Current Source

2.7.1 Point Source vs. Line Source

Shapes of current sources may affect the potential distribution in the volume

conductor of the EAC. Thus, different shapes of current sources were considered and

analyzed. Point current source is the simplest source configuration, in which current

is emitted in all radial directions with the same current density. In practice, point

sources do not exist because they have zero volume and zero surface area; however,

spherical sources have the same current density characteristics as point sources. Line

sources behave differently from point sources. They emit currents only in the radial

direction normal to the line source, as shown in Fig. 2.13. They do not exist because

they have zero volume and zero surface area; however, cylindrical sources have the

same current density characteristics as line sources as they emit current normal to

the cylinder surface.

Top View

Point Source Line Source

Fig. 2.13. A schematic of point current source vs. line current source.
Point source emits current radially in all directions (left). Line current
source emits current in radial directions normal to the line source (right).
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Due to the difference in current densities and directions, the potential distribution

is also different as shown in Fig. 2.14. In the point source case, equipotential (isopo-

tential) lines are circular until they reach to the restricted zone where they become

rounded rectangular. In contrast, in the line source case, equipotential (isopotential)

lines are rounded rectangular in all planes that are perpendicular to the line source.

Fig. 2.14. Potential distribution as a result of a point current source vs.
line current source. (A) Potential distribution at the top boundary plane
that includes the current source when injecting current of 1 A with a point
current source in an isotropic 1 cubic meter medium with conductivity
of 1 S/m. (B) Potential distribution at the top boundary plane when
injecting current of 1 A with a line source in the same conductive material
characteristics as in (A).
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2.7.2 The Disc Source

Spherical sources are not easy to design and manufacture. Disc sources, however,

are easy to manufacture and commonly used in various applications. The analytical

solution of the potential distribution as a result of a disc-shaped current source is not

easy to obtain because of the difficulties in finding the current density and direction.

The potential distribution is not the same in all directions as in the case of spherical

source. The disc sources (electrode pins), however, would be placed adjacent to each

other in the EAC, as shown in Fig. 2.15, so that the distribution in only the horizontal

(xy) plane is the point of interest.

Disc Current Sources

Insulated Boundary

x
y

z

Disc Shape

Fig. 2.15. Disc source orientation in the EAC conductive medium.

Using COMSOL 3.5a, potential distribution due to the disc source in the xy plane

was determined and compared to the potential distribution due to the sphere source.

The potential distributions appeared to be identical, as shown in Fig. 2.16. Therefore,

disc sources can replace sphere sources in the EAC where all analysis done on the

sphere source is valid for disc sources.



32

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

10
Sphere Source
Disc Source

10
−20

10
−10

10
0

10
10

Distance (cm)

P
ot

en
tia

l (
V

)

10
0

10
1

10
2
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of 1 S/m at grounded boundary state. In both cases, the current source
magnitude was 1 A.
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3. EAC OPERATING ON FUNCTIONS OF TIME

3.1 Time Domain and Linear Filters

The EAC not only works in a spatial manner to perform mathematical operations

as explained above, but it can also work in a temporal manner to perform functions

such as signal filtering and solving linear time-invariant systems if a means can be

devised to represent time on the manifold. In other words, functions of time can be

processed if one of the spatial dimensions in the EAC medium is mapped to time.

Sample-and-hold circuit is used to allow practical mapping of continuous time to

space. It samples the analog input signal to quantized time intervals [38]. Calculations

are then performed on the sampled-time signal to implement a tapped analog delay

line filter that solves arbitrary FIR filter. The EAC takes on the appearance of a

tapped delay line filter, but where the weights are defined by the sensitivity weights

of the sources.

3.2 Finite Impulse Response (FIR) and Infinite Impulse Response (IIR)

Filters

FIR filters, also called moving average (MA) filters, are always stable because

they only perform calculations on present and finite delayed samples of the input [39].

The output of the FIR filter is a weighted sum of the present and a finite number of

previous input values solving the equation

y(n) =
M∑
i=0

bix(n− i) (3.1)

where y(n) is the output filtered signal at time n, bi are a set of M weight factors

for an order M filter, and x(n − i) represents the time signal x(n) at the present
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time and for each 1 · · ·M discrete time increments in the past. Filter weights, bi, are

critical characteristic that discriminate an FIR filter from another. These weights are

inversely proportional to the distance from the sources taps to the detection point

(output).

IIR filters, however, are not necessarily stable because they perform calculations on

the output delayed samples (feedback) [39]. These filters are also called autoregressive

(AR) filters. The output of the IIR filter can be calculated by the equation

y(n) =
N∑
j=1

−ajy(n− j) (3.2)

where y(n) is the output filtered signal at time n, aj are a set of N weight values,

filter coefficients, for the output delayed samples y(n− j), where N is the filter order.

IIR filters are usually replaced by a combination of FIR and IIR filters where

the computations include time-delayed inputs and outputs which are called FIR-IIR

or autoregressive moving average filters (ARMA). The performed equation of the

FIR-IIR filter is as follows

y(n) =
M∑
i=0

bix(n− i) +
N∑
j=1

−ajy(n− j) (3.3)

where y(n) is the output filtered signal at time n, bi are a set of M weight values,

feedforward filter coefficients, for the input present and delayed samples x(n − i),

where M is feedforward filter order, aj are a set of N weight values, feedback filter

coefficients, for the output delayed samples y(n − j), where N is the feedback filter

order. M and N are usually the same where they denote the filter order. Fig. 3.2

shows a block diagram of the FIR-IIR filter. The EAC can perform these calculations

by recursion which can be presented in one sheet where an output of a sheet is wired to

an input on the same sheet. This would allow implementing infinite impulse response

(IIR) filters where the output is accumulated to allow infinite memory storage.
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EAC
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b0
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bM
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Z-1

-a1

-a2

-aN

Fig. 3.1. A block diagram of FIR-IIR and calculations done by the EAC.

3.3 Prior Art of Analog FIR Filters

The tapped analog delay line (TAD) filter is a means to implement filtering or

calculations of solutions to ordinary differential equations using analog circuits. Real-

time filtering with TAD was first introduced by N. Wiener during the 1940s [40] and

successfully applied in various applications such as automatic equalization for digital

communication [41]. TAD-N is a device that stores the N most recent input signal

samples so that there are N independent delay lines, which are loaded and clocked

simultaneously [42]. These taps are then multiplied by the corresponding weights of

the desired FIR filter. Physically, this is done by wiring each of the TAD-N outputs

by a resistor with resistance values proportional to the reciprocal of the FIR filter

weight. An operational amplifier is then implemented to sum all the outputs to give

the filtered output.
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Fig. 3.2. A schematic of a tapped analog delay line (TAD) transversal
filter. TAD-N is used to store the N most recent input signal samples and
then the weighted sum of these weights are calculated with a summing
amplifier.

In the resistance mode, the EAC works as a multiplier and an integrator. As

discussed above, the EAC medium works as a series of resistors in three-dimensions

and a summer as well. Therefore, the outputs of the TAD can be simply wired to

different locations on the EAC where the distances between the TAD outputs and

the detection point are inversely proportional to the FIR filter weights. The voltage

value of the detection point represents the filtered signal. As such, the EAC can be

configured as a discrete-time finite impulse response (FIR) filter using a tapped delay

line transversal filter. Architecturally, the complementary configuration for recursion

could be applied to the EAC to a discrete-time infinite impulse response (IIR) filter.

The combination of the FIR-IIR, thus would enable the EAC to calculate solutions

to arbitrary N th order transfer functions.
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3.4 The Reciprocity Theorem

We observed that the resistance mode EAC works identically to how an electrode

picks up potentials from a myelinated nerve fiber. The nodes of Ranvier on the

myelinated nerve fibers are modeled as discrete current sources. The current source

waveform jumps from one node to another, where the traveling wavefront and wave-

form is the summed action current from the channels at each node. They travel with

a time delay, which is related to the conduction velocity of the SFAP, as it travels

down the nerve fiber [5] [43]. This looks a lot like what the EAC does. Reciprocity

theorem was used to simplify the calculations in order to analyze how the electrode

picks up activity from myelinated nerves [5]. The weight space remains constant for

every electrode pickup point. So, the extracellular SFAPs from arbitrary fibers can be

simulated as long as the path of the fiber and its conduction velocity is known. This

function turns out to be identical to that of the EAC using a tapped delay line. So,

this theorem was adapted to analyze how to place sources and sinks in the conductive

medium to generate the appropriate weights for the desired filter.

The reciprocity theorem is the bases of the lead field theory in a volume conductor

to evaluate measured signals in terms of their sources [36]. The principle of reciprocity

was first introduced by Hermann von Helmholtz over 150 years ago to solve various

problems in bioelectromagnetism [44]. The theorem demonstrates that the source

and measurement locations can be swapped without any change in the signal. This

means that for a measurement site and specific pattern of current sources locations

in a conductive medium is the same if the detection site becomes a current source

and current sources become detection points. This is a very important concept for

bioelectromagnetic problems. This theorem was used to analyze filter characteristics,

as explained later.
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3.4.1 Time-Space Relationship

The spatial configuration of the input pins around a given potential detection site

affects the operation of the FIR filter. The distance between the input pins from each

of the input taps, however, does not affect the operation of the filter. Previous work

showed the link between the spatial frequency domain and time frequency domain

relationship [5] [43] [45] . The function for the filter can be represented in a time-space

relationship based upon the reciprocity theorem with the following equation

V (jω) = (
1

fs
)W (

jω

fs
)I(jω) (3.4)

Where V (jω) is a frequency-domain representation of the output signal, fs is the

sampling frequency of the input signal, W (jω) is the frequency-domain representation

of the weighting function that is inversely linearly scaled by the inverse of the sampling

rate, and I(jω) is the frequency-domain representation of the input current for each

tap in the filter. The weighting function W , is influenced by both the sampling rate

fs, and the locations of the inputs relative to the voltage sensor. This equation was

originally found for a similar situation to the Bessel filter architectural design on the

EAC. It was found for a single fiber action potential (SFAP) traveling through a

myelinated nerve fiber in a conductive medium.

3.5 The Bessel Filter

Like an electrode picking up a traveling point source in the tissue volume conduc-

tor, the filter function of a uniform conductive medium is a Bessel filter whose corner

frequency depends upon the speed of the point source and its distance from the detec-

tion point. A Bessel filter is an example of FIR filters that is linear with a reasonably

constant group delay [46]. In an isotropic medium with Neumann grounded boundary

state and conductivity of σ, an array of N+1 sources is initially defined, where N+1

is the filter order. These sources are distributed evenly-spaced in a straight line with

a perpendicular d distance away from the potential detection point, as shown in Fig.
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3.3. The input signal, x(n), is to be sampled by an analog sample-and-hold circuit

with a sampling rate of fs. The sample-and-hold buffers generate N of incrementally

time delayed versions of the input signal. For example, when the EAC is configured

as a filter with N + 1 taps, the EAC uses a total of N sample-and-hold buffers, one

for each of the N delayed signals.

Nominally, the time-delayed sources distribute to implement a low pass filter func-

tion which is dependent on the distance from the source and the voltage sensor d and

the sampling frequency fs. Filter characteristics such as cutoff frequency and phase

can be tuned by many factors such as medium conductivity, sampling frequency, and

space sampling interval. On one hand, as the detection point gets closer to the sources

array (x-direction), the cutoff frequency of the filter gets higher while the phase re-

mains the same. On the other hand, as the detection point is moved in parallel to

the sources array (y-direction) towards x(n−N) tap, the phase gets slightly delayed.

Thus, the system is considered non-causal with only a group time delay.

0b
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b

b

b

1

2

3

N

x(n)

x(n-1)

x(n-2)

x(n-3)

x(n-N)

d

+x

+y

Current Input
Voltage Sensor

Fig. 3.3. A schematic of Bessel filter configuration on the EAC. x(n) is the
input signal and bi are the filter weights which are inversely proportional
to the distance between the sources and the voltage sensor.
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3.5.1 Analytical Solution of the Bessel Filter

The Bessel filter function can be derived analytically. The function is equivalent

to the Fourier Transform of the weighting function, which is inversely proportional to

the distance between the sources and the detection point. Based on the reciprocity

theorem the weighting function can be determined by injecting current through the

detection site and measuring the potential at the current source sites. Then, the Fast

Fourier Transform of the weighting function gives the characteristics of the filter.

The charge potential distribution of a point current source in a homogeneous and

isotropic conductive medium can be determined by Eq. 2.10, where I is the current

source magnitude, σ is the conductivity value of the medium, and r =
√
x2 + y2 + z2

where the current source is located at (x, y, z) while the field point is at the origin.

At a horizontal 2D plane where z = 0, (xy plane), the potential distribution can be

estimated by the equation

φ =
I

4πσ
√

(x2 + y2
(3.5)

For an array of sources that lie on a straight line that is at a perpendicular d distance

from the current source, shown in Fig. 3.5, the potential distribution is as follows

φ =
I

4πσ
√

(d2 + y2
(3.6)

This potential distribution represents the weighting function of the filter. Therefore,

the spatial frequency response of the filter can be determined by applying the Fourier

Transform of the weights

φ(ω) =

∫ ∞
−∞

I

4πσ
√

(d2 + y2
e−2πiωydω (3.7)

where ω is the spatial frequency.

Using MATLAB 2009a (The MathWorks, Inc. Natick, MA), for symbolic integration,

the filter function becomes
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φ(ω) =
Ibesselk(0, |ω|d)

2πσ
(3.8)

where besselk(n,m) is the nth order modified Bessel function of the second type of

m. Fig. 3.5 shows the low-pass filter behavior for a various string of sources away

from the detection point as a function of the spatial frequency. The cutoff frequency

of the filter decreases as the distance between the source array and the voltage sensor

increases.
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y Time
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Fig. 3.4. Bessel filter analytical solution procedure. (A) shows the current
sources array in a straight line at a perpendicular distance d away from the
detection point. (B) shows the filter weighting function which is inversely
proportional to the distance between the sources and the detection point.
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Fig. 3.5. A representation of the analytical solution of the filter function at
different distances from the detection point where the blue-dashed curve
is the closest.

3.5.2 Bessel Filter with Different Shapes of Sources

As discussed above, the shapes of the current sources may induce different po-

tential distribution in the medium. Subsequently, the weighing functions of the FIR

filter due to different sources shapes are different. Therefore, the Bessel filter be-

havior was analyzed with three most common sources shapes: spherical, cylindrical,

and disc. The filter gains are shown in Fig. 3.6. Spherical and disc sources show a

wide range of cutoff frequencies with different distances that match the driven Bessel

filter analytical solution. However, cut-off frequencies range for the Bessel filter due

to cylindrical sources is narrow. Since disc sources are easy to manufacture, they are

preferred in Bessel and FIR filter implementation in the EAC.
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Fig. 3.6. The filter gain with different sources shapes for various distances
between the sources and the detection point.

3.5.3 Filtering Demonstration

To demonstrate the Bessel filter effect, a two-dimensional arrangement of input

pins and voltage sensors that are configured to act as a Bessel filter, which is one

type of FIR filter. As shown in Fig. 3.7, a total of eight (8) input pins receive the

input signal which is the recent and seven (7) time-delayed current values. In a cubic

electrically conductive medium, two vertically adjacent boundaries were insulated

where the others were grounded. The most recent input sample of the signal x(n) is

supplied to an input pin proximate to the center of one of the insulated sides of the

conductive medium. The eight input pins are selected in a linear arrangement with

the time delay increasing by one time increment for each successive input pin. Three

voltage sensors were introduced where each of them is located at a constant distance

from the line of input pins along the x−axis. Each of the voltage sensors detects a

potential corresponding to the Bessel filtered output signal of the input signal x(n).
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Fig. 3.7. A schematic shows the Bessel filter configuration for filtering
demonstration. Family of filtered signals with different characteristics
was observed.
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Fig. 3.8. The filtering effect of a 60 sample sinusoidal current input with
white noise added. Voltage sensors at different sites show low pass filtered
signals with a group delay and slightly more delays as the detection site
gets closer to x(n) tap.
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The distribution of the voltage sensors from the center of the linear arrangement

of input pins generates a slight time-offset in the detected output signals y(n). Thus,

the voltage sensors detect a family of Bessel filtered signals in parallel. As shown in

Fig. 3.8, voltage sensors (Output1, Output2, and Output3) detect the filtered signal

with the smallest amount of time-offset in addition to the group delay compared to

the original input signal x(n). Consequently, the EAC can generate multiple filtered

output signals with different characteristics in parallel.

3.6 Implementing Arbitrary FIR Filter with the EAC

Any arbitrary FIR filter can be implemented on the EAC by allocating the ap-

propriate locations of the sources where their distances to the potential detection

point are inversely proportional to the filter weights. A grid pattern of pins would be

initially placed in the conductive medium to accept different weight-distances. The

input pins would be spaced apart equidistant from each other similarly to vertices

in a series of stacked cubes. But in order to find the exact locations of the sources

for accurate weight values, infinite resolution of input pins must be implemented. In

reality, this is not possible; however, large density of grid pins is preferred.

In alternative embodiments, the input pins can be arranged differently and not

necessarily spaced apart equally. For example, in a conductive medium with two

adjacent insulated boundaries in addition to the top and bottom boundaries, the

pins could be arranged in a plurality of radial lines extending outward from the

voltage sensors, as shown in Fig. 3.9. The input pins would be arranged in a denser

configuration near the voltage sensors, and spaced at increasingly greater intervals

as the distance from the voltage sensor increases. The arrangements of the input

pins and the voltage sensor are arranged in a two-dimensional configuration on the

conductive medium instead of the three-dimensional configuration. This architectural

design represents an FIR filter where the number of radial lines represents the filter

order, the number of pins in each radial line represents the bit resolution of the filter



46

weight values that can be implemented on the EAC, and the center of the circular

pins is the potential detection site which represents the output of the FIR filter y(n).

The pins in the radial line carry the same input current; however, each one of

them is controlled by a binary gate, as shown in Fig. 3.10. This is similar to an R-

2R Ladder circuit which is a simple circuit that consists of only resistors to perform

digital to analog conversion. Every weight value can be precisely adjusted by selecting

the appropriate combination from the array of the eight taps. These combinations of

values are summed be the EAC to represent an 8-bit value of the weight. Since the

potential distribution in a conductive medium due to a point current source follows a

rational function, the distance between the 8 radial pins must be doubled as getting

further from the detection point in order to match the power-of-two expansion where

each pin implies half the amplitude of the previous one to allow 28 possible weight

values. Thus, the displayed 8 pins can implement an 8-bit resolution of the filter

weight values. A greater number of input pins at varying distances from the voltage

sensor provide a higher resolution for selecting different weight values to improve the

performance of the FIR filter.

Input pin
Voltage Sensor
Insulated Boundary

x(n)

x(n-1)

.
.

.

x(n-9)

Fig. 3.9. A schematic of an FIR filter configuration to implement an
arbitrary 8-bit weight resolution, 10th order FIR filter.
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Fig. 3.10. A schematic of one input source shows the n-bit digital to
analog conversion with a binary gate for each pin. I0 is the input current
and r is the distance between pin1 and the detection point Vout.

3.7 Filter Weights

As described above, the weight value for each input tap varies with the distance

that separates the input pin and corresponding voltage sensor. The weight value is

always positive since it is inversely proportional to distance between the input pin

and the voltage sensor in the electrically conductive material. We can, however, take

advantage of multiple detection points and take the differential voltage measurement

to consider negative weight values. To consider a negative weight value, the EAC

measures two different charge potentials V1 and V2 using two of the voltage sensors

and a single input pin corresponding to the tap with the negative weight value. For

an input source that is at r1 and r2 distance from the detection points V1 and V2

respectively, as shown in Fig. 3.11, if r1 is larger than r2, the electrical coupling

weights between the source and the detection points become 1/r1 and 1/r2 respec-

tively, where 1/r1 is smaller than 1/r2. Thus, the differential measurement V1− V2 is

negative. Therefore, positive or negative filter weights can be implemented with the
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EAC using differential measurement of two voltages at two detection sites where the

weighting function W follows the equation

W (i) = k
( 1

r1(i)
− 1

r2(i)

)
, i = 1 · · ·N (3.9)

where i is the source tap number in N sources, r1(i) and r2(i) are the distances from

the source i and the voltage sensors V1 and V2 respectively, and k is a scaling factor

that is related to the conductivity of the sheet and the reflections due to insulated

boundaries in the medium.

Input pin
Voltage Sensor
Insulated Boundary

r1

2r

V1

V2

Fig. 3.11. A schematic of differential measurement procedure in the EAC.
Differential measurement implies positive and negative weight values as
desired.

The differential measurement response value is generally expressed in terms of

variables that are dependent upon time and position within the field [27]. There-

fore, it is defined as a dependent variable that is conveniently identified as a across

variable. The across variable relates the condition at one point and relates it to an-

other arbitrary reference point within the field. The measurements at two separated
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points is simultaneously recorded within the field and their difference is defined as the

differential potential difference or differential measurement. On the other hand, the

through variable is the same everywhere within the element and does not require spec-

ifying two measurement points. Mathematically speaking, the across variable is the

difference between two scalar potentials, while the through variable is a vector [27].

Using MATLAB 2009a, a computational algorithm was created to find random

x and y coordinates that correspond to the weighting function and satisfy Eq. 3.9.

For a weight value of b0, a random distance r1 is generated and r2 is then calculated

by Eq. 3.9. Using the law of sines and cosines given the dimensions of the medium,

x and y coordinate pair referenced to V2 sensor pin is calculated. This process is

repeated for all the weight values of the weighting function.

3.8 Family of Solutions

The EAC is a radical departure from the general-purpose digital computer and

derives its computational power by taking advantage of the intrinsic solutions to par-

tial differential equations represented by the creation of an analog voltage manifold

in space. Unlike current conventional digital signal processing or analog computing,

which sequentially solves one differential equation at a time, the EAC’s voltage man-

ifold forms to present families of solutions. For example, if a line of sources was

considered for inputs in a regular grid EAC, as shown in Fig. 3.12, a family of detec-

tion points can be defined at which they represent Bessel filtered signals with different

filter characteristics. Thus, the EAC is not only orders of magnitude faster, but it

also provides richer processed information than current computing techniques.
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Input pin
Voltage Sensor
Insulated Boundary

Fig. 3.12. Family of solutions can be detected simultaneously. Each volt-
age sensor represents a filtered signal with different filter characteristics.

3.9 Effect of Medium Thickness

The analytical solution of the Bessel filter function implemented on the EAC is

under the assumption that the medium is of infinite extent. Therefore, large cubic

electrical conductive medium gives a good approximation of potential distribution

of the analytical solution. Less thickness with insulated boundaries, however, mul-

tiplies potential in the medium due to the reflection that is caused by the insulated

boundaries. As the thickness of the medium gets lower, as more reflections occur.

Consequently, different filter characteristics are achieved. To analyze the difference

in filter characteristics with different medium depths, a centric point current source

of 1 A was injected in different isotropic media with top and bottom insulated bound-

aries and conductivity of 1 S/m with depths of 1, 0.5, 0.25, and 0.1 m, where the

other dimensions were kept fixed to 1 × 1 m. Then, the Fast Fourier Transforms of

the potential at midline of xy plane (filter weights) that includes the current source
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was calculated to give the filter gain characteristics, as shown in Fig. 3.13. It was

found that the spatial cutoff frequency value of the filter increases as the thickness

decreases.
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Fig. 3.13. Filters gain of Bessel filters implemented with different dimen-
sions of the electrically conductive material in the EAC as a function of
spatial frequency.

3.9.1 Compressing the Medium

In an alternative configuration, the electrically conductive material is formed with

non-uniform dimensions. For example, the height of the electrically conductive mate-

rial can be less than the length and the width of the electrically conductive material

to reduce the physical dimensions of the EAC. It’s desired to compress the medium

and still have a compressed version of the same potential distribution so that it can
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be designed as a small chip. When the dimensions of the electrically conductive

material are non-regular or nonuniform, the electrically conductive material can be

formed with anisotropic electrical conductivity instead of the isotropic conductivity

for a cubic shape. For example, when the height (Z), or thickness, of the electrically

conductive material is changed by a factor of t with reference to the width (X) and

length (Y ) of the material, then the electrically conductive material has three con-

ductivity values σx, σy, and σz for each of the X, Y , and Z axes, respectively. The

total conductivity matrix is defined with the following equation

σ =


σX 0 0

0 σY 0

0 0 σZ

→

σx/t 0 0

0 σy/t 0

0 0 tσz

 (3.10)

Fig. 3.14 shows COMSOL 3.5a simulations for three different medium thicknesses

(1, 0.5, and 0.2 m) where the conductivity matrix was adjusted using Eq. 3.10. The

potential distributions in the three media were the same, which shows the ability to

reduce the EAC medium thickness and still get the same potential distribution by

adjusting the medium conductivity.
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Fig. 3.14. A diagram of various dimensions and corresponding charge po-
tential distributions of an electrically conductive material with different
conductivity matrices. A current source of 1 A is placed in the mid inter-
section point of two insulated boundaries where the rest of the boundaries
were grounded.
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3.10 Arbitrary FIR-IIR Filter with the EAC

In contrast of finite impulse response (FIR) filters, infinite impulse response (IIR)

filters are linear filters that have an infinite memory length where the filter acts upon

the present and all past input samples. This is done by performing calculation using

combination of finite delayed samples of the input and output, as shown in the FIR-

IIR filter equation, Eq. 3.3.

For a 3rd order low-pass Butterworth IIR filter with feedforward coefficients, bi, of

0.0031, 0.0093, 0.0090, and 0.0031 and feedback coefficients, aj, of −2.4222, 1.9969,

and -0.5466, seven pin locations (x and y coordinates) in a conductive medium were

found so that Eq. 3.9 is met in the differential measurement mode where the first

four pins represent b0, b1, b2, and b3 and the other three pins represent −a1, −a2, and

−a3, as shown in Fig. 3.15. Then, the present and three prior delayed samples of the

input stored in sample-and-hold buffers were assigned to the feedforward coefficients

so that the performed equation calculated by the EAC of this part is the same for an

FIR filter

y(n)feedforward =
3∑
i=0

bix(n− i) = b0x(n)+b1x(n−1)+b2x(n−2)+b3x(n−3) (3.11)

The most recent three output voltage samples were also stored in buffers so that

they get recurred to the EAC medium to be involved in the next output calculations.

These three most recent output voltage values were to be converted to currents by

transconductance amplifiers and then injected to the feedback coefficient pins so that

the performed equation is

y(n)feedback =
3∑
j=1

−ajy(n− j) = −a1y(n− 1)− a2y(n− 2)− a3y(n− 3) (3.12)

where

y(n) = y(n)feedforward + y(n)feedback (3.13)
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Fig. 3.15. A schematic of FIR-IIR low-pass Butterworth filter configura-
tion implemented in the EAC.

One hundred samples of the impulse response of the system were determined

by injecting an impulse function as an input signal x(n) in the EAC configuration

described above which was implemented in COMSOL 3.5a. As shown in Fig. 3.16, the

impulse response of the EAC system was compared to the numeric impulse response

of the same system determined by MATLAB 2009a and the error was calculated for

every point to be less than 0.1%.

−0.05

0

0.05

0.1

0.15

Im
pu

ls
e 

R
es

po
ns

e

EAC (FEM)
Numeric

0 20 40 60 80 100
0

0.05

0.1

P
er

ce
nt

 E
rr

or
 (

%
)

Time Samples

Fig. 3.16. Impulse response by the EAC vs. the numeric solution.
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Furthermore, the Bode plot of the filter implemented by the EAC was determined

and compared to the numeric Bode plot, as shown in Fig. 3.17. They were found

to be virtually identical with little to no differences observed. This proves that an

FIR-IIR filter can be implemented on the EAC. Using this method of configuration,

any arbitrary linear transfer function can be implemented. The implementation is

only practically limited by some factors such as the packing density of the sites and

the number of sample-and-hold transconductance amps, and the bandwidth of the

sample-and-hold electronics. For example, for an N th order FIR, IIR, or a FIR-IIR

filter, N contact pins on the EAC and sample-and-hold buffers (2N for FIR-IIR) are

required. The number of pins is limited by the size of the pins (diameter) and the

dimensions of the conductive material. Moreover, sources and measurement points

should be placed outside the restricted zone (10% from grounded boundaries) and

relatively apart from each other. The order of the filter is also limited by the hardware

of the EAC by the number of sample-and-hold buffers in both the input sample-and-

hold circuit and the transconductance amps. The bandwidth of the sample-and-hold

electronics may also cause some limitations of the speed of the EAC device.
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Fig. 3.17. Bode plot of the FIR-IIR filter by the EAC vs. the numeric
solution.
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4. NEURAL SIGNAL PROCESSING WITH THE EAC

4.1 Introduction

A practical application of neural signal processing is detecting and identifying

single fiber action potential (SFAP) within the ENG stream data. Spike detection

and classification in a multiunit neural recording has been an active research area in

the past few decades, where many algorithms varying in complexity and performance

were analyzed and used. Classifying the SFAP spikes and the exact time index where

each spike occurred for each nerve single fiber would give sufficient information to

determine some biomedical parameters such as muscle length and joint angles. Spike

Multiunit ENG

Detection

Identification

Fig. 4.1. Spike sorting procedure. Detection aims to detect any SFAP
spike and identification aims to classify the detected signal based on their
waveform shapes.
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sorting can be divided into two major phases: detection and identification. Detection

aims to detect any SFAP spike within the multiunit ENG signal. However, identifica-

tion aims to separate spikes from different neurons based on their waveform shapes.

Fig. 4.1 shows an example of spike detection and identification.

4.1.1 Spike Detection

Spike detection is a necessary step for spike classification devices [47]. Many spike

detection algorithms have been described in the last few decades. Some of these algo-

rithms are absolute value threshold detection (ABS) [48], nonlinear energy operator

detection (NEO) [49], and matched-filter detection (MF) [50]. These methods are

usually followed by a thresholding system.

Absolute Value Threshold (ABS)

ABS is the simplest detection technique that works by applying either a single

threshold to detect one edge [51] of the raw data of the extracellular recording or a

pair of thresholds to detect both rising and falling spike edges [52]. The threshold

can be automatically set to

Thr = 4σN , where σN = median(
|x(n)|
0.6745

) (4.1)

where x(n) is input waveform and σN is an estimate of the standard deviation of the

noise [48].

Energy Operator Detection (NEO)

NEO, also called Teager Energy Operator (TEO), results in a nonlinear approach

by estimating the square of the instantaneous product of amplitude and frequency of

a sufficiently sampled signal [53] as described in the following equation
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ψ[x(n)] = x2(n)− x(n+ 1) · x(n− 1) (4.2)

The system considers detection when the frequency and power are large. In this case,

the threshold value can be automatically set to

Thr =
8

N

N∑
n=1

ψ[x(n)] (4.3)

where N is the number of samples in the signal window.

Since this method is a non-linear approach, another effective neural signal pro-

cessing demonstrator application was implemented as part of this thesis, the Matched

Filter.

Matched Filter (MF)

The matched filter, type of FIR filter, is a basic correlator for detecting the pres-

ence of known wavelet template at the end of the reception of the signal in an un-

known signal that contaminated with noise. This is obtained by cross-correlating the

template wavelet with the unknown signal. This is performed by solving the equation

y(n) =
M∑
i=0

bix(n− i) (4.4)

where bi are a set of M weight values of the matched filter for an order M filter,

and x(n− i) represents the time signal x(n) at the present time and for each 1 · · ·M

discrete time increments in the past. y(n) is the output filtered signal at time n,

which its normalized output to the largest amplitude is ranged from -1 to 1 where -1,

0, and 1 indicate that the template and the unknown signal are inversely correlated,

uncorrelated, and perfectly correlated respectively. The matched filter results can be

obtained by averaging the expected shapes of the spike wavelets and use it as the

weights of the filter. Not like other methods, the matched filter detector requires

knowing the template beforehand. This detector can also work as a spike identifier

as explained later.
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A study concluded that NEO is slightly more effective than ABS in terms of

computational complexity, but higher in cost [54]. Another study showed that the

matched filter detection is as effective and accurate as ABS and NEO, but it is more

complex [55]. when implemented using a DSP. In contrast, a matched filter can be

readily implemented on the EAC to work not just as a detector, but as an identifier

as explained later.

4.1.2 Spike Identification

The spike detection is then followed by the second phase of spike sorting that

is divided into two major parts: feature extraction and clustering. Not like some

detection algorithms, in most of identification approaches shape of spikes must be

known beforehand. Several sorting algorithms were analyzed and used in the past

few decades. Some of the most known identification algorithms are principal compo-

nent analysis (PCA) [56] [57] and discrete wavelet transform (DWT) [48], for feature

extraction, and fuzzy c-means (FCM) [58], the most accurate out of all clustering

methods tried [59], for clustering approaches. Additionally, more methods were ex-

plored in the literature for spike identification such as neural networks (NN) [60] and

matched filters. Not only the matched filter is a good detection approach as discussed

before, but it is used for spike identification as well as discussed in this chapter.

Principal Component Analysis (PCA)

PCA was invented in 1901 by Karl Pearson [61]. PCA algorithm is a common

technique for finding patterns in data based on eigenvalue decomposition that is

usually done off-line. It performs a rotation of the data to maximize the variance

of projection along each component. This is done by finding the orthogonal basis

waveforms, where the waveform is linear combination of these bases. Then, only a

few sets of these weights (PC), which have largest variations, usually two or three,
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are considered for the clustering phase. Each spike is expressed as a series of PC

coefficients Ci

Ci =
N∑
n=1

PCi(n) · s(n) (4.5)

where s is the spike that consists of N samples and PCi is the ith PC.

Discrete Wavelet Transform (DWT)

DWT algorithm was first proposed by Alfred Haar [62]. It is a time-frequency

representation of the signal that is similar to the Fourier Transform, but it does not

only capture the frequency component of the signal, but it includes time locations as

well. The signal is mapped onto the two independent variables a (scale parameter)

and b (translation parameter) by performing convolution between the input signal

x(t) and the wavelet function described as follows

ψa,b(t) =
1√
|a|
ψ(
t− b
a

) (4.6)

This is done by passing the input signal by a bank of quadrature mirror filter. A

low-pass filter is first considered to extract the low frequency band which is called

the detailed coefficients and the remaining high-frequency band is called the approx-

imation coefficient. Same filter bank procedure is applied to detailed coefficients to

create as many bands as desired. Different threshold values are then considered for

each level of the detail coefficients to indicate different features for each spike. Clus-

tering method such as FCM is then implemented to sort the spikes based on the

extracted features.

Neural Network (NN)

Neural Networks are type of artificial computing intelligence that attempt to work

the way a human brain works. Neural Networks are composed of many neurons
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that cooperate to perform the desired function. In general, they are widely used in

classification, noise reduction, and prediction. Like a human brain, Neural Network

has the ability to learn and to be trained in order to do classify patterns [63]. Neural

networks consist of three types of neuron layers: input, hidden, and output. The

signal flow is from input to output units in a feed-forward direction. The output of

a neuron is a function of the weighted sum of the inputs plus a bias. Therefore, the

function of the entire neural network is simply the computation of the outputs of all

the neurons. Most of the activation function used is the sigmoid function which is

smooth and continuous to allow the derivative calculation which is not an option in

sign function [64].

The weights of the hidden and output neurons play the major role in the classifi-

cation process. These weights are calculated by training the Neural Network. Back-

propagation is the most common algorithm used to train and calculate the weights

of the network. This is basically done by running the network in the opposite signal

flow by injecting the training pattern’s target in order to generate and update the

weights for a large number of iterations to allow less mean squared error (MSE).

4.1.3 Detection and Identification System with the EAC

PCA was determined to be better than DWT in terms of classification accuracy,

but more computational complex [59]. Neural Network however was verified to per-

form slightly better than PCA [65]. But, it is very computational complex when

compared to other methods. Moreover, it not only requires knowing the templates

beforehand, but it also requires enormous training set for better recognition accu-

racy [64]. Chandra et al. reported that a trained neural network performed as well

as a matched filter for classifying non-overlapping action potentials.

Besides, the matched filter is an optimal spike detector method [66]; it is used

in the identification process. The matched filter, however, clusters only one unit

from the data stream. Thus, several matched filters (one for each spike) need to be
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implemented in order to cluster all spikes in the multiunit neural activity. Therefore,

a matched filter was implemented by the EAC to not just detect ENG spikes, but to

identify a target spike of the multiple units in the neural activity.

We hypothesize that the matched filter can be implemented in the EAC to ac-

curately detect SFAP spikes, their exact timing and class of each action potential

in the ENG neural activity. The matched filter by the EAC can effectively reject

background noise and outcome low exclusion and inclusion errors similarly to DSPs.

4.2 Methods

Two different approaches can be taken to evaluate the matched filter classification

technique and verify the stated hypothesis. One of these methods is passing an exper-

imental multiunit neural signal recording by the designed matched filter to determine

its performance; however, we are uncertain of the SFAP classes in the experimental

data. Therefore, another approach was taken which is creating an artificial signal by

superpositioning trains of four different spike classes, experimentally collected and

processed, shown in Fig. 4.2, and contaminating them with white noise of various

amplitudes that was experimentally collected as shown in Fig. 4.3. The four SFAP

templates were processed from raw data that was collected from a New Zealand white

rabbit by a Longitudinal Intra-Fascicular Electrode (LIFE).

Template 1 Template 2 Template 3 Template 4

Fig. 4.2. Four different action potential templates sampled at 48 kHz used
for a synthetic neural activity. Template 1 is the target unit which is the
weighting function of the matched filter.
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As discussed above, the voltage magnitude of the action potential represents the

weighting function of the matched filter. Template 1, shown in Fig. 4.2, was selected

to be the target unit that needs to be clustered in the multiunit neural activity.

Thus, the weights of the target unit were defined as the FIR filters weights. The

matched filter was designed in three different systems, DSP (MATLAB 2009a), FEM

simulation of the EAC (COMSOL 3.5a), and a modified physical prototype of the

EAC.

Template 1

Template 2

Template 3

Template 4

All templates together, no noise

All templates together with added background noise

50uV

100ms

Fig. 4.3. Steps of creating a synthetic neural activity. The top 4 traces
are the generated different action potential trains. The fifth trace is the
superposition of traces 1-4. In the bottom trace, archived background
noise is added to the generated action potential trains.
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4.2.1 Matched Filter Using a DSP

Using MATLAB 2009a, a Matched filter code was designed where the weights of

the filter were set to the 32-sample target action potential. The MATLAB code was

designed to first accept the entire input signal and the 32-sample weights. Then, a for-

loop was created to capture and sum the multiplication of every 32-sample window

of the entire signal and the constant weights. The output was monitored in each

iteration to represent the matched filter output. The synthesized neural multiunit

signal (see Fig. 4.3) was then passed and propagated to the designed code. The

output values were then normalized so that the maximum is 1. Next, a threshold

value of 0.5 was set so that any value greater than the threshold value indicates the

presence of the target action potential.

4.2.2 FEM Model of the Matched Filter on the EAC

The same matched filter system was also designed in the EAC using COMSOL and

a physical prototype of the EAC as well. As discussed above, the voltage magnitude

of the action potential characterizes the weighting function of the matched filter which

includes positive and negative values. Thus, differential measurement method is used

where two voltage sensors (V1 and V2), as shown in Fig. 4.4, were monitored at two

different corners of orthogonal insulated boundaries in a conductive medium. Then,

random appropriate locations of current inputs in the EAC were selected where the

weighing function satisfies Eq. 3.10.

Using COMSOL 3.5a and MATLAB 2009a server link, the target single unit sam-

ples values were injected as current sources and propagated through the defined lo-

cations and the differential measurement V1 − V2 was monitored. This output was

compared to the auto-correlation of the single unit to evaluate its accuracy and de-

termine the error.
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Fig. 4.4. Matched filter random configuration in the EAC for detecting
the displayed single unit.

4.2.3 Physical Prototype of The EAC Implementing a Matched Filter

It was also decided to go further and implement the matched filter system with

the physical prototype of the EAC. The matched filter configuration, shown in Fig.

4.4, was implemented in an 8-bit resolution prototype device, EAC R002 designed

by Bryce Himebaugh at Indiana University in 2005 [67]. Using a sheet of isotropic

conductive foam with conductivity of 0.1 S/m and dimensions of 11.5 × 11.5 ×

0.5 cm, one side (11.5 × 0.5 cm) was grounded using two catheter needles inserted

sideway opposite of each other and connected to a ground point. Then, 32 hypodermic

needles were injected and arranged in the foam, as shown in Fig. 4.4, to represent

the weighting function of the single unit template. The prototype EACs have only 25

pins, thus two EACs were used where the 32 input needles were connected to 25 pins

of one EAC and 7 pins to the other. Both devices were connected to a computer and a

Python code was created to accept two devices through USB terminals and propagate

the desired 32-points input signal through the configured needles. The EAC then
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injects the desired 32-points signal as electric currents. The differential measurement

V1−V2 was captured using the ultralow noise differential Amplifier (Axon Instruments

AI 402 x50). The reading was then passed to another amplifier (Cyber Amp 320) and

the differential measurement was monitored by a PC computer trough Mr. Kick Data

Acquisition system (Sensory-Motor Interaction, Aalborg, Denmark) with a sampling

frequency of 2 kHz and low-pass filter with cutoff frequency of 600 Hz. The setup

is shown in Fig. 4.5. The EAC was designed to inject or measure maximum current

or voltage of 200 µA and 5 V respectively for each pin. In this experiment, the

EACs were only used to inject a scaled version of input signal as currents where the

maximum value is 200 µA.

uEAC1

uEAC2

Conductive Foam

Differential Amplifier

Python

Mr. Kick

Amplifier

Fig. 4.5. Experiment setup to monitor the differential measurement of the
matched filter configuration.

An impulse of 200 µA was injected and propagated through the input pins to

measure the implemented weights of the matched filter which is the action poten-

tial single unit. The measured weights were compared to the predicted weights and

percent error of each of the measured weight value was calculated. The correlation

coefficient of the predicted and the measured weighting function was calculated to

indicate the goodness of fit and accuracy of the implemented weights. The 32-point
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target action potential unit was then injected and propagated through the 32 input

pins in the matched filter configuration system by the EAC prototype and compared

to the result driven by the COMSOL 3.5a of the same system.

Next, the synthesized raw neural activity, shown in Fig. 4.3, was passed through

the matched filter to identify the SFAP target unit that match the template (filter

weights) within the recordings. The matched filter results by the EAC prototype were

then compared to the results driven by the DSP computer simulations of the EAC in

order to evaluate its quality and detection accuracy.

Since background noise in neural signal is a major obstacle in the detection process,

the matched filter on the EAC was further tested with various signal-to-noise ratios

(SNR) of the single unit, where the noise component is peak-to-peak white noise.

4.3 Results

4.3.1 Matched Filter Using a DSP

The matched filter was able to identify the target single unit from the neural signal

record. The matched filter performed remarkably well, rejecting the background noise

and the lower frequency baseline oscillation while marking correctly of the instances

of the nerve activities. Normalizing the matched filter data, a threshold value of

approximately 0.5 was determined to achieve the best identification accuracy in terms

of exclusion and inclusion errors, as shown in Fig. 4.6. The exclusion error, also known

as type 1 error and false positive rate, is the probability that the system fails to detect

the input templates to the target template, where the inclusion error, also known as

type 2 error and false negative rate, is the probability that the system incorrectly

matches the input templates to the target template. In the designed system, the

exclusion error and inclusion errors were calculated to be approximately 0% and 1%,

respectively.
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Fig. 4.6. The frequency of action potential peaks in the matched filter
results. The target unit is well clustered and therefore the detection ac-
curacy is relatively high.
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Fig. 4.7. Matched filter detector/identifier of the target unit in the raw
ENG data (top) implemented with a DSP device (bottom). The right
traces are a blow up of a 100 ms region of the 1 s traces (left).
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4.3.2 FEM Model of the Matched Filter on the EAC

The output of injecting the target spike to the designed matched filter by the

EAC through FEM simulation gives the auto-correlation function. As shown in Fig.

4.8, the output was compared to the auto-correlation of the single unit determined

by MATLAB 2009a to evaluate its accuracy and determine the error. The output of

the EAC simulation by FEM model matched the auto-correlation function with some

error that is due to Finite Element meshing and input locations rounding error. The

goodness of fit correlation was calculated to be ∼ 0.9923.
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Fig. 4.8. The EAC matched filter output by COMSOL 3.5a vs. the auto-
correlation function of the purified target single unit.

It is now known that the matched filter is implemented correctly in FEM model

and equivalent to DSP in terms of quality and performance. Therefore, it was decided

to do further analysis and verification by implementing it with a physical prototype

of the EAC.
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4.3.3 Physical Prototype of the EAC Implementing a Matched Filter

The measured weights were compared to the predicted weights and percent error of

each of the measured weight value was calculated, shown in Fig. 4.9. The correlation

coefficient of the predicted and the measured weighting function was calculated to be

0.9837 where the maximum observed percent error of the weights was less than 5%.
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Fig. 4.9. Predicted weights implemented on the conductive foam vs. the
measured weights of the target spike single unit spike.

As shown in Fig. 4.10, the target action potential injected to the matched filter

system of the physical EAC prototype was compared to the FEM model of the same

system. High correlation was achieved by the physical EAC prototype, however, some

error was observed due to the error of the weighting function that is shown in Fig.

4.9.
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Fig. 4.10. Matched filter output resulted by FEM simulation vs. the
physical EAC prototype.

As shown in Fig. 4.11, the matched filter results by the EAC prototype were

equivalent to the results by the DSP computer simulations of the EAC, with a root

mean square error of only 1.4%. This proves that the EAC is a reliable device and its

quality is equivalent to the quality of DSPs. Even with various peak-to-peak white

noise amplitudes, high detection accuracy is achieved even with low SNR values, as

shown in Fig. 4.12.
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Fig. 4.11. Matched filter detector and identifier of the target unit of the
raw ENG data (top) implemented with a DSP device (middle) and with
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region of the 1 s traces (left). The quality of the matched filter by the
EAC is equivalent the quality of the same filter by a DSP device.



74

10
5.0
3.5
3.0
2.5
2.0
1.5
1.0
0.8
0.6

E
A

C
 M

at
ch

ed
 F

ilt
er

 (
O

ut
pu

t)

10
5.0
3.5
3.0
2.5
2.0
1.5
1.0
0.8
0.6

R
aw

 R
ec

or
di

ng
 (

In
pu

t)

SNR

1 ms

Fig. 4.12. The EAC matched filter output with different SNR values for
a single unit template.



75

5. DISCUSSION

Real-time neural signal processing requires enormous, parallel, and fast computations.

The EAC solves linear functions such as summation and multiplication effectively and

nearly instantaneously. As illustrated in the reanalysis chapter, the EAC works in

four different modes: current gain, voltage gain, resistance, and conductance mode,

where the resistance mode was fully analyzed in this thesis. In this mode, the EAC

volume conductor not only works as a summer for all inputs, but it also works as a

three-dimensional series of resistors, where the distance between the current input and

voltage detection point represents the reciprocal of the resistance value. This allows

solving any radial bases function to possibly work as an artificial neural network.

Additionally, many inputs can be injected simultaneously and parallel computations

are performed.

GPAC can only solve linear PDEs, however, EAC solves not only linear PDEs, but

also solves non-linear ones through LLAs that are somewhat similar to the digital logic

gates, but with only one input. The EAC has also the potential to work in various

neural signal processing applications such as principal component analysis and neural

networks. As noticed in Eq. 4.5, the PCA clustering technique consists of only

multiplication and summation, where the PCi is considered the weighting function of

an FIR filter. Using the same technique used in the matched filter, PCA can possibly

be implemented on the EAC. In the neural network case, the trained weights may

also be considered as the weighting function of an FIR filter to cluster the detected

spikes. However, multiple EAC sheets may be connected where each sheet represents a

single layer of the neural network. The training can be done using a digital computer

to determine the weights in both cases: principal component analysis and neural

network.
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Driving the analytical solutions of different irregular designs and configurations

on the EAC is a difficult task. Thus, FEM simulation becomes an important and

quick technique. In this thesis, FEM platform (COMSOL 3.5a) was used to analyze

the behavior of the voltage manifold in various configurations with different material

characteristics. Analytical solutions are not always practical solutions and thus some

assumptions and rules need to be set. For example, the analytical solution of potential

manifold due to a centroid current source is under the assumption that the volume

conductor is of infinite extent. Practically, this can only be achieved by grounding the

boundaries of a finite volume conductor. Therefore, a 10% restricted zone is defined

close to grounded boundaries where the actual solution does not perfectly match the

analytical solution.

Different shapes of current sources were also analyzed to achieve an optimized

shape that gives equivalent results to the analytical solution and is easy to manufac-

ture in the meantime. It was possible to increase the potential manifold magnitudes in

the volume conductor by insulating some boundaries. The insulated boundary works

as a mirror wall which reflects current path in the volume conductor and subsequently,

potential magnitude is doubled. The ability to compress the volume conductor and

not alter the potential manifold by adjusting the conductivity parameters of x, y, and

z direction was also shown.

A new approach was then developed to add a time component into the EAC so

that it cannot only solve spatial differential equations, but it can also work in the

time domain to work as temporal linear filters. In one configuration, the EAC imple-

ments any Finite Impulse Response (FIR) filter where the filter weights are inversely

proportional to the distance between input sources and the detection point in the

volume conductor. Examples of FIR filters were simulated by a prototype of the

EAC, Finite Element Modeling software, and DSP computer simulation. Equivalent

Results were achieved which proves the reliability of the EAC. Furthermore, an ad-

vanced configuration was shown to implement arbitrary FIR filter with positive 8-bit

filter weights.
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For lower order IIR systems, the EAC works well, because they are not very

sensitive to coefficients. However, high order IIR filters such as 3rd or 4th order, are

not so easy to be considered because of their greater sensitivity to their coefficients.

Since the coefficients are determined by position on the EAC media, the precision

in positioning of the source or observation point becomes critical. This limitation

becomes critical for orders of three or more. They are very sensitive because they

act on prior outputs. However, using COMSOL 3.5a, a 3rd order IIR Butterworth

filter was implemented on the EAC by converting the prior voltage measurements to

current sources and recursing it back to the EAC volume conductor. Like the FIR

filter configuration, the locations of the IIR filter tap sources and their distances to

the voltage sensor represent the weights of the filter. Negligible error was determined

when compared to a DSP simulation.

A major application in the neural signal processing field is detecting, identifying,

and clustering SFAPs within a multiunit neural signal activity to determine the action

potential rate in each nerve fiber in the nerve bundle in order to decode communication

information in the body. A common algorithm for this task is the matched filter which

gives the correlation value of the unknown real-time signal and the SFAP template.

Four different action potential templates were added to an archived one second of

realistic background neural activity noise. These four spikes were repeated 30, 40, 50,

and 60 times at random time indicies in the one second trace. Then, a matched filter

for one of the four spikes was designed and implemented by a computer simulation

(DSP), FEM simulation of the EAC, and a physical prototype of the EAC. Not only

high classification rate was accomplished, but equivalent results were also observed

when compared to each other.

Therefore, the EAC is not only equivalent to DSPs in terms of quality, but it

outperforms DSPs in many other areas such as power consumption, operational speed,

and ability of parallel computations to have a family of solutions simultaneously.

Therefore, the EAC is a novel technique that overcomes many obstacles in the signal

processing world. In the next few decades, the EAC might be developed in several
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forms to solve several signal processing problems that DSPs can not solve. Moreover,

the EAC has high potential to become an implantable device that can be used for

neural signal processing.

5.1 Future Directions

Any order FIR or IIR filter can be implemented with the EAC; however, the higher

the order of the filter, the more input taps needed and subsequently more power is

required to run the system. Therefore, more simulations need to be performed to

estimate the maximum filter order that can be considered for a low-power EAC.

Moreover, more power would increase the temperature of the volume conductor of

the EAC. Subsequently, the characteristics of the EAC volume conductor may not

still be homogeneous. Therefore, the output results could be contaminated with noise

which will affect the quality of the EAC.

Another idea to be considered is linking multiple EAC sheets to solve complex

differential equations. As discussed before, many transfer functions and linear dif-

ferential equations can be solved by the EAC. However, multiple EAC sheets can be

linked so that the output sheet can be wired to an input to the next sheet. Non-

linearities can be further added by recursion of outputs back onto the manifold sheet

through logic functions. This would allow solving very complicated ordinary differ-

ential equations and possibly linear algebra problems. Additionally, the conductive

medium can be shaped into irregular shapes to adapt it to specific problems. Ad-

ditionally, the volume conductor of the EAC has a major role in performing the

calculations. Material of the volume conductors can vary and liquid materials may

possibly be considered. Thus, further research would be considered to determine an

optimized material for the EAC.

Furthermore, particle swarm optimization (PSO) techniques can be applied for

machine learning techniques in the EAC. The change in location of sources and sinks

adjusts how the current distributes itself in the space, which comes as solutions to
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Poisson’s equation. Once configured, the solutions to the problems posed to the EAC

form nearly instantaneously, as soon as the current density distribution forms on the

conductive sheet.

While EACs can perform various tasks quickly, existing EAC designs have limita-

tions in the realm of signal processing, and more generally in the realm of processing

time varying input signals. For example, adaptive signal filtering is a common task in

signal processing where a filter changes dynamically to remove noise from an electro-

magnetic signal. Typically, the electromagnetic signal and the noise are time varying,

which is to say that the values of the input signals change over time. In a traditional

EAC, the time-varying input signals generate fluctuations in the electrical current

flowing between sources and drains within the conductive material of the EAC. Con-

sequently, the current density manifold within the EAC changes while the EAC is

generating the solution, resulting in an unstable output. Thus, traditional EACs are

often ineffective in processing time varying input signals, including adaptive filtering

applications. Consequently, improvements to EACs that enable processing of time

varying inputs would be beneficial.

Miniaturizing the EAC is also a major step that needs to be considered in order

to form it into an implantable device. A macro size of the EAC is preferred where a

sufficient number of input pins needs to be considered.

As discussed above, the EAC can work in four different modes of operation: cur-

rent gain, voltage gain, resistance, and conductance mode. The current gain mode

was explored previously explored by Mills et al. In this thesis, the resistance mode

was explored and some applications were implemented and validated. The two other

modes of operation may also by developed for signal processing tools and/or machine

learning applications. Therefore, more research is needed to address these modes and

potential applications that can be accomplished with them.
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5.2 Summary

The EAC can be configured to do multiple mathematical operations, such as

multiplication and integration, instantaneously in parallel in spatial or time domain.

This allows the EAC to be a multitasking neural signal processor that solves an

arbitrary linear differential equation. In the spatial domain, the potential manifold

by a current source is mapped onto the conductive medium of the EAC. Then, the

voltage sensor at any location in the medium becomes inversely related to the distance

between the source and the sensor. Since the current source input induces high input

impedance, superposition principals hold where multiple inputs can be present at

the same time without altering the manifold. In this case, the voltage value at any

location on the EAC indicates the weighted sum of the source values where the weights

are inversely proportional to the distances between the sources and the voltage sensor.

In the time domain, a sampled time signal is mapped to the distance axis of the

EAC as current sources so that the voltage sensor value corresponds to the weighted

sum of the input data samples. In other words, the voltage sensor represents the FIR

filter output where the inverse of the distances between the input sources and the

voltage sensor represents the weights of the filter. These weights can be tuned by

tuning the locations of input sources to implement the desired FIR filter.

Moreover, IIR filters can be implemented with the EAC by recursing the detected

output voltage back as a current input using a transconductance amplifier for next

sample calculations. In this case, the inverse of the distance between the recursed

value locations and the output of the IIR filter represents the feedback coefficients

of the filter. This would allow solving any linear differential equation by finding ap-

propriate locations of the feedforward and feedback coefficients. This concept was

validated by implementing FIR and IIR filters. It was further validated with a prac-

tical neural processing application, matched filter, for detecting and classifying SFAP

spikes within neural data stream. A synthesized signal was created by contaminating

a train of four different templates with realistic measured neural background noise.
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The EAC showed equivalent results to DSP simulation while low exclusion and in-

clusion errors were determined. This proves that the EAC is a reliable device that

is capable to replace and even outperforms DSPs in many extents such as power

consumption and parallel computing.
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6. CONCLUSIONS

Digital and analog computers have advantages and disadvantages. The EAC, however,

combines the advantages of both analog and digital computers. A classical digital

computer reconfigures itself quickly to answer new questions by loading software and

performing the algorithms in the software. However, certain types of questions are

difficult for digital computers to solve in reasonable amounts of time. As shown, the

EAC can perform the equivalent computations of a complex digital simulation much

more efficiently than a digital computer.

The EAC is not only a parallel analog processor with massive computational

capacity, but it is also a digitally configurable and a low power device. Therefore,

the EAC has high potential of being an efficient implantable neural signal processor.

In this thesis, it was proven that the EAC can efficiently work as an FIR, IIR filters,

or a combination of both. To prove the quality of the EAC, a matched filter, an

example of FIR filter, was simulated by a prototype of the EAC and compared to

digital computer simulation, where equivalent results were observed. Therefore, the

EAC is a radically different and high performance computing technique that would

address the technological gap for mobile neural signal processing and provide richer

processed information than current computing techniques.
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